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Résumé

Cette thèse concerne l’exploitation des inhomogénéités locales du champ magnétique
en complément de techniques de navigation inertielles à composants liés “strapdown”,
et son application à la navigation à l’estime en intérieur avec des capteurs magnéto-
inertiels miniatures à bas-coût. Cette méthode permet une mesure indirecte de la
vitesse du système indépendemment des mouvements de son porteur et fonctionne
sans cartographie préalable du champ magnétique, ni infrastructure dédiée. Ce travail
étudie la modélisation du problème de navigation, celle des capteurs utilisés, ainsi que
l’effet des incertitudes de mesure sur la précision de reconstruction du mouvement
et les limites de cette technique. Des algorithmes de navigation mettant en œuvre
le filtrage de Kalman étendu sont implémentés, et évalués expérimentalement. Enfin,
deux techniques de calibration de gradiomètres magnétiques sont proposées et testées,
dans le double objectif d’en faciliter la réalisation à la fois en production et au cours
de la vie d’un système.





Abstract

This thesis is about complementing strapdown inertial navigation techniques with
the use of local magnetic inhomogeneity, and the application thereof to indoor dead-
reckoning with low-cost micro-electromechanical magneto-inertial sensors. This method
provides an indirect velocity measurement of the system independently of its wearer’s
movements and works without neither mapping of the magnetic field beforehand, nor
dedicated infrastructure. Modelization of the navigation problem and our sensors are
studied, together with the effect of measurement uncertainty on movement estimation
accuracy and the limits of this technique. Navigation algorithms based on extended
Kalman filtering are implemented and evaluated in experiments. Lastly, two magnetic
gradiometers calibration techniques are introduced and tested, to ease its realization
both in production and during the system’s lifetime.
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1.1. The subject
Location In France, in 2017, 73% of the population owned a smartphone.1 These
devices, along with many other consumer products, come with GPS chips, sensors,
navigation software, developing the general perception that knowing one’s position,
or one’s directions to anywhere is a given. This perception is consolidated by the
tens of millions of commercial airplanes that take off every year in the world without
getting lost (for most of them),2 or missions such as Rosetta, a space probe which was
accurately guided towards the comet 67P/Churyumov–Gerasimenko after a more than
ten years flight. This observation originates from the spectacular technology advances
in navigation and related fields, but should not overshadow that they still have limits
associated with their accuracy, availability, and cost.

Inertial navigation One particular area of navigation techniques is called inertial
navigation. It consists of exploiting inertia, the resistance of any massive object to
changes in speed, direction... in order to deduce one’s position, movement. The
advantage of these techniques is that they are self-contained, in that they do not
necessarily need to continually rely on dedicated infrastructure in order to keep their
functionality. These techniques are widely used in aerospace applications and are
being made accessible at lower cost with the advent of Microelectromechanical Systems
(MEMS) sensors that are now ubiquitous in consumer electronics.

1Source: “Baromètre du numérique 2017”, https://www.arcep.fr/uploads/tx_gspublication/
barometre_du_numerique-2017-271117.pdf, July 2018

2Source: ICAO, https://www.icao.int/sustainability/Pages/FR/FactsFigures_FR.aspx,
July 2018

1
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1. General Introduction

Indoor navigation In indoor environments, buildings, in urban canyons and other
situations, GPS is unreliable. Hence the active research on indoor positioning and
navigation, with or without dedicated infrastructures. In the latter case, inertial nav-
igation has naturally become of interest to researchers.

Low cost inertial indoor navigation, the need for auxiliary velocity information
Contrary to their high-end counterparts, low-cost MEMS inertial sensors do not allow
an accurate tracking over more than a few seconds up to a minute (see Ref. Woodman
[2007]). Thus, so-called strapdown inertial navigation techniques have been combined
with auxiliary velocity information in order to be made usable, e.g., Pedestrian Dead
Reckoning (PDR) (see Ref. Foxlin [2005]). Let us illustrate the situation in the partic-
ular case of PDR. These algorithms apply when inertial sensors are worn on the foot
of the user, and rely on the specific movement of the foot on the ground in order to
provide an external velocity measurement whenever such a situation is detected. Pure
inertial navigation is then only required for a second when the foot is off the ground.
However, this kind of technique suffers from a lack of genericity.

Magnetic navigation Many researchers have noticed that the magnetic field in in-
door environments suffers from severe distortions from ferromagnetic materials. While
this is a problem for magnetic compassing, the idea of using it for positioning instead
has emerged, following several leads. With, for example, mapping (see Ref. Storms
[2009]), fingerprinting (see Refs. Haverinen [2014], Haverinen and Kemppainen [2009]),
Simultaneous Localization and Mapping (SLAM) (see Ref. Kok and Solin [2018]), most
of the current research has focused on map-based approaches allowing magnetic-field
based absolute positioning in the map, with a strong temptation to rely on other
techniques apparently more promising, such as Bluetooth beacons, or Visual Inertial
Navigation (VIN) techniques such as in ARKit. In the meantime, a few papers have
been published since the seminal paper Ref. Vissière et al. [2007a] towards an alterna-
tive way of using the magnetic field in a dead-reckoning framework instead of absolute
positioning.

Magneto-Inertial Dead-Reckoning (MIDR) Ref. Vissière et al. [2007a] showed a way
to use the magnetic field as an external velocity information input in a sensor fusion
framework as early as 2007. The idea they proposed comes from the observation that,
on Earth, the magnetic field is mostly stationary on time-scales of a few seconds to
hours. In indoor environments, not only is the magnetic field stationary, but it varies
with respect to the position in space, as this is evident by efforts at making mag-
netic maps for fingerprinting purposes, see, e.g., Ref. de Vries et al. [2009]. Then in
such an environment, one can relate the speed of variation of the measured magnetic
field with the traveling speed of the magnetic sensor, as long as information about
spatial variations of the magnetic field is available. It is then possible to combine dis-
tributed magnetometry with an Inertial Measurement Unit (IMU) and obtain velocity
estimates, without building any map.

2



1.1. The subject

Why so little attention? Despite this concept’s apparent viability and simplicity
of implementation, this field of research has been mostly ignored by the magnetic
navigation community, as is apparent from the small number of publications on this
subject. Refs. Vissière et al. [2007b, 2008], Dorveaux et al. [2011], Dorveaux [2011],
Dorveaux and Petit [2011b], Praly et al. [2013], Batista et al. [2013] are an almost
exhaustive list of publications on this navigation technique before the start of this work,
mostly by the same authors. In particular, Ref. Dorveaux [2011] presents encouraging
theoretical and successful experimental results. While it is true that magnetometer
arrays are not widespread, this reason does not suffice to explain the factual situation.

State of the art in 2015 At the start of this work, the only comprehensive work
on MIDR was Ref. Dorveaux [2011], work during which Refs. Dorveaux and Petit
[2011a], Dorveaux et al. [2009a,b, 2010, 2011] were published. Theoretical results were
provided, and navigation algorithms and calibration techniques were designed and
tested on real-world experiments. These showed a performance with a drift of a few
percents of the traveled distance. Attitude and velocity estimation were achieved using
two separate observers. Afterward, in Ref. Praly et al. [2013], the use of this navigation
technique for space applications was studied, and Ref. Batista et al. [2013] investigated
a possible extension of the theoretical observability results of Ref. Dorveaux [2011].

Related publications during this work After 2015 and in parallel of this work,
Refs. Caruso et al. [2016, 2017a,b,c] were published, providing a framework in which
VIN and MIDR can be combined seamlessly, resulting in a robust navigation solution,
where each technique may fail in the dark or in homogeneous field conditions. Finally,
Ref. Skog et al. [2018] rediscovered the technique from a Bayesian filtering viewpoint,
proposing an extension enabling pure Magnetic Dead-Reckoning, by proving that in
the presence of magnetic field gradient, magnetometer measurements suffice to obtain
the rate of turn.

Why naming the technique MIDR? The navigation technique which is the main
topic of this work was called in Ref. Dorveaux [2011] the Magneto-Inertial NAVigation
(MINAV) technique. For the sake of precision in this manuscript, the MINAV tech-
nique described above will be referred to as MIDR. The reason for this choice is that
it only uses magnetic and inertial measurements, hence the term “magneto-inertial”.
Moreover, as formulated since the seminal paper, it is not a positioning technique, but
a velocity estimation technique. Thus, it only produces trajectories by path integra-
tion, hence the term “dead-reckoning”.

Goals This work has been set up in order to understand the key factors that make an
accurate and robust MIDR system and improve on them. Initially, the formulated goal
used to be hybridization with PDR in real-time embedded systems with an Extended
Kalman Filter (EKF). The direction taken during this work was to avoid restricting
oneself into the PDR framework, because PDR is arguably distinct from MIDR, at

3



1. General Introduction

least in its approach, usefulness, and sources of error, and to restart from strapdown
inertial navigation principles instead.

1.2. Scope
The general problem studied in this work is the trajectory reconstruction of a sensor

board equipped with low-cost MEMS inertial sensors and an array of at least three
non-aligned 3-axis magnetometers. This theoretical and practical problem can be
divided into two main parts, concerning navigation algorithms and estimation errors,
and sensor model identification.

The targeted application is indoor navigation: the Earth’s curvature and its angular
velocity are neglected. No assumption is made about the nature of the movement or
the carrier. However, assumptions are made on properties of the ambient magnetic
field.

Navigation algorithms are restricted to dead-reckoning. They are considered as
nonlinear observers for dynamical systems, and all experiments are carried out using
EKFs.

The hardware configuration itself has been inherited from previous works (see, e.g.,
Ref. Dorveaux [2011]). The prototype described in Ch. 3, designed and provided by
SYSNAV at the beginning of this work, which is a realization of this configuration, is
therefore not a contribution of this work. However, it is mentioned that the MIDR
navigation technique can be extended to higher spatial derivatives (see Sec. 2.2.2) with
an adequate arrangement of magnetometers (see Sec. 3.2.6).

Navigation algorithms studied in Ch. 2 and 4 rely on the availability of direct mea-
surements of the magnetic field gradient; an array of single-axis magnetometer is one
possible way of obtaining them. Chapters 3, 5 and 6 are more specific to this hardware
configuration.

1.3. Main contributions
The main contributions of this work are the following.

1. Modeling of the navigation problem, in a way that is suitable for MIDR with
low-cost MEMS sensors and in indoor environments, with an initial study of
observability issues. The approach is built on strapdown inertial navigation
and compared with the state of the art. In an inertial frame, if the spatial
gradient of the magnetic field is non-singular, attitude is proven observable,
heading unobservable, and velocity observability depends on the trajectory if
inertial sensor biases are considered.

2. Study of a hardware prototype and the effect of measurement errors on trajec-
tory estimation. A model of a magnetometer array provided by SYSNAV is
verified, and the effects of calibration errors are studied, providing insights for
the prediction and interpretation of estimation errors in the context of MIDR.
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3. Implementation and evaluation of discrete-time EKFs on experimental data, and
study of a magnetic heading estimation method.

4. High precision calibration techniques suitable for the considered hardware. Two
techniques are introduced. The first one is a flexible technique suitable for fac-
tory calibration of a magnetometer array, and enables the complete and accurate
calibration of a magnetometer array with an arrangement of coils, together with
the calibration of the coils. This process provides an accurate tracking of the
array inside of the coils; such information greatly reduces the requirements on
sensor placement inside of coils systems. It is illustrated with Helmholtz coils
but is generalizable to other configurations (Braunbeck coils, Maxwell coils...).
The second one is suitable for setups for which positioning information is avail-
able during the process, and enables the self-calibration of magnetometer arrays
in such setups. It can be seen as a problem inverse of MIDR. Identifiability
is mathematically proven, tested in simulation, and results of an identification
experiment using motion capture equipment are provided.

1.4. Outline
This document is divided into two parts. Part I is about navigation algorithms. In

this part, Ch. 2 models the navigation problem and studies observability issues, Ch. 3
studies measurement errors, and Ch. 4 describes the implementation and evaluation of
EKF-based navigation algorithms. Part II is about parameter identification algorithms
for the calibration of magnetometer arrays. A Helmholtz-coils based calibration (and
localization) technique, generalizable to other arrangements of coils, is described in
Ch. 5. Finally, the calibration of magnetometer arrays using motion information is
studied in Ch. 6.

The list of used abbreviations is on p. 183.

1.5. Publications
Conference papers

• C.-I. Chesneau, M. Hillion, and C. Prieur. Motion estimation of a rigid body with
an EKF using magneto-inertial measurements. In 2016 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Spain,
Oct 2016. doi: 10.1109/ipin.2016.7743702

• C.-I. Chesneau, M. Hillion, J.-F. Hullo, G. Thibault, and C. Prieur. Improving
magneto-inertial attitude and position estimation by means of a magnetic head-
ing observer. In 2017 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Sapporo, Japan, Sep 2017. doi: 10.1109/ipin.2017.8115862
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Journal paper

• C.-I. Chesneau, R. Robin, H. Meier, M. Hillion, and C. Prieur. Calibration of a
magnetometer array using motion capture equipment (to appear). Asian Journal
of Control, 2019

Patents

• Détermination de cap à partir du champ mesuré par des capteurs magnétiques.
Patent Application B250181FR, 2017d

• Procédé et dispositif de caractérisation d’un cap déterminé à partir de la mesure
du champ magnétique. Patent Application B250150FR, 2017b

• Procédé de calibration d’un magnétomètre. Patent Application B250148FR,
2017a

• Procédé de calibration d’un magnétomètre. Patent Application B250151FR,
2017c
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

2.1. Magnetic navigation using observers for non-linear
dynamical systems

Objective Let us consider a rigid body strapped with inertial and magnetic sensors.
Information on its trajectory is desired, and it is assumed that dead-reckoning solutions
are an option. What technique is available to achieve this?

Strapdown inertial navigation Strapdown inertial navigation is defined by the use
of gyrometers and accelerometers strapped onto the rigid-body whose localization is
sought. It consists in integrating kinematics differential equations (see Refs. Savage
[2000], Woodman [2007]) from their measurements. This formulation is well suited for
being used in conjunction with so-called observers for nonlinear systems; therefore,
this work is limited to this scope.

Magnetic navigation Usually, in this context, the magnetic field is only used as a
heading reference in order to correct integration results. However, on earth, the mag-
netic field is generally not homogeneous (see. Fig. 2.1). This is so whatever the scale at
which it is considered, as is evident from Ref. [Dorveaux, 2011, Table 2.1]. In partic-
ular, indoor environments are rich in ferromagnetic materials distorting the magnetic
field, at a level measurable with low-cost magnetic sensors, see, e.g., Ref. de Vries
et al. [2009], and compromising the use of the magnetic field as a heading reference.
Nevertheless, this property makes it a variable of interest with regards to positioning
instead, see, e.g., Refs. Gozick et al. [2011], Haverinen [2014], Haverinen and Kemp-
painen [2009], Shen et al. [2016], Storms et al. [2010], and more recently Ref. Kok and
Solin [2018].

Usual, map-based approaches There is no single way of accounting for the magnetic
field in the framework of observers for non-linear dynamical systems. In the usual
fingerprinting/mapping approaches, the magnetic field inhomogeneity as a function of
space is used to reconstruct the absolute trajectory by comparing it to a pre-existing
map (see for example Ref. Storms [2009]). The various techniques revolve around
mapping, for example, the intensity of the magnetic field in one dimension (in corridors
for example), two, or three dimensions, then taking one or a sequence of measurements
and matching them to the map.

Dead-Reckoning approaches By contrast with map-based approaches, in Magneto-
Inertial Dead-Reckoning (MIDR) (see, e.g., Ref. Dorveaux [2011]), which is the topic
of this work, the magnetic field is considered in that in the body frame, it is a function
of time. Its temporal evolution is linked to velocity through the spatial gradient of the
magnetic field, which enables trajectory reconstruction in a dead-reckoning framework
when the latter is known.

Importance of the choice of model This model difference results in two entirely
different approaches: magnetic fingerprinting involves a magnetic map, whereas MIDR

10
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Figure 2.1: Total magnetic field intensity map, according to the WMM 2015 (World
Magnetic Model)

https://www.ngdc.noaa.gov/geomag/WMM/data/WMM2015/WMM2015_F_MERC.pdf
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

does not. Magnetic fingerprinting provides absolute positioning in the map, whereas
MIDR does not since no map is kept during the estimation process, but it provides
velocity instead. Therefore it is clear that the choice of model for the same physical
system is a crucial step that needs to be carefully considered.

Questions Given the importance of modeling choices, it is worth spending time con-
sidering the underlying model that one will later try to observe. That is to say, the
following questions must be answered:

• What information do magnetic field measurements provide about the trajectory?

• What is the adequate state-space model that must be observed?
These questions will be answered more specifically in the scope of low-cost strapdown
Microelectromechanical Systems (MEMS) inertial navigation in indoor environments.

Method Our approach is based on known MIDR models in the literature which we
review critically with respect to observability. Possible model candidates are deduced
from these references, and the distinguishability of trajectories from each other given
available measurements is studied. To that end, the following references are considered:
Ref. Dorveaux [2011], the Ph.D. Thesis of E. Dorveaux on the subject, Refs. Vissière
et al. [2007a,b], seminal papers on the subject, and Ref. Batista et al. [2013], which is
about observability in a previously identified corner case. This chapter then serves as
a justification of the work regarding observer design and experimental evaluation that
was undertaken mainly in Ch. 4 and Refs. Chesneau et al. [2016, 2017], but also of the
rest of this thesis to a lesser extent.

Outline In Sec. 2.2, notations are defined, and a problem statement is formulated. In
Sec. 2.3, results from Ref. Dorveaux [2011] are recalled, and reasons for considering al-
ternative modeling architecture are provided. In Sec. 2.4, Refs. Vissière et al. [2007a,b]
are briefly reviewed, and a minimal dynamical model is proposed and studied. Sec. 2.5
discusses the implications of using low cost inertial sensors in this context, and Sec. 2.6
concludes this chapter.

2.2. Problem statement
Let us come back to the considered rigid body that is moving in some navigation

frame. It is equipped with strapdown MEMS inertial sensors, and with a magnetic
measurement unit, such that both the vector components and the local spatial gradient
of the magnetic field are measured at some fixed point of the rigid body. Moreover, let
us assume that the magnetic field is stationary, that is to say, it is time-invariant in
the navigation frame. The problem under consideration in this chapter is to provide a
model that connects measurements and trajectory information together and determine
what trajectories are distinguishable by only said measurements: those provided by
the Inertial Measurement Unit (IMU) and those of the magnetic field. The underlying
notion is that of observability.
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2.2. Problem statement

2.2.1. Notations and definitions
Frames of reference

Let us consider three reference frames. Let Rb be a reference frame moving with the
rigid body and Bb an associated orthonormal basis. Sensors are fixed in this reference
frame. Let Rn be the navigation frame, with Bn an associated orthonormal basis. This
is the frame in which the trajectory is estimated. Let us denote Ri an inertial frame
of reference, and Bi an associated orthonormal basis.

(Cartesian) coordinates in Rb (resp. Rn and Ri) are denoted with the exponent b

(resp. n and i). For example,

vn =

vn
1

vn
2

vn
3

 ,

denotes the coordinates of a vector vn in Rn.
In the following, Rn is assumed fixed with respect to the earth.

Trajectory

Let M be a fixed point of the rigid body. By convention, let us define its Cartesian
coordinates in body frame as Mb . An attitude matrix R P SO(3) representing the
orientation of the rigid body in Rn is defined such that in terms of matrix relations,
for any point P whose coordinates in Rb are Pb, the change of coordinates between
Rn and Rb reads

Pn = R(Pb ´ Mb) + Mn . (2.1)

The trajectory of the rigid body is defined as the evolution of (R,Mn) P SE(3) with
time, where SE(3) denotes the special Euclidean group that represents rigid body
motion. Let us remark that since R P SO(3), then R´1 = RJ. The time variable is
denoted t.

Eq. (2.1) implies
BPn

BPb = R .

Therefore, for any pair of reference frames Rf1 ,Rf2

Rf2Ðf1
.
=

BPf2

BPf1
. (2.2)

The notation R is then an alias of RnÐb .

Velocity

The velocity vector vn of Mn in the navigation frame is defined as

vn .
=
dMn

dt
. (2.3)

13



2. Observability in the Magneto-Inertial Dead-Reckoning framework

This same 3-D vector can also be expressed in body frame while still representing the
velocity vector of M in the navigation frame,

vb .
= RJvn . (2.4)

One must be careful that this definition of vb is not objective in that it is bound to
the navigation frame Rn. See also Ref. Matolcsi and Ván [2006]. This is deliberate,
since the trajectory reconstruction problem is bound to Rn: it would not make sense
to define the change of frame in such a way that vb would become independent of
Rn. However, doing so might lead to some degree of confusion when computing time-
derivatives not carefully. For instance, in general,

vb ‰
dMb

dt
.

Angular velocity

Let us denote ω = ωb/n = (ω1, ω2, ω3)
J the angular velocity of Rb with respect to

Rn. It is defined such that
dR

dt

.
= R[ωˆ] , (2.5)

where [ωˆ] denotes the antisymmetric matrix

[ωˆ]
.
=

 0 ´ω3 ω2

ω3 0 ´ω1

´ω2 ω1 0

 = ´[ωˆ]J.

The navigation frame Rn is fixed with respect to the Earth, which is not strictly
speaking an inertial frame, because it is spinning. Thus, ωb/n is not measurable
directly with strapdown gyrometers. Instead, they are sensitive to the angular velocity
vector of Rb with respect to Ri that is denoted ωb/i. Similarly, the angular velocity
vector of Rn with respect to Ri is denoted ωn/i. The relationship between R, ωb/i

and ωn/i is then
dR

dt
= R[ωb/iˆ] ´ [ωn/iˆ]R . (2.6)

Often, MEMS gyrometers are not considered sensitive enough to measure angular
velocities whose magnitude is comparable with the earth’s angular velocity.1 This is
why Eq. (2.5) is often used as if ωb/n were measured directly, or as if the earth were
not spinning.

Acceleration

Let us denote an the acceleration vector of M in the navigation frame,

an .
=
dvn

dt
.

1The earth’s angular velocity is „ 15 deg /h
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2.2. Problem statement

This same 3-D vector can also be expressed in body frame while still representing the
same quantity2,

ab .
= RJan .

Let us denote gn the local effective gravity vector in the navigation frame. Models of
gn such as the World Gravity Model (WGM) include the effect of the Earth’s rotation
and the resulting centrifugal force.

Proper acceleration γn is defined as the acceleration of Mn with respect to a non-
rotating reference frame that would be only subjected to gravity, that is to say (see
Ref. Savage [2000]),

an = γn + gn ´ 2ωn/i ˆ vn , (2.7)
where ´2ωn/i ˆ vn represents the Coriolis acceleration. Equation (2.7) is only valid
because of the choice of a Cartesian coordinatization, by neglecting the angular accel-
eration of Rn, and by including the centrifugal force into gn. Proper acceleration can
also be expressed in body frame while still representing the same quantity,

γb .
= RJγn

Strapdown accelerometers are sensitive to γb.

Magnetic field

Let us denote B the magnetic field. It is a vector field, which in general, depends
on time and space. At any point P in space, the change of frame between Rb and Rn
is assumed to be expressed as3

Bn(Pn, t) = RBb(Pb, t) . (2.8)

Admitting that the magnetic field is always regular enough, the Jacobian matrix at
M of the magnetic field is defined as

∇Bn(Mn, t)
.
=

B(Bn(Pn, t))

B(Pn)

ˇ

ˇ

ˇ

ˇ

Pn=Mn
,

and
∇Bb(Mb, t)

.
=

B(Bb(Pb, t))

B(Pb)

ˇ

ˇ

ˇ

ˇ

Pb=Mb
,

with the change of frame

∇Bn(Mn, t) = R∇Bb(Mb, t)RJ.

Magnetic sensors are assumed to provide direct and accurate measurements of
∇Bb(Mb, t) and Bb(Mb, t). In this chapter, these notations are respectively shortened
to ∇Bb and Bb whenever these notations are non-ambiguous.

2This change of frame is not objective either
3Relativity and electrodynamics allow writing (2.8) as an approximation in }v}2

c2
in absence of electric

field and in }v}

c
otherwise, where c is the speed of light. Even for }v} as high as 100m/s, neglecting

this term is quite enough for use in pedestrian applications. By contrast, the same change of
variable would not be valid with the electric field.
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

State-space model

Let us recall that the ideal outcome would be the ability to compute the trajectory
Mn(t) and R(t) by using an observer for non-linear dynamical systems. Thus, the first
step is to write the state-space model that needs to be observed in the form

"

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

(2.9)

where x is the state vector, y is the known output vector of the system, and u is the
known input vector. In the following, X denotes the manifold to which values of x
belong, U denotes the open subset of Rm to which values of the input vector u belong,
and Y denotes the open subset of Rp to which values of the measured outputs belong.

If it is assumed that measurements can directly access u(t) and y(t), then one must
be able to deduce x(t), then the trajectory.

Observer and observability

Let us recall the definition of an observer from Ref. Besançon [2007].

Definition 1 (Observer [Besançon, 2007, Sec. 1.1.2, Def. 1]). Considering a system
(2.9), an observer is given by an auxiliary system:

Ẋ(t) = F (X(t), u(t), y(t), t)

x̂(t) = H(X(t), u(t), y(t), t)
(2.10)

such that:

(i) x̂(0) = x(0) ñ x̂(t) = x(t), @t ě 0

(ii) }x̂(t) ´ x(t)} Ñ 0 as t Ñ 8

Let us also recall the definition of observability from Ref. Besançon [2007]. Repro-
ducing its notations, χu(t, xt0) denotes the solution of the state equation Eq. (2.9)
under the application of input u on [t0, t] and satisfying χu(t0, xt0) = xt0 .

Definition 2 (Indistinguishability Ref. [Besançon, 2007, Sec. 1.2.1, Def. 2]). A pair
x0, x

1
0 P Rn ˆ Rn is indistinguishable for a system (2.9) if:

@u P U , @t ě 0, h(χu(t, x0)) = h(χu(t, x
1
0))

A state x is indistinguishable from x0 if the pair (x, x0) is indistinguishable.

Definition 3 (Observability Ref. [Besançon, 2007, Sec. 1.2.1, Def. 3]). A system (2.9)
is observable [resp. at x0] if it does not admit any indistinguishable pair [resp. any
state indistinguishable from x0].
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2.2. Problem statement

2.2.2. The modeling problem
The whole point of this chapter is that the choice of dynamical model is neither

completely straightforward nor neutral. There is more than one possible model, some
of whom leading to algorithms quite different from dead-reckoning. Therefore, this
work solely focuses on MIDR, as defined below.

MIDR solutions

MIDR is defined by

• The choice of the magnetic field vector Bb (or Bn, or the same quantity in any
other frame of reference or any reparameterization) as a state variable and as
an output variable (in x and y). This is a model of measurements, therefore, no
persistent map of the magnetic field is compiled;

• The ability to use direct measurements of the spatial derivative of the magnetic
field ∇Bb;

• The use of vb (or vn, or the same quantity in any other frame of reference or any
reparameterization) in the components of f(x(t), u(t)) corresponding to the time-
derivative of Bb (expressed in any frame of reference, or any reparameterization).
More precisely, f includes an instance of the following equation,

d

dt
Bn(Mn(t), t) = ∇Bn(Mn(t), t)vn(t) +

B

Bt
Bn(Mn(t), t) . (2.11)

If B is stationary in Rn, that is to say, Bn depends only on the space variable, then
(2.11) reduces to

dBn

dt
= ∇Bnvn . (2.12)

Equations (2.11) and (2.12) are central in Chapters 2 and 4 as the starting point of
all dynamical models that are used.

Why this restriction? According to Sec. 2.2.1, measured quantities are Bb, ∇Bb,
ωb/i and γb. Since the trajectory is defined as the orientation and position of the rigid
body as a function of time, that is to say t ÞÑ (R(t),Mn(t)), a natural way of forming
the state-space model (2.9) is to combine the strapdown inertial navigation equations
(2.3), (2.6), (2.7), with the magnetic field equation (2.8). For instance, as discussed in
Sec. 2.1, one could choose to put Mn, R and vn into the state vector, use ωb/i and γb to
form the input-vector, and use Bb and ∇Bb as outputs. Assuming that the magnetic
field is mapped beforehand, the function h could then be formed using this map, thus
forming our state-space model. Such an approach would be a hybridization between
magnetic fingerprinting and inertial navigation, augmented with measurements of the
magnetic gradient, and not dead-reckoning.
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

Higher order spatial derivatives Let us remark that the definition of MIDR can
stated by replacing Bb and ∇Bb with their respective spatial derivatives, with an
equation of the form

d

dt
∇Bn(Mn(t), t) = f

(
B∇Bn(Mn(t), t)

BMn(t)
,vn
)
, (2.13)

If higher order spatial derivatives are measurable directly, both approaches could even
be combined, with clear advantages of doing so (see Ref. Skog et al. [2018]).

2.2.3. Problem formulation
Now that notations, MIDR and observability are defined, the problem is answering

the following two questions:

1. What dynamical system must be chosen?

2. How observable is each possible choice of dynamical system?

These two questions are essential because answering them is making sure that the
right tool is used for the job. They highlight that observability is bound to a choice of
dynamical system. They also emphasize that the modeling step is an essential part of
solving an observation problem for our physical system. For example, questions such
as “what order is the system”, or “is it observable” only make sense once a model is
chosen, and the choice of model can be questioned.

Modeling choices are based on the following criteria: one must be able to evaluate
the model, it must accurately represent reality, and its observability properties must
allow dead-reckoning. Let us start with equation (2.12), and study models in order of
increasing complexity.

2.3. Minimal dynamical system for velocity computation
This section recalls some relevant results of Ref. Dorveaux [2011] in the context of

modeling and observability studies, and discusses its choice of model. Said model is
provided in Sec. 2.3.1. An observability result is provided in Sec. 2.3.2. Then, the
choice is discussed in Sec. 2.3.3.

2.3.1. Model
Let us assume that the magnetic field is stationary in the navigation frame, that

the navigation frame and inertial frame are identical, and that an unbiased strapdown
3-axis gyrometer is available. The state-space model (2.9) is chosen as

x(t) =

(
Bb(Mb, t)

vb(t)

)
, u(t) =

(
ωb/n(t)

∇Bb(Mb, t)

)
, y(t) = Bb(Mb, t) . (2.14)
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2.3. Minimal dynamical system for velocity computation

Using our notations, the following system reproduces the one presented and studied
in Ref. [Dorveaux, 2011, Sec. 2.1.2, Eq. (2.8)], which is the simplest MIDR model of
the state of the art,

f(x(t), u(t)) =

(
´[ωb/n(t)ˆ] ∇Bb(Mb, t)

0 ´[ωb/n(t)ˆ]

)
x(t) . (2.15)

If Eq. (2.15), is injected into Eq. (2.9), the following equation is obtained,

d

dt
vb = ´ωb/n ˆ vb , (2.16)

which is equivalent to an = 0 . In other words, this model is only accurate for straight
line trajectories at constant velocity in the navigation frame Rn. The unavailability of
reliable accelerometers can nevertheless justify this strong assumption.

2.3.2. Observability

The model Eqs. (2.14)-(2.15) is proven observable in Ref. [Dorveaux, 2011, Appx. C],
since as long as ∇Bb is non-singular, there exists a converging non-linear observer that
reconstructs both the magnetic field and the velocity,

$

’

’

&

’

’

%

d

dt
pBb = ´ωb/n ˆ pBb +∇Bb

[
pvb ´ `1

(
∇Bb

)J

(pBb ´ y)

]
d

dt
pvb = ´ωb/n ˆ pvb ´ `2

(
∇Bb

)J

(pBb ´ y) ,

(2.17)

(2.18)

where `1 ą 0 and `2 ą 0 are constant gains.

Remark The convergence speed of pBb towards Bb in the above observer seems to
decrease unnecessarily when the gradient is small. This motivates replicating the proof
of convergence provided in Ref. [Dorveaux, 2011, Sec. 2.2] with a simpler observer,

$

’

’

&

’

’

%

d

dt
pBb = ´ωb/n ˆ pBb +∇Bb

pvb ´ `1(pBb ´ y)

d

dt
pvb = ´ωb/n ˆ pvb ´ `2

(
∇Bb

)J

(pBb ´ y) .

(2.19)

(2.20)

Proof. Consider the Lyapunov function W

W =
1

2

›

›

›

pBb ´ Bb
›

›

›

2

+
1

2`2

›

›

pvb ´ vb›

›

2 (2.21)
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

Its time derivative can be written under the form

dW

dt
=
(

pBb ´ Bb
)J [

´ωb/n ˆ

(
pBb ´ Bb

)
+∇Bb (

pvb ´ vb)´ `1(pBb ´ Bb)
]

+
1

`2

(
pvb ´ vb)J

[
´ωb/n ˆ

(
pvb ´ vb)´ `2

(
∇Bb

)J

(pBb ´ Bb)

]
=
(

pBb ´ Bb
)J [

∇Bb (
pvb ´ vb)´ `1(pBb ´ Bb)

]
+

1

`2

(
pvb ´ vb)J

[
´`2

(
∇Bb

)J

(pBb ´ Bb)

]
,

(2.22)

because u ˆ v and v are orthogonal.

dW

dt
= ´`1

(
pBb ´ Bb

)J

(pBb ´ Bb)

+
(

pBb ´ Bb
)J

∇Bb (
pvb ´ vb)

´
(
pvb ´ vb)J

(
∇Bb

)J

(pBb ´ Bb)

= ´`1

›

›

›

pBb ´ Bb
›

›

›

2

.

(2.23)

Since `1 ą 0, then Ẇ ď 0.
In order to complete the proof, let us show, following Ref. [Dorveaux, 2011, Sec. 2.2],

that the invariant set defined by Ẇ = 0 is reduced to(
pBb ´ Bb, pvb ´ vb

)
= (0, 0) , (2.24)

which, by LaSalle’s invariance principle, implies that this set is globally asymptotically
stable.

From Eq. (2.23), it is obvious that in this set,

pBb ´ Bb ” 0 . (2.25)

Using Eqs. (2.15) and (2.17) to take the time derivative of the previous equation yields
immediately,

∇Bb (
pvb ´ vb) ” 0 . (2.26)

Because by assumption ∇Bb is non-singular, it follows that in this set,

pvb ´ vb ” 0 , (2.27)

which concludes the proof.

The advantage of this observer over the one proposed in Ref. [Dorveaux, 2011,
Sec. 2.2] is that pBb converges towards Bb independently of ∇Bb.
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2.4. Velocity and attitude estimation in an inertial frame

2.3.3. Discussion: What about attitude estimation?

Not only is the model Eqs. (2.14)-(2.15) only accurate for straight line trajectories
at constant velocity, which makes sense with unreliable accelerometers but is very
restrictive, but it is also incomplete.

Attitude estimation is missing This observable state is not sufficient in order to com-
pute a trajectory. Although vb is observable, the minimum requirement for computing
the trajectory would be the ability to integrate the velocity in the navigation frame,
Eq. (2.3). To achieve that, at least an estimate of the attitude matrix R is missing,
and necessary to obtain vn in the navigation frame, Eq. (2.4). This issue is indeed
discussed at the end of Ref. [Dorveaux, 2011, Sec. 2.2]. In this reference, the proposed
design solution is to estimate the attitude matrix R in a separate state-observer as
illustrated Fig. 2.2, since there is plenty of literature on the subject, see Refs. Michel
et al. [2015], Makni [2016] and references therein.

The model is restrictive Attitude estimation algorithms using MEMS inertial sensors
usually assume that the mean value of the acceleration vector an is zero. Resorting
to them makes sense considering that this assumption was implicitly taken. With this
assumption, the gravity vector can be recovered from the measured proper acceleration
vector. This is akin to using accelerometers as tilt sensors. This assumption is generally
not true; there is no reason why all trajectories should follow straight lines at constant
velocity. When gyrometers are available, they can be used to mitigate effects of non-
zero an with filtering (see Refs. Mahony et al. [2005, 2008]).4 However, after browsing
through the literature, it becomes clear that research on attitude estimation algorithms
using MEMS inertial sensors mainly aims at mitigating the effects of accelerations,
which are considered as disturbances. The trajectory itself being seen as a disturbance
is an undesirable property highlighting a representativeness problem.

2.4. Velocity and attitude estimation in an inertial frame
Let us consider attitude estimation jointly with velocity estimation, with the as-

sumption that the navigation frame is inertial, implying ωn/i « 0. In fact, the seminal
papers on MIDR, Refs. Vissière et al. [2007a,b], do combine velocity and attitude
estimation. Using our notations, the reduced state vector of the dynamic system in
Ref. [Vissière et al., 2007a, Sec.II] whose observability is studied is equivalent to

x(t) =
(
vb(t) R(t) ωb/n(t) ab(t) Bb(Mb, t) ∇Bn(Mb, t)

)J
,

4Let us also remark that in this context, the magnetic field is usually used as a heading reference in
outdoor environments. More sophisticated algorithms are used indoors to account for ubiquitous
magnetic disturbances, see Refs. Afzal et al. [2011b], Renaudin and Combettes [2014].
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

Figure 2.2: From Ref. [Dorveaux, 2011, Fig. 2.3], “Trajectory reconstruction with a
Magneto-Inertial NAVigation (MINAV) system”
In Ref. Dorveaux [2011], velocity and attitude estimation are considered
separately. A state-of-the-art attitude observer using accelerometers and
gyrometers is implemented. The magnetic field can be used as a heading
source. Velocity estimation is achieved in a separate observer, using gy-
rometers and magnetic field measurements. Outputs from both observers
are combined in order to obtain velocity in the navigation frame, and in-
tegrated in order to compute a trajectory in a dead-reckoning framework.
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2.4. Velocity and attitude estimation in an inertial frame

with an output vector that reads

y(t) =



γb(t) + bγ
ωb/n(t) + bω

Bb(Mb, t)

Bb(Mb, t) +∇Bb(Mb, t)(pb
1 ´ Mb)

Bb(Mb, t) +∇Bb(Mb, t)(pb
2 ´ Mb)

Bb(Mb, t) +∇Bb(Mb, t)(pb
3 ´ Mb)

 ,

where bω stands for gyrometer biases, bγ stands for accelerometer biases, γb and ωb/n

are defined according to Eqs. (2.7) and (2.5) with ωn/i = 0, and vectors pb
1 to pb

3

represent coordinates in body frame of additional 3-axis magnetometers. It is worth
noting that Ref. Vissière et al. [2007a] does study the observability of this model but,

• Contrary to Ref. Dorveaux [2011], this work does not completely fit into the
definition of MIDR in Sec. 2.2.2. While it does use an instance of Eq. (2.11),
direct measurements of the magnetic field gradient are not considered available.
Instead, the gradient is computed by the observer. Two configurations are men-
tioned at the end of Ref. [Vissière et al., 2007a, Sec.III.C] about experimental
results: one with a single 3-axis magnetometer, and one with four 3-axis magne-
tometers. Using a single 3-axis magnetometer is not sufficient to provide direct
measurements of ∇Bb, and is outside the scope of this work; MIDR was probably
not yet outlined at the time of writing.

• No clear justification is provided about the representativeness of the associated
dynamic model d

dt∇Bn
« 0; The single-3-axis-magnetometer configuration is

probably the only reason why ∇Bn is considered as a part of the state vector,
also when observability is assessed.

• The model description is completely invariant with respect to a change of head-
ing, which casts some doubts over conclusions of Ref. [Vissière et al., 2007a,
Sec.II] concerning heading observability.

2.4.1. Proposed model
Let us take an intermediate approach between Refs. Vissière et al. [2007a] and

Dorveaux [2011] under the following guidelines,

• Quantities for which direct measurements are available and no representative
dynamic model can be evaluated are removed from the state vector;

• Attitude is included into the state vector.

Since direct measurements of ∇Bb are available and no representative model for
d
dt∇Bb is available, the choice is made to use it as an input like in Ref. Dorveaux
[2011] instead of as a state like in Ref. Vissière et al. [2007a]. Then, strapdown iner-
tial navigation equations are included in the model like in Ref. Vissière et al. [2007a]
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

instead of using a constant-velocity assumption like in Ref. Dorveaux [2011]. Since
direct measurements of ωb/n and γb are assumed available, they are not included in
the state vector contrary to Ref. Vissière et al. [2007a]. The resulting system reads

x(t) =

Bb(Mb, t)
vb(t)
R(t)

 , y(t) =
(
Bb(Mb, t)

)
, u(t) =

∇Bb(Mb, t)
ωb/n(t)
γb(t)

 . (2.28)

The state dynamics function f combines Eqs. (2.12), (2.7) and (2.5) into

dBb

dt
= ´ωb/n ˆ Bb +∇Bbvb , (2.29)

dvb

dt
= ´ωb/n ˆ vb + γb +RJgn , (2.30)

dR

dt
= R[ωb/nˆ] . (2.31)

2.4.2. Observability
Is the system formed by Eqs. (2.28)-(2.31) observable? Two cases can now be ex-

amined: the case of constant inputs, and the time-varying case.

Case of constant inputs: local weak observability

Let us examine whether the system formed by Eqs. (2.28) to (2.31) is locally weakly
observable. Let us recall the definition that we use.

Definition 4 (Local weak observability Ref. [Besançon, 2007, Sec. 1.2.1, Def. 5]). A
system (2.9) is locally weakly observable [resp. at x0] if there exists a neighborhood U
of any x [resp. of x0] such that for any neighborhood V of x [resp. x0] contained in
U , there is no indistinguishable state from x [resp. x0] in V when considering time
intervals for which trajectories remain in V .

There is a systematic way of checking whether our system is locally weakly observ-
able. First, the following definitions are recalled.

Definition 5 (Observation space Ref. [Besançon, 2007, Sec. 1.2.1, Def. 6]). The ob-
servation space for a system (2.9) is defined as the smallest real vector space (denoted
by O(h)) of C8 functions containing the components of h and closed under Lie deriva-
tion along fu

.
= f(., u) for any constant u P Rm (namely such that for any ϕ P O(h),

Lfuϕ(x) P O(h), where Lfuϕ(x) =
Bϕ
Bx f(x, u)).

Definition 6 (Observability rank condition [resp. at x0] Ref. [Besançon, 2007, Sec. 1.2.1,
Def. 7]). A system (2.9) is said to satisfy the observability rank condition [resp. at x0]
if:

@x, dim dO(h)|x = n [resp. dim dO(h)|x0
= n]

where dO(h)|x is the set of dϕ(x) with φ P O(h).
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2.4. Velocity and attitude estimation in an inertial frame

Then, the following theorem is recalled.

Theorem 2.4.1 (Ref. [Besançon, 2007, Sec.1.2.1, Thm.1]). A system (2.9) satisfying
the observability rank condition at x0 is locally weakly observable at x0.
More generally, a system (2.9) satisfying the observability rank condition is locally
weakly observable.
Conversely, a system (2.9) locally weakly observable satisfies the observability rank
condition in an open dense subset of X.

In order to compute the system’s observation space, the way to take Lie derivatives
on the group of rotations SO(3) needs to be defined, because R P SO(3). To that end,
let us choose any element

x0 =

Bb
0

vb
0

R0

 P X .

The exponential mapping from the Lie algebra so(3) to the Lie group SO(3) defined
by

so(3) Ñ SO(3)
[ρˆ] ÞÑ R = exp ([ρˆ])R0

can be used as a local parameterization of SO(3) around R0 for the Rodrigues rotation
vector ρ in a neighborhood of 0. Let us redefine x(t) as

x(t) =
(
Bb(Mb, t) vb(t) ρ(t)

)J
.

Eq. (2.31) becomes

d

dt

[
exp([ρˆ])R0

]
= exp([ρˆ])R0[ω

b/nˆ]

d

dt
exp([ρˆ]) = exp([ρˆ])R0[ω

b/nˆ]RJ
0

= exp([ρˆ])[(R0ω
b/n)ˆ] ,

by invariance of the vector product by a direct isometry. This equation can be trans-
formed into (see Ref. Jiang and Lin [1991] for full derivation)

ρ̇ =

[
1 ´

cos }ρ}

1 ´ cos }ρ}
[ρˆ] +

1

}ρ}2

(
1 ´

}ρ} sin }ρ}

1 ´ cos }ρ}

)
[ρˆ]2

]
R0ω

b/n , (2.32)

which, at ρ = 0 simplifies further into

ρ̇|ρ=0 = R0ω
b/n . (2.33)
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

The system’s observation space is spanned by

h(x) = Bb ,

Lfuh(x) = ´[ωb/nˆ]Bb +∇Bbvb ,

L2
fuh(x) =

(
´[ωb/nˆ] ∇Bb)( ´[ωb/nˆ]Bb +∇Bbvb

´[ωb/nˆ]vb + γb +RJ
0 exp([´ρˆ])gn

)
= [ωb/nˆ]2Bb + (´[ωb/nˆ]∇Bb

´ ∇Bb[ωb/nˆ])vb

+∇BbRJ
0 exp([´ρˆ])gn .

Thus,

dO(h)|x0
= span

!

dBb,∇Bbdvb,∇BbRJ
0 [gnˆ]dρ

)

.

It is clear that dim dO(h)|x ď 8 because [gnˆ] is rank 2. More precisely, ρ is unobserv-
able in the direction of gn, which means that heading is not locally weakly observable.
Moreover, velocity is locally weakly observable if and only if ∇Bb is non-singular.
If ∇Bb is singular, tilt might not even be observable; in the worst case, ∇Bb = 0,
dim dO(h)|x = 3 and only the magnetic field is observable.

Time-varying case

Let us consider once more the system formed by Eqs. (2.28) to (2.31). Let us prove
that if the spatial gradient of the magnetic field is non-singular, then the system is
observable up to a heading difference.

Let us denote

x0 =

Bb
0

vb
0

R0

 , x1
0 =

Bb1

0

vb1

0

R1
0

 . (2.34)

Let us denote x(t) and x1(t) two solutions of Eqs. (2.28) to (2.31) with their respective
initial conditions x(t0) = x0 and x1(t0) = x1

0 for a given input u P U such that

u(t) =

∇Bb(Mb, t)
ωb/n(t)
γb(t)

 . (2.35)

It is assumed that ∇Bb(Mb, t) is non singular and that h(x(t)) = h(x1(t)), for t P

[t0, T ]. Let us prove that

Bb
0 = Bb1

0 ,

vb
0 = vb1

0 ,

gn = R1
0R

J
0 gn .
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2.4. Velocity and attitude estimation in an inertial frame

The equality Bb
0 = Bb1

0 is obviously true, because Bb
0 = h(x(t0)) = h(x1(t0)) = Bb1

0.
The equality vb

0 = vb1

0 also holds, under the assumption that vb is of class at least
C1 and that ∇Bb is non-singular, because

vb(t) = ∇Bb(Mb, t)´1

(
d

dt
Bb(Mb, t) + ωb/n(t) ˆ Bb(Mb, t)

)
= vb1

(t) (2.36)

for all t P [t0, T ]. Taking the time-derivative of Eq. (2.36) and using Eq. (2.30) simplifies
into

RJgn = R1Jgn .

Because of Eq. (2.31),

d

dt

(
R1RJ

)
= R1

(
dR

dt

)J

+

(
dR1

dt

)
RJ

= R1
(
R[ωb/nˆ]

)J

+
(
R1[ωb/nˆ]

)
RJ

= R1
(
[ωb/nˆ] ´ [ωb/nˆ]

)
R

= 0 .

It follows that the above equation holds if and only if RJ
0 gn = R1J

0 gn, which concludes
the proof.

2.4.3. Conclusion
Tilt and velocity are observable if ∇Bb is non-singular In the simple model proposed
above, if ∇Bb is non-singular, then everything but heading is observable, even for
accelerated trajectories. While this result holds in the case of constant inputs, varying
inputs do not make heading any more observable, because this issue stems from the
symmetry of the dynamic model with respect to a change of heading. This symmetry
comes from the assumption that Rn is inertial (see Appx. A). Regarding the rest of
the state, however, looking deeper at the time-varying case might be useful in cases
where ∇Bb is singular.

The above condition might be restrictive According to Ref. Batista et al. [2013],
the condition that ∇Bb be non-singular is unnecessarily restrictive. To support this
statement, this reference provides several models that differ from the one discussed in
Sec. 2.3 only by the definition of d

dtv
b: constant vb or constant vn. The idea is that

if the magnetic field is constant in one direction in Rn, and if R is known at all times,
without hypothesis about the evolution of vn, movements along this direction are
indistinguishable. However, if it is known that vn “rotates”, unobserved components
of the velocity vector at a given date (along the direction of constant field) can be
recovered by using measurements at a later date, once they have turned to another
direction. This behavior is not captured using the local weak observability criterion,
for neither does it consider variations of input nor does it consider observability over
a time interval.
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

2.5. Low-cost inertial sensors: sensor biases,
observability implications

One of the main drawbacks of low-cost MEMS inertial sensors is that their output is
not accurate. In particular, the mean value of measurement noise, or bias, cannot be
neglected in inertial navigation applications where performance is required (see, e.g.,
Ref. Woodman [2007]). Bias can be seen as an unknown constant parameter; but since
it can change with time, it is arguably appropriate to consider it as part of the state
vector.

2.5.1. Proposed model
Let us consider joint attitude, velocity and inertial sensors biases estimation, with

the assumption that ωn/i « 0 (the Earth is not rotating). The resulting system reads

x(t) =


Bb(Mb, t)

vb(t)
R(t)
bγ(t)
bω(t)

 , y(t) = (Bb(Mb, t)), u(t) =

∇Bb(Mb, t)
ωmeas(t)
γmeas(t)

 , (2.37)

with inertial sensors measurements modeled by

ωmeas
.
= ωb/n + bω, (2.38)

γmeas
.
= γb + bγ . (2.39)

The state dynamic function f reads

dBb

dt
= ´(ωmeas ´ bω) ˆ Bb +∇Bbvb (2.40)

dvb

dt
= ´(ωmeas ´ bω) ˆ vb + γmeas ´ bγ +RJgn (2.41)

dR

dt
= R[(ωmeas ´ bω)ˆ] (2.42)

dbγ
dt

= 0 (2.43)

dbω
dt

= 0 . (2.44)

Remark This system is bilinear in the state because of gyrometer biases.

2.5.2. Observability
This section studies the system formed by Eqs. (2.37)-(2.44). The aim is to prove

that it is not observable in the sense of Def. 3, such that even if heading is ignored
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2.5. Low-cost inertial sensors: sensor biases, observability implications

and the gradient of the magnetic field is non-singular, there exists indistinguishable
trajectories. To do that, Def. 3 is used directly, as in Sec. 2.4.2. It is equivalent to
check whether or not given u(t) and y(t), there exists a unique x(t) solving the system.

Let x(t) and x1(t) be two solutions of Eqs. (2.37)-(2.44) for t P [t0, T ] for a given
input u P U such that

u(t) =

∇Bb(Mb, t)
ωmeas(t)
γmeas(t)

 . (2.45)

Let us assume that ∇Bb(Mb, t) is non singular for t P [t0, T ] and that y(t) = h(x(t)) =
h(x1(t)), for t P [t0, T ]. Let us denote

x1(t) =


Bb1

(Mb, t)

vb1
(t)

R1(t)
b1
γ(t)

b1
ω(t)

 , δx(t) =


δBb(t)
δvb(t)
δR(t)
δbγ(t)
δbω(t)

 .
=


Bb(Mb, t) ´ Bb1

(Mb, t)

vb(t) ´ vb1
(t)

R1(t)R(t)J

bγ(t) ´ b1
γ(t)

bω(t) ´ b1
ω(t)

 . (2.46)

If there exists a solution for δx(t) different from
(
0, 0,1, 0, 0

)J identically, then the
system is not observable.

The equation y(t) = h(x(t)) = h(x1(t)) forces δBb ” 0. Then, Equation (2.40)
yields

d

dt
δBb = δbω ˆ y +∇Bbδvb = 0. (2.47)

It appears that this time, contrary to the system studied in Sec. 2.4.2, simply taking the
time derivative of the output does not provide an unambiguous value of the velocity.
Let us find out whether this ambiguity remains in the rest of the model, by looking
for constant solutions for δbω and δvb.

To that end, u(t), y(t), and x(t) are assumed to describe a static trajectory. In
particular, they are all constant, and

ωb/n = ωmeas ´ bω = 0 .

Equation (2.41) now yields

d

dt
δvb = ´(ωmeas ´ b1

ω) ˆ δvb

+ δbω ˆ vb ´ δbγ +RJ(1 ´ δRJ)gn
(2.48)

= ´δbω ˆ δvb ´ δbγ +RJ(1 ´ δRJ)gn. (2.49)

In order for RJ(1 ´ δRJ)gn to be identically zero, it is enough that
(
1 ´ δRJ

)
gn

be identically zero, or equivalently, that δRJ always leave gn invariant. Because of
Eq. (2.42), (

d

dt
δR

)J

= ´R[δbωˆ]R1J.
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

In order for δRJ to leave gn invariant, it is enough to choose any R1(t0) P SO(3), and
δbω such that

[δbωˆ]R1(t0)
Jgn = 0. (2.50)

In conclusion, one can choose δvb(t0) such that Equation (2.47) is always true, because
then, the right hand side of Eq. (2.49) can be arbitrarily set to 0 identically by the
appropriate choice of δbγ . A family of trajectories described by the same inputs and
outputs as a static one in Rn has successfully been found. The reader can check that
they are shaped as vertical helices. Thus, the model formed by Eqs. (2.37)-(2.44) is
not observable in the sense of Def. 3.

2.5.3. Conclusion and remarks

Unobservability of static trajectories If one takes into account inertial sensor biases,
there exist some indistinguishable trajectories. The unobservable space is large and
spans the attitude matrix, gyrometer and accelerometer biases, and velocity. Static
trajectories (constant attitude, zero velocity) belong to this set of trajectories. This
is problematic because this means that for a trajectory to be observable, it is neces-
sary, but not sufficient, that the tracked object be continually moving. Imposing this
constraint is impractical in a realistic use case.

Implications on the choice of inertial sensors This issue stems entirely from inertial
sensor biases uncertainty because otherwise, no such issue occurs (see. Sec. 2.4).
In practice, prior knowledge of biases should be exploited to help limit trajectory
reconstruction uncertainty. This means that inertial sensors must be chosen for their
bias stability.

Implications on attitude estimation Attitude and heading observers, also in the
static case, display the same observability issue as this model: accelerometer biases and
tilt errors are indistinguishable, and gyrometer biases interpreted as vertical (causing
a heading drift) are unobservable. Knowing the magnetic field has not improved the
situation. For gyrometer biases, this issue can be solved whenever the term ∇Bbvb

can be neglected, in approaches such as Ref. Afzal et al. [2011b] that rely on the fact
that the direction of the magnetic field is constant (but unknown) in the inertial frame
in such cases.

Unobservability of heading Despite the fact that static trajectories (having constant
input and output) belong to an indistinguishable set, trajectories outside of this set
(e.g., with non-constant inputs) might belong to indistinguishable sets of lower dimen-
sion. However, for symmetry reasons, one still cannot expect heading to be observable:
in particular, for a given input, one can change the initial heading with no effect on
the output. To solve this problem, the model has to be changed.
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2.6. Conclusion

Higher order magnetic models Information about velocity and gyrometer biases may
be recovered using more magnetic sensors. For example, if the second spatial derivative
of the magnetic field is known and used as an input, then ∇Bb can be added to the
state vector and moved from the input vector to the output vector because an equation
similar to (2.40) can be written. In the special case where this second spatial derivative
is zero, then it is expected that ∇Bb only rotates at the rate ωb/n. Measuring ∇Bb

then gives access to the full angular velocity vector ωb/n, solving the unobservability
problem in the above-mentioned static case for velocity and gyrometer biases. If the
second spatial derivate is not zero, one may expect the observability issue to remain
solved; more work on this subject is needed to draw a definite conclusion in the general
case. Ref. Skog et al. [2018], published during the redaction of this document, does
prove this result in a discrete-time Bayesian filtering framework.

Remark Ref. [Dorveaux, 2011, Appx. D] proves the observability of accelerometer
biases under the assumption that the attitude matrix R is known. This assumption is
not taken in this section, hence the different conclusion.

2.6. Conclusion
Chosen models In this chapter, a few existing models of the state of the art have
been reviewed, and several models suitable for MIDR have been proposed. The two
candidates considered as the best are proposed in Sec. 2.4 and 2.5 respectively. They
are considered as the best models in that they are the most representative, compared
with existing models proposed in the state of the art, and for their straightforwardness.

Observability issues Neither of these models is observable in the sense of Def .3.
More precisely, the heading is unobservable in both cases. Moreover, it has been
proven that with low-cost MEMS sensors, static trajectories belong to an unobservable
set of helical trajectories of dimension at least 4, with attitude and the component
of gyrometer biases corresponding to a heading drift both unobservable, with their
associated values of velocity and accelerometer biases. These issues may be solved
with hardware for which second-order spatial derivatives of the magnetic field can be
measured directly. Since such hardware was never going to be available during this
work, this case was not studied in this chapter.

Heading estimation issues Previous works on MIDR have mainly ignored the issue of
(true or magnetic) heading estimation, in spite of the fact that it is one of the primary
sources of error in dead-reckoning applications, even in Pedestrian Dead Reckoning
(PDR). Solving this problem requires a model that is not symmetrical with respect to
a change of initial heading. With accurate inertial sensors, this can be done by using
a rotating Earth model. With low-cost MEMS sensors, this is for now unreachable,
and the problem stays open.
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2. Observability in the Magneto-Inertial Dead-Reckoning framework

Priorities Previous works have mostly focused on the ability to recover velocity and
on cases in which the magnetic field gradient is singular. This study, in particular,
Sec. 2.5, shows that this issue is secondary before the observability of inertial sensor
biases, attitude and heading. These difficulties arise even before taking into account
other measurement errors, such as the effect of uncertainties on the spatial gradient
of the magnetic field on estimation, which remain to be addressed in later chapters.
Despite all these difficulties, there remains some hope that generic trajectories be
observable, and that an observer may be able to compute them.

Remark Let us remark that position has not been considered, because, in all of these
models, the magnetic field output does not depend on it, but on time. Therefore, a
change in initial position has no influence on the output. This characterizes dead-
reckoning. A method must then be chosen in order to integrate the velocity, in a
way that is robust to unknown initial conditions or to time-intervals during which
observability is lost.
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3. Measurement errors of magnetometer arrays combined with inertial sensors

3.1. Introduction

3.1.1. Hardware
Between 2007 and the beginning of this work, SYSNAV has been developing hard-

ware capable of being used for Magneto-Inertial Dead-Reckoning (MIDR). It consists
in two modules illustrated Fig. 3.1: a sensor board (Fig. 3.1a), and an operation unit
(Fig. 3.1b). The sensor board of the Magneto-Inertial Measurement Unit (MIMU) de-
vice can be carried by hand (Fig. 3.1c) or can be strapped onto one’s body. It carries
Microelectromechanical Systems (MEMS) inertial sensors and several magnetometers
arranged in a way that makes it possible to compute the spatial gradient of the mag-
netic field (Fig. 3.2). Thus, using the acquired measurements, one can integrate the
differential equations that govern the dynamics of the chosen state-space model (Ch. 2)
modeling movements of the sensor board. Said computation is done on an embedded
microcontroller with a Floating-Point Unit (FPU)1designed for small systems, in the
operation unit, to whom sampled data is sent from the sensor board.

3.1.2. Calibration
Sensors do not directly produce the desired measurements of angular velocity, accel-

eration, and (spatial gradient of the) magnetic field needed in navigation algorithms
(Table 3.1). Instead, they produce voltages that depend on given physical quantities
including those being measured. Said voltages can be sampled into numbers using
Analog Digital Converters (ADCs), before being used into a digital computer. There-
fore, a calibration step is needed (Fig. 3.3). Calibration of a measurement system is
the identification of a function that yields the desired physical quantity from the mea-
surement system output with minimal error. This function usually takes the form of
a parametric model, whose parameters must be identified during a calibration proce-
dure. Furthermore, voltage measurements are affected by random, unpredictable noise
such as thermal noise, flicker noise... making any hope of having perfect measurements
unrealistic.

3.1.3. Outline
This chapter aims at understanding the key points bridging raw sensor measurements

to inputs of an MIDR algorithm (Table 3.1). The main points will be regarding
magnetic field measurements and calibration issues of the array of sensors. Sec. 3.2
discusses magnetometer measurement models, and how to retrieve the magnetic field
vector and the magnetic field gradient from sensor measurements. Sec. 3.3 discusses
how and why inertial and magnetic sensors must be calibrated in the same frame
of reference Rb. Sec. 3.4 discusses the effect of calibration errors on the problem
of trajectory reconstruction. Characteristics of inertial sensors are not discussed in-
depth in this work. The reader is referred to Refs. Radix and de Cremiers [1991],

1e.g. Renesas SH7216
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(a) Prototype sensor package (b) Prototype operation unit

(c) User carrying the hardware, a MIMU
device

Figure 3.1: Hardware provided by SYSNAV during this work
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Figure 3.2: Simplified diagram of the sensor board
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Sensors,
ADCs

desired
physical quantities

unwanted
physical quantities

numbers Parametric
calibration

model

calibration
parameters

estimated
quantities

Figure 3.3: Sensors and ADCs yield numbers which are dependent both desired and
unwanted physical quantities. Calibration refers both to the application of
the parametric model, and to the estimation of calibration parameters min-
imizing the error between desired physical quantities and their estimated
value.

Savage [2000], Woodman [2007] regarding the use of strapdown inertial sensors and
their characterization with Allan variance (see Ref. [IEEE, 2003, Appx. C]).

3.2. Magnetic sensors
Context The MIMU device prototyped by SYSNAV is designed for indoor MIDR
applications. Design constraints led the company to its choice of Anisotropic Magneto-
Resistance (AMR) magnetometers (see Refs. Mohamadabadi [2013], Mohamadabadi
and Hillion [2014], Mohamadabadi et al. [2013b]), and its research on their calibra-
tion (see Refs. Dorveaux et al. [2009a, 2010], Mohamadabadi and Hillion [2014], Mo-
hamadabadi et al. [2013b]). This type of magnetometer is designed to measure the
projection of the magnetic field along its sensitive axis. AMR magnetometers (see
Refs. Groenland et al. [1992], Kuijk et al. [1975]) are known for their cross-axis effect
and their overall non-linear response (see Refs. Ripka et al. [2009], Ripka and Butta
[2009] and Fig. 3.4). The primary sources of errors for this type of sensors are rel-
atively well known, along with their corresponding accuracy improvement strategies
(see Ref. Ripka [2008]). Since here they are being used for navigation, this Section
aims at verifying their measurement model with respect to predictable sources of er-
rors, in their calibration, and in the way the magnetic field gradient can be computed
from their output.

Hard- and Soft-iron The ambient magnetic field is distorted by materials whose rel-
ative permeability µr is different from 1. It is often the case that electronics carry
paramagnetic materials (with µr ą 1, often called soft-irons), and ferromagnetic ma-
terials (that also display a hysteretic behavior). For example, sensitive elements of
AMR magnetometers are ferromagnetic. The “Soft-iron” effect refers to the effect on
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3.2. Magnetic sensors

Table 3.1.: Quantities needed in MIDR algorithms and notations

Symbol Physical
quantity

Associated
position in body

frame Rb

Measurement method

ωb angular
velocity none MEMS gyrometer

γb proper
acceleration

percussion point
Mb MEMS accelerometer

Bb magnetic
field vector equivalent

measurement point
Nb

finite differences
from MEMS

magnetometers∇Bb
magnetic

field
gradient

magnetic measurements of materials whose relative permeability µr is different from 1.
The “Hard-iron” effect is the effect on magnetic measurements of materials that retain
a permanent magnetization (e.g., ferromagnets), resulting in biased readings. When
the offending materials are part of the electronics, these effects must be calibrated out.

Outline In Sec. 3.2.1, the measurement model of linear single-axis point magnetome-
ters is provided with its assumptions. In Sec. 3.2.2, the measurement and calibration
model of linear tri-axis magnetometers in homogeneous field are provided. Sec. 3.2.3,
presents the results of parameter identification of the above-mentioned linear calibra-
tion model. An alternative, non-linear model is deduced from measurement physics in
Sec. 3.2.4, and tested in Sec. 3.2.5, concluding the accuracy of the derived calibration
model and reproducing the outline of Ref. Ripka and Butta [2009] for the setup being
used. Finally, the method by which spatial derivatives of the magnetic field can be
computed from an array of such magnetometers is discussed in Sec. 3.2.6.

3.2.1. Ideal linear single-axis point magnetometers
Let Bb(Pb, t) denote the magnetic field vector in body frame Rb at time t. Let us

consider a number of nmag ideal single-axis point-magnetometers on a sensor board,
that is, by definition, fixed in Rb. The following assumptions are made.

Assumption 3.2.1. Each single-axis magnetometer output depends linearly on the
value of the ambient magnetic field along a fixed direction in Rb.

Assumption 3.2.2. Each single-axis magnetometer output depends only on the value
of the ambient magnetic field at its effective position.

The so-called effective position is defined by the above assumption, and corresponds
to an equivalent position of the magnetometer’s sensitive element.

Corollary 3.2.1 (Corollary of Assumption 3.2.2). Either one of the following is true,
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3. Measurement errors of magnetometer arrays combined with inertial sensors

Figure 3.4: From Ref. Ripka et al. [2009] “Static curve of the barber pole”, showing
the resistivity of a barber-pole AMR with respect to the magnetic field in
its sensitive axis. Its response is clearly nonlinear.

(i) Each single-axis magnetometer is only affected by soft-iron effects to a negligible
extent;

(ii) All soft-irons affecting it are located at its effective position;

(iii) The ambient magnetic field is homogeneous.

The (linear) measurement model assumption for the j-th sensor is then

@j P t1, ..., nmagu, @t, jy(t) = jabBb(jpb, t) + jb , (3.1)

where jab =
(
ja

b
1 ja

b
2 ja

b
3

)
are coordinates in body frame of a co-vector representing

the j-th magnetometer’s scale factor and sensitive axis, jb its bias, jpb and its effective
position in body frame.

3.2.2. Tri-axis magnetometers
Homogeneous field measurement and calibration models

Magnetometers are often arranged in groups of three nearly orthogonal sensors to
form a tri-axis magnetometer. Four such tri-axis magnetometers are represented in
Fig. 3.2. Let us assume that the first three single-axis magnetometers form such a
tri-axis sensor. Assuming that the ambient magnetic field is homogeneous, that is to
say, there exists some Bb

0(t) such that

@Pb P R3, @t, Bb(Pb, t) = Bb
0(t) , (3.2)
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3.2. Magnetic sensors

then the (linear) direct measurement model for a single tri-axis sensor in an homoge-
neous magnetic field is1y(t)

2y(t)

3y(t)

 =

1a
b
1 1a

b
2 1a

b
3

2a
b
1 2a

b
2 2a

b
3

3a
b
1 3a

b
2 3a

b
3

Bb
0(t) +

1b

2b

3b

 . (3.3)

The (linear) calibration model for a single tri-axis sensor in an homogeneous magnetic
field is then

Bb
0(t) = A

1y(t)

2y(t)

3y(t)

+B , (3.4)

where

A =

1a
b
1 1a

b
2 1a

b
3

2a
b
1 2a

b
2 2a

b
3

3a
b
1 3a

b
2 3a

b
3

´1

, B = ´A

1b

2b

3b

 . (3.5)

When tri-axis magnetometers are said to be “compensated for hard- and soft-iron
effects”, it means that the A and B matrices have been identified respectively and also
take these effects into account in homogeneous field conditions. This also means that,
as explicitly stated in Ref. Foster and Elkaim [2008], it is assumed that “responses of
soft iron materials are linear and without hysteresis”.

To summarize, the following assumptions have been made in order to derive this
calibration model.

Assumption 3.2.3. The ambient magnetic field is homogeneous, responses of po-
tential soft iron materials that may influence measurements are linear and without
hysteresis, and Assumption 3.2.1 is made.

Calibration model identification

Ellipsoid fitting principle The problem of identifying A and B for a single tri-axis
magnetometer is often solved using ellipsoid fitting methods (see e.g. Refs. Dorveaux
et al. [2009a], Foster and Elkaim [2008], Renaudin et al. [2010], Vasconcelos et al.
[2008, 2011]), for their low cost and their seemingly not needing additional hardware.
Ellipsoid fitting calibration techniques rely on the fact that, when measurement data
is collected in a place where the magnetic field is both stationary and homogeneous,
the norm of the calibrated magnetic field must be invariant. That is to say; there
exists some constant vector Bn

0 such that

@Pb P R3, @t, Bb(Pb, t) = Bb
0(t) = R(t)JBn

0

where R(t) P SO(3) represents the attitude matrix of the sensor board (the attitude
matrix R is defined in Sec. 2.2.1). The norm of the calibrated magnetic field must be
invariant, since

39



3. Measurement errors of magnetometer arrays combined with inertial sensors

}Bb
0(t)}

2 = Bb
0(t)

JBb
0(t)

= BnJ
0 R(t)R(t)

JBn
0

= BnJ
0 Bn

0 .

The following equality must then hold for all time tA
1y(t)

2y(t)

3y(t)

+B

JA
1y(t)

2y(t)

3y(t)

+B


= BnJ

0 Bn
0

(3.6)

The known advantages of ellipsoid fitting techniques is that they have no precision
requirement on sensor orientation during calibration trials. However, two issues can
immediately be noticed

1. Denoting O(3) the orthogonal group of dimension 3, for all T P O(3), replacing
A by TA and B by TB preserves the invariant that is the norm of the calibrated
magnetic field.

2. The norm of the magnetic field must be known beforehand.

If the norm of the magnetic field is known, then Refs. Alonso and Shuster [2002a],
Dorveaux et al. [2009a], Foster and Elkaim [2008], Renaudin et al. [2010], Vasconcelos
et al. [2008, 2011] provide different schemes for computing instances of TA and TB,
with T P O(3). However, the frame of reference in which magnetometers are calibrated
is unknown, because T itself is unknown.2

Identification schemes The different identification schemes of the state of the art
differ by their choice of cost function. If the model were representative, this choice
would be of little importance. Noise and sensor non-linearity justify using different
cost functions to some extent.

The algorithm proposed in Ref. Foster and Elkaim [2008] stems from the fact that,
by QR factorization, there exists T 1 P O(3) such that

A1 .=

a1
11 a1

12 a1
13

0 a1
22 a1

23

0 0 a1
33

 = T 1A (3.7)

B1 .=

b1
1

b1
2

b1
3

 = T 1B . (3.8)

2The implication is that if magnetometers are used for heading estimation, with ellipsoid fitting
techniques, two calibrations on the same data may result in completely different heading estimates
if no subsequent alignment is performed.
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3.2. Magnetic sensors

Denoting the square positive symmetric matrix Q
.
= A1JA, the square matrix L

.
=

B1JA1, and the scalar µ .
= B1JB1, one can define the function

g(Q,L, µ, t) =

1y(t)

2y(t)

3y(t)

J

Q

1y(t)

2y(t)

3y(t)

+ 2L

1y(t)

2y(t)

3y(t)

+ µ´ BnJ
0 Bn

0 ,

and Eq. (3.6) implies
g(Q,L, µ, t) = 0.

The term g(Q,L, µ, t) is a linear in Q, L and µ. With sampled measurements on times
ti, where i is an integer index, one can recover Q, L and µ minimizing

ř

i g(Q,L, µ, ti)
2,

which is quartic, and not quadratic, in measurement errors. Parameters A1 and B1 can
be solved algebraically. Since these parameters minimize an error that is quartic,
not quadratic, in measurement errors, measurement error standard deviation is not
minimized in the general case. In presence of significant Gaussian measurement noise,
other techniques should be preferred.

The issue has been known at least since the proposal of the so-called TWOSTEP
calibration methodology from Ref. Alonso and Shuster [2002b], extended in Ref. Alonso
and Shuster [2002a] to take scale factors and non-orthogonality into account. Following
a similar first step, a second step consists in using a Gauss-Newton method to correct
the estimate of calibration parameters.

Similarly, in Ref. Renaudin et al. [2010], the proposed solution is instead to use the
adjusted least squares estimator proposed in Ref. Markovsky et al. [2004] to find the
parameters of the ellipsoid in a statistically consistent way.

The algorithm proposed in Ref. Dorveaux et al. [2009a] solves this problem with
an iterative algorithm whose implementation only requires a least-squares solver. It
consists in computing at each iteration k the values of A1

k and B1
k minimizing

Jk(A
1
k, B

1
k) =

ÿ

i

›

›

›

›

›

›

A1
k

1y(ti)

2y(ti)

3y(ti)

+B1
k ´ p

A1
k´1

1y(ti)

2y(ti)

3y(ti)

+B1
k´1

›

›

›

›

›

›

2

, (3.9)

where p is the projection on the sphere of radius }Bn
0}2. Thus, the minimized cost

function is quadratic in measurement errors.
In Ref. Vasconcelos et al. [2008, 2011], the algorithm proposed in Ref. Foster and

Elkaim [2008] is used to find an initial guess of calibration parameters. Then, calibra-
tion is modeled as a Maximum Likelihood Estimation problem including the magnetic
field in body frame at each sample and solved directly using non-linear least-square
algorithms.

3.2.3. Linear calibration experiments
Ellipsoid fitting calibration experiments have been carried out on the hardware used

in this work (illustrated in Fig. 3.1), showing that the linear model is not representative
of measurements, see Fig. 3.5a. Calibration residuals do not resemble a white noise.
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3. Measurement errors of magnetometer arrays combined with inertial sensors

They have a very definite structure, as is evident when the norm of the calibrated
magnetic field is plotted against the latter in 3D, see Fig. 3.5b. This observation
motivates investigating which measurement model is representative of these sensors.

3.2.4. Nonlinear measurement model
Each single-axis magnetometer used in experiments is a Wheatstone bridge formed

by four arrays of magneto-resistive barber-poles (see Ref. Wan [1999], Fig. 3.6 and
Fig. 3.7).

It is known that AMR sensors have a non-linear response (see Ref. Ripka et al.
[2009]). This is why some magnetometer manufacturers have designed strategies to
mitigate sensor non-linearity (see e.g. Wan [1999]), or why in Ref. Mohamadabadi
et al. [2013a] a compensation method is proposed that relies on measurement physics
(see also Ripka and Butta [2009]).

A representative model for magnetometer nonlinearities can be deduced from mea-
surement physics. The method proposed below consists in

1. Expressing the resistance of each barber pole sensing element as a function of
the magnetic field

2. Deducing the relationship between the input voltage of the Wheatstone bridge
(VBRIDGE on Fig. 3.7) and its output voltage (difference between OUT+ and
OUT- on Fig. 3.7), thus the output voltage from the input current of the Wheat-
stone bridge, thus the three output voltages of a tri-axis magnetometer from the
homogeneous ambient magnetic field components

3. Deducing the calibration model needed to recover the magnetic field

Model of a barber pole AMR

Let us consider the magneto-resistive element in Fig. 3.8. An orthonormal basis
(ex, ey, ez) is chosen with ex in the direction of anisotropy (to the right) and ey in the
plane of the film (to the top).

According to Ref. Kuijk et al. [1975], the resistivity ρ of an AMR is a function of the
angle θ between the current vector i and the magnetization vector m of the sensitive
element,

ρ = ρ0 +∆ρm(1 ´ sin2 θ) . (3.10)

Denoting κ .
= ∆ρm

ρ0
, the resistance R of an AMR can be written as

R = (1 + κ cos2 θ)R0 , (3.11)

where R0 is the resistance of the AMR in the direction orthogonal to the magnetization
vector. Let us now find an expression for θ.

According to Ref. Groenland et al. [1992], it is a very good approximation to assume
that the magnetization vector m lies in the plane of the film. According to the same
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Figure 3.5: (top) Linear calibration residuals (in arbitrary units) with respect to time
during a calibration trial. They are defined as the calibrated norm of the
magnetic field after linear parameter identification, minus the reference
norm. Residuals are visibly different from a white Gaussian noise. The
solid red line represents the solid blue line filtered by a low pass filter with
2Hz cutoff frequency.
(bottom) Experimental linear calibration residuals (colors) with respect to
the linearly calibrated magnetic field. The magnetic field norm is underes-
timated along sensitive axes, overestimated far from them. This suggests
that residuals plotted Fig. 3.5a come from sensor non-linearities.
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3. Measurement errors of magnetometer arrays combined with inertial sensors

Figure 3.6: From Ref. Wan [1999], Architecture of a single axis magnetometer sensing
element
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Figure 3.8: Angles notations in Sec. 3.2.4
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reference, denoting β (cf. Fig. 3.8) the angle between m (assumed of fixed norm) and
the anisotropy direction, the free energy density ε is

ε
.
= K sin2 β ´ µ0H ¨ m . (3.12)

One can notice that if m lies in the plane of the film, the free energy density only
depends on components of the field H in this plane.3 The angle β minimizes ε in (3.12),
that reads

ε
.
= K sin2 β ´ µ0}m}

Hx

Hy

Hz

 ¨

cosβ
sinβ
0


In a barber-pole, the direction of the current vector i is forced, by using conductive

elements above the AMR at an angle of around π/4 radians compared to the direction
of anisotropy, also called “easy-axis”, orthogonal to the so-called “sensitive axis” and
contained in the plane of the film. Because the angle between the current vector i and
the anisotropy direction is fixed, it is sufficient to know β (that minimizes ε) in order
to deduce θ.

Denoting in this basis the dimensionless vectorhxhy
hz

 .
=

1

Hk
H =

1

Hk

Hx

Hy

Hz

 , (3.13)

with Hk = 2K/µ0}m} denoting the anisotropy field where µ0 is the magnetic constant,
using formal calculation software, one can deduce from Eq. (3.12) an expression for β

in the form of the following series expansion around

hxhy
hz

 = 0 up to order 5

β « hy ´ hxhy + h2xhy +
h3y
6

´ h3xhy ´ hxh
3
y + h4xhy + 3h2xh

3
y +

3h5y
40

. (3.14)

To obtain R
R0

, it is sufficient to inject this series expansion into Eq. (3.11). For instance
in Fig. 3.8, knowing that by construction of the barber-pole, θ + β = π/4

R

R0
=1+

κ

2
+κ

(
hy´hxhy+h

2
xhy´

h3y
2

´h3xhy+hxh
3
y+h

4
xhy´h2xh

3
y´

h5y
8

)
(3.15)

Model of the Wheatstone bridge

Referring to Fig. 3.7, let us choose ex pointing to the right (easy axis), and ey to
the top (sensitive axis). Let us denote Vy = (OUT+) ´ (OUT´) the output voltage

3see also Ref. Lowes [1974]
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of the Wheatstone bridge. Assuming that the four barber poles are perfectly aligned
and identical, we obtain

R1

R0
=1+

κ

2
+κ

(
´hy´hxhy´h2xhy+

h3y
2

´h3xhy+hxh
3
y´h4xhy+h

2
xh

3
y+

h5y
8

)
(3.16)

R2

R0
=1+

κ

2
+κ

(
hy+hxhy+h

2
xhy´

h3y
2
+h3xhy´hxh

3
y+h

4
xhy´h2xh

3
y´

h5y
8

)
(3.17)

R3

R0
=1+

κ

2
+κ

(
hy´hxhy+h

2
xhy´

h3y
2

´h3xhy+hxh
3
y+h

4
xhy´h2xh

3
y´

h5y
8

)
(3.18)

R4

R0
=1+

κ

2
+κ

(
´hy+hxhy´h2xhy+

h3y
2
+h3xhy´hxh

3
y´h4xhy+h

2
xh

3
y+

h5y
8

)
. (3.19)

In the Wheatstone bridge, denoting ib the input current of the bridge,

Vy =

(
R3

R3 +R4
´

R1

R1 +R2

)
VBRIDGE

=
κ

1 + κ
2

(
hy + h2xhy ´

h3y
2

+ h4xhy ´ h2xh
3
y ´

h5y
8

)
VBRIDGE ,

(3.20)

where

VBRIDGE =

(
1

R1 +R2
+

1

R3 +R4

)´1

ib

=
(
1 +

κ

2

)
R0ib .

(3.21)

Thus, denoting vy
.
=

Vy

R0ibκ
(dimensionless), using formal calculation software, the

following series expansion for vy up to order 5 is obtained,

vy = hy + h2xhy ´
h3y
2

+ h4xhy ´ h2xh
3
y ´

h5y
8
. (3.22)

All non-linearities of even-order have simplified without resorting to flipping (see e.g.
Ref. [Mohamadabadi, 2013, Sec. 3.4]). This Wheatstone bridge configuration is already
sufficient to reduce the cross-axis effect significantly.

Calibration model of an orthogonal tri-axis magnetometer

Let us consider

• A first single-axis magnetometer with ex as sensitive axis, and ey as easy axis.
Its dimensionless output is denoted vx;

• A second magnetometer with ey as sensitive axis, and ex as easy axis. Its di-
mensionless output is denoted vy;
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3. Measurement errors of magnetometer arrays combined with inertial sensors

• A third magnetometer with ez as sensitive axis, and ex as easy axis. Its dimen-
sionless output is denoted vz.

Eq. (3.22) represents the measurement model of the second magnetometer. Measure-
ment models for the other two can be deduced from Eq. (3.22) by relabeling. The
calibration model must then invert the resulting equations system in order to recover
(hx, hy, hz) from (vx, vy, vz). Under the above assumptions and using formal calcula-
tion software, the following series expansion up to order 5 can be obtained by injection
and identification of unknown series expansion

$

’

’

&

’

’

%

hx = vx ´ vxv
2
y +

v3x
2 ´ vxv

4
y + v3xv

2
y +

7v5x
8

hy = vy ´ vyv
2
x +

v3y
2 ´ vyv

4
x + v3yv

2
x +

7v5y
8

hz = vz ´ vzv
2
x +

v3z
2 ´ vzv

4
x ´ v3zv

2
x + 2v2xv

2
yvz +

7v5z
8 .

(3.23)

It can be noticed that before accounting for sensors non-orthogonality, the only
unknown parameters are linked to the constants used to express the dimensionless
quantities, that is to say, scale factors (R0ibκ) and the anisotropy field (Hk).

Assuming that the anisotropy field Hk is identical for all barber pole elements, one
can denote ux

.
= Hkvx, uy

.
= Hkvy, uz

.
= Hkvz and use Eq. (3.13) such that the

magnetic field can be recovered as
$

’

’

’

&

’

’

’

%

Hx = ux ´
uxu

2
y

H2
k

+
u3
x

2H2
k
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uxu

4
y

H4
k

+
u3
xu

2
y

H4
k

+
7u5

x

8H4
k

Hy = uy ´
uyu

2
x
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k

+
u3
y

2H2
k

´
uyu

4
x

H4
k

+
u3
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2
x

H4
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+
7u5
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8H4
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2
x
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+
u3
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2H2
k

´
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4
x

H4
k

´
u3
zu

2
x

H4
k

+
2u2

xu
2
yuz

H4
k

+
7u5

z

8H4
k
.

(3.24)

Eq. (3.24) can then be used to identify the anisotropy field Hk in calibration, or
compensate the effect of non-linearity to recover (Hx,Hy,Hz) from (ux, uy, uz).

3.2.5. Nonlinear calibration experiment
Let us refine the linear model described in Sec. 3.2.2 that accounts for sensor non-

orthogonality and biases, by using the non-linear model described in Sec. 3.2.4 which
does not. A single scalar parameter, Hk, is added to the model to account for non-
linearity. This refinement is then validated with a calibration experiment.

Let us denote c the function such that Eq. (3.24) readsHx

Hy

Hz

 = c

uxuy
uz

 ,Hk

 . (3.25)

The proposed calibration model reads

Bb
0(t) =

1 axy axz
0 1 ayz
0 0 1

 c

dx(1y(t) ´ bx)
dy(2y(t) ´ by)
dz(3y(t) ´ bz)

 ,Hk

 , (3.26)
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Figure 3.9: Nonlinear calibration residuals (in arbitrary units) with respect to time
during a nonlinear calibration trial, on the same data and in the same
units as Fig. 3.5a. The solid red line represents the solid blue line filtered
by a low pass filter with 2Hz cutoff frequency. Residuals bear a much closer
resemblance to a white noise.

where bx, by and bz represent sensor bias, dx, dy and dz represent individual scale
factors, axy, axz and ayz represent sensors non-orthogonality, and Hk represents a
common anisotropy field. This model neglects the effect of sensor non-orthogonality
on nonlinear corrections.

Identification of Hk is achieved using an iterative gradient-based algorithm aiming
at minimizing linear calibration residuals at fixed Hk. The experimental results are
plotted in Fig. 3.9 and 3.10, showing a successful compensation at fixed temperature
and homogeneous field conditions (Earth’s magnetic field over a small volume). One
can reasonably conclude that measurement noise and inherent sensor non-linearity are
the main sources of error in these calibration experiments and in these experimental
conditions.

3.2.6. Gradient measurement and calibration issues

Linear interpolation scheme

Since the sensor board does not directly measure the gradient of the magnetic field, it
must be deduced from measurements. Let us assume that the sensor board is equipped
with ideal linear single-axis magnetometers described by Eq. (3.1). Assumptions 3.2.1
and 3.2.2 are made (see Sec. 3.2.1). If the magnetic field in body frame can be described
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Figure 3.10: Same as Fig. 3.9 on another dataset. The noise pattern is slightly dif-
ferent. Once non-linearities have been removed, other sources of error
remain.

by a linear dependency on the spatial variables,

Bb(Pb, t) = Bb(Pb
0, t) +∇Bb(Pb

0, t)(Pb ´ Pb
0) , (3.27)

then estimating the 9 components of ∇Bb
0 and the 3 components of Bb

0 can be seen
as a 3D linear interpolation problem using sensor measurements at the nmag different
known sensor positions jpb. This also requires the knowledge of parameters jab and
jb, with j P t1, ..., nmagu. In other words, in order to be able to compute the magnetic
field gradient:

• All single axis sensors must be calibrated so that at least their effective positions,
scale factors, and biases are known in the same reference frame Rb

• The interpolation problem must be solvable, which imposes constraints on its
conditioning. (For example, sensors cannot be aligned in a straight line)

Ellipsoid fitting calibration techniques do not provide any way of ensuring a pre-
defined calibration reference frame and do not provide any information about sensor
effective positions. However, Ref. Dorveaux et al. [2010] provides three methods for
calibrating an array of tri-axis magnetometers, proving that this problem can be par-
tially solved, by calibrating scale factors and biases in a common unknown reference
frame fixed with respect to Rb, using the same type of data as for ellipsoid fitting tech-
niques. The problem of calibrating sensors effective positions cannot be solved under
homogeneous field conditions, since they have no influence on sensor measurements in
the underlying model.
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3.2. Magnetic sensors

In Chapters 5 and 6, two replacement calibration methods are proposed in order to
fully calibrate an array of magnetometers. In case magnetometer effective positions
are known in Rb, a method is proposed in Sec. 3.3.1 in order to express magnetometer
calibration parameters in Rb.

Measuring the gradient with a planar arrangement of sensors

Combining Eq. (3.1) with Eq. (3.27) yields

@j P t1, ..., nmagu, @t, jy(t) ´ jb = jab
(

Bb(Pb
0, t) +∇Bb(Pb

0, t)(jpb ´ Pb
0)
)
.

(3.28)
From this equation, it becomes visible that interpolating Bb(Pb

0, t) and ∇Bb(Pb
0, t)

would require at least nmag ě 3 + 9 and a 3-dimensional arrangement of sensors.
But in fact, if the magnetic field is assumed to satisfy Maxwell’s equations for a
source-free region of space, then ∇Bb(Pb

0, t) can be described with only 5 degrees

of freedom. Denoting Bb(Pb
0, t) =

Bb
1

Bb
2

Bb
3

, ∇Bb(Pb
0, t) =

B1B
b
1 B2B

b
1 B3B

b
1

B1B
b
2 B2B

b
2 B3B

b
2

B1B
b
3 B2B

b
3 B3B

b
3

,

then Maxwell’s equations imply that the gradient of the magnetic field is symmetric
and traceless,

#

B1B
b
1 + B2B

b
2 + B3B

b
3 = 0

@i, j P t1, 2, 3u, BiB
b
j = BjB

b
i .

(3.29)

Therefore, the third column of ∇Bb(Pb
0, t) can be recovered from the first two

columns. In other words, a 2 dimensional arrangement of sensors is sufficient to recover
the full magnetic field gradient by finite differences (or interpolation).

Planar arrangements of sensors: more than the gradient is accessible

One may argue that the baseline limits the above-mentioned finite differences scheme,
that is to say, the distance between sensors, since variations of the magnetic field on
a smaller scale cannot be measured (see Ref. [Dorveaux, 2011, Sec. 3.4]). One way
to address this problem is to use a higher order spatial interpolation of the magnetic
field. Is such an interpolation possible using a planar arrangement of sensors?

Let us assume that all components of the magnetic field are of class Cn. Because of
Eq. (3.29) and thanks to Schwarz’s theorem, the following Lemma holds

Lemma 3.2.2. Let ρ be a function from t1, 2, ..., nu to t1, 2, 3u, and σ any permutation
on t1, 2, .., nu, with n ą 1, then

Bρ(1)Bρ(2)...Bρ(n´1)B
b
ρ(n) = Bρ(σ(1))Bρ(σ(2))...Bρ(σ(n´1))B

b
ρ(σ(n)) .

Proof. This result can be proven by recurrence on n. It is true for n = 2 because of
Maxwell’s equations or Eq. (3.29). Let us assume that the result holds for n´1. Then
if σ1 is any permutation on t2, ..., nu,

Bρ(1)Bρ(2)...Bρ(n´1)B
b
ρ(n) = Bρ(1)Bρ(σ1(2))...Bρ(σ1(n´1))B

b
ρ(σ1(n)) .
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3. Measurement errors of magnetometer arrays combined with inertial sensors

Assuming that components of Bb are regular enough, then Schwarz’s theorem applies,
and

Bρ(1)Bρ(σ1(2))...Bρ(σ1(n´1))B
b
ρ(σ1(n)) = Bρ(σ1(2))Bρ(1)...Bρ(σ1(n´1))B

b
ρ(σ1(n)).

From the above, all indexes after the first can be swapped with the first index. Also
all indexes after the first index can be swapped with each other without changing the
result, which concludes the proof.

Finally, because of Eq. (3.29) and Lemma 3.2.2, the following Lemma holds,
Lemma 3.2.3. Any expression of the form Bρ(1)Bρ(2)...Bρ(n´1)B

b
ρ(n) with ρ a function

from t1, 2, ..., nu to t1, 2, 3u can be expressed as a linear combination of such terms,
such that any of them admits at most one index equal to 3.
Proof. Let us assume that ρ evaluates to 3, m ě 2 times. Without loss of generality,
because of Lemma 3.2.2, we can assume that ρ(n ´ 1) = ρ(n) = 3. Then, because of
Eq. 3.29,

Bρ(1)Bρ(2)...Bρ(n´1)B
b
ρ(n) = Bρ(1)Bρ(2)...B3B

b
3

= ´Bρ(1)Bρ(2)...B2B
b
2 ´ Bρ(1)Bρ(2)...B1B

b
1

(3.30)

Which means that Bρ(1)Bρ(2)...Bρ(n´1)B
b
ρ(n) is a linear combination of elements whose

indexes evaluate to 3, m ´ 2 times. This operation can be repeated until there is at
most one index equal to 3 in every term.

For example, with m = 2, we have

B2B3B3B
b
1 = B1B2B3B

b
3

= B1B2(´B1B
b
1 ´ B2B

b
2 ) .

Therefore, Lemmas 3.2.2 and 3.2.3 imply that all spatial derivatives of order n can
be computed if spatial derivatives are known up to order n only along the first two
spatial coordinates. In other words, interpolating all 3 components of the magnetic
field in a plane at order n, with a planar arrangement of sensors, is sufficient to deduce
a three-dimensional interpolation of the magnetic field at the same order.

Admissible planar arrangements of magnetometers

A sufficient number of tri-axis magnetometers needed for a spatial interpolation of
order n can be deduced from the above result, because it corresponds to the minimum
number of 2D monomials of degree lower than or equal to n: 1 for n = 0, 3 for n = 1,
6 or n = 2... 4

All planar arrangements are not suitable, and the position of tri-axis magnetometers
must be chosen accordingly, which is expected from any interpolation grid. Should
the need arise, tri-axis magnetometers could be arranged in a sparse interpolation
grid (with, e.g., Ref. Smolyak [1963], using a 1-dimensional interpolation grid such as
Chebyshev nodes as a starting point).

4see https://oeis.org/A000217
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3.3. A common frame of reference for all sensors

Rb Ra

Rg Rm

R bÐ
m

RgÐm

RmÐa

Figure 3.11: Various sensor calibration frames

3.3. A common frame of reference for all sensors
The issue Because the considered calibration techniques treat the different types of
sensors independently, each sensor can be considered to have been calibrated in its own
frame of reference, that is fixed with respect to the body frame Rb. However, Table 3.1
lists physical quantities expressed in the same reference frame Rb. Therefore, there is
a need to investigate how all sensors can be calibrated in the same reference frame,
that can later be defined as Rb.

Notations and assumptions Let us denote Rm, Ra and Rg the frames of reference
in which magnetometers, accelerometers and gyrometers are calibrated respectively.
They are all assumed fixed with respect to Rb. To denote changes of frames, the
notation RgÐm P SO(3) is used to refer to the rotation matrix such that coordinate
transformations from Rm to Rg read

Pg = RgÐmPm. (3.31)

Other changes of reference frames are denoted in a similar way (see Fig. 3.11).
For the sake of simplicity, in this section, we assume that effective positions are

known by construction and expressed in Rb; this simplifying assumption is dropped
in Chapters 5 and 6, were means of calibrating them are provided.

Outline The problem of identifying RbÐm is investigated in Sec. 3.3.1, and the prob-
lem of identifying RgÐm and RmÐa is briefly explained in Sec. 3.3.2.

3.3.1. Magnetometers scale factors and effective positions
In order for the spatial gradient of the magnetic field to be correctly estimated,

all magnetometers must be fully calibrated in the same frame of reference, including
sensors effective positions. However, measurements models in homogeneous field do
not give access to sensor effective positions, as discussed in Sec. 3.2.6. Even assuming
that sensor effective positions are known in some reference frame, there is no way to
know whether scale factors and biases are expressed in that same reference frame in
a homogeneous field. However, it might be possible to recover this change of frame
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3. Measurement errors of magnetometer arrays combined with inertial sensors

a posteriori using a specific trial that would not, in principle, require any expensive
setup.5

Principle

Let us assume that magnetometers are calibrated in Rm with methods such that
those proposed in Ref. Dorveaux et al. [2010] and that sensors effective positions are
known in Rb. Let us denote RmÐb P SO(3) the rotation matrix such that coordinate
transformations from Rb to Rm read

Pm = RmÐbPb . (3.32)

Then, using Eq. (3.28), with a planar arrangement of magnetometers along the first
two spatial coordinates in Rb, the first two columns of the matrix M such that

M
.
=

m11 m12 m13

m21 m22 m23

m31 m32 m33

 = RJ
mÐb∇Bb = ∇BmRmÐb (3.33)

can be interpolated.

Let us denote Θ =

φθ
ψ

, [Θˆ] =

 0 ´ψ θ
ψ 0 ´φ

´θ φ 0

, RmÐb = 1 + [Θˆ] + o(}θ}).

We want {RbÐm such that the spatial gradient of the magnetic field

∇Bm
« ∇BmRmÐb {RbÐm =M {RbÐm

satisfies Maxwell’s equations.
The equation ∇Bm = ∇BmJ yields:m32 ´m23

m13 ´m31

m21 ´m12

+

m22 +m33 ´m21 ´m31

´m12 m11 +m33 ´m32

´m31 ´m23 m11 +m22

Θ = 0 . (3.34)

The equation Tr(∇Bm) = 0 (the sum of diagonal elements is zero) yields

m11 +m22 +m33 +
(
m23 ´m32 m31 ´m13 m12 ´m21

)
Θ = 0 . (3.35)

If M could be interpolated from a 3-dimensional arrangement of magnetometers, these
equations would suffice. However, with a planar arrangement of magnetometers, M
cannot be entirely recovered.

Let us assume that mi3 with i P t1, 2, 3u and Θ are unknown. Identifying the terms
mi3 is equivalent to solving the following equation

0 ´1 φ m32 ´m21θ +m22φ´m31ψ
1 0 θ ´m31 +m11θ ´m12φ´m32ψ

´φ ´θ 0 ´m12 +m21 +m11ψ +m22ψ
´θ φ 1 m11 +m22 +m31θ ´m32φ+m12ψ ´m21ψ



m13

m23

m33

1

 = 0 . (3.36)

5The paternity of this idea is owed to D. Caruso
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3.3. A common frame of reference for all sensors

This system has a solution if and only if the determinant of the system is equal to 0,∣∣∣∣∣∣∣∣
0 ´1 φ m32 ´m21θ +m22φ´m31ψ
1 0 θ ´m31 +m11θ ´m12φ´m32ψ

´φ ´θ 0 ´m12 +m21 +m11ψ +m22ψ
´θ φ 1 m11 +m22 +m31θ ´m32φ+m12ψ ´m21ψ

∣∣∣∣∣∣∣∣ = 0 , (3.37)

which is equivalent to

(1 + θ2 + φ2)
(
m12 ´m21 +m32θ +m31φ´ (m11 +m22)ψ

´m21θ
2 + (´m11 +m22)θφ+m12φ

2 ´m31θψ +m32φψ
)
= 0 .

(3.38)

Since (1 + θ2 + φ2) ą 0, this factor can be equivalently omitted from Eq. (3.38). At
first order approximation in Θ, we have

m12 ´m21 +
(
m31 m32 ´m11 ´m22

)
Θ « 0 (3.39)

This equation characterizes the possibility of completing the matrix M in such a
way that M {RbÐm satisfies Maxwell’s equations. It must be approximately true for
every sampled measurement, which gives us one equation per sample. The equation
system resulting from the concatenation of all measurements can be solved for Θ with
a least-square method. An iterative identification algorithm can then be designed in
order to find {RbÐm: at each iteration, the estimated [Θˆ] is exponentiated to obtain
a rotation matrix, which is used to update {RbÐm, rotate scale factors and biases into
a new Rm representing the current estimate of Rb, and interpolate a new M .

Simulation results

In a first simulation trial, random gradients are fed into the algorithm with small
rotations (angles smaller than 1/10 rad). Without noise, convergence is obtained up to
machine precision.

A more realistic simulation needs to take into account sensor noise and the impact
of spatial discretization since the spatial gradient of the magnetic field is not constant.
The choice is made to simulate the relative motion of a sensor board around a magnetic
dipole, only because this situation is easy to reproduce in real-world experiments with
permanent magnets; any other source of magnetic field could have been used instead.

Let us denote mn the vector representing coordinates of a magnetic dipole placed
at the origin of Rn. The following formula is used in order to compute the generated
magnetic field Bn at the position Pn (see Ref. [Jackson, 1998, (5.56)]),

Bn(Pn) =
(µ0

4π

)(3Pn(mn ¨ Pn)

}Pn}5
´

mn

}Pn}3

)
. (3.40)

Magnetometer measurements are simulated for our planar sensor board configuration
at various positions and attitudes around the magnetic dipole, in such a way that the
frame Rm in which calibration is expressed differs from the frame Rb in which effective
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Figure 3.12: Estimated angles with respect to the mean distance to the dipole
with the algorithm of Sec. 3.3.1 in simulation. The true values are
t0.01,´0.02, 0.03u. Very close distances (not plotted) do not yield good
results. Further away, the magnetic gradient is too small compared to
the noise. Overall, the algorithm yields the correct angles.

positions are expressed by an arbitrary value of RmÐb. Noise is added to magnetometer
measurements, and the identification algorithm is run on clusters of data simulated
at various distances of the dipole. The result is plotted Fig. 3.12, showing a good
performance on simulated data. However, there seems to exist an ideal distance at
which the magnetic dipole must be placed. Too close, the algorithm does not yield
good results, probably because the interpolation model is not representative. Too far,
data is dominated by noise, and the algorithm becomes imprecise.

Experimental results

An experimental protocol has been tested mimicking the simulation mentioned
above, but instead of moving the sensor board around a magnetic dipole, the sensor
board is fixed, and a magnetic dipole is moved around the sensor in various orienta-
tions. Despite promising behavior on simulated data, no consistent experimental results
have been obtained with this protocol. It is not clear where the problem lies. More work
seems necessary in order to design an experiment for which the identification problem
is well-conditioned, and for which the interpolation model is representative enough.
Moreover, sensitivity to other calibration errors has not been tested.
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3.4. Theoretical effect of measurement uncertainty on motion estimation

3.3.2. Magnetometers and inertial sensors
Identifying the change of frame between inertial and magnetic sensors is a known

issue, see Refs. Kok et al. [2012], Kok and Schön [2016], Li et al. [2015], Yang et al.
[2017] and references therein. The impact of a wrong identification of this change
of frame in the context of MIDR was studied together with a calibration procedure
relying on this impact in Ref. Dorveaux and Petit [2011a].

Internally, SYSNAV has methods for inertial sensor calibration at its disposal. It is
interesting to notice that once magnetic sensors and inertial sensors are calibrated in
their respective frames, two straightforward methods can be used in order to identify
the change of frame between magnetometers and gyrometers, and between magne-
tometers and accelerometers.

Gyrometers Using Eqs. (2.5), (2.8) and (2.11) and notations from the previous chap-
ter in a homogeneous stationary magnetic field yields

RgÐm
d

dt
Bm = ´ωg/n ˆ (RgÐmBm) . (3.41)

The sampled version of this equation can be used directly in a Maximum Likelihood
estimator of RgÐm.

Accelerometers Estimating RaÐm can be done using data collected in static condi-
tions in an homogeneous stationary field, exploiting the fact that in such conditions
the dot-product between the calibrated magnetic field and the calibrated proper ac-
celeration vector is invariant if and only if Rm and Rg are identical (see Ref. Li et al.
[2015]). Actually, according to Ref. Li et al. [2015], more calibration parameters are
accessible using this invariant.

3.4. Theoretical effect of measurement uncertainty on
motion estimation

The previous sections highlight that the quantities needed in MIDR, cf. Table 3.1
are known at least up to a calibration uncertainty and measurement noise. In this
section, the impact of the latter on trajectory estimation is studied.

Outline The effect of measurement (uncorrelated / white) noise is investigated in
Sec. 3.4.1. The effect of systematic gradient measurement errors related to calibration
issues is investigated in Sec. 3.4.2. Finally, some effects of inertial sensors calibration
uncertainty are discussed in Sec. 3.4.3.

3.4.1. Measurement noise
All measurements are noisy. Those of the magnetic gradient are no exception, since

they are interpolated from magnetic measurements. To understand the effect of gy-

57



3. Measurement errors of magnetometer arrays combined with inertial sensors

rometer, accelerometer and magnetic measurement noise on attitude and velocity es-
timation, let us study the simplified linear discrete-time stochastic toy state-space
model (3.42), which is a simplified 1-dimensional version of Eqs. (2.28)-(2.31) from
Ch. 2. The following model is constructed by considering a 3-dimensional model in a
simplified case, and “freezing” surplus dimensions for the movement and the magnetic
field,

$

’

’

’

&

’

’

’

%

xB [k + 1] = xB [k] + T (G[k] + ηG[k])xv[k] + Tαηω1 [k]

xv[k + 1] = xv[k] + Tgxr[k] + Tηγ [k]

xr[k + 1] = xr[k] + Tηω[k]

y[k] = xB [k] + νy[k]

(3.42)

At each time-step k, the state vector of dimension 3, x[k] =

xB [k]xv[k]
xr[k]

, represents the

magnetic field xB [k], velocity xv[k], and attitude xr[k]. The role of the spatial gradient
of the magnetic field is played by the scalar G[k], g represents gravity, and α represents
a component of the magnetic field different from xB that interacts with gyrometer
noise. The sampling period is represented by T . Gyrometer noise is represented by ηω
and ηω1 , accelerometer noise by ηγ , and gradiometer noise by ηG. The output y is the
magnetic field.

In order to simplify the model, all noises are assumed to be zero-mean, white,
Gaussian and uncorrelated. We remark that the noise term ηG[k] is multiplicative
since it multiplies the estimated state xv[k]. This justifies the following study of the
impact of gyrometer, accelerometer and magnetic measurement noise by first assuming
that ηG[k] ” 0, then removing this assumption.

Case without gradient measurement noise

Without gradient measurement noise (@k, ηG[k] = 0), the linear system (3.42) can
be studied using discrete-time linear Kalman filtering tools (see e.g. Refs. Alazard
[2005], Barker et al. [1995]). The discrete-time system reads

x[k + 1] = A[k]x[k] +B[k]η[k]

y[k] = C[k]x[k] + νy[k] ,

with

A[k] =

1 TG[k] 0
0 1 Tg
0 0 1

 , B[k] =

Tα 0 0
0 T 0
0 0 T

 , C[k] =
(
1 0 0

)
, η[k] =

ηω1

ηγ
ηω

 ,

and

Cov(η[k], η[k + l]) = δ0l

σ2
ω1 0 0
0 σ2

γ 0
0 0 σ2

ω

 , Cov(νy[k], ν[k + l]) = δ0l
(
σ2
y

)
.
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3.4. Theoretical effect of measurement uncertainty on motion estimation

If we assume that the density probability p(x[0]) is Gaussian, then for all k, conditional
probability densities p(x[k] | y[k], y[k ´ 1], ..., y[1], x[0]) are Gaussian. Let us denote
multivariate Gaussian probability density functions of mean µ and covariance Σ as
N (µ,Σ), and let us denote for all k ě 1

p(x[k] | y[k], y[k ´ 1], ..., y[1], x[0]) = N (x̂[k]+,Σ[k]+)

p(x[k + 1] | y[k], y[k ´ 1], ..., y[1], x[0]) = N (x̂[k + 1]´,Σ[k + 1]´)

Let us denote Q
.
=

σ2
ω1 0 0
0 σ2

γ 0
0 0 σ2

ω

, and R
.
=
(
σ2
y

)
. Then, we have the classical

Kalman filtering formulas (see Refs. Alazard [2005], Barker et al. [1995])

Σ[k + 1]´ = A[k]Σ[k]+A[k]J +B[k]QB[k]J

Σ[k + 1]+ = (1 ´K[k + 1]C[k + 1])Σ[k + 1]´

K[k + 1]
.
= Σ[k + 1]´C[k + 1]JS[k + 1]´1

S[k + 1]
.
= R+ C[k + 1]Σ[k + 1]´C[k + 1]J

If G[k] is constant and non-zero, it can be proven that the system is observable,
by, e.g., using Kalman’s criterion for observability (see Ref. Alazard [2005]). The
process is stationary and the sequence (Σ[k]+) for k ě 1 converges asymptotically
towards a limit that we denote Σ[8]+, which represents uncertainty associated with
measurement noise under conditions where the magnetic gradient G[k] is perfectly
known. Asymptotic variances of marginal laws for xr and xv can be read on the
diagonal of Σ[8]+. Their square root are standard deviations, which are plotted on
Fig. 3.13 and Fig. 3.14.

Without considering gradient measurement noise, velocity uncertainty is mainly
driven by gyrometer and accelerometer noise: in Fig. 3.13a, whose limits represent
realistically expectable noise levels, error grow approximately linearly with respect to
σω, and slower with respect to σy; in Fig. 3.14a, whose limits are chosen likewise,
σy has little influence compared with σω. Only requirements on accelerometer noise
decrease significantly together with magnetometer noise (Fig. 3.15). Attitude uncer-
tainty is mainly dependent on gyrometer noise, with other parameters having little
effect (Fig. 3.13b and 3.14b). These results are consistent with cases where magne-
tometers are not used, such as in Ref. Woodman [2007], which considers gyrometer
noise as the primary source of error in MEMS inertial navigation.

The reader must be careful that the effect of inertial sensor bias instability (see
Ref. IEEE [2003]) is not considered, and neither is magnetic gradient measurement
noise. The latter is discussed hereafter.

Case with gradient measurement noise

The magnetic field gradient is interpolated from noisy magnetometer measurements.
It follows that it is affected by noise. In this simplified model, ηG[k] plays the role
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Figure 3.13: Asymptotic behavior of the standard deviation of marginal probability
densities for xv and xr deduced from approaching Σ[8]+ for different val-
ues of σω and σy, with σ1

ω = σω, G[k] = 5µT/m, α = 50µT, σγ = 0.1m/s2
and T = 3.072ms, and assuming perfect knowledge of the magnetic gra-
dient.60
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Figure 3.14: Asymptotic behavior of the standard deviation of marginal probability
densities for xv and xr deduced from approaching Σ[8]+ for different val-
ues of σω and σγ , with σ1

ω = σω, G[k] = 5µT/m, α = 50µT, σy = 100nT,
and T = 3.072ms, and assuming perfect knowledge of the magnetic gra-
dient. 61



3. Measurement errors of magnetometer arrays combined with inertial sensors

0.002

0
.0

0
2

0
.0

0
4

0
.0

0
4

0
.0

0
4

0
.0

0
6

0
.0

0
6

0
.0

0
6

σ
ω
 [rad/s]

σ
γ
 [

m
/s

2
]

1 2 3 4 5 6 7 8 9 10

x 10
−3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(a) Velocity (xv) standard deviation [m/s]

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
2

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
4

0
.0

0
0
6

0
.0

0
0
6

0
.0

0
0
6

σ
ω
 [rad/s]

σ
γ
 [

m
/s

2
]

1 2 3 4 5 6 7 8 9 10

x 10
−3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

(b) Attitude (xr) standard deviation [rad]

Figure 3.15: Same as Fig. 3.14 but with σy = 10nT, ten times smaller. Only require-
ments on σγ , accelerometer noise, decreased significantly.
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3.4. Theoretical effect of measurement uncertainty on motion estimation

of this noise. Since magnetometer noise is modeled as a zero-mean white Gaussian
random variable, likewise, ηG[k] must be a zero-mean white Gaussian random variable
whose standard deviation denoted σG depends linearly on σy in order to get an accurate
representation.

Since our simplified model is 1D, let us assume an array of 3 equally spaced magne-
tometers. The magnetic field is measured by the central magnetometer to obtain y[k],
and G[k] the difference between the readings of the two remaining sensors divided by
their relative distance `. This way, uncertainty on νy[k] and ηG[k] are independent,
and we have

σ2
G =

2σ2
y

`2
. (3.43)

We can choose ` = 5cm in order to model the sensor board illustrated in Fig. 3.1a.
Eq. (3.42) involves the product of xv[k] and ηG[k]. If probability densities for xv[k]

and ηG[k] are Gaussian, then the probability density for their product is not Gaussian.
In order to circumvent this problem and assess the effect of gradient measurement
noise, we proceed by separating the effect of gradient measurement noise from the
rest.

The posterior conditional probability density

p(x[k] | y[k], ηG[k ´ 1], ..., y[1], ηG[1], x[0], ηG[0])

is a normal distribution since it is conditioned on the multiplicative gradient noise,
and it can be evaluated using the earlier-mentioned Kalman formulas. Since we have

p(x[k] | y[k], ..., y[1], x[0])

=

ż

p(x[k] | y[k], ηG[k], ..., y[1], ηG[1], x[0], ηG[0])p(ηG[k], ..., ηG[0])dηG[k]...dηG[0] ,

it is possible get an approximation of the probability density p(x[k] | y[k], ..., y[1], x[0])
with a Monte-Carlo approach by randomly sampling ηG[k], ..., ηG[0].

Gradient measurement noise has two noticeable effects. The first one, concerning
the increased estimation uncertainty, is illustrated in Fig. 3.16. Figures 3.13 and 3.16
are drawn in such a way that they represent the same variations of σω and σy (using
Eq. (3.43) to get the corresponding values of σG), in order to highlight the additional
uncertainty brought by gradient measurement noise. However, color scales are differ-
ent. Velocity uncertainty grows much faster with gradient measurement noise, with a
milder effect on attitude uncertainty. The second effect is that if the magnetic gradient
is small compared with σG, the posterior density for xv shifts towards 0, in a sort of
“damping” effect, see Fig. 3.17. This so-called damping does not appear if the gradi-
ent noise is approximated as additive in Eq. (3.42). Although the model considered is
heavily simplified, this damping effect may be observed in a real situation whenever
the magnetic gradient is close to being singular, and the uncertainty on velocity along
the unobservable direction grows large enough that the effect of multiplicative noise
may be observed.6

6If G = 0, although the true values of xr and xv should not be observable, the final probability
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Figure 3.16: Approximate asymptotic marginal probability density standard devia-
tions of xv and xr for different values of σG and σω, with σy = ?̀

2
σG

(3.43), ` = 5cm, σγ = 0.1m/s2, σω1 = σω, α = 50µT G[k] = 5µT, with
measurement corresponding to a velocity of 1m/s.
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3. Measurement errors of magnetometer arrays combined with inertial sensors

3.4.2. Gradiometer calibration uncertainty
PCB frame uncertainty

Calibration techniques in homogeneous field are insensitive to magnetometer effec-
tive positions (the equivalent position at which magnetometers are assumed to measure
the ambient magnetic field, cf. Sec. 3.2.1). Even when those positions are known in
Rb, there remains uncertainty about the change of frame between Rb, and Rm in
which the magnetometers’ calibration is expressed.

We wish to know the effect of such an uncertainty. To understand its impact, let
us consider that the gradient of the interpolated field has not been projected onto the
space of Maxwell’s equations solutions. Reusing notations of Sec. 3.3.1, in place of
the actual gradient of the magnetic field ∇Bb, what is actually interpolated is (see
Eq. (3.33))

M = RJ
mÐb∇Bb = ∇BmRmÐb .

We assume that all sensors are calibrated in Rm using techniques of the previous
section.

Using the notations of Sec. 2.2.1, considering the model proposed in Sec. 2.4, and
substituting ∇Bb with M , ωb/n by ωm/n, and Bb by Bm, the estimated velocity in
Rm, that we denote xvm, must then read

xvm =M´1

(
d

dt
Bm + ωm/n ˆ Bm

)
= RJ

mÐb(∇Bm)´1

(
d

dt
Bm + ωm/n ˆ Bm

) (3.44)

While the true velocity in Rm reads

vm = RmÐb xvm

= RmÐbvb (3.45)

The estimated velocity in Rm is rotated, which results in a systematic “crabbing error”
because velocity is actually estimated in the frame in which magnetometer effective
positions are expressed. If accelerometers are also calibrated in Rm, then accelerations
will not be coherent with the velocity expected from angular velocity and magnetic
measurements. This results in the same type of errors as described in Ref. Dorveaux
and Petit [2011a], when inertial sensors and magnetic sensors are not calibrated in the
same frame of reference, even though in our case all sensors are calibrated in the same
frame of reference Rm except for magnetometer effective positions.

density clearly yields an estimate. This is a case of “false observability” which is different from
the one studied in Ref. Barrau [2015]. It is similarly caused by a wrong linearization, in that
the wrong linear model is used, but the model was already state-affine. In fact, this probability
density is representative of trajectories where the magnetic gradient actually looks like a white
noise. Unfortunately, a non-linear error state will not remove the issue.
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3.4. Theoretical effect of measurement uncertainty on motion estimation

Inter-magnetometer distance

Even if the change of frame between Rb and Rm is known, manufacturing variability
can lead to uncertainty in the placement of sensors.

To illustrate the issue, in Eq. (3.28), replacing effective positions (jpb ´ Pb
0) with

λ(jpb ´Pb
0) amounts to rescaling ∇Bb as λ∇Bb, where λ P R. The effect of rescaling

∇Bb as λ∇Bb in Eq. (2.36) is that the estimated velocity is multiplied by λ. On a
baseline of, e.g., 5 cm, moving all sensors towards the center of the array by 0.25 mm
is enough to cause velocity to be systematically underestimated by 1%. However, as
explained hereafter, it is wrong to conclude that in general, errors of 0.25 mm lead to
relative velocity errors no higher than 1%.

Let us consider the case of a planar disposition of magnetometer along the first two
coordinates in Rb, as described in Sec. 3.2.6. The last column of the magnetic field
gradient is computed by using Maxwell’s equations. As explained in Sec. 3.2.6, ∇Bb

is a real symmetric matrix, therefore is diagonalizable. Considering the case where the
magnetic gradient is diagonal in Rb, that is to say,

∇Bb =

d1 0 0
0 d2 0
0 0 d3

 =

d1 0 0
0 d2 0
0 0 ´d1 ´ d2

 ,

Let us transform effective positions in such a way that the first spatial coordinate is
multiplied by (1 + ε1), the second by (1 + ε2), and the third is left unchanged. The
estimated gradient M becomes

M
.
=

d1
1 0 0
0 d1

2 0
0 0 d1

3

 =

(1 + ε1)d1 0 0
0 (1 + ε2)d2 0
0 0 ´(1 + ε1)d1 ´ (1 + ε2)d2

 ,

since the third column is recovered using Maxwell’s equations. Now, let us denote the
ratio

(1 + ε3)
.
=
d1
3

d3

=
´(1 + ε1)d1 ´ (1 + ε2)d2

´d1 ´ d2

= 1 +
ε1d1 + ε2d2
d1 + d2

.

If d1 + d2 = ´d3 decreases to zero (the magnetic gradient becomes singular) and if
ε1 ‰ ε2, then (1 + ε3) diverges towards ˘8. To make it clearer, assuming ε1 + ε2 = 0,
we have

ε3 = ε1
d1 ´ d2
d1 + d2

.

We have proven that the use of a planar array of magnetometers whose effective po-
sitions are known with an arbitrarily small error can lead to arbitrarily large velocity
estimation relative errors.
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3. Measurement errors of magnetometer arrays combined with inertial sensors

Remark regarding scale factors Similar reasoning leads to the same conclusion re-
garding scale factors that with a planar arrangement of sensors, arbitrarily small scale
factor errors can lead to arbitrarily large velocity estimation relative errors close to
singular gradient conditions.

General case

In the general case, if all sensors are calibrated in Rb, and are without noise, denoting
xvb the velocity estimated from the wrong magnetic gradient M and vb the true value
of the velocity in Rb, we have in first order approximation in ∇Bb

´M near 0,

xvb ´ vb =
(
M´1 ´ ∇Bb´1

)
.

(
d

dt
Bb + ωb/n ˆ Bb

)
=
(
M´1 ´ ∇Bb´1

)
Mxvb

=
(
M´1 ´ (M +∇Bb

´M)´1
)
Mxvb

=

(
M´1 ´

[
1 +M´1(∇Bb

´M)
]´1

M´1

)
Mxvb

=

(
M´1 ´

8
ÿ

k=0

(´1)k
[
M´1(∇Bb

´M)
]k
M´1

)
Mxvb

«

(
M´1

[
∇Bb

´M
]
M´1

)
Mxvb

« M´1
[
∇Bb

´M
]

xvb

(3.46)

From this equation, it can be seen that velocity errors are preferably expressed as
relative errors, because they are proportional to the estimated velocity with the co-
efficient of proportionality M´1

[
∇Bb

´M
]
. However, since in practice M can be

infinitesimally close to a singular matrix and calibration errors are not zero, this co-
efficient is unbounded in the general case, even without taking measurement noise
into account, since systematic calibration errors are sufficient to cause this unbounded
growth. While biases can cause such errors, it is also the case with the other cali-
bration parameters (sensor effective positions and scale factors) when using a planar
arrangement of sensors (see above).

3.4.3. Other inertial sensors uncertainties
Frame of reference uncertainty

The case in which magnetometers are calibrated in Rb (including magnetometer
effective positions) and inertial sensors are calibrated in Rg = Ra ‰ Rb is investigated
in Ref. Dorveaux and Petit [2011a]. The most visible effect is a vertical drift for tra-
jectories combining forward movements and turns around the vertical axis, which is
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3.5. Conclusion

typical of standing pedestrian or car use cases. Velocity is computed in Rb and incor-
rectly projected in Rn by using the change of frame between Rn, and Ra erroneously
instead of Rb. Other errors are expected whenever angular velocity is different from
zero, leading to a biased velocity estimate. This effect will not be detailed here.

Inertial sensor bias uncertainty

In Sec. 2.5, inertial sensor biases led to the existence of a set of indistinguishable
trajectories including static ones. In static cases, accelerometer biases are expected to
induce an attitude error, and gyrometer biases are expected to induce a drift if they
are only vertical. Other situations will cause incoherent measurements.

3.5. Conclusion
Magnetometer measurement model At constant temperature, an accurate mea-
surement model of our magnetometers has been verified, proving that high precision
calibration of AMR is achievable at low hardware cost in homogeneous fields. Thus
the validity of linear measurement models can be predicted on this hardware.

Limits of available calibration techniques Mentioned available calibration tech-
niques are suitable for use in homogeneous fields, but not suitable for gradiometer
calibration used in inhomogeneous fields. In particular, Assumption 3.2.3 is broken in
inhomogeneous fields and Assumption 3.2.2 is broken in presence of soft-iron materials
close to magnetometers. This makes the case for a different calibration approach, suit-
able for use in inhomogeneous field and in presence of soft-iron materials. At least, the
issue of identifying the magnetometers calibration frame remains partially unsolved
in the context of this chapter. Note that even in homogeneous fields, the mentioned
calibration techniques are not suitable in the presence of soft-iron materials with sig-
nificant hysteresis.

Calibration frame issues Identification algorithms have been used or proposed in
order to ensure that all sensors are calibrated in the same reference frame. In particu-
lar, an algorithm has been proposed in order to express all magnetometer calibration
parameters in the same reference frame including their effective position, however real-
world experiments have not been conclusive. The difficulty of calibrating a gradiometer
is addressed in later chapters.

Planar magnetometer arrays Ignoring the issue of calibrating a magnetic gradiome-
ter, exploiting Maxwell’s equations enables the use of planar magnetometer arrays to
compute to any spatial derivative of the magnetic field in 3 dimensions, in a hardware
configuration that was never going to be available during this work as mentioned in
Sec. 2.6.
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3. Measurement errors of magnetometer arrays combined with inertial sensors

Effect of measurement uncertainty on movement estimation Finally, the effects of
measurement uncertainty have been explored. In particular, uncertainties on the mag-
netic field gradient play an important role. Even arbitrarily small calibration errors can
cause unbounded velocity estimation errors close to singular gradient conditions. Mea-
surement noise sharply increases estimation uncertainty and prevents proper function
in low gradient conditions, leading to a damping effect, which manifests in overconfi-
dent and underestimated velocity estimates. On the other hand, the damping effect of
magnetic gradient measurement noise might actually be helpful in preventing velocity
estimates from diverging along low-gradient directions.
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4. Using Extended Kalman Filters for Magneto-Inertial Dead-Reckoning

4.1. Introduction
Context The aim is to estimate the trajectory of a system equipped with Microelec-
tromechanical Systems (MEMS) inertial sensors and an array of magnetometers as
described in Ch. 3. The first step towards this goal has been modeling the problem in
the form of a state-space model, hence the fact that in Ch. 2, several such Magneto-
Inertial Dead-Reckoning (MIDR) models have been proposed and studied. The second
step has been studying how to obtain the necessary inputs from our hardware, and
understanding and mitigating measurement uncertainty. This work is documented in
Ch. 3. The third and last step is the actual implementation and test of a navigation
algorithm.

In order to better understand the contributions in this chapter, the main previous
publications on the subject are recalled hereafter:

• Ref. Vissière et al. [2007a], relying on a model whose reasons for not keeping are
explained in Sec. 2.4;

• Ref. Dorveaux [2011], relying on a two-independent-observers structure (see
Ref. [Dorveaux, 2011, Fig. 2.3], reproduced in Fig. 2.2), an approach whose
disadvantages are explained in Sec. 2.3.

Therefore, we use the candidate models described in Sec. 2.4.1 and Sec. 2.5.1 as starting
points of this Chapter.

Outline Implementing a navigation algorithm would require first to choose an ap-
propriate class of estimation algorithm and an adequate architecture. A promising
initial experiment was successfully conducted with a monolithic Extended Kalman
Filter (EKF) early in this work, built on the model in Sec. 2.4.1, leading SYSNAV to
demand that this early choice be maintained; while Sec. 2.3.3 justifies a monolithic ob-
server, inputs for discussion, and justifications of the choice of an EKF are nevertheless
provided a posteriori in Sec. 4.2.

Since an EKF has been chosen, principles implementation of discrete-time Kalman
filtering are recalled in Sec. 4.3. Afterward, two issues are studied: the handling of
power-line interference in Sec. 4.4, and of heading estimation in Sec. 4.5. In both cases,
justifications for modeling choices are provided, and the resulting observer is evaluated
in experiments.

4.2. About the choice of observer
The choice of estimation algorithm depends on three criteria. First, navigation al-

gorithms must be able to provide a converging estimate of observable states, in such a
way that in absence of measurement errors, the estimated state converges towards its
true value. Under this condition, the choice of algorithm depends, among others, on
the type of dynamical system that must be observed. Secondly, navigation algorithms
must be able to provide information about the uncertainty of computed estimates.
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4.2. About the choice of observer

Finally, and in our specific case, the hardware was designed as an autonomous nav-
igation system as small as possible, leading to the design constraint that estimation
algorithm must be able to run on a low-power microcontroller with an Floating-Point
Unit (FPU), with a computing power that is decent but small compared with modern
microprocessors. In the following, the choice of observer is discussed in view of these
elements.

The choice of observer in light of the first criterion is discussed in Sec. 4.2.1. It is
then discussed in light of the second criterion in Sec. 4.2.3, in light of the third criterion
in Sec. 4.2.3, and Sec. 4.2.4 concludes the discussion.

4.2.1. Convergence and class of dynamical system
Monolithic Kalman observers are poorly adapted to our model candidates

Two model candidates have been proposed in Ch. 2, in Sec. 2.4 and Sec. 2.5. In both
cases, observability depends on the input, especially on the magnetic field gradient
∇Bb. Therefore, neither of these systems is uniformly observable in the sense of
Ref. [Besançon, 2007, Defs. 8 and 9], that are recalled thereafter.

Definition 7 (Universal inputs (resp. on [0, t]) Ref. [Besançon, 2007, Sec. 1.2.2,
Def. 8]). An input u is universal (resp. on [0, t]) for system (2.9) if @x0 ‰ x1

0, Dτ ě 0
(resp. Dτ P [0, t]) s.t. h(χu(τ, x0)) ‰ h(χu(τ, x

1
0)) .

An input u is a singular input if it is not universal.

Definition 8 (Uniformly observable systems (resp. locally) Ref. [Besançon, 2007,
Sec. 1.2.2, Def. 9]). A system is uniformly observable (UO) if every input is universal
(resp. on [0, t]).

Therefore, possible observers will also depend on the inputs, which tips the choice
of observers towards Kalman-like observers (Ref. Besançon [2007]).1

The Kalman filter, Ref. Kalman [1960], is designed for linear systems for which the
state-space representation (2.9) has the following form,

ẋ(t) = A(t)x(t) +Bu(t)

y(t) = C(t)x(t) .
(4.1)

For the system studied in Sec. 2.4, namely (2.28)-(2.29), the system is not linear.

• Strictly speaking, the Jacobian Bẋ
Bx depends on the input. However, one can

consider A(t) separately as if it were known independently of an input. After
all, there is no controllable input in our navigation problem.

• To know whether the dependency of ẋ(t) with respect to x(t) is linear, that
is to say, whether the system is state-affine, one must decide on what attitude
parameterization to consider. For the sake of readability, in Ch. 2, elements of

1In Ref. Dorveaux [2011], an ad-hoc converging observer is proposed that depends on the input but is
not a Kalman-like observer. Therefore, Kalman-like observers are not the only possible candidates.
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SO(3) have been parameterized with orthogonal 3x3 matrices. In this particular
parameterization, the dependency is linear. However, it is so in the space of
all 3x3 matrices, not in SO(3). Many other choices could have been made in
order to represent attitude, that lead either to singular representations (such
as Euler angles), or to over-parameterization (the use of more than 3 numbers
to represent an element of the 3-dimensional manifold SO(3), such as rotation
matrices or quaternions), (see Refs. Lefferts et al. [1982], Markley [2003] and
references therein). Moreover, in an approach known as the Multiplicative EKF
(MEKF), attitude is represented by a quaternion (or equivalently any other non-
singular representation), and errors are represented by a three-component vector.
Therefore, in such an implementation, one cannot count on the model used in
Kalman filtering being state-affine in general.

The use of a monolithic EKF is a possible choice motivated by the non-linearity of the
complete model. However, the convergence of such an observer is not guaranteed in
general.

A bi-observer approach might help only for one of them

Instead, another possible architecture is to estimate the gravity vector instead of
the attitude, in which case a state-affine model is obtained, for which tools such as in
Ref. Besançon et al. [1996] are appropriate; the velocity and the estimated gravity vec-
tor can then be injected into a connected converging attitude observer, in such a way
that after convergence, both dynamic models remain correct in the presence of accel-
erations in light of Sec. 2.3.3. The difference with the structure illustrated in Fig. 2.2
is that in Ref. Dorveaux [2011], the attitude observer is presented as independent from
the velocity and magnetic field observer. There is no interconnection between the two
observers, and therefore the use of accelerometers in velocity estimation is hindered,
because integrating the strapdown navigation equation (2.30) requires an attitude esti-
mate and the attitude estimate is disturbed by accelerations (see Sec. 2.3.3). However,
compared to a monolithic EKF, such an architecture is more difficult to augment to
account for inertial sensor biases.

For the system studied in Sec. 2.5 that accounts for inertial sensor biases, the problem
is made harder by gyrometer biases. Each term in which they appear in the dynamical
model, namely in Eqs. (2.40),(2.41) and (2.42), is bilinear in the state, thus making
tools designed for state-affine models theoretically inadequate.

4.2.2. Uncertainty awareness
Kalman filters cannot model gradient measurement uncertainty

To a concerned end-user, information about estimation uncertainty is valuable. Pro-
viding such information requires appropriate error modeling. Formulated in these
terms, one may lean in favor of probabilistic, set-oriented, or game-theory approaches.
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The Kalman Filter carries a covariance matrix which accurately represents such an
uncertainty under its derivation assumptions (see Ref. Barker et al. [1995]). However,
as seen in Ch. 3, these derivation assumptions are not valid in the context of MIDR.
Gradient measurement uncertainties constitute a significant source of error, and cannot
be modeled in the Kalman Filtering framework alone. Moreover, these uncertainties
can cause unbounded errors or cause inconsistency. Because of this unboundedness,
no generic performance guarantee can be provided for all possible trajectories: one can
always find a trajectory causing an arbitrarily large error.2

There is plenty of literature about this shortcoming

For the above-mentioned reasons, many other estimation tools that extend Kalman
filtering in order to take into account and be robust to modeling uncertainty seem
more appropriate than an EKF in order to tackle MIDR specifically, given our design
specifications; ignoring the problem of nonlinearity, see Ref. Theodor et al. [1994] or
Dong and You [2006] (see also Refs. Einicke and White [1999], Liu et al. [2008], Lu
et al. [2007], Ra et al. [2004] and references therein).

4.2.3. Computing power
Compared to modern processors, embedded microcontrollers with FPUs have far

less computing power, and only a few KiloBytes of RAM are available. Memory is a
very limiting factor in the choice of algorithm. Approaches such that finite horizon
observation tools or optimization based techniques (see Ref. [Besançon, 2007, Ch. 5])
risk requiring more computing power and being unusable on this hardware. Kalman
filtering, however, can still run on a microcontroller with an FPU provided that the
dimensions of the problem not be too high (number of states, inputs, measurements).

4.2.4. Conclusion
A monolithic EKF is an approximately appropriate choice for the criteria of con-

vergence, uncertainty awareness and computing power. It can nevertheless provide
qualitatively meaningful, but quantitatively wrong error bounds in this context. It
is also a reasonable compromise regarding computing power constraints. However, in
order to meet the design constraints of convergence or uncertainty modeling, another
tool would be needed. This direction has not been explored.

4.3. Discrete-time Kalman filtering implementation
Process and issues EKFs are simply Kalman filters on a linearized system. One can
then separate the problem into two parts:

1. Implementing Kalman filtering formulas,
2Let us remark that the effect of modeling error in Kalman filtering has been studied in, e.g.,

Ref. Toda and Patel [1980]
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2. Implementing the equations of the state-space model in discrete-time.

Sec. 4.4 and 4.5 focus on the second item. Concerning the first item, early after
Kalman’s seminal publication Ref. Kalman [1960], many papers have documented nu-
merical stability issues of the strict implementation of Kalman’s formulas and made a
strong case for alternative numerical implementations (see Refs. Bierman and Thorn-
ton [1977], Thornton and Bierman [1980], Verhaegen and Dooren [1986]). For the
sake of simplicity, the full discrete-time version of the Kalman filter is implemented;
it is derived from a discretized dynamic model, with a discrete-time update. Kalman
filtering formulas are discussed in Ref. Anderson and Moore [2005], the square-root
covariance-based algorithms described in Ref. Kaminski et al. [1971] are implemented.

Outline In Sec. 4.3.1, discrete-time Extended Kalman filtering with an error-state is
described. The actual numerical implementation of Kalman formulas is described in
Sec. 4.3.2. Then, the implementation process is summarized in Sec. 4.3.3.

4.3.1. Extended Kalman filtering
Kalman filtering formulas are already introduced in Sec. 3.4.1 with the goal of study-

ing the effect of measurement noise, see also Refs. Alazard [2005], Barker et al. [1995].
Here, they are introduced in the context of discrete-time Extended Kalman filtering
with an error state.3

Linearized state-space model with an error state

Let us consider a discrete-time system of the form
"

x[k + 1] = f(x[k], u[k]) ,
y[k] = h(x[k]) ,

(4.2)

with k P N. The variable x[k] denotes the true state at time-step k, and y[k] denotes
the system’s output vector. Let us define û[k] and ŷ[k] such that

u[k] = û[k] + ũ[k] ,

y[k] = ŷ[k] + ỹ[k] ,

where ũ[k] and ỹ[k] are unknown independent zero-mean Gaussian variables whose
known covariance matrices at each time-step k are respectively Q[k] and R[k],

ũ[k] „ N (0, Q[k]) ,

ỹ[k] „ N (0, R[k]) .

3While the presented approach allows writing an MEKF, see Refs. Lefferts et al. [1982], Markley
[2003], and is similar to the invariant approach Ref. Barrau and Bonnabel [2017], no invariance
property is meant to be exploited in this chapter. This is a research direction that has not been
explored in this work.
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4.3. Discrete-time Kalman filtering implementation

Only the state estimate x̂[k] is known with an error that we denote x̃[k]. The error
parameterization is such that

x[k] = ξ(x̂[k], x̃[k]) , (4.3)

where ξ is a differentiable mapping such that for all x̂[k], the mapping

x̃[k] ÞÑ ξ(x̂[k], x̃[k])
.
= ξx̂[k](x̃[k])

is locally bijective around the value 0 of x̃[k] representing “no error”, that is to say

x[k] = ξx̂[k](0) ô x[k] = x̂[k] .

Combining Eq. (4.2) and (4.3) yields

ξx̂[k+1](x̃[k + 1]) = f
(
ξx̂[k](x̃[k]), û[k] + ũ[k]

)
, (4.4)

or,
x̃[k + 1] = ξ´1

x̂[k+1]

(
f
(
ξx̂[k](x̃[k]), û[k] + ũ[k]

))
. (4.5)

Linearizing this system around x̃[k] = 0 and ũ[k] = 0, yields

x̃[k + 1] « F [k]x̃[k] +G[k]ũ[k] , (4.6)

where
F [k] =

B

Bx̃[k]

ˇ

ˇ

ˇ

ˇ

x̃[k]=0, ũ[k]=0

ξ´1
x̂[k+1]

(
f
(
ξx̂[k](x̃[k]), û[k] + ũ[k]

))
,

and
G[k] =

B

Bũ[k]

ˇ

ˇ

ˇ

ˇ

x̃[k]=0, ũ[k]=0

ξ´1
x̂[k+1]

(
f
(
ξx̂[k](x̃[k]), û[k] + ũ[k]

))
.

The measurement equation can also be linearized similarly,

y[k + 1] = h(ξx̂[k+1](x̃[k + 1]))

« h(x̂[k + 1]) +H[k]x̃[k + 1] ,

where
H[k] =

B

Bx̃[k]

ˇ

ˇ

ˇ

ˇ

x̃[k]=0

(
h
(
ξx̂[k](x̃[k])

))
.

Thus,
y[k + 1] ´ h(x̂[k + 1]) « H[k]x̃[k + 1] . (4.7)

A classical discrete-time Kalman filter can now be implemented on the linearized
model

"

x̃[k + 1] « F [k]x̃[k] +G[k]ũ[k] ,
y[k + 1] ´ h(x̂[k + 1]) « H[k]x̃[k + 1] .

(4.8)
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Kalman prediction and update with an error state

Kalman prediction and update algorithms with an error state are described there-
after. Let us denote for k P N,

Û [k] = tû[0], ..., û[k]u ,

Ŷ [k] = tŷ[0], ..., ŷ[k]u .

Let us assume that at time-step k P N, we have an estimate x̂[k] of x[k] such that

x[k] = ξ(x̂[k], x̃[k]) ,

where x̃[k] denotes the error state vector, and Σ[k]+ denotes the covariance matrix
such that

p
(
x̃[k] | Ŷ [k], Û [k ´ 1]

)
= N

(
0,Σ[k]+

)
. (4.9)

Then, using Eq. (4.6), the prior prediction error is obtained with the classical Kalman
filtering formulas (see Refs. Barker et al. [1995], Alazard [2005]),

p
(
x̃[k + 1] | Û [k], Ŷ [k]

)
= N

(
0, F [k]Σ[k]+F [k]J +G[k]Q[k]G[k]J

)
, (4.10)

with, because of Eq. (4.4) and under the approximation that ũ[k] « 0,

x̂[k + 1] « f(x̂[k], û[k]) . (4.11)

Eq. (4.11) is the state prediction equation, which is simply an iteration of the discrete-
time model, while Eq. (4.10) predicts the covariance of the error state vector, which
concludes the prediction step.

Let us denote for k P N

Σ[k + 1]´ = F [k]Σ[k]+F [k]J +G[k]Q[k]G[k]J (4.12)

Then, we have the classical Kalman filtering formulas (see Refs. Barker et al. [1995],
Alazard [2005])

Σ[k + 1]+ = (1 ´K[k + 1]H[k + 1])Σ[k + 1]´ (4.13)
K[k + 1]

.
= Σ[k + 1]´H[k + 1]JS[k + 1]´1 (4.14)

S[k + 1]
.
= R[k + 1] +H[k + 1]Σ[k + 1]´H[k + 1]J (4.15)

with the posterior error state estimate

p
(
x̃[k + 1] | Ŷ [k + 1], Û [k]

)
= N

(
K[k + 1]ty[k + 1] ´ h(x̂[k + 1])u,Σ[k + 1]+

)
. (4.16)

Following this computation, the predicted value of the state x̂[k + 1] can be updated
to

ξx̂[k+1](K[k + 1]ty[k + 1] ´ h(x̂[k + 1])u) ,

and x̃[k + 1] be reset to zero, which concludes an iteration.
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4.3.2. Square-root filtering
The strict numerical implementation of Eqs. (4.12)-(4.15) leads to stability problems

as documented in Refs. Bierman and Thornton [1977], Thornton and Bierman [1980],
Verhaegen and Dooren [1986]. The first observation that can be made when imple-
menting these formulas is that the computed values of Σ[k]+ and Σ[k]´ do not remain
numerically symmetric, positive definite, because of the effect of rounding errors and
numerical instability. One possible alternative proposed by these references is to avoid
computing Σ[k]+ and Σ[k]´ explicitly, and to compute their respective “square roots”
(in the sense of Cholesky factorization) instead. Doing so results in an improved nu-
merical stability, and square root representations require half the number of bytes for
the same numerical precision.4

Let M be any symmetric positive definite matrix. Let us denote M1/2 one of its
square roots, in the sense that

M1/2(M1/2)J =M . (4.17)

This square root is not unique; if T is any orthogonal matrix of compatible dimensions,
M1/2T is also a square root of M ,[

M1/2T
] [
M1/2T

]J

=M1/2(M1/2)J =M

By QR factorization, any square matrix M can be written as the product of an or-
thogonal matrix Q by an upper triangular matrix R such that M = QR.

The square root of Σ[k + 1]´ can be computed by noticing that there exists an
orthogonal matrix T such that(

[(Σ[k]+)1/2]JF [k]J

[Q[k]1/2]JG[k]J

)
= T

(
[(Σ[k + 1]´)1/2]J

0

)
, (4.18)

where (Σ[k + 1]´)1/2 is an upper triangular square root of Σ[k + 1]´. Eq. (4.18) can
then be replaced by the QR factorization implied by Eq. (4.12) to directly compute a
triangular square root of Σ[k + 1]´.

Then, the square root of Σ[k + 1]+ can be computed by noticing that there exists
another orthogonal matrix rT such that(

(R[k]1/2)J 0
[(Σ[k + 1]´)1/2]J[H[k]1/2]J [(Σ[k + 1]´)1/2]J

)
= rT

(
[S[k + 1]1/2]J K̃[k + 1]J

0 [(Σ[k + 1]+)1/2]J

)
,

4The Cholesky factorization is described thereafter, but other decompositions exist and may even
be preferred, see, e.g., Ref. Thornton and Bierman [1980] for the so-called UDUJ covariance
factorization algorithm. This algorithm avoids computing square roots and was advertised at the
time to be faster than Cholesky factorization-based algorithms.
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where (Σ[k + 1]+)1/2 is an upper triangular square root of Σ[k + 1]+, and where

K̃[k + 1] = K[k + 1]S[k + 1]1/2 ,

see Refs. Anderson and Moore [2005], Kaminski et al. [1971] and references therein.
Thus, Eqs. (4.12)-(4.15) can be entirely replaced by two successive QR factorizations,
allowing the computation of the square roots of covariance matrices along with the
Kalman gain, without ever computing covariance matrices explicitly.

4.3.3. Practical implementation
Now that a numerically stable Kalman filtering implementation is chosen, the design

of an EKF consists in the following steps,

1. Choosing and implementing the discrete-time model Eq. (4.2)

2. Choosing an error parameterization Eq. (4.3)

3. Computing the linearized system Eqs. (4.6), (4.7)

4. Tuning the observer by the appropriate choice of matrices Q[k] and R[k] for each
time-step k.

Once done, only the initialization of the filter is left at the discretion of the engineer.
Thereafter, Step 1 is sufficiently outlined, and Step 2 is described. Steps 3 and 4, that
mainly consist in lengthy model-specific computations and know-how, are omitted.
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4.4. Velocity and attitude estimation

4.4. Velocity and attitude estimation
The starting point of this section is the model proposed in Sec. 2.4.1. This model

has been slightly adapted in this Section.
Motivations for its adaptation are provided in Sec. 4.4.1. The actual model is de-

scribed in Sec. 4.4.2. The EKF implementation is described in Sec. 4.4.3. Then,
performance is evaluated on indoor closed paths in Sec. 4.4.4, and in motion capture
experiments in Sec. 4.4.5. Finally, Sec. 4.4.6 concludes this Section.

4.4.1. Motivations
Power-line interference The model described in Sec. 2.4.1 relies on the hypothesis
that the magnetic field Bn be stationary in Rn. However, this hypothesis is in general
not true in indoor and urban environment because of power-line interference. Such
periodic interference can be as strong as 1 µT in amplitude in SYSNAV’s office, lo-
cated near a train station. During this work, early experiments showed that in some
cases, power-line interference could cause significant drift. Therefore, it was deemed
necessary to take those disturbances into account.

Sensors effective positions On our hardware, considering magnetometers’ and ac-
celerometer’s measurements separately leads to computing their values at different
effective positions in Rb. Therefore, the models described in Ch. 2 are modified in
this Chapter in order to take the corresponding lever arm into account. The model is
chosen to avoid taking time derivatives of inputs. Let us remark that this lever arm is
then a new calibration parameter.

Trajectory integration As discussed in Ch. 2, the position is not observable in the
proposed dead-reckoning models. However, it can be argued that by using the EKF
as a recursive Bayesian estimator, integrating this unobservable state into the filter

• can be numerically achieved without influencing the estimation of other states;

• is beneficial if one desires optimal a posteriori corrections of the estimated po-
sition from the starting point, in ideal cases where linearization and modeling
errors are negligible.

4.4.2. Model
Continuous-time dynamic model

Let us assume that the magnetic field is the sum of a stationary field that is still
denoted Bn in the navigation frame, and disturbance field that only depends on time in
the navigation frame and that is denoted Bn

pli, as in “power-line interference”. With
this assumption, it follows that the measured gradient of the total field is the gradient
of the stationary field ∇Bb, and the measured total magnetic field is the sum of both
fields.
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As in Ch. 2, the goal is to track the 6-D position of the sensor board (R,Mn) P SE(3)
with time. Let us assume that M denotes the percussion point of accelerometers.

Let us denote N the point at which the magnetic field and its gradient are measured.
In this Chapter, shortened notations are used,

Bb = Bb(Nb, t) (4.19)
∇Bb = ∇Bb(Nb, t) . (4.20)

Velocity vb is still defined according to Eqs. (2.3) and (2.4).
Lastly, let us denote ωpli the pulsation of power-line interference. The continuous-

time dynamic model can now be written,
$
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dBb

dt
= ´ωb/n ˆ Bb +∇Bb

(
vb + ωb/n ˆ

ÝÝÝÝÑ
MbNb

)
dvb

dt
= ´ωb/n ˆ vb + γb +RJgn

dR

dt
= R[ωb/nˆ]

d2Bn
pli

dt2
= ´ω2

pliBn
pli

dMn

dt
= Rvb .

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

The output is then the sum of the stationary field and the disturbance field,

y = Bb +RJBn
pli . (4.26)

Discrete-time dynamic model

Discrete-time integration of dvb

dt , dMn

dt and dR
dt can be found in various references

such as Ref. Savage [2000], therefore, they are not detailed here.
An ingenious way of integrating d2Bn

pli
dt2 in discrete-time is to use a trigonometric

identity (see Ref. Sameni [2012]),

Bn
pli[k + 1] + Bn

pli[k ´ 1] = 2 cos(ωpliT )Bn
pli[k] , (4.27)

where T represents the sampling period, which means that(
Bn

pli[k + 1]
Bn

pli[k]

)
=

(
2 cos(ωpliT ) 1 ´1

1 0

)(
Bn

pli[k]
Bn

pli[k ´ 1]

)
. (4.28)

The discrete-time model Eq. (4.2) is then defined using

x[k] =


Bb[k]
vb[k]
R[k]

Bn
pli[k]

Bn
pli[k ´ 1]
Mn[k]

 , y[k] = Bb[k] +R[k]JBn
pli[k] , (4.29)
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with an input u[k] corresponding to the discrete-time versions of ωb/n, γb, ∇Bb, and
with a dynamic model of the form Eq. (4.2). The discrete-time variable Bb[k] is chosen
in order to accurately model the magnetic measurement process, and the discrete-time
model is written accordingly.

4.4.3. EKF implementation
An error representation is chosen such that the implemented algorithm is an MEKF,

that is to say, the attitude error parameterization is multiplicative,

x̃[k]
.
=



rBb[k]
rvb[k]

Φ̃[k]
rBn

pli[k]
rBn

pli[k ´ 1]
ĂMn[k]


, ξ(x̂[k], x̃[k])

.
=



B̂b[k] + rBb[k]
v̂b[k] + rvb[k]

exp
[
Φ̃[k]ˆ

]
R̂[k]

B̂n
pli[k] +

rBn
pli[k]

B̂n
pli[k ´ 1] + rBn

pli[k ´ 1]

M̂n[k] + ĂMn[k]


.

The derivation of the linearized system and the tuning of the EKF are not detailed
here.

Remark In practice, the attitude matrices exp
[
Φ̃[k]ˆ

]
and R[k] are numerically

represented by associated unit quaternions, using formulas similar to those used for
rotation matrices.5.

4.4.4. Evaluation on indoor closed path
Choice of criterion In indoor dead-recknoning, the variable of interest is the position
Mn. Therefore, in indoor experimental performance evaluation, the quality of position
estimates needs to be evaluated, although in the model formed by Eqs. (4.21)-(4.26),
it can be shown that heading and the position Mn are not observable. Both estimates
are then initialized arbitrarily at the start of each experiment, and a criterion is chosen
that is mainly sensitive to estimation drift, and not to an absolute positioning error
which would be meaningless without precise knowledge of the starting point and initial
heading.

Let us recall the discussion in Sec. 3.4.2, that velocity errors are preferably expressed
as relative errors, see Eq. (3.46). In light of this discussion, let us denote s[k] the
estimated traveled distance at time-step k,

s[k + 1]
.
= s[k] +

›

›

›
M̂n[k + 1] ´ M̂n[k]

›

›

›
, (4.30)

5Ref. Chesneau et al. [2016], however, describes an EKF where attitude is simply represented by a
unit quaternion without mentioning an error representation such as in Sec. 4.3.1
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start 1 2

end 4 3

Figure 4.1: Sketch of a closed path benchmark trajectory with 4 landmarks and two
cycles.

with s[0] .= 0. Whenever in reality the path is closed, that is to say, }Mn[k] ´ Mn[k0]} =
0 between two time-steps k0 and k ą k0, the (dimensionless) drifting error can be de-
fined as

ε[k, k0] =

›

›

›
M̂n[k] ´ M̂n[k0]

›

›

›

s[k] ´ s[k0]
. (4.31)

Criticism of the criterion It is important to remark that from a probabilistic point
of view, Eqs. (4.30) and (4.31) do not make any sense. The sequence of M̂n[k] is
causal; M̂n[k] is defined as the most probable position at time-step k knowing all
measurements only in its past, up to time-step k only. Thus, computing s[k] leads to
an incoherent use of information. Instead, it would be appropriate to compute s[k]
on the output of a smoothing algorithm providing each position with the knowledge
of all measurements until the end of the trajectory. The sequence of positions from
which the criterion is computed would then be deduced from the same information.
Moreover, periodic disturbances that may cause oscillations in M̂n[k] may lead to an
overestimation of traveled distance, causing optimistic results. Finally, small closed
paths are less sensitive to heading drift than long straight lines.

Experiments The protocol consists in choosing more or less than four landmarks in
SYSNAV’s office, and doing several cycles through them, see Fig. 4.1. Most experi-
ments are performed by “neutral” colleagues in SYSNAV, who did not take part in
designing the navigation algorithms. Some of the resulting trajectories are reproduced
in Fig. 4.2 from Ref. Chesneau et al. [2016]. The overall computed relative drift errors
on 18 benchmark trajectories done by 13 different persons are reproduced in an his-
togram Fig. 4.3. Computable relative drift errors all lay between 0.13% and 3.3% of the
travelled distance, the majority laying under 2%, which is a level of performance which
used to be comparable with pedestrian dead-reckoning systems (see Refs. Jiménez et al.
[2009], Nilsson et al. [2010]). In light of the conclusions of Chapters 2 and 3, these are
encouraging results.
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(a) Relative drift errors lay between 0.89 and 1.79%
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(b) Relative drift errors lay between 0.28 and 2.84%
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(c) Relative drift errors lay between 0.57 and 0.79%

Figure 4.2: From Ref. Chesneau et al. [2016], examples of computed benchmark tra-
jectories
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Figure 4.3: From Ref. Chesneau et al. [2016], experimental closed path relative error
occurrences

Conclusion Compared with results from Ref. Dorveaux [2011], the obtained long-
distance performance is similarly a few percents of the total traveled distance. Thus,
the EKF has not improved this particular situation. However, the noticeable difference
is that the short-term performance allows a much more accurate reconstruction of the
path, as can be seen in Fig. 4.2c, where the word “SYSNAV” was drawn in the middle of
the trajectory with the sensor board.6 Writing the problem as one of strapdown inertial
navigation has removed the issue of convergence speed that existed on accelerated
trajectories with the previous bi-independent-observer architecture.

4.4.5. Evaluation in motion capture experiments
The evaluation method in Sec. 4.4.4 suffers from several disadvantages.

• The experimental protocol does not allow any precise evaluation of the estimation
accuracy of the observable states;

• No absolute comparison is possible using the trajectory itself as a reference.

To solve this problem, an evaluation was undertaken using the optical tracking equip-
ment of GIPSA-lab, in Grenoble, see Fig. 4.4.

Comparison method with an optical tracking system

Frames of reference A direct comparison of a trajectory with the output of an optical
tracking equipment is not meaningful. Each calibration of this equipment defines an

6A synchronized video demonstration is also available here: https://youtu.be/lnDEXiztIUk, August
2018
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(a) Picture of the VICON equipment in GIPSA-lab

(b) Picture of the sensor board, on a 40cm x 40cm wooden board, with markers.
The self-locking cable binders securing the sensor board are removed for the
picture.

Figure 4.4: Optical tracking setup in GIPSA-lab, Grenoble
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Figure 4.5: Reference frames of interest when comparing a trajectory with an optical
tracking system

optical navigation frame R1
n. Each assembling of markers defines an optical body frame

R1
b associated with the relative position of markers. The trajectory that is provided

by the optical tracking system is none other than the change of frame between R1
n and

R1
b (see Fig. 4.5), while the trajectory that is computed using strapdown inertial and

magnetic sensors corresponds to the change of frame between two different reference
frames Rn and Rb. Moreover, each trajectory is computed using a different time
reference. Comparing the two trajectories requires at least the identification of the
changes of frame between Rn and R1

n, between Rb and R1
b, and between the two time

references. Once this identification is made, the trajectories can be compared by, for
example, interpolating one trajectory on the sampling times of the other trajectory.

Velocity and attitude estimates Since optical tracking does not provide any velocity
estimate, it is also necessary to deduce one from optical tracking. The VICON optical
tracking system used in GIPSA-lab samples at 500Hz, with sub-millimeter accuracy,
notwithstanding the occasional loss of tracking caused by temporary camera masking.
Therefore, computing a velocity by direct differentiation results in an unacceptably
high level of noise (A few cm/s up to 10-20cm/s).

This is why a partial identification of the changes of frame and time reference is
proposed, with a smoothing of optical tracking outputs exploiting inertial sensor out-
puts and taking inertial sensor biases into account. The estimated trajectory of the
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accelerometer is then used as a reference. The smoothing algorithm consists of

1. The synchronization of the two datasets using attitude and gyrometer data,
followed by the estimation of the rotation matrix Rb1Ðb

2. The unified maximum likelihood estimation of the sequence of positions, atti-
tudes, velocities and inertial sensor biases, along with the accelerometers’ per-
cussion point and the gravity vector and dataset synchronization parameters.

This smoothing algorithm has been improved and used in Ch. 6.
The attitude output of the VICON optical tracking system is deduced from individ-

ual computed positions of markers. Therefore, the farther they are from each other,
the more accurate attitude reconstruction can be. Hence the 40cm x 40cm wooden
board illustrated in Fig. 4.4b, that allows a greater separation of markers. At this dis-
tance, the attitude ground truth provided by optical tracking should have a precision
better than around ˘2 ˆ 1 mm

40 cm = ˘5 mrad.
Corrections introduced by the smoothing algorithm are submillimetric (see Fig. 4.6a)

and smaller than 3.2 mrad (see Fig. 4.6b) 99% of the time. This is consistent with the
expected precision of the reference system. In the following, the ground truth is the
output of the smoothing algorithm.

Environment The experimental conditions have been hostile to navigation algorithms,
since

• The magnetic field gradient is close to singular in almost the entire room

• The 50Hz power-line interference caused by neighboring electrical appliances is
irregular (pulsating every second)

• Experiments are designed to deliberately test some edge cases (high dynamic,
high magnetic field curvature).

Overall attitude and velocity errors

Results of a trial of several minutes are described thereafter. The system is moved in
circles in the room at low speed at first, then at a faster pace. Then, it is moved above
a metallic stool in a cross-shaped path (see Fig. 4.7). The ground truth is computed
using the above mentioned smoothing algorithm, and compared with the output of the
EKF described in Sec. 4.4.2 - 4.4.3.

Attitude error Attitude errors are typically under 10 mrad, (see Fig. 4.8), lower when
the system is moving (5 mrad), and higher when the system is static or whenever the
first order interpolation model used for gradient computation (see Eq. (3.27)) is not
valid. These results, which are close to the expected precision of the ground truth, are
more than compatible with those of state-of-the-art attitude estimation algorithms
using MEMS inertial sensors without relying on MIDR to compensate the effect of
accelerations (see Refs. Michel et al. [2015], Makni [2016]), considering the simplicity of

89



4. Using Extended Kalman Filters for Magneto-Inertial Dead-Reckoning

10´6 10´5 10´4 10´3 10´2 10´1 100

0

0.2

0.4

0.6

0.8

1

Position smoothing residuals [m]

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(a)

10´5 10´4 10´3 10´2 10´1 100

0

0.2

0.4

0.6

0.8

1

Attitude smoothing residuals [rad]

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

(b)

Figure 4.6: Cumulative distribution functions of smoothing residuals of motion cap-
ture data. This corresponds to the distance between smoothed and raw
interpolated position estimates from the VICON optical tracking system
(Fig. 4.6a), and the angle between smoothed and raw interpolated attitude
estimates from the tracking system (Fig. 4.6b). After taking into account
the change of frame between Rb and Rb1 , corrections introduced by the
smoothing algorithm are smaller than 1 mm and 3.2 mrad, 99% of the
time.
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Figure 4.7: Metallic stool used during the evaluation trial with a VICON optical track-
ing system

the approach. According to these references, experimental error bounds obtained from
these algorithms are closer to 5 degrees, one order of magnitude higher.7 However,
a fair comparison would imply implementing and running these algorithms on the
same data, since a difference in experimental conditions can explain the apparent
improvement such that the quality and calibration of inertial sensors, the accuracy
of the reference system, or the alignment and synchronization issues that Fig. 4.5 is
about. This comparison has not been made in this work.

Velocity estimation error Velocity estimates are compared in Rb with the reference.
During the trial, 95% of the time, velocity estimation errors are below 15 cm/s (see
Fig. 4.10), which is surprisingly high considering the experimental results obtained on
indoor closed path Sec. 4.4.4, or even the output trajectory (see Fig. 4.9), that display
a drift of only a few meters during the 10 minutes long experiment. Errors as high as
1 m/s are visible when the system is moved close to the stool, where the first-order
spatial interpolation of the magnetic field Eq. (3.28) is not valid. Let us notice that in
the room in which the evaluation experiments are made, the gradient of the magnetic
field is most of the time close to singular, which may explain this level of error in light
of Sec. 3.4.

Effect of gyrometer biases

Gyrometer biases are not part of the state vector of the EKF currently being tested.
Therefore, to evaluate their contribution to estimation errors, their approximate value
is identified over the trial, and removed from data before rerunning the navigation
algorithms. The result is plotted in Fig. 4.11. In the trial, errors are now most of

75 degrees is around 87 mrad
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(a) Tilt errors during the evaluation experiment
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(b) Tilt errors cumulative distribution function

Figure 4.8: Experimental tilt errors of the EKF of Sec. 4.4 (or Ref. Chesneau et al.
[2016]).
Each line represents a different tilt angle.
From 30 to 180s, the system is moved around at low pace, errors lay
between ˘5 mrad.
From 270 to 400s, the system is shaken with a high dynamic while the user
tries his best at running in circles in the small volume of the room, errors
lay between ˘5 mrad.
From 180 to 270s and from 400 to 490s, the system is not moving. errors lay
between ¯10 mrad. During the last stage, the system is moved close to the
stool, whose highly curved magnetic field causes large attitude estimation
errors, up to 35 mrad.
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Figure 4.9: Navigation algorithm output and ground truth on the optical tracking eval-
uation experiment. The ground truth is in red, and computed trajectory
in blue.

the time under 5 mrad even in static cases compared with 10 mrad before removing
gyrometer biases. This parameter is then a major source of tilt estimation error.
The observed improvement motivates online estimation of gyrometer biases (model
Sec. 2.5.1).

The removal of gyrometer biases has improved the best velocity estimation perfor-
mance to a few mm/s instead of a few cm/s, see Fig. 4.12.

Effect of accelerometer biases

Accelerometer biases are not part of the state vector of the EKF being tested either.
Therefore, the approximate value of gyrometer and accelerometer biases are identified
over the trial and removed from data before rerunning the navigation algorithms. The
result is plotted in Fig. 4.13. An improvement can be observed in tilt errors, but it
is comparable with the precision of the reference system. The distribution of veloc-
ity estimation errors is practically identical before and after removing accelerometer
biases.
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(a) Velocity estimation errors during the evaluation experiment
(one line for each component). High errors around 600s
correspond to movements close to the metallic stool Fig. 4.7.
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(b) Velocity estimation errors cumulative distribution function.

Figure 4.10: Velocity estimation errors of the EKF of Sec. 4.4 (or Ref. Chesneau et al.
[2016])

94



4.4. Velocity and attitude estimation

0 100 200 300 400 500 600
´30

´20

´10

0

10

20
¨1 ¨ 10´3

Time [s]

A
tt

itu
de

es
tim

at
io

n
er

ro
r

[ra
d]

(a) Tilt errors during the evaluation experiment
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(b) Tilt errors cumulative distribution function (one line for
each tilt angle)

Figure 4.11: Experimental tilt errors from Fig. 4.8 corrected for gyrometer biases.
Cumulative distribution fonctions from Fig. 4.8 are reproduced in dotted
lines.
Removing gyrometer biases has significantly improved the result.
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Figure 4.12: Velocity estimation errors from Fig. 4.10, corrected for gyrometer biases.
Velocity estimation errors from Fig. 4.10 are reproduced in dotted line.
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(a) Tilt estimation errors (one line for each tilt angle)
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Figure 4.13: Experimental tilt and velocity estimation errors, after removing gyrome-
ter and accelerometer biases. Errors with only gyrometer biases removed
are reproduced in dotted lines.
An improvement in attitude estimation accuracy can be observed, even
though errors are already comparable with the precision of the reference
system. However, the effect on velocity estimation error is insignificant.
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4.4.6. Conclusion
EKF design The dynamic model described in Sec. 2.4.1 has been modified to take
power-line interference into account in Sec. 4.4.2. An EKF has been designed in order
to estimate the trajectory in an arbitrary navigation frame, and the performance of
the resulting navigation algorithm has been evaluated in experiments.

Closed path performance The obtained error in closed-path is typically under 3% of
the traveled distance in SYSNAV’s office. In motion capture experiments, tilt errors
have been evaluated to be under 10 mrad except in situations where the spatial gradient
of the magnetic field is not constant enough for the spatial interpolation model (high
curvature). Velocity estimation errors seem to be between 1 cm/s and 15 cm/s in high
dynamic conditions and can be higher in high curvature situations.

Motion capture experiments The main sources of tilt estimation errors have been
identified to be mainly gyrometer bias, with accelerometer bias seemingly playing a
minor role. Removing inertial sensor biases improves the best performance, typically
when the system is not moving, but do little to reduce velocity errors in high dynamic
or singular gradient conditions. It is suspected that the cause of this level of error is
simply the use of Eq. (2.11), the central equation of MIDR, in close to singular gradient
conditions. Such difficulties have been anticipated in Sec. 3.4.2 in relationship with
calibration errors. However, this equation is what the observer relies upon in order to
observe the velocity.

Possible improvements Although this has not been shown, all motion capture ex-
periments display a heading drift, which is normal since heading is not observable in
the underlying model. In Sec. 4.5, another observer is proposed, aiming at solving this
issue, along with the estimation of gyrometer and accelerometer biases which have
been identified as sources of errors. Calibration errors will be addressed in Part. II.
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4.5. Heading estimation, inertial sensor biases, and
disturbances

4.5.1. Motivation

Inertial sensor biases In Sec. 4.4.5 it has been made apparent in experiments that
inertial sensor biases are significant causes of attitude and velocity estimation error in
MIDR. This difficulty has been anticipated in a previous chapter, Sec. 2.5, by includ-
ing gyrometer and accelerometer biases into the dynamic model; doing so may help
reducing trajectory estimation error, under the condition that biases are observable.
However, a set of trajectories has been exhibited for which this is not the case.

Heading Heading is unobservable in all of the previously considered non-rotating
Earth models. This implies an inevitable drift, which is worsened by gyrometer biases.
This issue is already a significant source of positioning error in indoor pedestrian dead-
reckoning with low-cost MEMS sensors and motivates various solutions of the state
of the art. Some of them rely on the magnetic field (see Refs. Faulkner et al. [2010],
Afzal et al. [2011b]), while other approaches rely on assumptions about the shape of
the building, that is to say its dominant directions (see Refs. Borenstein and Ojeda
[2010], Abdulrahim et al. [2010], Jiménez et al. [2011], Jiménez et al. [2012]). The
magnitude of magnetic disturbances in indoor environments (quite often, a magnetic
compass will show ˘50° of error, and sometimes an utterly incoherent value) is a valid
reason not to use the magnetic field at all. Alternatively, it is also possible to use
map-matching algorithms in environments where all obstacles or paths are known,
an apparent practical difficulty being how to deal with the obsolescence of mapping
information. The goal, here, is to prevent heading from drifting without using any
map.

Computing-power requirements Requirements include being able to compute head-
ing using a recursive, lightweight and generic algorithm capable of being run on a
microcontroller with an FPU inside of the operation unit (Fig. 3.1b p. 35). Therefore,
it was deemed necessary to provide a recursive heading estimator. These requirements
leave very little freedom except using the magnetic field.

The starting point of the following work8 is the EKF described in Sec. 4.4.9

8The following work presents an updated version of what has already been published in Ref. Ches-
neau et al. [2017]regarding these issues of gyrometer and accelerometer estimation and heading
computation.

9Sec. 4.4 presents an updated version of what has already been published in Ref. Chesneau et al.
[2016]
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4.5.2. Inertial sensor biases
Let us consider that accelerometer and gyrometer measurements are biased accord-

ing to Eqs. (2.38)-(2.39),

γmeas
.
= γb + bγ

ωmeas
.
= ωb/n + bω,

The dynamic model of accelerometer and gyrometer biases from Eq. (2.43) and (2.44)
is replaced by

dbγ
dt

« ´
bγ
τbγ

, (4.32)

dbω
dt

« ´
bω
τbω

, (4.33)

where τbγ
ą 0 and τbω

ą 0 are two time constants. This model ensures that inertial
sensor biases are at least detectable, if not observable because this is a stable model.
Thus, in the absence of external information, the “best guess” for biases is zero with
some uncertainty.

4.5.3. Magnetic field instationarity
We assumed in Ch. 2 a magnetic field stationary in the navigation frame. In

Sec. 4.4.2, the total magnetic field has been modeled as the sum of a stationary mag-
netic field and a homogeneous power-line interference of known frequency (In Europe,
50Hz).

Let us drop the assumption of a stationary magnetic field, and replace it with an
assumption on its spectrum. The resulting model reads

dBb

dt
« ´(ωmeas ´ bω) ˆ Bb +∇Bb

[
vb + (ωmeas ´ bω) ˆ

ÝÝÝÝÑ
MbNb

]
+RJBp

n

(4.34)
dBp

n

dt
« ´

Bp
n

τBp

(4.35)

d2Bn
pli

dt2
« ´ω2

pliBn
pli (4.36)

yB « Bb +RJBn
pli . (4.37)

Eqs. (4.34)-(4.35) mean that the typical settling time of a (detectable) magnetic in-
stationarity is τBp , while the total measured field accounts for an additive power-line
interference Bn

pli of pulsation ωpli that is homogeneous in the navigation frame. This
model allows a better rejection of lower frequency disturbances.
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4.5.4. Recursive magnetic field-based heading estimation model
In all of the previously considered non-rotating Earth models, the heading is unob-

servable. All of them are invariant with respect to a change of heading. Therefore,
heading drift is inevitable with these models.

Our goal is to prevent the heading from drifting by using a recursive algorithm
running on a microcontroller with an FPU. One way to achieve this result is to modify
the dynamic model in a way that breaks the problematic symmetry. With low-cost
gyrometers, there is not much choice except relying on the magnetic field.

First, how this can be done without disturbances is discussed. Then, it is shown
that with disturbances, this approach is unusable, and a model is proposed in order
to solve the magnetic heading estimation problem. Finally, the tuning of the resulting
observer is explained, first in one dimension, then in 3 dimensions.

Without disturbances

Pure heading estimation with a Kalman filter is a rather straightforward problem.
In discrete-time, this leads to the one-state, one measurement model of the form:

ψ[k + 1] « ψ[k] + ∆ψ[k] (4.38)
yψ[k] « ψ[k] (4.39)

where ψ[k] represents the heading at time-step k, ∆ψ[k] « ψ[k+1]´ψ[k] its variation
between time-steps k and k + 1 that can be typically estimated from gyrometer mea-
surements, and yψ[k] a noisy measurement of heading, using for example the horizontal
projection of the magnetic field as a heading reference.

With disturbances

In our case, heading measurement is affected by spatially correlated disturbances
from magnetic materials in the environment. Illustrating the issue, a first try at
modeling the dynamics of the disturbance to

ψd[k + 1] « ψd[k] + u[k] , (4.40)

where ψd[k] denotes the magnetic heading disturbance at time-step k, and where an
approximate value of u[k] is assumed to be be provided by an external mean. The
heading measurement is redefined as,

yψ[k] « ψ[k] + ψd[k] , (4.41)

where ψd is the disturbance. Because u[k] is the variation of the magnetic head-
ing disturbance between time-steps k and k + 1, its value can be predicted with an
approximate value of the velocity and the gradient of the magnetic field by using a
discrete-time version of Eq. (2.11) p. 17 (This is done explicitly in Eq. (4.77) p. 110).
However, the model formed by Eqs. (4.38), (4.40) and (4.41) is unobservable, because it
shares the same structural problem as all of the non-rotating earth MIDR models that
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have previously been defined. The problem is obvious even without using Kalman’s
criterion for observability, by considering the following change of variables,

x1[k]
.
= ψ[k] + ψd[k] , (4.42)

x2[k]
.
= ψ[k] ´ ψd[k] , (4.43)

u1[k]
.
= ∆ψ[k] + u[k] , (4.44)

u2[k]
.
= ∆ψ[k] ´ u[k] , (4.45)

which yields the equivalent state-space model,

x1[k + 1] « x1[k] + u1[k] (4.46)
x2[k + 1] « x2[k] + u2[k] (4.47)

yψ[k] « x1[k] . (4.48)

The variable x2 evolves independently from x1 and the output, so recovering informa-
tion on x2 is impossible. By noticing that

ψ[k] =
1

2
(x1[k] + x2[k]) ,

it is clear that recovering the heading is impossible with this model. Therefore, another
model that breaks the problematic symmetry is needed.

The issue

Let us consider the problem of heading estimation from a disturbed magnetic field
from a Bayesian filtering viewpoint. What is needed is a model that captures

• Correlations between magnetic heading disturbances the system is subjected to;

• Prior information about the magnitude of the local magnetic disturbance.

Gyrometers provide variations of heading between successive time-steps. If the velocity
is known, variations of disturbances between successive time-steps can be inferred
from the primary equation of MIDR, Eq. (2.11), but the actual value of magnetic
disturbances depends mainly on position with regularity conditions dictated by the
laws of physics.

The structure of the inference problem can be modeled as a Bayesian network as
depicted in Fig. 4.14. Without the “disturbance model” D, this is the above-mentioned
unobservable system. The “disturbance model” must provide prior information on
the amplitude and/or value of ψd[l], l ď k, and should be able to reproduce spatial
correlations. It can be built, for example, by using Gaussian processes (see, e.g.,
Refs. Wahlström et al. [2013], Kok and Solin [2018], that propose the use of this type of
model for magnetic Simultaneous Localization and Mapping (SLAM)), or parametric
models. However, this would not conform to the design constraint of using solely
an EKF, nor does it seem to be tractable on a microcontroller with an FPU, which
prevents us from benefiting from this area of work. The structure that would fit
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ψ[0] ψ[1] ... ψ[k]

ψd[0] ψd[1] ... ψd[k]

yψ[1] ... yψ[k]

u[0] u[1] u[k ´ 1]

Disturbance model D

Figure 4.14: Structure of the magnetic heading computation problem seen as a
Bayesian network.
The sequence ψ[l], l ď k representing the heading variable can be inter-
preted as a Markov chain. The sequence ψd[l], l ď k representing the
disturbance is not, strictly speaking, a Markov chain, but realizations in
space of a “disturbance model” D. The input u[k] connects its succes-
sive values, thanks to the gradient of the magnetic field. Without D,
the heading is unobservable. With an accurate disturbance model, to fit
into a recursive scheme, D would need to be represented by, e.g., a state
variable.
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a recursive algorithm is described in, e.g., Ref. Barker et al. [1995], as a Markov
Chain. With a Kalman filter, this would lead to making D a parametric model whose
parameters would then be carried with the state vector, or lead to use a non-parametric
model in a finite-horizon observer for example.

In order to respect the design constraints, the proposed solution is to give up entirely
on a “disturbance model” D that would take spatial correlations into account properly,
and to rely only on u[l], l ă k to model them. More formally, the assumption is that

p(ψd[0], ψd[1], ..., ψd[k] | D) =
k

ź

l=0

p(ψd[l] | D) . (4.49)

The advantage of doing so is that it will avoid increasing the dimension of the state-
space model by too much, resulting in a tractable problem. The disadvantage is that for
example, on periodic movements, one will fail to model correlations between magnetic
disturbances from each loop, because the fact that the disturbance has already been
seen will be forgotten.

Proposed model

To fit into a Kalman filtering scheme, let us consider the graph in Fig. 4.14, and find
an appropriate state-space model. The followed method is to express a probabilistic
discrete-time model in a form close to the one described Ref. Barker et al. [1995]. Let
us represent a state-vector at time-step k

x[k]
.
=

(
ψ[k]
ψd[k]

)
. (4.50)

Let us denote

X[k]
.
= tx[0], ..., x[k]u (4.51)

U [k]
.
= tu[0], ..., u[k]u (4.52)

Yψ[k]
.
= tyψ[1], ..., yψ[k]u , (4.53)

and denote the estimate at time-step k

x̂[k]
.
=

(
ψ̂[k]

ψ̂d[k]

)
, (4.54)

such that the recursively estimated state be

p(x[k] | Y [k], U [k ´ 1],D) = N (x̂[k],Σ[k]) , (4.55)

with Σ[k] denoting a corresponding covariance matrix. Let us derive a prediction
model

p(x[k + 1] | Y [k], U [k],D, X[k]) , (4.56)
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with the following assumptions,

p(u[k] | ψd[k + 1], ψd[k]) = N
(
ψd[k + 1] ´ ψd[k], σu[k]

2
)
, (4.57)

and
p(ψd[k] | D) = N (0, a[k]2) , (4.58)

where σu[k]2 and a[k]2 denote the respective variances of these two normal distribu-
tions. On the one hand, we have the Bayes identity

p(ψd[k + 1], Y [k], U [k],D, X[k])

= p(ψd[k + 1] | Y [k], U [k],D, X[k])p(Y [k], U [k],D, X[k]) . (4.59)

On the other hand, we have the Bayes identity

p(ψd[k + 1], Y [k], U [k],D, X[k])

= p(u[k] | ψd[k + 1], Y [k], U [k ´ 1],D, X[k])

p(ψd[k + 1] | Y [k], U [k ´ 1],D, X[k])

p(Y [k], U [k ´ 1],D, X[k]) . (4.60)

Let us introduce the inverse variance

λ[k]2
.
=

(
1

σu[k]2
+

1

a[k + 1]2

)
, (4.61)

and the correlation coefficient

α[k]
.
=

1(
1 + σu[k]2

a[k+1]2

) = 1 ´
σu[k]

2

a[k + 1]2 + σu[k]2
=

1/λ[k]2

σu[k]2
. (4.62)

Combining Eqs. (4.59) and (4.60) and simplifying the result yields

p(ψd[k + 1] | Y [k], U [k],D, X[k])

9p(u[k] | ψd[k + 1], ψd[k]) p(ψd[k + 1] | D) (Bayes’ rule)

9 exp
(
(ψd[k + 1] ´ ψd[k] ´ u[k])2

σu[k]2

)
exp

(
ψd[k + 1]2

a[k + 1]2

)
(Eqs. (4.57) and (4.58))

9 exp
[
λ[k]2

(
ψd[k + 1]2 ´ 2α[k]ψd[k + 1](ψd[k] + u[k]) + α[k](ψd[k] + u[k])2

)]
9 exp

[
λ[k]2 (ψd[k + 1] ´ α[k](ψd[k] + u[k]))

2
]

9N
(
α[k] (ψd[k] + u[k]) , 1/λ[k]2

)
.

(4.63)

Therefore, the following state-space model is obtained
$

’

&

’

%

ψ[k + 1] = ψ[k] + ∆ψ[k] + ηψ[k]

ψd[k + 1] = α[k] (ψd[k] + u[k]) + ηψd [k]

yψ[k] « ψ[k] + ψd[k] ,

(4.64)
(4.65)
(4.66)
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where ηψd [k] represents zero-mean random Gaussian variable of variance 1/λ[k]2.
The resulting disturbance model we end up with is an autoregressive process of order

1 with normal errors, which is the introductory example in Ref. [Rue and Held, 2005,
Sec. 1.1.1], and possibly one of the most straightforward Gaussian processes that can
be dealt with recursively.

By construction, 0 ď α[k] ď 1. As long as α[k] is not identically 0 or 1, the system
is now observable. The behavior of a steady-state Kalman filter on this model would
be the separation of higher frequencies of yψ into ψd and of lower frequencies into
ψ. The parameter α[k] can be chosen by using Eq. (4.62), such that now, we have
a constructive method to tune a Kalman filter that solves the heading estimation
problem.

Tuning

Tuning parameters are computed using the following heuristics. The variable σu[k]
is chosen such that

σu[k]9}v[k]} , (4.67)

in order to model a spatial regularity condition10, and a[k] models the expected mag-
nitude of the local disturbance, in a way that is discussed later on. This scheme is
illustrated in Fig. 4.15, where u[k] is deduced from the gradient of the magnetic field
and the current velocity v[k] with the help of Eq. (2.11).

The case α[k] = 0 reduces to the classical Attitude and Heading Reference System
(AHRS) model, represented by Eqs. (4.38)-(4.39). The case where α[k] is close to 1
corresponds to σu[k]

2, or }v}, close to 0, for which ηψd [k] « 0. If gyrometer biases
were also modeled in this one-dimensional case, the behavior of such a model would
be comparable to the quasi-static field approach (see Ref. Afzal et al. [2011b]).

Let us remark that, if σu[k]2 ! a[k]2,

α[k] « 1 ´
σu[k]

2

a[k]2
, (4.68)

approximation which does not ensure that 0 ď α[k] ď 1.

The magnetic gradient as a variable of interest

This section reproduces Ref. [Chesneau et al., 2017, Sec. II.D]
In practice, tuning σu[k] may lead to a static proportionality coefficient with respect

to velocity. However, tuning a[k] reveals slightly more problematic. A small value
leads to a faster convergence but poor disturbance rejection, while a high value leads
to poor convergence rates but good disturbance rejection with respect to magnetic
disturbances. A heuristic would be useful in order to choose a pertinent tuning for
10In fact, should one consistently model the disturbance as a spatial first-order autoregressive process,

a more logical choice would ignore u[k], and ensure that log(α[k])9 ´ }v}. Instead, for small
velocities the choice of Eq. (4.67) leads to log(α[k])9 ´ }v}2, which is closer to a second-order
spatial autoregressive process. This choice is motivated by the predictability of u[k].
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predicted
ψd[k + 1]

}v[k]}

ψd[k]

unobservable model

chosen model

3σ upper bound

3σ lower bound

Figure 4.15: Magnetic heading disturbance prediction model. With increasing velocity,
the traveled distance between time-steps k and k + 1 increases. The
first order interpolated magnetic model becomes less relevant, which is
captured by our model, that smoothly falls back to a zero-mean prior
with relatively large uncertainty.

a[k] from measurements, that is to say, increasing with the expected amplitude of the
local magnetic disturbance.

Among trajectories used in Ref. Chesneau et al. [2016], one of them is chosen for its
relatively small heading drift and large swept volume (Fig. 4.16). Magnetic declination
can be computed for each time-step in an arbitrary navigation frame (Fig. 4.17). Data
is then sorted by magnetic gradient norm, clustered, and the standard deviation is
computed for each cluster (Fig. 4.18). One can notice that, while the magnitude of
magnetic disturbances remains somewhat high, its distribution matches noticeably
well with an affine model with respect to the magnetic gradient. This suggests the
following empirical model:

a[k] = a0 + a1N [k], (4.69)

where
N [k] =

›

›

›
∇Bb[k]

›

›

›
. (4.70)

Other publications such as Refs. Faulkner et al. [2010], Afzal et al. [2011a] suggest
comparing the magnetic norm and dip to a geomagnetic model. However, on the same
data, these variables do not seem to provide a reliable prior about the magnitude
of the local disturbance of the magnetic declination. Empirical data instead suggest
that in general, the local declination, norm, and dip of the magnetic field behave like
independent variables. This observation is an argument against using these properties
to compute a value for a[k].
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Figure 4.16: Reference multi-floor trajectory for magnetic heading model calibration
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Figure 4.17: Estimated magnetic declination in the navigation frame with respect to
the gradient norm
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Figure 4.18: Declination standard deviation with respect to gradient norm
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We have no data to assert that Eq. (4.69) is an accurate model for other buildings
apart from SYSNAV’s office in Vernon. This has not been checked for lack of resources
and time. It would certainly be useful to verify these results from magnetic maps such
as in Ref. Wahlström et al. [2013] and with the help of an external reference.

Heading estimation in the full 3D problem

This section reproduces Ref. [Chesneau et al., 2017, Sec. II.C].
In the full 3-dimensional problem, we propose adding two variables to the state

vector, namely ψinit and ψd and one scalar measurement yψ.
To appropriately use multivariate Gaussian distributions to represent uncertainties,

attitude and trajectory are then represented in a navigation frame with arbitrary
heading Rn, and the additional scalar variable ψinit is added to the error state in order
to represent the arbitrary initial heading. Since ψinit is constant by definition, we have,
with no process noise,

@k, ψinit[k + 1] = ψinit[k] . (4.71)

With ψd also added to the state vector, equations (4.65) and (4.71) are then combined
to get the full discrete-time model.

Let Re be a frame of reference whose north is defined by the geomagnetic field. Let
us define ψinit such that

Rinit
.
=

 cosψinit ´ sinψinit 0
´ sinψinit cosψinit 0

0 0 1

 (4.72)

gn
1 = 0 (4.73)

gn
2 = 0 (4.74)

Be .
= Rinit

(
RBb) (4.75)

ψd
.
= arctan

(
Be

1

Be
2

)
.
= φ(Be) (4.76)

In absence of magnetic distortions in Re, Be
1 = 0, Be

2 ą 0, and ψd = 0.
The value of u[k] from Eq. (4.65) is computed using the discrete-time prediction

equation stemming from Eq. (4.34),

u[k] = φ(R[k + 1]Bb[k + 1]) ´ φ(R[k]Bb[k]) (4.77)

Then (4.76) can be used as a scalar measurement equation for Kalman filtering in the
3D problem, by substituting Be with its expression in (4.75), then substituting RBb

with a function of yB and Bb
pli by using (4.37),

yψ[k]
.
= φ (Rinit[k](R[k]yB[k] ´ Bn

pli[k])) ´ ψd[k]

= φ (R[k]yB[k] ´ Bn
pli[k]) ´ ψd[k]

= 0 .

(4.78)
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Since yB[k] is not precisely known, neither is yψ[k], which must then be visible in the
measurement noise covariance matrix of the Kalman filter.

The chosen error parameterization for ψinit and ψd is additive.
Let us remark that adding ψinit to the state vector leads to an over-parameterization

of heading, and therefore, to an unobservable model. An alternative solution is to
identify Re with the arbitrary initial navigation frame Rn and to modify the error
parameterization function ξ such that a circular correction is correctly applied when
heading is corrected. However, this parameterization is preferred in order to avoid
ugly trajectory corrections during the convergence phase of heading estimation.

4.5.5. EKF implementation
An error representation is chosen such that the implemented algorithm is a MEKF,

that is to say,

x̃[k]
.
=



rBb[k]
rvb[k]

Φ̃[k]
rBn

pli[k]
rBn

pli[k ´ 1]
rBn

p[k]
rbγ [k]
rbω[k]
ψ̃init[k]

ψ̃d[k]
ĂMn[k]



, ξ(x̂[k], x̃[k])
.
=



B̂b[k] + rBb[k]
v̂b[k] + rvb[k]

exp
[
Φ̃[k]ˆ

]
R̂[k]

B̂n
pli[k] +

rBn
pli[k]

B̂n
pli[k ´ 1] + rBn

pli[k ´ 1]

B̂n
p[k] +

rBn
p[k]

b̂γ [k] + rbγ [k]
b̂ω[k] + rbω[k]

ψ̂init[k] + ψ̃init[k]

ψ̂d[k] + ψ̃d[k]

M̂n[k] + ĂMn[k]



.

The output vector is

y[k] =

(
yB[k]
yψ[k]

)
,

where yB[k] depends on the state according to Eq. (4.37), and yψ[k] depends on the
state according to Eq. (4.78). The derivation of the linearized system and the tuning
of the EKF are not detailed here.

With this parameterization, the trajectory is computed in an initially unknown
navigation frame Rn, and the change of frame to express the position in a frame
whose north is defined by the magnetic field Re is represented by ψinit.

After convergence of ψinit, this over-parameterization should be dropped either in
favor of the simple removal of the state or an error parameterization for Mn that is
independent of the navigation frame.

4.5.6. Experimental results
These experimental results have been published in Ref. Chesneau et al. [2017]
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Two data sets are chosen in order to illustrate the effect of magnetic heading esti-
mation on the accuracy of the trajectory. In each case, the sensor board is strapped
to the user’s trunk.

IPIN 2016 competition, Track 2

The first data set was acquired during an unofficial trial at the IPIN 2016 compe-
tition in Alcalá de Henares, Spain, on the actual path of the pedestrian dead reck-
oning competition.11 The path included 57 geo-referenced waypoints. The described
observer is compared with the one published in Ref. Chesneau et al. [2016] (or equiva-
lently the one described in Sec. 4.4) in the following manner: algorithms are started on
the first waypoint with no initialization procedure beforehand. Since trajectories are
computed in the same arbitrary initial reference frame, both are rotated by the final
estimate of ψinit computed by the new algorithm, corrected by a magnetic declination
of -0.93 degrees obtained from the World Magnetic Model (WMM) and displayed on
the same map (see Fig. 4.19-4.22). The solid blue trajectory is computed with the
new algorithm, the dotted green one is computed with the old algorithm, and solid red
bars are plotted between waypoints and their corresponding estimate according to the
new algorithm. A clear improvement in performance is observed (see Fig. 4.23a-4.23b)
comparing the algorithm in Ref. Chesneau et al. [2016] with the current one. The
output heading of the old algorithm drifts clockwise, which seems to cause most of the
error growth after waypoints number 20-25. The new algorithm that includes magnetic
heading estimation does not display this behavior.

Indoor trial with a heading reference

The second data set is acquired in a building with a heading reference. The heading
reference consists of two georeferenced landmarks materializing a known geographical
direction. An experimental trajectory is made by repeatedly traveling between these
two references, 55 times, and marking the passage in front of each landmark in the
same position, with a probable precision of ˘30 cm. The estimated distance between
the two landmarks is 22.9 m.

After compensating for the local declination according to a geomagnetic model,
heading error is inferred from computing the traveling direction between the two refer-
ences from the estimated trajectory (see Fig. 4.24), and comparing it with the direction
of the heading reference. Results are compiled in Table 4.1. Between marks 49 and
50, movement is almost stopped during 10 minutes in front of a ferromagnetic struc-
ture, resulting in a strong magnetic disturbance. Heading drifts slowly during these
10 minutes, and recovers after a few round trips.

The maximum estimated heading error immediately after initialization is 6.2 degrees,
4.8 degrees excluding the first measurement. The standard deviation of the estimated
11The sensor board carries barometers that are sensitive to light. See, e.g., the datasheet of another

barometer https://www.nxp.com/docs/en/data-sheet/MPL115A2.pdf. Barometers measurements
were used in navigation algorithms during the two official runs of this competition without properly
protecting the barometer of the prototype, severely degrading the estimation performance.
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Figure 4.19: Computed trajectory on the path of IPIN 2016 Track 2, ground floor.
The blue solid line is the output of the EKF published in Ref. Chesneau
et al. [2017] (or Sec. 4.5). The green dashed line is the output of the EKF
published in Ref. Chesneau et al. [2016] (or Sec. 4.4). Solid red bars are
plotted between waypoints and their corresponding estimate according to
the former algorithm.
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Figure 4.20: Computed trajectory on the path of IPIN 2016 Track 2, first floor.
The blue solid line is the output of the EKF published in Ref. Chesneau
et al. [2017] (or Sec. 4.5). The green dashed line is the output of the EKF
published in Ref. Chesneau et al. [2016] (or Sec. 4.4). Solid red bars are
plotted between waypoints and their corresponding estimate according to
the former algorithm.
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Figure 4.21: Computed trajectory on the path of IPIN 2016 Track 2, second floor.
The blue solid line is the output of the EKF published in Ref. Chesneau
et al. [2017] (or Sec. 4.5). The green dashed line is the output of the EKF
published in Ref. Chesneau et al. [2016] (or Sec. 4.4). Solid red bars are
plotted between waypoints and their corresponding estimate according to
the former algorithm.
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Figure 4.22: Computed trajectory on the path of IPIN 2016 Track 2, third floor.
The blue solid line is the output of the EKF published in Ref. Chesneau
et al. [2017] (or Sec. 4.5). The green dashed line is the output of the EKF
published in Ref. Chesneau et al. [2016] (or Sec. 4.4). Solid red bars are
plotted between waypoints and their corresponding estimate according to
the former algorithm.
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(a) Distance from ground truth with the algorithm from Sec. 4.4 (or Ref. Chesneau et al.
[2016]). The third quartile of error is 19.76m
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(b) Distance from ground truth with the algorithm from Sec. 4.5 (or Ref. Chesneau et al. [2017]).
The third quartile of error is 2.32m

Figure 4.23: Comparison of distance from ground truth between algorithms
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Table 4.1.: Estimated direction of travel during the indoor trial with a heading refer-
ence

South
landmark

North
landmark

Estimated
direction of
travel [deg]

Heading
error
[deg]

1 2 307.7 6.2
4 5 303.1 1.6
6 5 302.2 0.7
6 7 302.9 1.4
8 7 302.4 0.8
8 9 303.1 1.5
10 9 302.9 1.4
10 11 303.1 1.5
17 18 303.5 2.0
19 18 303.0 1.4
19 20 303.6 2.1
21 20 303.0 1.5
41 42 306.3 4.8
43 42 304.2 2.7
43 44 304.9 3.4
45 44 303.6 2.1
45 46 305.0 3.5
47 46 303.7 2.2
47 48 304.1 2.6
49 48 303.1 1.6
50 51 297.9 -3.6
52 51 297.1 -4.4
52 53 298.8 -2.7
54 55 301.8 0.2
56 55 301.0 -0.5
56 57 301.8 0.3
58 57 301.3 -0.2
58 59 302.3 0.8
60 59 301.7 0.1
60 61 303.1 1.6
62 61 302.5 1.0
62 63 303.0 1.5
64 63 302.3 0.8
64 65 303.2 1.7
66 65 301.9 0.3
66 67 303.0 1.5
68 67 302.0 0.5
68 69 303.2 1.7
70 69 302.1 0.6
70 71 303.5 1.9
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Figure 4.24: A 2.5km, 56 min long benchmark trajectory

heading error is 1.9 degrees.
A few other trials have been made without a heading reference (see Fig. 4.26).

Heading remains generally stable with a few degrees of accuracy. However, in some
cases, performance can be degraded. In one instance, a metallic swing gate has had
to be open after climbing a caged ladder, resulting in a strong magnetic disturbance.
This type of disturbance is poorly managed by the EKF and heading estimator, since
it leads to wrong velocity estimates, wrong heading disturbance predictions, and wrong
heading estimation tuning. This explains the visible a slowly recovering heading error
in Fig. 4.26b. Moreover, the fact that the EKF carries an unobservable state in its
parameterization of heading leads to poor recovery of such disturbances. Another
compromise needs to be found to replace this parameterization, depending on the use
case of the navigation algorithms.

4.5.7. Conclusion
Compliance In this Section, the state-space model of an EKF has been described,
aiming at taking into account inertial sensor biases, power-line interference, some lower
frequency magnetic disturbances, and tackling the problem of heading drift. This
complies with the motivations enumerated in Sec. 4.5.1.

Performance Performance has been evaluated using data collected during the IPIN
2016 Conference, with results that are comparable, on this trial, with those achiev-
able with Pedestrian Dead Reckoning (PDR) algorithms with high-performance foot-

119



4. Using Extended Kalman Filters for Magneto-Inertial Dead-Reckoning

Figure 4.25: Beam in front of which the user is sitting for 10 min in the middle of the
benchmark trajectory

mounted Inertial Measurement Units (IMUs).

In contrast with PDR algorithms, this performance is obtained without making
assumptions about the nature of the movement. Sensors do not need to be foot-
mounted, and can be carried by hand, to draw cursive text with the trajectory, for
example.

The long-distance performance has been improved since the first observer (Described
in Sec. 4.4), often leading to relative drift errors well under 1% of the traveled distance.
Illustrating this fact, on the IPIN 2016 - Track 2, errors stay under a few meters for a
trajectory several hundreds of meters long (Fig. 4.23b). In Fig. 4.28, a test trajectory
of more than 550 m shows a closed path drift of under 42cm. In Fig. 4.26 are displayed
trajectories of one to several kilometers, 20 to 60 minutes walks. This was done without
compromising the short term accuracy observed with the previous algorithm.

Remaining work The short-term performance has not been evaluated in motion cap-
ture experiments like for the previous observer. Moreover, despite its fulfilling its
intended purpose in practice, the heading estimation model suffers from a representa-
tiveness problem.
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(a) Trajectory computed during a 20 min walk
in GIPSA-lab, Grenoble

(b) Trajectery computed during a 50 min indoor
walk

(c) Trajectory computed during a 1h indoor walk

Figure 4.26: A few more trajectories computed during indoor trials, without heading
reference.
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Figure 4.27: A metallic swing gate has been opened during the trial from Fig. 4.26b
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Figure 4.28: Test trajectory in SYSNAV’s office (Fig. 4.29) with the navigation algo-
rithms described in Sec. 4.5. Colors represent height. The starting point
and the ending point are the same. On the estimated trajectory, they
are 42 cm apart, for a total estimated traveled distance of more than
550 m. Many colleagues have been bothered during its realization by the
repeated circling around their desks. Several loops are also made around
the building.
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Figure 4.29: Picture of SYSNAV’s office in Vernon

4.6. Conclusion
Performance Experimental results show that with MIDR, a performance under 1%
of traveled distance is accessible in practice. At this point, a large part of the reason
seems to stem from considerations in Sec. 3.4 rather than from navigation algorithms
since the proposed discrete-time model is mainly phenomenological. This justifies the
work undertaken in Part. II aiming at improving the calibration process, and reducing
measurement uncertainty.

Heading Regarding heading estimation, the proposed solution allows a pretty robust
filtering solution in practice regarding the amplitude of disturbances usually observed
in indoor environments. However, it rests on shaky theoretical foundations. Comput-
ing the heading by relying on the direction of the magnetic field does not seem to be
a problem solvable using a recursive algorithm, all the more with a recursive Bayesian
filtering algorithm such as the Kalman filter.

Power-line interference The main source of subjective uncertainty with regards to
MIDR is the validity of the stationarity assumption of the magnetic field. Experiments
show that this assumption is in general not true. However, the main offender is power-
line interference, which is a pretty predictable disturbance. An observer accounting for
this disturbance has been designed and evaluated on experimental data successfully
(evaluation in simulation is not reported in this document but in Ref. Chesneau et al.
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[2016].)

Inertial sensor biases Experimental evaluation has shown the sensitivity of attitude
and velocity estimation to inertial sensor errors, especially to biases. This problem,
anticipated in Ch. 2, is solved in practice in Sec. 4.5. The successful recovery of
inertial sensor biases shows that the hope of recovering them, formulated in Sec. 2.6
was well-founded.

Theoretical shortcomings The designed EKF is used successfully, but without proof
of convergence, and is not adapted to yield valid error estimates in the presence of
modeling errors such as those of the magnetic field gradient. This issue, which is not a
surprise, is an inherent characteristic of MIDR, which motivates finding another tool.

Future work Let us remark that the MIDR approach we have described in discrete-
time mainly consists in interpolating a linear local map of the magnetic field at a
time-step k, then measuring the magnetic field at time-step k+ 1, and computing the
position of the sensor at time-step k+1 in the frame of time-step k. The same approach
is presented in Ref. Skog et al. [2018] using interpolations of higher order spatial
derivatives of the magnetic field, allowing direct estimation of the angular velocity.
Assuming a proper array of magnetometers has been designed (see Sec. 3.2.6), then
it can be combined with the current one (see Sec. 2.2.2). Better estimates of inertial
sensor biases can be expected with this approach.
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5.1. Introduction
In Part. I, particularly in Ch. 3, it is shown that the reachable accuracy of Magneto-

Inertial Dead-Reckoning (MIDR) depends heavily on magnetometer calibration. The
magnetometer calibration techniques discussed in Ch. 3 are based on ellipsoid fitting
techniques (see the relevant chapter and references therein). However, these techniques
are limiting in several aspects.

Completeness In the context of magnetometer array calibration, ellipsoid fitting
techniques provide incomplete calibrations, since they are insensitive to magnetometer
effective positions and the choice of sensor reference frame. This weakness is shared
by all techniques that rely upon homogeneous magnetic fields.

Scaling-up the production process The magnetic calibration process of the Magneto-
Inertial Measurement Unit (MIMU) device discussed in Ch. 3 relies on manual outdoor
data collection. Difficulties naturally arise with the scaling-up of the production, that
needs to be reliable, repeatable and efficient. As is, because the many sources of error
must be controlled during data collection, the process requires careful and painstaking
work of a trained operator.

Mechanization Mechanization of ellipsoid fitting data collection is indeed possible
and was demonstrated in several publications, but requires non-magnetic materials
and actuators (see Ref. Pang et al. [2013]). Depending on the desired accuracy, this
can be a limiting factor. The use of actuators can be avoided by relying on calibrated
Helmholtz coils to simulate an outdoor trial with the technique described in Ref. Mo-
hamadabadi and Hillion [2014], Díaz-Michelena et al. [2015]. In that case, magne-
tometer calibration accuracy requires sizeable and precisely assembled Helmholtz coils
(see, e.g., Ref. Le Contel et al. [2016]), the size of the coils depending on the size
of the MIMU device that must be contained into the zone in which the generated
magnetic field is homogeneous. Nevertheless, the size of the coils can be decreased by
the use of additional coils, e.g., in the so-called Maxwell or Braunbeck configurations.
However, because the generated field is meant to be homogeneous, many calibration
problems listed in Ch. 3 remain unsolved. Such coil systems also require calibration
(see Refs. Dinale [2013], Zikmund et al. [2015]).

State of the art Ref. Turner et al. [2015], Hall et al. [2012] describe single-axis
Helmholtz antiparallel coils, enabling the precise calibration of a magnetic gradiometer.
The described technique requires precise placement of the device inside of the coils.
Avoiding this kind of requirement was one of the motivations for the use of ellipsoid
fitting techniques.
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Refs. Adachi et al. [2014], Yoshida et al. [1994] solve this issue, at the cost of a precise
arrangement of magnetic sources, for Superconducting QUantum Interference Device
(SQUID) magnetometer arrays. Magnetic sources are small coils whose generated field
is similar to magnetic dipoles. This solution is not convenient for use with Anisotropic
Magneto-Resistance (AMR) magnetometers, because of their lower sensitivity. In our
case, it is preferable to work inside rather than outside of coils, because it is possible
to generate much stronger magnetic fields with little current this way.

Requirements Since magnetometer biases can be calibrated with dedicated passive
hardware such as a mu-metal box (see Ref. Mohamadabadi [2013]), an accurate, mech-
anizable calibration process is investigated for unbiased magnetometer arrays, using an
arrangement of coils (such as Helmholtz, Maxwell, Braunbeck configurations...). The
solution must be sensitive to magnetometer effective positions. It must also avoid the
need for precise placement of the device, as is the case with ellipsoid fitting techniques.
The process must give access to coil calibration with the lowest possible requirements
on their manufacturing process or any potential reference magnetometer.

Idea An arrangement of coils is used, such as tri-axis Helmholtz coils (Fig. 5.1), in a
non-standard way, by driving each of the six individual coils independently instead of
by pairs, in order to generate an unknown, inhomogeneous magnetic field. The mag-
netometer array is placed anywhere inside of the coils in several, different unknown
positions, while independent and known currents are supplied to each coil. It is shown
that in practice, the simultaneous knowledge of currents and measurements is enough
in order to calibrate both the coil system and the array of magnetic sensors, up to
unknown units of length and magnetic field, and to precisely compute the different
positions in which the array has been placed. While the unit of magnetic field is unim-
portant in MIDR, the unit of length is important and may be recovered with a specific
experiment. When calibrating the coil system, rather than its geometric characteris-
tics, the generated magnetic field in an open simply connected space enclosed by the
coils is identified instead. Prior knowledge of the geometry of both the coil system
and the magnetometer array is only used to initialize computations. Alignment with
inertial sensors is made possible by simultaneously using the setup as a localization
system. Using Helmholtz coils as an example, the process can be extended to any
configuration of at least six coils.

Outline The problem of localizing the magnetometer array inside of the coils while
calibrating both the generated magnetic field and the sensor array is stated in Sec. 5.2.
Since the arrangement of coils is assumed to be Helmholtz coils, discussion on the
practical implications of this configuration is provided in Sec. 5.3; this discussion must
be adapted to whatever other configuration is desired. Calibration is undertaken in
simulation in Sec. 5.4. A proof of concept experiment is undertaken in Sec. 5.5. Then,
Sec. 5.6 concludes this chapter.
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Figure 5.1: Tri-axis Ferronato® BH-600 Helmholtz coils used for this work
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5.2. Problem statement
Let us consider a rigid body strapped with an array of (unbiased) linear single-axis

point-magnetometers (as defined in Sec. 3.2.1). The rigid body is associated with
a reference frame Rb. Let us also consider three pairs of Helmholtz coils arranged
orthogonally as in Fig. 5.1, fixed with respect to a navigation frame Rn.1 Currents
through each of the six coils are assumed to be controlled and measured independently
from each other. It is also assumed that the rigid body can be moved inside of the
volume enclosed by the coils. The problem under consideration is to determine the
trajectory of the system inside of the coils, along with the calibration of both the coils
and of the array of magnetometers, from simultaneous measurements of currents in the
coils and magnetometers output. The trajectory, although not considered a calibration
parameter, is useful for alignment purposes with inertial sensors (see Sec. 3.3.2).

5.2.1. Notations and definitions
Magnetometers Linear single-axis point-magnetometers are defined in Sec. 3.2.1.
Based on Eq. (3.1), the unbiased measurement model assumption for the j-th sensor
is then

@j P t1, ..., nmagu, @t, Y j(t) = jab Bb(jpb, t) , (5.1)
where jab is the co-vector representing the j-th magnetometer scale factor and sensitive
axis in body frame, jpb the vector representing its effective position in body frame,
and Bb represents the magnetic field vector in body frame Rb.

Let us also denote @i, j, aji
.
= ja

b
i (see notations p. 38) the coordinates of jab, and

jp
i those of jpb such that jpb = (jp

1, jp
2, jp

3)J.

Change of frame Let us assume that at any point P in space, the change of frame
between Rb and Rn can be expressed according to Eq. (2.8),

Bn(Pn, t) = RBb(Pb, t) ,

where for any point P whose coordinates are Pb in Rb and Pn in Rn, the change of
coordinates between Rn and Rb reads Eq. (2.1),

Pn = R(Pb ´ Mb) + Mn ,

where M is a fixed point of the rigid body, Mn (resp. Mb) represents its coordinates
in Rn (resp. in Rb), and the trajectory of the rigid body is defined as the evolution
of (R,Mn) P SE(3) with time, where SE(3) denotes the special Euclidean group that
represents rigid body motion. To later simplify notations, let us define

Mb .
= 0 . (5.2)

In the following, coefficients of the matrix R are denoted Rij where i is the line
number and j the column number. We denote S .

= RJ = R´1 such that

@i, j, Sji
.
= Rij .

1The same work can be done with other arrangements of at least six coils.
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Coils Let us assume that the magnetic field is only produced by electric currents in
the coils and that these currents vary slowly enough that magnetic field propagation
times are negligible. The magnetic field in the navigation frame Rn can then be
expressed as a linear function of the ncoils = 6 currents in the coils Im(t), 1 ď m ď 6,

Bn(Pn) =
ÿ

m

Tn
m(Pn) Im(t) , (5.3)

where

Tn
m(Pn)

.
=

T 1
m(Pn)

T 2
m(Pn)

T 3
m(Pn)

 (5.4)

represents the magnetic field in the navigation frame, generated by the m-th coil,
divided by the current Im going through it. The functions Tn

m represent the calibration
of the coils. They are assumed to be time-independent in Rn.

Magnetic field, set of possible positions The magnetic field, in an open simply
connected space enclosed by the coils, is assumed to satisfy Maxwell’s equations for a
source-free region of space. This property must also be respected by the functions Tn

m,
that are therefore only defined on this simply connected space. Conversely, possible
values of (R,Mn) P SE(3) must be limited into an open, simply connected subset
X Ă SE(3) enclosed by the coils, that is assumed to contain the origin of Rb.

The calibration of the coils is then local, in the sense that the magnetic field is
identified only in a bounded region of space.

Measured transfer matrices Combining Eq. (5.1) with Eq. (5.3) together with change
of frame equations, i.e. Eqs. (2.1) and (2.8), yields

Y j(t) =
ÿ

m
jabRJTn

m(R jpb + Mn) Im(t) . (5.5)

Let us assume that Y j(t) and Im(t) can be measured at fixed position (R,Mn) P SE(3)
for a time during which all currents Im(t) are linearly independent. Then, because
of Eq. (5.5), the knowledge of Y j(t) and Im(t) for a given position can be condensed
into a transfer matrix that depends on (R,Mn) P SE(3). In other words, there exists
a transfer matrix H(R,Mn) whose coefficients Hi

j(R,Mn) are such that, following
Einstein summation convention2,

Y i = Hi
m(R,Mn) Im , (5.6)

where coefficients Hi
m can be expressed as

Hi
m(R,Mn) = aijS

j
kT

k
m(R ipb + Mn) . (5.7)

Finally, let us denote
H Ă Rnmagˆncoils ,

the manifold spanned by H(R,Mn) when (R,Mn) varies in X Ă SE(3).
2See Ref. [Appel, 2007, Sec. 16.1.b] summation is implied whenever an index appears in a term once

as a subscript and only once as a superscript.
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5.2.2. Problem formulation
The problem can be formulated as,

P1 Given (a possibly finite subset of) the manifold H, are magnetometer calibration
parameters jab and jpb identifiable, along with coil calibration functions Tn

m ?

P2 Given (a possibily finite subset of) the manifold H, is it possible to recover the
corresponding position of the magnetometer array for each possible point on the
manifold? That is to say, is it possible to recover the inverse of

X Ñ H
(Mn, R) ÞÑ H(R,Mn) .

5.2.3. Theoretical considerations and reformulation
Problems P1 and P2, as such, are ambiguously defined. The following theoretical

aspects must be considered before attempting to solve them.

Notion of identifiability in Problem P1

Parameter space Let us denote θ the tuple of magnetometers and coils calibration
parameters,

θ
.
=
(
(jpb), (jab), (Tn

m)
)
, (5.8)

where the notation (jpb) = (jpb)j=1,...,nmag represents the tuple of effective position
vectors for all nmag magnetometers (the same applies to (jab)), and the notation
(Tn

m) = (Tn
m)m=1,...,ncoils represents the tuple of coil calibration functions as defined

in Sec. 5.2.1. The space of all such θ will be denoted Θ. Each element θ P Θ indirectly
defines an image manifold H, through Eq. (5.7).

Notion of identifiability For Problem P1, the notion of identifiability is interpreted as
the ability to distinguish tuples of parameters by their corresponding manifold H. This
means that if two tuples of parameters θ and θ1 in the parameter space Θ are different,
θ ‰ θ1, then their corresponding manifolds H and H1 spanned by the corresponding
measured transfer matrices H and H1, when (R,Mn) varies in X Ă SE(3), should be
different too. This is equivalent to guaranteeing that the symmetric difference H∆H1

should not be the empty set H, where

H∆H1 .= (H Y H1)z(H X H1) . (5.9)

Distinguishing θ from θ1 can then consist in finding at least one element of H∆H1; it
is then unnecessary to always fully know H and H1.
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Reference frame and scaling ambiguity This notion of identifiability is too strong to
hold because the manifold H is invariant by redefinition of body and navigation frame
and by distance and magnetic field rescaling. Indeed, with λ, µ ą 0, U, V P SO(3) and
C,D P R3,

Hj
m(R,Mn)

= jabRJTn
m(R jpb + Mn)

= λ jabV V JRJUUJ 1

λ

Tn
m

(
UUJRV V Jµ

µ

[
jpb +

1

µ
V (C ´ C)

]
+
µ

µ
UUJMn +

1

µ
U(D ´ D)

)
=
(
λ jabV

) (
UJRV

)J 1

λ
UJ

Tn
m

(
1

µ
U

"

(UJRV )[µV J(jpb +
1

µ
V (C ´ C))] + µUJMn + D ´ D

*)
= jab1

R1JTn1

m

(
R1

jpb1

+ Mn1
)
,

(5.10)

where

R1 .= UJRV , (5.11)

Mn1 .
= µUJMn +R1C + D , (5.12)

jab1 .
= λ jabV , (5.13)

jpb1 .
= µ V J

jpb1

´ C , (5.14)

@Pn1

P R3, Tn1

m(Pn1

)
.
=

1

λ
UJTn

m

(
1

µ
U(Pn1

´ D)

)
. (5.15)

It can then be checked that Tn1

m also follows Maxwell’s equations for a source-free
region of space. This invariance motivates the definition of an equivalence relation
“„” on Θ, which identifies two elements θ, θ1 P Θ if and only if there exists λ, µ ą 0,
U, V P SO(3) and C,D P R3 such that

θ1 .=
(
(jpb1

), (jab1

), (Tn1

m)
)

can be deduced from θ with Eqs. (5.13)-(5.15). In this case, we write θ „ θ1. In
terms of the equivalence relation “„”, identifiability for Problem P1 corresponds to the
injectivity of the mapping [θ] ÞÑ H on the identification space Θ/ „ (see Ref. Willard
[2004], Def. (9.11) p. 62), where the notation [θ] denotes the equivalence class in Θ/ „

of the particular representative θ.

Reformulation of the localization problem P2

By construction, there exists at least one coordinatization of H by a subset of SE(3),
namely X . However, because of the above considerations, such a coordinatization is
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not unique. A whole family of them can be deduced from Eqs. (5.11)-(5.12). Therefore,
to obtain a meaningful answer to Problem P2, let us reformulate it as such: Given
θ P Θ, is the application

X Ñ H
(Mn, R) ÞÑ H(R,Mn) .

injective? If so, since it is surjective by definition of H, then it is bijective. Thus its
inverse can be recovered. Localization is then dependent on the ability to choose a
unique representative θ in its equivalence class [θ], in a way that defines Rn and Rb
along with the distance scale factor unambiguously.

Missing assumptions?

Proofs of identifiability and of injectivity of (Mn, R) ÞÑ H(R,Mn) have not been
found, and assumptions are certainly missing for these results to hold (for example,
regarding the minimal number of sensors and the space of admissible calibrations). Fi-
nally, let us remark that while the problem is stated in a Helmholtz coils configuration,
this assumption has not yet been used.

5.3. Approach with Helmholtz coils
Until now, the fact that the coils were Helmholtz coils has not been used. Let us

look at the practical implications of using this specific arrangement.

5.3.1. Magnetic field parameterization in ideal Helmholtz coils
Parallel (classic) configuration

The Helmholtz coils configuration is illustrated in Fig. 5.2. Let us consider an
orthonormal frame of reference. Let us consider a 1-turn coil of radius 1, axis z and
center z = ´1/2, crossed by a current 1 spinning in counter-clockwise around z. Let
us consider an identical coil placed at z = 1/2. Denoting the dimensionless variable

X =

xy
z

 with r =
a

x2 + y2 + z2 it can be show that the (dimensionless) magnetic

field generated by this configuration reads

BÒ
z (X) =

 1
125

(
´216x3z ´ 216xy2z + 288xz3

)
+O(r5)

1
125

(
´216y3z ´ 216x2yz + 288yz3

)
+O(r5)

1 ´ 1
125

(
´54x4 ´ 108x2y2 + 432x2z2 ´ 54y4 + 432y2z2 ´ 144z4

)
+O(r5)


(5.16)

Denoting ` the radius of the coils, µ0 the magnetic constant and IÒ
z the current in the

coils, to link the dimensionless variables with the dimensional variables,

• x, y, z are obtained by division of a length by `
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z

x0

1
2

1

IÒ
z

IÒ
z

y

Figure 5.2: Parallel (classic) Helmholtz coils configuration along the z axis.

• BÒ
z (X) is obtained by division of a magnetic field by

8µ0I
Ò
z

5
?
5`

.

The magnetic field is then parallel to the z axis up to order 4 around the origin.

Antiparallel (gradient) configuration

The antiparallel Helmholtz coils configuration is illustrated in Fig. 5.3. It is obtained
by reversing the current in the coil placed at z = ´1/2. With the same notations as
above,

BÖ
z (X) =

´x+ 1
5

(
´4x3 ´ 4xy2 + 16xz2

)
+O(r5)

´y + 1
5

(
´4x2y ´ 4y3 + 16yz2

)
+O(r5)

2z + 1
5

(
16x2z + 16y2z

)
´ 32

15z
3 +O(r5)

 . (5.17)

• x, y, z are still obtained by division of a length by `,

• BÖ
z is obtained by division of a magnetic field by

24µ0I
Ö
z

25
?
5`

. This coefficient is

different from the one of the parallel configuration.

3-axis coil configuration

The above parameterization can be generalized to an orthogonal 3-axis configuration
by axes relabeling. In the following, it is assumed that in the ideal configuration, the
three axes are aligned with those of Rn.
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Figure 5.3: Antiparallel (gradient) Helmholtz coils configuration along the z axis.

5.3.2. Localization principle
Let us consider 3 ideal identical Hemholtz coils mounted to form 3-axis coils such

as in Fig. 5.1.3 The (dimensional) magnetic field around the center of the coils reads

Bn(X,t)=
8µ0

5
?
5`

1 0 0
0 1 0
0 0 1

IÒ
x

IÒ
y

IÒ
z

+
24µ0

25
?
5`

2x ´x ´x
´y 2y ´y
´z ´z 2z

IÖ
x

IÖ
y

IÖ
z

+O(r3) (5.18)

From the above equation, it can be seen that it is possible to deduce the position of a
calibrated 3-axis magnetometer placed around the origin. Indeed, in this case,Y 1

Y 2

Y 3

 = RJBn(X, t)

=
8µ0

5
?
5`
RJ

IÒ
x

IÒ
y

IÒ
z

+
24µ0

25
?
5`
RJ

2x ´x ´x
´y 2y ´y
´z ´z 2z

IÖ
x

IÖ
y

IÖ
z

+O(r3) .

(5.19)

The attitude matrix R can then be directly deduced from the transfer matrix H. Once
R is known, position variables x, y, z can be obtained by solving an over-determined
system from the knowledge of the transfer matrix H.

Basis for the expression of currents The basis in which the current vector is ex-
pressed as

(
I1 I2 . . . I6

)J
=
(
IÒ
x IÒ

y IÒ
z IÖ

x IÖ
y IÖ

z

)J is shown to be es-
3Let us ignore the fact that such a configuration is physically impossible, because otherwise, coils

would go through each other. This issue is later addressed in calibration.
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pecially convenient. Unless specified otherwise, this will be the default choice in the
rest of this chapter.

Conclusion In the case of ideal 3-axis Helmholtz coils and an ideal 3-axis magne-
tometer, the answer to Problem P2 is positive, in that it is possible to determine the
position of the 3-axis magnetometer around the origin.

Remark The computation of attitude and position involves solving an overdetermined
system (18 equations for only 6 degrees of freedom).

5.3.3. Finite dimensional parameterization with uncalibrated
systems

In Sec. 5.3.1, the particular case of ideal Helmholtz coils with an ideal 3-axis mag-
netometer has been considered. Addressing the calibration problem P1 involves gen-
eralizing to uncalibrated coils with an uncalibrated magnetometer array, and taking
into account the invariance issue raised in Sec. 5.2.3. This generalization is discussed
thereafter.

Uncalibrated coils

As mentioned above, let us assume that currents are expressed in the basis where

(
I1 I2 . . . I6

)J
=
(
IÒ
x IÒ

y IÒ
z IÖ

x IÖ
y IÖ

z

)J
. (5.20)

Each function Tn
m, 1 ď m ď 6 must, by assumption, follow Maxwell’s equations for

a source-free region of space on a subset X Ă SE(3). The space of such functions
is infinite-dimensional. On this subset, representing each Tn

m by its coordinates in
a finite-dimensional subspace of solution to Maxwell’s equations (see Ref. Jackson
[1998]), written with the dimensionless variables x, y, z yields

T km(`X) = Jkl(X)αlm , (5.21)

where functions Jkl(X) represent basis vectors of this space of solutions, and αlm
are dimensionless coordinates representing the function T km in this space. Working
in a finite-dimensional subspace of solutions, however, reduces the size of the set on
which it is representative of actual possible solutions, making the coils’ calibration
more “local”.

Solving the ambiguities of navigation frame, distance rescaling, and magnetic field
rescaling can be achieved by imposing restrictions on the space of solutions. To that
end, let us admit that the coordinate system of Rn can always be chosen (using
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5.3. Approach with Helmholtz coils

Eqs. (5.11)-(5.15)) in such a way that for example, at its origin,

T 2
1(0) = 0 (5.22)

T 3
1(0) = 0 (5.23)

T 3
2(0) = 0 (5.24)

T 1
4(0) = 0 (5.25)

T 2
5(0) = 0 (5.26)

T 3
6(0) = 0 (5.27)

T 1
1(0) =

8µ0

5
?
5`

(5.28)

B

Bx
T 1

4(X)
ˇ

ˇ

X=0
= ´2

24µ0

25
?
5`

. (5.29)

Eqs. (5.22)-(5.24) determine the orientation of Rn, Eqs. (5.25)-(5.27) determine the
origin of Rn, Eq. (5.28) determines the magnetic field scale factor, and Eq. (5.29)
determines the distance scale factor. The last two equations are arbitrary choices
relying on the precision of the manufacturing of the coils of axis x and can be modified
whenever a more accurate value can be defined for given hardware. These relationships
can be transformed into conditions on coefficients αlm.

Remark Functions T km can be entirely dimensionless if coefficients Hi
m are also

dimensionless. It is then possible to simply define, for example

T 1
1(0) = 1 (5.30)

B

Bx
T 1

4(X)
ˇ

ˇ

X=0
= ´2 . (5.31)

and make Hi
m coefficients dimensionless by dividing them by 8µ0

5
?
5`

if m ď 3 or 24µ0

25
?
5`

by if m ą 3. This way, identification algorithms can be executed on dimensionless
quantities.

Uncalibrated magnetometer arrays

There are several ways to define Rb from a choice of parameters. One such a way
(others are possible) is to assert that

a12 = 0 (5.32)
a13 = 0 (5.33)
a23 = 0 (5.34)

1pb = 0 . (5.35)

Finally, for an uncalibrated array of magnetometers, coefficients Hi
m can be expressed

as
Hi

m(R, `X) = aijS
j
kJ

k
l(R ipb/`+X) αlm . (5.36)
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5. Calibration of a magnetometer array using Helmholtz coils

Following the same remarks as above, all computations can be achieved on dimension-
less versions of Hi

m, along with using 8µ0I0
5

?
5`
aij and ipb/` as dimensionless calibration

parameters in place of aij and ipb, where I0 denotes a constant reference current (e.g.
1 A).

5.4. Calibration simulation
Identifiability is assessed in simulation on numerical experiments. A first experiment

consists in, given a random set of parameters

θ
.
=
(
(jpb), (jab), (αlm)1ďmď6, 1ďlď...

)
,

and a random set of 6D positions

(R[k],Mn[k]) P X Ă SE(3) , 1 ď k ď npos ,

deducing the exact theoretical values ofHi
m(R[k],Mn[k]) for each value of (R[k],Mn[k]),

then, given the set of generated Hi
m(R[k],Mn[k]), numerically computing estimates

of the corresponding starting parameters

θ̂
.
=
(
(jppb), (jpab), (α̂lm)1ďmď6, 1ďlď...

)
and the corresponding estimated values (R̂[k],xMn[k]). The desired outcome is that
the result must be identical to the starting parameters up to machine precision, for
initial conditions in a plausible range of values.

A second experiment consists in, instead of generating a random set of parameters

θ
.
=
(
(jpb), (jab), (Tn

m)
)
,

by expressing (Tn
m) as a finite element simulation of imperfect Helmholtz coils. Each

coils is represented by a broken line forming 40 loops of around 200 line segments, and
the magnetic field is computed with the Biot-Savart law (see Ref. Jackson [1998]). In
order to simulate imperfections, they are scaled by at most a thousandth, translated
by at most a thousandth of their radius, and rotated by at most tenth of a degree.
The same identification as above is undertaken using the finite dimensional param-
eterization (αlm)1ďmď6, 1ďlď... to represent the magnetic field. Identification errors
are expected for scale factors and effective positions. The quality of magnetic field
estimation is not evaluated.

Both experiments rely on an identification algorithm that must be described. The
one used thereafter is the Gauss-Newton algorithm, but any other non-linear least-
square solver could have been chosen.

Outline The Gauss-Newton identification algorithm is briefly described in Sec. 5.4.1,
and the results of the two identification experiments are explained in Sec. 5.4.2.
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5.4. Calibration simulation

5.4.1. Identification algorithm
Denoting Hi

m(R[k], `X[k]) and Ĥi
m(θ̂, R̂[k], `X̂[k]) the measured transfer matrix

coefficients and their theoretical value using Eq. (5.36) respectively, the identification
algorithm aims at minimizing

Λ(θ̂, (R̂[k], X̂[k])1ďkďnpos) =
ÿ

i

ÿ

m

ÿ

k

[Hi
m(R[k], `X[k]) ´ Ĥi

m(θ̂, R̂[k], `X̂[k])]2 .

(5.37)
Because R̂ P SO(3), the exponential mapping described p. 25 in Sec. 2.4.2 is used to pa-
rameterize SO(3) locally, around each R̂[k]. The iterative optimization algorithm used
is then a straightforward Gauss-Newton algorithm. The new estimate is obtained by
linearizing each Ĥi

m(θ̂, R̂[k], `X̂[k]) for all variables, solving the linearized least-squares
system thus obtained, replacing (θ̂, (R̂[k], X̂[k])1ďkďnpos) by the obtained values, and
iterating.

5.4.2. Numerical results
First numerical experiment In the first numerical experiment, a planar arrangement
of 12 single axis magnetometers is simulated with randomly chosen calibration param-
eters. Let us denote

εp =

d

ÿ

j,k

1

`2
(j p̂

k ´ jp
k)2 , (5.38)

εa =

g

f

f

e

ÿ

i,j

(
8µ0I0

5
?
5`

)2

(âij ´ aij)2 , (5.39)

εα =

d

ÿ

l,m

(α̂lm ´ αlm)
2
. (5.40)

These three norms of estimation errors can be evaluated after each Gauss-Newton
iteration and plotted in Fig. 5.4, that shows a convergence up to machine precision
after 6 iterations. The identification algorithm systematically converges to the correct
parameter values up to machine precision. The same convergence is observed on
trajectory parameters (not illustrated).

Second numerical experiment In the second numerical experiment, the magnetic
field is computed with a finite-elements simulation representing imperfect coils. Since
coils are imperfect and since dimension factors are defined from magnetic field param-
eters; parameters must be optimally rescaled for distance and magnetic field units in
order to minimize εp and εa. These two norms of estimation errors are evaluated after
each Gauss-Newton iteration and plotted in Fig. 5.5, that shows a convergence up to
machine precision after five iterations. The identification algorithm converges towards
a value that is close to the actual parameters. This small error can be explained by
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Figure 5.4: Evolution of calibration parameters estimation error, with respect to it-
eration number for simulated data for Problem P1. Iteration number 0
corresponds to initial conditions.

the distance between the parameter space used to simulate measurements and the
lower-dimensional one in which the identification takes place.

5.4.3. Conclusion
In simulation, the answer to Problem P1 has been positive in all tested cases where

coil calibration functions have been restricted to a finite-dimensional space. This
restriction can be used as an approximation of more general cases at the cost of a
small identification error.

The number of distinct positions required for convergence depends on the parameter
space. In particular, if effective positions and coil calibration parameters are known4

scale factors can be identified in simulation from a manifold X containing a single
element.

5.5. Calibration experiments
Experiments have been carried out using two 3-axis magnetometers fixed onto a

board, 10 cm apart, whose calibration parameters have been individually estimated
using a different technique. The six Helmholtz coils are powered using independent
signals, enabling the computation of transfer coefficients Ĥi

m.

4Knowledge of effective positions defines Rb unambiguously, which imply not using Eqs. (5.32)-(5.34).
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Figure 5.5: Evolution of calibration parameters estimation error, with respect to iter-
ation number for finite-elements simulated data for Problem P1. Iteration
number 0 corresponds to initial conditions. The identification algorithm
converges close to the true parameter values, albeit not to machine preci-
sion.

Estimated scale factors reproduce the ones obtained with a different technique with a
precision that is coherent with the accuracy of the measurement system, validating the
two calibration techniques against each-other (see Table. 5.1). The distance between
the two three-axis magnetometers is correctly estimated as 10 cm ˘1 mm, which is
expected considering the precision of the assembly.

5.6. Conclusion
This chapter has demonstrated a method by which a magnetometer array can be

precisely calibrated using 3-axis Helmholtz coils. This method has the same advantage
as ellipsoid fitting techniques that no precision is required when placing the magne-
tometer array inside of the coils, the byproduct of the calibration process is an estimate
of the array’s trajectory. The main advantage of this technique over ellipsoid fitting is
that it gives access to effective positions, thus allowing the full calibration of a magne-
tometer array. This method preserves calibration accuracy when the size of the system
is close to the size of the zone in which the magnetic field is considered homogeneous,
in the center of the coils. Moreover, it provides a simple way to characterize this zone.

Numerical results show that with marginal changes, this approach may be gen-
eralized to arbitrary arrangements of at least six coils with at least two single-axis
magnetometers.

The main disadvantage of this technique is that accurate synchronized measurements
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5. Calibration of a magnetometer array using Helmholtz coils

Table 5.1.: Experimental scale factor estimation errors.
The function fa denotes an increasing function. The error εa is evaluated
by comparing normalized scale factors obtained with the described tech-
nique and normalized reference scale factors obtained with another tech-
nique. The function fa is chosen such that, considering the measurement
system’s accuracy, the comparison between calibrated values must yield a
negative number.

fa(εa), 3-axis #1 fa(εa), 3-axis #2
before calibration 12.96 12.97

trial #1 -3.51 -2.61
trial #2 -3.84 -2.34
trial #3 -3.21 -2.40
trial #4 -4.27 -2.32

of currents inside of the coils are necessary. This disadvantage has implications for
hardware design.
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6. Calibration of a magnetometer array using motion information

This chapter is a transcript of an article submitted to the Special Issue of the Asian
Journal of Control on Recent Advances on Data Fusion, Estimation in Navigation and
Control, entitled Calibration of a magnetometer array using motion capture equipment
(C.-I. Chesneau, R. Robin, H. Meier, M. Hillion and C. Prieur), to be published in
2019.

6.1. Introduction

Precise calibration of micro-electronic single-axis point-magnetometers is often re-
quired for practical applications. This is especially true for Magneto-Inertial Dead-
Reckoning (MIDR), described in Part. I, a technique which is rather demanding re-
garding magnetometer calibration accuracy. As stated in Ch. 3 and Ch. 5 the problem
of precisely calibrating an array of single-axis magnetometers is still not satisfacto-
rily solved in order to be applicable in so-called MIDR applications. This observation
motivates the research of a calibration technique that is less demanding on the envi-
ronment and dedicated setups than existing techniques, including the one introduced
in Ch. 5.

In parallel with this work, several frameworks have been provided, in which magnetic
sensor information can be combined with visual odometry (see Refs. Caruso et al.
[2016, 2017b,c]), resulting in a robust dead-reckoning navigation solution. In such
setups, positioning is often achievable without relying on magnetometers. It is then
of interest that a precise magnetometer calibration technique is available to leverage
positioning information, thereby enabling their on-the-field self-calibration.

This chapter presents a calibration technique for magnetometer arrays solving a
problem inverse to MIDR. Whereas the latter, applicable for an indoor stationary
(inhomogeneous) magnetic field (see Ref. Chesneau et al. [2017]), allows us to ob-
tain positions and attitudes as a function of the calibration parameters (and the raw
magnetic data), the present method builds on raw magnetic data paired with motion
capture data, i.e. position and attitude of the array of the moving sensor device, in
order to estimate calibration parameters as well as the magnetic field. The only pa-
rameter that is not accessible through our method is the global scale factor that defines
the unit of the magnetic field (and may be adjusted to Tesla or Gauss in a separate
experiment if desired); in any case, the choice of such a unit does not intervene in
magneto-inertial dead-reckoning.

The chapter is organized as follows. In Sec. 6.2, we state the explicit problem ad-
dressed by this article. In Sec. 6.3, we mathematically prove the identifiability of
calibration parameters. Section 6.4 shows, using simulated data, that calibration pa-
rameters are in practice identifiable. Finally, Section 6.5 shows the results of applying
this technique in real-world experiments, and Sec. 6.6 contains some concluding re-
marks and points out a natural perspective. The appendices collect some proofs of
intermediate results.
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6.2. Problem statement

6.2. Problem statement
The problem under consideration is the calibration of an array of linear-response

single-axis point magnetometers strapped on a rigid body using motion information.
Let M be a fixed point of the rigid body defining the origin of the body frame

Rb; by definition, its coordinates in body frame are Mb .
= 0. Let R be the attitude

matrix belonging to the special orthogonal group SO(3), defined in the same way as
in previous chapters. The rigid body motion is defined by the time-evolution of Mn(t)
and R(t) during an experiment.

Let B denote the magnetic field, which is assumed static in Rn. This means that
Bn varies only as a function of the position Mn,

Bn : R3 Ñ R3

Mn ÞÑ Bn(Mn).

Let jpb denote the position of the j-th single-axis magnetic sensor in the moving
reference frame Rb. The magnetic field at this point, and in Rb, is related to the
magnetic field in the navigation frame Rn as1.

Bb (
jpb, t

)
= R(t)JBn (Mn(t) +R(t)jpb) . (6.1)

As Mn and R vary as a function of time, so does in general Bb.
To complete our measurement model, we specify the direction and scale factor of the

j-th single-axis magnetic sensor by a co-vector (“row vector”) jab and add a (scalar)
bias jb. The full model for a measurement with result jy then reads

jy = jabRJBn (Mn +R jpb)+ jb (6.2)

for each magnetic single-axis sensor j. It is implied that the co-vector jab, the bias jb,
and the position vector jpb (which is a usual “column vector”) are time-independent.

The magnetic field Bn lives in an infinite-dimensional vector space — the space
of solutions to Maxwell’s equations. In practice, it is typically possible to describe
this field with sufficient accuracy in a finite-dimensional subspace, using only a finite
number of coordinates that we denote αi.

During a calibration, Mn(t) and R(t) are varied as a function of time t with ti ď

t ď tf . The time-dependency of these (6D) coordinates inflicts a time-dependency on
the measurement functions jy. In the situation of an experiment that allows us to
measure all these quantities, Mn(t), R(t), and jy(t) at each time t, ti ď t ď tf , we
consider the following problems:

P1 Are parameters jab, jb, and magnetic field coordinates αi identifiable if the
effective position parameters jpb are given?

P2 Are parameters jab, jb, jpb, and magnetic field coordinates αi identifiable?
1In fact, Eq. (6.1) is merely a (Galilean) transformation between the two reference frames (see

Ref. [Jackson, 1998, 6.10.A, 11.10])
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6. Calibration of a magnetometer array using motion information

Problem P1 implies that we have to know the effective position of each individual sensor
in both Rb and Rn. Problem P2 does not require us to possess this information, a
situation that is closer to what is obtained in a motion capture experiment: such a
setup locates visual markers, while sensors are typically hidden inside of a package, and
their position is not precisely known with respect to markers. Furthermore, effective
positions are needed in order to calibrate a magnetic gradiometer built from an array
of sensors. Proving that parameters are identifiable in Problems P1 and P2 would be
equivalent to proving that any parameterization to (6.2) is unique — a notion we clarify
in the next section. At the same time, the mere existence of such a parameterization
is guaranteed in experiments by the physics behind the measurement model.

6.3. Identifiability
In this section, we prove the identifiability of calibration parameters under “mathe-

matically controlled” conditions that, as we argue, represent the situation in realistic
experiments nevertheless.

6.3.1. Notion of identifiability and assumptions
We adopt the setting of Sec. 6.2 and consider a set of m single-axis magnetometers

that measure the projection of the magnetic field B. The field B is assumed time-
independent in our navigation frame Rn. The measurement of each magnetometer is
physically modeled by a function jy, j P t1, 2, . . . ,mu, that assigns to a 6D position
(Mn, R) of the rigid body the magnetic field component along the axis of the j-th
magnetometer,

jy : R3 ˆ SO(3) Ñ R (6.3)
(Mn, R) ÞÑ jabRJBn (Mn +R jpb)+ jb .

We note that for a reasonable sensor, jab ‰ 0, which is what we thus assume in
the following. The magnetic field Bn is assumed to satisfy Maxwell’s equations for
a source-free region of space (which in particular implies analyticity). Furthermore,
Bn is assumed not to vanish identically and to feature at least one position in which
all eigenvalues of its derivative (Jacobian matrix) are different from each other. Any
realistic magnetic field verifies this assumption. 2

2In Eqs. (6.1) and (6.3), we consider for the sake of simple notations R3 as domain of our fields. We
could also restrict ourselves to a bounded open subset without any loss of validity of our statement.
In an actual experiment, the position Mn is restricted to vary within some (bounded) open subset
V Ă R3. Also, it is sufficient to consider position vectors jpb within a ball whose radius r is of
the order of the linear size of the device that contains all magnetometers. Then, the domain of
the magnetic field Bn can also be restricted to an open bounded subset Ă R3, for instance, the
interior of the union of the balls of radius r around all Mn P V . Physical source currents of the
magnetic field are assumed to be outside this subset.
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In experiment, all the parameters and the magnetic field are a priori unknown and
need to be determined in calibration. Let us unite these parameters into one tuple θ,

θ
.
=
(
(jb), (jpb), (jab),Bn) , (6.4)

where the notation (jb) = (jb)j=1,...,m represents the tuple of biases for all m magne-
tometers (and the same applies to (jpb) and (jab)). The space of all such θ will be
denoted Θ. Each element θ P Θ defines a set of m measurement functions jy, Eq. (6.3).

We interpret identifiability as the ability to distinguish different tuples of parame-
ters by their corresponding measurement functions. This means that if two tuples of
parameters θ and θ1 in the parameter space Θ are different, θ ‰ θ1, then their corre-
sponding measurement functions (jy) and (jy

1) should be different too. In other words,
there should be at least one 6D position Mn, R of the rigid body for which at least
one of the m magnetometers, say magnetometer j, produces a different measurement
result, i.e. jy(Mn, R) ‰ jy

1(Mn, R).
However, this notion of identifiability is a little too strong to hold, as revealed

by a quick inspection of Eq. (6.3). In fact, the functions (jy) are invariant under
simultaneous rescaling jab ÞÑ λjab and Bn ÞÑ Bn/λ for λ P Rzt0u, which corresponds
just to the global scale factor that, as we mentioned in Sec. 6.1, we cannot calibrate.

This invariance motivates the definition of an equivalence relation “„” on Θ, which
identifies two elements θ, θ1 P Θ if and only if there exists a λ P Rzt0u such that

Bn1
” Bn/λ ,

@ j, jb
1 = jb , jpb1

= jpb , jab1
= λ jab.

In this case, we write θ „ θ1. In terms of the equivalence relation “„”, we aim to
prove identifiability in the sense that for two tuples θ, θ1 P Θ, that are not equivalent,
θ  θ1, the measurement functions are able to distinguish them from each other at
least at one 6D position for at least one magnetometer, i.e. if θ  θ1, there exists a
tuple (j,Mn, R) such that jy(Mn, R) ‰ jy

1(Mn, R).
In a more formal reformulation, the notion of identifiability we wish to prove is injec-

tivity of the mapping θ ÞÑ (jy) on the identification space Θ/ „, see, e.g., Ref. Willard
[2004], Def. (9.11) p. 62. The mapping is defined by inserting a representative θ into
Eq. (6.3). Here and in the following, we use the notation θ for a particular represen-
tative of equivalent parameter tuples also for its equivalence class in Θ/ „.

6.3.2. Theorems of identifiability
Adopting the assumptions and notations of the previous sections, we formulate the

following theorem of identifiability that addresses the problem P2 raised in Sec. 6.2:

Theorem 6.3.1. For each tuple of parameters θ P Θ/ „, there exists an open neigh-
borhood T Ă Θ/ „, θ P T , on which the mapping θ ÞÑ (jy), defined by inserting θ into
Eq. (6.3), is injective.

The restriction to an open neighborhood applies only to the effective sensor posi-
tions (jpb). For biases (jb), injectivity holds globally. For the scale factors jab and
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the magnetic field Bn, no restriction of locality is imposed beyond the required properties
discussed in the preceding section.

In special situations, for instance, if an affine mapping fully describes the magnetic
field, our proof allows immediately to lift the restriction to an open neighborhood
of (jpb) and the theorem holds globally.

As a corollary to Theorem 6.3.1, we find

Corollary 6.3.2. The mapping θ ÞÑ (jy), defined by inserting θ into Eq. (6.3), is
injective on any subset of Θ/ „ in which the sensor positions (jpb) are constant.

We note that this corollary, which addresses Problem P1, is, in fact, valid for arbi-
trary magnetic fields as long as they do not vanish identically. No requirement on its
gradient is necessary. (In particular, the gradient would be allowed to be identically
zero.)

6.3.3. Proof of Theorem 6.3.1
We proceed by proving parameter by parameter that changes in any parameter

of a given θ P Θ/ „ result in a different measurement jy(Mn, R) for at least one
6D position (Mn, R), regardless of possible simultaneous changes of other parameters
whose identifiability has not yet been proven.

The proof is built on the (theoretical) availability of a trajectory that traverses the
entire 6D position manifold while we can expect a suitably designed experimental
trajectory to cover a large-enough and sufficiently diverse subset that is representative
for the entire manifold.

Biases

The identifiability of the biases jb follows from the following lemma.

Lemma 6.3.3. Let j P t1, 2, . . . ,mu. Using the notation of the previous sections,
for all Mn, the integral of jy(Mn, R) over R P SO(3) yields

¿

RPSO(3)

jy(M
n, R) dR = jb, (6.5)

where dR denotes the Haar measure of SO(3) that normalizes its volume to unity.

Proof See Appendix B.1.
Lemma 6.3.3 implies that if two tuples of parameters θ and θ1 that contain different

biases jb and jb
1 for the j-th magnetometer, then the integral of Lemma 6.3.3 on

their respective measurement functions will yield different results, regardless of other
parameters. Inevitably, the measurement functions must thus differ for at least one
position. Therefore, biases are identifiable.
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Effective sensor positions

Let j P t1, 2, . . . ,mu. Since the bias jb has been proven identifiable (see the
preceding Sec. 6.3.3), we can assume it to be zero, jb = 0, without loss of generality.

As noted in the statement of Theorem 6.3.1, we refrain from trying to prove global
injectivity with respect to the sensor positions (jpb) and content ourselves with local
injectivity around its true value.

Let θj = (jpb, jab,Bn) denote the tuple of the true parameters of the physical
model. The reader may assume that we have already “guessed” the true jpb, yet we
are still unaware of its (local) uniqueness.

As to the scale factor jab and the magnetic field Bn, the only information we need
(and have) is that by assumption, jab ‰ 0 and that there is at least one position Mn

0

in which the gradient of the magnetic field (Jacobian matrix),

∇Bn
ˇ

ˇ

ˇ

Mn
0

=
B(Bn)

B(Mn)

ˇ

ˇ

ˇ

ˇ

Mn=Mn
0

,

possesses eigenvalues that are all mutually different.
If, using only the knowledge of the measurement function jy, we can construct an

injective mapping ζ from the effective positions space R3 into some other vector space
such that ζ(jpb) = 0 (independently from jab and Bn as long as the assumptions
stated above hold), uniqueness and thus identifiability of jpb is proven.

Lemma 6.3.4. Under the assumptions made for jab and Bn, the construction of a
mapping ζ as described above is possible in an open neighborhood of jpb.

Proof In Appendix B.2, we present an explicit construction of a mapping ζ : R3 Ñ R6

using only knowledge of jy.

Remarks In the special case that the Jacobian matrix of the magnetic field is con-
stant, i.e. if the magnetic field is affine, the arguments provided in Appendix B.2 are
sufficient to prove global identifiability.

Scale factors and magnetic field

Without loss of generality, θ is such that biases jb are zero and that effective sensor
positions (jpb) are known. Also, by assumption, there exists a position Mn

0 at which
the magnetic field is non-zero, Bn(Mn

0) ‰ 0. In this situation, we can place any sensor,
say the j-th, at this position Mn

0 (in navigation frame) for an arbitrary orientation R.
This is possible by choosing

Mn = Mn
0 ´R jpb . (6.6)
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6. Calibration of a magnetometer array using motion information

As a result, a (theoretical) calibration experiment allows us to gain full knowledge of
the auxiliary measurement function

jY (Mn
0) : R ÞÑ jy(Mn

0 ´R jpb, R)

= Tr
[
RJBn(Mn

0) b jab] , (6.7)

where jab and Bn(Mn
0) denote the true (yet until now unknown to be unique) values

for the scale vector and the magnetic field at Mn
0; the symbol Tr is the trace.

We observe that
A ÞÑ Tr

[
AJBn(Mn

0) b jab] (6.8)

defines a linear form on the space of real 3 ˆ 3 matrices R3ˆ3 whose uniquely defined
(standard) gradient is the matrix Bn(Mn

0)bjab. Since SO(3) as generating set in R3ˆ3

spans the entire matrix space, the knowledge of jY (Mn
0) for matrices R P SO(3) is

sufficient to uniquely determine Bn(Mn
0) b jab.

The rank of Bn(Mn
0) b jab is 1, lines are proportional to (the row vector) jab,

columns are proportional to (the column vector) Bn(Mn
0), which means that jab

is identifiable up to an unknown scale factor λ while the magnetic field at Mn
0 is

identifiable up to an unknown scale factor 1/λ.
Once Bn(Mn

0) is identified up to the unknown scale factor 1/λ, all scale factors of
the other sensors b

j1a for j1 ‰ j are identifiable (relatively to a chosen scale factor for
b
j1a), using the same construction.

Since this construction works at all positions Mn
0 with a non-zero magnetic field,

the magnetic field itself is identifiable as well (up to an unknown scale factor 1/λ).
This concludes the proof of Theorem 6.3.1.

6.3.4. Conclusion of the proof and discussion
The above reasoning proves that Theorem 6.3.1 and its Corollary 6.3.2 hold. The-

orem 6.3.1 states that unknown parameters corresponding to Problem P2 (defined in
Sec. 6.2) are locally identifiable, as long as there exists at least one place where the
magnetic gradient is non-singular, and if all magnetometer scale factors jab are dif-
ferent from zero. According to the remark at the end of Sec. 6.3.3, we are aware of
at least one important special case in which identifiability holds globally in all of the
parameter space.

Corollary 6.3.2 states that unknown parameters corresponding to Problem P1 (de-
fined in Sec. 6.2) are globally identifiable, if the magnetic field is different from zero in
at least one place, with no requirement about gradient. In both cases, magnetometer
scale factors jab are only identifiable up to an unknown global scale factor λ, while
the magnetic field (Bn) is identifiable up to the unknown global scale factor 1/λ.

In practical applications, measurements are not known for all 6D positions: only a
finite set of sampled measurements are provided. In the following, we show that in
practice, identifiability is preserved in this situation.
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6.4. Practical identifiability of parameters for simulated
data

In this section, we want to check if for a given realistic input, the above calibration
problem can be solved. We proceed by collecting motion capture data in order to get
a realistic sampled trajectory. We denote Mn[k] the sampled positions, and R[k] the
sampled attitudes, where k is the sample number. For the purpose of the simulation,
we choose at random a realistic set of parameters

(
(jb), (jpb), (jab), (αi)

)
, describing

magnetometer calibration parameters and the magnetic field in the volume of the
trajectory. Then we generate sampled values of measurements jy[k] according to (6.2)
at each trajectory sample,

jy[k] = jabR[k]JBn
(αi)

(
Mn[k] +R[k] jpb)+ jb. (6.9)

Problem P2 is rewritten as: given the set of sampled measurements jy[k] and the
sampled trajectory Mn[k], R[k], find the exact set of parameters that has been used
as input.

6.4.1. Scale factor ambiguity
Let us assume that there exists a tuple of parameters

(
(jb), (jpb), (jab), (αi)

)
satis-

fying (6.9). Let λ ą 0. Then,

jy[k] = λ jabR[k]J
1

λ
Bn

(αi)

(
Mn[k] +R[k] jpb)+ jb. (6.10)

Thus a tuple of parameters containing 1
λBn

(αi) and λjab is indistinguishable from the
former tuple using only measurements jy[k], as discussed in Sec. 6.3. Therefore, in the
rest of the document, we impose the global scale factor by setting the first coefficient
of the scale factor of the first magnetometer to unity, 1a

b
1 = 1.

6.4.2. Least-square parameter estimation model
Let us denote magnetic measurement residuals jr[k] such that for all j and k,

jr[k]
.
= jabR[k]JBn

(αi)

(
Mn[k] +R[k]jpb)+ jb´ jy[k] (6.11)

By Eq. (6.9) for all j, k, jr[k] = 0, and is equivalent to

Jmag
.
=

ÿ

j,k

(
jr[k]

)2
= 0. (6.12)

It follows that the problem could be seen as a generic non-linear least-square prob-
lem. Identifiability of parameters

(
(jb), (jpb), (jab), (αi)

)
can be assessed on a specific

trajectory by computing the rank of the Hessian matrix of the cost function Jmag
with respect to these unknown variables. Parameter estimation can be attempted by
running a non-linear least-square numerical solver.
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6. Calibration of a magnetometer array using motion information

We propose using Ceres-Solver, Ref. Agarwal et al. [2010], and its implementation of
the Levenberg-Marquardt algorithm in order to solve this calibration problem, taking
advantage of its auto-differentiation framework. Doing so, we successfully show that
the solver converges toward the correct parameter values, and numerically obtain that
the Hessian of Jmag with respect to all estimated parameters is full rank in tested
cases.

6.4.3. Convergence of the Levenberg-Marquardt algorithm for
simulated data

Using an input trajectory, after choosing a set of calibration and magnetic field
parameters and simulating corresponding measurements without noise, we choose a
starting point at random, different from the set of calibration and magnetic field pa-
rameters used to simulate magnetic measurements, and run our non-linear least-square
solver Ref. Agarwal et al. [2010] implementing the Levenberg-Marquardt algorithm
(see Refs. Levenberg [1944], Marquardt [1963]). This numerical algorithm is a com-
mon choice for solving non-linear least-square problems. In order to impose the global
scale factor corresponding to the unit of the magnetic field, 1a

b
1 = 1 is excluded from

the algorithm. Figure 6.1 shows the evolution of calibration parameter estimation er-
rors at each iteration for all calibration parameters in both Problem P1 and Problem
P2. In both cases, the solver converges successfully toward the correct solution and
stops iterating after the seventh iteration upon reaching its convergence criteria. Final
errors are at most one-millionth of initial errors.

6.4.4. Conclusion of simulation experiments
The above experiments confirm that in practice, identifiability holds for simulated

sampled data, along a realistic input trajectory.

6.5. Real-world experiments
We use an Optitrack™ motion capture equipment, see Fig. 6.2, providing trajectory

data at „ 240Hz, to track the movement of a sensor board carrying magnetometers
and micro-electro-mechanical inertial sensors. The sensor board is the same that was
used in Refs. Chesneau et al. [2016, 2017], Caruso et al. [2017c,b]. All sensors are
sampled at f « 325Hz. No synchronization information between motion capture data
and sensor board data is available in our setup.

Motion capture data is noisy and not synchronized with sensor board data. Also,
body frames are not necessarily defined in the same way for each type of information
(gyrometer, accelerometer, magnetometer and motion capture). To account for dif-
ferent measurement uncertainties, we use three sets of equations: integrated discrete-
time strapdown IMU navigation equations, as can be found in Ref. [Savage, 2000,
Ch. 7], simplified motion capture measurement equations, and magnetic measurement
equations corresponding to (6.9). The augmented problem is then reformulated as a
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Figure 6.1: Evolution of calibration parameters estimation error, with respect to it-
eration number for simulated data for Problem P1 (left) and Problem P2
(right). Errors converge toward 0. The solver reaches its convergence
criteria and stops iterating at the seventh iteration in both cases.

Figure 6.2: Picture of the optitrack setup. The sensor board package is displayed in
the insert.
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6. Calibration of a magnetometer array using motion information

non-linear least-squares identification problem in the same manner as in (6.11) and
(6.12). Moreover, magnetic measurements are filtered in order to remove power-line
interference.

The sensor board is moved around in a space covered by the motion capture setup.
A sufficiently diverse arbitrary trajectory is chosen, with enough rotations and trans-
lations, in an indoor magnetic field satisfying identifiability hypotheses for Problem
P2 (defined in Sec. 6.2). Sensor and motion capture data is collected, and injected into
the optimization problem that is solved using Ceres-Solver Ref. Agarwal et al. [2010]
as described in Sec 6.4.

The solver converges toward a set of scale factors and biases that are in agreement
with those obtained using the technique in Ref. Dorveaux et al. [2009a]. The esti-
mated positions are coherent with sensor-sensor distances expected by construction
(see Fig. 6.3). With these results, we have verified that identifiability also holds in
real-world experiments.3

6.6. Conclusion
This chapter has demonstrated that magnetic data together with position and at-

titude information suffices to identify calibration parameters of linear-response single-
axis point magnetometers, including their effective positions within the device. Ex-
perimental data has confirmed the identifiability we have proven with a mathematical
theory in real situations. This approach makes it possible to calibrate arrays of magne-
tometers in magnetic fields within unknown environments, provided that the magnetic
field is stationary and not specifically homogeneous, and that positioning information
is available. For instance, the underlying concept could be used to extend tools such
as Ref. Furgale et al. [2013] to calibrate visual-inertial setups coupled with magnetic
sensor arrays such as in Refs. Caruso et al. [2016, 2017c,b]. Finally, experimental re-
sults suggest that some positioning information might be redundant. In a subsequent
study, we intend to understand what minimal information is needed in order to identify
calibration parameters.

3A patent is pending on the whole calibration process.
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Figure 6.3: Evolution of the estimated distance between two magnetic sensors of the
array as a function of algorithm iteration number (blue solid line). All
positions are initialized as 0cm. The distance by construction can be ex-
pected to be 35.4mm ˘0.2mm (gray dashed line). The final estimated
distance is 35.36mm.
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7. General conclusion

7.1. Summary of main contributions
7.1.1. Navigation models

A pragmatic approach has been proposed to model MIDR, summarizing all the
advantages of previously published models on the subject. This approach consists in
using classical strapdown inertial navigation equations in combination with Eq. (2.11),
p. 17, to build a state-space model whose design principle is to be as representative
of physics as possible, while remaining as simple as possible. Studying these models
have raised the following important issues:

• In indoor navigation, the assumption that the navigation frame is inertial is
usually made. Under this assumption, the heading is not observable in MIDR.
This issue becomes a major source of error, as for any other indoor dead-reckoning
technique.

• If inertial sensor biases are taken into account, static trajectories always belong
to an unobservable set to which some helical trajectories also belong.

Previous studies in the state of the art mostly focused on observability issues as-
sociated with singular gradient conditions. However, these conditions can only be
determined as accurately as measurements themselves, which has motivated the mod-
eling and study of the array of sensors itself.

7.1.2. Measurement errors
A simple model of the array of magnetometer provided by SYSNAV has been de-

scribed and verified; experimental data is consistent with what is recalled from the
literature on barber-pole Anisotropic Magneto-Resistance (AMR) magnetometers in
Ch. 3.

The computation of the magnetic field gradient from calibrated magnetometer out-
puts can be interpreted as an interpolation problem. As such, it has been proven that
a planar array of magnetometers is sufficient to access any spatial derivative of the
magnetic field thanks to Maxwell’s equations. However, this can only be done under
the assumption that all sensors have been calibrated, that is to say, all parameters of
the calibration models have been identified.

The effect of measurement errors on trajectory estimation has thus been studied
both regarding (white) noise and regarding calibration parameter uncertainty. Among
other results, it has been shown that

• With planar arrays of magnetometers, any uncertainty on any calibration pa-
rameter (bias, scale-factor, effective position) can cause an unbounded velocity
estimation errors close to singular gradient conditions. Thus, the issue of velocity
estimation through singular gradient conditions is also an issue of robustness to
calibration uncertainty.

• Gradient measurement noise can lead to a damping effect in close to singu-
lar gradient conditions, biasing velocity estimates. Together with the previous

160



7.1. Summary of main contributions

point, measurement noise may instead be helpful in avoiding divergent velocity
estimates in this case.

• Existing calibration techniques often neglect the frame of reference in which mag-
netometer arrays are calibrated and their effective position parameters. While
the former problem may be solved using straightforward methods, the latter
requires the development of processes introduced in the later chapters of this
document.

7.1.3. Performance evaluation

Two Extended Kalman Filters (EKF) have been presented and evaluated on experi-
mental data, highlighting some sources of estimation errors. Performance comparable
to previous Pedestrian Dead Reckoning (PDR) techniques has been obtained with pure
MIDR on long-term trajectories. Besides, a recursive magnetic heading estimation al-
gorithm has also been introduced and successfully tested.

7.1.4. Calibration techniques for magnetometer arrays

Following the previous study, two complete calibration techniques have been intro-
duced in light of what has been written in Ch. 3. A calibration technique relying on
coils such as Helmholtz coils has been introduced, whose advantages are

• No theoretical dependency on magnetic field homogeneity in the center of the
coils.

• No need for precise placement of the sensors inside of the coils.

• The possibility of a precise calibration of the magnetic field generated by the
coils during the process.

• As a side effect, the usability of this technique to make an accurate magnetic
tracker, as shown in experiments. Thus, inertial sensors can be calibrated in the
same frame of reference as magnetometers.

Furthermore, this technique can be optimized for use in factory calibration processes.
A second technique has also been presented, based on a problem that is inverse

of MIDR. A theoretical proof has been provided that a magnetometer array can be
wholly calibrated from the knowledge of the trajectory of the rigid body that carries the
array, and calibration has been successful in experiments. This technique is usable in
an inhomogeneous magnetic field and allows the onboard calibration of magnetometer
arrays on setups that can compute their absolute trajectory, such as Visual Inertial
Navigation (VIN) systems.
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7.2. Why so little attention? Clues towards a wider
adoption

Going back to the question asked in the introduction, why has this navigation tech-
nique attracted so little attention? This work provides several possible answers.

7.2.1. The definition of MIDR
Voluntary adoption of a technique is difficult without an explicit and brief definition

or several different examples providing it by induction. Thus the definition of MIDR
attempted in Ch. 2. However, this definition is still perfectible, because expressed in
terms of choice of state-space model suggesting tools from observation/control theory.

7.2.2. Interdisciplinarity
The above remark raises the problem of interdisciplinarity. The seminal paper

Ref. Vissière et al. [2007a] was published in a conference on decision and control.
However, navigation is profoundly interdisciplinary and involves physics, electronics,
applied mathematics, information theory, robotics... It is comprehensible for the mag-
netic navigation community to have missed the information entirely. Interdisciplinary
conferences such as the IPIN conference partly solve this problem by gathering these
communities around the practical problems of indoor navigation.

An interdisciplinary flow of information does not prevent, however, different com-
munities from misunderstanding each other. Ref. Skog et al. [2018], which describes
a magnetic odometry technique relying on measurement of second and higher order
spatial derivatives, mentioned state of the art techniques as the direct inversion of the
magnetic gradient, which is already not the case in the seminal paper or Dorveaux
[2011].

Finally, standardized benchmarks and trustable competitions results are an excellent
way to compare navigation techniques which each other. This justifies participations
to the IPIN 2016 and IPIN 2017 using pure MIDR, albeit using a barometer for the
vertical coordinate.

7.2.3. An unusual hardware configuration
Arrays of at least three 3-axis magnetometers, especially used together with iner-

tial sensors, do not exist off-the-shelf to the author’s knowledge; even though other
works have been carried out on hardware using multiple magnetometers and on which
MIDR can be performed (e.g., Ref. Afzal et al. [2010], Skog et al. [2018]) the usual
configuration features only a single 3-axis magnetometer. The necessary investment
hinders experiments or benchmarks. Purely theoretical studies remain possible, but
risk focusing on secondary issues without conclusive answers on performance and feasi-
bility (e.g., the theoretical problem of observability under singular gradient conditions,
Ref. Batista et al. [2013]).
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Besides, carrying out experiments requires resources and know-how. MIDR experi-
ments in Ch. 4, and the work in Ch. 5 and Ch. 6 have all relied on SYSNAV’s hardware,
and SYSNAV’s and the GIPSA-lab’s infrastructures. Without those, this work would
not have been possible or greatly hindered.

7.2.4. Patents
Patents are designed with the protection of inventions in mind before the sharing

of the associated knowledge. Their secondary effect is that further improvements
are less readily shared, and can discourage teams to continue working on patented
technologies without clear expected benefits. Yet, MIDR systems were patented very
early in Ref. Vissière et al. [2008].

7.2.5. Technical challenges
MIDR still has many technical challenges.

• Working with magnetic measurements is not simple nor necessarily intuitive (see
Ch. 3),

• The stationarity assumption is a challenge (internal and external disturbances),

• Observability issues remain in low gradient / outdoor conditions and static tra-
jectories,

• Heading estimation is not satisfactorily solved, in particular, a converging esti-
mator of true north is missing, but seems theoretically plausible.

• Calibration is a challenge which is taken up in Part. II, however, work remains
on this subject.

These problems are not necessarily insurmountable, and addressing them may either
convince in favor of the more general adoption of this technique or bury it forever.

7.3. Future work
Future work may focus on

• Extensions of Ch. 2 and 4 with robust observers,

• Exploitation of higher order spatial derivatives of the magnetic field and non-
stationary signals for navigation,

• Detection of- and robustness to internal and external magnetic disturbances,

• Extensions of Ch. 6 with the goal of minimizing the amount of necessary infor-
mation,
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• Proofs and extensions of the work in Ch. 5 for general coils configurations

• Extension of all chapters to more sophisticated/ specific magnetometer models
(than the linear single-axis point-magnetometer model, e.g., non-linear models),
gyrometer and accelerometer models.
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A. High-end IMU MIDR
The models proposed in Sec. 2.4.1 and Sec. 2.5.1 both suffer from heading unob-

servability stemming from a symmetry in the model. If unbiased high-end gyrometers
are sensitive enough to measure the earth’s angular velocity, then it is justified to take
it into account and remove the simplifying assumption that Rn is inertial.

Let us remove this assumption from the model of Sec. 2.4.1. The angular velocity
ωn/i is a constant parameter in the same way as gn. If we denote R(t) and R1(t) two
solutions of Eq. (2.6), and define δR .

= R1RJ, we have

d

dt
δR = δR[ωn/iˆ] ´ [ωn/iˆ]δR .

It follows that the only way for gn to always remain invariant by δR is to have gn and
ωn/i aligned, as can be the case at the poles, or that δR be the identity matrix. One
may expect that the direction of gn be observable in this model in the same way as in
Sec. 2.4.1. While it is not sufficient in order to prove that this model is observable, it
shows that the symmetry by change of heading is broken when the assumption of an
inertial Rn is dropped, and the earth’s angular velocity is taken into account.
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B.1. Proof of Lemma 6.3.3
We adopt the assumptions and notations of Sec. 6.3.3. Let j P t1, 2, . . . ,mu, and

Mn P R3. Inserting Eq. (6.3) into the integral and subtracting the bias jb from it, we
find

¿

RPSO(3)

jy(Mn, R) dR ´ jb

=

¿

RPSO(3)

jabR(t)JBn (Mn +Rjpb)dR , (B.1)

as dR is normalized such that the volume of SO(3) is unity. In order to prove the
lemma, it suffices to show that the expression (B.1) vanishes.

To do so, we recall that any element R P SO(3) can be decomposed (see also Fig. B.1)
into two rotations, R = R2.R1, such that the first rotation R1 in S1 (– SO(2))
is around jpb and the second rotation R2 in S2 (– SO(3)/SO(2)) around an axis
orthogonal to jpb. The first rotation leaves the sensor position constant, which means
that Mn +Rjpb = Mn +R2jpb does not depend on R1. Then,

¿

RPSO(3)

jabR(t)JBn (Mn +Rjpb)dR

=

¿

R2PS2

 ¿

R1PS1

jabRJ
1 dR1

 RJ
2 Bn(Mn +R2jpb)dR2

By construction (cf. also Fig. B.1), the integral over R1 is proportional to jpbJ. Thus,
the expression (B.1) is proportional to

¿

R2PS2

(
R2jpb)J Bn(Mn +R2jpb)dR2 . (B.2)

This expression is just the magnetic flux through the surface of a sphere of radius
}jpb}. According to Gauss’ theorem for magnetism, it must vanish. As a result, the
expression (B.1) vanishes indeed, which concludes the proof. ˝
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Figure B.1: A rotation R P SO(3) can be decomposed as R = R2R1 where R1 rotates
around jpb, and R2 rotates around an axis orthogonal to jpb.

B.2. Proof of Lemma 6.3.4
We adopt assumptions and notations of Sec. 6.3.3. Without loss of generality , we

may put
j0pb = 0 , (B.3)

which can always be achieved by redefining the center of the moving frame Rb. In this
case, the injective mapping ζ to be constructed has to satisfy 0 = ζ´1(0).

In order to facilitate the construction, let

Sφ
.
=

cosφ ´ sinφ 0
sinφ cosφ 0
0 0 1

 , (B.4)

Tφ
.
=

 cosφ 0 sinφ
0 1 0

´ sinφ 0 cosφ

 , (B.5)

Uφ
.
=

1 0 0
0 cosφ ´ sinφ
0 sinφ cosφ

 (B.6)

with φ P [0, 2π]. For fixed Mn P R3, R P SO(3) and given measurement function jy,
we define the mapping

ζ : R3 Ñ R6 (B.7)

q ÞÑ
1

2

3
ÿ

k=0

(´1)k



(jy ˝ f)(q,Mn, RS kπ
2
)

(jy ˝ f)(q,Mn, RS kπ
2 +π

4
)

(jy ˝ f)(q,Mn, RT kπ
2
)

(jy ˝ f)(q,Mn, RT kπ
2 +π

4
)

(jy ˝ f)(q,Mn, RU kπ
2
)

(jy ˝ f)(q,Mn, RU kπ
2 +π

4
)


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Figure B.2: (left) The first component of ζ(0) can be expressed as an inner product

between the magnetic field at M and jab
(

ř3
k=0(-1)kS kπ

2

)J

= 0, which is
always 0. (right) At q ‰ 0, ζ(q) becomes dependent on spatial variations
of the magnetic field around M. The construction is analogous for other
components.

with

f : R3 ˆ R3 ˆ SO(3) Ñ R3 ˆ SO(3)

(q,Mn, R) ÞÑ (Mn ´Rq, R)
. (B.8)

By definition of f and jy, i.e. (6.3) and (B.8), and using assumption (B.3),

(jy ˝ f)(q,Mn, R) =
(
Rjab) ¨ Bn(Mn ´Rq).

To prove the lemma, we first show that ζ(0) = 0 independently of scale factors and
the magnetic field. For q = 0, we find that the first component of ζ(q) is proportional
to

ř3
k=0(-1)kSJ

kπ
2

= 0 , cf. also Fig. B.2. A completely analogous calculation shows
that in fact all components of ζ(q) vanish for q = 0, independently of other parameters.

In order to show injectivity, consider the linear approximation in q,

(jy ˝ f)(q,Mn, R) » jabRJBn(Mn) ´ jabRJ ∇Bn|Mn Rq . (B.9)

By assumption, there exists a position Mn
0 such that the magnetic gradient’s eigen-

values are different from each other. Also, since Ampere’s law in the absence of source
currents implies that ∇Bn|Mn

0
is symmetric, its matrix can be diagonalized by an

orthogonal matrix. Thus, there exists R0 P SO(3) such thatd1 0 0
0 d2 0
0 0 d3

 = RJ
0 ∇Bn|Mn R0, (B.10)

with mutually different d1, d2, d3 P R.
We now specialize the construction of the mapping ζ, Eq. (B.7), by inserting the 6D

position (Mn
0, R0) for Mn and R. Using the notation jab =

(
ja

b
1 ja

b
2 ja

b
3

)
, we
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B. Proofs of Lemmas from Ch. 6

find that the Jacobian matrix of the mapping ζ, Eq. (B.7), at q = 0 takes the form

∇ζ
ˇ

ˇ

ˇ

0
=



´(d1 ´ d2)ja
b
1 (d1 ´ d2)ja

b
2 0

(d1 ´ d2)ja
b
2 (d1 ´ d2)ja

b
1 0

(d3 ´ d1)ja
b
1 0 ´(d3 ´ d1)ja

b
3

(d3 ´ d1)ja
b
3 0 (d3 ´ d1)ja

b
1

0 ´(d2 ´ d3)ja
b
2 (d2 ´ d3)ja

b
3

0 (d2 ´ d3)ja
b
3 (d2 ´ d3)ja

b
2

 .

Since by assumption, the d1, d2, d3 are mutually different and jab ‰ 0, the 6 ˆ 3

Jacobian matrix ∇ζ
ˇ

ˇ

0
contains necessarily a non-zero minor determinant of order 3,

and thus is injective. As a result, the mapping ζ itself is an immersion in q = 0, and
thus injective, at least locally, around q = 0. ˝
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