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        English abstract 

Cancer is one of the main cause of mortality in the world. Nanotechnologies are creating new 

approaches to cancer therapy, and it is of interest to design multimodal nanoparticles (NPs) 

and assess their therapeutic potential. The inorganic NPs studied in this thesis are based on 

metal oxides (e.g., TiO2 and HfO2) exhibiting functionalities that enable their localization and 

tracking by techniques, such as MRI and luminescence, as well as their quantification. When 

ionizing radiation impinges on these metal oxides, numerous electrons are generated, 

increasing considerably the energy transferred to tumors. Thus, radiotherapy becomes more 

efficient, while the irradiation dose of healthy tissues remains low.  

In this context, NPs should be endowed with certain properties, such as the ability to cross 

biological barriers, and non-toxicity for humans. Moreover, it is important to be able to detect 

NPs in the human body, especially in the tumor target, via their magnetic or luminescence 

properties. For this purpose, rare-earth elements are inserted in the metal oxide matrices. As 

the lethal temperature for healthy and tumor cells is different, it is also essential to ascertain 

the temperature of the cells during the radiation treatment. This may be achieved based on 

the light emission of suitable pairs of rare-earth elements. 

Titania (anatase) and hafnia (monoclinic) NPs were synthesized by the hydrothermal method 

enabling the control of morphology and size. Synthetic parameters were tuned to yield NPs of 

a size suitable for biological applications (30 – 60 nm). By adjusting the composition of a 

mixture of the structuring agents triethanolamine and oleic acid, TiO2 NPs were prepared with 

a range of sizes and morphologies. Altering the pH changed the habit of hafnium oxide NPs, 

while increasing the temperature decreased NPs size. Furthermore, the hafnia matrices were 

doped with rare-earth elements, such as europium, terbium and gadolinium, endowing NPs 

with functionalities such as luminescence tracking, magnetic resonance imaging and 

nanothermometry. The measured relaxivity constants indicate the NPs are potential T2-

weighted MRI contrast agents. Luminescence properties were also studied, and one 

nanothermometer (Eu0.01Tb0.03Gd0.16:HfO2) with room-temperature sensitivity of 0.1 %.K-1 was 

obtained. 

 

 



        Portuguese abstract 

O cancro é  hoje uma das principais causas de morte no mundo. As nanotecnologias estão a 

criar novas formas de tratamento das doenças oncológicas, sendo importante desenhar 

nanopartículas (NPs) multimodais e avaliar o seu potencial terapêutico. As NPs inorgânicas 

estudadas nesta tese são baseadas em óxidos de metais (nomeadamente TiO2 and HfO2) e 

exibem funcionalidades que permitem, quer a sua localização e rastreamento por técnicas 

como MRI e luminescência, quer a sua quantificação. Quando radiação ionizante incide nestes 

óxidos gera-se um grande número de electrões, o que aumenta consideravelmente a energia 

transferida para os tumores. Assim, a eficiência da radioterapia aumenta, ao mesmo tempo 

que a dose de radiação recebida pelos tecidos saudáveis permance baixa. 

Neste contexto, as NPs devem ser dotadas de certas propriedades, como a capacidade de 

atravessar membranas biológicas, e a não toxicidade para os seres humanos. É, também, 

importante poder detectar as NPs no corpo humano, em particular no tumor-alvo, através das 

suas propriedades magnéticas ou de luminescência. Para este efeito, inserem-se terras-raras 

nas matrizes dos óxidos de metais. Uma vez que a temperatura letal para as células saudáveis 

e para as tumorais é diferente, é importante poder medir a temperatura celular durante a 

irradiação, o que pode fazer-se com base na emissão de luz pelas terras-raras. 

Sintetizaram-se NPs de titânia (anatase) e hafnia (monoclinica) pelo método hidrotérmico, 

que permitiu controlar a sua morfologia e o seu tamanho. Os parâmetros de síntese foram 

ajustados por forma a obter NPs com a dimensão adequada às aplicações biológicas (30 – 60 

nm). Afinando a composição de uma mistura contendo os agentes estruturantes 

trietanolamina e ácido oleico, obtiveram-se NPs de TiO2 com uma gama de tamanhos e 

formas. A alteração do pH resultou na mudança do hábito das NPs de óxido de háfnio, 

enquanto que o aumento da temperatura diminuiu o seu tamanho. Doparam-se as matrizes 

de hafnia com terras-raras, como európio, térbio e gadolínio, que conferiram às NPs 

funcionalidades como rastreamento por luminescência, capacidade de imagem por 

ressonância magnética, e nanotermometria. As relaxividades medidas indicam que as NPs têm 

potencial como agentes de contraste MRI com ponderação T2. As propriedades de 

luminescência foram, também, estudadas, tendo sido preparado um nanotermómetro 

(Eu0.01Tb0.03Gd0.16:HfO2) com sensibilidade 0.1 %.K-1, à temperature ambiente. 
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Cancer is one of the major cause of mortality in the world [1]. More than 90% of cancer-related 

deaths occur by the spread of malignant cells to vital organs [2], a process called 

metastasis [3]. Nowadays, several ways to destroy cancer cells have been developed, 

including chemotherapy, surgical therapy, hormonotherapy, immunotherapy and 

radiotherapy [4]. Each of these approaches has severe drawbacks. For instance, the ionizing 

radiation used in radiotherapy goes through healthy cells before reaching the tumor target. 

The emergence of nanotechnologies has led to new approaches in local cancer therapy. 

Nanoparticles (NPs) with high electron density offer the possibility to selectively release high 

amounts of energy within the cancer cells, when activated by ionizing radiation. Thus, cancer 

cells can be killed and the surrounding healthy cells survive the treatment [5]. In this context, 

it is crucial to design NPs with several functionalities [6-7], able to cross biological barriers 

while being non-toxic for the healthy cells of the human body. NPs must be amenable to 

tracking in the human body, especially in the tumor target using an imaging technique, e.g., 

based on their magnetic or luminescence properties.  

This thesis is part of a wider project entitled ͞Multiscale evaluation (from in silico to in cellulo 

and in vivo) of new anticancer strategies based on ionizing radiation and nanoparticles͟. This 

project aims at answering the new challenges in the medical field, more precisely in the 

radiotherapy treatment and the optimization of the ionizing radiation effects. Such challenges 

encompass: (i) synthesis of nanoparticles; (ii) in cellulo quantitative definition of the 

nanoparticle’s dose (depending on the physicochemical characteristics of the nanoparticles, 

and on the biology); (iii) study of the in cellulo/in vivo internalization, bio-accumulation, and 

bio-persistence mechanisms of the nanoparticles; (iv) in cellulo and in vivo feasibility studies 

of the therapeutic potential; and (v) development of predictive methodologies (simulations) 

and experimental validation (micro dosimetry, proton irradiation by ion beam and medical 

beam). This project is a collaboration between several partners: CENBG, ICMCB, and the 

clinical services in radiotherapy at the Institut Bergonié in France. My thesis has been 

developed in the frame of a Đollaďoration ;͞Đo-tutelle͟Ϳ ďetween ICMCB (Université de 

Bordeaux) and CICECO (Universidade de Aveiro), and its overarching goal is to develop, 

synthesize and characterize multifunctional nanoparticles that the biologists and doctors will 

use to in cellulo tests.   
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This thesis consists of the following five chapters.  

The first chapter reviews the state-of-the-art, focusing first on the interactions between NPs 

and biological systems, and on the effects of the combination of NPs and radiotherapy. Next, 

the NP requirements to be suitable for biological applications and the nanomaterials already 

used in the biomedical field are described. Moreover, the choice of the two metal oxides (TiO2 

and HfO2) studied in this thesis is explained.  

Chapter 2 focuses on the development of TiO2 nanoparticles, describing the synthetic 

pathways available in the literature, and presenting our own work on the synthesis of such 

nanoparticles with controlled morphology and size.  

Chapter 3 centers on the development of HfO2 nanoparticles. Firstly, the synthetic pathways 

reported in the literature are summarized. Secondly, I described our study on the effect of 

synthesis parameters, such as pH, amount of precursor, reaction time, and temperature, on 

the NP size and morphology. The chapter closes with a discussion of the syntheses of 

multifunctional lanthanide-bearing HfO2 nanoparticles, such as europium, terbium and 

gadolinium.  

Chapter 4 reports on the characterization of the luminescence properties of the 

multifunctional nanoparticles previously synthesized. The use of NPs as ratiometric 

nanothermometers is also considered.  

Chapter 5 presents the relaxivity properties of the multifunctional nanoparticles and discusses 

their potential application as MRI contrast agents.   
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I - Nanoparticles for radiotherapy applications 

I. 1. Cancer therapies 

͞Cancer͟ is a serious disease that is caused when cells in the body grow in an abnormal and 

uncontrolled way, killing normal cells and often causing death [1]. A cancer therapy is a 

treatment that helps killing tumor cells.   

I. 1. a. Injection mode 

Several injection modes exist to introduce drugs inside human body such as inhalation, 

intravenous, transdermal [2] or also directly in the tumor [3].  

Intravenous injection, often denoted IV or iv, is a way of introducing liquid substances into a 

vein. IV is usually used to correct electrolytes imbalances, for blood transfusion, in the case of 

dehydration, or for chemotherapy or radiotherapy [3]. The advantage of IV is the injection 

facility and the fact that the bioavailability of the injected drugs is 100% because they are 

directly introduced in blood vessels and can easily diffuse to all the body [4].  

Transdermal drug delivery is the administration in the form of patches, which delivers drugs 

at a predetermined and controlled rate. Transdermal drug delivery devices are designed for 

active or passive targeting, allowing the drugs to be delivered across the skin barriers. In 

theory, transdermal patches work in a very simple way [2]. A relatively high drug payload is 

embedded in a patch, which is kept in contact with the skin for an extended period of time. 

Through a diffusion process, the drug enters the bloodstream directly through the skin. As the 

concentration is high on the patch and low in the blood, the drug keeps diffusing into the 

blood for a long period of time, maintaining constant drug concentration in the blood flow [2].  

The brain is an important and complex organ and human evolution built very efficient ways to 

protect it. Delivery of drugs to the central nervous system (CNS) is a challenge in the treatment 

of neurological disorders as well as of brain tumors. Drugs may be administrated directly into 

the CNS. The major challenge to CNS drug delivery is the blood-brain barrier which limits the 

access of drugs to the brain.  

Advances in cell biology understanding of blood-brain barrier have opened new possibilities 

for improving drug delivery to the CNS. Various strategies are available for this purpose 

including osmotic and chemical opening of the blood-brain barrier, and the use of transport 



Chapter 1: State of the art 

11 

References page 32 

or carrier systems [5]. Other strategies involve bypassing the blood-barrier system [6]. Various 

pharmacological agents have been used to open this blood-brain barrier [7-8] and direct 

invasive methods can introduce therapeutics agents into the brain substance [9].  

I. 1. b. Mechanism of action 

The goal of targeted nanoscale drug delivery systems is to increase the drug͛s concentration 

in the tumor through either passive targeting (EPR effect) or active targeting and at the same 

time to decrease its concentration in normal tissues,  

- improving the pharmacokinetics and pharmacodynamics profiles (cf. paragraph II. 1. 

b.), and drug solubility to allow intravenous administration;  

- improving drug stability;  

- improving internalization and intracellular delivery; 

- enhancing efficacy and 

- reducing side effects [10-11].  

With a well-chosen targeting strategy, drug administration protocols may be simplified. 

Toxicity is reduced by delivering the drug to the targeted site and by decreasing harmful 

systemic effects. Thus, drugs can be administrated in a smaller dose to produce the desired 

effect and can be selectively delivered to tumor cells. However, there are some drawbacks. 

The main one is the control of the release of the drugs. In addition, the second one is the 

complexity of the formulation, which needs to be developed.  

Besides passive and active targeting, double targeting [12], dual targeting [13] and inverse 

targeting [14] have also been used but are out of the scope of the present work.  

The principal schemes of drug targeting currently investigated in various experimental and 

clinical settings include [15-17]: 

- Direct application of the drug in the affected zone (organ, tissue), 

- Passive accumulation of the drug through leaky vasculature (tumors, infarcts, 

inflammation), 

- Physical targeting based on abnormal pH and/or temperature in the target zone such 

as tumor or inflammation (pH- and temperature- sensitive drug carriers), 

- Magnetic targeting of drugs attached to paramagnetic carriers under external 

magnetic field action, 
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- Use of vector molecules possessing high specific affinity toward the affected zone.  

The parameters determining drug targeting efficacy are [6]:  

- Target size 

- Blood flow through the target 

- Number of binding sites for the targeted drug/ drug carrier within the target 

- Number and affinity of targeting moieties. 

I. 1. b. i. Passive targeting 

Drug delivery systems, which are targeted to systemic circulation, are characterized as passive 

delivery systems. In this technique, dƌug taƌgetiŶg oĐĐuƌs ďeĐause of the ďodǇ͛s Ŷatuƌal 

response to physicochemical characteristics of the drug or drug carrier system [18].  

Recent studies noticed that some drugs show prolonged circulation in the blood and 

accumulate passively in tumors even in the absence of targeting ligands. Thus, passive 

targeting is based on anatomical differences between normal and diseased tissues to deliver 

drugs (Figure 1).  

 

 

              Figure 1: Structural differences between normal (healthy) tissue and tumor tissue [10] 
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Passive targeting involves nanocarriers transport through leaky tumor capillary fenestrations 

into tumor interstitium and cells by convection or passive diffusion. Then selective 

accumulation of nanocarriers and drug occurs by the Enhanced Permeability and Retention 

(EPR) effect [19]. Blood vessels in tumors are characterized by abnormalities [4]. Here are few 

examples of these abnormalities: high proportion of proliferating endothelial cells, pericyte 

deficiency and aberrant basement membrane formation leading to an enhanced vascular 

permeability. Moreover, the lack of lymphatic vessels or their non-functional presence in 

tumor tissue results in EPR effect [20] as shown in figure 2 [21].  

Passive targeting approaches take advantage of natural anatomical structures or physiological 

processes, which direct the carrier in in vivo distribution. However, the pore sizes are not well 

known but they are likely to be between 200 nm and 1.2 µm [19].  

Furthermore, the microenvironment surrounding normal and tumor cells is different. The 

hyper proliferation requires high metabolic rate [22]. The normal supply of oxygen and 

nutrients is not sufficient. This is why tumor cells use glycolysis to obtain extra energy, and 

create a local acidic environment [22-23]. Thus, nanotechnology can take advantage of these 

differences to design for example NPs bearing pH-sensitive drug-carrier bonding. 

Furthermore, cancer cells overexpress particular enzymes such as matrix metalloproteinases, 

which can induce specific bond cleavage between NPs and drugs [24-25].  

I. 1. b. ii. Active targeting 

In this approach, a carrier system bearing drugs reaches specific site rather than being uptaken 

by the reticuloendothelial system [26]. The active targeting supposes a surface modification 

of the nanocarriers, such as surface coating with either a bio adhesive, specific cell or tissue 

antibodies, or with albumin protein [27].  

 

Figure 2: Passive targeting and Enhanced Permeability and Retention (EPR) effect [21] 
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Active targeting requires the conjugation of a specific receptor ligand able to promote specific 

targeting. Active targeting is achieved by the molecular recognition of diseased cells by various 

signature molecules overexpressed at the diseased site as shown in Figure 3 [21]. Carrier 

specificity can be enhanced through surface functionalization with site-directed ligands, which 

bind or interact with specific tissues. Different kinds of ligands can be added to the NPs, such 

as DNA [28], proteins [29], mRNA, antibodies [30-31]. 

 

 

 

I. 2. Radiotherapy 

I. 2. a. Radiotherapy principles and current limits 

Radiotherapy is based on ionizing radiations (considered as such when they have energy 

higher than 13.6 eV), such as gamma rays or X-rays focused on the tumor. The irradiation goal 

is to weaken, or even better, kill tumor cells, while limiting the damage to healthy surrounding 

cells. X-rays are collimated in the volume of the targeted cancer tissue thanks to slits 

appropriately designed. However, certain tumors are becoming resistant to ionizing radiation. 

Moreover, patients treated with radiations frequently experience important side effects due 

to the irradiation of the surrounding healthy tissues in front of or behind the target of the 

beam area [32]. Another issue is the fact that the tumor is not necessarily a perfect sphere 

Figure 3: Active targeting [21] 
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and during the irradiation, some tumor cells located far away from the central treated volume 

may not receive enough radiation to be killed. To solve this problem, multipolar 

irradiation [33] can be used. In this method, the patient is irradiated from different directions 

with very precise beams, which are adjusted to the actual tumor shape. This allows decreasing 

the irradiation to the surrounding healthy tissues, making the technique less aggressive to the 

patient.  

Present nanotechnology knowledge may assist in devising better radiotherapy strategies. To 

better understand radiosensitization possible effects, interactions between matter and 

ionizing radiation are recalled.  

I. 2. b. Interactions between radiation and matter 

Figure 4 depicts the three principal interaction modes pertinent to radiation therapy 

(photoelectric, Compton and pair production processes) as a function of the incident beam 

energy and atomic number of the absorber matter [34]. For an absorber with Z similar to that 

of soft tissue (Z ≈ 7) and for mono energetic photons (photons with only one energy), the 

photoelectric effect dominates below 0.03 MeV, while above this energy the Compton effect 

leads up to ca. 24 MeV, when the pair production is the chief effect. However, for high Z 

elements (e.g., Hf Z = 72), the photoelectric effect is the dominant interaction below ca. 0.5 

MeV, while between this energy and 5 MeV, the Compton effect leads. Above 5 MeV the pair 

production dominates.  
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To summarize these effects let mention that: 

1. The photoelectric effect is the dominant energy transfer mechanism for X aŶd γ ƌaǇ 

photons having energies below 50 keV in biological tissues, but it is less important at 

higher energies. 

2. The Compton effect is the main absorption mechanism for X and γ rays in the energy 

range between 100 keV and 10 MeV. This is the range of energy used by most of 

radiotherapy protocols (with X or gamma rays). 

3. The electron-hole pair production requires 1.02 MeV. This process then rapidly 

increases with the photon energy and, well above threshold, varies approximately as 

Z². 

I. 2. c. Interactions implications in radiotherapy 

The three major forms of interactions between radiation and matter, which are of clinical 

importance in radiotherapy are the Compton and photoelectric effects, and pair production. 

The Compton effect is the most important one in modern-day megavoltage radiation therapy. 

The reduced scattering suffered by high-energy radiation and the almost homogeneous tissue 

dosage is primarily due to the Compton effect.  

Coherent scattering is of little importance in practical radiotherapy, but is important in X-ray 

crystallography analysis. Photoelectric effect has several important implications in practical 

radiology. In diagnostic radiology, the primary interaction mode is photoelectric. It is also 

responsible for the contrast effect. In therapeutic radiology, low-energy beams cause 

excessive absorption of energy in bone.  

The attenuation produced by the Compton effect is described by the mass scattering 

coefficient and is practically the same for all substances except hydrogen-containing materials, 

like water and soft tissue, where the Compton effect is higher because of the higher electron 

density. Because for the Compton effect, the attenuation does not depend on the absorber͛s 

atomic number, concrete is as good as lead in shielding of megavoltage equipment. The 

absorption in the bones and in the soft tissues are similar, unlike in photoelectric effect seen 

in orthovoltage radiation era (200 to 500 keV) [35]. 

Figure 4: Dominant process depending on Z number and photon energy [34]  



Chapter 1: State of the art 

17 

References page 32 

Protons and heavy particle beams have the ability to concentrate dose inside the target 

volume and minimize dose to surrounding normal tissues because of the Bragg peak effect 

and minimal scattering. However, there are several practical and fundamental difficulties with 

the use of these charged particles, including: 

- Narrow Bragg peak makes it difficult to achieve a homogenous tumor dose. 

- Generation of the charged particles requires expensive large machines. 

- Production methods ensure that the field size is very narrow. So, for cancer treatment 

the beam has to be scanned back and forth across the treatment area.  

Hydrogen-bearing materials, like fat, absorb more neutrons than heavier materials do and, 

thus, there is a 20% greater absorption in fat relative to muscle. Materials bearing atoms with 

low Z (e.g., fat and paraffin) are better for neutron shielding as compared to lead as a greater 

absorption occurs.  

Even if neutrons penetrate into matter, they are not commonly used in practical radiotherapy 

because of technical difficulties in their production and complicated dosimetry. 

To conclude, despite several decades of research, photon-beams still constitute the main 

therapeutic modality in radiotherapy because of several unresolved technical problems with 

other forms of radiation.  

I. 3. What about radiotherapy and nanoparticles? 

Radiotherapy is one of the most promising tools against cancer, even though it cannot be 

applied to all cancer types [36]. However, it still presents drawbacks that researchers are 

trying to overcome in order to improve efficacy in the treatment of tumor cells and to 

minimize side effects on healthy surrounding cells. A possible way to solve this problem is to 

use NPs, which can either weaken cancer cells and act like radiosensitizers or act as 

radioenhancers multiplying the radiotherapy effect. Various types of NPs have been 

studied [17], as depicted in Figure 5.  
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I. 3. a. Nanoparticles developed for radiotherapy 

Gold-based nanoparticles have been the most widely explored for radio-sensitization, because 

of their high inertness, good biocompatibility, and easiness of chemical modification. Chang 

reported that gold nanoparticles of 3 to 50 nm showed a significant size-dependent radiation 

therapy enhancement effect [37]. The local distribution of Au nanoparticles inside cancer cells 

could also affect their radio-sensitization ability. Irvine made Au nanocapsules (Au 

nanoparticles embedded in the lipid membrane), which could be homogeneously distributed 

within the cytosol following endosomal escape. Such increased homogeneous distribution of 

Au nanoparticles within cancer cells leaded to a 3-fold increase in radiation-induced cell 

damage [38]. Some reports indicated that the surface coating of Au NPs might play some roles 

in their radiosensitizing ability, although the exact physical mechanisms needed further 

clarification [39-40].  

Rare-earth elements have also been investigated for enhancing the efficacy of the radiation 

therapy. A few examples include Gd2O3 NPs and rare-earth upconversion NPs interesting by 

their tracking in vivo by magnetic resonance and, optical imaging [41-46]. Le Duc et al. 

prepared 5 nm sized gadolinium oxide NPs with a polysiloxane coating [46]. These NPs could 

accumulate into the tumor upon intravenous injection, and produce strong radio-sensitizing 

effects under X-ray irradiation, leading to survival of mouse bearing tumors [47-48].  

In addition to Au and rare-earth NPs, other high Z elements based NPs have also been 

developed for radiation therapy. For instance, bismuth has been used. The Shi group recently 

developed various bismuth sulfide based nanomaterials such as Bi2S3/PGLA 

Figure 5: Different types of radiosensitizers [17] 
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nanocapsules [49], Bi2S3 embedded mesoporous silica NPs [50] for enhanced radiation 

therapy due to the high Z number of bismuth. Moreover, some research focuses on 

tungsten [51-52] and tantalum [53-54]. These materials demonstrated X-ray attenuation 

abilities and could concentrate X-ray energy within tumor to enhance the radiation therapy.  

Hafnium is another high Z element explored for radio-sensitization [55]. HfO2 NPs have been 

mentioned to cause thermal induced stress damage to cellular components. HfO2 NPs have 

been tried and tested for the previous effect on radiosensitization in HCT116 cells in vitro and 

in vivo mice models. The studies showed a good biocompatibility as well as significant 

radiosensitization using these NPs [55].  

I. 3. b. Comparison between low and high Z atoms  

Radiation energy is absorbed and reemitted by the atoms present in the beam area. Usually 

low atomic number (Z < 10) atoms, such as C, H, O and N, and also P (Z = 15) and Ca (Z = 20), 

the main elements present in cells, are then also hit by radiation. The induced mechanism in 

the case of these atoms is more simple because they have only a few electrons. However, 

atoms with a higher Z, like I (Z = 53), Gd (Z = 64), Au (Z = 79) or Hf (Z = 72) have a higher 

absorption cross-section [56] and are involved in various mechanisms of reemission [36], such 

as the Compton and photoelectric effects, pair production, and some electron cascades, such 

as Auger electrons [57] (Figure 6). Calculations have been performed to simulate interactions 

between photons and matter (cells with or without nanoparticles) by Geant4 [58-59] using 

Monte Carlo methods [60-62]. The idea of using NPs as radiosensitizers is based on their 

capacity to increase the radiation dose deposition in the targeted tissue, thanks to differences 

in their mass energy absorption coefficients [17].  
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I. 3. c. Biological approach 

Radiobiological phenomena are measured in terms of the energy deposited in biological 

system. The common unit is the Gray (Gy) defined as the energy (J) deposited divided by the 

mass (kg) [36]. The three processes previously described initiate biological reactions in the 

irradiated system. However, the biological response mechanisms induced by radiation in 

cellular systems are still not completely understood and are currently studied [63]. One such 

mechanism is single- and double-strand DNA breakage, which is often lethal [64-65]. A second 

mechanism is the production of reactive oxygen species (ROS), caused by the interaction of 

ionizing radiation of water, which attacks DNA and results in irreversible apoptosis. Although, 

normally, the damaged DNA is repaired by the cells, radiation causes cell death or genetic 

changes [66].  

Cell death may be caused by apoptosis and necrosis. The latter, is a passive process in which 

cells pass through mitosis with unrepaired DNA strand breaks, leading to lethal chromosomal 

aberrations. Apoptosis, in contrast, is an active process characterized by programmed cell 

death in response to cellular stress [66].  

When the presence of NPs is involved, two additional mechanisms are proposed for the effect 

of high Z NPs on cells under ionizing radiation, radioenhancement and radiosensitization [36].  

- Radioenhancement is a physical effect. High Z NPs injected directly in the tumor locally 

increase the number of produced electrons and the number of redox processes and 

Figure 6: interaction of X-rays with high Z material NPs [17]  
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ROS. These electrons interact mainly with the tumor cells components leading to 

selective cell apoptosis.  

- In the radiosensitizing effect, NPs with low or high Z induce once internalized some 

element homeostasis. The cells are thus weakened and less likely to survive the 

ionizing radiation, promoting cell death, and as a consequence a  decrease of the 

tumor size 

To find out which mechanism is the more likely to take place for the systems we study in this 

thesis, the effect of ionizing radiation on cells with low (Ti, Z = 22) and high (Hf, Z = 72) Z will 

be compared. HfO2 [67] and TiO2 [68] have already been used in radiotherapy in vitro and in 

vivo. In vivo radiotherapy experiments in the presence of HfO2 NPs show a high percentage of 

tumor growth reduction upon irradiation, while NPs do not induce cell death without 

irradiation [55]. Moreover, HfO2 NPs seems to be non-toxic [69]. Nanobiotix, a French 

company, has already tested HfO2 NPs in phase I clinical trials and has obtained promising 

safety and antitumor activity results. Moreover, it is of great importance to be able to track 

and follow these NPs once injected, this is the reason why multifunctional nanoparticles are 

developed.  
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II - Multifunctional nanoparticles 

In this part, the properties as well as the design of NPs in order to use them in radiotherapy 

will be described.   

II. 1. How to design nanoparticles for radiotherapy applications? 

Beyond radiosensitization properties, NPs have to possess numerous characteristics such as 

stability in physiological media, biocompatibility, and absence of toxicity… Furthermore, the 

optimal NPs properties are described according to an application in biomedical fields [70].  

II. 1. a. Required characteristics of nanoparticles 

For biomedical applications, NPs must have the following properties [71]: 

- Dispersibility and colloidal stability in physiological media 

- Biocompatibility and biodegradability allowing the excretion 

- Non toxicity 

- Selectivity for the target 

- Stealthness to immune system 

Concerning the first property, NPs should have an isoelectric point different from the 

physiological media pH value, to avoid any aggregation. Regarding the second and third 

property, they must not interfere with any biological cycles, such as the iron cycle. These three 

properties are correlated and linked to the physicochemical properties of chosen materials 

and depend to some extent on the used synthetic pathways. Chemical composition, size 

distribution, shape, surface properties, charge and crystallinity are the physicochemical 

features which have to be designed [70] according to biomedical applications requirements. 

Considering target selectivity, the NPs should be localized in tumor cells and, for this reason, 

antibodies are often grafted on NPs [72]. The target selectivity can be achieved through 

different methods such as active or passive targeting (cf. paragraph I. 1. b). Finally, to be 

effective, NPs should not be destroyed too early by the human immune system [73], 

circulating enough time in body fluids to reach their target. For instance, NPs may be coated 

with a shell inert towards immune system, such as polyvinyl alcohol, polylactic acid or 

polyethylene glycol (PEG), or they have a size that allows them not to be detected by the 

immune system [73].  
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NPs toxicity is also a key parameter. Thus, it is of importance to study their biological 

interactions with cells, proteins, blood and tissue.  

II. 1. b. Pharmacokinetics, ADME  

Pharmacokinetics comprises absorption, distribution, metabolism, and excretion (ADME). The 

pharmacokinetics study can improve NPs design for diagnostic and therapeutic applications, 

improve the understanding of nanostructures non-specificity toward tissues and cell types, 

and improve toxicity determination [74].  

II. 1. b. i. Absorption 

Absorption is the process by which NPs proceed from the external site of exposure into an 

internal biological space, mainly central blood circulation [74]. Although the main absorption 

routes are oral, pulmonary, injection, nasal and dermal exposures, other routes are available 

such as ocular and intratumoral. Each absorption mode possesses a different mechanism of 

spreading in human body but NPs usually end up directly in blood or through passage of 

several physiological barriers. In the human body, NPs interact with opsonin proteins that they 

meet when circulating, the so-called opsonisation process [75]. Thus, a protein corona forms 

following the absorption of numerous proteins. This corona confers new surface properties to 

the particles and is usually composed of two layers. The inner shell includes proteins with a 

low exchange rate with the surrounding media, whereas the outer shell contains proteins with 

a faster exchange rate with media proteins. Thus, particles have new biological properties, 

which affect cellular and tissue responses. However, these new properties, which influence 

NPs biodistribution and internalization, are determined by NPs characteristics such as size, 

shape, and surface charge, as well as the administration way which has an effect on the 

different media the particles have to cross [76].  

 

II. 1. b. ii. Distribution 

This second pharmacokinetics step refers to NPs distribution to various tissues and organs via 

central blood circulation [74, 77]. However, NPs concentration in various tissues or organs 

depends on their properties and interaction with living system. NPs may stay within the tissue 

but outside cells, absorb on the cell membrane, or cross it to the cell inside. When NPs get 

into the cytoplasm, they are considered internalized. The exchanges can occur by several 

pathways such as exocytosis or endocytosis. In exocytosis, NPs are exported out of the cell via 
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secretory vesicles, while in endocytosis, they are carried into the cell. There are three types of 

endocytosis, phagocytosis, pinocytosis and receptor-mediated endocytosis. In phagocytosis 

;oƌ ͞Đellulaƌ eatiŶg͟Ϳ, the cell membrane engulfs NPs from the extracellular environment and 

form a phagosome. IŶ piŶoĐǇtosis ;oƌ ͞Đellulaƌ dƌiŶkiŶg͟Ϳ the Đell engulfs drops of fluid by 

forming vesicles that are smaller than the phagosomes formed in phagocytosis. Like 

phagocytosis, pinocytosis is a non-specific process in which the cell takes in whatever solutes 

that are dissolved in the liquid it envelops. Unlike phagocytosis and pinocytosis, receptor-

mediated endocytosis is an extremely selective process of importing materials into the cell. In 

receptor-mediated endocytosis, the cell will only take in an extracellular NP if it binds to its 

specific receptor protein on the cell membrane to form a coated vesicle. Similar to the 

digestive process in non-specific phagocytosis, this coated vesicle then fuses with a lysosome 

to digest the engulfed NPs and release them into the cytosol [78]. However, the distribution 

depends on NPs physical and chemical properties as well as the kind of cells such as blood, 

reticuloendothelial system, lymphatic system, brain cells and tumor cells [79].   

 

II. 1. b. iii. Metabolism 

NPs metabolism includes any process that alters their physicochemical properties and it 

depends on NPs composition and properties. Metabolic pathways are usually described and 

they involve chemical reactions with the NPs coating and core [11]. However, nowadays 

metabolism has not yet been properly studied.  

 

II. 1. b. iv. Excretion 

The fourth pharmacokinetics step is the excretion or elimination. There is a multitude of ways 

to eliminate an exogenous body from the human body, via the kidneys, expiration, seminal 

fluids, mammary glands, saliva, etc. However, if an organism is not able to eliminate NPs, then 

accumulation takes place [79].  

To conclude this part, pharmacokinetics is strongly dependent on physical and chemical 

properties of NPs such as size, shape, surface charge, etc., characteristics that influence NPs 

toxicity [11].  
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II. 1. c. Toxicity 

NPs physicochemical properties as illustrated above not only play a strong role on their 

pharmacokinetics but also on their potential toxicity, aspect described in the following.  

II. 1. c. i. Physicochemical properties 

When the particles size decreases, the surface to volume ratio greatly increases resulting in 

increased reactivity and, consequently, possible toxicity increase [80]. The choice among the 

many mechanism of NPs internalization is very challenging [81]. For example, to take 

advantage of EPR effect (cf. paragraph I. 1. b. i) NPs size should be below 100 nm, and in a 

receptor mediated endocytosis around 30 nm [82]. In conclusion, there is a clear dependence 

of NPs uptake with size [36]. Furthermore, the formation of aggregates and agglomerates, as 

well as NPs shape and aspect ratio determine their toxicity [83]. For example, it was reported 

that rod-like NPs are potentially more toxic than spherical ones (at a constant NPs size and 

surface area). The elongated shapes can cause a higher inflammatory response because of 

their tendency to stick on to the cellular membrane [84-85]. Additionally, rod-like shapes can 

have a larger contact area with the cell membrane if they interact through NPs longitudinal 

axis [86]. The chance to tune dimensions and control NPs shape is an advantage of 

nanotechnology.  

Regarding toxicity, the NPs surface charge is also an important parameter because it is related 

to their stability in the medium and it determines ions and biomolecules adsorption that can 

modify the organism response. Negatively charged and neutral NPs surfaces have a lower 

ability to cross the cellular membrane than positively charged surface. In general, cationic 

surfaces are considered more toxic than anionic surfaces because the cell membrane is made 

of phospholipids which are negatively charged [87]. 

 

II. 1. c. ii. Modification of biological mechanism 

Consider Figure 7 [80]. Toxicity can be induced through several mechanisms. Growing 

knowledge of these mechanisms may result in new therapeutic opportunities in 

nanomedicine [11]. The first possible mechanism is free radicals production, such as reactive 

oxygen species (ROS) [80]. A second mechanism is the inflammatory response due to 

macrophages activation when NPs are detected [88]. Phagocytosis, antigen presentation and 

immunomodulation through the production of various cytokines and growth factors are the 
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actions of macrophages to an inflammatory response [11]. The third mechanism is the 

alteration of elements homeostasis. Metal NPs can modify normal cellular Ca2+ concentration 

(by increasing Ca2+ influx, inhibiting Ca2+ seƋuestƌatioŶ,…), and, thus, disturb and inhibit the 

regulatory roles of balanced intracellular Ca2+ concentration, such as cellular metabolism, 

signal transduction and gene expression. For example, TiO2 NPs internalization alters calcium 

homeostasis, decreasing cell proliferation associated with an early differentiation [85, 89]. 

NPs coating may also play a role on toxicity [90-91].  

 

 

Figure 7 illustrates the importance of material composition, electronic structure, bonded 

surface species (e.g. metal-containing…), surface coatings (active or passive), and solubility, 

including the contribution of surface species and coatings and interactions with other 

environmental factors (e.g. UV activation, ionizing radiation…).  

 

Figure 7: Possible mechanisms of interaction between NPs and biological tissue [80] 
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II. 2. Some examples of nanoparticles used in biological applications 

Several types of particles are used in biological field either to transport or deliver drugs, or for 

imaging and therapy. Organic, inorganic and hybrid particles dimensions are usually in the 

range 3 to 200 nm, depending on the chosen administration mode. Different shapes are 

available for use, such as spheres, anisotropic particles, tubes, etc.   

II. 2. a. Organic nanoparticles 

Organic NPs have various sizes, shapes, composition and differ in terms of application such as 

drug loading capacity, releasing methods and delivery ability [16].  

II. 2. a. i. Liposomes and micelles 

A liposome and a micelle are tiny vesicles made of the same material (e.g. cell membrane). 

Liposomes and micelles can be filled with drugs and used as delivering agents to cancer 

cells [92-94]. Membranes are usually made of phospholipids, molecules that have a 

hydrophobic tail and a hydrophilic head group. Usually, phospholipids rearrange themselves 

into tiny spheres, smaller than a normal cell, either as bilayers or monolayers [95]. The bilayer 

structures are called liposomes [96] while the monolayer structures are called micelles [97]. 

Using different types of lipids, NPs size, surface charge and functionality can be changed and 

adapted to the wanted applications [98]. Main disadvantages of these NPs are the limited 

storage stability and the challenges in loading a broad variety as well as a large drug 

amount [99-100].  

II. 2. a. ii. Polymer nanoparticles 

Synthesis possibilities are huge and various due to the various chemical and physical 

properties of the polymers [101]. Size, shape, and surface can be controlled by synthetic 

conditions or by chosen monomers. That is the reason why polymers are a very interesting 

materials for drug delivery [102]. Furthermore, polymers can be biodegradable (degraded in 

the monomers, metabolized and removed from human body) or non-biodegradable. 

Polyethylene glycol and poly(L-glutamic acid) [103] are frequently used because of their 

biocompatibility and their stability, and they allow a stealth coating [104]. Drugs are grafted 

on the polymer chain which allows a high loading [105]. Main challenges of polymer NPs are 

proteins encapsulation [99].  
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II. 2. a. iii. Dendrimers  

Dendrimers are nanoscale compounds and constructed by successive addition of layers of 

branching groups. Each layer is called a generation. The last generation incorporates surface 

molecules that give dendrimers the desired functionalization for the chosen 

applications [106].  

 

Several methods of synthesis have been developed such as divergent growth method and 

convergent growth method [107]. The possibility of changing the size, shape and composition 

of dendrimers is very useful [108]. Moreover, dendrimers synthesis is reproducible and a 

divergent synthetic method exists, allowing a larger scale production. An useful dendrimers 

property is that as the generation number increases the dendrimers size increases and 

terminal groups become more tightly packed together, regulating release rates from drugs 

inside dendrimer [109]. There is also an increase of terminal groups (multiple ligand 

attachment) extending the affinity interaction probability [110]. Terminal groups can be 

hydrophobic or hydrophilic, either anionic [111] or cationic, and this determine their 

interactions in solvent [112]. Mendoza-Nava developed a 177Lu-dendrimer (polyamidoamine-

G4)-folate-bombesin with gold nanoparticles in the dendritic cavity as a potential tool for 

theranostics.  

Figure 8: Anatomy of a dendrimer. A dendrimer and a dendron are represented with solid lines. The 

colored dashed lines identify the various key regions of the dendrimers [106] 
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II. 2. a. iv. Carbon nanotubes 

Carbon nanotubes are rolled up cylinders of graphene sheets exhibiting unparalleled physical, 

mechanical [113] and chemical properties. Depending on the number of graphene layers 

which composed a nanotube, carbon nanotubes are classified as single-walled nanotubes 

(SWNTs) or multi-walled nanotubes (MWNTs) [114]. Carbon nanotubes are considered one-

dimensional nanomaterials because of their tiny diameters (1 – 2 nm) and long lengths 

(ranging from 50 nm to 1 cm). They behave distinctly from spherical NPs in biological 

environments, offering new opportunities in biomedical research [115]. Carbon nanotubes 

are insoluble in most physiological fluids, but they can be easily modified and made 

soluble [116]. With a suitable functionalization, carbon nanotubes can be used as drug 

delivery agent [117].  

II. 2. b. Inorganic nanoparticles 

Inorganic NPs exhibit various sizes, shapes, and compositions. Therefore, properties can be 

fashioned for specific recognition, sensing, delivery and imaging [16]. One advantage of 

inorganic NPs is that they may have simultaneous drug delivery and detection capabilities [71, 

118]. In order to be stealth to the immune system, inorganic NPs are often coated with 

biocompatible materials such as polyethylene glycol (PEG) [91] or silica [119]. This shell can be 

used also to functionalize the NPs as desired.  

II. 2. b. i. NPs of gold or silver 

 Gold nanoparticles 

Gold NPs are versatile materials for a broad range of applications with well characterized 

electronic and physical properties due to well-developed synthetic procedures such as 

reduction of diluted salt solutions (e.g. HAuCl4) by various reducing agents [120]. Thanks to 

synthetic pathway facility, colloidal gold NPs can be prepared in many shapes, such as 

spherical, cylindrical (nanorods), nanoshells, nanocages, nanostars, etc. Their surface is also 

easily modified with hundreds of molecules (iŶĐludiŶg theƌapeutiĐs, taƌgetiŶg ageŶts…Ϳ [121]. 

Gold NPs present a very high visible absorption. The color of the NPs can be tuned depending 

on their size and shape. This effect is due to a localized surface plasmon resonance. One part 

of the absorbed energy is used for plasmon effect [122] and the rest is turned into heat, with 

potential hyperthermia applications [123].  They can also be used to detect biomarkers in 
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heart diseases, cancers and infectious agents diagnosis [124]. Moreover, as gold is an excellent 

absorber of X-rays, gold nanoparticles can enhance the radiotherapy effect [123, 125-126].   

 Silver nanoparticles 

Like gold NPs, silver NPs possess suitable properties for being used in numerous technologies 

including biomedical, optical as well as antimicrobial applications.  Silver NPs can be 

synthesized by reduction of diluted salt solutions (e.g. AgNO3) by various reducing 

agents [120]. However, as silver nanoparticles are highly toxic for humans, their use is avoided 

when possible [127].  

II. 2. b. ii. Quantum dots 

Quantum dots (QDs) are colloidal semiconductor NPs based on atoms stabilized by an organic 

ligand layer [128]. QDs properties have broad absorption spectra, very narrow emission 

spectra, long fluorescence lifetime and high photostability because of the quantum 

confinement effects due to their nanometer size [129]. These properties depend on the 

particle size. QDs are usually formed by atoms from group II (alkyl metals, metal oxides or 

organic salts) and group VI (Sulfur, Selenium and Tellurium) [130]. QDs can find applications 

for instance in in vivo imaging and in photodynamic therapy [120]. However, selenium or 

cadmium toxicity raised problems about their further applications in biomedicine.  

II. 2. b. iii. Metal oxides 

Metal oxides NPs are easily synthesized with a good size and shape control and are attracting 

more and more attention for biomedical applications. For instance, silica (SiO2) and titanium 

dioxide (TiO2) have been already much studied.  

 Silica (SiO2) 

Mesoporous silica (50 to 300 nm) has free channels (mesopores) in which bioactive molecules 

adsorption is possible even with a high loading because of a high surface-to-volume 

ratio [131]. To control NPs size and pore size, a synthetic method using surfactant-templated 

synthesis has been developed [132]. Furthermore, silica is a biocompatible metal oxide and is 

commonly used as shell [133] that is easily functionalized with antibodies (for active 

targeting) [134] or fluorescent molecules (for imaging) [135].  
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 Titanium dioxide (TiO2) 

Titanium dioxide can be obtained by different synthetic methods, which lead to different NPs 

size, shape and morphology [136-138]. Furthermore, TiO2 finds various applications in 

nanomaterial science especially in nanomedicine. The photosensitization properties of TiO2 

are explored in photodynamic therapy [15]. Cell death is due to either reactive oxygen species 

(ROS) generation [15] or physiological consequences such as ionic homeostasis [89, 139].   

 

 

Conclusion 

This chapter described the interactions between NPs and biological systems and, in particular, 

the possible effect of NPs on the radiotherapy efficiency. NPs requirements for an application 

in the biomedical field and the several types of NPs already used were detailed.   

The goal of my thesis is to find out whether or not the hypothesis that metal oxide NPs bearing 

metal atoms with high Z values [36] have higher therapeutic effectiveness than other NPs is 

correct. A way of understanding how NPs influence radiosensitization is to compare metal 

oxides with different Z value atoms. This study is done in collaboration with CENBG and Institut 

Bergonié in Bordeaux, France. The effects of ionizing radiation on cells with low Z and with 

high Z NPs will be compared. Based on our knowledge on titanium dioxide NPs, the choice of 

hafnium in the same group of titanium was natural. The first goal was to prepare exactly the 

same NPs (size, shape, concentration) except for their composition. Secondly, in order to study 

the effect of ionizing radiation, NPs should be internalized by cells. Concerning their 

physicochemical properties and internalization mechanisms, NPs should have a size below 100 

nm and, if possible, between 30 and 60 nm. Thirdly, in order to track the NPs in human body, 

the presence of magnetic or luminescence properties is important. Thus, gadolinium 

(magnetism), and europium and terbium (luminescence) will be inserted in the hafnium oxide 

lattice. Subsequently, in order to follow temperature variations caused by the ionizing 

radiation, hafnium oxide nanoparticles will be co-doped with terbium and europium to be 

turned into nanothermometers.  
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Introduction 

TiO2 is commonly used in the daily life in the sunscreen, in the food industry as a food coloring 

(E 171). However, the toxicity of this oxide especially at the nanometer scale has not been 

studied. That is the reason why we decided to study the synthesis of TiO2 nanoparticles of 

different morphologies and to study their toxicity to different cell lines [1].  

 

I - Titanium dioxide properties 

Titanium is the ninth ŵost aďuŶdaŶt eleŵeŶt iŶ the earth’s Đrust. TitaŶiuŵ is geŶerallǇ fouŶd 

in its oxidized form such as ilmenite (FeTiO3), perovskite (CaTiO3) or titanate (CaTiSiO5). Pure 

titanium can be obtained by an extraction process with chlorides. This process allows the 

synthesis of titanium tetrachloride (TiCl4) which can be reduced via the Kroll process to obtain 

pure solid titanium [2]. Titanium dioxide can also be extracted from several ores by sulfuric 

acid treatment with a production of titanyl sulfate (TiOSO4). This compound can then be 

hydrolyzed and dehydrated to give TiO2 [3-5].  

 

 Structural and thermodynamic properties 

TiO2 is claimed as chemically inert compound with a high refractive index (2.61) which 

presents a photocatalytic activity [6] under UV light due to its 3.2 eV band gap. Three crystal 

phases can be found, rutile, anatase and brookite, and their structural and thermodynamic 

properties are gathered in Table 1. 
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Phase Rutile Anatase Brookite 
Crystal system Tetragonal Tetragonal  Orthorhombic 
Space group P42/mnm I41/amd Pbca 

Unit cell (Å) 
a = 4.594 Å 
c = 2.958 Å 

Z = 2 

a = 3.785 Å 
c = 9.5143 Å 

Z = 4 

a = 9.184 Å 
b = 5.447 Å 
c = 5.145 Å 

Z = 8 
Distance (Ti4+ - O2-)(Å) 1.95 – 1.99  1.93 – 1.98  1.86 – 2.04  

Coordination number 
[Ti4+] = 6 
[O2-] = 3 

[Ti4+] = 6 
[O2-] = 3 

[Ti4+] = 6 
[O2-] = 3 

Atomic packing factor 0.705 0.645 0.655 
Density (g.cm-3) 4.24 3.89 4.12 

Hardness (Mohs) 6.0 – 6.5 5.5 – 6.0 5.5 – 6.0 
Refractive index 2.61 – 2.89 2.48 – 2.56 2.58 – 2.70 

Enthalpy of formation 
ΔfH0 (298.15 K) 

(kJ.mol-1) 
- 944.50 ± 0.96 - 939.27 ± 1.26 - 941.00 

Entropy of formation 
ΔfS0 (298.15 K) 
(kJ.mol-1.K-1) 

50.37 ± 0.21 49.95 ± 0.42 - 

Structure 

 

 

 

 

While rutile is the thermodynamically stable phase, anatase and brookite are metastable and 

irreversibly transform to rutile at high temperature (750 – 915 °C) [8-10]. The structures of 

these solids comprise ͞TiO6͟ octahedra interconnected in several ways [11]. In rutile, two 

opposite edges of each octahedron are shared, forming a chain along the [001] axis. In 

anatase, the ͞TiO6͟ octahedra are arranged in zigzag and share four edges. Brookite has an 

orthorhombic structure in which the octahedra share three edges and vertices [12-13]. 

Although rutile is the most common form in nature, below 100 nm anatase becomes the most 

thermodynamically stable phase [14-16].  

Table 1: Physical and thermodynamic properties of the three crystal phases of TiO2  [7]  



Chapter 2: Titanium dioxide, TiO2 
 

45 
References page 85 

 Electronic and optical properties 

Because of the high value of the refractive index (Table 1), TiO2 reflects 96% of the light and 

appears as a white powder, reason for which it is a pigment widely used especially in the 

painting industry [17]. Titanium oxide is a semi-conductor material and the electronic band 

gaps of anatase, rutile and brookite are 3.26 eV, 3.05 eV and 2.96 eV, respectively [18-19]. In 

this way, photons with an energy higher than the band-gap (in the case of TiO2, UV light has 

enough energy) induce the transfer of an electron from the valence to the conduction band, 

with the production of an electron-hole pair. In the case of semiconductors, and depending 

on their kinetics, the electron and hole can recombine or an electron localized at a surface site 

can reduce an electron acceptor (A) absorbed at the semiconductor. The hole generated in 

the valence band oxidizes an electron donor (D) absorbed at another surface site (Figure 1).  

In the case of titanium dioxide, the acceptor is usually the oxygen molecule while the donor 

may be water or hydroxyl groups on organic compounds [16, 20].  

 

 

 

 

Figure 1: Mechanism of photocatalysis at a semiconductor particle [20] 
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 Some applications of TiO2 

Due to the strong white color, around 70% of synthesized TiO2 is used as pigment for paintings, 

plastics, paper and cosmetic products. The remaining of the production finds its applications 

in antimicrobial, catalytic or medical uses [21]. Nanometric TiO2 finds new applications, e.g., 

in cosmetics and sunscreens, even if it is still used as pigments [22-23]. Due to its electrical 

properties, and its large band gap, it can absorb UV from the sun. Moreover, due to its 

nanometric scale, the sunscreens are more transparent, and less viscous [5, 24]. TiO2 NPs are 

sometimes covered with a layer of alumina or silica to passivate their surface [25]. Nowadays, 

TiO2 NPs are also used in the pharmaceutical and food industry as food coloring under the 

name E171 [5], and also in toothpaste and drugs as thinner or excipient [21].  
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II - Several routes to synthesize TiO2 nanoparticles 

NPs can be synthesized by top-down and bottom-up approaches. The principle of top-down 

approach is to start from a solid material and gradually grind it in order to obtain particles with 

smaller and smaller sizes. Mechanical milling usually uses steel balls in a rotational closed 

chamber with a micrometric powder to be grinded. The obtained size of the object generally 

depends on the size of the steel balls used, the rotation speed, the temperature and the 

grinding time [26]. However, this process is not suitable to synthesize NPs with a controlled 

morphology and that is the reason why the bottom-up approach is more suitable. 

The goal of a bottom-up approach is to build a nanomaterial atom-by-atom or molecule-by-

molecule. The advantages of this approach are the control of NP size, morphology and 

structure playing with the synthetic parameters. Here is a description of some of the routes 

to synthesize TiO2 NPs with various morphologies.  

 Sol-gel synthesis route 

In the sol-gel method, a colloidal suspension, or a sol, is formed from the hydrolysis and 

polymerization reactions of the precursors. The precursors are usually inorganic metal salts or 

metal organic compounds such as M(OR)4 metal alkoxides consisting of a metal atom (M) 

surrounded by alkoxide groups such as methoxy, ethoxy, and butoxy group. The ͞sol͟ is a 

colloidal suspension of clusters in a liquid, upon which a gel is formed when these clusters 

grow to macroscopic dimensions [27]. Figure 2 shows the reaction scheme for the chemical 

synthesis by sol-gel process. The mechanism of the formation of a metal oxide bond from 

metal alkoxide precursors comprises the hydrolysis of the alkoxide moiety followed by a 

condensation reaction which eliminates H2O or ROH groups [28]. These reactions usually take 

place in a solution containing traces of water and an alcohol such as ethanol or methanol. 

While such reactions are typically carried out at room temperature, subsequent annealing of 

the resulting nanomaterials at high temperatures is often used to drive the condensation 

reactions to completion and to obtain a higher degree of crystallinity [27, 29].  
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Moreover, the precursor reactivity is linked to the electron – withdrawing behavior of the 

alkoxide groups, which increases the electrophilic behavior of the metal.  The rate of 

hydrolysis depends on several parameters, such as the amount of water and precursor, the 

temperature [27, 30-31]. During the condensation step, the seed amount depends on several 

parameters and particularly on the monomer concentration in the synthesis media. Thus, a 

growth phase is initiated and stopped when the whole precursor is consumed. Hence, the 

particle size is correlated to the number of synthesized seeds [32] and the amount of 

precursors [33].  

 

In early examples, particles of TiO2 of several hundred of nanometers were obtained [34]. The 

preparation of uniform TiO2 spheres by hydrolysis of TiCl4 in highly acidic conditions containing 

sulfate ions and then aging of this solution for long periods of time (days or weeks) for 

example, ǁas reported ďǇ Matijeǀić et al. (Figure 3) [34]. 

Figure 2: Reaction scheme of the sol-gel process. The formation of M – OH bond takes place via a 

hydrolysis reaction while the formation of metal oxide bond takes place via a condensation reaction. 
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Barringer and Bowen reported the synthesis of uniform micrometer-size particles through the 

fast hydrolysis of titanium ethoxide or isopropoxide precursors [35]. More recently, by a 

similar procedure but with addition of polymers to promote the pore formation, the synthesis 

of porous and nonporous monodisperse spheres were described [36].  

However, one of the main problems faced in sol-gel chemistry is the control of the hydrolysis 

and condensation rates of titanium precursors, which are usually too fast because of the 

presence of water in solution. To overcome this issue, a modification of the precursor with 

complexing ligands has been developed to reduce the hydrolysis rate. For example, Scolan 

used acetylacetone as such a ligand and conducted the hydrolysis in the presence of p-

toluenesulfonic acid to obtain crystalline, dispersible anatase NPs (1 – 5 nm) [37]. Khanna et 

al. used myristic acid to prepare 5 nm anatase nanocrystals with colloidal stability [38], while 

Jiu et al. used a combination of the surfactants F127 and CTAB to drive the hydrolysis of 

titanium isopropoxide modified by acetylacetone to obtain anatase particles of 3 – 5 nm in 

size [39-40].  

The polyol method has emerged in recent years as a good alternative to the sol-gel method to 

obtain crystalline particles at moderate temperatures and is based on the reaction between a 

polyalcohol and a metal salt. TiO2 particles were prepared by this method by first heating 

titanium isopropoxide in diethylene glycol at 140 °C, followed by addition of water and 

increasing the temperature up to 180 °C, resulting in irregular anatase crystallites 30 – 200 nm 

Figure 3: TEM of rutile TiO2 sol particles obtained by sol-gel synthesis at different ratios 

TiCl4/HCl/Na2SO4  [34]  
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in size [41]. Similarly, titanium butoxide was thermally decomposed in 1,4-butanediol at 300 

°C to yield anatase particles of 15 nm [42]. However, the size and the shape of the particles 

were not really well controlled.  

IŶ the earlǇ ϭ99Ϭs, “ugiŵoto deǀeloped the ͞gel-sol͟ method, based on the preparation of a 

metal hydroxide gel that is then aged to obtain a sol in which colloidal particles are dispersed. 

The synthesis starts with the replacement of the isopropoxy groups on titanium by the ethoxy 

groups of the triethanolamine generating a gel useful to slow down the hydrolysis rate. The 

gel was then added to aqueous ammonia, and heated at 100 °C to form a second gel composed 

mainly of titanium hydroxide. The gel was aged at 140 °C for 3 days, producing anatase 

particles with spherical or spindle like morphology depending on the pH of the initial 

solution [43]. The gel-sol process is a very good synthesis method to control the size and the 

morphology of nanoparticles [44-45]. The main drawback of sol-gel and gel-sol method is the 

use of expensive precursors, such as alkoxides.  

 Hydrothermal or solvothermal synthesis 

The hydrothermal (or solvothermal) term refers to any reaction in an aqueous (non-aqueous) 

solvent under high pressure and high temperature (below the critical condition). The 

hydrothermal syntheses are often carried out in a sealed Teflon vessel surrounded by a 

stainless steel autoclave. The extreme conditions inside the autoclave allow the dissolution 

and the recrystallization of compounds, which are insoluble at room temperature and 

atmospheric pressure. As in the sol-gel process, metal alkoxides can be used as precursors. 

The starting reagents are introduced in the autoclave, which is then sealed and heated in an 

oven. Several parameters can be controlled such as the precursor concentration, the filling 

ratio of the autoclave, and the temperature, and these parameters influence the autogenous 

pressure inside the autoclave. The pressure inside the autoclave may play a key role in the 

solubility and in the crystal growth rates of the NPs in the case of low boiling point solvents. 

Therefore, adjusting these parameters leads to various shapes and morphologies [16, 46-48]. 

This method has been widely used to synthesize titanium dioxide spherical nanoparticles [49-

50], nanotubes [51-53], nanorods [54-55], small platelets [56] or nanoplates [57], or 

spindles [58-59].  
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 Morphology control  

The morphology control discussed in this part is common to the two sol-gel and hydrothermal 

routes mentioned above. The surface energy of the particles is an important parameter in 

morphology control. The shape of a crystal can be predicted using the Gibbs-Curie-Wulff 

theorem [60-63]. In standard conditions the surface with the highest free energy will grow 

faster. In a crystal, the surfaces with the highest energy tend to be minimized. Thus, the shape 

of the nanoparticles is controlled by the competition between the growth kinetics of the 

several faces [64-66].  

In the case of TiO2, the thermodynamically stable form is a truncated bipyramid (Figure 4). The 

surface energy depends on the coordination number of the titanium atoms. The (101) surface 

has five and six-fold coordinated titanium atoms, whereas the (001) only has only five-fold 

coordinated titanium atoms. Thus, the surface (001) is more reactive than the (101) surface 

and will be minimized [15].  

 

 

 

 

 

 

 

Figure 4: (a) truncated bipyramid, thermodynamically stable form of anatase according to Wulff 

theorem; structures of the relaxed stoichiometric of (b) (101) surface, and (c) (001) surface [15] 
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II. 3. a. Morphology control by pH 

pH is an important parameter of crystal growth. It can modify the precursor’s reactivity, 

selectively catalyze a reaction, as well as play a role in the surface chemistry. Figure 5 describes 

the predicted evolution of the shape of anatase nanocrystals as a function of pH [66]. These 

nanocrystals vary from truncated bipyramid (acidic condition) to a more elongated form (basic 

condition) with the formation of (100) surface.  

 

The free energy of the surface varies as a function of the protonation state, related to the 

pH [67]. At pH above 7 and when the surfaces are not protonated, the (101) surface becomes 

more reactive than the (100) surface and is, thus, minimized. This evolution has been 

experimentally demonstrated several times [43, 50, 54, 68-69]. It is, thus, possible to control 

the NP morphology by adjusting the pH value and taking advantage of the thermodynamics. 

However, the disadvantage is that only thermodynamically favored morphologies are 

obtained. To overcome this issue, the use of structuring agents can lead to nanoparticles with 

more diversified morphology as illustrated further on.  

II. 3. b. Morphology control by structuring agents 

The principle of NP morphology control by structuring agents is the blocking of the growth of 

given facets in one or several directions. The structuring agents are specifically adsorbed on 

one or several crystal surfaces inducing a steric hindrance and preventing their further growth. 

Consequently, the choice and the concentration of structuring agents are key factors to obtain 

the targeted morphology. Figure 6 shows an example of TiO2 NP synthesis assisted by 

structuring agents. The combined use of some of these agents allows the formation of several 

morphologies.  

Figure 5: Predicted morphologies for anatase as a function of the pH [66]  
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The most commonly used structuring agents are secondary or tertiary amines and carboxylic 

acids. Thus, TiO2 NP such as nanospheres [70-73], nanowires [74], nanorods [70-71, 74-76], 

nanocubes [72], or nanoneedles [72-73] can be synthesized.  

The main limitation of the use of structuring agents is the washing process to eliminate the 

organic molecules which can be a time consuming step. Although washing with water or with 

several organic solvents is possible, often the organic molecules with high affinity for the metal 

oxide remain strongly coordinated and can induce toxicity, which is a huge drawback for 

biomedical applications.  

 

 

 

Figure 6: Schematic illustration of the overall formation and shape evolution of TiO2 NPs using 

structuring agents  [70]  
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 Other synthesis routes 

There are other ways of preparing TiO2 NPs, including aerosol spray synthesis, physical and 

chemical vapor deposition, pyrolysis, sonochemical synthesis and microwave assisted 

synthesis [16]. Some synthetic routes to TiO2 NPs are depicted on Table 2. 

Synthesis route State 
Synthesis 

temperature 

Size and 

morphology 
Annealing References 

Sol-gel Liquid 20 – 150 °C Controlled Yes 
 [27, 43-45, 
72, 76-79] 

Hydrothermal / 

Solvothermal 
Liquid 

100 °C to 200 
°C 

Controlled No 
 [46, 48, 54, 
69, 80-90] 

Aerosol spray Solid 
High 

temperature 
Controlled/ 
Aggregation 

No  [91-95] 

Physical and 

chemical vapor 

deposition 

Gas 200 – 700 °C 
Film with 
controlled 
thickness 

Yes / No  [96-97] 

Pyrolysis Gas < 100 °C Controlled Yes  [98] 

Sonochemical Liquid  Controlled Yes  [99-102] 

Microwave Liquid > 100 °C Controlled Yes / No  [103-108] 

We have decided to focus on hydrothermal synthesis because it affords crystalline 

nanoparticles without the need for annealing. The criteria of small size and good dispersity 

are essential for biological applications and, thus, we have circumvented annealing in order to 

avoid NP aggregation/growth, which prevent their re-dispersion in aqueous media.  

  

Table 2: Main synthetic routes to TiO2 nanoparticles 
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III - State of the art: the known two-step synthesis of TiO2 NPs 

starting from P25 

The titanium precursor choice is a key factor. Beside the titanium alkoxides often used for TiO2 

synthesis it is also possible to start the synthesis of controlled-shape NPs using already formed 

NPs such as P25 (See part III. 1). The principle is based on the total destructuration of TiO2 in 

highly alkaline media. While the alkoxides are very reactive the species obtained by this way 

(scrolled nanosheets) provide a slower generation of Ti4+ monomeric species and, thus 

facilitates the control of the shape [109].  

 Precursor: P25 from Degussa/Evonik 

Titanium dioxide P25 is industrially produced by aerosol spray synthesis. A liquid containing 

an inorganic precursor is passed through a flame and the temperature rise leads to a rapid 

transformation of the precursor, initiating the formation of NPs that coalesce and sinter. The 

spray method creates a competition between agglomeration and sintering of the particles 

leading to nanoscale objects. Indeed, by controlling the precursor concentration, the flame 

and the temperature, it is possible to control the size of the final objects. This technique 

generates very small NPs. Figure 7 describes the synthesis process and the reaction equations.  

      

Degussa/Evonik-P25 is composed of anatase and rutile crystallites in a ratio of 70:30 or 80:20. 

Indeed, the X-Ray diffraction (XRD) pattern of P25 (Figure 8) shows the presence of anatase 

(ICDD PDF no. 21-1272) and rutile (ICDD PDF no. 21-1276). The peaks are labeled with the 

corresponding Miller indices. Considering the main peaks of anatase (101) and rutile (110), 

the average crystallite sizes are, respectively, 26 and 36 nm.  

Figure 7: (left) Aerosol process with TiCl4 as precursor [110]; (right) reaction equations 

           2 �2 + �2  →  2 �2�  ����4 + 2 �2� → ���2 + 4 ���
 ����4 + 2 �2 + �2 → ���2 + 4 ��� 
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The TEM images (Figure 9) were also used to determine the NP size as well as their shape. The 

analysis of P25 reveals the surface projection of random isotropic forms: spheres, cubes, 

square base bipyramid. The statistical size distribution is measured using the ImageJ software, 

on more than 300 NPs (Figure 9). Titanium dioxide P25 NPs range between 10 and 50 nm with 

an average size of 26 nm and a standard deviation of 8 nm. The standard deviation provides 

an indication of the size homogeneity. P25 NPs have a strong tendency to aggregate, reported 

in the literature due to the synthetic procedure, and for this reason, they are not the best 

choice for biomedical applications.  
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Figure 8: XRD pattern of P25 

Figure 9: (left) TEM image of P25, (right) size distribution of P25 nanoparticle diameter  
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 First step toward controlled TiO2 NPs: Titanium dioxide based scrolled 

nanosheets (sNSs) 

The synthesis of TiO2 scrolled nanosheets by the hydrothermal route has been introduced by 

Kasuga et al., in the late 90s [51-52, 111]. These objects exhibit a cylindrical morphology with 

an empty central cylinder and a large aspect ratio. Their high specific surface area is of interest 

for many applications, such as catalysis [112-113], energy storage [114], photovoltaic [115], 

or in the biomedical field [116-118].  

This synthesis comprises heating between 60 and 180 °C for 20 hours to 2 – 3 days in an 

autoclave a TiO2 powder (usually P25) with an aqueous solution of sodium hydroxide (5 to 10 

M). Scrolled nanosheets with a length of more than 100 nm, an external diameter of 8 nm and 

an internal diameter of 5 nm, are obtained after washing with an aqueous diluted hydrochloric 

acid solution (0.1 M) (Figure 10). The experimental conditions are controlled because different 

particle morphologies can be obtained depending on the temperature and bases used, as 

shown in Figure 11 and Figure 12 [119].  

 

 

 

Figure 10: TEM images of (a) commercially P25, and (b) P25 treated with 10M aqueous NaOH at 110 

°C for 20 h [111]  

Figure 11: Synthesis processes to oďtaiŶ seǀeral ͞titaŶate͟ struĐtures [120] 
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Since the discovery of this synthesis, numerous studies were performed in order to elucidate 

the reaction mechanism for the formation of the scrolled nanosheets [122-130]. I will present 

two of these mechanisms: the peeling-scrolling mechanism and the oriented nanotube crystal 

growth from nanoloop seeds.  

 

Peeling – scrolling is the more commonly accepted mechanism (Figure 13) [128]: 

- Crystalline TiO2 NPs are decomposed into a disordered phase with a cleavage of the Ti-

O-Ti ďoŶds ďǇ the alkaliŶe solutioŶ aŶd the forŵatioŶ of ͞TiO6͟ speĐies; 

- Formation of plates/sheets of H2Ti3O7 ǁith aŶ aligŶŵeŶt of ͞TiO6͟ speĐies; 

- Individual trititanate layers are peeled off from the plates – exfoliation; 

- And scrolled up into nanotubes. 

The principal driving force of the cleavage of the Ti-O-Ti bonds is the surface tension due to 

an asymmetry related to H deficiency in the plates surface layers. The mechanism is presented 

in Figure 13.  

Figure 12: Morphological diagrams of hydrothermally treated anatase, rutile, and P25. Dependence 

of morphological phase diagrams on the hydrothermal conditions and TiO2 precursors (anatase, 

rutile, and Degussa P25) [121] 
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In the oriented nanotube crystal growth from nanoloop seeds investigated by Kukovecz et 

al. [125], pressure and basic conditions lead to the dissolution of the parent nanoparticles 

forŵiŶg ͞TiO6͟ ŵoŶoŵers. These ŵoŶoŵers reaĐt to forŵ sheets of sodiuŵ titaŶate 

(Na2Ti3O7), which then scroll and continue to grow through the long axis. This model differs 

from the previous one by the absence of a sodium titanate sheet stacking. The mechanism is 

presented in Figure 14.  

 

Figure 13: Reaction mechanism with the formation of H2Ti3O7 plates, the peeling process and the 

scrolling of nanosheets [128]   

Figure 14: Reaction mechanism based on the oriented nanotube crystal growth from nanoloop 

seeds [125]  
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The scrolled nanosheets can be used as precursors for the synthesis of nanoparticles with a 

shape and size control. Indeed, their tubular structure allows structural reorganisation under 

hydrothermal and mild conditions (pH < 11) to form nanoparticles with a controlled 

morphology [120]. The nucleation/growth from ͞TiO6͟ octahedra allows the formation of TiO2 

nanoparticles with a specific orientation, which depends on the experimental conditions.  

 Second step product: Titanium dioxide nanoneedles (NNs) 

The obtained scrolled nanosheets are used to synthesize nanoneedles in a second 

hydrothermal treatment. This synthesis, described by Nian and Teng, takes advantage of the 

pH control to form particles with several morphologies [54]. Sodium hydroxide is added to an 

aqueous solution of the scrolled nanosheets in order to adjust the pH. Then, a hydrothermal 

treatment is performed in an autoclave at temperature below 200 °C for 2 – 3 days. According 

to the predicted morphology (described in II. 3. a), high pH allows the formation of elongated 

nanoparticles, here assimilated to nanoneedles (NNs) (Figure 15).Here is the reaction pathway 

of the synthesis of titanium dioxide nanoneedles from scrolled nanosheets:  

 

 

 

 

 

 

Figure 15: TEM images of TiO2 nanoparticles prepared from hydrothermal treatment (at 175 °C, for 

48 h) of nanotube suspensions with pH values of (a) 2.2, (b) 4.0, and (c) 5.6  [54]  
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The formation of nanoparticles with a controlled morphology described by Xu et al. [120] 

(Figure 16) is claimed to start with a process of dissolution – nucleation of the nanosheets 

folloǁed ďǇ ĐrǇstal groǁth. First, a dissolutioŶ of the ŶaŶosheets oĐĐurs forŵiŶg ͞TiO6͟ 

octahedra. Then, there is a nucleation of the seeds on the surface of the nanosheets. During 

this step, the ͞TiO6͟ octahedra self-organize and then self-assemble [131]. The high 

temperature allows a fast growth of TiO2 and its crystallization. As predicted by Barnard [66], 

the crystal growth of anatase seeds at pH above 7 is carried out through (001) because it is 

the surface with the highest free energy.  

 

 

Another theory, by Li [132], has been proposed to explain the formation of elongated objects. 

In this model, HO- ions are progressively released during nanosheet dissolution and can be 

adsorbed selectively on the (100) and (010) surfaces, lowering their free energy and, thus, 

decreasing their growth. The nanoneedles are more elongated when the release of HO- ions 

is important. The reaction stops with the consumption of the totality of the nanosheets.  

In the following part, the synthesis and characterization of the scrolled nanosheets and the 

nanoneedles are described.  

  

Figure 16: Schematic of the dissolution and nucleation mechanism for Na-titanate nanotubes 

transformation (I) Na-titanate decomposition, (II) TiO2 nucleation, and (III) TiO2 nuclei growth in basic 

conditions detailed by Xu et al. [120] 
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IV - Results on the synthesis of nanoneedles 

We decided to synthesize our TiO2 nanoparticles as described by Nian and Kasuga [54] and to 

choose the following experimental conditions summarized in Figure 17. The autoclave filling 

ratio is kept identical to 0.6 in all the experiments.  

 

 

 First step toward controlled TiO2 NPs: Titanium dioxide based scrolled 

nanosheets (sNSs) 

The titanium dioxide based scrolled nanosheets are obtained from a hydrothermal treatment 

of P25 in basic conditions at 130 °C for 20 hours (first reaction in Figure 17). The commonly 

accepted reactions [54] are given. See the experimental part (Experimental section). 

 

 

The size and shape of the scrolled nanosheets are ascertained by TEM; Figure 18 shows 

elongated nanoobjects of variable lengths. The particle’s transparency in their central part 

indicates lower density and confirms the tubular morphology. Some of the sheets are not 

completely scrolled and, therefore, still exhibit a lamellar structure. The tube’s length varies 

from ten to several hundred of nm, while the diameter of the tubes is ca. 9 nm with a standard 

deviation of 1.5 nm.  

Figure 17: Titanium dioxide nanoneedles synthesis pathway 
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The XRD pattern of TiO2 scrolled nanosheets is presented in figure 19. The XRD analysis is 

performed before and after acid washing and drying at 40 °C (cf. Experimental section). The 

two diffractograms represent, respectively, the sodium titanate (before the acid washing) and 

hydrogen titanate (after the acid washing) phases. The evolution of the diffraction patterns 

matches a structural modification that occurs with the acid treatment: Na+ ions are replaced 

by H+ between the sheets [52]. The resulting crystalline phase has been the subject of debates 

in the scientific community [133-134]. However, the obtained product is very often considered 

to be a protonated form of a titanium oxide or hydrogeno titanate, formulated as 

H2mTinO2n+m [81]. The four main peaks at 10°, 24°, 28° and 48° Ϯθ in Figure 19 have been 

attributed to layered titanates such as A2Ti2O5.H2O where A is either Na+ or H+ depending on 

the degree of washing [54]. The peak at 10° Ϯθ is due to the interlayer distance between 

sheets (0.7 – 0.8 nm) [81].  

Figure 18: TEM images of scrolled nanosheets at two magnifications after the acid washing 



Chapter 2: Titanium dioxide, TiO2 
 

64 
References page 85 

 

It was suggested that these A2Ti2O5.H2O titanates are built of two-dimensional layers in which 

͞TiO6͟ octahedra are combined through edge sharing as illustrated in Figure 20. 

 

The lattice is orthorhombic, and the layered structure results in a large elongation of the unit 

cell along the [001] direction. Exchangeable A+ resides in between the layers, and the 

interlayer distance varies with the Na+/H+ exchange. To form nanotubes, the individual layers 

Figure 19: XRD diffractograms of TiO2 scrolled nanosheets (JCPDS 47-0124) [54]  

Figure 20: Structure models: (a) protonic titanate, A2Ti2O5.H2O, projected along the [001] direction 

(with hidden interlayer H+ and HO-); (b) anatase TiO2 projected along the [101] direction.   
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are assumed to peel off and scroll along the [001] direction of the A2Ti2O5.H2O structure with 

the tube axis directing along the [010] direction. The diameter of the tubes is 9 nm, and the 

length ranges from several tens to several hundreds of nanometers.  

 Second step product: Titanium dioxide nanoneedles (NNs) 

The reaction was performed by systematically treating a suspension of 0.7 g of scrolled 

nanosheets for 72 hours at 140 °C while varying others parameters such as the reaction time, 

aging of the precursor and pH. In the case of the nanoneedles shown in Figure 21 (a) the pH 

was set to pH 9.8. The nanosystems have an elongated shape and a length between 70 and 

750 nm. The statistical distribution of the lengths and widths has been measured on 300 NPs 

(Figure 21 (b) and (c)). The average length is 350 nm, with a standard deviation of 130 nm, and 

the average width is 46 nm, with a standard deviation of 10 nm. The nanoneedles are well 

dispersed on the TEM grid and do not show aggregation.  

 

To determine the crystalline structure of the product, XRD analysis was performed (Figure 22). 

Anatase is commonly obtained at low temperature [135] and, accordingly, the diffractogram 

exhibits the characteristic peaks of well crystallized anatase. An average crystallite size of 26 

Figure 21: (a) TEM image of nanoneedles, (b) (c) statistical distribution of nanoneedles length and 

width respectively 
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nm was determined using the Scherrer formula and the strongest anatase reflection (101). 

However, this formula considers spherical particles and not nanoparticles with an anisotropic 

shape. This is why, the size obtained by XRD is closer to the width of the nanoneedles.  

 

Peak FWHM (°) Crystallite size (nm) 
(101) 0.527 16 
(004) 0.226 36 
(200) 0.38 21 

BǇ a ͞Le Bail͟ refiŶeŵeŶt of the XRD patterŶ, the nanoneedles are composed of 96% of 

anatase and 4% of brookite. The results of these refinements are shown in Table 4. The cell 

parameters of anatase are very close to the published ones (JCPDS 21-1272), and the cell 

parameters of the brookite are very different from the published ones. The differences can be 

explained by a very low intensity of the brookite peaks.  

   Cell parameters (Å,°) 
Phase Space group Proportion a b c α β γ 

Anatase I 41/amd 96% 3.7877 3.7877 9.4959 90 90 90 
Brookite Pbca 4% 7.8799 6.1338 5.9399 90 90 90 

Figure 22: XRD pattern of titanium dioxide nanoneedles 

Table 3: Full width at half maximum (FWHM) and crystallite sizes of the three main peaks of the XRD 

pattern of anatase 

Table 4: “uŵŵary of the iŶforŵatioŶ oďtaiŶed ďy a ͞Le Bail͟ refiŶeŵeŶt of the XRD patterŶ of the 
nanoneedles 
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The facets in the nanoneedles have been described in the previous part (cf. III. 3). Thus, the 

NNs can present the (101), (001), and (010) / (100) along their length. These data have been 

verified by the study of the crystal orientation of the nanoneedles by HRTEM. Figure 23 depicts 

the HRTEM images and the Fourier transform. The study of the orientation and of the 

localization of the diffraction spots obtained by Fourier transform shows that the nanoobjects 

are elongated along the [001] axis. The anatase crystallizes under a truncated bipyramid with 

8 equivalents of the (101) facets and 2 equivalents of the (001) facets. This configuration is, 

however, only possible for small nanoneedles [66-67]. When the nanoneedles are long 

enough (> 30 nm), the (100) facet appears (Figure 23). The crystal axis has been ascribed by 

the Fourier transform and the lattice spacings are shown in red. Moreover, the shape of the 

nanoneedles is not perfectly homogeneous and, thus, it is difficult to quantify the proportion 

of the several facets.  

 

To explain why the enhanced crystal growth has a preferential direction along the [001] of 

anatase, it has been assumed that it should be related to the constraints imposed by the 

configuration and crystalline structure of the nanotube precursors. Thus, the correlation 

between the crystalline structures of the starting nanotubes and the nanoneedles could offer 

insights into the mechanistic steps of the transformation of nanotubes to anatase TiO2 

nanoneedles. Indeed, upon hydrothermal treatment of the nanotubes, the structure is 

assumed to proceed with the rupture of the layer and the subsequent dissolution of small 

fragments or ͞TiO6͟ octahedra (this is still to be demonstrated), followed by their 

Figure 23: HRTEM pictures at two magnifications and Fourier transform of a nanoneedle longer than 

30 nm 
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rearrangement to form anatase crystals whose size depends on the pH during the 

hydrothermal treatment. The preferential elongation in the anatase [001] is ascribed to the 

specific feature of the nanotubes. The zigzag configuration of the edge-shared ͞TiO6͟ 

octahedra of the nanotube walls, (Figure 20a) with projection along the [001] of the titanate, 

is indeed very similar to the unit layer of the TiO2 anatase projected along the [001] (Figure 

20b). It is proposed that, upon hydrothermal treatment, the titanate framework thanks to a 

lower pH and a possibility of generating Ti-O-Ti bonds, shrinks locally, reduce the interlayer 

distance, and transform into anatase TiO2 structure.  

In order to further characterize the nanoneedles, specific surface area (BET) analysis was 

performed on the nanoneedles (Table 5). P25 has a specific surface area of 56 m2/g, which is 

in agreement with Degussa data (50 ± 15 m2/g). For the nanoneedles, the specific surface area 

is of 86 m2/g in accord with the theoretical calculated value (115 m2/g), if we consider a 

bipyramid with a square based with an average size of L = 45 nm and l = 15 nm. Last, the 

specific surface area for the scrolled nanosheets is 380 m2/g. The particles can be classified as 

follows by their surface specific area:  

Specific surface area (P25) < Specific surface area (NNs) ≪ Specific surface area (sNSs) 

Nanoparticle types Specific surface area (m2/g) 

P25 56 
Scrolled nanosheets 380 

Nanoneedles 86 

 

The nanoneedles shown in Figure 21 have a length above 200 nm and are a bit too long for 

the aimed applications. That is the reason why, several parameters have been studied in order 

to decrease the size of the nanoneedles: reaction time, precursor aging, pH and the use of 

structuring agents  

IV. 2. a. Effect of the reaction time 

To optimize the operating conditions, the influence of the reaction time on the length of the 

nanoneedles is a crucial parameter and was, hence, studied. The hydrothermal treatment of 

the sNSs was performed at 140 °C and pH 9.8, for one, three and six days using the same batch 

of scrolled nanosheets. Figure 24 shows the TEM images of the obtained nanoneedles. Based 

Table 5: Specific surface area of P25, scrolled nanosheets and nanoneedles obtained by BET method 
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on these representative images of the samples, the reaction time is indeed an important factor 

playing a major role on two parameters. The first one is the reaction yield and the overall 

consumption of all the sNSs, since after one day the rate of scrolled nanosheets is close to 

50%, while it strongly decreases after 3 days, to disappear after 6 days. The second parameter 

is the average length of the nanoneedles which decreases from 539 nm after one day to 246 

nm after 6 days. In the beginning of the reaction, long nanoneedles are present with a size 

similar to the size of the scrolled nanosheets as if the nanosheets were able to unwrap and 

restack because of a much lower reaction pH than during their synthesis. When the reaction 

time increases the length of the nanoneedles decreases progressively.  

 

 

Thus, in order to decrease the length of the nanoneedles the reaction time should increase. 

Assuming, this variation is linear, 9 days are necessary to reach a length as short as 60 nm 

which is not really worth considering. Therefore in order to have a completion of the reaction, 

the following parameter were fixed in further studies: pH 9.8, hydrothermal treatment at 140 

°C for 3 days and we studied the aging of the scrolled nanosheets. 

Figure 24: TEM images of nanoneedles after (a) 1 day, (b) 3 days, (c) 6 days. (d) box chart on 

nanoneedle length 
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IV. 2. b. Effect of the nanosheet aging 

To assess the reproducibility of the results, we repeated the experiments several times and 

encountered problems attributed to the aging of the nanosheets. When old nanosheets (kept 

in water medium at neutral pH for more than one month) were hydrothermally treated in the 

same way as freshly prepared ones, they only led to very small nanoparticles rather than 

nanoneedles (Figure 25).  

 

 

A more systematic study of the aging of the nanosheets was made keeping the nanosheets at 

room temperature in water for 0, 15 and 31 days to see the impact on the nanoneedles length 

as shown in Figure 26.  
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Figure 25: Nanoneedles obtained from (a) fresh nanosheets and (b) old nanosheets 

Figure 26: Variation of nanoneedle length as a function of the age of nanosheets 
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These results are in agreement with some work also reported by Bavykin [136] who showed 

that the stability of scrolled nanosheets in solution could not necessarily be considered as 

granted and that it also depended on the pH and on the counter anion solutions. Playing with 

nanosheet aging to decrease the nanoparticle size is far too time consuming. We have 

investigated another parameter, the pH of the reaction medium.  

IV. 2. c. Initial pH of the reaction 

The initial synthesis pH  was adjusted  with nitric acid on freshly prepared scrolled nanosheets. 

The experiments were performed at different pHs at least 3 times and up to 8 times for some 

of them. In each case, the statistics on the NNs length were performed on at least 300 NPs. 

The variation of the length of the nanoneedles is illustrated on Figure 27.  
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At pH 3 and at pH 6, only small nanoobjects were obtained (with an aspect ratio of 1 at pH 3 

and 1.5 at pH 6). The size of the nanoneedles in acidic conditions confirmed the results 

obtained and published by Nian [54]. Controlling the pH effectively allows a control of the 

length of the nanoneedles.    

Figure 27: Variation of the lengths of nanoneedles with the pH. Each dots represents an average of 3 

to 8 experiments (each experiments giving rise to statistics on 300 NPs), errors bars represent the 

statistics on these experiments 
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 Control of the NNs shape and morphology with structuring agents 

We nevertheless tried to synthesize the NPs in the presence of structuring agents which are 

known (i) to provide a selective control on crystal facets [109], and (ii) to help controlling the 

NPs size (mind that the NPs are to be used for in vitro and in vivo biological testing and their 

length must be decreased significantly to 30 – 60 nm). The choice of structuring agents was 

based on a contribution by Sugimoto and collaborators who showed that triethanolamine 

(TEOA) and oleic acid (OA) could be used as structuring agents to control the growth and 

morphology of the nanoparticles. TEOA was used by Sugimoto in the gel-sol method, which is 

a bottom up approach, to ĐoŶtrol the release of ͞Ti4+͟ from the gel formed by the stabilization 

of titanium isopropoxide [44, 72].  

 pH Shape 

Primary amines: 

Diethylenetriamine (DETA) 
Ethylenediamine (ED) 

Trimethylenediamine (TMD) 
Triethylenetetramine (TETA) 

9.5 Elongated ellipsoidal particles 

Secondary amines: 

Diethylamine (DEA) 
9.5 Large ellipsoids with small aspect ratio Tertiary amines: 

Trimethylamine (TMA) 
Triethylamine (TEA) 

Triethanolamine (TEOA) >11 Ellipsoidal particles 

Sodium oleate 
Sodium stearate 

10.5 Cuboids 

Sugimoto demonstrated that in basic conditions, secondary amines, such as diethylamine, and 

tertiary amines, such as trimethylamine and triethylamine, acted as complexing agents of Ti4+ 

ions to promote the growth of ellipsoidal particles with a low aspect ratio. While primary 

amines such as diethylenetriamine, ethylenediamine, trimethylenediamine and 

triethylenetetraamine acted rather as shape controllers to produce ellipsoids with a high 

aspect ratio (Table 6). Furthermore, he showed that sodium oleate and sodium stearate acted 

as colloidal stabilizers and allowed the synthesis of well dispersed cuboids [72].  

Sugimoto studied the influence and the role of TEOA as a trap in the liberation of titanium 

from the gel formed from titanium alkoxides before the formation of the TiO2 nanoparticles, 

Table 6: Structuring agents studied by Sugimoto in his gel-sol synthesis [72] 
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and our goal here was to apply this approach to a top down approach, starting with scrolled 

nanosheets as a sourĐe of ͞Ti4+͟. 

Thus, based on the work by Sugimoto, we decided to use two structuring agents, 

triethanolamine and oleic acid and to study their influence on the reactivity of scrolled 

nanosheets and their effects on the size and shape of the resulting nanoneedles. 

IV. 3. a. Triethanolamine (TEOA) OR oleic acid (OA) 

Before using a mixture of these two structuring agents, the synthesis of nanoneedles was 

performed with a single one, at pH 9.8. To compare the results, the same batch of starting 

scrolled nanosheets was used. TEOA or OA was added to the scrolled nanosheets and then 

the pH was adjusted to 9.8 with an aqueous solution of sodium hydroxide. Attempts with 0, 

500 and 1000µL of structuring agents in a suspension containing 0.7 g of sNSs were reacted 

for 72 hours at 140 °C. The same attempts were carried out for OA. The molar ratios between 

TEOA and Ti are 0.45 with 500 µL and 0.9 with 1000 µL of TEOA. The molar ratios between OA 

and Ti are 0.2 with 500 µL and 0.4 with 1000 µL of OA (Figure 28).   

 

Figure 28: (a) (c) TEM images of nanoneedles prepared with 500 µL of triethanolamine (TEOA) and 

oleic acid (OA) respectively; (b) (d) nanoneedles length distribution for initial pH of 9.8 
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Upon addition of various amounts of TEOA, the nanoneedles length remains constant at ca. 

250 nm and the morphology is also unchanged. Upon addition of various amounts of OA, the 

length of the nanoneedles is ca. 200 nm, with a standard deviation of 100 nm, while no 

difference is observed in the shape of the nanoparticles. Thus, we can conclude that TEOA or 

OA alone have no effect on the nanoneedles length and shape, for the same starting set of 

scrolled nanosheets. 

If we take care of the age of the scrolled nanosheets and of the washing steps, it is possible to 

have trustable reproducible results. Figure 29 summarizes the statistics on the length of the 

nanoneedles on at least three different experiments on freshly prepared scrolled nanosheets. 
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Thus, averaging these experiments, we confirmed that the structuring agents have no 

significant effect on the nanoneedle length not only on a single set of starting material but on 

different sets of experiments.  

Instead of starting from an amorphous gel of Ti(OH)x as iŶ “ugiŵoto’s Đase where the OH can 

be easily replaced by TEOA or OA [72], I started from scrolled nanosheets which need to be 

rolled out and then restacked. So, the structuring agents at the working pH may be inefficient 

to interact ǁith the sĐrolled ŶaŶosheets aŶd liďerate the ͞TiO6͟ oĐtahedra froŵ the 

crystallized structure and to control the morphology of the nanoparticles. On the contrary, 

Sugimoto showed that at pH 9.6, going from TIPO to amorphous Ti(OH)x gel, he could obtain 

Figure 29: Nanoneedle length average with or without structuring agents (TEOA or OA). The error 

bars are obtained by means of at least 3 experiments.   
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TiO2 nanoparticles with TEOA on its own (Figure 30). However, at high pH (> 11.7), he 

encountered the same problem as we did: the predominant influence of the basicity of the 

medium yielding longer nanoneedles. In our case, pH > 11.7 prevented the unfolding and the 

restacking of the scrolled nanosheets and the few NNs which were nevertheless formed were 

very long.  

 

 

IV. 3. b. Triethanolamine (TEOA) AND oleic acid (OA) 

We then tried a combination of these two structuring agents and decided to fix the quantity 

of TEOA at 500 µL and vary that of OA (see Table 7 for the ratio). The TEM images of NPs 

obtained with various amounts of OA shown in Table 7 illustrate the synergetic effect of the 

combined use of these two structuring agents. With a fixed amount of TEO, increasing the OA 

amount decreases the length of the nanoneedles and, eventually, the nanoneedles turn into 

nanorods. This can be explained by the formation of a complex ďetǁeeŶ ͞Ti͟ surfaĐe aŶd 

carboxylate anions [75], which controls the growth on (101) plane. However, this is only 

speculation because in our case we have a top-down process. The nanosheets can react as 

follows: (i) the scrolled nanosheets break in small fragments, which can then rearrange, and 

the structuring agents might control the size of the fragments when they break, (ii) the scrolled 

ŶaŶosheets dissolǀe to forŵ ͞TiO6͟ oĐtahedra, ǁhiĐh aggloŵerate aŶd theŶ ǁe ĐaŶ suggest 

that the structuring agents control the growth as described by Sugimoto, (iii) or the both can 

happen.  

 

Figure 30: Effect of initial pH on the shape control of TiO2 particles by TEOA at [TEOA]/[TIPO] = 2.0 

obtained by gel-sol synthesis at 140 °C for 3 days [72] (Compare with Figure 28a for pH 9.8) 
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350 (± 100) 87 (± 30) 56 (± 20) 
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7 2.5 1.5 

Further experiments were performed at pH 9.5 (Figure 31). Thus, the decrease of the size of 

the nanoneedles with the increase of the amount of the oleic acid was confirmed.  
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Table 7: Variation of nanoneedle size and shape with the amount of oleic acid at a fixed concentration 

of TEOA at pH 9.8  

Figure 31: Nanoneedles length with the amount of oleic acid at a fixed concentration of TEOA (500 

µL) at pH 9.5 
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TEOA is reported to be an effective shape controller to obtain elongated ellipsoidal particles, 

presumably due to the adsorption of the amine to the specific planes parallel to the c-axis, 

favoring the growth of the [001] plane [72, 78]. The increase of the OA to Ti ratio allows 

decreasing the length of the nanoneedles.  

To conclude, the use of surfactants in nanoparticle synthesis is a convenient way to control 

their size and the shape. The objective of synthesizing nanoparticles with a size between 30 

and 60 nm has been achieved.  

 Preliminary results on the interaction of NPs with cells 

Certain biological tools have already been developed to study the effects of the ionizing 

radiation on cells in the presence of NPs, such as survival clonogenic assay, cellular 

proliferation, and study of cell signaling pathways. From the physical point of view, some 

modeling of the interaction of ionizing radiation and nanoparticles has also been developed 

by introducing data for irradiation and nanoparticles in Monte Carlo (Geant4) simulation [137-

139].  

Moreover, the study by high resolution ion beam micro-analysis of the NPs cells internalization 

developed at CENBG highlighted the behavior differences depending on the cell lines or on 

the type of NPs [1, 140]. Indeed, the internalization studies showed that whatever the 

morphologies and sizes, NPs were mainly localized in the cytoplasm and the rate of 

internalization depended on the cell types. In this way, TiO2 NPs were studied on three cell 

lines, HeLa (Cancer human cells), HUVEC (human tissue cells), HEKn (Human Epidermal 

Keratinocytes), showing different behavior depending on the culture media, type of NPs 

;ŵorphologǇ, size…Ϳ aŶd the Đell liŶes. The preseŶĐe of TiO2 NPs modifies the ionic and cellular 

homeostasis, and a threshold of the amount of TiO2 NPs in cells exists to observe the increase 

of the intracellular Ca2+ concentration. This increase is responsible for the modification of the 

cell proliferation, stress of the endoplasmic reticulum, and mitochondrial anomalies. Thus, 

these results allow the definition of a toxicity level depending on the shape of TiO2 

nanoparticles for a given cell type. Thus, we can classify the TiO2 NPs according to their 

toxicity, and show that the scrolled nanosheets of TiO2 are the most toxic [1]. This preliminary 

work was carried out using the NPs that I have prepared and that are reported in this thesis.  
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Furthermore, others have characterized the cellular response to the ionizing radiation. Several 

cell lines (Sarcoma cells: IB115 and IB106, HeLa cells) were studied at 1, 2 or 6 Gy with 6 MeV 

of photons, 9 MeV of electrons or 3 MeV of protons at CENBG using a methodology which 

combines survival clonogenic assay, cell proliferation, and DNA damage [141]. This study 

showed the various response as a function of cell lines, irradiation dose and ionizing radiation 

types. The results are essential to define the combined effects of ionizing radiation and 

nanoparticles.  

Some preliminary results showed that the activation pathways observed in the case of the NP 

toxicity were also induced by ionizing radiation. This conclusion was forthcoming from the 

study of 10 genes involved in cell stress (apoptosis, ROS, inflammation, endoplasmic reticulum 

stress, etc.). Likewise, for cells irradiated at 0, 2 and 6 Gy the PIXE analysis, which quantifies 

the distribution of chemical elements [142], showed an increase of the intracellular Ca2+ 

concentration.  
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V - Inserting rare-earth elements in TiO2 matrix 

In order to track the NPs after their uptake by cells, rare-earth elements were embedded in 

the TiO2 matrix. Because of the large difference between the sizes of Ti4+ and trivalent rare-

earth ions, this matrix insertion is not trivial and only few papers report it. Eu-doped TiO2 NPs 

were synthesized by certain sol-gel routes. However, these papers show no TEM images [143-

146] or, occasionally, TEM reveals aggregated NPs [147-150]. This is because the sol-gel route 

used involves a heat treatment that leads to agglomerated NPs, unsuitable for bioapplications. 

Eu-doped TiO2 NPs were also prepared by hydrothermal routes reported in [151-158]. 

However, for our purposes, the best synthetic way is the one developed by Haifeng Zou [152-

153, 155-156], similarly to the method we have used for the synthesis of nanoneedles. 

However, these syntheses led to nanoparticles, which were not characterized by EDX. Thus, 

the repartition of europium in the nanoparticles of TiO2 ĐouldŶ’t ďe deterŵiŶed.   

Figure 32 shows the XRD of the undoped, and 5% Eu, 5% Tb doped TiO2 nanoneedles prepared 

from P25.  
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Figure 32: XRD of undoped, 5% Eu, 5% Tb-doped TiO2   
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The XRD patterns show, mainly, the presence of the anatase phase. The peak at 30.4° in the 

diffractogram of Eu-doped TiO2 is ascribed to Eu2Ti2O7 (JCPDS 23-1072) or EuO (JCPDS 18-

0507) [146].  

The TEM images in Figure 33 show that as usual in the absence of the rare-earth elements, 

350 nm long nanoneedles were obtained. While in the same conditions, addition of europium 

and terbium resulted in unfinished reaction with remaining nanosheets, concomitant with 

small nanoparticles and long nanorods. The composition of these nanorods was ascertained 

by EDX mapping (Figure 34 and Figure 35) revealing that the small nanoparticles contain 

titanium, i.e., anatase (according to XRD). The long nanorods are essentially made of europium 

and terbium, presumably in the oxide form, and probably below the XRD detection limit (< 

5%).   

 

 

Figure 33: TEM images of undoped TiO2, 5% Eu-doped TiO2 and 5% Tb-doped TiO2  
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Figure 34: a) STEM images of 5% Eu-doped TiO2, b) overlapping of EDX mapping of c) Ti (in red) and d) 

Eu (in green)  

Figure 35: a) STEM images of 5% Tb-doped TiO2, b) overlapping of EDX mapping of c) Ti (in red) and d) 

Tb (in green)   
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Conclusion 

I have accomplished the hydrothermal synthesis of TiO2 nanoparticles, and by adjusting the 

composition of a mixture of the structuring agents, triethanolamine and oleic acid, TiO2 

nanoparticles were prepared with a range of sizes and morphologies. Judicious choice of the 

synthetic parameters and structuring agents allows tuning the size and the morphology of the 

nanoparticles. The goal of preparing 30 to 60 nm TiO2 NPs has been achieved. However, the 

insertion of lanthanides in the TiO2 matrix could not be accomplished.   
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Experimental section 

 Scrolled nanosheets synthesis of titanium dioxide 

The scrolled nanosheets synthesis has been adapted from the work from Kasuga [51-52, 111]. 

In a 50 mL Teflon autoclave, 2 g of TiO2 P25 and 28 mL of a freshly prepared 10 M NaOH 

solution are mixed. The autoclave is closed and manually shaken. The Teflon autoclave is then 

placed in the stainless steel autoclave and moved to an oven (Memmert 1400 W) with the 

following heating cycle:  

 

At the end of the synthesis, the autoclave is opened. The white slurry is washed with nitric 

acid (0.1 M) for 5 minutes and with centrifugation steps at 5000 rpm for 5 minutes. The 

experiment is repeated several times until the supernatant becomes acid (ascertained with 

pH paper). 450 to 500 mL of solution are needed in total. Then, the samples are washed with 

distilled water and centrifuged between two washing cycles until the pH of the supernatant 

becomes around 7. The scrolled nanosheets are either kept in water or dried at 40 °C.  

  Nanoneedles synthesis of titanium dioxide  

The synthesis of nanoneedles use the scrolled nanosheets previously prepared according to 

Nian [54]. A 1 M NaOH solution is added dropwise to one third of the scrolled nanosheets 

suspension corresponding to 0.7 g of powder, in order to reach the required pH (measured 

with a pH-meter). The volume is then adjusted to 30 mL and added to a 50 mL Teflon vessel 

in the stainless steel autoclave. The autoclave is placed in an oven at 140 °C for 72 hours after 

which the mixture is naturally cooled down and washed with distilled water until pH 7 

(centrifugation steps: 9000 rpm, 10 minutes).  
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 Rare-earth doped nanoneedles synthesis 

Before adding the NaOH solution, according to the desired doping percentage, rare-earth 

chlorides are added to the solution. Then, the same hydrothermal treatments are applied to 

the mixture as well as the same washing treatment.  

Characterization methods 

See this part at the end of chapter 3.   
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Introduction 

Hafnium and titanium are in the same group of the Periodic Table, but the former has a higher 

atomic number. The synthesis of nanoparticles containing these two elements and their 

behavior under ionizing radiation allows us to investigate the role of nanoparticles in the 

enhancement of the radiotherapy treatment. Thus, this chapter focuses on the synthesis and 

characterization of hafnium oxide nanoparticles, and is divided in four parts. The first one 

presents the properties and applications of hafnium oxide, the second part summarizes the 

main synthetic routes, and the choice we made corresponding to the required specifications 

in terms of ŶaŶopaƌtiĐle’s size and shape. The third part describes our results on the synthesis 

and characterization of HfO2 nanoparticles, and the fourth one features the insertion of 

lanthanides in the HfO2 matrix to endow them with multifunctionality.  

 

I - Selected hafnium dioxide properties and applications 

Hafnium is a group 4, period 6 element, and has an atomic weight of 178.49 and an atomic 

radius of 159 pm. Although hafnium was predicted in 1869 by Dmitri Mendeleev it was 

isolated for the first time only in 1922. In its elemental form, hafnium has a silver-grey 

appearance. Hafnium does not exist as a free element in nature, being found in zirconia 

compounds such as zircon [1].  

 

HfO2 is a chemically inert compound with a high melting point (ca. 2900 °C) and an electrical 

insulator with a band gap of 5.3 – 5.7 eV [2]. Hafnia adopts the structure of zirconia (ZrO2). In 

contrast to TiO2, which features six-coordinated Ti in all phases, zirconia and hafnia consist of 

seven or eight-coordinate metal centers. A variety of crystalline phases exists including cubic 

(Fm-3m), tetragonal (P42/nmc), monoclinic (P21/c), and orthorhombic (Pbca and Pnam) [3]. 

Table 1 gathers the structural and thermodynamic properties of these crystalline phases [4].  
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Phase Cubic Tetragonal Monoclinic  
Space group Fm-3m P42/nmc P21/c 

Unit cell (Å) 
a = 5.11 Å 

 
Z = 4 

a = 5.15 Å 
c = 5.28 Å 

 
Z = 4 

a = 5.11 Å 
b = 5.17 Å 
c = 5.28 Å 
α = 99.ϯ5° 

Z = 4 
Distance (Hf4+- O2-)(Å) - - 2.03 – 2.20  

Coordination number 
[Hf4+] = 8 
[O2-] = 4  

[Hf4+] = 8 
[O2-] = 4  

[Hf4+] = 7 – 8  
[O2-] = 3 – 4  

Density (g.cm-3) 10.30 10.01 9.68 
Hardness (GPa) 12 - 15 
Band gap (eV) 5.51 5.82 -  

Refractive index 1.98 – 2.02  
Enthalpy of formation 

ΔfH0 (298.15 K) 
(kJ.mol-1) [5] 

- 1144.7 ± 1.26 

Structure 

 
 

 

Monoclinic phase forms at a relatively low temperature, while the tetragonal phase is 

obtained above 2000 K, and the cubic phase forms above 2870 K [4, 8-9].  

 

Hafnium dioxide is used in optical coatings and as a high-k dielectric in DRAM (dynamic 

random access memory) capacitors and in advanced metal-oxide-semiconductor devices [10]. 

The use of high-k dielectrics can make the charge storage area smaller so as to increase the 

memory capacity [11-12]. The high-k dielectrics allow the improvement of the operation in 

flash-memory devices, also enhancing the rewrite speed and charge storage duration and 

reducing the programming (write/erase) voltages [11-12]. Although several high-k dielectric 

materials have been studied, the high hafnium oxide dielectric constant (ca. 25) makes it one 

of the most promising candidates as gate dielectric metal oxide films [13-14]. Hafnium based 

oxides were indeed introduced by Intel® in 2007, replacing silicon oxide as a gate insulator in 

field-effect transistor [15].  

 

Table 1: Physical and thermodynamic of 3 crystalline phases of HfO2  [4, 6-7] 
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Recently, the potential biomedical applications of hafnium dioxide have been assessed, 

especially its use as a radioenhancer in radiotherapy [16-22]. For instance, HfO2 coupled with 

silicon nanowires is used for sensitive detection of small nucleic acid oligomers, and is also 

used to enable double- and single-stranded DNA transport through nanopores fabricated in 

ultrathin (2 – 7 nm thick) freestanding HfO2 membranes [23-24]. An HfO2 biosensor is 

developed for early stage detection of human interleukin-10 to avoid heart failure [25]. HfO2 

metal-oxide semiconductor (MOS) capacitor based dosimeter has been fabricated on single 

crystalline n-type silicon for the detection of ionizing radiation [26]. Crystalline HfO2 NPs has 

been used to improve the radiation dose within tumor tissues [16]. The densely packed HfO2 

nanoparticles can selectively absorb the high energy gamma/X-ray radiations, allowing a 

higher production of electrons in the tumor tissues by localizing the damage on cancer 

cells [16]. The company Nanobiotix has started a clinical trial on hafnium oxide nanoparticles 

coated with a polymer layer, presumably PEG. The goal was to kill cancer cells more efficiently 

taking advantage of the process of radioenhancement. A clinical trial of NBTXR3 in soft tissue 

sarcoma was performed at the Institute Bergonié, in Bordeaux [27].  
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II - Routes to the synthesis of HfO2 nanoparticles 

This section describes the various synthetic routes reported in the literature to prepare HfO2 

NPs.  

II. 1. Precipitation synthesis 

Precipitation synthesis is a simple method to obtain metal oxide NPs, consisting of mixing and 

stirring a chloride precursor of hafnium in 0.4 M – 1 M NaOH aqueous solutions, followed by 

a calcination step to obtain the oxides which are crystallized [28]. In this method, the 

precipitation step is essential and crucial because processes such as nucleation, growth and 

coarsening (Ostwald ripening), occur. The coarsening process is essentially the consumption 

of small particles by larger one during the growth process. Thus, the rate of addition of 

reactants, stirring time, and temperature are parameters that tailor size and morphology. In 

the nucleation step, numerous crystallites are synthesized and may tend to agglomerate 

together to form larger structures, which are more stable thermodynamically [29].  

 

Ramadoss synthesized HfO2 NPs from hafnium tetrachloride and a base, such as potassium 

hydroxide [30] or sodium hydroxide [28]. A white mixture was obtained, washed and dried at 

100 °C. The obtained hafnium hydroxide was further calcined at 500 °C for 2 hours, leading to 

the formation of HfO2 NPs. Advantages of this method are its simplicity and low-cost 

processing. The calcination step, is a drawback because it tends to agglomerate NPs.   

 

Jayaraman et al. prepared hafnium oxide nanoparticles of different sizes (8.79, 7.16, 6.78 nm) 

by the precipitation method, by varying the stirring time (6, 8 and 12 hours). The XRD pattern 

and Raman spectra of the NPs revealed that this material crystallized in the monoclinic 

structure. SEM and TEM images showed that the HfO2 NPs were spherical in shape after the 

calcination at 500 °C [22, 31].  
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II. 2. Sol-gel synthesis 

Sol-gel synthesis is a well-known process presenting several advantages, including a relatively 

low reaction temperature, and a good control of compositions. This method is often used to 

prepare metal oxides, especially SiO2 and TiO2. The process encompasses the conversion of 

monomers into a colloidal solution (called sol), which is the precursor for an integrated 

particles network (called gel). Typical precursors are metal alkoxides which are often 

expensive.  

An alternative metal alkoxide-free way to prepare NPs is to use the polymerized complex 

derived sol-gel method, also known as Pechini method, which employs inorganic salts as 

precursors, citric acid as chelating agent and ethylene glycol as cross-linking agent [32]. 

Therefore, the heat treatment step is mandatory to obtain the oxides. Ramos-Gonzales 

developed a method involving the formation of an organic polymeric network [33]. Ramos-

Gonzales compares the polymerized complex and polymer precursor methods. In the former 

method, citric acid and ethylene glycol are used as the chelating and polymerizable reagents, 

respectively. In the polymer precursor method, poly(acrylic acid) is used as the chelating 

agent. The precursors or the mixture or the final products were heat-treated at 500 °C or 800 

°C. Essentially, the monoclinic crystalline phase was obtained, even if the polymerized 

complex method may also yield the cubic phase. The particle size obtained by TEM and XRD 

varied between 4 and 11 nm [33].  

Tang proposed another sol-gel derived method, the nonhydrolytic sol-gel synthesis [34]. In 

this method, the condensation between a metal halide and a metal alkoxide in the presence 

of coordination ligands forms metal-oxide-metal bridges with the elimination of the alkyl 

halide. Reaction is conducted under argon at 360 °C or 400 °C, between hafnium isopropoxide, 

and hafnium chloride or bromide with trioctylphosphine oxide (TOPO), to form HfO2 NPs 

whose size and crystal structure depend on the preparation conditions, such as the reaction 

temperature and the type of halide used [35]. 

The advantage of these sol-gel methods is the monodispersity of the NPs, while the main 

drawbacks are (i) the use of expensive metal alkoxides and (ii) the use of organic TOPO ligands 

unsuitable for bio applications.  
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II. 3. Solvothermal synthesis 

The solvothermal method available in the literature for the synthesis of HfO2 NPs uses benzyl 

alcohol as solvent to produce small NPs with good crystallinity. For example, Niederberger 

developed a route that involved a simple ether elimination process between two alkoxide 

precursors leading to the formation of the Hf-O-Hf bond. HfO2 formed nanoparticles with 

slightly elongated shape, typically 6 nm long and 3 – 4 nm wide [36]. Buha developed a 

synthetic route from hafnium tetrachloride in benzyl alcohol to form nanoparticles with a size 

around 6 nm which crystallized in the monoclinic phase [37].   

A hydrothermal synthesis ǁas pƌoposed ďy ŠtefaŶić [38-39], based on a reaction under mild 

temperature (90 °C or 120 °C), that leads to crystalline NPs with a small crystallite size.  

However, these reactions have the drawback of requiring a long time (between 2 and 7 days) 

and for this reason, faster microwave-assisted or sonically-assisted hydrothermal treatments 

have been developed. For instance, it is possible with the microwave-assisted reaction to 

reduce  the time to ca. 5 min at 220 °C in benzyl alcohol [40] or to ca. 1 hour at 140 °C in 

water [41], while the sonically-assisted one reduces the reaction time to one to three hours 

at 250 °C in water [42].  

II. 4. Hydrothermal synthesis 

Concerning the different synthetic methods reported in literature, the precipitation and sol-

gel methods require a calcination step to obtain crystalline product. This step uses high 

temperature and favors NPs sintering, which should be avoided because it prevents a good 

redispersion in aqueous media, especially in biological media, and the formation of a stable 

colloidal suspension. Solvothermal synthesis should also be avoided because organic solvents 

are in general not biocompatible. Thus, the most promising method for biological applications 

is the hydrothermal method. We focused then on the various syntheses reported in the 

literature and presented in Table 2.  
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Starting 

material 
pH Base 

T 

(°C) 

Time 

(h) 

Shape & TEM 

size (nm) 

XRD 

size 

(nm) 

Phase ref 

Hydrothermal treatment 

HfOCl2 

3 
7 

9.5 
13 

NaOH 
90-
120 

48 
600 
150 
24 

- 

9 
30 
35 
5 

monoclinic  [39] 

HfOCl2 - NH4OH 700 3 
Roundish 

30 
33 monoclinic  [43] 

HfCl4 - NH4OH 120 40 
Rhombic 

800 
< 10 monoclinic  [44] 

HfCl4 12 NaOH 200 1.5 - - amorphous  [45] 

HfCl4 - KOH 
<350 
>400 

0.2 
Rhombic, 16 

Oval, 16 
16 
15 

monoclinic 
monoclinic 

 [46-47] 

HfOCl2 - NH4OH 250 3 
Elongated 

and 
agglomerated 

13 
monoclinic 

+ 
amorphous 

 [42] 

Ultrasonically assisted hydrothermal treatment 

HfOCl2 - NH4OH 250 3 
Elongated 

and 
agglomerated 

15 monoclinic  [42] 

Microwave assisted hydrothermal treatment 

HfCl4 4,7,9  
130-
225 

1-5 - 21-25 monoclinic  [48] 

HfCl4 >14 KOH 140 1 
Rice-like 
85-105 

5 monoclinic  [41] 

The temperature of the hydrothermal treatment should be below 200 °C to avoid the sintering 

of the nanoparticles and the nanoparticles should have a size between 30 and 60 nm. We 

decided to choose to reproduce the synthesis developed by ŠtefaŶić [39].  

 

  

Table 2: Several hydrothermal treatment to synthesize HfO2 nanoparticles 
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III - Hafnium dioxide synthesis and characterization 

III. 1. Previous studies 

Based on the literature study detailed above, it sounds logical to choose not only the 

hydrothermal synthesis but also the one desĐƌiďed ďy ŠtefaŶić [39] to prepare hafnium oxide 

nanoparticles with the appropriate surface properties. In his paper, ŠtefaŶić ƌepoƌted the 

hydrothermal synthesis of HfO2 nanoparticles starting from the solubilization of a powder of 

hafnium tetrachloride in water at various pH values, temperatures, reaction times, and bases. 

pH values were 3, 7, 9.5 and 13. For each pH value he tested two temperatures 90 °C and 120 

°C, 2 bases (NaOH and Me4NOH), and reaction times ranging from 4 hours to 2 months. The 

results are gathered in a table which gives the XRD crystallite sizes (calculated by Scherrer 

formula) [49] and the degree of crystallinity of the synthesized NPs and the crystal structures 

when appropriate. ŠtefaŶić shoǁed that HfO2 NPs were obtained either as amorphous, 

monoclinic (m-), tetragonal (t-) or cubic (c-) phases, depending on the temperature but not in 

a systematic way. NPs exhibit different XRD crystallite sizes and with different ratios of 

crystalline form/amorphous material. IŶ this papeƌ, ŠtefaŶić, ǀaƌyiŶg, iŶ a systeŵatiĐ ǁay, the 

parameters of the reaction (pH, temperature, time and nature of the base) observed different 

NPs crystallite sizes but he could not rationalize how these parameters influence the 

dimensions of the NPs themselves since no TEM images of the NPs were available. However, 

some trends on the crystallite size could be deduced from his work: 

- The shorter the reaction time and the lower the temperature, the higher the amount 

of amorphous product; 

- Low crystallite size is obtained at low and high pH values.  

Based oŶ these data, ǁe Đhose to ƌepƌoduĐe the pƌoĐeduƌe ďy ŠtefaŶić, confirm his XRD results 

and, in particular, obtain TEM images of the NPs and ascertain their effective size. Some 

modifications were introduced into ŠtefaŶić pƌoĐeduƌe aŶd a ŵoƌe detailed ŵethod has ďeeŶ 

defined, taking in account JayaƌaŵaŶ’s ǁoƌk [22]. We considered the stirring time of the 

reaction and fixed it to one hour in between final addition of the base solution and the 

beginning of the hydrothermal process.  
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III. 2. Study of various parameters 

I now describe the study of the effect of pH, reaction time and temperature on the preparation 

of NPs with size between 30 and 70 nm.  TEM size was statistically determined from on, at 

least, ϯϬϬ ŶaŶopaƌtiĐles. The XRD Đƌystallite size ǁas asĐeƌtaiŶed usiŶg “Đheƌeƌ’s foƌŵula. I 

use the teƌŵs ͞sŵooth͟ ǁheŶ the ŶaŶopaƌtiĐle is alŵost ŵoŶoĐƌystalliŶe, aŶd ͞gƌaŶulaƌ͟ 

when the nanoparticle comprises several tiny entities (cluster of smaller crystallites).The 

nanoparticles were synthesized by the hydrothermal method. The detailed experimental 

procedure is described in the experimental part of this chapter.  

Hafnium tetrachloride was used as a precursor. HfCl4 is water sensitive and its dissolution in 

water is exothermic and produces 4 equivalent of HCl (experimentally visible by gas release). 

Upon further addition of 1 M NaOH solution the formation of a milky-white suspension is 

visible. The white color comes from the formation of a reaction intermediate identified as 

hafnium tetrahydroxide, Hf(OH)4, or as hafnium chlorohydroxide, HfOCl2, depending on the 

authors [28, 38, 50].  

                                                HfCl4 + 9H2O → HfOCl2.8H2O + 2HCl 

                                        HfOCl2.8H2O + 2NaOH → HfO2 + 2NaCl + 9H2O 

                                               Or Hf(OH)4 instead of HfOCl2.8H2O 

As an example, Table 3 compares the XRD data oďtaiŶed ďy ŠtefaŶić aŶd iŶ this thesis.  

pH T(°C) Time (h) Base 
XRD crystalline size  

Štefanić  [39](nm) 
XRD crystalline size 

obtained (nm) 
3 120 24 NaOH 8.5 (5) 9 
3 120 48 NaOH 9.3 (7) 10 

9.5 120 76 NaOH 38 (8) 27 
13 120 24 NaOH 5.6 (2) 8 

These results are in good agreement confirming the reproducibility of the experiments. We 

therefore went on with this procedure optimizing different parameters so as to obtain a 

particle size close to 30 nm.  

 

Table 3: Results of HfO2 syŶthesis coŵpared with the results of ŠtefaŶić [39] 
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 pH influence 

The influence of the pH on the size of the NPs was checked by choosing the same values as 

ŠtefaŶić ϯ, 9.5 aŶd ϭϯ, while keeping the temperature (120 °C), reaction time (48 h) and 

amount of HfCl4 (1 g) constant. TEM and XRD results are gathered in Table 4.  

pH value 3 9.5 13 
ŠtefaŶić XRD 

size (nm) 
9.3 (± 7) 38 (± 8) 5.6 (± 2) 

XRD size (nm) 10 34 8 

TEM images 

 
(Figure 2) 

 
(Figure 3) 

 
(Figure 4) 

TEM size 
(nm±std) 

111 ± 28 84 ± 16 98 ± 32 

Shapes 
Rectangular, 

granular 
Rhombus, 

smooth 
Rice-like, 
granular 

Moreover, the XRD patterns of the nanoparticles obtained at these three pH values are shown 

in figure 1 and XRD data are further studied in detail (cf. III. 3. a). Thus, we can compare the 

crystallinity of these NPs one with the other and with those oďtaiŶed ďy ŠtefaŶić [39]. Our 

crystallite sizes agree well with those obtained ďy ŠtefaŶić. Small crystallite sizes are obtained 

at low and high pH whereas at pH 9.5, more crystalline particles were obtained.  

 

 

 

 

 

 

 

Table 4: Characterization by XRD and TEM of the HfO2 NPs (conditions: 1 g HfCl4, 120 °C, 48h) at pH 3, 

9.5 and 13  
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Considering Figure 1, XRD patterns of pH 3 and 13 samples show a broadening of the 

reflections, which is in agreement with the granular shape of these agglomerated NPs 

revealed by TEM (Figure 2, Figure 3 and Figure 4). 

 

 

 

Figure 1: XRD patterns of HfO2 NPs (conditions: 1 g HfCl4, 120 °C, 48h) at several pH values  
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Figure 2: a,b,c) TEM images of HfO2 NPs (pH 3, 120 °C, 48 h) , d) Size distribution of NPs 

Figure 3: a,b,c) TEM images of HfO2 NPs (pH 9.5, 120 °C, 48 h) , d) Size distribution of NPs  
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Thus, adjusting the pH value allows changing the morphology and the shape of the synthesized 

nanoparticles from granular rectangular parallelepipeds at low pH to granular rice-like objects 

(white forms in Figure 4) at high pH, while at intermediate pH values rhombic single crystals 

(white rhombus in Figure 3) are obtained. At pH 3 and 13, the primary NPs forming the 

aggregates are very small, ca. 8 – 9 nm, resulting in broadened XRD reflections, while at pH 

9.5, the primary NPs are larger, ca. 20 – 25 nm. Thus, the pH value modifies the size and the 

shape of the primary NPs forming the larger aggregates. 

 

 

 

 

Figure 4: a,b,c) TEM images of HfO2 NPs (pH 13, 120 °C, 48 h) , d) Size distribution of NPs  



Chapter 3: Hafnium dioxide, HfO2 

110 
References page 145 

 Role of the reaction time at 120 °C and several pH values 

The effect of the reaction time was studied from 24 hours to 76 hours at different pH values. 

The others parameters were set to 1 g of HfCl4 and 120 °C and 60% filling ratio of the autoclave.  

 

 pH 3 

The TEM pictures, the crystallite sizes obtained by XRD and the particle sizes and shapes 

obtained by TEM are gathered in table 5.  

 

Reaction 
time 

24h 48h 

TEM 
images 

  
TEM size 
(nm±std) 

104 ± 22 111 ± 28 

XRD size 
(nm) 

9 10 

Shapes 
Rectangular, 

granular 
Rectangular, 

granular 

 

The results obtained for these syntheses during either 24 hours or 48 hours are quite similar. 

TEM size and XRD crystallite size do not vary significantly. Thus, increasing the reaction time 

at pH 3 does not modify the size and not the shape of the NPs.  

 

 

 

 

Table 5: Characterizations by XRD and TEM of the HfO2 NPs (conditions: 1 g HfCl4, 120 °C, pH 3) at two 

reaction times  
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 pH 9.5 

The same experiments were performed at pH 9.5. The TEM pictures and the size, shape are 

shown in Figure 5 and in table 6, respectively. 

 

 

Reaction 
time 

24h 48h 76h 

TEM size 
(nm±std) 

88 ± 18 84 ± 16 89 ± 17 

XRD size 
(nm) 

33 34 29 

Shapes 
Rhombus, 

smooth 
Rhombus, 

smooth 
Rhombus, 

smooth 

Again, the results obtained for 24, 48 and 76 hours syntheses show that the TEM size and the 

XRD crystallite size do not vary significantly. Thus, increasing the reaction time at pH 9.5 does 

not modify the size and the shape of the NPs.  

Figure 5: TEM pictures at pH 9.5, 120 °C, for (a) 24 h, (b) 48 h, (c) 76 h, (d) size distribution of the NPs 

for 48 hours 

Table 6: Characterizations by XRD and TEM of the HfO2 NPs (conditions: 1 g HfCl4, 120 °C, pH 9.5) at 

several reaction times  
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Since the reaction time did not seem to affect the size and shape of the NPs above 24 hours, 

we tried to reduce it down to 12 hours. A shorter time, in fact resulted in a lack of repeatability 

of the experiment and in some cases (Figure 6a and Figure 6b) there are still a lot of starting 

ŵateƌial as also ŵeŶtioŶed ŠtefaŶić.  

 

 

 

We then also checked the reproducibility of the experiment performed for 24 hours as 

illustrated in Figure 7. Again after 24 hours (Figure 7), at 120 °C, we obtained either an 

amorphous product (Figure 7a) or a mixture of amorphous and crystalline products (Figure 

7b), as also mentioned in ŠtefaŶić’s papeƌ oƌ a ĐƌystalliŶe pƌoduĐt ;Figure 7c). We then 

confirmed by TEM the results obtained by ŠtefaŶić who quantified the percentage of 

amorphous phase in the mixture by XRD analysis. The same experiment performed for 48 

hours always gave a crystalline product.  

 

 

 

 

 

Figure 6: TEM images of 3 batched of HfO2 (conditions: 1 g HfCl4, 120 °C, pH 9.5) for 12 hours  

Figure 7: TEM images of 3 batches of HfO2 (conditions: 1 g HfCl4, 120 °C, pH 9.5) for 24 hours  
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 pH 13 

The same syntheses were also performed at pH 13. The obtained results are shown in table 7. 

 

Reaction 
time 

24h 48h 

TEM 
images 

  
TEM size 
(nm±std) 

110 ± 32 98 ± 32 

XRD size 
(nm) 

8 8 

Shapes 
Rice-like, 
granular 

Rice-like, 
granular 

Once again, increasing the reaction time induces no significant variation of NP size and shape 

at pH 13.  

 

ŠtefaŶić deŵoŶstƌated that the ƌatio of hydrothermal crystallization (ratio between the 

amount of crystalline and amorphous phase) is pH and temperature dependent. It is high at 

low and high pH, low in a mild basic pH and very low at pH 7 (See figure 8) [39]. The same 

behavior was observed in the crystallization process of ZrO2. Denkewicz [51], has studied the 

crystallization process of ZrO2, and showed that the reaction mechanism for ZrO2 growth is pH 

dependent, with three regimes controlling the crystallization: dissolution/precipitation at low 

pH, solubility controlled regime at intermediate pH values, and a gel chemistry controlled 

regime at high pH values.  

Table 7: Characterizations by XRD and TEM of the HfO2 NPs (conditions: 1 g HfCl4, 120 °C, pH 13) at 

two reaction times  
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To sum up, for the three studied pH values, and in agreement  with the experiments reported 

previously, when operating at 120 °C, increasing the time of the hydrothermal treatment from 

12 to 76 hours does not modify NPs shape or size. It helps increasing the amount of crystalline 

phase since a reaction time of 48 hours is mandatory to obtain a pure phase. The only pH 

value, leading single-crystal nanoparticles is 9.5.  

 

 Amount of HfCl4 

 

Since we are working in confined media, the influence of the amount of the Hf-bearing 

precursor may be crucial and will be studied. Experiments were performed with 0.3 g and with 

1.0 g of precursor HfCl4. The results of the reaction performed at 120 °C for 48 hours at pH 9.5 

and 13 are gathered in Table 8 and Table 9, respectively.   

 

 

Figure 8: The fraction of crystal phase as a function of hydrothermal treatment time at 120 °C [39] 



Chapter 3: Hafnium dioxide, HfO2 

115 
References page 145 

HfCl4 
amount 

0.3 g 1.0 g 

TEM 
images 

  
TEM size 
(nm±std) 

84 ± 19 84 ± 16 

XRD size 
(nm) 

30 34 

Shapes 
Rhombus,  

smooth 
Rhombus,  

smooth 

At pH 9.5, no significant variation of XRD and TEM size is observed. However, at pH 13, there 

is a slight increase of the XRD and TEM size when one third of starting material is used. This 

can be explained by the fact that the dilution increases the growth of the few crystallites 

already formed, instead of generating new crystallite seeds in the first steps of the nucleation 

reaction. However, this slight modification leads us to conclude that the amount of hafnium 

precursor does not have an important influence on the size of the particles.  

HfCl4 
amount 

0.3 g 1 g 

TEM 
images 

  
TEM size 
(nm±std) 

128 ± 36 98 ± 32 

XRD size 
(nm) 

14 8 

Shapes 
Rice-like, 
granular 

Rice-like, 
granular 

 

Table 8: Characterizations by XRD and TEM of the synthesis pH 9.5, 120 °C, and 48 hours  

Table 9: Characterizations by XRD and TEM of the synthesis pH 13, 120 °C, and 48 hours 
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 Temperature  

Next, we have tested the effect of the hydrothermal treatment temperature (120 °C, 150 °C 

and 180 °C), while keeping the pH at 9.5 (at this pH the NPs exhibit the larger size of primary 

crystallites but are present as individual NPs). Table 10 gathers TEM and XRD sizes for several 

temperatures and reaction times.     

                          TEM size (std) (nm)                                                              XRD size (nm) 

 24h 48h 76h 

 

 24h 48h 76h 

120 °C 88 ± 18 84 ± 16 89 ± 17 120 °C 33 34 29 

150 °C 62 ± 20 69 ± 19 72 ± 17 150 °C 26 26 26 

180 °C 28 ± 8 24 ± 8 22 ± 6 180 °C 18 20 18 

Increasing the temperature from 120 °C to 180 °C decreases the TEM and XRD sizes. Thus, 

essentially single-crystal nanoparticles are obtained. Table 10 also shows that there is no 

variation of TEM and XRD sizes as a function of the reaction time, for all temperatures 

confirming that the reaction time does not either impact the NP size at 150 °C and 180 °C 

(Figure 9).  
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Table 10: Results of the syntheses performed at pH 9.5 for 1 g HfCl4 for three reaction times and 

temperatures 

Figure 9: Decrease of the NP average size (TEM) as a function of the reaction temperature 
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The rhombic shape remains at 150 °C and 180 °C (Figure 10).  

 

Therefore, the goal to obtain nanoparticles in the range 30 to 60 nm has been achieved. The 

biological testing and the functionalization of the nanoparticles with lanthanides may now 

start.  

However, to avoid a such high temperature we tried to use chemical structuring agent as 

already done in the literature [52].   

 

 Structuring agents 

At this point we are able to synthesize HfO2 NPs with a size ca. 30 nm, which is suitable for 

biological applications. In order to decrease the temperature of reaction, we resorted to using 

structuring agents to control the growth of the NPs, as exemplified with the synthesis of 

titanium dioxide nanoparticles in the previous part. The ͞stƌuĐtuƌiŶg ageŶt͟ ĐoŶĐept is takeŶ 

from the literature which highlights the possibility of influencing the surface activity of TiO2 

NPs to enhance a preferential growth direction of the crystallites and, thus, provide some 

control over the final shape [52]. The teƌŵ ͞stƌuĐtuƌiŶg ageŶt͟ is used ǁith the ŵeaŶiŶg that 

the presence of additives modifies the Đƌystal’s gƌoǁth duƌiŶg the hydƌotheƌŵal ƌeaĐtioŶ.  

In the synthesis of TiO2 [53] and ZrO2 [54], additives like citric acid, are used to modify the 

shape of the nanocrystals in hydrothermal and sol-gel processes. Additives have previously 

been used by Liu who synthesized HfO2 nanorods of 33 nm length and 9 nm width, through a 

chemical solution method, using dodecanediol and oleylamine [55]. Table 11 shows a list of 

the additives studied in this work.   

 

 

Figure 10: TEM images of HfO2 NPs synthesized at pH 9.5, 48 hours a) 120 °C, b) 150 °C, c) 180 °C 
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Reagent Representation pKa 

Citric acid 
HO

O

OH

O

O OH

OH  

3.13 – 4.76 – 6.40 

Trimethylamine 
N

 
(9.81) 

Succinic acid 
OH

O

HO

O  

4.2 – 5.6 

Glutamic acid HO

NH2

OH

OO

 

2.10 - 4.07 - 9.47 

 

 Citric acid (CA) 

Citric acid was added to the reaction, right after the introduction of HfCl4 in water and then 

the pH was adjusted by adding a solution of NaOH (1 M). Nevertheless, according to the 

previous experiments and results, working at pH 9.5 produces nanoparticles with the largest 

crystallite size and, for this reason, the synthesis with citric acid was performed at pH 9.5. 

However, at this pH the mixture of hafnium tetrachloride and citric acid is soluble in distilled 

water. Even after the hydrothermal treatment for 48 hours at 120 °C, the obtained solution is 

still transparent with no formation of the desired nanomaterial. This is the reason why, we 

increased the pH until the formation of the characteristic white suspension which occurred at 

pH 13.  

The results such as TEM images, TEM size obtained statistically and XRD size obtained by 

Scherer formula are gathered in table 12.  

 

 

 

 

 

Table 11: Reagents used as additives 
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 Without Citric acid With Citric acid 

TEM 
images 

 
 

TEM size 
(nm±std) 

98 (± 32) 44 (± 11) 

XRD size 
(nm) 

8 8 

Shapes 
Rice-like,  
granular 

No shape,  
granular 

The presence of citric acid prevents the formation of large aggregates of hafnium oxide NPs, 

which are obtained in the synthesis without citric acid. The individual crystallite size remains 

the same in both syntheses, i.e., it is not affected by citric acid (Figure 11).  
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Table 12: Comparative results with and without citric acid at pH 13, 120 °C and 48 h 

Figure 11: XRD patterns of HfO2 NPs (conditions: 1 g HfCl4, 120 °C, 48h) at pH 13 with and without 

citric acid (CA)  
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The FTIR absorption spectrum of HfO2 (Figure 12) was used to probe the presence of adsorbed 

species on the surface of NPs. The main bands at 765, 673 and 606 cm-1 are due to the 

formation of Hf – O bonds that have spectroscopic active phonon modes in the range of 800 

– 400 cm-1 [30]. The broad absorption peak at 3679 cm-1 can be attributed to the stretching 

vibration of the H – O bond, indicating the presence of hydroxyl groups on the surface of HfO2 

NPs. In our case, contrary to Ramadoss data [30], the intensity of these hydroxyl vibrations is 

rather low indicating fewer O-H groups on the surface.  

 

Figure 13 presents the FTIR spectra of HfO2 NPs (synthesized at pH 13), HfO2 NPs synthesized 

with citric acid and, for comparison, the spectrum of citric acid. The spectrum of the  product 

obtained upon addition of citric acid shows changes in the region 1700 – 1400 cm-1 ascribed 

to the asymmetric and symmetric stretching vibrations of the carbonyl groups of the citrate 

anions [56]. The broad band at 3400 cm-1, characteristic of the O – H stretching vibration is 

enhanced in the NPs synthesized with citric acid, suggesting an increase in the number of 

surface hydroxyl groups, on the alcohol function of the citrate and on the carboxyl groups. 

This broad band can be also due to the H2O trapped in the first coordination sphere of the NPs 

because these were dried below 100 °C.  

 

 

Figure 12: FTIR spectrum of HfO2 NPs 
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We can also compare the FT-IR spectrum of HfO2 NPs with citric acid with the spectrum of 

citric acid (Figure 13). The band at 1720 cm-1 characteristic of the carboxylic functional groups 

shifts to 1614 cm-1 when the carboxylate groups are grafted onto the surface of hafnium oxide 

NPs. 
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 Other structuring agents 

We have tried using other structuring agents to decrease the size of HfO2 NPs. Moreover, to 

take advantage of the interaction between hafnium and carboxylic groups, we choose 

structuring agents with carboxylic or amine groups and steric hindrance, in order to reduce 

the NP growth [32]. Trimethylamine, succinic acid and glutamic acid were added to the 

synthesis medium. Succinic acid has been used as a structuring agent in the synthesis of TiO2 

NPs [57]. The presence of the carboxylic groups and the steric hindrance are thought to 

control the growth of TiO2 crystals. Trimethylamine was used in the synthesis of TiO2 NPs 

prepared by amine assisted sol-gel method [58]. TEM images, TEM size and XRD size results 

are gathered in Figure 14 and in Table 13. The molar ratio between structuring agent and 

hafnium tetrachloride is 1.  

Figure 13: FT-IR spectra of HfO2 nanoparticles with and without citric acid (pH 13, 48 h, 120 °C) 
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 trimethylamine  succinic acid  glutamic acid  
TEM size 
(nm±std) 

91 ± 23 94 ± 27 77 ± 18 

XRD size 
(nm) 

20 36 23 

Shapes 
Rhombus, 

smooth 
Rhombus, 

smooth 
More spherical, 

smooth 

None of these structuring agents seem to have the positive effect of citric acid on the cluster 

size reduction. Moreover, the shape of the nanoparticles synthesized with these structuring 

agents remains almost the same. Nevertheless, succinic acid and glutamic acid slightly 

Figure 14: TEM pictures and size distribution for (a) trimethylamine, (b) succinic acid and (c) glutamic 

acid (pH 9.5, 48 h, 120 °C) 

Table 13: Syntheses using three different structuring agents (pH 9.5, 48 h, 120 °C) 
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decrease the sharpness of the edges and angles of the rhombic shape leading to more 

spherical particles. We conclude that trimethylamine, succinic acid and glutamic acid have no 

effect on the synthesis of hafnium oxide nanoparticles.  

The study of the structuring agents does not allow us to obtain nanoparticle size suitable for 

biological applications at 120 °C. Before focusing on rare-earth insertion, I will expound on 

HfO2 characterization studies.   

 

III. 3. Characterization of HfO2 nanoparticles 

 Powder X-Ray diffraction 

 

Although all samples were characterized by powder X-ray diffraction, here, I shall only 

exemplify the pattern of HfO2 NPs synthesized at pH 9.5, 180 °C and for 48 hours (Figure 15).  

 

 

Figure 15: XRD pattern of HfO2 nanoparticles synthesized at pH 9.5, 180 °C and for 48 hours 
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The pattern shows the characteristic reflections of monoclinic hafnium oxide (ICDD PDF no. 

00-006-0318). Full pattern matching and Rietvelt refinement were performed using FullProf 

software, allowing the determination of the cell parameters. The parameters found are in 

agreement with those reported by Wang [4] and Zhao [7]. 

a (Å) b (Å) c (Å) α (°) β (°) γ (°) 
5.313 5.183 5.135 90.0 99.6 90.0 

 

Thus, we conclude that the monoclinic structure is not too distorted and is relatively closed to 

the cubic structure. This observation is very relevant for the study of the insertion of 

lanthanides in HfO2 matrices. 

 

 High Resolution Transmission Electron Microscopy 

 

Figure 16 shows high resolution transmission electron microscopy (HRTEM) evidence on HfO2 

NPs synthesized at pH 9.5, 180 °C and for 48 hours. The HRTEM image clearly shows the atomic 

planes, with 5 Å in between (measured with ImageJ software, a value consistent with the cell 

parameter).  

 

 

Figure 16: a) HRTEM picture of a single HfO2 NP, b) fast Fourier Transform (FFT)   
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 Zetametry 

The isoelectric point of HfO2 NPs was determined using Zetametry. Figure 17 and figure 18 

show the result for HfO2 NPs synthesized at pH 9.5 and for 48 hours and, respectively, 120 °C 

and 180 °C.  
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The obtained curves were fitted with a sigmoidal function and, in both cases, the isoelectric 

point found to be 7.3. At first, this value may seem inconvenient because at physiological pH 

the particles will not be well dispersed. However, physiological media are much more complex 

than milliQ water.   

Figure 17: Zeta potential as a function of pH for HfO2 synthesized at 120 °C, pH 9.5 and for 48 hours 

Figure 18: Zeta potential as a function of pH for HfO2 synthesized at 180 °C, pH 9.5 and for 48 hours 
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IV - Doping HfO2 with lanthanides for tracking and imaging 

In order to be able to track the NPs in human body, it is of interest to add in luminescence and 

magnetic properties, for example, by the insertion of rare-earth (RE) trivalent elements. As 

the sizes of these ions and tetravalent hafnium are not too different (table 14), the insertion 

of the former in the HfO2 lattice is possible.   

RE elements Eu3+ Gd3+ Tb3+ Hf4+  Ti4+  
Ionic radius (pm) 94.7 93.8 92.3 85 74.5 

IV. 1. Lanthanide mono doping 

The insertion of trivalent lanthanides in the matrix of hafnium oxide has just begun to be 

investigated. Table 15 gathers the few papers I found on the insertion of europium and 

terbium in the matrix of hafnium oxide.  

Starting 

material 

T (°C) 

time (h) 

annealing 

Ln 

precursor 
[Ln] 

TEM 

(nm) 

XRD 

size 

(nm) 

phase ref 

Sol-gel synthesis 

HfCl4 
600 °C 

? 
yes 

EuNO3 
0.5 mol% 
3 mol% 
5 mol% 

500 – 
5000 

 

1000 - 
2000 

monoclinic  [60] 

Hf(OEt)4 
100 °C 
24 h 
yes 

EuNO3 
TbNO3 

1 mol% 
1 mol% 

(-) (-) monoclinic  [61] 

Hf(OtBu)4 
220 °C 
96 h 
No 

Eu(OAc)3 
Tb(OAc)3 

0.01 mol% 
to 10 
mol% 

3 nm < 3 
monoclinic 

to cubic  
(> 5% Ln) 

 [62] 

Hydrothermal synthesis 

HfOCl2 
300 °C 

3 h 
No 

EuCl3 
20 mol% 
30 mol% 

7 – 9  8 – 10  cubic  [43] 

HfOCl2 
200 °C 

6 h 
Yes 

EuCl3 
5 mol% 

10 mol% 
15 mol% 

4.3 nm 
2.3 – 
5.1 

tetragonal  [63] 

HfCl4 
200 °C 
80 min 

No 
TbCl3 

0 – 20 
mol% 

9 – 14 11.6 
amorphous 

-> 
tetragonal 

 [45] 

HfCl4 
120 °C 
72 h 
No 

EuCl3 3 at% 800 (-) monoclinic  [44] 

Table 14: Ionic radius of selected elements [59] 

Table 15: Methods to synthesize HfO2 NPs doped with Eu and Tb  
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According to our goal, the insertion of lanthanides in the matrix of hafnium oxide 

nanoparticles was performed via hydrothermal synthesis starting from lanthanide trichloride 

and with the same conditions we have previously used to prepare pure hafnium oxide 

nanoparticles (e.g., pH 9.5, 180 °C and 48 hours).  

 With europium (Eu3+) 

Europium (III) chloride is added to an aqueous solution of hafnium tetrachloride and the pH is 

stabilized around 9.5. Then, the mixture is subjected to a hydrothermal treatment at 180 °C 

for 48 hours. These experimental conditions were chosen due to the study made before on 

the synthesis of HfO2 NPs (cf. III. 2. d). Furthermore, the ratios were chosen according to the 

literature found on the insertion of RE elements in the hafnium dioxide matrix [41, 44].  

The RE element compositions quoted in Table 16 are nominal values of molar percentages.   

%Eu 0% 5% 10% 

TEM 
images 

   
TEM size 
(nm±std) 

24 ± 8 39 ± 9 47 ± 9 

XRD size 
(nm) 

20 21 21 

Shapes 
Rhombus, 

smooth 
Rhombus, 

smooth 
Rhombus, 

smooth 

 

Table 16 shows that the lanthanide insertion does not modify the shape of the NPs but slightly 

increases the TEM size (still in the required range for biological applications). Powder XRD 

(Figure 19) shows only the HfO2 reflections, and no evidence for the formation of europium 

oxide. When europium ions are inserted the HfO2 lattice expands due to the larger ionic radius 

of the lanthanide. Importantly, the individual reflections shift to smaller angles as the 

europium content increases, indicating that Eu3+ is inserted in the HfO2 lattice.  

Table 16: Results of Eu3+ insertion reaction at 180 °C for 48 hours at pH 9.5  
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 With terbium (Tb3+) 

The same study was performed using terbium as a doping element (Table 17, Figure 20) 

%Tb 0% 5% 10% 

TEM 
images 

   
TEM size 
(nm±std) 

24 ± 8 39 ± 12 41 ± 10 

XRD size 
(nm) 

20 15 13 

Shapes 
Rhombus, 

smooth 
Rhombus, 

Almost smooth 
Rhombus, 

Almost smooth 

Figure 19: XRD patterns of HfO2 NPs with and without Eu3+  

Table 17: Results of Tb3+ insertion reaction at 180 °C for 48 hours at pH 9.5 
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Sample doped with 10% of terbium was further studied by energy-dispersive X-ray 

spectroscopy (EDS), in order to ascertain the RE distribution within hafnium oxide NPs (Figure 

21). Clearly, terbium is evenly distributed across the particles, in a way similar to the hafnium 

distribution, supporting its insertion in the HfO2 lattice.  

 

Moreover, an analysis of the Tb and Hf distribution was made along the yellow line drawn on 

STEM image of a NP, in order to determine if the terbium was equally distributed inside the 

nanoparticle. Figure 22 shows that the distribution of hafnium is higher in the middle of the 

NP, which is normal because in TEM picture we analyze the projection of a NP. And we 

observed the same behavior for terbium distribution. Thus, we conclude that the terbium is 

randomly distributed inside the HfO2 NPs.  

Figure 20: XRD pattern of HfO2 NPs with and without Tb3+  

Figure 21: TEM pictures with hafnium mapping (left) and terbium mapping (right) obtained by EDS 
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Figure 22: Distribution profiles of hafnium (a) and terbium (b) along the yellow line drawn on STEM 

image of a NP (d). (c) overlap of the two distributions  
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IV. 2. Lanthanide bi-doping and tri-doping 

 Synthesis challenges 

In order to obtain NPs which can also behave as both nanothermometers and contrast agents 

in Magnetic Resonance Imaging (MRI), I have proceeded to dope HfO2 NPs with europium, 

terbium (thermometry) and gadolinium (MRI). An additional requirement is the presence of a 

substantial amount of gadolinium so that its statistical presence on the periphery of the NP 

allows the detection of a MRI signal. Preliminary synthesis experiments with increasing 

amounts of RE in the HfO2 matrix had also shown that there is a phase transition from 

monoclinic (ICDD PDF no.00-006-0318) to cubic (ICDD PDF no. 00-053-0560), as illustrated 

with europium (figure 23) and gadolinium (figure 24). These syntheses have also determined 

the RE amount that produces only a pure (cubic) phase.  

 

 

Figure 23: XRD patterns of HfO2 nanoparticles increasing Eu3+ molar content 
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These diffractograms show a coexistence of two phases (monoclinic and cubic) for RE molar 

ratios below 20%. Above this value, only the cubic phase remains.  

The stabilization of HfO2 cubic phase by RE insertion had already been reported. For example, 

Lauria et al., show the stabilization of cubic hafnium oxide upon europium and lutetium (1% 

Eu and 10% Lu) insertion [62].  

Using the same hydrothermal synthesis, upon insertion of 20% Gd3+ (or 15% Eu3+) into the 

HfO2 matrix, the shape of the nanoparticles changed from rhombic to approximately spherical 

as observed by TEM (Figure 25 and Figure 26). This can be explained by the higher symmetry 

of the HfO2 in the cubic phase.  

Figure 24: XRD patterns of HfO2 nanoparticles with increasing Gd3+ molar content  
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Knowing that at least 20% RE doping is required to obtain the pure HfO2 cubic phase, I 

proceeded to synthesize NPs doped with europium, terbium and gadolinium adding up to 20% 

of RE.  

 Europium, Terbium and Gadolinium for nanothermometry 

I have succeeded in preparing three types of NPs with various amounts of europium, terbium 

and gadolinium, altogether adding up to 20% RE insertion. The synthesis parameters used 

were pH 9.5, 48 hours and 180 °C. The powder XRD patterns in Figure 27 confirm that the HfO2 

NPs crystallize in the cubic phase.   

Figure 25: (a) TEM image of hafnium oxide nanoparticles synthesized at pH 9.5, 48h, and 180 °C with 

15% of Eu3+, (b) Size distribution of NP diameter 

Figure 26: (a) TEM image of hafnium oxide nanoparticles synthesized at pH 9.5, 48h, and 180 °C with 

20% of Gd3+, (b) Size distribution of NP diameter 
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Moreover, the morphology of these NPs and 20% Gd3+ doped NPs is the same (Figure 26(a)). 

Figure 28 shows the TEM pictures of these NPs with their size distribution.  

 

Thus, spheroidal NPs are obtained with a size of 25 – 30 nm which is suitable for biomedical 

applications and comparable with the size of the TiO2 NPs previously used.  

Figure 27: XRD patterns of HfO2 NPs with RE amounts adding up to 20%  

Figure 28: TEM pictures and size distribution of HfO2 NPs doped with various amount of lanthanides 

(a) 1%Eu, 3%Tb, 16%Gd (b) 3%Eu, 5%Tb, 12%Gd (c) 5%Eu, 10%Tb, 5%Gd 
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Elemental analysis was performed in order to ascertain the nominal relative composition of 

lanthanides inserted in the hafnium oxide matrix (ICP results shown in Table 18).  

 
%Eu 

(theor.) 
%Eu 
(ICP) 

%Tb 
(theor.) 

%Tb 
(ICP) 

%Gd 
(theor.) 

%Gd 
(ICP) 

HfO2: 1%Eu, 3%Tb, 16%Gd 1 1.8 3 4.2 16 18.9 

HfO2: 3%Eu, 5%Tb, 12%Gd 3 2.5 5 6.5 12 15.4 

HfO2: 5%Eu, 10%Tb, 5%Gd 5 6.3 10 12.6 5 6.7 

The ICP results showed that the real lanthanides composition is slightly different from the 

nominal composition. However, the increase of europium and terbium and the decrease in 

gadolinium in molar percentage between these three samples are preserved. The amounts of 

gadolinium and terbium determined by ICP are always a bit higher than the nominal amounts. 

However, in the following chapters the following abbreviations will be used:  

Eu0.01Tb0.03Gd0.16:HfO2 for HfO2: 1%Eu, 3%Tb, 16%Gd,  

Eu0.03Tb0.05Gd0.12:HfO2 for HfO2: 3%Eu, 5%Tb, 12%Gd and, 

Eu0.05Tb0.10Gd0.05:HfO2 for HfO2: 5%Eu, 10%Tb, 5%Gd 

 

 

  

Table 18: Elemental analysis obtained by ICP (Inductively Coupled Plasma). The given percentages are 

molar percentages of lanthanides 
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Conclusion 

The synthesis of HfO2 NPs with a controlled size and morphology was accomplished. 

Moreover, our goal to reach a suitable size for ensuing biological applications was achieved 

by adjusting several parameters such as the pH and the reaction temperature. In acid or basic 

conditions, large nanoparticles (ca. 100 nm) were obtained with a small XRD size (5 – 10 nm). 

However, at pH 9.5, the nanoparticles were smaller (ca. 85 nm) with a larger XRD size (ca. 34 

nm). The increase of the temperature allows the decrease of the size of the nanoparticles to 

30 nm. Unlike TiO2, the stƌuĐtuƌiŶg ageŶts, I used, didŶ’t haǀe the saŵe effeĐt oŶ the deĐƌease 

of the size of the nanoparticles of HfO2. Furthermore, lanthanides were inserted in the 

hafnium dioxide matrix, thus leading to nanoparticles with several functionalities, such as the 

tracking via luminescence, the tracking via MRI, the temperature detection and the therapy. 

The following chapters aim at studying the luminescence of our nanoparticles as well as their 

potential applications as nanothermometers (chapter 4) and MRI contrast agents (chapter 5).   
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Experimental part 

The reagents are hafnium tetrachloride (HfCl4) purchased from Alfa Aesar, sodium hydroxide 

(NaOH) from Sigma Aldrich, and milliQ water. First, 1 g (3.1 mmol) of HfCl4 is carefully added 

to 10 mL of water in a fume hood. In this step, 4 equivalent of hydrochloric acid is produced 

as a gas. Then, under continuous stirring, a 1 M solution of NaOH is added dropwise until 

reaching the required pH value. The volume is adjusted to 40 mL with distilled water. Then, 

the reaction mixture is stirred for one hour at room temperature and finally poured in a 50 mL 

Teflon container placed in a stainless steel autoclave in an oven (already at the setting 

temperature). After the reaction finishes and the autoclaves are cooled down to room 

temperature (out of the oven), the white mixture is subjected to centrifugation steps for 10 

min at 9,000 rpm. The clear supernatant is finally removed and, after adding distilled water, 

the mixture is left for 10 min in an ultrasound bath. These two steps are repeated three times. 

This is a general procedure for all the reactions, only the pH, the temperature and the reaction 

time were changed.  

 

The structuring agents are added just before the dissolution of HfCl4 in water, and before 

adjusting the pH value. An aqueous solution of structuring agent is prepared with a molar ratio 

(1:1 structuring agent: HfCl4) and the HfCl4 powder is added to this aqueous solution. Then, 

the reaction procedure is as described in the experimental part.  

RE elements doping is carried out from RE(III) chloride precursors. The right amount is added 

just after the addition of hafnium tetrachloride to distilled water.  

 

Figure 29: Stainless steel autoclave (right) and the Teflon container (left) 
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Characterization methods 

 Powder X-Ray diffraction (XRD) 

The powder X-ray diffraction technique gives information on the crystalline phase of the 

nanoparticles and also on the crystallite size [64]_ENREF_17. The instrument used is a powder 

diffƌaĐtoŵeteƌ PANalytiĐal X’Peƌt Pƌo. The X-rays are produced by a copper source with 

wavelengths of 1.54056 Å and 1.54443 Å corresponding at Kα. The X-rays are collected after 

transmission. Experimentally, the powder are crushed in an agate mortar with a pestle. Then, 

the fine powder is put on an aluminum support and finally flattened with a glass microscope 

slide.  The diffractograms are then analyzed using Eva software and Fullprof.  

The XRD technique is based on the elastic coherent diffusion (scattering) of the X-rays from 

the atoms present in the solid structure. The electronic clouds of the atoms act as scattering 

centers for the X-rays. The atoms of a crystalline material are arranged in a fixed regular 

geometry, inherent to the crystal. The distances between the atoms in the lattice are 

comparable to the wavelength of the X-rays. Therefore, constructive and destructive 

interference occur when the incident radiation interacts with the atoms of the sample. The 

ĐoŶditioŶ of ĐoŶstƌuĐtiǀe iŶteƌfeƌeŶĐe is giǀeŶ ďy the Bƌagg’s laǁ:  ʹ �ℎ௞௟ sin ߠ =  ߣ ݊

Where ݊ is the order of diffraction, ߣ is the wavelength of the incident radiation, �ℎ௞௟ is the 

interplanar distance and ߠ is the incident angle between the direction of the incoming 

radiation and the plans of the crystal lattice (Figure 30).  

 

In the case of powders, all the scattered rays are simultaneously generated thanks to the 

random orientation of the crystal lattices of the single particles.  

Figure 30: Geoŵetric represeŶtatioŶ of Bragg’s law 
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The primary information obtained from a diffraction pattern is the identification of the 

crystalline phase of a material, from which we can have indirect information on the unit cell. 

In the diffractogram, every single peak can be attributed to the respective lattice plan thanks 

to the ŶoŵeŶĐlatuƌe of the Milleƌ’s iŶdiĐes. The iŶdiĐes ;h, k, lͿ defiŶe a plaŶ that is oƌthogoŶal 

to the vector of the reciprocal lattice (Figure 31).  

 

Through the XRD analysis it is also possible to determine the coherent length of the crystals, 

which constitute the powder. In the case of nanoparticles, the broadening of the peaks can be 

Đoƌƌelated to the aǀeƌage diŵeŶsioŶs of the Đƌystals thƌough “Đheƌeƌ’s foƌŵula [49]:  

ܮ = �ߣ ܭ cos  ߠ

Where ܮ is the average size of the crystalline domain, ܭ is the geometrical factor linked to the 

Đell’s type [65] (its value is usually set as 0.89), ߣ is the wavelength of the X-rays radiation 

(1.54056 Å), � is the full-width- at-half-maximum of a peak, and ߠ is the incident angle 

between the direction of the incoming radiation and the plans of the crystal lattice. This 

formula is applied to the peak with maximum intensity or to the two main peaks.  

UsiŶg “Đheƌeƌ’s foƌŵula ǁe deteƌŵiŶed the Đƌystallite size fƌoŵ the ;-111) and (111) 

diffraction peaks. Let us focus on the (-111) diffraction peak of hafnium oxide nanoparticles 

synthesized at pH 9.5, at 120 °C for 48 hours. Furthermore, the measured full-width-at-half-

maximum, �, can be related with the following formula:  � = �� + �� + �� 

Where �� is the width due to instrumental optic defaults, �� is the width related to the 

constraints (which are negligeable) and �� is the real full-width-at-half-maximum. Thus,  �� = � − �� 

Figure 31: DeterŵiŶatioŶ of Miller’s iŶdices ;hklͿ 
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�� is given by the manufacturer following the formula: �� = Ͳ.ͳͷͻʹ͸ − Ͳ.ͲͲͶͶͶ� + ͻ.Ͳ͵. ͳͲ−ହ�ଶ − ͹.͸͹ͷ͹ͳ. ͳͲ−7�ଷ + ʹ.ͷͳʹͻͷ. ͳͲ−9�ସ 

With � =  (°) ߠʹ

For the (-111) diffraction peak, the ʹߠ value is: ʹߠ = ʹͺ.͵ͺ°, so ʹߠ = Ͳ.Ͷͻͷ ��� 

Hence, �� = Ͳ.ͲͻͲ°, so �� = Ͳ.ͲͲͳͷ͹ ��� 

The full-width-at-half-maximum is:  � = Ͳ.ͷͲ°, so � = Ͳ.ͲͲͺ͹ ���  
Thus, we can determine the crystallite size: 

ܮ = ሻߠcos ሺ��ߣ ܭ = �ሺ ߣ ܭ − ��ሻcos ሺߠሻ = Ͳ.ͺͻ × Ͳ.ͳͷͶͲͷ͸ሺͲ.ͲͲͺ͹ − Ͳ.ͲͲͳͷ͹ሻ × cosሺܱ. Ͷͻͷʹ ሻ = ʹͲ ݊݉ 

 Transmission Electron Microscopy (TEM) 

To obtain information on NPs real size, on the size distribution and on the possible formation 

of aggregates, the samples were studied by Transmission Electron Microscopy (Figure 32). In 

Bordeaux, I have used: JEOL 1400Plus (accelerating voltage 120 kV) at PLAteforme de 

CAcractérisation des MATériaux (PLACAMAT) and HITACHI H7650 and in Aveiro, a HITACHI 

H9000 (accelerating voltage 300 kV). High Resolution Transmission Electron Microscopy 

(HRTEM) was performed on a JEOL 2200FS.  

 

Figure 32: Schematic representation of a Transmission Electron Microscope 
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The transmission electron microscope is based on the detection of transmitted electrons 

when a focalized electron beam interacts with the sample. An electron gun (source of the 

electrons) with a narrow energy distribution in high vacuum is focused through a magnetic 

field on the sample via the condenser lens. The electrons interact with the sample placed on 

a sample holder. The electrons transmitted by the sample arrive on a fluorescent screen where 

the electron energy is turned into visible light allowing the visualization of the sample 

projection. HRTEM analysis allows the study of the material at the atomic scale. Thanks to the 

high resolution (0.05 nm), we have information on the distance between the lattice planes 

and on the crystalline phase of the products.  

Drops of diluted dispersions of NPs are air-dried on carbon films deposited on 300-mesh 

copper grids. To determine, the size of the nanoparticles, more than 300 NPs are measured 

on several TEM pictures recorded for different regions on the TEM grid.  

 Dynamic Light Scattering (DLS) 

The dynamic light scattering analysis allows the determination of the hydrodynamic diameter 

distribution of a suspension of particles. The instrument used is a Zetasizer Nano ZS 

commercialized by Malvern. The equipment makes use of non-invasive back scatter (NIBS) 

technology to perform particle size analysis in the range of 0.6 nm to 6 mm, according to the 

manufacturer.  

DLS can be performed on a time scale measured in minutes rather than hours. In DLS, 

scattering intensity fluctuations are monitored across µs time scales and then correlated. The 

intensity fluctuations are a consequence of particle motion, and the measured property in the 

correlation analysis is the distribution of diffusion coefficients. The size is then calculated using 

the Stokes-Einstein equation:  

�ℎ = �஻ �͸ � ߟ � 

Where �ℎ is the hydrodynamic radius, �஻ is the Boltzmann constant, � is the temperature, ߟ 

is the solvent viscosity and � is the diffusion coefficient [66]. 

The hydrodynamic diameter obtained by DLS measurement is indicative of the apparent size 

of the hydrated/solvated particle (Figure 33). Thus, the hydrodynamic diameter is the value 

obtained adding the real diameter of the particle to the thickness of the solvation shell. 
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Moreover, if the particles are not spherical, rotational motion must be considered as well 

because the scattering of the light will be different depending on the orientation, and the 

measure of the hydrodynamic diameter is given by the diameter of the theoretical rounded 

particle whose diameter is close to the particle length. And, if the particles are aggregated the 

DLS analysis will measure the diameter of the aggregates.  

 

 Zetametry 

The zeta potential analysis is performed on Zetasizer Nano ZS commercialized by Malvern.  

The application of an electric field to charged particles placed in a liquid generates the mobility 

of these particles. This mobility can be quantified through an electrophoresis technique. The 

Zetametry allows to follow the movement of suspended particles when an electric field is 

applied. The electrophoretic mobility is related to the zeta potential. The zeta potential is the 

potential generated by the formation of the electric bilayer, responsible of the particle 

stability in suspension.  

Briefly, zeta potential is the electrostatic potential which is localized very close to the surface 

of particles suspended in liquids [67]. )eta poteŶtial ;ζͿ is ƌespoŶsiďle foƌ paƌtiĐle-particle 

repulsion forces in suspensions. Figure 34 illustrates a particle suspended in a liquid. The 

slipping plane or shear plane is where the zeta potential is located versus the potential in the 

bulk solution. Within this slipping plane, the liquid is bound to the particle while it moves freely 

outside this boundary. The net potential far from the particle (in the bulk of the liquid) is zero. 

Figure 33: Representation of hydrodynamic diameter �ℎ calculated for different systems 
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In aqueous media, zeta potential is typically generated when the ions on the particle surface 

dissociate, creating an electric charge close to the surface surrounded by a cloud of counter-

ions. Various ion types can diffuse in and out through the slipping plane which allows the 

variation of zeta potential according to the ionic composition in the liquid depending on the 

pH value. Ions may also participate in chemical reactions within the slipping plane which can 

affect the zeta potential. Sample dilution can significantly shift the Zeta potential as ions may 

adsorb or desorb from the particle. Zeta potential can be positive or negative, or zero 

(Isoelectric point, IEP) depending on the liquid (solvent) pH or ion type and concentration [68]. 

Moƌeoǀeƌ, HeŶƌy’s eƋuatioŶ correlates the electrophoretic mobility and the zeta potential:  

�ߤ = ߟ ͵ሺ��ሻ� ߞ ߝ ʹ  

Where ߤ� is the electrophoretic mobility, ߝ is the permittivity of the media, ߞ is the zeta 

potential, �ሺ��ሻ is the HeŶƌy’s fuŶĐtioŶ aŶd ߟ is the viscosity. Two values are generally used 

as approximations for �ሺ��ሻ determination. The value of 1.5 is used for an aqueous solution 

(Smoluchowski approximation), and 1.0 is used for a media with a low dielectric constant 

(Huckel approximation). Thus, the previous equation becomes:  

�ߤ = ߟߞ ߝ  

Experimentally, hafnium oxide nanoparticles are prepared in a suspension of 300 mL of 

distilled water. This suspension is then separated in two. In the first one, sodium hydroxide is 

slowly added to increase, little by little, the pH value from neutral to higher value. And in the 

Figure 34: Representation of zeta potential of a negatively charged particle suspended in a liquid [67] 



Chapter 3: Hafnium dioxide, HfO2 

144 
References page 145 

second volume, nitric acid is also slowly added to progressively decrease the pH value from 

neutral to lower ones. Thus, sample solutions with different pHs are collected and ready for 

analysis. Thus, the curve of the zeta potential as a function of pH can be plotted.  

 Analyses of specific surface area (BET) 

The measure of the specific surface area is based on the determination of the gaseous 

nitrogen volume necessary to form an adsorbed monolayer on the surface of the sample at 

78 K. The adsorption is a surface phenomenon in which a liquid or gaseous molecule is fixed 

by Van der Waals interactions. The results are then analyzed by the model of Brunauer, 

Emmett and Teller ( BET method). This model allows the determination of the specific surface 

area of the nanoparticles given in m2/g.  

Knowing the amount ݊௠�  of nitrogen necessary to fill a molecular monolayer on the surface 

and the area �௠ occupied by a single adsorbed molecule (�௠ = Ͳ.ͳ͸ʹ ݊݉ଶ at 77.4 K), it is 

possible to determine the specific surface area (�) with the following equation [69]:  

� = �݉� = (݊௠�݉�) ஺ܰ�௠ 

where A is the area with a monolayer of nitrogen, ݉� the adsorbate mass, and ஺ܰ the 

Avogadro constant.  

 Infrared spectroscopy (IR) 

The Fourier transform infrared spectroscope used was MIRacle 10 (single reflection ATR 

accessory) SHIMADZU. Through infrared spectroscopy, we can have information on the 

vibrational modes of the functional groups present in a molecule and sometimes also on the 

rotational modes, and thus on the nature of the analyzed product [70].  

Infrared spectroscopy is an optic spectroscopy that is based on the interaction between the 

dipoles generated by the vibrations of the molecules and the electric field of light. An infrared 

photon hits the sample which absorbs the energy in a vibrational level, promoting the system 

from a fundamental vibrational state to an excited one. A molecule has a finite number of 

vibrational modes (3N-6, where N is the number of atoms) which depends on the geometry 

of the molecule. The selection rules define the nature of the active vibrational modes of the 

molecule.  
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Introduction 

HfO2 nanoparticles (NPs) doped with trivalent lanthanide ions, such as europium, terbium and 

gadolinium, were prepared in chapter 3, and in this chapter their luminescence properties are 

studied. I start by presenting briefly some basic ideas of lanthanide based luminescence. Then, 

the luminescence properties of NPs doped with Eu3+ and Tb3+ are discussed and, lastly, I show 

that NPs co-doped with Eu3+, Tb3+ and Gd3+ perform as ratiometric luminescence 

nanothermometers.  

I - Luminescence imaging background 

I. 1. Optical imaging 

Over the last decade, optical imaging techniques have attracted much interest because they 

can image tissue anatomy, physiology, metabolic and molecular function. Their main 

advantage is the detection of luminescent dyes at low concentration and the use of non-

ionizing and harmless radiation. Thus, the design of objects for in vivo optical imaging of tumor 

tissues has been attracting many researchers [1]. The data may be collected in several ways, 

reflectance, transillumination, tomography and diffuse pattern (Figure 1). In reflectance, the 

excitation light (input) impinges on the object surface and the luminescence light (output) is 

collected on the same side of the object (Figure 1a). In transillumination, the object is 

illuminated on the opposite side of the data collection, so that the light propagates through 

the object (Figure 1b). Figure 1c shows an illustration of data collection where multiple point 

source transillumination data are time-shared around a cylindrical geometry. Different 

geometries and the use of reflected data can also be used for tomographic purposes. The 

direction indicated by the arrows shows the general photon trajectory established. The 

pattern of collected data is diffusive, as is evidenced from the experimental measurements 

shown in Figure 1d obtained from a transilluminated homogeneous diffusive cylinder.  
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Light is one of the most convenient vectors for transmitting signals, and when well-chosen 

wavelengths are used the penetration depth can be substantial and light can easily reach 

regions with a complex molecular structure, not accessible to other messengers.  

Among the studied NPs, semiconductor quantum dots (QDs) are potential candidates for 

imaging as they are highly luminescent, tunable in the entire visible range, and are much more 

photostable than the organic luminophores. Quantum dots have been exploited for both in 

vitro and in vivo imaging [2-6]. Another type of luminescent acting as imaging systems are 

those based on trivalent lanthanide ions (Ln3+), which feature easy spectral and time 

discrimination of their emission bands, and cover the visible and NIR (Near Infrared) spectral 

ranges. Lanthanide ions are widely studied and can be found in homogeneous time-resolved 

luminescent assays [7-10], optimization of bioconjugation methods for lanthanide 

luminescent chelates [11-12], and time-resolved luminescence microscopy [13-14] that 

resulted in applications of lanthanides luminescent bioprobes (LLBs) [11, 15] in many fields of 

biology, biotechnology and medicine including tissue [16-18] and cell imaging [19-20], analyte 

sensing [21] and monitoring drug delivery [22].  

In order to design optical nanoparticles, it is important to be aware of the basic luminescence 

concepts and ideas and, thus, these are here briefly reviewed.  

Figure 1: Modes of data collection for optical imaging [1] 
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I. 2. Luminescence principles 

The phenomena involving energy absorption and subsequent light emission are classified 

generically under the term of luminescence. Excitation by absorbance of a photon leads to a 

class of important luminescent species, which fluoresce or phosphoresce. In general, 

fluoƌesĐeŶĐe is ͞fast͟ ;Ŷs tiŵe sĐaleͿ ǁhile phosphoƌesĐeŶĐe is ͞sloǁ͟ ;tiŵe sĐale up to hours 

or days). Fluorescence is used for processes, occurring without change in spin, typically ܵଵ →ܵ଴ (singlet to singlet ground state) or ܨହ/ଶଶ → ଻/ଶଶܨ  (Yb3+) transitions. Phosphorescence 

pertains transitions involving a change in spin, most commonly ଵܶ → ܵ଴ (triplet to singlet 

ground state) [23]. The energy used in the excitation of luminescent materials gives rise to a 

classification of luminescence processes, such as: photoluminescence, when the excitation is 

performed by electromagnetic radiation; cathodoluminescence, when a beam of electrons is 

used; electroluminescence, when excitation comes from an electric voltage; 

triboluminescence, when a mechanical energy is the source of excitation; and 

chemiluminescence, when the energy of a chemical reaction is generating the 

luminescence [24]. Thus, the luminescence is the emission of light occurring from 

electronically excited states that have been populated by an external excitation source to a 

fundamental state [25]. 

I. 2. a. Excitation and emission spectra 

Figure 2 shows typical excitation and emission spectra of a luminescent dye. These spectra are 

generated by a spectrofluorimeter, which includes two spectrometers: an illuminating one 

and an analyzing one. First, the sample is irradiated at a given wavelength causing some 

fluorescence. A luminescent emission spectrum is obtained by scanning with the analyzing 

spectrometer using this fixed illumination wavelength. The analyzer is then fixed at the 

brightest emission wavelength, and an excitation spectrum is obtained by scanning with the 

illuminating spectrometer and measuring the variation in emission intensity at this fixed 

wavelength.  
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I. 2. b. Perrin-Jablonski diagram 

To describe the processes subsequent to light absorption by an emitting center, it was found 

convenient to use an energy diagram in which the electronic states of the emitting center are 

represented together with arrows indicating the possible transitions between them, the 

Perrin-Jablonski diagram [27]. Figure 3(a) shows a simplified Perrin-Jablonski diagram while 

the figure 3(b) shows a more complete diagram.  

 

The Perrin-Jablonski diagram describes several possibilities for an electron to go back to the 

ground state, such as quenching, non-radiative relaxation, fluorescence, internal conversion 

and vibrational relaxation, intersystem crossing and phosphorescence. The different 

possibilities are detailed in the following parts.  

Figure 2: Typical excitation and emission spectra for a luminescent dye [26] 

Figure 3: (a) simplified [28] and (b) complete [29] Perrin-Jablonski diagram 
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I. 2. b. i. Radiative transition 

The radiative transition consists of absorption of the emitted light from a donor molecule or 

ion by the acceptor species. For such a transfer to take place, the emission of the donor has 

to coincide with the absorption of the acceptor. Energy levels should be close enough to allow 

absorption and then emission. The discrepancy between the positions of the band maxima of 

absorption and emission spectra of the same electronic transition leads to a Stokes shift [30].  

Moreover, the difference between absorption and emission wavelength is described as Stokes 

shift (Figure 4a). The shift for the transition within 4f shell results from the fact that the 

absorption and emission takes place between different levels. Usually, absorption 

corresponds to the transition from ground state to higher excited states. Electrons in the 

higher excited state then lose energy to the lattice until the state lying just below the previous 

excited states is available. When the difference between the adjacent states is large, the 

energy corresponding to this transition cannot be transferred to the lattice and it is given out 

in the form of emission. The emission, thus, corresponds to the transition from the 

intermediate state to the ground state. 

 

I. 2. b. ii. Non-radiative transition 

Not all materials exhibit luminescence even if their molecules or atoms can be excited to a 

higher state. This is due to the existence of a non-radiative pathway in the return to the ground 

state, such as internal conversion or non-radiative relaxation (Figure 3). The energy absorbed 

by the materials, which is not emitted as radiation is dissipated to the crystal lattice in a solid. 

The population of an excited state and the energy difference between the ground state and 

excited states are important factors affecting the luminescence of a material. And, it is crucial 

to decrease these radiationless processes competing with the radiation process.  

Figure 4: Schematic illustration of (a) the Stokes (down-conversion) and (b) anti-Stokes (up-

conversion) shifts. Solid and dotted lines represent absorption and emission spectra respectively  [30]  
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I. 2. b. iii. Multiphonon relaxation 

In condensed-matter physics, a phonon is a unit of vibrational energy arising from oscillating 

atoms within a crystal. Multiphonon relaxation is a well-understood process for lanthanide 

ions. Excited electronic levels of lanthanides in solids decay non-radiatively by exciting lattice 

vibrations (phonons). When the energy gap between the excited level and the next lower 

electronic level is larger than the phonon energy, several lattice phonons are emitted, in order 

to bridge this energy gap. The most energetic vibrations are responsible for the nonradiative 

decay since such a process can conserve energy in the lowest order [31].  

I. 2. c. Up-conversion phenomenon 

Up-conversion is the phenomenon whereby one or more photons of lower energy are 

absorbed by a material and re-emitted as a higher energy photon (Figure 4b). Materials with 

these properties (called up-converters) can be tuned to respond to near infrared energy and 

emit a range of photon energies at visible wavelengths. Thus, they can be used to detect 

particles in the human body, which is transparent to infrared. A major type of up-converters 

is based on lanthanides doping of various metals oxides or fluorides [32-33]. Up-conversion in 

such materials can occur by several mechanisms [32, 34] that rely on a multitude of accessible 

excited states of the different lanthanide cations. The general diagram in Figure 5 summarizes 

some of the absorption-emission processes leading to up-conversion. The vertical arrows 

represent absorption or emission of a photon, while the curved arrows represent energy 

transfer between species (usually ions).  

 

 Mechanism (a) is the most common in lanthanide systems: each of two photo-excited 

lanthanide ions (same, or different, element), transfers energy to a third ion, which 

emits from the higher energy state. Ytterbium (Yb3+) is commonly used as a primary 

Figure 5: Simplified representation of some upconversion processes(adapted from  [34]) 
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absorber of input photoradiation, which transfers energy to emitter ions, commonly 

erbium (Er3+) and thulium (Tm3+) [33]. The energy transfer upconversion efficiency is 

surprisingly high, and of the three mechanisms shown in Figure 5 this is the most 

efficient one.  

 In (b), the initial absorption leads to an intermediate excited state, which lies long 

enough to allow ready absorption of a second photon to give a higher excited state 

(called 2-step absorption). Emission from this state produces a higher energy 

upconverted photon. This process is about two orders of magnitude less efficient than 

(a). 

 Mechanism (c) is a two-photon absorption, this time without a real intermediate 

excited state. This implies a simultaneous absorption of two photons, which inevitably 

has a lower probability, and the mechanism is thus much less efficient. 

I. 3. Lanthanide luminescence 

Lanthanide atoms lie within the sixth row of the periodic table. Lanthanide ions are usually 

trivalent. Electronic configuration of trivalent lanthanide ions is considered as a singularity 

since it features an unfilled 4f shell, partially screened from the environment by the electrons 

in the 5s2 and 5p6 shells (except for La3+ and Lu3+). Ions corresponding to configurations 4f0 

(La3+), 4f7 (Gd3+), and 4f14 (Lu3+) are stable. Lanthanides next to these three ions tend to 

exchange electron and acquire this stable configuration. To understand the luminescent 

properties of lanthanide ions, it is necessary to consider their energy levels. The energy level 

may be divided into several categories; the two main ones correspond to 4fn configuration and 

to 4fn-15d configuration. 

Due to the partial electronic shielding of the 4f orbitals by the filled 5s2 and 5p6 subshells, the 

emission lines of lanthanide ions are typically very narrow and the corresponding lifetimes are 

relatively long, from a few microseconds to a few milliseconds [25]..  

I. 3. a. Discrete f-f transition 

The number of discrete 4f energy levels is large, except for Ce3+ and Yb3+. For instance, Gd3+ 

has as many as 327 levels of 4f configuration. Usually only the level relevant to 

photoluminescence that can be excited by UV light are mentioned and other levels are 

ignored. The transitions within 4f shells are strictly forbidden, because the parity does not 

change. However, some forbidden transitions can be observed due to the fact that the 
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interactions of the lanthanide ions with crystal field or with the lattice vibrations can mix states 

of different parities into 4f states (selection rules of Laporte [35]). Vibronic transitions of 

lanthanide ions [36] are due to the coupling of the 4fn states with the vibrational mode of the 

lattice.  

I. 3. b. Broad energy bands 

In addition to the discrete 4f levels, broad bands are usually present and play an important 

role in excitation. Two groups of bands can be defined. In the first group, one of the 4f 

electrons raises to the higher 5d levels (I. 3. c). The second group comprises charge transfer 

bands, between electrons from the host matrix to the energy levels of the lanthanide ions.   

I. 3. c. f-d transition 

4fn-15d levels may be understood as formed by the electron in the 5d orbital interacting with 

4fn-1 core. As a consequence of this strong crystal field effect on the 5d electron, 4fn-15d 

configurations of lanthanide ions in solids are very different from those of free ions. 4fn → 4fn-

15d absorption of most of the lanthanide (+3) and lanthanide (+2) ions exhibit two features. 

First, they consist of strong bands corresponding to the components of 5d orbital split in the 

crystal field. Consequently, their spectra are similar when ions are embedded in same types 

of host. Second, the structures of 5d bands can be fitted to energy differences in the ground 

multiplets of the 4fn-1 configurations.  

For most of the trivalent lanthanide ions, transitions from configuration 4fn to 4fn-15d 

correspond to wavenumbers exceeding 50 000 cm-1 (below < 200 nm) and thus not accessible 

to UV excitation. Exceptions are Ce3+ and Tb3+ for which these transitions are accessible to UV 

excitation. The Table 1 compares the characteristics of f-f and f-d transitions.  

 f-f f-d 

Electric dipole oscillator 

strength 
10-6 10-1 – 10-2 

Ion lattice coupling weak strong 

Emission wavelength 200 – 500 nm 150 – 1000 nm 

Line width 10 cm-1 >1000 cm-1 

Lifetime 10-2 – 10-5 s 10-8 – 10-6 s 
Table 1: Comparison of f-f and f-d transition of lanthanides [26] 
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I. 4. Thermometer applications 

I. 4. a. Principles  

Luminescence nanothermometry exploits the relationship between temperature and 

luminescence properties to achieve thermal sensing from the spatial and spectral analysis of 

the generated light [37]. Six parameters are known to define the emission of a given material: 

intensity, band-shape, spectral position, polarization, lifetime and bandwidth. These six 

parameters can be modified with temperature, increasing or decreasing, as shown in figure 6 

and thus different nanothermometry classes can be defined [37].  

 

Band shape luminescence can be achieved following two main schemes. In the first approach, 

luminescence bands are generated by different emitting centers so that the temperature-

induced band-shape change arises either from the different thermal quenching of each center 

or from the thermally induced changes in the energy transfer rates among these centers. In 

contrast, in the second approach, the different bands are generated by a unique luminescence 

center and the band shape modifications is generally caused by a thermally-induced 

redistribution of the population among the different levels of the unique emitting center. One 

advantage of this band-shape nanothermometer type compared to the intensity one is the 

independence between relative luminescence intensity and local concentration of emitting 

centers [25]. Here are some examples of nanothermometers found in the literature: based on 

QDs [38-41], carbon nanotubes [42-49], metal-organic frameworks [50-55]. Moreover, the 

mechanism of lanthanide band shape nanothermometer depends on whether the 

luminescence bands under analysis are generated by a single type of lanthanide (called single 

center) or by a combination of different lanthanides (called multi center).  

 

Figure 6: Schematic representation of the possible effects caused by a temperature increment on the 

luminescence. Red lines correspond to higher temperatures [37]. 
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I. 4. b. Single center nanothermometers 

The lanthanide luminescence intensity depends on several parameters among which 

temperature is a most critical one. A large number of mechanisms may link the luminescence 

intensity with the temperature including: the activation of the multiphonon decay probability, 

the activation of the energy transfer between lanthanide ions or quenching centers, the 

population redistribution due to Boltzmann statistics, presence of phonon-assisted conversion 

processes and thermal enhancement of energy transfer processes between lanthanide ions 

and the host levels or charge transfer states [25]. A profusion of mechanisms can influence 

the thermal dependency of intensity of each emission, such as fluctuations in the 

concentration of NPs, and the power of the excitation. Thus, not all the lanthanide ions can 

be used for this kind of nanothermometry but only those possessing radiative states with an 

energy gap around a few hundred of nm (4 – 12 eV). The lanthanides used are: neodymium 

(Nd3+) [56], thulium (Tm3+) [57], europium (Eu3+) [58], erbium (Er3+) [56, 59-60], dysprosium 

(Dy3+) [61] and ytterbium (Yb3+) [57].   

Suzuki et al. reported an example of thermometer depending on the intensity luminescence 

based on europium to detect a temperature increase in HeLa cells after changing the 

extracellular Ca2+ concentration. This system was able to detect in real time intracellular 

temperature variations as small as 1 °C in the biophysical range [62]. Another example of 

nanothermometer based on one emission intensity can be found in the work by Peng using 

Y2O3 NPs doped with europium ions [63]. He described the decrease of the emission intensity 

associated with the ܦ଴ହ → ଶ଻ܨ  transition to an increase of the temperature in the 10 – 300 

K range when the NPs were excited at 580 nm. Instead, when the system was pumped at 488 

nm, the emission intensity increased with increasing the temperature, reaching a maximum 

at ca. 550 K, and then decreased for higher temperatures. The explanation for these 

differences, proposed by the authors, was the modification that the excitation wavelength can 

trigger in the dynamics, population density and thermally activated electron distribution of 

the energy states. Indeed, this is a proof of the complicated behavior of the thermal 

dependence of emission intensities of lanthanide ions. Nevertheless, for applications in which 

the excitation can be standardized and the concentration of NPs is highly controlled, 

thermometry based on the measurements of the luminescence intensity ratio between more 

than one lanthanide ion has also been investigated.  
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I. 4. c. Multicenter nanothermometry 

One of the most common techniques to sense temperature using lanthanides ions is in fact 

based on the modifications of the intensity of the luminescence. However, instead of using a 

single emission line as explained above, a second emission band is used as a reference to take 

advantage of a ratio of intensities. The use of two bands can solve the fluctuations due to a 

modification of NPs concentration or excitation power density reaching the sample. However, 

the complicated dynamics of lanthanide ions usually involve more than one temperature-

dependent phenomenon, such as non-resonant energy transfer or multiphonon relaxation (cf. 

I. 2. b). Thus, it is difficult to predict and control the behavior of the luminescence spectra due 

to their complexity, which affect the various emitting levels.  

In order to define a reliable intensity ratio, Luminescence Intensity Ratio (LIR) technique has 

been set up, and is since then the most widespread strategy for thermometry involving 

lanthanide ions [37]. The LIR technique is based on the intensity ratio between two different 

energy levels that are thermally coupled, meaning that both levels are separated by an energy 

gap small enough to allow the promotion of electrons to the upper state using thermal energy. 

Thus, as both levels are close to each other, the non-radiative relaxation from the upper level 

to the lower one has higher probability to occur. Hence, both states are related and share the 

electronic population in such a way that the intensity ratio between their emissions is 

independent of the excitation source and of the fluctuations in concentrations, enabling a 

reliable system to sense temperature.  

The emission probability for each energy level depends on many different parameters but one 

of the most crucial parameters is the energy gap between the lanthanide energy levels (e.g. 

level 1 and level 2 with a higher energy). If this gap is small and comparable to the thermal 

energy ��ܶ, where ��  is the Boltzmann constant and ܶ is the temperature (K), then it is not 

possible to populate a single level since, due to the Boltzmann statistics, the population is 

redistributed among energy levels with similar energy. Thus, the population of the high-

energy state �ଶ is given by: 

�ଶ = �ଵexp ܶ��ܧ∆−) ) (1) 

where �ଵ is the population of level 1 and ∆ܧ is the energy gap between levels 1 and 2. As both 

states are populated, there are two contributions to the overall luminescence spectrum with 
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two bands at different energies. The intensity of the band corresponding to the de-excitation 

from level � down to the ground state, �� is given by:  �� = ܿ�ሺ�ሻܣ���ℎ�� × �� = ���� (2) 

where ℎ is the PlaŶk’s ĐoŶstaŶt, ܣ�  is the spontaneous emission rate of the level, �� its 

degeneracy and ܿ�ሺ�ሻ is the response of the detection system at the emission frequency ��. 
 �� is a constant with a value which depends on a great amount of geometrical factors as well 

as on intrinsic properties of the emitting level such as branching ratios and luminescence 

quantum efficiency. The ratio between intensities of level 1 and level 2 is:  �ଶ�ଵ = �ଶ�ଶ�ଵ�ଵ = �ଶ�ଵ exp ܶ��ܧ∆−) ) = exp ܤ ܶ��ܧ∆−) ) (3) 

and, the experimental determination of the intensity ratio can lead to temperature 

determination. An appreciable thermal sensitivity is achieved only if the energy gap between 

emitting levels is small in order to induce large population redistribution with small 

temperatures changes. The last equation (equation (3)) is used in the LIR techniques to 

thermally calibrate a system [64]. The constant ܤ depends on the experimental system and 

on spectroscopic parameters of the material:  

ܤ = ܿଶሺ�ሻܣଶ�ଶℎ�ଶܿଵሺ�ሻܣଵ�ଵℎ�ଵ  (4) 

The dependence of this constant on the detection system can make the method less 

exploitable. However, the two energy states involved are close in energy, so the 

approximation ܿଶሺ�ሻ �ଶ ܿଵሺ�ሻ�ଵ~ 1⁄  holds [65]. Hence, the main parameters influencing ܤ 

are the spontaneous emission rate, which generally depends on the host, and the degeneracy 

of the level, which varies with the symmetry of the optical centers [66].  

The two levels involved in LIR should have the following characteristics  [67-69]:  

- An energy gap between the two states smaller than 2000 cm-1 (< 0.25 eV) is required 

to allow the thermal coupling and a high population in the upper level. 

- Due to the need of good resolution between the selected lines, the energy gap should 

be higher than 200 cm-1 (> 0.02 eV) 

- For both states involved, the luminescence intensity should be high to ensure easy 

detection of the optical signal.  
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Lanthanide ions with appropriate states for thermometry based on LIR are Er3+/Yb3+ [70-73] 

Eu3+/Tb3+ [50-51, 74]. 

The absolute sensitivity, S, of a thermal probe is given by:  

ܵ = ݀ሺ��ܴሻ݀ܶ = exp ܤ ܶ��ܧ∆−) ) × ଶܶ��ܧ∆ = ��ܴ ×  ଶ (5)ܶ��ܧ∆

Sensitivity is indicative of the performance of the sensor. As shown, in equation (5), the 

sensitivity depends on the LIR value at each temperature and, thus, both ܤ and ∆ܧ influence 

it. Due to the lanthanide ion properties, with the valence electrons shielded from the 

environment, the effect of the crystal field is weak, meaning that large variations in these two 

parameters, ܤ and ∆ܧ, are not expected. Thus, the absolute sensitivity cannot be compared 

between two systems. This is the reason why, to compare several systems, a relative 

sensitivity has been defined as follows:  

ܵ�ሺܶሻ =  
1∆  |�∆�ܶ| (6) 

Li and coworkers studied the effect of the size and shape of NPs on the sensitivity of the sensor 

based on NaYF4 co-doped with Er and Yb. The authors investigated bulk powders (0.8-1.2 µm), 

nanowires (4.8 µm – 140 nm), nanorods (1.1 µm – 140 nm), and nanoplates (48 – 62 nm) and 

their relative sensitivities, following 980 nm excitation. The highest sensitivity was observed 

at 393 K for all morphologies with a value of 0.45 x 10-3 K-1 for the nanoplates [75]. Alencar 

studied the size effect of NPs based on Er3+-doped BaTiO3 on 980 nm excitation and showed 

that the particle size played an important role, due to the number of carbonate and hydroxyl 

ions adsorbed on the surface of the nanocrystals. Smaller NPs were found to possess a lower 

thermal sensitivity. The effect of size and shape of NPs doped with Er on the sensitivity was 

investigated [76]. However, it is possible to use different host materials or different lanthanide 

ions to change the value of ܤ and ∆ܧ and impact the sensitivity. For example, in the case of 

ions such as Nd3+-based NPs, the intensity ratio was defined between two Stark components, 

the ܨଷ/ଶସ → �9/ଶସ transition was the one exploited in ratiometric nanothermometry [77]. 

Wawrzynczyk et al. synthesized Nd3+-doped NaYF4 and by ratiometrically calculating the 

changes in the two Stark level emission intensities at 863 and 870 nm, they were able to 

develop a ratiometric temperature correlation over the range of 0 – 150 °C with a thermal 

sensitivity of 0.1% K-1 [77]. Rocha et al., investigated the development of a Nd3+ 



Chapter 4: Optical imaging and nanothermometry 

166 
References page 183 

nanothermometer, using LaF3 as a host. Opting for a core-shell architecture (LaF3:Nd3+@LaF3), 

the thermometer was established by monitoring the 863 and 885 nm emissions (from two 

different Stark levels) to give an intensity ratio, achieving a thermal resolution of 2 °C in the 

temperature range from 10 to 60 °C [71, 78].  

Another relevant example is the use of the intensity ratio between europium and terbium. For 

instance, the luminescent thermometer consisting of terbium (Tb3+) and europium (Eu3+) co-

doped γ-Fe2O3 nanoparticles [50-51] is designed to show an excited triplet state with energy 

slightly above that of the Tb3+ 5D4 emitting state. Moreover, the small energy difference 

between the Tb3+ and host states caused the occurrence of a Tb3+ to host energy transfer 

process, which is strongly temperature dependent, as it is a phonon assisted process [50-51]. 

Figure 7 depicts the variation of the emission intensities of Tb3+ and Eu3+ as a function of the 

temperature for such NPs. When the temperature increases, the terbium emission peak 

decreases, while the one of europium slightly increases, remains stable before decreasing 

again.  

 

Another example where the phosphor thermometer consisted in a Tb3+/Tm3+ co-doped Y2O3 

system was also reported [79].   

EǀeŶtuallǇ, let’s ŵeŶtioŶ soŵe eǆaŵples of metal organic luminescent compounds doped 

with Eu3+ and Tb3+, which are also reported in the literature as nanothermosensors [53]. 

Instead of single molecules, the combination of metals and ligands forming metal organic 

frameworks (MOF) may be used as thermometric sensors. The thermometric process is in this 

Figure 7: Temperature dependence of the luminescence generated by Eu3+, Tb3+ co-doped γ-Fe2O3 

nanoparticles after UV optical excitation [51]  
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case based on the energy transfer between ions within the solid framework. The emission of 

the ions is sensitized by organic ligands with a suitable triplet-state energy, which determines 

the sensitivity and working range of the thermometer.  In the last 20 years, luminescent MOFs 

have attracted attention due to their potential applications in chemical sensing, light-emitting 

devices, and biomedicine [80]. The first ratiometric luminescent MOF thermometer, based on 

the integrated intensity of the Tb3+ ( ସହܦ → ହ଻ܨ ) and Eu3+ ( ଴ହܦ → ଶ଻ܨ ) emissions has been 

reported by Cui et al [53]. In the past five years, several examples of mixed lanthanides-MOF 

as luminescent-based nanothermometers have been reported [81-83]. However, only a few 

of them present nanosized particles. Cadiau et al. reported Ln-MOF NPs showing excellent 

performance as ratiometric luminescent nanothermometers in the physiological temperature 

range (300 – 320 K) [52] with a sensitivity around 0.15 %K-1.  

 

This part showed that it is possible to create ratiometric nanothermometers based on the 

integrated intensity of Tb3+ ( ସହܦ → ହ଻ܨ ) and Eu3+ ( ଴ହܦ → ଶ଻ܨ ) emissions. Thus, the 

nanoparticles I have synthesized allow investigating the luminescence properties of HfO2 NPs 

doped with europium and then with terbium and, subsequently, studying the evolution of 

luminescence with temperature (NPs doped with europium, terbium and gadolinium).  
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II - Mono doping of HfO2 with lanthanide 

II. 1. Europium (Eu3+) insertion 

The measurements were performed on HfO2 NPs doped with 5% of Eu, synthesized at 180 °C, 

pH 9.5 for 48 hours (chapter 3, IV-1-a) (TEM size: 39 ± 9 nm; XRD size: 21 nm; shape: rhombus 

and smooth, monoclinic).  

Figure 8 shows the room temperature excitation and emission spectra of Eu3+ - doped HfO2 

NPs. The excitation spectrum was monitored with an emission wavelength of 614 nm, while 

the emission spectrum was measured with 270 nm excitation. The emission spectrum is 

dominated by the ܦ଴ହ → ଶ଻ܨ  transition, whereas the excitation spectrum of the ܦ଴ହ → ଶ଻ܨ  

line (i.e. 614 nm) features the transitions from ܨ଴,ଵ଻  levels. Furthermore, according to the 

literature, the large band peaking at 253 nm is ascribed to a charge transfer (CT) band  

between the matrix and Eu3+ [84].   

 

Further studies were performed at low temperature (14 K) to determine whether Eu3+ was 

localized in one or in several sites. Emission spectra were recorded with an excitation 

wavelength of 394 nm, at room temperature and at 14 K (Figure 9). Moreover, two emission 

spectra were recorded with an excitation wavelength of 270 nm and 396 nm at 14 K (Figure 

10). 

Figure 8: Room temperature excitation spectrum on the left (λem = 614 nm) and emission spectrum on 

the right at λexc = 270 nm  



Chapter 4: Optical imaging and nanothermometry 

169 
References page 183 

 

 

 

 

Figure 9: EŵissioŶ speĐtra at λexc = 394 nm at room temperature (in black) and at 14 K (in red). The 

inset is a zoom of the ଴ହܦ → ଴଻ܨ . The vertical lines show the peaks corresponding to two Stark levels. 

Figure 10: EŵissioŶ speĐtra at λexc = 396 nm (in black) and 270 nm (in red) at 14 K. The inset is a zoom 

of the ܦ଴ହ → ଴଻ܨ . The vertical lines show the peaks corresponding to two Start levels. 
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Each transition is a superposition of Stark levels. According to Binnemans [85], for a ܨ�଻  the 

maximum number of the Stark level is equal to 2J + 1, meaning that if europium sits in one 

site the ܦ଴ହ → ଴଻ܨ  transition should give a single band. Yet, the ܦ଴ହ → ଴଻ܨ  transition 

around 572 – 585 nm consists of two large bands, showing the presence of more than one 

local environment for Eu3+. Moreover, the two bands are broad (FWHM of 50 cm-1 and of 66 

cm-1, values were obtained by fitting with two Gaussian lines the luminescence intensity as a 

function of the energy in cm-1) indicating that Eu3+ are distributed in two families of very 

similar local sites.  ܦ଴ହ  emission decay curves were monitored within the ܦ଴ହ → ଶ଻ܨ  transition (614 nm) under 

different excitation wavelengths: 270 nm (charge transfer band) and 394 nm (direct excitation 

into Eu3+ �଺ହ  level). Both decay curves were well reproduced by a two-exponential function, 

revealing the presence of two decay components ascribed to Eu1 and Eu2 centres. A good 

quality fit (R > 0.9999) was obtained using a bi-exponential function (Figure 11), yielding two 

lifetime values. Table 2 presents the lifetime values and the errors are determined by the 

fitting error.  

 

 

 Lifetimes 

 �ଵ(ms) �ଶ(ms) λexc = 394 nm 0.364 ± 0.009  1.237 ± 0.008 λexc = 270 nm 0.440 ± 0.007 1.201 ± 0.008 

Figure 11: Luminescence decay curve of Eu3+:HfO2 NPs (a) ���௖ = 394 nm, (b) ���௖ = 270 nm              

and ���  = 614 nm. The red solid lines denotes the best double exponential fit to the data and the 

insert shows the fitting residual 

Table 2: Lifetimes of Eu3+:HfO2 NPs at two excitation wavelengths (394 nm and 270 nm)   
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According to the lifetime values in Table 2 and following the arguments of Planelles-Arago et 

al. [86], we assume the fast component (lower lifetime value) to be due to the Eu3+ ions on 

the NPs surface (Eu1 emitting centres), whereas the slow component (higher lifetime value) 

is attributed to Eu3+ ions in the NPs core (Eu2 centres). Hydroxyl (– OH) groups (from water 

molecules) present in the Eu3+ first coordination shell, are indeed well-known luminescence 

quenchers (since they absorb in resonance with the Eu3+ ion), favoring non-radiative 

relaxation [87]. The short lifetime values of Eu1 centres are related to the existence of OH 

groups in the first coordination shell, favoring non-radiative pathways. Regarding Eu2 emitting 

centres, located inside the NPs, the interaction between Eu3+ ions and OH groups from water 

molecules is efficiently hindered, providing longer lifetime values.  

According to Ferreira et al. [88], the lifetime is often higher for the charge transfer than for 

direct excitation in Eu3+. However, explaining why this effect is higher for the Eu1 centres (in 

the NPs core) than for Eu2 centres, will require further studies, beyond the scope of this thesis.  
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II. 2. Terbium (Tb3+) insertion 

The measurements were performed on HfO2 NPs doped with 5% of Tb, synthesized at 180 °C, 

pH 9.5 for 48 hours (chapter 3, IV-1-b). (TEM size: 39 ± 12 nm; XRD size: 15 nm; shape: rhombus 

and smooth, monoclinic). 

Figure 12 shows the room temperature excitation and emission spectra of Tb3+-doped HfO2 

NPs. The excitation spectrum was monitored with an emission wavelength of 543 nm, while 

the emission spectrum was measured with 280 nm excitation. The latter is dominated by the ܦସହ → ହ଻ܨ  transition, whereas the excitation spectrum of the ܦସହ → ହ଻ܨ  line (e.g. 543 nm) 

features the transitions from ܨ଴,ଵ଻  levels. Furthermore, according to the literature, we can 

ascribed the large band peaking at 246 nm as a charge transfer (CT) between the matrix and 

Tb3+ [89].  

 

According to the study made on the insertion of europium in the matrix of HfO2, we can 

suppose that Tb3+ has also two local environment. Tb1 is assigned to Tb3+ in the NPs core 

whereas Tb2 is ascribed to Tb3+ on the NPs surface. ܦସହ  emission decay curves were 

monitored within the ܦସହ → ହ଻ܨ  transition (543 nm) under an excitation wavelength of 270 

nm (charge transfer band). The decay curve was well reproduced by a two-exponential 

function, revealing the presence of two decay components ascribed to Tb1 and Tb2 centres. 

A good quality fit (R > 0.999) was obtained using a bi-exponential function (Figure 13), yielding 

two lifetime values (Table 3).  

Figure 12: Room temperature exĐitatioŶ speĐtruŵ iŶ ďlaĐk (λem = 543 nm) and emission spectrum in 

green at λexc = 280 nm. (Peak labeled as * is an experimental artefact which appears in systems with 

low luminescence intensity) 
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 Lifetimes 

 �ଵ(ms) �ଶ(ms) λexc = 270 nm 0.261 ± 0.006 1.312 ± 0.016 

Thus, according to the discussion made for the europium insertion in the hafnium oxide 

matrix, we attribute the fast component (lower lifetime) to Tb3+ on the NPs surface (Tb1 

centres), whereas the slow component (longer lifetime) is assigned to Tb3+ in NPs core (Tb2 

centres). 

  

Figure 13: Luminescence decay curve of Tb3+:HfO2 NPs,  ���௖ = 270 nm and ���  = 543 nm. The red 

solid lines denotes the best double exponential fit to the data.  

Table 3: Lifetimes of Tb3+:HfO2 NPs at an excitation wavelengths (270 nm)   
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III - Nanothermometry applications 

Nanothermometry properties of samples Eu0.01Tb0.03Gd0.16:HfO2, Eu0.03Tb0.05Gd0.12:HfO2, and 

Eu0.05Tb0.10Gd0.05:HfO2 were studied. Firstly, the excitation spectra were recorded, in order to 

confirm Tb3+-to-Eu3+ energy transfer. Then, the emission spectra were measured at different 

temperature from 12 K to 325 K. Finally, the sensitivity of the nanothermometer was 

determined.  

III. 1. Excitation spectra 

For the three samples, excitation spectra were recorded monitoring at the Eu3+ and Tb3+ 

emission (Figure 14, Figure 15 and Figure 16). 

 

 

Figure 14: Excitation spectra of Eu0.01Tb0.03Gd0.16:HfO2 monitoring emission at 608 nm (Eu3+, red lines) 

and 543 nm (Tb3+, green lines) recorded at 13 K 
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For the three samples, in each emission spectra monitoring emission at 608 nm (Eu3+), at 484 

nm (Tb3+), the characteristic transition of terbium ܨ଺଻ → ସହܦ  is observable [90]. Thus, the 

excitation spectra confirmed Tb3+-to-Eu3+ energy transfer.  

Figure 15: Excitation spectra of Eu0.03Tb0.05Gd0.12:HfO2 monitoring emission at 608 nm (Eu3+, red lines) 

and 543 nm (Tb3+, green lines) recorded at 13 K 

Figure 16: Excitation spectra of Eu0.05Tb0.10Gd0.05:HfO2 monitoring emission at 608 nm (Eu3+, red lines) 

and 543 nm (Tb3+, green lines) recorded at 13 K 
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III. 2. Temperature dependence of the luminescence 

Here, the emission spectra are plotted as a function of temperature. For the three samples, 

an emission spectrum was recorded with an excitation wavelength of 280 nm with a step of 

25 K. 

 

 

 

 

Figure 17: Emission spectra of Eu0.01Tb0.03Gd0.16:HfO2 at several temperatures with an excitation 

wavelength of 280 nm.   

Figure 18: Emission spectra of Eu0.03Tb0.05Gd0.12:HfO2 at several temperatures with an excitation 

wavelength of 280 nm. 
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Figure 17 and Figure 18 show an important decrease of the intensity of the terbium band at 

543 nm with increasing temperature, while Figure 19 shows a relatively smaller decrease of 

this band. Increasing the temperature might promote the Tb3+-to-Eu3+ energy transfer. 

 

III. 3. Integrated intensity 

To quantify the evidence in these figures, we need to measure the areas under the curves of 

the main emissions of terbium, 543 nm ( ସହܦ → ହ଻ܨ ), and europium, 608 nm ( ଴ହܦ → ଶ଻ܨ ) 

and 720 nm ( ଴ହܦ → ସ଻ܨ ). For europium, two peaks are considered because the first peak 

around 608 nm slightly overlaps with a terbium peak ( ସହܦ → ଷ଻ܨ ). Thus, the integrations 

were carried out from 537 to 570 nm for terbium ( ସହܦ → ହ଻ܨ ), from 600 to 640 nm for the 

first europium peak ( ଴ହܦ → ଶ଻ܨ ) and from 704 to 720 nm for the second europium peak 

( ଴ହܦ → ସ଻ܨ ) (Figure 20). 

Figure 19: Emission spectra of Eu0.05Tb0.10Gd0.05:HfO2 at several temperatures with an excitation 

wavelength of 280 nm.  
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These graphs allow us to see better the evolution of the intensity of the terbium and europium 

peaks. Thus, for Eu0.01Tb0.03Gd0.16:HfO2 the intensity of the europium bands remains stable up 

to 180 K, and it decreases from 1 to 0.7 at room temperature. Intensity of the terbium bands 

decreases with the increase of the temperature. Concerning Eu0.03Tb0.05Gd0.12:HfO2, the 

emission of europium increases with the temperature up to 80 K, it remains stable from 80 K 

to 180 K, after which it decreases. The emission intensity of terbium decreases with the 

increase of the temperature. For Eu0.05Tb0.10Gd0.05:HfO2, the emission intensities of europium 

and terbium both decrease with the increase of the temperature.  

The decrease in the emission intensity is usually due to one or more non-radiative 

mechanisms [86]. Considering the emission spectra of hafnium oxide doped only with 

europium and the two broad bands ܦ଴ହ → ଴଻ܨ , at 578 (17 301 cm-1) and 582 nm (17 182 cm-

1), we can determine an energy migration between the ܦ଴ହ  levels of two Eu3+ sites of 119 cm-

1. Yet, the emission intensities of the previous curves start to decrease around 180 K, which is 

Figure 20: Integrated intensities of three peaks of the emission spectra (green, ܦସହ → ହ଻ܨ  of 

terbium, purple,  ܦ଴ହ → ଶ଻ܨ  of europium and red, ܦ଴ହ → ସ଻ܨ  of europium) of a) 

Eu0.01Tb0.03Gd0.16:HfO2  b) Eu0.03Tb0.05Gd0.12:HfO2 and c) Eu0.05Tb0.10Gd0.05:HfO2. 



Chapter 4: Optical imaging and nanothermometry 

179 
References page 183 

equivalent to a thermal energy (kBT) of 125 cm-1. Thus, we can speculate that we have beyond 

180 K, some energy transfer between Eu1 and Eu2 ions.  

III. 4. Experimental thermometric parameter 

Before determining the sensitivity of the nanothermometers we need to calculate the 

experimental thermometric parameter, Δ, as a function of the temperature:  

Δ = ��௕��� 

The experimental thermometric parameters are plotted in Figure 21.  

 

We did not study the possible mechanisms behind the luminescence, and we will not discuss 

the temperature dependence of Δ. Thus, we fitted the experimental thermometric parameter 

with an empirical exponential decay function, in order to determine the following parameters 

and to obtain information about the performance: ܥ, � and ∆଴ according to the following 

equation:  ∆ = ∆଴ +   .[74]  ��−݁ܥ

Figure 21: Experimental thermometric parameter determined by the ratio of the intensity of the 

terbium peak ( ସହܦ → ହ଻ܨ ) by the intensity of the europium peak ( ଴ହܦ → ଶ଻ܨ ) of a) 

Eu0.01Tb0.03Gd0.16:HfO2 b) Eu0.03Tb0.05Gd0.12:HfO2 and c) Eu0.05Tb0.10Gd0.05:HfO2.  
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 ∆଴ ܥ � 
Eu0.01Tb0.03Gd0.16:HfO2 0.82 0.78 0.0094 

Eu0.03Tb0.05Gd0.12:HfO2 0.61 1.24 0.021 

Eu0.05Tb0.10Gd0.05:HfO2 - - - 

For the third sample, the ratio between the intensities of Tb3+ and Eu3+ is almost constant with 

the temperature, meaning that this sample cannot act as a nanothermometer.  

III. 5. Relative sensitivity 

To determine the relative sensitivity of a nanothermometer, we use the formula (6): 

ܵ�ሺܶሻ =  
1∆  |�∆�ܶ| 

ܵ�ሺܶሻ =  
1∆଴ + ��−݁ܥ  |�ሺ∆଴ + ܶ�ሻ��−݁ܥ | 

ܵ�ሺܶሻ =  
1∆଴ + ��−݁ܥ  |��−݁ܥ�−| 

ܵ�ሺܶሻ =  
଴∆��−݁ܥ� + ��−݁ܥ   

A plot of ܵ�ሺܶሻ as a function of the temperature yields the relative sensitivity of the 

nanothermometer (Figure 22).  

Table 4: Determination of the parameter  ∆଴ , C and � by the decay exponential fitting of the 

experimental thermometric parameter.  
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The sensitivity of Eu0.03Tb0.05Gd0.12:HfO2 increases considerably below 150 K, almost 0 %K-1 at 

room temperature. In contrast, Eu0.01Tb0.03Gd0.16:HfO2 has a lower overall sensitivity, but its 

sensitivity at room temperature is better, ca. 0.1 %K-1. As we seek to measure the temperature 

of living cells, the latter sample is preferable for thermometry.   

 

Conclusion 

Doping of HfO2 nanoparticles with Ln3+ ions endows them with luminescence properties. 

Under UV irradiation, these nanoparticles emit in the visible range, green (Tb3+) and red (Eu3+) 

light. Moreover, the insertion of three lanthanide (Eu3+, Tb3+, Gd3+) ions in the hafnium oxide 

matrix results in temperature dependence of the luminescence, which was exploited for 

ratiometric thermometry. Among the three samples studied, Eu0.01Tb0.03Gd0.16:HfO2 exhibited 

the best sensitivity (0.1 %K-1) at room temperature.  

 

  

Figure 22: Relative sensitivity of Eu0.01Tb0.03Gd0.16:HfO2 (in black) and Eu0.03Tb0.05Gd0.12:HfO2 (in red). 

The yellow rectangle shows the biological range of temperatures (from 25 °C to 40 °C) 
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Characterization method 

The photoluminescence spectra were recorded between 14 K and room temperature with a 

modular double grating excitation spectrofluorimeter with a TRIAX 320 emission 

monochromator (Fluorolog-3, Jobin Yvon-SPex) coupled to a R928 Hamamatsu 

photomultiplier, using the front face acquisition mode, on pellet of the samples. The excitation 

source was 450 W Xer ac lamp. The emission spectra were corrected for detection and optical 

spectral response of the spectrofluorimeter and the excitation spectra were weighed for the 

spectral distribution of the lamp intensity using a photodiode reference detector. The lifetime 

measurements were acquired with the setup described for the luminescence spectra using a 

pulsed Xe-Hg lamp (6 µs pulse at half width and 20 – 30 µS tail).  
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Introduction 

Magnetic resonance imaging (MRI) is a widely used non-invasive tool to visualize soft tissues 

in the body [1]. Among the benefits of this technique are: (i) the high resolution leading to 

anatomical information, useful for instance in cancer diagnostics, and (ii) the absence of 

ionizing radiation. MRI is based on the detection of NMR signals originated by protons of water 

and fat molecules in the body when placed in a magnetic field. A magnetic field is applied to 

the region of interest, which is then modulated by radio waves. The nuclear proton magnetic 

moments interact with the incident radio waves, and the absorption of photons leads to 

magnetic effect in the tissue that can be exploited to produce MRI images [2].  

The key advantage of MRI is that it is safer for the patients than other imaging techniques that 

use highly ionizing radiations, such as X-rays in computed tomography (CT) [3], or gamma 

radiation emitted in Positron Emission Tomography (PET) [4-5]. Compared to CT, MRI provides 

a much higher contrast between the different soft tissues of the body. Compared with PET, 

despite its lower sensitivity, MRI provides a higher spatial resolution (around 1x1x1 mm3). 

Therefore, in modern medicine, MRI has emerged as one of the most powerful techniques for 

the diagnosis and treatment of human diseases [6].  

The main limitation of MRI is its low sensitivity, which may be improved using clinical scanners 

with high magnetic fields (ܤ଴), commonly 1.5 to 3.0 Tesla, in 25,000 MRI systems used 

worldwide. The largest human MRI scanner is present at NeuroSpin research centre in Saclay, 

France, equipped with the most powerful magnet in the world, generating a magnetic field of 

11.7 Tesla (Figure 1). ܤ଴ values of 7 T to 17.2 T are used in pre-clinical MRI research. However, 

these high field instruments are prohibitively expensive for normal clinical use, and very high 

fields also limit the attainable resolution.  
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Another technological advancement is the capability to enhance the MRI image contrast 

between normal and diseased tissues by injecting compounds that influence some property 

of the water protons in order to visualize an effect. Such MRI contrast agents may be 

paramagnetic, superparamagnetic, or ferromagnetic compounds that shorten the ଵܶ (spin-

lattice) or ଶܶ (spin-spin) relaxation times of protons located in their surroundings. This effect 

is due to an increase in the rate of change of high nuclear energy spin states (proton spin 

aligned against the applied magnetic field) to low nuclear energy spin states (proton spin 

aligned along the applied magnetic field). Contrast agents are used in vivo at a much lower 

concentration than the surrounding water protons. By acting on the relaxation properties of 

water protons close to them, they induce contrast between normal and diseased tissue when 

they concentrate in the later tissue.  

Image contrast depends on variations in intrinsic parameters of the tissue protons, such as 

proton density and relaxation times, between different tissues. ଵܶ contrast agents are usually 

based on Gd3+ ions coordinated to a multidentate chelating molecule, such as Gd-DTPA, see 

Figure 2 (where diethylenetriaminepentaacetic acid (DTPA), 1,4,7,10-tetracarboxylmethyl-

1,4,7,10-tetraazacyclododecane (DOTA)). Paramagnetic Gd3+ ion is responsible for changing 

the contrast by shortening the relaxation times of the surrounding hydrogen protons [7-8].  

Figure 1: The MRI magnet of the NeuroSpin CEA research centre, Saclay, France, weights 130 tons and 

produces a magnetic field of 11.7 Tesla.  
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This thesis aims at producing alternative gadolinium-containing contrast agents for magnetic 

resonance imaging based on hafnium oxide nanoparticles, and to characterizing their 

relaxivity. 

  

Figure 2: Schematic representation of the molecular structures of some commercial contrast agents. 

The brand names are given in brackets.  
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I - Magnetic Resonance Imaging (MRI) background 

Our goal is to synthesize nanoparticles (NPs) with several functionalities. In this part, we will 

focus on the use of NPs as contrast agents for magnetic resonance imaging. This implies that 

the material itself has to be magnetic. The first part will introduce the concepts and 

fundamental theory of magnetic properties in the solid state. The second part will introduce 

the magnetic resonance imaging concepts.  

I. 1. Magnetism 

I. 1. a. Spin 

The spin is an intrinsic quantum property depending on the characteristics of each particle 

such as type, mass and electric charge. As every quantum parameter, the spin values are 

discrete and are subjected to the uncertainty principle. For a particle with a spin quantum 

number ܵ = ͳ ʹ⁄  (e.g., an electron), there are only two distinct spin states characterized by ݉ௌ = ±ͳ ʹ⁄  where ݉ௌ is the spin magnetic number.  

 

The orbital magnetic moment �௅⃗⃗⃗⃗  of a particle (of charge, ݍ, and mass, ݉) can be defined as: �௅⃗⃗⃗⃗ = ݍʹ݉  (1)   ܮ⃗

where ⃗ܮ  is the orbital angular moment. To the orbital magnetic moment of a particle (of 

charge, ݍ, and mass, ݉), a spin magnetic moment (�ௌ⃗⃗⃗⃗ ) is associated according to: �ௌ⃗⃗⃗⃗ = ݍʹ݉ �  ܵ  (2) 

where  ܵ  the spin angular momentum and � is a dimensionless quantity called Landé � - 

factor. The � value depends on the particles type (e.g., for the electron, � is 2.0023).  

Figure 3:  The two distinct spin states of an electron [9] 
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Furthermore, the total magnetic moment is the sum of the orbital magnetic moment and the 

spin magnetic moment: � = �௅⃗⃗⃗⃗ + �ௌ⃗⃗⃗⃗ = �஻⃗ܮ + �஻�  ܵ = �஻ሺ⃗ܮ + �  ܵሻ (3) 

where ܮ is the orbital angular momentum quantum number, ܵ the spin angular momentum 

quantum number, �஻ the Bohr magneton.  

An electron is characterized by S = 1/2 and � = 2.0023, we introduce the Bohr magneton 

(symbol �஻), a physical constant and the natural unit for expressing the magnetic moment of 

an electron caused by either its orbital or spin angular momentum: 

�஻ = ݁ℏʹ݉௘ = ͻ.ʹ͹Ͷ × ͳͲ−ଶସ �ܶ−ଵ (4) 

I. 1. b. Atoms or ions spin orbital momentum 

The spin of atoms or ions, made of several stable elementary particles (protons, neutrons and 

electrons), results from the spin and orbital momentum of the individual particles. A 

diamagnetic atom has no unpaired electrons (� = Ͳ) whereas a paramagnetic atom has 

unpaired electrons and, thus, it has a permanent magnetic moment �, resulting from these 

electrons.  

The effective magnetic moment, �௘௙௙, (Langevin) of atoms or ions, when no orbital 

contribution is present, is given by: �௘௙௙ = �௘√ܵሺܵ + ͳሻ × �஻ (5) �௘ can be replaced by 2 and ܵ by  ݊ ʹ⁄  , where ݊ is the number of unpaired electrons:  �௘௙௙ = √݊ሺ݊ + ʹሻ × �஻ (6) 

This formula represents the contribution of the paramagnetic susceptibility due only to the 

electron spin. However, if the metal ion has a ground state  Ȟሺଶௌ+ଵሻ
 with an orbital angular 

moment, the formula becomes: �௘௙௙ = �௃√�ሺ� + ͳሻ × �஻ (7) 

where � is the total angular moment (� = ܮ + ܵ) and �௃ (the Landé g factor) is defined by the 

following expression: 
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�௃ = ͵ʹ + [ܵሺܵ + ͳሻ − ܮሺܮ + ͳሻ]ʹ�ሺ� + ͳሻ  (8) 

Table 1 lists the magnetic properties of the rare-earth trivalent cations, where Gd3+ shows the 

highest �௃ value compared to the other rare-earth elements (7 unpaired electrons).  

LnIII Conf. n 
Ground 

state 

1st exc. 

state 
ΔE/cm-1 gJ 

μcalc 

(3-28) 

μexp 

 

Ce f1 1 2F5/2 
2F7/2 2200 0.86 2.54 2.5-2.8 

Pr f2 2 3H4 3H5 2100 0.80 3.58 3.2-3.6 

Nd f3 3 4I9/2 4I11/2 1900 0.73 3.62 3.2-3.6 

Pm f4 4 5I4 5I5 1600 0.60 2.68  

Sm f5 5 6H5/2 6H7/2 1000 0.29 0.85 1.3-1.5 

Eu f6 6 7F0 7F1 300  0 3.1-3.4 

Gd f7 7 8S7/2 6P7/2 32000 2.00 7.94 7.9-8.1 

Tb f8 6 7F6 7F5 2000 1.50 9.72 9.2-9.7 

Dy f9 5 6H15/2 6H13/2 3300 1.33 10.65 10.1-10.6 

Ho f10 4 5I8 5I7 5300 1.25 10.61 10.0-10.5 

Er f11 3 4I15/2 4I13/2 6500 1.20 9.58 9.2-9.6 

Tm f12 2 3H6 3F4 5800 1.17 7.56 7.0-7.3 

Yb f13 1 2F7/2 2F5/2 10000 1.14 4.54 4.3-4.6 

 

I. 1. c. Magnetic properties of a material 

The magnetic properties of a material depend strongly on the electronic structure of the 

elements constitutive of this material. Diamagnetism comes from the electron circulation in 

atoms or molecules and is present as a negative contribution to the external magnetic field. 

This is generally a weak type of magnetism, which is valid for elements having full electron 

shells. The presence of unpaired electrons gives rise to a paramagnetic behavior, as described 

by the Curie law [10]:  

� = ܥܶ
 (9) 

where � is the magnetic susceptibility (representing the ability of the material to be 

magnetized in an external magnetic field), ܥ is the Curie constant and ܶ is the temperature in 

Kelvin. If a paramagnetic material is placed in an external magnetic field, the independent 

magnetic moments tend to align with the field and increase the total magnetic flux density. 

This alignment is temporary and when the external field is removed the moments immediately 

Table 1: Effective magnetic moments of 4f trivalent ions at 250 °C [9] 
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become randomly oriented. In ferromagnetic materials, with a high density of states near the 

Fermi level, a cooperative influence produces magnetic domains. These domains consist of 

aligned magnetic moments which are strongly coupled to each other. Ferromagnetic materials 

usually have a very small net magnetic moment as the individual domains tend to magnetically 

compensate each other. When exposed to an external field, the internal magnetic moments 

align parallel to the field and the total magnetic field is enhanced. Ferromagnetic behavior is 

quite rare but it is shown for example by metals such as iron [11], nickel [12], cobalt [13] and 

gadolinium [14] in their metallic states. Above the so-called Curie temperature ( ஼ܶ), the 

thermal energy randomizes the magnetic spins and, thus, at high temperatures, ferromagnetic 

materials show a paramagnetic behavior. The magnetic susceptibility of ferromagnetic 

materials above the Curie temperature is described by the Curie-Weiss law [9]:  

� = ܶܥ − � (10) 

where � is the paramagnetic Curie temperature or the Weiss constant, which usually is slightly 

higher than ஼ܶ. Gadolinium is unusual, with a ஼ܶ  of 293 K (which is approximately room 

temperature), whereas iron, nickel and cobalt have ஼ܶ  values of about 1043, 630 and 1395 K 

respectively [15-16]. The temperature dependency of the magnetic susceptibility is illustrated 

in Figure 4 for a paramagnetic and a ferromagnetic material.   

 

Figure 4: Schematic illustration showing the magnetic susceptibility of paramagnetic (left) and 

ferromagnetic (right) materials at different temperatures.  
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Another kind of magnetic behavior is observed in antiferromagnetic materials whose spins are 

coupled in an anti-parallel manner up to the Neel temperature ( ேܶ). Antiferromagnetic 

materials obey the Curie-Weiss law but, in contrast to the ferromagnetic materials, they have 

a negative Weiss constant.  

The magnetic properties of NPs are influenced by both chemical composition and size of the 

nanoparticles. Superparamagnetism is an example of a size effect present in small iron oxide 

NPs with a size smaller than the ferromagnetic domains constitutive of the corresponding bulk 

material. The strong cooperative force aligning the spins in a specific direction is diminished 

in the small nanoparticle, and the spins can hence flip to the opposite direction in the absence 

of an applied field. As the flip time reversing the nanoparticle magnetic field is very short, the 

net magnetization appears to be zero. This behavior is very similar to paramagnetic ones with 

the main difference that it occurs below the Curie temperature.  

I. 1. d. Some magnetic parameters 

The first parameter to be defined here is the magnetic field, B or H in Tesla (T) or in Oersted 

(Oe), the second one the magnetization, M, in emu.mol-1 or in cm3.mol-1, the third is the 

ŵagŶetiĐ susĐeptiďilitǇ, χ, iŶ eŵu.K.ŵol-1, or in cm3.K.mol-1, and the fourth one is the magnetic 

ŵoŵeŶt, μ, iŶ μB.  

I. 2.  Magnetic Resonance Imaging (MRI) 

Magnetic Resonance Imaging (MRI) is a non-invasive technique that generates images of body 

soft tissues using nuclear magnetic resonance (NMR) principles. Nuclear magnetic resonance 

is a phenomenon involving atomic nuclei with a magnetic moment, such as 1H, 13C and 31P, 

which absorb a specific energy amount when placed in a magnetic field. The most commonly 

used nucleus for imaging in biological systems is the hydrogen nucleus (1H) because of its 

abundance in the human body composed mainly of water and fat containing hydrogen atoms. 

Without the presence of the external field, the spin vectors are randomly oriented in space 

and result in no bulk magnetization.  

I. 2. a. Spin and resonance 

Under an external magnetic field ܤ଴ parallel to the Oz axis, the nuclear spin vectors align either 

parallel or antiparallel to the external field. Moreover, when the spins align within the 

magnetic field, they precess (a rotational movement of the spins describing a double cone 
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around ܤ଴ axis, called the Larmor precession) around ܤ଴ at an angle of 54.7° (called magical 

angle) [17]. Furthermore, there is an energy splitting between the two nuclear spin states 

(+ͳ ʹ⁄  and − ͳ ʹ⁄ ). Due to the higher stability of the fundamental ground state, the number 

of parallel spins is higher than those of antiparallel spins and a neat magnetization (ܯ௭଴) is 

created along the Oz axis (cf. figure 5).  

 

When a specific energy amount that fulfills the resonance condition, is applied to the system, 

spin states are excited. The frequency corresponding to this specific energy amount is 

proportional to the applied field strength according to [17, 19]:   � = � ×  ଴ (11)ܤ

where � is called the Larmor frequency (MHz), � is the gyromagnetic ratio of the specific 

nucleus and ܤ଴ is the magnetic field strength (T). For example, the proton gyromagnetic ratio 

is � = Ͷʹ.ͷͺ ܪܯ�. ܶ−ଵ, and for which ܤ଴ = ͳ.ͷ ܶ results in a Larmor frequency of ͸͵.ͻ ܪܯ�, 

in the radio frequency range [17].   

Applying a radiofrequency pulse ܤଵ induces a change in the spin states distribution that can 

be detected as a changed overall magnetization. For example, when a 90° radiofrequency 

pulse is applied with a ܤଵ magnetic field along the Ox axis, the ܯ௭ magnetization disappears 

after excitation, and a ܯ௫௬ transverse magnetization is created as the spins precess (rotate) 

in the Ozy plane perpendicular to ܤଵ. A short delay after excitation, when ܤଵ is turned off, the ܯ௭଴ magnetization will be regained and the equilibrium state recovered. The return to the 

ground state from the excited state process is called spin-relaxation (cf. figure 6). 

Figure 5: a) Magnetic moments of protons under a magnetic field ܤ଴. At the equilibrium, the total 

magnetization is parallel to ܤ଴. b) Protons partition by energy levels at equilibrium under a magnetic 

field ܤ଴. [18]  
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I. 2. b. Relaxation phenomenon 

The main relaxation processes which influence the magnetic resonance signal are those 

described by two ଵܶ and ଶܶ relaxation times.  

 

I. 2. b. i. �૚ relaxation or longitudinal relaxation time 

As these relaxation processes have a first order kinetics (Bloch equations), the magnetization 

changes are exponential and can be described by their rate constants, ܴଵ = ͳ ଵܶ⁄  and ܴଶ =ͳ ଶܶ⁄ . ଵܶ  is a time constant describing the exponential process of ܯ௭  returning to its 

equilibrium value, ܯ௭଴.  ଵܶ is usually called the longitudinal time constant or the spin lattice 

relaxation time constant [20]. This relaxation time depends on interactions between the 

hydrogen nucleus and fluctuating magnetic dipoles in its close environment. Here is the 

longitudinal relaxation expression [19] as a function of ଵܶ: 

௭ܯ = ௭଴ሺͳܯ − ݁−௧భ் ሻ (12) 

where ݐ is the time. A schematic illustration of ܯ௭ magnetization recovery after an applied 90° 

pulse is shown in figure 6 by ML.  

 

I. 2. b. ii. �૛  relaxation or transverse relaxation time 

On the other hand, ଶܶ is a time constant describing the process of ܯ௫௬ decay to zero after 

excitation.  ଶܶ is often called the transverse relaxation time constant or the spin-spin 

relaxation time constant [20]. This relaxation time depends on precessing protons dephasing 

after excitation. As the different spins experience small differences in the magnetic field, 

Figure 6: Magnetization modification (ܯ௭଴  -> M) under a radiofrequency pulse ܤଵ b) Magnetization 

M relaxes to equilibrum ܯ௭଴. [18]  
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dephasing occurs as they precess at slightly different frequencies. Here is the transverse 

relaxation expression [19]:  

௫௬ܯ = ௫௬଴݁−௧మ்ܯ  (13) 

where ݐ is the time. A schematic illustration of phase coherence loss in the (Oxy) plane after 

an applied 90° pulse is shown in figure 6 by MT.  

In equations (12) and (13), we can see that ܯ௭ is a function that increases with time which 

approaches ܯ௭଴ for long ݐ values whereas ܯ௫௬ is a decreasing function with time. If ݐ =
ଵܶ then ܯ௭ ≈ Ͳ.͸͵ ܯ௭଴, whereas if ݐ = ଶܶ the transverse magnetization ܯ௫௬ decreases by a 

factor of ݁ ଵ (cf. equation (13)). Furthermore, the shapes of these two functions are dependent 

on the specific ଵܶ and ଶܶ values (Figure 7). Moreover, the ଵܶ and ଶܶ relaxation processes are 

entirely independent of one another but occur simultaneously. The decay of the transverse 

magnetization ܯ௫௬ is always faster than (or equal to) the increase of the longitudinal 

magnetization ܯ௭. This means that ଶܶ is always shorter than or equal to the  ଵܶ  [19].  

 

I. 2. b. iii. �૚ and �૛ measurement 

A vast number of different pulse sequences are used in spin states excitation in MRI. ଵܶ and 

ଶܶ relaxation times can be monitored using an inversion recovery pulse sequence and a spin 

echo pulse sequence, respectively (Figure 8). In the inversion recovery sequence, a 180° pulse 

rotates the magnetization to the negative z-direction, which, after partial recovery during the 

time delay (TI), is monitored by a 90° reading pulse, which rotates it into the XY plane. By 

Figure 7: Graphs featuring ܯ� magnetization recover and ܯ௫௬ magnetization decay. Graphs were 

plotted by using ଵܶሺଵ,ଶ,ଷሻ= 500, 1200 and 2000 ms and ଶܶሺଵ,ଶ,ଷሻ = 300, 1000 and 1800 ms [21].   
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studying the longitudinal magnetization at various time delays after excitation, an exponential 

curve is mathematically fitted to the measured points and from this curve ଵܶ is determined.  

In the spin echo sequence, the magnetization is flipped into the x-y plane by a 90° pulse. The 

spins start to dephase and the x-y magnetization decreases gradually. The spins are refocused 

by applying a 180° pulse at a certain time points and a signal (echo) can be recorded at a time 

equal to the echo time. ଶܶ is calculated from a curve fitted to the transverse magnetization 

magnitude for different echo times.  

 

 

I. 2. c. Image contrast �૚ and �૛ weighting  

Contrast in magnetic resonance imaging can be affected by intrinsic factors, such as ଵܶ, ଶܶ and 

density of tissue protons, or by extrinsic factors. The later can be changed in the measurement 

by modifying, for example, the echo time (TE) and repetition time (TR), which is the time 

between the repeated units of pulses. The choice of TE and TR strongly affects the signal 

intensity, ܵ, when using spin echo sequences as follows (valid when TR ˃˃ TE) [19]:   

ܵ = ሺͳߩ݇ − ݁−்ோభ் ሻ ݁−்ாమ்  (14) 

where ݇ is a constant and ߩ the spin density in the sample. For example, the choice of a very 

long TR induces a full recovery on ܯ௭ the magnetization before the application of the next 

excitation pulse takes place. This implies that tissues with different ଵܶ values cannot be 

distinguished. On the contrary, when choosing a short TR, a strong ଵܶ effect can be achieved 

Figure 8:  Spin echo and inversion recovery pulse sequences [22] 
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separating structures with different ଵܶ values in the image. Thus, the repetition time can be 

used to control ଵܶ-weighting degree. The ଶܶ-weighting degree can be also controlled by TE 

choice. In general, the use of pulse sequences with long TE increases the ability to distinguish 

between tissues having different ଶܶ relaxation times. However, the optimal choice of TR and 

TE depends on specific tissues [17].   

I. 2. d. Types of MRI contrast agents 

From the physical point of view, MRI contrast agents can be classified into two broad 

categories.  

 ଵܶ contrast agents, which usually enhance the longitudinal (spin – lattice) relaxation 

rates (ܴଵ) of water protons present in tissue more than the transverse (spin – spin) 

relaxation rates (ܴଶ). The addition of such contrast agents causes the nuclei to appear 

as bright spots of increased intensity on ଵܶ weighted images due to the increased 

relaxation rate. Thus, these are positive contrast agents. Interaction between the 

excited nuclei and their surrounding environment gives rise to the ଵܶ  (spin – lattice) 

relaxation process. Examples of such contrast agents are gadolinium or manganese 

chelates [1, 7]. 

 ଶܶ contrast agents, on the other hand, largely increase transverse (spin – spin) 

relaxation rates (ܴଶ) and cause a decrease in signal intensity. Therefore, these are 

negative contrast agents. Relaxation caused by ଶܶ agents arises from the interaction 

between the excited nuclei and those with lower energy. Superparamagnetic iron 

oxide particles are ଶܶ agents [23-24].  

The majority of the MRI contrast agents are complexes of Gd3+, an ion that lies at the midpoint 

of the lanthanide series. It has the maximum number of unpaired electrons (seven) among all 

lanthanide ions and, thus, a large magnetic moment (7.9 μB). This, coupled with a long 

electronic relaxation time (1 – 10 ps) [25], makes Gd3+ the best relaxation agent candidate. 

However, free Gd3+ is extremely toxic both in vivo as well as in vitro because its ionic radius 

(93.8 pm) is nearly equal to that of Ca2+, resulting in strong binding to biological systems where 

Ca2+ is needed, such as calcium channels and calcium-binding proteins. In order to ensure the 

safe clinical use, Gd3+ must be complexed with organic chelating ligands with which it exhibits 

very strong association constants. It then forms kinetically inert and thermodynamically stable 

complexes with these multidentate organic ligands. Since the coordination number of Gd3+ is 
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nine, octodentate ligands are particularly suited, as in stable complexes the ninth coordinate 

bond is formed by a water molecule. The N and O donor atoms of the organic ligand together 

with a single water molecule attached directly to the central ion (Gd3+) lie on the primary 

coordination sphere. Solvent molecules weakly interact with chelated Gd3+ and, thus, occupy 

the secondary coordination sphere. Diethylenetriaminepentaacetic acid (DTPA), 1,4,7,10-

tetracarboxymethyl-1,4,7,10-tetraazacyclododecane (DOTA), and some of their derivatives 

(Figure 2) have already been approved for clinical use because they form stable complexes 

with Gd3+ [7, 26-28]. 

I. 3.  Examples in biomedicine 

I. 3. a. Gd3+ - based contrast agents  

The inverse of the relaxation time defines the relaxation rate (ܴ௜ = ͳ ௜ܶ⁄ ). The contrast agent 

(CA) relaxivity can be defined by the paramagnetic relaxation rate enhancement per mM 

concentration of CA. It can be calculated by plotting relaxation rates as a function of contrast 

agent concentration. A linear function appears and the slope gives the relaxivity (ݎ௜) in mM-1.s-

1 according to [29]:  ͳܶ௜ = (ͳܶ௜)ௗ + ݅            [ܣܥ]௜ݎ = ͳ, ʹ (15) 

where [ܣܥ]  represents contrast agent concentration and ݀ stands for diamagnetic 

contribution (i.e., the solvent relaxation rate in the absence of the contrast agent). The ݎଶ ⁄ଵݎ  

values are often also reported. Positive contrast agents usually have ݎଶ ⁄ ଵݎ ratios in the range 

of 1 to 2 whereas negative contrast agents can have ݎଶ ⁄ଵݎ  ratios around 10 or even more [30].  

The measured longitudinal proton relaxation rate, ܴଵ௢௕௦ = ͳ/ ଵܶ௢௕௦, is the sum of a 

paramagnetic (ܴଵ௣) and a diamagnetic (ܴଵௗ) contribution as expressed in equation (16), where ݎଵ is the proton relaxivity: ܴଵ௢௕௦ = ܴଵௗ + ܴଵ௣ = ܴଵௗ +  (16) [+ଷ݀ܩ]ଵݎ

A similar expression applies for ݎଶ. 

The relaxivity can be divided into an inner and outer sphere term as follows:  ݎଵ = ଵ ௜௦ݎ +  ଵ ௢௦ (17)ݎ
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The inner sphere term is given in equation (18), where ݍ is the number of inner sphere water 

molecules [31].  

ଵ ௜௦ݎ = ͳͳͲͲͲ × ͷͷ.ͷͷݍ × ͳଵܶ௠ு + �௠ (18) 

The longitudinal and transverse relaxation rates of inner sphere protons, ܴଵெ = ͳ/ ଵܶ௠ு  and ܴଶெ = ͳ/ ଶܶ௠ு  are expressed by equations (19) and (20), where ீݎ ௗு is the effective distance 

between the electron charge and the 1H nucleus, �ூ is the proton resonance frequency and �ௌ is the Larmor frequency of the Gd3+ electron spin.  

ܴଵெ = ͳܶଵ௠ு = ͳʹͷ ቀ�଴Ͷߨቁଶ ℏଶ�ூଶ�ௌଶீݎ ௗு଺ ܵሺܵ + ͳሻ × [͵�ሺ�ூ; �ௗଵሻ + ͹�ሺ�ௌ; �ௗଶሻ] (19) 

 

ܴଶெ = ͳܶଶ௠ு = ͳͳͷ ቀ�଴Ͷߨቁଶ ℏଶ�ூଶ�ௌଶீݎ ௗு଺ ܵሺܵ + ͳሻ × [Ͷ�ሺͲሻ + ͵�ሺ�ூ; �ௗଵሻ + ͳ͵�ሺ�ௌ; �ௗଶሻ] (20) 

 ͳ�ௗ௜ = ͳ�௠ + ͳ�ோு + ͳܶ௜௘         ݅ = ͳ, ʹ (21) 

where �ௗ௜, �௠, and �ோு are the total correlation time for the dipolar interaction and the 

correlation times for water exchange and for the rotation of the Gd – Hwater vector, while ௜ܶ௘ 

are the electrons spin relaxation (or correlation) times (equation (21) and Figure 9). ܴ ଶெ differs 

from ܴଵெ mainly in the first term. It is well-known in NMR that frequencies near zero 

contribute to ܴଶ but not to ܴଵ (first term). This term originates from the J(0) term [1].  

For small molecular weight chelates (fast rotation), the spectral density function is expressed 

as in equation (22): �ሺ�; �ሻ = ቀ �ͳ + �ଶ�ଶቁ (22) 

The longitudinal and transverse electronic relaxation rates, ͳ/ ଵܶ௘ and ͳ/ ଶܶ௘, are expressed by 

equations (23) and (24), where �� is the electronic correlation time for the modulation of the 

zero-field-splitting interaction and ȟଶ is the mean square zero-field-splitting energy.  

( ͳܶଵ௘)௓ிௌ = ͳʹͷ ȟଶ��[Ͷܵሺܵ + ͳሻ − ͵] ቆ ͳͳ + �ௌଶ��ଶ + Ͷͳ + Ͷ�ௌଶ��ଶቇ (23) 
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( ͳܶଶ௘)௓ிௌ = ȟଶ�� ቆ ͷ.ʹ͸ͳ + Ͳ.͵͹ʹ�ௌଶ��ଶ + ͹.ͳͺͳ + ͳ.ʹͶ�ௌ��ቇ (24) 

The outer-sphere contribution can be described by equations (25) and (26), where ஺ܰ is the 

Avogadro constant, ீܦௗு is the diffusion coefficient for the diffusion of a water proton away 

from a Gd3+ complex, ܽீௗு  is the distance of closest approach of the protons to Gd3+ and �௢௦ 

is its associated spectral density function as given by equation (27), where �ீௗு is the diffusion 

correlation time of GdL [32-34].  

 

ܴଵ௢௦ = ͵ʹ ஺ܰߨͶͲͷ ቀ�଴Ͷߨቁଶ ℏଶ�ூଶ�ௌଶܽீௗுீܦௗு ܵሺܵ + ͳሻ[͵�௢௦ሺ�ூ; ଵܶ௘ሻ + ͹�௢௦ሺ�ௌ; ଶܶ௘ሻ] (25) 

 

ܴଶ௢௦ = ͳ͸ ஺ܰߨͶͲͷ ቀ�଴Ͷߨቁଶ ℏଶ�ூଶ�ௌଶܽீௗுீܦௗு ܵሺܵ + ͳሻ[Ͷ �௢௦ሺͲሻ + ͵ �௢௦ሺ�ூ; ଵܶ௘ሻ + ͳ͵ሺ�ௌ; ଶܶ௘ሻ] (26) 

 

�௢௦(�; ௝ܶ௘) = ܴ݁ [  
  ͳ + ͳͶ (݅��ீௗு + �ீௗு௝ܶ௘ )ଵଶ
ͳ + (݅��ீௗு + �ீௗு௝ܶ௘ )ଵଶ + Ͷͻ(݅��ீௗு + �ீௗு௝ܶ௘ ) + ͳͻ (݅��ீௗு + �ீௗு௝ܶ௘ )ଷଶ]  

  
 

 ݆ = ͳ, ʹ 

(27) 

 ௜ relaxivities are influenced by various parameters, among which are the external magneticݎ

field strength (ܤ଴) and the contrast agent metal ion electronic properties. These electronic 

properties include the magnitude of the magnetic dipole characterized by the spin (ܵ) and the 

correlation time concerning the electron spin relaxation ( ଵܶ௘,ଶ௘). Other chemically important 

parameters are the number of water molecules coordinated to the metal ion (ݍ), their 

residence lifetime at the site (�ெ) and the rotational correlation time (�ோ) characterizing the 

dynamics of the rotation motion of the contrast agent complex in solution (cf. figure 9). At 1.5 

T field strengths, the rotational dynamics correlation time (�ோ), which depends on the contrast 

agent size, shape and internal rigidity, typically is more important than the electron spin 

relaxation, and thus greatly affects its efficiency [1, 29].  
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The most efficient contrast agents preferentially have a high number of water molecules 

coordinated to the metal (ݍ), a slow rotational dynamics and a short water residence lifetime 

to ensure an efficient water exchange and a high relaxivity [1]. However, complexes with ݍ > 

1 have usually lower stability.  

I. 3. b. Iron based MRI agents 

Two iron oxide contrast agent types exist: superparamagnetic iron oxides (SPIO) and 

ultrasmall superparamagnetic iron oxides (USPIO). USPIOs, with diameters lower than 40 nm, 

are constituted by a single iron oxide crystal surrounded by an organic or inorganic coating, 

while SPIOs have several iron oxide crystals inside the coating and are larger. Suspended 

colloids of iron oxide NPs constitute these contrast agents which reduce water proton 

ଶܶ values of absorbing tissues when they are injected before imaging. SPIO and USPIO have 

been successfully used for liver tumor enhancement [36]. Furthermore, iron oxide NPs such 

as magnetite (Fe3O4Ϳ aŶd ŵagheŵite ;γ-Fe2O3) are promising materials in several biomedical 

applications [37-39]. As iron is naturally present in metalloproteins, it can be metabolized 

through its natural metabolic cycle, and for this reason it is considered as nontoxic [40]. NPs 

of this kind with no targeting organic functions (vectors) attached to their coating can 

passively target tumor tissues by the enhanced permeability and retention (EPR) effect, which 

result from the leaky and complex topology of tumor vessels resulting from angiogenesis. 

Alternatively to the EPR effect, these NPs may reach the target by conjugating their coating 

with organic vectors that specifically recognize overexpressed tumor cell receptors (active 

targeting). Also, by taking advantage of their magnetic properties, it is possible to guide them 

to the tumor tissues with an external magnetic field of suitable strength. Therefore, 

Figure 9: Molecular parameters influencing the ݎଵ relaxivity induced by a Gd3+ contrast agent [35]  
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superparamagnetic NPs (SPIOs) have been developed as ଶܶ contrast agents for MRI [38, 41]. 

The theory for the relaxation induced by SPIO and USPIO is quite different [8].  

I. 3. c. Lanthanide-based MRI agents 

Many MRI CAs are based on gadolinium chelated with organic ligand (Figure 2) [1-2] or in its 

oxide form [42]. Nowadays compounds of Gd3+ are used in MRI scans to improve the clarity of 

the sĐaŶŶed iŵages of ďodǇ’s iŶterŶal struĐtures [43]. As opposed to free Gd3+ known to be 

highly toxic [44-45], gadolinium oxide or chelated gadolinium doŶ’t show the saŵe 

toxicity [44]. This is the reason why gadolinium is still used in contrast agents [46-47]. 

Furthermore, Gd3+ can be trapped in silica [47-48], metal oxides [49] or in its oxide form [42]. 

In this work, Gd3+ is inserted in the hafnium oxide lattice of NPs in order to provide them with 

magnetic properties and synthesize multimodal NPs. Thus, hafnium oxide NPs containing 

lanthanide ions other than Gd3+ with a suitable size may be used as potential MRI agents and 

in radiotherapy, a further doping with various other lanthanide ions providing as well optical 

imaging.  

Let us examine now the magnetic properties of these other lanthanides. Their nuclear 

relaxation properties differ from what was described in the previous part (I. 3. a). Indeed, 

some of them have quite high magnetic moments and much shorter electron spin relaxation 

times, especially those in the second half of the series (�௘) (Table 2) [25]. 

 Gadolinium Europium Terbium Erbium Ytterbium �௘ሺݏሻ 10-8 – 10-9  5.10-14 – 10-14 8.10-13 – 2.10-13 8.10-13 – 3.10-13 5.10-13 – 2.10-13 

The equations for the inner-sphere paramagnetic relaxation include not only the dipolar terms 

(ܴ௜ௗௗ) but also the Curie spin terms (ܴ௜஼ௌ):  ܴ௜ெ = ܴ௜ௗௗ + ܴ௜஼ௌ      ,    ݅ = ͳ, ʹ (28) 

The dipolar terms (ܴ௜ௗௗ) are given by equations (19) and (20), where ܵ and �௘ are replaced by � and �௃, respectively, and ீݎ ௗு is replaced by ݎ௅௡ு. As �௘ሺ ଵܶ௘, ଶܶ௘ሻ is very short, it dominates 

the correlation times �ௗଵ and �ௗଶ (see equation (21)). For this reason, for Ln3+ ≠ Gd3+ ions, the 

dipolar relaxation effect, which is proportional to �௘ in extremely narrowing conditions 

(�. �ௗ ا ͳሻ, is much smaller than for Gd3+ complexes. However, the Curie spin contribution 

must be taken into account [50]: 

Table 2: Electron spin relaxation times of some lanthanides [25] 
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ܴଵெ = ͷʹ ቀ�଴Ͷߨቁଶ �௟ଶ�௃ସ�஻ସሺ�ሺ� + ͳሻሻଶሺ͵݇ܶሻଶݎ௅௡ு଺ ͵�஼௨௥௜௘ͳ + �ூଶ�஼௨௥௜௘ଶ  (29) 

 

ܴଶெ = ͳͷ ቀ�଴Ͷߨቁଶ �௟ଶ�௃ସ�஻ସሺ�ሺ� + ͳሻሻଶሺ͵݇ܶሻଶݎ௅௡ு଺ ቆͶ�஼௨௥௜௘ + ͵�஼௨௥௜௘ͳ + �ூଶ�஼௨௥௜௘ଶ ቇ (30) 

where �஼௨௥௜௘ = ሺ�ோ−ଵ + �ெ−ଵሻ−ଵ (the inner-sphere Curie term is not influenced by electron spin 

relaxation). The term �௃ସ�஻ସሺ�ሺ� + ͳሻሻଶ in equations (29) and (30) can be replaced by the 

experimental �௘௙௙ values (Table 1). The Curie contribution is often dominating over the 

dipolar contribution for all Ln3+ ≠ Gd3+ ions. Also, due to the presence of the squared Larmor 

frequency (�௟ଶ), the Curie contribution increases with the square of the magnetic field.  

The outer-sphere contribution for Ln3+ ≠ Gd3+ ions has the usual dipole-dipole contribution 

represented by equations (25) to (27), with ܵ, �௘ and GdL replaced by �, �௃ and LnL 

respectively. These terms depend on �஽ (10-9 – 10-11 s) and �௘ (10-12 – 10-14 s). Finally, for very 

short electron relaxation times (�௘ ا �஽), as in Ln3+ ≠ Gd3+, an additional contribution to the 

outer-sphere relaxation can be provided by the Curie spin interaction modulated by �஽. [51]. 

ܴଵ௢௦ = ͵ʹ ஺ܰߨͶͲͷ ቀ�଴Ͷߨቁଶ ͳͲͲͲ ஺ܰ[݊ܮ]�௟ଶ�௃ସ�஻ସሺ�ሺ� + ͳሻሻଶ͵ሺ݇ܶሻଶܽீௗுܦ௅௡ு [͵�௢௦ሺ�ூ; ଵܶ௘ሻ +  ͹�௢௦ሺ�ௌ; ଶܶ௘ሻ] (31) 

 

ܴଶ௢௦ = ͳ͸ ஺ܰߨͶͲͷ ቀ�଴Ͷߨቁଶ ͳͲͲͲ ஺ܰ[݊ܮ]�௟ଶ�௃ସ�஻ସሺ�ሺ� + ͳሻሻଶ͵ሺ݇ܶሻଶܽீௗுܦ௅௡ு [Ͷ �௢௦ሺͲሻ + ͵ �௢௦ሺ�ூ; ଵܶ௘ሻ + ͳ͵ሺ�ௌ; ଶܶ௘ሻ] (32) 

These terms also depend on �௟ଶ and the electron spin relaxation times.  
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II - Results and discussion 

II. 1. Low magnetic field (20 MHz) 

The suspensions of the nanoparticles of HfO2 doped with lanthanides ions remained stable 

throughout the NMR measurements, allowing the collection of consistent relaxation data. The 

suspensions of nanoparticles for the measurements was made at neutral pH in distilled water, 

and sonicated during 5 minutes. Table 3 shows the proton relaxivity values (ݎଵ and ݎଶ), 

determined at 25 °C and 37 °C for Gd0.26:HfO2, Eu0.01Tb0.03Gd0.16:HfO2, Eu0.03Tb0.05Gd0.12:HfO2, 

Yb0.01Er0.05Gd0.19:HfO2 and Yb0.02Er0.10Gd0.13:HfO2 water suspensions. These relaxivities were 

calculated from the observed linear dependence of the ܴ௜ = ͳ ௜ܶ⁄ , (i = 1,2) relaxation rates on 

the concentration of the Gd3+ ions present in all samples, shown in Figure 10, Figure 11, Figure 

12 and Figure 13.  

 

 

Figure 10: R1 values measured at 20 MHz; (a) 25 °C and (b) 37 °C and samples 1- Gd0.26:HfO2 ; 2- 

Eu0.01Tb0.03Gd0.16:HfO2 ; 3- Eu0.03Tb0.05Gd0.12:HfO2 . 
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Figure 11: R2 values measured at 20 MHz; (a) 25 °C and (b) 37 °C and samples 1- Gd0.26:HfO2 ; 2- 

Eu0.01Tb0.03Gd0.16:HfO2 ; 3- Eu0.03Tb0.05Gd0.12:HfO2 . 

Figure 12: R1 values measured at 20 MHz; (a) 25 °C and (b) 37 °C and samples 1- 

Yb0.01Er0.05Gd0.19:HfO2; 2- Yb0.02Er0.10Gd0.13:HfO2 .   
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 .ଶ values are expected to have inner- and outer-sphere contributions (equation (17))ݎ ଵ andݎ

The experimental ݎଵ and ݎଶ values obtained are quite small, much lower than the commercial 

Gd3+-based contrast agent Gd(DTPA) values (ݎଵ= 4.10 mM-1s-1 and ݎଶ = 4.57 mM-1s-1 at 20 MHz 

and 25 °C). As the percentage of Gd3+ ions on the surface of the Gd0.26:HfO2 nanoparticles 

directly exposed to solvent water molecules is very small due to the low ratio of gadolinium 

at the surface of the NPs, the contribution of the inner-sphere relaxation mechanism to ݎଵ and ݎଶ is negligible, as observed previously for other systems [52-55]. Like the inner-sphere term 

(equation (28)), the outer-sphere terms also have contributions from the dipole-dipole, ܴ௜ௗௗ, 

and Curie spin, ܴ௜஼ௌ, relaxation mechanisms. However, for Gd3+-containing systems, the 

dipole-dipole contribution is dominant, because it depends on long (10-8 – 10-9 s) �௘ ( ଵܶ௘ 

and ଶܶ௘) values (equations (25) - (27)). As this contribution is inversely proportional to ܽீௗு, 

the distance of closest approach of the protons to Gd3+, the outer-sphere term of the ݎଵ and ݎଶ 

values is also very small, explaining the very small observed relaxivities.  

For the system where Gd3+ was partially replaced by other paramagnetic Ln3+ (Eu3+, Tb3+, Er3+ 

or Yb3+), the relaxivities per mM of total mass decrease in a way that depends on the type of 

cation. This is expected because Gd3+ has a much slower electronic relaxation time than Eu3+, 

Tb3+, Er3+ or Yb3+ aŶd the relaǆatioŶ ŵeĐhaŶisŵs for sǇsteŵs ĐoŶtaiŶiŶg LŶ ≠ Gd are different. 

Besides the dipole-dipole contribution, the Curie spin mechanism also contributes to the 

outer-sphere relaxation, as described by equations (31) and (32). Therefore, for the mixed 

Figure 13: R2 values measured at 20 MHz; (a) 25 °C and (b) 37 °C and samples 1- 

Yb0.01Er0.05Gd0.19:HfO2; 2- Yb0.02Er0.10Gd0.13:HfO2 .    
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nanoparticles systems, LnxLn’
yGdz:HfO2, when compared to Gd0.26:HfO2 there are outer-sphere 

relaxation contributions from pairs of Ln3+ and Ln’ ϯ+ ions replacing some of the Gd3+ ions, with 

both dipolar and Curie spin contributions. The dipolar terms for these contributions (modified 

equations (25) - (27), with ܵ, �௘ and GdL replaced by �, �௃ and LnL respectively), depend on �஽ (10-9 – 10-11 s), through ܦ௅௡ு, and �௘ (10-12 – 10-14 s), depend on the �௘௙௙ଶ  on the lanthanide 

ions and are independent of the Larmor frequency �௟ = �ଶ�  .଴ܤ ଴, and, thus, magnetic fieldܤ

The Curie spin mechanism with �௘ ا �஽ (equations (31) - (32)) depends on the square of the 

magnetic field ܤ଴ (through �௟ଶ) and on �௘௙௙ସ . The classification of the lanthanide ions, Ln3+, 

according to their effective magnetic moment (�௘௙௙) is ܾܶ ~ ݎܧ > < ݀ܩ �ܾ >  ,(Table 1) ݑܧ

while their electronic relaxation times (�௘) are ݀ܩ ب ܾܶ > ݎܧ ب �ܾ >  which ,(Table 2) ݑܧ

give the same order of expected dipolar relaxation. Therefore, the differences between 

Gd0.26:HfO2 and the other systems, LnxLn’
yGdz:HfO2, will depend on the relative percentage of 

each lanthanide ions and their nature.  

For Eu0.03Tb0.05Gd0.12:HfO2 and Eu0.01Tb0.03Gd0.16:HfO2 NPs, the ݎଵ and ݎଶ relaxivities decrease 

substantially relatively to Gd0.26:HfO2, as the total stoichiometry of Ln decreases from 0.26 Gd 

to 0.20 (Gd + Tb + Eu).  

For Eu0.03Tb0.05Gd0.12:HfO2, where Gd3+ ions are replaced by Eu3+ and Tb3+, the ݎଵ values 

(referred to one mM Gd3+) increase slightly when compared to the Eu0.01Tb0.03Gd0.16:HfO2 NPs 

(Table 3). The dipolar relaxation contribution is expected to decrease when more Gd3+ ions 

are replaced by Eu3+ and Tb3+, while, the opposite is expected for the Curie spin contribution, 

due to larger �௘௙௙ of Tb3+. Therefore, the later mechanism has a non-negligible contribution, 

even at 20 MHz.  

The ݎଶ values of these samples  are larger than the ݎଵ values due to the contribution of slow 

motions in the NPs dynamics, increasing the J(0) terms. Their relative values in the two 

samples have the same behavior as ݎଵ: for Eu0.03Tb0.05Gd0.12:HfO2 the ݎଶ values (referred to one 

mM Gd3+) increase much more clearly when compared to the Eu0.01Tb0.03Gd0.16:HfO2 NPs 

(Table 3), reflecting a stronger influence of the Curie spin term.   
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20 MHz 
�૚ (s-1) �૛ (s-1) 

25 °C 37 °C 25 °C 37 °C 

Gd0.26:HfO2 0.93 ± 0.01 0.89 ± 0.01 1.09 ± 0.03 1.14 ± 0.03 

Eu0.01Tb0.03Gd0.16:HfO2 0.42 ± 0.01 0.39 ± 0.01 0.67 ± 0.02 0.59 ± 0.03 

Eu0.03Tb0.05Gd0.12:HfO2 0.49 ± 0.01 0.49 ± 0.01 0.86 ± 0.03 0.76 ± 0.01 

Yb0.01Er0.05Gd0.19:HfO2  0.099 ± 0.006  0.110 ± 0.003 0.24 ± 0.01 0.25 ± 0.02 

Yb0.02Er0.10Gd0.13:HfO2 0.144 ± 0.004 0.13 ± 0.02 0.29 ± 0.01 0.22 ± 0.01 

For Yb0.02Er0.10Gd0.13:HfO2 and Yb0.01Er0.05Gd0.19:HfO2 NPs, where 0.12 and 0.06 Gd3+ ions are 

replaced by Yb3+ and Er3+, the ݎଵ and ݎଶ values (referred to one mM Gd3+) decrease 

substantially relative to the Tb/Eu samples, reflecting their lower dipolar relaxation effect and 

the much lower Curie spin effect of Yb3+ relative to the other ions. There is a very small 

decrease of ݎଵ of Yb0.01Er0.05Gd0.19:HfO2 when compared to Yb0.02Er0.10Gd0.13:HfO2 NPs (Table 

3) reflecting the larger dipolar relaxation effect of Er3+ vs Yb3+.  

The ݎଶ values of these samples are also larger than the ݎଵ values due to the same effect as 

described above. For Yb0.02Er0.10Gd0.13:HfO2, where Gd3+ ions are replaced by Yb3+ and Er3+, the ݎଶ values (referred to one mM Gd3+) again increase compared to the Yb0.01Er0.05Gd0.19:HfO2 NPs 

(Table 3), also reflecting the dipolar mechanism.   

The temperature dependence of ݎଵ and ݎଶ for the samples doped with Eu3+ and Tb3+, as well 

as with Yb3+ and Er3+, is generally the same as for the sample with only Gd3+: a slight decrease 

of the relaxation rates with the increase of the temperature is observed, as expected by the 

SBM and Curie spin relaxation theory.  

 

 

 

Table 3: Calculated 1H relaxivity values, ݎ௜ (i = 1,2), determined at 20 MHz at 25 °C and 37 °C for 

samples Gd0.26:HfO2, Eu0.01Tb0.03Gd0.16:HfO2 and Eu0.03Tb0.05Gd0.12:HfO2.  
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II. 2. High magnetic field (400 and 500 MHz) 

Table 4 shows the proton relaxivity values (ݎଵ and ݎଶ), determined at 25 °C and magnetic field 

strength corresponding at 20 MHz, 400 MHz and 500 MHz, for Gd0.26:HfO2 and 

Eu0.01Tb0.03Gd0.16:HfO2 water suspensions.  

  �૚ (s-1) �૛ (s-1) 

20 MHz 

Gd0.26:HfO2 

Eu0.01Tb0.03Gd0.16:HfO2 

0.93 ± 0.01 

0.42 ± 0.01 

1.09 ± 0.03 

0.67 ± 0.02 

400 MHz 

Gd0.26:HfO2 

Eu0.01Tb0.03Gd0.16:HfO2 

0.54 ± 0.01 

0.45 ± 0.01 

2.46 ± 0.02 

1.58 ± 0.03 

500 MHz 

Gd0.26:HfO2 

Eu0.01Tb0.03Gd0.16:HfO2 

0.42 ± 0.02 

0.36 ± 0.01 

4.82 ± 0.04 

2.40 ± 0.07 

-ଵ values decrease with increasing frequency (Table 4), as expected for the standard outerݎ

sphere dipolar mechanisms of proton relaxation. ݎଶ values undergo a large increase when the 

measuring frequency increases (Table 4 and Figure 14). This indicates that the ଶܶ relaxation 

process, besides the dipolar mechanism operating for ଵܶ relaxation, also has a strong outer-

sphere contribution from field inhomogeneities created by the magnetized particles that the 

water protons experience as they diffuse nearby and which increase with the square of the 

external magnetic field strength (equation (32)). The strong outer sphere contribution can be 

explained by the fact that the percentage of lanthanide ions at the surface of the nanoparticles 

is very small and, thus, they cannot directly bind water molecules in their inner-sphere and 

exchange water protons with the medium.  

Table 4: Calculated 1H relaxivity values, ݎ௜ (i = 1,2), determined at 20, 400 and 500 MHz at 25 °C for 

samples Gd0.26:HfO2 and Eu0.01Tb0.03Gd0.16:HfO2. 
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Conclusion 

Hafnium oxide nanoparticles doped with lanthanides cations (Gd3+, Tb3+ and Eu3+) have low ݎଵ 

and ݎଶ values at low frequency (20 MHz), with ݎଶ ⁄ ଵݎ ratios in the 1.0 – 1.8 range, indicating 

that they could act as ଵܶ-weighted (positive) MRI contrast agents, although not very 

efficiently. Nanoparticles doped with Gd3+, Er3+ and Yb3+, with lower relaxivities and ݎଶ ⁄ ଵݎ ratios in the 2.1 – 2.4 range, also perform as ܶ ଵ-weighted (positive) MRI contrast agents. 

At higher frequencies, due to the increased Curie spin contribution, their ݎଶ values increase 

substantially, with ݎଶ ⁄ ଵݎ  ratios larger than 2 (3.5 to 11.9), and they may be classified as ଶܶ-

weighted (negative) contrast agents.  

  

Figure 14: Relaxivity ݎଶ values as a function of the magnetic field strength. The red lines are the 

polynomial fits of the experimental data acquired at 20, 400 and 500 MHz 
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Experimental part 

The NPs of hafnium oxide were suspended in distilled water, then sonicated in an ultrasound 

bath for 5 minutes. The molar amount of the gadolinium was calculated from the molar 

percentage inserted in the matrix of hafnium oxide. And then, the molar concentration was 

ascertained by a dilution factor. First, a 50 mM solution of HfO2 (S0) was prepared, by a 

dissolution of 150 mg of powder suspended in 15 mL of distilled water for each studied 

sample. Then, 5 NMR tubes were prepared by dilution as follows: 

Concentration of HfO2 V (µL) of S1 V (µL) of distilled water 

50 mM 600 (-) 

25 mM 300 300 

10 mM 120 480 

5 mM 60 540 

1 mM 12 588 

Thus, 5 NMR tubes were ready to make the measurements at 20 MHz. In order to determine 

the relaxivities, we needed to determine the concentration of Gd3+ in the sample. The 

calculation was made as follows:  

For example for the sample Gd0.26:HfO2, in S1, we have suspended 150 mg of HfO2 in 15 mL of 

water, so the number of moles of Hf is: ݊ = ܥ × � = ͷͲ × ͳͲ−ଷ × ͳͷ × ͳͲ−ଷ =Ͳ.͹ͷͲ ݈݉݉݋. Yet, the molar percentage of Gd3+ in this sample is 26%, so the number of moles 

of Gd3+ in S1 is: ݊ீௗ = ʹ͸% × Ͳ.͹ͷͲ = Ͳ.ͳͻͷ ݈݉݉݋. Thus, the concentration of Gd3+ in the 

samples can be ascribed to: [݀ܩଷ+] = ௡��� = ଴.ଵ9ହ ଵହ×ଵ଴−య = ͳ͵ ݈݉݉݋.  .ଵ−ܮ

At each concentration (50, 25, 10, 5 and 1 mM) and at each temperature (25 and 37 °C), the 

௜ܶ (i=1, 2) were measured 3 times. Then, ܴ௜ was determined by the following equation:  

ܴଵ = ͳ௜ܶ ௢௕௦ − ͳ௜ܶ ௪௔௧௘௥ 

Then, ܴ௜ was plotted as a function of the concentration of Gd3+, and the slope of this graph 

gave ݎ௜ in s-1 (referred to one mM Gd3+).  

1H longitudinal and transverse relaxation times (T1 and T2 respectively) of aqueous 

suspensions of nanoparticles were measured at 20 MHz on a Bruker Minispec mq20 

relaxometer and at 500 MHz (ܤ଴ = 11.7 T) on a Varian Unity 500 NMR spectrometer, at 25 and 

37 °C.  
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The goal of my thesis, which unfolded as part of a wider project, was to develop TiO2 and HfO2 

nanoparticles with potential applications in the biomedical field.  

In this context, I have accomplished the hydrothermal synthesis of TiO2 and HfO2 nanoparticles 

(respectively, Chapters 2 and 3). The synthetic parameters were optimized to obtain 

nanoparticles with a size suitable for biological applications (30 to 60 nm). By adjusting the 

composition of a mixture of the structuring agents, triethanolamine and oleic acid, TiO2 

nanoparticles were prepared with a range of sizes and morphologies. Altering the pH change 

the habit of hafnium oxide NPs, while increasing the temperature decreased the nanoparticle 

size. Moreover, up to three different types of lanthanide ions were inserted in the hafnium 

oxide matrix, endowing the nanoparticles with luminescence properties for imaging and 

thermometry (chapter 4), and potential as T2-weighted MRI contrast agents (chapter 5). 

Among all the compositions studied, the most promising nanoparticles had composition 

Eu0.01Tb0.03Gd0.16:HfO2 and, thus, they were fully characterized with several techniques (Figure 

1). The outlook of the near future is to study these nanoparticles in real radiotherapy 

applications.  

 

Figure 1: Characteristics of the sample Eu0.01Tb0.03Gd0.16:HfO2 (TEM micrograph, size distribution, XRD 

pattern, Zetametry, emission spectra as a function of the temperature, relative sensitivity as a 

nanothermometer, relaxivities)  
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The interaction of TiO2 NPs with human cells was studied, namely the quantification of their 

internalization, and intracellular localization in the different cell compartments [1]. The same 

procedure is in progress for HfO2 NPs.  

As I conclude my thesis, an outstanding challenge remains to be addressed: the study of the 

metabolic pathways induced by the concomitant use of ionizing radiation and NPs. We have 

obtained in collaboration with CENBG and Institut Bergonié suggest some preliminary results 

about a combined effect of ionizing radiation and TiO2 NPs (Figure 2) whose mechanism is still 

under study.  

 

In the case of scrolled nanosheets of the TiO2 NPs on HeLa cells, without irradiation, the 

internalization induced a decrease of the number of cells in comparison with the number of 

cells obtained without any NPs. Thus, we can suppose that there is a number of cells who dies 

due to the toxicity of the scrolled nanosheets. If we compare now, the number of cells without 

NPs and with and without irradiation, the results show a decrease of the number of cells with 

irradiation, meaning that the ionizing radiation induces some cell death. With irradiation and 

in the presence of NPs, the number of cells is more decreased than without NPs. Indeed, these 

preliminary results seem to confirm the sensitizing effect instead of the enhancing effect. 

However, more studies are needed to confirm this conclusion, using hafnium dioxide and 

titanium dioxide NPs with the same cell lines. It will be also interesting to study the effect of 

the dose irradiation, the concentration of the NPs as a function of the various cancer cell lines.  

 

Figure 2: Evolution of the cell numbers after several irradiations dose by photons (6MeV) with HeLa 

Cells and scrolled nanosheets TiO2 NPs. The concentration of the NPs in this study is 2µg.cm-2. 
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Introduction 

UŶe des plus gƌaŶdes Đauses de ŵoƌtalitĠ aujouƌd’hui est le ĐaŶĐeƌ. AĐtuelleŵeŶt, les 

nanotechnologies ont permis le développement de nouvelles approches dans le traitement 

du cancer. Ainsi, il est devenu nécessaire de concevoir et modeler des nanoparticules (NPs) 

ŵultiŵodales et d’Ġvalueƌ leuƌ appliĐatioŶ thĠƌapeutiƋue poteŶtielle. Les ŶaŶopaƌtiĐules 

inorganiques étudiées dans le cadre de ce travail sont basées sur des oxydes métalliques (e.g. 

TiO2 and HfO2) et présentent plusieurs fonctionnalités permettant leur localisation et leur 

ƋuaŶtifiĐatioŶ eŶ utilisaŶt diffĠƌeŶtes teĐhŶiƋues telles Ƌue l’IRM et l’iŵageƌie optiƋue.  

Cette thèse est divisée en cinq chapitres. Tout d’aďoƌd, le Đhapitƌe ϭ fait uŶ Ġtat de l’aƌt suƌ 

les ĐaƌaĐtĠƌistiƋues ŶĠĐessaiƌes pouƌ l’utilisatioŶ de ŶaŶopaƌtiĐules daŶs le doŵaiŶe 

biomédical, ainsi que le choix des nanoparticules qui vont être étudiées. Ensuite, la synthèse 

et la caractérisation de nanoparticules de TiO2 et HfO2 sont présentées respectivement dans 

le chapitre 2 et le chapitre 3. Finalement, les propriétés optiques de ces nanoparticules sont 

détaillées dans le chapitre 4, tandis que les mesures de relaxivité sont expliquées dans le 

chapitre 5. 

I - Chapitre 1: Etat de l’art 

Tout d’aďoƌd, les diffĠƌeŶts ŵodes d’iŶjeĐtioŶ de ŶaŶopaƌtiĐules daŶs le Đoƌps huŵaiŶ soŶt 

dĠtaillĠs. Il eǆiste eŶtƌe autƌes l’iŶjeĐtioŶ paƌ iŶtƌaveiŶeuse, la diffusioŶ paƌ la peau, ou encore 

par injection directement dans une tumeur. Par intraveineuse, les deux mécanismes qui 

peƌŵetteŶt auǆ ŶaŶopaƌtiĐules d’atteiŶdƌe les Đellules ĐaŶĐĠƌeuses soŶt le Điďlage aĐtif et le 

ciblage passif [1]. Le premier est dû à une reconnaissance clé-serrure grâce à une 

foŶĐtioŶŶalisatioŶ des ŶaŶopaƌtiĐules à l’aide d’aŶtiĐoƌps, de pƌotĠiŶes… Le Điďlage passif, 

quant à lui, profite des interstices créés entre les cellules endothéliales. Les nanoparticules 

passeŶt doŶĐ daŶs Đes iŶteƌstiĐes et s’aĐĐuŵuleŶt doŶĐ daŶs la tuŵeuƌ.  

Quand des oxydes métalliques sont bombardés par des rayonnements ionisants, un grand 

Ŷoŵďƌe d’ĠleĐtƌoŶs soŶt pƌoduits loĐaleŵeŶt, augŵeŶtaŶt la dose d’ĠŶeƌgie daŶs la tuŵeuƌ. 

AiŶsi, l’effiĐaĐitĠ de la ƌadiothĠƌapie est aŵĠlioƌĠe eŶ ŵiŶiŵisaŶt la dose d’iƌƌadiatioŶ suƌ les 

cellules saines environnantes. Deux mécanismes peuvent avoir lieu : la radiopotentialisation 

et la radioseŶsiďilisatioŶ. Plus le ŶuŵĠƌo atoŵiƋue de l’atoŵe est ĠlevĠ, plus le Ŷoŵďƌe 
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d’ĠleĐtƌoŶs gĠŶĠƌĠs loĐaleŵeŶt le seƌa aussi, il s’agit de la ƌadiopoteŶtialisatioŶ [2]. Le second 

mécanisme (radiosensibilisation) est basé sur la toxicité des nanoparticules. Les 

nanoparticules, internalisées par les cellules, induisent un stress et une modification dans la 

concentration des ions. Ainsi, les cellules sont fragilisées et sont donc moins susceptibles de 

résister aux rayonnements ionisants [3]. Notƌe ďut est doŶĐ d’Ġtudieƌ deuǆ tǇpes d’oǆǇdes 

métalliques afin de montrer quel mécanisme est le plus plausible. Nous avons fait le choix 

d’Ġtudieƌ le dioǆǇde de titaŶe ;ŶuŵĠƌo atoŵiƋue faiďleͿ et d’hafŶiuŵ ;ŶuŵĠƌo atoŵique 

élevé). L’oďjeĐtif seƌa doŶĐ de sǇŶthĠtiseƌ des ŶaŶopaƌtiĐules de taille et de ŵoƌphologie 

ĐoŶtƌôlĠes de dioǆǇde de titaŶe et de dioǆǇde d’hafŶiuŵ.  

II - Chapitre 2 : Synthèse de nanoparticules de TiO2 

Le dioxyde de titane, TiO2 est couramment utilisé dans les crèmes solaires, comme additif dans 

les aliments (E 171). Le TiO2 est un composé inerte chimiquement possédant un indice de 

réfraction élevé (2.61). Le dioxyde de titane se retrouve sous trois formes cristallines qui sont 

l’aŶatase, le ƌutile ou la ďƌookite.  

Plusieurs méthodes de synthèses de nanoparticules ont été développées dans la littérature. 

La méthode sol-gel, Ƌui peƌŵet de sǇŶthĠtiseƌ des ŶaŶopaƌtiĐules à paƌtiƌ d’alkoǆǇdes de 

métal, M(OR)4 eŶ pƌĠseŶĐe d’uŶe solutioŶ aƋueuse de foƌŵeƌ uŶ gel. Ces réactions sont très 

généralement effectuées à température ambiante, et permettent de synthétiser des sphères 

de TiO2 de plusieurs centaines de nanomètres [4-5]. Cependant, le plus gros désavantage de 

Đette teĐhŶiƋue est la ŶĠĐessitĠ de tƌaiteŵeŶt theƌŵiƋue afiŶ d’avoiƌ uŶe ĐƌistallisatioŶ de 

nanoparticules. Ainsi, un phénomène d’agrégation des nanoparticules apparait et aboutit à la 

difficulté de redisperser ces NPs pour de futures applications biologiques.  

Une autre méthode développée est la synthèse hydrothermale. Nian et al. ŵoŶtƌeŶt Ƌu’il est 

possiďle d’oďteŶiƌ des ŶaŶopaƌticules de TiO2 et de contrôler leurs tailles et leurs formes en 

variant le pH, à partir de P25. Le P25 est constitué de nanoparticules de TiO2 synthétisées 

commercialement paƌ voie aĠƌosol. Elles soŶt ĐoŶstituĠes à 8Ϭ% d’aŶatase et à ϮϬ% de ƌutile. 

Nous avons décidé de développer nos NPs de TiO2 à partir de P25. Le P25 subit un premier 

traitement hydrothermal à 130 °C pendant 23 h dans des conditions très basiques pour former 

des nanofeuillets enroulés. Puis ces nanofeuillets forment des nanoaiguilles après un second 

traitement hydrothermal à pH 9.5, à 140 °C pendant 3 jours (Figure 1). 
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Par cette méthode de synthèse, des nanoaiguilles de TiO2 sont obtenues avec une longueur 

d’eŶviƌoŶ ϯϱϬ Ŷŵ et une largeur de 46 nm (Figure 2s).  

 

Ainsi les nanoaiguilles obtenues sont trop longues pour être utilisées pour des applications 

ďiologiƋues, Đ’est la ƌaisoŶ pouƌ laƋuelle des ageŶts stƌuĐtuƌaŶts oŶt ĠtĠ utilisĠs pouƌ dĠĐƌoitƌe 

leur taille. Les ageŶts stƌuĐtuƌaŶts ĠtudiĠs soŶt l’aĐide olĠiƋue (OA) et la triéthanolamine 

(TEOA) [7]. L’utilisatioŶ seule de Đes ageŶts Ŷ’aďoutit pas à uŶe diŵiŶutioŶ de la taille des 

nanoaiguilles, il faut un effet couplé de ces deux agents afin de diminuer drastiquement leur 

taille (Figure 3).  

Figure 1: Méthode de synthèse de nanoaiguilles de TiO2 à partir de P25 [6] 

Figure 2: Distribution (a) en longueur et (b) en largeur des nanoaiguilles de TiO2 (statistiques 

effectuées sur plus de 300 NPs) 
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 AiŶsi, l’oďjeĐtif d’oďteŶiƌ des NPs de taille Đoŵpƌise eŶtƌe ϯϬ et ϲϬ Ŷŵ a ĠtĠ atteiŶt.  

 

III - Chapitre 3 : Synthèse de nanoparticules de HfO2 

La sǇŶthğse de dioǆǇde d’hafŶiuŵ a ĠtĠ ďeauĐoup ŵoiŶs ĠtudiĠe. CepeŶdaŶt, ƋuelƋues 

travaux permettent de synthétiser des NPs de HfO2 par méthode de précipitation [8-9], par 

voie sol-gel [10] et par voie hydrothermale [11-12]. Nous avons décidé de choisir la voie 

hydrothermale pour les mêmes raisons. Nous avons basé notre travail sur le papier de ŠtefaŶić 

auquel les analyses par microscopie ont été ajoutées. Les synthèses ont été effectuées à partir 

de tĠtƌaĐhloƌuƌe d’hafŶiuŵ ;HfCl4Ϳ, le pH est ajustĠ paƌ ajout d’uŶe solutioŶ de soude à 0.1 M. 

La sǇŶthğse ĐoŶduit à l’oďteŶtioŶ de NPs ĐƌistalliŶes sous la phase ŵoŶoĐliŶiƋue. Tout d’aďoƌd, 

l’influence de la valeur du pH initial a été étudiée (Figure 4), montrant une différence de forme 

et d’aspeĐt des NPs. A pH ϯ, des NPs de foƌŵes gĠoŵĠtƌiƋues soŶt oďteŶues, taŶdis Ƌu’à pH 

9.5, des NPs présentant des formes de losanges sont observées et à pH 13, ce sont des NPs en 

forme de grain de riz qui sont obtenues. Pour la suite, le pH conduisant à des NPs avec la 

distribution statistique la plus faible a été choisi. 

Figure 3: Effet du voluŵe de TEOA et d’OA sur la longueur des NPs de TiO2 synthétisées avec un pH 

initial de  9.5 à 140 °C pendant 3 jours. 
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CepeŶdaŶt, la taille des NPs oďteŶue est tƌop iŵpoƌtaŶte pouƌ l’appliĐatioŶ visĠe. Le temps 

de réaction et la température de traitement hydrothermal ont été étudiés afin de diminuer la 

taille des NPs (Figure 5).  

120 150 180
0

20

40

60

80

100

120  24h

 48h

 76h

T
E

M
 t
a
ill

e
 (

n
m

)

Temperature (°C)
 

Ainsi, en travaillant à pH 9.5, 180 °C et pendant 48 heures, nous pouvons obtenir des NPs de 

l’ordre de 30 nm, satisfaisant pour les applications visées.  

MaiŶteŶaŶt, afiŶ d’oďteŶiƌ des NPs poƌtaŶt plusieuƌs foŶĐtioŶŶalitĠs, des laŶthaŶides peuveŶt 

être insérés dans la matrice du HfO2. Lors de l’insertion de lanthanides, un changement de 

structure cristalline est observé (Figure 6). 

Figure 4: TEM images et distributions statistiques de la taille des nanoparticules de HfO2 synthétisées 

à 120 °C pendant 48 h à pH (a) 3, (b) 9.5 et (c) 13 

Figure 5: Diminution de la taille des NPs en fonction de la température, à pH 9.5  
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Le passage de la phase ŵoŶoĐliŶiƋue à ĐuďiƋue est oďseƌvĠ loƌs de l’iŶseƌtioŶ d’euƌopiuŵ de 

terbium et de gadolinium. Ainsi, pour de futures applications en imagerie optique et 

magnétique, les 3 lanthanides précédemment cités ont été insérés dans la même matrice de 

HfO2 avec un pourcentage total de lanthanide de 20% pour obtenir uniquement la phase 

cubique (Figure 7). 

 

Figure 6: Diffractogramme RX présentant l’évolutioŶ de la stƌuĐtuƌe ĐƌistalliŶe des NPs de HfO2 avec 

l’iŶseƌtioŶ de difféƌeŶts pouƌĐeŶtages d’Euƌopiuŵ 

Figure 7: (a) Images TEM et (b) distribution statistique en taille des NPs de HfO2 avec 20% de 

lanthanides synthétisées à 180 °C, avec un pH initial de 9.5 et pendant 48 heures 
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 Différentes ratio entre les 3 lanthanides ont été choisis et les notations suivantes seront 

utilisées par la suite: Eu0.01Tb0.03Gd0.16:HfO2 pour HfO2: 1%Eu, 3%Tb, 16%Gd, 

Eu0.03Tb0.05Gd0.12:HfO2 pour HfO2: 3%Eu, 5%Tb, 12%Gd et, Eu0.05Tb0.10Gd0.05:HfO2 pour HfO2: 

5%Eu, 10%Tb, 5%Gd. 

IV - Chapitre 4 : Imagerie optique et nanothermométrie 

Après avoir réussi à synthétiser des NPs susceptibles de présenter plusieurs fonctionnalités, il 

nous faut ŵaiŶteŶaŶt les ĐaƌaĐtĠƌiseƌ. Tout d’aďoƌd, les ŶaŶopaƌtiĐules de HfO2 dopées avec 

uŶ seul tǇpe de laŶthaŶide oŶt ĠtĠ ĐaƌaĐtĠƌisĠes paƌ leuƌs speĐtƌes d’eǆĐitatioŶ et d’ĠŵissioŶ. 

La tƌaŶsitioŶ ĐaƌaĐtĠƌistiƋue de l’euƌopiuŵ ;5D0→7F2) et celle du terbium (5D4→7F5) sont 

observées respectivement à 614 nm et à 543 nm responsables des couleurs caractéristiques, 

ƌouge pouƌ l’euƌopiuŵ et veƌt pouƌ le teƌďiuŵ.  

La nanothermométrie est basée sur un équilibre entre les niveaux 5D4 du Tb et 5D0 de l’Eu Ƌui 

vaƌie eŶ foŶĐtioŶ de la teŵpĠƌatuƌe. AiŶsi, eŶ aŶalǇsaŶt les speĐtƌes d’ĠŵissioŶ des NPs eŶ 

fonction de la température, on peut créer une base de données qui pourra ensuite servir à la 

détermination précise de la température. De plus, pour dĠteƌŵiŶeƌ l’effiĐaĐitĠ d’uŶ 

nanothermomètre, il est nécessaire de calculer sa sensibilité relative. Ainsi, les spectres 

d’ĠŵissioŶ des NPs dopĠes aveĐ Eu, Gd et Tď oŶt ĠtĠ mesurés de 12 K à 325 K (Figure 8) et les 

sensibilités relatives déterminées (Figure 9).  

 

Figure 8: SpeĐtƌes d’éŵissioŶ de ;aͿ Eu0.01Tb0.03Gd0.16 :HfO2, (b) Eu0.03Tb0.05Gd0.12 :HfO2 et de (c) 

Eu0.05Tb0.10Gd0.05 :HfO2 en fonction de la température sous une excitation de 280 nm 
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V - Chapitre 5 : Relaxométrie 

Les mesures de r1 et r2 ont été effectuées sur plusieurs échantillons, à deux températures et à 

différentes valeurs de champs magnétiques (20, 400 et 500 MHz).  

20 MHz 

�૚ (s-1) �૛ (s-1) 

25 °C 37 °C 25 °C 37 °C 

Gd0.26:HfO2 0.93 ± 0.01 0.89 ± 0.01 1.09 ± 0.03 1.14 ± 0.03 

Eu0.01Tb0.03Gd0.16:HfO2 0.42 ± 0.01 0.39 ± 0.01 0.67 ± 0.02 0.59 ± 0.03 

Eu0.03Tb0.05Gd0.12:HfO2 0.49 ± 0.01 0.49 ± 0.01 0.86 ± 0.03 0.76 ± 0.01 

Yb0.01Er0.05Gd0.19:HfO2  0.099 ± 0.006  0.110 ± 0.003 0.24 ± 0.01 0.25 ± 0.02 

Yb0.02Er0.10Gd0.13:HfO2 0.144 ± 0.004 0.13 ± 0.02 0.29 ± 0.01 0.22 ± 0.01 

 

 

 

 

Figure 9: SeŶsiďilités ƌelatives déteƌŵiŶées à l’aide du ratio d’iŶteŶsité de la ďaŶde ĐaƌaĐtéƌistiƋue du 
Tď et Đelle de l’Eu.  

Figure 10: Valeurs de relaxivité des protons, ri (i= 1,2), déterminées à 20 MHz à 25 °C et 37 °C 
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Conclusion 

AiŶsi, l’oďjeĐtif de sǇŶthĠtiseƌ des ŶaŶopaƌtiĐules de taille et de morphologie contrôlées de 

dioǆǇde de titaŶe et de dioǆǇde d’hafŶiuŵ a été atteint. Nous avons réussi à insérer des 

lanthanides dans la matrice de HfO2 lui conférant de nombreuses propriétés, tant optique que 

magnétique.  
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Titre : Synthèse de nanoparticules multifonctionnelles pour le diagnostic et 
l’imagerie médicale avec de futures applications en radiothérapie 

Résumé : Une des plus gƌaŶde Đause de ŵoƌtalitĠ aujouƌd’hui est le ĐaŶĐeƌ. AĐtuelleŵeŶt, les 
nanotechnologies ont permis le développement de nouvelles approches dans le traitement du cancer. Ainsi, il 

est deveŶu ŶĠĐessaiƌe de ĐoŶĐevoiƌ et ŵodeleƌ des ŶaŶopaƌtiĐules ;NPsͿ ŵultiŵodales et d’Ġvalueƌ leuƌ 
application thérapeutique potentielle. Les nanoparticules inorganiques étudiées dans le cadre de ce travail sont 

basées sur des oxydes métalliques (e.g. TiO2 and HfO2) et présentent plusieurs fonctionnalités permettant leur 

loĐalisatioŶ et leuƌ ƋuaŶtifiĐatioŶ eŶ utilisaŶt diffĠƌeŶtes teĐhŶiƋues telles Ƌue l’IRM et l’imagerie optique. 

NotaŵŵeŶt gƌâĐe à l’iŶseƌtioŶ de teƌƌes ƌaƌes daŶs la ŵatƌiĐe des NPs. D’autƌe paƌt, Đoŵŵe la teŵpĠƌatuƌe des 
cellules saines et cancéreuses diffère, la détermination locale de la température peut être intéressante et 

oďteŶue paƌ l’Ġtude de la luŵiŶesĐeŶĐe d’uŶe paiƌe de teƌƌes ƌaƌes judiĐieuseŵeŶt Đhoisie. 
Ainsi, des NPs de TiO2 et de HfO2 ont été synthétisées par voie hydrothermale, permettant un contrôle de leur 

taille et de leuƌ ŵoƌphologie. De plus, des teƌƌes ƌaƌes, Đoŵŵe l’euƌopiuŵ, le teƌďiuŵ et le gadoliŶiuŵ oŶt ĠtĠ 
iŶsĠƌĠes au seiŶ des ŵatƌiĐes d’oǆǇde d’hafŶiuŵ peƌŵettaŶt d’oďteŶir des nanoparticules multifonctionnelles, 

basées sur la détection par imagerie optique et magnétiques et la détection de la température 

(nanothermomètre). Les NPs ont été caractérisées et des mesures de relaxivité ont été effectuées. La 

luminescence de ces NPs a ĠtĠ ĠtudiĠe et a peƌŵis la ŵise au poiŶt d’uŶ ŶaŶotheƌŵoŵğtƌe aveĐ uŶe seŶsiďilitĠ 
de 0.1 %.K-1.  

Mots clés : nanoparticules, imagerie, radiothérapie, terre-rare, multifonctionnelles 

 

Title: Multifunctional nanoparticles for imaging and tracking with potential 
applications in radiotherapy 

Abstract: Cancer is one of the main cause of mortality in the world. Recently, nanotechnologies have led to 

new approaches in cancer therapy. In this context, it is important to design multimodal nanoparticles (NPs) and 

assess their therapeutic potential. The inorganic NPs studied here are based on metal oxides (e.g., TiO2 and HfO2) 

exhibiting functionalities that allow their localization and tracking using various techniques (MRI, luminescence), 

as well as their quantification. For this purpose, rare-earth elements are inserted in the metal oxide matrices. As 

the lethal temperatures for healthy and tumor cells are different, it is also important to ascertain the 

temperature of the cells during ionizing radiation treatment. This may be achieved based on the light emission 

of suitable pairs of rare-earth elements.  

Thus, titania and hafnia nanoparticles were synthesized by the hydrothermal method enabling the control of 

morphology and size. Furthermore, the hafnia matrices were doped with rare-earth elements, such as europium, 

terbium and gadolinium, endowing NPs with functionalities such as luminescence tracking, magnetic resonance 

imaging and nanothermometry. The chemical characterizations were performed and the relaxivity constants 

were assessed. The luminescence response was also studied, and one nanothermometer with a sensitivity at 

room temperature ca. 0.1 %.K-1 was obtained.  

Keywords: nanoparticles, imaging, radiotherapy, rare-earth, multifunctional 
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