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English Abstract

Robots have to face the real world, in which trying something might take seconds,
hours, or even days. Unfortunately, the current state-of-the-art reinforcement
learning algorithms (e.g., deep reinforcement learning) require big interaction
times to find effective policies. In this thesis, we explored approaches that
tackle the challenge of learning by trial-and-error in a few minutes on physical
robots. We call this challenge “micro-data reinforcement learning”.

In our first contribution, we introduced a novel learning algorithm called
“Reset-free Trial-and-Error” that allows complex robots to quickly recover from
unknown circumstances (e.g., damages or different terrain) while completing
their tasks and taking the environment into account; in particular, a physi-
cal damaged hexapod robot recovered most of its locomotion abilities in an
environment with obstacles, and without any human intervention.

In our second contribution, we introduced a novel model-based reinforce-
ment learning algorithm, called Black-DROPS that: (1) does not impose any
constraint on the reward function or the policy (they are treated as black-boxes),
(2) is as data-efficient as the state-of-the-art algorithm for data-efficient RL in
robotics, and (3) is as fast (or faster) than analytical approaches when several
cores are available. We additionally proposed Multi-DEX, a model-based policy
search approach, that takes inspiration from novelty-based ideas and effectively
solved several sparse reward scenarios.

In our third contribution, we introduced a new model learning procedure in
Black-DROPS (we call it GP-MI) that leverages parameterized black-box priors
to scale up to high-dimensional systems; for instance, it found high-performing
walking policies for a physical damaged hexapod robot (48D state and 18D
action space) in less than 1 minute of interaction time.

Finally, in the last part of the thesis, we explored a few ideas on how
to incorporate safety constraints, robustness and leverage multiple priors in
Bayesian optimization in order to tackle the micro-data reinforcement learning
challenge.

Throughout this thesis, our goal was to design algorithms that work on
physical robots, and not only in simulation. Consequently, all the proposed
approaches have been evaluated on at least one physical robot. Overall, this
thesis aimed at providing methods and algorithms that will allow physical
robots to be more autonomous and be able to learn in a handful of trials.



French Abstract

Les robots operent dans le monde réel, dans lequel essayer quelque chose
prend des secondes, des heures ou méme des jours. Malheureusement, les algo-
rithmes d’apprentissage par renforcement actuels (par exemple, les algorithmes
de “deep reinforcement learning”) nécessitent de longues périodes d’interaction
pour trouver des politiques efficaces. Dans ce these, nous avons exploré des
algorithms qui abordent le défi de 'apprentissage par essai et erreur en quelques
minutes sur des robots physiques. Nous appelons ce défi “Apprentissage par
renforcement micro-data”.

Dans notre premiere contribution, nous avons proposé un nouvel algorithme
d’apprentissage appelé “Reset-free Trial-and-Error” qui permet aux robots
complexes de s’adapter rapidement dans des circonstances inconnues (par
exemple, des dommages ou un terrain différent) tout en accomplissant leurs
taches et en prenant en compte l'environnement; en particulier, un robot
hexapode endommagé a retrouvé la plupart de ses capacités de locomotion dans
un environnement avec des obstacles, et sans aucune intervention humaine.

Dans notre deuxieme contribution, nous avons proposé¢ un nouvel algo-
rithme de recherche de politique “basé modele”, appelé Black-DROPS, qui: (1)
n’impose aucune contrainte 4 la fonction de récompense ou & la politique, (2)
est aussi efficace que les algorithmes de 'état de 'art, et (3) est aussi rapide (ou
plus rapide) que les approches analytiques lorsque plusieurs processeurs sont
disponibles. Nous avons aussi proposé Multi-DEX, une extension qui s’inspire
de I'algorithme “Novelty Search” et permet de résoudre plusieurs scénarios ou
les récompenses sont rares.

Dans notre troisieme contribution, nous avons introduit une nouvelle
procédure d’apprentissage du modele dans Black-DROPS qui exploite un simula-
teur paramétré pour permettre d’apprendre des politiques sur des systemes avec
des espaces d’état de grande taille; par exemple, cet extension de Black-DROPS
a trouvé des politiques de marche performantes pour un robot hexapode (espace
d’état 48D et d’action 18D) en moins d’'une minute de temps d’interaction.

Enfin, dans la derniere partie de la these, nous avons exploré quelques idées
comment intégrer les contraintes de sécurité, améliorer la robustesse et tirer
parti des multiple a priori en optimisation bayésienne.

A travers ’ensemble de cette these, notre objectif était de concevoir des
algorithmes qui fonctionnent sur des robots physiques, et pas seulement en
simulation. Par conséquent, tous les approches proposées ont été évaluées
sur au moins un robot physique. Dans ’ensemble, cette these propose des



méthodes et des algorithmes qui permettre aux robots physiques d’étre plus
autonomes et de pouvoir apprendre en poignée d’essais.
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Chapter 1

Introduction

Aristotle may have been the first to describe how automated mechanical statues
could replace slaves and reduce the burden of everyday labor!. Since then,
numerous advances in physics, mechanical engineering, computer science and
mathematics have allowed the wide deployment of automated systems and
robots in our everyday life and especially inside factories. For example, FANUC
has been operating a “lights out” factory for robots since 2001 (Null and
Caulfield, 2003) (a “lights out” factory is one where there are no light, no
humans and only robots operate inside it), iRobot has sold more than 8 million
robot vacuums, and Amazon currently has more than 10 thousand autonomous
mobile robots inside their semi-autonomous warehouses.

Although these robots operate autonomously, they still require humans
to specify their tasks and supervise them. Ideally, we would imagine fully
autonomous robots operating in various conditions and interacting with humans
and the environment. Robots could operate in homes helping with the chores,
learning and improving over time. Robots could autonomously design rescue
plans and operate in post-disaster sites. Robots could also assist people working
in the elderly services by providing physical assistance to elders. Autonomous
cars could reduce the number of accidents and minimize the commute time.
Overall, we currently have machines that can fulfill specific tasks very well, but
none of the currently deployed robots are capable to adapt to truly unforeseen
events and improve over time with experience.

Traditionally, robots have been studied under the rigid body dynamics theory
and more specifically as chains (either open or closed) of rigid bodies (Murray,

n his Politics (322BC, book 1, part 4), he says: There is only one condition in which

we can imagine managers not needing subordinates, and masters not needing slaves. This
condition would be that each instrument could do its own work, at the word of command or
by intelligent anticipation, like the statues of Daedalus or the tripods made by Hephaestus,
of which Homer relates that “Of their own motion they entered the conclave of Gods on
Olympus”, as if a shuttle should weave of itself, and a plectrum should do its own harp
playing.
Original: el ydp HdUVaTO Ex0oTOV BV 6pYavKV xehevo¥ey 1) mtpooucavouevoy AnoTEAElV TO
abtol épyov, Gonep & Aabddiou gacly 1) Toug ot "Heaiotou tpinodug, obc gnotv 6 nontig
avtopdtoug Velov dveaon dry&va, oltne ol xepxidec Exépxilov adtol xal t& TAfixtpa extddpley,
oLBEV av €8el 0lTe Tolg dpyLTéxTooly LTNEETESY olte Tolc Beondtalc BoOAWY.

11



CHAPTER 1. INTRODUCTION 12

2017; Lynch and Park, 2017). This mathematical framework in conjunction
with advances in materials and actuators have allowed the development of
reliable and robust control algorithms with impressive results (Rawlings and
Mayne, 2009; Krstic et al., 1995; Garcia et al., 1989; Astrom, 2012). For
instance, modern manipulators can be controlled at 1KHz with millimeter
precision (Kyriakopoulos and Saridis, 1988; Bischoff et al., 2011), humanoid
robots can now walk reliably on flat terrain (Sellaouti et al., 2006; Mansard et al.,
2009) and even robustly perform choreographies under perturbations (Padois
et al., 2017; Nori et al., 2015). A few more noteworthy examples are the robots
of Boston Dynamics (a US robotics company), like Big Dog (Raibert et al.,
2008) and Atlas (Nelson et al., 2012; DARPA, 2013), that are able to showcase
locomotion abilities that are very life-like and robust to multiple real-world
terrains like snow, grass and rocky roads in forests.

Although these approaches have provided very impressive results and could
serve as the basis for more complicated or alternative approaches, the task
specifications are usually hard-coded by the programmers or the designers;
usually this is described in joint or end-effector acceleration, velocity or position
profiles (i.e., joint or end-effector trajectories) (Kyriakopoulos and Saridis, 1988).
In addition, these approaches usually assume perfect knowledge of the system
dynamics or very high frequency control loops that may be hard to acquire in
practice. Overall, current robots are designed to achieve high-performance on
specific tasks, but fail to perform when something unexpected happens (Atkeson
et al., 2016). In other words, the currently deployed robots are not designed to
adapt to unforeseen situations. This realization yields the need for alternative
approaches for controlling robots inside a constantly changing world.

Getting inspiration from how animals and humans think and act, robots
could also learn from experience and improve their skills over time. Learning by
trial-and-error is one of the main challenges of Artificial Intelligence (Al) since its
beginnings (Russell and Norvig, 2016). Robotics and Al have a long standing,
relationship with some notable results. For example, in 1984, Shakey the
robot could autonomously navigate an indoor building and interact with voice
commands (Nilsson, 1984); Ng et al. (2006) were able to use demonstrations
from experts and learn models of the dynamics in order to successfully learn how
to perform dynamic and complex maneuvers with a physical helicopter; Calinon
et al. (2007) were able to use a few demonstrations (i.e., 4 to 7) from an expert
in order to teach a humanoid robot to perform some simple manipulation tasks,
like moving a chess pawn to a specified location.

The long-term vision of learning in robotics is to create autonomous and
intelligent robots that can adapt in various situations, learn from their mistakes
(that is, by trial-and-error), and require no human supervision. This is usually
referred to as General Artificial Intelligence (GAI) (Legg and Hutter, 2007) and
has been one of the main long-term goals of all Al research. In practice, GAI
has mostly been studied in the field of computer games with a few noteworthy
results. The goal here is to create an algorithm that can learn how to play
multiple and different games without any human intervention or reprogramming.
For example, PathNet (Fernando et al., 2017) demonstrates transfer learning
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capabilities between Atari games by using an evolutionary algorithm in order
to select which parts of a neural network should be used for learning new tasks,
and Elastic Weight Consolidation (Kirkpatrick et al., 2017) can learn multiple
Atari games sequentially without catastrophic forgetting by protecting weights
that are important for the previously learned tasks. In robotics, GAI has
been mostly studied either theoretically or on simple tasks within the areas of
evolutionary and developmental robotics (Oudeyer et al., 2007; Moulin-Frier
and Oudeyer, 2013; Schmidhuber, 2006).

Within the field of AI, Machine Learning (ML) (Michalski et al., 2013)
has provided the most successful algorithms towards solving the challenge of
GAI ML uses statistical methods to enable computer systems to learn by
trial-and-error, that is, to improve with more data without being explicitly
programmed. We can split the ML algorithms into three main categories:
(1) supervised learning (Russell and Norvig, 2016), (2) reinforcement learning
(RL) (Sutton and Barto, 1998), and (3) unsupervised learning. In supervised
learning, the system is presented with labeled samples (i.e., input with desired
outputs given by an oracle) and the task is to learn a mapping (e.g., a function)
from the input space to the output space. In reinforcement learning, the agent
is given rewards (or punishments) as a feedback to its actions (and current
state) in a possibly dynamic environment. In other words, the agent receives
reinforcement signals when the actions it takes help towards solving the desired
task(s). In unsupervised learning, no labels or reward signals are given to the
system and the system has to discover the underlying or hidden structure of
the data (e.g., clustering).

There is currently a renewed interest in machine learning and reinforcement
learning thanks to recent advances in deep learning (LeCun et al., 2015).
For example, deep convolutional neural networks have achieved extraordinary
results in detection, segmentation and recognition of objects and regions in
images (Vaillant et al., 1994; Lawrence et al., 1997; CiresAn et al., 2012; Turaga
et al., 2010), especially in face recognition (Garcia and Delakis, 2004; Taigman
et al., 2014), and Deep RL agents can now learn to play many of the Atari 2600
games directly from pixels (Mnih et al., 2015, 2016), that is, without explicit
feature engineering, and beat the world’s best players at Go and chess with
minimal human knowledge (Silver et al., 2017b,a).

Unfortunately, these impressive results are difficult to transfer to robotics
because the algorithms behind them are highly data-hungry: 4.4 million labeled
faces were required by DeepFace to achieve the reported results (Taigman et al.,
2014), 4.8 million games were required to learn to play Go from scratch (Silver
et al., 2017b), 38 days of play (real time) for Atari 2600 games (Mnih et al.,
2015), and, for example, about 100 hours of simulation time (much more for
real time) for a 9-DOF mannequin that learns to walk (Heess et al., 2017). By
contrast, robots have to face the real world, which cannot be accelerated by
GPUs nor parallelized on large clusters. And the real world will not become
faster in a few years, contrary to computers so far (Moore’s law). In concrete
terms, this means that most of the experiments that are successful in simulation
cannot be replicated in the real world because they would take too much time
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to be technically feasible.

What is more, online adaptation is much more useful when it is fast than
when it requires hours — or worse, days — of trial-and-error. For instance, if
a robot is stranded in a nuclear plant and has to discover a new way to use its
arm to open a door; or if a walking robot encounters a new kind of terrain for
which it is required to alter its gait; or if a humanoid robot falls, damages its
knee, and needs to learn how to limp: in most cases, adaptation has to occur
in a few minutes or within a dozen trials to be of any use.

The above requirement stems from the fact that robots are not only in-
telligent agents, but they also have physical bodies that shape the way they
act (Pfeifer and Bongard, 2006). This essentially means that when a robot is
trying to complete a task, it is not an abstract agent, but rather a physical
agent that interacts with a specific body with the environment. Rodney Brooks
describes approaches that are based on this observation as “Nouvelle AI” or
“Physically Grounded Methods” (Brooks, 1990), while others refer to them
as “Embodied Cognition”. Pfeifer and Bongard (Pfeifer and Bongard, 2006)
go even further and make the statement that “intelligence requires a body”,
which implies that a disembodied agent (e.g., a computer program) cannot be
intelligent.

In this thesis, we consider that robots, as embodied systems, are subject
to the laws of physics (e.g., gravity, friction, energy supply, etc.) and thus
cannot be considered as abstract intelligent agents. Consequently, it is of
extreme importance to minimize the interaction time between the robot and
the environment when using learning algorithms for robot control, as robots
are bounded to their physical capabilities and limitations: for example, a
mechanical motor has only a limited number of cycles before it dies and thus
we cannot use the robot infinitely during the learning procedure.

By analogy with the word “big-data”, we refer to the challenge of learning by
trial-and-error in a few minutes as “micro-data reinforcement learning” (Mouret,
2016). This concept is close to “data-efficient reinforcement learning” (Deisen-
roth et al., 2015, 2013), but we think it captures a slightly different meaning.
The main difference is that efficiency is a ratio between a cost and benefit, that
is, data-efficiency is a ratio between a quantity of data and, for instance, the
complexity of the task. In addition, efficiency is a relative term: a process is
more efficient than another; it is not simply “efficient”?. In that sense, many
deep learning algorithms are data-efficient because they require fewer trials than
the previous generation, regardless of the fact that they might need millions
of them. By contrast, we propose the terminology “micro-data learning” to
represent an absolute value, not a relative one: how can a robot learn in a
few minutes of interaction? or how can a robot learn in less than 20 trials®?
Importantly, a micro-data algorithm might reduce the number of trials by

2In some rare cases, a process can be “optimally efficient”.

3Tt is challenging to put a precise limit for “micro-data learning” as each domain has
different experimental constraints, this is why we will refer in this manuscript to “a few
minutes”, a “a few trials” or a “handful of trials”. The commonly used word “big-data” has
a similar “fuzzy” limit that depends on the exact domain.
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incorporating appropriate prior knowledge. This does not necessarily make it
more “data-efficient” than another algorithm that would use more trials but
less prior knowledge: it simply makes them different because the two algorithms
solve a different challenge.

The main objective of this thesis is to provide algorithms towards solving this
“micro-data reinforcement learning” challenge by leveraging prior knowledge or
building surrogate models. The overall goal of the proposed approaches is to
minimaize the interaction time between the robot and the environment required
to solve the task at hand (i.e., minimize the operation time of the robot).
We argue that this is the most appropriate metric to compare trial-and-error
algorithms and we use it throughout this manuscript. Other metrics like the
number of episodes or time-steps are very dependent on the specific task setups
and can easily be “overfitted”.

Our main motivation is the application of reinforcement learning to robot
damage recovery. In our opinion, this is an application that can justify learning
in the robotics community, as there is presently no consensus about the best
analytic way to recover from damages in robots. Nevertheless, we additionally
provide examples of general adaptation (i.e., unforeseen situations that do
not necessarily involve damage) and most of the algorithms presented do not
have the explicit goal of solving this challenge, but rather the “micro-data
reinforcement learning” challenge.

In the next chapter (chapter 2), we provide a review of policy search
approaches (Deisenroth et al., 2013; Kober et al., 2013) that have the explicit
goal of reducing the interaction time between the robot and the environment
to a few seconds or minutes. Policy search methods learn parameters of a
controller, called the policy, that maps sensor inputs to motor commands (e.g.,
velocities or torques). We will see that most published algorithms for micro-data
policy search implement and sometimes combine two main strategies: leveraging
prior knowledge and building surrogate models.

Prior knowledge can be incorporated either in the policy structure, the
policy parameters or the dynamics model. In the first case, this knowledge
comes from the traditional robotics literature and the methods use well defined
policy structures in order to make the search problem easier. Some examples
of well defined policy spaces are: dynamic movement primitives (Ijspeert et al.,
2013), finite-state automata (Calandra et al., 2015) or other hand-designed
structures. In the second case, learning from demonstrations (Billard et al.,
2008; Kober and Peters, 2009) or imitation learning has a long successful history
in robotics; in short, demonstrated trajectories provide initialization of the
parameters of an expressive policy such that local search around them is enough
to find high-performing solutions. Lastly, recent works (Chatzilygeroudis and
Mouret, 2018; Chatzilygeroudis et al., 2018b; Cutler and How, 2015; Saveriano
et al., 2017; Bongard et al., 2006; Zhu et al., 2018) showcase that taking
advantage of dynamics simulators or inaccurate simple dynamics models can
help in reducing the amount of interaction time required to obtain an accurate
model of the real-world environment.

During the execution of a policy on a robotic system, we can gather data
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and create models to help us make better decisions on what to try next.
We can find two types of algorithms inside this strategy: (a) algorithms
that learn a surrogate model of the expected return from a starting state
distribution (Brochu et al., 2010; Shahriari et al., 2016), and (b) algorithms
that learn the transition dynamics of the robot/environment (Deisenroth et al.,
2013; Chatzilygeroudis et al., 2018b). In the first case, the most promising
family of approaches is Bayesian optimization (BO) (Brochu et al., 2010;
Shahriari et al., 2016); BO is made of two main components: a surrogate model
of the expected return, and an acquisition function, which uses the model to
define the utility of each point of the search space. In the second case, using
probabilistic models, like Gaussian processes (GPs) (Rasmussen and Williams,
2006), and taking into account the uncertainty of the predictions in the policy
search seems to be the most promising direction of research for model-based
policy search (Deisenroth et al., 2013; Chatzilygeroudis et al., 2018b; Polydoros
and Nalpantidis, 2017).

In chapter 3, we consider a robot damage recovery scenario, where a
waypoint-controlled robot is damaged in an unknown way and needs to find
novel gaits in order to reach the waypoints fixed by its operator. To tackle this
challenge, we combine probabilistic modeling and planning with a repertoire
of high-level actions produced using a dynamics simulator of the intact robot.
In this work, we will show that evolutionary algorithms, and more precisely
quality-diversity or illumination algorithms (Mouret and Clune, 2015; Pugh
et al., 2016), produce “creative priors” that can be beneficial when searching
for a compensating behavior. We propose a new algorithm, called “Reset-free
Trial-and-Error” (RTE), and we evaluate it on a simulated wheeled robot, a
simulated six-legged robot, and a physical six-legged walking robot that are
damaged in several ways (e.g., a missing leg, a faulty motor, etc.) and whose
objective is to reach a sequence of targets in an arena. Our experiments show
that the robots can recover most of their locomotion abilities in an environment
with obstacles, and without any human intervention.

In chapter 4, we confirm the result of the PILCO papers (Deisenroth and
Rasmussen, 2011; Deisenroth et al., 2015, 2013) that using probabilistic models
and taking into account the uncertainty of the prediction in the policy search is
essential for effective model-based policy search (Deisenroth et al., 2015, 2013;
Kober et al., 2013; Sutton and Barto, 1998). We, also, go one step further
and showcase that combining the policy evaluation step with the optimization
procedure can give us a more flexible, faster and modern implementation
of model-based policy search algorithms. We propose a new model-based
policy search algorithm, called Black-DROPS, and evaluate it on two standard
benchmark tasks (i.e., inverted pendulum and cartpole swing-up) and a physical
manipulator. Our results showcase that we can keep the low interaction times of
analytical approaches like PILCO, but also speed-up the computation due to the
parallelization properties of population-based optimizers like CMA-ES (Hansen
and Ostermeier, 2001).

In chapter 5, we combine dynamics simulators and Gaussian processes in
order to scale up model-based policy search approaches to high-dimensional
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robots. In particular, we introduce a new model learning procedure, called
GP-MI, that combines model identification, black-box parameterized priors and
Gaussian process regression. Overall, we argue that vanilla model-based policy
search approaches are only practical in low-dimensional systems, but can be
very powerful when combined with the appropriate prior knowledge and model
learning procedure. Our results showcase that by combining Black-DROPS
with GP-MI, we can learn to control a physical hexapod robot (48D state space,
18D action space) in less than one minute of interaction time.

In chapter 6, we discuss how safety constraints, robustness and multiple
priors can be incorporated in a Bayesian optimization procedure towards solving
the micro-data reinforcement learning challenge. More precisely, we first intro-
duce sIT&E (Safety-aware Intelligent Trial & Error Algorithm) that extends
the Intelligent Trial & Error algorithm to include safety criteria in the learning
process; using this approach, a simulated damaged iCub humanoid robot (Nori
et al., 2015; Tsagarakis et al., 2007) is able to safely learn crawling behaviors
in less than 20 trials. We then propose ALOQ (ALternating Optimization
and Quadrature) and TALOQ (Transferable ALOQ) aimed towards learning
policies that are robust to rare events while being as sample efficient as possible.
Using these approaches we learn robust policies using accurate and inaccurate
simulators for a variety of systems (from simple simulated arms to a physical
hexapod robot). Lastly, we introduce a new acquisition function for BO, called
MLEI (Most Likely Expected Improvement), that effectively combines multiple
sources of prior information in order to minimize the interaction time. Using
MLEI a hexapod robot is able to find effective gaits in order to climb new
types of stairs and adapt to unforeseen damages.

Before the conclusion of this manuscript (chapter 7), we discuss the main
limitations of our proposed approaches and the main directions for future work.
In this last chapter, we also highlight the interplay between planning, model-
predictive control and policy search methods and discuss the main challenges
that this new emerging field (micro-data reinforcement learning) faces.



Chapter 2

Background

The text of this chapter has been partially published in the following articles.

Articles:

e Chatzilygeroudis, K., Vassiliades, V., Stulp, F., Calinon, S. and
Mouret, J.-B., 2018. A survey on policy search algorithms for learning
robot controllers in a handful of trials. Under review in IEEFE Transactions
on Robotics (Chatzilygeroudis et al., 2018Db).

Other contributors:

e Vassilis Vassiliades (Post-doc)
e Freek Stulp (Head of department at DLR)
e Sylvain Calinon (Senior researcher at Idiap)

e Jean-Baptiste Mouret (Thesis supervisor)
Author contributions:

e KC and JBM organized the study. KC wrote the majority of the survey
with improvements and suggestions by VV and JBM. FS and SC wrote
most of section 2.5.

2.1 Introduction

The most successful traditional RL methods typically learn an action-value
function that the agent consults to select the best action from each state (i.e.,
one that maximizes long-term reward) (Sutton and Barto, 1998; Mnih et al.,
2015). These methods work well in discrete action spaces (and even better
when combined with discrete state spaces)’, but robots are typically controlled
with continuous inputs and outputs (see (Deisenroth et al., 2013; Kober et al.,
2013) for detailed discussions on the issues of classic RL methods in robotics).

'In Section 2.4 we give a brief overview of approaches based on value or action-value
functions for continuous control.

18
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Figure 2.1: Overview of possible strategies for Micro-Data Policy Search (MDPS). The first
strategy (bottom) is to leverage prior knowledge on the dynamics, on the policy parameters,
on the structure of the policy, or on the expected return. A second strategy is to learn
surrogate models of the dynamics or of the expected return; these models can also be
initialized or guided by some prior knowledge.

As a result, the most promising approaches to RL for robot control do not
rely on value functions; instead, they are policy search methods that learn
parameters of a controller, called the policy, that maps sensor inputs to joint
positions/torque (Deisenroth et al., 2013). These methods make it possible to
use policies that are well-suited for robot control such as dynamic movement
primitives (Ijspeert et al., 2003) or general-purpose neural networks (Levine
and Koltun, 2013). In direct policy search, the algorithms view learning as
an optimization problem that can be solved with gradient-based or black-
box optimization algorithms (Stulp and Sigaud, 2013b). As they are not
modeling the robot itself, these algorithms scale well with the dimensionality
of the state space. They still encounter difficulties, however, as the number of
parameters which define a policy, and thus the dimensionality of the search space,
increases (Deisenroth et al., 2013). In model-based policy search, the algorithms
typically alternate between learning a model of the robot and learning a policy
using the learned model (Deisenroth et al., 2015; Chatzilygeroudis et al., 2017).
As they optimize policies without interacting with the robot, these algorithms
not only scale well with the number of parameters, but can also be very data
efficient, requiring few trials on the robot itself to develop a policy. They
do not scale well with the dimensionality of the state space, however, as the
complexity of the dynamics tends to scale exponentially with the number of
moving components.

In this chapter, we focus on policy search approaches that have the explicit
goal of reducing the interaction time between the robot and the environment to a
few seconds or minutes. Most published algorithms for micro-data policy search
implement and sometimes combine two main strategies (Fig. 2.1): leveraging
prior knowledge and building surrogate models.

Using prior knowledge requires balancing carefully between what can be
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realistically known before learning and what is left to be learnt. For instance,
some experiments assume that demonstrations can be provided, but that they
are imperfect (Ng et al., 2006; Kober and Peters, 2009); some others assume
that a damaged robot knows its model in its intact form, but not the damaged
model (Cully et al., 2015; Pautrat et al., 2018; Chatzilygeroudis and Mouret,
2018). This knowledge can be introduced at different places, typically in the
structure of the policy (e.g., dynamic movement primitives; DMPs) (Ijspeert
et al., 2003), in the reward function (e.g., reward shaping), or in the dynamical
model (Abbeel et al., 2006; Chatzilygeroudis and Mouret, 2018).

The second strategy is to create models from the data gathered during
learning and utilize them to make better decisions about what to try next
on the robot. We can further categorize these methods into (a) algorithms
that learn a surrogate model of the expected return (i.e., long-term reward)
from a starting state (Brochu et al., 2010; Shahriari et al., 2016); and (b)
algorithms that learn models of the transition dynamics and/or the immediate
reward function (e.g., learning a controller for inverted helicopter flight by
first learning a model of the helicopter’s dynamics (Ng et al., 2006)). The two
strategies — priors and surrogates — are often combined; for example, most
works with a surrogate model impose a policy structure and some of them use
prior information to shape the initial surrogate function, before acquiring any
data.

The rest of the chapter is structured as follows. Section 2.2 presents the
problem formulation for reinforcement learning. Section 2.3 provides a brief
overview of value-function based approaches and Section 2.4 discusses the
goals of policy search and presents briefly the most important direct policy
search approaches. Section 2.5 describes the work about priors on the policy
structure and parameters. Section 2.6 provides an overview of the work on
learning surrogate models of the expected return, with and without prior, while
Section 2.7 is focused on learning models of the dynamics and the immediate
reward. Section 2.8 lists the few noteworthy approaches for micro-data policy
search that do not fit well into the previous sections.

2.2 Problem formulation

We model the robots as discrete-time dynamical systems that can be described
by Markovian transition probabilities of the form:

p(wt-l-l’mtaut) (2~1)

with continuous-valued states € R” and controls u € R¥.
If we assume deterministic dynamics and Gaussian system noise, this
equation is often written as:

L1 = f(a:t, ut) +w (22)

Here, w is i.i.d. Gaussian system noise, and f is a function that describes the
unknown transition dynamics.
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We assume that the system is controlled through a parameterized policy
m(ul|x,t,0) that is followed for T steps, where @ are the policy parameters.
Throughout the chapter we adopt the episode-based, fixed time-horizon for-
mulations for clarity and pedagogical reasons, but also because most of the
micro-data policy search approaches use this formulation.

In the general case, m(u|x, t, @) outputs a distribution (e.g., a Gaussian) that
is sampled in order to get the action to apply; ¢.e., we have stochastic policies.
Most algorithms utilize policies that are not time-dependent (i.e., they drop ¢),
but we include it here for completeness. Several algorithms use deterministic
policies; a deterministic policy means that m(u|z,t,0) = u = 7 (x,|0).

When following a particular policy from an initial state distribution p(xg),
the system’s states and actions jointly form trajectories T = (g, wg, 1, 1, . - .,
@7), which are often also called rollouts or paths. We assume that a scalar
performance system exists, R(7), that evaluates the performance of the system
given a trajectory 7. This long-term reward (or return) is defined as the sum
of the immediate rewards along the trajectory 7:

R(T) = Tt+1 = (@, Wi, Tegr) (2.3)

where 111 = r(xy, uy, iy 1) € R is the immediate reward of being in state x;
at time ¢, taking the action u; and reaching the state a;,; at time ¢ + 1.

We define the expected return J(0) when following a policy mg for ¢ time-
steps as:

J(0) =E {R(T)w]
:/R(T)P(T|0) (2.4)

where P(7]0) is the distribution over trajectories 7 for any given policy pa-
rameters @ applied on the actual system:

P(rl) = plo) [ plecaleou) rlwle.t0)  (25)
N—— S—~— ; N ~~ 7\ ~~ d
trajectories for 6 initial state transition dynamics policy

Value function An important concept in RL is the walue function. It
represents the expected return of a state when the system is controlled with
policy mg. It differs from the reward function which is immediate in nature,
as value functions account for the effect of future rewards, determining the
long-term expected reward of a given state. The wvalue of a state xy under a
policy 7g is the expected return of the system starting in state &y and following
policy mg thereafter:

Vo, () = E[R(T)|0, mo}

_ / R(T)P(710, ) (2.6)
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Q-function Similarly, the action-value function or Q-function, Qn,(x,w), is
defined as the expected return of a state and action pair when the system is
controlled with policy mg:

Qo (o, ug) = E|R(7)|0, 0, up (2.7)

2.3 Value-function approaches

The value-function based approaches attempt to estimate either V., (x) or
Qo (x,u). In the rest of this section, we will briefly discuss the main concepts
and algorithms that fall into this category. Nevertheless, in this dissertation we
mainly focus on policy search algorithms with the explicit goal of minimizing
the interaction/learning time and thus we cover them in more detail.

Dynamic Programming-Based Methods In this category, the approaches
assume that the state and action spaces are discrete? and the transition proba-
bilities and immediate reward function fully known. These algorithms basically
utilize the Bellman equation (Bellman, 1957):

Vig(e) = E [Tt + Ve (9375+1)} (2.8)

QT(@ (3375, ’LLt) =E |:’f’t + ’YQWQ (th, ut—i—l)} (29)

where v € [0, 1] is a factor that discounts future rewards.

The classical Dynamic Programming (DP) algorithms (Bellman, 1957;
Werbos, 1992; Sutton and Barto, 1998) are not used a lot because of their need
of a known model of the environment and because of their big computational
cost (especially as the state/action space increases). However, they are still
very interesting as they define fundamental computational mechanisms that
can be used as parts of other more complicated algorithms.

Temporal Difference Methods Temporal Difference (TD) methods can
learn directly from interaction with the environment with no prior model, and
use bootstrapping to improve the value- or action-value function from the
current estimates. TD learning methods can either be on-policy or off-policy.
In on-policy learning, we learn the value of the policy being carried out by
the agent including the exploration steps. SARSA (Rummery and Niranjan,
1994; Sutton and Barto, 1998) is on-policy as it updates the Q-values using
the Q-value of the next state and the current policy’s action; i.e., it estimates
the return for state-action pairs assuming that the current policy continues to
be followed. Off-policy methods are more general: they learn the value of a
different policy (which could be the optimal policy or not) independently of

2For continuous problems, one could discretize the spaces and operate in them, but this
would, usually, result in a very big number of states and actions.
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Algorithm 1 Generic policy search algorithm

. Apply initialization strategy using INITSTRATEGY
: Collect data, Dy, with COLLECTSTRATEGY
: for n =1 — Ny, do
Learn models using LEARNSTRATEGY and D,,
Calculate 6,1 using UPDATESTRATEGY
Apply policy 7, ,, on the system
Collect data, D,,, with COLLECTSTRATEGY
end for

PN g Wy

the agent’s actions. Q-learning (Watkins and Dayan, 1992; Sutton and Barto,
1998) updates the Q-values using the Q-value of the next state and the greedy
action; i.e., it estimates the return for state-action pairs assuming a greedy
policy would be followed, and is independent of the policy being currently
followed. Hence, off-policy methods are able to update the estimated value
(or action-value) functions using hypothetical actions, that have not actually
been tried, whereas on-policy methods update value (or action-value) functions
based strictly on experience.

2.4 Policy Search

The objective of a policy search algorithm is to find the parameters * that
maximize the expected return J(0) when following the policy mg«:

0" = argmax .J(0) (2.10)
0

Most policy search algorithms can be described with a generic algorithm
(Algo. 1) and they: (1) start with an initialization strategy (INITSTRATEGY), for
instance using random actions, and (2) collect data from the robot (COLLECT
STRATEGY ), for instance the states at each discrete time-steps or the reward
at the end of the episode; they then (3) enter a loop (for Ny, iterations) that
alternates between learning one or more models (LEARNSTRATEGY) with the
data acquired so far, and selecting the next policy 7+ to try on the robot
(UPDATESTRATEGY).

This generic outline allows us to describe direct (e.g., policy gradient
algorithms (Sutton et al., 2000)), surrogate-based (e.g., Bayesian optimiza-
tion (Brochu et al., 2010)) and model-based policy search algorithms, where
each algorithm implements in a different way each of INITSTRATEGY, COL-
LECTSTRATEGY, LEARNSTRATEGY and UPDATESTRATEGY. We will also see
that we can also fit policy search algorithms that utilize priors; coming from
simulators, demonstrations or any other source.

To better understand how policy search is performed, let’s use a gradient-
free optimizer (UPDATESTRATEGY) and learn directly on the system (i.e.,
LEARNSTRATEGY = (}). This type of algorithms falls in the category of model-
free or direct policy search algorithms (Sutton and Barto, 1998; Kohl and
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Algorithm 2 Gradient-free direct policy search algorithm

procedure INITSTRATEGY
Select 6y randomly

end procedure

procedure COLLECTSTRATEGY

= (6, Jp) by running policy

Collect samples of the form (0, X R(r) ]s'(f)i)

me IN times.
6: end procedure

Stone, 2004). INITSTRATEGY can be defined as randomly choosing some policy
parameters, 8 (Algo. 2), and COLLECTSTRATEGY collects samples of the form
(6, ZN#) by running N times the policy mg. We execute the same policy
multiple times because we are interested in approximating the expected return
(Eq. (2.3)). Jo = % is then used as the value for the sample 6 in a regular
optimization loop that tries to maximize it (i.e., the UPDATESTRATEGY is
optimizer-dependent).

This straightforward approach to policy search typically requires a large
amount of interaction time with the system to find a high-performing solu-
tion (Sutton and Barto, 1998). The objective of the present chapter is to
describe algorithms that require several orders of magnitude less interaction
time by leveraging priors and models.

In the rest of this section, we will briefly discuss the main concepts, formula-
tions and algorithms that fall into the traditional direct policy search category.
The approaches in this caterogy assume no prior knowledge of the system or
the reward function and try to directly optimize the policy parameters on
the real system (Kohl and Stone, 2004). As a result, these algorithms suffer
from data-inefficiency, but nevertheless are important as they can be part of
other more data-efficient approaches (e.g., as an initialization or an optimizer).
In this manuscript we focus mainly on published ideas that explicitly try to
drastically reduce the interaction time between the robot and the environment
(we refer the reader to (Sigaud and Stulp, 2018) for a recent review of policy
search for continuous control).

2.4.1 Policy Gradient Algorithms

Sutton and Barto (1998) describe “Generalized Policy Iteration” (GPI) as
the process that consists of two interacting parts, one pushing the value
function (or the Q-function) to be consistent with the best current policy
(policy evaluation), and a second one that aims to improve the policy greedily
using the current value function (policy improvement). In the classical policy
iteration formulation (Sutton and Barto, 1998), these two processes strictly
alternate; i.e., one happens exactly after the other has finished. Nevertheless,
in more modern and asynchronous methods (Mnih et al., 2016), the policy
evaluation and improvement steps can be interleaved at a finer grain. As long
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as both steps update all states, the result is typically the same-convergence to
the optimal value function and an optimal policy (Sutton and Barto, 1998).
A lot of reinforcement learning algorithms can be described using the GPI
formalization and most of the policy gradient algorithms fall under it. It is also
important to note that all approaches that fall under GPI (e.g., actor-critic
methods) can also be seen as value-function based approaches. Nevertheless, we
include them in the policy search section as the most successful policy gradient
approaches do utilize some learned approximation of the value- or action-value
function.

Actor-Critic Actor critic methods (Konda and Tsitsiklis, 2000) fall under
the GPI formulation and they, naturally, consist of two parts. The actor that
adjusts the parameters @ of the policy by utilizing some policy gradient. And
the critic that estimates the action-value function Q”(xt, w) = Q7 (xy, uy) with
an appropriate policy evaluation method, e.g., temporal-difference learning.

Stochastic Policy Gradients Policy gradient algorithms are the most
popular class of continuous action reinforcement learning algorithms (Degris
et al., 2012; Silver et al., 2014; Ciosek and Whiteson, 2018a; Schulman et al.,
2015; Lillicrap et al., 2016; Zimmer et al., 2016). The overall idea is to adjust
the policy parameters 6 in the direction of the performance gradient Vq.J(8).
Computing this gradient analytically is not possible, as the state distributions
under every policy parameters and the real action-value function Q(x, u) should
be known. To make this computation efficient and practical, most algorithms
utilize the results of the stochastic policy gradient theorem (SPG) (Sutton et al.,
2000):

Ve J(0) :/P(T|9)/Vg7r(u|x, 0)Q" (x,u)dxdu

- E[ZVglogﬂ(ut]xt,O)Q”(xt,ut) (2.11)

t=0

The most interesting part of the policy gradient theorem (apart from its
simplicity) is that despite the fact that the distribution over trajectories P(7|0)
depends on the policy parameters @, the policy gradient does not depend on
the trajectory distribution. This result has very important practical value,
as the computation of the policy gradient is reduced to a simple expectation.
However, the stochastic policy gradient theorem requires that the policies are
stochastic.

Deterministic Policy Gradients Silver et al. (2014) introduced the
deterministic policy gradient theorem (DPG) that adapts the SPG theorem for
deterministic policies:
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VeoJ(0) = /P(T|0)VUQ”(X,U = m(x]0))dx

T-1

_ E[Z Vologr (x,/0)Vu, Q™ (x:, w; = 7(x,|6)) (2.12)

t=0

They also showed that the DPG theorem is a limiting case of the SPG
theorem. This is important because it shows that the familiar machinery of
policy gradients, for example compatible function approximation (Sutton et al.,
2000), natural gradients(Kakade, 2002), actor-critic (KKonda and Tsitsiklis,
2000), or episodic/batch methods, is also applicable to deterministic policy
gradients.

Expected Policy Gradients Recently, Ciosek and Whiteson (2018a,b),
taking inspiration from expected SARSA (Sutton and Barto, 1998; Van Seijen
et al., 2009), introduced expected policy gradients (EPG) that unifies the SPG
and DPG theorems and shows improved performance on several benchmarks.
Their main contribution is to restate the Eq. (2.11) as follows:

Vo J(0) :/P(T|9)/V97T(u|x, 0)Q™ (x,u)dxdu
:/P(T|0)[7?(x)dx
:E[ IQ(xt)] (2.13)

This formulation makes explicit that one step in estimating the gradient is
to evaluate an integral. The key insight of EPG is that given a state x;, I9(x;)

s
can be fully expressed with known quantities. Consequently, I9(x;) can be

analytically computed or approximated by Monte Carlo quadrature in cases
where the integral is not possible to compute.

In their paper, Ciosek and Whiteson (2018b) formulate the General Policy
Gradient Theorem that unifies both SPG and DPG theorems. In particular,
they show that the choice between a deterministic or a stochastic policy is
fundamentally a choice of the quadrature method for approximating I2(x;).
One important conclusion of their work is that the success of DPG over SPG
should not be attributed to a fundamental issue of stochastic policies, but to
superior (easier) quadrature method. Thanks to EPG, a deterministic policy is
no longer required to obtain a method with low variance.
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2.5 Using priors on the policy parameters or
representation

When designing the policy 7(u|x,t,0), the key design choices are what the
space of 0 is, and how it maps states to actions. This design is guided by
a trade-off between having a representation that is expressive, and one that
provides a space that is efficiently searchable®.

Expressiveness can be defined in terms of the optimal policy 7¢. For a given
task ¢, there is theoretically always at least one optimal policy 77. Here, we
drop 0 to express that we do not mean a specific representation parameterized
by 6. Rather 77 emphasizes that there is some policy (with some representation,
perhaps unknown to us) that cannot be outperformed by any other policy
(whatever its representation). We use J¢(77) to denote this highest possible
expected reward.

A parameterized policy 7 should be expressive enough to represent this
optimal policy 7 (or at least come close), i.e.,

Jc(ﬂ'z) — I’IléiX Jc(a) < (5, (214)

where ¢ is some acceptable margin of suboptimality. Note that absolute
optimality is rarely required in robotics; in many everyday applications, small
tracking errors may be acceptable, and the quadratic command cost needs not
be the absolute minimum.

On the other hand, the policy representation should be such that it is easy
(or at least feasible) to find 0*, i.e., it should be efficiently searchable’. In
general, smaller values of dim(8) lead to more efficiently searchable spaces.

In the following subsections, we describe several common policy repre-
sentations which make different trade-offs between expressiveness and being
efficiently searchable.

2.5.1 Hand-designed policies

One approach to reducing the policy parameter space is to hand-tailor it to the
task ¢ to be solved. In (Fidelman and Stone, 2004), for instance, a policy for
ball acquisition is designed. The resulting policy only has only four parameters,
i.e., dim(@) is 4. This low-dimensional policy parameter space is easily searched,
and only 672 trials are required to optimize the policy. Thus, prior knowledge
is used to find a compact representation, and policy search is used to find the
optimal @* for this representation.

3Freek Stulp and Sylvain Calinon greatly contributed in this section (Chatzilygeroudis
et al., 2018b).

4 Analogously, the universal approximation theorem states that a feedforward network
with single hidden layer suffices to represent any continuous function, but it does not imply
that the function is learnable from data.
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One disadvantage of limiting dim(@) to a very low dimensionality is that
0 may become quite large, and we have no estimate of how much more the
reward could have been optimized with a more expressive policy representation.
Another disadvantage is that the representation is very specific to the task ¢
for which it was designed. Thus, such a policy cannot be reused to learn other
tasks. It then greatly limits the transfer learning capabilities of the approaches,
since the learned policy can hardly be re-used for any other task.

2.5.2 Policies as function approximators

Ideally, our policy representation © is expressive enough so that we can apply
it to many different tasks, i.e.,

N
argmin Je (m ) —max J;, (@), with 8 € O, 2.15

i.e., over a set of tasks, we minimize the sum of differences between the
theoretically optimal policy 7* for each task, and the optimal policy given the
representation g for each task®.

Two examples of such generally applicable policy representations are linear
policies (2.16), radial basis function networks (2.17), or neural networks, namely

mo(x) = 074 (x) (2.16)
mo(x) = wTpg(x). (2.17)

These more general policies can be used for many tasks (Guenter et al., 2007;
Kober et al., 2013). However, prior knowledge is still required to determine the
appropriate number of basis functions and their shape. Again, a lower number
of basis functions will usually lead to more efficient learning, but less expressive
policies and thus potentially higher 4.

One advantage of using a function approximator is that programming by
demonstration can often be used to determine an initial policy. The initial
parameters @ are obtained through supervised learning, by providing the
demonstration as training data (a;, u;);=1.n. This is discussed in more detail
in Section 2.5.6

The function approximator can be used to generate a single estimate
(corresponding to a first order moment in statistics), but it can also be extended
to higher order moments. Typically, extending it to second order moments
allows the system to get information about the variations that we can exploit
to fulfill a task, as well as the synergies between the different policy parameters
in the form of covariances. This is typically more expensive to learn—or it
requires multiple demonstrations (Matsubara et al.; 2011)—but the learned
representation can typically be more expressive, facilitating adaptation and
generalization.

5Note that this optimization is never actually performed. It is a mathematical description
of what the policy representation designer is implicitly aiming for.
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2.5.3 Dynamical Movement Primitives

Dynamical Movement Primitives (DMPs) combine the generality of function
approximators with the advantages of dynamical systems, such as robustness
towards perturbations and convergence guarantees (Ijspeert et al., 2013, 2002).
DMPs limit the expressiveness of the policy to typical classes of tasks in robotics,
such as point-to-point movements (‘discrete DMPs’) or repetitive movements
(‘rythmic DMPs’).

Discrete DMPs are summarized in Eq. 2.18. The canonical system represents
the movement phase s, which starts at 1, and converges to 0 over time. The
transformation systems combines a spring-damper system with a function
approximator fg, which, when integrated, generates accelerations ¢. Multi-
dimensional DMPs are achieved by coupling multiple transformation systems
with one canonical system. The vector y typically represents the end-effector
pose or the joint angles.

As the spring-damper system converges to y9, and s (and thus s fg(s))
converges to 0, the overall system y is guaranteed to converge to y?. We have:

wij = a(ﬁ(yg — y) — y) + S fg(s) . (Transf.) (2.18)
N Vv v
Spring-damper system Forcing term
WS = —Q,S. (Canonical) (2.19)

This facilitates learning, because, whatever parameterization 8 of the func-
tion approximator we choose, a discrete DMP is guaranteed to converge towards
a goal y9. Similarly, a rhythmic DMP will always generate a repetitive motion,
independent of the values in 6. The movement can be made slower or faster by
changing the time constant w.

Another advantage of DMPs is that only one function approximator is
learned for each dimension of the DMP, and that the input of each function
approximator is the phase variable s, which is always 1D. Thus, whereas the
overall DMP closes the loop on the state y, the part of the DMP that is learned
(fo(s)) is an open-loop system. This greatly facilitates learning, and simple
black-box optimization algorithms have been shown to outperform state-of-the-
art RL algorithms for such policies (Stulp and Sigaud, 2013a). Approaches for
learning the goal y? of a discrete movement have also been proposed (Stulp
et al., 2012). Since the goal is constant throughout the movement, few trials
are required to learn it.

The optimal parameters 8* for a certain DMP are specific to one specific
task (. Task-parameterized (dynamical) motion primitives aim at generalizing
them to variations of a task, which are described with the task parameter
vector q (e.g., the 3D pose to place an object on a table (Stulp et al., 2013)).
Learning a motion primitive that is optimal for all variations of a task (i.e., all
g within a range) is much more challenging, because the curse of dimensionality
applies to the task parameter vector q just as it does for the state vector x in
reinforcement learning. Task-parameterized representations based on the use
of multiple coordinate systems have been developed to cope with this curse of
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dimensionality (Calinon, 2016), but these models have only been applied to
learning from demonstration applications so far.

Another approach to avoid the curse of dimensionality is to consider a
hierarchical organization of the policy. In (Daniel et al., 2016), Daniel et al.
propose the use of a hierarchical policy composed of a gating network and
multiple sub-policies, and introducing an entropy-based constraint ensuring that
the agent finds distinct solutions with different sub-policies. These sub-policies
are treated as latent variables in an expectation-maximization procedure,
allowing the distribution of the update information between the sub-policies.
In Queisser and Steil (Queisser and Steil, 2018), an upper-level policy is used
to interpolate between policy parameterizations for different task variations.
This substantially speeds up learning when many variations of the same task
must be learned.

2.5.4 Learning the controller

If the policy generates a reference trajectory, a controller is required to map
this trajectory (and the current state) to robot control commands (typically
torques or joint angle velocity commands). This can be done for instance with a
proportional-integral-derivative (PID) controller (Buchli et al., 2011), or a linear
quadratic tracking (LQT) controller (Calinon et al., 2014). The parameters of
this controller can also be included in 6, so that both the reference trajectory and
controller parameters are learned at the same time. By doing so, appropriate
gains (Buchli et al., 2011; Calinon et al., 2013) or forces (Kalakrishnan et al.,
2011) for the task can be learned together with the movement required to
reproduce the task. Typically, such representation provides a way to coordinate
motor commands to react to perturbations, by rejecting perturbations only in
the directions that would affect task performance.

2.5.5 Learning the policy representation

So far we have described how the policy representation is determined with prior
knowledge, and the 8 of this policy is then optimized through policy search.
Another approach is to learn the policy representation and its parameters at the
same time, as in NeuroEvolution of Augmenting Topologies (NEAT) (Stanley
and Miikkulainen, 2002). It is even possible, in simulation, to co-evolve an
appropriate body morphology and policy (Sims, 1994; Bongard and Pfeifer,
2003). As in natural evolution itself, these approaches require massive amounts
of rollouts, and do not focus on learning in a handful of trials.

2.5.6 Initialization with demonstrations / imitation
learning
An advantage of using expressive policies is that they are able to learn (close

to) optimal policies for many different tasks. A downside is that such policies
are also able to represent many suboptimal policies for a particular task, i.e.,
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there will be many local minima. To ensure convergence, it is important that
the initial policy parameters are close to the global optimum. In robotics, this
is possible through imitation, i.e. the initialization of @ from a demonstrated
trajectory. This is possible if we know the general movement a robot should
make to solve the task, and are able to demonstrate it by recording our move-
ment, or physically guiding the robot through kinesthetic teaching. Starting
with a 0 that is close 8* greatly reduces the number of samples to find 8%, and
the interplay between imitation and policy search is therefore an important
component in micro-data learning.

2.6 Learning models of the expected return

With the appropriate policy representation (and/or initial policy parameters)
chosen, the policy search in Algorithm 1 is then executed. The most important
step is determining the next parameter vector 8, to test on the physical
robot.

In order to choose the next parameter vector 8,1 to test on the physical
robot, a strategy is to learn a model .J(8) of the expected return J(6) (Eq. (2.4))
using the values collected during the previous episodes, and then choose the
optimal 6,,.; according to this model. Put differently, the main concept is to

optimize J(8) by leveraging J(8|R(7|0:),--- , R(T|0x)).

2.6.1 Bayesian optimization

Algorithm 3 Policy search with Bayesian optimization

1: procedure COLLECTSTRATEGY

2 Collect samples of the form (8, R(7))

3: end procedure

4: procedure LEARNSTRATEGY

5: Learn model J : 8 — J(6)

6: end procedure

7. procedure UPDATESTRATEGY

8 0,11 = argmaxy ACQUISITIONFUNCTION(@)
9: end procedure

The most representative class of algorithms that falls in this category is
Bayesian optimization (BO) (Brochu et al., 2010). Bayesian optimization
consists of two main components: a model of the expected return, and an
acquisition function, which uses the model to define the utility of each point in
the search space.

Bayesian optimization, for policy search, follows the generic policy search
algorithm (Algo. 1) and implements COLLECTSTRATEGY, LEARNSTRATEGY
and UPDATESTRATEGY (Algo. 3). More specifically, a surrogate model, J(8),
of the expected return is learned from the data, then the next policy to test is
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selected by optimizing the ACQUISITIONFUNCTION. The ACQUISITIONFUNC-
TION tries to intelligently exploit the model and its uncertainties in order to
trade-off exploration and exploitation.

The main axes of variation are: (a) the way INITSTRATEGY is defined (the
most usual approaches are random policy parameters or random actions), (b)
the type of model used to learn J, (c¢) which ACQUISITIONFUNCTION is used,
and (d) the optimizer used to optimize the ACQUISITIONFUNCTION.

Gaussian Processes Gaussian Process (GP) regression (Rasmussen and
Williams, 2006) is the most popular choice for the model. A GP is an extension
of multivariate Gaussian distribution to an infinite-dimension stochastic process
for which any finite combination of dimensions will be a Gaussian distribu-
tion (Rasmussen and Williams, 2006). More precisely, it is a distribution
over functions, completely specified by its mean function, p(-) and covariance
function, k(-,-) and it is computed as follows:

J(6) ~ GP(u(6),k(6,9)) (2.20)

Assuming D, = {R(7]6,), ..., R(7|6,)} is a set of observations, we can query
the GP at a new input point 6, as follows:

p(J(8.)|D1n, 6.) = N (11(6.),5%(6.)) (2.21)

The mean and variance predictions of the GP are computed using a kernel
vector k = k(D.,, 0.), and a kernel matrix K, with entries K;; = k(6;, 0,):

:U’(e*) = kTK?lDl:n
c%(0,) = k(0,,0,) — k" K 'k (2.22)

Exponential Kernel A kernel (also called a covariance function, kernel
function, or covariance kernel), is a positive-definite function of two inputs 6;
and 6;. There exist many kernel functions that can be used with GPs. We can
categorize them in two categories: (1) stationary, meaning that their value only
depends on the difference 8; — 8, and (2) non-stationary, meaning that their
value depends on the actual inputs and not just their difference. The most
widely used kernel for Gaussian process regression is the stationary Squared
Exponential Kernel® (SE), defined as follows:

1
kse(0:,0;) = U?GXP(—g(ei —0,)"A7(0; — 6;)) + 026y (2.23)

2

2] are the hyper-parameters of

where 0;; = 1 when i = j and ¢x = [A, 07,0
the kernel.

Maximum Likelihood Estimation In order to find the optimal parameters
of the kernel, that is, to select the most likely model, we use the Maximum

SMaybe a better name is Squared Quadratic Kernel
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Likelihood Estimation (MLE) and maximize the marginal likelihood of the GP
model (or the log-likelihood):

1
log p(D1:n |01, dx) = —§D1‘FmKD1m —log| K| — log(27) (2.24)

For the acquisition function, most algorithms use the Expected Improvement,
the Upper Confidence Bound or the Probability of Improvement (Brochu et al.,
2010; Hennig and Schuler, 2012).

Probability of Improvement One of the first acquisition functions is the
Probability of Improvement (Kushner, 1964) (PI). PI defines the probability
that a new test point j(@) will be better than the best observation so far 8%;
since we cannot directly get this information from Dy.,, in practice we query
the approximated model J on Dy, and get the best parameters. When using
GPs as the surrogate model, this can be analytically computed:

PI1(6) = p(J(8) > J(6"))
w6) — J(6+)
~o(055%)

-0 (2.25)

where ®(-) denotes the CDF of the standard normal distribution. The main
drawback of PI is that it basically performs pure exploitation; in practice,

a slightly modified version of PI is used where a trade-off parameter ¢ is
added (Brochu et al., 2010).

Expected Improvement The Expected Improvement (Brochu et al.; 2010)
(EI) acquisition function is an extension of PI, where the expected improvement
(deviation) from the current maximum is calculated. Again, when using GPs
as the surrogate model, EI can be analytically computed:

~

(6) = max{0,.J(0) — J(67)}
EI1(6) = E(1(0))

_ { (u(0) - J(07)2(2) +0(0)6(2), 1o0) >0y
_ n(6) — J(6)
ST

where ¢(-) and ®(-) denote the PDF and CDF of the standard normal distribu-
tion respectively.

Upper Confidence Bound The Upper Confidence Bound (UCB) acquisi-
tion function is the easiest to grasp and works very well in practice (Hennig
and Schuler, 2012). When using GPs as the surrogate model, it is defined as
follows:
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UCB(6) = u(8) + ac(6) (2.27)

where « is a user specified parameter.

Hennig and Schuler (2012) performed a thorough experimental analysis and
concluded that EI can perform better on artificial objective functions than PI
and UCB, but more recent experiments on gait learning on a physical robot
suggested that UCB can outperform EI in real situations (Calandra et al.,
2015).

Martinez-Cantin et al. (2007) were among the first to use BO as a policy
search algorithm; in particular, their approach was able to learn a policy
composed of way-points in order to control a mobile robot that had to navigate
in an uncertain environment. Since BO does not depend on the dimensionality
of the state space, it can be effective for learning policies for robots with
complex (e.g., locomotion tasks, because of the non-linearity created by the
contacts) or high-dimensional dynamics. For instance, Bayesian optimization
was successfully used to learn policies for a quadruped robot (Lizotte et al.,
2007) (around 100 trials with a well-chosen 15D policy space), a small biped
“compass robot” (Calandra et al., 2015) (around 100 trials with a finite state
automata policy), and a pocket-sized, vibrating soft tensegrity robot (Rieffel
and Mouret, 2018) (around 30 trials with directly controlling the motors). In
all of these cases, BO was at least an order of magnitude more data-efficient
than competing methods.

Unfortunately, BO scales badly with respect to the dimensionality of the
policy space because modeling the objective function (i.e., the expected return)
becomes exponentially more difficult when the dimension increases (Bellman,
1957). This is why all the aforementioned studies employed low-dimensional
policy spaces and very well chosen policy structures (i.e., they all use a strong
prior on the policy structure). Scaling up BO is, however, an active field of
research in optimization and some ideas might be applied to robotics in the
future; according to the optimization literature, random embeddings (Wang
et al., 2016) and additive models (Kandasamy et al., 2015; Rolland et al., 2018)
are among the most promising ideas.

2.6.2 Bayesian optimization with priors

One of the most interesting features of BO is that it can leverage priors (e.g.,
from simulation or from previous tasks) to accelerate learning on the actual
task. Perhaps the most representative algorithm in this area is the “Intelligent
Trial & Error” (IT&E) algorithm (Cully et al., 2015). IT&E first uses MAP-
Elites (Cully et al., 2015), an evolutionary illumination (Mouret and Clune,
2015; Vassiliades et al., 2017) (also known as quality-diversity (Pugh et al.,
2016)) algorithm, to create a repertoire of about 15000 high-performing policies
and stores them in a low-dimensional map (e.g., 6-dimensional whereas the
policy space is 36-dimensional). When the robot needs to adapt, a BO algorithm
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searches for the best policy in the low-dimensional map and uses the reward
stored in the map as the mean function of a GP. This algorithm allowed a
6-legged walking robot to adapt to several damage conditions (e.g., a missing
or a shortened leg) in less than 2 minutes (less than a dozen of trials), whereas
it used a simulator of the intact robot to generate the prior.

Gaussian processes with priors Assuming D;., = {R(7|60,),..., R(7|6,)}
is a set of observations and R,,(0) being the reward in the map, we can query
the GP at a new input point 6, as follows:

p(J(8.)| D1.n, 6.) = N ((6.),0%(6.)) (2.28)

The mean and variance predictions of this GP are computed using a kernel
vector k = k(Dy.,, 0.), and a kernel matrix K, with entries K = k(6;,0;) and
where k(-, ) is the kernel of the GP:

1(0,) = Rp(0,) + k' K~ (D1, — Rn(01.,))
o%(0,) = k(0.,0,) — k" K 'k (2.29)

The formulation above allows us to combine observations from the prior and
the real-world smoothly. In areas where real-world data is available, the prior’s
prediction will be corrected to match the real-world ones. On the contrary, in
areas far from real-world data, the predictions resort to the prior function (Cully
et al., 2015; Lee et al., 2017; Chatzilygeroudis et al., 2018a).

Following a similar line of thought but implemented differently, a few recent
works (Antonova et al., 2016, 2017) use a simulator to learn the kernel function
of a GP, instead of utilizing it to create a mean function like in IT&E (Cully
et al., 2015). In particular, Antonova et al. (2016) used domain knowledge
for bipedal robots (i.e., Determinants of Gait (DoG) (Inman et al., 1953))
to produce a kernel that encodes the differences in walking gaits rather than
the Euclidean distance of the policy parameters. In short, for each controller
parameter @ a score sc(@) is computed by summing the 5 DoG and the kernel
k(-,-) is defined as k(6;,0;) = k(sc(0;),sc(0;)). This proved to be beneficial
and their approach outperformed both traditional BO and state-of-the-art
black-box optimizers (CMA-ES). Moreover, in their follow-up work (Antonova
et al., 2017), the same authors use neural networks to model this kernel instead
of hand-specifying it. Their evaluation shows that the learned kernels perform
almost as good as hand-tuned ones and outperform traditional BO. Lastly, in
this work they were able to make a physical humanoid robot (ATRIAS) to
walk in a handful of trials.

A similar but more general idea (i.e., no real assumption about the under-
lying system) was introduced by (Wilson et al., 2014). The authors propose a
Behavior-Based Kernel (BBK) that utilizes trajectory data to compare poli-
cies, instead of using the distance in parameters (as is usually done). More
specifically, they define the behavior of a policy to be the associated trajectory
density P(7|6) and the kernel k(-,-) is defined as k(0;,0;) = aexp D(6;,0,),
where D(0;,0;) is defined as a sum of KL-divergences between the trajectory
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densities of different policies. Their approach was able to efficiently learn on
several benchmarks; e.g., it required on average less than 20 episodes on the
mountain car, acrobot and cartpole swing-up tasks. One could argue that this
approach does not utilize any prior information, but rather creates it on the
fly; nevertheless, the evaluation was only performed with low-dimensional and
well-chosen policy spaces.

Wilson et al. (2014) proposed to learn models of the dynamics and the
immediate reward to compute an approximate mean function of the GP, which
is then used in a traditional BO procedure. They also combine this idea with the
BBK kernel and follow a regular BO procedure where at each iteration they re-
compute the mean function of the GP with the newly learned models. Although,
their approach successfully learned several tasks in less than 10 episodes (e.g.,
mountain car, cartpole swing-up), there is an issue that might not be visible at
first sight: the authors combine model learning, which scales badly with the
state/action space dimensionality (see Section 2.7), with Bayesian optimization,
which scales badly with the dimensionality of the policy space. As such, their
approach can only work with relatively small state/action spaces and small
policy spaces. Using priors in the dynamics (see Section 2.7.2) and recent
improvements on BO (see Section 2.6.1) could make their approach more
practical.

Instead of using the simulator to precompute priors, Marco et al. (2017)
propose an approach that has the ability to automatically decide whether it
will gain crucial information from a real sample or it can use the simulator
that is cheaper. More specifically, they present a BO algorithm for multiple
information sources. Their approach relies on Entropy Search (ES) (Hennig
and Schuler, 2012), which selects parameters in order to maximally reduce
the uncertainty about the location of the maximum of J(0) in each step. It
quantifies this uncertainty through the entropy of the distribution over the
location of the maximum, ppax(6) = P(6 € argming J(0)). ES basically defines
a different AcQUISITIONFUNCTION for BO as follows:

ES(0) = argmaxE[AH (0)] (2.30)

where AH () is the change in entropy of ppa.x caused by retrieving a new cost
value at location 8. They use entropy to measure the information content of
simulations and real experiments. Since this is an appropriate unit of measure
for the utility of both sources, the algorithm is able to compare physically
meaningful quantities in the same units, and trade off accuracy for cost. As
a result, the algorithm can automatically decide whether to evaluate cheap,
but inaccurate simulations or perform expensive and precise real experiments.
They applied the method to fine-tune the policy of a cart-pole system and
showed that their approach can speed up the optimization process significantly
compared to standard BO.

Lober et al. (2016) use a BO procedure that selects parameterizations of
a QP-based whole body controller (Salini et al., 2011; Spitz et al., 2017) in
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order to control a humanoid robot. In particular, they formulate a policy
that includes the QP-based controller (that contains an approximate model
of the system and an optimizer) and is parameterized by way-points (and/or
switching times). Their approach was able to allow an iCub robot to move a
heavy object while maintaining body balance and avoid collisions (Lober et al.,
2016, 2017).

Safety-Aware Approaches

Berkenkamp et al. (2016) introduced SafeOpt, a BO procedure to auto-
matically tune controller parameters by trading-off between exploration and
exploitation only within a safe zone of the search space. Their approach requires
minimal knowledge, such as an initial, not optimal, safe controller to bootstrap
the search. Using this approach a quadrotor vehicle was able to safely improve
its performance over the initial sub-optimal policy.

2.7 Learning models of the dynamics

Instead of learning a model of the expected long-term reward (section 2.6.1),
one can also learn a model of the dynamics of the robot. By repeatedly querying
this surrogate model, it is then possible to make a prediction of the expected
return. This idea leads to model-based policy search algorithms (Deisenroth
et al., 2013; Polydoros and Nalpantidis, 2017), in which the trajectory data
are used to learn the dynamics model, then policy search is performed on the
model (Sutton, 1991; Kaelbling et al., 1996).

Put differently, the algorithms leverage the trajectories 7, - - Ty observed
so far to learn a function f(x,w) so that:

&1 = [, wy) (2.31)

This function, f (x4, u;), is then used to compute an estimation of the expected
return, J(@|7, - Tn).

2.7.1 Model-based Policy Search

Let us consider that the actual dynamics f (and consequently the transition
probabilities) are approximated by a model f and the immediate reward
function r is approximated by a model 7. As such, in model-based policy search
we are alternating between learning the models ( f and 7) and maximizing the
expected long-term reward on the model:

ﬂm:mmﬂm:/ﬁﬁﬁum (2.32)
where

P(7|0) = p(xo) [ [ plaialme, wi)mo(wilay, 1) (2.33)

t
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This iterative scheme can be seen as follows:

T, ~ P(716,) (2.34)

D,=D, U{r,, R(T)} (2.35)

0,1 = argmax J(6|D,,) (2.36)
0

where 6, is randomly determined or initialized to some value, Dy = () and
J(8|D) means calculating .J(0) once the models f and 7 are learned using the
dataset of trajectories and rewards D. After some stopping criteria is met
(usually number of episodes or convergence of policy parameters), the policy
that approximately maximizes Eq. (2.10) can be straightforwardly retrieved:

T = Olast (237)

If the system (and the policy) is not stochastic, one could retrieve the best
policy differently:

T+ = argmax R(7,) (2.38)
0

Algorithm 4 Model-based policy search

procedure COLLECTSTRATEGY

Collect samples of the form (@, ws, 711)
end procedure
procedure LEARNSTRATEGY

Learn model f (@, wy) = Ty

Learn model 7 : (@, wy, @411) = 7411
end procedure
procedure UPDATESTRATEGY

0,1 = argmax, J(6|D,,)
end procedure

,_.
@

Model-based policy search follows the generic policy search algorithm
(Algo. 1) and implements COLLECTSTRATEGY, LEARNSTRATEGY and UP-
DATESTRATECGY (Algo. 4). The main axes of variation are: (a) the way
INITSTRATEGY is defined (the most usual approaches are random policy pa-
rameters or random actions), (b) the type of models used to learn f and 7,
(¢) the optimizer used to optimize .J(8|D,), and (d) how are the long-term
predictions, given the models, performed (i.e., how Eq. (2.32) is calculated or
approximated).

Model-based policy search algorithms are usually more data-efficient than
both direct and surrogate-based policy search methods as they do not depend
much on the dimensionality of the policy space. On the other hand, since they
are modelling the transition dynamics, practical algorithms are available only
for relative small state-action spaces (Chatzilygeroudis et al., 2017; Deisenroth
et al., 2015, 2013; Polydoros and Nalpantidis, 2017).
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2.7.1.1 Model Learning

There exist many approaches to learn the models f and 7 (for model-based
policy search) in the literature (Tangkaratt et al., 2014; Levine and Abbeel, 2014;
Deisenroth et al., 2015). We can categorize the learned models in deterministic
(e.g., neural networks or linear regression) and probabilistic ones (e.g., Gaussian
Processes).

Probabilistic models usually rely on Bayesian methods and are typically
non-parametric (and thus exhibit potentially infinite capacity), whereas de-
terministic models are typically parametric (and thus do not have infinite
capacity). Probabilistic models are usually more effective than deterministic
models in model-based policy search (Deisenroth et al., 2013) because they
provide uncertainty information that can be incorporated into the long-term
predictions, thus giving the capability to the optimizer to find more robust
controllers (and not over-exploit the model biases). PILCO (Deisenroth and
Rasmussen, 2011) utilizes Gaussian processes (GPs) to greatly reduce the
interaction time to solve several tasks, like the cart-pole swing-up task.

Recently, the model-based Policy Gradients with Parameter-based Explo-
ration (M-PGPE) algorithm (Tangkaratt et al., 2014) suggested instead of
learning the model f , to directly try to estimate the transition probabilities
p(@11|Te, uy) using least-squares conditional density estimation (Sugiyama
et al., 2010). Using this formulation they were able to bypass some drawbacks
of GPs such as computation speed and smoothness assumption (although
choosing appropriate kernels in the GPs can produce non-smooth predictions).

Another way of learning models of the dynamics is to use local linear
models (Levine et al., 2016; Levine and Abbeel, 2014; Kumar et al., 2016);
i.e., models that are trained on and are only correct in the regions where one
controller /policy can drive the system. Guided policy search with unknown
dynamics utilizes this scheme and is able to learn efficiently even in high-
dimensional states and discontinuous dynamics, like 2D walking and peg-in-the-
hole tasks (Levine et al., 2016; Levine and Abbeel, 2014) and even dexterous
manipulation tasks (Kumar et al., 2016).

There has, also, recently been some work on using Bayesian Neural Networks
(BNNs) (Gal and Ghahramani, 2016) to improve the scaling of model-based
policy search algorithms (Gal et al., 2016; Higuera et al., 2018). Compared
to GPs, BNNs scale much better with the number of samples. Nevertheless,
BNNs require more tedious hyper-parameter optimization and there is no
established, intuitive way to include prior knowledge (apart from the structure).
A combination of ensembles and probabilistic neural networks has been recently
proposed (Chua et al., 2018) for learning probabilistic dynamics models of
higher dimensional systems; for example, state-of-the-art performance was
obtained in controlling the half-cheetah benchmark (Wawrzynski, 2007) by
combining these models with model-predictive control. Recent works showcase
that using BNNs with stochastic inputs (and the appropriate policy search
procedure) is beneficial when learning in scenarios with multi-modality and
heteroskedasticity (Depeweg et al., 2017); traditional model learning approaches
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(e.g., Gaussian processes) fail to properly model these scenarios. Moreover,
decomposing aleatoric (i.e., inherent uncertainty of the underlying system)
and epistemic (i.e., uncertainty due to limited data) uncertainties in BNNs
(with latent input variables) can provide useful information on which points to
sample next (Depeweg et al., 2018).

Lastly, when performing model-based policy search under partial observabil-
ity, different model learning techniques should be used. One interesting idea is
to optimize the model with the explicit goal of explaining the already observed
trajectories instead of focusing on the step-by-step predictions. Doerr et al.
(2017) recently proposed a principled approach to incorporate these ideas into
GP modeling and were able to outperform other robust models in long-term
predictions and showcase improved performance for model-based policy search
on a real robot with noise and latencies.

2.7.1.2 Long-term predictions

We can categorize the model-based policy search algorithms in those that
perform stochastic long-term predictions by means of samplings and those
that perform deterministic long-term predictions by deterministic inference
techniques (Deisenroth et al., 2013).

Stochastic Long-Term Predictions The actual dynamics of the system are
approximated by the model f , and the immediate reward function by the model
7. The model f provides the transition probabilities p(@ii1|@, wy). Similarly,
the model 7 provides the immediate reward distribution p(7.1|®:, we, €1 1).
When applying a policy (with some parameters @) on the model, we get a
rollout or trajectory:

T = (%o, Ug, T1, U1, ..., TT) 2.39
r = (F1,79, ..., 1) 2.40

T-1
R(T) = i (2.41)

=0

where

xo ~ p(xo) (2.42)
Ter1 ~ D(Fear|@e, Wy, Tipq) (2.43)
w; ~ mo(w|@, t) (2.44)
Tip1 ~ P(Tr1| @y, wy) (2.45)

This is basically sampling the distribution over trajectories, P(7|@), which
is feasible since the sampling is performed with the models. When applying
the same policy (i.e., a policy with the same parameters 0), the trajectories 7
(and consequently ) can be different (i.e., stochastic) because (of at least one
of the following):
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e The policy is stochastic. If the policy is deterministic, then u; = mg (2, t);
e The models (f and/or #) are probabilistic;

e Of the initial state distribution, p(xo).

Monte-Carlo & PEGASUS Policy FEvaluation: Once we know how to
generate trajectories given some policy parameters, we need to define the way
to evaluate the performance of these policy parameters. Perhaps the most
straightforward way of computing the expected log-term reward of some policy
parameters is to generate m trajectories with the same policy along with their
long-term costs and then compute the average (i.e., perform Monte-Carlo
sampling):

J6) = % > Al (2.46)

One more efficient way of computing the expected long-term reward with
stochastic trajectories is the PEGASUS sampling procedure (Ng and Jordan,
2000). In the PEGASUS sampling procedure the random seeds for each
time step are fixed. As a result, repeating the same experiment (i.e., the
same sequence of control inputs and the same initial state) would result into
exactly the same trajectories. This significantly reduces the sampling variance
compared to pure Monte-Carlo sampling and can be shown that optimizing
this semi-stochastic version of the model is equivalent to optimizing the actual
model.

The advantages of the sampling-based policy evaluations schemes are that
each rollout can be performed in parallel and that they require much less
implementation effort than the deterministic long-term predictions (see Sec-
tion 2.7.1.2). Nevertheless, these sampling-based procedures can experience big
variances in the predictions that can negatively affect the optimization process.

Model-based contextual REPS (Kupcsik et al., 2017) heavily uses sampling-
based policy evaluations and showed that when using enough sample trajectories,
you can get better approximations than deterministic long-term predictions (see
Section 2.7.1.2); another recent work also strongly justifies the usage of sampling-
based policy/action evaluations over deterministic inference methods (Chua
et al., 2018) (especially in higher dimensional systems). They were also able to
greatly reduce the computation time by exploiting the parallelization capabilities
of modern GPUs. In their paper, model-based contextual REPS is able to
learn policies for controlling robots that play table tennis and hockey, where
different goal positions are handled as different contexts.

Deterministic Long-Term Predictions Instead of sampling trajectories
T, the probability distribution P(7]0) can be computed with deterministic
approximations, such as linearization (Anderson and Moore, 1979), sigma-
point methods (Julier and Uhlmann, 2004) or moment matching (Deisenroth
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et al., 2015). All these inference methods attempt to approximate the original
distribution with a Gaussian.

Assuming a joint probability distribution p(xs, u;) = N (g, ), the distri-
bution P(7|60) can be computed by successively computing the distribution of
p(x11) given p(xy, uy). Computing p(a,41) corresponds to solving the integral:

ﬁ($t+1) = //\/ﬁ(mt+1|wt,ut)ﬁ(mt,ut)dxtdutdw (247)

This integral can be computed analytically only if the transition dynamics
f are linear (in that case p(,41) is Gaussian). This is rarely the case and
as such, approximate inference techniques are used. Usually, we approximate
p(xe1) as a Gaussian; this can be done either by linearization (Anderson
and Moore, 1979), sigma-point methods (Julier and Uhlmann, 2004) or mo-
ment matching (Deisenroth et al., 2015). The PILCO algorithm (Deisenroth
and Rasmussen, 2011) uses moment matching, which is the best unimodal
approximation of the predictive distribution in the sense that it minimizes the
Kullback-Leibler divergence between the true predictive distribution and the
unimodal approximation (Deisenroth et al., 2013).

One big advantage of using deterministic inference techniques for long-term
predictions is the low-variance they exhibit in the predictions. In addition,
using these inference techniques allows for analytic gradient computation and
as such we can exploit efficient gradient-based optimization. However, each
of these inference techniques has its own disadvantages; for example, exact
moments (for moment matching) can be computed only in special cases since
the required integrals might be intractable, which limits the overall approach
(e.g., PILCO requires that the reward function is known and differentiable).

The PILCO algorithm (Deisenroth et al., 2015) uses this type of long-term
predictions and it was the first algorithm that showed remarkable data-efficiency
on several benchmark tasks (e.g., less than 20 seconds of interaction time to
solve the cart-pole swing-up task) (Deisenroth and Rasmussen, 2011). It was
also able to learn on a physical low-cost manipulator (Deisenroth et al., 2011)
and simulated walking tasks (Deisenroth et al., 2012) among the many successful
applications of the algorithm (Deisenroth et al., 2015).

2.7.2 Using priors on the dynamics

Reducing the interaction time in model-based policy search can be achieved
by using priors on the models (Bischoff et al., 2014; Deisenroth et al., 2014;
Chatzilygeroudis and Mouret, 2018; Cutler and How, 2015; Lee et al., 2017;
Saveriano et al., 2017; Wu and Movellan, 2012); i.e., starting with an initial guess
of the dynamics (and/or the reward function) and then learning the residual
model. This type of algorithms follow the general model-based policy search
framework (Algo. 4) and usually implement different types of INITSTRATEGY.
Notably, most of the approaches (and the most successful ones) rely on Gaussian
processes to model the dynamics, as priors can be very elegantly incorporated
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(the formulation is identical to Eq. (2.28), but re-stated with the proper the
notation for clarity):

Gaussian Processes dynamics with priors Assuming Dy, = {f(&1),...,
f(@)} is a set of observations, &; = (x;, u;) € RET and M(&Z) being the
simulator function (i.e., the initial guess of the dynamics), we can query the
GP at a new input point &, as follows (of course we have E independent GPs;
one for each output dimension (Chatzilygeroudis et al., 2017; Deisenroth and
Rasmussen, 2011)):

p(f(#)|Dus, &) = N (n(Z.), 0*(Z.)) (2.48)

The mean and variance predictions of this GP are computed using a kernel
vector k = k(Dy, Z.), and a kernel matrix K, with entries K% = k(&;, &)
and where k(-, ) is the kernel of the GP:

w(@,) = M(z,) +k"K (D, — M(&14))
o (&,) = k(Z,, %) —k"K 'k (2.49)

A few approaches (Ko et al., 2007; Bischoff et al., 2014) use simple analytic
and fast simulators prior to create a Gaussian process prior of the dynamics
(and assume the reward function to be known). PILCO with priors (Cutler
and How, 2015) uses simulated data (from running PILCO in the simulator)
to create a GP prior for the dynamics and then performs policy search with
PILCO. PILCO with priors was able to increase the data-efficiency of PILCO
in a real inverted pendulum using a very simple model as a prior. A similar
approach, PI-REM (Saveriano et al., 2017), utilizes analytic equations for the
dynamics prior and tries to actively bring the real trials as close as possible to
the simulated ones (i.e., reference trajectory) using a slightly modified PILCO
policy search procedure. PI-REM was also able to increase the data-efficiency
of PILCO in a real inverted pendulum (with variable stiffness actuators) using
a simple model as a prior.

An approach that splits the self-modeling process from the policy search is
presented in (Bongard et al., 2006). The authors were among the first ones to
combine a self-modelling procedure (close to model identification (Siciliano and
Khatib, 2016)) with policy search. The self-modelling part of their approach
consists of 3 steps: (a) action executing and data-collection, (b) synthesization
of 15 candidate self-models that explain the sensory data and (c) active selection
of the action that will elicit the most information from the robot/system. After
a few cycles of these steps (i.e., around 15), the most accurate model is selected
and policy search is performed to produce a desired behavior. Their approach
was able to control efficiently (i.e., less than 20 episodes) a four-legged robot
and it was also able to adapt to damages in a few trials (by re-running the
self-modeling procedure).

VGMI (Zhu et al., 2018) uses a Bayesian optimization procedure to find the
simulator’s mechanical parameters so as to match the real-world trajectories
(i.e., it performs model identification) and then performs policy search on the
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updated simulator. In particular, VGMI was able to learn policies for a physical
dual-arm collaborative task and out-performed PILCO.

2.8 Other approaches

2.8.1 Guided policy search

Guided policy search (GPS) with unknown dynamics (Levine et al., 2016;
Levine and Abbeel, 2014) is a somewhat hybrid approach that combines local
trajectory optimization (that happens directly on the real system), learning
local models of the dynamics (see Section 2.7.1.1) and indirect policy search
where it attempts to approximate the local controllers with one big neural
network policy (using supervised learning). In more detail, GPS consists of
two loops: an outer loop that executes the local linear-Gaussian policies on
the real system, records data and fits the dynamics models and an inner loop
where it alternates between optimizing the local linear-Gaussian policies (using
trajectory optimization and the fitted dynamics models) and optimizing the
global policy to match all the local policies (via supervised learning and without
utilizing the learned models) (Levine et al., 2016).

The results of GPS show that it is less data-efficient than model-based
policy search approaches, but more data-efficient than traditional direct policy
search. Moreover, GPS is able to handle bigger state-action spaces (i.e., it has
also been used with image observations (Levine et al., 2016)) than traditional
model-based policy search approaches as it reduces the final policy optimization
step in a supervised one that can be efficiently tackled with all the recent deep
learning methods (LeCun et al., 2015). GPS was able to learn in less than 100
episodes even in high-dimensional states and discontinuous dynamics like 2D
walking, peg-in-the-hole task and controlling an octopus robot (Levine et al.,
2016; Levine and Abbeel, 2014) among the many successful applications of the
algorithm (Montgomery et al., 2017; Levine and Koltun, 2013).

2.8.2 Transferability approaches

The main hypothesis of the transferability approach (Koos et al., 2013b,a) is
that physics simulators are accurate for some policies, e.g., static gaits, and
innacurate for some others, e.g., highly dynamic gaits. As a consequence, it is
possible to learn in simulation if the search is constrained to policies that are
simulated accurately.

As no simulator currently comes with an estimate of its accuracy, the key
idea of the transferability approach is to learn a model of a transferability
function, which predicts the accuracy of a simulator given policy parameters
or a trajectory in simulation. This function is often easier to learn than the
expected return (Section 2.6.1) because it is essentially a classification problem
(instead of a regression problem). In addition, small errors in the model have
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often little consequences, because the search is mainly driven by the expected
return in simulation (and not by the transferability optimization).

The resulting learning process requires only a handful trials on the physical
robot (in most of the experiments, less than 25); however, the main drawback
is that it can only find policies that perform similarly in simulation and in
reality (e.g., static gaits versus highly dynamic gaits). These type of algorithms
were able to efficiently learn policies for mobile robots that have to navigate in
mazes (Koos et al., 2013b) (15 trials on the robot), for a walking quadruped
robot (Koos et al., 2013b; Koos and Mouret, 2012) (about 10 trials) and for a
6-legged robot that had to learn how to walk in spite of a damaged leg without
updating the simulator (Koos et al., 2013a) (25 trials). Similar ideas were
recently developed for humanoid robots with QQP-based controllers (Spitz et al.,
2017).

2.9 Conclusion

In this chapter, we presented two main strategies for tackling the “micro-
data reinforcement learning” challenge that emerged from recently published
works: i.e., leveraging prior knowledge and building surrogate models. We, also,
showcased that most published algorithms usually combine these two strategies
(even when they do not explicitly discuss or acknowledge it) in order to further
reduce the interaction time needed to learn a task.

Prior knowledge can be introduced at different places: in the structure/type
of the policy (e.g., dynamic movement primitives), in the policy parameters
(e.g., from demonstrations), in the reward function (e.g., reward shaping) and in
the dynamics model (e.g., simulators). We can categorize the surrogate-based
methods into (a) algorithms that learn a surrogate model of the expected return
(i.e., long-term reward) from a starting state; and (b) algorithms that learn
models of the transition dynamics and/or the immediate reward function.

Overall, it is possible to learn with real robots in a handful of trials by
leveraging these two strategies. Nevertheless, it is still not obvious how to
(a) generate generic but explicit priors, (b) perform policy search effectively
and withing reasonable computation time in a model-based setting, (c) scale
up micro-data approaches to high dimensional robots, and (d) exploit several
priors to speed-up the learning.

In the next chapter (chapter 3), we will see how evolutionary algorithms
(more precisely quality-diversity or illumination algorithms (Mouret and Clune,
2015; Pugh et al., 2016)) can be used with a simulated robot to generate “cre-
ative” priors that can be beneficial both in performance and computation time
when searching for a behavior on the real robot. In chapters 4, we will showcase
that combining the policy evaluation step with the optimization procedure can
give us a more flexible, faster and modern implementation of model-based policy
search algorithms (Deisenroth et al.; 2013). In chapter 5, we will introduce
a dynamics model learning method that combines model identification and
Gaussian processes and it is able to scale up to high dimensional robots. Lastly,
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in chapter 6 we will see how we can intelligently select the most promising
prior from multiple ones in a Bayesian optimization (BO) procedure in order
to reduce the interaction time and leverage multiple sources of information.



Chapter 3

Reset-free Trial and Error for
Robot Damage Recovery

The results and text of this chapter have been partially published in the
following articles.

Articles:

e Chatzilygeroudis, K., Vassiliades, V. and Mouret, J.-B., 2018.
Reset-free trial-and-error learning for robot damage recovery. Robotics
and Autonomous Systems, 100, pp.236-250 (Chatzilygeroudis et al.,
2018a).

e Chatzilygeroudis, K., Cully, A. and Mouret, J.B., 2016. Towards
semi-episodic learning for robot damage recovery. Workshop on Al for
Long-Term Autonomy, ICRA (Chatzilygeroudis et al., 2016).

Other contributors:

e Vassilis Vassiliades (Post-doc)
e Antoine Cully (Lecturer at Imperial College London)
e Jean-Baptiste Mouret (Thesis supervisor)

Author contributions:

e KC and JBM organized the studies. KC wrote the code and performed
the experiments. KC, VV, AC and JBM analyzed the results and wrote
the papers.

3.1 Introduction

Following the discussion in the introduction, in this chapter we will focus on a
robot damage recovery scenario inspired by search-and-rescue missions (Guizzo,
2011; Atkeson et al., 2015; DeDonato et al., 2017). The robots that operate
in these missions are inherently complex machines that have to cope with a
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possibly dynamic and sometimes adversarial environment. This realization
means that these robots must be able to perform their tasks as robustly as
possible and to adapt to unforeseen situations. Moreover, in these scenarios
hardware failures and damages is almost the norm; for instance, C. Atkeson et
al. report that the Atlas robot they used in the DARPA Robotics challenge had
a “mean time between failures of hours or, at most, days” (Atkeson et al., 2015;
DeDonato et al., 2017). Therefore, these robots would greatly benefit from
algorithms that allow them to autonomously learn how to cope with damages.
In particular, damage recovery possess three interesting properties that make
micro-data reinforcement learning an appealing approach for tackling it:

1. Hardware failures will always be a possibility, especially with highly
complex robots in complex environments (Carlson and Murphy, 2005).

2. The traditional diagnosis process (Isermann, 2006; Verma et al., 2004;
Lengagne et al., 2013) does not provide a generic solution because accurate
diagnosis becomes increasingly challenging as the robots and environments
become more complex: the probability of failing grows exponentially with
the complexity of the robot and the environment.

3. Prior knowledge can be naturally justified as the designers can and should
know a lot — if not everything — about the intact robot and its intended
use.

Additionally, a limitation of most of the current RL methods used in robotics
— that is usually not discussed — is that after each trial, the robot needs to
be reset to the same state (Kober et al., 2013; Deisenroth et al., 2011, 2013;
Polydoros and Nalpantidis, 2017). While this reset is often not a problem for a
manipulator, it prevents mobile robots (e.g., a stranded mobile manipulator or
a legged robot) from exploiting this kind of algorithms to recover from damage
in real-world situations. Moreover, the robot cannot ignore its environment
while learning, which is usually the case, as it may be further damaged if it
makes a wrong decision. For example, if the robot is in front of a wall and
needs to try a new way to move, it should not try to go forward, but it should
select actions that would make it more likely to move backwards in order to
avoid hitting the wall.

Therefore, an ideal damage recovery algorithm should (1) not need any reset
between episodes, (2) scale well enough with respect to the dimensionality of
the state/action space of the robot, so that it can be used for “complex” robots
(e.g., legged robots) with the computing resources that are typically embedded
in modern robots, and (3) explicitly take into account the environment. The
objective of the present chapter is to introduce a reinforcement learning algorithm
that fits these three requirements by exploiting specific features of the damage
recovery problem.

More precisely, we investigate a simplified scenario that captures these
challenges: a waypoint-controlled robot is damaged in a way that is unknown
to its operator (e.g., a leg is partially cut or a motor working at half speed); to
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Figure 3.1: A typical experiment with the Reset-free Trial-and-Error (RTE) algorithm. A.
A 6-legged (hexapod) robot is damaged; i.e., missing a leg. B. The robot uses RTE to learn
how to compensate while completing its task and taking into account the environment. As
the robot moves, it improves its performance, i.e., it needs fewer episodes to reach the next
target.

get out of the building, the robot must recover its locomotion abilities so that
it can reach the waypoints fixed by its operator. Our objective is to have the
robot recover its locomotive abilities to the maximum extent possible in the
shortest amount of time (Fig. 3.1). We assume that no diagnosis is available
or that the diagnosis failed, either because the robot lacks the right sensor
or because the damage is so out of the ordinary that it cannot be properly
diagnosed. For simplicity, we also assume that the environment is known to the
robot; we will discuss possible extensions of our approach when the environment
is unknown in the discussion section.

Our first source of inspiration is the recently introduced Intelligent Trial
and Error (IT&E) algorithm (Cully et al., 2015). This algorithm is an episodic
policy search algorithm that is specifically designed for damage recovery. It
addresses the scaling challenge by assuming that some high-performing policies
for the intact robot still work on the damaged robot. While this assumption
does not always hold, empirical experiments show that it often holds with
highly redundant robots (e.g., legged robots or humanoids) (Cully et al., 2015;
Koos et al., 2013a) because (1) there are often many ways to perform a task,
and (2) the outcomes of behaviors that do not use the damaged parts are
similar between the intact and the damaged robot. Using this assumption,
IT&E searches for a diverse set of high-performing policies before the mission
(offline), then performs the online search, that is, the adaptation to damage,
by searching solely in this lower-dimensional set of pre-selected policies (using
Bayesian optimization) (Cully et al., 2015). As a result, most of the trials
required for the policy search are transferred from the real damaged robot,
which can perform only a few trials, to simulations with the intact robot, which
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can perform many more trials, especially on modern computing clusters. For
instance, IT&E allows an 18-DOF hexapod robot to learn to walk after several
injuries within a dozen episodes (Cully et al., 2015) and only two minutes of
combined interaction and computation time.

A second source of inspiration is the recent AlphaGo algorithm that suc-
ceeded in beating the European and World champions in the game of Go (Silver
et al., 2016). Essentially, the authors use deep learning to pre-compute default
policies and initial values for a Monte Carlo Tree Search (MCTS) (Chaslot et al.,
2008; Browne et al., 2012) algorithm that plans (approximately) the best next
action to take. We can draw an analogy in robotics and pre-compute actions or
policies, learn the model of the robot on-line (the physical robot is damaged)
and use MCTS to select the most promising action. Interestingly, MCTS can
also take into account the uncertainty of the prediction of the model of the
environment (e.g., when using Gaussian processes for models (Nguyen-Tuong
and Peters, 2011)). Unfortunately, it seems unrealistic to learn a probabilistic
model of the full dynamics of a walking robot (like in (Hester and Stone, 2013))
within a few seconds (or minutes) of interaction time and the on-board compu-
tational power of a typical robot; more importantly, a probabilistic planner that
would plan in the full controller space is even more computationally demanding.

Our main idea is to adapt the pre-computing part of IT&E, so that it can
be used by a MCTS-based planner to select the next trial, in place of the
Bayesian optimization used in IT&E. In addition, we utilize a probabilistic
model to learn how to correct the outcome of each action on the damaged
robot and use the MCTS-based planner in a similar way as in AlphaGo (Silver
et al., 2016) and the TEXPLORE algorithm (Hester and Stone, 2013), but also
incorporating the uncertainty of the model prediction in the search. This allows
us to propose a trial-and-error learning algorithm for damage recovery that
can work on a real hexapod robot, within reasonable computation time (less
than 1 minute between each episode), that does not need any reset between
each episode and takes into account the environment when learning. We call
this new algorithm “Reset-free Trial-and-Error” (RTE). In the following, we
will show that RTE performs significantly better than a modified (improved)
version of TEXPLORE in both a simple differential drive mobile robot and a
hexapod robot locomotion task (in the latter task, we empirically evaluate that
TEXPLORE is not applicable due to the dimensionality of the action space).

The main contributions are as follows:

e a novel formulation of robot damage recovery as a model-based RL
problem;

e a novel combination of learning techniques that resembles that of AlphaGo
and exploits simulations of the intact robot to accelerate learning on the
physical, damaged robot;

e cxtensive experiments in simulation with a damaged simple differential
drive mobile robot and a damaged hexapod (6-legged) robot, which
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validate the performance of the proposed approach and show that RTE
performs and scales significantly better than TEXPLORE;

e experimental validation on a physical, damaged hexapod robot that
recovers most of its locomotion abilities and is able to complete its
task(s), without any human intervention.

3.2 Problem Formulation

Here, we adapt the generic problem formulation of Section 2.2 to our specific case.
Our problem can be cast in the general framework of Markov Decision Processes
(MDP) (Sutton and Barto, 1998). An MDP is a tuple (X, U, P,r), where X
is the state space (continuous or discrete), U is the action space (continuous
or discrete), P(x;, u;, x,yq) is the state transition function specifying the
probability of transitioning to state x;1; € X when the agent takes action
u; € U in state ; € X, and r : S — R is the immediate reward function (which
defines the task of the agent), with r(@;;1) being the immediate reward of
state ;1 and @, 1 may contain both internal variables (such as body position)
and external variables (such as obstacles). The objective of the agent (i.e., the
robot) is to find a deterministic policy =, i.e., a mapping from states to actions,
u; = 7(uy), that maximizes its expected discounted return:

Z V(@)
t=0

where v € [0,1) is a factor that discounts future rewards. P and r describe
the environmental dynamics and they are collectively known as the model of
the environment. If the agent has access to this model, it can use a planning
algorithm to find the optimal policy. In this work, the transition function P is
learned and we assume that the reward function r is known to the robot.

In our setting, the robot needs to execute a sequence of related tasks
G1,Go, ..., G, each of which is a shortest path problem:

JT=E

ﬂ] (3.1)

Roal if ¢, = goal(G;)
r(x;) = —Rierm if &, = terminal(G;) (3.2)
0 otherwise

where Ry > 0, Rierm, > 0, goal(G;) returns the goal state of task G, and
terminal(G;) returns a non-goal, terminal state of task G;, e.g., a colliding
state. When x; = goal(G;), the robot finishes task G; and starts executing
task Giy1.
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Figure 3.2: Overview of Reset-free Trial-and-Error (RTE) algorithm. A. Before deploying
the robot, simulations with the intact robot are used to generate an action repertoire with
the MAP-Elites algorithm. B. This repertoire is refined using a probabilistic learning model
(Gaussian processes here — B1). This model is then used as the black-box simulator of a
probabilistic planner (Monte Carlo Tree Search here — B2), which computes and outputs
the best action to complete the task taking into account the uncertainty of the model. To
better illustrate what happens in this phase, we “zoom in” and illustrate one simple case
(B2-detail). The robot (blue circle) has to reach the target (green circle) without hitting the
obstacles (gray circles) and its model is uncertain. The algorithm explores several alternative
paths to the goal (here only 2 for illustration purposes) and chooses the path that achieves
the largest expected return (here we select the red one, as the green one collides more often).
The lines of the same color are sampled from the distribution of choosing the specific action
sequence. Once the best path is selected, the physical damaged robot executes the first action
(B3) of the path and updates the repertoire with the new gathered data. The algorithm then
re-explores new ways to reach the goal and the process continues until the task is completed.

3.3 Approach

3.3.1 Overview

RTE allows robots to “learn while doing” instead of “learning and then doing”.
This is achieved by:

e pre-computing an action repertoire with relatively low-fidelity simulations
(e.g., perfect velocity actuators) of the intact robot (generated by MAP-
Elites (Mouret and Clune, 2015), Fig. 3.2A) that also (a) creates a
mapping between the task space and the parameters of the low-level
controller and (b) reduces the dimensionality of the action space;

e using a probabilistic model (Gaussian processes) to learn how to correct
the prediction of the outcome of each action for the damaged robot
(Fig. 3.2B1);
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e re-planning at every episode with a probabilistic planner (Monte Carlo
Tree Search) that selects the next action to execute, based on the pre-
dictions of the probabilistic model, the uncertainty of those predictions,
the environment, the current state of the robot, and the target state
(Fig. 3.2B2). More specifically, we solve a path/motion planning problem
with uncertain transitions (Fig. 3.2B2-detail). Clearly, the further we plan
into the future, the more uncertain our estimates will be about where the
robot will end up (Fig. 3.2B2-detail); therefore, an ideal planner would
select the action that has the best utility (in terms of expected discounted
cumulative reward) by considering these future estimates (i.e., how close
they arrive to the target, how often they hit obstacles).

In summary, if damage occurs, RTE performs the following loop (Fig. 3.2B):
(1) uses MCTS to select the next best action from the repertoire to complete
the task, (2) executes the action for a given time duration (e.g., 3 seconds or
100 simulation steps), that is, perform an episode, (3) updates the Gaussian
processes (GPs) to improve the prediction of the outcome of each action of the
repertoire and (4) repeats (1)-(3) until the task(s) are completed.

3.3.2 Learning the Action Repertoire

Controllers for complex robots, for instance legged robots, usually involve
numerous parameters, which makes control policies challenging to learn within
a few trials. We circumvent this issue by using the transferability hypothesis
(Sec. 2.8.2) and learn, before deploying the robot, a repertoire of controllers
with a simulated intact robot. The predicted outcomes of the actions will be
refined online after each action is executed (i.e., at the end of each episode) by
the damaged robot (Sec. 3.3.3).

We assume that the robot is controlled by a low-level controller that is
parametrized by a vector 8 € R?. We also assume that each point in the
task space can be described by a vector @ € R", which we call an “action
descriptor”. We would like to create a repertoire that covers the task space as
well as possible (Cully et al., 2015; Duarte et al., 2017), i.e., to both determine
a good set of actions A and a mapping between A and © (A — ©). This
mapping also reduces the dimensionality of the search space since the task
space is usually much lower dimensional than the controller space.

If we take a robotic manipulator as an example, the controller space could
be joint positions, the task space could be the (x,y,z) coordinates of the
end-effector, and the repertoire will map (z,y, z) positions to joint positions,
that is, it would be a discrete representation of the inverse kinematics of the
arm. Nonetheless, while an inverse kinematics solver could be used to create a
repertoire for a manipulator, most robots do not have access to such inverse
models. This is true for walking robots, in particular.

As a consequence, instead of using an inverse model, we learn the action
repertoire with an iterative algorithm called MAP-Elites (Mouret and Clune,
2015; Cully et al., 2015) and a forward model (e.g., a dynamic simulator). As
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Algorithm 5 MAP-Elites

1: procedure MAP-ELITES

2 (P« 0,0 <« 0) > Performance and feature grids
3 fori=1— G do > Initialization: G random 6
4: 0 = random _solution()

5: add_to_repertoire(0, P, ©)

6 end for

7 fori=1—1do > Main loop, I iterations
8 0 = random _selection(®)

9: 0’ = random_variation(0)

10: add-to-repertoire(6’, P, ©)

11: end for

12: return repertoire and performance (0, P)

13: end procedure

14: procedure ADD-TO-REPERTOIRE(G, P, ®)

15: a = action_descriptor(0) > Use the forward model
16: p = performance(6) > Use the forward model
17 if P(a) =0 or P(a) < p then > Replace if better
18: P(a)=p

19: O(a)=10

20: end if

21: end procedure

with the inverse kinematics of redundant manipulators, the mapping from the
parameter space to the task space is typically many-to-one. Thus, we need to
define a performance function to select the best 8 for each point of the task
space. This performance function is designed so as to promote certain type of
behaviors (Sec. 3.6.1) and does not coincide with the reward function of the
MDP.

Essentially, MAP-Elites discretizes the n,-dimensional task space to an
n.-dimensional grid, and then attempts to fill each of the cells using a variation-
selection loop (Mouret and Clune, 2015; Cully et al., 2015; Cully and Demiris,
2017). Algorithmically, it starts with G random parameter vectors, simulates
the robot with these parameters, and records both the position of the robot
in the task space and the performance (Algo. 5, 3-5). If the cell is free, then
the algorithm stores the parameter vector in that cell; if it is already occupied,
then the algorithm compares the performance values and keeps only the best
parameter vector (Algo. 5, 10-15). Once this initialization is done, MAP-Elites
iterates a simple loop (Algo. 5, 6-9): (1) randomly selects one of the occupied
cells, (2) adds a random variation to the parameter vector, (3) simulates the
behavior, (4) inserts the new parameter vector into the grid if it performs better
or end-ups in an empty cell (discard the new parameter vector otherwise).

While MAP-Elites is computationally expensive, it can be straightforward
to parallelize and can run on large clusters before deploying the robot. So far,
it has been successfully used to generate: behaviors for legged robots (Cully
et al., 2015), robotic arms (Cully et al., 2015; Mouret and Clune, 2015) and
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wheeled robots (Duarte et al., 2016; Pugh et al., 2016; Duarte et al., 2017);
designs for airfoils (Gaier et al., 2017), as well as for the morphologies of walking
“soft robots” (Mouret and Clune, 2015); adversarial images for deep neural
networks (Nguyen et al., 2015a); “innovation engines” which generate images
that resemble natural objects (Nguyen et al., 2016); and 3D-printable objects
using feedback from neural networks trained on 2D images (Lehman et al.,
2016). MAP-Elites has also been extended to effectively handle task spaces of
arbitrary dimensionality (Vassiliades et al., 2017).

3.3.3 Learning with Gaussian Processes

MAP-Elites provides not only the set of actions to be used by the planner,
but also a prior on how an action modifies the state variables, i.e., a mapping
from actions to relative outcomes, f : A — O. Since this prior comes from
a simulator and the simulator uses a model of the intact robot, it is only an
approximation. Therefore, to make the physical damaged robot perform well,
there needs to be a way to correct this mapping.

To do so, we use n Gaussian Processes (where n is the number of dimensions
of O) with a mean function that corresponds to the prior provided by MAP-
Elites. In other words, the mapping computed with the simulator serves as
a prior for the GPs (see Sec. 2.7.2). For each dimension d = 1...n, we use
a separate GP that it is a distribution over functions specified by its mean
function, pu4(-) and covariance function, ky(-,-):

fa(a) ~ GP(pa(a), ka(a, a’)) (3.3)

3.3.4 Probabilistic Optimal Planning using MCTS

At the end of each episode, we need to solve an MDP with an action set
that contains thousands of actions in a continuous state space. Since GPs
are probabilistic models, they provide both a prediction and the uncertainty
associated with each prediction, which can be exploited by probabilistic planners.
Here we use Monte Carlo Tree Search (MCTS) (Chaslot et al., 2008), as it
has already been successfully used to solve (Partially Observable)-MDPs with
stochastic transition functions (Silver and Veness, 2010; Browne et al., 2012),
continuous state spaces, and high branching factors (Browne et al., 2012;
Couétoux et al., 2011).

MCTS is a best-first, sample-based search algorithm for finding optimal
decisions in a given domain by taking random samples in the decision space and
building a search tree according to the results. Every state in the search tree
is evaluated by the average outcome of Monte Carlo rollouts from that state.
These rollouts are typically random or directed by a simple, domain-dependent
heuristic (Browne et al., 2012).

MCTS (Algo. 6) is an anytime planning algorithm, i.e., it runs until some
predefined computational budget (typically, a time, memory or iteration con-
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Figure 3.3: The four generic steps of Monte Carlo Tree Search algorithms. The circular
nodes represent decision nodes (states from where actions are selected) and the rectangular
nodes represent random nodes (state-action pairs where random outcomes can happen).
See (Couétoux et al., 2011) for further details. A. The most urgent expandable node (i.e.,
one with no previous visits) is selected using a selection policy. B. The tree is expanded
according to the available actions. C. A rollout is performed from the new node according
to the default policy. D. The rollout result is “backed up” through the selected nodes.

straint) is reached, at which point the search is halted and the best-performing
root action is returned. Four steps are applied per search iteration:

e SelectionPolicy: Starting at the root node, a child selection policy is
recursively applied to descend through the tree until the most urgent
expandable node is reached (Fig. 3.3A).

e FxpansionPolicy: One child node, along with the state’s associated reward
p =r(x), is added to expand the tree, according to the available actions
(Fig. 3.3B).

e Rollout: A rollout is performed from the new node according to the
default policy to get an estimate value for this node, A (Fig. 3.3C). We
do this by constructing a generative model using the prediction of the
GPs.
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Algorithm 6 Generic Monte Carlo Tree Search

1: procedure MCTS-SEARCH(x)

2 while within computational budget do

3 T =T

4: do

5: a = SelectionPolicy(x)

6: Children(x) = Children(z) U (xz, a)

7 (z', p) = ExpansionPolicy(x, a) > see (Couétouz et al., 2011)
8 Children(x,a) = Children(x,a) Uz’

9 R(x,a) =p
10: x=a
11: while n(x) > 0 and @ not a terminal state > n(-) returns the number of

visits of a state

12: A = Rollout(x) > Use GPs (Sec. 3.3.3, 3.5.3)
13: BackUp(zx, A, R)

14: end while
15: return BestChild(z)
16: end procedure

e BackUp: The rollout result is “backed up” through the selected nodes to
update their statistics (Fig. 3.3D).

3.3.5 Reset-free Trial-and-Error Learning Algorithm

Connecting all the pieces together, RTE first generates an action repertoire
with the MAP-Elites algorithm (Algo. 7, lines 2-3); then, while in mission, it
re-plans at each episode using MCTS and the current belief of the outcome of
the actions (prediction of the GPs), taking into account the uncertainty of the
predictions and potential final states (e.g., collisions with obstacle) (lines 9-13);
at the end of each episode, the GPs are updated with the recorded data (lines
14-15).

3.4 Experimental Setup

We investigate the following scenario: a waypoint-controlled robot is damaged
in a way that is unknown to its operator (e.g., a leg is partially cut or a motor
working at half speed); to get out of the building, the robot must recover its
locomotion abilities so that it can reach the waypoints fixed by its operator. As
already stated, we assume that no diagnosis is available or that the diagnosis
failed. In addition, for the sake of simplicity, the environment is known to the
robot and the robot knows its position (via a Motion Capture system). The
robot has to reach 30 equidistant target waypoints in an arena with obstacles.
We perform these experiments with a differential drive robot (in simulation)
and with a 6-legged (hexapod) robot (in simulation and with a physical robot).
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Algorithm 7 Reset-free Trial-and-Error Learning

1: procedure RTE

2: Create Action Repertoire, A, with MAP-Elites (Sec. 3.3.2)

3: Construct mean function M from MAP-Elites data

4: for i =1 — dim(O) do

5: GP; : A — O; with M; as prior (Sec. 3.3.3, 3.5.2)

6: end for

7 while in mission and stopping criteria not met do

8 RTE-EPISODE(t)

9 t=t+1

10: end while
11: end procedure
12: procedure RTE-EPISODE(t)

13: x; = state of robot at time ¢
14: @y = MCTS-SEARCH(;) (Sec. 3.3.4, 3.5.3)
15: f(at+1) = execute_action(asy1) > Fzecute the action and observe its outcome

16: D141 = {D1y, f(aw1)}

17: for i =1 — dim(O) do

18: Update GP; using DY, (Sec. 3.3.3)
19: end for

20: end procedure

We compare three algorithms: (1) RTE, (2) a variant of RTE where the
learning part is removed (i.e., MCTS-based planning with the original action
repertoire — we call this variant MCTS) and (3) a variant of TEXPLORE (we
call it GP-TEXPLORE — Algo. 8) where: (i) the reward function is known,
(ii) we use a variant of MCTS for continuous action spaces, and (iii) instead
of learning the full transition dynamics, only the relative outcome of each
action is learned. The main difference of GP-TEXPLORE and RTE is that
the latter uses the discrete action space as defined by the learned repertoire
for model learning and planning, whereas GP-TEXPLORE plans and learns
the model in the full controller space. We also use GPs, without taking into
account the uncertainty, instead of random forests that are used in the original
TEXPLORE paper (Hester and Stone, 2013). With (2), we try to get closer to
a classic planning algorithm with re-planning after each episode. With (3) we
try to make TEXPLORE better fit our problem and we expect the original
TEXPLORE algorithm to not work as well as the baseline used here. However,
exploring more in these directions is beyond the scope of this paper.

3.5 Mobile Robot Results

The robot is a classic velocity-actuated differential drive mobile robot (Fig. 3.4A).
The state of the robot consists of the (z,y) position and the orientation € of
the robot, i.e., @m0 = [2,y,0]. The robot moves by applying velocities to the
two wheels (vjep: and vyigne). We use the libfastsim library for simulating the
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Algorithm 8 Modified TEXPLORE

1: procedure GP-TEXPLORE

2 for i =1 — dim(O) do

3 GP,:0 — O; > controller space to outcome space
4 end for

5: while in mission and stopping criteria not met do

6 GP-TEXPLORE-EPISODE(t)

7 t=t+1

8 end while

9: end procedure
10: procedure GP-TEXPLORE-EPISODE(t)
11: x; = state of robot at time ¢
12: 0:+1 = MCTS-SEARCH (x;) (Sec. 3.3.4) > MCTS in controller space
13: f(0:41) = execute_action(B:11) > Ezecute the action and observe its outcome

14: D1.py1 = { D14, f(0141)}

15: for i =1 — dim(O) do

16: Update GP; using D}, 4 (Sec. 3.3.3)
17: end for

18: end procedure

robot (Mouret and Doncieux, 2012)'. At each episode of the learning algorithm,
the velocity pair is executed for 100 time-steps (for all algorithms).

3.5.1 Learning the Action Repertoire

The robot’s task is to reach points in Cartesian space (z,y), therefore MAP-
Elites should produce a repertoire of actions, each of which reaches a different
point in the Cartesian space. Since many controllers can reach the same position,
we select those that make the robot follow a continuous-curvature trajectory
and for which the body points towards the tangent of the overall trajectory
at the end of the behavior. To capture this idea, we set the MAP-Elites
performance of the #;;, individual to:

pi = |0; — 04 (3.4)

where 6; is the orientation of the robot and 6, is the desired orientation of the
robot at the end of the movement. To describe the circular trajectories we only
need to keep the (x,y) position of the robot at the end of the movement (since
we can compute the desired angle for any point in the 2-D space). In this way
we can use a 2-D action descriptor to describe the 3-D task space. The 2-D
descriptor of the iy, individual is:

a; = | (3.5)

3
Tmaz — Tmin Ymaz — Ymin

where Toin, Tmaz, Ymin a0d Ymae are the boundaries of the reachable space
([-100,100] units here). We ran MAP-Elites for 100000 evaluations and we

Ihttps://github.com/jbmouret/libfastsim
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Figure 3.4: A. The velocity-actuated differential drive mobile robot used in our experiments.
B. Repertoire for the simple robot locomotion task produced by the MAP-Elites algorithm.
This repertoire maps the 2-D action descriptor (of the 3-D task space) to the 2-D controller
space. Each dot represents a different action (and its x,y position), while the lines indicate
the orientation of the robot at the end of each behavior. All the behaviors are relative to the
zero position that is located in the middle of the figure and relative to the forward orientation
(line pointing up).

got a repertoire with 331 different actions” (Fig. 3.4B). Our implementation
relies on the Sferes,s (Mouret and Doncieux, 2010) library.

3.5.2 Learning with Gaussian Processes

The GP inputs are the 2-D descriptors of the actions, and the outputs are pre-
dictions of the relative x, y and 6 displacements. To avoid angle discontinuities,
instead of learning the raw angle # we learn the cosfl and the sinf. Thus, we
learn a mapping from actions to relative outcomes:

a — (Azx, Ay, cosAf, sinAf) (3.6)

We use the Squared Ezxponential Kernel (SE) as the covariance function (Ras-
mussen and Williams, 2006):

2
k(a,a’) = o2 exp < — Hal—QaH> (3.7)

where we set 02, = 0.5 and [ = 1 in the mobile robot experiments. We also use
the limbo C++11 library (Cully et al., 2018) for the GP regression.

2MAP-Elites always produces the same repertoire because the problem is easy. Note that
the repertoire for such a simple robot could be generated with many other methods: here we
use MAP-Elites so that we can demonstrate identical approaches for both the wheeled and
the legged robot.
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Algorithm 9 Simple Progressive Widening

1: procedure SPW-SELECTIONPOLICY ()

2 if n(x)* > #Children(x) then pO<a<l
3 a = sample_action(x) > Sample new action from x (Sec. 3.5.4)
4 else> Choose the action with the best UCT value (Browne et al., 2012)
5: a = argmaXg, e cnildren(x) @(5'37 a), with Q(zc, a) = % +c %
6 end if

7 return a

8: end procedure

3.5.3 Solving the problem with MCTS

At the end of each episode, we need to solve an MDP with an action set
that contains thousands of actions in a continuous state space and uncertain
transitions (i.e., when an action is taken from the same state, the result is not
the same).

In order to solve this problem, we instantiate MCTS with the following
choices:

Selection Policy Simple Progressive Widening (SPW — Algo. 9) (Rolet et al.,
2009) that properly handles cases where the action space is continuous.
We set @ = 0.5 and ¢ = 150.

Expansion Policy Double Progressive Widening (DPW — Algo. 10) (Couétoux
et al., 2011) that properly handles cases where the state space is continu-
ous. We set 5 = 0.6.

Action Sampling Policy We use A* on a simplified problem to guide the
sampling procedure (Sec. 3.5.4).

Generative Model We construct a generative model using the prediction of
the GPs:
p(wt+1|wta at) ~ N(wt + f(a’t)a Zat) (38)

Default Policy for evaluation Uniformly-distributed random actions from
the repertoire (Browne et al., 2012).

Best child criterion Greedy selection, i.e., we select the action that has the
maximum average cumulative reward (Browne et al., 2012).

Reward function R, = 100, reward for reaching the goal, and Rierp, =
1000, penalty for colliding, for each target point. We also set the reward
discount factor, v = 0.9.

e For the sake of simplicity, we only used circular obstacles and a
circular collision shape for the robot. Nevertheless, any shapes with
the appropriate collision query functions would be compatible with
our approach, since the reward function is a black-box to MCTS.



CHAPTER 3. RESET-FREE TRIAL AND ERROR FOR ROBOT
DAMAGE RECOVERY 62

Algorithm 10 Double Progressive Widening

1: procedure DPW-ExpPANDPOLICY(x, u)

2 if n(xz,a)’ > #Children(z,a) then pO0<f <1
3 Draw ¢ from p(x'|x, a) > see Eq. 3.8
4 p=r(x)

5: else

6 Choose @’ € Children(x,a) with prob %

7 p=r(x) l

8 end if

9: return [z, p|

10: end procedure

To make the search faster, we implemented root parallelization (Cazenave
and Jouandeau, 2007) in MCTS with 4 parallel trees giving a budget of 5000
iterations to each. This implementation is available in our C++14 lightweight

MCTS library®.

3.5.4 Guiding MCTS using A* on a simplified problem

MCTS traditionally samples actions randomly. To speed up the process, we
first discretize the space and create a grid map; then, we simulate a virtual
point robot with 8 actions (one for each neighboring cell — allowing diagonal
moves) and solve the path planning problem using A*. Solving this simplified
task requires very little computation. We use the optimized path to calculate
an approximate desired direction for the next MCTS action. Next, we sample
N (100 in our case) random actions from the repertoire and return the one
that best matches this direction. Note that we are using the prediction of the
GPs to decide which action we should choose. This simple procedure has the
desirable effect of reducing the running time of MCTS (less than 40 — 50 s
to choose the next action), without sacrificing the quality of the returned
actions. We use this “trick” because our problem is path-planning, but similar
tricks can be used in other problems. More generic approaches would be the
Blind Value action sampling or the continuous Rapid Action Value Estimation
(cRAVE) (Couetoux et al., 2011).

3.5.5 Experimental results

A damaged velocity-controlled differential drive robot (the right wheel’s velocity
command is halved) has to reach 30 random equidistant sequential targets in
an arena with an obstacle in the middle (Fig. 3.5). The scenario is replicated
50 times for statistics.

We count the number of episodes (100 steps of simulation with the same
velocity commands) required by the different algorithms to reach each target.

3https://github.com/resibots/mcts
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Figure 3.5: The environment used for the mobile robot task (800 x 800 units). The radii
of the robot and the obstacles are the same (20 units).

The results show that RTE requires significantly fewer episodes (22.28 episodes,
25" and 75" percentiles [21.4,22.9]) to reach each target than the re-planning
baseline (32.12 episodes, [30.17,34.97]) and GP-TEXPLORE (26.03 episodes,
[25.37,26.9]) (Fig. 3.6).

Further analysis shows that the median number of episodes to reach each
target decreases over time (until it reaches a steady value) when the robot uses
RTE or GP-TEXPLORE, whereas it stays constant with MCTS alone (Fig. 3.7).
Furthermore, after the first target RTE is able to correct its repertoire and
outperforms GP-TEXPLORE although the latter is capable of planning in the
full action space.

Table 3.1: Recovered locomotion capabilities - Mobile Robot Task

Intact | RTE | GP-TEXPLORE | MCTS Recovered capabilities
Episodes per target RTE | GP-TEXPLORE | MCTS
14.08 | 22.28 | 26.03 | 3212 | 63.20% 54.10% 43.85%

We also performed the following evaluation test. We use the repertoire
created by MAP-Elites with the intact robot and solve the same scenario (using
MCTS as the planner — no model learning, no variance). We replicate the
scenario 50 times and take the median number of episodes required to reach
a target. We then compute the percentage of the recovered capabilities using
RTE, GP-TEXPLORE and MCTS-based planning. The results show that
RTE recovers more locomotion capabilities than GP-TEXPLORE (Table 3.1);
RTE is able to recover around 63% of the original capabilities, whereas GP-
TEXPLORE only recovers around 54%. Using only the repertoire generated
with MAP-Elites and planning with MCTS is even worse, leading to only around
44% of recovered capabilities. These results justify (1) that the repertoire itself
is not enough for the robot to recover its abilities and (2) that using prior
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Figure 3.6: Comparison between RTE, GP-TEXPLORE and MCTS-based planning —
Differential drive robot simulation results. A damaged velocity-controlled differential drive
robot (the right wheel’s velocity command is halved) has to reach 30 random equidistant
sequential targets. We replicated the scenario 50 times. RTE significantly outperforms
(lower is better) both the re-planning baseline and GP-TEXPLORE. The number of stars
indicates that the p-value of the Mann-Whitney U test is less than 0.05, 0.01, 0.001 and
0.0001 respectively.

information (i.e., the repertoire) combined with learning (RTE) is beneficial
compared to learning from scratch (GP-TEXPLORE).

Finally, we observed that in this simple task, RTE and GP-TEXPLORE
produce fairly similar paths, with the ones produced by RTE being slightly
safer (i.e., not too close to the obstacles — Fig. 3.8). In addition, both RTE
and GP-TEXPLORE produce faster and safer paths than the MCTS baseline
(Fig. 3.8). We also observed that the MCTS baseline often got stuck at the
walls of the arena.

3.6 Hexapod Robot Results

Each leg of the hexapod robot that we used in our experiments has 3 degrees of
freedom (DOF'). This makes a total of 18-DOF for the whole robot. Nevertheless,
since we are focusing on a path planning task, the state of the robot we are
interested in consists of the (z,y) position and the yaw angle 6 of the center of
mass (COM) of the robot, i.e., ©pera = [7,y,6]. The hexapod robot task and
the simple mobile robot task share the same experimental setup and parameters,
with the main differences between them being the following:
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Figure 3.7: Median number of episodes to reach each target for a typical run of the
algorithm for the mobile robot task. Over time, the robot using RTE or GP-TEXPLORE
is able to reduce the number of required episodes to reach the next target (bottom lines),
whereas MCTS alone uses a constant number of episodes (top line). Furthermore, RTE is
able to correct its repertoire after the first target and outperforms GP-TEXPLORE, although
the latter is capable of planning in the full action space. Most of the variance comes from the
fact that the random targets are equidistant, but not of the same difficulty. The thick lines
represent the medians over 50 runs and the shaded regions the 25! and 75" percentiles.

e In order to produce periodic gaits for the hexapod, we do not control the
robot in joint space, but use a low-level controller (Sec. 3.6.1).

e The reachable space bounds for MAP-Elites are [—2, 2] meters and we
set [ = 0.03 for the exponential kernel for the GP regression. In addition,
to avoid depending on a specific repertoire, we ran MAP-Elites twice for
100000 evaluations, leading to two distinct repertoires with about 1500
different actions each (Fig. 3.9). The hexapod is simulated using the
DART simulator (Lee et al., 2018).

3.6.1 Parametric Low-level Controller

The low-level controller is the same as in (Cully et al., 2015). It is intentionally
kept simple, so that this paper can focus on the learning algorithm. The
angular position of each degree of freedom is governed by a periodic function I"
parametrized by its amplitude v, its phase ¢, and its duty cycle 7 (the duty
cycle is the proportion of one period in which the joint is in its higher position).
This function is a square signal of frequency 1Hz, amplitude v, and duty cycle 7.
A Gaussian filter is applied on the signal in order to remove sharp transitions,
and it is then shifted according to the phase ¢. The position of the third joint
of each leg is the opposite of the position of the second one, so that the last
segment is always vertical. This results in 36 real-valued parameters. Different
values for these parameters can produce diverse gaits, from purely quadruped
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Figure 3.8: Sample trajectories of RTE, GP-TEXPLORE and MCTS in the mobile robot
task. In this simple task, RTE and GP-TEXPLORE do not differ a lot (although RTE
produces safer and slightly faster paths — Fig.3.6) and produce higher performing paths
than the MCTS baseline.
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Figure 3.9: Repertoires for hexapod locomotion produced by the MAP-Elites algorithm.
These repertoires map the 2-D action descriptor (of the 3-D task space) to the 36-D controller
space. Each dot represents a different action (and its x,y position), while the lines indicate
the orientation of the robot at the end of each behavior. All the behaviors are relative to
the zero position that is located in the middle of the figures and relative to the forward
orientation (line pointing up).

gaits to classic tripod gaits. At each episode of the learning algorithm, the
low-level controller is executed for 3 seconds with the specified parameters (for
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Figure 3.10: Comparison between RTE, GP-TEXPLORE and MCTS-based planning —
Hexapod robot simulation results. We investigate 3 different kinds of damage (A - middle
leg shortening, B - back leg shortening, C - back leg shortening and middle leg removal),
2 different environments (D and E) and 2 different action repertoires. We replicated each
scenario 50 times. The task is to reach 30 random equidistant sequential targets (distance of
3.5m). RTE outperforms the re-planning baseline (lower is better). GP-TEXPLORE was not
able to solve the task. The number of stars indicates that the p-value of the Mann-Whitney
U test is less than 0.05, 0.01, 0.001 and 0.0001 respectively.

all algorithms).

3.6.2 Simulation results

We count the number of episodes (3s actions) required to sequentially reach
30 equidistant (distance of 3.5m) random targets. We investigate 3 different
types of damage, 2 different environments (one with flat terrain and one with
rough terrain), and 2 different action repertoires (Fig. 3.10). Each scenario is
replicated 50 times for statistics.

The results show that RTE requires significantly fewer episodes to reach
each target than the re-planning baseline (Fig. 3.10). Interestingly, RTE is
able to reach the target points in the rough terrain scenario even though the
action repertoire is learned on a flat terrain. This illustrates the capacity of
RTE to compensate for unforeseen situations (i.e., damage and unmodeled
terrain). Nevertheless, we observe slightly deteriorated performance and bigger
differences between the MAP-Elites archives. This of course makes sense as
the repertoires might have converged to different families of behaviors or one
of them might be over-optimized for the flat terrain.

On the other hand, GP-TEXPLORE was not able to solve the task: with
a budget of around 600 total episodes (due to computation time of GPs), it
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Figure 3.11: Comparison between RTE, GP-TEXPLORE and MCTS-based planning —
Hexapod robot simulation results. We measure the distance to the 5th target of RTE and GP-
TEXPLORE as the number of episodes increases for the damage in Fig. 3.10C, environment
#1 (Fig. 3.10D) and the second repertoire. RTE clearly outperforms GP-TEXPLORE and
the re-planning baseline; the robot with RTE reaches the target in about 10 episodes, whereas
with MCTS it needs more than 20 episodes and with GP-TEXPLORE is not able to reach
the target even after 100 episodes. The lines represent medians over 50 runs and the shaded
regions the 25" and 75" percentiles.

did not succeed in reaching a target (the robot would be reset to the next
target position every 100 episodes). This is because learning a full dynamics
model of a complex robot cannot be done with a few samples (i.e., less than
1000-2000 (Droniou et al., 2012)).

The results show that as the number of episodes increases, the robot that
uses GP-TEXPLORE gets closer to the target, but cannot reach it when
provided with a budget of 100 episodes (Fig. 3.11). On the contrary, the robot
with RTE reaches the target in a small number of episodes (around 10 episodes
in Fig. 3.11). Moreover, the robot that uses MCTS (the re-planning baseline)
is still able to reach the target, but requires more episodes (around 20 episodes
in Fig. 3.11). These results show that the pre-computed repertoire breaks the
complexity of the problem and makes it tractable, but refining the repertoire is
essential for damage recovery (or to handle the reality gap as illustrated below).

Further analysis shows that the median number of episodes to reach each
target decreases over time when the robot uses RTE, whereas it stays constant
with MCTS alone (Fig. 3.12). After the first few targets (2-4), RTE is able to
make the robot reach each target in around 30s compared to MCTS alone that
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Figure 3.12: Median number of episodes to reach each target for a typical run of the
algorithm in the hexapod task (in simulation — for damage in Fig. 3.10C, environment
#1 Fig. 3.10D and the second action repertoire). Over time, the robot using RTE is able
to reduce the number of required episodes to reach the next target (bottom line), whereas
MCTS alone uses a constant number of episodes (top line). Most of the variance is due to the
random targets being equidistant, but not of the same difficulty. The thick lines represent
the medians over 50 runs and the shaded regions the 25" and 75" percentiles.

needs around 50 — 60 s.

Table 3.2: Recovered locomotion capabilities - Hexapod Robot Task (Flat
terrain scenarios)

Flat terrain scenarios Intact ‘ RTE ‘ MCTS | Recovered capabilities

Episodes per target RTE MCTS

Damage 1 (Fig. 3.10A) 9.93 11.5 77.52% 66.96%

Repertoire #1 | Damage 2 (Fig. 3.10B) 7.70 10.22 12.28 | 75.37% 62.69%
Damage 3 (Fig. 3.10C) 13.37 17.6 57.61% 43.75%

Damage 1 (Fig. 3.10A) 9.12 11.17 78.10% 63.76%

Repertoire #2 | Damage 2 (Fig. 3.10B) 7.12 11.58 14.35 61.44% 49.59%
Damage 3 (Fig. 3.10C) 11.75 18.6 60.57% 38.26%

We also use the repertoire created by MAP-Elites with the intact robot to
solve the same additional scenarios that were presented in the mobile robot
case. We replicate the scenarios 50 times and take the median number of
episodes required to reach a target. We then compute the percentage of the
recovered capabilities using RTE and MCTS-based planning for all the damage
conditions in the flat and the rough terrain environments. The results show
that RTE is able to almost always recover more than 60% of the original
capabilities (see Tables 3.2 and 3.3). These results are consistent with both the
flat and the rough terrain evaluations. This demonstrates the robustness and
the capacity of our approach to adapt to unforeseen situations. In addition,
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Table 3.3: Recovered locomotion capabilities - Hexapod Robot Task (Rough
terrain scenarios)

Rough terrain scenarios Intact ‘ RTE ‘ MCTS | Recovered capabilities

Episodes per target RTE MCTS

Damage 1 (Fig. 3.10A) 12.5 13.02 | 73.84% 65%
Repertoire #1 | Damage 2 (Fig. 3.10B) 9.23 12.4 13.52 | 74.44% 68.29%
Damage 3 (Fig. 3.10C) 17.78 21.15 51.90% 43.64%
Damage 1 (Fig. 3.10A) 10.63 12.60 80.41% 67.86%
Repertoire #2 | Damage 2 (Fig. 3.10B) 8.55 14.4 16.63 59.38% 51.40%
Damage 3 (Fig. 3.10C) 13.95 21.33 61.29% 40.10%

@® MCTS
(® GP-TEXPLORE

@® RTE

Figure 3.13: Sample trajectories of RTE, GP-TEXPLORE and MCTS in the simulated
hexapod robot task. RTE produces faster and safer (i.e., not too close to the obstacles)
paths than the MCTS baseline. GP-TEXPLORE cannot reach the target within a budget of
100 episodes, but does get closer to the target (as validated in Fig.3.11).

using the repertoire alone with MCTS planning is not enough for the robot to
recover its capabilities as in half of the scenarios it fails to recover more than
60% of the original capabilities and always recovers less than RTE.

Finally, we observed that RTE produces paths that are faster and safer
than the MCTS baseline (Fig. 3.13). While GP-TEXPLORE cannot reach the
target, it does get closer to the target point as the number of episodes increases
(Fig. 3.13 and Fig. 3.11). It is worth noting that GP-TEXPLORE takes actions
that produce small displacements. This is probably due to the fact that the
transition model cannot be accurately learned with a few data points, owing
to the high dimensionality (36D) of the action space. As a consequence, the
MCTS planner chooses actions that have already been selected. Since the
search space is big and the first actions are selected almost randomly (there is
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Figure 3.14: Physical damaged hexapod robot. The middle right leg is removed.
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Figure 3.15: Comparison between RTE and MCTS-based planning — Physical hexapod
robot experiments. We investigate 1 damage, 2 different environments and 1 action repertoire.
We replicated each scenario 5 times. The task is to reach 10 and 5 random equidistant
(2v/2m) sequential targets for the environment #1 and #2 respectively. RTE needs on
average between 1.39 and 2.33 times fewer episodes to reach each target. The results are
statistically significant (Mann-Whitney U test p < 0.05).

no previous information), it is highly unlikely that taking these actions will
actually lead to meaningful behaviors.

3.6.3 Physical robot results

We then evaluate RTE on the physical robot with a single damage (right middle
leg removed — Fig. 3.14), in two environments (with and without a central
obstacle) and the first action repertoire; the robot is required to reach 10 and 5
targets for each environment respectively, and the distance between the targets
is 24/2m. Each scenario is replicated 5 times. The environment (location of the
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Figure 3.16: Sample trajectories of RTE and MCTS in the physical hexapod robot task.
RTE comes up with faster and safer paths than the MCTS baseline to reach the goal point.
The robot with the MCTS baseline tended to get stuck in the obstacle and struggle to get
out of it and continue.

obstacles) and the robot are tracked with an external motion capture system
(Optitrack).

The results show that RTE needs fewer episodes to reach each target (Envi-
ronment 1: 13.0 episodes, 25" and 75" percentiles [12.0, 14.0], Environment 2:
18.0 episodes, [14.0,19.0]) than MCTS alone (Environment 1: 28.0 episodes,
24.0, 31.0], Environment 2: 25.0 episodes, [24.0,43.0]) (Fig. 3.15). These results
are consistent with the simulations, but learning makes a bigger difference in the
physical robot case. This is because the algorithm has to deal with the reality
gap in addition to the damage in the physical robot case. Finally, as in the
simulated experiments, RTE produces safer and faster paths than the MCTS
baseline (Fig. 3.16). The robot with the MCTS baseline tended to get stuck in
the obstacle and struggle to get out of it and continue. A demonstration of our
approach on the real robot is available at https://youtu.be/IqtyHFrb3BU.

3.7 Conclusion and Discussion

With robots, like with many complex systems, “we should not wonder if
some mishap may happen, but rather ask what one will do about it when it
occurs” (Corbato, 2007). This advice is especially important if we want to
be able to send advanced and expensive robots into dangerous places like a
destroyed nuclear plant (Guizzo, 2011), even with tele-operated robots. In such
situations, a damaged robot would greatly benefit from last-resort algorithms
that would allow it to come back to its operators.

The RTE learning algorithm makes it possible for robots to overcome such
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failures without the need for resets and human intervention. We successfully
tested it on a simple mobile robot and on a hexapod robot that were damaged
in several ways. Unlike most previous work, our algorithm does not require
the robot to be returned to the same position after each trial: the robot learns
autonomously, while taking into account its environment (obstacles). To our
knowledge, this learning algorithm is one of the first algorithms that allows
a physical legged robot to learn to walk without any human intervention,
especially when there are obstacles.

The main limitation of RTE is that it chooses the optimal action for the
damaged robot among the actions that were found offline with a different
model. As a consequence, it is very likely that there exist better actions for
the damaged robot in the full controller space, but RTE cannot use them.
Nonetheless, this approximation seems to be sufficient in our experiments (i.e.,
the robot was able to complete its tasks) and it is one of the reasons why RTE
scales significantly better than traditional RL approaches. In addition, it seems
possible to periodically analyze the data collected (e.g., once a day), update
the original simulation, and re-generate the repertoire.

It is important to highlight that RTE is not a policy search method, like for
example PILCO (Deisenroth et al., 2015): RTE uses an approximate planner
(MCTS) to derive a policy given the current model which, in turn, allows the
robot to collect samples from the environment, refine the model, and thereby
improve the policy, that is, the planner. Thus, the online phase of RTE can be
seen as an on-policy, model-based RL procedure. In addition, the first phase
of RTE (MAP-Elites), learns “elementary behaviors” (actions) in simulation,
which are similar to parametrized policies or movement primitives (Ijspeert
et al., 2003). Nevertheless, the first phase of RTE does not only do that,
but also creates a mapping from the high-dimensional controller space to the
lower-dimensional task space, which proves to be beneficial when dealing with
complex robots.

Ultimately, RTE should run continuously on the robot to compensate for
potential wear or damage, that is, it should be a continuous learning, rather than
a damage recovery, algorithm. However, the current version has a bottleneck:
the computational complexity of the prediction of the GPs is quadratic in
the number of samples, which prevents the robot from using more than a few
hundred episodes. A potential solution is reducing the query time of GPs
by using a time-window and/or using sparse GPs (Quinonero-Candela and
Rasmussen, 2005) or local GPs (Park and Apley, 2017). Another solution is
to replace the GPs with neural networks and take advantage of the recent
advances in neural networks with uncertain predictions (Gal and Ghahramani,
2016).

In these first experiments, we assumed that the robot had perfect knowledge
of its position and of the environment, which made it possible to cast our
problem to an MDP. The next step is to relax this assumption and let the
robot discover its environment with a SLAM algorithm (Durrant-Whyte and
Bailey, 2006). In this case, we could look at the problem from two different
perspectives: (1) still treat the problem as an MDP and take into account the
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uncertainty of the map in the planning phase (MCTS), (2) treat the problem as
a POMDP (Partially Observable MDP) and try to solve it with MCTS (Silver
and Veness, 2010). The first perspective might not be enough to solve the
problem (i.e., the robot would struggle to execute good plans), whereas the
second one will increase the computation time of MCTS.

Furthermore, here we assumed that the outcome of each action is indepen-
dent of the state it was taken in, which is the case for mobile robots when
(1) the robot can be stopped to take a decision and (2) the terrain does not
change dramatically. Nevertheless, RTE was able to cope with cases where this
assumption did not really hold; in particular, the hexapod was able to walk on
rough terrain, even though the action repertoire was optimized for flat terrain.
In future work, we will look at this in greater depth, and try to relax these
assumptions. For example, we could produce priors that are state-dependent
and learn the full transition model and/or the reward function.

In this work, we chose to use MCTS for the planning phase of our approach,
because it has been successfully used in the context of RL (Silver and Veness,
2010; Browne et al., 2012; Hester and Stone, 2013) and because it makes
no assumptions about the dynamics/model of the system. This allows us
to incorporate prior knowledge about the problem (Silver et al., 2016) and
to use actions of any type, as we did in our work. Nevertheless, traditional
sample-based planners, like RRT, could provide more accurate solutions and/or
be faster in some cases. In future work, we will investigate and experiment
with different probabilistic planners.

Lastly, while we performed our experiments with a legged and a mobile
robot, the algorithm introduced here is general enough to be extended to many
other robots and tasks. For instance, it could be employed on an arm mounted
on a mobile platform that had incurred damage (e.g., a blocked joint). In
this case, the algorithm will learn a mapping between the (x,y,z) position of
the end-effector and the joint/wheel positions, similarly to how it learned a
mapping between the (x,y) position of the hexapod robot and the parametric
controller. After each trial, the robot might be in a different position relative
to the target object (e.g., a door knob), but thanks to RTE, it should not have
to go back to its starting position to try a different behavior.
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4.1 Introduction

In the background chapter, we realized that there exist two main strategies
for tackling the challenge of micro-data RL: leveraging prior knowledge and
building surrogate models. In this chapter, we will focus on the second strategy
and introduce a new model-based policy search approach that is flexible, data-
efficient, and fast®.

When data are scarce, a general principle is to extract as much information
as possible from them. In the case of robotics, this means that all the state
variables that are available should be collected at every time-step and be used
by the learning algorithm. This contrasts with many direct policy search
approaches (e.g., policy gradient algorithms (Deisenroth et al., 2013; Kohl and
Stone, 2004) or Bayesian optimization (Cully et al., 2015; Calandra et al., 2015;
Lizotte et al., 2007)) which only use the (cumulative) reward at the end of each
episode.

One of the best ways to take advantage of this sequential state recording is
to learn a dynamical model of the robot (Nguyen-Tuong and Peters, 2011), and
then exploit it either for model-predictive control (Camacho and Alba, 2013)
or to find an optimal policy offline (Deisenroth et al., 2013). However, such
approaches assume that the model is “good enough” to predict future states
for all the possible states. This is often not the case when only a few episodes
have been performed, as many states have not been observed yet. Learning
with a dynamical model therefore often requires acquiring enough points to
learn an accurate model, which, in turn, increases the interaction time.

This challenge can be overcome by taking into account the uncertainty
of the dynamical model: if the algorithm “knows” that a prediction is unre-
liable, it can balance the risks of trying something that might fail with the
potential benefits. The PILCO (Probabilistic Inference for Learning COntrol)
algorithm (Deisenroth et al., 2015), which is one of the state-of-the-art algo-
rithms for data-efficient model-based policy search, follows this strategy by
alternating between two steps, (1) learning a dynamical model with Gaus-
sian processes (Rasmussen and Williams, 2006), (2) using a gradient-based
optimizer to search for a policy that maximizes the expected reward, taking
the uncertainty of the model into account. Thanks to this process, PILCO
achieves remarkable data-efficiency; for instance it can find a good policy for
the cart-pole swing-up in around 4 trials of 4 seconds (Deisenroth et al., 2015),
whereas classic algorithms for RL in continuous states (e.g., CACLA (Hasselt
and Wiering, 2007)) typically require more than 50 trials.

Nevertheless, analytical algorithms like PILCO have two main issues that
may not be apparent at first sight. First, they impose several constraints on
the reward functions and policies that prevent the use of arbitrary rewards
(e.g., PILCO can only be used with distance-based rewards so far) and of
non-derivable policies (e.g., parameterized state automata, like in (Calandra
et al., 2015)). Second, they require a large computation time to optimize the

I More specifically, we can exploit multi-core architectures to speed up the computations.
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policy (e.g., typically more than 5 minutes on a modern computer between each
episode for the cart-pole benchmark), because they rely on computationally
expensive methods to do approximate inference for each step of the policy
evaluation (Deisenroth et al., 2015).

In this chapter, we introduce a novel policy search algorithm that tackles
these two problems while maintaining the data-efficiency of analytical algo-
rithms. Our main insight is that while the analytic approach is efficient on a
sequential computer, it cannot take advantage of the multi-core architectures
now present in every computer. By contrast, Monte Carlo approaches and
population-based black-box optimizers like CMA-ES (Hansen and Ostermeier,
2001) (1) do not put any constraint on the reward functions and policies, and
(2) are straightforward to parallelize, which can make them competitive with
analytical approaches when several cores are available. Our second insight is
that it is not necessary to explicitly (or fully) compute accurate approximations
of the expected reward when the optimization is performed with rank-based
algorithms designed for noisy functions (e.g., CMA-ES (Hansen and Ostermeier,
2001)), which saves a lot of computation: only the ranking of potential solutions
matters. Thus, it is possible to define a data-efficient, black-box policy search
algorithm that is competitive with gradient-based, analytical approaches.

We call our algorithm Black-DROPS, for Black-box Data-efficient RObot
Policy Search. It is a model-based policy search algorithm which:

e takes into account the uncertainty of the dynamical model when searching
for a policy;

e is as data-efficient as state-of-the-art, analytical algorithms, that is, it
requires similar interaction time;

e performs a more global search than gradient-based algorithms, that is, it
can escape from some local optima;

e is at least as fast as state-of-the-art, analytical methods when several
cores are used, that is, it requires similar or lower computation time; in
addition, it is likely to be faster with future computers with more cores;

e does not impose any constraint on the reward function (in particular, the
reward function can be learned);

e does not impose any constraint on the policy representation (any param-
eterized policy can be used).

We demonstrate these features with two families of policies, feed-forward neural
networks and Gaussian processes, applied to two classic control benchmarks
in simulation, the inverted pendulum and the cart-pole swing-up, as well as a
physical 4-DOF robotic arm.
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4.2 Problem Formulation

Here, we adapt the generic problem formulation of Section 2.2 to our specific
case. We consider dynamical systems of the form:

mt+1 = Iy —+ f(:l:t, ’U,t) + w (41)

with continuous-valued states * € R¥ and controls w € RF, i.i.d. Gaussian
system noise w ~ N(0,%,,), and unknown transition dynamics f.

In this chapter, we will focus on deterministic policies, and thus our objective
is to find a deterministic policy 7, u = 7(x|@), which maximizes the expected
long-term reward (see Eq. (2.4)). We assume that 7 is a function parameterized
by 6 € R® and that the immediate reward function r(z) € R (see Eq. (2.3))
might be unknown to the learning algorithm.

4.3 Approach

The Black-DROPS algorithm relies on the model-based policy search framework
as defined in Sec. 2.7.1. Thus, it consists of two steps that are being alternated
after each policy is executed on the system: (a) a model learning step where
the unknown dynamics model, f, and possibly the immediate reward function,
r, are learned, and (b) an optimization step where the optimal policy according
to the learned models is searched.

In our approach, we exploit population, rank-based optimizers, and in
particular CMA-ES (Hansen, 2006) variants, in order to combine the policy
evaluation with the optimization procedure. In particular, we exploit the
implicit averaging property that these algorithms possess (Jin and Branke,
2005; Miller and Goldberg, 1996) in order to efficiently perform sampling based
evaluation of the trajectories. Our key idea is to formulate model-based policy
search under uncertain dynamics as a noisy optimization problem. Viewing it
likes this allows us to use any of the well-known and tested optimizers that are
robust to noisy or stochastic objective functions, without the need of performing
many Monte-carlo rollouts.

4.3.1 Learning the dynamics model

Assuming Dy.,, = {f(&1), ..., f(Z,)} is a set of observations and &; = (x;, u;) €
RE+F the goal of the model learning step is to learn a mapping, f , from x; to
f(&;) = 411 — @; a possible second goal would be to learn a mapping, 7, from
x; to r(x;) if the immediate reward function needs to be learned. As we have
already discussed in the background section, Deisenroth et al. (Deisenroth et al.,
2015, 2013) first showcased that probabilistic models can be more effective than
deterministic ones, because the learning algorithms can get information about
the regions where the model is certain about its predictions and where it is not.

PILCO (Deisenroth and Rasmussen, 2011) exploits the Gaussian properties
of GPs in order to derive an analytical formulation for the policy evaluation
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step (see Sec. 2.7.1.2 and Sec. 4.3.2). In Black-DROPS, the underlying model
does not necessarily have to be a probabilistic one nor of a specific type (e.g.,
a GP), since Black-DROPS treats the model as a black box. In this chapter,
we are using Gaussian processes, like PILCO, for the models, and in the next
chapter we will be combining Black-DROPS with an open-loop periodic policy.
Overall, in Black-DROPS the user can choose the model type that best fits
their use case.

4.3.2 Policy Evaluation

Our goal is to maximize the expected cumulative reward (Eq. (2.4)), which
requires predicting the state evolution given an uncertain transition model.
This distribution, in our case, is given by:

P(716) = p(o) | [ H(@1sa]as, we)u (4.2)

t

where u; = 7w(x4|0) and p(@;41|@:, uy) is given by the approximated model of
the dynamics.

To do so in a deterministic way?, PILCO proposes to approximate the
distribution of state ;.1 given the distribution of state x; and the action u,
using moment matching (Deisenroth et al., 2015), and then propagates from
state to state until reaching the end of the episode. However, this sequential
approach accumulates errors over time (due to the approximations made at each
time-step), is not easy to parallelize, and is computationally expensive (Kupcsik
et al., 2017). As an alternative, we can compute a Monte Carlo approximation
of the final distribution: at each step we sample a new state according to the
GP of the model and its reward according to the reward model, query the
policy to choose the actions, and use this new state to sample the next state.
By performing this process many times, we can get a good estimate of the
expected cumulative reward, but many samples are needed to obtain a good
estimate (Kupcsik et al., 2017; Deisenroth et al., 2013) (see Sec. 2.7.1.2 for
more details).

Here we adopt a different approach. Like in Monte Carlo estimation, we
propagate from state to state by sampling according to the models. However,
we consider that each of these rollouts is a measurement of a function G(0)
that is the actual function J(@) perturbed by some noise N(0):

G(0) = J(6) + N(0)
Z r(xs— 1+f Ti1, U 1)) (4.3)

t=1

where f(a;_y, 1) ~ N (1 j(Z-1), X 5(F4-1)) is a realization of a normally
distributed random vector according to Eq. 2.45, #(x) ~ N (u.(x),0(x)) is a

2PILCO also requires the reward function to be known a priori, whereas Black-DROPS
does not make this assumption.
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generation 1 generation 3 generation 5 generation 8 generation 12 generation 15

Figure 4.1: Illustration of an actual run with CMA-ES on a simple 2-D, noisy problem.
The performance landscape is pictured on the background. Each colored disk is a candidate
from the population (the color represents its performance with the same color scale as the
landscape in the background). If the color of a disk is the same as the background, then
noise did not change the performance. The mean my of the best p candidates is pictured as
a red disk, and the covariance of the p best individuals as an orange ellipse. In only a few
generations, and in spite of the noise, CMA-ES identifies the optimum of the function. Please
note that in this example we use a bigger population than in our work for illustration purposes.
In Black-DROPS, we use small populations as advised by the authors of CMA-ES (Hansen
and Ostermeier, 2001).

realization of a normally distributed random value according to Eq. 2.43 and
Ui—1 = 7T(Q3t_1|9).

In order to maximize the expected return, J(@), we need to maximize the
expectation of the “perturbed” function G(8):

E [G(G)] —E [J(o) + N(@)}
:EPwﬂ+EMwﬂ (4.4)

And since Vz E [E[x]] = E[z]:
E [G(e)] — J(O)+E [N(e)} (4.5)

We assume that E[N(0)] = 0 for all @ € R® (see Eq. (4.1)) and therefore
maximizing E[G(0)] is equivalent to maximizing J(8).

4.3.3 Policy search with CMA-ES

Seeing the maximization of J (0) as the optimization of a noisy function allows
to maximize it without computing or estimating it explicitly: we only use
the noisy measurements in the optimization algorithm. To do so, we use the
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Hansen and
Ostermeier, 2001), which is one of the most successful evolutionary algorithms
for optimizing noisy and black-box functions (Jin and Branke, 2005; Hansen
et al., 2009; Hansen, 2009). CMA-ES performs four steps at each generation k
(Fig. 4.1):

(1) sample A new candidates according to a multi-variate Gaussian distri-
bution of mean m;, and covariance o2Cy, that is, 6; ~ N (my, 0:Cy) for
1€l N

(2) rank the A sampled candidates based on their (noisy) performance G(6;);
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(3) compute my1 using a weighted average of the p best candidates: my 1 =
S w8, where Y w; = 1;

(4) update the covariance matrix to reflect the distribution of the successful
search steps.

Overall, these steps are only marginally impacted by noise in the perfor-
mance function, as confirmed by empirical experiments with noisy functions (Jin
and Branke, 2005). More precisely, the only decision that matters is whether
a solution belongs to the p best ones (step 2), that is, a precise ranking
is not needed and errors can only happen at the boundaries between the
low-performing and high-performing solutions. In addition, if a candidate is
misclassified because of the noise, the impact of this error will be smoothed
out by the average when computing my1 (step 3). One can also observe that
because CMA-ES samples several solutions around a mean my, it performs
many evaluations of similar parameters, which are then averaged: this im-
plicit averaging (Jin and Branke, 2005; Miller and Goldberg, 1996) has many
similarities with re-evaluating noisy solutions to estimate their expectation.

In the extreme case where the population is infinite, it can be shown
that the selection part of evolutionary algorithms is not affected at all by
noise (Miller and Goldberg, 1996). Moreover, it is shown that in genetic
algorithms with ranking-based selection, adding random perturbations to the
design variables at each generation is equivalent to optimizing the expected
fitness function (Tsutsui and Ghosh, 1997).

In the Black-DROPS algorithm we ulitize a recent variant of CMA-ES that
uses a similar scheme and combines random pertubations with re-evaluation for
uncertainty handling (Hansen et al., 2009) along with restart strategies for better
exploration (Auger and Hansen, 2005). In particular, we use active IPOP-CMA-
ES with restarts (Auger and Hansen, 2005) and we follow the strategy proposed
by Hansen et al. (2009) to improve the behavior of CMA-ES with noisy functions
(called UH-CMA-ES). The starting idea is that uncertainty is a problem for
a rank-based algorithm if and only if, for two potential candidates 8, and 6,
the variation due to N(6;) and N(6,) exceeds the difference |J(6;) — J(62)|
and thus their ordering is changed. If the variation tends to exceed this
difference, we cannot conclude only from two measurements G(6,), G(62),
whether J(6,) > J(02) or J(6,) < J(62) holds. If we view [J(0,) — J(0)| as
the signal and the variations due to N (@) as noise, then it follows that one way
to improve the quality of the ranking without re-evaluating solutions many
times (which would reduce noise) is to increase the signal.

We therefore implement the following strategy: (1) at each generation, we
quantify the uncertainty of the ranking by re-evaluating A, < A randomly
selected candidates from the population and count the number of rank changes
(see (Hansen et al., 2009) for a detailed description of uncertainty quantification),
(2) if the uncertainty is above a user-defined threshold, then we increase the
variance of the population (o in step 1 of CMA-ES). In addition to reducing
the uncertainty of the ranking when needed, this strategy has an interesting
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Algorithm 11 Generic policy search algorithm

. Apply initialization strategy using INITSTRATEGY
: Collect data, Dy, with COLLECTSTRATEGY
: for n =1 — Ny, do
Learn models using LEARNSTRATEGY and D,,
Calculate 6,1 using UPDATESTRATEGY
Apply policy 7, ,, on the system
Collect data, D,,, with COLLECTSTRATEGY
end for

PN g Wy

consequence: in uncertain search-space regions, CMA-ES moves faster (it makes
bigger steps), which means that the algorithm favors regions that are more
certain (when they are as promising as uncertain regions) and is not “trapped”
in uncertain regions. We use a modified version of the libcmaes C++11 library®.

4.3.4 Handling noisy systems

The Black-DROPS algorithm, as we have described it so far, will struggle when
the system noise, w, is not negligible or when the initial state distribution
p(xo) is wide. This is because we sample only one trajectory (according to
Eq. (4.2)) to get the noisy estimate of the expected return, G(6). When the
system noise (and thus the learned variance of the models) is significant or the
initial distribution is wide, this estimate is too noisy for CMA-ES to be able
to properly optimize its expectation; remember that we do not have infinite
population nor infinite search generations in practical implementations (for the
theoretical guarantees to hold; see Sec. 4.3.3).

A simple way to handle these cases is to increase the number of sampled
rollouts (or trajectories) so that the estimate of the expected return is not too
noisy and CMA-ES can properly maximize its expectation. Of course, we do
not need to increase the number of samples as much as in pure Monte-carlo
estimation, as we only need to reduce the variance of the estimation. We found
5 sampled rollouts to be sufficient for our experiments.

4.3.5 Black-box Data-efficient Robot Policy Search

The Black-DROPS algorithm follows the generic policy search algorithm (as
defined in Algo. 1 and re-stated in Algo. 11) and the generic model-based policy
search algorithm (as defined in Algo. 4), and implements INITSTRATECY,
COLLECTSTRATEGY, LEARNSTRATEGY and UPDATESTRATEGY (Algo. 12).
In our experiments, we evaluate a few random policies of the robot in order to
gather some initial data for the models. We, then, collect samples of the form
(xy, u;) — @441 and &; — () according to Sec. 4.3.1 and learn the models
appropriately (in this chapter we use GPs for the models). Lastly, we select

3https://github.com/beniz/libcmaes
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the policy to try next by optimizing E[G(G)] using CMA-ES with uncertainty
handling (Sec. 4.3.3) and the learned models.

Algorithm 12 Black-DROPS

procedure INITSTRATEGY
Select 0;,;; randomly > We could also evaluate multiple random policies
end procedure
procedure COLLECTSTRATEGY
Collect samples of the form (x¢, ur) — 41
Collect samples of the form x; — r(x;)
end procedure
procedure LEARNSTRATEGY
Learn model f D (@, w) = Ty — Xy
Learn model 7 : &, — r(x;) > if necessary
: end procedure
: procedure UPDATESTRATEGY
On+1 = argmaxy E[G(0)f,7)]
: end procedure

e e ol el
=W N = O

4.4 Experimental Setup

4.4.1 Policy Representations

To highlight the flexibility of Black-DROPS, we use a GP-based policy (Deisen-
roth et al., 2015) and a feed-forward neural network-based one. We chose to
evaluate Black-DROPS with the GP policy in order to have a fair comparison
to PILCO; 1i.e., use exactly the same scenarios and parameters. We chose the
neural network policy as this is most commonly used in RL works (Polydoros
and Nalpantidis, 2017; Deisenroth et al., 2013; Kober et al., 2013), and because
it does not provide any real prior information about the underlying task (as
opposed to Dynamical Movement Primitives for example).

Nevertheless, any other parameterized policy can be used with Black-
DROPS. For example, in the next chapter we will use an open-loop parameter-
ized policy to control a six-legged robot.

4.4.1.1 GP Policy

If we only consider the mean, a Gaussian process can be used to map states to
actions, that is, to define a policy (this is identical to the PILCO paper (Deisen-
roth et al., 2015)):

™ (w) = UmaxRsquash (Npolicy (33) )

= Unmaxsquash (Kpoticy (Fpoticy + 07 1) ™) (4.6)

where Uy, is the maximum value of u (can be different for each action
dimension), Ksquash € [—1, 1] is a squashing function to keep the actions selected
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in bounds, x is the input state vector to the policy, kpolicy and Kpolicy are
computed using the exponential kernel (Rasmussen and Williams, 2006) and
we set 0, = 0.01. The hyperparameters of this GP and the pseudo-observations
(inputs and targets) constitute the parameters of the policy. We define the
squashing function as follows (following Deisenroth et al. (2015)’s suggestion):

9 1
RKsquash () = gsin(m) + gsin(?):v) (4.7)

4.4.1.2 Neural Network Policy

The network function of the i layer of the network is given by y; = ¢;(Wiy;_1+
b;), where W; and b; are the weight matrix and bias vector, y;_; and y; are
the input and output vector and ¢; is the activation function. In this chapter,
we use configurations with one hidden layer and the hyperbolic tangent as the
activation function ¢ for all the layers, leading to:

W(w) = UmaxY1 = umaxqb(leO + bl)
and yo = ¢(Wox + by) (4.8)

4.4.2 Metrics

e Reward as interaction time increases
This metric assesses the quality of the solutions and the data-efficiency
of each algorithm.

e Speed-up when more cores are available
This metric assesses how well each algorithm scales as the available hard-

ware resources increase, independently of the particular implementation
(e.g., MATLAB vs C++).

4.4.3 Experiments

We evaluate Black-DROPS on the pendulum and cart-pole tasks and compare
it to PILCO using 80 replicates over different CPU configurations. As an
additional baseline, we evaluate a variant of our approach using deterministic
GP models of the dynamics (i.e., using only the mean of the GPs) to quantify
the importance of considering the uncertainty (variance) of the model in policy
optimization. We replicate the experiments for both noiseless and noisy systems
with mild noise (for the noisy settings, we use 5 rollouts). For Black-DROPS
and the baseline we use two different policies: a neural network policy (with
one hidden layer and 10 hidden units) and a GP policy (with 10 pseudo-
observations). For PILCO we use only the GP policy with the same parameters
as for the other algorithms. In both cases, we additionally compare PILCO and
Black-DROPS (20 replicates) on different rewards to showcase the flexibility
and robustness of our approach.
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We additionally evaluate Black-DROPS on a 4-DOF physical arm task to
validate that it can be used with more complex and interesting robots, that
it can be used when the reward function is unknown, and that it works on a
real robotic platform. We use only the neural network policy for this task, as
it performed better in the other benchmarks.

For all the tasks, an episode corresponds to applying the same policy for a
duration of 4 s and the sampling/control rate is 10Hz. The source code of the
experiments can be found at https://github.com/resibots/blackdrops.

4.5 Results

4.5.1 Task 1: Inverted Pendulum
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Figure 4.2: Results for the noiseless pendulum task with the saturating reward (80
replicates): (A) Best reward found per episode. The lines are median values and the shaded
regions the 25" and 75! percentiles. Black-DROPS converges to higher quality solutions in
fewer episodes than PILCO and has considerably less variance. (B) Best reward after 10
episodes. The box plots show the median (black line) and the interquartile range (25" and
75" percentiles); the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted individually. Our approach outperforms PILCO in the quality of the
controllers found. The number of stars indicates that the p-value of the Mann-Whitney U
test is less than 0.05, 0.01, 0.001 and 0.0001 respectively.

This simulated system consists of a freely swinging pendulum with mass
m = 1 kg and length [ = 1 m. The objective is to learn a controller to swing
the pendulum up and to balance it in the inverted position applying a torque.

e State: ®,enq = [0,6] € R?, ) = [0,0].
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o Actions: Upeng = Upend € R, —2.5 < Upepg < 2.5 N.

e To avoid angle discontinuities, we transform the input of the GPs, the
reward function, and the policy to be:

Tinput = [0, cos(0),sin(0)] € R3

The MATLAB implementation of PILCO uses this transformation by
default?.

e Reward #1: We use two different rewards. The first one is the same
reward function as PILCO?®. This is a saturating distance-based reward
function:

() = xp(— 5 5 (@ — 2.)Q(w — .)) (49)

where o, controls the width of the reward function, @ is a weight matrix,
x, is the target state and ry,i(x) € [0,1]. We set @, = [, cos(m), sin(7)],
o. = 0.5 and Q to ignore the angular velocity 6 of the pendulum.

e Reward #2: The second reward is a more classic one: 1i.e., a transformed
distance to the goal:

Tquad () = — (2 — z)'Q(x — x,) (4.10)

where @ is a weight matrix and x, is the target state. We set x, =
[, cos(7), sin()], and Q to ignore the angular velocity 6 of the pendulum.

e In the noisy setting, p(xg) ~ N (0,0.01) and a small Gaussian measure-
0.01 0 ])

ment noise is applied to the states, ~ N(O, { 0  0.0001

Table 4.1: Success Rates for Pendulum

Algorithm Success Rate
Noiseless Pendulum | Noisy Pendulum
Black-DROPS (NN) 100% 98.73%
Black-DROPS (GP) 100% 100%
No Var (NN) 100% 97.5%
No Var (GP) 100% 90%
PILCO 80% 82.5%

‘http://mlg.eng.cam.ac.uk/pilco/
SPILCO uses a cost function, but it is straightforward to transform it in a reward
function.
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4.5.1.1 Noiseless System Results

In the noiseless system, both Black-DROPS and the baselines solve the task
in about 3 episodes (12 s of interaction time — including the random episode,
Fig. 4.2A). In this simple and noiseless system, the baselines that do not take
into account the uncertainty of the model perform as well as Black-DROPS
(the “No Var” baselines perform the same as Black-DROPS, see Fig. 4.2). This
result most probably stems from the fact that the dynamics of the system are
simple enough for the GPs to model almost perfectly with one or two episodes.
Interestingly, PILCO does not perform as well and finds sub-optimal policies.
In addition, given a budget of 15 episodes, Black-DROPS succeeds more often
than PILCO in finding a working policy (Table 4.1): Black-DROPS always
solves the task whereas PILCO fails 20% of the time.
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Figure 4.3: Timing for the the pendulum task with the saturating reward: (A) Speed-up
(for total policy optimization time after 10 episodes) achieved when using multiple cores. The
lines are median values over 30 runs and the shaded regions the 25" and 75" percentiles.
As more threads are being used, Black-DROPS benefits from it and has up to 4x speed-up
when 32 threads are used. (B) Total policy optimization time after 10 episodes when 32
threads are available.

When the number of threads is increased, the computation time required by
Black-DROPS decreases and we can have a speed-up of up to 4x (in the cases
that we considered — Fig. 4.3A)), whereas PILCO does not benefit almost at
all from having multiple threads. With more than 12 threads, Black-DROPS
outperforms PILCO in computation speed and can be from 3 to 10 times faster
when 32 threads are available® (Fig. 4.3B).

6While some of the runtime differences can stem from the language used (e.g., C++
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It is worth noticing that we are not having a linear increase in the speed-up
when more threads are being used. This is mainly because of the following
reasons:

e CMA-ES usually uses small population of candidate policies per genera-
tion and thus the speed-up that we can get saturates at around 16 cores
(at least in this case);

e The problem is very low dimensional and CMA-ES converges in very few
generations for the speed-up due to parallelization to be visible.

Moreover, the plots differ a bit from our IROS paper (Chatzilygeroudis
et al., 2017), because we changed the CMA-ES variant from BIPOP-CMA-ES
to IPOP-CMA-ES that converges faster, and overall provides a better tradeoff
between the quality of the solutions and the convergence time.

4.5.1.2 Noisy System Results

In this setting, both Black-DROPS and PILCO solve the task in about 3 episodes
(12 s of interaction time — including the random episode, Fig. 4.4A), but Black-
DROPS finds higher-performing policies (Fig. 4.4A-B), with both the neural
network and the GP policy. In this noisy system, using the variance helps more
than the noiseless system: the variants of Black-DROPS without uncertainty
handling are less data-efficient and have more variance. Additionally, Black-
DROPS is able to achieve a success rate of more than 98%, whereas PILCO
achieves only 90% (see Table 4.1).

In this noisy scenario, however, Black-DROPS requires more computational
time than PILCO, even with 32 threads (that was the maximum number we
could use). Overall, PILCO was from 1.2x to 2x faster than Black-DROPS.
Nevertheless, this result is affected by many parameters, and most notably by:

1. Stopping criteria — in PILCO we used 75 gradient steps, whereas in
Black-DROPS we let the CMA-ES population to converge;

2. Number of rollouts — we used 5 sampled trajectories, but depending on
the noise level we could choose less or more and affect the convergence
properties of CMA-ES.

In section 4.6, we explore one potential solution to this issue of Black-
DROPS and get some promising preliminary results.
4.5.1.3 Quadratic Reward Results

Changing the reward to the negative distance to the target as per Eq. (4.10)
does not affect Black-DROPS at all and we get very similar results (Fig. 4.5).

being faster than MATLAB or MATLAB being faster at matrix computations), what matters
is that a parallel algorithm with enough CPUs can eventually outperform a sequential
gradient-based approach.
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Figure 4.4: Results for the noisy pendulum task with the saturating reward (80 replicates):
(A) Expected reward per episode; note that this metric is not available to the algorithm
and only used for evaluation. Black-DROPS converges to higher quality solutions in fewer
episodes than PILCO and has considerably less variance. (B) Expected reward after 10
episodes. Our approach outperforms PILCO in the quality of the controllers found. See
Fig. 4.2 for legend.

Similarly, PILCO is not affected too much by the type of the reward function
and achieves similar data-efficiency as with the saturating reward.

4.5.2 Task 2: Cart-pole Swing-Up

This simulated system consists of a cart with mass M = 0.5 kg running on
a track and a freely swinging pendulum with mass m = 0.5 kg and length
[ = 0.5m attached to the cart. The state of the system contains the position
of the cart, the velocity of the cart, the angle of the pendulum and the angular
velocity of the pendulum. The objective is to learn a controller that applies
horizontal forces on the cart to swing the pendulum up and balance it in the
inverted position in the middle of the track.

e State: x, = [#,1,0,0] € R, @, = [0,0,0,0].
e Actions: u,, = u, € R, =10 <wug < 10N.

e To avoid angle discontinuities, we transform the input of the GPs, the
reward, and the policy to be:

Tinput = |2, 7,0, cos(f), sin(h)] € R®
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Figure 4.5: Results for the noisy pendulum task with the quadratic reward (20 replicates):
(A) Expected reward per episode; note that this metric is not available to the algorithm and
only used for evaluation. Black-DROPS and PILCO converge to high performing policies in
similar interaction time compared with the smooth reward. (B) Expected reward after 10
episodes. See Fig. 4.2 for legend.

e Reward #1: We again use two reward functions. For the first one, we
set @, = [, 0, %, cos(m), sin(m)], o, = 0.25, Q to ignore & and 6, and use
Eq. 4.9.

e Reward #2: For the second one, we set . = [*, 0, x, cos(7), sin(7)], Q
to ignore & and 6, and use Eq. 4.10.

e In the noisy setting, p(xy) ~ N(0,0.01) and a small Gaussian measure-
ment noise is applied to the states, ~ A(0,0.0001).

Table 4.2: Success Rates for Cart-pole

Algorithm Success Rate
Noiseless Cart-pole | Noisy Cart-pole
Black-DROPS (NN) 98.52% 98.75%
Black-DROPS (GP) 98.65% 98.5%
No Var (NN) 100% 3.75%
No Var (GP) 100% 1.25%
PILCO 92.5% 87.5%
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Figure 4.6: Results for the noiseless cart-pole task with the saturating reward (80 replicates):
(A) Best reward found per episode. Black-DROPS converges to higher quality solutions in
about the same number of episodes as PILCO and has less variance. (B) Best reward after
15 episodes. Our approach outperforms PILCO in the quality of the controllers found. See
Fig. 4.2 for legend.

4.5.2.1 Noiseless System Results

In the noiseless setting, the results for the cart-pole are very similar to those
obtained with the inverted pendulum (Fig. 4.6A-B): Black-DROPS and the
variants without the variance perform similarly and solve the task in around 5
episodes (20 s of interaction time) to solve the task. Nevertheless, using the
variance helps more in this task than in the pendulum task: the variants of
Black-DROPS without uncertainty handling are a bit less data-efficient and
have more variance. PILCO seems to struggle again with the narrow initial
state distribution and improves slowly. Similar to the pendulum task, here
also Black-DROPS takes advantage of multiple threads to highly speed-up its
computation and is 1.6 times faster than PILCO when 32 threads are available
(Fig. 4.7).

4.5.2.2 Noisy System Results

In this setting, both Black-DROPS and PILCO solve the task in about 4-
5 episodes (16 — 20 s of interaction time — including the random episode,
Fig. 4.8A), but Black-DROPS finds higher-performing policies (Fig. 4.8A-B)
and with less variance, with both the neural network and the GP policy. In
this noisy and more interesting system using the variance is crucial for finding
effective controllers: the variants of Black-DROPS without uncertainty handling
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Figure 4.7: Timing for the cart-pole task with the saturating reward: (A) Speed-up (for
total policy optimization time after 15 episodes) achieved when using multiple cores. As
more cores are being used, Black-DROPS benefits from it and has a 4 — 6x speed-up when
12 cores are used. (B) Total policy optimization time after 15 episodes when 32 threads
are available. Black-DROPS is around 2.1 to 4.3 times faster than PILCO. See Fig. 4.3 for
legend and number of replicates.

are not able to solve the task at all (Fig. 4.8A). Additionally, Black-DROPS is
able to achieve a success rate of almost 100%, whereas PILCO achieves only
87.5% (see Table 4.2).

4.5.2.3 Quadratic Reward Results

Like in the pendulum case, changing the reward to the negative distance to
the target as per Eq. (4.10) does not affect Black-DROPS at all and we get
very similar results with the saturating reward (Fig. 4.9). Additionally, Black-
DROPS with the neural network policy is able to find slightly better performing
behaviors and with less variance than PILCO. Overall, Black-DROPS finds
high performing solutions 1-2 episodes faster than PILCO.

4.5.3 Task 3: 4-DOF Manipulator

We, also, applied Black-DROPS on a physical velocity-controlled 4-DOF robotic
arm (Fig. 4.10, 10 replicates). We assume that we can only observe the angles
of the joints of the arm and that the reward function r,,, is initially unknown.
The arm begins in the up-right position and the objective is to learn a controller
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Figure 4.8: Results for the noisy cart-pole task with the saturating reward (80 replicates):
(A) Expected reward per episode. Black-DROPS converges to higher quality solutions in
about the same number of episodes as PILCO and has less variance. (B) Expected reward
after 15 episodes. Our approach outperforms PILCO in the quality of the controllers found.
See Fig. 4.2 for legend.

so that the end-effector quickly reaches a certain position (shown in Fig. 4.10A).
We compare Black-DROPS with the baseline without variance.

o State: Tom = [¢0, 01, 42, q3] € RY, @y = [0,0,0,0].
e Actions: Ug., = [v, V1,02, v3] € RY, where —1.0 < v; < 1.07rad/s
e Reward: The unknown (to the algorithm) reward function has a form

similar to Eq. 4.9:

1

ﬁ”pm —p.|) (4.11)

Tarm(T) = exp(—

where 0. = 0.1, p, corresponds to the end-effector position in state x, p.
is the goal position of the end-effector and rg.,,(x) € [0, 1].

e To avoid angle discontinuities, we transform the input to the GPs and
the policy to be:

Zinput = [€08(qo), sin(qo), cos(q1), sin(q1), cos(ga),
sin(qs), cos(qs), sin(gs)] € R®

The results show that Black-DROPS is able to find a working policy within 5
episodes (including the initial random one) and outperforms the baseline which
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Figure 4.9: Results for the noisy cart-pole task with the quadratic reward (20 replicates):
(A) Expected reward per episode; note that this metric is not available to the algorithm and
only used for evaluation. The y-axis is in log-space. Black-DROPS and PILCO converge
to high performing policies in similar interaction time compared with the smooth reward.
Black-DROPS with the neural network policy outperforms PILCO both in the quality of the
results and the variance. (B) Expected reward after 15 episodes. See Fig. 4.2 for legend.

needs around 6 episodes (Fig. 4.10B). Black-DROPS, also, shows less variance
and converges to high quality controllers faster (6 episodes vs 8-9). A video of
a typical run is available at https://youtu.be/kTEyYiIFGPM.

4.6 Improving performance and computation
times with empirical bootstrap and races

Like we already said, the Black-DROPS algorithm will struggle when the system
noise, w, is not negligible or when the initial state distribution p(xo) is wide.
In the previous sections, we used a naive approach to handle these cases; i.e., to
increase the number of sampled rollouts (or trajectories) so that the estimate
of the expected return is not too noisy and CMA-ES can properly maximize its
expectation. Nevertheless, this adds one more hyper-parameter to the user that
might not be obvious how to set. Additionally, the Black-DROPS algorithm,
as we have described it so far, still requires big computation times between
each episode and the practical gains from parallelization are limited to 12-24
threads (that is, around 4-8x speed-ups compared to 1 thread implementation).


https://youtu.be/kTEyYiIFGPM
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Figure 4.10: Manipulator task (10 replicates for each treatment).

In this section, we will describe how the empirical bootstrap method (Efron
and Tibshirani, 1994) and the idea of racing (Heidrich-Meisner and Igel, 2009)
can be used to both improve the quality of the solutions found by Black-DROPS
(e.g., in noisy systems as described before), but also improve the computation
times. Our goal is to allocate as efficiently as possible the available budget of
function evaluations’, that is, to spend more function evaluations where it is
actually needed and not blindly, like pure Monte-carlo methods.

At any given generation of CMA-ES, we have A candidates and we are
seeking the p best of them. As we only have access to a noisy estimate of each
candidate, we should re-evaluate them to get more accurate estimations. But
how many evaluations of each individual is enough? Since the variance of the
GPs is not the same in the entire state-action space (we have more data in some
regions, less in others), each candidate needs different number of evaluations.
This makes our task even more difficult, because we cannot make one decision
for the whole population; this would “waste” some evaluations on individuals
that do not need them or not use some evaluations where they are needed.

We take inspiration from Heidrich-Meisner and Igel (2009) and exploit the
fact that only the ranking — and not the precise values of the expected return
— affects the convergence properties of population, rank-based optimizers, like

“In our case, one function evaluation is one sampled trajectory or rollout.
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Figure 4.11: Illustration of racing with the empirical bootstrap method.

CMA-ES. Our main idea is to not use the same evaluation budget for all the
candidate policies, but let them “race” (Fig. 4.11). In other words, we would
like to stop evaluating a candidate policy when we are confident that (a) it is
already in the best policies and this cannot change (with some probability), or
(b) it is already in the worst policies and it cannot change its ranking (with
some probability). Furthermore, we would also like to stop evaluating an
individual when we are confident about our current estimate of the expected
return. This criterion will save function evaluations by exploiting the fact
that an individual might not need additional evaluations to have an accurate
estimate of the expected return and its confidence intervals.

More concretely, we perform evaluation “waves”, that is, iterations where
some candidates might not survive and stop being reevaluated. We define
the above two criteria for stopping the reevaluations of candidates, that is:
(a) selection races that select or discard candidates based on their confidence
intervals (i.e., stop reevaluating an individual because it is already very good
or very bad; see Fig. 4.11), and (b) variation of the candidates’ estimation
accuracy.

To evaluate these two criteria, we use the empirical bootstrap method in
two different ways: (a) to compute an estimate of the accuracy of the mean
prediction of each candidate policy, and (b) to compute confidence intervals
(i.e., bounds) of each policy. Although there exist a few other techniques for
computing confidence intervals, like the Hoeffding inequality (Serfling, 1974),
they usually require knowledge about the initial bounds and over-estimate the
intervals (i.e., their computed bounds are too wide) (Heidrich-Meisner and Igel,
2009). Moreover, the bootstrap method is very easy to implement and we can
take advantage of multi-core architectures to speed it up.
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In more detail, initially all policies (i.e., candidates) are evaluated nte,
times and then labelled active and undecided (see Algo. 18 in appendix). In
every following “wave”, for each active policy we compute N bootstrapped
differences of the mean estimation. Using this bootstrapped values, we update
the estimated mean performance and confidence intervals. If a policy’s estimated
mean is accurate enough, we remove it from the active set. If the lower bound
of an active policy is better than the upper bounds of at least A — y other
candidates, it is selected (and removed from the undecided and active sets).
If the upper bound of an active policy is worse than the lower bounds of at
least p other candidates, it is discarded (and removed from the undecided and
active sets). Finally, all the candidate policies that survived both processes
and remain in the active set are reevaluated nge, times.
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Figure 4.12: Expected reward per episode for the very noisy pendulum task (20 replicates).
Black-DROPS with bootstrap and races is able to outperform vanilla Black-DROPS. Choosing
the number of rollouts by using expert knowledge, however, provides the best results. See
Fig. 4.2 for legend.

This approach has a few hyper-parameters: ngep, "max, IV, Thoot, Trace- [NE€V-
ertheless, they are easy to set as they correspond to intuitive properties. In
particular, nge, € Z defines how many evaluations per wave we want to perform
to the active candidates; in other words, it defines how many reevaluations
make it more likely for our mean estimate to be more accurate. We define
Nmax € Z as the maximum number of reevaluations allowed per CMA-ES
iteration and N € Z as the number of bootstrap samples. The more bootstrap
samples the better as they will improve the accuracy of our computations. We,
also, define Tyt € [0, 1] as the percentage of the mean value that the average
error should be smaller to consider it accurate enough. Lastly, Tace € [0, 1]
defines the percentage of the confidence interval we would like to compute.
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4.6.1 Preliminary Results

To showcase the effectiveness of this extension,
we experiment with a very noisy inverted pen-
dulum task. This task is identical with the
one used in the previous sections, but with
bigger noise. In more detail:

State: Xpenq = [0,0] € R%, @ = [0,0].

Actions: Upepg = Upend € R, —2.5 <
Upend < 2.5N.

To avoid angle discontinuities, we trans-
form the input of the GPs, the reward
function, and the policy to be:

Tinpur = [0, cos(), sin(0)] € R

Reward: The reward is the same as
per Eq. (4.9).

In this setting, we assume p(xy) ~
N(0,0.01) and a rather big Gaussian

measurement noise is applied to the

02 0
states, ~ N(0, [ 0 0‘11).
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Figure 4.13: Policy optimization
time for the very noisy pendulum task
(20 replicates). Black-DROPS with
bootstrap and races requires similar
time to the expert number of roll-
outs and much less time than the
vanilla Black-DROPS algorithm. See
Fig. 4.2 for legend.

We compare three variants of Black-DROPS:

e Black-DROPS with bootstrap and races — the new extension

8.
)

e Black-DROPS with 1 sampled rollout — vanilla Black-DROPS;

e Black-DROPS with 10 sampled rollouts — setting the number of rollouts

to a number specified by an expert.

The results show that our extension greatly improves the quality of solutions
compared to the vanilla Black-DROPS (Fig. 4.12). Moreover, if we set the
number of rollouts by using expert knowledge (i.e., 10 in this case), we get the
best results. It is very interesting to observe that by determining automatically
the number of rollouts with our proposed approach, we get similar computation
time compared to using expert knowledge and can be much faster than vanilla
Black-DROPS (Fig. 4.13).

These results showcase that determining the proper number of rollouts for
each candidate plays a catalytic role to the convergence behavior of CMA-ES,
and thus affects both the quality and the computation time of the results

8We set Nstep = 9, Nmax = D0, N = 100, Tpoot = 0.1, and Tyace = 0.8.
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in Black-DROPS. The empirical bootstrap and racing idea is a first attempt
to address the computational time limitations of Black-DROPS in order to
make it a more practical algorithm. Nevertheless, further investigation is
required so that we can have a procedure in Black-DROPS that allocates the
available function evaluations as efficiently as possible, while not hurting the
performance.

4.7 Handling sparse reward scenarios

So far?, we have assumed an informative immediate reward function that gives
reinforce signals throughout the whole behavior of the robot. This essentially
means that Black-DROPS is greedy and mostly exploiting. However, rewards
are much more sparse in many interesting learning scenarios: typically, we
would like to reward the robot when it successfully achieves the task, and
not for all the intermediate steps that we think should lead to success. For
example, a robot might need to open a drawer and get rewarded by how much
the drawer is open: in most of the state space, the reward is zero because the
robot does not even touch the handle, meaning that Black-DROPS need to
open the drawer purely by chance to start learning a policy. In most realistic
scenarios, this is unlikely to happen.

In this section, we give a first potential solution to this issue by combining
model-based policy search with novelty-based ideas (Lehman and Stanley,
2008, 2011). In Novelty Search (NS) (Lehman and Stanley, 2011), the task
performance is substituted by a novelty measure (usually the distance of
candidates in some feature or behavior space) and thus, NS promotes behavioral
diversity and accumulates potential stepping stones for building more complex
solutions. These novelty-based methods are tightly related to approaches that
are based on intrinsic motivation (Forestier et al., 2017) or curiosity (Laversanne-
Finot et al., 2018; Oudeyer, 2018) and try to create agents that perform activities
for their inherent satisfaction rather than for some separable consequence (Ryan
and Deci, 2000). Following both lines of work, we propose an algorithm that
tries to handle the trade-off between novelty (exploration) and cumulative
reward (exploitation) inside a learned dynamics model. We call this algorithm
Multi-DEX, for Multi-objective Data-Efficient eXploration.

The main difference from the Black-DROPS algorithm is that we replace
CMA-ES with NSGA-II, which is a multi-objective optimization algorithm (Deb
et al., 2002) based on the Pareto-optimality concept (also called Pareto-
efficiency) (Deb and Kalyanmoy, 2001):

Definition 1 A solution 6, is said to dominate another solution s, if:

1. the solution 6, is not worse than 6y with respect to all objectives,

9Rituraj Kaushik, and not I, is the lead author of this work. We here give a summary of
this work. Please refer to (Kaushik et al., 2018) for details.
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2. the solution 6, is strictly better than 6, with respect to at least one
objective.

In more detail, we frame exploration as an additional objective (apart from
the cumulative reward) that promotes policies that will most likely produce
novel state trajectories in the real system. To keep the system within the more
certain regions of the dynamics model so that prediction error can be avoided
as much as possible, we set an additional objective to reduce the prediction
variance in the trajectory. The three objectives are typically antagonistic, as
the variance is likely to be higher for novel trajectories, and novel trajectories
are likely to have lower rewards than those with the highest rewards. In more
detail, we frame the model-based policy search as a multi-objective optimization
problem with three objectives:

e Cumulative reward: To compute the cumulative reward for a policy,
we propagate through the learned GP model of the system for 7" time
steps using the policy as per Eq. (4.2), but using only the mean prediction
of the GPs. Then, we aggregate all the immediate rewards to get the
cumulative reward. As this is evaluated in the model, optimizing this
objective means exploiting the learned dynamics to find a policy that is
likely to improve the reward on the real system.

e Novelty: We compute the novelty score of a policy by comparing its
expected state trajectory with the expected state trajectories of already
executed policies. To keep the computation time tractable, we sub-
sample them into s, equally spaced time-steps. We concatenate these
state samples into one vector that we call state trajectory vector 3, which
represents the “expected state trajectory” of a policy. These vectors are
archived in a set B of fixed size b, and we re-compute them every time
the GP model is updated. When B is full, we drop the least novel policy.
We define the novelty score for any policy mg as the minimum Fuclidean
distance of Bg to the state trajectory vectors in B:

Jn(8) = min(||Bo — BI|*)vpen (4.12)

This objective is promoting exploration policies that are likely to lead to
state trajectories that are different from those already observed.

e Cumulative model-variance: We define the cumulative model-variance
objective for a policy g as the negative mean'" of the step-by-step model
prediction variances:

T

A 1

T2 (0) = > 10 (413
t=1

10We use the negative mean because we are maximizing and we want minimum variance.
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where x; and u; are given by applying the policy mg on the model as
in the cumulative reward case. This objective tries to keep the system
close to regions where the model uncertainty is low and thereby avoids
prediction error on the real system.

4.7.1 Learning system dynamics with sparse
transitions

When the system dynamics have some sparse transitions that strongly affect
the cumulative reward, learning the model in a naive way (i.e., using all the
data points) can lead to suboptimal models and the policy search will struggle
to find good policies. For example, in a sequential goal reaching task the state
can include a Boolean switch that indicates whether the arm passed through
the first way-point or not; because only one data point will have transition from
false to true in any episode if the arm passes though the switch, learning a
model with the full data (that mostly have no points with the switch transition)
will most probably ignore these transition data points because they are likely
to be (rightfully) considered as outliers. In other words, rare transitions have
little impact on the mean squared error or likelihood of the dynamical model,
whereas they are critical to leverage the dynamical model to learn a policy.

The intuition here is to have a balanced blend of ordinary trajectories and
trajectories with rare transitions (leading to high reward) for model learning.
Learning a dynamics model this way will retain information not only about the
rare and high rewarding transitions but also about the regions where no reward
was observed. As a result, this model can efficiently be used for exploration as
well as exploitation. To do this, we maintain two fixed sized experience buffers,
P and H, where we keep the trajectory data of the episodes for model learning.
For each new trajectory executed on the robot, we insert a new observed
trajectory into P in a FIFO fashion if no reward is observed; otherwise, we
insert it into H. Note that, we keep the maximum buffer size of P equal to
the data size of H to have a uniform blend of “high rewarding” and “no/low
rewarding” trajectories for model learning.

4.7.2 Results

We evaluate Multi-DEX on a deceptive pendulum reward scenario and a drawer
opening task. We compare it to several model-based and model-free state-of-
the-art approaches: (1) Black-DROPS (chapter 4), a model-based policy search
algorithm; (2) TRPO (Schulman et al., 2015), a model-free policy gradient
approach; (3) TRPO with the VIME exploration strategy (Houthooft et al.,
2016); (4) CMA-ES (Hansen, 2006), a black-box optimizer effective for direct
policy search, and (5) GEP-PG (Colas et al., 2018), a curiosity-driven model-
free approach. In all the tasks, we give a budget of 2500 trials to all the
model-free approaches and 250 trials to the model-based ones.
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Figure 4.14: Results for the deceptive pendulum swing-up task. The plot shows the best
reward found over the number of trials. The lines are median values and the shaded regions
the 25th and 75th percentiles. The plot shows that Multi-DEX clearly outperforms all the
competing approaches and solves the task in just 100 trials (approx 6.6 minutes of total
interaction).

4.7.2.1 Deceptive Pendulum Swing-up Task

This simulated task consists of a pendulum powered by an underpowered
torque-controlled actuator. The goal in this task is to swing the pendulum to
the upright position applying torques as small as possible (i.e., using minimum
power) to the actuator and hold it in that position. The learning algorithm gets
a constant positive reward of +10 every time-step the pendulum is in upright
position (within some region). It also gets a negative reward proportional to
the square of torque for every time step. Because of this two rewards, the
total reward function possesses a deceptive landscape and algorithms without
efficient exploration will converge to a reward of zero which is achieved when
no torque is applied to the pendulum. This type of “Gradient Cliff” reward
landscape was first proposed by (Lehman et al., 2017). We use a neural network
policy with one hidden layer and 10 hidden units, the control frequency is
10H z and every episode is 4 seconds long. In more detail:

o State: Tpendsys = |0, 9] € R? , where 6 is the joint angle and 6 is the
joint angular velocity. The initial state of the system is xy = [0, 0].

o Actions: Upenasys = [7] € R,—2.0 < 7 < 2.0, where 7 joint torque
command for the arm.

e Reward: In this task, the reward is known to the algorithm as it is a
function of the observable states and applied action to the system. The
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Figure 4.15: Results for the drawer opening task: (a) Setup of the drawer opening task.
The goal of the 2-DOF arm is to open the drawer and go back to the up-right position. (b)
Best reward found per trial (20 replicates). The lines are median values and the shaded
regions the 25th and 75th percentiles. Multi-DEX outperforms all the other approaches and
finds working policies in about only 14 minutes of interaction (200 trials).

total reward is given by:

T(mpendjysa T) =T (azpend,sy& T) + TQ(mpendjy& T) (414)
0, ifm—0<m/60

Lpend_sys» - . 4.15

1(®pend.apa; 7) {-1—10, otherwise. ( )

T2(mpend,sy37 T) = —0.001 = 72 (416)

The results show that Multi-DEX quickly reaches to a very high positive
reward with very small variance within the budget of 100 trials (Fig. 4.14). On
the contrary, GEP-PG and TRPO-VIME could not reach to the same quality
of solutions even after 2500 trials on the system. As TRPO, Black-DROPS
and CMA-ES do not have any directed exploration, they could not improve
the reward and stay close to zero by minimizing the applied torque only.

4.7.2.2 Drawer opening task with a robotic arm

The goal of this simulated task is to open a drawer with a 2-DOF robotic arm
and go back to the up-right position (Fig. 4.15a). Similarly to the previous task,
the length of each episode is 4 seconds (10Hz control) and all the algorithms
use neural network policies (one hidden layer and 10 hidden units). In more
detail:

e State: Tgawer = [0o,01,0] € R® | where 6; are joint angles and ¢ the
drawer displacement.

e Actions: Ugawer = [V0,v1] € R?, —1 < vg,v; < 1 rad/s are joint velocity
commands.

e Reward: In this task, the reward depends only on the current state and
is known to the algorithm as it is a function of the observable state. The
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total reward is given by:

r(mdrawer) = Treturn<mdrawer) + ) (417)

0, if 6§ <0.2
rreturn(wdrawer) -

exp(—02 — 0%), otherwise. (4.18)

In this task, the reward space is moderately sparse and additionally has a
misleading reward space because of the composition of two different rewards.
Any algorithm without efficient exploration will converge to the reward associ-
ated with the drawer displacement only. Multi-DEX is able to find policies that
complete the task in just 200 trials (around 14 minutes of interaction), whereas
all the other approaches are deceived by the reward space (Fig. 4.15b — 20
replicates). Black-DROPS and TRPO, without any directed exploration, fall
in the sub-optimal solution (i.e., just opening the drawer quickly). CMA-ES,
TRPO-VIME and GEP-PG either fail to converge or need more than 2500
trials to reach the same quality of solutions as Multi-DEX.

4.8 Conclusion and discussion

Black-DROPS lifts several constraints imposed by analytical approaches (reward
and policy types) while being competitive in terms of data-efficiency and
computation time. In three different tasks (pendulum, cart-pole and physical
manipulator), it achieved similar results as the state-of-the-art (PILCO) while
being faster when multiple cores are used. We expect that the ability of Black-
DROPS to scale with the number of cores will be even more beneficial on future
computers with more cores and/or with GPUs.

However, even with 24 threads, Black-DROPS still requires around 80
minutes for completing 15 episodes in the noisy cart-pole task. The main issue
is the quadratic computational complexity of the prediction of the GPs (we are
doing around 64,000,000 GP queries per episode). Possible solutions include
using local GPs (Park and Apley, 2017; Deisenroth and Ng, 2015) or to stop
using GPs and make use of recent advances in neural networks with uncertain
predictions (Gal et al., 2016; Gal and Ghahramani, 2016; Chua et al., 2018;
Higuera et al., 2018). The second issue is the saturating parallelization abilities
of CMA-ES: CMA-ES usually uses small population sizes and thus the gain of
parallelization saturates to around 16-24 threads (at least in all the cases that
we considered). A possible solution to this problem is to replace CMA-ES with
another black-box population-based optimizer, like for example NSGA-IT (Deb
et al., 2002) or MAP-Elites (Mouret and Clune, 2015), that can scale better
with the number of cores. This would lead to better speed-ups as the number
of cores increases.

Using the variance in the optimization is one of the key components to
learn with as little interaction time as possible. However, the learned dynam-
ics models are only confident in areas of the state space previously visited
and thus could drive the optimization into local optima when multiple and
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diverse solutions exist. This exploration-exploitation dilemma is central in
reinforcement learning (Sutton and Barto, 1998). In section 4.7, we introduced
Multi-DEX, an algorithm that effectively explores in a learned dynamics model
by solving a multi-objective optimization problem where both the cumulative
reward and the novelty of the state trajectories are being taken into account.
Nevertheless, we only tested Multi-DEX on fairly low-dimensional robots and
it will struggle to work in noisy settings as is (because NSGA-II is elitist).
Further investigation is needed to see how we can scale up to higher dimensional
systems, and replacing NSGA-II by multi-objective optimizers that perform
better in noisy settings (Eskandari and Geiger, 2009) might allows us to use
Multi-DEX with noisy systems.



Chapter 5

Combining Model Identification
and Gaussian Processes for Fast
Learning

The results and text of this chapter have been partially published in the
following articles.

Articles:

e Chatzilygeroudis, K., and Mouret, J.-B., 2018. Using Parameterized
Black-Box Priors to Scale Up Model-Based Policy Search for Robotics.
International Conference on Robotics and
Automation (Chatzilygeroudis and Mouret, 2018).

Other contributors:
e Jean-Baptiste Mouret (Thesis supervisor)
Author contributions:

e KC and JBM organized the study. KC wrote the code. KC performed
the experiments. KC and JBM analyzed the results and wrote the paper.

5.1 Introduction

In the previous chapter, we introduced Black-DROPS, a model-based policy
search algorithm for robotics that is purely black-box and can take advantage
of parallel computations. We saw that Black-DROPS achieves similar data-
efficiency to state-of-the-art approaches like PILCO (Deisenroth et al., 2015)
(e.g., less than 20s of interaction time to solve the cart-pole swing-up task),
while being faster on multi-core computers, easier to set up, and much less
limiting (i.e., it can use any policy and/or reward parameterization; it can even
learn the reward model).

106
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A - Real robot

Figure 5.1: A. The physical hexapod robot used in the experiments (48D state space and
18D action space). B. The simulated hexapod that is used as a prior model for our approach
in the experiments.

However, while Black-DROPS scales well with the number of cores, the main
challenge of model-based policy search is scaling up to complex robots: since the
algorithms model the transition dynamics, they require more data to acquire
an accurate model as the dimensionality of state/action space increases. In the
general case, the quantity of data to learn a good approximation of a surrogate
model scales exponentially with the dimensionality of the learned function (this
is the curse of dimensionality, see (Bellman, 1957)). As a consequence, the data-
efficiency of model-based approaches greatly suffers from the increase of the
dimensionality of the model. In practice, model-based policy search algorithms
can currently be employed only with simple systems up to 10-15D state and
action space combined (e.g., double cart-pole or a simple manipulator).

One way of tackling the problem raised by the “curse of dimensionality”
is to use prior information about the system that is modeled; for instance,
dynamic simulators of the robot can be effective priors and are often available.
The ideal model-based policy search algorithm with priors for robotics should,
therefore:

e scale to high dimensional and complex robots (e.g., walking or soft robots);
e take advantage of multi-core architectures to speed-up computation times;

e perform the search in the full policy space (i.e., the more real trials, the
better expected reward);



CHAPTER 5. COMBINING MODEL IDENTIFICATION AND GAUSSIAN
PROCESSES FOR FAST LEARNING 108

e make as few assumptions as possible about the type of robot and the prior
information (i.e., require no specific structure or differentiable models);

e be able to select among several prior models or to tune the prior model.

A few algorithms leverage prior information to speed-up learning on the real
system (Cutler and How, 2015; Lee et al., 2017; Saveriano et al., 2017; Bischoff
et al., 2014; Cully et al., 2015; Marco et al., 2017), but none of them fulfills all
of the above properties. In this chapter, we propose a novel, purely black-box,
flexible and data-efficient model-based policy search algorithm that combines
ideas from the Black-DROPS algorithm, from simulation-based priors, and from
recent model learning algorithms (Nguyen-Tuong and Peters, 2010; Camoriano
et al., 2016) in order to get closer to the ideal algorithm. We will show that
our approach is capable of learning policies in about 30 seconds to control a
damaged physical hexapod robot (48D state space, 18D action space). We will,
also, extensively evaluate our approach in a simulated pendubot experiment and
show that it outperforms state-of-the-art model-based policy search algorithms
without (PILCO (Deisenroth et al.; 2015), Black-DROPS) and with priors
(PILCO with priors (Cutler and How, 2015)), as well as prior-based Bayesian
optimization (IT&E (Cully et al., 2015)).

5.2 Problem Formulation

Here, we adapt the generic problem formulation of Section 2.2 to our specific
case. We consider dynamical systems of the form:

X1 = x + F(a,uy) +w (5.1)

with continuous-valued states © € R¥ and controls w € RY, i.i.d. Gaussian
system noise w, and unknown transition dynamics F. We assume that we
have an initial guess of the dynamics, the function M (x;, u,), that may not be
accurate either because we do not have a precise model of our system (i.e., what
is called the “reality-gap” (Mouret and Chatzilygeroudis, 2017)) or because
the robot is damaged in an unforeseen way (e.g., a blocked joint or faulty
motor/encoder) (Cully et al., 2015; Chatzilygeroudis et al., 2018a).

Contrary to previous works (Lee et al., 2017; Nguyen-Tuong and Peters,
2010; Camoriano et al., 2016), we assume no structure or specific properties
of our initial dynamics model M (i.e., we treat it as a black-box function),
other than it has some tunable parameters, ¢,;, which change its behavior.
Examples of these parameters can be some optimization parameters (e.g., type
of optimizer) of a dynamic simulator involving contacts and collisions or some
physical parameters of the robot (e.g., masses of the bodies). Finally, we add
a non-parametric model, f (with associated hyper-parameters ¢ ), to model
whatever is not possible to capture with M:

Tyl = oy + M(Sct, Uy, ¢M) + f(mt, Uy, ¢K) +w (5-2)
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Our objective is to find a deterministic policy 7, u = 7(x|@) that maximizes
the expected long-term reward when following policy 7 for T' time steps:

> r(a) 0] (5.3)

J(0) =E

t=1

where r(x;) is the immediate reward of being in state @; and 7 is a function
parameterized by @ € R®.

In model-based policy search with priors, we follow the generic policy
search algorithm (as defined in Algo. 1) and implement COLLECTSTRATEGY,
LEARNSTRATEGY and UPDATESTRATEGY as in Black-DROPS (see Algo. 12).
INITSTRATEGY is implemented differently: the initial parameters 6, are found
by optimizing the prior model; this implies that there is no prior information
on the policy parameters.

In more detail, we begin by optimizing the policy on the prior model and
applying it on the real system to gather the initial data. Afterwards, a loop is
iterated where we first learn a model using the prior model and the collected
data and then optimize the policy given this newly learned model. Finally,
the policy is applied on the real system, more data is collected and the loop
re-iterates until the task is solved.

5.3 Approach

5.3.1 Gaussian processes with the simulator as the
mean function

We would like to have a model F' that approximates as accurately as possible
the unknown dynamics F' of our system given some initial guess, M. As
in the previous chapter, we rely on Gaussian processes (GPs) to do so as
they have been successfully used in many model-based reinforcement learning
approaches (Deisenroth et al., 2015; Chatzilygeroudis et al., 2017; Engel et al.,
2005; Nguyen-Tuong and Peters, 2011; Deisenroth et al., 2013; Chatzilygeroudis
et al., 2018a; Polydoros and Nalpantidis, 2017).

Similarly to Black-DROPS and PILCO, as inputs we use tuples made of
the state vector x; and the action vector u,, that is, &, = (x;, u;) € RETY: as
training targets, we use the difference between the current state vector and the
next one: Ay, = x4 — x; € RP. We use E independent GPs to model each
dimension of the difference vector Ag,. Assuming Dy, = {F (&), ..., F(&,)}
is a set of observations and M (&) being the simulator function (i.e., our initial
guess of the dynamics — tunable or not; we drop the ¢,; parameters here for
brevity), we can query the GP at a new input point as per Eq. (2.48)-(2.49).

This model learning procedure has been used in several articles (Ko et al.,
2007; Nguyen-Tuong and Peters, 2010, 2011) (see also Sec. 2.7.2) and in
particular to learn the cumulative reward model for a BO procedure highlighted
in the IT&E approach (Cully et al., 2015). GP-ILQG (Lee et al., 2017) and
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PI-REM (Saveriano et al., 2017) formulate a similar model learning procedure
for optimal control (under model uncertainty) and policy search respectively.
GP-ILQG additionally assumes that the prior model M is differentiable, which
is not always true and might be too slow to perform via finite differences (e.g.,
when using black-box simulators for M). PILCO with priors (Cutler and How,
2015) utilizes a similar scheme but assumes that the prior model M is a GP
learned from simulation data that is gathered from running PILCO on the
prior system.

We use the exponential kernel with automatic relevance determination (Ras-
mussen and Williams, 2006) as defined in Eq. (2.23) (¢x are the kernel hyper-
parameters). When searching for the best kernel hyper-parameters through
Maximum Likelihood Estimation (MLE) for a GP with a non-tunable mean
function M, we seek to maximize (Rasmussen and Williams, 2006):

p(Dl:n|j1:na ¢K> =

m”%(%n—wm»%1<Dl:n—M@1:n>> (5.4)
™

The gradients of this likelihood function can be analytically computed, which
makes it possible to use any gradient based optimizer. Since we have F
independent GPs, we have E independent optimizations. We use the limbo
C++11 library for GP regression (Cully et al., 2018).

5.3.2 Mean functions with tunable parameters

We would like to use a mean function M (&, ¢y;), where each vector ¢y, € R™™
corresponds to a different prior model of our system (e.g., different lengths
of links). Searching for the ¢); that best matches the observations can be
seen as a model identification procedure, which could be solved via minimizing
the mean squared error; nevertheless, the GP framework allows us to jointly
optimize for the kernel hyper-parameters and the mean parameters, which allows
the modeling procedure to balance between non-parametric and parametric
modeling. We can easily extend Eq. (5.4) to include parameterized mean
functions:

p(DI:n|a~:1:n) d)K; ¢M) -
1

_%(Dl:n_M(il:n7¢M))TK71(Dltn_M(iltnad)I\J)) (55)
(2m)*| K|

e

This time, even though we assumed that we have E independent GPs (one for
each output dimension), all of them need to share the same mean parameters
¢ (contrary to the kernel parameters, which are typically different for each
dimension), because the model of the robot should be consistent in all of the
output dimensions. Thus, we have to jointly optimize for the mean parameters
and the kernel hyper-parameters of all the GPs. Since most dynamic simulators
are not differentiable (or too slow to differentiate by finite differences), we
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Algorithm 13 GP-MI Learning process

1: procedure GP-MI(D,)
2: Optimize ¢}, according to EVALUATEMODEL(¢,;, D;;) using a
gradient-free local optimizer

3: return ¢;,

4: end procedure

5: procedure EVALUATEMODEL(¢y;, D1.)

6: Initialize £ GPs f1,..., fg as fi(&) ~ N(M;(Z, pm), k:i(Z, &) > M
queries M and returns the i-th element of the return vector, k; is the kernel function of the
i-th GP

T for i from 1 to £ do > This can also be done in parallel

Optimize the kernel hyper-parameters, ¢, of f; given D¢, assuming
¢M fixed > Di:t is the 7-th column of Dq.¢

9: hkz = p<D§t|5’;1t7 ¢1K’ ¢M) > Eq (55)

10: end for
11: return Zf:l lik; > Sum of the independent likelihoods

12: end procedure

cannot resort to gradient-based optimization to optimize Eq. (5.5) jointly for all
the GPs. A black-box optimizer like CMA-ES (Hansen and Ostermeier, 2001)
could be employed instead, but this optimization was too slow to converge in
our preliminary experiments.

To combine the benefits of both gradient-based and gradient-free optimiza-
tion, we use gradient-based optimization for the kernel hyper-parameters (since
we know the analytical gradients) and black-box optimization for the mean
parameters. Conceptually, we would like to optimize for the mean parameters,
®nr, given the optimal kernel hyper-parameters for each of them. Since we
do not know them before-hand, we use two nested optimization loops: (a)
an outer loop where a gradient-free local optimizer searches for the best ¢,
parameters (we use a variant of the Subplex algorithm (Rowan, 1990) provided
by NLOpt (Johnson Steven) for continuous spaces and exhaustive search for
discrete ones), and (b) an inner optimization loop where given a mean pa-
rameter vector ¢, a gradient-based optimizer searches for the best kernel
hyper-parameters (each GP is independently optimized since ¢, is fixed in
the inner loop) and returns a score that corresponds to ¢y, for the optimal ¢
(Algo. 13).

One natural way of combining the likelihoods of the independent GPs to form
the objective function of the outer loop is to take the product, which would be
equivalent to taking the joint probability of the likelihoods of the independent
GPs (since the likelihood is a probability density function). However, we
observed that taking the sum or the harmonic mean of the likelihoods instead
yielded more robust results. This comes from the fact that the product can be
dominated by a few terms only and thus if some parameters explain one output
dimension perfectly and all the others not as well it would still be chosen. In
addition, in practice we observed that taking the sum of the likelihoods proved
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to be numerically more stable than the harmonic mean.

Our model learning approach, which we call GP-MI (Gaussian Process
Model Identification), that combines non-parametric model learning and para-
metric model identification is related to the approach in (Nguyen-Tuong and
Peters, 2010), but there are some key differences between them. Firstly, the
model learning procedure in (Nguyen-Tuong and Peters, 2010) depends on
the manipulator equation and cannot easily be used with robots that do not
directly comply to the equation (one example would be the hexapod robot
in our experiments or a soft robot with complex dynamics), whereas GP-MI
imposes no structure on the prior model, other than providing some tunable
parameters (continuous or discrete). Furthermore, the approach in (Nguyen-
Tuong and Peters, 2010) is tied to inverse dynamics models and cannot be
used with forward models in the general case (necessary for long-term forward
predictions); on the contrary, GP-MI can be used with inverse or forward
dynamics models and in general with any black-box tunable prior model.

5.3.3 Policy Search with the Black-DROPS algorithm

We use the Black-DROPS (see the previous chapter) algorithm for policy search
because it allows us to use the type of priors discussed in Section 5.3.2 and
to leverage specific policy parameterizations that are suitable for different
cases (e.g., we use a neural network policy for the pendubot task and an
open-loop periodic policy for the hexapod). We assume no prior information
on the policy parameters and we begin by optimizing the policy on the prior
model. Moreover, we took advantage of multi-core architectures to speed-up
our experiments. Contrary to Black-DROPS, PILCO (Deisenroth et al.; 2015)
cannot take advantage of multiple cores! and the need for deriving all the
gradients for a different policy /reward makes it difficult (or even impossible)
to try new ideas/policies.

PI-REM (Saveriano et al., 2017) is close to our approach as it leverages
priors to learn the residual model and then performs policy search on the
model. However, PI-REM assumes that the prior information is fixed and
cannot be tuned, whereas our approach has the additional flexibility of being
able to change the behavior of the prior. In addition, PI-REM utilizes the
policy search procedure of PILCO that can be limiting in many cases as already
discussed. Nevertheless, as Black-DROPS and PILCO have been shown to
perform similarly when PILCO’s limitations are not present (Chatzilygeroudis
et al., 2017), we include in our experiments a variant of our approach that
resembles PI-REM (Black-DROPS with fixed priors).

'For reference, each run of PILCO with priors (26 episodes + model learning) in the
pendubot task took around 70 hours on a modern computer with 16 cores, whereas each run
of Black-DROPS with priors and Black-DROPS with GP-MI took around 15 hours and 24
hours respectively.
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Variabl Actual Tunable &  Tunable Tunable & Partially
anable P | Useful Prior Prior Misleading Prior Tunable Prior
my 0.5 0'65 0.5 0.5 0'65
(30% incr.) (30% incr.)
0.75 0.35
M2 0.5 0-5 (50% incr.) 0-5 (30% decr.)
Iy 0.5 0.5 0.5 0.5 0.5
0.4 0.25
e 0.5 (20% decr.) 0-5 (50% decr.) 0.5
b 0.1 0.1 0.1 0.1 0.
non-tunable (100% decr.)
b 0.1 0.1 0.1 0.1 0.
non-tunable (100% decr.)

Table 5.1: Actual system and priors for the pendubot task.

5.4 Experimental Results

5.4.1 Pendubot swing-up task

We first evaluate our approach in simulation with
the pendubot swing-up task. The pendubot is a
two-link under-actuated robotic arm (with lenghts
l1, ls and masses my, msy) and was introduced
by (Spong and Block, 1995) (Fig. 5.2). The inner
joint (attached to the ground) exerts a torque
lu] < 3.5, but the outer joint cannot (both of
the joints are subject to some friction with coef-
ficients by, bg). The system has four continuous
state variables: two joint angles and two joint an-
gular velocities. The angles of the joints, 6; and
05, are measured anti-clockwise from the upright Figure 5.2: The pendubot sys-
position. The pendubot starts hanging down and tem

the goal is to find a policy such that the pendubot

swings up and then balances in the upright position. Each episode lasts 2.5s
and the control rate is 20Hz. We use a distance based reward function as
in (Chatzilygeroudis et al., 2017).

We chose this task because it is a fairly difficult problem and forces slower
convergence on model-based techniques without priors, but not too hard (i.e.,
it can be solved without priors in reasonable interaction time); a fact that
allowed us to make a rather extensive evaluation with meaningful comparisons.
More precisely, we investigate 4 different prior models, we compare 7 different
algorithms, and report 30 replicates of each combination.

We assume that we have 4 priors available; we tried to capture easy and
difficult cases and cases where all the altered parameters can be tuned or not
(see Table 5.1):
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Figure 5.3: Results for the pendubot task (30 replicates of each scenario) — Tunable &
Useful and Tunable priors. The lines are median values and the shaded regions the 25" and
75" percentiles. See Table 5.1 for the description of the priors. Black-DROPS with GP-MI
always solves the task and achieves high rewards at least as fast as all the other approaches
in all the cases that we considered. Black-DROPS with MI achieves good rewards whenever
the parameters it can tune are the ones that are wrong (A,B) and bad rewards otherwise
(Fig. 5.4D). Black-DROPS with priors performs very well whenever the prior model is not
too far away from the real one (A,B) and not so well whenever the prior is misleading
(Fig. 5.4C). Black-DROPS with priors and MI have very similar performance in A and as
such are not easily distinguishable. IT&E and PILCO with priors are not able to reliably
solve the task across different prior models.

Tunable & Useful: a fully tunable prior that is very close to the actual
one;

Tunable: a fully tunable prior that is not very close to the actual;

Tunable & Misleading: a prior that can be fully tuned, but is very
far from the actual;

Partially tunable: a prior that cannot be fully tuned, and not very
close to the actual.

We compare 7 algorithms:

1. Black-DROPS (see Chapter 4);

2. Black-DROPS with fixed priors, which is close to PI-REM (Saveriano
et al., 2017) and GP-ILQG (Lee et al., 2017)%;
2The algorithm in this specific form is first formulated in this paper (i.e., the Black-

DROPS policy search procedure with a prior model), but, as discussed above, it is close in
spirit with GP-ILQG (Lee et al., 2017) and PI-REM (Saveriano et al., 2017). Therefore, we
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3. Black-DROPS with GP-MI (our approach);

4. Black-DROPS with MI (Black-DROPS where model learning is replaced
by model identification — via mean squared error);

5. PILCO (Deisenroth et al., 2015);
6. PILCO with priors (Cutler and How, 2015);
7. IT&E (Cully et al., 2015).

For Black-DROPS with GP-MI and the MI variant, we additionally assume
that the parameters mq, mso, [ and [y can be tuned, but the parameters b,
and b, are fixed and cannot be changed. Since the adaptation part of IT&E
is a deterministic algorithm (given the same prior) and our system has no
uncertainty, for each prior we generated 30 archives with different random seeds
and then ran the adaptation part of IT&E once for each archive. We used 3
equally spread in time end-effector positions as the behavior descriptor for the
archive generation with MAP-Elites. For all the Black-DROPS variants and
for IT&E we used a neural network policy with one hidden layer (10 hidden
neurons) and the hyperbolic tangent as the activation function.

Similarly to IT&E, since PILCO with priors is a deterministic algorithm
given the same prior, for each prior we ran PILCO 30 times with different
random seeds on the prior model (for 40 episodes in order for PILCO to
converge to a good policy and model) and then ran PILCO with priors on
the actual system once for each different model. We used priors both in
the policy and the dynamics model when learning in the actual system (as
advised in (Cutler and How, 2015)). We also used a GP policy with 200
pseudo-observations (Deisenroth et al., 2015)°.

Black-DROPS with GP-MI always solves the task and achieves high rewards
at least as fast as all the other approaches in the cases that we considered
(Fig. 5.3,5.4). Black-DROPS with MI performs very well when the parameters
it can tune are the ones that are wrong (Fig. 5.3A,B and Fig. 5.4C), and badly
otherwise (Fig. 5.4D — i.e., no parameters of the prior model can explain the
data). Black-DROPS with fixed priors performs very well whenever the prior
model is not far away from the real one (Fig. 5.3A,B) and not so well whenever
the prior is misleading (Fig. 5.4C). Both Black-DROPS and PILCO cannot
solve the task in less than 65s of interaction time, but Black-DROPS shows a
faster learning curve (Fig. 5.3).

Interestingly, PILCO with priors is not able to always achieve better results
than Black-DROPS and is always worse than Black-DROPS with fixed priors.
This can be explained by the fact that PILCO without priors learns slower
than Black-DROPS and is a more local search algorithm and as such needs
more interaction time to achieve good results. On the contrary, Black-DROPS

assume that the performance of Black-DROPS with priors is representative of what could be
achieved with PI-REM and GP-ILQG, although Black-DROPS with priors should be more
flexible to use (Chapter 4).

3These are the parameters that come with the original code of PILCO. We used the code
from: https://bitbucket.org/markjcutler /gaussian-process.
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Figure 5.4: Results for the pendubot task (30 replicates of each scenario) — Tunable &
Misleading and Partially tunable priors. See Fig. 5.3 for legend and description.

uses a modified version of CMA-ES that can more easily escape local optima.
Moreover, the initial prior model for PILCO with priors is an approximated
model, whereas Black-DROPS with priors uses the actual prior model to begin
with. Lastly, the GP policy, that PILCO is mainly used with*, creates really
high dimensional policy spaces compared to the simple neural network policy
that Black-DROPS is using (i.e., 1400 vs 81 parameters) and as such causes
the policy search to converge slower.

IT&E is not able to reliably solve the task and achieve high rewards. This
is because IT&E assumes that (a) the system is redundant enough so that the
task can be solved in many different ways and (b) there is a policy/controller
in the pre-computed archive that can solve the task (i.e., IT&E cannot search
outside of this archive) (Cully et al., 2015). Obviously, these assumptions
are violated in the pendubot scenario: (a) the system is underactuated and
thus does not have the required redundancy, and (b) the system is inherently
unstable and as such precise policy parameters are needed (it is highly unlikely
that one of them exists in the pre-computed archive).

5.4.2 Physical hexapod locomotion

We also evaluate our approach on the hexapod locomotion task as introduced
in the IT&E paper (Cully et al., 2015) with a physical robot (Fig. 5.1A and
Fig. 5.5). This scenario is where IT&E excels and achieves remarkable recovery
capabilities (Cully et al., 2015). We assume that a simulator of the intact robot

480 far, PILCO can only be used with linear or GP policy types (Deisenroth et al., 2015).
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Figure 5.5: Walking gait on a damaged hexapod with Black-DROPS with GP-MI after
less than 30 seconds of interaction time. The hexapod is able to walk in a straight line again
thanks to our approach.

is available (Fig. 5.1B)”; for GP-MI we also assume that we can alter this
simulator by removing 1 leg of the hexapod (i.e., there are 7 discrete different
parameterizations). This simulator is not accurate as we assume perfect velocity
actuators and infinite torque. Each leg has 3 DOF leading to a total of 18
DOF.

The state of the robot consists of 18 joint angles, 18 joint velocities, a 6D
Center Of Mass (COM) pose (position and orientation) and 6D COM velocities.
The policy is an open-loop controller with 36 parameters that outputs 18D
joint angles every 0.1s and is similar to the one used in Chapter 3 and in (Cully
et al., 2015). Each episode lasts 4s and the robot is tracked with a motion
capture system.

The task is to find a policy to walk forward as fast as possible (Fig. 5.5). Due
to the complexity of the problem®, we only compare 2 algorithms (IT&E and
our approach) on 2 different conditions: (a) crossing the reality-gap problem;
in this case our approach cannot mostly rely on the identification part and the
importance of the GP modeling will be highlighted, and (b) one rear leg is
removed; the back leg removals are especially difficult as most effective gaits of
the intact robot rely on them.

The results show that Black-DROPS with GP-MI is able to learn highly
effective walking policies on the physical hexapod robot (Fig. 5.6). In particular,
using the dynamics simulator as prior information Black-DROPS with GP-MI is
able to achieve better (and with less variance) walking speeds than IT&E (Cully
et al., 2015) on the intact physical hexapod (Fig. 5.6A). Moreover, in the rear-
leg removal damage case Black-DROPS with GP-MI allows the damaged robot
to walk effectively after only 16 to 30 seconds of interaction time and finds
higher-performing policies than IT&E (0.21m/s vs 0.15m/s in the 8 episode,
Fig. 5.6B).

SWe use the DART simulator (Lee et al., 2018).

SPILCO and Black-DROPS could not find any solution in preliminary simulation ex-
periments even after several minutes of interaction time and Black-DROPS with priors was
worse than Black-DROPS with GP-MI.
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Figure 5.6: Results for the physical hexapod locomotion task (5 replicates of each scenario).
The lines are median values and the shaded regions the 25" and 75" percentiles. A.
Improving a policy for the intact robot (crossing the reality gap): Black-DROPS with GP-MI
finds a highly-effective policy (about 0.22m/s) in less than 30 seconds of interaction time,
whereas IT&E is not able to substantially improve the initial policy. B. Rear-leg removal
damage case: Black-DROPS with GP-MI allows the damaged robot to walk effectively after
only 16 to 30 seconds of interaction time and finds higher-performing policies than IT&E
(0.21m/s vs 0.15m/s in the 8% episode).

Overall, Black-DROPS with GP-MI was able to successfully learn working
policies even though the dimensionality of the state and the action space of the
hexapod robot is 48D and 18D respectively (see Fig. 5.5 for an example). In
addition, in the rear leg damage case, Black-DROPS always tried safer policies
than IT&E that too often executed policies that would cause the robot to fall
over. A video of our algorithm running on the damaged hexapod is available
at https://youtu.be/HFkZkhGGzTo.

5.5 Conclusion and Discussion

Black-DROPS with GP-MI is one of the first model-based policy search algo-
rithms that can efficiently learn with high-dimensional physical robots. It was
able to learn walking policies for a physical hexapod (48D state and 18D action
space) in less than 1 minute of interaction time, without any prior on the policy
parameters (that is, it learns a policy from scratch). The black-box nature
of our approach along with the extra flexibility of tuning the black-box prior
model opens a new direction of experimentation as changing priors, robots or
tasks requires minimum effort.

The main issue of our approach is the quadratic computational complexity of
the prediction of the GPs, which makes it practical only for low interaction times.


https://youtu.be/HFkZkhGGzTo
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For example, Black-DROPS with GP-MI required 24 hours on a modern 16-core
computer for 26 episodes of the pendubot task. Possible solutions include using
scalable GPs (Park and Apley, 2017; Deisenroth and Ng, 2015) (Liu et al., 2018)
or to stop using GPs and make use of recent advances in neural networks with
uncertain predictions (Gal et al., 2016; Gal and Ghahramani, 2016; Higuera
et al., 2018; Chua et al., 2018).

The way we compute the long-term predictions (i.e., by chaining model
predictions) requires that predicted states (the output of the GPs) are fed
back to the prior simulator. This can cause the simulator to crash because
there is no guarantee that the predicted state, that possibly makes sense in
the real world, will make sense in the prior model; especially when the two
models (prior and real) differ a lot and when there are obstacles and collisions
involved. This also holds for most other prior-based methods (Lee et al., 2017;
Saveriano et al., 2017; Cutler and How, 2015), but it is not easily seen in simple
and unbounded systems. On the contrary, we observed this phenomenon a few
times in our hexapod experiments. Using the prior simulator just as a reference
and not mixing prior and real data is a direction of future work.

Finally, Black-DROPS with GP-MI brings closer trial-and-error and diagnosis-
based approaches for robot damage recovery as it successfully combines: (a)
diagnosis (Isermann, 2006) (i.e., identifying the likeliest robot model from
data), (b) prior knowledge of possible damages/different conditions that a
robot may face and (c) trial-and-error learning.



Chapter 6

Collaborations: Bayesian
Optimization for Micro-Data
Reinforcement Learning

The results and text of this chapter have been partially published in the
following articles.

Articles:

e Papaspyros, V., Chatzilygeroudis, K., Vassiliades, V. and Mouret,
J.-B., 2016. Safety-Aware Robot Damage Recovery Using Constrained
Bayesian Optimization and Simulated Priors. Workshop “Bayesian
Optimization: Black-box Optimization and Beyond”,

NIPS (Papaspyros et al., 2016).

e Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.-B., Osborne,
M.A. and Whiteson, S., 2018. Alternating Optimisation and Quadrature
for Robust Control. AAAI Conference on Artificial
Intelligence (Paul et al., 2018).

e Paul, S., Chatzilygeroudis, K., Ciosek, K., Mouret, J.-B., Osborne,
M.A. and Whiteson, S., 2018. Robust Reinforcement Learning with
Bayesian Optimisation and Quadrature, Under review in Bayesian
Optimization JMLR Special Issue.

e Pautrat, R., Chatzilygeroudis, K. and Mouret, J.-B., 2018. Bayesian
Optimization with Automatic Prior Selection for Data-Efficient Direct
Policy Search. International Conference on Robotics and
Automation (Pautrat et al., 2018).

Other contributors:

e Vassilis Vassiliades (Post-doc)

e Vaios Papaspyros (PhD student at EPFL — he was an intern)
e Rémi Pautrat (Master student)

e Supratik Paul (PhD student at Oxford)

e Kamil Ciosek (Post-doc at Oxford)

120



CHAPTER 6. COLLABORATIONS: BAYESIAN OPTIMIZATION FOR
MICRO-DATA REINFORCEMENT LEARNING 121

e Shimon Whiteson (Associate Prof. at Oxford)
e Michael A. Osborne (Associate Prof. at Oxford)

e Jean-Baptiste Mouret (Thesis supervisor)
Author contributions:

e For the safety-aware paper: VP, KC and JBM organized the study. VP
performed the experiments. VP and KC wrote the code. KC, VP, VV
and JBM analyzed the results and wrote the paper.

e For the AAAI paper: SP and SW organized the study. SP performed the
simulated experiments. KC performed the physical robot experiments. SP
wrote the code. KC wrote the code for the physical robot experiments. SP,
KC, KaCi, JBM, MO and SW analyzed the results and wrote the paper.

e For the JMLR paper: SP, KC and SW organized the study. SP
performed the simulated experiments. KC performed the physical robot
experiments. SP wrote the code. KC wrote the code for the physical robot
experiments. SP, KC, KaCi, JBM, MO and SW analyzed the results and
wrote the paper.

e For the ICRA paper: RP, KC and JBM organized the study. RP and KC
wrote the code and performed the experiments. KC, RP and JBM
analyzed the results and wrote the paper.

6.1 Introduction

In the previous chapters, we saw how learning models of the dynamics or
pre-computing priors can speed-up the learning process on the physical robot.
Model-based policy search approaches require very low interaction times, but do
not scale well with the dimensionality of the state and action space. Although
in chapter 5 we saw how we could use parametrized simulators to mitigate
this issue, our proposed approach still required considerable computation time.
Pre-computing priors, on the other hand, requires expert and task-specific
knowledge in order to define the type of the prior.

As we discussed in chapter 2, an alternative way to perform data-efficient
policy is to use Bayesian optimization as a direct policy search algorithm.
Therefore, here we will focus on Bayesian optimization and how safety con-
straints, robustness and multiple prior information sources can be incorporated
in order to further reduce the interaction time for learning with physical robots.
It is important to note that I was not the leading author in any of these works
and I am grateful for the excellent collaborators that I had the chance to have.
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6.2 Safety-aware Intelligent Trial-and-Error
for Robot Damage Recovery

6.2.1 Introduction

As discussed in chapter 3, micro-data RL is an appealing approach to solve
the robot damage recovery challenge. We already saw that one of the most
promising approaches for data-efficient robot damage recovery is the recently
introduced Intelligent Trial-and-Error algorithm (IT&E) (Cully et al., 2015).
It combines two ideas: (1) a Bayesian optimization (BO) algorithm (Shahriari
et al., 2016) that optimizes a reward function, because it is a generic, data-
efficient policy search algorithm (Calandra et al., 2015), and (2) a behavior-
performance map generated before the mission with a simulation of the intact
robot, which acts both as a prior for the Bayesian optimization algorithm and
as a dimension reduction algorithm. This combination allowed a damaged
6-legged robot to find a new gait in about a dozen of trials (less than 2 minutes),
and a robotic arm to overcome several blocked joints in a few minutes (Cully
et al., 2015).

Unfortunately, trial-and-error approaches, like IT&E, are likely to damage
the robot even more because they will often try behaviors that are too extreme
for the mechanical design. More generally, learning algorithms will push robots
to their limits because they focus solely on maximizing the reward intake'. This
issue is especially concerning for expensive prototypes like the iCub robot (Nori
et al., 2015; Tsagarakis et al., 2007): these robots are too expensive (around
250k euros for the iCub) and too fragile to try risky behaviors.

While recent methods, like SafeOPT (Berkenkamp et al., 2016), tackle this
issue successfully, they require an initial safe set of parameters, that is hard to
estimate in an unknown damage setting. In this work, we extend the IT&E
algorithm (Cully et al., 2015) by adding safety constraints (Gardner et al., 2014)
and automatically computing priors over the safety of controller parameters, so
that the probability of breaking the robot during the learning process is as low
as possible. We evaluate our algorithm using a simulated damaged iCub robot.

6.2.2 Safety-aware Intelligent Trial & Error Algorithm

The first step of IT&E is to create a low-dimensional behavior-performance
map with a simulation of the intact robot. This step is achieved with an
evolutionary algorithm called MAP-Elites (Mouret and Clune, 2015), which,
instead of searching for a single, best solution, like standard optimization
algorithms, searches for the highest-performing individual for each point in a
user-defined space. This user-defined space is often called the behavior space,
because the dimensions of variation (behavior descriptors) usually measure
behavioral characteristics. For example, by defining one dimension for each

nterestingly, learning algorithms also push robot simulators to their limits as they often
exploit simulation inaccuracies.
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Figure 6.1: Overview of the safety-aware IT&E algorithm. The algorithm first creates a
behavior-performance map through MAP-Elites in simulation. This is fed as prior knowledge
to a constrained BO procedure. The best candidate behavior is executed on the damaged
robot while measuring the contact point forces and crawling speed. Finally, the Gaussian
process models are updated.

leg’s fraction of time spent on the ground, MAP-Elites produces a wide variety
of walking gaits for a hexapod robot (Cully et al., 2015).

To search for the best behavior on the damaged robot, IT&E alters the
classical BO scheme (Cully et al., 2015) by (1) searching a behavior in the
map, instead of searching the best policy parameters, and (2) modeling the
difference between the performance predicted by the map (M (-)) and the actual
performance, instead of directly modeling the performance function. Thus,
at each step of the adaptation algorithm, the BO procedure selects the most
promising behavior from the map, executes it on the damaged robot, observes
the performance, and updates its predictions accordingly. More precisely, the
performance function — a function of the policy parameters, f(0) — is modeled
as a Gaussian process (GP) with priors (see Eq. (2.28),(2.29)).

This approach leads to short adaptation times in several experiments with
damaged robots (Cully et al., 2015), but it has a serious limitation that prevents
it from being used with expensive robots: it lacks safety constraints, that is,
nothing prevents the robot from trying dangerous behaviors. Because we have
access to a simulator of the robot, one could think that the safety of a potential
behavior could be evaluated using the simulation; however, this is likely to
not be sufficient because high-performing controllers for the intact robot might
have considerably different behavior and often be harmful on the damaged
robot. More often than not, such behaviors are highly dependent on the robot’s
legs, wheels, etc., the failure of which would result in a radically different
outcome in the damaged case. IT&E having no prior knowledge about the
damage or any safety limitations, will most likely attempt more than a few of
these dangerous behaviors. These behaviors constitute a big risk for further
damaging fragile robots. To make matters worse, a damage recovery algorithm
would have to compensate for the reality gap (Koos et al., 2013b; Jakobi et al.,
1995) as well. In particular, even for intact robots, the behaviors contained in
the behavior-performance maps are not likely to be reproduced exactly on the
physical robot.

We address these issues by introducing a safety-aware IT&E algorithm
(sIT&E; see Fig. 6.1). sIT&E uses a constrained BO procedure (Gardner
et al., 2014) in which each user-defined safety constraint, ¢;(0), is modeled
as a separate GP. The next sample is selected by optimizing the Expected
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Constrained Improvement (ECI) acquisition function (Gardner et al., 2014)
(see also Section 2.6):

N
ECI(0) = EI(6) [ [ p(ci(8) > 0) (6.1)

i=1
where 0 is the candidate point, cz-(é),i € {1,--- N} are the N constraint

functions and EI(X) is the standard expected improvement (Gardner et al.,
2014).

The differences between sIT&E (see Alg.14) and IT&E are as follows: (1)
the behavior descriptor in MAP-Elites is augmented with extra dimensions for
each safety constraint, so that sIT&E will have a good estimate of the safe
regions (i.e., where all inequality safety constraints are fulfilled); for example,
these dimensions could be torque or IMU measurements that should not exceed
a specific threshold; (2) during the on-line adaptation step, sIT&E optimizes
for performance while also guiding the search through the safe regions.

Algorithm 14 Safety-aware Intelligent Trial-and-Error (sSIT&E)

procedure SIT&E
Before mission (intact robot in simulation):
Create Behavior-Performance Map via MAP-Elites storing safety info
while in mission do
if significant performance drop then
Adaptation Step (via M-CBO Algorithm)
end if
end while
end procedure
procedure MAP-BASED CONSTRAINED BAYESIAN OPTIMIZATION (M-
CBO)
VO € map :
p(£(8)16) = N(m(0), k(6,0))
p<cz(0)|0) = N(m02<9)7 kCi(07 0))7 XS {17 T ’N}
while stopping criteria not met do
0,1 = argmaxy ECI1(6|Dy.,, Cy.,)
{c1(60,11), ... ,en(Oni1), f(0n11)} = execute_behavior(6,,1)
Dy = {f(en—i—l)a Dl:n}
Crpi1 = {{c1(0n11), ... en(0n41)), Crn}
Update GPs for the objective function/safety constraints
end while
end procedure

6.2.3 Crawling humanoid robot experiments

To evaluate our algorithm, we use a simulated iCub robot (Nori et al., 2015;
Tsagarakis et al., 2007) performing a crawling task. Learning how to crawl could
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prove especially useful in humanoid robot damage recovery, where attempting
to walk again might constitute a big risk for further damages or be infeasible
altogether (e.g., traversing a short or tight tunnel). Furthermore, solving this
task serves as a stepping stone towards damage recovery for more advanced
tasks (e.g., walking).

To generate a diversity of behaviors with MAP-Elites, we augment an
initially 4D behavior descriptor, defined as the fraction of time each arm/leg
spent on the ground, with a safety dimension that encodes the sum of contact
point forces. sIT&E optimizes for crawling speed and is constrained by a safety
threshold for the sum of contact point forces. This threshold is determined
after conducting several preliminary experiments in order to understand the
correlation between the robot’s behavior and the contact point forces at high
crawling speeds. To optimize the acquisition function, we iterate over all the
points in the behavior-performance map (which contains approximately 1500
behaviors), and select a behavior that is estimated to be the most promising
above the safety threshold.

We compare 3 algorithms in terms of the best safe performance observed
and unsafe trials attempted: (1) IT&E maximizing crawling speed; (2) a multi-
objective (Deb, 2014) IT&E algorithm (MO-IT&E; based on the Expected
Hypervolume Improvement (Yang et al., 2015; Hupkens et al., 2015)), that
maximizes the crawling speed and minimizes the sum of contact point forces,
therefore, building a Pareto front from which the safest behavior can be chosen;
and (3) sIT&E maximizing crawling speed within the safe region as described
above. We test 4 damage conditions: (1) locked shoulder joint, (2) locked hip
joint, (3) locked shoulder joint & angled elbow, and (4) combination of 2 & 3.
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Figure 6.2: Comparison between IT&E, MO-IT&E and sIT&E. Each algorithm is ran
20 times for 4 different behavior-performance maps. We report the best safe performance
(i.e., the fastest crawling speed within the safe region observed during the learning process)
(upper row) and number of unsafe trials attempted (violating the constraints) (lower row).
Horizontal black lines represent medians.

To avoid depending on a single behavior-performance map, we use 4
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independently-generated maps and run each algorithm 20 times for 30 tri-
als. We use the squared exponential kernel with ¢ = 0.1 and a GP noise
value of 0.01. When using IT&E, the median number of dangerous trials is
approximately equal to 29 (out of 30) in all damage settings (Fig. 6.2, lower
row). For MO-IT&E, this number decreases, but it is still greater than 22. In
contrast, sSIT&E requires less than 10 unsafe trials for damages 1, 2, and 4,
and 14 for damage 3. Pairwise comparisons indicate that the results are highly
significant (p < 0.0001, Mann-Whitney U test). In terms of safe performance
(crawling speed in m/s), sSIT&E dominates over both IT&E and MO-IT&E in
all damage settings (Fig. 6.2, upper row), with the results being statistically
significant (p < 0.001) in all cases apart from damage 3.

All experiments were conducted using the limbo framework (Cully et al.,
2018). A supplementary video is available at https://youtu.be/8esrj-7WhsQ.

6.2.4 Conclusion

Our experiments show that the vanilla IT&E algorithm finds high-performing
behaviors in a few trials, but most of the behaviors tested, including the best,
final ones, are unsafe for the robot. Since the multi-objective approach searches
for a set of Pareto-optimal trade-offs, it can find safe and high-performing
behaviors; however, this approach still tests many unsafe behaviors during the
learning phase. By contrast, the sIT&E algorithm finds gaits that are both
safe and high-performing with only a handful of unsafe trials. Thanks to this
property, we are confident that sIT&E is less likely to damage the real iCub
than IT&E or BO. Overall, this work shows that safety is a critical component
for any robot learning algorithm and that constrained BO can provide a good
basis to design algorithms that are both data-efficient and safe.

6.3 Alternating Optimization and
Quadrature for Robust Control

6.3.1 Introduction

As it should already be apparent, a key consideration when applying RL to a
physical setting is the risk and expense of running trials. Another consideration
is the robustness of the learned policies. Since it is typically infeasible to
test a policy in all contexts, it is difficult to ensure it works as broadly as
intended. Fortunately, policies can often be tested in a simulator that exposes
key environment variables — state features that are unobserved and randomly
determined by the environment in a physical setting but are controllable in the
simulator. For example, the state of a hexapod’s leg can vary from being fully
operational to being broken off due to any damage taken while operating in its
environment. This section considers how to use environment variables to help
learn robust policies.


https://youtu.be/8esrj-7WhsQ
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Although running trials in a simulator is cheaper and safer than running
physical trials, the computational cost of each simulated trial can still be
quite high (especially when the simulator is of high precision). The challenge
then is to develop algorithms that are sample efficient, i.e., that minimize the
number of such trials. We have already seen that Bayesian optimization is a
sample-efficient approach that has been successfully applied to RL in multiple
domains ((Lizotte et al., 2007; Martinez-Cantin et al., 2007, 2009; Cully et al.,
2015; Calandra et al., 2015; Pautrat et al., 2018)).

A naive approach would be to randomly sample the environment variable in
each trial, so as to estimate expected performance. However, this approach (1)
often requires testing each policy in a prohibitively large number of scenarios,
and (2) is not robust to significant rare events (SREs), i.e., it fails any time
there are rare events that substantially affect expected performance. For
example, rare localization errors may mean that a robot is much nearer to an
obstacle than expected, increasing the risk of a collision. Since collisions are
so catastrophic, avoiding them is key to maximizing expected performance,
even though the factors contributing to the collision occur only rarely. In such
cases, the naive approach will not see such rare events often enough to learn
an appropriate response.

Instead, we present our approach called alternating optimisation and quadra-
ture (ALOQ) (Paul et al., 2018) specifically aimed towards learning policies
that are robust to these rare events while being as sample efficient as possi-
ble. The main idea is to actively select the environment variables (instead of
sampling them) in a simulator. We use a Gaussian process (GP) (Rasmussen
and Williams, 2006) to model returns as a function of both the policy and the
environment variables and then, at each step, alternately use BO and Bayesian
quadrature (BQ) (O’Hagan, 1991; Rasmussen and Ghahramani, 2003) to select
a policy and environment setting, respectively, to evaluate.

A simulator is only an imperfect representation of reality and policies that
are exclusively learnt in simulation can exploit badly modelled aspects of reality
and end up performing significantly worse on the physical system. This poses
the challenge of bridging the reality gap ((Jakobi et al., 1995; Jakobi, 1997;
Koos et al., 2013b)), i.e., transferring policies from the simulator to the real
system without any significant downgrade in performance. In this section
we also present an extension to ALOQ), called transferable ALOQ (TALOQ),
that automatically trades off the cost and accuracy of running a trial on the
simulator against running it on the physical system.

We first apply ALOQ to a number of primarily simulated problems, where
the reality gap does not pose any significant challenge. Our results demon-
strate that ALOQ learns better and faster than multiple baselines. Next, we
demonstrate that TALOQ can use an imperfect simulator to learn policies that
bridge the reality gap, while requiring significantly fewer trials than if we were
to train with ALOQ solely on the robot.
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6.3.2 Problem Setting

Here, we adapt the generic problem formulation of Section 2.2 to our specific
case. We assume access to a computationally expensive simulator that takes as
input a policy mg € © and environment variable 9 € B and produces as output
the return f(0,9) € R, where both © and B belong to some compact sets in
R and R% respectively. We assume that this simulator is highly accurate
and poses little to no reality gap and thus policies learnt on this simulator
transfer well to the physical system.

We also assume access to p(19), the probability distribution over 9. p(9)
may be known a priori, or it may be a posterior distribution estimated from
whatever physical trials have been conducted. For example, this could be based
on the knowledge of some human expert, or as in the case of a mobile robot
it could be the robot’s belief about its distance from potential obstacles. Our
objective is to find the optimal policy parameters 8*:

T+ = argmax f(6) = argmax Eg[f(0,9)]. (6.2)
0 0

In Section 6.3.4, we present a method for a setting in which we assume that
the simulator is imperfect but still useful enough that running trials on it is
informative about the performance on the physical system. We assume that
during training ¥ can be controlled on the physical system, which is not very
restrictive in practice. For example, it is easy to run a policy on a mobile robot
and deduce from its trajectory whether it would have collided with an obstacle

without actually placing the obstacle on its path.
In this case, we define the return f = f(0,9,9), where 6 € {0,1} is an
indicator function that denotes whether the return is from a simulated trial or
from the physical system. Our objective is to find the optimal policy parameters

o*:

T = arggnax f(0) = arglonaXEg[f(O, 9,1)], (6.3)

where 0 = 1 since we want the policy that maximizes returns on the physical
system, not the simulator.

6.3.3 ALOQ

Naive method A simple approach is to apply BO directly on f(6) =
Ey[f(0,9)] and attempt to estimate mg+. Formally, this approach models
f as a GP with a zero mean function and a suitable covariance function k(0, ").
Since f is expensive to evaluate, at the [th BO iteration only one f(6;,;) with
9, ~ p(¥9) is evaluated in the simulator and f(8;) is approximated by this one
sample Monte Carlo estimate. This approach will almost surely fail since the
estimates of f(8) are going to be extremely noisy, especially in the presence of
SREs.

By contrast, our method ALOQ (see Algorithm 15) models f(6,9) as a
GP: f ~ GP(m, k), acknowledging both its inputs. Given a dataset D;., =
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{(60;,9;, f(0;,9;))}"_,, the main idea behind ALOQ is to use a BO acquisition
function to select 8,1 for evaluation and then use a BQ acquisition function
to select 9,1, conditioning on 8, .

Selecting 6,,,, requires maximizing a BO acquisition function (6.7) on f(8),
which requires estimating f(8), together with the uncertainty associated with
it. Fortunately BQ is well suited for this since it can use the GP to estimate
these quantities.

Once 0,1 is chosen, ALOQ selects 9,,.; by minimizing a BQ acquisition
function (6.8) quantifying the uncertainty about f(0,1). After (6,41, 9n41)
is selected, ALOQ evaluates it on the simulator and updates the GP with the
new datapoint (6,11, 11, f(@ni1,F,41)). Our estimate of 6* is thus:

~ —

0" = argznax]E[f(GﬂDl:nH]. (6.4)

Although the approach described so far actively selects 8 and ¥ through BO
and BQ), it is unlikely to perform well in practice. A key observation is that the
presence of SREs, which we seek to address with ALOQ), implies that the scale
of f varies considerably, e.g., returns in case of collision versus no collision. This
non-stationarity cannot be modelled with our stationary kernel. Therefore, we
must transform the inputs to ensure stationarity of f. In particular, we employ
beta warping, i.e., we transform the inputs using beta CDFs with parameters
(a, B) (Snoek et al., 2014). The CDF of the beta distribution on the support
0 <z < 1is given by:

u® (1 — )Pt
B(a,B)

where B(a, ) is the beta function. The beta CDF is particularly suitable
for our purpose as it can model a variety of warpings based on the settings
of only two parameters (o, 5). ALOQ transforms each dimension of 8 and
¥ independently and treats the corresponding («, ) as hyperparameters. In
the rest of this chapter, we assume that we are working with the transformed
inputs.

While the resulting algorithm should be able to cope with SREs, the 6" that
it returns at each iteration may still be poor, since our BQ evaluation of f()
leads to a noisy approximation of the true expected return. This is particularly
problematic in high dimensional settings. To address this, intensification
((Bartz-Beielstein et al., 2005; Hutter et al., 2009)), i.e., reevaluation of selected
policies in the simulator, is essential. Therefore, ALOQ performs two simulator
calls at each iteration. In the first evaluation, (6,,.1,9,.1) is selected via the
BO/BQ scheme described above. In the second stage, (6*,9*) is evaluated,
where 0% € 01.,+1 is selected using (6.4) and 19*|é* using the BQ acquisition
function (6.8).

In the rest of this section, we provide more details on how ALOQ computes
f(0), the acquisition functions it uses, and its convergence and complexity.

BetaCDF(z, «r, ) = / du, (6.5)
0
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Algorithm 15 ALOQ

1: Input A simulator that outputs f = f(6,1), initial dataset D;.,, the
maximum number of function evaluations L, and a GP prior. Comparison
of
forn=1+1,1+3,...,L—1do
Update the beta warping parameters and transform the inputs.
Update the GP to condition on the (transformed) dataset Dy.,
Use (6.6) to estimate p(@|D;.,_1)
Use the BO acquisition function (6.7) to select 8,, = argmaxy aaroq(0)
Use the BQ acquisition function (6.8) to select 1,,|6,,
Perform a simulator call with (0,,,,) to obtain f(6,,,) and update
D,.,_ to Dy,
9: Find 6* = argmaxy f(0;)|Ds., and 9*|6* using the BQ acquisition
function (6.8).
10: Perform a second simulator call with (6%, 9%) to obtain f(6*,9*) and
update D1, to Dy.,11
11: end for
12: Output 6" = argmaxy, f(0;) | Dy, i=1,2,...,L

Computing f(8) : For discrete ¥ with support {81,32,...,9n,}, the esti-
mate of the mean p and variance o2 for f(0) | Dy., is:

1
1 Ny Ng

o = - >N Cov[f(0,9:)| Dy, £(6,9;)| Dy, (6.6D)
9 =1 j=1

where f(60,19) is the prediction from the GP. For continuous 13, we apply Monte
Carlo quadrature. Although this requires sampling a large number of 9 and
evaluating the corresponding f(0,9) | D;.,, it is feasible since we evaluate
f(0,9) | Dy.,, not from the expensive simulator, but from the computationally
cheaper GP.

BO acquisition function for 8: A modified version of the UCB acquisition
function is a natural choice since using (6.6) we can compute it easily as

aaroq(0) = p(f(0)|Drn) + k0 (f(0)[Drn), (6.7)

and set 6,1 = argmaxg aaroq(0).

BQ acquisition function for ¥: BQ can be viewed as performing policy
evaluation in our approach, i.e., estimating the expected return of a given 6.
Since the presence of SREs leads to high variance in the returns associated with
any given policy, it is of critical importance that we minimize the uncertainty
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Algorithm 16 TALOQ

1: Input A simulator that outputs f = f(6,1), initial dataset D;.,, the
maximum number of function evaluations L, and a GP prior.
forn=101+1,1+3,..,L—1do
Update the beta warping parameters and transform the inputs.
Update the GP to condition on the (transformed) dataset Dj.,
Use (6.6) to estimate p(f|Dy.,_1)
Use the BO acquisition function (6.7) to select 6,, = argmaxy aaroq(0)
Compute ~ as per (6.9) and set d,, = 1 if ¥ > k, and §,, = 0 otherwise.
Use the BQ acquisition function (6.10) to select 9,,|6,,, 0,
Perform an evaluation with (6,,9,,d,) to obtain f(6,,9,,J,) and
update Dl:n—l to Dl:n
10: Find 6* = argmaxy f(60;|D1.,)
11: Compute ~ as per (6.9) and set §* =1 if v > k, and 0* = 0 otherwise.
12: Use the BQ acquisition function (6.10) to select 9*|(0*, 5*)
13: Perform a second evaluation with (b*, 9*,6%) to obtain f(6*,9*,6%) and
update Dl:n to Dl:n+1
14: end for
15: Output 6" = argmax,, f6)| Dy i=1,2,...,L

associated with our estimate of the expected return. We formalize this objective
through our BQ acquisition function for ¥: ALOQ selects 9,41 | 0,1 by
minimizing the posterior variance of f(60,.1), yielding:

Fpi1|On g1 = arg;nin V(f(0n+1)|D1:m 0,11,7). (6.8)

Properties of ALOQ Thanks to convergence guarantees for BO using
aycp (Srinivas et al., 2010), ALOQ converges if the BQ scheme on which it
relies also converges. Unfortunately, to the best of our knowledge, existing
convergence guarantees (Kanagawa et al., 2016; Briol et al., 2015) apply only
to BQ methods that do not actively select points, as (6.8) does. Of course,
we expect such active selection to only improve the rate of convergence of
our algorithms over non-active versions. However, our empirical results in
Section 6.3.5 show that in practice ALOQ efficiently optimizes policies in the
presence of SREs across a variety of tasks.

ALOQ’s computational complexity is dominated by an O(n?) matrix in-
version, where n is the sample size of the dataset D. This cubic scaling is
common to all BO methods involving GPs. The BQ integral estimation in each
iteration requires only GP predictions, which are O(n?).

6.3.4 TALOQ

We now consider the setting where there exists a reality gap between the
simulator and the physical system. In this case, at each iteration we face the
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additional choice to perform the evaluation on the simulator or on the physical
system, which is even more expensive. In this setting, we model the return
as a GP with three inputs (8,1, d), where § = 0 corresponds to the simulator
and § = 1 to the physical system. Observing the return of any (6,) in the
simulator gives us some information about the corresponding return on the
physical system. This is dependent on the lengthscale along the § dimension,
which is long if the reality gap is small and short if the gap is big.

In TALOQ (see Algorithm 16) we follow the same general method as ALOQ:
At iteration n, 8, is selected with the UCB acquisition function presented
in (6.7). Next, we select 9,,|6,,. We define the relative reduction in uncertainty:

_ V[f:(en>|D1;n_1] — argminﬁ V[f:(en>|D1;n_1, Gn, ’19, 5n = 0]
V[f(6,)|D1.n—1] — argming V[f(6,,)|D1.,—1, 0,9, 6, = 1]’

(6.9)

and set 0, = 0 if v > k, and ¢, = 1 otherwise. Here k € [0,1] is a hyper-
parameter that should be set based on the relative cost of running physical
trials against simulated trials — a large k£ encourages more physical evaluations,
and vice versa. Since physical trials are likely to be far more expensive than
simulated trials, experimentally we have observed that setting & between 0.002
to 0.01 can lead to high sample efficiency with respect to the physical system.
This formulation of v as a ratio of the relative reduction in variance ensures
that it is less problem dependent than a formulation with absolute reduction.

Finally, we select 14,,|(0,,, 0,,) using the BQ acquisition function given in (6.8)
with the slight modification that the conditioning set now includes §,,:

9,00, 0, = argmin V(£(60,,)|D1.,—1, 0,9, 0,). (6.10)
9

6.3.5 Experimental Results
6.3.5.1 ALOQ

We use a simulated robot arm control task and a hexapod locomotion task
to evaluate ALOQ and we compare to several baselines: 1) the naive method
described in Section 6.3.3; 2) the method of (Williams et al., 2000), which we
refer to as WSN; 3) the simple policy gradient method REINFORCE (Williams,
1992), and 4) the state-of-the-art policy gradient method trust region policy
optiisation (TRPO) (Schulman et al., 2015). To show the importance of each
component of ALOQ, we also perform experiments with ablated versions,
namely: 1) Random Quadrature ALOQ (RQ-ALOQ), in which 9 is sampled
randomly from p(¥) instead of being chosen actively; 2) unwarped ALOQ),
which does not perform beta warping of the inputs; and 3) one-step ALOQ,
which does not use intensification. All plotted results are the median of 20
independent runs.

Robotic Arm Simulator We evaluate ALOQ’s performance on a robot
control problem implemented in a kinematic simulator. The goal is to configure
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Figure 6.3: Performance and learned configurations on the robotic arm joint breakage task.

each of the three controllable joints of a robot arm such that the tip of the arm
gets as close as possible to a predefined target point.

In this setting, we assume that some settings of the first joint carry a 5%
probability of it breaking, which consequently incurs a large cost. Minimizing
cost thus entails getting as close to the target as possible, while minimizing
the probability of the joint breaking.

Results show that ALOQ performs better than all the baselines and the
ablations (Fig. 6.3a 6.3b 6.3c). In particular, the Naive baseline, WSN? TRPO
and REINFORCE seem to converge to a suboptimal policy since they have not
witnessed any SREs.

Hexapod Locomotion Task As robots move from fully controlled environ-
ments to more complex ones, they have to face the inevitable risk of getting
damaged. However, it may be expensive or even impossible to decommission
a robot whenever any damage condition prevents it from completing its task.
Hence, it is desirable to develop methods that enable robots to recover from
failure.

Intelligent trial and error (IT&E) (Cully et al., 2015) has been shown
to recover from various damage conditions and thereby prevent catastrophic
failure. Before deployment, IT&E uses the simulator to create an archive
of diverse and locally high performing policies for the intact robot that are
mapped to a lower dimensional behavior space. If the robot becomes damaged
after deployment, it uses BO to quickly find the policy in the archive that has
the highest performance on the damaged robot. However, it can only respond
after damage has occurred. Though it learns quickly, performance may still be
poor while learning during the initial trials after damage occurs. To mitigate
this effect, we propose to use ALOQ to learn in simulation the policy with
the highest expected performance across the possible damage conditions. By
deploying this policy, instead of the policy that is optimal for the intact robot,
we can minimize in expectation the negative effects of damage in the period
before IT&E has learned to recover.

2Since 1 is continuous in this setting, and WSN requires discrete ¥, it was run on a
slightly different version with 9 discretised by 100 equidistant points.
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Figure 6.4: Hexapod locomotion problem.

We consider a hexapod locomotion task with a setup similar to that of (Cully
et al., 2015) to demonstrate this experimentally. The objective is to cross a
finish line a fixed distance from its starting point. Failure to cross the line
leads to a large negative reward, while the reward for completing the task is
inversely proportional to the time taken. It is possible that a subset of the
legs may be damaged or broken when deployed in a physical setting. For our
experiments, we assume that, based on prior experience, any of the front two
or back two legs can be shortened or removed with probability of 10% and 5%
respectively, independent of the other legs, leading to 81 possible configurations.
We excluded the middle two legs from our experiment as their failure has
relatively little impact on the hexapod’s movement. The configuration of the
six legs acts as our environment variable. Figure 6.4a shows one such setting.

We applied ALOQ to learn the optimal policy given these damage probabil-
ities, but restricted the search to the policies in the archive created by (Cully
et al., 2015)%. Figure 6.4b shows that ALOQ finds a policy with much higher
expected reward than RQ-ALOQ. It also shows the policy that generates the
maximum reward when none of the legs are damaged or broken (‘opt undamaged
policy’).

To check if a policy learnt by ALOQ in simulation transfers successfully, we
ran an experiment where we used ALOQ to learn a policy entirely in simulation
and then deployed the learnt policy on a real hexapod. In order to limit the
number of physical trials required to evaluate the ALOQ policy, we limited the
possibility of damage to the rear two legs. The learnt policy performed better
than the opt undamaged policy (which was also learnt only in simulation) on
the physical robot because it optimized performance on the rare configurations
that matter most for expected return (e.g., either leg shortened). However, the
performance of both policies were worse than in simulation due to the reality
gap. For example, in simulation the undamaged hexapod traveled more than
Im with both the ALOQ policy and the opt undamaged policy, while in reality
it traveled no more than 0.75m. These results underscore the need for an

3The policies were generated by MAP-Elites (Mouret and Clune, 2015) using a model of
the intact robot in simulation using DART (Lee et al., 2018).
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Figure 6.5: Experimental setup for TALOQ: The objective is to learn a policy for striking
the ball and achieving a particular velocity. (a) The physical setup, (b) the setup in simulation,
and (c) comparison of the performance of TALOQ against the baselines on the simulated
version of the experiment.

algorithm like TALOQ to bridge the reality gap. In the next section we present
an experiment using TALOQ with a robotic arm without using MAP-Elites.

6.3.5.2 TALOQ

To evaluate TALOQ), we applied it to a physical robotic arm. The robot has
actuators across 4 joints that control the position of its end effector in 3D
space. The objective is to strike a ball hanging from a rope with its end
effector and achieve a target velocity. The reward function is the sum of two
components: a squared exponential function of the velocity of the ball with a
sharp peak at 0.75m/s, and a cost that increases linearly with the minimum
distance of the end effector from the centre of the ball (observed throughout
the whole trajectory). The policy space is 5-D consisting of 4 joint angles and
a frequency parameter for the arm to oscillate between the initial configuration
and the specified joint angles. As an SRE, we assume that the arm is damaged
with probability 5%, making the actuator for the third joint unresponsive and
stuck in the initial configuration. This can cause policies that perform well
on the fully functional arm to perform poorly on the damaged arm. We used
DART (Lee et al., 2018) to design a simulator for our experiment * (Fig. 6.5b)
and dynamixel pro actuators for the real robot (Fig. 6.5a).

Policies learnt by ALOQ only in simulation with a budget of 200 trials
achieved a median return of 4.23 on the robot across 20 random replicates,
which shows that it transfers very poorly. This is unsurprising since the reality
gap can be significant due to the modelling errors and the differences in the
controller. Compared to this, across 3 random replicates with a total budget of
200 trials, TALOQ needed 13, 34, and 48 physical trials to find policies with
expected returns of 28.18, 89.18, and 93.60 (see Table 6.1). This demonstrates
that combining physical and simulated trials during the learning process using
TALOQ learns a much better policy. A video of one learnt policy is available
at https://youtu.be/R8Ss-dhDCmo.

4More precisely, we used the robot_dart wrapper.
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To evaluate TALOQ more extensively, we devised a simulated version of
the experiment. We treated the simulator from the previous set up as a proxy
for reality, and developed another version which we treated as the simulator.
To create a reality gap between the two, instead of the ball hanging from the
rope we modelled it as a pendulum. We also set the mass of the ball to 1kg
compared to 60g in the proxy. Since simulated trials are relatively cheap, we
ran 20 random replicates and after each iteration evaluated the expected return
of the policy TALOQ specified as optimal.

The results show that the policy learnt only

Physical Replicat
in simulation using ALOQ (ALOQ Sim) does ysica eplicate #

trials 1 2 3

not transfer at all to the proxy for reality, since
the reality gap is quite large (Fig. 6.5¢; note 1 219 -6.07  -4.98

that the z-axis is the number of physical trials). = 10 799 -6.07 3585
Learning a policy with ALOQ exclusively in <20 2818 -6.07 35.85
this proxy (ALOQ Real) performs better since 35 2818 89.18 5640

< 50 28.18 89.18 93.60

there is no reality gap. However it does not do

as well as TALOQ since it does not leverage the T.114 6 1- Evolution of the ex-
information provided by the' simulator. T}ns pected reward on the physical
shows that TALOQ can effectively leverage sim- .+ using TALOQ

ulated trials to improve sample efficiency on the

physical system.

6.3.6 Conclusion

In this section, we presented ALOQ), a novel approach using BO and BQ to
perform sample-efficient RL in a way that is robust to the presence of significant
rare events. We also presented TALOQ), an extension to ALOQ that addresses
the problem of the reality gap by actively selecting when to evaluate on the
physical system instead of the imperfect simulator.

We empirically evaluated ALOQ on different simulated tasks involving a
robotic arm simulator, and a hexapod locomotion task. Our results demon-
strated that ALOQ outperforms multiple baselines, including related methods
proposed in the literature. Further, ALOQ is computationally efficient and
does not require any restrictive assumptions to be made about the environment
variables. We also showed that TALOQ can be used to successfully learn a
policy that is robust to the SREs while addressing the challenge posed by the
reality gap.

6.4 Bayesian Optimization with Automatic
Prior Selection

6.4.1 Introduction

Throughout the manuscript we have seen that RL is a promising approach that
can allow robots to adapt to new tasks (e.g., a new tool) and new contexts
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(e.g., a damage (Cully et al., 2015; Chatzilygeroudis et al., 2018a)), but only if
this adaptation happens in a few minutes: contrary to simulated worlds (e.g.,
games), where thousands (if not millions) of simulations can be evaluated, the
number of trials in robotics hardware is limited by the energetic autonomy of the
robot and the need to perform the task as soon as possible to be useful (Mouret,
2016).

As discussed in this chapter and chapter 2, Bayesian Optimization is a
promising approach because it can work with continuous action and state
spaces, contrary to classic RL algorithms (Deisenroth et al., 2013), and because
it scales well with the dimension of the state space, contrary to model-based
policy search algorithms (e.g., PILCO (Deisenroth and Rasmussen, 2011) or
Black-DROPS (Chatzilygeroudis et al., 2017)). As we already saw, one of
the main strategies for micro data reinforcement learning is to leverage prior
knowledge; when BO is used for direct policy search, priors on the reward
function can be added by using a non-constant mean function in the model,
that is, by modeling the difference between the observations and the prior
instead of modeling the observations directly (Ko et al., 2007; Cully et al., 2015;
Chatzilygeroudis et al., 2018b).

In this section, we are interested in using BO when (1) several priors are
available and, (2) we do not know beforehand which prior corresponds to the
current context. A typical situation is a robot that knows how to solve a task in
context A, B, and C (priors) and needs to learn to solve it in context D, while
not knowing whether D is closer to A, B, or C. For some tasks, a perception
system might recognize the right context (Plagemann et al., 2008), but in many
others only the observations of the reward function can allow the robot to
determine what prior is the most plausible. For instance, a walking robot could
learn that a surface is slippery by observing that it matches the predictions
that correspond to a prior for slippery floors, but it is often difficult to predict
the slipperiness of a surface by only looking at it.

Our main insight is that we can compare two priors by computing the
likelihood of the combination ”prior + model” so that we can select the prior
that matches the best the observations. Our second insight is that this prior
selection can be elegantly incorporated as an acquisition function of a BO
procedure, so that we select the next point to test by balancing between the
expected improvement and the likelihood of the model used to compute the
expected improvement. We demonstrate our approach on a simulated and
physical 6-legged robot that faces different damage conditions and different
environments.

6.4.2 Combining Likelihood and Expected
Improvement

Like we have already seen in similar cases, we model the objective function,
R(7|0)°, by a Gaussian process f(6) with a mean function m(-) and a covariance

®Abusing a bit the notation, we will right it as R(6) from now on.
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function «(-,-):
f(8) ~GP(m(0),r(6,6))

We also assume that some prior knowledge on the objective function is
available before starting the optimization. In that case, we can write this
information with a prior function P and update the equations of the GP
accordingly as in Eq. (2.28). We use the squared exponential kernel for the
GPs as defined in Eq. (2.23).

As discussed in the background section, the next point @ where the objective
function should be evaluated is found by maximizing an acquisition function,
that is, a function that leverages the model (both the variance and the mean)
to predict the most promising point. A function that is often used for this
is the Expected Improvement (EI) (Warren B. Powell, 2012; Shahriari et al.,
2016) (see also Sec. 2.6.1).

Choosing the best prior can be seen as a problem of model selection (since
the prior is part of the model), which is effectively achieved by comparing the
likelihood of alternative models (Rasmussen and Williams, 2006):

P(f(01.) | 010, P(61.,)) =

1 1
VRl (- 3(F®)-
= P(O1.) K (F(01.0) ~ P(61.0)) (6.11)

where F(0, ,,) = {R(61),...,R(6,)} and P(6,.,) = {P(6:),...,P(6,)}.

Intuitively, we could select the prior that corresponds to the best likelihood,
then compute the expected improvement for this model. However, we would
risk to select an “over-pessimistic” prior at the beginning of the optimization,
because the first observations (which are often random points) are likely to be
low-performing — if random points were likely to be high-performing, there
would be no need for learning. In essence, if we have not yet observed any
high-performing solutions, then the likeliest prior is a prior for which every
solution is low-performing.

We therefore need to balance between the likelihood of the prior and the
potential for high-performing solutions. In other words, a good expected
improvement according to an unlikely model should be ignored; conversely,
a likely model with a low expected improvement might be too pessimistic
(“nothing works”) and not helpful. A model that is “likely enough” and lets us
expect some good improvement might be the most helpful to find the maximum
of F.

Let us assume that the objective function only takes discrete values, in which
case the likelihood is a probability. Considering n observations R(6,), ..., R(6,,),
we introduce the indicator function 1 ,)=r,)....f(6.)=r(6,) Which equals to
1 when the predictions match exactly the observations, and we define the
Expected Improvement for a prior P:

EIP(G, P) = E(I(O) X ]lf(el):R(Gl) 77777 f(Gn)zR(On)) (6.12)
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But as the predicted value f(6) ~ N (11,(0),02(0)) only depends on the
samples 601, ..., 0,, the observations F'(0; ,,) and the deterministic function P,
it is independent of the original distribution f(68;.,) ~ N(P(0;.,), K). Thus
the two factors inside the expectation are two independent variables and can

be split:

EIP(0,P) = E(max(0, f(0) — M,))

X E(1 4(6,)=R(61),....f(6n)=R(6,)) (6.13)

This new function can be extended afterwards to the case where R takes
continuous values; the likelihood becomes a density probability function, but
the EIP can still be defined as the product of the expected improvement with
the likelihood:

EIP(0,P) =EI(0) x P(f(0:1.,,) | 61.,,P(6:1.,,)) (6.14)

When we have m priors Py, - - - , P,,, the Most Likely Expected Improvement
(MLEI) acquisition function can then be defined as:

MLEIL(@,Py,--- ,Pn) = max_ EIP(0,p) (6.15)

PEP1, -, Pm
The MLEI acquisition function can be used like any other acquisition
function in the BO algorithm. Please note that the likelihood has to be
evaluated only once for each model (that is, once for each prior), and not for

every point @ (see Algo. 17). We use the C++-11 Limbo library for the BO
implementation (Cully et al., 2018).
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Algorithm 17 Bayesian Optimization with MLEI

1: procedure BOMULTIPLEPRIORS

2: Input: m priors Py, ..., P,, an objective function F'

3: Output: An approximation of the maximum of F

4: Initialize m Gaussian processes fi,..., f,, with the m priors and the
kernel function k:

5 Vie{l,...,m}, fi(0) ~ N(Pi(0),x(0,6"))
6 n <1
7: while n < maxIterations do
8 for :=1..m do
9: [ + computeLikelihood(f;, 01, ...,6, 1)
10: S; — argmaxg.q E1(0)
— argmaxgeo (E(max(0, /() — M,)))
11: EIP(s;, P;) < | x EI(s;)
12: end for
13: 0,.,p, < argmax,_, . EIP(s;, P;)
14: Evaluate R(0,,) on the robot
15: Update the m Gaussian processes with the new observation R(8,)
16: n<n+1
17: end whilereturn max,—1_mazrterations B(6n)

18: end procedure

6.4.3 Experimental Results

We evaluate the MLEI acquisition function in a similar context as in Cully et
al. (Cully et al.; 2015): a 6-legged robot is either damaged in an unknown way
or introduced to an unknown environment and BO is used to find an alternative
walking gait that works in spite of the unforeseen situation. However, while
Cully et al. used a single prior (walking on a flat surface with an intact
robot), we introduce many other priors that correspond either to potential
damages (e.g., a missing leg) or to different terrains (e.g., stairs). We test the
learning algorithm with priors corresponding to the actual situation, but also
in situations that are not fully covered by any prior.

Robot and policy The robot has identical legs with 3 DOF's per leg (Fig. 6.6).
One DOF (6,) controls the horizontal movements of the leg (from back to
front) whereas the two others (65 and 65) control the elevation of the leg. Each
one of these DOFs is controlled by an open-loop oscillator defined with 3
parameters (Cully et al., 2015): an amplitude, a phase, and a duty cycle
(proportion of time in which the angle is in an extreme position). The second
vertical angle 3 is constrained to take values between —f, and —0,+ 7, so that
the inferior member (the ”tibia”) remains vertical or at most at an angle of 7
with the vertical line. Thus, the whole gait of the robot can be defined with
6 x 3 x 3 = 54 parameters. All simulations® of the robot are performed with

Shttps://github.com /resibots/robot_dart
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(a) Simulation of the hexapod on —
stairs (b) Real hexapod robot

Figure 6.6: The 6-legged robot used in the experiments.

the Dynamic Animation and Robotics Toolkit (DART) (Lee et al., 2018) in a
world with gravity were the simulated robot is similar to the intact, physical
hexapod.

Reward function In all the experiments, the reward function is the distance
covered by the 6-legged robot in a virtual corridor with a width of 1m (the
width of the robot is about 40 ¢m). As soon as the robot gets out of the corridor,
the evaluation is stopped; it is also stopped after 10 s if the robot stays in
the corridor. Compared to more traditional reward functions, for instance the
distance covered in 10 seconds, our reward function encourages more the robot
to follow a straight line, even if it means that the gait is slower. Similar results
were however obtained with the average walking speed as a reward.

Prior generation All the priors are 6-dimensional behavior-reward maps
computed for a simulated 6-legged robot in different environments or with the
damaged robot (e.g., with a missing leg). These behavior-reward maps are
created beforehand using the MAP-Elites algorithm (Cully et al., 2015; Mouret
and Clune, 2015), which is a recent evolutionary algorithm designed to generate
thousands of different high-performing control policies (see also Chapter 3).
We use one of the behavior descriptors proposed in Cully et al. (Cully et al.,
2015): the body orientation, which captures how often the body of the robot
is tilted in each direction”. More formally, simulating each policy leads to a
6-dimensional vector that contains the proportion of time that the body of the

“Similar results were obtained with other behavioral descriptors.
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robot has a positive and negative pitch, yaw and roll:

% Zéil 1=(r)>0.0057
1 K
7 ket L=(k)<—0.0057
1 K
BOF = | K 2=t L >0.0057 (6.16)
7 et Lw (k) <—0.005x
% Zszl Lo (x)>0.0057
| % 2kt Lok <—0.005r |
where the duration of the gait of the robot is divided in K intervals of 15 ms,
=, ¥ and ® are the pitch, roll and yaw of the torso of the robot, respectively,
1 is the indicator function which returns 1 if and only if its argument is true,
and angles between £0.0057 are ignored.

This quantity is rounded so that it can only take values in {0, 0.2,0.4,0.6,0.8}
and so the set of all the body orientation factors is finite and contains 5% = 15625
elements that can be organized in a map.

For the purpose of the experiments, 15 behavior-performance maps have
been created for each of the possible environments (priors). Each one of these
maps was created with a run of the MAP-Elites algorithm for 24 hours on a
16-core Xeon computer. We used the Sferes C++ library (Mouret and Doncieux,
2010).

Experiment 1 — Adaptation to stairs in simulation In our first set of
experiments, the intact robot needs to adapt to unknown environments. We
generated 15 behavior-performance maps (i.e., 15 priors for the GP) for each
of the four following environments:

flat ground;

e casy stairs (steps with height: 4cm, width: 1.2m, depth: 50cm);

medium stairs (steps with height: 5¢m, width: 1.2m, depth: 20cm);

hard stairs (steps with height: 7.5¢m, width: 1.2m, depth: 25¢m).

We compare the following acquisition functions for BO:

e El with a single prior coming from a simulated robot on flat ground —
this corresponds to the original IT&E experiments (Cully et al., 2015);

e EI with a single prior, randomly chosen among the available priors at
each iteration.

e EI with a single prior coming from a simulated robot on the actual stairs
(when available) — this corresponds to the ideal case, in which we know
the right prior;

e MLEI with a prior selected at each iteration among the available priors
(flat ground, easy, medium and hard stairs).
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Figure 6.7: Comparison in simulation of MLEI with other acquisition functions and choices
of prior (EI with a randomly selected prior, EI with a prior generated on an unharmed robot
on flat ground and EI with the prior corresponding to the real stairs or damage) on the
6-legged robot learning to climb stairs and/or to recover from damages after 5 iterations
of BO and with 30 replicates of each experiment. (A) and (B): the robot is on unknown
stairs with no damage and the real stairs can be among the priors (A) or not (B). (C) and
(D): the robot is on unknown stairs with unknown damages and the priors are only on stairs
not on damages (the actual stairs can be among the priors (C) or not (D)). (E) and (F):
the robot is on flat ground with unknown damages and the real damage can be among the
priors (E) or not (F). The number of stars indicates that the p-value, obtained using the
Mann-Whitney-Wilcoxon test, is below 0.0001, 0.001, 0.01 and 0.05 respectively.

For the MLEI and EI with random priors experiments, we randomly choose
5 priors (i.e., 5 maps) for each possible environment, leading to a unique set
of priors for each MLEI experiment and for each experiment with randomly
chosen priors. Please note that several priors correspond to the same situation,
which is interesting because some maps might be of higher-quality than others,
even if they have been generated with the same environment.
We test two situations:

1. adaptation to hard stairs when the hard stairs are part of the priors given
to MLEI (and to random selection) — 5 x 4 = 20 priors to select from;

2. adaptation to medium stairs, with the medium stairs removed from the
priors given to MLEI (and to random selection) — 5 x 3 = 15 priors to
select from.

In these two situations, the robot is the same in the prior and in the adaptation
experiment (there is no “reality gap”).

The results (Fig. 6.7A-B) show that MLEI allows the robot to learn high-
performing gaits for the stairs, even when the stairs used for the learning
experiments are not present in the set of priors (Fig. 6.7B): when the right prior
is accessible, MLEI finds it; when it is not accessible, it can still leverage other
priors and use BO to find a good behavior while using other priors. In the
two tested cases, MLEI clearly outperforms the random selection of priors and
the method using the flat ground prior, which means that MLEI selects priors
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correctly and that these priors help the learning process. Surprisingly, MLEI
also outperforms the EI with a “perfect” prior (Fig. 6.7A): this is because
MLEI has access to 5 priors for the hard stairs (in addition to the 15 other
priors) and therefore can select the best of them, whereas each EI experiment
has access to a single prior for the considered stairs (and the best controller
for each map is different). The relatively good performance of the random
selection of priors is likely to stem from the fact that this algorithm has access
to a much higher diversity of behaviors than EI with flat ground as a prior
(that is, to the original IT&E), which makes it more likely to find a behavior
that works in the tested situation.

Experiment 2 — Adaptation to stairs and damages in simulation
In this second experiment, we evaluate if the robot can adapt to unforeseen
damage conditions, with and without stairs, with and without priors about the
damage conditions. For each of the 6 legged removed, we generated 15 priors
with MAP-Elites (with a robot on flat ground), leading to (6 + 1) x 15 = 105
priors (6 damage conditions + intact robot). Like in the previous experiments,
the set of available priors is made of 5 random maps (out of the 15 generated
priors) for each situation.

We compare the same methods as before in four situations that cover
different combinations of environmental and body-related priors:

l.a adaptation to damage with priors about stairs (no prior about damage),
and when the actual stairs are among the priors — 20 priors to select
from;

1.b adaptation to damage with priors about stairs (no prior about damage),
and when the actual stairs are not among the priors — 15 priors to select
from;

2.a adaptation to damage with priors about the damage conditions, on flat
ground, when the actual damage (left middle leg removed) is among the
priors — 7 x 5 = 35 priors to select from;

2.b adaptation to damage with priors about the damage conditions, on flat
ground, when the actual damage (front right leg and middle left leg
shortened) is not among the priors — 7 x 5 = 35 priors to select from.

The results (Fig. 6.7C-F and supplementary video®) show that MLEI can
find compensatory gaits on stairs while using priors computed with the intact
robot. When the real stairs are among the priors (Fig. 6.7C), MLEI outperforms
the EI with the right stairs because (1) since the robot is damaged, the most
helpful prior is not always the prior that corresponds to the correct stairs (e.g.,
the prior that corresponds to the hard stairs might be more conservative and
be more helpful when the robot is damaged); (2) like before, MLEI has access

8 Available at: https://youtu.be/xo8mUTZTVNE
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to more priors, which makes it more likely to have a policy in one of the map
that can compensate for the damage.

When the actual stairs are not in the priors, MLEI still outperforms the
two other approaches (Fig. 6.7D). MLEI can also take advantage of priors
about the damage condition whether the damage is included in the priors or
not (Fig. 6.7E-F): when the actual damage conditions is among the priors,
MLEI leads to higher-performing solutions than EI with the intact robot as
a prior; when the damage condition is not among the prior, MLEI performs
the same as EI with the intact robot as a prior. These results are consistent
with (Cully et al., 2015), which shows that an intact robot can be an effective
prior to adapt to damage.

Experiment 3 — Adaptation to damage with a physical robot In
this experiment, we use (6+ 1) x 15 = 105 priors for damage conditions to allow
a physical 6-legged robot to adapt. As the simulation is not perfect, the learning
algorithm has to compensate for both the “reality gap” and the damage. The
robot is tracked with an external motion capture system (Optitrack) and we
use 10 episodes of 10 seconds. Like before, we consider two situations: when the
damage is among the priors, and when it is not. We replicate each experiment
5 times.

Like in simulation, MLEI takes advantage of the priors to find higher-
performing gaits than when a single prior is used (Fig. 6.8). When one of the
priors correspond to the actual damage condition (Fig. 6.8(a)), MLEI clearly
outperforms EI with a single prior and finds high-performing gaits in less than
10 episodes; MLEI also finds better gaits than EI when the actual damage
condition is not among the priors (Fig. 6.8(b)), which is likely to come from
the fact that MLEI can “take inspiration” from other priors to compensate for
the damage (like in the previous task, this corresponds to a form of transfer
learning).

6.4.4 Conclusion and Discussion

Well-chosen priors can guide BO to find a high-performing solution (Lizotte
et al., 2007; Cully et al., 2015) while not constraining the search to a few
pre-designed solutions. However, learning algorithms are most useful when the
robot or the environment are partially known, therefore it is often challenging to
design a single prior that would help BO in all the possible situations. The Most
Likely Expected Improvement (MLEI) allows us to relax this assumption by
making BO capable of selecting the most useful prior and ignore all the others.
It therefore makes it possible for BO to benefit from the faster convergence
speed given by the priors, while not assuming much about the robot or the
environment.

In this section, we demonstrated that our new acquisition function leads
to a powerful adaptation algorithm in two systems, a planar manipulator and
a 6-legged robot. In the latter case, the robot was capable of discovering
compensatory behaviors in a dozen of trials when damaged — even with priors
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Figure 6.8: Comparison of MLEI with the standard EI with a single prior coming from a
simulated undamaged robot. This real experiment was carried out on the physical damaged
6-legged robot walking on flat ground after 10 iterations of BO and with 5 replicates of the
experiment. Damage used: missing rear leg (damage present among the available priors), a
shortened rear leg (damage not present among the available priors).

that correspond to the intact robot — and when it faced unknown stairs — even
without any prior for the actual stairs. Overall, MLEI substantially increases
the potential uses of priors in BO because we can often “guess” what could be
useful to the robot, but we cannot be sure in advance if a given prior will be
useful in the future.

Even the best classification system based on perception (which context
is recognized by the robot?) (Plagemann et al., 2008) is prone to errors in
real situations (e.g., steps hidden by high grass). By contrast, the automatic
selection of priors that we introduced here is based on the direct observation of
the rewards: the robot discovers what works and what does not, it does not
attempt to know why some behaviors work and some do not. This approach fits
well the theory of “embodied cognition” (Brooks, 1991; Pfeifer and Bongard,
2006) which suggests that robots do not need an explicit representation of the
world to act. A classic “sense-plan-act” architecture would assume the existence
of an accurate model of the world to act; at the other end of the spectrum,
most learning algorithms aim at assuming as little knowledge as possible about
the robot or the environment. BO with automatic selection of prior can be an
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effective middle ground in which prior knowledge or a perception system can
guide a direct policy search that can, if needed, ignore all previous knowledge
and still find an effective way to act.



Chapter 7

Discussion

Throughout the manuscript, we have introduced algorithms that actively try
to minimize the interaction time between the robot and the environment and
provide adaptive capabilities to robots. To do this we relied on three main
concepts:

e Learning surrogate models: using the gathered data to learn models
either of the expected return or the transition dynamics is a powerful
way towards reducing the interaction time.

o Using stmulators to improve learning: utilizing dynamics simulators to
create repertoires or use them as priors proves to be an effective way to
reduce the required interaction time to complete a task.

e FEaxploiting structured knowledge to improve learning: taking advantage
of years of research in robotics, we can propose algorithms that insert
learning in the right place and not “waste” time to learn, for example,
the basic laws of nature.

In the following sections, we will discuss the limitations of each of these
concepts and provide intuitions and examples of situations in which our ap-
proaches cannot be applied or will struggle to work. We will also discuss
potential improvements to our methods that could alleviate their limitations.
Finally, we will discuss about the interplay between planning, model-predictive
control and policy search as well as express a few thoughts on the computation
time that micro-data algorithms need.

7.1 Learning surrogate models

7.1.1 Dealing with complex robots

The results of our experiments show that learning surrogate models is a powerful
method for reducing the interaction time required to solve a robot control task.
If we have a model in our possession, we can use it to reason about possible
next decisions or to learn a policy by interacting with the model and not the

148
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real system; if handled properly (as we have seen in the previous chapters), this
approach can lead to substantial reductions of the interaction time. Moreover,
model-based approaches that learn the transition dynamics can generalize
well to new tasks, since the dynamics model usually does not depend on the
task. Nevertheless, model-based approaches do not scale very well with the
dimensionality of the function being approximated (the state and action space
when modeling the dynamics and the policy space when modeling the expected
return): in the general case, the quantity of data to learn a good approximation
of a surrogate model scales exponentially with the dimensionality of the learned
function (this is the curse of dimensionality, see (Bellman, 1957)).

To address this challenge, a potential starting point is to use unsupervised
learning to learn low-dimensional features, which can then be used as inputs
for policies. Interestingly, it is possible to leverage priors to learn such state
representations from raw observations in a reasonable interaction time (Jon-
schkowski and Brock, 2015; Lesort et al., 2018, 2017; Lesort and Filliat, 2017).
In their approach, Jonschkowski and Brock (2015) learn in an unsupervised
way a compact state representation using prior knowledge; they define 4 robotic
priors that are inspired from the laws of nature and the nature of the robots:

e Temporal coherence Prior: Two states close to each other in time
are also close to each other in the state representation space.

e Proportionality Prior: Two identical actions should result in two
proportional magnitude state variations.

e Repeatability Prior: Two identical actions applied at similar states
should provide similar state variations, not only in magnitude but also in
direction.

e Causality Prior: If two states on which the same action is applied give
two different rewards, they should not be close to each other in the state
representation space.

The last prior is the only one giving information about the task and
helps discovering the underlying states which lead to good rewards. They
then showcase that this compact state representation can be used in RL
algorithms without hurting much the performance (Jonschkowski and Brock,
2015). Nevertheless, there is still a lot of work before we have algorithms that
can provide generic state representations that can be used to control complex
robots (Lesort et al., 2018), like humanoids.

7.1.2 Dealing with high-dimensional observations

The dimensionality of the sensory observations is also an important challenge
for model-based micro-data reinforcement learning since it affects indirectly
the size of the policy in approaches where the expected return is modeled, and
directly the dimensionality of the model learned in model-based policy search
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approaches. To our knowledge, no micro-data approach (including the ones
we presented in this manuscript) can perform “end-to-end learning”, that is,
learning with a raw data stream like a camera. Deep RL has recently made
possible to learn policies from raw pixel input (Mnih et al., 2015), largely
thanks to the prior provided by convolutional networks. However, deep RL
algorithms typically require a very large interaction time with the environment
(e.g., 38 days of play for Atari 2600 games (Mnih et al., 2015)), which is not
compatible with most robotics experiments and applications.

Fortunately, it is conceivable to create forward models in image space with
reasonable number of samples, that is, predicting the next image knowing the
current one and the actions, which would allow to design model-based policy
search algorithms that work with an image stream (Oh et al., 2015; Assael
et al., 2015; Ha and Schmidhuber, 2018; Wahlstrom et al., 2015). In their
approach, Wahlstrom et al. (2015) propose a deep neural network architecture
composed of an auto-encoder and a predictor in feature space. More precisely,
the image data is first transformed in a low-dimensional feature space and the
predictor layer predicts in feature space what would the next state look like;
lastly, the decoder layer takes the predicted feature vector and transforms it
back to the image space. Their results show that their approach can learn
several different dynamics models from pixels, like a planar single or double
pendulum.

Overall, it is still unclear how to learn with high-dimensional observation
spaces in a handful of trials. Transferring the knowledge (Taylor and Stone,
2009) from a simulator to the real world could be one direction towards tackling
this challenge: we can use the simulator to perform a lot of trials and then
transfer what we have learned on a few trials on the real robot. Using the
simulator as a means to learn low-dimensional features can also be a promising
direction: the idea would be to first learn in an unsupervised fashion the low-
dimensional features (Lesort et al., 2018) and then use these low dimensional
features on the real system to achieve faster learning.

7.1.3 Dealing with sparse reward scenarios

Our experiments in chapters 4 and 5 showcase that in model-based policy
search using the variance in the optimization is one of the key components to
learn with as little interaction time as possible. However, the learned dynamics
models are only confident in areas of the state space previously visited and
thus could drive the optimization into local optima when multiple and diverse
solutions exist (Deisenroth et al., 2015; Chatzilygeroudis et al., 2017). None of
our approaches is able to systematically perform well in sparse reward scenarios.
In other words, the robot, in order to improve its reward, needs to not only
exploit good actions or states that have already been visited, but also try
different actions that may lead to novel and possibly more effective behaviors.
This is, of course, a specific instantiation of the general exploration-exploitation
dilemma that arises in many fields as well as in RL (Sutton and Barto, 1998).
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When there is no reward available, the robot should be “curious” and
search for “interesting stepping stones”. This question is central in develop-
mental robotics (Oudeyer et al., 2007; Gottlieb et al., 2013), and evolutionary
robotics (Lehman and Stanley, 2011; Mouret and Clune, 2015; Mouret, 2011;
Doncieux and Mouret, 2014). Intrinsic motivation (Forestier et al., 2017) or
curiosity-driven (Laversanne-Finot et al., 2018; Oudeyer, 2018) techniques as
based on the fact that humans and animals are performing activities for their in-
herent satisfaction rather than for some separable consequence (Ryan and Deci,
2000). A few noteworthy successes of this type of algorithms were produced
within the “Playground Experiment” (Oudeyer et al., 2005) and “Ergo-Robots”
project (Oudeyer, 2011). In particular, in the “Ergo-Robots” project, some
robotic manipulators (equipped with heads) explore their sensorimotor world,
that is their body and what they can do with it, through “artificial curiosity”.
In essence, they execute some actions, observe the outcome in the environment
(e.g., an object was moved), and they build two models: one modeling the
relations between actions and outcomes, and one that tells them how good they
are at predicting. Finally, they are using these models to select actions that
will produce novel or “surprising” outcomes. Interestingly, this unsupervised
learning procedure gave rise to elementary communication skills between the
robots themselves and between robots and humans (by making gestures and
sounds).

Following similar ideas, in chapter 4, we saw that one way of addressing the
exploration-exploitation dilemma in robot control is to combine model-based
policy search approaches with novelty-based ideas (Lehman and Stanley, 2008,
2011). More specifically, we introduced a new algorithm, Multi-DEX, that
frames the policy search problem as a multi-objective, model-based policy
optimization problem with three objectives: (1) generate maximally novel state
trajectories, (2) maximize the cumulative reward and (3) keep the system in
state-space regions for which the model is as accurate as possible. It then
optimizes these objectives using a Pareto-based multi-objective optimization
algorithm. Multi-DEX was able to solve sparse reward scenarios (with a
simulated robotic arm) in much lower interaction time than state-of-the-art
model-free (i.e., GEP-PG (Colas et al., 2018), TRPO (Schulman et al., 2015)),
and model-based approaches (i.e., Black-DROPS (Chatzilygeroudis et al., 2017),
TRPO-VIME (Houthooft et al., 2016)). Nevertheless, Multi-DEX is not able to
handle noisy systems and will struggle in high dimensional systems. Designing
algorithms that are able to consistently find high performing policies in sparse
reward scenarios is still an open problem.

7.1.4 Safe learning

Exploring too much on a physical robotic system might be dangerous or
damage the robot. In Section 6.2, we combined Bayesian optimization with
prior knowledge about safety criteria in order to reduce the probability of
breaking the robot when searching for a policy. We were able to learn on
a damaged simulated iCub humanoid robot that had to crawl again while
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minimizing the unsafe trials. We still, however, relied on expert knowledge
about what would be crucial for damaging the robot and performed several
unsafe trials. While recent methods, like SafeOPT (Berkenkamp et al., 2016),
safely learn without any unsafe trial, they require an initial safe set of policy
parameters, which is hard to estimate in every possible scenario and still
requires expert knowledge. Combining generic prior knowledge and safety
criteria remains an open question and safe learning is of crucial importance in
robotics applications.

7.2 Using simulators to improve learning

7.2.1 Behavioral or action repertoires

Simulation has been a very useful tool for many scientific fields, most notably
physics, mechanical engineering, robotics and evolutionary robotics (Mouret
and Chatzilygeroudis, 2017), as it allows, for example, researchers to extensively
test their ideas “cost-free”, or to exploit big clusters to speed-up their research
experiments. In chapter 3, we saw how we can use simulation in order to
create repertoires of actions and speed-up adaptation on the physical robot.
In our case, we create a repertoire of controllers with the goal of covering the
task space as well as possible, but also providing a mapping from the task
space to the controller space. Moreover, using this repertoire to search for a
controller also reduces the dimensionality of the search space since the task
space is usually much lower dimensional than the controller space.

Although our goal was to create a repertoire that covers the task space
and provides a mapping from the task space to the controller space, Cully
et al. (2015) proposed using the same ideas to create a repertoire of controllers
that maps a behavior descriptor to the task performance (they call them
behavior-performance maps); more specifically, they were experimenting with
a hexapod locomotion task and they defined the behavioral descriptor as the
proportion of time that each leg touches the ground, and in this case, the
resulting repertoires contained behaviors that walk in a straight line. Even
though approaches based on repertoires can be robust to the choice of the
description of the task space (referred also as behavior descriptor, see (Cully
et al., 2015), Chapter 3 and Sec. 6.2), selecting the most appropriate behavior
descriptor (and the appropriate performance function) remains an open question
or requires knowledge from an expert.

One potential approach to handle this challenge could be the recently intro-
duced hierarchical behavioral repertoires (HBR) that stacks several behavioral
repertoires with the goal to generate sophisticated behaviors (Cully and Demiris,
2018). The main idea of the approach is to create several layers of behavioral
repertoires each one selecting a behavior of the repertoire in the lower level; the
repertoire in the last level selects either motor commands or low-level policies.
In their paper (Cully and Demiris, 2018), a NAO robot was able to learn how
to draw lines, arcs and digits by combining a 4-layer HBR with the concept of
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innovation engines (Nguyen et al., 2015b, 2016) (i.e., unsupervised learning
of behavioral descriptors). The authors also showcase that by changing only

the repertoire of the last layer, we can transfer behaviors from a simple robotic
arm to NAO.

7.2.2 Learning robust policies

In chapter 6, we saw how dynamics simulators can help towards discovering
robust and safe policies in low interaction time. In traditional trajectory opti-
mization (or planning) in robotics (Siciliano and Khatib, 2016), the trajectory
is given by an expert and a controller is designed to follow it in a robust
way. In learning algorithms, the goal is to discover the trajectory and the
robust controller simultaneously. A potential remedy is to use policies that
are intrinsically robust to some perturbations, that is, designing the policy
space such that a small change in the parameter space keeps the policy robust.
This is one of the ideas behind dynamic movement primitives (see Sec. 2.5),
which act like “attractors” towards a trajectory of a fixed point. Similarly, it
is possible to learn waypoints (Lober et al., 2016) or “repulsors” (Spitz et al.,
2017) to mix learning with advanced, closed-loop “whole-body” controllers.
Lastly, one can learn distinct soft policies for simpler tasks and then compose
them in order to achieve a more complicated task (Haarnoja et al., 2018).

7.3 Exploiting structured knowledge to
improve learning

7.3.1 Nature versus nurture

Evolution has endowed animals and humans with substantial prior knowledge.
For instance, hatchling turtles are prewired to run towards the sea (Musick and
Limpus, 1997); or marine iguanas are able to run and jump within moments of
their birth in order to avoid being eaten by snakes®'. These species cannot rely
on online learning mechanisms for mastering these behaviors: without such
priors they would simply cease to exist.

Similarly to priors obtained from nature, artificial agents or robots can
learn very quickly when provided with the right priors, as we presented in
Sections 2.5, 2.6.2, 2.7.2 and Chapters 3 and 5. In other words, priors play a
catalytic role in reducing the interaction time of reinforcement learning methods.
Thus, the following questions naturally arise: what should be innate and what
should be learned? and how should the innate part be designed? Most of the
existing methodologies use task-specific priors (e.g., demonstrations). Such
priors can greatly accelerate learning, but have the disadvantage of requiring
an expert to provide them for all the different tasks the robots might face.
More generic or task-agnostic priors (e.g., properties of the physical world)

! As portrayed in the recent documentary “Planet Earth 2” from BBC.
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could relax these assumptions while still providing a learning speedup. Physical
simulations can also be used to automatically generate priors while being a
very generic tool (Cully et al., 2015; Pautrat et al., 2018; Antonova et al., 2017,
2016). In essence, physical simulations can run in parallel and take advantage
of faster computing hardware (from clusters of CPUs to GPUs): learning priors
in simulation could be an analog of the billions of years of evolution that shaped
the learning systems of all the current lifeforms.

In Chapter 5, we saw how to combine model identification with data-driven
model learning to improve learning on physical systems. We were able to
learn on a physical hexapod in less than one minute of interaction time by
exploiting specific properties of Gaussian processes and dynamics simulators.
In short, we effectively combined (a) dynamics simulators that are the product
of many years of research in dynamical systems, (b) prior knowledge of possible
damages/different conditions and diagnosis (i.e., identifying the likeliest robot
model from data), and (¢) Gaussian processes that can generalize well and
improve with experience. Similarly, in concept, Jonschkowski et al. (2018)
recently proposed to combine the well-known and studied particle filters with
deep learning in order to improve the learning speed of localization. The
main idea is that we can substitute the measurement and prediction models of
the particle filter algorithm with deep neural networks that can be improved
with more data. In essence, they combine the structure of Bayes filtering
with the generalization capabilities of neural networks; in other words, they
combine structured knowledge that comes from years and years of research in
robotics and state estimation with data-driven algorithms that can improve
with experience.

7.3.2 Automatic design of priors

Meta-learning (Feurer et al., 2015; Finn et al., 2017; Clavera et al., 2019;
Seemundsson et al., 2018), that is, “learning to learn”, is a related line of
work that can provide a principled and potentially automatic way of designing
priors. Clavera et al. (2019), for example, use meta-learning to train a global
neural network dynamics model such that, when combined with recent data,
the model can be rapidly adapted to the local context. Their approach was, for
example, able to efficiently learn to control a crippled in an unexpected way ant
agent (quadruped) or a half-cheetah with disabled joints. Nevertheless, meta-
learning approaches based on neural networks are still data-hungry: for example,
the above results were obtained after 1.5-3 hours of interaction time. One way
to mitigate this is to use Gaussian processes. For example, Seemundsson et al.
(2018) use GPs and they frame meta-learning as a hierarchical latent variable
model and infer the relationship between tasks automatically from data. They
were able to generalize to several instances of the cart-pole swing-up and the
double pendulum swing-up tasks while using few examples in the meta-learning
step. However, Gaussian processes have cubic computational complexity and
thus practical approaches involve mainly simple or low dimensional systems.
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7.3.3 Misleading priors

While priors can bootstrap learning, they can also be misleading when a new
task is encountered. Thus, an important research avenue is to design policy
search algorithms that can not only incorporate well-chosen priors, but also
ignore those that are irrelevant to the current task (Chatzilygeroudis and
Mouret, 2018). In Chapter 5, we saw how we can use parameterized black-
box priors, and more specifically simulators, in order to properly select the
parameterization that is the most likely, given the experience that the robot has
so far. Nevertheless, this procedure can make the simulator to crash (i.e., states
getting out of bounds or objects in-collision) because there is no guarantee
that the predicted state, which possibly makes sense in the real world, will
make sense in the prior model; this is especially the case when the two models
(prior and real) differ a lot and when there are obstacles and collisions involved.
Recently, Ajay et al. (2018) proposed to combine a simulator with variational
recurrent neural networks and were able to learn model for systems that involve
collisions without feeding the model predictions back to the simulator; in
particular a planar bouncing ball and a planar pushing task. Nevertheless, the
systems they used were relatively low dimensional and involved only planar
motions. Using the prior simulator just as a reference and not mixing prior
and real data for complex robots remains an open problem.

Following the same line of thought, in Section 6.4 we proposed an acquisi-
tion function for Bayesian optimization that actively tries to select the most
promising prior among a variety of them. Using our approach, a hexapod robot
was able to learn in a few trials: (a) to walk again despite being damaged
in an unknown way, and (b) to walk on unknown terrains (e.g., new kinds
of stairs). Nevertheless, choosing the available priors still required an expert
(i.e., we ad-hocly chose the types of prior information) and we can only select
from a discrete set of priors. We believe that designing algorithms that take
as prior a parameterized dynamics simulator and effectively exploit it in order
to speed-up learning or transferring knowledge will produce some interesting
results in the future.

7.3.4 Domain randomization and adaptation

Domain randomization (James et al., 2017) techniques (previously referred
as “envelope-of-noise” approaches (Jakobi, 1997)) aim at answering to how
we can effectively exploit simulation for speeding-up learning. In particular,
they use a parameterized simulator and try to find policies that are robust to
a vast number of conditions. Their ultimate goal is to discover control policies
that will also work in the real world without any online refinement. James
et al. (2017) use a rather simple controller, sample different goal targets and
environmental conditions (e.g., lighting, textures, position of the camera, etc.)
and collect 1 million state-action trajectories of completing different goals.
Once this big dataset is collected, a convolutional neural network (CNN),
that will later serve as the policy, is trained in a supervised manner to find a
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mapping between image observations and the appropriate (or optimal) actions
to take. Finally, they deploy this policy both in new simulation environments
and the real world. Astonishingly, they were able to get 100% success rate
in the real world scenarios despite the fact that their task involved contacts
and anticipating dynamic effects (i.e., picking and placing objects in a basket).
However, their approach does not provide any online adaptation capabilities;
this basically means that if for some reason the policy does not generalize to
the real world instance, the robot cannot improve its performance.

Similar approaches randomize dynamic parameters of the system (e.g.,
masses of the links, friction coefficients, etc.) instead of environmental condi-
tions (Peng et al., 2017; Yu et al., 2017; Jakobi, 1997) in order to find a “robust”
policy that is likely to work on the real system.

We can draw a parallel here and argue that model-based policy search with
probabilistic models is performing something similar to dynamics randomization
(i.e., domain randomization over dynamics). If we think about it a bit more,
performing policy search under an uncertain model is equivalent to finding
a “robust” policy that can perform well under various dynamics models: the
ones defined by the mean predictions and the uncertainty of the model. In
particular, the policy returned by a policy search procedure under uncertain
dynamics is not performing well with only some specific dynamics parameters,
but with a set of them.

To go even further, the modeling procedure that we introduced in Chapter 5,
GP-MI, should be superior to a pure dynamics randomization algorithm, since
it both actively searches for dynamics parameters that are more likely to be
true and correct whatever cannot be captured. Moreover, the probabilistic
nature of GPs additionally provides a “robust” policy search procedure, as the
policy found is not likely to overfit some specific dynamics parameters or model
predictions. The computation complexity of the GPs added to the simulator’s
delays (remember that we are calling the simulator at each GP query) makes
our model learning procedure practical only up to a few hundreds of time steps.
Discovering a model learning procedure that can scale to high dimensional
systems in a few minutes of interaction time is an exciting research avenue.

7.4 Interplay between model-predictive
control, planning and policy search

The data-efficiency of policy search algorithms like PILCO or Black-DROPS
rises from the fact that they learn and use dynamical models (Section 2.7.1
and Chapters 4 and 5). However, if we assume that the dynamical model is
known or can be learnt, there is a large literature on control methods that can
be used. So, is policy search the right approach in such a case?

A fundamental controller from control theory is the linear-quadratic reg-
ulator (LQR) (Kalman, 1960), which is optimal when the the dynamics are
linear and the cost function is quadratic. Systems with nonlinear dynamics
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can be tackled with LQR by linearizing them around the current state and
action, however, other approaches can be used such as differential dynamic
programming (Mayne, 1966; Jacobson and Mayne, 1970) and its simpler vari-
ant, the iterative linear-quadratic Gaussian algorithm (Todorov and Li, 2005).
Generally, these methods can be used for optimal control with a large horizon
lookahead, however, doing so can be computationally costly. For this reason,
they are mostly employed to calculate trajectories offline.

A way to permit online trajectory optimization is by reducing the horizon
lookahead, thus, gaining in computational efficiency. This is known as model-
predictive control (MPC) (Garcia et al., 1989). Using shorter horizons, MPC is
no longer optimal with respect to the overall, high-level task. This means that
MPC can be used for short-term tasks, such as tracking a trajectory, which can
be produced offline. The advantage of MPC is that it can get feedback from
the real system and replan at every step. Such a control scheme can be very
effective and has, for example, recently allowed real-time whole-body control of
humanoid robots (Koenemann et al., 2015).

Although MPC can replan at every step, it still has the disadvantage of
relying on models. Models can be inaccurate or wrong (especially in the first
episodes of learning when not enough data have been collected), therefore, there
needs to be a mechanism that corrects the mismatch. A potential solution
could be to combine iterative learning control (Moore et al., 1992; Bristow
et al., 2006) with MPC (e.g., see (Lee et al., 1999, 2000; Wang et al., 2008;
Assael et al., 2015)). MPC additionally has the disadvantage of requiring full
knowledge of the system state. A way to mitigate this problem is to combine
MPC with a policy search algorithm, such as guided policy search. This can be
realized by using MPC with full state information in some training phase, to
learn neural network policies that take the raw observations as input, thus, not
requiring full state information at test time (Zhang et al., 2016). The execution
of the policy can be parallelized and can thus run faster than MPC online.

Should we then learn a big neural network policy for complex high-level
tasks, such as a humanoid robot helping with the house chores? Firstly, we need
to consider that such complex tasks require long planning horizons. Secondly,
as the task becomes more complex, so could the policy space. Even if we do not
consider the memory requirements for such policies, learning such tasks from
scratch would be intractable, even in simulation. One way of addressing such
complexity is by decomposing the high-level task into a hierarchy of subtasks.
Sampling-based planners (Karaman and Frazzoli, 2011; Browne et al., 2012)
could operate at the high to mid levels of the hierarchy, whereas MPC could
operate at the mid to low levels. Furthermore, policy search (or other algorithms
for optimal control) can be used to discover primitives which themselves are
used as components of a higher-level policy (e.g., see (Duarte et al., 2017))
or a planning algorithm (e.g., see (Clever et al., 2017; Chatzilygeroudis et al.,
2018a)).
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7.5 Computation time

Micro-data learning focuses on the desirable property of reducing the interaction
time. However, most articles purposefully neglect computation time because
they assume that it will be tackled automatically with faster hardware in
the future. Although this is possible, it is worth investigating how different
algorithms can potentially be sped up for near real-time execution with today’s
hardware.

For illustration, PILCO (see Section 2.7.1) is a very successful and data-
efficient algorithm, but can be very computationally expensive when the state-
action or policy space dimensionality increases (Chatzilygeroudis et al., 2017;
Wilson et al., 2014) (e.g., Wilson et al. (2014) report that PILCO required 3
weeks of computation time for 20 episodes on a 3-link planar arm task) and
cannot take advantage of multi-core architectures. Black-DROPS and Black-
DROPS with GP-MI (see Section 2.7.2 and Chapters 4 and 5) can greatly reduce
the interaction time and take advantage of multi-core architectures, but they
still require a considerable amount of computation time (e.g., Black-DROPS
with GP-MI required 24 hours on a modern 16-core computer for 26 episodes
of the pendubot task; see (Chatzilygeroudis and Mouret, 2018) and Chapter 5).
Both approaches use GP models which have a complexity that is quadratic to
the number of samples when queried; this is clearly inefficient when millions of
such GP queries (e.g., Black-DROPS performs around 64M (Chatzilygeroudis
et al., 2017)) are performed in each episode.

As we have already discussed, there exist a few model-based RL methods
that utilize neural networks that scale better than GPs with the number of
samples (Chua et al., 2018; Higuera et al., 2018; Depeweg et al., 2017, 2018).
Nevertheless, it is still not clear how to insert priors in neural networks like we do
with GPs. Recently, Hafner et al. (2018) showed that deep neural networks with
noise contrastive priors can provide reliable uncertainty information even for
out-of-distribution query points. This seems a promising direction of research
towards having neural networks with priors that could allow for more interesting
micro-data RL algorithms.

On the other hand, IT&E (Cully et al., 2015) and “robust policies” (e.g.,
see (Peng et al., 2017; Yu et al., 2017; Paul et al., 2018; Rajeswaran et al.,
2017)) can practically run in real-time because the prior is pre-computed offline.
This “recipe” is shared by recent meta-learning methodologies, such as (Finn
et al., 2017), that aim to learn an expressive policy (i.e., a deep neural network)
that can be optimized online using a single gradient update.

This does not mean that the offline precomputation time should not be
optimized. Algorithms such as IT&E or the work in (Peng et al., 2017) use a
form of directed exploration to create such a prior?. If, for example, random

2IT&E uses an evolutionary illumination algorithm (MAP-Elites (Mouret and Clune, 2015;
Vassiliades et al., 2017)) to discover solutions to thousands of problems in a single run; the work
by (Peng et al., 2017) uses a related approach (hindsight experience replay (Andrychowicz
et al., 2017)).
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search was used, it would probably need orders of magnitude more computation
time to create a prior of the same quality.



Chapter 8

Conclusion

In this thesis, we first defined the challenge of learning by trial-and-error in a few
minutes as “micro-data reinforcement learning” (Mouret, 2016). This challenge
is closely related to the concept of “data-efficient reinforcement learning”, but
refers to slightly different cases or scenarios. The main difference is that the
terminology “micro-data reinforcement learning” represents an absolute value
of interaction time unlike the term efficiency that represents a relative one.
For example, a micro-data algorithm might reduce the interaction time by
incorporating appropriate prior knowledge; this does not necessarily make
it more “data-efficient” than another algorithm that would use more trials
but less prior knowledge: it simply makes them different because the two
algorithms solve a different challenge. We then proposed and evaluated several
techniques for tackling this challenge by leveraging prior knowledge or building
surrogate models. The goal of the proposed approaches was to minimize the
interaction time between the robot and the environment required to solve the
task at hand and made the case that this is the most appropriate metric to
compare trial-and-error algorithms.

In our literature review (Chapter 2), we considered three main strategies
for micro-data learning: (1) using prior information in the policy, (2) learning
models of the expected return, and (3) learning models of the dynamics of the
system. First, we made the observation that when designing the policy, the
key design choices are what the space of the policy parameters is, and how it
maps states to actions. This design is guided by a trade-off between having a
representation that is expressive enough, and one that provides a parameter
space that is efficiently searchable. As such, we can insert prior information
either in the parameters or the structure of policy. In the first case, the most
successful approaches are based on learning from demonstrations (Billard et al.,
2008): starting with policy parameters that are close to the optimal ones
greatly reduces the interaction time needed to find the optimal policy. In the
second case, hand-designed policies (like Dynamical Movement Primitives, see
Sec. 2.5.3) have provided impressive results within the robot learning community.
Nevertheless, it is still not obvious how to automatically find a policy space that
is both expressive and efficiently searchable and expert task-specific knowledge
is required. Later in our review, we saw that Bayesian optimization is one of the

160
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most promising approaches for micro-data reinforcement learning (Sec. 2.6.1).
One of the most interesting features of BO is that it is straight-forward to insert
prior information either in the policy space or in the value of the expected
return (e.g., by using a simulator). However, BO does not scale to big search
spaces, which prevents it from being used with generic policies like neural
networks. In the last part of our review, we examined how learning models of
the dynamics and performing policy search on the learned models can greatly
reduce the interaction time (Sec. 2.7.1). The methods that fall in this category
have provided algorithms that require much fewer trials than algorithms that
fit in either of the previous categories. Nevertheless, most of these approaches
are based on Gaussian processes and thus practical implementations are only
available for simple and low dimensional systems.

In this thesis, inspired by the application of reinforcement learning to robot
damage recovery, we proposed algorithms that exploit prior information or
model learning in order to substantially reduce the interaction time for learning
robot controllers, especially with complex or high dimensional robots. With
our approaches, robots can now learn and adapt to unforeseen situations in
front of our eyes within a few seconds or minutes of interaction time.

We first proposed the usage of evolutionary algorithms for producing “cre-
ative priors” that can be effective when searching for a compensating behavior
(Chapter 3). More precisely, we considered a robot damage recovery scenario,
where a waypoint-controlled robot is damaged in an unknown way and, in
order to get out of the building, the robot must recover its locomotion abilities
so that it can reach the waypoints fixed by its operator. By combining proba-
bilistic modeling (GPs) and approximate probabilistic planning (MCTS), we
were able to propose the RTE algorithm that: (1) breaks the complexity by
pre-generating hundreds of possible behaviors with a dynamics simulator of the
intact robot, and (2) allows complex robots to quickly recover from damage
while completing their tasks and taking the environment into account. Our
experiments showcased that a damaged physical hexapod robot can recover
most of its locomotion abilities in an environment with obstacles, and without
any human intervention.

We then explored an alternative way of performing model-based policy
search with probabilistic models (Chapter 4). We showed that we can combine
the policy evaluation step with the optimization procedure in order to get a
more flexible, faster and modern implementation of model-based policy search
algorithms. In particular, we introduced Black-DROPS, a novel policy search
algorithm that takes advantage of multi-core architectures and lifts several
constraints (e.g., specific reward type) while maintaining the data-efficiency of
analytical algorithms. The main insight is that Monte-carlo approaches and
population-based black-box optimizers like CMA-ES (Hansen and Ostermeier,
2001) (1) do not put any constraint on the reward functions and policies, and
(2) are straightforward to parallelize, which can make them competitive with
analytical approaches when several cores are available. Black-DROPS was able
to learn to solve the cartpole swing-up task and to control a physical 4-DOF
manipulator in just 20 seconds of interaction time.
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We additionally explored an extension to Black-DROPS with the goal of
improving its computation time and quality of results in difficult scenarios
(like very noisy systems). In particular, we used the empirical bootstrap
method (Efron and Tibshirani, 1994) and the idea of racing (Heidrich-Meisner
and Igel, 2009) aiming at allocating as efficiently as possible the available
budget of function evaluations, that is, to spend more function evaluations
where it is actually needed and not blindly, like pure Monte-carlo methods.
Our preliminary results showcased that we can get similar (or better) quality
of results with vanilla Black-DROPS while improving the computation time by
avoiding needless evaluations. However, there is still space for improvement and
more investigation is needed since we only tested this extension on a simplified
system.

The vanilla Black-DROPS algorithm is essentially greedy and will exploit
the most promising states and/or actions; this might lead to sub-optimal
behaviors or even completely prevent convergence. This is especially the case
when the reward is sparse, that is, the reward is zero for the most part of the
state space. To handle these cases, we proposed Multi-DEX, a model-based
policy search approach that takes inspiration from novelty-based ideas. In
particular, apart from the cumulative reward, we also maximize the novelty
of state trajectories in order to explore new and interesting policies. We
demonstrated the performance of Multi-DEX in several sparse rewards scenarios
and showcased that it outperforms several state-of-the-art approaches.

While Black-DROPS scales well with the number of processors, the main
challenge of model-based policy search is scaling up to complex robots: as
the algorithm models the transition function between full state/action spaces
(joint positions, environment, joint velocities, etc.), the complexity of the
model increases substantially with each new degree of freedom; unfortunately,
the quantity of data required to learn a good model scales most of the time
exponentially with the dimension of the state space (KKeogh and Mueen, 2011).
To cope with this problem, we introduced a new model learning procedure,
called GP-MI, that combines model identification, black-box parameterized
priors and Gaussian process regression (Chapter 5). Our results revealed that
by combining Black-DROPS with GP-MI, we can learn to control a physical
hexapod robot (48D state space, 18D action space) in less than one minute of
interaction time.

In the last part of the thesis (Chapter 6), we discussed how safety constraints,
robustness and multiple priors can be incorporated in a Bayesian optimization
procedure in order to solve the micro-data reinforcement learning challenge.
More precisely, we first introduced sIT&E (Safety-aware Intelligent Trial & Error
Algorithm) an extension of the Intelligent Trial & Error algorithm that includes
safety criteria in the learning process. With sIT&E we were able to safely learn
crawling behaviors for a simulated damaged iCub humanoid robot (Nori et al.,
2015; Tsagarakis et al., 2007) in less than 20 trials. We, also, proposed ALOQ
(ALternating Optimization and Quadrature) and TALOQ (Transferable ALOQ)
with the goal of finding policies that are robust even in significant rare events.
Using TALOQ we were able to learn policies for a damaged physical arm that
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had to hit a ball and produce a specific velocity. Lastly, we introduced MLEI
(Most Likely Expected Improvement), a new acquisition function for Bayesian
optimization, that effectively combines multiple sources of prior information
in order to minimize the interaction time. Our results showed that using
the MLEI acquisition function we were able to learn effective policies for a
physical hexapod robot that had to climb different types of stairs and adapt to
unforeseen damages.

With our proposed algorithms, robots can now learn and find adaptive
behaviors in a handful of trials in order to complete their tasks despite possible
unforeseen situations. All of our methods relied on either leveraging prior
knowledge or building surrogate models; in many cases, these two strategies
were combined. Interestingly, the Black-DROPS algorithm combines somehow
the reinforcement learning community with the optimization and evolutionary
robotics literature and we believe that it will give rise to many interesting hybrid
algorithms. One such example is our Multi-DEX algorithm that merges the
big novelty-based literature from evolutionary robotics (Lehman and Stanley,
2008, 2011) with model-based RL (Deisenroth et al., 2013) to produce a sample-
efficient RL algorithm that is able to outperform many state-of-the-art pure
RL approaches. We can imagine many more variants just by changing the
type of models (e.g., probabilistic neural networks), reward functions (e.g.,
coming from an inverse reinforcement learning procedure) and optimizers (e.g.,
quality-diversity algorithms) inspired by other fields.
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Appendix A

Racing bootstrap pseudo-code

Algorithm 18 Evaluate Candidates with bootstrap and racing

1: procedure RACINGBOOTSTRAP({61,...,0x}, 1, Nstep; Mmax; IV, Thoots Trace)

2 S=0

3 U={61,...,0,}

4: A:{Gl,...,(})\}

5: n 4 Nstep

6: for all 8; € A do

7 fork=1,...,ndo

8 GY « G(6,)

9: end for

10: end for

11: while n < nmax and A > 0 and [S| < ¢ do

12: N 4= N+ Netep

13: for all ; € A do

14: values = {G},...,G?}

15: for j=1,...,N do

16: bvalues = bootstrap(values)
17: 07 = bvalues — values

18: end for

19: Ay = 6]

20: if A; < Thoot * values then

21: A+ A\{6;}

22: break

23: end if

24: svalues = sort(d;)

25: max = Trace * IN

26: min = (1 — Trace) * N

27: LB; = values — svaluesmin

28: UB; = values — svaluesmax

29: end for

30: for 6, € U do

31: if |0, € U|LB; < UBj| > |S| + |U| — u then
32: // probably among the best u
33: S+ Su{8;} // select it

34: A+ A\{6;}

35: U« U\{6:}

36: else if |6; € UUB; < LB;| > i — |S| then
37: // probably not among the best u
38: U<« U\{6;} // discard it

39: A+~ A\{6;}

40: end if

41: end for

42: for all 6; € A do

43: for k =n — ngep, ..., n do

44: GY « G(6,)

45: end for

46: end for

47: end while
48: end procedure

> Set of selected candidates for racing
> Set of undecided candidates for racing
> Set of alive candidates for self-accuray

> val is the mean of the values

> Average absolute error
> Self-accuracy check

> Sort the bootstrapped deltas
> Find index of upper bound
> Find index of lower bound

> Lower bound

> Upper bound

> Evaluate remaining active candidates
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