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RÉSUMÉ
Les  méthodes  numériques  sont  largement  utilisées  en  exploration  sismique  pour
simuler la propagation des ondes et pour le post-traitement des données sismiques
avant  l'interprétation  géologique/géophysique.  Les  algorithmes  sont  basés  sur
différentes hypothèses pour réduire le coût de calcul au détriment de la simplification
des  modèles  et/ou des  phénomènes physiques.  En raison de leur  rôle  essentiel  en
exploration géophysique,  la  précision des simulations numériques présente un fort
intérêt,  notamment  dans  le  cas  de  configurations  géologiques  réalistes.  La
comparaison  directe  des  résultats  numériques  entre  eux  dans  des  configurations
synthétiques peut avoir des limites, car il peut être difficile de déterminer celui qui
donne la meilleure approximation de la solution physique inconnue. Comme dans la
réalité  le  sous-sol  n'est  jamais  connu  avec  précision,  il  est  également  difficile  de
comparer les résultats synthétiques aux données sismiques réelles acquises in situ. Par
conséquent,  il  y  a  un  grand  intérêt  à  utiliser  des  mesures  de  laboratoire  sur  des
modèles  physiques  aux  propriétés  connues  pour  valider  la  précision  des  outils
numériques. Avant de pouvoir comparer avec précision les mesures et les simulations,
nous devons tout d’abord établir un cadre comparatif avec une approche conjointe
adaptée  aux  expériences  de  laboratoire  et  à  la  modélisation  numérique.  C’est
précisément  l'objectif  de cette  thèse.  Ainsi,  le  cadre reproduit  d'abord les  mesures
sismiques marines dans des conditions de laboratoire en utilisant de modèles à échelle
réduite,  puis  les  outils  numériques  sont  adaptés  à  la  reconstruction  précise  des
expériences.

Le  cadre  est  introduit  pour  le  modèle  Marseille-Benchie.  Ce  modèle  a  une
topographie  complexe,  produisant  un  champ  d’ondes  à  la  fois  complexe  et
relativement facile à appréhender.  Avant de simuler numériquement la propagation
des ondes par méthodes de différences finies (FDM) ou d’éléments spectraux (SEM),
nous nous concentrons sur les paramètres d'entrée, tels que les propriétés du matériau
et  la  géométrie  du  modèle.  Les  propriétés  du  matériau  sont  caractérisées  en
laboratoire puis calibrées pour les simulations numériques. Les caractéristiques réelles
du  traducteur  piézoélectrique  source  sont  modélisées  en  utilisant  une  nouvelle
approche  qui  consiste  à  caractériser  le  traducteur,  puis  à  effectuer  une  étape
d'inversion pour obtenir une source numériquement équivalente. La comparaison des
résultats  numériques et  de laboratoire révèle une bonne concordance en termes de
temps d’arrivée,  de phase et  d’amplitude,  à  la  fois  pour  la  SEM et  la  FDM. Les
différences mineures observées au niveau des amplitudes peuvent être attribuées aux
imprécisions des positions du traducteur combinées à la forte topographie du modèle,
au bruit présent dans les données de laboratoire, aux incertitudes liées à la source
numériquement equivalente et à celles liées aux mesures d'atténuation.
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Forts de ces constats, nous améliorons la procédure expérimentale avant d’étendre le
cadre au modèle WAVES. Ce modèle représente une configuration géologique réaliste
avec un dôme de sel enfoui dans des milieux sédimentaires. Nous utilisons la SEM
pour reproduire les données de laboratoire 3D zero-offset et offset. La comparaison
des résultats synthétiques avec les mesures  révèle une très bonne concordance. Les
différences mineures observées au niveau des amplitudes peuvent une fois encore être
attribuées aux mêmes facteurs que dans le cas du modèle Marseille-Benchie.

Enfin,  malgré  les  incertitudes  qui  subsistent,  l’ensemble  de  la  procédure
expérimentale  est  validé  avec  succès  grâce  à  l’application  de  la  reverse-time
migration (RTM) aux données de laboratoire. En effet, les noyaux de sensibilité RTM
résultants  montrent  une  reconstruction  précise  et  cohérente  de  la  plupart  des
discontinuités du modèle WAVES. Par conséquent, le cadre proposé peut être utilisé
pour tester des techniques d'imagerie existantes ou nouvelles.

Mots clés: propagation des ondes, simulation numérique, expérience en laboratoire,
reverse-time migration, sismique marine, échelle réduite, ultrasons, atténuation
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ABSTRACT
Numerical  methods  are  widely  used  in  seismic  exploration  to  simulate  wave
propagation  and  to  post-process  the  recorded  seismic  data  before  the
geologic/geophysical interpretation. The algorithms are based on various assumptions
to reduce the computational cost at the expense of simplifying the models and/or the
physical phenomena. Because of their  essential  role in exploration geophysics, the
accuracy of the numerical simulations is of particular interest, especially in the case of
realistic geologic setups.  The direct comparison of the numerical results with each
other  in  synthetic  configurations  can  have  limitations,  as  it  can  be  difficult  to
determine the one that gives the best approximation of a physically unknown solution.
Because in real life the subsurface is never accurately known, it is also difficult to
compare  the  synthetic  results  to  any  seismic  data  set  from  field  measurements.
Therefore  there  is  a  strong interest  in  using  laboratory measurements  on physical
models of known geometries to benchmark the numerical tools. Before comparing
measurements  and simulations  with confidence  at  high  accuracy,  we first  need to
establish  a  comparative  framework  with  a  jointly-adapted  approach  to  both  the
laboratory experiments and the numerical modeling. This challenging task is the goal
of this thesis. Thus, the framework first reproduces offshore seismic measurements in
laboratory conditions with the help of small-scale models,  and then the numerical
tools are adapted to the accurate synthetic reconstruction of the experiments.

The  framework is  introduced  for  the  Marseille-Benchie  model.  This  model  has  a
complex topography, yielding a wavefield which is both challenging and relatively
easily  understandable.  Prior  to  the  finite-difference  (FDM)  and  spectral-element
(SEM) simulations, we focus on the input parameters, such as the material properties
and the model geometry. The material properties are characterized in the laboratory
and  calibrated  for  the  numerical  simulations.  The  real  source  transducer
characteristics are implemented using a new approach, consisting of the laboratory
characterization  of  the  transducer,  followed  by  an  inversion  step  to  obtain  a
numerically equivalent source. The comparison of the synthetic and laboratory results
reveals a good fit in terms of arrival time, phase, and amplitude, for both the SEM and
the  FDM,  especially  in  zero-offset  configuration.  Minor  amplitude  mismatches
(concerning mainly the offset configuration) may be attributed to the inaccuracies of
the transducer positions in the laboratory combined with the strong model topography,
to the noise recorded in the laboratory data, and to the uncertainties of the proposed
source implementation and of the attenuation parameters.

Based on the identified sources of misfits, we improve the experimental procedure
before extending the framework to the complex and multi-layered WAVES model.
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This model represents a realistic geologic setup with a salt-dome in the middle. We
use the SEM to reconstruct the 3D zero-offset and 3D offset laboratory measurements.
The comparison of the synthetic results with the laboratory measurements reveals a
very good fit  for the arrival time, phase,  and amplitude.  Once again,  the revealed
minor amplitude mismatches may be attributed to the noise recorded in the laboratory
data, as well as to the uncertainties of the proposed source implementation and of the
attenuation parameters.

Finally,  despite  the  remaining  uncertainties,  the  entire  framework  is  successfully
validated through the application of reverse-time migration (RTM) to the laboratory
data sets. Indeed, the resulting RTM sensitivity kernels show an accurate and coherent
reconstruction of most of the discontinuities of the WAVES model.  Therefore,  the
proposed framework can be used with confidence to  test  already existing  or  new
imaging techniques.

Keywords: wave propagation, numerical simulation, laboratory experiments, reverse-
time migration, offshore seismic, small-scale, ultrasonic, attenuation
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GENERAL INTRODUCTION

The terrain below the Earth's surface plays not only an important role in supplying our
society with essential resources – such as water, oil, gas, precious metals - but it has
also a huge effect on our daily life through earthquakes, tsunamis, landslides, to name
a  few.  Therefore  the  knowledge  and  the  understanding  of  the  subsurface  are  of
particular interest. Because in-situ data about the subsurface is usually not available,
we need to resort to methods that measure some physical phenomena on the Earth's
surface  or  above  that,  such  as  in  the  case  of  radar  interferometry  to  investigate
volcanic activity (e.g. Hooper, 2008). A better understanding of the applied methods
can result in both economic and environmental advantages, such as: finding resources
with higher probability; drilling wells in the optimal position with better precision;
better understanding the geological processes of the past and the present, and their
possible future consequences; better assessing the risks of landslides, earthquakes and
tsunamis on people and infrastructure (e.g. on nuclear power plants and water dams).

The general approach of geophysical exploration is summarized in Figure 1. Let us
suppose  that  we  want  to  understand  the  geological  setup  of  a  given  part  of  the
subsurface. The first step is the preparation, using all available information to make
plans  for  the  future  measurements.  These  preliminary  information  may  include
already existing  measurements  (e.g.,  large-scale  regional  seismic  measurements  in
exploration geophysics, previous ground-penetrating radar surveys or geomechanical
characterization of soil samples in civil engineering); potential hypotheses about the
geological history of the investigated site; and small-scale physical models to better
understand  the  problems  at  laboratory  scale  (e.g.  geodynamic  modeling  of  the
lithospheric deformation like in Dombradi et al., 2010); to name a few. Based on all
the preliminary information, the necessary geophysical methods can be selected, such
as seismic, gravitational and electromagnetic methods. The data acquisition can also
be  optimized  in  advance,  by  choosing,  for  example,  the  suitable  frequency  and
acquisition geometry. The actual data acquisition and its subsequent processing is the
second step. The details of this step are out of the scope of this thesis, but they play an
essential  role in the overall  understanding of the subsurface.  In the third step,  the
measured data sets are interpreted and put into a general context. Most of the time the
understanding of the subsurface is a complex iterative process, using the measured
data and the preliminary information as well. Usually, a theoretical model is supposed,
based on the a priori  information and the first  interpretation of the measurements.
Then the numerical simulations are conducted for this initial model and the results of
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GENERAL INTRODUCTION

the numerical  simulations  (called synthetic  results)  are  compared to  the measured
data. By interpreting the differences between the synthetic and the measured data, and
again possibly considering the preliminary information as a constraint, the theoretical
model  is  modified  to  decrease  the  misfit  between  the  simulations  and  the
measurements.  By  repeating  these  steps,  we  hope  that  the  theoretical  model  is
approaching the real-life setup. The term 'hope' is used here because the subsurface is
never known exactly. Because there are numerous other parameter sets leading to the
same  solution  (e.g.  different  density-velocity  combinations  provide  the  same
reflectivity), this approach leads to a mathematically non-unique solution. It requires
extensive knowledge and experience to choose the geologically/geophysically feasible
solution out of all the mathematically possible ones.

4



Figure  1.  Flowchart  of  a  typical  exploration  geophysics  project  from  the  initial
planning phase to the understanding of the subsurface.
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GENERAL INTRODUCTION

As mentioned above, numerous geophysical methods can be used to investigate the
subsurface, but the seismic/seismological method is one of the most generally used
(e.g. Ikelle and Amundsen,  2005). Seismology is the term used for regional and global
scale applications, such as the investigation of the structure of the Earth's interior,
global seismicity or earthquake epicenter determination.  Seismic is the term used in
exploration geophysics at a rather local scale (e.g., for hydrocarbon exploration, water
extraction, CO2 storage); and in engineering geophysical applications (e.g., for near-
surface  mapping for  civil  engineering  and archaeological  applications).   Although
'seismic' and 'seismology' are two terms practically denoting the same method, which
uses  seismic  waves  propagating  in  the  subsurface  from either  natural  or  artificial
sources,  they  utilize  different  frequencies1.  The  seismic  method  is  widespread  in
applied geophysics due to the possibility to image even deeply overburden structures,
as well as the high resolution of the measured data. The method is especially efficient
on the sea, where a large area can be surveyed in a short period of time.

Seismic exploration uses the so-called wave equation to describe the propagation of
the seismic waves in the subsurface. The analytical solution of this equation can be
deduced only for rather simple models, such as a homogeneous, isotropic half space
(e.g.,  Lamb, 1904, de Hoop, 1958),  or a  layer-cake geologic model  (e.g.  Kennett,
1981). However, these simple models do not represent the complexity of the real life,
e.g.  an  arbitrary  3D  geometry  with  complex  material  properties,  including
heterogeneities,  anisotropy,  and  numerous  thin  interbedded  layers.  Therefore
exploration geophysics relies heavily on numerical tools to approximate the solution
of  the governing equations  for  realistic  geologic setups.  Numerical  algorithms are
used in seismic exploration during survey design, data processing and interpretation
(e.g.  Robertsson  et  al.,  2007),  as  well  as  in  seismic  imaging  and inversion  (e.g.,
Chauris and Benjemaa, 2010, Virieux et al., 2011). Conventional methods (e.g., ray-
tracing,  Kirchhoff  integral,  and finite-difference  methods),  widely  used  in  seismic
exploration, are efficient to simulate realistic wavefields in environments with simple
structures  and  slowly-varying  material  properties.  However,  difficulties  arise  for
environments with large and rapid structural changes, as well as in the presence of
shadow  zones  and  (multiple)  diffractions.  Thus,  different  methods  have  been
developed to improve seismic modeling in realistic geologic environments, including
steeply-dipping faults, curved interfaces, salt bodies, etc. (e.g. Mittet, 2017).

1 Typical  frequency  ranges:  0.1-4  Hz  in  seismology,  and  4-150  Hz  in  seismic
exploration.
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Before real applications, newly developed numerical algorithms are typically tested
against other numerical methods using synthetic configurations. Several projects have
focused on the comparison and validation of the different numerical results (e.g., Igel
et al., 2000, Moczo et al., 2006, 2010, Fehler and Keliher, 2011, Chaljub et al., 2015).
Since each numerical algorithm is based on mathematical assumptions – i.e. to some
extent simplifying the underlying physics and/or the geometry of the real life to save
computational cost –, their direct comparison for realistic and complex models can
have  limitations,  as  it  can  be  difficult  to  determine  the  one  that  gives  the  best
approximation of a physically unknown solution. Therefore there is a strong interest
in using physical data sets to benchmark synthetic results. However, because in real
life the subsurface of the Earth is never accurately known, it is difficult to compare
the synthetic results with any seismic data set from field measurements.

An alternative approach to test and validate the performance of the numerical methods
in realistic cases can be the comparison of the synthetic results  with experimental
data,  obtained  for  a  small-scale  physical  model  in  laboratory  conditions.  This
implicitly  assumes  that  the  scaled  physical  mechanisms  are  identical  to  those  at
seismic scale (Ebrom and McDonald, 1994), and this assumption is fulfilled in the
case of the linear wave equation. Considered as obsolete in the 1990's – essentially
due to the drastic increase in computing capacities –, laboratory experiments have
recently been re-introduced into the ideas-to-applications pipeline. The laboratory can
be considered as a halfway point between numerical modeling and field observations.
Indeed,  laboratory experiments  are  repeatable,  more controllable  than real  seismic
surveys, versatile in terms of the acquisition setup and provide high-quality data for a
known configuration.  Furthermore,  similar  to  real  seismic  acquisitions  and unlike
some numerical data, laboratory measurements contain random and signal-generated
noise, multiples, mode conversions, and uncertainties due to position inaccuracies. As
these sources of noise and uncertainties can be better assessed than in the case of field
data  sets,  the  laboratory  experiments  are  valuable  tools  to  validate  numerical
simulations against real physical data sets.
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GENERAL INTRODUCTION

Initially,  small-scale  physical  modeling  was  extensively  developed  for  a  better
understanding of the underlying physics of seismic wave propagation (e.g, Wapenaar
and Berkhout, 1987, Pant et al., 1992), and for the validation of theoretical predictions
(Favretto-Anrès and Rabau, 1997). Laboratory experiments are still used nowadays to
investigate physics that is not sufficiently understood to be numerically modeled with
confidence (Cooper et al., 2010, Stewart et al., 2012, Ekanem et al., 2013, Xu et al.,
2016, Chang et al., 2017). Data from laboratory experiments are also used as input to
inverse problems (Pratt, 1999, Favretto-Anrès and Sessarego, 1999, Bretaudeau et al.,
2013, Chai et  al.,  2015),  to test  new data processing algorithms (Campman et al.,
2005), and in time-lapse 3D studies (Sherlock et al., 2000). More recently, small-scale
modeling has been used again as another tool to validate numerical modeling and
seismic imaging methods in the context of onshore and offshore seismics (Bretaudeau
et al., 2011, Favretto-Cristini et al., 2014, 2017, Tantsereva et al., 2014a, b, Pageot et
al.,  2017, Solymosi et al.,  2018). In particular, by using physical measurements of
wave  propagation  for  a  known model  (considered  as  the  reference  data),  and  by
investigating any misfit between the measurements and the simulations, it has been
shown that there is a need for further development of the numerical tools, in order to
obtain more accurate results in specific complex configurations (e.g. in the case of
strongly  curved  interfaces).  These  works  thus  clearly  show  the  advantage  of  the
laboratory data sets as part of the benchmarking options for numerical algorithms.

These works also highlight the fact that an efficient benchmarking procedure requires
a carefully chosen and jointly-adapted approach to both the laboratory experiments
and the numerical modeling. On the one hand, the numerical tools must be adapted to
the  experimental  configuration  (e.g.,  implementing  the  real  source  characteristics,
material  properties,  and acquisition conditions).  On the other  hand, the laboratory
experiments have to be carried out keeping in mind the capabilities of the numerical
tools (e.g. choosing the acquisition geometry such that the future computational cost
will be the lowest possible). In addition, experimental uncertainties must be identified
and  subsequently  minimized  in  order  to  obtain  high-quality  data,  and  numerical
simulations may also contribute to this identification. As a consequence of this two-
way adaptation,  we always need to keep in  mind the experimental  and numerical
aspects, for example, in the choice of the scaling factor, material properties or model
geometry. Establishing a framework, which ensures an efficient reconstruction of the
laboratory  measurements  with  numerical  simulations,  using  small-scale  physical
models with a geologically  relevant  geometry and material  properties,  is  therefore
essential in order to better understand the capabilities, limitations and possible future
developments of the numerical tools. This highly challenging task is the goal of this
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PhD thesis. More specifically, we do a cross-validation of the laboratory experiments
and the numerical simulations to discover the points to be improved on both sides of
the framework.

In this work, two small-scale models have been used: the Marseille-Benchie model
and the WAVES model. The Marseille-Benchie model has a complex topography and
is made out of one material with a flat bottom surface. Therefore a complex wavefield
can  be  obtained,  including  reflections,  diffractions,  and  multiples,  but  the
interpretation of the measurements is relatively straightforward. This is advantageous
for  the  calibration  phase  when  the  framework  is  established.  Following  that,  the
WAVES model provides a challenging task by closely representing both the geometry
and the material properties of a realistic 3D geologic setup. The model consists of a
salt-dome in the middle, surrounded by several sedimentary layers of varying material
properties,  including a  zone with  an  inverted  velocity  profile  (where  the  velocity
decreases with depth). The geometry of this model was motivated by the difficulties
encountered in seismic exploration concerning the salt structures.

For the numerical simulations, we resorted mainly to the spectral-element modeling
(SEM) as a full-wave method, which is not based on strong underlying assumptions,
as opposed to for instance the discretized Kirchhoff integral method (e.g., Tantsereva
et  al.,  2014a,  Favretto-Cristini  et  al.,  2017).  The  SEM  becomes  more  and  more
popular  with  time  in  the  seismic  community  since  it  is  well-suited  for  high-
performance computing (Komatitsch et al., 2003). As it combines the accuracy of a
pseudo-spectral  method  with  the  flexibility  of  a  finite-element  method,  the  SEM
allows  the  handling  of  complex  geometries  by  using  a  non-structured  mesh  and
different element sizes in the computational domain (Komatitsch and Tromp, 2002,
Oliveira and Seriani, 2011). Because the necessary trade-off between accuracy and
computational cost is usually sought-after, we are also interested in the ability of the
SEM to accurately simulate complex 3D wavefields including (multiple) diffractions
at the lowest possible computational and man-hour cost. Few papers are devoted to
the comparison of the SEM with other numerical methods (e.g.,  Capdeville et  al.,
2002, 2003, Moczo et  al.,  2010, De Basabe and Sen, 2014, Chaljub et  al.,  2015).
Pageot  et  al.  (2017)  recently  compared  laboratory  and  synthetic  data  sets  in  an
onshore  configuration  to  investigate  surface  wave  propagation  and  amplitude
transformation  between  2D and  3D.  But  to  the  best  of  our  knowledge,  no  paper
compares laboratory data with 3D SEM results in offshore configuration. As part of
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GENERAL INTRODUCTION

our collaboration within the WAVES ITN Project2 and more specifically with Børge
Arntsen  (NTNU, Trondheim, Norway),  we also compared some of the SEM and
laboratory data sets with finite-difference results. The goal of the comparison was to
benchmark the finite-difference code developed at the NTNU, as well as to investigate
the necessary computational cost of the different numerical methods to reach a given
accuracy in reconstructing the laboratory measurements.  Finite-difference modeling
(FDM) is the most widely used numerical method in seismic exploration and is also a
full-wave method. The FDM is based on a different approach to spatial discretization
than the SEM, as it can only consider structured grids, which do not explicitly honor
the discontinuities (e.g., Virieux, 1984, 1986, Holberg, 1987, Mittet 2002).

In seismic exploration the migration of the acquired field data is essential to account
for the fact that seismic data is always recorded in the time domain, in which the
geometry of the subsurface is not represented correctly. Numerous imaging techniques
exist and the choice of the algorithm depends, for example, on the type of the data set
to  be processed,  as well  as on the complexity of the geologic setup (e.g.  Yilmaz,
1987). The result of the seismic migration is a data set in the depth domain which can
be  used  for  the  mapping  of  subsurface  discontinuities,  geologic  formations,  and
potential hydrocarbon reservoirs, to name a few. In this thesis, we use one of the most
common seismic imaging techniques, the reverse-time migration (RTM). The RTM is
based on the imaging principle (Claerbout, 1971), and it is capable to reconstruct the
reflectors related to reflection coefficient contrasts (e.g., Zhang et al., 2003, Zhu et al.,
2009). Applying the RTM to the laboratory data measured for a small-scale model is
an  optimal  benchmarking  opportunity  for  the  established  framework.  More
specifically, if the resulting RTM data set shows a precise reconstruction of the known
model  geometry,  then it  suggests  a  successful  validation  of  the entire  framework,
including the laboratory measurements and their numerical implementations.

2 This work is  one of the fifteen theses of the WAVES ITN Project (2015-2018),
funded by the European Commission through Horizon 2020. The participants include
Sorbonne Université, University of Edinburgh, Norwegian University of Science and
Technology  (NTNU),  Delft  University  of  Technology  (TU  Delft),  University  of
Oxford, Centre National de la Recherche Scientifique (CNRS), Institut National de la
Santé et de la Recherche Médicale (INSERM), Schlumberger Cambridge Research
Ltd., Eidgenössische Technische Hochschule Zürich (ETH), Shell Global Solutions
International,  École  Supérieure  de  Physique  et  de  Chimie  Industrielle  (EPSCI),
Columbia  University  (ColU),  Ludwig-Maximilians-Universität  München,
Universitetet I Oslo, and Statoil.
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The manuscript is divided into two parts.Lllllllllllllllllllllllll llllllllllllllllllllllllllllllllllllll
Part  1 (entitled 'Framework for the high-precision reconstruction of the laboratory
measurements with numerical simulations - the Marseille-Benchie model as a tool')
discusses in details all the preparatory steps used to elaborate the framework. First,
Chapter 1 introduces the Marseille-Benchie model, the experimental setup and the
interpretation  of  the  laboratory  data  sets.  Note  that  the  laboratory  techniques  to
characterize the properties of the material of the model, together with the measured
values  at  different  frequencies  and  their  associated  uncertainties  are  presented  in
Appendix  A.  Then in  Chapter  2  the  basics  of  the  applied  numerical  methods are
discussed, as well as the meshing, the numerical implementation of the real transducer
characteristics, and the numerical calibration of the material properties. Note that we
propose an optimization technique for  the non-structured meshing of  the spectral-
element simulations to reduce the computational cost while keeping the same level of
accuracy in Appendix B. In Chapter 3 the laboratory measurements are  compared
with the synthetic results. Chapter 4 is dedicated to the discussion of the (mis)fits
between the data sets. Finally we draw the conclusions, as well as some necessary
short-term  and  long-term  improvements  are  proposed  to  decrease  the  identified
misfits.

Part  2  is  entitled  'Application  to  a  realistic  geologic  setup  –  the  WAVES model'.
Chapter  1  introduces  the  WAVES  model,  including  its  geometry  and  the  most
important material properties (see also Appendix A); as well as the improvement of
the  experimental  setup  compared  to  Part  1.  The  interpretation  of  some  of  the
laboratory data sets is also presented here. Chapter 2 is dedicated to the numerical
aspects,  discussing  the  numerical  implementation  of  model  geometry,  and  the
calibration of the material properties for the multi-layered geometry. In Chapter 3 the
laboratory measurements  are  compared with the synthetic  results,  and the (mis)fit
between the two is also discussed in details. In Chapter 4 we showcase the RTM as an
example  of  the  possible  seismic  imaging  techniques  that  can  be  tested  using  the
WAVES model, including the necessary laboratory measurements and the resulting
sensitivity kernels. Finally, the conclusions and perspectives are presented.

The manuscript ends with general conclusions and perspectives regarding both the
experiments and the numerical tools, including a proposal for new imaging techniques
to be tested with the help of the proposed framework.
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We note that some parts of this manuscript are included in (submitted or) already
published works:

• Solymosi,  B.,  Favretto-Cristini,  N.,  Monteiller,  V.,  Cristini,  P.,  Ursin,  B.,
Komatitsch, D., and Arntsen, B., 2017, Comparing spectral-element numerical
results with laboratory data: an example for a topographical model: 79th EAGE
Conference & Exhibition, Extended Abstract, EAGE, We B4 02.

• Solymosi, B., Favretto-Cristini, N., Monteiller, V., Komatitsch, D., Cristini, P.,
Arntsen, B., and Ursin, B., 2018, How to adapt numerical simulation of wave
propagation and ultrasonic laboratory experiments to be comparable - A case
study for a complex topographic model: Geophysics, 83(4), T195-T207.
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Introduction

Introduction
As mentioned in the General Introduction, previous works (e.g., Bretaudeau et al.,
2011, Favretto-Cristini et al., 2014, 2017, Tantsereva et al., 2014a, b, Pageot et al.,
2017) have highlighted the need for a framework if numerical simulations are meant
to be compared with laboratory measurements with high confidence and accuracy.
This framework must be concerned with both the laboratory ultrasonic measurements
on small-scale physical models in order to mimic offshore seismic surveys and the
accurate  numerical  reconstruction  of  these  experiments.  The  goal  of  this  part  is
therefore to elaborate this framework.

We use  the  Marseille-Benchie model,  which is  based  on French's  model  (French,
1974), but also includes additional structures with steep flanks, sharp edges, corners,
and curved interfaces. This geometry enhances multiple reflections and diffractions,
as  well  as  shadow  zones  and  interactions  between  the  different  structures.  This
complexity provides a significant challenge to any numerical method to reproduce the
wavefield.  The  model  has  already  been  used  in  previous  works.  In  particular,
Tantsereva et al. (2014a) evaluated the ability of the 3D discretized Kirchhoff integral
method  (DKIM)  to  accurately  simulate  complex  diffractions  using  a  zero-offset
laboratory data set measured for this model. The comparison of the numerical and
laboratory data sets showed that the DKIM could correctly reproduce the wavefield,
except in the vicinity of secondary shadow boundaries, created by the interaction with
the edges of the topographic structures. As a follow-up, Favretto-Cristini et al. (2017)
quantitatively analyzed the effect of multiple scattering and surface curvature on the
wavefield, in order to define the cases where these effects may be neglected in the
numerical modeling without a significant loss of the overall accuracy. As the results of
Tantsereva  et  al.  (2014a)  and  Favretto-Cristini  et  al.  (2017)  show,  the  Marseille-
Benchie model has been proved to be a suitable tool to validate the results of the
numerical tools and point out the necessary future developments. Therefore we also
chose this model for the elaboration of the framework presented in this thesis.

This part is divided into three chapters.llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
Chapter 1 is dedicated to the laboratory aspects of the framework. In Section 1.1 the
geometry  of  the  small-scale  physical  model  is  introduced,  as  well  as  its  most
important  material  properties.  The  experimental  setup  is  presented  in  Section  1.2
together with the characteristics of the ultrasonic transducers. Then some exemplary
cross-sections  from  the  laboratory  data  sets  in  both  zero-offset  and  offset
configurations are interpreted in Section 1.3.
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Chapter  2  contains  the  numerical  aspects,  starting  with  the  introduction  of  the
numerical algorithms commonly used in seismic exploration  (Section 2.1). Then in
Section  2.2,  the  spectral-element  modeling  (SEM)  is  presented  as  the  primary
numerical  method used in  this  thesis.  This section focuses on the most important
aspects  of  the  method,  such  as  the  weak form of  the  seismic  wave  equation,  its
approximation by the polynomial basis functions, the applied integral quadrature, the
time-stepping scheme, the stability condition, the implementation of the point source,
and the boundary conditions.  The main contribution of our work is  the numerical
implementation of the physical transducers,  including a laboratory characterization
and a subsequent inversion process, is also detailed here. Section 2.3 is dedicated to
the adaptation of the Specfem software package to our framework, including the non-
structured  hexahedral  meshing  of  the  model  geometry,  the  implementation  of  the
viscoelasticity, and the numerical calibration of the material properties used for the
simulations.

The comparison of the synthetic results with the laboratory measurements is presented
in  Chapter  3.  3D  zero-offset  and  3D  offset  cases  are  compared,  using  both  the
spectral-element and the finite-difference algorithms. The general good fit between
synthetic and laboratory traces are showcased for both methods. The misfits between
the  numerical  and  physical  results  are  also  discussed  in  details,  as  well  as  the
differences  between  the  numerical  results  obtained  with  the  two  numerical
approaches.
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Chapter 1
Small-scale seismic experiments

1.1 The small-scale physical model

The  Marseille-Benchie  model  was  designed  to  represent  a  moderately  complex
geometry,  as it contains various topographic features, such as a dome, a truncated
smaller dome, a truncated pyramid and two flat parts separated by a ramp (Figure 2).
The model is entirely made of polyvinyl chloride (PVC), which was chosen because
its properties are considered to be close to those of the typical sedimentary layers.
Table  1  shows the  measured  properties  of  the  PVC (together  with  the  associated
uncertainties), which is considered to be a homogeneous, isotropic and viscoelastic
material.  These values  are  valid  for the frequency range of  interest  of this  thesis,
namely 250-650 kHz (see Appendix A). A scaling factor of 1:20 000 was used to scale
down the real-life dimensions of typical seismic setups to the laboratory scale. Hence
the experimental frequency of 500 kHz corresponds to a seismic frequency of 25 Hz,
and an experimental distance of 1 mm corresponds to 20 m at seismic scale.  The
velocities and density of the material are not affected by the scaling, however, the
attenuation can vary significantly with the frequency,  as it  is  generally  higher  for
materials used for laboratory experiments than in the case of real geologic formations.
Because exploration geophysics,  and therefore the numerical tools used in seismic
exploration as well,  rely on Q-factors  instead of the direct  attenuation values,  we
present Q-factors hereafter (see Appendix A). The model has a size of 600 x 400 mm2,
corresponding to 12 x 8 km2 at seismic scale. Its thickness varies between 30-70 mm,
depending on the geometry. The radii of the dome and the truncated dome are both
100 mm, and the base of the pyramid is 90 x 90 mm2 (Figure 2).
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Figure 2. The Marseille-Benchie model. (Top) Its topography: dome (a), truncated
pyramid  (b),  truncated  dome (c),  flat  part  (d),  ramp (e)  and  elevated  plateau  (f).
(Bottom) The height of the objects.

Density
(kg/m3)

Vp (m/s) Vs (m/s) Qp Qs

1440 ± 10
(± 0.7 %)

2205 ± 20
(± 0.9 %)

1056 ± 462
(± 44 %)

86 ± 1
(± 1.1 %)

13 ± 9.6
(± 73 %)

Table 1. Properties of the PVC for the frequency range of interest (250–650 kHz), and
the associated uncertainties.

1.2 Experimental setup and data acquisition

The model was immersed in a water tank during the measurements (Figure 3). The
tank is equipped with a computer-controlled acquisition system that allows for the
accurate positioning of the source and the receiver transducers. At the time of the
laboratory measurements for the Marseille-Benchie model, there was no a posteriori
control  of  the  precision  of  the  transducer  movements  by  optical  rulers,  so  the
precision  was  assumed  to  be  ±0.5  mm (i.e.  ±10  m at  seismic  scale).  The  water
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temperature was continuously monitored during the measurements (with an accuracy
of ±0.1°C), providing an accurate knowledge of the speed of sound waves in water,
typically around 1480 m/s. The precision of the measurement of the water speed is
±0.01785 m/s. Water was considered to have a density of 1000 kg/m3 and a negligible
attenuation.

Figure 3. The water tank used for the experiments. Transducers can be attached to two
axes, and the three-dimensional movement of each transducer is ensured by stepping-
motors, controlled by a PC. The recently installed optical rulers provide a posteriori
control of the transducer movements.

A conventional pulse-echo technique (Figure 4) was used to collect reflection data in
both zero-offset and offset configurations (Figure 5). Zero-offset measurements were
performed by using a custom-made Imasonic® transducer as both the source and the
receiver. It has a diameter of 3 mm and was located 180±0.5 mm above the flat part of
the model (labeled as (d) in Figure 2), corresponding to 3.6 km at seismic scale. The
transducer has a dominant frequency of 500 kHz, and – contrary to the conventional
transducers – a broad-beam radiation pattern, as the width of the main lobe is 35° at -3
dB. This radiation pattern allows for a large area to be illuminated and therefore more
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3D effects to be captured (Tantsereva et al.,  2014a), such as the interaction of the
waves  with  multiple  topographic  features  and  multiple  wave  scattering  (Favretto-
Cristini  et  al.,  2017)   (Figure  6).  The  source  signal  and  its  associated  frequency
spectrum for the frequency range of interest are shown in Figure 7.

20



Chapter 1

Figure 4. Sketch of the acquisition system in the offset (top) and zero-offset (bottom)
configurations. The BNC time delay is used to increase the dynamics of the recorded
signal.
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Figure 5. Illustration of the small-scale seismic experiments performed in the water
tank. The model is illuminated by a piezoelectric transducer (left). The wavefield is
recorded  by  a  hydrophone  (right)  in  the  offset  configuration.  In  the  zero-offset
configuration, the piezoelectric transducer is used also as the receiver.

Figure 6. Illustration of the illumination area superimposed on the Marseille-Benchie
model  for  a  conventional  narrow-beam  transducer  (blue)  and  the  broad-beam
Imasonic® transducer used in this thesis.
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Figure  7.  (Top)  the  signal  (filtered  between  250-650  kHz)  generated  by  the
piezoelectric  transducer  and  recorded  by  the  hydrophone  in  opposite  position,
(bottom) the associated amplitude spectrum.

Offset measurements were performed by using two transducers: the above-mentioned
transducer as the source, and an omnidirectional Teledyne Reson® hydrophone as the
receiver. Both transducers were located 150±0.5 mm above the flat part of the model
(labeled as (d) in Figure 2), corresponding to 3 km at seismic scale. The source can be
tilted with various angles to illuminate different parts of the model or to enhance some
particular effects, such as shadow zones. The hydrophone has an active diameter of 4
mm and its sensitivity is constant between 50-800 kHz (Figure 8). The directivity of
the hydrophone in both the vertical and the horizontal planes are also shown in Figure
8.
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Figure  8.  a)  The  hydrophone  used  as  the  receiver  in  offset  configurations,  b)  its
directivity in the vertical (left) and horizontal (right) planes, c) its sensitivity. Figures
8 b) and c) are the courtesy of Teledyne Reson®.
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Acquisitions were performed along x-lines (Figure 5) with a sampling distance of 0.5
mm (corresponding to 10 m at seismic scale). The collected data set thus consists of
numerous parallel profiles, providing a set of reflection data for a dense grid (with a
receiver  spacing of  0.5 mm in both x- and y-directions).  In order  to  enhance the
signal-to-noise ratio (SNR), a stacking technique was applied before recording the
data. The water column above the transducers was always at least 0.6 m and the tilt
angle of the source transducer was 39±1° for the offset measurements.

1.3 Illustration of the laboratory data sets

For the sake of brevity, here we focus on a study line, located above the full dome and
the  truncated  pyramid  in  the  x-direction  (yellow  dashed  line  in  Figure  5).  This
acquisition  line  provides  complex  diffraction  effects,  (multiple)  reflections  and
arrivals corresponding to curved interfaces. Figure 9 shows the laboratory zero-offset
data set for the study line, together with the interpretation of the recorded events. For
the sake of clarity, only the main events are interpreted in Figure 9. Events a) and c)
represent the arrivals related to the top surfaces of the PVC, corresponding to the
pyramid and the dome, and to the flat parts, respectively. Event a) mainly consists of
reflections (see positions between 90-115 mm for the pyramid and 95-410 mm for the
dome). There are also some diffraction hyperbolas corresponding to the edges of the
top surface of the pyramid, for positions less than 90 mm and greater than 115 mm.
Moreover, due to the angle of the truncation of the pyramid, there are two smaller
hyperbolas in the center of the pyramid, partly overlapping with the reflections from
the top flat surface of the object. Similarly to event a), event c) mainly consists of
reflections,  as  well  as  some diffraction  hyperbolas  related  to  the  junctions  of  the
pyramid and the dome with the flat part. Events b) and d) correspond to reflections
from the bottom of the PVC, below the pyramid and the dome, and below the flat
part, respectively. Since Figure 9 is a time section, a classical velocity pull-up effect
can be seen in the different arrival times of events b) and d). Indeed, depending on the
overburden, reflections from the same horizontal bottom surface of the PVC arrive at
different times. Event e) represents reflections from the small truncated dome (Figure
2). This out-of-plane arrival is due to the broad-beam radiation pattern of the source
transducer, and it would not be recorded if the source transducer was a conventional
one. We note that the diffractions on the right side of the section after 200 μs and for
positions 300-420 mm are related to the side of the physical model.

25



PART 1

Figure 10 shows the laboratory offset data set (i.e. a common shot gather) for the
study line together with the interpretation of the main events.  Event a)  shows the
direct arrival from the source, and event b) the reflections from the dome. All the
interpretations  marked  with  c)  correspond  to  reflections/diffractions  from  the
pyramid. Event d) illustrates the reflections from the flat part of the PVC. Event e) is
related to reflections from the small truncated dome and event f) to reflections from
the  ramp.  Event  g)  is  not  related  to  the  model,  but  to  spurious  arrivals  from the
acquisition system.
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Figure 9. Top: cross-section of the laboratory zero-offset data set along the study line.
The data was filtered between 250-650 kHz. Bottom: interpretation. Annotated events:
(a) & (b) top & bottom of the pyramid and the dome, (c) & (d) top & bottom of the
flat part, (e) truncated dome, (f) ramp. The vertical lines denote the zero-offset traces
chosen for comparison with numerical data, presented subsequently in Section 3.1.
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Figure  10.  Top:  cross-section  of  the  laboratory  offset  data  set  (i.e.  common shot
gather) along the study line. The data was filtered between 250-650 kHz. Bottom:
interpretation. Annotated events: (a) direct arrival, (b) dome, (c) pyramid, (d) flat part,
(e) truncated dome, (f) ramp, (g) spurious reflection from the acquisition system. The
vertical  lines  denote the offset  traces  chosen for  comparison with numerical  data,
presented subsequently in Section 3.2.
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Chapter 2
Numerical modeling of the laboratory

measurements

2.1 Brief overview of some popular numerical methods in
seismic modeling

If we considered a block of a homogeneous material with a single source inside, the
wave propagation could be easily described both in fluids:

ρ∂t
2 u=−∇ p+f ,  (1)

and in solids:

ρ∂t
2 u=∇⋅σ+f , (2)

where ρ denotes the mass density, u=u(x,t) is the displacement field, x is the spatial
coordinates,  t is the time,  p is the pressure,  f is the source term, and  σ is the stress
tensor, respectively. The derivation of equations 1 and 2 is extensively discussed in
the literature (e.g., Aki and Richards, 1980, Dahlen and Tromp, 1998). As noted in the
General Introduction, the analytical solution of equations 1 and 2 usually cannot be
deduced  for  realistically  complex  models,  and  they  must  be  numerically
approximated. By discretizing the continuous derivatives in the governing equations,
the numerical algorithms are capable to approximate the wavefield. The accuracy of
this  approximation  depends  on  the  applied  method  and  the  parameters  of  the
numerical calculations. Several numerical methods have been developed in the last
few decades,  which  all  have  advantages  and drawbacks,  and the  selection  of  the
suitable method depends on the application. For instance, what accuracy is needed?
What computational cost is affordable? How quickly are the results  needed? How
difficult/time-consuming is the numerical implementation of the model?

For instance, ray tracing methods are used from the early days of seismic tomography.
These algorithms determine the travel path of the seismic rays for a given model and a
given  source-receiver  pair,  based  on  Snell's  law  (e.g.,  Julian  and  Gubbins,  1977,
Červený,  1987, Virieux and Farra,  1991, Červený,  2001).  Rawlinson et  al.  (2008)
provide a short summary of the different ray tracing methods, which are accurate, but
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may  not  be  robust  enough,  and  may  encounter  instabilities  even  in  slightly
heterogeneous models. Due to these drawbacks, grid-based schemes, which calculate
the wavefield at each grid point of the model became popular with time. While the
different methods are based on very different approaches to discretize the model in
time and space,  their  mathematical  formulation  can be  synthetized.  Following the
spatio-temporal  discretization  of  the  governing  equations,  we  need  to  solve  large
algebraic  systems  and  ordinary  differential  equations  in  time.  As  recalled  by,  for
example, Fichtner (2010), formally the discretized algebro-differential equations can
be written in the following form:

M⋅¯̈u(t)+K⋅̄u(t )= f̄ (t ) ,  (3)

where M is called the mass matrix, K is the stiffness matrix, and ū(t ) and f̄ (t )
are the displacement field and the source term at time t, respectively. The double dot
over ū(t ) denotes the second time derivative. In this form,  ū(t ) and f̄ (t ) are
vectors,  containing,  for  instance,  the  discrete  values  at  the  grid  points  (finite-
difference  approach)  or  the  coefficients  describing  these  quantities  (finite-element
approach).  The mass  and stiffness  matrices  are  usually  sparse and their  structures
strongly depend on the formulation of the wave equation and the applied numerical
method. Depending on the requirements of some numerical algorithms, equations 1
and 2 may be reformulated as a function of different quantities. For instance equation
1 may be reformulated as a function of only the pressure, only the particle velocity or
only the displacement potential to describe the wave propagation in fluids. In solid
materials,  the common formulations  are  the displacement-stress,  the displacement,
and the velocity-stress formulations.

These time-dependent ordinary differential equations can be solved either in the time
domain  or  in  the  frequency  domain.  Time-domain  simulations  are  based  on  the
replacement of the time derivatives by finite-difference approximations. There exist
various  time-stepping  schemes,  for  instance,  the  leapfrog  method,  the  Newmark
scheme, or the more expensive predictor-corrector methods (e.g.,  Newmark, 1959,
Chaljub et al., 2007, Fichtner, 2010). Frequency-domain simulations are based on the
Fourier-transformed algebro-differential equations. These solvers provide an accurate
solution at a low computational cost if the solution is searched for in 2D, or for only a
few given frequencies in 3D. Because of the high memory requirements, especially in
the case of wide-band 3D simulations, frequency-domain solvers are outperformed by
time-domain iterative solvers.
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As we have seen above, most of the time-domain methods use the finite-difference
approach  for  the  time-discretization.  The  main  difference  between  the  numerous
methods, therefore, lies in their different approaches to the spatial discretization. A
very  popular  approach  to  the  spatial  discretization  as  well  is  the  finite-difference
method  (FDM).  The  basic  method  uses  evenly  distributed  grid  points  across  the
model  domain  and  replaces  the  continuous  derivatives  with  a  finite-difference
approximation,  evaluated only at  the grid points. For more details  about the basic
concept,  see  for  example  Alterman  and  Karal  (1968),  Boore  (1972),  Kelly  et  al.
(1976), and Virieux (1986). In 3D the use of a staggered grid helps to significantly
reduce the numerical dispersion, although this grid layout presents some difficulties,
for  instance  in  the  implementation  of  anisotropy  or  the  free-surface  boundary
condition (e.g., Madariaga, 1976, Virieux, 1984, 1986, Holberg, 1987, Mittet, 2002).
The FDM is usually considered to have a low computational cost (mainly on  CPUs),
especially  for  models  with  relatively  simple  and  slowly-varying  geometries.  Any
arbitrary model geometry can be easily implemented in the FDM (with the exception
of the free surface), however curved and tilted interfaces require a fine grid spacing in
order to avoid artifacts due to the staircase representation of the geometry, which may
inflate the computational cost.

The pseudospectral method (PM) uses the same spatial discretization as the FDM. The
spatial  derivatives  are  then  calculated  in  the  wavenumber  domain,  following  the
Fourier-transformation  of  the  wavefield.  In  the  wavenumber  domain,  the  spatial
derivation becomes a simple multiplication by ik, where  k is the wavenumber (e.g.,
Kosloff and Baysal, 1982, Carcione,  2010). Chebyshev transformation can also be
used in the vertical direction, instead of the Fourier transformation, to better handle
the boundary conditions (e.g., Kosloff et al., 1990, Tessmer and Kosloff, 1994). In
general, the PM has much less numerical dispersion than the FDM, but it has also a
huge memory requirement, necessary for the Fourier/Chebyshev transformations. This
makes it difficult to parallelize the pseudo-spectral algorithms with currently available
computing facilities.

The finite-element method (FEM) is based on the weak form of the wave equation.
The main advantage of the weak form is that it implicitly satisfies the free-surface
condition, not like in the case of the FDM. The computational domain is decomposed
into  disjoint  elements,  and the Galerkin  method is  used to  approximate  the exact
solution  of  the  wavefield  by  the  superposition  of  several  basis  functions,  which
usually  depend  only  on  the  space.  The  approximation  is  based  on  low-order
polynomials,  and  the  continuity  of  the  wavefield  among  the  elements  must  be
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explicitly imposed. Therefore the FEM mathematically reduces to the calculation of
the  polynomial  coefficients  for  each  element  (e.g.,  Lysmer  and  Drake,  1972,
Toshinawa and Ohmachi, 1992, Bao et al., 1998). The main advantage of the FEM is
its ability to account for the real geometry by explicitly honoring each discontinuity,
as  well  as  its  suitability  for  parallel  computing.  However,  the  classical  FEM
algorithms  suffer  from  a  significant  numerical  dispersion  due  to  the  low-order
polynomial approximation, as well as from the non-diagonal mass matrix in equation
3, making its inversion expensive. Because of these disadvantages, hybrid methods
have been proposed, which couple the classic FEM algorithms with other methods.
This exploits  the advantage of the FEM of explicitly honoring the discontinuities,
while the inner parts of the model are simulated with other numerical methods (e.g.,
Moczo et al. 1997, 2007).

Today's  numerical  simulations  are  often  based  on  multi-core  processors  and
supercomputers,  using  a  massively  parallel  computing  approach.  Multi-core
processor refers  to  a  computing  unit  with  multiple  processing  units,  often  called
cores.  These  cores are  placed  on  the  same  integrated  circuit  die,  and  can
independently  read  and  execute  program  instructions.  This  increases  the  overall
computing capacity if the programs are suitable for parallel computing. A massively
parallel computer has numerous processors working together to solve a large problem.
Separate parts of the problem/data are fed to different processors, which all do the
same mathematical operation, and at the end, the results are recombined. As of 2018,
supercomputers of petaflop3 capacities are accessible for the scientific community.
Thanks to the still ongoing evolution of the computational resources, more and more
complex problems can be simulated for, or earlier simulations may be re-performed at
higher resolution, using fewer approximations. Although this is out of the scope of
this thesis, some numerical algorithms may be more suitable for parallel calculations
than  others,  at  least  using  the  currently  available  technology.  As  the  technology
evolves in the future, other numerical algorithms may become more affordable with
time, for example, algorithms with a high memory requirement.

3 petaflop: 1015 floating point operations per second
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2.2 The spectral-element method

In this work, we use primarily the spectral-element method (SEM) for the numerical
simulations. This choice was motivated by the facts that the SEM:

• is a full-wave method with high accuracy,
• can  use  a  non-structured  mesh  to  honor  irregular  discontinuities  and

topographies,  therefore,  the uncertainty of the numerical implementation of
the model geometry can be mostly ruled out in the case of any future misfit
between the measurements and the simulated data,

• can use different element sizes in the mesh, hence, it is suitable for models
with varying material properties,

• can accurately account for the fluid-solid coupling and surface waves without
requiring a high number of grid points, such as in the case of the FDM.

The SEM can be considered as a special type of the FEM, which uses higher order
basis functions than the classic FEM. This way the SEM combines the accuracy of the
pseudo-spectral method with the flexibility of the FEM. The SEM was first developed
in fluid dynamics by Patera (1984). The method is also widely applied in seismology
(e.g., Seriani et al., 1995, Faccioli et al., 1997, Komatitsch and Vilotte, 1998, Seriani,
1998, Komatitsch et al.,  2004, Fichtner et al.,  2009, Komatitsch and Tromp, 2002,
Chaljub et al., 2003, 2007, Peter et al., 2011), and in ocean acoustics (e.g., Cristini and
Komatitsch, 2012, Bottero et al., 2016).

Here we focus only on some of the most important features of the method using solid
materials for demonstration, and we refer the reader to Komatitsch and Vilotte (1998),
Fichtner (2010), or Peter et al. (2011) for more details.

2.2.1 Weak form of the wave equation
Similar to the classic FEM, the SEM is also based on the weak form of the wave
equation. Considering solid materials, equation 2 describes the propagation of seismic
waves. Under the assumption of small perturbations, the stress tensor σ in equation 2
is linearly related to the displacement field by the constitutive relationship (Hooke's
law):

σ=C :∇ u , (4)

where C denotes the stiffness tensor, describing the elastic properties of the material.
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Equations 2 and 4 together provide the displacement-stress formulation of the wave
equation.  The  weak  form  of  the  wave  equation  can  be  obtained  by  multiplying
equation 2 with a time-independent arbitrary test function w, and then integrating by
parts over the total volume Ω and surface δΩ of the model:

∫
Ω

ρw⋅∂t
2u d3 x=∫

∂Ω

n̂⋅σ⋅w d2 x−∫
Ω

∇ w :σ d3 x+D :∇ w(xs)S( t) , (5)

where n̂ denotes the unit outward normal vector on δΩ, and D is the moment tensor
of a point source, which can be described as the source term f(t) in equation 2 as:

f (t )=−D⋅∇ δ(x−xs)S (t) ,  (6)

where  xs denotes the source position, δ is  the Dirac distribution,  and  S(t) is  the
source wavelet. Equation 5 can be reformulated in the same form as equation 3, i.e.
using a mass matrix and a stiffness matrix to describe the wave propagation.

2.2.2 Galerkin approach
Identical to the classic FEM, the model domain Ω is divided into disjoint subdomains
Ωe (called elements), and the Galerkin method is used to approximate the wavefield in
each element with the help of local basis functions. These basis functions depend only
on  the  material  properties  of  the  given  element,  therefore  the  continuity  of  the
displacement field has to be explicitly imposed on the element boundaries.

2.2.3 Basis functions and integral quadrature
The uniqueness of the SEM among the other finite-element algorithms lies in the
choice of the basis functions, and the quadrature to compute the integrals for the mass
and  stiffness  matrices  in  equation  3.  Although  there  are  other  options  (e.g.  using
Chebyshev polynomials (Patera, 1984)), here we focus on the most common choice
when N+1 Lagrange polynomials of degree N are used to approximate the wavefield
(e.g.  Davis  and  Rabinowitz,  1984);  and  the  Gauss-Lobatto-Legendre  (GLL)
quadrature to compute the integrals. This combination leads to a perfectly diagonal
mass matrix in equation 3, which then enables the use of an explicit time scheme that
can be efficiently parallelized (Komatitsch et al., 2003, Carrington et al., 2008, Vos et
al., 2010). The choice of Lagrange polynomials to approximate the wavefield requires
that only rectangular elements are used in 2D and only hexahedral elements in 3D.
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2.2.4 Accuracy and stability
Using  N+1  Lagrange  polynomials  of  degree  N  in  combination  with  the  GLL
quadrature provides an exact integration of polynomial functions of degree 2N-1 or
lower at the collocation points. That is, the numerical error is negligible at the GLL
points, but not exact at other points, and the error of the approximation depends on the
element  size,  the  time  step,  and the  order  of  the  polynomial  basis  functions  too.
Because the numerical dispersion is cumulative, this inexact approximation can be
especially important in the case of wave propagation for long ray paths. To overcome
the numerical dispersion, one should use basis functions of the highest possible order,
but that would inflate the computational cost as well. Therefore the order of the basis
functions  is  usually  between  4  and  8.  The  element  size  usually  depends  on  the
wavelength,  and the order  of  the  polynomials  of  the  shape  functions  (see section
2.2.5). The CFL condition defines a stability criterion, which serves as an upper limit
to ensure the stability of the simulations (Courant et al., 1928). The CFL condition
varies with the method, as it depends on the time-stepping scheme and on the order of
the basis functions as well. The CFL number is proportional to the wavelength and
inverse-proportional to the time step:

CFLnumber∼
wavelength

timestep
. (7)

Satisfying the CFL condition ensures only the stability of the simulation, but not its
accuracy. To increase the accuracy of the approximation one could choose a small
element  size  and  time  step,  but  this  would  also  increase  the  computational  cost.
Therefore a trade-off must be found, where stability and accuracy are ensured at the
lowest possible computational cost.

2.2.5 Remapping onto a reference element
Using the currently available computational infrastructure, it is highly advantageous
to perform the same mathematical  operation on many elements at  the same time.
Therefore each element is mapped onto a reference element (e.g.  in the case of a
hexahedral  element  onto a cube).  The extent  of this  reference element  is  [-1,  1]n,
where  n denotes the number of spatial dimensions. Because of the usually complex
shaped elements in a non-structured mesh, the mapping is also based on a polynomial
approximation. Shape functions are used to describe the shape of a given element, and
the wavefield is evaluated on so-called anchor nodes. The shape functions are usually
1st or 2nd order Lagrange polynomials, depending on the complexity of the element
shapes. Figure 11 illustrates the positions of the anchor nodes in the case of 1 st and 2nd
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order hexahedral elements. In the 1st order case the 8 corners are the anchor nodes,
while in the 2nd order case there are additional anchors in the centers of the edges,
surfaces  and  the  volume  as  well,  altogether  27  nodes.  One  can  clearly  see  the
advantage of the 2nd order case, as it can account for curved surfaces and edges as
well.  It  can  be  especially  advantageous  if  bigger  and/or  significantly  deformed
elements are to be used in a mesh (Appendix B). Thanks to the mapping, the wave
equation can be easily solved for each element without the need to know the material
properties of the full domain Ω. It also translates into less memory requirement during
the calculations.

Figure  11.  Distribution  of  the  anchor  nodes  to  evaluate  the  wavefield  in  a  given
element for the remapping onto the reference cube. Left: 1st order elements with eight
anchor nodes, using linear shape functions. Right: 2nd order elements with additional
anchor nodes, using shape functions of degree 2. Adding anchor nodes to the center of
the volume and of each face, the total number of nodes becomes 27 (Figure 4.4 in
Fichtner, 2010).

2.2.6 Point source implementation
As noted above, the SEM has an exact integration only at the GLL points. Therefore,
any source should preferably inject energy into the model in a smooth way (both in
time  and  space)  to  avoid  numerical  instabilities.  However,  in  seismic
exploration/seismology, the source is usually point localized (equation 6), which is a
perfectly non-smooth distribution of the source energy. To overcome this, we use once
again Lagrange integrals to approximate the delta function in space (Faccioli et al.,
1997). Because this solution inevitably yields a low-pass-filtered version of the real
delta  function,  the source implementation is  not  perfect  in the near-field.  Faccioli
(1997) and Nissen-Meyer et  al.  (2007) show that this issue remains limited to the
element containing the source.
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2.2.7 Time stepping
As noted above, most of the time-domain numerical methods use an iterative scheme,
based on the finite-difference approach to advance the wavefield in time in discrete
time steps Δt. As seen in Section 2.2.3, a perfectly diagonal mass matrix in equation 3
can be ensured by a smart choice of the basis functions and the integral quadrature.
Then an explicit time scheme can be used to advance in time the algebro-differential
equations. In this thesis we use the second-order explicit Newmark scheme for time
stepping (Newmark, 1959, Hughes, 1987), defined as:

u(t+Δ t )=u( t)+Δ t u̇ (t )+
1
2
Δ t

2
ü (t ) , (8)

and

u̇(t+Δ t )=u̇( t)+Δ t ü (t)+
1
2
Δ t [ ü(t+Δ t)−ü(t)] , (9)

The following iterative scheme is used to advance equation 3 in time:
1) compute ü(t ) for t=t0 , using equation 3, where we omit the upper bar

signs for the sake of clarity:

ü(t )=M−1
[f (t)−K u (t)] ,  (10)

2) compute ü(t+Δ t ) , using f (t+Δ t) , u(t ) , u̇(t ) , and ü(t ) :

ü(t+Δ t )=I
−1
×[−K u (t)−Δ t K u̇(t )−

1
2
Δ t

2
K ] ü( t )+f ( t+Δ t) , (11)

where I is the identity matrix,

3) compute u(t+Δ t )  from u(t ) , u̇(t ) , ü(t ) and ü(t+Δ t ) , using  
equation 8,

4) compute u̇(t+Δ t ) from u̇(t ) , ü(t ) , and ü(t+Δ t ) , using equation
9,

5) replace t by t+Δ t and return to 2).
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2.2.8 Boundary conditions
In order to save computational cost, we may need to limit the computational domain
and  introduce  artificial  boundaries.  To  avoid  spurious  reflections  from  these
boundaries, a careful treatment of the wavefield is necessary. Namely, the incident
waves  must  be efficiently  absorbed,  and no energy should be reflected backward.
Absorbing boundary condition methods are based on the paraxial approximations of
the wave equation (Engquist and Majda, 1977, Clayton and Engquist, 1977, Stacey,
1988, Quarteroni et al., 1998). Although these methods have a low computational cost
and are  efficient  to  absorb seismic  waves  at  close  to  normal  incidence,  waves  at
grazing incident angles are reflected back (Keys, 1985, Higdon, 1991). Moreover, the
method can be unstable for elastic materials if the Vp/Vs ratio is bigger than about 2.17
(Emerman and Stephen, 1983, Mahrer, 1986); or if  the simulations are for a long
period of time (Mahrer, 1990).

We  prefer  using  the  approach  of  perfectly  matched  layers  (PML),  introduced  by
Berenger (1994). Contrary to the absorbing boundary techniques, PML methods use
thin layers around the external surfaces (Collino and Tsogka, 2001, Zheng and Huang,
2002,  Komatitsch  and  Tromp,  2003,  Festa  and  Vilotte,  2005,  Festa  et  al.,  2005,
Kristek et al., 2009, Xie et al., 2016). In these layers, the wave equation is modified
such that, the amplitude of the incident waves decays rapidly. The term 'perfect' refers
to the fact that, the wave equations in the normal computational domain and in the
PML zone are coupled in  a way that no reflections are  produced on the artificial
boundaries. Because the SEM uses the weak form of the wave equation, the modified
equations in the PML region have singularities that need to be explicitly removed (Xie
et al., 2016).

2.3 Adapting the Specfem software package to our
framework

We used Specfem (Komatitsch and Vilotte, 1998), an open-source software package
for the spectral-element simulations of this thesis. The software package has 2D, 2.5D
(axisymmetric),  3D  Cartesian  and  3D  Globe  versions.  Specfem  was  initially
developed for the simulation of earthquakes, but it is also used for other applications
in exploration geophysics and global seismology (e.g., Komatitsch and Vilotte, 1998,
Seriani, 1998, Komatisch and Tromp, 2002, Fichtner et al., 2009, Peter et al., 2011);
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ocean acoustics (e.g., Cristini and Komatitsch, 2012,  Bottero et al., 2016); and non-
destructive testing (e.g. Nagaso et al., 2016). Efficient parallel computing is available
in the package due to the use of message passing interfaces (MPI). A typical workflow
of  the  software  package  is  shown  in  Figure  12.  The  first  step  is  generating  a
hexahedral mesh, either by importing it from an external tool or using the internal
mesher. The second step is used only in the case of parallel computations when the
mesh  is  decomposed  into  partitions,  which  will  be  distributed  to  the  different
processors during the actual simulations. The third step is the generation of databases
to  be  used  during  the  simulations.  The  last  step  is  the  simulation  of  the  wave
propagation, i.e. running the actual solver.

Figure 12. The typical workflow of simulating the propagation of seismic waves with
the Specfem3D Cartesian software package. Courtesy of Computational Infrastructure
for Geodynamics.

2.3.1 Non-structural meshing of the Marseille-Benchie model
Creating a non-structured hexahedral mesh for a complex geometry is a challenging
and  lengthy  task  (Shepherd  and  Johnson,  2008,  Staten  et  al.,  2010).  We  used
Cubit/Trelis (Blacker, 1994) as a software to mesh the Marseille-Benchie model in
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3D.  In  the  case  of  a  non-structured  mesh,  we  need  to  keep  in  mind  the  future
computational cost and the accuracy by considering three points. First, the element
size must be small enough to accurately model the highest frequencies of interest.
Second,  the  size  of  the  different  elements  in  one  material  should  be  as  equal  as
possible (depending on the geometry) to avoid too small elements. This is important
because smaller elements require smaller time steps according to the CFL-condition
(equation 7), i.e. higher computational cost and more memory. Finally, one needs to
avoid creating too distorted/elongated elements, which could result in a mesh of poor
quality, making the simulation unstable. Because the model has a complex overall
geometry,  fully  automatic  hexahedral  meshing algorithms  could  not  be  used.  Our
solution was to cut the domain into several subdomains, which were easier to handle
for the meshing software (Figure 13). The challenge of the task was to find the order
in  which  the  individual  subdomains  had  to  be  meshed,  such  that  the  entire
computational domain could be meshed at the end. Due to these difficulties, and also
to reduce the computational cost, we considered only a part of the full model for the
numerical simulations (Figure 13). As a result, the truncated dome was excluded from
the simulations because this object proved to be too complex to be meshed, mainly
due to its small dimensions combined with sharp edges and narrow corners. With our
decomposition  strategy,  we  first  obtained  approximately  15.6  million  elements,
including the water column above the PVC. Figure 14 shows the distribution of the
element size for the part of the Marseille-Benchie model under consideration with the
applied decomposition and meshing strategies. The maximum edge length is about
four  times  bigger  than  the  smallest  one,  being  approximately  1.6  and  0.4  mm,
respectively.  It  is  important  to  note  that  the  accuracy  of  the  spectral-element
simulations is not directly constrained by the element size, but rather by the number
of GLL points per wavelength. The initial meshing strategy was designed for fourth-
order polynomial basis functions, requiring five GLL points per wavelength, which is
approximately five GLL points per edge (Mulder, 1999). Considering the minimum
velocity of the model – namely, 1050 m/s for the S-waves in PVC – and the maximum
target frequency (650 kHz), the goal was to have all the edge lengths below 1.6 mm.
We present an optimized meshing strategy in Appendix B, which allowed us to reduce
the number of elements to about 1.4 million and the computational cost by a factor of
four to six. 
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Figure 13. Part of the model used for the numerical simulations with a coarse mesh.
The red line denotes the position of the study line discussed in Part 1. The yellow
asterisk shows the source position for the offset study line. The different colors show
the subdomains necessary for the non-structured meshing.

Figure 14. Distribution of the element size of the mesh for the part shown in Figure
13.

2.3.2 Viscoelasticity in the simulations
Because the Marseille-Benchie model is made of strongly attenuating PVC (Table 1),
viscoelasticity had to be incorporated in the simulations. In reality, the initial energy
of  the  seismic  waves  decays  with  time,  due  to  heat  dissipation,  grain  boundary
relaxation, thermal diffusion, etc. In order to account for this energy decay, equation 4
has to be modified such that the stress is determined by the entire strain history:

σ (t )=∫
−∞

t

∂t C (t−t ' ):∇ u( t ' )dt ' . (12)

Even in the case of viscoelastic rheology in seismic exploration, we can still suppose
a linear relationship between the stress and the strain. The overall effect of all the
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energy  dissipating  mechanisms  can  be  modeled  using  the  technique  of  Liu  et  al.
(1976), which approximates the absorption with a set of standard linear solids. This
standard approach usually assumes that the quality factor Q does not depend on the
frequency, which is the usual case in both seismic exploration and global seismology.
This assumption is also confirmed for the Marseille-Benchie model by our laboratory
measurements,  which  show  very  similar  Q  factors  for  the  PVC  when  measured
between  250-650  kHz  (Appendix  A).  In  practice,  the  approximation  of  the
viscoelasticity  with  the  Zener  model  requires  fitting  Q in  the  frequency range  of
interest by using a set of relaxation mechanisms. The rule of thumb is to use two-three
relaxation mechanisms per order of magnitude in the frequency range, to achieve a
good fit of the constant Q model. In our work, we use three standard linear solids. The
relaxation times are represented by points in the frequency range and their associated
weights. A linear approach can be used by presetting the points at given frequencies in
the  frequency  range  of  interest  and  then  optimizing  the  fit  only  for  the  weights
(Emmerich and Korn, 1987). However, this approach does not ensure the positivity of
the weights and thus the decay of the total energy over the time may not be ensured.

An alternative approach is introduced by Blanc et al. (2016) to ensure that the weights
are always positive and their nonlinear optimization is also more accurate in terms of
fitting  the  constant  Q  approximation  in  the  frequency  range  of  interest.  The
nonlinearity means that both the points and the weights are optimized to obtain a
better fit of Q for the frequency range of interest. We use this non-linear approach for
the simulations presented in this thesis.

2.3.3 Numerical implementation of the transducer characteristics
One of the most important tasks was to accurately implement the real characteristics
of the transducers in the numerical simulations. Because it is omnidirectional and has
a frequency-independent sensitivity in the frequency range of interest (250-650 kHz),
the Teledyne Reson® hydrophone (used as the receiver for offset measurements) was
implemented as a point receiver. However, the Imasonic® source transducer has a
unique  radiation  pattern  that  cannot  be  described  by  the  classical  analytical
formulation of Zemanek (1971), nor by an approximate radiation pattern valid only
for the dominant frequency (Tantsereva et al., 2014a). The latter does not provide an
optimal solution because other frequencies also contribute to the radiation pattern.
Therefore,  we propose a new, two-step approach to implement the real transducer
characteristics in the numerical simulations, accounting for all frequencies of interest.
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The procedure consists of the laboratory characterization of the source followed by an
inversion step to obtain a numerically equivalent source. Because point sources are
implemented in most of the numerical tools, we built an equivalent disk source of
several point sources in order to be able to use the same implementation with various
numerical  solvers.  This  approach  is  based  on  the  theory  of  wave  superposition
(Koopmann et al., 1989). The disk is described by three parameters: the thickness, the
radius, and the number of point sources distributed on its surface. The different point
sources are independent, i.e. they can have any arbitrary (smooth) source signal and
are constrained only by the measured data set of the laboratory characterization. The
goal of the inversion is to determine the source signal of each point source, such that
the resulting overall source signal of the whole equivalent source is the same as the
one measured at each angle. At this point, we need to distinguish the procedures to
obtain  the  numerically  equivalent  source  in  zero-offset  and  offset  configurations
because they require a slightly different approach (Figure 15). We first introduce the
procedure for the offset case, and the differences for the zero-offset case are discussed
afterward.

Figure 15. Workflow of the procedures used to implement the numerical equivalent of
the real source transducer in offset and zero-offset configurations.

For the offset case, only the laboratory characterization of the source transducer with
the  receiver  is  required  to  obtain  a  numerically  equivalent  source.  The
characterization of the source transducer was performed in a water tank. The source
transducer  was  connected  to  a  pulse  generator  and  kept  fixed,  and  its  impulse
response was recorded with the hydrophone at every 0.2°, covering an angle range of
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200°, at a constant distance of 259 mm (Figure 16). The recorded data set was the
input for the subsequent inversion step. 

Figure 16. Schematic diagrams of laboratory characterization of the source transducer
using the source and receiver transducers (left), and the source transducer illuminating
the air-water interface at normal incidence (right).

The initial guess for each point source distributed on the surface of the equivalent disk
source was a constant zero pressure, and the cost function was computed using the
L2-norm:

Φ
(k)
=∑i∑ j

(mij−cij )
2 , (13)

where  Φ(k) denotes  the  cost  function  after  the  kth iteration,  and  mij and  cij are  the
recorded  and  the  calculated  impulse  responses  at  the  ith time  sample  and  jth

hydrophone  position,  respectively.  During  the  inversion  step,  some  parameters,
namely, the radius of the equivalent disk, the number of point sources distributed on
the disk, the number of layers in the disk, and the number of iterations, were tested to
find the best fit with the measured data. We found that a radius of 3 mm with 253
point  sources  distributed  on  only  one  disk  layer  gives  the  best  fit  between  the
measured and the inverted radiation patterns (Figure 17). Using more than 10 000
iterations did not result in any significant change in the results. The comparison of
simulated traces using the inverted equivalent source with the measured traces shows
an angle dependency in the goodness of fit (Figures 17-18). Indeed, the main lobe of
the radiation pattern (corresponding to ±30° around the center of the transducer) is
accurately recovered. For example, the correlation coefficients between the measured
and  simulated  traces  at  0°  and  20°  are  0.99  and  0.98,  respectively  (Figure  18).
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However, outside of the range of ±30°, the goodness of fit drastically decreases with
increasing  angle  from the  center  of  the  transducer  (Figure  17).  For  example,  the
correlation  coefficient  between  the  measured  and  simulated  traces  at  60°  is  0.64.
Therefore,  the  secondary  lobes  of  the  real  radiation  pattern  are  less  accurately
recovered. This can be explained by the fact that the recorded signals corresponding
to the secondary lobes have far less energy than those of the main lobe (less than −20
dB at high angles). Hence, they can be overshadowed by the noise recorded in the
laboratory data.

Figure 17. Comparison of the measured (blue) and inverted (red) radiation patterns of
the transducer in the offset configuration. The amplitude is maximal opposite to the
transducer (0°).
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Figure 18. Comparison of the measured traces (blue) with the simulated traces (red),
using the inverted equivalent source at different angles. The correlation coefficients
are shown in each panel, respectively.

The  procedure  to  obtain  the  numerically  equivalent  source  in  the  zero-offset
configuration  is  quite  similar  to  the  previous  one,  but  it  requires  a  deconvolution
process before the inversion step (Figure 15). This is due to the fact that for zero-
offset measurements the same transducer is used twice: first, as the source, and then,
as the receiver.  Therefore,  an extra measurement is needed, using only the source
transducer to measure the reflected wavefield from the water-air interface at normal
incidence (at a distance of half of 259 mm). The deconvolution process is done in the
frequency domain after a Fourier-transformation of all the recorded signals. Let us
denote  the  laboratory  trace  recorded  by  the  hydrophone  opposite  to  the  source
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transducer as  trace 1 (Figure 16) and the trace recorded by the source transducer
corresponding  to  the  reflected  wavefield  from  the  water-air  interface  at  normal
incidence as trace 2 (Figure 16).

The process can be summarized as follows:
• Step  1)  Note  that  trace  2 is  the  square  of  the  source  transfer  function.

Therefore, the square root of trace 2 gives the source transfer function at 0°,
i.e., in the opposite position to the source,

• Step  2)  Because  the  hydrophone  is  omnidirectional,  the  receiver  transfer
function is the same at each angle α. Therefore, divide trace 1 by the source
transfer function (step 1) to determine the receiver transfer function R(ω),

• Step  3)  Divide  all  the  traces  recorded  by the  hydrophone  by  the  receiver
transfer function R(ω) to get Sα(ω) for each angle α (deconvolution in the time
domain),

• Step 4) Take the square of  Sα(ω) for each α to obtain the zero-offset transfer
function of the source transducer at each angle,

• Step 5) Inverse Fourier transform all the obtained traces to the time domain.

The data set derived using this deconvolution process is the input to the inversion
process, which is the same as described above for the general offset case. According
to our tests, the best fit between the measured and the inverted radiation patterns can
be obtained with a disk radius of 6 mm, using 253 point sources and only one disk
layer. Similar to the offset case, using more than 10 000 iterations did not provide any
better result. The angle dependency in the goodness of fit is also valid for the zero-
offset case. However, the range of the more accurate fit is broader (approximately
±35° around the center of the transducer). This is due to the fact that (relatively) more
energy is focused in the central beam in this configuration, thus, the outer region (with
lower signal-to-noise ratio) has less influence on the inversion of the main lobe.
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2.3.4 Numerical calibration of the material properties
Because the characterization of the material samples yields a range of possible values
for each measured property (Appendix A), an initial calibration is necessary to find
the values to be used before the final simulations. The calibration consists of a zero-
offset laboratory measurement, followed by an iterative fitting of the results of the
numerical simulations of the same trace. The goal of this iterative fitting is to adjust
the material parameters such that, the simulation yields the closest possible fit with
the  reference  laboratory  measurement.  To  have  the  least  geometric  effect  on  the
calibration, a test point was chosen above the flat part of the Marseille-Benchie model
(black cross in Figure 19). The velocities and Q-factors for P- and S-waves for the
PVC were tested, while the densities of the PVC and the water, and the velocity of the
P-waves in water were considered to be perfectly known. We note here that, in reality,
the  investigated  parameters  have  a  combined effect  on  the  amplitude,  phase,  and
arrival times, so the result of this calibration provides one possible solution in the
parameter space. First, the P-wave velocity for the PVC was calibrated, then all the
remaining differences between the reference laboratory trace and the simulated trace
were attributed to VS, QP, and QS.

The resulting parameters from the calibration were found to be VP = 2260 m∕s, VS =
1050 m∕s, QP = 28.7, and QS = 26. If we compare these values with those in Table 1,
we can see that VS and QS of the PVC are close to the measured values, but VP and QP

are  significantly  different.  First,  we  need  to  highlight  that  accurately  measuring
attenuation is one of the major challenges of the laboratory work. Furthermore, the
measured values strongly depend on the acquisition setup, i.e. the transducer height
above the material sample. Namely, it has an important effect on the illumination of
the  material  samples/physical  model,  resulting  in  different  amplitudes  recorded  at
different distances. Therefore the adjusted material parameters obtained by fitting a
given reference laboratory trace are in fact not absolute, but only apparent values, like
in the case of a real-life seismic data acquisition. This is why the reference trace must
always be chosen in an area where the geometry is the closest to be one-dimensional.
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Figure 19. Comparison of the zero-offset laboratory trace with synthetic results for the
test point to calibrate the material properties before the final simulations. The position
of the test point is shown with the black cross.

2.4 About the finite-difference simulations

Although the primary numerical algorithm used in this thesis is the SEM, we also
present finite-difference results in this part to show the capability of the method to
reconstruct the complex wavefields recorded for the Marseille-Benchie model. The
applied FDM is based on Virieux's (1986) velocity-stress formulation for an elastic
medium. The spatial derivatives are computed using 8th order optimized differentiators
(Holberg, 1987), whereas the temporal integration is 2nd order. The elastic scheme is
extended to the viscoelastic case by the extension of the stress-strain relation (Ben-
Menahem and  Singh,  1981).  For  the  free-surface  implementation,  the  method  of
Mittet  (2002)  was  used.  The  PML boundary  conditions,  the  attenuation,  and  the
source transducer were all implemented identical to the SEM (Sections 2.2.8, 2.3.2,
and 2.3.3, respectively). The model geometry was discretized using a regular three-
dimensional grid with a uniform grid spacing of 0.5 mm (corresponding to 10 m at
seismic  scale).  It  gives  approximately  4.1  and  2.9  grid-points  per  the  shortest
wavelength for P- and S-waves, respectively. The FDM results presented in this thesis
are the work of Børge Arntsen (NTNU, Trondheim, Norway), and they are showcased
here as the result of the collaboration between the NTNU and the LMA (Arntsen et
al., 2017, 2018).
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Chapter 3
Comparison of experimental and numerical data

3.1 Comparison of zero-offset data sets

Here, we consider more specifically three traces of the laboratory zero-offset section
corresponding to the study line (red line in Figure 13). These traces (labeled as A, B,
and C in Figure 9) are of particular interest because they contain diffracted waves
generated by the feature edges, as well as reflections from the flat and curved surfaces
of the model.

Trace A is located above the lower edge of the pyramid, where its flank meets the flat
part (red cross in Figure 20). It is composed of several groups of reflections: from the
side of the pyramid (denoted as event A1 in Figure 20), from the flat part (A3 and
A4), from the bottom of the model below the flat part (A8 and A9), and below the
dome (A10). Several groups of diffracted waves are also present, corresponding to
diffractions: from the upper edge (A2) and the lower edge (A7) of the pyramid, and
from the edge of the dome (A6). Event A5 is related to the truncated dome, which is
not included in the simulations.

Figure  20.  Comparison  of  zero-offset  laboratory  trace  A  with  synthetic  results
obtained with the SEM (top) and the FDM (bottom). The physical interpretation of the
annotated events is provided in the text.
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Trace B is  located half-way between the pyramid and the  dome (yellow cross  in
Figure 21). It is composed of several groups of events associated with reflections:
from the side of the dome (events B1 and B2 in Figure 21), from the side of the
pyramid (B3), from the flat part (B4), and from the bottom of the model below the flat
part (B6). Event B5 is the superposition of diffractions from the upper edge of the
pyramid and from the edge of the dome. Event B7 corresponds to the superposition of
a reflection from the bottom of the model below the dome and a diffraction from the
lower edge of the pyramid.

Figure  21.  Comparison  of  zero-offset  laboratory  trace  B  with  synthetic  results
obtained with the SEM (top) and the FDM (bottom). The physical interpretation of the
annotated events is provided in the text.

Trace C is  located on the other  side of the dome, compared with traces A and B
(Figure 22). It is composed of several groups of reflections: from the side of the dome
(C1 and C2 in Figure 22), from the flat part (C3 and C4), and from the bottom of the
model below the flat part (C6 and C7). Event C5 is a multiple of a diffraction from the
lower edge of the dome, whereas event C8 is a multiple reflection.
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Figure  22.  Comparison  of  zero-offset  laboratory  trace  C  with  synthetic  results
obtained with the SEM (top) and the FDM (bottom). The physical interpretation of the
annotated events is provided in the text.

It  is  important  to  note that  the laboratory data  are  real  data,  so they also contain
unknown noise recorded by the acquisition system. Furthermore, as shown in Figure
7, the source wavelet is a long signal, composed of a main event followed by a few
tens of μs long low-energy tail with small amplitudes (ringing effect). It may explain
the fact that some events are composed of two parts (e.g., events A8 and A9 in Figure
20; B1 and B2 in Figure 21; C1 and C2, C3 and C4, C6 and C7 in Figure 22).

Qualitative comparisons between laboratory and synthetic traces show a quite good fit
in amplitude, phase, and travel time. Regardless of the trace location, synthetic traces
show an almost perfect fit with the experimental data in time, phase, and amplitude
for the reflected events from the top and bottom of the flat part of the model. The
early and late parts of these arrivals sometimes reveal minor amplitude misfits, most
probably due to the low-energy second part of the source signal, which may not be
perfectly reconstructed by the source inversion,  as well  as the uncertainties in the
attenuation parameters chosen for the simulations.  Events associated with the side
reflections and/or diffractions from the topographic features are also well restored by
the simulations (see events A1 in Figure 20, B5 and B6 in Figure 21, and C1 and C8
in Figure 22).
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The correlation coefficients between the laboratory and the spectral-element traces are
0.91, 0.95, and 0.91 for traces A, B, and C, respectively. These good results are due to
the fact that SEM has the ability to honor the model geometry, even for tilted and
curved  interfaces  by  using  a  non-structured  mesh.  The  correlation  coefficients
between the laboratory and the finite-difference traces are 0.93, 0.89, and 0.88 for
traces A, B, and C, respectively. These high values show a very good fit with the
laboratory data, which is ensured by the high number of grid points per wavelength
during the finite-difference simulations. Comparing either the correlation coefficients
obtained by the two numerical methods, or the traces visually, both the FDM and the
SEM show a very similar fit with the laboratory measurements. Both the arrival times
and  the  amplitudes  of  the  different  arrivals  are  well  restored,  however,  small
differences can be pointed out. Event A1 is very well reconstructed by both methods,
suggesting that the finite-difference grid is fine enough to represent the tilted sides of
the pyramid. To the contrary, events B1 and C1 show some minor misfits between the
finite-difference traces and the laboratory measurements. These small misfits suggest
that the finite-difference grid should be even finer to better reconstruct the reflections
from  the  strongly  curved  surface  of  the  dome.  The  fact  that  the  misfit  is  more
pronounced for event C1 shows that the closer we are to the curved interface, the
more misfit can be observed due to the grid representation of the geometry in the
FDM. Diffractions are properly handled by both methods in general.  For example
event B5 is reconstructed to the same extent by both methods. However, the FDM
shows some more misfit for event C5 than the SEM. 

3.2 Comparison of offset data sets

Here,  we  consider  more  specifically  two  traces  of  the  laboratory  offset  section,
labeled as D and E in Figure 10. The source location is above the flank of the dome
for both traces (yellow asterisk in Figures 23 and 24).

The receiver for trace D is located next to the ramp (blue triangle in Figure 23). The
trace  contains  several  groups of  events,  mainly  associated  with  the  direct  source-
receiver travel path (labeled as D1 in Figure 23), the reflection from the top of the
truncated pyramid (D2), and the reflection from the curved surface of the dome (D3).
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Figure  23.  Comparison  of  offset  laboratory  trace  D  with  synthetic  results.  The
physical interpretation of the annotated events is provided in the text. Top: spectral-
element simulation, bottom: finite-difference simulation.

The receiver for trace E is located between the dome and the pyramid (yellow triangle
in Figure 24). Event E1 is the direct arrival from the source to the receiver. The other
interpreted events are related to reflections from the dome (E2), from the flat part
(E3), and from the pyramid (E4).

Figure  24.  Comparison  of  offset  laboratory  trace  E  with  synthetic  results.  The
physical interpretation of the annotated events is provided in the text. Top: spectral-
element simulation, bottom: finite-difference simulation.
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A qualitative comparison between the simulated results and the laboratory data shows
a good fit in arrival time, phase, and amplitude for some events (D1 and D2 (only for
the SEM) in Figure 23, and E2 and some parts of E4 (only for the SEM) in Figure 24).
However, other events related to reflections from the dome (D3), from the flat part
(E3), and from the pyramid (E4) show significant arrival time and amplitude misfits.
We note that the different traces show a different quality of wavefield reconstruction,
corresponding to  the  same object,  and depending on the  offset.  For  example,  the
reflection from the dome is correctly reconstructed on trace E (event E2), but with a
misfit  on  trace  D  (event  D3).  To  the  contrary,  the  comparisons  show  a  perfect
reconstruction of the reflection from the pyramid in the case of trace D (event D2) and
a misfit for trace E (event E4).

The correlation coefficients between the measured and simulated trace D are 0.76 and
0.33 for  the  SEM and the  FDM, respectively.  Comparing  the  different  numerical
results with the laboratory trace in Figure 23, we see a significantly higher amplitude
and arrival time misfit for the FDM for the reflection from the pyramid (event D2).
This may be explained by the grid representation of the model geometry in the finite-
difference simulations,  similar  to  the misfits  pointed out  for the zero-offset  traces
above. The two numerical methods show more or less the same reconstruction of the
reflection  from the  dome  (D3),  with  the  same  arrival  time  misfit,  but  a  smaller
amplitude misfit in the case of the FDM.

In the case of trace E,  the correlation coefficients between the laboratory and the
synthetic results are 0.21 and 0.17 for the SEM and the FDM, respectively. These low
values are due to the similarly high misfit for both algorithms in the reconstruction of
the direct source-receiver path (event E1). This is proven by the fact that, if the direct
arrival was not considered, the same correlation values for trace E would be 0.51 and
0.32, for the SEM and the FDM, respectively. We recall that the implementation of the
numerically equivalent source has higher uncertainties for the low-energy later part of
the source wavelet and the secondary lobes (due to the low signal-to-noise ratio of
these events) than for the main lobe of the directivity pattern. Even if they carry less
energy than the main lobe, the role of these higher order lobes in the illumination of
the model should not be neglected in the case of offset configurations. Because the
direct arrival is much more related to the secondary lobe for trace E than in the case of
trace D, we can understand the difference in the lower quality reconstruction of the
direct arrival for trace E, as opposed to the perfect reconstruction for trace D. The
reflection  from  the  dome  on  trace  E  (event  E2)  is  well  reconstructed  by  both
numerical  methods  in  time,  but  the  FDM  shows  a  lower  amplitude  than  the
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SEM/laboratory measurements. Reflections from the pyramid on trace E (event E4)
show  a  very  similar  reconstruction  by  the  two  methods,  but  the  FDM  shows
somewhat  more misfits  (e.g.  the SEM can correctly reconstruct  the measurements
around 245 μs, whereas the FDM has both amplitude and arrival time misfits). We
highlight again that these higher misfits pointed out for the FDM, compared with the
spectral-element results,  may be attributed to the grid representation of the model
geometry. It means that the differences between the two numerical methods should
entirely diminish with an even finer finite-difference grid.

3.3 Discussion

As shown above, both the SEM and the FDM can reproduce laboratory zero-offset
data in terms of arrival time, phase, and amplitude with high accuracy. However, the
fit between synthetic results and experimental offset data is significantly less accurate.
We  discuss  here  the  possible  explanations  for  this  observation,  including  the
experimental uncertainties and the numerical implementation of the directivity pattern
of the source transducer, as well as the computational cost.

Laboratory data  always contain noise and offset  data  sets  generally  have  a  lower
signal-to-noise  ratio  than  the  zero-offset  data.  Moreover,  uncertainties  in  the
transducer positions also have an effect on the data. It is more significant in the offset
case because there is a nonlinear combination of uncertainties in the source location,
the source tilt angle, and the receiver position. This nonlinear combination makes it
difficult to evaluate the role of one effect over the others. This effect is even more
pronounced in the presence of strongly tilted and curved interfaces, causing wave
defocusing.

Let us analyze here this source of misfit and quantify the order of magnitude of the
possible resulting uncertainty. We show an example of the Marseille-Benchie model
using the dome. The geometry of the problem is shown in Figure 25, where R denotes
the radius of the dome, H is the height of the source transducer above the top of the
dome, γ is the incidence angle, α is the angle of the reflected wave, l1 is the distance
from the source to the incidence point, θ is the angle between the vertical line below
the source position and the incidence point from the center of the dome,  l2 is  the
distance between the incidence point and the source level along the line defined by θ,
and the sum of  x and  y is the theoretical offset of the reflected wave. For now, we
suppose that the source is located exactly above the top of the dome. We are interested

57



PART 1

in the change in the offset  of the arrival of a given ray due to an error  δγ in the
incidence angle γ. If R, H, and γ are known, then θ can be calculated using the law of
sines:

θ=π−γ−sin
−1
(

R+H
R

sin(γ)) . (14)

Using simple trigonometry, we can now calculate x, l1, l2, α, and y:

x=(R+H) tan(θ) , (15)

l1=√(R+H )
2
+R2

−2 R(R+H )cos(θ) , (16)

l2=
R+H
cos(θ)

−R , (17)

α=cos−1
(
l1

2
+l2

2
−x2

2 l1l2

) , (18)

y=
l2 sin(α)

cos (θ+α)
. (19)

If the uncertainty of the incidence angle δγ is known, then δθ can be calculated using
equation  14,  where  δθ  is  the  shift  in  θ due  to  the  error  in  the  incidence  angle.
Furthermore, we can also calculate the changes in x, l1, l2, α, and y:

δ x=
R+H

cos2
(θ)

δθ , (20)

δ l1=
R (R+H )sin (θ)δθ

l1

, (21)

δ l2=
R+H

cos2
(θ)

sin (θ)δθ , (22)

δα=
x δ x−l1δ l1−l2δ l2

l1l2sin (α)
, (23)

δ y=δ l2

sin(α)
cos (θ+α)

+l2δ(
sin(α)

cos(θ+α)
) , (24)
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where the sum of δx (equation 20) and δy (equation 24) is the shift in the offset of the
reflected wave due to the error  δγ in the incidence angle γ.  To quantify the order of
magnitude  of  the  offset  error,  we  consider  H=140  mm,  R=51.25  mm,  and  γ=5°.
Supposing an error of δγ=0.5° in the incidence angle, the point of illumination on the
surface of the dome is shifted by 1.3 mm. Using equations 20 and 24, we get δx=5.2
mm and δy=1.5 mm, respectively. It means that an error of 0.5° in the incidence angle
leads to a shift of 6.7 mm (134 m at seismic scale) in the arrival offset of the beam
(i.e. in the receiver location), depending on the point of the illumination of the surface
of the dome. This uncertainty may thus have a significant impact on the arrival time
and the amplitude of the reflected and diffracted events. This is illustrated in Figure
26 for offset trace D, where two synthetic traces are compared using a 1° different tilt
angle of the source transducer. Although the differences for the reflection from the
dome are negligible, the direct arrival and the reflection from the pyramid show a
significant misfit between the two traces.

Figure 25. The effect of the uncertainties in the incidence angle on the wavefield.
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Figure 26. The effect of 1° difference in the tilt angle of the source transducer on the
simulated SEM wavefield (offset trace D).

We note that the sometimes observable higher misfits for the finite-difference results
compared with the SEM are related to the grid representation of the model geometry
in  the  FDM.  These  misfits  should  entirely  disappear  with  an  even  finer  finite-
difference grid.

We have proposed a strategy to numerically implement the directivity pattern of the
real source transducer. This strategy permits to recover the main lobe of the emitted
beam, in which most of the energy is concentrated. The excellent fit between synthetic
results and laboratory zero-offset data shows that the strategy is efficient in zero-offset
configurations because mostly the main lobe illuminates the model and contributes to
the  recorded  data.  Nevertheless,  for  offset  data  recorded  in  strong  topographic
environments, the proposed strategy is less accurate because the low-energy later part
of the source wavelet (Figure 7) and the secondary lobes play an important role in the
illumination of the model, even if they carry far less energy than the main event of the
source wavelet in the main lobe (Figure 17). Indeed, in our case, they may interact
with the dome and the pyramid (depending on the source location), influencing the
amplitude and phase of the wavefield.

The  computational  cost  of  the  numerical  methods  is  often  an  important  point,
particularly in the operational context of seismic exploration. Here, we differentiate
between  the  man-hour  cost  spent  on  the  preparation  of  the  simulations  and  the
computational  cost  (i.e.,  the  number  of  processors  used  for  simulations  times  the
actual running time of one simulation). In general, the SEM has a large man-hour
cost, due to the non-structured hexahedral meshing. To illustrate this problem, we note
that we spent a few weeks to find the optimal meshing strategy for the Marseille-
Benchie model, without finding a satisfying strategy for the truncated dome. Contrary
to finite-difference gridding,  there is  no quick or cheap solution to  non-structured
hexahedral meshing in terms of man-hour cost. Regarding the computational cost of
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the method, we used Intel Xeon Sandy Bridge EP (E5-2680) processor cores for the
spectral-element  simulations.  The  initial  meshing strategy  resulted  in  a  mesh that
required 10150 core hours to simulate 350 μs of wave propagation (corresponding to
7 s at seismic scale). Using the optimized meshing strategy of Appendix B, this cost
was  reduced  to  1611  or  2538  core  hours,  depending  on  the  element  size.  The
computational cost of the FDM was 32 GPU hours for the simulation of 350 μs of
wave propagation, using Nvidia GForce GTX Titan X graphics cards. We note that
depending on the graphics card, the CPU cost of Specfem must be divided by a factor
of more than an order of magnitude to  obtain the corresponding GPU hour value
(Komatitsch et al., 2010). Therefore, in practice, the two methods have roughly the
same computational cost for the Marseille-Benchie model. Based on this observation,
in  an  operational  context,  the  FDM can  be  optimal  if  the  model  geometry  often
changes  due  to  the  lengthy  meshing  step  before  the  spectral-element  simulations.
However, the finite-difference grid must be very fine, as we have seen before.
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Conclusions of Part 1

The goal of Part 1 is to provide a workflow to adapt the numerical simulations and the
small-scale  laboratory  experiments  to  each other,  such that  the  two can be  easily
compared with high accuracy and confidence. We are also interested in the ability of
the  SEM  and  the  FDM to  accurately  simulate  complex  3D wavefields  including
(multiple) diffractions at the lowest possible computational and man-hour cost. We
have thus compared 3D synthetic results with laboratory measurements in 3D zero-
offset  and  3D  offset  offshore  reflection  configurations  for  the  Marseille-Benchie
small-scale physical model. The model includes structures with steep flanks, sharp
edges, corners, and curved interfaces. This complexity provides a challenge to any
numerical method to reproduce the wavefield.

Prior to the simulations, we have focused on the input data/parameters, such as the
material  properties,  the model  geometry,  and the characteristics  of  the source and
receiver transducers. The material properties have been characterized in the laboratory
and calibrated for the numerical simulations. The viscoelastic behavior of the material
used in the model has been approximated with a set of standard linear solids in the
numerical  simulations.  The  real  source  transducer  characteristics  have  been
implemented  based  on  a  new  approach,  which  consists  of  the  laboratory
characterization of the impulse response of the transducer, followed by an inversion
step  to  obtain  a  numerically  equivalent  source for  the  numerical  simulations.  The
zero-offset  measurement  requires  an  additional  deconvolution  step  before  the
inversion because, in that case, only one transducer is used as both the source and the
receiver.

We have suggested an optimization of the spectral-element computational cost, by
using larger elements in the non-structured mesh and higher order polynomial basis
functions. This technique helps to significantly reduce the computational cost while
obtaining a similar level of accuracy.  Comparison of the zero-offset  synthetic and
laboratory results has revealed an excellent fit in terms of arrival time, phase, and
amplitude,  for both the SEM and the FDM. Minor amplitude mismatches may be
attributed to the noise recorded in the laboratory data, as well as to the inaccuracy of
the proposed source implementation to reconstruct the low-energy secondary lobes of
the source transducer, and the uncertainties in the attenuation parameters chosen for
the simulations.
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Comparison of – both SEM and FDM – simulated and laboratory offset traces has
exhibited  a  good  fit  in  terms  of  amplitude,  arrival  time,  and  phase,  but  with
significantly less accuracy for some arrivals than in the zero-offset case. This can be
mainly attributed to the inaccuracies of the transducer positions during the laboratory
measurements combined with the strong topography of the model, as well as to the
smaller signal-to-noise ratio of the offset configuration.

Smaller misfits between the finite-difference and the spectral-element synthetic results
may  be  attributed  to  the  grid  representation  of  the  model  geometry  in  the  finite-
difference simulations, which should be completely resolved with an even finer grid.

Considering the above-mentioned misfits and discoveries, we propose some points to
work on in the future. Based on their importance and difficulty to be implemented, we
divide  them  into  near-term  and  long-term  categories.  The  necessary  near-term
developments had to be addressed during the thesis before using the complex WAVES
model in Part 2. These include:

• the  development  of  a  more  accurate  acquisition  system  to  reduce  the
inaccuracies in the transducer positions during the laboratory measurements,

• a more accurate measurement of the tilt angle of the source transducer in offset
configurations.

The long-term developments may take more time and some of them may need the
expertise of metrologists. These include:

• revisiting  the  proposed numerical  implementation  of  the  real  transducer  to
account more for the low-energy secondary lobes, and the low-energy late-
arrivals of the source wavelet,

• reconsidering the laboratory techniques used to characterize the properties of
the  material  samples,  especially  for  S-waves,  and  for  the  attenuation
parameters,

• assessing the noise level of the acquisition system and improving its signal-to-
noise ratio,

• identifying  the  origin  of  the  different  noises  measured  temporarily  or
permanently in the laboratory,

• reducing the man-hour cost of the SEM due to the lengthy meshing step.
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Introduction

Geologic salt structures are economically important because hydrocarbon reservoirs
are often situated in their proximities. These structures usually play a crucial role in
the  migration  and  the  entrapment  of  the  hydrocarbons,  therefore  the  detailed
understanding of their geologic layout is essential in exploration geophysics. Because
salt often behaves and moves similar to fluids at the geologic time scale, it can have
various forms, ranging from horizontal sheets to vertical 'plums', or even mushroom-
and dome-shaped forms (see for example Tari et al., 2003, and Jackson and Hudec,
2017) (Figure 27).  Salt  is  usually  characterized with high velocity  (approximately
4000-5000  m/s),  especially  when  compared  with  typical  sedimentary  layers.  The
density of the salt is generally close to that of the sediments, but due to the higher
velocity, the surfaces of the salt structures usually have a high reflectivity. Because
only a small portion of the incident energy can propagate inside, or even across the
salt,  the  proper  imaging  of  their  internal  structures  is  a  big  challenge.  Imaging
structures  below the  salt  layers  (aka  sub-salt  imaging)  is  even more  complicated,
although sometimes inevitable for the complete understanding of the geologic setup.
Various works have been published on (sub-)salt imaging, focusing on either the post-
processing of already acquired data sets (e.g., Jiao et al., 2006, Ravaut et al., 2008,
Oropeza et al., 2009), or on the acquisition techniques and the acquisition geometry
(e.g., Krail, 1993, Lindsay et al., 2000, Long et al., 2013). A proper (sub-)salt imaging
technique is still an ongoing challenge for seismic exploration.
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Figure 27. Example of the various forms of salt structures (in pink) on an interpreted
seismic section from Gabon (from Tari et al., 2013, Figure 11).

As mentioned in the General Introduction, there is a strong interest in using small-
scale physical models to evaluate the accuracy of the numerical algorithms used in
seismic exploration (e.g., Igel et al., 2000, Campman et al., 2005, Mittet, 2017), and
also to better understand the wave propagation phenomena in realistic geologic setups
(e.g., Wapenaar and Berkhout, 1987, Favretto-Anrès and Rabau, 1997, Cooper et al.,
2010). This interest is especially strong in the case of geologic setups including salt
structures.  Therefore  the  goal  of  this  part  is  to  respond  to  this  demand  by,  first,
building a realistic small-scale model, and then, precisely implementing the model
and the laboratory experiments in the numerical domain.  The WAVES model was
designed with the intention to mimic a realistically challenging salt-dome geologic
setup  at  laboratory  scale.  It  includes  a  salt-dome  in  the  middle,  surrounded  by
different  sedimentary  layers,  and  a  crystalline  basement  on  the  bottom.  For  the
numerical implementation, we rely on the framework established in Part 1, following
some technical modifications of the laboratory equipment to increase the precision of
the transducer positioning and the tilt angle of the source transducer.
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Chapter 1 is dedicated to the laboratory aspects. The physical model is described,
including its geometry and the most important material properties. Then, we discuss
the modifications of the acquisition system compared to Part 1, and the interpretation
of  some  laboratory  cross-sections  are  also  showcased  in  zero-offset  and  offset
configurations. Chapter 2 highlights the differences in the numerical simulations for
the WAVES model compared to Part 1, including the implementation of the model
geometry using a structured 3D mesh. The extension of the numerical calibration of
the material properties to the multi-layered WAVES model is also discussed here. The
comparison of the synthetic results with the laboratory measurements is presented in
Chapter 3. Both 3D zero-offset and 3D offset cases are compared with the forward-
simulated spectral-element results. The generally good fit between the measurements
and the synthetic results are discussed in details, together with the occasional misfits
and their explanations.

As showcased in the General Introduction, many different numerical algorithms are
used in seismic exploration during survey design, data processing and interpretation
(Robertsson et al., 2007), as well as in seismic imaging and inversion (Virieux et al.,
2011). Reverse-time migration (RTM) is one of the most popular imaging techniques
and it can reconstruct the seismic reflectors related to reflection coefficient contrasts
(e.g., Zhang et al., 2003, Zhu et al., 2009). Applying the RTM to the laboratory data
measured  for  the  WAVES model  is  an  optimal  benchmarking opportunity  for  the
established framework of Part 1. Therefore we showcase the RTM in Chapter 4, using
the example of the WAVES model. First, the theoretical background of the RTM is
briefly  summarized  together  with  the  description  of  the  necessary  laboratory
measurements, then the resulting RTM kernels are presented.
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Chapter 1
Small-scale seismic experiments

1.1 The WAVES model

The WAVES model represents the real geologic setup at the scale of 1:20 000. The
physical model has a size of 400 x 270 x 95 mm3, i.e. 8 x 5.4 x 1.9 km3 at seismic
scale.  The  model  includes  a  salt-dome  in  the  middle,  surrounded  by  different
sedimentary layers (Figure 28). Salt is represented by crystal (glass enriched with lead
monoxide), and the sediments are represented by resins (Table 2). The resins are all
based on the same base material, and some of them are enriched with a mixture of
aluminum and silicon dioxide powder to increase their densities and the velocity of
the  ultrasonic  waves.  The  aluminum  layer  on  the  bottom  represents  a  typical
crystalline  basement,  such  as  granite.  The  glass  dome  was  manufactured  by  La
Fonderie de Verre, while the other parts were manufactured by VN Composites, who
also assembled the whole physical model. The assembly started with the aluminum
plate, on which the first resin layer was poured (layer #4 in Figure 28). Then it was
constantly rotated in an oven and the temperature was gradually decreased over a few
hours to avoid air bubbles forming in the resin, and also to ensure the homogeneous
distribution of the Al-SiO2 powder in the base resin. After solidifying, the top surface
of the resin layer was craved out according to the previous 3D plans. Finishing the
fabrication of the first resin layer, the process continued with the next layer above
(layer #3 in Figure 28), and so on. Before finishing the topmost resin layer (layer #1
in Figure 28), the glass dome was placed inside. Its coupling with the surrounding
layers is ensured by a thin layer of the base resin.
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Figure 28. Top: the WAVES model after the assembly (left), the glass dome placed
inside (right). Middle: top view of the WAVES model without the topmost layer, the
blue dashed line denotes the study line discussed in the thesis (left), snapshot of the
3D  geometry  file  (right).  Bottom:  perpendicular  vertical  cross-sections  along  the
center  lines  of  the  model.  The  numbers  denote  the  different  materials,  whose
properties are shown in Table 2.
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Similar to Part 1, the properties of the material samples of each material used in the
WAVES  model  were  characterized  (Appendix  A).  The  measured  velocity  and
attenuation values (expressed as Q-factors) are close to constant and each material is
considered to be homogeneous and isotropic for the frequency range of interest (250-
650 kHz). According to both the literature and our measurements, we consider glass
and aluminum to  be  elastic,  i.e.  QP and  QS are  infinite.  Appendix  A contains  the
measured  values  at  each  characterized  frequency  and  Table  2  shows  the  values
considered  valid  for  the  whole  frequency  range  of  interest  after  evaluating  the
measurement uncertainties as well.

Material
Number
in Figure

28

Density
(kg/m3)

VP (m/s) VS (m/s) QP QS

resin A 1, 3
1172 ± 2
(± 0.2 %)

2720 ± 13
(± 0.5 %)

1210 ±
144

(± 12 %)

25 ± 1
(± 4 %)

11 ± 4
(± 36 %)

resin B 2
1680 ± 10
(± 0.6 %)

3090 ± 16
(± 0.5 %)

1577 ± 25
(± 1.6 %)

26 ± 1
(± 4 %)

18 ± 3
(± 17 %)

resin C 4
1800 ± 10
(± 0.6 %)

3470 ± 21
(± 0.6 %)

1840 ±
101

(± 5 %)

53 ± 1
(± 2 %)

33 ± 9
(± 27 %)

crystal
glass

5
3623 ± 10
(± 0.3 %)

4480 ± 43
(± 1 %)

2845 ±
464

(± 16 %)
∞ ∞

aluminum 6
2710 ± 4
(± 0.2 %)

6441 ± 87
(± 1.4 %)

3573 ±
544

(± 15 %)
∞ ∞

Table  2.  Measured  properties  of  the  materials  used  in  the  WAVES model  for  the
frequency range of interest (250–650 kHz).
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1.2 Improved experimental setup and laboratory data sets

Similar  to  Part  1,  the  WAVES  model  was  immersed  in  a  water  tank  during  the
measurements  (Figure  3).  Compared  to  the  time  when  the  measurements  were
conducted for the Marseille-Benchie model, the precision of the measurements has
been significantly improved. As listed in the necessary near-term modifications in the
Conclusions of Part 1, optic rulers have been installed to provide a precise a posteriori
control of the transducer movements, as well as a digital protractor to measure more
accurately  the  tilt  angle  of  the  source  transducer.  Due to  these  modifications,  the
uncertainty of the transducer movements has been reduced to ±5 μm (i.e. ±0.1 m at
seismic scale), while the tilt angle of the source transducer can be measured with a
precision of ±0.1°. Therefore the precision of the transducer movement and the source
tilt angle have been improved by a factor of 100 and 10, respectively, compared to
Part 1. The laboratory measurements have been conducted identical to Part 1, and we
refer the reader to Section 1.2 in Part 1 for further details.

For the sake of brevity, we focus on a study line, located above the center line in the
x-direction (dashed line in  Figure 28 middle left,  and along the section shown in
Figure 28 bottom left). This acquisition line covers both rather simpler parts close to
the  sides,  where  the  geometry  consists  of  close-to-horizontal  layers,  and complex
parts in the center, above the dome. Figure 29 shows the laboratory zero-offset data
set for the study line, together with the interpretation of the main recorded events. The
transducer  was  positioned  100±0.1  mm above  the  top  surface  of  the  model  (i.e.
2000±2 m at seismic scale). Event a) represents the reflections from the top surface of
the model, i.e. from the top of the upper resin A layer. Event b) represents the top of
the glass dome. It mainly consists of reflections, between positions 120-270 mm. For
positions less than 120 mm and greater than 270 mm diffractions from the edges of
the dome can be observed. Events c), d), e), and f) represent the top surface of resin B,
lower  resin  A,  resin  C,  and  aluminum,  respectively.  These  events  can  be  easily
interpreted on the sides due to the relatively simple geometry. To the contrary, the
closer  we are to  the center  of  the model,  the harder  it  is  to  distinguish the same
reflections due to the more complex geometry. Thanks to the broad-beam radiation
pattern of the source transducer and the curved top surface of the dome, we can see a
constructive interference of reflections in the center, leading to focusing of the energy,
between 165-200 μs and between positions 170-240 mm. Event g) shows reflections
from the bottom of the  aluminum.  The fact that reflections are recorded from the
bottom of the  aluminum shows that the imaging of the entire depth of the model is
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possible, even though the resin layers are highly attenuating (Table 2). Similar to the
Marseille-Benchie model, we can see velocity pull-up effects due to the time-domain
visualization.  Namely,  events  f)  and  g)  represent  reflections  from  two  perfectly
horizontal interfaces, but in Figure 29 they show some undulations. This is due to the
varying velocity of the complex overburden of the aluminum, which leads to different
arrival times of the reflected zero-offset waves at different horizontal positions.

Figure 29. Cross-section of the laboratory zero-offset data set along the study line
(top), and interpretation (bottom). Annotated events: reflections from the (a) top of
upper resin A, (b) top of glass dome, (c) top of resin B, (d) top of lower resin A, (e)
top of resin C, (f) top of aluminum, and (g) bottom of aluminum. The data was filtered
between 250-650 kHz.
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Figure 30 shows the acquisition layout of the laboratory offset data set presented in
Figure 31. This latter is a common shot gather along the study line together with the
interpretation of the main events. The source was positioned at y=390.17±0.50 mm
and the  tilt  angle  of  the source transducer  was 30±0.1°.  Both  the  source and the
receiver transducers were positioned 100±0.1 mm above the top surface of the model
(i.e. 2000±2 m at seismic scale). The interpretation of the measured data set for the
WAVES model without post-processing is much more challenging than in the case of
the  Marseille-Benchie  model.  This  is  due  to  the  complex geometry  of  the  multi-
layered  WAVES model.  Event  a)  can  be  attributed  to  the  direct  arrival  from the
source, and event b) to the reflections from the top surface of the model, i.e. from the
top of the upper resin A layer. To better understand the laboratory data, it must be
post-processed,  most  typically  with  migration  algorithms,  to  which  we  show  an
example in Chapter 4 (see Figure 47).

Figure 30. Acquisition geometry of the laboratory offset section presented in Figure
31.
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Figure 31. Cross-section of the laboratory offset  data set  along the study line (i.e.
common shot gather) (top), and interpretation (bottom). Annotated events: (a) direct
arrival, (b) reflection from the top of upper  resin A. The data was filtered between
250-650 kHz.
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Chapter 2
Numerical modeling of the laboratory

measurements

2.1 Spectral-element simulations with a structured mesh

We use the Specfem software package for the numerical simulations, as presented in
Chapter  2  in  Part  1.  The  only  difference  compared  to  Part  1  is  the  numerical
implementation of the model geometry. Because the WAVES model has a complex
multi-layered 3D geometry, obtaining a hexahedral non-structured mesh is extremely
difficult. The main difficulty is not only to correctly mesh any domain of the model
with hexahedral elements only but also to have a conform mesh on the boundaries
between any two domains. In a conform mesh, all nodes which are on the boundary of
two domains are shared by elements on both sides, and all elements on the boundaries
must be connected to elements in the other domain by nodes (Figure 32). Although we
tested several available open-source and commercial meshing tools, currently they are
all  unable to  tackle  this  task for  the  WAVES model.  Because a  conform mesh is
necessary  for  the  numerical  simulations,  we  had  to  use  a  different  approach  to
numerically implement the model geometry.

Figure 32. Examples of a 2D non-structured mesh using quadrangles to showcase the
difference between a non-conform (left) and a conform (right) mesh. The red dots
denote the nodes on the boundary of the two domains.

Our solution is to use a structured grid, similar to the FDM. It is not unusual to use
spectral-element algorithms with a structured grid,  especially  in seismic inversion,
where the mesh has to  be updated after  each iteration.  Considering the minimum
velocity  of  the  model  –  namely,  1210 m/s  for  the  S-waves  in  resin  A –  and the
maximum target frequency (650 kHz), we used a regular grid with an equidistant grid
spacing of 1.6 mm in each spatial directions. Because five GLL points per element are
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used during the simulations, the grid spacing provides at least 3.8 and 3.1 GLL points
per  the  shortest  wavelength  for  P-  and  S-waves,  respectively.  This  spatial
discretization  yields  approximately  5.6  million  elements,  considering  the  water
column above the model as well.

2.2 Numerical calibration of the material properties for a
multi-layered model

As mentioned in Part 1, an initial calibration of the measured material properties is
necessary  before  the  final  numerical  simulations.  Here  we  follow  the  procedure
presented in Section 2.3.4 in Part 1 to calibrate the material properties of the WAVES
model using the zero-offset configuration. The goal of the calibration is to adjust the
material properties of each layer such that the synthetic traces fit the laboratory traces
as much as possible. Compared to the Marseille-Benchie model where the properties
of only one material had to be fitted, the WAVES model is more challenging due to its
multi-layered geometry. Our strategy for the WAVES model is simple: at first,  the
properties of the topmost layer are calibrated, then, those of the second layer, and so
on. Similar to Part 1, we chose a reference point 100±0.1 mm above the top surface of
the model, and as close to the sides of the model as possible, where the geometry is
close to a 2D layer-cake geometry. The calibration thus consists of two phases: first,
the properties of each layer are calibrated, except those of the glass dome, using the
reference trace,  then,  a second trace is  used in the center  of  the model  to  fit  the
properties of the glass as well (Figure 33).
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Figure 33. Location of the reference trace (red asterisk) and of the second trace used
to calibrate the properties of the glass (blue asterisk). The yellow asterisks denote the
position of the zero-offset examples showcased in Chapter 3.

Figure 34a shows the comparison of the reference laboratory trace with the result of
the simulation, using the measured material properties (Table 2). Although the arrival
time, amplitude and phase of the simulation are correct for the first event (reflection
from the  top  of  upper  resin  A),  the  later  arrivals  have  extremely  low amplitudes
compared to the laboratory measurement. By adjusting the material parameters of the
different layers, we can obtain an excellent fit between the laboratory and synthetic
traces, as shown in Figure 34b. Table 3 shows the adjusted material properties and the
change in terms of percentage compared to the measured material properties listed in
Table 2. We note that, even though the same resin A is used twice in the model, we
obtained different material properties for the upper and lower layers, especially for the
attenuation parameters. Using the calibrated material properties of Table 3, we did an
additional control measurement and simulation in the same horizontal position, but
one  centimeter  closer  to  the surface  of  the model  (i.e.  90±0.1 mm above the top
surface of the model). Figure 35 shows that changing only the height of the transducer
results in a different fit between laboratory and synthetic traces. It can be explained by
the fact that, the illuminated zone of the model changes with the transducer height.
Therefore  we  can  clearly  see  the  importance  of  the  illuminated  zone  on  the
measurements, and on the calibration as well. Thus the adjusted material parameters
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are rather apparent and not absolute, as it has already been pointed out in Part 1.

Figure 34. Comparison of the reference laboratory trace (blue) and the corresponding
synthetic trace (red): a) using the measured material properties shown in Table 2, b)
using the adjusted material properties shown in Table 3.

Layer
Number
in Figure

28

Density
(kg/m3)

VP (m/s) VS (m/s) QP QS

upper
resin A

1
1172
(0 %)

2549
(-6 %)

1210
(0 %)

123.8
(376 %)

88
(389 %)

resin B 2
1680
(0 %)

3213
(4 %)

1577
(0 %)

27.3
(5 %)

23
(28 %)

lower
resin A

3
1172
(0 %)

2560
(-6 %)

1210
(0 %)

41.7
(60 %)

30
(67 %)

resin C 4
1800
(0 %)

3050
(-12 %)

1840
(0 %)

30
(-43 %)

26
(-21 %)

aluminum 6
2710
(0 %)

6491
(< 1 %) 

3573
(0 %)

∞
(0 %)

∞
(0 %)

Table  3.  The  calibrated  material  properties  for  the  resins and  the  aluminum.  The
percentages show the differences compared to the measured values listed in Table 2.
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Figure 35. Comparison of the laboratory trace (blue) at the same horizontal position as
the  reference  trace  (Figure  34),  but  one  centimeter  closer  to  the  model  and  the
corresponding synthetic trace (red), using the adjusted material properties in Table 3.

After calibrating the material properties for the  resins and the  aluminum, a second
trace was used in the center of the model to adjust the properties of the glass too (blue
asterisk in Figure 33). Figure 36a shows the comparison of the laboratory trace with
the synthetic results, using the adjusted material properties listed in Table 3. We can
see that the two traces fit each other very well for the reflection from the top of the
upper resin A layer. Figure 36b shows the same comparison between the laboratory
trace and the synthetic results, but this time the material properties of the glass dome
are also calibrated (Table 4). We can clearly see a good fit in Figure 36b between the
laboratory and synthetic traces for the reflection from the bottom of the glass dome
too, as well as for other events with later arrival times. The reflection from the top of
the glass dome shows a good, but not a perfect fit, as mainly the amplitude is different
from the laboratory measurement.  To decrease this  misfit,  the properties of  upper
resin A had to be readjusted. In other words, it points out a need to adjust differently
the properties of the same layer in different positions. It could mean that the materials
used  in  the  model  would  be  heterogeneous,  but  that  is  not  confirmed  by  our
measurements for the material samples. On the contrary, the effect of the illuminated
zone may also depend on the model geometry, especially in this case when the top
surface of the dome is curved, and not only on the transducer height.
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Figure 36. Comparison of the laboratory trace (blue) in the center of the model and
the corresponding synthetic trace (red): a) using the adjusted material properties in
Table 3, b) using the adjusted material properties in Table 4, which is calibrated for
the properties of glass too.

Layer
Number
in Figure

28

Density
(kg/m3)

VP (m/s) VS (m/s) QP QS

glass 5
3623
(0 %)

4325
(-4 %) 

2845
(0 %)

∞
(0 %)

∞
(0 %)

Table 4. The calibrated material properties for the  glass. The percentages show the
differences compared to the measured values listed in Table 2.
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Chapter 3
Comparison of experimental data with forward

simulations

3.1 Comparison of zero-offset data sets

Here, we consider more specifically four traces of the laboratory zero-offset data set,
denoted with the yellow asterisks in Figure 33. These traces are located at different
parts  of  the  model  to  investigate  the  fit  between  the  measurements  and  the
simulations,  using  the  calibrated  material  properties  (Tables  3  and  4)  at  different
positions.

Trace F is located about 130 mm (i.e. 2.6 km at seismic scale) far from the reference
trace in the y-direction (Figure 33). The comparison of the laboratory measurement
with the numerical result shows a good fit for most of the events (Figure 37a). The
first three reflections (from the top of upper resin A, resin B and lower resin A layers,
respectively) show a good fit in terms of the arrival time and amplitude. Furthermore,
even the reflection from the top of  resin C shows only some minor amplitude and
arrival time misfits. On the contrary, the reflections from the top and bottom of the
aluminum reveal a significant misfit in the arrival times. The correlation coefficient of
the two traces is 0.93, highlighting the general good fit for both the arrival times and
the amplitudes.

Trace G is located about 130 mm far from the reference trace in both the x- and y-
directions, i.e. altogether 184 mm (i.e. 3.68 km at seismic scale) far from the reference
trace (Figure 33). Although this trace shows a perfect fit for the reflection from the top
of upper resin A layer, the later arrivals suffer from a varying degree of amplitude and
arrival  time  misfits  (Figure  37b).  The  simulated  amplitude  is  especially  high
compared to the measurements for the reflection from the top of  resin B; whereas
erroneously low for the reflections from the top of lower resin A, and the bottom of
the aluminum. The correlation coefficient of 0.82 reveals too the generally good phase
and arrival time, and the occasionally imperfect amplitudes.

Trace H is located about 130 mm (i.e. 2.6 km at seismic scale) far from the reference
trace in the x-direction, on the other side of the dome than trace G (Figure 33). Figure
37c shows a good fit between the measurements and the simulations for the reflection
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from the top of the upper resin A layer. This is mainly true for the center of this event,
as the beginning and the end show some minor amplitude misfits.  The reflections
from the top of  resin B and  lower resin A show some amplitude misfits, similar to
trace G. On the contrary, the later arrivals of trace H show an almost perfect fit in both
the arrival times and the amplitudes, as opposed to trace G. Because of the smaller
amplitude misfits, trace H has also a higher correlation coefficient (0.87).

Trace I is located about 260 mm (i.e. 5.2 km at seismic scale) far from the reference
trace in the x-direction (Figure 33). Figure 37d shows the comparison between the
measurement and the simulation, revealing a generally good fit. The fit is especially
good for the reflections from the top of  upper resin A, and  resin B. The reflections
from the top of lower resin A and resin C, and from the bottom of the aluminum show
some amplitude and arrival time misfits. On the contrary, the amplitude and arrival
time misfits for the reflection from the top of the aluminum are significant. We also
note the arrival recorded after the reflection from the top of the upper resin A layer,
around  148  μs.  This  event  is  pronounced  for  the  measurement,  while  not
reconstructed with the simulation. This arrival is probably related to tiny air-bubbles
accumulated on the surface of the physical model during the measurements, which
can take even several days for the entire data set. Trace I has a correlation coefficient
of 0.88, which would be even higher if the bubble-related event would not show a
difference with the simulation.
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Figure  37.  Comparison  of  zero-offset  laboratory  traces  with  the  corresponding
synthetic SEM results: a) trace F, b) trace G, c) trace H, d) trace I.
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3.2 Comparison of offset data sets

Here, we consider more specifically two sets of offset traces, corresponding to two
different source positions. All the sources and receivers were positioned in the center
line of the model in the y-direction (y=135±0.5 mm). The two source positions are
denoted with red and blue asterisks in Figure 38, respectively. The positions of the
receivers are denoted with triangles of the corresponding colors. The tilt angle of the
source transducer for all the traces was 31.3±0.1°. As noted in Section 3.2 in Part 1,
the direct arrival can be reconstructed only with a varying goodness of fit in the offset
configuration,  due to  the  numerical  implementation  of  the secondary  lobes  of  the
source transducer. Therefore we do not show here the direct arrival for any of the
traces, as that would for example bias the correlation coefficients.

Figure 38. Location of the sources (asterisk) and receivers (triangles) associated to the
two showcased offset experiments. The two data sets are denoted with red and blue
colors, respectively.
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3.2.1 First set of offset traces
The source was positioned at x=300±0.5 mm for traces J and K (Figure 38). Trace J
corresponds to  an offset  of approximately 280 mm (i.e.  5.6  km at  seismic scale).
Figure 39a shows the comparison of the laboratory measurement with the synthetic
result. The reflection from the top of upper resin A shows a good fit between the two
traces, in terms of both the arrival time and the amplitude. Although the arrival time
of the reflection from the top of the glass dome is correct for the synthetic trace, the
simulated  amplitude  is  somewhat  lower  compared  to  the  measurement.  The  later
arrivals which propagated through the glass dome cannot be easily interpreted one-by-
one, because they belong to complex ray paths. Although the arrival time and phase of
these  events  are  correct,  they  show  a  varying  amplitude  misfit.  The  correlation
coefficient of 0.84 also suggests a generally good fit between the measurement and
the simulation.

Trace K was measured at an offset of approximately 80 mm (i.e. 1.6 km at seismic
scale). The comparison of the measured and simulated traces in Figure 39b shows a
good fit for the reflection from the top of upper resin A, similar to trace J. Following
that,  there are  two arrivals  corresponding to  reflections  from the top of the  glass
dome. This is due to the broad-beam radiation pattern of the source in combination
with the curved top surface of the dome. These arrivals show some arrival time and
amplitude misfits. The later arrivals, corresponding to waves propagating through the
glass dome, show a similar pattern as for trace J. Namely, the arrival time of these
events are mostly correct with some amplitude misfits. The correlation coefficient is
0.81, partly due to the erroneously low simulated amplitude of the later arrivals (e.g.
at 180 μs).
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Figure 39. Comparison of offset laboratory traces with the corresponding synthetic
SEM results: a) trace J, b) trace K.

3.2.2 Second set of offset traces
For  the  second set  of  offset  traces,  the  source  was  positioned  at  x=200±0.5  mm
(Figure 38). Trace L corresponds to an offset of approximately 140 mm (i.e. 2.8 km at
seismic scale). The reflection from the top of upper resin A has the correct arrival time
and amplitude, but the phase of the early and late parts of this event is somewhat
distorted, compared to the laboratory trace (Figure 40a). The reflection from the top
of the glass dome shows mainly some amplitude misfit. The simulated arrivals of the
waves  traveling  through  the  glass  dome show  an  erroneously  low  amplitude  in
general. It explains also the lower correlation coefficient of 0.78 compared with traces
J and K above.

Trace M (Figure 40b) corresponds to an offset of approximately 90 mm (i.e. 1.8 km at
seismic scale). The reflection from the top of upper resin A shows a good fit in time
and amplitude. The early and late parts of this event have a somewhat superior fit in
phase than for trace L. The two reflections from the top of the  glass dome are of
excellent  fit  in  both  arrival  times  and  amplitudes.  However,  the  later  arrivals,
corresponding to waves propagating through the dome, again reveal an erroneously
low amplitude for the synthetic  trace.  The correlation coefficient  is  0.81,  and this
higher value compared with trace L is due to the better fit at earlier times.
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Trace N (Figure 40c) corresponds to an offset of approximately 50 mm (i.e. 1 km at
seismic  scale).  This  near-offset  trace  shows  an  excellent  fit  in  arrival  times  and
amplitudes for the reflections from both the top of upper resin A and the glass dome.
For this trace, even the beginning of the complex arrivals related to rays propagating
through  the  glass  dome shows  a  good  fit  between  the  simulation  and  the
measurement. Indeed the arrival at around 150 μs has both the good amplitude and
arrival time with a minor phase misfit. Later parts of these arrivals show also a rather
good fit  in  time.  Similar  to  the  previous  traces,  the  simulated  amplitude of  these
events  after  180  μs  are  generally  too  low,  explaining  also  the  lower  correlation
coefficient of 0.78.

Figure 40. Comparison of offset laboratory traces with the corresponding synthetic
SEM results: a) trace L, b) trace M, c) trace N.
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3.3 Discussion

As shown above, we can accurately reconstruct the laboratory measurements for the
WAVES model,  using the SEM with a regular  grid.  In general,  a good fit  can be
obtained  between  the  laboratory  zero-offset  measurements  and  the  numerical
simulations. This is highlighted by the very-high correlation coefficients of at least
0.82 between the measured and simulated traces. Although the observed misfits are
somewhat higher in the offset configuration, the correlation coefficients still suggest a
good reconstruction of the laboratory offset traces as well, being at least 0.78.

There are several factors possibly contributing to the observed misfits:
• the fit may not be perfect due to the nature of the physical data sets, as pointed

out in Part 1 (e.g., noise recorded in the laboratory and lower signal-to-noise
ratio in the offset configuration),

• the numerical implementation of the source transducer is not perfect, as also
pointed out in Part 1,

• although the precision of the laboratory measurements and the experimental
data sets has been significantly improved for Part 2, there is still uncertainty in
the transducer positions and in the tilt angle of the source,

• the  model  geometry  is  implemented  in  the  numerical  simulations  with  an
equidistant grid. Such a grid cannot explicitly honor the discontinuities of the
model.  In  the  WAVES  model,  it  concerns  mainly  the  sides  of  the  dome,
especially the junctions of the different sedimentary layer boundaries next to
the flanks of the dome. Considering the usually good fit in both zero-offset
and offset configurations for the reflections from the curved top surface of the
glass dome, we have a reassuring feedback on the current implementation of
the geometry. Therefore we consider this effect to be minimal if any,

• we did a numerical calibration of the material properties for this multi-layered
model.  Although  this  procedure  yields  an  excellent  fit  between  the
corresponding reference laboratory and synthetic traces, the obtained material
properties are influenced by the illuminated zone of the model. That is, the
calibrated  properties  are  rather  apparent  than  absolute,  as  they  somewhat
depend on the height and the horizontal position of the transducers,
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• the  resins used  in  the  model  have  a  high  attenuation,  resulting  in  low
amplitudes of the late arrivals already for the laboratory traces. Therefore the
relatively  low  simulated  amplitudes  of  these  late  arrivals  (traces  J-M  in
Figures 39 and 40) can also be the result of uncertainties during the laboratory
experiments,

• we note that the reflections from the top and bottom of the  aluminum often
show a high misfit in both arrival times and amplitudes, even in the zero-offset
configuration. This misfit depends on the actual position of the measurements,
as  they  are  excellently  reconstructed,  for  example,  on trace  H,  but  with  a
significant misfit on traces F and G. Because the earlier events usually show
much less misfit on the same traces, at first it may appear surprising that the
two  perfectly  horizontal  interfaces  of  the  aluminum provide  the  most
difficulties for the simulations. Indeed, the coupling of the aluminum on both
the top and the bottom were challenging. Namely, the coupling of resin C and
the  aluminum was  challenging  during  the  manufacturing  of  the  physical
model. The model is placed on sand to avoid any movement of the model
during  the  measurements,  therefore  the  coupling  between  the  imperfectly
compacted sand and the aluminum can also vary with the position.

Regarding the necessary computational resources, we used Intel Xeon Sandy Bridge
EP (E5-2690) processors for the simulations. The computational cost was 1500 core
hours to simulate 350 μs of wave propagation (corresponding to 7 s at seismic scale).
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Chapter 4
Reverse-time migration using the laboratory data
- an example of using seismic imaging techniques

to retrieve the geometry of the WAVES model

Seismic data is always recorded in the time domain, and as shown in Parts 1 and 2,
the visualization of a seismic data set directly in the time domain does not show the
real geometry of the subsurface. Therefore restoring the correct geometry is crucial
before  the  interpretation  of  the  measured  data  sets,  in  particular  for  complex
geometries.  For  instance,  as  presented  in  Section  1.2,  the  interpretation  of  the
laboratory offset data set for the WAVES model without the necessary post-processing
is  challenging.  Then,  in  Section  3.2  we  compared  laboratory  measurements  with
synthetic results in offset configuration, and the arrivals corresponding to complex ray
paths  could  not  be  individually  interpreted,  due  to  the  complex  model  geometry
(Figure 28). Figure 41 illustrates the role of seismic data migration. After recording
zero-offset  data above a syncline (Figure 41 top),  we can obtain the time-domain
representation of the subsurface as shown in Figure 41 middle. This bow tie form
clearly does not represent the real geometry, therefore a migration algorithm must be
applied  to  the  recorded data  set  to  reconstruct  the  real  geologic  setup  (Figure  41
bottom).  This  simple  example  already  highlights  the  necessity  of  seismic  data
migration in exploration geophysics, which is even more important for a model with a
complex geometry such as the WAVES model. In this case, there is definitely a strong
need to apply some kind of post-processing, such as seismic migration, to reconstruct
the geometry of the WAVES model using the experimental data.
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Figure 41. Illustration of the goal of seismic migration: acquisition geometry of a
zero-offset  data  set  above a  syncline (top),  the measured zero-offset  image of the
syncline in the time domain (middle), and the migrated data set in depth, representing
the  real  geometry  shown  in  the  top  image  (bottom)  (Courtesy  of  Schlumberger
Oilfield Glossary, 2018).

Depending on the vertical and lateral heterogeneities, and the expected maximal tilt
angle of the discontinuities, different migration algorithms have been developed (see
e.g. Yilmaz, 1987). In this thesis, we use one of the most common seismic imaging
techniques,  the reverse-time migration (RTM). The RTM is  based on the imaging
principle (Claerbout, 1971), and it is capable to reconstruct the reflectors related to
reflection coefficient contrasts, but it  cannot determine the real amplitude of these
reflectors  (Zhang  et  al.,  2003).  Our  main  goal  with  applying  the  RTM  to  the
laboratory  data  sets  measured  for  the  WAVES  model  is  to  validate  the  whole
framework introduced in Part 1 and improved and adapted to the WAVES model in
Part 2. Because the RTM yields a data set in the depth domain, if our framework is
correct  overall  (including the laboratory measurements,  the characterization of the
material  properties,  and  the  numerical  implementation  of  the  transducer
characteristics  and  the  model  geometry),  the  resulting  RTM  data  set  should  fit
perfectly the known geometry of the model.
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4.1 Brief description of the method

The RTM is based on seismic reciprocity, which exploits the time-invariant property
of the wave equation for a non-attenuating medium. Namely, this property makes it
possible to record a wavefield in the time domain, and then focus back the wavefield
at  the source position by propagating back in  time the registration at  the original
receiver  position  (in  a  last  in-first  out  manner).  In  the  context  of  time-reversal
acoustics, seismic reciprocity was first used by Baysal et al. (1983) and later by Fink
(1999).

The workflow of the applied RTM is shown in Figure 42. First, offset laboratory data
is collected along the center line of the model in the x-direction (dashed line in Figure
28 middle left, and along the section shown in Figure 28 bottom left). We use three
source tilt angles (19.7±0.1°, 25.1±0.1°, and 30±0.1°) and record multiple acquisition
lines with a source spacing of 20±0.005 mm and a receiver spacing of 0.5±0.005 mm.
These values correspond to a source spacing of 400±0.1 m and a receiver spacing of
10±0.1 m at seismic scale.  Altogether 17 642 registrations on 42 survey lines are
measured.  Second,  forward  simulations  are  computed,  using  the  same acquisition
geometry as for the laboratory measurements. We conduct the simulations with the 2D
version of the Specfem software package (Section 2.3 in Part 1) to save computational
cost. Following the forward simulations, the differences of the recorded and simulated
registrations  are  computed for  each receiver.  These differences  provide the source
time function of the so-called adjoint wavefield in the third step (e.g., Tromp et al.,
2005, Virieux and Operto, 2009). The third step consists of two simulations at the
same  time,  a  forward  simulation  (identical  to  the  second  step)  and  the  adjoint
simulation,  which means the forward propagation of the adjoint wavefield in time
from the original receiver points of steps 1 and 2.
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Figure 42. Workflow of the RTM.
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The  first  idea,  straightforward  but  clumsy and inappropriate,  could  be  to  use  the
“real”4 model  geometry  and  material  properties  for  the  forward  and  adjoint
simulations of the RTM, as this would certainly make difficult the interpretation of the
RTM  results.  Figure  43  top  shows  a  3D  laboratory  trace  and  the  corresponding
numerical trace simulated in 2D, using the “real” geometry and material properties.
The source was positioned at x=19.995±0.5 mm, in the center line in y-direction, and
100±0.5 mm above the model. The receiver was located at x=79.830±0.5 mm, in the
center line in y-direction, and 100±0.5 mm above the model. Similar to Section 2.3,
the simulation can clearly reconstruct the reflections from the different discontinuities,
however the simulated amplitudes are often higher than the measured ones and there
are arrival time misfits as well, especially after 260 μs. If we took the difference of the
measured and simulated traces, we would obtain the adjoint trace in Figure 43 bottom.
Comparing  Figure  43  top  and bottom,  we can  see  that  the  adjoint  trace  contains
information  mostly about  the numerical  simulation  due to  the systematically  high
amplitude  of  the  simulated  reflections.  That  is,  we  would  certainly  obtain  high
correlation values between the forward and adjoint wavefields, but the interpretation
of the results would not be straightforward as the high correlation values would be
(mostly)  the  result  of  the  numerical  implementation  of  the  “real”  geometry  and
material  properties,  and  our  main  goal  to  validate  the  framework  could  not  be
achieved.

4 Here, “real” does not mean “exact”, as there are (very) small differences (less than
0.1 mm) in the position of  each interface of the model  compared to those in  the
original 3D geometry files which were provided to the manufacturers of the physical
model.
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Figure 43. Illustration of the RTM calculations for the “real” model geometry and
material properties. Top: laboratory trace (blue) and 2D simulated trace (red), bottom:
difference (i.e. adjoint source).

We use a smoothed version of the “real” model instead, as that is the general practice
in seismic exploration. Namely, a Gaussian filter with a kernel size of 12x12 mm is
applied to each material property (VP, VS, ρ, QP, QS) to obtain a smooth model (Figure
44). Figure 45 top shows a 3D laboratory trace and the corresponding 2D simulated
trace using the smoothed geometry, for the same source and receiver positions as for
Figure  43.  Compared  to  Figure  43,  the  simulated  trace  does  not  contain  high-
amplitude reflections from the model discontinuities as the model is smoothed in this
case.  Therefore,  if  the  difference  between  the  measured  and  simulated  traces  is
computed,  the  adjoint  trace  in  Figure  45 bottom preserves  the information of  the
laboratory  measurements.  This  way the  interpretation  of  the  final  RTM results  is
straightforward, as any high correlation value corresponds to the information on the
geometry that has been measured during the laboratory experiments.
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Figure 44. The smoothed density model used for the RTM calculations.

Figure 45. Illustration of the RTM calculations for the smoothed model, as shown in
Figure  44.  Top:  laboratory  trace  (blue)  and  2D  simulated  trace  (red),  bottom:
difference (i.e. adjoint source).

Because  the  resin layers  of  the  model  have  significant  attenuation,  it  has  to  be
considered  during  the  calculations.  We  use  the  technique  of  parsimonious  disk
storage (aka  optimal  checkpointing)  of  the  forward  wavefield  (Komatitsch  et  al.,
2016). As part of this strategy, the so-called  checkpoint/restart files are saved to the
disk during the forward simulation in step 2. These files contain the displacement
components and are typically stored for every few hundred time steps. Then in the
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third  step,  the  forward  simulation  is  not  run  backward  in  time  which  would  be
numerically unstable,  but rather forward,  using the checkpoint/restart  files.  At any
time, the simulation is run forward in time using the corresponding restart file, read
back from the disk. Because the simulations are always conducted forward in time,
they are always stable, even in the case of attenuating materials. The process is also
exact  as  there is  no filtering  involved as  opposed to,  for  example,  Ammari  et  al.
(2013).

In classical RTM the correlation of the forward and adjoint wavefields is calculated in
the  third  step  (Figure  42).  However,  there  is  a  strong  connection  between  full-
waveform  inversion  (FWI)  and  the  RTM  (e.g.  Tromp  et  al.,  2005),  therefore,
sensitivity kernels can be defined also for the RTM and used similar to the FWI for
the imaging and geologic interpretation of the subsurface (e.g., Virieux and Operto,
2009,  Zhu  et  al.,  2009).  In  this  case,  some  derivatives  of  the  cross-correlated
wavefields  are  used.  These  derivatives  (aka  sensitivity  kernels)  depend  on  the
formulation  of  the  wave  equation.  We  note  that  in  practice,  there  is  no  one
formulation to be chosen in any case, but rather it depends on the actual geologic
setup and the recorded data itself (e.g., seismic exploration, global seismology etc.)
(e.g.  Zhu  et  al.,  2009).  Thus  usually  different  formulations  are  computed  and  it
requires  an  extensive  knowledge  and  experience  to  choose  the  data  set(s)  to  be
interpreted with the most geological/geophysical relevance. We calculate the two most
common formulations in this thesis, first the density ρ, bulk modulus κ, shear modulus
μ formulation, then, the impedance ρ', compressional-wave speed α, shear-wave speed
β formulation.  An  extensive  explanation  of  the  calculations  can  be  found,  for
example, in Liu and Tromp (2006), Tromp et al. (2008), Zhu et al. (2009), Douma et
al. (2010), and Luo et al. (2013). Here we present only the sensitivity kernels which
are used in this thesis:

Kρ(x)=∫
0

T

ρ(x)∂t s
*
(x , T−t)⋅∂t s (x , t)dt , (25)

Kκ (x)=−∫
0

T

κ(x )[∇⋅s*
(x , T−t)][∇⋅s (x , t)]dt , (26)

and

Kμ(x)=−∫
0

T

2μ(x)D*
(x , T−t) : D(x , t)dt , (27)
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namely, the density Kρ, bulk modulus Kκ, and shear modulus Kμ kernels, respectively,
where  x is the spatial coordinate, the integral is over the time (t  = 0 ..T),  s is the
displacement,  s* is the adjoint source, D=

1
2
[∇ s+(∇ s )

T
]−

1
3
(∇⋅s) I and  D* are

the traceless strain deviator and its adjoint, respectively (Tromp et al., 2005), and I is
the identity matrix. The definition of the second set of sensitivity kernels are based on
equations 25-27:

Kρ '=Kρ+K κ+Kμ , (28)

Kα=2K κ(1+
4
3
μ
κ ) , (29)

and

Kβ=2 (Kμ−
4
3
μ
κ Kκ)  (30)

for  the  impedance  Kρ',  compressional-wave  speed  Kα,  and  shear-wave  speed  Kβ

kernels, respectively.

4.2 RTM results

Figure 46 shows the resulting sensitivity kernels obtained with the RTM. From the
three  kernels  of  the  Kρ-Kκ-Kμ formulation,  Kκ seems  to  provide  the  most  easily
interpretable  image (Figure 46b). Although this  kernel  shows artifacts  as well,  the
different discontinuities of the model can be interpreted easier than for Kρ or  Kμ. As
pointed out by Zhu et al. (2009), RTM images usually suffer from artifacts, due to
diving waves,  head waves,  and backscattered  waves.  They suggest  to  rely on the
impedance kernel Kρ', as that is the sum of Kρ, Kκ, and Kμ (Equation 28), therefore the
low-frequency artifacts cancel each other during the summation. This observation is
confirmed for the WAVES model, as can be seen in Figure 46d. Considering either Kκ

or Kρ', we can easily interpret the top of the physical model at a depth of zero cm. The
other discontinuities of the model can also be interpreted, especially in the middle of
the  sections,  where  the  model  is  more  illuminated  than  towards  the  sides.
Furthermore, there is a difference between the coherence of these discontinuities on
the left and right sides of each section. That is because the source was always on the
left side during the laboratory experiments, therefore the receiver could not image
beyond the source position. Last but not least, we see a proper imaging of all sides of
the glass dome, also on the bottom. The top of the aluminum at a depth of -5.5 cm can
also be interpreted at its known position.
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In order  to validate  the resulting RTM images from the perspective of the spatial
dimensions of the geometry, Figure 47 shows  Kρ' superimposed to the color-coded
known  reference  geometry.  From  a  qualitative  viewpoint,  we  can  see  an  almost
perfect fit between the sensitivity kernels and the original geometry for each domain
of the model.
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Figure 46. Sensitivity kernels obtained with the RTM: a) density kernel Kρ, b) bulk modulus kernel Kκ, c) shear modulus kernel Kμ, d) impedance kernel
Kρ', e) compressional-wave speed kernel Kα, and f) shear-wave speed kernel Kβ. Yellow arrows: artifacts, red arrows: known model discontinuities.
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Figure 47.  The impedance sensitivity  kernel  Kρ' obtained with the RTM. Top:  the
obtained kernel, bottom: the obtained kernel with an overlay of the original geometry
(in color).

4.3 Discussion of the RTM results

As  shown  above,  we  can  successfully  reconstruct  the  original  geometry  of  the
WAVES model  with a  2D RTM, using the 3D laboratory data  sets.  Density,  bulk
modulus,  shear  modulus,  impedance,  compressional-wave  speed,  and  shear-wave
speed kernels were calculated as part of the RTM. We found that the bulk modulus
and the impedance kernels are the most suitable for the interpretation of these data
sets. The known discontinuities of the model are almost all restored. The top surface
of  the physical  model,  as well  as  all  sides of the glass  dome,  and the top of  the
aluminum are entirely recovered. The other discontinuities are well-reconstructed in
the central positions, little less coherently at greater depths, or sometimes next to the
dome. Artifacts can also be interpreted on the RTM images, which are partly normal
with  the  RTM,  due  to  diving  waves,  head  waves,  and  backscattered  waves.  In
accordance with the literature (e.g. Zhu et al.,  2009), the impedance kernel suffers
from fewer artifacts than for example the bulk modulus kernel.
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Although the comparison of the RTM images with the original geometry shows an
almost perfect overlap, we need to keep in mind the non-equivalence of the 2D and
3D for  a  complex  geometry  like  the  WAVES model.  The RTM images  could  be
improved by re-performing the RTM in 3D where sources and receivers were to be
deployed out of the current acquisition plane, as well as by using more sources with a
smaller source spacing.
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Conclusions of Part 2

The goal of Part 2 is to show that the framework, established in Part 1 to accurately
implement  the  laboratory  measurements  for  small-scale  physical  models  in  the
numerical domain, can be successfully applied to the complex WAVES model as well.
The model  represents  a  realistic  geologic  setup,  with a  complex salt-dome in the
middle (made of glass), surrounded by sedimentary layers (resins), and a crystalline
basement  (aluminum).  The  precision  of  the  laboratory  measurements  has  been
significantly improved compared to Part  1.  It  concerns  the accuracy of the lateral
movement of the transducers and the tilt angle of the source transducer. We used the
SEM to reconstruct the 3D zero-offset and 3D offset laboratory measurements. The
numerical  implementation  is  similar  to  Part  1,  with  the  exception  of  the
implementation  of  the  model  geometry.  Because  a  conform  3D  non-structured
hexahedral mesh could not be obtained for the model, we resorted to an equidistant
3D grid.  The same calibration is  used for the multi-layered WAVES model as the
procedure presented in Part  1.  Because of the complex model geometry,  first,  the
material properties of all the layers except the glass were calibrated for a reference
trace.  Then,  a  second  trace  in  the  center  of  the  model  was  used  to  calibrate  the
properties of the glass too.

The  comparison  of  the  synthetic  results  with  the  laboratory  measurements  has
revealed a very good fit for the arrival time, phase, and amplitude. The revealed minor
amplitude mismatches may be attributed to the noise recorded in the laboratory data,
as well as to the inaccuracy of the proposed source implementation to reconstruct the
low-energy secondary  lobes  of  the  source  transducer,  and the  uncertainties  in  the
attenuation parameters chosen for the simulations. Furthermore,  the initial concern
that  the  grid  representation  of  the  model  geometry  may  also  contribute  to  the
occasional arrival time and amplitude misfits is finally abandoned since there is a
usually good fit in both zero-offset and offset configurations for the reflections from
the curved top surface of the  glass dome. Therefore we consider this  effect to  be
minimal if any.

Following  the  comparison  of  the  forward  simulated  traces  with  the  laboratory
measurements, we have presented some results of the 2D RTM using the laboratory
data  sets.  Numerous  data  sets  were  recorded  in  the  center  line  of  the  model  for
different source positions and source tilt  angles. The sensitivity kernels have been
computed with the help of a 2D RTM for a smoothed version of the known reference
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model. The resulting RTM images show an accurate and coherent reconstruction of
most of the 3D model discontinuities. A slightly less coherent image on the sides can
be  attributed  to  the  lesser  illumination  of  those  regions.  The  RTM  images  also
revealed some artifacts, which are partly usual with the RTM, while other artifacts are
related to the modeling error. These misfits can be attributed to the same sources of
misfits  as  for  the  forward  simulations,  as  well  as  to  the  fact  that  the  RTM  was
computed in  2D,  while  the  model  has  a  complex 3D geometry.  Nevertheless,  the
almost perfect overlap between the RTM sensitivity kernels and the known model
discontinuities provide a successful validation for the entire framework, including the
laboratory  measurements,  the  characterization  of  the  material  properties,  and  the
numerical implementation of the transducer characteristics and the model geometry.

Based  on  the  above-mentioned  observations,  we  propose  the  following  points  to
elaborate on the WAVES model:

• the long-term suggestions listed in Conclusions in Part 1 could significantly
improve the accurate numerical reconstruction of the laboratory measurements
for the WAVES model as well,

• although the accuracy of the lateral  movement of the transducers has been
significantly  improved  for  the  laboratory  measurements,  the  absolute
positioning  inaccuracy  should  also  be  decreased.  We note  that  it  probably
requires the help of metrologists,

• a 3D hexahedral non-structured mesh of the WAVES model could mitigate any
possible effect of the current grid representation,

• the RTM should be re-calculated in 3D and using more sources with smaller
source spacing to eliminate the artifacts related to the current 2D application.
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General conclusions

As presented in the General Introduction, there is a strong need to benchmark the
numerical algorithms used in exploration geophysics with experimental data obtained
for realistic small-scale models in laboratory conditions. However, such a comparison
between laboratory and synthetic data requires a carefully chosen and jointly-adapted
approach to both the laboratory experiments and the numerical modeling. On the one
hand, the numerical tools must be adapted to the experimental configuration (e.g.,
implementing  the  real  source  characteristics,  material  properties,  and  acquisition
conditions).  On the other  hand, the laboratory experiments have to  be carried out
keeping in mind the capabilities of the numerical tools (e.g. choosing the acquisition
geometry such that the future computational cost will be the lowest possible). This
highly challenging task is  the goal of this PhD thesis.  Thus, we have presented a
framework, which at  first  reproduces offshore seismic measurements in laboratory
conditions  with  the  help  of  small-scale  models,  and  then  the  numerical  tools  are
adapted to the accurate synthetic reconstruction of the experiments.

We introduced the framework in Part 1, using the Marseille-Benchie model, which
was  designed  to  represent  a  moderately  complex  geometry.  It  contains  various
topographic features, such as a dome, a truncated smaller dome, a truncated pyramid
and two flat parts separated by a ramp. This geometry ensures a complex wavefield,
including reflections,  diffractions,  and multiples.  The model  is  made of  polyvinyl
chloride (PVC), which was chosen because its material properties are considered to be
close to those of the typical sedimentary layers. Because the model has only one layer
and  a  flat  bottom  surface,  the  interpretation  of  the  measurements  is  relatively
straightforward. This moderately challenging geometry provides the necessary tool
for the elaboration of the framework.

Prior to the finite-difference and spectral-element simulations, we have focused on the
input data/parameters, such as the material properties, the model geometry, and the
characteristics of the source and receiver transducers. The material properties have
been characterized in the laboratory and calibrated for the numerical simulations. The
viscoelastic behavior of the material used in the model has been approximated with a
set of standard linear solids in the numerical simulations. The real source transducer
characteristics have been implemented based on a new approach, which consists of
the laboratory characterization of the impulse response of the transducer, followed by
an  inversion  step  to  obtain  a  numerically  equivalent  source  for  the  numerical
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simulations. The zero-offset measurement requires an additional deconvolution step
before the inversion because, in that case, only one transducer is used as the source
and the receiver.

We have suggested an optimization of the spectral-element computational cost, by
using larger elements in the non-structured mesh and higher order polynomial basis
functions. This technique helps to significantly reduce the computational cost while
obtaining a similar level of accuracy.  Comparison of the zero-offset  synthetic and
laboratory results has revealed an excellent fit in terms of arrival time, phase, and
amplitude,  for both the SEM and the FDM. Minor amplitude mismatches may be
attributed to the noise recorded in the laboratory data, as well as to the inaccuracy of
the proposed source implementation to reconstruct the low-energy secondary lobes of
the source transducer, and the uncertainties in the attenuation parameters chosen for
the simulations.

Comparison of – both SEM and FDM – simulated and laboratory offset traces has
exhibited  a  good  fit  in  terms  of  amplitude,  arrival  time,  and  phase,  but  with
significantly less accuracy for some arrivals than in the zero-offset case. This can be
mainly attributed to the inaccuracies of the transducer positions during the laboratory
measurements combined with the strong topography of the model, as well as to the
smaller signal-to-noise ratio of the offset configuration.

Smaller misfits between the finite-difference and the spectral-element synthetic results
may  be  attributed  to  the  grid  representation  of  the  model  geometry  in  the  finite-
difference simulations, which should be completely resolved with an even finer grid,
but at a higher computational cost.

Based on these observations, we proposed some necessary near-term improvements of
the framework. These include a more precise positioning of the transducers during the
measurements  and  a  more  precise  measurement  of  the  tilt  angle  of  the  source
transducer. Although these modifications took time, they were essential to obtain a
better fit between the measurements and the simulations. Indeed, the precision of the
lateral transducer movements and of the source tilt angle have been improved by a
factor of 100 and 10, respectively.

Following these modifications, we extended the framework to the complex and multi-
layered WAVES model in Part 2. The model represents a realistic geologic setup with
a complex salt-dome in the middle (made of glass), surrounded by sedimentary layers
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(resins) and a crystalline basement (aluminum). We used the SEM to reconstruct the
3D zero-offset and 3D offset laboratory measurements. The numerical implementation
is similar to Part 1, with the exception of the implementation of the model geometry.
Because a conform 3D non-structured hexahedral mesh could not be obtained for the
model, we resorted to an equidistant 3D grid. The same calibration was used for the
multi-layered WAVES model, as the procedure presented in Part 1. Because of the
complex model geometry,  first,  the material properties of all the layers except the
glass were calibrated for a reference trace. Then, a second trace in the center of the
model was used to calibrate the properties of the glass too.

The  comparison  of  the  synthetic  results  with  the  laboratory  measurements  has
revealed a very good fit for the arrival time, phase, and amplitude. The revealed minor
amplitude mismatches may be attributed to the noise recorded in the laboratory data,
as well as to the inaccuracy of the proposed source implementation to reconstruct the
low-energy secondary  lobes  of  the  source  transducer,  and the  uncertainties  in  the
attenuation parameters chosen for the simulations. Furthermore, in theory, the grid
representation of the model geometry could also contribute to the observed arrival
time and amplitude misfits. However, we consider this effect to be minimal if any in
this thesis, due to the usually good fit between the measured and simulated reflections
from the curved top surface of the glass dome.

Following  the  comparison  of  the  forward  simulated  traces  with  the  laboratory
measurements, we presented some results of the RTM using the laboratory data sets.
Numerous data sets were recorded in the center line of the model for different source
positions and source tilt angles. The sensitivity kernels have been computed with the
help  of  a  2D RTM and  a  non-structured  quadrangular  mesh.  The  resulting  RTM
images  show  an  accurate  and  coherent  reconstruction  of  most  of  the  model
discontinuities. A slightly less coherent image on the sides can be attributed to the
lesser illumination of those regions. The RTM images also revealed some artifacts,
which are partly usual with the RTM, while other artifacts are related to the modeling
error. These misfits can be attributed to the same sources of misfits as for the forward
simulations, as well as to the fact that the RTM was computed in 2D, while the model
has a complex 3D geometry. Nevertheless, the almost perfect overlap between the
RTM  sensitivity  kernels  and  the  real  model  discontinuities  provide  a  successful
validation  for  the  entire  framework,  including  the  laboratory  measurements,  the
characterization of the material properties, and the numerical implementation of the
transducer characteristics and the model geometry.
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Perspectives

The framework established in this thesis and the conclusions listed above open up the
possibility  of many future works.  These can be divided into two categories:  first,
necessary long-term improvements of the framework to increase its precision and the
follow-up of  the  work  presented  in  this  thesis  for  the  Marseille-Benchie  and  the
WAVES models;  and second, using the proposed framework for other models and
applications.

The long-term developments must be addressed to improve the overall accuracy of the
framework.  On  the  one  hand,  they  concern  the  laboratory  experiments,  namely,
decreasing further the uncertainties in the laboratory data sets by:

• most importantly increasing the precision of the absolute positioning of the
transducers during the laboratory measurements,

• reconsidering the laboratory techniques used to characterize the properties of
the  material  samples,  especially  for  S-waves  and  for  the  attenuation
parameters,

• assessing the noise level of the acquisition system and improving its signal-to-
noise ratio,

• identifying  the  origin  of  the  different  noises  measured  temporarily  or
permanently in the laboratory.

On the other hand, the numerical modeling should also be improved by:
• mainly  revisiting  the  proposed  numerical  implementation  of  the  real

transducer to account more for the low-energy secondary lobes and the low-
energy late-arrivals of the source wavelet,

• reducing the man-hour cost of the SEM due to the lengthy meshing step, and
elaborating a more automatic 3D hexahedral meshing algorithm which also
yields an overall conform mesh.

As noted in  the thesis,  the Marseille-Benchie model  has the advantage to  yield a
wavefield which is complex but more easily understandable than for example that of
the WAVES model.  Therefore the improvement of the precision of the framework
should be verified also with the Marseille-Benchie model.

Re-performing the RTM in 3D for the WAVES model could eliminate any doubt about
the possible artifacts present in the sensitivity kernels resulting from the difference
between the 3D measurements and the 2D RTM. Should the 3D RTM results suffer
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from  much  fewer  artifacts  than  the  presented  2D  results,  the  inevitable  need  to
perform RTM in 3D could be proven in general for seismic exploration.

Using the geologically realistic WAVES model and the framework presented in this
thesis, other imaging techniques could also be tested. The framework provides a good
benchmarking  opportunity  to  test  any  newly  developed  imaging  technique.  For
instance,  a  very  interesting  opportunity  is  to  test  the  Marchenko  imaging  (e.g.,
Broggini et al., 2012, Wapenaar et al.,  2014, van der Neut et al.,  2015, Liu et al.,
2017). Although the theoretical background of Marchenko imaging is well developed,
there are still only a few works done where physical data sets are used to prove the
practical abilities of the method (e.g. Becker et al., 2016, Ravasi et al., 2016). We note
that  the  WAVES  model  is  particularly  challenging  at  the  current  state  of  the
Marchenko imaging due to the high attenuation of the resin layers. As Evert (2016)
noted,  two-sided  illumination  is  necessary  in  the  case  of  a  viscoelastic  model.
Moreover, currently reflected and transmitted wavefields must be recorded on both
sides of the model. Should the Marchenko imaging be tested for the WAVES model, a
further perspective is to test the effect of the acquisition geometry on the final results,
especially in 3D.

We clearly see a high potential in using either the WAVES model or any other small-
scale physical model to, for example, optimize the acquisition of field data sets before
a  complex  seismic  survey  campaign.  Although  this  thesis  is  focused  on  seismic
applications, the presented framework can be used for other applications as well. As
long as the underlying physics can be explained by the linear  wave equation,  the
approach of the thesis can be used irrespectively from the frequency, e.g. in medical
imaging using ultrasounds.
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Marseille-Benchie model

As noted in Section 2.3.4 in Part 1, the material properties of the Marseille-Benchie
model had to be characterized before the numerical simulations. The most important
properties for seismic modeling are the density, the velocity, and the attenuation, and
the velocity and attenuation parameters had to be characterized for both P- and S-
waves. We use two samples from the same PVC block the model was built from. The
two samples have different thickness, approximately 25 and 50 mm. Density can be
determined by measuring the volume and the weight of the samples: 1440±10 kg/m3
(±0.7 %).

Because we are interested in the velocity and attenuation for the whole frequency
range  of  interest  (250-650  kHz),  we  used  monochromatic  sine  waves  at  50  kHz
increments. The samples are placed between two transducers,  one of which is the
source,  and the  other  one  is  the  receiver.  Transmitted  waves  are  used,  which  are
generated by a function generator (Figure A1). In order to characterize the velocity
and the attenuation of the S-waves too, the samples are rotated to generate S-waves
inside  them.  For  P-wave measurements  the  samples  are  positioned normal  to  the
transducers, that is the incidence angle θ is 0° (Figure A1).

Figure A1. Schematic figure of the experimental setup to characterize the properties
of the material samples. Vw and V denote the velocity of the ultrasonic waves in water
and the sample, respectively, and θ is the incidence angle of the waves.

To determine the velocity of the waves propagating in the samples, we measure the
arrival time of the transmitted waves through the two samples of different thickness.
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Following Lasaygues and Pithioux (2002) and using the laboratory setup of Figure
A1, the velocity of P- and S-waves can be determined:

V=
V w

√1+
V wΔ t

e
(
V wΔ t

e
−2cosθ)

, (A1)

where V is the P- or S-wave velocity in the sample, Vw is the velocity of sound waves
in water,  Δt is the difference in the arrival times through the two samples,  e is the
difference in  the thickness of the two samples,  and  θ is  the incidence angle.  The
amplitudes of the transmitted signals are measured to characterize the attenuation of
the samples, and the attenuation α of either P- or S-waves can be calculated:

α=
ln (A2/A1)

8.686ecos (θ)
, (A2)

where  α is calculated in dB/m,  A1 and  A2 denote the measured amplitudes for the
thicker and the thinner samples, respectively (Figure A2).

Figure  A2.  Illustration  of  the  amplitudes  measured  through  material  samples  of
different thickness, using monochromatic sine waves. A1 and A2 denote the measured
amplitudes through the thicker and thinner samples, respectively.

Figures A3 and A4 show the measured velocity and attenuation values (for both P-
and  S-waves),  respectively.  In  each  figure,  vertical  lines  denote  the  assessed
uncertainty of each measurement, and the maximal uncertainties are less than 0.1%,
47%, 0.4%, and 30% for VP,  VS,  αP,  and αS,  respectively.  The significantly higher
uncertainty for the S-waves is the result of their lower signal-to-noise ratios. This is
the consequence of the higher intrinsic attenuation of S-waves, which is even more
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pronounced due to their longer travel paths because of the acquisition setup (i.e. due
to the rotated samples for S-wave characterization as shown in Figure A1). Moreover,
the uncertainty of the incidence angle is significant for the S-waves,  while that is
negligible for the P-waves. Some measurements are not shown in Figures A3 and A4
due to  their  low reliabilities  because of,  for  example,  their  low signal-to-noise  or
wavelength-to-sample  width  ratios,  especially  at  low frequencies.  Therefore  these
measurements are also omitted when the material properties for the whole frequency
range of interest are calculated.

Figure A3. Measured velocity values for the PVC samples (dots) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).
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Figure A4. Measured attenuation for the PVC samples (stars) for P-waves (blue) and
S-waves (red). The vertical lines show the assessed uncertainty of the measurements.

Because exploration geophysics,  and therefore the numerical tools used in seismic
exploration  as  well,  rely  on  Q-factors  instead  of  the  direct  attenuation  values
presented in Figure A4, we converted the measurements into the necessary QP and QS

values:

Q=
π f
αV

, (A3)

where  f denotes the frequency. Because the velocity (Equation A1) is necessary to
convert attenuation values (Equation A2) into Q-factors, there is an accumulation of
uncertainties  in  the  obtained  Q-factors.  This  is  especially  true  for  the  S-waves,
because  of  the  already  significant  uncertainties  in  Vs.  This  is  highlighted  by  the
maximal uncertainties of 0.4% and 76% for QP and QS, respectively, which are much
higher than those of the direct attenuation parameters above. Figure A5 shows the
measured Q-factors for the PVC samples. We can see that although the attenuation
values (Figure A4) vary with the frequency, the Q-factors are relatively constant for
the frequency range of interest (Figure A5). The values considered to be valid for the
overall frequency band are listed in Table 1.
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Figure A5. Measured Q-factors for the PVC samples (crosses) for P-waves (blue) and
S-waves (red). The vertical lines show the assessed uncertainty of the measurements.
The horizontal dashed lines show the value considered valid for the overall frequency
range of interest (250-650 kHz).
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WAVES model

The same techniques are used to characterize the material properties of each material
used in the WAVES model. Table A1 shows the measured densities for each sample
together with the associated uncertainties.

Material Density (kg/m3)

resin A
1172 ± 2

(± 0.17 %)

resin B
1680 ± 10
(± 0.60 %)

resin C
1800 ± 10
(± 0.56 %)

glass
3623 ± 10
(± 0.28 %)

aluminum
2710 ± 4

(± 0.15 %)

Table A1. Measured densities for each material used in the WAVES model and the
associated uncertainties.

Similar to the Marseille-Benchie model,  each measurement at  each frequency was
carefully  analyzed,  and  based  on,  for  example,  the  signal-to-noise  ratio  of  the
measurements or the wavelength-to-sample width ratio, we did not consider all the
measurements at all the frequencies for the final assessment of the material properties.
Figures  A6  -  A16  show  the  measured  material  properties  and  their  associated
uncertainties for resin A, resin B, resin C, glass, and aluminum samples, respectively.
The maximal uncertainty of the measurements is shown in Table A1.
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Figure A6. Measured velocity values for the resin A samples (dots) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).

Figure A7. Measured attenuation for the  resin A samples (stars) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements.
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Figure A8. Measured Q-factors for the resin A samples (crosses) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).

Figure A9. Measured velocity values for the resin B samples (dots) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).

129



APPENDIX A

Figure A10. Measured attenuation for the resin B samples (stars) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements.

Figure A11. Measured Q-factors for the resin B samples (crosses) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).
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Figure A12. Measured velocity values for the  resin C samples (dots)  for P-waves
(blue)  and S-waves (red).  The vertical  lines  show the  assessed uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).

Figure A13. Measured attenuation for the resin C samples (stars) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements.
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Figure A14. Measured Q-factors for the resin C samples (crosses) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).

Figure A15. Measured velocity values for the glass samples (dots) for P-waves (blue)
and  S-waves  (red).  The  vertical  lines  show  the  assessed  uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).
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Figure A16. Measured velocity values for the aluminum samples (dots) for P-waves
(blue)  and S-waves (red).  The vertical  lines  show the  assessed uncertainty  of  the
measurements. The horizontal dashed lines show the value considered valid for the
overall frequency range of interest (250-650 kHz).

Material VP (%) VS (%) αP (%) αS (%) QP (%) QS (%)

resin A 0.5 12.5 0.1 26.1 0.6 39

resin B 0.6 1.9 0.1 14.8 0.8 27

resin C 0.7 5.7 0.3 21.2 0.8 26.9

glass 1 16.4 n.a. n.a. n.a. n.a.

aluminum 1.4 16.4 n.a. n.a. n.a. n.a.

Table A2. The maximal uncertainty of the measurements.
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MESH OPTIMIZATION TO REDUCE THE

SPECTRAL-ELEMENT

COMPUTATIONAL COST

As mentioned in Chapter 2.3.1 in Part 1, finding the appropriate meshing strategy for
a complex geometry using a non-structured hexahedral mesh is  a time-consuming
procedure. Thus, our goal here is to reduce the computational cost without modifying
the meshing strategy. In other words, we use the same subdivision of the whole model
into subdomains and the same meshing order of the different subdomains.

Our optimization takes advantage of the fact that the accuracy of the spectral-element
simulations is not directly constrained by the element size, but rather by the number
of GLL points per wavelength. This means that we can increase the element size and
keep a similar level of accuracy of the simulations by increasing the order of the
polynomial basis functions. This technique is widely discussed in the literature as h−,
p−,  or  h−p convergence,  where  h stands  for  the  element  size  and  p denotes  the
polynomial order of the basis functions (e.g.,  Hughes, 1987, Maday and Rønquist,
1990, Seriani and Priolo, 1994, Vos et al., 2010, Oliveira and Seriani, 2011). For the
initial meshing of the model we have used basis functions of order N=4, meaning that
N+1=5 GLL points were used in each element.

We consider the mesh presented in Figures 13-14 as the reference for this appendix.
As shown in Chapter 3, the reference mesh yields accurate synthetic results compared
with  the  zero-offset  laboratory  data.  When  creating  a  non-structured  mesh,  the
element size has a distribution as shown in Figure 14. This is due to the geometric
constraints on the meshing algorithm, resulting in various element sizes. Cubit/Trelis
uses a target element size because the meshing algorithm aims to mesh the model
such  that  the  average  of  the  element  sizes  is  close  to  this  target  value.  For  the
reference  mesh  a  target  edge  length  of  1.1  mm is  necessary  to  have  the  largest
elements below the required threshold of 1.6 mm. For the sake of brevity, we use
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relative target element sizes hereafter by considering the target element size of the
reference mesh as being equal to one. We note that small changes in the target element
size result in the same distribution of the element sizes, only the size of each element
is multiplied by the factor of the change. According to our experience this remains
true even for such a complex geometry as the Marseille-Benchie model if the change
is at most a factor of 0.2-5. Because our meshing strategy involves the subdivision of
the model into several subdomains, there is an upper limit to increase the element
size. With our decomposition strategy, using approximately five times larger elements
than the reference value is the upper limit.  It comes from the fact that above this
value, the element size becomes too high compared with the dimensions of some of
the subdomains. We emphasize that using larger elements does not result in a less
accurate  representation  of  even  the  curved  interfaces  because  curved  hexahedral
elements are used (Figure 11 right). It means that the numerical tool can account for
curved edges and surfaces of each element, instead of only straight lines and planar
surfaces (Komatitsch and Vilotte, 1998, Fichtner, 2010).

We  have  tested  two  different  approaches.  The  first  one  consists  of  fixing  the
polynomial order of the basis functions and changing the element size. The second
one keeps the element size fixed and changes the polynomial order. To evaluate the
results, we have run the same zero-offset simulations using the different meshes and
compared the resulting synthetic traces with traces obtained with the reference mesh.
To evaluate the tests, we have used zero-offset traces B and C (Figures 21 and 22). To
obtain  a  quantitative  comparison,  we  have  computed  the  root-mean-square  (rms)
difference between each synthetic trace and the reference trace. Figure B1 shows the
relative computational cost and the rms misfit for different element sizes, using the
sixth-order polynomial basis functions. The results suggest that the optimum is around
relative  element  sizes  of  2.25–2.5.  Using  smaller  elements  increases  the
computational cost, whereas using larger elements increases the rms misfit without
any significant gain in the relative computational cost.

Considering that the optimal element size is approximately 2.5 (based on Figure B1),
the effect of the polynomial order has to be examined as well. Figure B2 shows the
relative computational cost and the rms misfit for different polynomial orders, using a
relative element size of 2.5. The results show that the polynomial order of eight yields
the  smallest  rms  misfit  (approximately  0.008).  Even  though  the  rms  misfit  is
somewhat higher for order six (approximately 0.05), its computational cost is more
than three times lower than that of order eight. We note that the rms misfit does not
show a monotonous trend for any of the traces, neither in Figure B1 nor in Figure B2.
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This  is  probably  due  to  the  non-structured  mesh.  Maday  and  Rønquist  (1990)
mathematically proved that a monotonous trend in the misfit curves can be expected
only for a structured mesh, but not necessarily for a non-structured mesh.

Figure B3 shows the comparison of the traces using the optimized mesh (relative
element size of 2.5) and sixth-order basis functions with the reference traces. The
optimized mesh provides an excellent fit with the reference solutions in general. Due
to the larger elements, some minor oscillations can be seen, probably due to mesh
dispersion. However, their amplitude and difference from the reference solutions are
negligible.  Considering  that  the  relative  computational  cost  is  only  15.7% of  the
reference simulation, we suggest using the optimized meshing strategy. Moreover, the
effect of mesh dispersion can be reduced by using a relative element size of 2.25
instead  of  2.5.  In  that  case,  the  relative  computational  cost  is  still  25%  of  the
reference, in return for a bit higher accuracy than with a relative element size of 2.5.

Figure B1. Relative computational cost (blue) and rms misfit  (green: trace B, red:
trace C) for varying element size, using the sixth-order polynomial basis functions.
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Figure B2. Relative computational cost (blue) and rms misfit  (green: trace B, red:
trace C) for varying order of the polynomial basis functions, using a relative element
size of 2.5.

Figure B3. Comparison of zero-offset synthetic traces using the reference mesh (blue)
and the  optimized mesh with  a  relative  element  size  of  2.5 and sixth-order  basis
functions (red): (a) trace B and (b) trace C.
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