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Abstract

Carbon fibre reinforced polymer (CFRP) is one of common solutions in repairing / reinforcing/ 
strengthening/ retrofitting structures in civil engineering due to its advantages in mechanical 
properties, durability and workability. However, recent issues have raised concerns for fire 
performance of CFRP and CFRP reinforced structures. Throughout the literature, there are several 
investigations on the evolution of mechanical performance of CFRP and CFRP reinforced structures 
during or after exposing to different levels of temperature which are close to temperatures obtained 
during a fire. However, the results are scatter due to the diversity of materials used, the difference in 
test protocols, and limitation in test facility for elevated temperature use. Analytical and numerical 
studies are also conducted with parametric investigation to observe, improve, and propose 
recommendations for design guideline. Additionally, missing gap in experimental data has a 
significant influence on the applicability of the available results. 

This research characterizes the behaviours of CFRPs and of concrete structure reinforced with CFRP 
material under three separated conditions concerning elevated temperature and mechanical loading 
that are close to different cases of fire application. The experimental and numerical methods used in 
this research are to further investigate the status of each material during the case studies. Particularly, 
residual test is used to study the mechanical performance of specimens cooled after exposing to 
elevated temperature respecting the evaluation of the remained behaviour of CFRP reinforced 
structures at post-fire situation for repairing/ retrofitting purpose. Two thermo-mechanical tests are 
used to study the mechanical performance of specimens at different elevated temperatures and their 
thermal performance at different mechanical statuses respecting the fire situation for predicting and 
designing purpose. The two final cases focus on the influence of loading order on the results to 
confirm the validity of experimental mechanical data obtained at different temperatures when 
applying for evaluating the fire performance of CFRP reinforced structure where mechanical effects 
and then temperature effects are combined. 

In the first experimental part, 86 tests on two types of CFRP (one pre-fabricated in factory and one 
manually fabricated in laboratory) were studied in the temperature range from 20°C to 712°C. The 
performance of CFRP material is generally reduced as the temperature increases. The thermo-
mechanical and residual ultimate strengths of P-CFRP gradually decrease from 20°C to 700°C, while 
its Young’s modulus varies less than 10% from 20°C to 400°C and then significantly decreases at 
600°C. The identified thermo-mechanical performance of CFRP was lower than its residual 
performance, especially at temperature beyond 400°C. Furthermore, the elevated temperature and 
mechanical load are experimentally shown to be relevant and thus the loading order has a small effect 
on the material performance under thermo-mechanical conditions. A new analytical model, proposed 
for the evolution of thermo-mechanical ultimate strength in function of temperature, has shown the 
ability to fit with two studied CFRPs and with those tested under similar thermo-mechanical condition 
in the literature. 

In the second experimental part, 39 tests on CFRP reinforced concrete structures were conducted 
following three procedures via 8 series. The study concerns three adhesives and two common 
reinforcement methods. The experimental results show that the near surface mounted reinforcement 
method can improve the thermo-mechanical performance of the tested specimen comparing to 
externally bonding reinforcement method. It also confirms that the mechanical performance of CFRP 
reinforced concrete structure under elevated temperature condition is much lower than its performance 
under residual condition. The mechanical status of CFRP reinforced concrete structure also has an 
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influence on its ability to resist elevated temperature rise, which is close to fire, with the reduction rate 
depending on the used adhesive and reinforcement method. The modification of adhesive used also 
affects to the thermo-mechanical performance of CFRP reinforced concrete structure.  Other 
experimental tests on insulated CFRP have shown ability to extend the thermal performance in terms 
of duration and failure temperature of this material. It is also shown that with the restriction from 
direct-contact with air, the studied CFRP material can resist to higher temperature level. 

In the final numerical part, the finite element method has been used to predict the thermo-mechanical 
performance of CFRP reinforced structure and also thermal performance of insulated CFRP. The first 
model has successfully predicted the displacement response of CFRP reinforced concrete structure 
under mechanical load as elevated-temperature rise. Three cases under different mechanical loads 
have been verified with experimental results with the appropriateness. The extended results for 
standard fire temperature cases regarding the variation of mechanical load have been presented. A 
proposed thermal-based method is potential for predicting the service duration of CFRP reinforced 
concrete structure under constant mechanical loads subjecting to elevated-temperature rise. The 
second model on insulated CFRP also successfully predicts the thermal performance of an insulation 
material in protecting the CFRP material. The thermal based method again shows the potentiality in 
predicting the ability of the studied insulation to protect CFRP regarding the influence of mechanical 
load. The numerical result is potentially in both predicting fire performance and designing the CFRP 
reinforced structure in according to the fire safety requirement. The numerical model can be further 
developed to be better explaining the damage mechanism and more efficient in fire-safety design 
application for CFRP reinforced concrete structure. 
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Résumé

Le polymère renforcé de fibres de carbone (CFRP) est l'une des solutions courantes pour réparer/ 
renforcer/ fortifier/ rétrofiter les structures en génie civil en raison de ses avantages dans les propriétés 
mécaniques, la durabilité et la maniabilité. Cependant, des problèmes d'incendie récents ont soulevé 
des inquiétudes quant à la performance au feu du CFRP et  des structures renforcées par CFRP. Dans 
la littérature, il existe plusieurs études sur l'évolution de la performance mécanique de CFRP et des 
structures renforcées par  CFRP pendant ou après l'exposition à différents niveaux de température qui 
sont proches des températures obtenus durant un feu. Cependant, les résultats sont dispersés en raison 
de la diversité des matériaux utilisés, de la différence dans les protocoles d'essai et de la limitation de 
l'installation d'essai pour une utilisation à température élevée. Des études analytiques et numériques 
sont également menées avec une étude paramétrique pour observer, améliorer et proposer des 
recommandations pour les directives de conception. Cependant, le manque de données expérimentales 
a une influence significative sur applicabilité des résultats disponibles. 

Cette recherche caractérise les comportements des CFRP et de la structure renforcée avec du matériau 
CFRP dans trois conditions distinctes concernant la température élevée et la charge mécanique qui 
sont proches des différents cas d'application au feu. Les méthodes expérimentales et numériques sont 
utilisées pour mener cette recherche afin d'étudier plus en détail l'état de chaque matériau au cours des 
études de cas. En particulier, l'essai résiduel est utilisé pour étudier la performance mécanique des 
spécimens refroidis après exposition à température élevée en respectant l'évaluation du comportement 
résiduel des structures renforcées en CFRP en situation post-incendie à des fins de réparation / 
renforcement. Deux essais thermomécaniques sont utilisés pour étudier la performance mécanique des 
échantillons à différentes températures élevées et leur performance thermique à différents états 
mécaniques en respectant la situation d'incendie pour la prédiction et la conception. Les deux derniers 
cas portent sur l'influence de l'ordre de chargement sur les résultats pour confirmer la validité des 
données mécaniques expérimentales obtenues à différentes températures lors de l'évaluation de la 
performance au feu de la structure renforcée par CFRP où les effets mécaniques et puis les effets 
thermiques sont combinés. 

Dans la première partie expérimentale, 86 essais sur deux types de CFRP (un préfabriqué en usine et 
un fabriqué manuellement en laboratoire) ont été étudiés dans la plage de température de 20°C à 
712°C. La performance du matériau CFRP est généralement réduite lorsque la température augmente. 
Les résistances thermomécaniques et résiduelles du P-CFRP diminuent graduellement de 20°C à 
700°C, tandis que le module de Young varie de moins de 10% de 20°C à 400°C et ensuite diminue 
significativement à 600°C. La performance thermomécanique identifiée de CFRP a été inférieure que 
sa performance résiduelle, en particulier à une température supérieure à 400°C. En outre, la 
température élevée et la charge mécanique sont expérimentalement pertinentes et l'ordre de 
chargement a donc un faible effet sur les performances du matériau dans des conditions 
thermomécaniques. Un nouveau modèle analytique, proposé pour l'évolution de la résistance ultime 
thermomécanique en fonction de la température, a montré sa capacité à s'adapter à deux CFRP étudiés 
et à ceux testés dans des conditions thermomécaniques similaires dans la littérature. 

Dans la seconde partie expérimentale, 39 essais sur les structures en béton renforcées par CFRP ont 
été réalisés selon trois procédures via 8 séries. L'étude concerne trois adhésifs et deux méthodes de 
renforcement courantes. Les résultats expérimentaux montrent que la méthode de renforcement monté 
en surface proche peut améliorer les performances thermomécaniques de l'échantillon testé par 
rapport à la méthode de renforcement par liaison externe. Il confirme également que la performance 



 

vi 

mécanique du béton renforcée par CFRP à température élevée est beaucoup plus faible que sa 
performance dans des conditions résiduelles. L'état mécanique de la structure en béton renforcée par 
CFRP influe également sur sa capacité à résister à une élévation de température élevée, proche du feu, 
le taux de réduction dépend de la méthode de collage et du renforcement utilisée. La modification de 
l'adhésif utilisé affecte également la performance thermomécanique de la structure en béton renforcée 
par CFRP. D’autres essais supplémentaires sur les CFRP isolés ont montré une capacité à augmenter 
les performances thermiques en termes de durée et de température de rupture de ce matériau. Il est 
également montré qu'avec la restriction du contact direct avec l'air, le matériau CFRP étudié peut 
résister à un niveau de température plus élevé. 

Dans la partie numérique finale, la méthode des éléments finis a été utilisée pour prédire la 
performance thermomécanique de la structure renforcée par CFRP et également la performance 
thermique du CFRP isolé. Le premier modèle a prédit avec succès la réponse de déplacement de la 
structure en béton renforcée par CFRP sous charge mécanique en tant qu'élévation à température 
élevée. Trois cas sous différentes charges mécaniques ont été vérifiés avec les résultats expérimentaux 
avec la pertinence. Les résultats étendus pour les cas de température de feu standard concernant la 
variation de la charge mécanique ont été présentés. Une méthode thermique proposée est un moyen de 
prédire la durée de service de la structure en béton renforcée par CFRP soumise aux charges 
mécaniques constantes et à une élévation de température élevée. Le deuxième modèle sur CFRP isolé 
prédit également avec succès la performance thermique d'un matériau isolant dans la protection du 
matériau CFRP. La méthode thermique montre à nouveau la possibilité de prédire la capacité de 
l'isolant étudié à protéger les CFRP en ce qui concerne l'influence de la charge mécanique. Le résultat 
numérique est potentiellement à la fois la prévision de la performance au feu et la conception de la 
structure renforcée par CFRP conformément aux exigences de sécurité d’incendie. Le modèle 
numérique peut encore être développé pour mieux expliquer le mécanisme’ d’endommage et être plus 
efficace dans l'application de la conception de sécurité d’incendie pour la structure en béton renforcée 
par CFRP. 
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120°C (Firmo et al., 2015a). There is also investigation on the fire performance of EBR CFRP 1 
reinforced concrete beams under various load levels (Turkowski et al., 2017). For NSM reinforcement 2 
method, Al-Abdwais et al. observed the behaviour of the NSM CFRP reinforced concrete structures 3 
using cement-based adhesive at elevated temperature condition (Al-Abdwais et al., 2017).  Jadooe et al. 4 
investigated the residual performance of NSM CFRP reinforced concrete via single lap test using a 5 
cement-based adhesive and an epoxy adhesive  after 1 hour exposing to temperature from 200°C, 400°C 6 
and 600°C (Jadooe et al., 2017a, 2017b; Jadooe Awad et al., 2017).  7 

In comparison between two reinforcement methods, Firmo et al. experimentally studied the performance 8 
of CFRP reinforced concrete beam in both cases of reinforcement (EBR and NSM) and used these 9 
results to explain the fire performance of CFRP reinforced concrete structure (Firmo et al., 2014). The 10 
results also showed that at room temperature, the NSM reinforced beam has 21%-35% better 11 
performance compare to EBR reinforced one depending on the bond configuration. Kotynia et al. also 12 
experimentally studied the performance of CFRP reinforced concrete structure using NSM and EBR 13 
reinforcement methods at non-temperature condition and also verified with numerical solution (Kotynia, 14 
2012; Kotynia et al., 2008). The results showed that the NSM method allowed concrete beam higher 15 
failure strain, compared to EBR method. There are also other available studies for shear strengthening, 16 
compression strengthening of concrete structures or even CFRP pre-tensioned slabs at various 17 
temperature-mechanic testing conditions. For instant, Tan et al. investigated the residual performance of  18 
shear strengthening of glass FRP wrapped beams after being exposed to temperature-time history 19 
(Yuqian, 2010) following ASTM E-119 curve. These authors also reported on the performance of fibre-20 
reinforced cement composite, basalt FRP laminates and basalt FRP-strengthened beams subjected to 21 
elevated temperature (Tan and Zhou, 2007, 2008, 2009). Kim et al. studied the residual shear 22 
performance of CFRP shear strengthened short beams after being exposed to temperature up to 200°C 23 
(Kim et al., 2012; Namrou and Kim, 2016; Yail J. Kim, 2012). Considering combined temperature-24 
mechanic load, Cree et al. observed the shear performance of hand layup lap-splice test in two load cases 25 
with  elevated temperature up to 200 °C (Cree et al., 2015; Duncan Cree et al., 2017; Gales et al., 2016). 26 
Terrasi et al. and Maluk et al. reported the fire behaviour of CFRP pre-stressed high-performance self-27 
consolidating concrete slabs in  an experimental study on thin slabs exposed to a standard fire (Maluk et 28 
al., 2010; Terrasi et al., 2012). 29 

There are also several studies which focus on the fire behaviour of steel-reinforced concrete structures 30 
strengthened by CFRP (with or without fire protection systems) ,(Ahmed and Kodur, 2011; Chowdhury 31 
et al., 2012, 2007; Cree et al., 2012; Firmo and Correia, 2015; Firmo et al., 2012; Ji et al., 2013; Kodur 32 
et al., 2006; López et al., 2013; Maluk et al., 2015; Naser et al., 2012; Palmieri et al., 2013; Turkowski et 33 
al., 2017)  34 

1.3. Analytical material models 35 

Although several analytical models have been proposed for elevated temperature performance of 36 
material such as concrete, steel and FRP, but few models that perfectly address CFRP. 37 

Gibson et al. (Gibson, 2005) used a hyperbolic tangential function (Equation 2) based on composite 38 
theory to predict the evolution of a laminate polyester/ glass system as the temperature rose up to 200°C: 39 

 tanh '
2 2

n U R U RP P P PP T R k T T Equation 2 

Where P(T) is a particular property at temperature T, PU and PR are the un-relaxed and relaxed value of 40 
that property at low temperature and high temperature, respectively. K is a constant describing the 41 
breadth of distribution and T’ is the mechanically determined glass transition temperature. These two 42 
parameters were identified by fitting with the experimental results. R is the residual resin content 43 
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coefficient (between 1 and 0) and its value, depending on the stress state, was proposed as 1 for resin-1 
dominated properties and 0 for fibre-dominated properties (Gibson, 2005). The proposed model showed 2 
good agreement with the experimental compressive strength of the glass fibre system. 3 

Bisby suggested a sigmoid function (Equation 3) to simulate the reduction in strength, stiffness and bond 4 
for CFRP and GFRP materials (Bisby, 2003): 5 

 
1 1tanh

2 2o

f a ab T c
f Equation 3 

In this expression, f is a mechanical property at temperature T (strength, stiffness or bond strength), and 6 
fo is the room temperature value of that mechanical property. The coefficient a was assumed as the 7 
residual value for the mechanical property, and coefficients b and c were identified through calibration 8 
based on the experimental results collected from literature published before 2004. The values of a, b, 9 
and c are shown in Table 3. 10 

 11 

Table 3: Coefficients for tensile strength and Young’s modulus of CFRP and GFRP proposed by Bisby, 12 
Equation 3, (Bisby, 2003) 13 

Material Property 
Coefficients 

a b (x10e-3) c 

CFRP 
Tensile strength 0.10 5.83 339.54

Young’s modulus 0.05 8.68 367.41

GFRP 
Tensile strength 0.10 8.1 289.14

Young’s modulus 0.05 7.91 320.35

 14 

K. Wang et al. (Wang et al., 2011) calibrated the models of Bisby et al. (for FRP) (Bisby, 2003), Gibson 15 
et al. (for GFRP) (Gibson, 2005), and J. Chen et al. (for steel) (Chen and Young, 2006) to fit with his 16 
experimental results from 22°C to 706°C. The author confirmed that with Bisby’s model (Equation 3), 17 
there is a discrepancy due to the scattered data from various FRP. According to K. Wang et al. (Wang et 18 
al., 2011), Gibson’s model (Equation 2) better fitted with the experimental results for temperatures up to 19 
400°C. On the other hand, after being calibrated, the model of J. Chen et al. (Equation 4) agreed well 20 
with the experimental results for all ranges of temperature (Wang et al., 2011). K. Wang calibrated the 21 
coefficients A, B, C and n in Equation 4 to fit with his experimental results. These are shown in Table 4 22 
(Wang et al., 2011). 23 

 24 

 ,

,

n
u T

u normal

F T B
A

F C  
Equation 4 

 25 

Table 4: Prediction model by Wang et al. (Wang et al., 2011), Equation 4: Coefficients for the strength 26 
of pultruded CFRP at elevated temperature 27 

Temperature range ( C)
Coefficients 

A B C n 
22 T<150 1.00 22 200 0.9

150 T<420 0.59 150 490 0.7
420 T<706 0.48 420 76000 1.8

 28 
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Yu and Kodur (Yu and Kodur, 2014) calibrated Equation 3 proposed by Bisby (Bisby, 2003) using their 1 
experimental results with CFRP rods and strips, resulting in the following retention factors: 2 

 3 

CFRP strips    

   Strength: 0.56 0.44tanh 0.0052 305f T T
 

 Equation 5 

 Young’s modulus: 0.51 0.49tanh 0.0035 340E T T
 

Equation 6 

CFRP rods    

 Strength: 0.54 0.46tanh 0.0064 330f T T
 

Equation 7 

 Young’s modulus: 0.51 0.49tanh 0.0033 320E T T
 

Equation 8 

Where f T and E T are the reduction factors in the tensile strength and Young’s modulus of the 4 

studied material, respectively. The prediction model exhibited a close match with the obtained results. 5 
The model is recommended for evaluating the fire response of structures strengthened with near-surface 6 
mounted FRP reinforcement. 7 

Concerning the performance of FRP at severe temperature conditions, B. Ghadimi et al  had proposed a 8 
polynomial function to predict the residual compressive strength of pultruded glass fibre reinforced 9 
polymer regarding the temperature ranged from 20°C to  250°C (Ghadimi et al., 2017). The developed 10 
model can successfully predict the softening brittle response of the tested material that is subjected to 11 
cycles of thermal loading and compression. 12 

 13 

1.4. Conclusion14 

The literature review has highlighted the interest of the scientific community to the mechanical 15 
performance of concrete, polymer composites (FRP), structural adhesives, concrete/adhesive/FRP 16 
interface as well as FRP-concrete bond as they are exposed to elevated temperatures which are always 17 
the most important defining characteristic of a fire. This is because these materials are commonly used 18 
for reinforcing, rehabilitating and repairing of civil engineering works and the fire is still existing risk 19 
and can occur in these structures. 20 

In general, a fire in buildings is represented in the simplest way by nominal curves, ISO 834 or ASTM 21 
E119. However, the re-creation of these "temperature-time" curves is not always easy in experimental 22 
studies because of a very high speed of temperature increase during the first minutes. Therefore, in the 23 
civil engineering field, to study the effect of temperature on the mechanical behaviour of a material, 24 
steady state tests (where the temperature is constant with time) are commonly carried out instead of 25 
those in variable regime (where the temperature in the specimen body is a function of both time and the 26 
position). 27 

The synthesis study clearly shows that the effect of temperature on the thermo-mechanical behaviour of 28 
concrete is widely studied. However, information about the FRP composites (especially the 29 
carbon/epoxy composite) subjected to elevated temperatures is still rare. Numerous physical, chemical, 30 
thermal and mechanical complex processes occur in concrete material, FRP composite and polymer 31 
adhesive during when they are exposed to elevated temperatures. These processes are the evaporation of 32 
water, conduction or convection, the generation or absorption of heat, softening or the transition from a 33 
"glassy" state to a "rubbery" state, the thermal expansion/contraction, the increasing of internal pressure, 34 
the chemical processing steps, the dehydration, the de-carbonation of limestone or the decomposition of 35 
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the polymer matrix and organic fibres, the oxidation of carbon fibres, the thermal deformation and 1 
cracking of the matrix, the delamination of fibre/matrix interface ... Moreover, these changes do not 2 
occur separately, but they overlap and/or interact with each other. These processes strongly affect the 3 
mechanical properties and thermo-mechanical tensile behaviour of materials. In summary, the evolution 4 
of main properties in function of temperature can be noted as followings: 5 

a. For concrete: 6 
- Reduction of the thermal conductivity attributes to the drying of the material, the occurrence and 7 

development of cracks caused by the incompatibility of deformation of the components and by 8 
the pressure in the pores, voids. 9 

- The change in specific heat results from the drying effect of the material and endothermic 10 
reactions. 11 

- The reduction of density results from the thermal expansion and the weight loss. 12 
- The reductions in general of the compressive strength, the tensile strength, the Young’s modulus 13 

of the concrete are caused by the increase in micro-cracking and porosity and internal stress 14 
result from thermal damage. Nevertheless, there is also an increase in the tensile strength of the 15 
concrete and of the cement paste at certain temperatures. 16 

- Additionally, developments of phenomenon mentioned above are irreversible. Finally, it is also 17 
necessary to mark thermal expansion (up to about 150°C) followed by a large thermal shrinkage 18 
of the cement paste. 19 

b. For FRP in general and CFRP in particular: 20 
- There are reductions of the Young's modulus, tensile strength and change from linear behaviour 21 

to non-linear behaviour beyond the glass transition temperature. They relate to the softening, 22 
degradation of the mechanical performance of the components as well as the decomposition of 23 
the polymer matrix, to the oxidation of carbon fibres, to the micro-matrix cracking and to the 24 
delamination interfacial fibre/matrix. 25 

- The variations of the thermal conductivity and the specific heat are caused by micro-cracking, 26 
voids and endothermic/exothermic reactions. 27 

- The progressive mass loss (especially at temperatures above 300°C) of CFRP, GFRP closely 28 
relates to matrix decomposition. 29 

c. For polymer adhesives in general and epoxy adhesive in particular: 30 
- The weight loss (especially in the more than 300°C for the elevated temperature epoxy) 31 

attributes to thermal decomposition of the material. 32 
- The change in physical state (from a "glassy" state to a "rubbery" state) and physical properties 33 

(specific heat, coefficient of thermal expansion) and mechanical properties (Young’s modulus , 34 
resistance) happens in the region around the glass transition temperature 35 

- There are evolutions of shape and characteristic parameters of the "stress-strain" curves (from a 36 
quasi linear and fragile behaviour to plasticized behaviour for the epoxy). 37 

Nevertheless, the literature review also shows a significant dispersion of the experimental results 38 
concerning the tensile and thermal behaviour of the above mentioned materials. This is attributed to the 39 
diversity of the materials used (the nature, the volume fraction and the distribution of its constituents ...), 40 
to different test protocols [types of thermo-mechanical loadings: splitting, bending or direct traction, 41 
"direct high-temperature test" (thermo-mechanical test) or "ambient temperature test on hot-cooled 42 
specimens" (residual test)]. In addition, it is also necessary to mark the difficulties of measuring the 43 
specimen deformation using direct contact instruments under elevated temperatures condition (thermal 44 
influence on accuracy of instrumentation, sliding or detachment of the measurement sensors used on the 45 
substrate). Furthermore, the equipment used in most previous studies does not allow performing 46 
experiments with simultaneous effects from mechanical and elevated temperature loads. For this reason, 47 
residual tests carried on heated-cooled specimens are more common than thermo-mechanical tests 48 
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carried out on hot specimen for studying the influence of temperature the mechanical behaviour of 1 
materials. Finally, some models showing the evolution of mechanical properties of FRP have also been 2 
proposed but their appropriateness still needs to be assessed. 3 

1.5. Objectives of this Ph.D. thesis 4 

The application of FRP composites in the civil engineering sector is promising. However, the risks of 5 
fire accidence in civil engineering structure raise several concerns around its application. For the 6 
application of FRP in civil engineering, fire concerns are complicated due to the existences of several 7 
chemical, physical and structural phenomena. Until now, understandings on the thermo-mechanical 8 
behaviour of FRP composites, which are close to fire case, are still very limited; mainly because of a 9 
small quantity of studies. Thus, it is obvious to continuously advance on this research theme. 10 
Particularly, the knowledge of the tensile behaviour of FRP materials under the simultaneous effects of 11 
mechanical loading and elevated temperature need to be supplemented based on "high temperature 12 
direct testing". Also, the evolution of the thermo-mechanical characteristics of the materials, especially 13 
the CFRP depending on the temperature, should also be considered. This will enrich the literature 14 
database and provide necessary information for the analysis models of the thermo-mechanical response 15 
of these materials in the event of fire. From all above reviews, following questions arise: 16 

- What are the evolutions of the main characteristic parameters (ultimate stress and Young’s 17 
modulus) of the CFRP material as a function of temperature and mechanical loading paths? 18 

- Is there any difference between the thermo-mechanical behaviour (under “direct hot test”) and 19 
the residual behaviour (under ambient-temperature tensile-test after hot-cooled procedure) of 20 
CFRP material when it is simultaneously subjected to elevated temperatures and mechanical 21 
load? 22 

- Will the duration that CFRP material exposed to elevated temperature influence its properties 23 
(strength, modulus)? 24 

- Is there any correlation between elevated temperature and mechanical effects to CFRP material 25 
performance (including mechanical resistance and thermal resistance)? 26 

- Is there any difference between the performance of different types of CFRP, especially factory-27 
prefabricated CFRP (or pultruded CFRP) and manually fabricated CFRP (in-situ/ hand lay-up/ 28 
wet lay-up CFRP)? 29 

- In civil engineering applications, what implementation method can improve the performance of 30 
CFRP reinforced concrete structure under severe temperature and mechanical load especially 31 
regarding to condition close to standard fire cases? 32 

- How to numerically model the performance of CFRP reinforced concrete structures under 33 
elevated temperature and mechanical load condition? And how to apply the model to predict 34 
their performance under different thermo-mechanical conditions (including fire-temperature 35 
condition)? 36 

 For the reasons stated above, the objectives of this Ph.D. thesis are to: 37 

- Experimentally study performance of CFRPs and extend the properties data of the CFRPs when 38 
they are simultaneously subjected to thermal and mechanical loadings. The study expects to 39 
observe the evolution of thermo-mechanical properties of two types of CFRP (one was provided 40 
by laboratory’s partner and one was manually fabricated at laboratory condition) with the 41 
thermo-mechanical stress-strain relationship of CFRP provided by non-contact measurement 42 
(laser extensometer). The behaviours of CFRP at three different combined conditions of 43 
elevated temperature and mechanical load are also expected to be clarified, especially at 44 
expected temperature range beyond 300°C and up to 1000°C. The relevance between 45 
experimental results and proposed models in the literature is expected to be identified. 46 
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- Experimentally study the thermo-mechanical performance of interface regarding the 1 
concrete/adhesive/CFRP bond under simultaneous elevated temperature and mechanical load. It 2 
is expected to identify an optimal solution to improve the concrete/adhesive/CFRP bond under 3 
severe temperature-mechanical condition that is close to standard fire condition. 4 

- Numerically investigate the performance of CFRP in reinforcing the concrete structures by 5 
using finite element analysis based software (ANSYS) to apply the experimental test results of 6 
each component in assembly model. The successful model is then able to be applied in 7 
observing the behaviour of CFRP reinforced concrete structures under different combined 8 
elevated temperature and mechanical loading condition as well as optimizing, developing their 9 
performance in complicated temperature-mechanical condition. 10 

 11 

 12 
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2.3.1.1. Phase 1 - Thermal loading 

In this phase (Figure 58), the temperature surrounding the sample is steadily increased up to the target 
temperature, Tt (Figure 58) which is then maintained during the testing time. In this study, Tt ranges 
from 200°C to 700°C. The sample is first set up in the furnace. Then, a small initial control force 
(Fc~100N, Figure 58) is applied to the specimen to generate the tensile status. The tensile force is 
programmed to increase and decrease between an upper value of 300N and a lower value of 100N. 
This cycle repeats 5 times to assure the sample is stable and axial. Next, the furnace begins heating 
the environment until the temperature reaches the target temperature. To maintain good operation and 
a homogeneous temperature during the test, the ramp rate is set between 7°C /min and 22°C /min, 
depending on the target temperature (Table 5). Based on these rates, the furnace takes approximately 
30 minutes to reach its target temperature. The glass transition temperature (Tg) of the polymer matrix 
is between 100-125°C, and its combustion temperature (Tc) is approximately 350-400°C. Therefore, 
when the sample portion inside is heated to Tc, the polymer oxidation process starts and releases 
smoke while the carbon fibre remains intact. Therefore, in tests with Tt > Tc, when the temperature 
reaches Tc, smoke is emitted which may affect the laser extensometer. For that reason, an insulation 
barrier is used to block the side opening of the furnace. This helps reduce heat loss and diminishes 
thermal threats to the laser extensometer. 

 

Table 5: Heating rates and corresponding ramp rates 

Target temperature (°C) 100 200 300 400 500 600 700 800 900-1200 
Ramp rate (°C/minute) 3 6 10 13 16 20 23 26 30 

 

2.3.1.2. Phase 2 - Thermal exposure at target loading 

In this second phase, the temperature surrounding the sample will be maintained at the target 
temperature for a predetermined period of time. During this stage, the furnace will keep providing 
energy to compensate for natural heat loss in order to maintain a stable temperature. When the CFRP 
material experiences thermal expansion, the mechanical part is programmed to compensate for the 
tension release and maintain the applied force at the established level. During this phase, due to the 
polymer oxidation, the released smoke continues to diffuse and prevents the laser extensometer from 
effectively tracking the sample surface. To obtain reliable laser extensometer measurements, it is 
necessary to wait until the polymer matrix inside the heating chamber has completely burned. For the 
pultruded CFRP sample, the polymer oxidation process normally occurs within 30 minutes after the 
target temperature is reached. In this study, to ensure both a homogenous environment around the 
specimen and clear visibility for the strain measurement, the duration of the thermal exposure is set at 
60 minutes. 

2.3.1.3. Phase 3 - Thermal release 

In this phase (Figure 58), after being exposed to the target temperature for a predetermined period of 
time, the temperature surrounding the sample then naturally decreases until it reaches room 
temperature. The furnace is turned off to stop providing energy to the heating chamber while the heat 
continues to dissipate. As a result, the temperature surrounding the specimen naturally decreases until 
it reaches room temperature. Meanwhile, the applied tensile load is maintained until the cooling 
process has completely finished. 
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approximately 30 minutes to reach its target temperature. The glass transition temperature (Tg) of the 
polymer matrix is between 100-125°C, and its combustion temperature (Tc) is approximately 350-
400°C. Therefore, when the sample portion inside is heated to Tc, the polymer oxidation process starts 
and releases smoke while the carbon fibre remains intact. Therefore, in tests with Tt > Tc, when the 
temperature reaches Tc, smoke is emitted which may affect the laser extensometer. For that reason, an 
insulation barrier is used to block the side opening of the furnace. This helps reduce heat loss and 
diminishes thermal threats to the laser extensometer. 

2.3.2.2. Phase 2 - Thermal exposure at target loading 

In this second phase, the temperature surrounding the sample will be maintained at the target 
temperature for a predetermined period of time. During this stage, the furnace will keep providing 
energy to compensate for natural heat loss in order to maintain a stable temperature. When the CFRP 
material experiences thermal expansion, the mechanical part is programmed to compensate for the 
tension release and maintain the applied force at the established level. During this phase, due to the 
polymer oxidation, the released smoke continues to diffuse and prevents the laser extensometer from 
effectively tracking the sample surface. To obtain reliable laser extensometer measurements, it is 
necessary to wait until the polymer matrix inside the heating chamber has completely burned. For the 
pultruded CFRP sample, the polymer oxidation process normally occurs within 30 minutes after the 
target temperature is reached. In this study, to ensure both a homogenous environment around the 
specimen and clear visibility for the strain measurement, the duration of the thermal exposure is set at 
60 minutes. 

2.3.2.3. Phase 3 - Thermo-mechanical loading 

During this phase, the applied uniaxial tensile load acting on the specimen monotonically increases 
until the rupture of the sample, while the temperature is maintained at the target level. After the 
duration of thermal exposure, the insulation barrier on the sidewall of the furnace is removed and the 
laser extensometer is attached to the sidewall opening of the furnace. It is then activated and ready for 
recording strain data. During this phase, the temperature in the heating chamber is maintained at a 
constant level, and the visibility inside the heating chamber is clear to allow the laser extensometer to 
measure the correct strain data. At the beginning of this phase, a force is applied cyclically 5 times to 
assure the stability and axial position of the sample. Next, a quasi-static, monotonous force is applied 
and increases until the specimen ruptures. This increase is controlled by the transverse of the testing 
machine (Figure 55a) with a movement speed of 300 μm/min to prevent distortion effects to the laser 
extensometer image of the sample surface during the loading process at elevated temperature (this 
loading speed is selected based on the “ISO 527: Plastics — Determination of tensile properties”). 
When the applied force suddenly drops more than 50%, the loading process stops and the peak value 
is recorded as the rupture force. This rupture force is identified as the ultimate force that acts on the 
sample at the target temperature, which is then used to calculate the ultimate thermo-mechanical stress 
of the CFRP ( .U TM ). During the mechanical loading process, the tensile strain is measured by the laser 
extensometer. This strain is identified as the thermo-mechanical axial tensile strain, which is the result 
of both a mechanical effect (tensile loading increase) and a thermal effect (steady target temperature). 
The maximum value of this strain is identified as the ultimate thermo-mechanical strain ( .U TM ) 
corresponding to the rupture point at the target temperature. This strain is also used to calculate 
Young’s modulus for each temperature level ( TME ). 
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specimens measured in laboratory condition). The detailed properties of the carbon textile and 
polymer matrix are described in the following section. 

2.4.2.2. Carbon textile 

The carbon textile used includes non-twisted filaments. It is commonly used in high tensile 
applications such as pressure vessels, recreation, industry and engineering. According to datasheet 
from supplier, the tensile strength and modulus of this carbon fibre are 4900 MPa and 230 GPa, 
respectively, and its critical strain is 2.1%. The diameter of each filament is 7μm, and its density is 1.8 
g/cm3. The standard dimension of the carbon textile is 1 m in width and 0.32 mm in thickness (310 
g/m2), including approximately 3.7 carbon fibre yarns with a 1 cm long cross-section. Each yarn 
includes 12000 carbon filaments and its surface is pre-treated with resin compatibility epoxy. In civil 
engineering, this type of carbon fibre is used to repair/strengthen/retrofit structures with complicated 
shapes, such as confined-strengthening round columns, walls, shear strengthening in beams, or even 
bending-reinforcing for beams/slabs. To apply the M-CFRP on a structure, the carbon textile is 
wrapped or stretched along the structure surface, and the polymer is swept between the carbon textile 
and substrate surface or between the carbon layers. 

2.4.2.3. Polymer matrix 

The used polymer is a two-component epoxy with a mixed product density at 20°C and is 1.11 g/cm3. 
According to supplier’s data, the material properties are as in the Table 6 (according to ASTM 
method).  

Table 6: Epoxy material properties at 21 C (datasheet) 

Material property ASTM 
method

Test value 

Tg D4065 82°C 
Tensile Strength D638 72.4 MPa 
Tensile Modulus D638 3.18 GPa 

Elongation Percent D638 5.0% 
Compressive Strength D695 86.2 MPa 
Compressive Modulus D695 3.2 GPa 

Flexural Strength D790 123.4 MPa
Flexural Modulus D790 3.116 GPa 

 

2.4.2.4. Sample preparation 

In the laboratory, the carbon textile was prepared in a single layer and was 1 m in length and 0.5 m in 
width (according to the fibre direction, Figure 64). The textile was then stretched, fixed in the flat 
plate formwork and applied with a polymer matrix afterwards. A minimum curing duration at 72 
hours for polymer at 60°C is required. However, due to the application situation, which is unable to 
attain this temperature condition with real scale structures. Moreover, according to Cree et al., the 
tensile strength and Young’s modulus of M-CFRP at elevated temperature are little influenced by the 
curing temperature (Cree et al., 2015). For these reasons, the M-CFRP is produced and cured with 
room temperature condition in 7 days in a laboratory (Figure 65). The preparation of M-CFRP in this 
study was also made according to the preparation procedure established by the supplier of materials 
(carbon textile and polymer matrix). Based on the material consumption, the fibre volume ratio of this 
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2.6.1.2. Residual tests 

Table 10 summaries the residual properties in the temperature range between 200°C and 600°C. The 
residual ultimate stress ranges from approximately 1865-1912 MPa at 200°C to 1400-1492 MPa at 
400°C. At 500-550°C and 600°C, these values are approximately 1080-1140 MPa and 394-398 MPa, 
respectively. Among the 8 specimens heated between 200°C and 400°C, 3 samples failed at the 
aluminium position (AB), and thus the corresponding rupture stresses do not represent their residual 
ultimate stresses at these temperature levels. The results also show that the residual Young’s modulus 
at 200°C, 400°C and 500°C do not vary much, approximately 160-180 GPa, 159-165 GPa and 155 
GPa, respectively. At 600°C, the Young’s modulus value is much lower, 46 GPa. The axial strain of 
the samples heated at high temperature (from 400°C to 600°C) is difficult to obtain due to the 
instability of the retained near-surface fibres during the tensile loading step. 

 

Table 10: Details of residual tests (RR) from 200°C to 600°C; MB: failure at the centre position; AB: 
failure at the aluminium position; NA: not available 

Test 
No 

Sample Name Temperature Rupture 
type 

Ultimate 
stress 

Elastic 
modulus 

Waiting 
time 

(°C) (MB/AB) (MPa) (GPa) (minute) 
1 C.RR.200.01 200 AB NA 179.9 60 
2 C.RR.200.02 200 AB NA 164.6 60 
3 C.RR.200.03 200 MB 1865.1 172.9 60 
4 C.RR.200.04 200 MB 1913.1 160.2 60 
5 C.RR.400.01 400 MB 1378.7 NA 60 
6 C.RR.400.02 400 AB NA 165.1 60 
7 C.RR.400.03 400 MB 1491.9 NA 60 
8 C.RR.400.04 400 MB 1399.9 158.8 60 
9 C.RR.500.01 500 MB 1139.0 154.6 60 

10 C.RR.550.01 550 MB 1080.3 NA 60 
11 C.RR.600.01 600 MB 393.8 NA 60 
12 C.RR.600.02 600 MB 397.9 46.1 60 

 

2.6.1.3. Thermo-mechanical test 1 (TM1)  

Table 11 summaries the thermo-mechanical properties of P-CFRP for the temperature range between 
200°C to 700°C. According to Figure 59, the thermo-mechanical ultimate strength at 200°C is higher 
than 1630-1640 MPa, reducing to approximately 1000-1100 MPa at 400°C, at 60 minutes of waiting 
time. At 500°C, 550°C and 600°C, these values are approximately 610-840 MPa, 390 MPa and 80-
100 MPa, respectively. At 700°C, the material fails due to the oxidation of CFRP after the 
temperature in the heating room reaches 700°C for 8 minutes. At 200°C, 3 of 5 test samples failed at 
the aluminium position (AB). The collected stress-strain curves show linear behaviour (a typical curve 
is shown in Figure 67). Table 11 shows that Young’s modulus for P-CFRP at 200°C varies between 
137 GPa and 176 GPa. These values at 400°C vary between 152-165 GPa, 126-146 GPa, 144-156 
GPa and 143 GPa in tests with waiting times of 10, 30, 60 and 90 minutes, respectively. At a 
temperature level of 500°C, Young’s modulus for P-CFRP is reduced to approximately 117 GPa, and 
steadily falls to approximately 16 GPa at 600°C. After the polymer matrix has completely degraded 
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(normally above 400°C), the instability of the retained carbon fibres resulted in a failure of the laser 
extensometer to record the deformation in some tests. 
 

Table 11: Details of thermo-mechanical tests1 (TM1) from 200°C to 700°C; MB: failure at the centre 
position; AB: failure at the aluminium position; NA: not available 

Test 
No 

Sample Temperature Rupture 
type 

Ultimate 
stress 

Young’s 
modulus 

Exposure  
duration 

(°C) (MB/AB) (MPa) (GPa) (minute) 
1 C.TM1.200.01 200 AB NA 137.2 60 
2 C.TM1.200.02 200 AB NA 148.5 60 
3 C.TM1.200.03 200 MB 1642.2 152.3 60 
4 C.TM1.200.04 200 AB NA 155.3 60 
5 C.TM1.200.05 200 MB 1629.6 176.1 60 
6 C.TM1.400.01 400 MB 1031.3 151.5 10 
7 C.TM1.400.02 400 MB 902.8 164.6 10 
8 C.TM1.400.03 400 MB 883.5 145.6 30 
9 C.TM1.400.04 400 MB 1068.7 126.4 30 

10 C.TM1.400.05 400 MB 1098.6 143.8 60 
11 C.TM1.400.06 400 MB 1113.3 157.5 60 
12 C.TM1.400.07 400 MB 1042.0 NA 60 
13 C.TM1.400.08 400 MB 938.8 142.6 90 
14 C.TM1.400.09 400 MB 1010.0 NA 90 
15 C.TM1.500.01 500 MB 839.9 116.7 60 
16 C.TM1.500.02 500 MB 609.9 NA 60 
17 C.TM1.500.03 500 MB 643.8 NA 60 
18 C.TM1.550.01 550 MB 392.7 NA 60 
19 C.TM1.600.01 600 MB 73.5 16.7 60 
20 C.TM1.600.02 600 MB 99.9 15.9 60 
21 C.TM1.600.03 600 MB 79.5 NA 60 
22 C.TM1.700.01 700 MB 0.0 NA 8 

 

2.6.1.4. Thermo-mechanical test 2 (TM2) 

Table 12 summaries details of P-CFRP specimens and the thermal performance including the failure 
temperature, exposure duration and actual heating rate of each conducted test in TM2 condition. In 
each test, the failure temperature is determined when the mechanical load that is applied drops by 
approximately 50% (in all tests, this drop quickly occurs with a magnitude of more than 50%). The 
exposure duration in this test is determined as the duration between the point at which the temperature 
starts to increase and the failure temperature. For the TM2 regime, the test starts from the room 
conditions, where the temperature can vary between 15°C and 25°C in the daytime. Furthermore, the 
temperature inside the furnace rises slowly at the beginning of each test at a low heating rate. In 
experimental test, the rise then becomes stable after the temperature reaches 30°C and maintains its 
rate until failure. Therefore, in this study, the start point for tests in the TM2 regime is chosen at 35°C 
to guarantee that the furnace is stably and effectively operating, and the end point is when the 
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specimen fails. Based on this, the average heating rate in this table is then determined and presented in 
Table 12.  Because the high heating rate in the TM2 leads to smoke leakage, which can influence the 
precision of the laser extensometer, this device is deactivated, and there is no local deformation data 
except the global deformation obtained from two traverses.  

As can be seen in Table 12, both the failure temperature and the exposure duration reduce as the stress 
ratio increases. Particularly, at a low stress ratio of 0.1, the average failure temperature is 
approximately 699°C, and the average exposure duration is 44 minutes. This corresponds to actual 
heating rate from 13.3 to 16.6°C/minute. As this ratio increases to 0.25, the exposure duration is 
649°C, and exposure duration is approximately 34.7 minutes (at heating rate 16.7°C/minute). At a 
stress ratio of 0.5, these values are 436°C with a failure temperature at 32.3 minutes with the exposure 
duration. These values drop to 51.7°C and 1 minute at a stress ratio of 0.75 on average, respectively.  
 

Table 12: Details of thermo-mechanical tests2 (TM2) at different stress ratios;  

No Sample Thickness width Stress 
ratio

Failure 
temperature

Exposure 
duration

Actual 
HR 

mm mm °C min °C/minute 
1 C.TM2.10.1 1.22 8.26 0.10 712 39.7 16.6 
2 C.TM2.10.2 1.22 6.96 0.10 686 47.6 13.3 
3 C.TM2.25.1 1.22 6.64 0.25 669 27.3 26.4 
4 C.TM2.25.2 1.22 6.12 0.25 609 28.3 19.9 
5 C.TM2.25.3 1.22 6.07 0.25 601 47.1 12.3 
6 C.TM2.25.4 1.22 5.76 0.25 649 34.7 16.7 
7 C.TM2.25.5 1.22 8.45 0.25 664 25.2 25.6 
8 C.TM2.25.6 1.22 6.46 0.25 584 258.8 2.1 
9 C.TM2.50.1 1.22 9.3 0.50 489 50.3 10.5 
10 C.TM2.50.2 1.22 7.52 0.50 384 14.3 23.0 
11 C.TM2.68.1 1.22 6.83 0.68 41 1.0 15.0 

 

2.6.1.5. Failure modes 

The failure mode of the P-CFRP material depends on the temperature level between 20°C and 700°C. 
Table 13 presents the typical failure of the P-CFRP samples that were tested at different conditions: at 
20°C (Table 13a), with the RR procedure (Table 13b), the TM1 (Table 13c), and TM2 (Table 13d). 
According to Table 13a, at 20°C, P-CFRP exhibits a brittle failure tendency for both the matrix and 
the carbon fibre (failure mode A). The failure position of the carbon fibre is random along the length 
of specimen. At 200°C (Table 13b,c), in RR condition, P-CFRP specimens display a brittle-like 
failure that is similar to their failure mode at 20°C while in TM1 regime the P-CFRP display more 
soften failure. It is because at this point of temperature, the polymer matrix has not started to degrade 
but melting. Therefore, in TM1 regime, matrix is soften and its role is maintaining the cross-fibre 
direction skeleton for carbon fibres as well as minor tensile capacity. But in RR regime, the 
temperature in polymer matrix has returned room temperature and hardened, thus the failure of P-
CFRP is more likely to failure mode at 20°C comparing to TM1 regime. However, the failure mode at 
400°C (Table 13b,c) demonstrates that during the testing process, the polymer matrix has melted and 
partly degraded, maintaining only the fibre skeleton. At this temperature level, both regimes fail due 
to the fibre rupture with small amount of polymer left inside thread group (failure mode B). For tests 
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2.6.2.1. Tensile tests at 20°C 

Table 14 displays the detailed results of direct tensile tests at 20°C. In this test series, the material fails 
at stresses between 816 MPa and 1001.3 MPa and the Young’s modulus varied between 58.2 GPa and 
67.9 GPa. All the specimens are broken in the middle position. 

 

Table 14: Detailed result of M-CFRP at 20°C 

No Temp. Sample Thickness Width Failure 
force 

Ultimate
strength 

Young's 
modulus 

Retained 
stress 
ratio - °C - mm mm N MPa GPa 

1 20 M.20.01 0.72 10.87 7222 922.8 58.2 1.01 
2 20 M.20.02 0.79 10.73 6921 816.5 60.6 0.89 
3 20 M.20.03 0.72 10.78 7772 1001.3 67.9 1.10 

2.6.2.2. Residual tests 

Table 15 summaries the residual properties in the temperature range between 200°C and 600°C. The 
residual ultimate strength ranges from approximately 732-1044 MPa at 200°C to 535-662 MPa at 
400°C and 75-119 MPa at 600°C. Whereas, the Young’s modulus at 200°C is from 67.2 GPa to 74.7 
GPa, at 400°C is from 37.2GPa to 54.7 GPa at 600°C is 17.5 GPa. Similar to tests on P-CFRP, the 
failure strain of M.CFRP is unable to be obtained. 

 

Table 15: Detailed result of the RR regime at different temperatures 

No Temp. Sample Thickness Width Failure 
force 

Ultimate
strength 

Young's 
modulus 

Retained 
 stress  
ratio - °C - mm mm N MPa GPa 

1 200 M.RR.200.01 0.69 10.9 7849.8 1043.7 67.2 1.14 
2 200 M.RR.200.02 0.73 11.67 6237. 732.1 74.7 0.80 
3 400 M.RR.400.01 0.69 10.9 4021.6 534.7 37.2 0.59 
4 400 M.RR.400.02 0.51 10.96 3700.6 662.1 54.7 0.72 
5 600 M.RR.600.01 0.59 10.89 767.6 119.5 17.5 0.13 
6 600 M.RR.600.02 0.49 10.49 385.7 75.0 - 0.08 

 

2.6.2.3. Thermo-mechanical testing regime 1 

In the following, Table 16 summarizes the results obtained from the TM1 regimes. In Table 16, the 
dimension of sample and the failure force obtained from each TM1 test are presented. They are then 
used to identify the ultimate strength corresponding to the exposed temperature based on the initial 
section. During the TM1 test, from the deformation data (obtained by the laser extensometer 
mentioned in 2.1.2) and loading data (from force sensor), the stress-strain curve at each temperature 
level is identified (Figure 78). Young’s modulus at each temperature level is then identified from the 
curve slope and presented in Table 16 (based on “ISO 527”). 

As in Table 16, the retained stress ratio is identified as the ratio between the ultimate strength 
obtained at the tested temperature and the average ultimate strength obtained at 20°C (as estimated: 
914 MPa, from Table 14). In test 9 of the TM1 regime, due to the technical incident, the laser 



Chapter 2: Experimental approach - Material scale  

Page 70 

extensometer failed to record deformation of M-CFRP at 600°C; thus, Young’s modulus is 
unavailable.  According to Table 6, the ultimate strength of M-CFRP at 20°C varies between 816.5 
MPa and 1001.3 MPa, and its Young’s modulus varies between 58.2 GPa and 67.9GPa. At 200°C, the 
variation of ultimate strength is smaller from 525.1 MPa to 660.9 MPa while with Young’s modulus, 
the variation is greater, from 52.5 GPa to 77.3 GPa. At 400°C, the ultimate strength varies from 448.8 
MPa to 479.3 MPa, and Young’s modulus varies from 53.2 GPa to 68.3 GPa. At 600°C, these 
variations are from 107.8 MPa to 176.9 MPa with ultimate strength and from 34.2 GPa to 51.1 GPa 
with Young’s modulus. 

 

Table 16: Detailed result of the TM1 regime at different temperatures 

No Temp. Sample Thickness Width Failure 
force 

Ultimate
strength 

Young's 
modulus 

Retained  
stress ratio

- °C - mm mm N MPa GPa 
1 200 M.TM1.200.01 0.79 10.83 5185 606.0 77.3 0.66 
2 200 M.TM1.200.02 0.73 10.99 4213 525.1 67.4 0.57 
3 200 M.TM1.200.03 0.66 11.13 4855 660.9 52.5 0.72 
4 400 M.TM1.400.01 0.65 10.85 3165 448.8 66.9 0.49 
5 400 M.TM1.400.02 0.73 10.95 3831 479.3 53.2 0.52 
6 400 M.TM1.400.03 0.67 10.6 3361 473.3 68.3 0.52 
7 600 M.TM1.600.01 0.7 10.43 984 134.8 34.2 0.15 
8 600 M.TM1.600.02 0.66 10.85 1267 176.9 51.1 0.19 
9 600 M.TM1.600.03 0.63 11.74 797 107.8  NA 0.12 

 

2.6.2.4. Thermo-mechanical testing regime 2 

In the following, Table 17 summarizes the results obtained from the TM1 regime. In Table 17, the 
dimension of each sample, the failure temperature and exposure duration obtained from each TM2 test 
are presented. In this series, the failure point, the failure temperature, exposure temperature and actual 
heating rate are identified in the same method in P-CFRP series. 

According to Table 17, the failure temperature and exposure duration are reduced as the stress ratio 
increases. Particularly, at a low stress ratio of 0.1, the average failure temperature is approximately 
634°C, and the average exposure duration is 33.5 minutes. As this ratio increases to 0.25, the exposure 
duration is 596°C, and exposure duration is approximately 23 minutes on average. At a stress ratio of 
0.5, these values are 492°C with a failure temperature and 17.7 minutes with the exposure duration. 
These values decrease to 350°C and 11.7 minutes at a stress ratio of 0.6, dropping to 51.7°C and 1 
minute at a stress ratio of 0.75 on average, respectively. 
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Table 17: Detailed result of TM2 regime at different stress ratios 

No Stress 
ratio 

Sample Thickness Width Failure 
temperature

Exposure 
duration 

Actual 
heating 

 rate 
mm mm °C minutes °C/minute

1 0.1 M.TM2.10.01 0.63 11.05 630.0 31.2 19.1 
2 0.1 M.TM2.10.02 0.63 11 629.3 32.7 18.2 
3 0.1 M.TM2.10.03 0.63 11.18 650.0 36.8 16.7 
4 0.25 M.TM2.25.01 0.67 10.8 578.0 23.7 22.9 
5 0.25 M.TM2.25.02 0.6 10.94 598.4 25.7 21.9 
6 0.25 M.TM2.25.03 0.67 10.84 612.5 20.1 28.7 
7 0.5 M.TM2.50.01 0.64 11.2 543.0 52.1 9.75 
8 0.5 M.TM2.50.02 0.6 10.91 539.5 22.5 22.4 
9 0.5 M.TM2.50.03 0.67 11.3 393.0 12.8 28.0 

10 0.6 M.TM2.60.01 0.62 10.82 372.0 12.4 27.3 
11 0.6 M.TM2.60.02 0.56 11.01 364.0 12.1 27.3 
12 0.6 M.TM2.60.03 0.62 11.29 313.0 10.5 26.4 
13 0.75 M.TM2.75.01 0.71 10.94 46.0 0.4 26.4 
14 0.75 M.TM2.75.02 0.68 11.03 45.0 0.4 28.6 
15 0.75 M.TM2.75.03 0.6 10.88 64.0 2.2 13.3 

 

2.6.2.5. Failure modes 

Table 18 through Table 21 display the type of failure found in all test conditions. Similar to the failure 
mode of P-CFRP, at 20°C, the specimen fails in middle position between two aluminium ends in 
which both the carbon fibres and polymer matrix are broken (mode A, Table 18). At 200°C, the 
specimen also fails in the middle. However, at a temperature that is much higher than the glass 
transition temperature of polymer, the matrix melts and plays a minor role in the tensile resistance of 
M-CFRP except for the horizontally bonding effect to fibres. Therefore, the shape of the specimen 
after testing at room temperature is random and varies depending on its position after failure (mode 
B). At 400°C, the matrix totally melts and starts decomposing and reduces its viscosity. Thus, only 
carbon fibres contribute to the tensile performance of M-CFRP, and each carbon fibre works 
individually. For that reason, at the failure region of M-CFRP (normally in the middle), each carbon 
fibre is broken at different section (mode C). At the failure point of M-CFRP, the broken carbon fibres 
remain together due to the friction effect of the remaining epoxy on the neighbouring fibres. At a 
room temperature after the test, the specimen can easily be split off by hand . In these temperature 
levels, the failure mode in RR condition tends to be closer to brittle mode because of the recovery-to-
ambient-temperature condition after cooling phase while TM1 has softer mode due to the active of 
temperature maintains the viscosity of polymer matrix (Table 19 and Table 20). At 600°C, the 
polymer matrix is completely burnt, and the carbon fibres are partly oxidized. The M-CFRP is broken 
as the loading stress exceeds the resistance of the remaining carbon fibres because there is no resin 
left in the broken specimen (mode D). These failure modes show the similarity to the failure modes 
observed over pultruded CFRP (Feih and Mouritz, 2012; Gibson, 2005). 

About failure mode of TM2 testing condition, according to Table 21, when the stress ratio increases 
from 0.1 to 0.6, the failure mode of M-CFRP conforms to the mode D as described in the TM1 
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2.7.2.3. Evolution of thermal resistance at difference mechanical statuses 

In this section, Table 29 shows the analysed results obtained in Table 17, while Figure 81 and Figure 
83 display the evolution of thermal resistance of M-CFRP as the stress ratio increases from 0.1 to 0.75 
in terms of failure temperature and exposure duration. As seen from Table 29 and Figure 81, when the 
stress ratio increases from 0.1 to 0.5, the failure temperature gradually reduces from 636°C to 491°C 
(or for each percentage of stress increases, the failure temperature decreases by approximately 3.6°C). 
This failure temperature decreases to approximately 350°C at a stress ratio of 0.6 (14.2°C/percentage 
of stress) and quickly decreases to 52°C at a stress ratio of 0.75 (19.9°C/percentage of stress). The 
reduction rate of the failure temperature for each percentage increment of stress is illustrated in Figure 
82. This reduction rate, obtained as the slope of failure-temperature reduction curve in Figure 81, 
reflects that the influence of the mechanical status to the thermal performance (in term of failure 
temperature) is different depending on the range of stress ratio. As this figure shows, with a stress 
ratio range of less than 0.5, for each percentage increase of stress ratio, the failure temperature reduces 
less than 4°C. Beyond this stress ratio range, the failure temperature can reduce up to 14°C-20°C for 
each percentage increase of stress ratio depending on the imposed load range. 

 

Table 29: Analysed TM2 results. 

Stress 
ratio 

Failure 
temperature 

Exposure 
duration 

Actual 
heating rate 

Average Deviation Average Deviation Average Deviation 
°C °C minutes minutes °C/minute °C/minute 

0.1 636.4 11.8 33.5 2.9 18.0 1.2 
0.25 596.3 17.3 23.2 2.8 24.5 3.7 
0.5 491.8 85.6 17.7 6.9 25.2 4.0 
0.6 349.7 32.0 11.7 1.0 27.0 0.5 

0.75 51.7 10.7 1.0 1.0 22.8 8.3 

 

Figure 83 displays the evolution of the exposure duration of M-CFRP as the stress ratio increases 
from 0.1 to 0.75, obtained under the TM2 testing condition. At a stress ratio of 0.1, the exposure 
duration is approximately 33.5 minutes. This duration quickly decreases to 23.2 minutes at a stress 
ratio of 0.25 and then gradually reduces to 17.7 minutes at s stress ratio of 0.5. With the stress ratio 
increase from 0.5 to 0.6 and then to 0.75, the exposure duration quickly reduces to 11.7 minutes and 1 
minute, respectively. The evolution of exposure duration at different stress ratio presented in Figure 
83 exhibits a reduction trend that is similar to that of evolution of failure temperature at different 
stress ratio presented in Figure 82 for the stress ratio between 0.25 and 0.75. It is because tests 
conducted at these stress ratio cases are obtained under similar heating rate. Figure 84 shows the 
average actual heating rate obtained from tests at different stress ratios. According to the Figure 84, 
the average actual heating rates in tests at stress ratio between 0.25 and 0.75 are about 25°C/minute; 
while in the tests at stress ratio of 0.1, the average actual heating rate is much lower at about 
18°C/minute. This explains the reason for higher the exposure duration at stress ratio of 0.1 shown in 
Figure 83. As also displayed in Figure 84, although the actual heating rate is lower than the 
programmed heating rate at 30°C/minute, this rate is stable in almost all tests of the TM2 regime and 
thus guarantees the consolidated results. It should be noted that the actual heating rate is identified 
based on the whole test time, while the programmed heating rate at 30°C/minute is the maximum 
heating rate provided by the furnace. 
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2.9.  Conclusion 

The evolutions of the ultimate tensile stress and the Young’s modulus of two types of CFRP (P-CFRP 
and M-CFRP) material as a function of the temperature between 20°C to 700°C have been 
experimentally identified. Some findings of this study are mentioned below: 

The performance of the CFRP material is generally reduced as the temperature increases. The thermo-
mechanical and residual ultimate strengths of P-CFRP gradually decrease from 20°C to 700°C, while 
its Young’s modulus varies less than 10% from 20°C-400°C and then significantly decreases at 
600°C. The thermo-mechanical and residual ultimate strengths of P-CFRP decrease by 50% at 
approximately 300°C and 500°C. The thermo-mechanical and residual Young’s modulus of P-CFRP 
decreases by 50% at approximately 540°C in the thermo-mechanical procedure and at 570°C in the 
residual procedure. The evolution curves of the thermo-mechanical properties (both ultimate strength 
and Young’s modulus) of P-CFRP are lower than the curves of residual properties for temperatures 
varying from 20°C to 600°C. The differences are minor from 20°C to 400°C but become remarkable 
from 500°C to 600°C. Similarly, the performances of M-CFRP material generally decrease when the 
material is exposed to increasing temperatures. The thermo-mechanical and residual strength 
gradually decreases when the temperature increases from 20°C to 700°C. The M-CFRP loses 50% of 
its strength at 400°C in thermo-mechanical condition and 45% in residual condition. Meanwhile, 
Young’s modulus varies little in temperature, ranging from 20°C to 400°C and only decreases 30% at 
600°C in thermo-mechanical condition but up to 72% with residual condition . 

The correlation between thermal and mechanical loads has been experimentally confirmed. The 
evolution of the failure temperature and exposure duration of a CFRP in the function of mechanical 
loading (in terms of the stress ratio from 0.1 to 0.75) has been investigated. For both P-CFRP and M-
CFRP, when the stress ratio increase from 0.1 to 0.5 (P-CFRP) and 0.6 (M-CFRP), the failure 
temperature and exposure duration gradually reduces and then significantly scales down when the 
stress ratio exceeds these values. This result contributes to the confirmation of the combined effect of 
thermal and mechanical impacts on the performance of CFRP at the same time. 

The experimental result of P-CFRP at 400°C in two thermo-mechanical conditions confirm that 
thermo-mechanical ultimate strength and Young’s modulus of P-CFRP experience little change with 
thermal exposure durations between 10 minutes and 90 minutes; In addition, the heating rate of 
exterior condition has small influence on the thermal resistance of P-CFRP at the stress ratio 0.25. . It 
is because that the PAN carbon fibres are little affected by temperature which is under its degradation 
temperature.  

The failure mode of CFRP depends on both the exposure temperature and applied mechanical load. 
As the temperature increases or the mechanical load decreases, the failure of CFRP changes from 
brittle to a more softened shape. This proves the mutual correlation between thermal and mechanical 
loads to the performance of CFRP material under thermo-mechanical condition. In a practical 
application of CFRP, the evolution of the failure temperature as a variation of mechanical load can be 
inferred from the evolution of strength as an increasing temperature and vice versa. In other words, 
the order of loading among the thermal and mechanical effects on CFRP has little influence on the 
obtained result. 

At temperatures higher than the degradation temperature of the CFRP polymer matrix, the CFRP 
material starts releasing smoke, which can disturb the measurement of the material axial strain by the 
laser sensor.  
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The adjusted prediction models (by Gibson and Bisby) with the calibrated coefficients can predict the 
properties of P-CFRP under thermo-mechanical and residual conditions. From the authors’ point of 
view, these results can be used for numerical modelling of behaviour of P-CFRP at the two studied 
elevated-temperature and mechanical conditions. 

A three-degree polynomial analytical model has been proposed to apply with ultimate strength of 
CFRP in thermo-mechanical working conditions. The proposed model better fits with two studied 
CFRPs and other types of CFRP that have been reported with thermo-mechanical testing 
condition.This model can be used in numerically modelling of behaviour of CFRP, in which an 
elevated temperature and mechanical load are simultaneously applied. 

From an application standpoint, there is little guideline for evaluating the fire performance of general 
structures (beams, slabs, columns) due to the missing gaps of available material data and calculation 
method. Even in research, the status of structure in a real fire is too complex and thus difficult to 
thoroughly understand. Among the factor that influence to the structure during fire, mechanical and 
thermal factors are mainly and simultaneously accounted for the structure failure, so they are the 
objects of our research. The used materials in this research are laminate pultruded CFRP (which is 
commonly used to externally reinforce structures) and M-CFRP (which is mainly used to 
strengthening structure in shear, flexural and confined performance). Therefore, the experimental data 
can be exploited in structure profiles such as concrete structures (beams, slabs,...), steel (beam,..) 
reinforced with CFRP. With data from three testing conditions, the case study could be evaluating the 
performance of structure during-fire with combined impacts of mechanical and thermal effects or 
post- fire condition. 

In design application, regarding the working condition of CFRP in real fire, there may be more effects 
that can influence to the performance of CFRP for example: the direct contacting to fire or not, 
duration of exposing to temperature and the history of thermal interaction (such as peak temperature) 
or cyclic thermal action (Ghadimi et al., 2017; Russo et al., 2015)… So far in this research, the 
thermo-mechanical result is lower than residual one about 15% to 20% depending on the temperature 
level and the type of material. However, using the experimental data from thermo-mechanical test will 
provide closer condition to what can be happen during a real fire: that is the co-existence of both 
thermal and mechanical loads at the same time. The residual result, in another way, can be exploited 
in the evaluating the post-fire behaviour of structure reinforced with CFRP. 

Moreover, in experimental study, the used of experimental performance of CFRP material under on 
the steady state temperature test can be used to imply its performance under transient temperature 
condition. 
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3.1.1.4. Adhesive 

In this thesis, three adhesives have been used to bond CFRP on to concrete blocks including: two 
epoxies and one cement-based adhesive. The details of these three adhesives are shown below: 

The first type of epoxy (labelled Epoxy 1, commercial name: Duralco 4703) is a two-
component adhesive with Al2O3 and metal particles. Its service temperature is introduced up 
to 350°C for short term applications and 320°C for long term applications. According to 
supplier’s datasheet, the tensile strength and lap shear strength of this epoxy are respectively 
81.4 MPa and 76.5 MPa (at 20°C). The resin’s hardness is classified as shore D95 as ASTM 
D2240. Using this adhesive, it is expected to extend the service duration and also the 
performance of CFRP reinforced concrete under thermo-mechanical condition concerning fire 
case. 
The second type of epoxy (labelled epoxy 2, commercial name: Eponal 380) is a two-
component product which is common use with concrete bonding. The service temperature 
range of this epoxy has not been mention in technical data as well as in the literature. The 
shear strength, tensile strength and compression strength of this epoxy at 20°C are 
respectively 15 MPa, 29.5 MPa and 83 MPa. As commonly used material in civil engineering, 
in this research, this adhesive is used as a referenced data for the service duration and the 
performance of CFRP reinforced concrete under thermo-mechanical condition concerning fire 
case. 
The cement-based adhesive (labelled cement-based adhesive) involves calcium aluminate 
cement (SECAR51, 81.37% by weight), polycarboxylate based superplasticizer (Peramin® 
CONPAC 700, 0.53% by weight), viscosity modifier agent (Master Matrix UW 400, 0.06% 
by weight) and water (18.04% by weight). This adhesive is used to study the efficiency of a 
cement-based adhesive in improving the service duration and the performance of CFRP 
reinforced concrete under thermo-mechanical condition concerning fire case. 

3.1.1.5. Preparation procedure of CFRP reinforced concrete specimens 

The concrete blocks were casted in mould with dimensions: 60x60x100 (dimension in mm, Figure 96 
and Figure 97) and then prepared according to two configurations: the first type is prepared for EBR 
method and the second is prepared for NSM method (Figure 98, Figure 100). In the first type, the 
CFRP will be bonded directly on the grinded surface of concrete blocks using adhesive (only the two 
bonded surfaces need to be slight grinded, Figure 98-EBR). The CFRP plate is then bonded to 
concrete surface and held in position by two grips until the adhesive harden. In the second type, there 
are two cuts on two opposite sides of the concrete blocks with the depth at about 11 mm and the width 
at about 4 mm (Figure 97 and Figure 98-NSM). The adhesive is then prepared and mixed according to 
technical instruction before being used to bond CFRP on to two opposite slots in two blocks of 
concrete (Figure 99). After curing duration in laboratory temperature condition, the specimens are 
ready for tests (Figure 100). 
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tested series of small scale CFRP reinforced concrete structure conducted in this research with the 
details in configuration, method of reinforcement, adhesive and tested program. 

 

Table 35: Summary of tested series 

Abbreviations used: EBR: external bonding reinforcement; NSM: near surface mounted 
reinforcement; WSP: specimen with steel plate; WOSP: specimen without steel plate; RR: residual 
regime test; TM1: thermomechanical test at constant temperature; TM2: thermomechanical test at 

constant load. 

Series Reinforcement 
method 

Configuration Adhesive Test program 

EBR NSM WSP WOSP Epoxy 
1 

Epoxy 
2 

Cement-
based 

adhesive 

20 C RR TM1 TM2

1  X X X X   X    
2  X X  X    X   
3  X X  X     X  
4  X  X X      X 
5 X  X  X      X 
6  X X  X      X 
7  X X   X     X 
8  X X    X    X 

 

The explanations for each series are as following details: 

Series 1: referenced series at 20 C. In this series, four specimens reinforced by NSM method 
have been tested following direct tensile procedure including two configurations: with steel 
plate (WSP) and without steel plate (WOSP) at the bottom of concrete blocks. The purpose is 
to experimentally evaluate the efficiency of steel plate in improving structure performance by 
better exploiting compressive capacity of concrete material. 
Series 2: RR test of CFRP reinforced concrete using NSM method. In this series, the 
specimens are tested at three levels of temperature: 75 C, 150 C and 300 C. 
Series 3: TM1 test of CFRP reinforced concrete using NSM method. The specimens are tested 
at three levels of temperature: 75 C, 150 C and 300 C. 
Series 4: TM2 test of CFRP reinforced concrete using NSM method. The specimens, prepared 
without steel plate at the bottom, are tested at two mechanical levels: 400N, 2800N. 
Series 5: TM2 test of CFRP reinforced concrete using EBR method. Specimens are tested at 
two levels of mechanical load: 400N and 1400N.  
Series 6, 7, 8: TM2 test of CFRP reinforced concrete using NSM method. The specimens, 
bonded by three different adhesives: epoxy 1, epoxy 2, cement-based, are test at different 
mechanical levels: 400N, 840N, 1400N and 2800N (series 6 only) 

It should be noted that in this chapter, the temperature on RR and TM1 program is not homogeneous 
within the structure as test descriptions in the chapter 2. The conducted series are summarized in 
Table 35 and each result is presented in the following section. 
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3.1.4.7. Series 7: Thermo-mechanical performance of CFRP reinforced concrete using 
NSM method- epoxy 2 (TM2 program) 

Table 42 summarizes the thermal performance of CFRP reinforced concrete specimens at different 
mechanical load cases in series 7. In this series, the actual mechanical load and heating rate are well 
controlled. Therefore, the variations of mechanical loads and actual heating rates in this series are 
small. Both failure temperature and exposure duration reduce as mechanical load increases from 400N 
to 1400N: failure temperature slightly reduces from 550°C to 470°C and exposure duration reduces 
from 20.3 minutes to 16.6 minutes respectively. 

 

Table 42: Summary of series 7: thermal performance of CFRP reinforced concrete specimens at 
different mechanical load cases 

Test 
No 

Mechanical 
load Fw, N 

Specimen
No 

Failure 
 temperature 

(°C) 

Exposure 
duration, 
(minute) 

Actual 
heating rate,  
(°C/minute) 

Programmed 
Fw 

Actual Fw  Average  Average  Average 

1 400 411 1 530 549.9 20.20 20.3 24.51 25.4 
2 400 412 2 570 20.33 26.31 
3 840 848 1 554 494.5 19.99 18.0 25.96 25.5 
4 840 848 2 435 15.95 25.09 
5 1400 1405 1 528 469.8 18.78 16.6 26.24 26.2 
6 1400 1403 2 412 14.39 26.19 

 

Figure 123 and Figure 124  display temperature-time, force-time, total displacement-time curves and 
Figure 125 displays force-total displacement curves at different mechanical load cases  of series 7. As 
can be seen from the temperature-time curves (Figure 123) and also from Table 42, the temperature 
monotonically increases from ambient temperature until specimen failure. Heating rate and 
mechanical load slightly vary between tested cases due to well programmed testing system. Similar to 
result of series 6 (adhesive used: epoxy 1), the results of series 7 (adhesive used: epoxy 2) show that 
the failure temperature and exposure duration reduce as mechanical load increases. According to 
Figure 123, at the low mechanical load cases (from thetest 1 to the test 4), the applied force has 
dropped several times before specimens completely collapse. This can be verified as in Figure 124, 
where the curves 1, 2 and 3 show small slips (<1mm) corresponding to each drop of mechanical load. 
The mechanical load is then recovered although the total displacement keeps expanding before totally 
collapsing (Figure 125). 
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3.1.4.8. Series 8: Thermo-mechanical performance of CFRP reinforced concrete using 
NSM method- cement-based adhesive (TM2 program) 

Table 43 summarizes the results obtained from series 8. According to the test, the result at 1400N is 
unavailable because that the resistance of specimen with cement-based adhesive has low mechanical 
capacity. Several methods to improve the contact surface such as sanded CFRP surface, replace CFRP 
with same material type of CFRP plate prepared with rough surface, but none can reach up to 1400N. 
According to these results, the differences in two mechanical cases (in failure temperature and 
exposure duration) are not significant. The failure temperature from the test 1 to the test 4 is slightly 
different between 617°C to 639°C (except that of test 2 which is much lower failure temperature at 
443°C). The exposure-durations at two test cases are not much different despite of the variation in 
mechanical load (except that of the test 2). 

 

Table 43: Summary of series 8: thermo-mechanical performance of CFRP reinforced concrete using 
NSM method- cement-based adhesive (TM2 program) 

Test 
No  

Mechanical 
load Fw, N 

Specimen
No  

Failure 
 temperature, 

(°C) 

Exposure 
duration, 
(minute) 

Actual 
heating rate, 
(°C/minute) 

Programmed 
Fw 

Actual Fw   Average   Average   Average

1 400 406 1 617 530 25.17 20.22 23.14 24.93 
2 400 402 2 443 15.27 26.72 
3 840 845 1 627 632.6 22.82 23.3 25.92 25.6 
4 840 841 2 639 23.84 25.31 

 

Figure 127 and Figure 128 present the development of temperature, force as time and Figure 129 
presents the expanding of total displacement as time obtained in series 8. As can be seen from Figure 
128, the total displacement-time curves at each mechanical load cases are close together; and curves 
between cases are separate from the other. As shown in Figure 128 and Figure 129, there is a small 
slip before the final collapse of specimen in the test 2. This may derive from defects during bonding 
process of cement-based adhesive, which has high viscosity which then is problematic to be filled in 
concrete slots. 
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Bisby, 2008) and thus starts reducing its bonding capacity. When the exterior temperature reaches 
90 C to 100 C, the C-A-C interface temperature reaches about 50 C -55 C (TC4, Figure 131, Figure 
133) at which most of commercial thermo-setting epoxy resin starts its transition procedure from 
glassy state to viscous state and significantly reduces its performance (Foster and Bisby, 2008). 
Therefore, the normalized mechanical failure of specimen dramatically drops to 12% when applied 
temperature level is 90 C (TM1 curve, Figure 137). At target temperature from 90 C to 300 C, the 
mechanical performance of CFRP reinforced specimen slightly varies: at the target temperature of 
150 C, the normalized mechanical failure slightly increases to 16% and then reduces to 8.5% at target 
temperature of 300 C (TM1 curve, Figure 137). 

Accordingly, the residual performance of CFRP reinforced concrete specimens that were exposed to 
elevated temperature significantly fluctuates at temperature levels from 75 C to 300 C (Figure 137). 
At 75 C, the normalized mechanical performance reduces to 74%, but is still double than results of 
TM1 program. It is because during the heating, there is a small controlling mechanical load; therefore 
the bond effects at CFRP-adhesive interface as well as adhesive-concrete interface are well-
maintained. Moreover, the expansion of concrete in this range of temperature (Hager, 2004) reduces 
the bonding effects and also the reduction in strength of epoxy adhesive thus the specimen 
performance reduces. From temperature level from 150 C to 300 C, the mechanical failure of RR 
program is higher than that at 20 C: at 150 C the normalized mechanical performance significantly 
increases up to 162% (10 times higher than corresponding TM1 result) and then reduces to 107% at 
300 C (6.7 times higher than corresponding TM1 result). It is because that at the temperature about 
150 C to 250 C, the cement paste in concrete starts it shrinkage with increasing magnitudes 
(depending on the mechanical and material cases, (Bazant and Kaplan, 1996)). This shrinkage also 
attributes by the dehydration of hydrates in concrete material (Hager, 2004). This shrinkage 
contributes to the confined effect to the adhesive and subsidiary to CFRP (Kotynia, 2012). In RR 
procedure, when the exterior temperature reaches 150 C, the minimum temperature in adhesive 
reaches about 90 C (TC4, Figure 133) which is slightly beyond the glass transition of common high-
temperature performance epoxy. Therefore, the residual properties of the adhesive used may slightly 
improve when cooled from the temperature range between 60 C and 95 C (thermal curing on 
common epoxies, (Moussa et al., 2012b; Sinclair, 1992)). The combination of confined effect from 
concrete material and slight reduction in residual strength of epoxy enhances the residual mechanical 
performance of the concrete specimen. However, as the applied temperature reaches 300 C, the 
minimum temperature in adhesive may reach up to more than 100 C, whereas the reduction in 
residual strength becomes significant (Moussa et al., 2012b), the confined effects from concrete 
shrinkage may be greater than this reduction. As the result, although the mechanical performance at 
300 C of the specimen reduces in comparison to that at 150 C, this performance is still greater than 
that at ambient temperature condition. These experimental results show that the RR procedure results 
in higher mechanical performance of CFRP reinforced structure in comparison to TM1 procedure. 
This result can potentially be implemented in several applications of temperature treatment to improve 
the mechanical performance of CFRP reinforced structures. 
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From the obtained results, regarding the bonding efficiency in CFRP reinforced concrete specimen, 
the epoxy 1 has higher thermal performance at low mechanical load level and this performance 
significantly reduces as the NAS increases. In contradiction, the epoxy 2 has lower thermal 
performance at low mechanical load, when the NAS increases, its thermal performance slightly 
reduces and maintains its higher thermal performance at NAS of 0.5 MPa, compared to epoxy 1. The 
cement-based has a middle low range of thermal performance at NAS of 0.143 MPa; however, the 
NAS has a small influence to its thermal performance in ranges between 0.143 MPa and 0.3 MPa. 

3.1.5.5. Comparision of failure mode 

Table 46 summarizes the status of structural element after tests of series 1, 2 and 3.  According to this 
table, WOSP-specimen collapses due to the shear failure of concrete material while WSP-specimen 
collapses due to the failure of concrete material at compressive zone at the corner on one side and then 
subsequent shear failure at adhesive-CFRP interface on the other side. This demonstrates the 
effectiveness of the system used that has exploited the advantage of concrete material in compression. 
The result of series 2 (RR case) shows that with residual programme, the specimen firstly collapses 
due to the compressive failure of concrete on one side and then subsequent shear failure at CFRP- 
adhesive interface on the other side (Figure 106 and Figure 107). For the thermo-mechanical 
condition (TM1, series 3), the specimens gradually collapse (Figure 108) due to the shear failure at 
CFRP-adhesive interface (Figure 109). The failure of residual test on specimens that have collapsed 
after TM1 regime (RR* case) shows that the specimen continues to maintained certain mechanical 
capacity. They experience a quick collapsing (Figure 106) due to the shear failure of CFRP-adhesive 
interface (Figure 109). 

Table 47 summarizes the status of structural element after test from series 4 to 8 following TM2 
testing program. The result from series 4 shows that at low mechanical level NAS of 0.143 MPa, the 
WOSP-specimen collapses due to the CFRP-adhesive interface resulted from partly burnt of adhesive 
and separation crack of the concrete. At failure temperature, both CFRP adhesive and concrete 
material have been thermally affected. Beside the main rupture crack, there are several small cracks 
on concrete block surface (Figure 113a). At NAS  of 1.0 MPa, the WOSP specimen collapses due to 
the shear failure of CFRP-adhesive interface while all others are undamaged (Figure 113b). Result 
from series 5 shows that with the EBR method and WSP configuration, the specimen collapses due to 
the shear failure at CFRP-adhesive interface at all other tested NAS levels (Figure 117). Result at 
NAS of 0.143 MPa of series 6 shows that the specimen collapses due to the tensile failure of CFRP at 
elevated temperature (Figure 121a). As can be seen from the summary shown on Table 47, at the 
failure temperature, all other structural elements have been partly thermally-affected. Different from 
series 4, the efficiency of steel-plate-design has been experimentally demonstrated that the shear 
failure of concrete has not contributed to the specimen failure (Figure 121a). As NAS increases from 
0.3 MPa to 1.0 MPa, the shear failure of CFRP-adhesive interface dominates the cause of specimen 
collapse, with the tendency to be affected by temperature declines (Figure 121b and Figure 122). The 
series 7, in comparison with series 6, has the similar configuration but different adhesive. The result 
of series 7 shows that at NAS from 0.143 MPa to 0.3 MPa, the specimens collapse due to the shear 
failure of CFRP-adhesive interface and CFRP and adhesive have partly burnt and concrete has 
displayed micro cracks (Figure 126a, Figure 126b). At NAS of 0.5 MPa, the specimen also collapses 
because of shear failure of CFRP-adhesive interface, while the influence of elevated temperature to 
CFRP, adhesive and concrete is minor (Figure 126c). With the modification of adhesive to cement-
based in series 8, the specimen collapses mainly because of shear failure at CFRP-adhesive interface. 
The adhesive, concrete material and adhesive-concrete interface are undamaged at the failure 
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temperature while with CFRP the polymer matrix has completely burnt at NAS of 0.143 MPa and 
partly burnt at NAS of 0.3 MPa. 

Table 46: Summary status of structure components after tests in RR and TM1 programs 

Series Note Temperature 
at failure, 

 
 

°C 

Structure components Cause of specimen 
collapses 

** 
CFRP 
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Adhesive
/CFRP 

interface 
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Adhesive
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Adhesive 
/concrete 
interface 
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Concrete 
 
 

(CO) 
1 WOSP, 

NSM, 
E1 

20 U U U U 1.SF) Shear failure  
of concrete 

WSP, 
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E1 

20 U 2.F U U 1.CF) Compressive 
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of concrete and 
then shear failure at 

CFRP-adhesive 
interface 

2 RR 
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75-300 U 2.F U U 1.CF Compressive 
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interface 
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CFRP-adhesive 

interface 

3 TM1 
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E1 

75-300 U 1.F U U U Shear failure at  
CFRP-adhesive 

interface 

Note: U: undamaged; F: failure; SF: shear failure; CF: compressive failure; X.*: X is order of 
failure 

 

Table 47: Summary status of structure components after tests in TM2 program 
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TM2, 
WOSP, 
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Note: U: undamaged; F: failure; PBM: Partly burnt matrix (for CFRP); B: burnt; PB: partly burnt; 
Cr: Crack (for concrete); mCr: micro-cracks (for concrete); X.*: X is order of failure 
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  (1 )t t t tT K D  Equation 13 

Where : Kt is the tangential cohesive stiffness ; t
max is the maximum tangential  cohesive traction; *

t is 
the tangential displacement jump at  maximum tangential  cohesive traction; t

c is the tangential 
displacement jump at the completion of debonding; Dt is the damage parameter associated with mode 
of dominated bilinear cohesive law, defined as Equation 14: 

 

max *

max *
* max

max *

max *

0

 

1

t t

c
ct t t

t t t tc
t t t

t t

D Equation 14 

The bond strength of single lap of Duralco 4703 (Epoxy 1) at three levels of temperature is reported 
by Victrex Europa GmbH ((Horst, 2000), Table 50). According to Firmo et al., the parameters of 
bond-slip model for EBR and NSM reinforcement methods can vary among wide range depending on 
the material ((Firmo et al., 2015a; Firmo J. P. et al., 2015), Table 51). Figure 162 displays the 
calibrated parameters for numerical modelling of the bond at different temperatures reported by 
Arruda et al. (Arruda et al., 2016). The calibrated parameters demonstrate that the mechanical 
performance of NSM method is almost double than that of EBR method. The calibrated properties 
were compared with analytical model for bond strength performance at elevated temperature with 
good consistence (Figure 163).  Based on these results, the bond-slip parameters are calibrated for the 
P-CFRP-concrete bond in this numerical simulation for NSM reinforcement method (Figure 164). 

 

Table 50: Duralco 4703 adhesives and test temperatures for single overlap shear experiments (Horst, 
2000) 

Properties 23°C 150°C 200°C 
Lap strength  [MPa] 3 3.4 1 

W(95,n) 0.7 0.4 0.1 
Number of samples, n 4 5 5 

fracture mode interfacial + cohesion failure cohesion failure cohesion failure 

 

Table 51: Range of values for interface parameters for EBR and NSM (Firmo et al., 2015a; Firmo J. 
P. et al., 2015) . 

Parameter EBR NSM 
Minimum Maximum Minimum Maximum 

K (MPa/mm) 1 1500 2 1000 
LM (MPa) 0.5 25 1.5 20 
SLo (mm) 0.2 1.0 0.4 1.5 
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Table 54: Thermal resistance of M-CFRP at different applied load ratio 

Applied load ratio, fw 0.1 0.25 0.5 
Average rupture temperature, °C 636.4 596.3 491.8 

 

Although the results of insulated M-CFRP tests show that at the time of failure, the temperature on M-
CFRP in the case with insulation is higher than that of the case without insulation, further experiments 
and analysis need to be undertaken in order to confirm this tendency. In civil engineering, when a fire 
happens, there are several phenomena: structures are subjected with service load, elevated temperature 
condition, chemical reactions or degradation of material, the existence of toxic smokes. In this 
research, the authors aim to study the performance of M-CFRP and insulated M-CFRP under 
condition with combined elevated temperature and mechanical load at the same time without 
consideration on the other phenomena such as material degradation due to elevated temperature. 
According to current guideline for fire-design, the main role of insulation material is to protect the 
structure under the elevated temperature. Furthermore, the mechanical properties of several available 
insulation materials in commercial market are not significant in comparison to the structure and 
materials. The result on the performance of M-CFRP under combined mechanical load and 
temperature load can be applied for evaluation its performance in fire-concerned cases. With the 
experimental and numerical results on insulation material, the evolution of temperature behind the 
insulation layer with an identified thickness at different elevated temperature cases can be estimated. 
The experimental test with insulated M-CFRP shows that the real temperature at M-CFRP surface 
(under insulation layer) at failure is higher than that of the cases without insulation material. However, 
if the failure temperature in the case without insulation material is referred as a failure criterion for M-
CFRP, then it is possible to apply this criterion to predict the failure of insulated M-CFRP specimens 
which are simultaneously subjected to both mechanical load and elevated temperature. Therefore, 
within the objective of this research, it is assumed that the surface temperatures of M-CFRP at the 
failure in two tested cases (with and without insulation material) are not much different, disregarding 
the mechanical status. Then, combining with the numerical result in fire-temperature loading case 
(Figure 192), a proposal thickness of insulation material to protect the M-CFRP under fire-
temperature load regarding the mechanical loading status and the requirement to extend the fire-
resisted duration as displayed in Figure 193. 
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- Based on two prediction results on CFRP reinforced concrete specimen and insulated CFRP 
under standard fire-temperature case, it is possible to improve the fire performance of CFRP 
reinforced concrete by using appropriate reinforcement method and also protect the bond with 
suitable insulation layer with consideration to the mechanical state of the structure in order to 
meet with the fire-resistance design standards. 

- Of course, there are still differences between the temperature profiles which are 
experimentally and numerically measured. These differences are attributed to several factors 
from the numerical model simplifications, the nature of the material heterogeneity and the 
possible effects of environmental factors and experimental conditions during testing. 
However, to these numerical values obtained in this study, it clearly requires further test to 
confirm. 

- The combination of two numerical models can be developed for predicting the fire-
temperature performance of CFRP reinforced concrete structures that are under mechanical 
load as well as protecting them to meet the fire-safety requirements according to design 
guidelines. 
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better method to exploit the strong point of concrete. This allows better characterizing the 
interface or bond behaviour of near surface mounted method under different complicated 
condition. 

5.3. Recommendation for civil engineering design 

The used materials in this research are laminate pultruded CFRP (which is commonly used to 
externally reinforce structures) and M-CFRP (which is commonly used to strengthening structure in 
shear, flexural and confined performance). Therefore, the experimental data can be exploited in 
structure profiles such as concrete structures (beams, slabs,...) and steel structures (beams,..) that are 
reinforced with CFRP. From an application standpoint, we would like to impress that in the fire 
engineering domain, there is little guideline for designing, evaluating the fire performance of general 
structures (beams, slabs, columns) due to dispersed experimental data, especially on material, 
reinforcement method as well as testing protocol. From the above mentioned conclusions, the author 
proposes following recommendations for civil engineering design: 

1. It is necessary to evaluate the fire performance of CFRP and CFRP reinforced structures 
based on thermo-mechanical behaviour. The properties obtained from closer-to-fire condition 
increase the reliability in fire design for civil engineering structure. 

2. The residual behaviour of CFRP and CFRP reinforced structures can be applied in fire 
concerns: evaluating the residual performance of CFRP and CFRP reinforced structure at 
post-fire situation, for repairing / strengthening / retrofitting or even destructing decision if 
needed. 

3. The experimental residual behaviour of CFRP and CFRP reinforced structures can be applied 
for fire-performance in design stage if the correlation between two conditions for each 
material is taken into account. 

4. The proposed analytical model is able to predict the reduction of ultimate strength of two 
studied CFRPs at elevated temperature condition for fire design application. The model can 
be applied for other type of CFRP in the literature with limited experimental data under 
thermo-mechanical condition. 

5. The analytical models proposed in the literature can be better applied to predict the reduction 
of Young’s modulus of two studied CFRPs at elevated temperature condition for fire design 
application. 

6. For the use of CFRP and FRP in reinforcing concrete structures, it is better to use near-surface 
mounted method for better fire performance of structures. The geometry of reinforcement 
method may vary due to the availability of structure dimension with the efficiency can be 
confirmed with numerical verification. 

7. For the use of CFRP and FRP in general, conducting thermal curing can improve the 
mechanical performance of reinforced structure under ambient temperature situation. 

8. The use of Duralco 4703 epoxy can improve the thermo-mechanical performance of CFRP 
reinforced structures under elevated temperature rise that is close to fire case, respecting the 
appropriate mechanical load during the elevated temperature rise. 

9. For further extending the service duration of CFRP reinforced structures to meet the fire-
design regulations, it is better to use the insulation material to protect structure with the 
consideration on the mechanical status of structures. 

5.4. Research perspectives 
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The study has experimentally characterized the performance of CFRP and small concrete structure 
reinforced with CFRP under three conditions that simultaneously combine temperature and 
mechanical loads. 

Based on these results on CFRP material, further comparative and analytic study can be conducted for 
synthesizing and generalizing the performance of FRP and CFRP in particular for different 
applications concerning fire case. 

The new proposed analytical model is based on three-degree polynomial function, which is different 
from sigmoid function proposed in the literature. The new proposed model is better suit with thermo-
mechanical ultimate strength of two studied CFRPs while previous models are more suitable to 
thermo-mechanical Young’s modulus. Therefore, it is also necessary to clarify the suitability of the 
new proposed analytical model and others proposed in the literature for predicting the reduction of 
material properties under elevated temperature condition. 

Based on the experimental results on CFRP reinforced concrete specimens, further studies can focus 
on: 

1. Influence of thermal effect on performance of CFRP or FRP reinforced concrete structures at 
ambient temperature condition. This can result in the standard treatment procedure improving 
the mechanical performance of CFRP reinforced concrete structures. 

2. The residual test on CFRP reinforced concrete structure is obtained from cooled specimen 
after exposing to constant temperature condition, which is not the same as fire-temperature 
condition. To be applied to estimate the residual performance of CFRP reinforced concrete 
structures at post-fire situation, it is also necessary to study the residual performance of the 
near surface mounted CFRP reinforced concrete under mechanical load after exposing to 
standard-fire history within different durations. 

3. Because the experimental tests were conducted with a small scale structure, further 
confirmations on full scale structure should be studied with comparative analysis. Base on 
that result, the experiment on small scale, which is easier and cheaper to conduct, can be 
applied for full scale situation. 

Base on numerical results, further developments can be considered: 

1. Influence of thermal effect on performance of CFRP or FRP reinforced concrete structures at 
ambient temperature condition. 

2. The concrete model at different temperature conditions should be considered in the continue 
research for better suiting the different working situations of concrete such as shear and 
flexural strengthening case.  
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