Aix:-Marseille

Initiative d'excellence

ECOLE DOCTORALE SCIENCES POUR L’INGENIEUR : MECANIQUE,
PHYSIQUE, MICRO ET NANOELECTRONIQUE

These présentée pour obtenir le titre universitaire de Docteur d’ Aix-Marseille Université

Discipline: Sciences pour I’Ingénieur
Spécialité: Acoustique

Bence SOLYMOSI

A two-way approach to adapt small-scale laboratory experiments
and corresponding numerical simulations of offshore seismic
surveys

Une approche conjointe pour adapter les expérimentations de laboratoire a échelle
réduite aux simulations numériques correspondantes de campagnes de sismique
marine

Soutenue publiquement le 20/11/2018 devant le jury composé de:

Hervé CHAURIS Professeur / Mines Paris Tech Président
Yann CAPDEVILLE Directeur de Recherche / CNRS-LPG Rapporteur
. Directrice de Recherche / IFSTTAR
Donatienne LEPAROUX Rapporteur
Nantes
Borge ARNTSEN Professeur / NTNU, Trondheim Examinateur

Ivan PIRES DE ., ) ., .
Professeur Associé / Université d'Utrecht Examinateur

VASCONCELOS
Nathalie FAVRETTO- Chargée de Recherche (HDR) / CNRS- . . .
Directrice de these
CRISTINI LMA
Chargé de Recherche (HDR) / CNRS-
Paul CRISTINI argé de Recherche ( ) Co-directeur de these

LMA
Dimitri KOMATITSCH Directeur de Recherche / CNRS-LMA Examinateur (Encadrant)
Bjorn URSIN Professeur Emérite / NTNU, Trondheim Membre invité

Numéro national de thése/suffixe local: 2018AIXM0630/037ED353

2

MARIE CUR

RACTIONS

WAVE S



©0cl0

Cette oeuvre est mise & disposition selon les termes de la Licence Creative Commons Attribution -
Pas d’Utilisation Commerciale - Pas de Modification 4.0 International


https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.fr

RESUME

Les méthodes numériques sont largement utilisées en exploration sismique pour
simuler la propagation des ondes et pour le post-traitement des données sismiques
avant l'interprétation géologique/géophysique. Les algorithmes sont basés sur
différentes hypotheses pour réduire le cofit de calcul au détriment de la simplification
des modeles et/ou des phénomenes physiques. En raison de leur role essentiel en
exploration géophysique, la précision des simulations numériques présente un fort
intérét, notamment dans le cas de configurations géologiques réalistes. La
comparaison directe des résultats numériques entre eux dans des configurations
synthétiques peut avoir des limites, car il peut étre difficile de déterminer celui qui
donne la meilleure approximation de la solution physique inconnue. Comme dans la
réalité le sous-sol n'est jamais connu avec précision, il est également difficile de
comparer les résultats synthétiques aux données sismiques réelles acquises in situ. Par
conséquent, il y a un grand intérét a utiliser des mesures de laboratoire sur des
modeles physiques aux propriétés connues pour valider la précision des outils
numériques. Avant de pouvoir comparer avec précision les mesures et les simulations,
nous devons tout d’abord établir un cadre comparatif avec une approche conjointe
adaptée aux expériences de laboratoire et a la modélisation numérique. C’est
précisément 1'objectif de cette these. Ainsi, le cadre reproduit d'abord les mesures
sismiques marines dans des conditions de laboratoire en utilisant de modeles a échelle
réduite, puis les outils numériques sont adaptés a la reconstruction précise des
expériences.

Le cadre est introduit pour le modeéle Marseille-Benchie. Ce modele a une
topographie complexe, produisant un champ d’ondes a la fois complexe et
relativement facile a appréhender. Avant de simuler numériquement la propagation
des ondes par méthodes de différences finies (FDM) ou d’éléments spectraux (SEM),
nous nous concentrons sur les parametres d'entrée, tels que les propriétés du matériau
et la géométrie du modele. Les propriétés du matériau sont caractérisées en
laboratoire puis calibrées pour les simulations numériques. Les caractéristiques réelles
du traducteur piézoélectrique source sont modélisées en utilisant une nouvelle
approche qui consiste a caractériser le traducteur, puis a effectuer une étape
d'inversion pour obtenir une source numériquement équivalente. La comparaison des
résultats numériques et de laboratoire révele une bonne concordance en termes de
temps d’arrivée, de phase et d’amplitude, a la fois pour la SEM et la FDM. Les
différences mineures observées au niveau des amplitudes peuvent étre attribuées aux
imprécisions des positions du traducteur combinées a la forte topographie du modele,
au bruit présent dans les données de laboratoire, aux incertitudes liées a la source
numériquement equivalente et a celles liées aux mesures d'atténuation.

ii



Forts de ces constats, nous améliorons la procédure expérimentale avant d’étendre le
cadre au modele WAVES. Ce modele représente une configuration géologique réaliste
avec un dome de sel enfoui dans des milieux sédimentaires. Nous utilisons la SEM
pour reproduire les données de laboratoire 3D zero-offset et offset. La comparaison
des résultats synthétiques avec les mesures révele une tres bonne concordance. Les
différences mineures observées au niveau des amplitudes peuvent une fois encore étre
attribuées aux mémes facteurs que dans le cas du modele Marseille-Benchie.

Enfin, malgré les incertitudes qui subsistent, 1’ensemble de la procédure
expérimentale est validé avec succes grace a I’application de la reverse-time
migration (RTM) aux données de laboratoire. En effet, les noyaux de sensibilité RTM
résultants montrent une reconstruction précise et cohérente de la plupart des
discontinuités du modele WAVES. Par conséquent, le cadre proposé peut étre utilisé
pour tester des techniques d'imagerie existantes ou nouvelles.

Mots clés: propagation des ondes, simulation numérique, expérience en laboratoire,
reverse-time migration, sismique marine, échelle réduite, ultrasons, atténuation
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ABSTRACT

Numerical methods are widely used in seismic exploration to simulate wave
propagation and to post-process the recorded seismic data before the
geologic/geophysical interpretation. The algorithms are based on various assumptions
to reduce the computational cost at the expense of simplifying the models and/or the
physical phenomena. Because of their essential role in exploration geophysics, the
accuracy of the numerical simulations is of particular interest, especially in the case of
realistic geologic setups. The direct comparison of the numerical results with each
other in synthetic configurations can have limitations, as it can be difficult to
determine the one that gives the best approximation of a physically unknown solution.
Because in real life the subsurface is never accurately known, it is also difficult to
compare the synthetic results to any seismic data set from field measurements.
Therefore there is a strong interest in using laboratory measurements on physical
models of known geometries to benchmark the numerical tools. Before comparing
measurements and simulations with confidence at high accuracy, we first need to
establish a comparative framework with a jointly-adapted approach to both the
laboratory experiments and the numerical modeling. This challenging task is the goal
of this thesis. Thus, the framework first reproduces offshore seismic measurements in
laboratory conditions with the help of small-scale models, and then the numerical
tools are adapted to the accurate synthetic reconstruction of the experiments.

The framework is introduced for the Marseille-Benchie model. This model has a
complex topography, yielding a wavefield which is both challenging and relatively
easily understandable. Prior to the finite-difference (FDM) and spectral-element
(SEM) simulations, we focus on the input parameters, such as the material properties
and the model geometry. The material properties are characterized in the laboratory
and calibrated for the numerical simulations. The real source transducer
characteristics are implemented using a new approach, consisting of the laboratory
characterization of the transducer, followed by an inversion step to obtain a
numerically equivalent source. The comparison of the synthetic and laboratory results
reveals a good fit in terms of arrival time, phase, and amplitude, for both the SEM and
the FDM, especially in zero-offset configuration. Minor amplitude mismatches
(concerning mainly the offset configuration) may be attributed to the inaccuracies of
the transducer positions in the laboratory combined with the strong model topography,
to the noise recorded in the laboratory data, and to the uncertainties of the proposed
source implementation and of the attenuation parameters.

Based on the identified sources of misfits, we improve the experimental procedure
before extending the framework to the complex and multi-layered WAVES model.
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This model represents a realistic geologic setup with a salt-dome in the middle. We
use the SEM to reconstruct the 3D zero-offset and 3D offset laboratory measurements.
The comparison of the synthetic results with the laboratory measurements reveals a
very good fit for the arrival time, phase, and amplitude. Once again, the revealed
minor amplitude mismatches may be attributed to the noise recorded in the laboratory
data, as well as to the uncertainties of the proposed source implementation and of the
attenuation parameters.

Finally, despite the remaining uncertainties, the entire framework is successfully
validated through the application of reverse-time migration (RTM) to the laboratory
data sets. Indeed, the resulting RTM sensitivity kernels show an accurate and coherent
reconstruction of most of the discontinuities of the WAVES model. Therefore, the
proposed framework can be used with confidence to test already existing or new
imaging techniques.

Keywords: wave propagation, numerical simulation, laboratory experiments, reverse-
time migration, offshore seismic, small-scale, ultrasonic, attenuation
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GENERAL INTRODUCTION

The terrain below the Earth's surface plays not only an important role in supplying our
society with essential resources — such as water, oil, gas, precious metals - but it has
also a huge effect on our daily life through earthquakes, tsunamis, landslides, to name
a few. Therefore the knowledge and the understanding of the subsurface are of
particular interest. Because in-situ data about the subsurface is usually not available,
we need to resort to methods that measure some physical phenomena on the Earth's
surface or above that, such as in the case of radar interferometry to investigate
volcanic activity (e.g. Hooper, 2008). A better understanding of the applied methods
can result in both economic and environmental advantages, such as: finding resources
with higher probability; drilling wells in the optimal position with better precision;
better understanding the geological processes of the past and the present, and their
possible future consequences; better assessing the risks of landslides, earthquakes and
tsunamis on people and infrastructure (e.g. on nuclear power plants and water dams).

The general approach of geophysical exploration is summarized in Figure 1. Let us
suppose that we want to understand the geological setup of a given part of the
subsurface. The first step is the preparation, using all available information to make
plans for the future measurements. These preliminary information may include
already existing measurements (e.g., large-scale regional seismic measurements in
exploration geophysics, previous ground-penetrating radar surveys or geomechanical
characterization of soil samples in civil engineering); potential hypotheses about the
geological history of the investigated site; and small-scale physical models to better
understand the problems at laboratory scale (e.g. geodynamic modeling of the
lithospheric deformation like in Dombradi et al., 2010); to name a few. Based on all
the preliminary information, the necessary geophysical methods can be selected, such
as seismic, gravitational and electromagnetic methods. The data acquisition can also
be optimized in advance, by choosing, for example, the suitable frequency and
acquisition geometry. The actual data acquisition and its subsequent processing is the
second step. The details of this step are out of the scope of this thesis, but they play an
essential role in the overall understanding of the subsurface. In the third step, the
measured data sets are interpreted and put into a general context. Most of the time the
understanding of the subsurface is a complex iterative process, using the measured
data and the preliminary information as well. Usually, a theoretical model is supposed,
based on the a priori information and the first interpretation of the measurements.
Then the numerical simulations are conducted for this initial model and the results of
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the numerical simulations (called synthetic results) are compared to the measured
data. By interpreting the differences between the synthetic and the measured data, and
again possibly considering the preliminary information as a constraint, the theoretical
model is modified to decrease the misfit between the simulations and the
measurements. By repeating these steps, we hope that the theoretical model is
approaching the real-life setup. The term 'hope’ is used here because the subsurface is
never known exactly. Because there are numerous other parameter sets leading to the
same solution (e.g. different density-velocity combinations provide the same
reflectivity), this approach leads to a mathematically non-unique solution. It requires
extensive knowledge and experience to choose the geologically/geophysically feasible
solution out of all the mathematically possible ones.
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Figure 1. Flowchart of a typical exploration geophysics project from the initial
planning phase to the understanding of the subsurface.




GENERAL INTRODUCTION

As mentioned above, numerous geophysical methods can be used to investigate the
subsurface, but the seismic/seismological method is one of the most generally used
(e.g. Ikelle and Amundsen, 2005). Seismology is the term used for regional and global
scale applications, such as the investigation of the structure of the Earth's interior,
global seismicity or earthquake epicenter determination. Seismic is the term used in
exploration geophysics at a rather local scale (e.g., for hydrocarbon exploration, water
extraction, CO; storage); and in engineering geophysical applications (e.g., for near-
surface mapping for civil engineering and archaeological applications). Although
'seismic’ and 'seismology' are two terms practically denoting the same method, which
uses seismic waves propagating in the subsurface from either natural or artificial
sources, they utilize different frequencies'. The seismic method is widespread in
applied geophysics due to the possibility to image even deeply overburden structures,
as well as the high resolution of the measured data. The method is especially efficient
on the sea, where a large area can be surveyed in a short period of time.

Seismic exploration uses the so-called wave equation to describe the propagation of
the seismic waves in the subsurface. The analytical solution of this equation can be
deduced only for rather simple models, such as a homogeneous, isotropic half space
(e.g., Lamb, 1904, de Hoop, 1958), or a layer-cake geologic model (e.g. Kennett,
1981). However, these simple models do not represent the complexity of the real life,
e.g. an arbitrary 3D geometry with complex material properties, including
heterogeneities, anisotropy, and numerous thin interbedded layers. Therefore
exploration geophysics relies heavily on numerical tools to approximate the solution
of the governing equations for realistic geologic setups. Numerical algorithms are
used in seismic exploration during survey design, data processing and interpretation
(e.g. Robertsson et al., 2007), as well as in seismic imaging and inversion (e.g.,
Chauris and Benjemaa, 2010, Virieux et al., 2011). Conventional methods (e.g., ray-
tracing, Kirchhoff integral, and finite-difference methods), widely used in seismic
exploration, are efficient to simulate realistic wavefields in environments with simple
structures and slowly-varying material properties. However, difficulties arise for
environments with large and rapid structural changes, as well as in the presence of
shadow zones and (multiple) diffractions. Thus, different methods have been
developed to improve seismic modeling in realistic geologic environments, including
steeply-dipping faults, curved interfaces, salt bodies, etc. (e.g. Mittet, 2017).

1 Typical frequency ranges: 0.1-4 Hz in seismology, and 4-150 Hz in seismic
exploration.



Before real applications, newly developed numerical algorithms are typically tested
against other numerical methods using synthetic configurations. Several projects have
focused on the comparison and validation of the different numerical results (e.g., Igel
et al., 2000, Moczo et al., 2006, 2010, Fehler and Keliher, 2011, Chaljub et al., 2015).
Since each numerical algorithm is based on mathematical assumptions — i.e. to some
extent simplifying the underlying physics and/or the geometry of the real life to save
computational cost —, their direct comparison for realistic and complex models can
have limitations, as it can be difficult to determine the one that gives the best
approximation of a physically unknown solution. Therefore there is a strong interest
in using physical data sets to benchmark synthetic results. However, because in real
life the subsurface of the Earth is never accurately known, it is difficult to compare
the synthetic results with any seismic data set from field measurements.

An alternative approach to test and validate the performance of the numerical methods
in realistic cases can be the comparison of the synthetic results with experimental
data, obtained for a small-scale physical model in laboratory conditions. This
implicitly assumes that the scaled physical mechanisms are identical to those at
seismic scale (Ebrom and McDonald, 1994), and this assumption is fulfilled in the
case of the linear wave equation. Considered as obsolete in the 1990's — essentially
due to the drastic increase in computing capacities —, laboratory experiments have
recently been re-introduced into the ideas-to-applications pipeline. The laboratory can
be considered as a halfway point between numerical modeling and field observations.
Indeed, laboratory experiments are repeatable, more controllable than real seismic
surveys, versatile in terms of the acquisition setup and provide high-quality data for a
known configuration. Furthermore, similar to real seismic acquisitions and unlike
some numerical data, laboratory measurements contain random and signal-generated
noise, multiples, mode conversions, and uncertainties due to position inaccuracies. As
these sources of noise and uncertainties can be better assessed than in the case of field
data sets, the laboratory experiments are valuable tools to validate numerical
simulations against real physical data sets.
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Initially, small-scale physical modeling was extensively developed for a better
understanding of the underlying physics of seismic wave propagation (e.g, Wapenaar
and Berkhout, 1987, Pant et al., 1992), and for the validation of theoretical predictions
(Favretto-Anres and Rabau, 1997). Laboratory experiments are still used nowadays to
investigate physics that is not sufficiently understood to be numerically modeled with
confidence (Cooper et al., 2010, Stewart et al., 2012, Ekanem et al., 2013, Xu et al.,
2016, Chang et al., 2017). Data from laboratory experiments are also used as input to
inverse problems (Pratt, 1999, Favretto-Anres and Sessarego, 1999, Bretaudeau et al.,
2013, Chai et al., 2015), to test new data processing algorithms (Campman et al.,
2005), and in time-lapse 3D studies (Sherlock et al., 2000). More recently, small-scale
modeling has been used again as another tool to validate numerical modeling and
seismic imaging methods in the context of onshore and offshore seismics (Bretaudeau
et al., 2011, Favretto-Cristini et al., 2014, 2017, Tantsereva et al., 2014a, b, Pageot et
al., 2017, Solymosi et al., 2018). In particular, by using physical measurements of
wave propagation for a known model (considered as the reference data), and by
investigating any misfit between the measurements and the simulations, it has been
shown that there is a need for further development of the numerical tools, in order to
obtain more accurate results in specific complex configurations (e.g. in the case of
strongly curved interfaces). These works thus clearly show the advantage of the
laboratory data sets as part of the benchmarking options for numerical algorithms.

These works also highlight the fact that an efficient benchmarking procedure requires
a carefully chosen and jointly-adapted approach to both the laboratory experiments
and the numerical modeling. On the one hand, the numerical tools must be adapted to
the experimental configuration (e.g., implementing the real source characteristics,
material properties, and acquisition conditions). On the other hand, the laboratory
experiments have to be carried out keeping in mind the capabilities of the numerical
tools (e.g. choosing the acquisition geometry such that the future computational cost
will be the lowest possible). In addition, experimental uncertainties must be identified
and subsequently minimized in order to obtain high-quality data, and numerical
simulations may also contribute to this identification. As a consequence of this two-
way adaptation, we always need to keep in mind the experimental and numerical
aspects, for example, in the choice of the scaling factor, material properties or model
geometry. Establishing a framework, which ensures an efficient reconstruction of the
laboratory measurements with numerical simulations, using small-scale physical
models with a geologically relevant geometry and material properties, is therefore
essential in order to better understand the capabilities, limitations and possible future
developments of the numerical tools. This highly challenging task is the goal of this



PhD thesis. More specifically, we do a cross-validation of the laboratory experiments
and the numerical simulations to discover the points to be improved on both sides of
the framework.

In this work, two small-scale models have been used: the Marseille-Benchie model
and the WAVES model. The Marseille-Benchie model has a complex topography and
is made out of one material with a flat bottom surface. Therefore a complex wavefield
can be obtained, including reflections, diffractions, and multiples, but the
interpretation of the measurements is relatively straightforward. This is advantageous
for the calibration phase when the framework is established. Following that, the
WAVES model provides a challenging task by closely representing both the geometry
and the material properties of a realistic 3D geologic setup. The model consists of a
salt-dome in the middle, surrounded by several sedimentary layers of varying material
properties, including a zone with an inverted velocity profile (where the velocity
decreases with depth). The geometry of this model was motivated by the difficulties
encountered in seismic exploration concerning the salt structures.

For the numerical simulations, we resorted mainly to the spectral-element modeling
(SEM) as a full-wave method, which is not based on strong underlying assumptions,
as opposed to for instance the discretized Kirchhoff integral method (e.g., Tantsereva
et al.,, 2014a, Favretto-Cristini et al., 2017). The SEM becomes more and more
popular with time in the seismic community since it is well-suited for high-
performance computing (Komatitsch et al., 2003). As it combines the accuracy of a
pseudo-spectral method with the flexibility of a finite-element method, the SEM
allows the handling of complex geometries by using a non-structured mesh and
different element sizes in the computational domain (Komatitsch and Tromp, 2002,
Oliveira and Seriani, 2011). Because the necessary trade-off between accuracy and
computational cost is usually sought-after, we are also interested in the ability of the
SEM to accurately simulate complex 3D wavefields including (multiple) diffractions
at the lowest possible computational and man-hour cost. Few papers are devoted to
the comparison of the SEM with other numerical methods (e.g., Capdeville et al.,
2002, 2003, Moczo et al., 2010, De Basabe and Sen, 2014, Chaljub et al., 2015).
Pageot et al. (2017) recently compared laboratory and synthetic data sets in an
onshore configuration to investigate surface wave propagation and amplitude
transformation between 2D and 3D. But to the best of our knowledge, no paper
compares laboratory data with 3D SEM results in offshore configuration. As part of
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our collaboration within the WAVES ITN Project* and more specifically with Bgrge
Arntsen (NTNU, Trondheim, Norway), we also compared some of the SEM and
laboratory data sets with finite-difference results. The goal of the comparison was to
benchmark the finite-difference code developed at the NTNU, as well as to investigate
the necessary computational cost of the different numerical methods to reach a given
accuracy in reconstructing the laboratory measurements. Finite-difference modeling
(FDM) is the most widely used numerical method in seismic exploration and is also a
full-wave method. The FDM is based on a different approach to spatial discretization
than the SEM, as it can only consider structured grids, which do not explicitly honor
the discontinuities (e.g., Virieux, 1984, 1986, Holberg, 1987, Mittet 2002).

In seismic exploration the migration of the acquired field data is essential to account
for the fact that seismic data is always recorded in the time domain, in which the
geometry of the subsurface is not represented correctly. Numerous imaging techniques
exist and the choice of the algorithm depends, for example, on the type of the data set
to be processed, as well as on the complexity of the geologic setup (e.g. Yilmaz,
1987). The result of the seismic migration is a data set in the depth domain which can
be used for the mapping of subsurface discontinuities, geologic formations, and
potential hydrocarbon reservoirs, to name a few. In this thesis, we use one of the most
common seismic imaging techniques, the reverse-time migration (RTM). The RTM is
based on the imaging principle (Claerbout, 1971), and it is capable to reconstruct the
reflectors related to reflection coefficient contrasts (e.g., Zhang et al., 2003, Zhu et al.,
2009). Applying the RTM to the laboratory data measured for a small-scale model is
an optimal benchmarking opportunity for the established framework. More
specifically, if the resulting RTM data set shows a precise reconstruction of the known
model geometry, then it suggests a successful validation of the entire framework,
including the laboratory measurements and their numerical implementations.

2 This work is one of the fifteen theses of the WAVES ITN Project (2015-2018),
funded by the European Commission through Horizon 2020. The participants include
Sorbonne Université, University of Edinburgh, Norwegian University of Science and
Technology (NTNU), Delft University of Technology (TU Delft), University of
Oxford, Centre National de la Recherche Scientifique (CNRS), Institut National de la
Santé et de la Recherche Médicale (INSERM), Schlumberger Cambridge Research
Ltd., Eidgenossische Technische Hochschule Ziirich (ETH), Shell Global Solutions
International, Ecole Supérieure de Physique et de Chimie Industrielle (EPSCI),
Columbia  University  (ColU), Ludwig-Maximilians-Universitit =~ Miinchen,
Universitetet I Oslo, and Statoil.
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The manuscript is divided into two parts.

Part 1 (entitled 'Framework for the high-precision reconstruction of the laboratory
measurements with numerical simulations - the Marseille-Benchie model as a tool')
discusses in details all the preparatory steps used to elaborate the framework. First,
Chapter 1 introduces the Marseille-Benchie model, the experimental setup and the
interpretation of the laboratory data sets. Note that the laboratory techniques to
characterize the properties of the material of the model, together with the measured
values at different frequencies and their associated uncertainties are presented in
Appendix A. Then in Chapter 2 the basics of the applied numerical methods are
discussed, as well as the meshing, the numerical implementation of the real transducer
characteristics, and the numerical calibration of the material properties. Note that we
propose an optimization technique for the non-structured meshing of the spectral-
element simulations to reduce the computational cost while keeping the same level of
accuracy in Appendix B. In Chapter 3 the laboratory measurements are compared
with the synthetic results. Chapter 4 is dedicated to the discussion of the (mis)fits
between the data sets. Finally we draw the conclusions, as well as some necessary
short-term and long-term improvements are proposed to decrease the identified
misfits.

Part 2 is entitled 'Application to a realistic geologic setup — the WAVES model'.
Chapter 1 introduces the WAVES model, including its geometry and the most
important material properties (see also Appendix A); as well as the improvement of
the experimental setup compared to Part 1. The interpretation of some of the
laboratory data sets is also presented here. Chapter 2 is dedicated to the numerical
aspects, discussing the numerical implementation of model geometry, and the
calibration of the material properties for the multi-layered geometry. In Chapter 3 the
laboratory measurements are compared with the synthetic results, and the (mis)fit
between the two is also discussed in details. In Chapter 4 we showcase the RTM as an
example of the possible seismic imaging techniques that can be tested using the
WAVES model, including the necessary laboratory measurements and the resulting
sensitivity kernels. Finally, the conclusions and perspectives are presented.

The manuscript ends with general conclusions and perspectives regarding both the

experiments and the numerical tools, including a proposal for new imaging techniques
to be tested with the help of the proposed framework.
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We note that some parts of this manuscript are included in (submitted or) already

published works:

Solymosi, B., Favretto-Cristini, N., Monteiller, V., Cristini, P., Ursin, B.,
Komatitsch, D., and Arntsen, B., 2017, Comparing spectral-element numerical
results with laboratory data: an example for a topographical model: 79" EAGE
Conference & Exhibition, Extended Abstract, EAGE, We B4 02.

Solymosi, B., Favretto-Cristini, N., Monteiller, V., Komatitsch, D., Cristini, P.,
Arntsen, B., and Ursin, B., 2018, How to adapt numerical simulation of wave
propagation and ultrasonic laboratory experiments to be comparable - A case
study for a complex topographic model: Geophysics, 83(4), T195-T207.
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Introduction

Introduction

As mentioned in the General Introduction, previous works (e.g., Bretaudeau et al.,
2011, Favretto-Cristini et al., 2014, 2017, Tantsereva et al., 2014a, b, Pageot et al.,
2017) have highlighted the need for a framework if numerical simulations are meant
to be compared with laboratory measurements with high confidence and accuracy.
This framework must be concerned with both the laboratory ultrasonic measurements
on small-scale physical models in order to mimic offshore seismic surveys and the
accurate numerical reconstruction of these experiments. The goal of this part is
therefore to elaborate this framework.

We use the Marseille-Benchie model, which is based on French's model (French,
1974), but also includes additional structures with steep flanks, sharp edges, corners,
and curved interfaces. This geometry enhances multiple reflections and diffractions,
as well as shadow zones and interactions between the different structures. This
complexity provides a significant challenge to any numerical method to reproduce the
wavefield. The model has already been used in previous works. In particular,
Tantsereva et al. (2014a) evaluated the ability of the 3D discretized Kirchhoff integral
method (DKIM) to accurately simulate complex diffractions using a zero-offset
laboratory data set measured for this model. The comparison of the numerical and
laboratory data sets showed that the DKIM could correctly reproduce the wavefield,
except in the vicinity of secondary shadow boundaries, created by the interaction with
the edges of the topographic structures. As a follow-up, Favretto-Cristini et al. (2017)
quantitatively analyzed the effect of multiple scattering and surface curvature on the
wavefield, in order to define the cases where these effects may be neglected in the
numerical modeling without a significant loss of the overall accuracy. As the results of
Tantsereva et al. (2014a) and Favretto-Cristini et al. (2017) show, the Marseille-
Benchie model has been proved to be a suitable tool to validate the results of the
numerical tools and point out the necessary future developments. Therefore we also
chose this model for the elaboration of the framework presented in this thesis.

This part is divided into three chapters.

Chapter 1 is dedicated to the laboratory aspects of the framework. In Section 1.1 the
geometry of the small-scale physical model is introduced, as well as its most
important material properties. The experimental setup is presented in Section 1.2
together with the characteristics of the ultrasonic transducers. Then some exemplary
cross-sections from the laboratory data sets in both zero-offset and offset
configurations are interpreted in Section 1.3.
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Chapter 2 contains the numerical aspects, starting with the introduction of the
numerical algorithms commonly used in seismic exploration (Section 2.1). Then in
Section 2.2, the spectral-element modeling (SEM) is presented as the primary
numerical method used in this thesis. This section focuses on the most important
aspects of the method, such as the weak form of the seismic wave equation, its
approximation by the polynomial basis functions, the applied integral quadrature, the
time-stepping scheme, the stability condition, the implementation of the point source,
and the boundary conditions. The main contribution of our work is the numerical
implementation of the physical transducers, including a laboratory characterization
and a subsequent inversion process, is also detailed here. Section 2.3 is dedicated to
the adaptation of the Specfem software package to our framework, including the non-
structured hexahedral meshing of the model geometry, the implementation of the
viscoelasticity, and the numerical calibration of the material properties used for the
simulations.

The comparison of the synthetic results with the laboratory measurements is presented
in Chapter 3. 3D zero-offset and 3D offset cases are compared, using both the
spectral-element and the finite-difference algorithms. The general good fit between
synthetic and laboratory traces are showcased for both methods. The misfits between
the numerical and physical results are also discussed in details, as well as the
differences between the numerical results obtained with the two numerical
approaches.
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Chapter 1
Small-scale seismic experiments

1.1 The small-scale physical model

The Marseille-Benchie model was designed to represent a moderately complex
geometry, as it contains various topographic features, such as a dome, a truncated
smaller dome, a truncated pyramid and two flat parts separated by a ramp (Figure 2).
The model is entirely made of polyvinyl chloride (PVC), which was chosen because
its properties are considered to be close to those of the typical sedimentary layers.
Table 1 shows the measured properties of the PVC (together with the associated
uncertainties), which is considered to be a homogeneous, isotropic and viscoelastic
material. These values are valid for the frequency range of interest of this thesis,
namely 250-650 kHz (see Appendix A). A scaling factor of 1:20 000 was used to scale
down the real-life dimensions of typical seismic setups to the laboratory scale. Hence
the experimental frequency of 500 kHz corresponds to a seismic frequency of 25 Hz,
and an experimental distance of 1 mm corresponds to 20 m at seismic scale. The
velocities and density of the material are not affected by the scaling, however, the
attenuation can vary significantly with the frequency, as it is generally higher for
materials used for laboratory experiments than in the case of real geologic formations.
Because exploration geophysics, and therefore the numerical tools used in seismic
exploration as well, rely on Q-factors instead of the direct attenuation values, we
present Q-factors hereafter (see Appendix A). The model has a size of 600 x 400 mm?,
corresponding to 12 x 8 km? at seismic scale. Its thickness varies between 30-70 mm,
depending on the geometry. The radii of the dome and the truncated dome are both
100 mm, and the base of the pyramid is 90 x 90 mm?* (Figure 2).
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Figure 2. The Marseille-Benchie model. (Top) Is topography: dome (a), truncated
pyramid (b), truncated dome (c), flat part (d), ramp (e) and elevated plateau (f).
(Bottom) The height of the objects.

Density
1440 £ 10 2205 + 20 1056 + 462 86+1 13+£9.6
(£ 0.7 %) (£ 0.9 %) (£ 44 %) (x1.1%) (£ 73 %)

Table 1. Properties of the PVC for the frequency range of interest (250-650 kHz), and
the associated uncertainties.

1.2 Experimental setup and data acquisition

The model was immersed in a water tank during the measurements (Figure 3). The
tank is equipped with a computer-controlled acquisition system that allows for the
accurate positioning of the source and the receiver transducers. At the time of the
laboratory measurements for the Marseille-Benchie model, there was no a posteriori
control of the precision of the transducer movements by optical rulers, so the
precision was assumed to be +0.5 mm (i.e. £10 m at seismic scale). The water
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temperature was continuously monitored during the measurements (with an accuracy
of +0.1°C), providing an accurate knowledge of the speed of sound waves in water,
typically around 1480 m/s. The precision of the measurement of the water speed is
+0.01785 m/s. Water was considered to have a density of 1000 kg/m? and a negligible
attenuation.

display of opticfamruler

(%4
L

~n

Figure 3. The water tank used for the experiments. Transducers can be attached to two
axes, and the three-dimensional movement of each transducer is ensured by stepping-
motors, controlled by a PC. The recently installed optical rulers provide a posteriori
control of the transducer movements.

A conventional pulse-echo technique (Figure 4) was used to collect reflection data in
both zero-offset and offset configurations (Figure 5). Zero-offset measurements were
performed by using a custom-made Imasonic® transducer as both the source and the
receiver. It has a diameter of 3 mm and was located 180+0.5 mm above the flat part of
the model (labeled as (d) in Figure 2), corresponding to 3.6 km at seismic scale. The
transducer has a dominant frequency of 500 kHz, and — contrary to the conventional
transducers — a broad-beam radiation pattern, as the width of the main lobe is 35° at -3
dB. This radiation pattern allows for a large area to be illuminated and therefore more
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3D effects to be captured (Tantsereva et al., 2014a), such as the interaction of the
waves with multiple topographic features and multiple wave scattering (Favretto-
Cristini et al.,, 2017) (Figure 6). The source signal and its associated frequency
spectrum for the frequency range of interest are shown in Figure 7.
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Figure 4. Sketch of the acquisition system in the offset (top) and zero-offset (bottom)

configurations. The BNC time delay is used to increase the dynamics of the recorded
signal.
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Figure 5. Illustration of the small-scale seismic experiments performed in the water
tank. The model is illuminated by a piezoelectric transducer (left). The wavefield is
recorded by a hydrophone (right) in the offset configuration. In the zero-offset
configuration, the piezoelectric transducer is used also as the receiver.

Figure 6. Illustration of the illumination area superimposed on the Marseille-Benchie
model for a conventional narrow-beam transducer (blue) and the broad-beam
Imasonic® transducer used in this thesis.

22



Chapter 1

0.003
0.002
0.001
0.000
-0.001
-0.002
-0.003

140 150 160 170 180 190
Time (microsecond)

0.06 """‘ 3

0.05 Y
0.04
0.03
0.02
0.01
0.00

0

Amplitude

Amplitude

200 400 600 800 1000 1200
Frequency (kHz)

Figure 7. (Top) the signal (filtered between 250-650 kHz) generated by the
piezoelectric transducer and recorded by the hydrophone in opposite position,
(bottom) the associated amplitude spectrum.

Offset measurements were performed by using two transducers: the above-mentioned
transducer as the source, and an omnidirectional Teledyne Reson® hydrophone as the
receiver. Both transducers were located 150+0.5 mm above the flat part of the model
(labeled as (d) in Figure 2), corresponding to 3 km at seismic scale. The source can be
tilted with various angles to illuminate different parts of the model or to enhance some
particular effects, such as shadow zones. The hydrophone has an active diameter of 4
mm and its sensitivity is constant between 50-800 kHz (Figure 8). The directivity of
the hydrophone in both the vertical and the horizontal planes are also shown in Figure
8.
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Figure 8. a) The hydrophone used as the receiver in offset configurations, b) its

directivity in the vertical (left) and horizontal (right) planes, c) its sensitivity. Figures
8 b) and c) are the courtesy of Teledyne Reson®.
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Acquisitions were performed along x-lines (Figure 5) with a sampling distance of 0.5
mm (corresponding to 10 m at seismic scale). The collected data set thus consists of
numerous parallel profiles, providing a set of reflection data for a dense grid (with a
receiver spacing of 0.5 mm in both x- and y-directions). In order to enhance the
signal-to-noise ratio (SNR), a stacking technique was applied before recording the
data. The water column above the transducers was always at least 0.6 m and the tilt
angle of the source transducer was 39+1° for the offset measurements.

1.3 Illustration of the laboratory data sets

For the sake of brevity, here we focus on a study line, located above the full dome and
the truncated pyramid in the x-direction (yellow dashed line in Figure 5). This
acquisition line provides complex diffraction effects, (multiple) reflections and
arrivals corresponding to curved interfaces. Figure 9 shows the laboratory zero-offset
data set for the study line, together with the interpretation of the recorded events. For
the sake of clarity, only the main events are interpreted in Figure 9. Events a) and c)
represent the arrivals related to the top surfaces of the PVC, corresponding to the
pyramid and the dome, and to the flat parts, respectively. Event a) mainly consists of
reflections (see positions between 90-115 mm for the pyramid and 95-410 mm for the
dome). There are also some diffraction hyperbolas corresponding to the edges of the
top surface of the pyramid, for positions less than 90 mm and greater than 115 mm.
Moreover, due to the angle of the truncation of the pyramid, there are two smaller
hyperbolas in the center of the pyramid, partly overlapping with the reflections from
the top flat surface of the object. Similarly to event a), event c) mainly consists of
reflections, as well as some diffraction hyperbolas related to the junctions of the
pyramid and the dome with the flat part. Events b) and d) correspond to reflections
from the bottom of the PVC, below the pyramid and the dome, and below the flat
part, respectively. Since Figure 9 is a time section, a classical velocity pull-up effect
can be seen in the different arrival times of events b) and d). Indeed, depending on the
overburden, reflections from the same horizontal bottom surface of the PVC arrive at
different times. Event e) represents reflections from the small truncated dome (Figure
2). This out-of-plane arrival is due to the broad-beam radiation pattern of the source
transducer, and it would not be recorded if the source transducer was a conventional
one. We note that the diffractions on the right side of the section after 200 ps and for
positions 300-420 mm are related to the side of the physical model.
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Figure 10 shows the laboratory offset data set (i.e. a common shot gather) for the
study line together with the interpretation of the main events. Event a) shows the
direct arrival from the source, and event b) the reflections from the dome. All the
interpretations marked with c) correspond to reflections/diffractions from the
pyramid. Event d) illustrates the reflections from the flat part of the PVC. Event e) is
related to reflections from the small truncated dome and event f) to reflections from
the ramp. Event g) is not related to the model, but to spurious arrivals from the
acquisition system.
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Figure 9. Top: cross-section of the laboratory zero-offset data set along the study line.
The data was filtered between 250-650 kHz. Bottom: interpretation. Annotated events:
(a) & (b) top & bottom of the pyramid and the dome, (c) & (d) top & bottom of the
flat part, (e) truncated dome, (f) ramp. The vertical lines denote the zero-offset traces
chosen for comparison with numerical data, presented subsequently in Section 3.1.

27



PART 1

80

180

280

Two-way travel time (microsec)

0 100 200 300
Position (mm)

80

180

280

Two-way travel time (microsec)

0 100 200 300
Position (mm)

Figure 10. Top: cross-section of the laboratory offset data set (i.e. common shot
gather) along the study line. The data was filtered between 250-650 kHz. Bottom:
interpretation. Annotated events: (a) direct arrival, (b) dome, (c) pyramid, (d) flat part,
(e) truncated dome, (f) ramp, (g) spurious reflection from the acquisition system. The
vertical lines denote the offset traces chosen for comparison with numerical data,
presented subsequently in Section 3.2.
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Chapter 2
Numerical modeling of the laboratory
measurements

2.1 Brief overview of some popular numerical methods in
seismic modeling

If we considered a block of a homogeneous material with a single source inside, the
wave propagation could be easily described both in fluids:

poiu=—Vp+f . (1
and in solids:
poiu=V-o+f ,(2)

where p denotes the mass density, u=u(x,t) is the displacement field, x is the spatial
coordinates, t is the time, p is the pressure, f is the source term, and o is the stress
tensor, respectively. The derivation of equations 1 and 2 is extensively discussed in
the literature (e.g., Aki and Richards, 1980, Dahlen and Tromp, 1998). As noted in the
General Introduction, the analytical solution of equations 1 and 2 usually cannot be
deduced for realistically complex models, and they must be numerically
approximated. By discretizing the continuous derivatives in the governing equations,
the numerical algorithms are capable to approximate the wavefield. The accuracy of
this approximation depends on the applied method and the parameters of the
numerical calculations. Several numerical methods have been developed in the last
few decades, which all have advantages and drawbacks, and the selection of the
suitable method depends on the application. For instance, what accuracy is needed?
What computational cost is affordable? How quickly are the results needed? How
difficult/time-consuming is the numerical implementation of the model?

For instance, ray tracing methods are used from the early days of seismic tomography.
These algorithms determine the travel path of the seismic rays for a given model and a
given source-receiver pair, based on Snell's law (e.g., Julian and Gubbins, 1977,
Cerveny, 1987, Virieux and Farra, 1991, Cerveny, 2001). Rawlinson et al. (2008)
provide a short summary of the different ray tracing methods, which are accurate, but
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may not be robust enough, and may encounter instabilities even in slightly
heterogeneous models. Due to these drawbacks, grid-based schemes, which calculate
the wavefield at each grid point of the model became popular with time. While the
different methods are based on very different approaches to discretize the model in
time and space, their mathematical formulation can be synthetized. Following the
spatio-temporal discretization of the governing equations, we need to solve large
algebraic systems and ordinary differential equations in time. As recalled by, for
example, Fichtner (2010), formally the discretized algebro-differential equations can
be written in the following form:

M-ua(t)+K-u(t)=f(t) , 3)

where M is called the mass matrix, K is the stiffness matrix, and u(t) and f(t)
are the displacement field and the source term at time t, respectively. The double dot
over u(t) denotes the second time derivative. In this form, #(t) and f(t) are
vectors, containing, for instance, the discrete values at the grid points (finite-
difference approach) or the coefficients describing these quantities (finite-element
approach). The mass and stiffness matrices are usually sparse and their structures
strongly depend on the formulation of the wave equation and the applied numerical
method. Depending on the requirements of some numerical algorithms, equations 1
and 2 may be reformulated as a function of different quantities. For instance equation
1 may be reformulated as a function of only the pressure, only the particle velocity or
only the displacement potential to describe the wave propagation in fluids. In solid
materials, the common formulations are the displacement-stress, the displacement,
and the velocity-stress formulations.

These time-dependent ordinary differential equations can be solved either in the time
domain or in the frequency domain. Time-domain simulations are based on the
replacement of the time derivatives by finite-difference approximations. There exist
various time-stepping schemes, for instance, the leapfrog method, the Newmark
scheme, or the more expensive predictor-corrector methods (e.g., Newmark, 1959,
Chaljub et al., 2007, Fichtner, 2010). Frequency-domain simulations are based on the
Fourier-transformed algebro-differential equations. These solvers provide an accurate
solution at a low computational cost if the solution is searched for in 2D, or for only a
few given frequencies in 3D. Because of the high memory requirements, especially in
the case of wide-band 3D simulations, frequency-domain solvers are outperformed by
time-domain iterative solvers.
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As we have seen above, most of the time-domain methods use the finite-difference
approach for the time-discretization. The main difference between the numerous
methods, therefore, lies in their different approaches to the spatial discretization. A
very popular approach to the spatial discretization as well is the finite-difference
method (FDM). The basic method uses evenly distributed grid points across the
model domain and replaces the continuous derivatives with a finite-difference
approximation, evaluated only at the grid points. For more details about the basic
concept, see for example Alterman and Karal (1968), Boore (1972), Kelly et al.
(1976), and Virieux (1986). In 3D the use of a staggered grid helps to significantly
reduce the numerical dispersion, although this grid layout presents some difficulties,
for instance in the implementation of anisotropy or the free-surface boundary
condition (e.g., Madariaga, 1976, Virieux, 1984, 1986, Holberg, 1987, Mittet, 2002).
The FDM is usually considered to have a low computational cost (mainly on CPUs),
especially for models with relatively simple and slowly-varying geometries. Any
arbitrary model geometry can be easily implemented in the FDM (with the exception
of the free surface), however curved and tilted interfaces require a fine grid spacing in
order to avoid artifacts due to the staircase representation of the geometry, which may
inflate the computational cost.

The pseudospectral method (PM) uses the same spatial discretization as the FDM. The
spatial derivatives are then calculated in the wavenumber domain, following the
Fourier-transformation of the wavefield. In the wavenumber domain, the spatial
derivation becomes a simple multiplication by ik, where k is the wavenumber (e.g.,
Kosloff and Baysal, 1982, Carcione, 2010). Chebyshev transformation can also be
used in the vertical direction, instead of the Fourier transformation, to better handle
the boundary conditions (e.g., Kosloff et al., 1990, Tessmer and Kosloff, 1994). In
general, the PM has much less numerical dispersion than the FDM, but it has also a
huge memory requirement, necessary for the Fourier/Chebyshev transformations. This
makes it difficult to parallelize the pseudo-spectral algorithms with currently available
computing facilities.

The finite-element method (FEM) is based on the weak form of the wave equation.
The main advantage of the weak form is that it implicitly satisfies the free-surface
condition, not like in the case of the FDM. The computational domain is decomposed
into disjoint elements, and the Galerkin method is used to approximate the exact
solution of the wavefield by the superposition of several basis functions, which
usually depend only on the space. The approximation is based on low-order
polynomials, and the continuity of the wavefield among the elements must be
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explicitly imposed. Therefore the FEM mathematically reduces to the calculation of
the polynomial coefficients for each element (e.g., Lysmer and Drake, 1972,
Toshinawa and Ohmachi, 1992, Bao et al., 1998). The main advantage of the FEM is
its ability to account for the real geometry by explicitly honoring each discontinuity,
as well as its suitability for parallel computing. However, the classical FEM
algorithms suffer from a significant numerical dispersion due to the low-order
polynomial approximation, as well as from the non-diagonal mass matrix in equation
3, making its inversion expensive. Because of these disadvantages, hybrid methods
have been proposed, which couple the classic FEM algorithms with other methods.
This exploits the advantage of the FEM of explicitly honoring the discontinuities,
while the inner parts of the model are simulated with other numerical methods (e.g.,
Moczo et al. 1997, 2007).

Today's numerical simulations are often based on multi-core processors and
supercomputers, using a massively parallel computing approach. Multi-core
processor refers to a computing unit with multiple processing units, often called
cores. These cores are placed on the same integrated circuit die, and can
independently read and execute program instructions. This increases the overall
computing capacity if the programs are suitable for parallel computing. A massively
parallel computer has numerous processors working together to solve a large problem.
Separate parts of the problem/data are fed to different processors, which all do the
same mathematical operation, and at the end, the results are recombined. As of 2018,
supercomputers of petaflop® capacities are accessible for the scientific community.
Thanks to the still ongoing evolution of the computational resources, more and more
complex problems can be simulated for, or earlier simulations may be re-performed at
higher resolution, using fewer approximations. Although this is out of the scope of
this thesis, some numerical algorithms may be more suitable for parallel calculations
than others, at least using the currently available technology. As the technology
evolves in the future, other numerical algorithms may become more affordable with
time, for example, algorithms with a high memory requirement.

3 petaflop: 10" floating point operations per second
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2.2 The spectral-element method

In this work, we use primarily the spectral-element method (SEM) for the numerical
simulations. This choice was motivated by the facts that the SEM:

* is a full-wave method with high accuracy,

e can use a non-structured mesh to honor irregular discontinuities and
topographies, therefore, the uncertainty of the numerical implementation of
the model geometry can be mostly ruled out in the case of any future misfit
between the measurements and the simulated data,

* can use different element sizes in the mesh, hence, it is suitable for models
with varying material properties,

* can accurately account for the fluid-solid coupling and surface waves without
requiring a high number of grid points, such as in the case of the FDM.

The SEM can be considered as a special type of the FEM, which uses higher order
basis functions than the classic FEM. This way the SEM combines the accuracy of the
pseudo-spectral method with the flexibility of the FEM. The SEM was first developed
in fluid dynamics by Patera (1984). The method is also widely applied in seismology
(e.g., Seriani et al., 1995, Faccioli et al., 1997, Komatitsch and Vilotte, 1998, Seriani,
1998, Komatitsch et al., 2004, Fichtner et al., 2009, Komatitsch and Tromp, 2002,
Chaljub et al., 2003, 2007, Peter et al., 2011), and in ocean acoustics (e.g., Cristini and
Komatitsch, 2012, Bottero et al., 2016).

Here we focus only on some of the most important features of the method using solid
materials for demonstration, and we refer the reader to Komatitsch and Vilotte (1998),
Fichtner (2010), or Peter et al. (2011) for more details.

2.2.1 Weak form of the wave equation

Similar to the classic FEM, the SEM is also based on the weak form of the wave
equation. Considering solid materials, equation 2 describes the propagation of seismic
waves. Under the assumption of small perturbations, the stress tensor ¢ in equation 2
is linearly related to the displacement field by the constitutive relationship (Hooke's
law):

o=C:Vu ,(4)

where C denotes the stiffness tensor, describing the elastic properties of the material.
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Equations 2 and 4 together provide the displacement-stress formulation of the wave
equation. The weak form of the wave equation can be obtained by multiplying
equation 2 with a time-independent arbitrary test function w, and then integrating by
parts over the total volume €2 and surface 8€2 of the model:

[pow-dlud®x= [ Ao wdx— [ Vw:od®x+D:Vw(x,)S(t) ,(5)

where f denotes the unit outward normal vector on 62, and D is the moment tensor
of a point source, which can be described as the source term f{(t) in equation 2 as:

f(t)=—D-Vd(x—x,)S(t) , (6)

where x, denotes the source position, § is the Dirac distribution, and S(t) is the
source wavelet. Equation 5 can be reformulated in the same form as equation 3, i.e.
using a mass matrix and a stiffness matrix to describe the wave propagation.

2.2.2 Galerkin approach

Identical to the classic FEM, the model domain £2 is divided into disjoint subdomains
€, (called elements), and the Galerkin method is used to approximate the wavefield in
each element with the help of local basis functions. These basis functions depend only
on the material properties of the given element, therefore the continuity of the
displacement field has to be explicitly imposed on the element boundaries.

2.2.3 Basis functions and integral quadrature

The uniqueness of the SEM among the other finite-element algorithms lies in the
choice of the basis functions, and the quadrature to compute the integrals for the mass
and stiffness matrices in equation 3. Although there are other options (e.g. using
Chebyshev polynomials (Patera, 1984)), here we focus on the most common choice
when N+1 Lagrange polynomials of degree N are used to approximate the wavefield
(e.g. Davis and Rabinowitz, 1984); and the Gauss-Lobatto-Legendre (GLL)
quadrature to compute the integrals. This combination leads to a perfectly diagonal
mass matrix in equation 3, which then enables the use of an explicit time scheme that
can be efficiently parallelized (Komatitsch et al., 2003, Carrington et al., 2008, Vos et
al., 2010). The choice of Lagrange polynomials to approximate the wavefield requires
that only rectangular elements are used in 2D and only hexahedral elements in 3D.
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2.2.4 Accuracy and stability

Using N+1 Lagrange polynomials of degree N in combination with the GLL
quadrature provides an exact integration of polynomial functions of degree 2N-1 or
lower at the collocation points. That is, the numerical error is negligible at the GLL
points, but not exact at other points, and the error of the approximation depends on the
element size, the time step, and the order of the polynomial basis functions too.
Because the numerical dispersion is cumulative, this inexact approximation can be
especially important in the case of wave propagation for long ray paths. To overcome
the numerical dispersion, one should use basis functions of the highest possible order,
but that would inflate the computational cost as well. Therefore the order of the basis
functions is usually between 4 and 8. The element size usually depends on the
wavelength, and the order of the polynomials of the shape functions (see section
2.2.5). The CFL condition defines a stability criterion, which serves as an upper limit
to ensure the stability of the simulations (Courant et al., 1928). The CFL condition
varies with the method, as it depends on the time-stepping scheme and on the order of
the basis functions as well. The CFL number is proportional to the wavelength and
inverse-proportional to the time step:

wavelength

CFL number ~—
timestep

.(7)

Satisfying the CFL condition ensures only the stability of the simulation, but not its
accuracy. To increase the accuracy of the approximation one could choose a small
element size and time step, but this would also increase the computational cost.
Therefore a trade-off must be found, where stability and accuracy are ensured at the
lowest possible computational cost.

2.2.5 Remapping onto a reference element

Using the currently available computational infrastructure, it is highly advantageous
to perform the same mathematical operation on many elements at the same time.
Therefore each element is mapped onto a reference element (e.g. in the case of a
hexahedral element onto a cube). The extent of this reference element is [-1, 1],
where n denotes the number of spatial dimensions. Because of the usually complex
shaped elements in a non-structured mesh, the mapping is also based on a polynomial
approximation. Shape functions are used to describe the shape of a given element, and
the wavefield is evaluated on so-called anchor nodes. The shape functions are usually
1% or 2" order Lagrange polynomials, depending on the complexity of the element
shapes. Figure 11 illustrates the positions of the anchor nodes in the case of 1* and 2™
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order hexahedral elements. In the 1* order case the 8 corners are the anchor nodes,
while in the 2™ order case there are additional anchors in the centers of the edges,
surfaces and the volume as well, altogether 27 nodes. One can clearly see the
advantage of the 2™ order case, as it can account for curved surfaces and edges as
well. It can be especially advantageous if bigger and/or significantly deformed
elements are to be used in a mesh (Appendix B). Thanks to the mapping, the wave
equation can be easily solved for each element without the need to know the material
properties of the full domain €. It also translates into less memory requirement during
the calculations.

Figure 11. Distribution of the anchor nodes to evaluate the wavefield in a given
element for the remapping onto the reference cube. Left: 1* order elements with eight
anchor nodes, using linear shape functions. Right: 2™ order elements with additional
anchor nodes, using shape functions of degree 2. Adding anchor nodes to the center of
the volume and of each face, the total number of nodes becomes 27 (Figure 4.4 in
Fichtner, 2010).

2.2.6 Point source implementation

As noted above, the SEM has an exact integration only at the GLL points. Therefore,
any source should preferably inject energy into the model in a smooth way (both in
time and space) to avoid numerical instabilities. However, in seismic
exploration/seismology, the source is usually point localized (equation 6), which is a
perfectly non-smooth distribution of the source energy. To overcome this, we use once
again Lagrange integrals to approximate the delta function in space (Faccioli et al.,
1997). Because this solution inevitably yields a low-pass-filtered version of the real
delta function, the source implementation is not perfect in the near-field. Faccioli
(1997) and Nissen-Meyer et al. (2007) show that this issue remains limited to the
element containing the source.
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2.2.7 Time stepping

As noted above, most of the time-domain numerical methods use an iterative scheme,
based on the finite-difference approach to advance the wavefield in time in discrete
time steps At. As seen in Section 2.2.3, a perfectly diagonal mass matrix in equation 3
can be ensured by a smart choice of the basis functions and the integral quadrature.
Then an explicit time scheme can be used to advance in time the algebro-differential
equations. In this thesis we use the second-order explicit Newmark scheme for time
stepping (Newmark, 1959, Hughes, 1987), defined as:

u(t+At):u(t)+AtL'l(t)+%At2i'l(t) ,(8)

and

il(t+At)=i1(t)+Atl"l(t)+%At[i'1(t+At)—i'1(t)] ,(9)

The following iterative scheme is used to advance equation 3 in time:
1) compute i1(t) for t=t, ,using equation 3, where we omit the upper bar
signs for the sake of clarity:

in(t)=M""[f(t)-Ku(t)] , (10)

2) compute ir(t+At) ,using f(t+At) , u(t) , u(t) ,and i(t)

i'l(t+At):I_1><[—Ku(t)—AtKil(t)—%AtzK]ﬁ(t)+f(t+At) ,(11)

where [ is the identity matrix,

3) compute u(t+At) from wu(t) , a(t) , a(t) and dr(t+At) , using
equation 8,

4) compute u(t+At) from a(t) , it(t) ,and @(t+At) , using equation

5)replace t by t+At and return to 2).

37



PART 1

2.2.8 Boundary conditions

In order to save computational cost, we may need to limit the computational domain
and introduce artificial boundaries. To avoid spurious reflections from these
boundaries, a careful treatment of the wavefield is necessary. Namely, the incident
waves must be efficiently absorbed, and no energy should be reflected backward.
Absorbing boundary condition methods are based on the paraxial approximations of
the wave equation (Engquist and Majda, 1977, Clayton and Engquist, 1977, Stacey,
1988, Quarteroni et al., 1998). Although these methods have a low computational cost
and are efficient to absorb seismic waves at close to normal incidence, waves at
grazing incident angles are reflected back (Keys, 1985, Higdon, 1991). Moreover, the
method can be unstable for elastic materials if the V,/V; ratio is bigger than about 2.17
(Emerman and Stephen, 1983, Mahrer, 1986); or if the simulations are for a long
period of time (Mahrer, 1990).

We prefer using the approach of perfectly matched layers (PML), introduced by
Berenger (1994). Contrary to the absorbing boundary techniques, PML methods use
thin layers around the external surfaces (Collino and Tsogka, 2001, Zheng and Huang,
2002, Komatitsch and Tromp, 2003, Festa and Vilotte, 2005, Festa et al., 2005,
Kristek et al., 2009, Xie et al., 2016). In these layers, the wave equation is modified
such that, the amplitude of the incident waves decays rapidly. The term 'perfect' refers
to the fact that, the wave equations in the normal computational domain and in the
PML zone are coupled in a way that no reflections are produced on the artificial
boundaries. Because the SEM uses the weak form of the wave equation, the modified
equations in the PML region have singularities that need to be explicitly removed (Xie
et al., 2016).

2.3 Adapting the Specfem software package to our
framework

We used Specfem (Komatitsch and Vilotte, 1998), an open-source software package
for the spectral-element simulations of this thesis. The software package has 2D, 2.5D
(axisymmetric), 3D Cartesian and 3D Globe versions. Specfem was initially
developed for the simulation of earthquakes, but it is also used for other applications
in exploration geophysics and global seismology (e.g., Komatitsch and Vilotte, 1998,
Seriani, 1998, Komatisch and Tromp, 2002, Fichtner et al., 2009, Peter et al., 2011);

38



Chapter 2

ocean acoustics (e.g., Cristini and Komatitsch, 2012, Bottero et al., 2016); and non-
destructive testing (e.g. Nagaso et al., 2016). Efficient parallel computing is available
in the package due to the use of message passing interfaces (MPI). A typical workflow
of the software package is shown in Figure 12. The first step is generating a
hexahedral mesh, either by importing it from an external tool or using the internal
mesher. The second step is used only in the case of parallel computations when the
mesh is decomposed into partitions, which will be distributed to the different
processors during the actual simulations. The third step is the generation of databases
to be used during the simulations. The last step is the simulation of the wave
propagation, i.e. running the actual solver.

CUBIT -

or Gmsh

xmeshfem3D

SCOTCH -
or METIS

xdecompose_mesh

Figure 12. The typical workflow of simulating the propagation of seismic waves with
the Specfem3D Cartesian software package. Courtesy of Computational Infrastructure
for Geodynamics.

2.3.1 Non-structural meshing of the Marseille-Benchie model

Creating a non-structured hexahedral mesh for a complex geometry is a challenging
and lengthy task (Shepherd and Johnson, 2008, Staten et al., 2010). We used
Cubit/Trelis (Blacker, 1994) as a software to mesh the Marseille-Benchie model in
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3D. In the case of a non-structured mesh, we need to keep in mind the future
computational cost and the accuracy by considering three points. First, the element
size must be small enough to accurately model the highest frequencies of interest.
Second, the size of the different elements in one material should be as equal as
possible (depending on the geometry) to avoid too small elements. This is important
because smaller elements require smaller time steps according to the CFL-condition
(equation 7), i.e. higher computational cost and more memory. Finally, one needs to
avoid creating too distorted/elongated elements, which could result in a mesh of poor
quality, making the simulation unstable. Because the model has a complex overall
geometry, fully automatic hexahedral meshing algorithms could not be used. Our
solution was to cut the domain into several subdomains, which were easier to handle
for the meshing software (Figure 13). The challenge of the task was to find the order
in which the individual subdomains had to be meshed, such that the entire
computational domain could be meshed at the end. Due to these difficulties, and also
to reduce the computational cost, we considered only a part of the full model for the
numerical simulations (Figure 13). As a result, the truncated dome was excluded from
the simulations because this object proved to be too complex to be meshed, mainly
due to its small dimensions combined with sharp edges and narrow corners. With our
decomposition strategy, we first obtained approximately 15.6 million elements,
including the water column above the PVC. Figure 14 shows the distribution of the
element size for the part of the Marseille-Benchie model under consideration with the
applied decomposition and meshing strategies. The maximum edge length is about
four times bigger than the smallest one, being approximately 1.6 and 0.4 mm,
respectively. It is important to note that the accuracy of the spectral-element
simulations is not directly constrained by the element size, but rather by the number
of GLL points per wavelength. The initial meshing strategy was designed for fourth-
order polynomial basis functions, requiring five GLL points per wavelength, which is
approximately five GLL points per edge (Mulder, 1999). Considering the minimum
velocity of the model — namely, 1050 m/s for the S-waves in PVC — and the maximum
target frequency (650 kHz), the goal was to have all the edge lengths below 1.6 mm.
We present an optimized meshing strategy in Appendix B, which allowed us to reduce
the number of elements to about 1.4 million and the computational cost by a factor of
four to six.
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Figure 13. Part of the model used for the numerical simulations with a coarse mesh.
The red line denotes the position of the study line discussed in Part 1. The yellow
asterisk shows the source position for the offset study line. The different colors show
the subdomains necessary for the non-structured meshing.

4.0
.S 3.5
€ 3.0
225
£
£2.0
©
s 1.5
21.0
£
= 0.5
0.0

0.39 0.64 0.88 1.12 1.36 1.60
Mean edge length (mm)

Figure 14. Distribution of the element size of the mesh for the part shown in Figure
13.

2.3.2 Viscoelasticity in the simulations

Because the Marseille-Benchie model is made of strongly attenuating PVC (Table 1),
viscoelasticity had to be incorporated in the simulations. In reality, the initial energy
of the seismic waves decays with time, due to heat dissipation, grain boundary
relaxation, thermal diffusion, etc. In order to account for this energy decay, equation 4
has to be modified such that the stress is determined by the entire strain history:

o(t)=[o,Cc(t=t'):Vu(t)dt' .(12)

Even in the case of viscoelastic rheology in seismic exploration, we can still suppose
a linear relationship between the stress and the strain. The overall effect of all the
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energy dissipating mechanisms can be modeled using the technique of Liu et al.
(1976), which approximates the absorption with a set of standard linear solids. This
standard approach usually assumes that the quality factor Q does not depend on the
frequency, which is the usual case in both seismic exploration and global seismology.
This assumption is also confirmed for the Marseille-Benchie model by our laboratory
measurements, which show very similar Q factors for the PVC when measured
between 250-650 kHz (Appendix A). In practice, the approximation of the
viscoelasticity with the Zener model requires fitting Q in the frequency range of
interest by using a set of relaxation mechanisms. The rule of thumb is to use two-three
relaxation mechanisms per order of magnitude in the frequency range, to achieve a
good fit of the constant Q model. In our work, we use three standard linear solids. The
relaxation times are represented by points in the frequency range and their associated
weights. A linear approach can be used by presetting the points at given frequencies in
the frequency range of interest and then optimizing the fit only for the weights
(Emmerich and Korn, 1987). However, this approach does not ensure the positivity of
the weights and thus the decay of the total energy over the time may not be ensured.

An alternative approach is introduced by Blanc et al. (2016) to ensure that the weights
are always positive and their nonlinear optimization is also more accurate in terms of
fitting the constant Q approximation in the frequency range of interest. The
nonlinearity means that both the points and the weights are optimized to obtain a
better fit of Q for the frequency range of interest. We use this non-linear approach for
the simulations presented in this thesis.

2.3.3 Numerical implementation of the transducer characteristics

One of the most important tasks was to accurately implement the real characteristics
of the transducers in the numerical simulations. Because it is omnidirectional and has
a frequency-independent sensitivity in the frequency range of interest (250-650 kHz),
the Teledyne Reson® hydrophone (used as the receiver for offset measurements) was
implemented as a point receiver. However, the Imasonic® source transducer has a
unique radiation pattern that cannot be described by the classical analytical
formulation of Zemanek (1971), nor by an approximate radiation pattern valid only
for the dominant frequency (Tantsereva et al., 2014a). The latter does not provide an
optimal solution because other frequencies also contribute to the radiation pattern.
Therefore, we propose a new, two-step approach to implement the real transducer
characteristics in the numerical simulations, accounting for all frequencies of interest.
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The procedure consists of the laboratory characterization of the source followed by an
inversion step to obtain a numerically equivalent source. Because point sources are
implemented in most of the numerical tools, we built an equivalent disk source of
several point sources in order to be able to use the same implementation with various
numerical solvers. This approach is based on the theory of wave superposition
(Koopmann et al., 1989). The disk is described by three parameters: the thickness, the
radius, and the number of point sources distributed on its surface. The different point
sources are independent, i.e. they can have any arbitrary (smooth) source signal and
are constrained only by the measured data set of the laboratory characterization. The
goal of the inversion is to determine the source signal of each point source, such that
the resulting overall source signal of the whole equivalent source is the same as the
one measured at each angle. At this point, we need to distinguish the procedures to
obtain the numerically equivalent source in zero-offset and offset configurations
because they require a slightly different approach (Figure 15). We first introduce the
procedure for the offset case, and the differences for the zero-offset case are discussed
afterward.

Offset case Zero-offset case

Laboratory characterization

of the source transducer at

normal incidence using the
air-water interface

Laboratory characterization Laboratory characterization
using source & receiver using source & receiver
transducers transducers

Deconvolution

Inversion process for the Inversion process for the
equivalent disk source equivalent disk source

Figure 15. Workflow of the procedures used to implement the numerical equivalent of
the real source transducer in offset and zero-offset configurations.

For the offset case, only the laboratory characterization of the source transducer with
the receiver is required to obtain a numerically equivalent source. The
characterization of the source transducer was performed in a water tank. The source
transducer was connected to a pulse generator and kept fixed, and its impulse
response was recorded with the hydrophone at every 0.2°, covering an angle range of
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200°, at a constant distance of 259 mm (Figure 16). The recorded data set was the
input for the subsequent inversion step.

__air-water
S-100(w)*R(w) (w)R(w) :  terf

mm 1129.5 mm interface

Y *

So(w):So(w)
So(w)-R(w) (trace #2)
(trace #1)
%k source % solirce
receiver & receiver

Figure 16. Schematic diagrams of laboratory characterization of the source transducer
using the source and receiver transducers (left), and the source transducer illuminating
the air-water interface at normal incidence (right).

The initial guess for each point source distributed on the surface of the equivalent disk
source was a constant zero pressure, and the cost function was computed using the
L2-norm:

CD(k):Z,- Z;(mii_cii )2 , (13)

where @® denotes the cost function after the k™ iteration, and m; and ¢; are the
recorded and the calculated impulse responses at the i" time sample and j*
hydrophone position, respectively. During the inversion step, some parameters,
namely, the radius of the equivalent disk, the number of point sources distributed on
the disk, the number of layers in the disk, and the number of iterations, were tested to
find the best fit with the measured data. We found that a radius of 3 mm with 253
point sources distributed on only one disk layer gives the best fit between the
measured and the inverted radiation patterns (Figure 17). Using more than 10 000
iterations did not result in any significant change in the results. The comparison of
simulated traces using the inverted equivalent source with the measured traces shows
an angle dependency in the goodness of fit (Figures 17-18). Indeed, the main lobe of
the radiation pattern (corresponding to +30° around the center of the transducer) is
accurately recovered. For example, the correlation coefficients between the measured
and simulated traces at 0° and 20° are 0.99 and 0.98, respectively (Figure 18).
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However, outside of the range of +30°, the goodness of fit drastically decreases with
increasing angle from the center of the transducer (Figure 17). For example, the
correlation coefficient between the measured and simulated traces at 60° is 0.64.
Therefore, the secondary lobes of the real radiation pattern are less accurately
recovered. This can be explained by the fact that the recorded signals corresponding
to the secondary lobes have far less energy than those of the main lobe (less than —20
dB at high angles). Hence, they can be overshadowed by the noise recorded in the
laboratory data.
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Figure 17. Comparison of the measured (blue) and inverted (red) radiation patterns of
the transducer in the offset configuration. The amplitude is maximal opposite to the
transducer (0°).
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Figure 18. Comparison of the measured traces (blue) with the simulated traces (red),
using the inverted equivalent source at different angles. The correlation coefficients
are shown in each panel, respectively.

The procedure to obtain the numerically equivalent source in the zero-offset
configuration is quite similar to the previous one, but it requires a deconvolution
process before the inversion step (Figure 15). This is due to the fact that for zero-
offset measurements the same transducer is used twice: first, as the source, and then,
as the receiver. Therefore, an extra measurement is needed, using only the source
transducer to measure the reflected wavefield from the water-air interface at normal
incidence (at a distance of half of 259 mm). The deconvolution process is done in the
frequency domain after a Fourier-transformation of all the recorded signals. Let us
denote the laboratory trace recorded by the hydrophone opposite to the source
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transducer as trace 1 (Figure 16) and the trace recorded by the source transducer
corresponding to the reflected wavefield from the water-air interface at normal
incidence as trace 2 (Figure 16).

The process can be summarized as follows:
* Step 1) Note that trace 2 is the square of the source transfer function.
Therefore, the square root of trace 2 gives the source transfer function at 0°,
i.e., in the opposite position to the source,

* Step 2) Because the hydrophone is omnidirectional, the receiver transfer
function is the same at each angle a. Therefore, divide trace 1 by the source
transfer function (step 1) to determine the receiver transfer function R(w),

* Step 3) Divide all the traces recorded by the hydrophone by the receiver
transfer function R(w) to get S«(w) for each angle o (deconvolution in the time
domain),

* Step 4) Take the square of Si(w) for each a to obtain the zero-offset transfer
function of the source transducer at each angle,

Step 5) Inverse Fourier transform all the obtained traces to the time domain.

The data set derived using this deconvolution process is the input to the inversion
process, which is the same as described above for the general offset case. According
to our tests, the best fit between the measured and the inverted radiation patterns can
be obtained with a disk radius of 6 mm, using 253 point sources and only one disk
layer. Similar to the offset case, using more than 10 000 iterations did not provide any
better result. The angle dependency in the goodness of fit is also valid for the zero-
offset case. However, the range of the more accurate fit is broader (approximately
+35° around the center of the transducer). This is due to the fact that (relatively) more
energy is focused in the central beam in this configuration, thus, the outer region (with
lower signal-to-noise ratio) has less influence on the inversion of the main lobe.
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2.3.4 Numerical calibration of the material properties

Because the characterization of the material samples yields a range of possible values
for each measured property (Appendix A), an initial calibration is necessary to find
the values to be used before the final simulations. The calibration consists of a zero-
offset laboratory measurement, followed by an iterative fitting of the results of the
numerical simulations of the same trace. The goal of this iterative fitting is to adjust
the material parameters such that, the simulation yields the closest possible fit with
the reference laboratory measurement. To have the least geometric effect on the
calibration, a test point was chosen above the flat part of the Marseille-Benchie model
(black cross in Figure 19). The velocities and Q-factors for P- and S-waves for the
PVC were tested, while the densities of the PVC and the water, and the velocity of the
P-waves in water were considered to be perfectly known. We note here that, in reality,
the investigated parameters have a combined effect on the amplitude, phase, and
arrival times, so the result of this calibration provides one possible solution in the
parameter space. First, the P-wave velocity for the PVC was calibrated, then all the
remaining differences between the reference laboratory trace and the simulated trace
were attributed to Vs, Qp, and Qs.

The resulting parameters from the calibration were found to be Vp = 2260 ms, Vs =
1050 m%, Qe = 28.7, and Qs = 26. If we compare these values with those in Table 1,
we can see that Vsand Qs of the PVC are close to the measured values, but Vp and Qp
are significantly different. First, we need to highlight that accurately measuring
attenuation is one of the major challenges of the laboratory work. Furthermore, the
measured values strongly depend on the acquisition setup, i.e. the transducer height
above the material sample. Namely, it has an important effect on the illumination of
the material samples/physical model, resulting in different amplitudes recorded at
different distances. Therefore the adjusted material parameters obtained by fitting a
given reference laboratory trace are in fact not absolute, but only apparent values, like
in the case of a real-life seismic data acquisition. This is why the reference trace must
always be chosen in an area where the geometry is the closest to be one-dimensional.
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Figure 19. Comparison of the zero-offset laboratory trace with synthetic results for the
test point to calibrate the material properties before the final simulations. The position
of the test point is shown with the black cross.

2.4 About the finite-difference simulations

Although the primary numerical algorithm used in this thesis is the SEM, we also
present finite-difference results in this part to show the capability of the method to
reconstruct the complex wavefields recorded for the Marseille-Benchie model. The
applied FDM is based on Virieux's (1986) velocity-stress formulation for an elastic
medium. The spatial derivatives are computed using 8" order optimized differentiators
(Holberg, 1987), whereas the temporal integration is 2™ order. The elastic scheme is
extended to the viscoelastic case by the extension of the stress-strain relation (Ben-
Menahem and Singh, 1981). For the free-surface implementation, the method of
Mittet (2002) was used. The PML boundary conditions, the attenuation, and the
source transducer were all implemented identical to the SEM (Sections 2.2.8, 2.3.2,
and 2.3.3, respectively). The model geometry was discretized using a regular three-
dimensional grid with a uniform grid spacing of 0.5 mm (corresponding to 10 m at
seismic scale). It gives approximately 4.1 and 2.9 grid-points per the shortest
wavelength for P- and S-waves, respectively. The FDM results presented in this thesis
are the work of Bgrge Arntsen (NTNU, Trondheim, Norway), and they are showcased
here as the result of the collaboration between the NTNU and the LMA (Arntsen et
al., 2017, 2018).
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Chapter 3
Comparison of experimental and numerical data

3.1 Comparison of zero-offset data sets

Here, we consider more specifically three traces of the laboratory zero-offset section
corresponding to the study line (red line in Figure 13). These traces (labeled as A, B,
and C in Figure 9) are of particular interest because they contain diffracted waves
generated by the feature edges, as well as reflections from the flat and curved surfaces
of the model.

Trace A is located above the lower edge of the pyramid, where its flank meets the flat
part (red cross in Figure 20). It is composed of several groups of reflections: from the
side of the pyramid (denoted as event A1l in Figure 20), from the flat part (A3 and
A4), from the bottom of the model below the flat part (A8 and A9), and below the
dome (A10). Several groups of diffracted waves are also present, corresponding to
diffractions: from the upper edge (A2) and the lower edge (A7) of the pyramid, and
from the edge of the dome (A6). Event A5 is related to the truncated dome, which is
not included in the simulations.
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Figure 20. Comparison of zero-offset laboratory trace A with synthetic results
obtained with the SEM (top) and the FDM (bottom). The physical interpretation of the
annotated events is provided in the text.
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Trace B is located half-way between the pyramid and the dome (yellow cross in
Figure 21). It is composed of several groups of events associated with reflections:
from the side of the dome (events B1 and B2 in Figure 21), from the side of the
pyramid (B3), from the flat part (B4), and from the bottom of the model below the flat
part (B6). Event B5 is the superposition of diffractions from the upper edge of the
pyramid and from the edge of the dome. Event B7 corresponds to the superposition of
a reflection from the bottom of the model below the dome and a diffraction from the
lower edge of the pyramid.
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Figure 21. Comparison of zero-offset laboratory trace B with synthetic results
obtained with the SEM (top) and the FDM (bottom). The physical interpretation of the
annotated events is provided in the text.

Trace C is located on the other side of the dome, compared with traces A and B
(Figure 22). It is composed of several groups of reflections: from the side of the dome
(C1 and C2 in Figure 22), from the flat part (C3 and C4), and from the bottom of the
model below the flat part (C6 and C7). Event C5 is a multiple of a diffraction from the
lower edge of the dome, whereas event C8 is a multiple reflection.
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Figure 22. Comparison of zero-offset laboratory trace C with synthetic results
obtained with the SEM (top) and the FDM (bottom). The physical interpretation of the
annotated events is provided in the text.

It is important to note that the laboratory data are real data, so they also contain
unknown noise recorded by the acquisition system. Furthermore, as shown in Figure
7, the source wavelet is a long signal, composed of a main event followed by a few
tens of ps long low-energy tail with small amplitudes (ringing effect). It may explain
the fact that some events are composed of two parts (e.g., events A8 and A9 in Figure
20; B1 and B2 in Figure 21; C1 and C2, C3 and C4, C6 and C7 in Figure 22).

Qualitative comparisons between laboratory and synthetic traces show a quite good fit
in amplitude, phase, and travel time. Regardless of the trace location, synthetic traces
show an almost perfect fit with the experimental data in time, phase, and amplitude
for the reflected events from the top and bottom of the flat part of the model. The
early and late parts of these arrivals sometimes reveal minor amplitude misfits, most
probably due to the low-energy second part of the source signal, which may not be
perfectly reconstructed by the source inversion, as well as the uncertainties in the
attenuation parameters chosen for the simulations. Events associated with the side
reflections and/or diffractions from the topographic features are also well restored by
the simulations (see events A1 in Figure 20, B5 and B6 in Figure 21, and C1 and C8
in Figure 22).
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The correlation coefficients between the laboratory and the spectral-element traces are
0.91, 0.95, and 0.91 for traces A, B, and C, respectively. These good results are due to
the fact that SEM has the ability to honor the model geometry, even for tilted and
curved interfaces by using a non-structured mesh. The correlation coefficients
between the laboratory and the finite-difference traces are 0.93, 0.89, and 0.88 for
traces A, B, and C, respectively. These high values show a very good fit with the
laboratory data, which is ensured by the high number of grid points per wavelength
during the finite-difference simulations. Comparing either the correlation coefficients
obtained by the two numerical methods, or the traces visually, both the FDM and the
SEM show a very similar fit with the laboratory measurements. Both the arrival times
and the amplitudes of the different arrivals are well restored, however, small
differences can be pointed out. Event A1 is very well reconstructed by both methods,
suggesting that the finite-difference grid is fine enough to represent the tilted sides of
the pyramid. To the contrary, events B1 and C1 show some minor misfits between the
finite-difference traces and the laboratory measurements. These small misfits suggest
that the finite-difference grid should be even finer to better reconstruct the reflections
from the strongly curved surface of the dome. The fact that the misfit is more
pronounced for event C1 shows that the closer we are to the curved interface, the
more misfit can be observed due to the grid representation of the geometry in the
FDM. Diffractions are properly handled by both methods in general. For example
event B5 is reconstructed to the same extent by both methods. However, the FDM
shows some more misfit for event C5 than the SEM.

3.2 Comparison of offset data sets

Here, we consider more specifically two traces of the laboratory offset section,
labeled as D and E in Figure 10. The source location is above the flank of the dome
for both traces (yellow asterisk in Figures 23 and 24).

The receiver for trace D is located next to the ramp (blue triangle in Figure 23). The
trace contains several groups of events, mainly associated with the direct source-
receiver travel path (labeled as D1 in Figure 23), the reflection from the top of the
truncated pyramid (D2), and the reflection from the curved surface of the dome (D3).
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Figure 23. Comparison of offset laboratory trace D with synthetic results. The
physical interpretation of the annotated events is provided in the text. Top: spectral-
element simulation, bottom: finite-difference simulation.

The receiver for trace E is located between the dome and the pyramid (yellow triangle
in Figure 24). Event E1 is the direct arrival from the source to the receiver. The other
interpreted events are related to reflections from the dome (E2), from the flat part
(E3), and from the pyramid (E4).
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Figure 24. Comparison of offset laboratory trace E with synthetic results. The
physical interpretation of the annotated events is provided in the text. Top: spectral-
element simulation, bottom: finite-difference simulation.
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A qualitative comparison between the simulated results and the laboratory data shows
a good fit in arrival time, phase, and amplitude for some events (D1 and D2 (only for
the SEM) in Figure 23, and E2 and some parts of E4 (only for the SEM) in Figure 24).
However, other events related to reflections from the dome (D3), from the flat part
(E3), and from the pyramid (E4) show significant arrival time and amplitude misfits.
We note that the different traces show a different quality of wavefield reconstruction,
corresponding to the same object, and depending on the offset. For example, the
reflection from the dome is correctly reconstructed on trace E (event E2), but with a
misfit on trace D (event D3). To the contrary, the comparisons show a perfect
reconstruction of the reflection from the pyramid in the case of trace D (event D2) and
a misfit for trace E (event E4).

The correlation coefficients between the measured and simulated trace D are 0.76 and
0.33 for the SEM and the FDM, respectively. Comparing the different numerical
results with the laboratory trace in Figure 23, we see a significantly higher amplitude
and arrival time misfit for the FDM for the reflection from the pyramid (event D2).
This may be explained by the grid representation of the model geometry in the finite-
difference simulations, similar to the misfits pointed out for the zero-offset traces
above. The two numerical methods show more or less the same reconstruction of the
reflection from the dome (D3), with the same arrival time misfit, but a smaller
amplitude misfit in the case of the FDM.

In the case of trace E, the correlation coefficients between the laboratory and the
synthetic results are 0.21 and 0.17 for the SEM and the FDM, respectively. These low
values are due to the similarly high misfit for both algorithms in the reconstruction of
the direct source-receiver path (event E1). This is proven by the fact that, if the direct
arrival was not considered, the same correlation values for trace E would be 0.51 and
0.32, for the SEM and the FDM, respectively. We recall that the implementation of the
numerically equivalent source has higher uncertainties for the low-energy later part of
the source wavelet and the secondary lobes (due to the low signal-to-noise ratio of
these events) than for the main lobe of the directivity pattern. Even if they carry less
energy than the main lobe, the role of these higher order lobes in the illumination of
the model should not be neglected in the case of offset configurations. Because the
direct arrival is much more related to the secondary lobe for trace E than in the case of
trace D, we can understand the difference in the lower quality reconstruction of the
direct arrival for trace E, as opposed to the perfect reconstruction for trace D. The
reflection from the dome on trace E (event E2) is well reconstructed by both
numerical methods in time, but the FDM shows a lower amplitude than the
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SEM/laboratory measurements. Reflections from the pyramid on trace E (event E4)
show a very similar reconstruction by the two methods, but the FDM shows
somewhat more misfits (e.g. the SEM can correctly reconstruct the measurements
around 245 ps, whereas the FDM has both amplitude and arrival time misfits). We
highlight again that these higher misfits pointed out for the FDM, compared with the
spectral-element results, may be attributed to the grid representation of the model
geometry. It means that the differences between the two numerical methods should
entirely diminish with an even finer finite-difference grid.

3.3 Discussion

As shown above, both the SEM and the FDM can reproduce laboratory zero-offset
data in terms of arrival time, phase, and amplitude with high accuracy. However, the
fit between synthetic results and experimental offset data is significantly less accurate.
We discuss here the possible explanations for this observation, including the
experimental uncertainties and the numerical implementation of the directivity pattern
of the source transducer, as well as the computational cost.

Laboratory data always contain noise and offset data sets generally have a lower
signal-to-noise ratio than the zero-offset data. Moreover, uncertainties in the
transducer positions also have an effect on the data. It is more significant in the offset
case because there is a nonlinear combination of uncertainties in the source location,
the source tilt angle, and the receiver position. This nonlinear combination makes it
difficult to evaluate the role of one effect over the others. This effect is even more
pronounced in the presence of strongly tilted and curved interfaces, causing wave
defocusing.

Let us analyze here this source of misfit and quantify the order of magnitude of the
possible resulting uncertainty. We show an example of the Marseille-Benchie model
using the dome. The geometry of the problem is shown in Figure 25, where R denotes
the radius of the dome, H is the height of the source transducer above the top of the
dome, y is the incidence angle, « is the angle of the reflected wave, I; is the distance
from the source to the incidence point, 0 is the angle between the vertical line below
the source position and the incidence point from the center of the dome, I, is the
distance between the incidence point and the source level along the line defined by 6,
and the sum of x and y is the theoretical offset of the reflected wave. For now, we
suppose that the source is located exactly above the top of the dome. We are interested
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in the change in the offset of the arrival of a given ray due to an error 6y in the
incidence angle y. If R, H, and y are known, then 6 can be calculated using the law of
sines:

;H sin(y)) . (14)

O=n—y—sin (

Using simple trigonometry, we can now calculate x, [;, I, a, and y:

x=(R+H)tan(0) , (15)

1,=V(R+H+R*—2R(R+H)cos(0) , (16)

R+H

L=——7-—=—-R , (17
> cos(B) (17)
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=222 4
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If the uncertainty of the incidence angle 6y is known, then §6 can be calculated using
equation 14, where 60 is the shift in 6 due to the error in the incidence angle.
Furthermore, we can also calculate the changes in x, I;, I, a, and y:
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where the sum of éx (equation 20) and 8y (equation 24) is the shift in the offset of the
reflected wave due to the error dy in the incidence angle y. To quantify the order of
magnitude of the offset error, we consider H=140 mm, R=51.25 mm, and y=5°.
Supposing an error of 6y=0.5° in the incidence angle, the point of illumination on the
surface of the dome is shifted by 1.3 mm. Using equations 20 and 24, we get 6x=5.2
mm and dy=1.5 mm, respectively. It means that an error of 0.5° in the incidence angle
leads to a shift of 6.7 mm (134 m at seismic scale) in the arrival offset of the beam
(i.e. in the receiver location), depending on the point of the illumination of the surface
of the dome. This uncertainty may thus have a significant impact on the arrival time
and the amplitude of the reflected and diffracted events. This is illustrated in Figure
26 for offset trace D, where two synthetic traces are compared using a 1° different tilt
angle of the source transducer. Although the differences for the reflection from the
dome are negligible, the direct arrival and the reflection from the pyramid show a
significant misfit between the two traces.

receiver source

Figure 25. The effect of the uncertainties in the incidence angle on the wavefield.
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Figure 26. The effect of 1° difference in the tilt angle of the source transducer on the
simulated SEM wavefield (offset trace D).

We note that the sometimes observable higher misfits for the finite-difference results
compared with the SEM are related to the grid representation of the model geometry
in the FDM. These misfits should entirely disappear with an even finer finite-
difference grid.

We have proposed a strategy to numerically implement the directivity pattern of the
real source transducer. This strategy permits to recover the main lobe of the emitted
beam, in which most of the energy is concentrated. The excellent fit between synthetic
results and laboratory zero-offset data shows that the strategy is efficient in zero-offset
configurations because mostly the main lobe illuminates the model and contributes to
the recorded data. Nevertheless, for offset data recorded in strong topographic
environments, the proposed strategy is less accurate because the low-energy later part
of the source wavelet (Figure 7) and the secondary lobes play an important role in the
illumination of the model, even if they carry far less energy than the main event of the
source wavelet in the main lobe (Figure 17). Indeed, in our case, they may interact
with the dome and the pyramid (depending on the source location), influencing the
amplitude and phase of the wavefield.

The computational cost of the numerical methods is often an important point,
particularly in the operational context of seismic exploration. Here, we differentiate
between the man-hour cost spent on the preparation of the simulations and the
computational cost (i.e., the number of processors used for simulations times the
actual running time of one simulation). In general, the SEM has a large man-hour
cost, due to the non-structured hexahedral meshing. To illustrate this problem, we note
that we spent a few weeks to find the optimal meshing strategy for the Marseille-
Benchie model, without finding a satisfying strategy for the truncated dome. Contrary
to finite-difference gridding, there is no quick or cheap solution to non-structured
hexahedral meshing in terms of man-hour cost. Regarding the computational cost of
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the method, we used Intel Xeon Sandy Bridge EP (E5-2680) processor cores for the
spectral-element simulations. The initial meshing strategy resulted in a mesh that
required 10150 core hours to simulate 350 ps of wave propagation (corresponding to
7 s at seismic scale). Using the optimized meshing strategy of Appendix B, this cost
was reduced to 1611 or 2538 core hours, depending on the element size. The
computational cost of the FDM was 32 GPU hours for the simulation of 350 ps of
wave propagation, using Nvidia GForce GTX Titan X graphics cards. We note that
depending on the graphics card, the CPU cost of Specfem must be divided by a factor
of more than an order of magnitude to obtain the corresponding GPU hour value
(Komatitsch et al., 2010). Therefore, in practice, the two methods have roughly the
same computational cost for the Marseille-Benchie model. Based on this observation,
in an operational context, the FDM can be optimal if the model geometry often
changes due to the lengthy meshing step before the spectral-element simulations.
However, the finite-difference grid must be very fine, as we have seen before.
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Conclusions of Part 1

The goal of Part 1 is to provide a workflow to adapt the numerical simulations and the
small-scale laboratory experiments to each other, such that the two can be easily
compared with high accuracy and confidence. We are also interested in the ability of
the SEM and the FDM to accurately simulate complex 3D wavefields including
(multiple) diffractions at the lowest possible computational and man-hour cost. We
have thus compared 3D synthetic results with laboratory measurements in 3D zero-
offset and 3D offset offshore reflection configurations for the Marseille-Benchie
small-scale physical model. The model includes structures with steep flanks, sharp
edges, corners, and curved interfaces. This complexity provides a challenge to any
numerical method to reproduce the wavefield.

Prior to the simulations, we have focused on the input data/parameters, such as the
material properties, the model geometry, and the characteristics of the source and
receiver transducers. The material properties have been characterized in the laboratory
and calibrated for the numerical simulations. The viscoelastic behavior of the material
used in the model has been approximated with a set of standard linear solids in the
numerical simulations. The real source transducer characteristics have been
implemented based on a new approach, which consists of the laboratory
characterization of the impulse response of the transducer, followed by an inversion
step to obtain a numerically equivalent source for the numerical simulations. The
zero-offset measurement requires an additional deconvolution step before the
inversion because, in that case, only one transducer is used as both the source and the
receiver.

We have suggested an optimization of the spectral-element computational cost, by
using larger elements in the non-structured mesh and higher order polynomial basis
functions. This technique helps to significantly reduce the computational cost while
obtaining a similar level of accuracy. Comparison of the zero-offset synthetic and
laboratory results has revealed an excellent fit in terms of arrival time, phase, and
amplitude, for both the SEM and the FDM. Minor amplitude mismatches may be
attributed to the noise recorded in the laboratory data, as well as to the inaccuracy of
the proposed source implementation to reconstruct the low-energy secondary lobes of
the source transducer, and the uncertainties in the attenuation parameters chosen for
the simulations.
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Comparison of — both SEM and FDM - simulated and laboratory offset traces has
exhibited a good fit in terms of amplitude, arrival time, and phase, but with
significantly less accuracy for some arrivals than in the zero-offset case. This can be
mainly attributed to the inaccuracies of the transducer positions during the laboratory
measurements combined with the strong topography of the model, as well as to the
smaller signal-to-noise ratio of the offset configuration.

Smaller misfits between the finite-difference and the spectral-element synthetic results
may be attributed to the grid representation of the model geometry in the finite-
difference simulations, which should be completely resolved with an even finer grid.

Considering the above-mentioned misfits and discoveries, we propose some points to
work on in the future. Based on their importance and difficulty to be implemented, we
divide them into near-term and long-term categories. The necessary near-term
developments had to be addressed during the thesis before using the complex WAVES
model in Part 2. These include:
* the development of a more accurate acquisition system to reduce the
inaccuracies in the transducer positions during the laboratory measurements,
* amore accurate measurement of the tilt angle of the source transducer in offset
configurations.

The long-term developments may take more time and some of them may need the
expertise of metrologists. These include:

* revisiting the proposed numerical implementation of the real transducer to
account more for the low-energy secondary lobes, and the low-energy late-
arrivals of the source wavelet,

* reconsidering the laboratory techniques used to characterize the properties of
the material samples, especially for S-waves, and for the attenuation
parameters,

* assessing the noise level of the acquisition system and improving its signal-to-
noise ratio,

* identifying the origin of the different noises measured temporarily or
permanently in the laboratory,

* reducing the man-hour cost of the SEM due to the lengthy meshing step.
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Introduction

Geologic salt structures are economically important because hydrocarbon reservoirs
are often situated in their proximities. These structures usually play a crucial role in
the migration and the entrapment of the hydrocarbons, therefore the detailed
understanding of their geologic layout is essential in exploration geophysics. Because
salt often behaves and moves similar to fluids at the geologic time scale, it can have
various forms, ranging from horizontal sheets to vertical 'plums', or even mushroom-
and dome-shaped forms (see for example Tari et al., 2003, and Jackson and Hudec,
2017) (Figure 27). Salt is usually characterized with high velocity (approximately
4000-5000 m/s), especially when compared with typical sedimentary layers. The
density of the salt is generally close to that of the sediments, but due to the higher
velocity, the surfaces of the salt structures usually have a high reflectivity. Because
only a small portion of the incident energy can propagate inside, or even across the
salt, the proper imaging of their internal structures is a big challenge. Imaging
structures below the salt layers (aka sub-salt imaging) is even more complicated,
although sometimes inevitable for the complete understanding of the geologic setup.
Various works have been published on (sub-)salt imaging, focusing on either the post-
processing of already acquired data sets (e.g., Jiao et al., 2006, Ravaut et al., 2008,
Oropeza et al., 2009), or on the acquisition techniques and the acquisition geometry
(e.g., Krail, 1993, Lindsay et al., 2000, Long et al., 2013). A proper (sub-)salt imaging
technique is still an ongoing challenge for seismic exploration.
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Figure 27. Example of the various forms of salt structures (in pink) on an interpreted
seismic section from Gabon (from Tari et al., 2013, Figure 11).

As mentioned in the General Introduction, there is a strong interest in using small-
scale physical models to evaluate the accuracy of the numerical algorithms used in
seismic exploration (e.g., Igel et al., 2000, Campman et al., 2005, Mittet, 2017), and
also to better understand the wave propagation phenomena in realistic geologic setups
(e.g., Wapenaar and Berkhout, 1987, Favretto-Anres and Rabau, 1997, Cooper et al.,
2010). This interest is especially strong in the case of geologic setups including salt
structures. Therefore the goal of this part is to respond to this demand by, first,
building a realistic small-scale model, and then, precisely implementing the model
and the laboratory experiments in the numerical domain. The WAVES model was
designed with the intention to mimic a realistically challenging salt-dome geologic
setup at laboratory scale. It includes a salt-dome in the middle, surrounded by
different sedimentary layers, and a crystalline basement on the bottom. For the
numerical implementation, we rely on the framework established in Part 1, following
some technical modifications of the laboratory equipment to increase the precision of
the transducer positioning and the tilt angle of the source transducer.
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Chapter 1 is dedicated to the laboratory aspects. The physical model is described,
including its geometry and the most important material properties. Then, we discuss
the modifications of the acquisition system compared to Part 1, and the interpretation
of some laboratory cross-sections are also showcased in zero-offset and offset
configurations. Chapter 2 highlights the differences in the numerical simulations for
the WAVES model compared to Part 1, including the implementation of the model
geometry using a structured 3D mesh. The extension of the numerical calibration of
the material properties to the multi-layered WAVES model is also discussed here. The
comparison of the synthetic results with the laboratory measurements is presented in
Chapter 3. Both 3D zero-offset and 3D offset cases are compared with the forward-
simulated spectral-element results. The generally good fit between the measurements
and the synthetic results are discussed in details, together with the occasional misfits
and their explanations.

As showcased in the General Introduction, many different numerical algorithms are
used in seismic exploration during survey design, data processing and interpretation
(Robertsson et al., 2007), as well as in seismic imaging and inversion (Virieux et al.,
2011). Reverse-time migration (RTM) is one of the most popular imaging techniques
and it can reconstruct the seismic reflectors related to reflection coefficient contrasts
(e.g., Zhang et al., 2003, Zhu et al., 2009). Applying the RTM to the laboratory data
measured for the WAVES model is an optimal benchmarking opportunity for the
established f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>