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Résumé

Cette thèse présente un cadre général pour l’étude de schémas de discrétisation nodaux sans
maillage formulé en termes d’opérateurs discrets définis sur un nuage de points : intégration
volumique et de bord, gradient et opérateur de reconstruction. Ces définitions dotent le nuage
de points d’une structure plus faible que celle définie par un maillage, mais partageant avec elle
certain concepts fondamentaux. Le plus important d’entre eux est la condition de compatibilité
intégro-différentielle. Avec la consistance linéaire du gradient discret, cet analogue discret de la
formule de Stokes constitue une condition nécessaire à la consistance linéaire des opérateurs el-
liptiques en formulation faible. Sa vérification, au moins de manière approchée, permet d’écrire
des discrétisations dont le taux de convergence est optimal. La construction d’opérateurs dis-
crets compatibles est si difficile que nous conjecturons – sans parvenir à le démontrer – qu’elle
nécessite soit la résolution d’un système linéaire global, soit la construction d’un maillage :
c’est "la malédiction sans-maillage". Trois grandes approches pour la construction d’opérateurs
discrets compatibles sont étudiées. Premièrement, nous proposons une méthode de correction
permettant de calculer l’opérateur gradient compatible le plus proche – au sens des moindres
carrés – sans mettre à mal la consistance linéaire. Dans le cas particulier des gradients DMLS,
nous montrons que le gradient corrigé est en réalité globalement optimal. Deuxièmement, nous
adaptons l’approche SFEM au cadre opérateur et constatons qu’elle définit des opérateurs
consistants à l’ordre un et compatibles. Nous proposons une méthode d’intégration discrète
exploitant la relation topologique entre les cellules et les faces d’un maillage qui préserve ces
caractéristiques. Troisièmement, nous montrons qu’il est possible de générer tous les opéra-
teurs sans maillage rien qu’avec la donnée d’une formule d’intégration volumique nodale en
exploitant la dépendance fonctionnelle des poids volumiques nodaux par rapport à la position
des nœuds du nuage, l’espace continu sous-jacent et le nombre de nœuds. Les notions de con-
sistance des différents opérateurs sont caractérisées en termes des poids volumiques initiaux,
formant un jeu de recommandation pour la mise au point de bonnes formules d’intégration.
Dans ce cadre, nous réinterprétons les méthodes classiques de stabilisation de la communauté
SPH comme cherchant à annuler l’erreur sur la formule de Stokes discrète. L’exemple des opéra-
teurs SFEM trouve un équivalent en formulation volume, ainsi que la méthode d’intégration
discrète s’appuyant sur un maillage. Son écriture nécessite toutefois une description très pré-
cise de la géométrie des cellules du maillage, en particulier dans le cas où les faces ne sont pas
planes. Nous menons donc à bien une caractérisation complète de la forme de telles cellules
uniquement en fonction de la position des nœuds du maillage et des relations topologiques
entre les cellules, permettant une définition sans ambigüité de leur volume et centre de grav-
ité. Enfin, nous décrivons des schémas de discrétisation d’équations elliptiques utilisant les
opérateurs sans-maillage et proposons plusieurs possibilités pour traiter les conditions au bord
tout en imposant le moins de contraintes sur la position des nœuds du nuage de points. Nous
donnons des résultats numériques confirmant l’importance capitale de vérifier les conditions
de compatibilité, au moins de manière approchée. Cette simple recommandation permet dans
tous les cas d’obtenir des discrétisations dont le taux de convergence est optimal.
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Abstract

This thesis introduces a general framework for the study of nodal meshless discretization
schemes. Its fundamental objects are the discrete operators defined on a point cloud : volume
and boundary integration, discrete gradient and reconstruction operator. These definitions
endow the point cloud with a weaker structure than that defined by a mesh, but share several
fundamental concepts with it, the most important of them being integration-differentiation
compatibility. Along with linear consistency of the discrete gradient, this discrete analogue
of Stokes’s formula is a necessary condition to the linear consistency of weakly discretized
elliptic operators. Its satisfaction, at least in an approximate fashion, yields optimally
convergent discretizations. However, building compatible discrete operators is so difficult
that we conjecture – without managing to prove it – that it either requires to solve a global
linear system, or to build a mesh. We dub this conjecture the "meshless curse". Three
main approaches for the construction of discrete meshless operators are studied. Firstly, we
propose a correction method seeking the closest compatible gradient – in the least squares
sense – that does not hurt linear consistency. In the special case of MLS gradients, we show
that the corrected gradient is globally optimal. Secondly, we adapt the SFEM approach to
our meshless framework and notice that it defines first order consistent compatible operators.
We propose a discrete integration method exploiting the topological relation between cells
and faces of a mesh preserving these characteristics. Thirdly, we show that it is possible to
generate each of the meshless operators from a nodal discrete volume integration formula.
This is made possible with the exploitation of the functional dependency of nodal volume
weights with respect to node positions, the continuous underlying space and the total number
of nodes. Consistency of the operators is characterized in terms of the initial volume weights,
effectively constituting guidelines for the design of proper integration formulae. In this
framework, we re-interpret the classical stabilization methods of the SPH community as
actually seeking to cancel the error on the discrete version of Stokes’s formula. The example
of SFEM operators has a volume-based equivalent, and so does its discrete mesh-based
integration. Actually computing it requires a very precise description of the geometry of
cells of the mesh, in particular in the case where its faces are not planar. We thus fully
characterize the shape of such cells, only as a function of nodes of the mesh and topological
relations between cells, allowing unambiguous definition of their volumes and centroids.
Finally, we describe meshless discretization schemes of elliptic partial differential equations.
We propose several alternatives for the treatment of boundary conditions with the concern
of imposing as few constraints on nodes of the point cloud as possible. We give numerical
results confirming the crucial importance of verifying the compatibility conditions, at least in
an approximate fashion. This simple guideline systematically allows the recovery of optimal
convergence rates of the studied discretizations.
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Introduction

Industrial motivations behind the project
ESI Group defines itself as the leading innovator in virtual prototyping softwares and

services. And indeed, this company specialized in material physics has over the years devel-
oped a unique proficiency in helping industrial manufacturers replace physical prototypes
by virtually replicating the fabrication, assembly and performance testing of products (with
an "as manufactured as tested" philosophy) in different environments, including extreme
and transient dynamics. Hence, the simulation of the manufacturing processes used in the
aerospace, automotive and rail transportation industries – like stamping, forming and weld-
ing – is a core part of ESI Group’s activity. The class of associated “finishing” processes –
like trimming, riveting, milling, drilling and clinching – pose very special demands in terms
of predictive simulation capabilities.

Even though the Finite Element Method (FEM) based numerical algorithms are built
upon strong theoretical foundations and have over the years had time to mature, these
methods still exhibit serious accuracy and stability weaknesses as soon as the regime of
application involves excessive local deformations, including topological changes (transition
to multi-connectedness, etc . . . ). This is mainly due to the degradation of the Jacobian
transformation / mapping between the “parent” state and the “real” state of the elements
in question inherent to the topological requirement of a fixed inter-element connectivity, fun-
damental to the method. Local mesh repair in the form of rezoning / morphing or remeshing
is in general at best extremely cumbersome (often necessitating human intervention) and
at worst impossible. Additionally, simulation results most often exhibit a high dependency
with respect to the geometry of the mesh, lowering the confidence level in the accuracy of
the results.

Further on, the transition from a simply to a multi-connected domain, which is the
outcome of fracture, involves the creation of a new surface within the continuum, a process
that is extremely difficult to treat in a classical FEM approach. Indeed, it necessitates either
sophisticated “element-splitting”-class algorithms that are extremely tedious to generalize
in a robust way for industrial 3D applications, or very complex and CPU costly “multi-scale”
approaches (global-local). A practical alternative is to use “element elimination”, a process
that is extremely robust and widely used in Virtual Performance Solution (ESI Group’s
leading software) and other competitor softwares. However, not only does this process
require excessively fine meshes, its predominant drawback is to removes material from the
simulation model, jeopardizing the fidelity of the physical modeling and with it the residual
stress prediction.

One of the most natural ideas to alleviate these difficulties in the simulation of demanding
manufacturing processes consists in relaxing the fixed connectivity constraint and use a
meshless method instead of a more classical FEM approach. This was the driving principle
behind the first introduction of the Smooth Particle Hydrodynamics (SPH) method within
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2 INTRODUCTION

the PAM-SHOCK code of ESI Group as soon as 1998 for hypervelocity impact simulations
of space debris upon the double shield of the European Module of the International Space
Station (see [124124, 125125, 126126]).

The promising capability revealed by this method regarding the simulation of strongly
hydrodynamic processes involving extreme material strains and associated phase changes led
to its further development in modelling Fluid-Structure Interaction (FSI) phenomena like
tank sloshing, birdstrike and aircraft ditching. It was then further developed with options
pertaining to naval engineering and in particular large ship flotation in heavy seas, wave
slamming and coastal security assessment under tsunami events. However, its application
in the defense sector in the domain of ultra compressible gas dynamics (explosions, . . . )
revealed serious weaknesses in the accuracy prediction of the associated pressure waves.
This gave rise to a more specialized variant of the method called the Finite Pointset Method
(FPM), a method that solves the strong form of the associated equations (as opposed to
the weak form traditionally used by the SPH method). Finally similar limitations were
discovered by the SPH method when applied on quasi-static to mildly dynamic solicitations
where once more the accuracy of the full stress tensor (hydrostatic and deviatoric) was put
into question.

One other fundamental difficulty with the classical SPH method is the correct representa-
tion of an interior Neumann boundary condition which is crucial in the predictive simulation
of fracture as we do not a priori know the kinematics of the crack surface (where it opens,
in what direction and how much). The ability to incorporate a proper dynamic description
of such “free surfaces” is one of the missing ingredients to allow the appearance of the crack
to appear and evolve according to the material constitutive law and hopefully not according
to the details of the discretization structure (the underlying mesh in the case of the classical
FEM).

These limitations are the foundation of the motivation for this PhD thesis: our aim is to
provide significant advances in the representation of the stress state by SPH-like methods
and tackle the so-called tension instability phenomenon identified by Swegle et al. [220220]. To
that end, we concentrate on the consistency of variational formulations, which amounts to
simultaneously satisfy a linear "primal" consistency condition as well as a "dual" conservation
property which takes the form of a discrete version of Stokes’s formula.

In the next section, we give a quick literature review of how these problems have been
identified and approached in the past.

Historical overview of meshless methods
Meshless methods for the simulation of Partial Differential Equations (PDEs) are defined

in contrast with mesh-based methods: the term "meshless" refers to any numerical method
designed to approach the solution of a PDE without resorting to any kind of mesh structure.
Going further, the real aspiration of the field is to be able to define flexible self-reorganizing
structures, i.e. computation methods that allow the dynamic restructuring of communica-
tion between the discretization entities. This definition tolerates gradation: since the mesh
serves several purposes in the modeling and simulation, it might be set aside for one function
(e.g. integration), and kept for another. Hence, some methods are "more meshless" than
others.

Forsaking the rigid structure borne by a mesh has several major consequences on the
meshless discretization principles. First of all, the geometric definition of the computational
domain is traditionally assumed given at the discrete level by the mesh. Obviously, meshless
methods need a substitute object to represent geometry. Secondly, the degrees of freedom
may no longer be attached to well-defined regions of space (which would amount to building
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a tessellation of space, i.e. a mesh). As a substitute, the most common practice is to attach
data to nodes of a point cloud. Each node is most often not responsible for a well-defined
sub-domain, but rather a fuzzy, blurred area in its vicinity. The very notions of "vicinity"
and "neighborhood" of a node can no longer be inherited from the definition of cells in a
mesh, they need to be explicitly provided by the meshless methods, for instance with the
definition of a smoothing length. The third valuable aspect of meshes for which we need to
find an equivalent is more subtle. The organization of cells within a mesh is itself sufficient
to define a locally oriented abstract cell complex structure whose co-homology determines
a differentiation operator. This operator bears in its very definition the main property
mesh-based methods strive for: compatibility. This discrete analogue of Stokes’s formula
is essential to the good behavior of simulation methods, and its verification for meshless
methods is notoriously difficult. All these reasons can – and indeed have in the past –
justify the use of meshes even in so-called meshless methods.

The history of meshless methods may roughly be divided into three phases. At their very
debut (≈1977-1995), meshless methods were applied to very difficult multi-physics problems
such as those occurring in astrophysics. Methods such as Smoothed Particle Hydrodynamics
(SPH) were among the first to tackle such complex problems (see [161161] for a review article of
SPH theory and application during this period), at a time when most other methods failed
to even provide an answer. During this period, several approximation methods were adapted
into simulation methods, with special emphasis on either conservation or consistency. For
instance, the adaptation of the Kernel Density Estimation ideas and the definition of an
approximate delta function gave birth to SPH, the theory of reproducing kernel Hilbert
spaces translated into the Reproducing Kernel Particle Methods (RKPM) of Liu and Zhang
(see [151151]) and Moving Least Squares (MLS) approximation were used as a basis in weak
Galerkin formulations yielding the Element-Free Galerkin (EFG) method (see [2727]). This
period is very well detailed in the review article by Belytschko et al. [2626] and the more recent
book by Li and Liu [141141].

It is only during a subsequent consolidation phase (≈1995-2010) that the two main
challenges of meshless methods were really identified. First, the imposition of boundary
conditions is particularly difficult in meshless methods (compared to mesh-based methods),
mainly because of the difficulties related to the incorporation of the geometrical modeling
of the continuous boundary into the discretization.

Approaches for the imposition of boundary conditions in meshless methods can be clas-
sified into essential and natural methods. Essential methods are those which integrate the
boundary conditions a priori into the space of solution candidates, often via the definition of
SobolevH0 spaces. Numerically, this often translates into the inconvenient necessity to place
discretization nodes directly on the boundary for direct collocation (see [170170, 237237, 239239] for
instance), or to couple the meshless simulation with a mesh-based finite element procedure
(as described in [119119, 191191] for example). The other alternative is to use natural boundary
enforcement methods, namely procedures which integrate the boundary conditions into the
continuous operator rather than into the function space. Among them, let us refer to the
method of Lagrange multipliers [2828, 114114] which requires the solution of a saddle point-type
linear system, the penalty method [213213, 239239], which often requires high values of the penalty
parameter (with detrimental consequences on the condition number of the discretized sys-
tem), and the Nitsche symmetric and non-symmetric methods (see [1313, 110110, 236236]), which
can be seen as consistent improvements of the penalty method. The most influential paper
recapitulating the state of the art at that time is arguably that of Fernández-Méndez and
Huerta [9797], which overall praises the practical benefits of using Nitsche-type formulations.

Secondly during this period, several facets of a common fundamental problem were iden-
tified. Some authors saw its manifestation in the lack of accuracy or stability, and proposed
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several remedies to improve these aspects like renormalization (see for instance the contri-
butions of Randles and Libersky [192192] and Lanson and Vila [135135]), the use of MLS shape
functions in SPH by Dilts [7777, 7878], or the use of additional integration nodes (the so-called
"stress points" by Belytschko et al. [2525] for instance). Other interpreted it as the mani-
festation of a fundamental duality between consistency and conservation, the two aspects
needing to be addressed. This for instance gave rise to the C-SPH formulation of Bonet
and Kulasegaram [3636, 3737, 3939]. Finally, other authors incriminated the properties of the
numerical integration procedure, and proposed improvements or corrections like the Stabi-
lized Conforming Nodal Integration (SCNI) by Chen et al. [5353], or corrections to ensure
the so-called " zero row sum condition" by Babuška et al. [1212, 1414]. Most authors eventually
agreed that the source of their difficulties stemmed from the fact that conditions for first
order consistency of their final discretization were not easily met. It was realized that in
general, both exactness on linear functions and a discrete analogue of Stokes’s formula are
necessary to ensure patch test condition and optimal convergence. In a sense, they require
that the discrete differentiation and integration procedures be mindful of each other, and
for this reason, we call them "compatibility conditions". They are notoriously tough to meet
in a fully meshless context and constitute the main concern of the present work.

For the past decade, meshless methods have entered a third "renaissance" phase. The
difficulties stated above have been widely recognized and several propositions were made
to tackle them. Some of them rely on a mesh built on the point cloud like the power
diagram method by de Goes et al. [6767]. Others like Chiu [6060] solve a global linear system to
generate adequate discrete operators. Some authors also completely circumvent the problem
by resorting to either strong or non-symmetric Petrov-Galerkin formulations like Chen [5454]
and his assumed strain variationally consistent integration, or the Meshless Local Petrov-
Galerkin (MLPG) approach by Atluri and Zhu [1111].

In a nutshell, any currently known means of ensuring exact compatibility within a weak
formulation can be classified into one of two categories: either a mesh or some weakened
version of a mesh is used, or a global system of (possibly linear) equations needs to be solved.
While the first alternative betrays the initial intent of the meshless methods, the second can
be extremely costly. In the author’s opinion, the next milestone in the history of meshless
methods will be reached when this "meshless curse" is either finally broken or explained.

Our contribution to the state of the art
This work develops several original contributions to the theory of meshless methods. For

the most part, we restrict ourselves to nodal meshless methods, namely methods that only
require the storage of discrete data and evaluation of operators at node locations. This choice
is both general enough to encompass many of the most classical meshless methods like SPH
and its variants, and restrictive enough to allow the development of a common framework.
This thesis proposes an original foundation for nodal meshless methods, with a focus on
discrete operators and a precise choice of reduction map, allowing unambiguous notations
for discrete operators and definitions of their consistency and compatibility properties. In
agreement with recent literature, we give novel numerical evidence that the compatibility
error of classical meshless operators like SPH and Diffuse Moving Least Squares (DMLS)
gradients quickly increases with point cloud refinement, and numerically demonstrate the
accuracy benefits in satisfying these conditions in weak discretizations of elliptic problems.

We propose several novel compatible meshless sets of operators, especially in the vein
of Smoothed Finite Element Method (SFEM)-type discretizations. Our search for compat-
ible sets of meshless operators leads us to realize that the rationale behind Lagrangian-
based meshless discretizations of the hydrodynamics equations extends far beyond SPH and
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Voronoi-based discretizations. To that end, we widely generalize the underlying theory of
"volume-based" meshless nodal discretizations, providing characterizations of local and global
consistency of meshless operators arising from the dependency of nodal volume weights with
respect to geometric and discretization parameters. It is important to note that this theory
does not shy away from the proper treatment of the boundary integration operator, which
has otherwise always been ignored by the meshless community. In addition, we prove a novel
order limitation result pertaining to volume-based gradient operators, mitigating the hope
of designing volume-based discretization schemes with consistency properties of arbitrarily
high order.

Furthermore, we remark that no currently known numerical method is able to fulfill both
first order consistency and compatibility requirements exactly without resorting during their
practical construction to some kind of mesh structure or solving a global linear system (i.e.
a linear system whose number of degrees of freedom scales with the number of nodes in the
point cloud). We suggest that such methods might simply not exist, and dub this conjecture
the "meshless curse". Studying the repercussions of the meshless curse leads us to design
several novel meshless methods achieving compatibility. In particular, we develop in this
manuscript a general least-square correction method aiming at restoring compatibility of a
first order consistent set of discrete meshless operators, and prove that this method achieves
some kind of global optimality when applied to classical DMLS gradients.

We then design several mesh-based integration procedures that manage to retain the
exact compatibility properties of several SFEM-like discrete meshless operators. In this
process, the particular case of volume-based operators requires a precise understanding of
the evolution of the geometry of cells in a mesh during the advection of its nodes. We thus
develop an algorithm to compute volumes and centroids of polygonal cells. This algorithm
is specifically tailored to the topological description of a mesh in terms of a known combi-
natorial structure which we call Brisson’s cell-tuple structure. Even though this structure
was developed by Brisson in the late 80s [4545, 4646], our approach is extremely original since
we first study it independently of a geometrical embedding instead of considering that it
ensues from a given subdivided manifold. This allows us to show that the positions of nodes
of the mesh fully specify its geometry, even if nodes of the same cell are not constrained
to lie in the same hyperplane (such cells are called non-planar), which is particularly useful
since this property cannot be assumed for general advection. This original result allows us
to effectively compute the needed derivatives of cell volumes and centroids with respect to
general variation of node positions.

Finally, we develop and compare several variants of weak nodal meshless discretizations
of elliptic equations. All these variants share the same "bulk" consistency conditions, namely
first order consistency and compatibility of the discrete operators are sufficient to ensure
satisfaction of linear patch test conditions. The different formulations mainly differ by the
choice of a method to handle boundary conditions either in a natural or an essential way, and
their strategy to circumvent the need to place discretization nodes directly on the boundary
of the computational domain.

Even though all numerical applications present in this thesis are two-dimensional, and
we can safely assume that most industrial applications of our work are limited to three-
dimensional cases, every theoretical aspect is treated for an arbitrary finite dimension d.
This follows our firm belief that any dimension-specific "trick" only yields short-lived benefits,
especially compared to the impossibility to generalize.

This also translates to a rigorous programming ethics sustained throughout our work.
Our numerical results were all obtained after implementation into an in-house prototyping
library called Fortran Template Library (FTL) [181181] in a non-standard extension to Fortran
90, allowing template meta-programming. This capability is fully exploited since the dimen-
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sion of the problem at hand is present in the code as an integer template argument, only
specified at compile time. This includes both low-level subroutines typically designed for
complex algebraic purposes like second order symmetric tensors or fourth order tensors with
minor and major symmetries (pertaining to linear elastic constitutive equations), multidi-
mensional modular arithmetic, exterior algebra operations: wedge product, interior product,
Hodge operator, . . . This is also combined with more complex constructions like pointwise
evaluation of basis polynomials of arbitrary order for the computation of Moving Least
Squares (MLS) operators for instance, and also concerns more high level structures and
algorithms like point cloud and mesh handling, including volume and centroid computation
and the evaluation and storage of meshless operators.

Outline of the thesis
The present document is structured as follows. The first chapterfirst chapter is dedicated to the the-

oretical study of meshes. More than just providing a clearer definition of meshless methods
by a proper definition of what a mesh really is, we detail the topological properties allowing
the natural definition of a mesh-based compatible structure. Then, we design an algorithm
to compute the volume and centroids of planar polygonal cells in a mesh, which we then gen-
eralize to the case of non-planar cells. Incidentally, we not only show that the knowledge of
incidence relationship and nodal positions is sufficient to fully characterize the geometry of
a mesh, but we also enable the computation of the derivatives of cell volumes and centroids
with respect to these nodal positions. This is essential for the mesh-based integration of
meshless volume-based SFEM operators. Finally, several first order consistent mesh-based
integration formulae are exposed and proved.

The second chaptersecond chapter introduces notions relative to meshless operators: point cloud, re-
duction map, boundary and volume integration operator, gradient operator, reconstruction
operator, their consistency properties and compatibility. The compatibility conditions are
interpreted, their importance stressed and the difficulty to achieve them is summarized in
the "meshless curse". Then, several examples of meshless operators are detailed: the SPH
operators, which are – in their original formulation – neither consistent nor compatible, and
their renormalized versions which are up to first order consistent. Then, a general quadratic
optimization method for the recovery of compatibility in a first order consistent set of mesh-
less operators is presented. Moreover, we prove that the application of this method to first
order DMLS gradients satisfies global quadratic optimality requirements, providing an ef-
ficient means of computing such operators. Finally, we generalize the SFEM concepts to
the construction of consistent compatible discrete meshless operators and show that these
properties can be exactly retained using a mesh-based discrete integration procedure.

The third chapterthird chapter builds on the idea that the specification of an appropriate volume inte-
gration operator (through its associated nodal weights) as a function of geometric parameters
is sufficient to define all other discrete operators. We develop an original general theory of
such operators, widely extending previous constructions and characterizations. Furthermore,
we prove an impossibility result concerning first order consistency of volume-based primal
gradient operators. This theory also allows a novel interpretation of the effectiveness of
several classical stabilization procedures: they actually improve the consistency of the dual
gradient operator. Finally, we are able to exhibit compatible sets of meshless operators
built within this volume method, as well as adapt the mesh-based procedure of the previous
chapter to their compatibility-preserving approximation, giving yet another illustration of
the meshless curse.

The fourth and last chapterfourth and last chapter uses the meshless framework and operators developed ear-
lier to solve systems of elliptic differential equations. The importance of satisfying the
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compatibility conditions – at least in an approximate fashion – is numerically illustrated
on several examples: in a nutshell, we are only able to achieve second order convergence
of elliptic discretizations using first order consistent compatible operators. Two choices of
formulations for the imposition of boundary conditions are compared: on the one hand, the
Nitsche formulation imposes Dirichlet boundary conditions weakly, which fits perfectly to
our operator-based meshless framework. On the other hand, we show how this framework
can be extended to treat Dirichlet boundary conditions essentially, without the need to
place boundary nodes directly on the boundary. The two approaches are then compared on
a common stress intensity factor estimation test case.

Finally, several examples and miscellaneous results completing the exposition are moved
to the appendices at the end of the document.
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This work focuses on the study of meshless methods, namely numerical methods for the
approximation of the solution to PDEs that do not (or as little as possible) require the
use of a mesh. Since the main challenge faced by meshless discretization methods is to
recover what is lost when we decide to avoid using a mesh in the discretization process, we
consider that a clear understanding of the different aspects of meshes is a prerequisite to the
construction of innovative meshless methods. The aim of this chapter is to introduce the
relevant mesh-based notions for the study and development of meshless methods.

Depending on the context (numerical simulation, computer graphics, . . . ) and the spe-
cific use case, different authors give different definitions of a mesh or stress different aspects.
Consequently, there is not even a unique definition of a polygon (or polyhedron, etc) as
discussed by Grünbaum [112112]. Our choice of combinatorial structure to represent meshes
is Brisson’s cell-tuple structure, which is both general enough to represent a large class of
geometrical shapes, and convenient enough to provide an adequate theoretical framework for
their study as well as an easy enough interpretation in terms of simplices. In section 1.11.1, we
develop mesh-related topological notions, namely all aspects of the mesh that are indepen-
dent of a specific embedding: incidence relation between cells, orientations and boundary
operator. These notions are fundamental for the theoretical study of PDEs and are un-
fortunately the first to be left behind when going from mesh-based to meshless methods.

9
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We realize in subsequent chapters that retaining a weakened version of the duality between
the boundary operator and the exterior differentiation through integration is of the utmost
importance.

Contrary to the original exposition by Brisson [4545, 4646], we choose to define the combina-
torial structure a priori instead of deriving its properties from those of general subdivided
manifolds. This original change of perspective allows us to strip the geometrical requirements
down to their bare minimum. In particular, we show in section 1.21.2 that the knowledge of
a cell-tuple structure and nodal positions is enough to unambiguously define the mesh ge-
ometry, with minimal restrictions. This is the most important result of this chapter: it
allows us to transport nodes of a mesh with the guarantee that cells naturally follow. This
feature is highly desirable as it ensures that the mesh-based approximations of integrals
developed in section 1.31.3 can be used to define adequate computation procedures for the
meshless operators as explored later in this thesis.

1.1 Topological aspects of meshes
In this section, we address the question of choosing an appropriate theoretical framework

for the discrete representation of space, independently of their embedding. Namely, we de-
scribe incidence relations between the fundamental constituents of a mesh, regardless of their
precise shapes or geometric position of their points of interest (nodes, integration points, etc
. . . ). This non-metric structure is at the center of the development of several mesh-based sim-
ulation techniques. Some methods necessitate the use of simple configurations: for instance,
most Finite Differences (FD) schemes are defined in terms of logically Cartesian grids (nodes
have right/left neighbors in 1-D, top/bottom neighbors in 2-D, front/back neighbors in 3-D,
etc . . . ). Similarly, many FEM schemes rely on a simplicial decomposition of space for the
definition of shape functions. Several simulation methods also exploit the topological struc-
ture of the discrete space: for instance, the Finite Volume Method (FVM) (see [226226] for an
introduction to FVMs) heavily relies on the notion of faces separating cells to define fluxes
of conserved quantities. Generalizing these notions to multiple dimensions have allowed
the definition of Compatible Discrete Operator (CDO) (also called mimetic, compatible or
structure-preserving, see [5252]) discretization schemes such as the Virtual Element Method
(VEM) (see [2222, 2323] for quick introductions to the VEM), Discrete Exterior Calculus (DEC)
(see [7272, 117117] and [7171] for a practical introduction), the Finite Element Exterior Calculus
(FEEC) by Arnold et al. (see [1010] for an in-depth introduction). The underlying reasons for
the success of these schemes are briefly explained at the end of section 1.1.21.1.2. The review
work of Bonelle [3535] constitute a well-detailed presentation of CDO schemes in a common
framework.

The following sections introduce a few notions of algebraic topology that are required to
fully understand the role of meshes in the discretization of PDEs. Section 1.1.11.1.1 describes
incidence relationships in a mesh with a particular focus on cell-tuple structures and section
1.1.21.1.2 recalls a few known results concerning the orientation of such structures.

1.1.1 Organizing incidence relations in a topological structure
In this section, we characterize the hierarchical organization of cells within a mesh and

detail two particular types of such organizations: simplicial complexes and cell-tuple struc-
tures. The incidence relations in a mesh are naturally described by the notion of abstract
cell complex (see [99] paragraph 1.7 and [222222] paragraph 2.1):
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Definition 1.1 (Abstract cell complex).
An abstract cell complex ACC = (C,<,dim) of dimension d is made of a set C of abstract
elements called cells, an irreflexive, asymmetric and transitive binary relation < and a
mapping dim : C → [[0, d]] compatible with <, i.e. such that ∀ /C, /C ′ ∈ C, (/C < /C ′) ⇒
dim(/C) < dim(/C ′)).

In what follows, an exponent on the cell symbol always refers to the dimension of the
cell (/Cp is a cell of dimension p or p-cell), and the set of p-cells in a cell complex is usually
denoted Cp. Cells of maximal or full dimension d are called volume cells or simply cells and
cells of dimension d−1 are called faces. At the other end of the dimension spectrum, 1-cells
are called edges and 0-cells are called nodes. Informally, the binary relation < represents the
fact that a cell is in the boundary of another cell. For this reason, in following developments
we prefer to denote /C1 ∈ ∂ /C2 instead of /C1 < /C2.

The definition of abstract cell complexes is very broad and needs to be restricted to
fit our idea of a mesh. Many combinatorial definitions have been proposed to this effect,
either for a specific dimension of abstract cell complex [1919, 2020, 6666] or more recently for
arbitrary dimensions [3333, 4646, 5050, 6565, 142142]. Numerous similarities and equivalency results
relating these discrete models have been proved [77, 88, 108108, 222222], so that there is no real
wrong choice. The construction of a boundary operator on such structures was recently
investigated by Alayrangues et al. [66], which greatly inspired our developments. In this
work, we only consider two (related) structures: simplicial complexes and the cell-tuple
structure of Brisson [4646].

First, let us introduce abstract simplicial complexes, which generalize the 2-D and 3-D
definitions of conformal triangular and tetrahedral meshes independently of their embedding:

Definition 1.2 (Abstract simplicial complex).
An abstract simplicial complex of dimension d is an abstract cell complex ACC = (C,<,dim),
such that:

• C is a set of finite sets of indices of cardinal at most d such that if /C ∈ C then
∀ /C ′ 6= ∅ ⊂ /C, /C ′ ∈ C.

• The boundary relation < is the "natural order" (see [99] page 121), i.e. /C ′ < /C if and
only if /C ′  /C.

• dim(/C) is given by the cardinal of /C minus one.

Simplicial complexes are very handy to manipulate, especially because of their natural
relationship with affine embeddings as we explore in section 1.2.31.2.3. Their definition readily
implies that p-cells of a simplicial complex can be unequivocally described by the set of their
p+ 1 incident nodes. Example of valid and non-valid cell complexes are given in figure 1.11.1.

Dealing with simplicial meshes can be too restrictive: for instance, their dual (see defini-
tion 1.81.8) is not a simplicial complex, and they can be ill suited for adaptive local refinement.
The above definition is also too permissive since it allows the creation of objects of non-
homogeneous dimensions (see figure 1.11.1 a)) for instance. Even though this particular issue
can be fixed with an additional assumption (see definition 1.31.3) these issues have led to the
development of unstructured meshes. In [4343], Brezzi et al. also mention the development
of numerical methods for non-matching meshes, and the necessity to simulate regions with
complex solution transitions as a motivation for the more and more widespread usage of
unstructured meshes with non-planar, degenerate and non-convex elements.

For these reasons, we also consider another restriction of abstract cell complexes called
cell-tuple structures (definition 1.71.7, introduced in [4646]). The choice of this particular combi-
natorial structure is explained in section 1.21.2 where we study embeddings of cell complexes.
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a) b) c)

Figure 1.1 – a) An example of simplicial complex that does not verify the maximal chain
property. It is not properly embedded in 3-dimensional space since it self-intersects. Image
courtesy of [225225].
b) c) 2 and 3-dimensional examples of non-compatible simplicial meshes: even if the cells
have simplicial shapes, every subset of nodes of a cell does not define a cell. However, these
can be considered as valid cell-tuple structures. Image courtesy of [157157].

The following definition constraints the dimensions of sequences of incident cells in an
abstract cell structure.

Definition 1.3 (Maximal chain property).
An abstract cell complex ACC = (C,∈ ∂,dim) satisfies the maximal chain property if for
every ordered sequence of cells /C0 ∈ ∂ /C1 · · · ∈ ∂ /Ck, there exists a maximal sequence of d+1
cells /C0 ∈ ∂ /C1 · · · ∈ ∂ /Cd such that:

• ∀ i ∈ [[0, k]], ∃ p ∈ [[0, d]], | /Ci = /Cp
• ∀ p ∈ [[0, d]], dim(/Cp) = p

Maximal ordered sequences of cells (i.e. paths of incident cells of consecutive dimension
linking a 0-cell to a d-cell) are called cell-tuples or more simply tuples, and the set of tuples
in an abstract cell complex ACC is denoted T (ACC). Similarly, we call "partial tuple" of
length p or p-tuple an ordered sequence of p + 1 cells whose dimension is at most p, and
denote T p(ACC) the set of p-tuples. An exponent on the tuple symbol denotes the size of
the tuple: tp is a p-tuple. The cell of dimension p ∈ [[0, d]] in a tuple t is denoted /Cp(t).

The best way to picture tuples and partial tuples is probably to realize that abstract cell
complexes satisfying the maximal chain property can be represented as d nested bipartite
graphs as pictured on figure 1.21.2. Indeed, definition 1.31.3 ensures that there is no dimensional
jump between incident cells: two incident cells /Cq ∈ ∂ /Cp of and abstract cell complex
satisfying the maximal chain property are always linked through a path of incident cells
of consecutive increasing dimensions. Another way to understand tuples is to consider the
barycentric subdivision defined here:

Definition 1.4 (Barycentric subdivisions of an abstract cell complex).
Let ACC be an abstract cell complex ACC = (C,∈ ∂,dim) satisfying the maximal chain
property. Then T (ACC) can be considered as a set of d-dimensional simplices with nodes in
C. In other words, tuples are the d-cells of a simplicial complex whose nodes are the cells
of ACC . This simplicial complex is called the barycentric subdivision of a cell complex (see
Lemma 1 of [4646] and [99] pages 131-132).
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Cells

o(/Cd, /Cd−1)
/Cd−1

Faces
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Edges

o(/C1, /C0)
/C0

Nodes

Figure 1.2 – Incidence relations in an abstract cell complex satisfying the maximal chain
property can be encoded as d nested bipartite graphs. In this graph, a tuple can be thought
of as a path joining a 0-cell to a d-cell and a p-tuple as a path joining a 0-cell to a p-cell .
Relative orientations map the edges of the graph to {−1,+1}.

The barycentric subdivision turns out to be an efficient tool to study the properties of
an abstract cell complex. It is at the center of several discretization methods and we use it
several times in our subsequent developments. The next definitions detail two combinatorial
restrictions introduced by Brisson in the late 1980s to restrict the category of representable
objects with abstract cell complexes. Their relevance is best understood in the light of
proposition 1.61.6 (see section 1.2.11.2.1).

Definition 1.5 (Relaxed Brisson’s switch condition).
An abstract cell complex ACC satisfies the relaxed Brisson’s switch condition if for all
dimension p ∈ [[0, d− 1]] and tuple t, there exists a unique tuple t′ that agrees with t on all
cells except that of dimension p:

∀ t ∈ T (ACC),∃ !t′ ∈ T (ACC) | ∀ q ∈ [[0, d]], q 6= p, /Cq(t′) = /Cq(t) and /Cp(t′) 6= /Cp(t) (1.1)

Unicity allows the definition of the "switch" functions acting on tuples: the unique tuple
t′ satisfying the above condition is denoted switchp(t). The symmetric roles of t and t′

in this definition readily entails that switchp is an involution: ∀ p ∈ [[0, d − 1]],∀ t ∈
T (ACC), switchp(switchp(t)) = t
Additionally, for the "full" dimension p = d, at most one such tuple may exist.

The switch condition is the natural generalization to arbitrary dimensions of the state-
ments "every edge separates exactly two nodes" and "every face separates exactly two cells".
It is readily seen that the latter should not hold for boundary faces, which are incident to
an interior cell and the exterior. With this definition, boundary faces are faces that belong
to tuples t such that switchd(t) is not defined. Boundary cells of dimension p < d − 1 are
defined as incident cells to boundary faces.
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Definition 1.6 (Local path-connectedness).
An abstract cell complex ACC satisfying the relaxed Brisson’s switch condition is said "locally
path-connected" if two tuples t, t′ sharing all cells of dimensions i ∈ I ⊂ [[0, d]] can be
transformed into each other with repeated application of switchp for p /∈ I:
∀ I ⊂ [[0, d]],∀ t, t′ ∈ T (ACC) | ∀ i ∈ I, /Ci(t) = /Ci(t′),

∃ (p1, . . . , pm) ∈ ([[0, d]]\I)m | t′ = switchpm ◦ · · · ◦ switchp1(t) (1.2)

The local path-connectedness condition forbids the construction of pathological cells.
Figure 1.31.3 b) gives an example of an embedded cell structure that is not a subdivided
manifold since its unique cell is not homeomorphic to a disc. The corresponding abstract
cell structure does not satisfy local path-connectedness.

Actually, assuming local path-connectedness (or a close enough substitute) allows a ma-
jor change of perspective: instead of founding the combinatorial structure on cells, some
authors (see [6565] for instance) prefer to first introduce objects called darts (tantamount to
our definition of tuples) and several functions acting on darts (similar to Brisson’s switch).
Cells are only then defined as the repeated action (orbits) of these functions on darts. Local
path-connectedness ensures the equivalence of the two approaches. We use it in the next
section to show that properties defined on tuples readily translate to properties on cells.

We now have all the relevant tools at our disposal to define a proper combinatorial
structure for the representation of meshes.

Definition 1.7 (Cell-tuple structures).
Abstract cell complexes that satisfy the maximal chain property (definition 1.31.3), the relaxed
Brisson’s switch conditions (definition 1.51.5) and local path connectedness (definition 1.61.6) are
called cell-tuple structures. Additionally, a cell-tuple structure verifying the Brisson’s switch
condition even for the full dimension p = d is called a cell-tuple structure without boundary.

A 2-D example of a simplicial complex, which is a cell-tuple structure as well is given in
figure 1.41.4.

Proposition 1.1 (Barycentric subdivisions of cell-tuples are cell-tuples).
The barycentric subdivision of a cell-tuple structure is itself a cell-tuple structure.

Proof. Let ACC = (C,<,dim) denote a cell-tuple structure. We want to show that its
barycentric subdivision is endowed with a cell-tuple structure, namely that it satisfies the
maximal chain property, the relaxed Brisson’s switch condition and local path-connectedness.
The set of tuples of the barycentric subdivision of ACC is denoted T 2(ACC) and is comprised
of ordered sequences of the form tσ = (/Cσ(0), /Cσ(1), . . . /Cσ(d)) where σ ∈ Sym([[0, d]]) and
t = (/C0, /C1, . . . /Cd) ∈ T (ACC). By construction, the maximal chain property is satisfied.
The switch operator switchT

2(ACC) acting on T 2(ACC) is naturally defined as: switchT
2(ACC)

d (tσ) = switchσ(d)(t)σ Where switch is defined

switchT
2(ACC)

p (tσ) = tπp◦σ For p < d

Where πp is the adjacent transposition exchanging p and p + 1. Since πp is an involution,
the relaxed Brisson’s switch condition on the barycentric subdivision is a consequence of its
being satisfied on the original cell-tuple structure. Similarly, local path-connectedness on the
barycentric subdivision is a consequence of the fact that adjacent transpositions generate the
symmetric group and of local path-connectedness on the original cell-tuple structure.

A 2-D example of barycentric subdivision is sketched on figure 1.41.4.
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Figure 1.3 – Local path-connectedness forbids the construction of cells with pathological
shapes.
a) A 2-D abstract cell structure with one cell which does not satisfy local path-connectedness
(definition 1.61.6). For instance the tuple (1, 2, 1) cannot be transformed into (4, 5, 1) by means
of switch0 and switch1 only.
b) A possible corresponding embedding in R2, which is not homeomorphic to a disc.

Definition 1.8 (Dual cell-tuple structure).
Let ACC = (C,<,dim) be a cell-tuple structure without boundary. Inverting the incidence
relation defines a new "dual" cell-tuple structure ACC∗ = (C,>, d − dim). This procedure
effectively maps p-cells of the initial "primal" structure to d − p-cells of the dual one. This
procedure is involutive: the dual of the dual is the initial structure.

The definition of the dual structure is especially convenient for the definition of staggered
schemes, which express physical quantities for the next iteration on the dual mesh (see [179179]
for instance). They also provide an ideal tool for the discretization of the Hodge operator,
which maps p-differential forms to d− p forms (see [116116, 173173] for instance).

Remark. The dual cell-tuple structure can also be defined for cell-tuple structures with
boundary, but the definition is slightly more involved, and the process is no longer an
involution.

In the next section, we describe the meaning of relative orientation between cells, define
a boundary operator and sketch a few relevant results in homology and cohomology theory
to the discretization of PDEs.
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a) b)

Figure 1.4 – Simplicial complexes and cell-tuple structure are highly related.
a) In black: an example of simplicial complex which is also a cell-tuple structure. Its barycen-
tric subdivision defined in proposition 1.11.1 is explicitly built (in light grey). Black nodes corre-
spond to nodes, green nodes to edges and red nodes to cells of the original cell-tuple structure.
b) Inverting the orientation of the incidence relation maps p-cells of the cell-tuple structure
to (d− p)-cells of the "dual" structure, which is not a simplicial complex.

1.1.2 Orientation and boundary operator of a cell-tuple structure
In order to make sense to physical signed values like the outward of inward flux of a

quantity into a cell or its flow from one cell to another, we need to define a notion of
orientation on the cell-tuple structure. However, if we still want to be able to represent
non-orientable objects (like the Möbius band or higher dimensional equivalents), orientation
may not always be defined globally.
Definition 1.9 (Orientability of a cell-tuple structure).
A cell-tuple structure ACC is said locally orientable if there exists a map o : T (ACC) →
{−1,+1} such that:

∀ t ∈ T (ACC),∀ p ∈ [[0, d− 1]], o(switchp(t)) = −o(t) (1.3)

Furthermore, it is said globally orientable or simply orientable if the above condition is met
for the full dimension p = d as well (where the switch operator is defined).
Definition 1.10 (Orientation of a cell-tuple structure).
A local orientation of a cell-tuple structure ACC is a set of d+1 maps oi : T (ACC)→ {−1,+1}
for i ∈ [[0, d]] such that:

∀ t ∈ T (ACC),∀ p ∈ [[0, d]],
{

if p < i then oi(switchp(t)) = −oi(t)
if p > i then oi(switchp(t)) = oi(t)

(1.4)

Furthermore, the orientation is said global if the above condition is met for the full dimension
i = p = d as well where the switch operator is defined. Global orientations are local
orientations, but the converse is not true in general. A concrete example of oriented cell-
tuple structure is sketched on figure 1.51.5.
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Remark. The orientation map oi can equivalently be defined on i-tuples as the second
condition suggests. Indeed, for p ≥ i, we can consistently denote oi(tp) = oi(t) for all tuples
t agreeing with tp on the p+ 1 first cells.

The choice of a (local) orientation is non-unique and eventually a matter of convention.
Indeed, if (oi)i∈[[0,d]] is a valid (local) orientation, then the opposite orientation (−oi)i∈[[0,d]]
also is. In general, orientation is chosen cell-wise as illustrated in the proofs of proposition
1.31.3 and 1.41.4.

Proposition 1.2 (Orientability is a sine qua non condition to admit an orientation).
A cell-tuple structure admits a (local) orientation if and only if it is (locally) orientable.

Proof. The proofs for local and global orientations are almost identical. Let us for instance
consider local orientations. First, suppose a cell-tuple structure ACC admits a local orienta-
tion (oi)i∈[[0,d]]. Then o = od satisfies the local orientability conditions.
Conversely, suppose a cell-tuple structure ACC is locally orientable, i.e. that there exists an
orientation map o : T (ACC)→ {−1,+1} such that:

∀ t ∈ T (ACC),∀ p ∈ [[0, d− 1]], o(switchp(t)) = −o(t)

Then defining od = o satisfies the criteria of definition 1.101.10. Using descending induc-
tion, suppose we have found suitable oi maps for all j < i ≤ d. Then for i = j, let
us consider the set of pairs of the form (/Ci, /Ci+1). From local path-connectedness (def-
inition 1.61.6), considering such a pair (/Ci(t), /Ci+1(t)) amounts to considering all tuples of
the form switchpm ◦ · · · ◦ switchp1(t) where pk ∈ [[0, i − 1]] ∪ [[i + 1, d]]. Following the
Brisson switch condition (definition 1.51.5), the switchi+1 operator is a permutation of such
pairs, its repeated action thus defines an equivalence relation whose equivalence classes –
called cycles – have cardinal 2. We pick a pair (/Ci, /Ci+1) from each class, and define
oi(t) = oi+1(t) for all corresponding tuples. We then define the orientation of members
of the other class as oi(switchi+1(t)) = oi+1(t). This definition verifies: ∀ t ∈ T (ACC),
∀ 0 ≤ p < i, oi(switchp(t)) = −oi(t) inherited from oi+1. By construction, we have
oi(t) = oi(switchi+1(t)). Moreover, ∀ i + 2 ≤ p < d, oi(switchp(t)) = oi(t) inherited
from oi+1, which proves the result by descending induction.

Proposition 1.3 (Orientability of barycentric subdivisions).
The barycentric subdivision of a cell-tuple structure is locally orientable. Furthermore, it is
globally orientable if and only if the original cell-tuple structure is globally orientable.

Proof. Keeping the notations of the proof of proposition 1.11.1, defining o(tσ) = sign(σ) proves
local orientability. Moreover, given a global orientation of the original cell-tuple structure, we
can define o(tσ) = o(t)× sign(σ), which in turn proves global orientability of the barycentric
subdivision. Now let us assume that there exists a global orientation on the barycentric
subdivision. Then, the value of o(tσ)×sign(σ) is independent of the chosen permutation σ ∈
Sym([[0, d]]) and defines a proper global orientation on the original cell-tuple structure.

In fact, we can even state the following result:

Proposition 1.4 (Cell-tuples structures are locally orientable).
A cell-tuple structure is always locally orientable.

Proof. Let ACC be a cell-tuple structure. Let us inductively build a local orientation on
partial tuples to prove the result. For p = 0, defining o0(t0) = 1 ∀ t0 ∈ T 0(ACC) satisfies
every condition of definition 1.101.10. Let us suppose we have built local orientation maps oi
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Figure 1.5 – Relative orientation of cell-tuple structures allow the definition of a boundary
operator on formal sums of cells.
a) The orientation of 2-cells is positive relative to the conventional orientation of the plane.
The relative orientation of 1-cells within them is positive if the arrows go in the same direc-
tion, negative otherwise. 0-cells are negatively oriented within 1-cells if the arrow leaves the
0-cells.
b) The values of o(/Cp−1

, /Cp) are attached to the edges of the incidence graph.
c)d)e) Consistency of the relative orientation is a consequence of the fact that the switch
operation reverses orientation of tuples of lower dimensions, and conserves that of tuples of
higher dimensions. A possible orientation of tuples consistent with the relative orientation
of a) is proposed here.
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for i < p < d. In order to define op, we need to choose a relative orientation of (p− 1)-cells
into p-cells.

Let tp ∈ T p(ACC). From local path-connectedness, considering the pair (/Cp−1(tp),
/Cp(tp)) amounts to considering all p-tuples of the form switchpm ◦ · · · ◦ switchp1(tp) where
pi ∈ [[0, p − 1]] ∀ i ∈ [[1,m]],m ∈ N. Following the Brisson switch condition (definition
1.51.5), the switchp operator is a permutation of such pairs, its repeated action thus defines an
equivalence relation whose equivalence classes – called cycles – have cardinal 2, and possibly
1 when p = d. Pick a pair (/Cp−1, /Cp) from each class, and define op(tp) = op−1(tp) for all
corresponding tuples. Then, define op(switchp(tp)) = −op−1(tp) on the other one (where
switchp is defined). Let us check that this procedure effectively defines a local orientation on
ACC : For q < p− 2, for all tp ∈ T p(ACC), we have: op(switchq(tp)) = ±op−1(switchq(tp)) =
∓op−1(tp) = −op(tp). Furthermore, by construction we have op(switchp−1(tp)) = −op(tp),
thus concluding the proof.

As we have seen in the proof of proposition 1.41.4, a local orientation of an abstract cell-tuple
structure follows from the choice of a (consistent) relative orientation for pairs of incident
cells of consecutive dimensions. The next definition affirms that the converse is also true:

Definition 1.11 (Relative orientation in a locally oriented cell-tuple structure).
For p ∈ [[1, d]], we call orientation of a (p− 1)-cell /Cp−1 relative to an incident p-cell /Cp and
denote o(/Cp−1, /Cp) the number defined as: ∀ t ∈ T (ACC) | /Cp−1(t) = /Cp−1, /Cp(t) = /Cp,

o(/Cp−1, /Cp) = op−1(t)op(t)

This definition does not depend on a specific tuple t.

Proof. For i ∈ [[1, p − 1]], we have op−1(switchi(t))op(switchi(t)) = −op−1 × −op(t) =
op−1(t)op(t), and similarly for i ∈ [[p + 1, d]], we have op−1(switchi(t))op(switchi(t)) =
−op−1 × −op(t) = op−1(t)op(t). Hence, switchi conserves op−1(t)op(t) for all i 6= p − 1, p.
Using local path-connectedness of the cell-tuple structure shows that all tuples incident to
both /Cp−1 and /Cp agree on the value of op−1(t)op(t).

If o(/Cp, /Cp+1) = +1, the two cells are oriented in the same way, and if o(/Cp, /Cp+1) = −1,
they are oriented in opposite ways. Relative orientations are attached to pairs of incident
cells of consecutive dimensions, namely to edges of the nested bipartite graph of the cell-
tuple structure (see figure 1.21.2). It is customary to choose orientation of tuples such that
boundary faces /Cd−1 are positively oriented relative to the unique cell /Cd they are attached
to: o(/Cd−1, /Cd) = 1. This choice is equivalent to the convention that vector surface areas
(see section 1.2.21.2.2 for the computation of vector surface areas in the planar case) should point
towards the exterior of the domain.

Relative orientations are best understood when considering boundary operators, which
we now introduce. For p ∈ [[0, d]], we consider Cp as the free abelian group generated by the
p-cells of a cell-tuple structure. In other words, we study formal sums (also called p-chains)
of the form

∑
/Cp∈C a/Cp /Cp where a/Cp ∈ Z. The boundary operator is defined on these formal

sums as:

Definition 1.12 (Boundary operator on a locally oriented cell-tuple structure).
For p ∈ [[1, d]], the p-th boundary operator ∂p is defined on Cp with values in Cp−1 as the
group homomorphism with the following action on the canonical basis: ∀ /Cp ∈ Cp,

∂p : Cp → Cp−1

∂p /Cp def=
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)/Cp−1 (1.5)
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Similarly to the boundary operator defined on subsets of Rn, our discrete boundary
operator defined on cell-tuple structures is such that the boundary of a boundary vanishes:

Proposition 1.5 (Boundaries have vanishing boundaries).
For p ∈ [[1, d− 1]], we have ∂p ◦ ∂p+1 = 0.

Proof. Let compute the boundary of the boundary of a cell: ∀ p ∈ [[1, d−1]],∀ /Cp+1 ∈ Cp+1,
∂p∂p+1 /Cp+1 =

∑
/Cp∈∂ /Cp+1

o(/Cp, /Cp+1)
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)/Cp−1 (1.6)

=
∑

/Cp−1∈∂ /Cp+1

( ∑
/Cp | /C

p∈∂ /Cp+1

/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)o(/Cp, /Cp+1)
)
/Cp−1

As a consequence of the relaxed Brisson’s switch condition, the sum between parentheses
on the second line of equation (1.61.6) is made of exactly two terms part of switchp-related
pairs of tuples. Thus, there is a tuple t ∈ T (ACC) such that this term reads:
op−1(t)op(t)op(t)op+1(t) + op−1(switchp(t))op(switchp(t))op(switchp(t))op+1(switchp(t))
= op−1(t)op+1(t)− op−1(t)op+1(t) = 0

This proves that C has a chain complex structure, adequate to define a homology theory.

C0 ∂1←− C1 ∂2←− . . . ∂d−1←− Cd−1 ∂d←− Cd (1.7)

In a nutshell, cellular homology is the study of the shape of cellular complexes indepen-
dently of their embeddings through the characterization of their homology spaces: Hp =
Ker(∂p)\ Im(∂p+1). In particular, the dimension of Hp as a Z-module is called the p-th Betti
number and is loosely speaking the number of p-dimensional holes in the complex. It can
be shown (see for instance theorem 2.35 of [115115]) that cellular homology agrees with singu-
lar homology defined on smooth manifolds, namely that cellular decompositions of smooth
manifolds appropriately capture the shape of smooth manifolds.

These questions are particularly relevant to the discretization of PDEs. Indeed, numerous
PDEs can be re-phrased and better studied in the language of differential forms. The central
operator of differential geometry is the exterior derivative, which unifies the vector calculus
notions of divergence, curl and gradient within a co-chain structure. The study of the
corresponding graded ring is called the De Rham cohomology theory.

Λ0 d0

−→ Λ1 d1

−→ . . .
dd−2

−→ Λd−1 dd−1

−→ Λd (1.8)

The exterior derivative acting on differential forms is related to the boundary operator
defined on manifolds by Stokes’s formula (ι denotes the canonical injection or inclusion map
from ∂Ωp to Ωp, see theorem 8.2.8 of [22] for more information):

ˆ
Ωp

dp−1αp−1 =
ˆ
∂pΩp

ιαp−1 (1.9)

The De Rham theorem (see [9494]) states that integration is actually an isomorphism between
De Rham cohomology and singular cohomology (defined on simplicial complexes on smooth
manifolds). Hence, the singular homology (shape) of a smooth manifold conditions the space
of solutions of PDEs. The success of CDO discretization methods is due to the fact that they
define discrete differential forms as co-chains on a cellular cell complex: using the duality
pairing between chains and cochains, the boundary operator of definition 1.121.12 translates
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to a discrete exterior derivative operator. Stokes’s formula acts here as a definition of the
differential operator, and is therefore naturally satisfied at the discrete level. This feature is
of the utmost importance to achieve optimal convergence.

In a meshless context, we need to build this discrete exterior derivative from scratch
(see section 2.2.22.2.2). One of the greatest challenges of meshless methods is precisely to build
a discrete differential operator that is both precise enough (more precisely, consistent of
order one) and that satisfies Stokes’s formula. The importance of this feature is explained
in greater length in sections 2.42.4 and demonstrated numerically in chapter 44.

1.2 The geometry of general meshes
In the last section, we introduced the "cell-tuple structure" and studied its topological

properties. The present section is dedicated to the study of the geometrical aspects of
meshes. In section 1.2.11.2.1, we recall a result by Brisson stating that the topological structure
of a wide category of geometrical objects can be described with the cell-tuple structure
introduced in the previous section. In sections 1.2.21.2.2 and 1.2.31.2.3, we develop an algorithm for
the computation of the volume and centroid of cells in polygonal meshes and of moments
of any order in simplicial meshes. In section 1.2.41.2.4, we describe the geometrical sub-cell
structure of non-planar cells and extend the validity of previous results to meshes without
the planarity assumption.

1.2.1 Subdivided manifolds can be represented by cell-tuple struc-
tures

In this section, we first justify our choice of working with cell-tuple structures, with the
introduction of the notion of subdivided manifold. Then, we study embeddings of subdivided
manifolds and define what we mean by polygonal mesh.

Following Brisson [4646] section 3, we give a definition of subdivided manifold, namely a
manifold adequately cut into cells.

Definition 1.13 (Subdivided manifold).
A subdivision of a topological manifold M is a set of embedding maps (φ/C)/C∈C where C is
a set of disjoint subsets of M whose union is M and such that for each /C in C,

• The corresponding embedding map φ/C : Bp → /C is continuous and injective. It
transforms the unit open ball of some dimension p onto /C, and the unit closed ball
onto /C.

• The boundary of /C relative to the topology defined by the metric on M: ∂ /C = /C\/C
can be written as the union of (finitely many) cells from C.

The notion of subdivided manifold matches the intuitive idea of decomposition of a
domain into cells. The shape of these cells can be complicated (non-convex cells, non-star
shaped cells, thin cells, curved cells, . . . ), but their topology is constrained to be that of a
simple ball. The link between cell-tuple structures and subdivided manifolds is given by the
following result by Brisson (see [4646] for more information).

Proposition 1.6 (Subdivided manifolds define cell-tuple structures).
A subdivision (φ/C)/C∈C of a manifold defines a cell-tuple structure ACC = (C,<,dim) where:

• dim(/C) is the dimension of the domain (and the co-domain) of φ/C .
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• /Cq < /Cp if /Cq ⊂ /Cp

Proof. See Brisson [4646].

Hence, the results concerning cell-tuple structures directly apply to subdivided manifolds.
Up until this point, we have considered manifolds independently of a possible embedding.

From now on, we study these manifolds M through a locally flat embedding into Rn with
d ≤ n. We do not impose that the embedding dimension n fit the intrinsic dimension d of the
mesh in order to accommodate lower dimensional objects (meshing of shells for instance).

Definition 1.14 (Polygonal mesh).
A polygonal mesh is a subdivided manifold embedded in an affine space Rn such that each
p-cell /Cp spans an affine space of dimension p, which we denote H(/Cp).

Supposing a proper planar embedding allows the definition of a metric and an orientation
on every cell given an orthogonal basis of the spanning affine space. Computing cell volumes
and centroids in this case is the object of the next section.

1.2.2 Computation of metric quantities in a polygonal mesh
The goal of this section is to compute the oriented volume V (/Cp) and centroid x(/Cp)

of cells /Cp of a polygonal mesh embedded in Rn. These two notions require the definition
of a metric on Rn, which we subordinate to the choice of an oriented frame (O, e1, . . . , en)
without choice of generality. This choice translates to a metric on every affine subspace of
Rn, and fully determines musical operators ] and [, the Hodge operator ∗ and the different
volume forms. Using the affine properties of Rn and subspaces, we identify points with
vectors of the tangent and forms of the cotangent spaces: if x denotes a point, then there
is a corresponding vector field with the same coordinates in a given orthogonal affine frame
which we also denote x. Expressions such as x − y might either refer to the vector joining
point y to point x, or to the corresponding 1-form.

The computation of volumes and centroids of polygons, and more generally of moments
of polygons has been an active research topic for several years. One of the reasons for the
wide variety of existing methods is that their computational complexity often depends on
how the mesh is represented as analyzed in [8181, 127127]. A review of some existing methods
with associated complexity computed on a specific example is given in [4747].

Most industrial simulation codes build explicit decompositions of polygons into simple
shapes (often simplices, sometimes orthogonal parallelograms when possible), but these
methods can be criticized because of their relative computational inefficiency and the arbi-
trary nature of the decomposition. One of the best known methods for the computation of
volumes of convex polytopes is that of Lasserre [137137], extended in [136136] for the computation
of the integral of homogeneous functions. Our method (see proposition 1.71.7) is a direct exten-
sion of Lasserre’s method to non-convex polygons. It also very closely resembles the hybrid
method of Büeler et al. [4747]. Other famous methods for volume computation are built either
around Brion’s formula (see [1818, 4444, 139139, 188188] for its independent discoveries, and [109109] for
a more practical approach), which we exploit in section 1.2.31.2.3, or more anecdotally around
the Lasserre-Avrachenkov formula for the integration of symmetric functions on a simplex
(see [128128, 130130, 138138]). These questions are closely linked to the count of integer lattice points
inside a given polytope, which is the subject of very recent research (see [1616, 6868, 6969]).

Let us explain what we mean by "oriented volume of a p-cell": if the cell has full embed-
ding dimension p = n, its oriented volume is a real number, namely the measure of the open
set it bounds. In codimension one however (p = n− 1), V (/Cn−1) denotes the oriented area
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of the face /Cp, and not only characterizes the d− 1-th dimensional measure of the cell, but
its direction and orientation in space as well.

In general, we want V (/Cp) to simultaneously encode the direction of the cell /Cp (an
element of the Grassmannian Grp(Rn)) and its oriented measure (a real number). A classical
result of projective geometry (see section 2.4 of [111111] for more information and [194194] for a
more basic introduction to Grassmannians) states that Grp(Rn) is naturally embedded into
the projective space P(Λp(Rn)) via the Plücker coordinates. Accounting for orientation
and measure, we encode volumes as elements of Λ(Rn) the exterior algebra of Rn. More
precisely, in the planar case V (/Cp) ∈ Λp(Rn) is co-linear to the volume form on H(/Cp)
denoted volH(/Cp), and V (/Cp) · volH(/Cp) denotes the p-th dimensional measure of /Cp.
Remark. Note that V (/Cn−1) is not strictly speaking what is commonly called the vector
area of face /Cn−1, which we denote Γ(/Cn−1). Indeed, V (/Cn−1) is a (n − 1)-form and not
a vector (which we identify to a 1-form in our affine setting). This gap is bridged by the
relationship Γ(/Cn−1) = ∗−1V (/Cn−1) where ∗−1 is the inverse Hodge operator.
Proposition 1.7 (Expression of volumes and centroids of cells of a polygonal mesh).
The zeroth and first moment of a p-cell (p ≥ 1) of an embedded polygonal mesh can be
computed from those of lower dimensional cells with the following formulae:

V (/Cp) = 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1) (1.10)

V (/Cp)⊗ x(/Cp) = 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1)⊗ x(/Cp−1) (1.11)

Moreover, the volumes satisfy the following closure property:

0 =
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)V (/Cp−1) (1.12)

Proof. For p ∈ [[0, d]] and /Cp ∈ C, we denote H(/Cp) the affine hyperplane of dimension p
that contains /Cp and u a uniform vector field. In H(/Cp), we have d(ιu volH(/Cp)) = 0. Thus,

0 =
ˆ
/Cp

d(ιu volH(/Cp)) =
ˆ
∂ /Cp

ιu volH(/Cp)

=
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)

ˆ
/Cp−1

ιu volH(/Cp)

An consequently, ∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)V (/Cp−1) = 0

Which is the sought closure property.
The rest of the proof consists in applying Stokes’s theorem to the integration of homo-

geneous monomials of increasing order. The affine structure of Rn, more specifically the
identification of Rn with its tangent spaces allows the definition of a vector field x given an
affine frame, with point values corresponding to point position. Contraction with this vector
field (denoted ιx in this work, sometimes κ in the relevant literature, see [214214] and [1010] for
instance) is called the Koszul operator. The key point of the proof is to use the fact that
if ω is a r-homogeneous p-form, i.e. if it satisfies ω(αu1, . . . , αup) = αrω(u1, . . . ,up) for all
α ∈ R+ and ui ∈ Rn, then Lx = dιx + ιxd, the Lie derivative with respect to x satisfies:

(dιx + ιxd)ω = (p+ r)ω (1.13)
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Let us first consider homogeneous polynomial p-forms of order zero. In H(/Cp), we have
p volH(/Cp) = (dιx−x(/Cp) + ιx−x(/Cp)d) volH(/Cp) = d(ιx−x(/Cp) volH(/Cp)). Thus, using Stokes’s
theorem, we have:

V (/Cp) · volH(/Cp) =
ˆ
/Cp

volH(/Cp) = 1
p

ˆ
/Cp

dιx−x(/Cp) volH(/Cp)

= 1
p

ˆ
∂ /Cp

ιx−x(/Cp) volH(/Cp)

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)
ˆ
/Cp−1

ιx−x(/Cp) volH(/Cp)

Since each /Cp−1 is assumed to be embedded in a p − 1-dimensional space, the term
ιx−x(/Cp) volH(/Cp) is constant on H(/Cp−1) ⊃ /Cp−1, and its value is ιx(/Cp−1)−x(/Cp) volH(/Cp).
The integral hence reads:ˆ

/Cp−1
ιx(/Cp−1)−x(/Cp) volH(/Cp) = ιx(/Cp−1)−x(/Cp) volH(/Cp) ·V (/Cp−1)

= (x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1) · volH(/Cp)

And finally, we have:

V (/Cp) =
(ˆ

/Cp
volH(/Cp)

)
volH(/Cp)

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1)

Now we consider first order homogeneous monomials in the variable x − x(/Cp). They
have the general form u · (x − x(/Cp)), where u denotes a constant vector field. Using the
Koszul operator contracting property (dιx−x(/Cp) + ιx−x(/Cp)d)(u · (x − x(/Cp)) volH(/Cp)) =
(p+ 1)u · (x− x(/Cp)) volH(/Cp), we get:

0 = (p+ 1)
ˆ
/Cp

u · (x− x(/Cp)) volH(/Cp)

=
ˆ
/Cp

(dιx−x(/Cp) + ιx−x(/Cp)d)(u · (x− x(/Cp)) volH(/Cp))

=
ˆ
∂ /Cp

u · (x− x(/Cp))ιx−x(/Cp) volH(/Cp) +
ˆ
/Cp
ιx−x(/Cp)(u ∧ volH(/Cp))︸ ︷︷ ︸

=0

=
ˆ
∂ /Cp

u · x ιx−x(/Cp) volH(/Cp)−
ˆ
∂ /Cp

u · x(/Cp) ιx−x(/Cp) volH(/Cp)

=
ˆ
∂ /Cp

u · x ιx−x(/Cp) volH(/Cp) − u · x(/Cp)
ˆ
∂ /Cp

ιx−x(/Cp) volH(/Cp)

=
ˆ
∂ /Cp

u · x ιx−x(/Cp) volH(/Cp) − pu · x(/Cp)V (/Cp) · volH(/Cp)

Hence, we can express the centroid of /Cp as a function of the centroids of its boundary
sub-cells:
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u · x(/Cp)V (/Cp) · volH(/Cp) = 1
p

ˆ
∂ /Cp

u · x ιx−x(/Cp) volH(/Cp)

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)
ˆ
/Cp−1

u · x ιx−x(/Cp) volH(/Cp)︸ ︷︷ ︸
=cst on /Cp−1

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)u · x(/Cp−1)ιx(/Cp−1)−x(/Cp) volH(/Cp) ·V (/Cp−1)

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)u · x(/Cp−1)(x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1) · volH(/Cp)

Hence, we finally get the sought result:

V (/Cp)⊗ x(/Cp) = 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1)⊗ x(/Cp−1)

Remark. Proposition 1.71.7 shows that in the planar case, the first moment of a p-cell decom-
poses into m1(/Cp) = V (/Cp)⊗ x(/Cp). Moreover, since V (/Cp) is proportional to volH(/Cp), it
is a decomposable p-form. These decomposability properties of zeroth and first moment no
longer stand in the non-planar case as developed in section 1.2.41.2.4.

The main shortcoming of formulae (1.101.10) and (1.111.11) is that they do not provide an
explicit way of computing volumes and centroids of p-cells knowing those of (p − 1)-cells.
For this reason, we use the following iterative algorithm for practical computations:

Proposition 1.8 (Computation of volumes and centroids of cells of a polygonal mesh).
The following algorithm computes the volumes and centroids of p-cells in a polygonal mesh:
For p = 0, the centroid of a node is the (supposed known) position of the node x(/C0), and
its 0-th dimensional volume is 1. For p > 0, we proceed iteratively: At step k = 0, initialize
x0(/Cp) with any point of H(/Cp). For instance:

x0(/Cp) =

∑
/Cp−1∈∂ /Cp

‖V (/Cp−1)‖ x(/Cp−1)

∑
/Cp−1∈∂ /Cp

‖V (/Cp−1‖

Then, iterate on k as:

V k(/Cp) = 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)((x(/Cp−1)− xk−1(/Cp)) ∧ V (/Cp−1))

(1.14)

xk(/Cp)− xk−1(/Cp) = 1
(p+ 1)‖V k(/Cp)‖2

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp) (1.15)

(
(x(/Cp−1)− xk−1(/Cp)) ∧ V (/Cp−1)

)
· V k(/Cp)(x(/Cp−1)− xk−1(/Cp))

The proof of proposition 1.71.7 straightforwardly adapts to show that at the end of iteration
k = 1, the correct values are already computed. Nevertheless, the formula still has a practical
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purpose as we experienced that further iterations could enhance the numerical accuracy of
the formula in some ill-conditioned cases. Indeed, only differences of coordinates appear in
formula (1.151.15), which can alleviate massive cancellation issues.

The formulae and their proofs developed in this section are valid as long as we deal
with polygonal meshes. However, if p-cells of the mesh do not span a p-dimensional affine
subspace, the formulae are still computable, but their interpretation is unclear. In spite of
this difficulty, usage of non-planar cells is a widespread practice in many areas of numerical
simulation, and not having to make the planar assumption would give more flexibility to
generate meshes. Furthermore, we develop in section 3.7.23.7.2 a set of numerical methods
requiring the availability of quantities such as the derivative of volumes and centroids of
cells of the mesh with respect to node positions. Since nodes should in these methods not
be constrained to move in a particular strict subspace of Rn, we need to make sense of the
notion of volume and centroid of cells, even in the non-planar case. Section 1.2.41.2.4 address
this issue using the barycentric subdivision of the cell-tuple structure. The next section
states a few preliminary results.

1.2.3 Integration on simplicial complexes
This section gives closed form expressions of volumes and moments of any order of

simplices.
Proposition 1.9 (Expression of the volume a simplex).
If Sp is a p-simplex with nodes (x0,x1, . . . ,xp), then its p-dimensional volume V (Sp) is given
by:

V (Sp) = 1
p! (xp−1 − xp) ∧ (xp−2 − xp−1) ∧ · · · ∧ (x1 − x0) (1.16)

Proof. Geometrically speaking, Sp is the convex hull of its nodes (x0,x1, . . . ,xp). Hence, by
definition, H(Sp) is the affine space consisting of points of the form x + v where x ∈ Sp and
v is a linear combination of (x1 − x0, · · · ,xp − x0). Hence, its volume form is proportional
to (x1 − x0) ∧ (x2 − x0) ∧ · · · ∧ (xp − x0) = (xp−1 − xp) ∧ (xp−2 − xp−1) ∧ · · · ∧ (x0 − x1).
Given a choice of base of H(Sp), the classical formula for the volume of a simplex readily
gives the sought result.

Remark. This formula generalizes the well-known three dimensional formula for the volume
of tetrahedra: Area = 1

6 Height × Area of base . Indeed, if Sp−1 is the face of Sp with
nodes (x0,x1, . . . ,xp−1), then the formula for the volume of Sp can be recast using the
volume of Sp−1 as:

V (Sp) = 1
p

(xp−1 − xp) ∧ V (Sp−1) (1.17)

This effectively gives a recurrence relation to compute the volume of a simplex from the
volume of one of its faces. Moreover, the formula remains true if we substitute xp−1 for any
point of H(Sp−1) because of the properties of the wedge product.
Definition 1.15 (Barycentric coordinates in a simplex).
Any point x of a non-degenerate p-simplex Sp with nodes (x0,x1, . . . ,xp) can be uniquely
written as a non-negative linear combination of nodes with coefficients summing to unity. In
other words, there exists p+1 affine functions Nk : H(Sp)→ R called barycentric coordinates
satisfying the following properties:
Partition of unity or consistency of order zero:

∀ x ∈ H(Sp),
p∑
k=0

Nk(x) = 1 (1.18)
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Consistency of order one:

∀ x ∈ H(Sp),
p∑
k=0

Nk(x)xi = x (1.19)

Non-negativeness:
∀ x ∈ Sp,∀ k ∈ [[0, p]], Nk(x) ≥ 0 (1.20)

Barycentric coordinates play a huge role in the development of FEMs, where they are
used piecewise to generate discrete functions spaces on simplicial meshes. We use these
shape functions in section 2.7.12.7.1 to define a set mesh-based compatible operators.

Proposition 1.10 (Expression of the barycentric coordinates).
Let Sp−1 be a face of a p-dimensional simplex Sp with nodes (x0,x1, . . . ,xp). Then, for all
xF ∈ H(Sp−1) and all point x inside the convex hull of Sp, the barycentric coordinates of
node p has the following expression:

Np(x) = 1
p

∣∣∣∣∣
(
(xF − x) ∧ V (Sp−1)

)
· V (Sp)

‖V (Sp)‖2

∣∣∣∣∣ (1.21)

Proof. This function is indeed affine. For i ∈ [[0, p− 1]], if we have Np(xi) = 0 since xi is in
H(Sp−1). For i = p, expression (1.171.17) of the volume of a simplex proves that Np(xi) = 1.

The next proposition gives an explicit formula for the integration of product of powers
of barycentric coordinates over a simplex, which extend long known results in the finite
element community for low dimensions (see [8686] for instance).

Proposition 1.11 (Integration of products of barycentric coordinates over a simplex).
Given a non-degenerate p-simplex Sp with nodes (x0,x1, . . . ,xp) and exponents (i0, . . . , ip) ∈
Np+1, the integral of the barycentric monomial

∏p
k=0Nk(x)ik over Sp can be expressed in

the following closed-form:
ˆ
Sp

p∏
k=0

Nk(x)ik volH(Sp) = p!
∏p
k=0 ik!

(p+
∑p
k=0 ik)!‖V (Sp)‖ (1.22)

Proof. The proof is a consequence of a special case of Brion’s formula discovered indepen-
dently in [1818, 4444, 139139, 188188]. Let us first consider the special case where (x0,x1, . . . ,xp) is an
orthonormal affine frame of Rp. Then, from corollary 3 of [109109], we know that the moments
on Sp generate the following function:

FSp(u) def=
∑

I=(i1,·,ip)∈Np

(p+
∑p
k=1 ik)!∏p

k=1 ik!

(ˆ
x∈Sp

p∏
k=1

xikk volRp
)

p∏
k=1

uikk

= 1∏p
k=1(1− uk)

Several differentiations of the above formula with respect to u and evaluation at u = 0 yield:
ˆ

x∈Sp

p∏
k=1

xikk vol = p!
∏p
k=1 ik!

(p+
∑p
k=1 ik)!

The result then follows from a change of variable in the integral.

This result can be used to compute the integral of any polynomial over a simplex. For
instance, let us give the following important result:
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Proposition 1.12 (Centroid of a simplex).
Let Sp denote a p-simplex with nodes (x0,x1, . . . ,xp). Its centroid can be expressed as:

x(Sp) = 1
p+ 1

p∑
k=0

xk (1.23)

Proof. Using proposition 1.111.11, the proof is a simple computation:

‖V (Sp)‖u · x(Sp) =
ˆ
Sp

u · x volH(Sp)

=
p∑
k=0

u · xk
ˆ
Sp
Nk(x) volH(Sp)

= ‖V (Sp)‖
p+ 1 u ·

p∑
k=0

xk

In the next section, we use the formulae for the computation of metric quantities on
simplices to generalize the algorithm given in proposition 1.81.8 to the non-planar case.

1.2.4 Nodal positions fully define the geometry of meshes with non-
planar cells

In this section, we generalize formulae (1.101.10) and (1.111.11) to the computation of volumes
and centroids of non-planar cells. In particular, we show that the geometry of such meshes
can be unequivocally and intrinsically defined as long as node positions are prescribed and
a simple verifiable non-degeneracy condition is met. This representation is made explicit
through a cell-wise affine immersion of the barycentric subdivision of the cell-tuple structure,
and an efficient algorithm to compute it is described.

We suppose given the position x(/C0) of every node /C0 but we do not assume that nodes
of a same cell /Cp with p ∈ [[1, p]] lie in the same hyperspace of dimension p. From section
1.2.31.2.3, we know that simplicial embeddings are easy to work with, since any position of the
p+ 1 nodes of a p-simplex unambiguously defines an affine endomorphism of Rp. Moreover,
the formulae for the volume and centroid of simplices are quite simple. We recall from
definition 1.41.4 that tuples have the following combinatorial interpretation: they are cells of
a simplicial complex, whose nodes correspond to cells of the original cell-tuple structure.
Geometrically speaking, it is reasonable to define the embedding of our mesh piecewise
on tuples as sketched on the right hand side of figure 1.41.4: let us simply have tuple node
positions match cell centroids. Using propositions 1.91.9 and 1.121.12, this choice translates into
the following relations yielding partial tuple volumes and centroids in terms of cell volumes
and centroids:

V (tp) = 1
p! (x(/Cp−1)− x(/Cp)) ∧ (x(/Cp−2)− x(/Cp−1)) ∧ · · · ∧ (x(/C1)− x(/C0)) (1.24)

x(tp) = 1
p+ 1

p∑
k=0

x(/Ck) (1.25)

Now, we use the linearity of the integral to express both the zeroth and first order moments
of /Cp in terms of those of its partial tuples:
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m0(/Cp) = V (/Cp) =
∑
tp3/Cp

op(tp)V (tp) (1.26)

m1(/Cp) =
∑
tp3/Cp

op(tp)V (tp)⊗ x(tp) (1.27)

In the non-degenerate case, the cell centroid is then expressed as:

x(/Cp) = m0(/Cp) ·m1(/Cp)
‖m0(/Cp)‖2 (1.28)

The next theorem establishes the consistency of these relations and provides a practical
algorithm to compute their values:

Proposition 1.13 (Computation of volumes and centroids of non-planar cells).
In a cell-tuple structure ACC with specified nodal coordinates, expressions (1.241.24) to (1.281.28)
are consistent in Λ(Rn). They always uniquely specify cell volumes and first order moments.
In cases where the non-degeneracy condition V (/Cp) 6= 0 is met, they uniquely specify cell
centroids. Moreover, these metric quantities can effectively be computed by the following
iterative algorithm, in which the notion of cell-tuple does not appear: For p = 0, the centroid
of a node is the (supposed known) position of the node x(/C0), and its 0-th dimensional
volume is 1. For p > 0, we proceed iteratively: At step k = 0, initialize x0(/Cp) with any
point of Rn. For instance:

x0(/Cp) =

∑
/Cp−1∈∂ /Cp

‖V (/Cp−1)‖ x(/Cp−1)

∑
/Cp−1∈∂ /Cp

‖V (/Cp−1)‖

Then, iterate on k as:

V k(/Cp) = 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)((x(/Cp−1)− xk−1(/Cp)) ∧ V (/Cp−1)) (1.29)

xk(/Cp)− xk−1(/Cp) = 1
(p+ 1)‖V k(/Cp)‖2

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp) (1.30)

V k(/Cp) · (x(/Cp−1)− xk−1(/Cp)) ∧ ((m1(/Cp−1)− V (/Cp−1)⊗ xk−1(/Cp)))

This procedure is the generalization of that presented in the planar case (proposition
1.81.8). It converges as k → +∞, and the limit values are consistent with expressions (1.241.24) to
(1.271.27). Finally, the volumes still satisfy the closure property:

0 =
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)V (/Cp−1) (1.31)

Proof. We proceed inductively on the cell dimension p. For p = 0, there is nothing to prove.
For p = 1, edges have exactly two nodes, which can always be embedded in a 1-dimensional
affine subspace, everything thus follows from the planar case (proposition 1.81.8). Let us as-
sume that the proposition holds for all dimensions until rank p − 1 ≥ 1. Then, let us first
prove the closure property:
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∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)V (/Cp−1)

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)
∑

/Cp−2∈∂ /Cp−1

o(/Cp−2, /Cp−1)((x(/Cp−2)− x(/Cp−1)) ∧ V (/Cp−2))

= 1
p

( ∑
/Cp−2∈∂ /Cp

x(/Cp−2) ∧ V (/Cp−2)
∑

/Cp−1 | /Cp−1∈∂ /Cp
/Cp−2∈∂ /Cp−1

o(/Cp−2, /Cp−1)o(/Cp−1, /Cp)

︸ ︷︷ ︸
=0 since ∂p−1◦∂p=0 see proposition 1.51.5

−
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)x(/Cp−1) ∧

∑
/Cp−2∈∂ /Cp−1

o(/Cp−2, /Cp−1)V (/Cp−2)

︸ ︷︷ ︸
=0 by induction hypothesis

)
= 0

Hence, the closure property holds for a p-cell /Cp. Let us now examine the convergence of
the sequence V k(/Cp):

p
(
V k(/Cp)− V k−1(/Cp)

)
=

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(xk−1(/Cp)− xk−2(/Cp) ∧ V (/Cp−1))

= (xk−1(/Cp)− xk−2(/Cp)) ∧
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)V (/Cp−1)

= 0

Hence, the sequence V k(/Cp) is constant. It trivially converges towards its initial value,
which we now denote V (/Cp). Let us now examine the convergence of the sequence x(/Cp):

(p+ 1)‖V (/Cp)‖2
(
xk(/Cp)− xk−1(/Cp)

)
=

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)V (/Cp) · (x(/Cp−1)−xk−1(/Cp))∧ (m1(/Cp−1)−V (/Cp−1)⊗xk−1(/Cp))

=
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)V (/Cp) ·(xk−2(/Cp)−xk−1(/Cp))∧(m1(/Cp−1)−V (/Cp−1)⊗xk−2(/Cp))

+
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)V (/Cp) · (x(/Cp−1)−xk−2(/Cp))∧ (m1(/Cp−1)−V (/Cp−1)⊗xk−2(/Cp))

+
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)V (/Cp) · (x(/Cp−1)− xk−1(/Cp)) ∧ V (/Cp−1) (xk−2(/Cp)− xk−1(/Cp))

= ‖V (/Cp)‖2(xk−1(/Cp)− xk−2(/Cp))+

V (/Cp) ·

(xk−2(/Cp)− xk−1(/Cp)) ∧
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)m1(/Cp−1)


Hence as a result of Hadamard-Schwartz inequalities (see Corollary 4.1 of [122122] in particular),
we have the following bound:
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‖xk(/Cp)− xk−1(/Cp)‖ ≤
1

(p+ 1)

(
1 + 1
‖V (/Cp)‖

∥∥∥∥∥ ∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)m1(/Cp−1)
∥∥∥∥∥
)
‖xk−1(/Cp)− xk−2(/Cp)‖

We want to tightly bound the oriented sum of first order boundary moments. Using the
consistency with the barycentric decomposition at dimension p− 1, we have:∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)m1(/Cp−1) =
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)

∑
tp−13/Cp

o(tp−1)V (tp−1)⊗ x(tp−1)

Its projection onto Λp−1(R) is simply expressed using the fact that x(tp−1) − x(/Cp−1) ∈
H(tp−1):∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)
∑

tp−13/Cp
o(tp−1)V (tp−1) ∧ x(tp−1)

= ±
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)

∑
tp−13/Cp

o(tp−1)x(tp−1) ∧ V (tp−1)

= ±
∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)

∑
tp−13/Cp

o(tp−1)x(/Cp−1) ∧ V (tp−1) = ±V (/Cp)

Hence, we have ‖V (/Cp)‖ ≤
∥∥∥∥∥ ∑

/Cp−1∈∂ /Cp
o(/Cp−1, /Cp)m1(/Cp−1)

∥∥∥∥∥ and finally,

‖xk(/Cp)− xk−1(/Cp)‖ ≤ 2
(p+ 1)‖x

k−1(/Cp)− xk−2(/Cp)‖

Since p ≥ 2, we have 2
p+1 < 1, which proves the convergence of the iterative procedure, and

the proper definition of the limit value x(/Cp). This value is characterized by the following
relationship:

x(/Cp) = 1
p‖V (/Cp)‖2V (/Cp) ·

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧m1(/Cp−1)

We now prove that volumes and first order moments computed with this methods agree
with the barycenter decomposition:∑
tp3/Cp

op(tp)V (tp) = 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)
∑

tp−13/Cp−1

op−1(tp−1)(x(/Cp−1)− x(/Cp)) ∧ V (tp−1)

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧
∑

tp−13/Cp−1

op−1(tp−1)V (tp−1)

= 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1)

= V (/Cp)
Similarly for the first order moments:
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m1(/Cp) =
∑
tp3/Cp

op(tp)V (tp)⊗ x(tp)

= 1
p(p+ 1)

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)

∑
tp−13/Cp−1

op−1(tp−1)(x(/Cp−1)− x(/Cp)) ∧ V (tp−1)⊗ (px(tp−1) + x(/Cp))

= 1
p+ 1

(
V (/Cp)⊗ x(/Cp) +

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧m1(/Cp−1)
)

Consequently,

V (/Cp) ·m1(/Cp)
‖V (/Cp)‖2 = 1

p+ 1

(
x(/Cp)+

1
‖V (/Cp)‖2V (/Cp) ·

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)−x(/Cp))∧m1(/Cp−1)
)

= x(/Cp)
Which completes the proof by induction.

To the author’s knowledge, proposition 1.131.13 constitutes an original result, and its conse-
quences are numerous. First of all, it means that cell connectivities and node positions fully
specify a natural (possibly self-intersecting) mesh geometry, in a consistent fashion with its
cell-tuple decomposition. This geometry is unambiguously defined and is computable in
practice without any reference to the sub-cell structure (simplices of the barycentric decom-
position) it is shown to describe.

Even assuming we can efficiently build a mesh with planar faces, the result keeps a
practical interest since it allows the unequivocal definition of the derivative of these metric
quantities with respect to any nodal displacement, whether it conserve the planarity assump-
tion or not. And indeed, we use this fact in section 3.7.23.7.2, where these derivatives naturally
appear in the context of background integration of meshless operators. These derivatives
can be computed with a very similar iterative algorithm, or a non-iterative version akin to
corollary 1.141.14.

Such a result has long been missing in the mesh community. For instance Garimella
et al. stated in [101101] (section 3.1): "It is burdensome to determine what the real shape of a
curved polygonal face is (likely a minimal surface formed by the straight edges of the face) or
where its centroid is". In practice, meshes with curved faces have been used for quite some
time in simulation (see [4242, 4343]), but an interpretation of the precise geometry of cells or
practical methods to compute their volumes and centroids have been little discussed. Even
contributions (see [5151, 7373] for instance) which claim to be valid in arbitrary dimension on
general (i.e. non-planar) meshes do not go through the trouble of detailing the computation
– and incidentally the modeling – of volumes and derivatives for general meshes, but only
for 2-dimensional meshes (whose faces are necessarily planar), and 3-dimensional tetrahedra
and hexahedra.

Most authors who do examine these key points (see [145145] for instance) end up with the
same geometrical description as ours, but present it as an arbitrary choice rather than a
consequence of the formula to compute volumes and centroids. Note that there might very



1.3. APPROXIMATE INTEGRATION ON A MESH 33

well exist other formulae that are exact for polygons with planar faces, that do not coincide
with ours in the non-planar case, so that there is still an arbitrary element in the choice of
modeling. Of course, the two choices (geometry and computation of metric quantities) need
to be consistent.

In the most extreme cases, the geometry described by proposition 1.131.13 might not always
be a polygonal mesh, or even a subdivided manifold. Indeed, cells can be flipped (e.g. so-
called butterfly cells in 2-dimensions), negatively oriented, superposed etc . . . Instead it
is a well-defined signed simplicial decomposition of space. Additionally, cell volumes and
centroids can be efficiently computed without any explicit reference to simplices or tuples.

The proposed algorithm has a proved linear convergence of rate 2
p+1 . We suspect the

bounds given in the proof to be quite coarse as in practice, the observed rate is always very
close to 1

p+1 .
The proof also gives better intuition about the meaning of the volume of a cell. In

the planar case, we showed that V (/Cp) is decomposable (it is proportional to volH(/Cp),
which is decomposable). This is not true anymore in the general non-planar case as V (/Cp)
might not be decomposable. Consequently, V (/Cp) cannot in general be associated to an
averaged p-dimensional linear subspace of Rn. This situation cannot happen for n ≤ 3
though since 0-forms, 1-forms, n − 1-forms and n-forms are always decomposable, so it
might be difficult to apprehend. Similarly, the first order moment always decomposes into
m1(/Cp) = V (/Cp)⊗ x(/Cp), and this is no longer true in the non-planar case.
Corollary 1.14 (Non-iterative method for the computation of volumes and centroids).
The volumes and centroids of cells of a possibly non-planar mesh satisfy the following limit
equality reminiscent of the planar case (expressions (1.101.10) and (1.111.11)):

V (/Cp) = 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧ V (/Cp−1) (1.32)

‖V (/Cp)‖2x(/Cp) = 1
p
V (/Cp) ·

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)(x(/Cp−1)− x(/Cp)) ∧m1(/Cp−1) (1.33)

This inspires a non-iterative algorithm for the computation of volumes and centroids. To
compute volumes, simply use expression (1.321.32) with any value for x(/Cp) (0 for instance).
Indeed, expression (1.321.32) is non-iterative in nature as the computed value is independent
from the actual value of x(/Cp). For centroids, re-write expression (1.331.33) as a d × d linear
system and solve with your favorite linear solver. Let us note that as in the linear case
(proposition 1.81.8), a few iterations might avoid or alleviate precision loss due to massive
cancellation.
Proof. The proof of proposition 1.131.13 actually shows that the following linear operator is
invertible in Md(R):

v→ ‖V (/Cp)‖2v + V (/Cp) · v ∧ 1
p

∑
/Cp−1∈∂ /Cp

o(/Cp−1, /Cp)m1(/Cp−1)

The algorithm described in the proof actually amounts to computing the inverse of this
operator with a standard convergent splitting (see [234234] for more information about splitting
methods in numerical linear algebra).

1.3 Approximate integration on a mesh
This section is dedicated to the study of a few integration formulae using a mesh. These

formulae are used in sections 2.7.32.7.3 and 3.7.23.7.2 for the construction of meshless operators. First,
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we state the Bramble-Hilbert lemma in section 1.3.11.3.1, an important result of approximation
theory in Sobolev spaces. Then, a few low-order formulae are proved in section 1.3.21.3.2 for the
approximation of the integral of a function and of the gradient of a function, as well as the
approximation of the derivative of the integral of a function with respect to the position of
boundary nodes of the mesh.

1.3.1 Consistency of discrete operators and the Bramble-Hilbert
lemma

In this section, we simply state one of the multiple forms of the Bramble-Hilbert lemma.
More specifics about the assumptions of the theorem (Sobolev norms and regularity assump-
tions on the domain) as well as an explicit form of the bounding constant can be found in
appendix AA.

The relevance of te Bramble-Hilbert lemma is best understood when stated under the
following operator form:

Lemma 1.15 (Operator form of the Bramble-Hilbert lemma).
Let Ω ⊂ Rn be a domain with a regularity condition and ` : W k

p (Ω) → Y be a continuous
linear operator. Suppose that ` vanishes on polynomials of maximal order m − 1: `(v) =
0 ∀ v ∈ Pm−1. Then there exists a constant C such that:

‖`(u)‖Y ≤ C
(

1
D(Ω)Ω,m

)
‖`‖L(Wk

p (Ω),Y ) D(Ω)m−k|u|Wm
p (Ω) (1.34)

Proof. This is a straightforward combination of expression (A.4A.4) and the continuity of `.

Under this form, the Bramble-Hilbert lemma is particularly useful to prove error bounds
of numerical integration formulae. The sketch of such proofs is always the same: we want
to use the Bramble-Hilbert lemma on the error functional `. The hypothesis `(v) = 0 ∀ v ∈
Pm−1 is a consistency requirement on the discrete operator. Convergence then follows from
the regularity of Ω in a norm |.|Wm

p (Ω)for which ` is continuous. The exponent m − k is
called the order of accuracy of the method, since the transformation Ω 7→ aΩ changes the
error bound by a factor am−k.

In the next section, we give several formulae for the approximate integration of a function
using a mesh.

1.3.2 Miscellaneous low-order approximate integration formulae on
a mesh

In this section, we use the previously computed metric quantities to establish approx-
imate integration formulae using a mesh, which we exploit in sections 2.7.32.7.3 and 3.7.23.7.2 to
effectively compute compatible meshless operators. These low order integration methods
are well-known, but their proof is quite enlightening, especially as far as the topological
structure of the mesh is concerned. This structure is precisely what enables us later on
to transfer the compatibility properties of the exactly integrated meshless operators to the
discrete level.

The convergence proofs detailed in this section are valid in the full dimension (i.e. d = n)
with some classical assumptions on the mesh quality, but the first order consistency is
retained even if the mesh is heavily distorted or if cells overlap.
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1.3.2.1 Approximation of the integral of a function

The simplest case is that of a simplex because their number of vertices are ideally suited
to write consistent affine approximations.

Proposition 1.16 (Nodal integration on a simplex).
Let S denote a simplex with nodes (x1, . . . ,xn). The following expression is a first order
consistent approximation to the integral of a function over S and its convergence is quadratic.

�

ˆ Nodal

S
f

def= V (S)
n+ 1

∑
k∈S

f(xk) (1.35)

Proof. Proposition 1.121.12 readily entails that the formula is exact on linear polynomials. Con-
tinuity in the L∞ norm is immediate, corollary 1.151.15 is thus readily applicable with p = ∞,
k = 0 and m = 2.

The following formula exploits the fact that the centroid of a cell is its first order moment:
by definition, evaluation of an affine function at this point gives its mean value over the cell.

Proposition 1.17 (One point integration on a cell).
Let /C be a cell of a mesh and f : /C → R. The following one point integration formula aims
at approximating the quantity

´
/C f vol/C :

�

ˆ 1 pt

/C
f

def= V (/C)f(x(/C)) (1.36)

The above approximation is first order consistent and the convergence is quadratic.

Proof. By construction, the method is exact on first order polynomials: ∀ a ∈ Rn,∀ b ∈ R,´
/C a · x + b vol/C = �́

1 point
/C a · x + b. Hence, in order to use the Bramble-Hilbert lemma

under the form given in corollary 1.151.15, we need to find a Sobolev space for which the error
functional `(f) def=

´
/C f vol/C − �́

1 point
/C f is continuous. The L∞ = W 0

∞ norm is the perfect
candidate since we have: ∀ f ∈ L∞(/C),

|`(f)| ≤
ˆ
/C
|f | vol/C +V (/C)|f(x(/C))|

≤ sup
x∈/C
|f(x)|

(ˆ
/C

vol/C +V (/C)
)

= 2V (/C)‖f‖W 0
∞

Hence corollary 1.151.15 is readily applicable with p =∞, k = 0 and m = 2.

1.3.2.2 Approximation of derivatives: Gauss-type gradients

The following formula for the integral of the gradient of a function exploits Stokes’s theo-
rem to avoid exact gradient evaluations. Instead, the function is evaluated on the boundary
of the cell, and the vector areas of boundary faces provide a linear consistent approximation
of the gradient. This technique is heavily used in FVM discretizations since a face separating
two cells has opposite orientation with respect to each cell. The fluxes are thus discretized in
such a way that global quantities are conserved. This feature translates into compatibility
of the mesh-integrated meshless Smoothed Finite Element Method (SFEM) operators in
section 2.7.32.7.3.



36 CHAPTER 1. CONCERNING MESHES

Definition 1.16 (Gauss gradient on a cell).
Let /C be a cell of a mesh. Using Stokes’s formula, we can write the integral of the divergence
of a vector field u : /C → Rd as its flux on the boundary ∂ /C:

ˆ
/C
∇ · u vol/C =

ˆ
∂ /C

ιu vol∂ /C (1.37)

=
∑

/Cn−1∈∂ /C
o(/Cn−1, /C)

ˆ
/Cn−1

ιu vol∂ /C

=
∑

/Cn−1∈∂ /C
o(/Cn−1, /C)

ˆ
/Cn−1

u · n vol∂ /Cn−1

Hence, any approximation of the flux of a vector field on the boundary faces of a cell
translates to an approximation of the integral of the divergence of the vector field on the
cell. This approximation technique is called "Gauss gradient" (see [223223] for instance).

Definition 1.17 (One point integrated Gauss gradient).
For instance, we can use the one point integration formula of proposition 1.171.17 on faces.
Indeed the following formula is first order accurate for u ∈W 1

∞(/C):

�

ˆ Gauss 1pt

/C
� · u def=

∑
/Cn−1∈∂ /C

o(/Cn−1, /C)Γ(/Cn−1) · u(x(/Cn−1)) (1.38)

Proof. Let us first check that the formula is exact on polynomials of maximum degree 1 on
/C. For u(x) = A · x + b, we have on the one hand:

ˆ
/C
∇ · u vol/C =

ˆ
/C
∇ · (A · x + b) vol/C

=
ˆ
/C

Tr(A) vol/C

= V (/C) Tr(A)
And, on the other hand,

�

ˆ Gauss 1pt

/C
� · (A · x + b) =

∑
/Cn−1∈∂ /C

o(/Cn−1, /C)Γ(/Cn−1) · (A · x(/Cn−1) + b)

= Tr
(

A ·
∑

/Cn−1∈∂ /C
o(/Cn−1, /C)Γ(/Cn−1)x(/Cn−1)T

)

= Tr(A · V (/C)Id)
= V (/C) Tr(A)

Hence the two expressions are equal and the method is exact on linear functions. In order
to use corollary 1.151.15, we still need to prove boundedness of the error functional:∥∥∥∥∥

ˆ
/C
∇ · u vol/C

∥∥∥∥∥ ≤
ˆ
/C
‖∇ · u‖ vol/C

≤ V (/C)|u|W 1
∞
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And for the discrete part,∥∥∥∥∥�
ˆ Gauss 1pt

/C
� · u

∥∥∥∥∥ =
∥∥∥∥∥ ∑

/Cn−1∈∂ /C
o(/Cn−1, /C)Γ(/Cn−1) · (u(x(/Cn−1))− u(x(/C)))

∥∥∥∥∥
≤ D(/C)S(/C)|u|W 1

∞

Where D(/C) denotes the diameter of the cell and S(/C) the (non-algebraic) surface area
of its boundary. We can apply corollary 1.151.15 with p = ∞, k = 1 and m = 2 if the
ratio D(/Cn)S(∂ /Cn)

V (/Cn) is bounded from above. This corresponds to an additional regularity
assumption on the mesh, complementary to the isoperimetric-isodiametric inequality (see
[166166]) saturated by balls:

V (Ω) ≤ 1
2nD(Ω)S(∂Ω) (1.39)

Intuitively speaking, if cells of a sequence of meshes verify this additional requirement, their
shape cannot increasingly deviate from that of a ball with refinement level.

Remark. Gauss gradient approximations can be built with other approximations of bound-
ary integrals. See for instance the discrete Gauss gradient of section 2.7.12.7.1

1.3.2.3 Derivative of integral with respect to node position

The example of the Gauss gradient developed in the last section is arguably the most
well-known means of exploiting the topological structure (the cell-face structure in this case)
of the mesh for integration purposes. In this section, we investigate a less popular alternative
focused on the cell-node relation through the derivatives of the discrete integral with respect
to node position. The idea that the derivative of the volume is a meaningful representation
of boundary area is not new (see [7979] for instance), and has already been used to characterize
the discrete geometry defined by a mesh (see [6363] for an excellent introduction, especially
section 5.3).

And indeed, according to the structure theorem (see theorem 3.13.1), there exists a function
φ/C0 defined on ∂Ω such that:

∂

∂x(/C0)

ˆ
Ω
f volΩ =

ˆ
∂Ω
fφ/C0 vol∂Ω (1.40)

Hence, it is possible to write a discrete approximation of the derivative of the integral of a
function using only boundary values of the function. The discretization method described in
section 4.2.14.2.1 using mesh-integrated volume-based SFEM operators of section 3.7.23.7.2 requires
such a formula. Of course, designing such a formula is only possible with an in-depth under-
standing of the shape of cells, especially in non-planar situations. Indeed, no assumption is
made on the variations of the position of a node and these variations can lead to non-planar
situations. Actually, these non-planar situations are the most important because they often
end up being the only non-vanishing contributions.

The differentiation of the one point integration formula on a mesh (definition 1.171.17) gives
the following approximation of the derivative of the integral of a function with respect to
the movement of a boundary node /C0 ∈ ∂M:

∂

∂x(/C0)

ˆ
Ω
f volΩ ≈

∑
/Cn∈M

∂V (/Cn)
∂x(/C0)

f(x(/Cn)) + V (/Cn)∂x(/Cn)
∂x(/C0)

T

· ∇f(x(/Cn)) (1.41)
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Figure 1.6 – One boundary node /C0 of a simplex mesh is slightly displaced by the amount
∆x. The contribution of every boundary simplex S to the variation of the integral of a field
can be approximated to the first order with the computation of the volume and centroid of
the added region.

This formula is not well suited since it requires evaluations of the gradient of f , and of values
outside the boundary.

The following proposition gives an alternative that only requires evaluations of f at the
boundary:

Proposition 1.18 (Derivative of integral with respect to node movement).
The following expression is a consistent approximation of ∂

∂x(/C0)

´
Ω f vol of order 1.

1
n(n+ 1)

d−1∑
q=0

∑
/Cq∈∂M
/C0∈∂ /Cd

∑
t∈/Cq

f(x(/Cq)) +
d−1∑
p=0

f(x(/Cp(t)))

 ∂x(/Cq)
∂x(/C0)

T

· Γ(td−1) (1.42)

The above expression requires evaluation of the function at every centroid of every bound-
ary cell of every dimension, but does not use interior values or gradient information. Unfor-
tunately, we did not manage to simplify it to bypass the sum over tuples as with previous
formulae.

Proof. Let us first consider the simpler case of a simplex mesh. Since the union of all
boundary tuples enclose the interior of the mesh, the non-vanishing contributions to the
total result can be added for each boundary tuple as represented in figure 1.61.6. The volume
of the green region is 1

nΓ(S) ·∆x and its centroid is 1
n+1

(
x(/C0)∆x +

∑
i ∈ Sxi

)
, so that

the total contribution to the integral reads:

1
n

Γ(S) ·∆x f

(
1

n+ 1

(
x(/C0)∆x +

∑
i∈S

xi

))
(1.43)
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Adding up all contributions from boundary simplices and using f(
∑
i αixi) =

∑
i αif(xi) if

f is affine and
∑
i αi = 1, we get at the first order in ∆x:

∑
S∈∂M

1
n(n+ 1)Γ(S) ·∆x

(
f(x(/C0)) +

∑
i∈S

f(xi)
)

(1.44)

The formulae given in proposition 1.131.13 for the volumes and centroids of cells describes the
sub-cell geometry as a union of simplices whose nodes are the centroids of cells of every
dimension. This description fully determines the meaning of ∂

∂x(/C0)

´
Ω f vol and incidentally

that of φ/C0 in expression (1.401.40). The movement of a single boundary node impacts all cen-
troids of cells linked to this node via the derivatives ∂x(/Cq)

∂x(/C0) , and adding up all contributions
gives the desired expression.

A quick summary
This first chapter is dedicated to detailing the topological and geometrical aspects of

meshes. These concepts are fundamental to understand the challenge of meshless methods
since we need to know what we leave behind when we decide not to use a mesh. Moreover,
the topological structure of meshes is still exploited for integration purposes in the rest of
this work.

In section 1.11.1, we detail two abstract cell complex structures: the simplicial complex
and the cell-tuple structure. This study is motivated by a result by Brisson [4646]: the
topology of subdivided manifolds can be described using cell-tuple structures. We introduce
the notions of (local) orientability and orientation, and show that cell-tuple structures are
locally orientable. This enables the definition of a boundary operator on cell-tuple structure,
laying the foundations for a complete homological study of subdivided manifolds.

In section 1.21.2, we study the geometrical aspects of meshes. We give a formula and a prac-
tical algorithm to compute volumes and centroids of cells of a mesh, under the assumption
that every cell is planar, namely that it is contained in an affine hyperspace of the corre-
sponding dimension. This algorithm only requires the a priori knowledge of the cell-tuple
structure and node positions. Then, we generalize this algorithm to the non-planar case,
and give a full geometrical description of the corresponding geometry of the non-planar cells.
This original result is the most important of this first chapter. Once again, this description
only requires the a priori knowledge of the cell-tuple structure and node positions, and is
fully consistent with the computation of volumes and centroids. In particular, this descrip-
tion allows a proper definition of the derivative of cell volumes and centroids with respect
to node positions, where the planarity assumption is too strong.

Finally, we prove in section 1.31.3 a few mesh-based formulae for the approximation of
integrals. These formulae make use of the previously computed volumes and centroids of
cells, and we need them for several of our meshless developments: in sections 2.7.32.7.3 and 3.7.23.7.2,
we use these formulae and take advantage of the structure of the mesh to retain without any
approximation some interesting properties of exactly integrated meshless methods.
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We have seen in chapter 11 that a mesh defines a powerful computational structure and
provides and adequate theoretical foundation for the discretization of PDEs. In this chapter,
we build a meshless computational structure for simulation purposes. It is the combination
of a point cloud and several linear operators defined on this point cloud. All the concepts
related to this structure (the point cloud, the different operators, . . . ) are called "discrete"
as opposed to the "continuous" objects (the computational domain Ω, the integration or
differentiation operators, . . . ). The term "continuous" is used here very loosely and does not
refer to the calculus concept of continuity. For instance, fields defined on the computational
domain are referred to as "continuous functions", even if they do not satisfy the ε − δ
definition of continuity, and their discretized version defined on the point cloud are called

41



42 CHAPTER 2. A MESHLESS NODAL OPERATOR FRAMEWORK

"discrete functions". This choice of vocabulary has become quite widespread in the last
decade (see [178178] for another usage of the term "discrete function" and [7272] for the term
"discrete differential form").

Most mesh-based methods consider that the geometry of the underlying computational
domain Ω is exactly described by the mesh, but meshless methods cannot start with this
assumption. In this work, we suppose that Ω is given and do not treat the difficult problem
of finding a possible underlying geometry starting from a point cloud. This problem is the
subject of a dedicated literature (see [3232, 171171] and references therein for a review).

The central objects of our meshless framework are the point cloud and discrete differenti-
ation and integration operators acting on discrete fields defined on the point cloud. The link
between continuous and discrete fields is provided by the reduction map, which we choose
to be the pointwise evaluation at nodes of the point cloud. For this reason, our meshless
framework is called "nodal". Our operator-based framework is greatly inspired from that of
Chiu [6060] and can be considered as its generalization.

The quality of the discretization is characterized with two main criteria. First, we look
at consistency, namely we explore the nullspace of the error functional. Consistency is most
often characterized by its order, namely the maximum degree of polynomial space on which
an operator is exact. Most meshless discretization techniques – especially for the gradient
operator – focus on this aspect. The relevance of consistency concerning the convergence
rate comes from the Bramble-Hilbert lemma stated earlier (see lemma 1.151.15).

Secondly, we consider the mimetic properties of the discrete operators. In particular, we
pay close attention to the fact that they jointly verify a discrete version of Stokes’s formula.
This highly desirable feature of the discretization – which we call compatibility – is at the
heart of our work. In fact, the difficulty in achieving compatibility has been a recurring
theme in the meshless community (see [1212, 3636] for instance) , and we conjecture that the
computational effort necessary to satisfy it exactly is at least that of building a mesh, or
solving a global linear system. We call this speculated limitation the meshless curse, and we
verify it on multiple examples throughout this work. This conjecture is the most important
result of this chapter.

In section 2.12.1, we give a definition of the point cloud: our geometrical equivalent of a
mesh. In section 2.22.2, we define meshless discrete integration and differentiation operators on
the point cloud, interpret the resulting structure and compare it to that defined by a mesh.
The evaluation of the "performance" of discrete operators compared to their continuous
analogs is performed in section 2.32.3 with the definition of consistency, and in section 2.42.4,
where we propose a way to get more insight into the previously defined operators with the
definition of a dual gradient operator. Its consistency properties characterize how well the
initial operators work together. In particular, consistency of order zero of the dual gradient
is equivalent to compatibility and is thus of the utmost importance.

In sections 2.52.5, we show how the classical SPH discretizations and renormalized improve-
ments fit in our meshless framework. Along with standard MLS-type discrete operators
(developed in appendix DD), these methods can achieve first order consistency, albeit their
poor compatibility properties motivates the development in section 2.62.6 of a least-square
correction procedure allowing the recovery of compatibility without sacrificing primal first
order consistency. This correction procedure requires the solution of a global linear system
in accordance with the meshless curse. Additionally, we prove that the corrected DMLS
gradient is globally optimal, and our correction method allows a more efficient computation
than directly solving the global optimality conditions.

Finally, in section 2.72.7, we adapt the SFEM operators to our discrete meshless framework.
Most importantly, we show how the compatibility properties inherently attached to a mesh
can be transferred – via an adequate background integration procedure – to the meshless
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structure, illustrating the meshless curse once again.

2.1 The geometrical support for meshless discretization:
the point cloud

Mesh-based computational methods use a mesh as a discrete analogue of the domain Ω.
Meshless methods on the other hand, avoid using a mesh as much as possible. Instead, the
discrete geometrical object allowing the discretization of fields in a meshless framework is
the point cloud:

Definition 2.1 (Point cloud).
A point cloud (C,X) in Rd is made of:

• A set of nn nodes (or particles) C = [[1, nn]].
• A position operator X = (x1, . . . ,xnn) : C → Rd.

In order to geometrically characterize how good of a discrete substitute for the compu-
tational domain a point cloud really is, we need to give a definition of the separation and
fill distance (see definition 4.6 and 1.4 of [233233]):

Definition 2.2 (Separation, fill distance and quasi-uniformity).
The separation distance of a point cloud (C,X) is defined as the largest possible radius of
two balls centered at nodes of the point cloud with an intersection of vanishing measure:

ds,C
def= 1

2 min
i 6=j∈C

‖xj − xi‖ (2.1)

In a sense, the separation distance represents the size of the smallest phenomenon uniformly
representable with nodal data on a point cloud.

At the other end of the spectrum, the fill distance of a point cloud (C,X) is the radius
of the largest ball with center in Ω that does not contain any node of the point cloud:

df,C
def= sup

x∈Ω
min
i∈C
‖x− xj‖ (2.2)

The fill distance is the largest distance that nodes of a point cloud needs to "oversee" to
insure that there is no hole in the discrete representation of the computational domain.

A sequence of point clouds is said quasi-uniform if the ratio of fill distance to separation
distance remains bounded, i.e. if there exists a constant C such that:

ds,C ≤ df,C ≤ Cds,C (2.3)

Quasi-uniformity gives a precise sense to the idea that as a point cloud is refined, nodes
should be added in the domain without either having nodes too close to each other or
creating node-free regions. This requirement is quite similar to its homonym for mesh-based
methods (see [4141] definition 4.4.13 for instance), which is one of the most usual assumptions
for convergence proofs. In the rest of this work, we only use quasi-uniform point clouds.

Example. Any distribution of points qualifies as a point cloud. The most well known
node distribution is probably the Cartesian distribution (see figure 2.12.1a)). In our work, we
seldom use the Cartesian distributions because its symmetry properties are likely to endow
numerical schemes with far better approximation properties than in the general case, which
can be heavily misleading. Obviously, it does not mean that we do not recommend the use
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Figure 2.1 – Simple distributions of points in the square.
a) Cartesian distribution. b) Blue noise distribution (see section 3.63.6 and [9292]).
c) Halton distribution (see [9393]). d) Hammersley distribution (see [9393]).

of Cartesian distribution for industrial simulations, only that convergence studies using such
distributions can result in excessive confidence in the precision of the numerical schemes.

Non-regular distribution of nodes include blue noise node distributions (see figure 2.12.1b)),
which are designed to avoid large scale patterns while retaining a constant local density of
points. We also use low-discrepancy sequences (see [9393] for a definition of discrepancy in
a point cloud and example of low-discrepancy sequences) including the Halton distribution
(see figure 2.12.1c)) and the Hammersley distribution (see figure 2.12.1d)), which are less regular .
Note that there is a relationship between discrepancy and the fill distance of a point cloud
(see theorem 3 of [6464] for a more precise statement). In particular, all families of point cloud
cited above are quasi-uniform.

In this work, we restrict ourselves to nodal discretizations. Namely, we consider discrete
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fields mapping each node of a point cloud to a value. This stance translates into the following
definition:

Definition 2.3 (Discrete fields and reduction map).
A discrete scalar field f on a point cloud (C,X) is a set of values indexed by the nodes of the
point cloud f : C → R. The dimension of the space of discrete scalar fields is the number of
nodes in the point cloud.

In opposition to discrete fields, we call "continuous field" any function f : Ω→ R defined
on the computational domain. We do not assume these continuous fields to be continuous
in a topological sense. The process of giving a discrete equivalent f : C → R to a continuous
function f : Ω → R is called reduction. A reduction map R : (Ω → R) → (C → R) is a
linear map that transforms a continuous field f : Ω→ R into a discrete field R(f) : C → R.

Example. A famous reduction map in mesh-based methods is the so-called "De Rham map"
defined as the integration of the continuous field on a sub-domain (see [3434] for a unified
framework for the mimetic discretization of differential operators using the De Rham map
as one of its fundamental building blocks). For instance, in finite volume methods, the
reduction map is defined as the average value of a function on a cell (see for instance [140140]
section 4.1, or [190190]):

RFV/C (f) = 1
V (/C)

ˆ
x∈/C

f(x) dV (2.4)

In the meshless nodal operator framework, we use the following reduction map:

Definition 2.4 (Pointwise evaluation).
Pointwise evaluation PE is the reduction map defined as: ∀ f : Ω→ R,

PE i(f) = f(xi) (2.5)

In this work, we always use point-wise evaluation as our reduction map. For improved
readability, and when there is no risk of confusion, we drop the notation PE and simply
denote f : C → R the discrete field associated to f : Ω → R. Even though this choice of
reduction map is the usual choice for Finite Differences (FD), the methods developed in this
work have little in common with FD-type discretization.

In the next section, we enrich the point cloud with several discrete operators, effectively
building the necessary tools for the discretization of PDE

2.2 Nodal discrete meshless operators for the discretiza-
tion of partial differential equations

A recent tendency in the field of numerical methods for the discretization of PDE is
to develop operator-based formulations (see [102102, 172172, 189189]). Our work follows this trend
and proposes a full operator-based meshless framework, building on the work of Bonet and
Kulasegaram [3636], Lanson and Vila [135135] and others. This framework largely generalizes the
one proposed by Chiu [6060], allowing for non-symmetric gradient operators, thus separating
the conditions for consistency and compatibility.

Even though this framework is quite general already, we do not claim that it is a fi-
nal solution to any discretization need, and it might need to be adapted to suit specific
requirements (an example of such adaptation is given in section 4.3.44.3.4 in order to better
accommodate the essential enforcement of Dirichlet boundary conditions).

Let us first clarify what we mean by "meshless operator":
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Definition 2.5 (Meshless operator).
A discrete operator Op on a point cloud (C,X) with continuous analogue Op is a linear map
aiming at providing a discrete counterpart of Op. The domain and co-domain of Op either
are those of Op, or close analogs where Ω is substituted for C.

The following sections detail each of the discrete operators used throughout this work.

2.2.1 The volume and boundary integration operators
We now give a definition of the integral of a discrete field. This integration operator is

arguably the most important, as it can be used to define all other operators as developed in
chapter 33.
Definition 2.6 (Nodal volume integration operator).
Let (C,X) be a point cloud. A nodal volume integration operator �́C : (C → R) → R is a
linear form on real discrete fields, which aims at providing a discrete approximation to the
continuous integration operator over the computational domain

´
Ω . dV : (Ω→ R)→ R .

Being a linear form, the discrete volume integration operator reads in general: ∀ f : C → R,

�

ˆ
C
f

def=
∑
i∈C

Vifi (2.6)

Hence, defining a discrete volume integration operator is tantamount to defining nodal
volume weights (Vi)i∈C .
Remark. The physical dimension of the volume weights is that of a volume: [Vi] = Ld and
its International System of Units (SI) unit is md. Of course, the volume weights Vi are the
meshless analogues of the volume of cells in a mesh. In fact, this choice is a sound alternative
as developed in section 2.7.12.7.1. In this sense, cells of a mesh are themselves similar to nodes
of a point cloud.
Example. The simplest nodal volume weights are arguably the uniform weights:

V Uniform
i

def= 1
nn

ˆ
Ω

1 dV (2.7)

Even though these nodal weights might not be prime choice in a simulation context, their
simplicity and reliability make them a reasonable alternative for the approximation of in-
tegrals in very high dimensions. Theoretical efforts aiming at taking advantage of their
simplicity has led to the development of low discrepancy sequences (like the Halton and
Hammersley sequences for instance, see figure 2.12.1), which are designed to provide quasi-
optimal approximations of the integral of functions with bounded variations. See [9393] for
more information about low discrepancy sequences.
Remark. If the real volume weights (Vi)i∈C are positive Vi > 0, then the following bilinear
form is a scalar product on discrete fields: ∀ f, g ∈ C → R,

(f, g)C
def= �

ˆ
C
f · g =

∑
i∈C

Vifi · gi (2.8)

The space of fields defined on C equipped with this scalar product is an analogue of the
Lebesgue space of square integrable fields. Following this remark, we denote it L2(C) def=
C → R when it is supposed to come equipped with the above scalar product. Building
discrete function spaces in addition to discrete operators is one possible way to formulate
discrete equations as further developed in section 4.3.44.3.4. Existence of positive integration
weights satisfying some consistency requirements is explored in appendix CC.
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We now define the discrete equivalent of the boundary integral of the product of fields.

Definition 2.7 (Discrete boundary integration operator).
Let (C,X) be a point cloud. A discrete nodal boundary integration operator

›
∂C . . : (C →

R) × (C → Rd) → R is a bilinear form whose aims is to provide a discrete approximation
to the continuous integration operator over the boundary of the computational domain´
∂Ω . . · n dS : (Ω → R) × (Ω → Rd) → R. Being a bilinear form, the discrete boundary
integration operator reads in general: ∀ f : C → R, ∀ u : C → Rd,

“
∂C
fu def=

∑
i,j∈C

fiΓi,j · uj (2.9)

Defining a discrete boundary integration operator reduces to defining the vector weights
(Γi,j)i,j∈C .

Remark. We have defined the discrete boundary integration operator as a bilinear operator.
To our knowledge, this is very untypical, but we will need (see section 3.23.2 for instance) to
deal with cases where the discrete boundary integration of the product of two fields does
not reduce to a linear form on the product field. This special case actually corresponds to
a diagonal bilinear form, which reads in coordinates:

Γdia
i,j

def= Γiδi,j (2.10)

Moreover, we do not a priori assume that the boundary integration operator is symmetric:
Γi,j 6= Γj,i in general. Great care must thus be taken with the order of the arguments in›
∂C . The discrete operator with coefficients Γj,i is called the transposed of

›
∂C .

Definition 2.8 (Boundary of a point cloud).
Let (C,X) be a point cloud equipped with a nodal boundary integration operator

›
∂C . We

define the boundary of the point cloud ∂C as the set of directed edges yielding a non-vanishing
contribution in the computation of discrete boundary integrals:

∂C def= {(i, j) ∈ C2 | Γi,j 6= 0} (2.11)

As such, the boundary of the point cloud ∂C is a directed graph. For a given node of the
point cloud, this provides two possibly different definitions of "being on the boundary":

• A left-sided version: i is a left-sided boundary node if there exists a node j ∈ C such
that Γi,j 6= 0. This is the relevant notion for the weak imposition of Dirichlet boundary
conditions as explained in section 4.2.14.2.1.

• A right-sided version: i is a right-sided boundary node if there exists a node j ∈ C
such that Γj,i 6= 0. This is the relevant notion for Neumann boundary conditions as
explained in section 4.2.14.2.1.

Remark (Mixed discrete-continuous boundary integration operator). For the weak impo-
sition of boundary conditions, we will also need the following mixed discrete-continuous
boundary integration operator. Given a continuous function f : Ω → R, we also define
boundary integration as a linear forms on discrete fields

›
∂C f . : (C → Rd) → R, or›

∂C . f : (C → Rd)→ R whose aims is to provide a discrete approximation to the following
continuous form:

´
∂Ω f . ·n dS : (Ω→ Rd)→ R. In certain cases, we will need to make sure

that the result of the linear discrete boundary operators agrees with that of the bi-linear
operator of definition 2.72.7.
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2.2.2 The primal gradient operator
In this section, we define the discrete differentiation operator and support the idea that

such a definition provides the point cloud with a sufficient structure to play the part of a
mesh for the discretization of PDEs.
Definition 2.9 (Discrete nodal gradient).
Let (C,X) be a point cloud. The discrete nodal gradient operator � : (C → R) → (C →
Rd) maps discrete scalar fields to discrete vector fields. Its aim is to provide a discrete
approximation to the continuous gradient operator over the computational domain ∇ : (Ω→
R)→ (Ω→ Rd).

Given a volume integration operator, we can in general write the gradient operator as:
∀ f : C → R,

Vi�if
def=
∑
j∈C

Ai,jfj (2.12)

The vectors (Ai,j)i,j∈C are called gradient coefficients. Note that a factor Vi is introduced in
their definition to simplify subsequent developments. In the rest of this work, we implicitly
assume that the volume weights are non-vanishing so that the gradient vector coefficients
fully determine the gradient operator.

The only difference between definition 2.92.9 and definition (2.1) of Chiu in [6060] is that we
do not a priori enforce any symmetry conditions and instead define a dual gradient operator
(see section 2.2.22.2.2).
Remark. We naturally extend definition 2.92.9 of the discrete gradient operator in a component-
wise fashion to tensors of other shapes. For instance we define the discrete divergence of a
discrete vector field u : C → Rd as:

Vi�i · u
def=
∑
j∈C

Ai,j · uj (2.13)

In fact, � is precisely the discrete exterior derivative operator announced in section 1.1.21.1.2:
its definition imposes a structure on the point cloud that replaces the mesh. Indeed, in order
to keep locality and sparsity properties of operators, coefficients Ai,j typically vanish if the
distance ‖xj − xi‖ is larger than a fixed threshold. This distance is denoted h and called
the smoothing length. The non-vanishing coefficients implicitly define a directed graph on
the point cloud, and the set of the neighbors of a node i is denoted N (i):

N (i) def= {j ∈ C | Ai,j 6= 0} (2.14)

This graph defines connectivities between nodes and is the meshless substitute for the bound-
ary relation defined on a mesh (see figure 2.22.2). By extension, this graph is sometimes called
"graph of the point cloud", although it would be more correct to speak about the graph of
a discrete gradient on the point cloud.
Remark. In a sense, faces of a mesh are similar to edges of the graph of a point cloud: they
separate cells (resp. nodes) of a mesh (resp. point cloud) and the gradient coefficient Ai,j

can be thought of as vector "face" surface areas between the meshless "cells" i and j. This
idea is exploited in section 2.7.12.7.1 where dual faces of a mesh are used in the construction
of a mesh-based gradient operator. Moreover, the physical dimensions of the gradient edge
weights is that of an area: [Ai,j ] = Ld−1 and its SI unit is md−1. This interpretation justifies
our choice of notation (A for "area").

Remark. The discrete operator � is called primal gradient in opposition to the dual gra-
dient defined in section 2.42.4
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C

Figure 2.2 – Non vanishing gradient coefficients Ai,j 6= 0 define edges of a directed graph
on C. This gradient graph is the best meshless equivalent to the incidence relation nested
bipartite graph defined by a cell-tuple structure (see figure 1.21.2).

2.2.3 Meshless shape functions and the reconstruction operator
In order to build Galerkin-type meshless discretization (see section 4.2.24.2.2) or as a way to

compute discrete integration operators (see definition 2.242.24 of SFEM operators), we need the
definition of reconstruction operator:

Definition 2.10 (Reconstruction operator).
A reconstruction operator (or reconstruction map) < . >: (C → R) → (Ω → R) is a linear
map that associates a continuous field to a discrete field. It aims at providing a discrete
approximation of the identity map on Ω→ R.

In general, a reconstruction map can be written as: ∀ f : C → R, ∀ x ∈ Ω,

< f > (x) =
∑
i∈C

φi(x)fi (2.15)

In accordance with the FEM terminology, the functions φi : Ω → R are called shape func-
tions.

Definition 2.11 (Delta property).
The reconstruction map < . > satisfies the delta property if it is a right-inverse of the
reduction map: ∀ f : C → R,

R◦ < f >= f (2.16)
Or again, in terms of shape functions nodal values, ∀ i, j ∈ C,

φi(xj) = δi,j (2.17)

The apparition of the Kronecker delta symbol in expression (2.172.17) is the reason for the name
"delta-property".

Remark. The reconstruction operation < . > is essentially the converse to the reduc-
tion operation R (definition 2.32.3). However, the delta-property should not be mistaken for
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reproducibility: the delta-property requires that < . > is a right-inverse of R, whereas re-
producibility (or exactness, see definition 2.122.12) means that < . > is a left-inverse of R on a
finite dimensional subspace.

In the next section, we introduce the notions needed to characterize discrete operators.

2.3 Consistency of discrete meshless operators
As we have seen in section 1.3.11.3.1 with the Bramble-Hilbert lemma, a first step in the char-

acterization of discrete operators is to ensure that they behave similarly to their continuous
counterparts on a finite set of fields:

Definition 2.12 (Exactness of a discrete operator).
A discrete operator Op with continuous analogue Op is exact on a continuous field f : Ω→ R
if its action on the reduced field Op ◦R(f) matches the discretized value of the target result
Op(f).

Remark. The discretization of Op(f) may or may not involve the reduction operator. For
instance, in the case of the volume integration,

´
x∈Ω f(x) dV is readily discretized (it is a

scalar value), whereas in the case of the gradient operator, ∇f is a continuous field that
needs reduction.

In any case, as illustrated in figure 2.32.3, the set of continuous fields on which an oper-
ator is exact can be written as the kernel of the error operator, namely the commutator
[Discretization,Operator]. In particular, this shows that this set natively comes with a
vector space structure.

Remark. Exactness of the reconstruction operator on a function spaceϕ is equivalent to
∀ f ∈ ϕ, f =

∑
i∈C f(xi)φi. For this reason, we also say that < . > reproduces fields of

ϕ, and exactness of the reconstruction operator is termed reproducibility. Moreover, if the
delta property (definition 2.112.11) is satisfied, then the set of reproduced functions is exactly
the image of the reconstruction operator Im(< . >).

Example. For instance, the gradient operator � : (C → R) → (C → R) is exact on
f : Ω→ R if the following commutation property is satisfied:

� ◦ R(f) = R ◦∇(f) (2.18)

Since we have chosen point-wise evaluation as our reduction map, expression (2.182.18) can be
re-written in terms of gradient coefficients as: ∀ i ∈ C,∑

j∈C
Ai,jf(xj) = Vi(∇f)(xi) (2.19)

Definition 2.13 (Order of consistency of a discrete operator).
A discrete operator is said "consistent of order p ∈ N " if it is exact on all polynomials of
degree q ≤ p. For p = 1, the operator is also termed "linearly consistent".

Remark. Because of the vector space structure of the kernel of the error operator, it is
sufficient to check exactness on a basis of the polynomial space in order to prove consistency.
The monomial basis is of course the most used.
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Continuous Field
f

Target Result
Op(f)

Discrete Field
R(f)

Discrete Result
Op ◦ R(f)

Continuous
Operator

Op

Discretization: Reduction

Discretization

Discrete
Operator
Op

Figure 2.3 – A discrete operator Op with continuous analogue Op is exact on a continuous
field f : Ω→ R if the discretization process sketched on this diagram is commutative.

Example (Gradient consistency of order zero and one). A gradient operator is consistent
of order zero if and only if �1 = 0. In coordinates, zeroth order consistency reads: ∀ i ∈ C,∑

j∈C
Ai,j = 0 (2.20)

Similarly, it is first order consistent if it additionally satisfies �x = Id. In coordinates, first
order consistency reads: ∀ i ∈ C, ∑

j∈C
Ai,jxTj = ViId (2.21)

Building consistent meshless operators (and especially meshless gradients) with good
consistency properties is a well-covered topic in the literature. Several examples of such
constructions are given in section DD and 2.72.7. Moreover, chapter 33 builds on the idea that
consistency of the volume integration formula can be exploited to build consistent (dual)
gradient and reconstruction operators. In the next section, we quickly expose the renormal-
ization, a popular meshless procedure to ensure zeroth or first order consistency of a given
gradient operator.

2.3.1 Renormalization of meshless gradient operators
Re-normalization is a meshless discretization technique aiming at increasing the order

of consistency of a given gradient operator. It was first proposed by Randles and Libersky
[193193] for its variant of order zero. Other similar but less famous propositions have then been
made like the Johnson-Beissel correction [123123] and variants by Krongauz and Belytschko
[132132]. Its first order variant originated in the work of Moussa et al. (see [135135, 169169, 227227] for
instance) as a means to lift the requirement that the ratio of a characteristic length of the
discretization to the smoothing length asymptotically vanishes for convergence.

The following sections present the zeroth and first order variants of renormalization in
our meshless framework.

Renormalization of order zero

Renormalization of order zero is often presented in the SPH litterature as inspired by
the product rule for differentiation (see e.g. [161161] expression (2.9)). With our notations, this
can be expressed as:
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Definition 2.14 (Renormalization of order zero).
The renormalized gradient of order zero �R0 is defined as: ∀ f : C → R, ∀ i ∈ C,

�
R0
i f

def= �if − fi�i1 (2.22)

Or equivalently,
Vi�

R0
i f

def=
∑
i∈C

Ai,j(fj − fi) (2.23)

This is again equivalent to the following definition of the vector gradient coefficients of �R0:
∀ i, j ∈ C, 

AR0
i,j

def= Ai,j If i 6= j

AR0
i,i

def= −
∑
j∈C
j 6=i

Ai,j
(2.24)

The interest in such a definition lies in the following property:

Proposition 2.1 (Renormalized gradients of order zero are zeroth order consistent).
�
R0 is a zeroth order consistent analogue to the continuous gradient operator ∇.

Proof. It is sufficient to check exactness on a unit constant field: ∀ i ∈ C,
Vi�

R0
i 1 =

∑
j∈C

AR0
i,j

=
∑
j∈C
j 6=i

Ai,j −
∑
j∈C
j 6=i

Ai,j = 0 = Vi(∇1)(xi)

Renormalization of order one

The following definition gives the first order variant of the renormalization technique:

Definition 2.15 (Renormalization of order one).
Suppose that �R0

i x is an invertible matrix for all nodes i of the point cloud. Then, we can
define the renormalized gradient of order one �R1 as: ∀ f : C → R, ∀ i ∈ C,

�
R1
i f

def=
(
�
R0
i x

)−1 ·�R0
i f (2.25)

This is equivalent to the following definition of the vector gradient coefficients of�R1: ∀ i, j ∈
C, 

AR1
i,j

def= Vi

∑
j∈C

Ai,j ⊗ (xj − xi)

−1

·Ai,j If i 6= j

AR1
i,i

def= −
∑
j∈C
j 6=i

AR1
i,j

(2.26)

Proposition 2.2 (Renormalized gradients of order one are first order consistent).
�
R1 is a first order consistent analogue to the continuous gradient operator ∇.
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Proof. It is sufficient to check exactness on the unit constant field and the linear field x:
∀ i ∈ C,

Vi�
R1
i 1 = Vi

(
�
R0
i x

)−1
�
R0
i 1︸ ︷︷ ︸
=0

= 0 = Vi(∇1)(xi)

Vi�
R1
i x = Vi

(
�
R0
i x

)−1
�
R0
i x

= ViId = Vi(∇x)(xi)

The cost of renormalization is quite small as it only requires the solution of local (d× d)
linear problems, which explains its frequent use to correct non consistent operators particu-
larly in the SPH community.

In the next section, we approach the notion of compatibility, which can be considered as
a meshless equivalent of the fact that interior faces cancel each other in the computation of
the boundary of a formal sum of cells. It is the most important characteristic when it comes
to the discretization of PDEs, as demonstrated in chapter 44.

2.4 Compatibility of meshless operators and the dual
gradient

In section 2.32.3, we introduced the notion of consistency, which characterizes the approxi-
mation power of a single operator. In this section, we combine the integration and differen-
tiation operators in a discrete version of the integration by parts formula to define another
differentiation operator. Consistency of order one of this operator is found equivalent to a
discrete version of Stokes’s theorem. Verifying this property exactly is a notoriously difficult
task in meshless method.

The definition of the dual gradient stems from the integration by parts formula recalled
below:

Definition 2.16 (Integration by parts formula).
In a more general differential geometry framework, the codifferential operators d∗ (sometimes
also denoted δ) are defined as the only operators mapping p-forms to p−1-forms (p ∈ [[1, d]])
satisfying: ∀ αp−1,∈ Λp−1Ω, ∀ βp,∈ ΛpΩ,

ˆ
Ω

dαp−1 ∧ ∗βp =
ˆ

Ω
αp−1 ∧ ∗d∗βp +

ˆ
∂Ω
αp−1 ∧ ∗βp (2.27)

On a manifold without boundary, the above expression reads
(
dαp−1, βp

)
L2 =

(
αp−1,d∗βp

)
L2 ,

so that d∗ is the pre-Hilbert adjoint of d. See [100100] for more information about the role of
the codifferential operator in Hodge theory.

In our restricted affine setting, the difference between the exterior derivative d and the
codifferential d∗ is not made: their expressions in orthogonal bases are the same. In the
discrete world, the duality relationship (2.272.27) might not define a discrete codifferential oper-
ator identical to the initial differential. Nevertheless, we translate this idea into the following
definition:
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Definition 2.17 (Discrete dual gradient operator).
Let (C,X) be a point cloud equipped with discrete nodal volume �́C and boundary

›
∂C

integration operators and a discrete nodal gradient operator �. In general, integration by
parts formulae are not satisfied at the discrete level. Still, by analogy with the continuous
case (p=3 in expression (2.272.27)), we can define the following dual gradient operator �

∗:
∀ f : C → R, ∀ u : C → Rd

�

ˆ
C
f� · u + u ·�∗f def=

“
∂C
fu (2.28)

The vector coefficients of �∗ are denoted: ∀ i ∈ C,

Vi�
∗
i f

def=
∑
j∈C

A∗i,jfj (2.29)

Expression (2.282.28) can be re-written in terms of the original operator coefficients as: ∀ i, j ∈ C,

A∗i,j
def= −Aj,i + Γj,i (2.30)

Just as d∗ is the adjoint of d, the (opposite of the) dual gradient �∗ is the adjoint of �
under the duality pairing (f, g)L2 = �́C fg. More exactly, � and �

∗ are adjoints of each
other with respect to �́C and

›
∂C . A gradient operator � is called symmetric if it is equal

to its own dual: � = �
∗.

This new operator takes its name from the duality principle from which it emerges. In
opposition, the initial differentiation operator is called the "primal" operator. Consistency
of the dual gradient operator characterizes how well the integration and differentiation op-
erators work together. The dual gradient has previously appeared in the literature under
different names. For instance, Moussa et al. call it the "adjoint operator" (see expression (6)
of [169169] and expression (23) of [135135]), Samarskii et al. call it the "determined operator" (see
paragraph 1.4 of [199199]) and Lipnikov et al. call it the "derived operator" (see section 1.1 of
[144144]). Other authors like Chiu constrain the definition of the gradient operator to ensure
symmetry, and circumvent the notion of a dual gradient altogether.

Remark. The simplicity of expression (2.302.30) is one of the reasons why we include the
factor Vi in the definition of gradient operators. Without it, the relationship between the
coordinates of the primal and dual gradient would read: ∀ i, j ∈ C,

ViAi,j + VjA∗j,i = Γi,j (2.31)

With those definitions, the coupled approach of Chiu (see section 4.2 of [6060]) would not
define a linear problem without the appropriate change of variable. This choice is the most
widespread in the literature (also see table I of [7878]).

Let us now give a definition of the most important property of meshless operator: com-
patibility.

Definition 2.18 (Compatibility).
A set of discrete operators

(
�́C ,
›
∂C ,�

)
on a point cloud (C,X) is termed compatible if the

following discrete version of Stokes’s theorem is verified: ∀ u : C → Rd,

�

ˆ
C
� · u =

“
∂C

1 u (2.32)
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In term of coordinates, expression (2.322.32) reads: ∀ j ∈ C,∑
i∈C

Ai,j =
∑
i∈C

Γi,j (2.33)

If we substitute f with 1 in expression (2.282.28), we see that compatibility is equivalent to
zeroth order consistency of the dual gradient: ∀ i ∈ C,

Vi�
∗
i 1 = 0 (2.34)

In a sense, compatibility (and a fortiori higher order consistency of the dual gradient)
characterizes how well the three initial operators �́C ,

›
∂C and � work together. This notion is

complementary to that of consistency, which characterizes how well each operator performs.

Remark. Compatibility can also be considered as a meshless equivalent of the fact that
face vector areas bound the region defined by a cell, without gap or superimposition. Indeed,
let us consider the discrete Gauss gradient of definition 1.171.17, which maps a discrete field u
defined at faces /Cd−1 to a field defined at cells /Cd of a meshM:

V (/Cd)�Gauss
/Cd · u =

∑
/Cd−1∈∂ /Cd

o(/Cd−1, /Cd)Γ(/Cd−1) · u/Cd−1 (2.35)

Let us prove that this Gauss gradient satisfies a discrete version of Stokes’s theorem: ∀ u :
Md−1 → Rd,

�

ˆ Gauss 1pt

M
� · u =

∑
/Cd∈M

∑
/Cd−1∈∂ /Cd

o(/Cd−1, /Cd)Γ(/Cd−1) · u/Cd−1

=
∑

/Cd−1∈Md−1

Γ(/Cd−1) · u/Cd−1

∑
/Cd | /Cd−1∈∂ /Cd−1

o(/Cd−1, /Cd)

︸ ︷︷ ︸
=1 if /Cd−1∈∂M,0 else

=
∑

/Cd−1∈∂M

Γ(/Cd−1) · u/Cd−1

=
“
∂M

u

The crux of the proof lies in the topological properties of the mesh: the added relative
orientations of interior faces cancel out, and only boundary faces remain. Compatibility
can thus be seen as this weakened topological requirement: the gradient operator can be
used to write fluxes of conserved quantities traveling from one meshless node to another as
if they were going through a common boundary between these nodes. During this process,
there is no accumulation of the conserved quantity, rather an exchange between interior
cells. Only boundary nodes can exchange with the exterior of the domain. For this reason,
compatibility is one of the sufficient conditions to achieve first order consistency of the dis-
crete symmetric weak diffusion equations. This is further investigated in chapter 44 where
we numerically demonstrate in several discretization settings that compatibility allows the
recovery of second-order convergence for the simulation of diffusion systems. Similarly, com-
patibility plays a role in the conservation properties of meshless discretizations of hyperbolic
equations as explained in appendix GG.

Contrary to what expression (2.342.34) might suggest, compatibility does not only concern
the gradient operator. In fact, only assuming that � is first order consistent, the following
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proposition gives necessary conditions on volume and boundary integration to be part of a
compatible set of operators:

Proposition 2.3 (Necessary integral condition for compatibility).
Linear consistency of � entails the following necessary relation for compatibility: ∀ A ∈
Md(R), ∀ b ∈ Rd,

�

ˆ
C

Tr(A) =
“
∂C

1(Ax + b) (2.36)

This set of necessary conditions constitute weak consistency requirements. In a nutshell,
it expresses the fact that the integration operators that are part of a compatible set of
operators should have the same consistency order as the differentiation operator.

Proof. Simply substitute f for a constant field and u for a linear field in expression (2.282.28)
of definition 2.172.17. Of course, assuming a higher order of consistency of the primal gradient
would give additional necessary conditions for compatibility.

Building discrete sets of operator that are both first order consistent and compatible is
widely recognized as one of the most important challenge of meshless methods. Contrary
to the case of meshes, which natively comes equipped with a compatible discrete structure
(as we have seen with the Gauss operators of section 2.7.12.7.1 for instance), building such a
structure in a meshless framework is always cumbersome. In fact, the difficulty of meeting
compatibility requirements exactly can be considered as a specificity of meshless methods.

Several propositions have been made to recover compatibility. Chiu tackles the problem
with a definition of discrete operators as the solution of a global least-squares problem,
imposing both compatibility and consistency at the same time (see [5757, 5858, 5959, 6060] and
section 2.6.12.6.1). In a SPH framework, Bonet and Kulasegaram developed a similar global
nodal correction system to recover compatibility given a first order consistent primal gradient
operator (see [3636, 3838] for instance). In Babuška et al. [1212, 1414], compatibility conditions are
called the "row sum conditions" and a modification of the final second order operator is
proposed to recover optimal convergence. The compatibility conditions were also rephrased
in a non-symmetric Petrov-Galerkin framework in [5555, 132132], and several remedies to restore
convergence are proposed: modification of the integration formulae, modification of the trial
functions, . . .

To the author’s knowledge, the difficulty of building compatible meshless operators is
such that there is no numerical method that violates the following conjecture:

Conjecture 2.4 (Meshless curse).
The computational effort necessary to build a first order consistent and compatible set of
discrete operators

(
�́C ,
›
∂C ,�

)
on a point cloud (C,X) is at least that of either:

• Actually building a mesh.
• Solving a global system of linear equations (i.e. scaling with the number of nodes nn

in the cloud).

We verify the validity of the meshless curse throughout this work: in section 2.62.6, we
study compatible meshless gradients, which are defined as the solution of a global quadratic
optimization problem. In section 2.7.22.7.2 and 3.7.13.7.1, we develop two compatible sets of meshless
operators expressed using integrals that cannot be exactly computed in practice. We develop
in section 2.7.32.7.3 and 3.7.23.7.2 discrete integration procedures using a mesh that retain the first
order consistency and compatibility of the exactly integrated operators.

Nevertheless, in chapter 44, we numerically demonstrate that exact compatibility is not
really needed. Instead, it is sufficient to make sure that the compatibility error remains
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bounded as the discretization is refined to ensure optimal convergence. In the author’s
opinion, this is the most promising approach to circumvent the meshless curse and design
efficient meshless simulation methods.

2.5 Smooth Particle Hydrodynamics
Smooth Particle Hydrodynamics (SPH) is probably the first meshless method for the

simulation of PDEs. It may be traced back to 1977 and attributed to the independent
work of Lucy [154154] and Gingold and Monaghan ([105105]) and was initially developed to tackle
problems in astrophysics. The founding step of SPH is the "SPH approximation", a mass-
weighted version of the Kernel Density Estimation (KDE). KDE is one of the earliest (see
[177177]) meshless approximation method. It is a non-parametric statistical tool that allows
the estimation of the unknown underlying probability density function of a random variable
given nodal data.

Several versions of the SPH operators exist. In this section, we recall the operators from
[162162], and analyze them with regards to consistency and compatibility. Another version of
the SPH operators is discussed in section 3.53.5.

Definition 2.19 (SPH operators).
Let (Wh)h∈R+ be a "kernel" function i.e. a family of positive, radially decreasing functions
with support included in Bd(0, h) satisfying

´
RdWh(x) dV = 1. Then, for all integrable

function f : Rd → R, we have:

lim
h−→0

ˆ
y∈Rd

f(y)Wh(x− y) dV = f(x) (2.37)

Let (C,X) be a point cloud. If we consider X = (x1, . . . ,xnn) as an independent and
identically distributed sample drawn from a distribution with unknown density f , then,
expression (2.372.37) suggests the following estimation of the underlying density:

f(x) ≈ 1
nn

∑
i∈C

Wh(x− xi) (2.38)

This method is called Kernel Density Estimation (KDE) and was first proposed by Rosenblatt
in [198198]. Let us now suppose that each node i ∈ C of the point cloud physically represents
a "chunk" of matter of given mass mi, and that xi is a point picked at random inside this
chunk. Then, applying the KDE idea, we can approximate the underlying mass density ρ
as:

ρ(x) ≈
∑
i∈C

miWh(x− xi) (2.39)

Evaluation of expression (2.392.39) at node positions defines nodal mass densities ρi for all nodes
i of the point cloud given the mass weights mi:

ρi
def=
∑
j∈C

mjWh(xi − xj) (2.40)

Using expression (2.372.37) again, we define the so-called SPH approximation of a discrete
function f : C → R as:

< f >SPH (x) def=
∑
i∈C

mi

ρi
Wh(x− xi)fi (2.41)
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The corresponding SPH shape functions read: ∀ i ∈ C, ∀ x ∈ R,

φSPHi (x) = mi

ρi
Wh(x− xi) (2.42)

Since we assumed
´
RdWh(x) dV = 1, integration of the SPH reconstruction defines a discrete

integration operator with the following volume weights: ∀ i ∈ C,

V SPHi
def= mi

ρi
= mi∑

j∈CmjWh(xj − xi)
(2.43)

Similarly, differentiation of the SPH reconstruction yields the classical SPH gradient: ∀ i ∈ C,
∀ f : C → R,

�
SPH
i f

def= ∇ < f >SPH (xi) (2.44)

= −
∑
j∈C

Vj∇Wh(xj − xi)fj

The corresponding gradient coefficients read: ∀ i, j ∈ C,

ASPH
i,j = −ViVj∇Wh(xj − xi) (2.45)

Because of its genesis in astrophysical simulation – a field of research mainly concerned with
unbounded domains – there is no definition of boundary integration operator in SPH. Hence,
since the gradient coefficients are skew-symmetric (i.e. ASPH

i,j = −ASPH
j,i ), the classical SPH

gradient operator is symmetric: �SPH = �
SPH ∗.

Remark. As a consequence of the normalization condition
´

ΩWh(x) dV = 1, the kernel
function has the physical dimension of the inverse of a volume: [Wh] = L−d and its SI unit
is m−d. Given a decreasing function W : R+ → R+ with support in [0, 1], we can define a
radial kernel function as: ∀ x ∈ Rd,

Wh(x) def= 1
cd(W )W

(
‖x‖
h

)
(2.46)

A change to spherical coordinates in the integral shows that the value of the dimension
dependent renormalization constant is cd(W ) = hdSd−1md−1(W ), where md(W ) denotes
the d-th moment of W : md(W ) def=

´ 1
0 W (x)xd dx and Sd = 2π

n+1
2

Γ(n+1
2 ) is the surface area of

the unit d-sphere.
The most commonly used kernel functions are the family of B-spline functions introduced

by Schoenberg in [203203]. These functions have piece-wise polynomial expressions and can be
generated using the following Fourier transform (see section 2.3 of [187187]):

WB-spline
n (x) def=

ˆ +∞

t=−∞

( sin(nt2 )
t

)n
cos(tx) dt (2.47)

These weight functions can also be used for least square reconstruction, although the con-
straint

´
ΩWh(x) dV = 1 is not needed there.

Remark (Consistency of SPH operators and renormalized SPH gradient). Even though
there exists a few convergence results concerning the SPH operators of definition 2.192.19 (see
[3131, 134134] for instance), none of them are as little as zeroth-order consistent. Indeed the
expression of the SPH gradient of a unit field is:

�
SPH
i 1 = −

∑
j∈C

Vj∇Wh(xj − xi) (2.48)



2.5. SMOOTH PARTICLE HYDRODYNAMICS 59

10-3 10-2 10-1 100100

101

102

‖�∗1‖L2(C)

h

Figure 2.4 – L2 norm of the error on the dual of a unit field on Halton distributed point
clouds with the standard SPH gradient, the renormalized SPH gradient of order zero, the
renormalized SPH gradient of order one, and the linear DMLS gradient.

This expression does not vanish in general. For this reason, renormalized versions (see
section 2.3.12.3.1) of the SPH gradients are most often used. For instance, the renormalized SPH
gradient of order zero reads: ∀ f : C → R, ∀ i ∈ C,

Vi�
SPH R0
i f = −

∑
j∈C

ViVj∇Wh(xj − xi)(fj − fi) (2.49)

Renormalization breaks the symmetry of the SPH gradient: we do not have �SPH R0 =
�
SPH R0 ∗. Instead, we can derive:

Vi�
SPH R0 ∗
i f = −

∑
j∈C

ViVj∇Wh(xj − xi)(fj + fi) (2.50)

Even though renormalization allows the recovery of consistency of the primal SPH gradi-
ent, it does not have any positive impact on that of the dual gradient. On figure 2.42.4, we give
the compatibility error of SPH and MLS gradients. Far from vanishing, this error actually
increases with cloud refinement. The rate at which it increases itself increases with the con-
sistency order: a least-square fit shows that the compatibility error grows as h−0.56 for the
standard SPH gradient, which is not even zeroth-order consistent. The compatibility error
of first order consistent operator is almost inversely proportional to the smoothing length:
we measure a h−0.84 rate of increase for the SPH renormalized operator and a h−0.89 rate for
the DMLS gradient (defined in appendix DD). We confirm in section 4.3.24.3.2 that this growth
is responsible for the poor convergence behavior of weak discretizations of elliptic PDEs.

With their poor dual consistency properties, the SPH operators are not satisfying as they
are. In section 3.63.6, we interpret several stabilization techniques aiming at getting rid of the
infamous "tensile instability" as actually decreasing the compatibility error, confirming that
the lack of compatibility is the real source of the inadequacy of the SPH operators.

This is why in the next section we define a correction procedure to retrieve compatibility
of a set of meshless operators achieving first order consistency. It is formulated as a global
least squares problem, and thus requires the solution of a linear system whose size scales
with the total number of nodes, in complete agreement with the meshless curse.
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2.6 Compatible meshless operators from quadratic op-
timization

In this section, we investigate meshless gradient operators defined as the solution of glob-
ally defined least square problems. Contrary to the Moving Least Squares (MLS) gradients
detailed in appendix DD, we not only seek first order consistency, but also compatibility. As
a consequence of the combination of the two sets of requirements, all local problems are
coupled and the size of the resulting system inevitably scales with the number of nodes in
the point cloud. We first recall in section 2.6.12.6.1 one of Chiu’s approach for the generation of
first order consistent compatible meshless gradient. In section 2.6.22.6.2, we introduce a related
least-norm correction for compatibility: given a first order consistent gradient, a method is
proposed to only solve the compatibility equations, while retaining first order consistency.
The main result of this section is given in proposition 2.52.5, where the correction procedure ap-
plied to the Diffuse Moving Least Squares (DMLS) gradient with singular weights is proved
to be equivalent to the segregated approach of Chiu, where the size of the system to solve
is drastically reduced.

2.6.1 The segregated approach of Chiu
In [6060], Chiu develops two approaches to generate first order consistent compatible dis-

crete operators. First a "coupled approach" where given
›
∂C and an a priori graph, he seeks

both �́C and � as the solution of a quadratic optimization problem. Then, a "segregated"
variant where the integration operators are supposed known and the only unknown is the
gradient operator. We slightly generalize this segregated approach by allowing non symmet-
ric gradients and introducing weights in the optimization problem instead of only a graph
(which corresponds to weights in {0, 1}):

Definition 2.20 (Chiu’s segregated gradient).
The weighted segregated approach of Chiu reads: Find AChiu : C × C → Rd such that the
following cost function is minimal:

A 7→
∑
i,j∈C

1
Wh(xj − xi)

A2
i,j (2.51)

Under the constraint that the corresponding gradient is linear consistent and that
(
�́C ,
›
∂C ,

∼
�

Chiu
)
form a compatible set of operators: ∀ i ∈ C,

Vi�
Chiu
i 1 =

∑
j∈C

AChiu
i,j = 0

Vi�
Chiu
i x =

∑
j∈C

AChiu
i,j xTj = ViId

Vi�
Chiu ∗
i 1 =

∑
j∈C

Γj,i −AChiu
j,i = 0

(2.52)

The compatibility conditions in the above system define a set of globally coupled linear
equations, contrary to the moving least square gradients of appendix DD.

In the next section, we adapt this approach to correct a given set of meshless operators
for compatibility. In the special case of the DMLS gradient operator, this correction proce-
dure is re-interpreted as a splitting of system (2.522.52) into many small local systems and a
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smaller global system, effectively lowering the computational burden associated with Chiu’s
segregated approach.

2.6.2 Least-norm correction for compatibility
In this section, we suppose given a point cloud (C,X) equipped with discrete volume �́C

and boundary
›
∂C integration operators verifying the necessary conditions for compatibility

of proposition 2.32.3 and a linear consistent primal gradient �. Least-norm correction for
compatibility is a technique which allows us to build a corrected gradient ∼� such that(
�́C ,
›
∂C ,
∼
�

)
form a compatible set of operators.

Definition 2.21 (Linear consistent corrections).
Suppose that � : (C → R) → (C → Rd) is a linear consistent gradient operator. Then, any
linear consistent gradient operator ∼� reads: ∀ i ∈ C, ∀ f : C → R,

Vi
∼
�if = Vi�if +

∑
j∈C

λi,j(fj − fi − (xj − xi) ·�if) (2.53)

The above expression provides a way to define linear consistent discrete gradients from a
particular linear consistent discrete gradient and vector edge coefficients. Given �, the
operator ∼� is called the corrected gradient and the vector coefficients (λi,j)i,j∈C) are called
correction coefficients.

Proof. Let us first prove that expression (2.532.53) defines a linear consistent gradient for any
set of correction coefficients (λi,j)i,j∈C : ∀ i ∈ C,

Vi
∼
�i1 = Vi �i1︸︷︷︸

=0

+
∑
j∈C

λi,j(1− 1︸ ︷︷ ︸
=0

−(xj − xi) · �i1︸︷︷︸
=0

)

= 0
Vi
∼
�ix = Vi�ix︸︷︷︸

=Id

+
∑
j∈C

λi,j(xj − xi − (xj − xi) ·�ix︸︷︷︸
=Id

)

= ViId +
∑
j∈C

λi,j ((xj − xi)− (xj − xi))︸ ︷︷ ︸
=0

= ViId
Hence, ∼� is linear consistent. Reciprocally, if ∼� is first order consistent, then λi,j =

∼
Ai,j −Ai,j satisfies expression (2.532.53). Indeed,: ∀ i ∈ C,

�if +
∑
j∈C

(
∼
Ai,j −Ai,j)(fj − fi − (xj − xi) ·�if)

= �if +∼�if −�if + fi (∼�i1−�i1)︸ ︷︷ ︸
=0

+ (∼�ix−�ix)︸ ︷︷ ︸
=0

·�if

= ∼�if

With this parametrization of first order consistent gradients, we can now only pay atten-
tion to the compatibility properties:
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Definition 2.22 (Least-norm corrected gradient operator).
The least-norm correction for compatibility is the discrete gradient operator ∼� whose correc-
tion coefficients minimize the quadratic expression:∑

i,j∈C

1
Wh(xj − xi)

λ2
i,j (2.54)

Under the constraint that
(
�́C ,
›
∂C ,
∼
�

)
form a compatible set of operators: ∀ i ∈ C,

∼
�
∗
i 1 = 0 (2.55)

This last condition is a set of linear constraints restricting the set of admissible correction
coefficients.

Building a gradient operator that is the least norm correction of a set of discrete oper-
ators means finding the solution of a linearly constrained quadratic optimization problem.
Assuming that this problem has a unique solution, the computational effort is essentially
equivalent to solving a linear system whose size is the minimum of the number of constraints
and the number of unknowns (see appendix BB). Here, the number of constraints is the num-
ber of nodes in the point cloud, which is necessarily smaller than the number of unknowns,
given by the number of edges. Hence, building the least norm correction for compatibility
comes down to solving a global sparse linear system of size nn, which does not contradict
the meshless curse (see conjecture 2.42.4).

The next result links the least-norm correction procedure applied to DMLS discrete
gradients to the segregated approach of definition 2.202.20. Even though this result was proved
by Pierrot more than a decade ago [180180, 182182], it stayed confidential as a part of ESI-Group’s
intellectual property and was only published recently [183183]. The proof given here is the work
of the author.

Proposition 2.5 (Global optimality of least-norm corrected DMLS gradient operator).
Let Wh be a positive singular weight function with compact support (i.e. we suppose
Wh(0) = +∞ such that 1

Wh(0) = 0). Then assuming linear consistent compatible gradients
exist, the least-norm correction (definition 2.222.22) of the DMLS gradient ∼�DMLS (definition
D.5D.5) coincides with Chiu’s segregated gradient �Chiu.

Before proving this proposition, let us explain why this result is so important. Accounting
for the trivial dimension independence, finding Chiu’s segregated gradient means finding the
solution of d global quadratic optimization problems with (d+ 2)nn coupled constraints. In
opposition, the least-norm correction only requires solving d global quadratic optimization
problems with nn coupled constraints in addition to nn local problems with d+1 constraints
(even reducible to d constraints using a similar trick). This represents a dramatic drop in
the size of the global linear system, translating in lower computational time and memory
costs.

Proof. Only edges (i, j) such that Wh(xj−xi) 6= 0 are allowed in the graph. This effectively
already defines the neighborhood relation N and the graph of the sought gradient operator
is constrained to (at most) those edges.

Let us first prove that the problem is well defined with singular weights. Indeed, in
this case, the quadratic function A 7→

∑
i,j∈C

1
Wh(xj−xi)A

2
i,j is not coercive because of the

vanishing terms for i = j. However, zeroth order consistency allows us to re-write the
corresponding diagonal coefficients as Ai,i = −

∑
j 6=i∈CAi,j , and thus we have:
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∑
i∈C

∑
j∈N (i)

A2
i,j =

∑
i∈C

A2
i,i +

∑
i∈C

∑
j 6=i∈N (i)

A2
i,j

≤ 2
∑
i∈C

∑
j 6=i∈N (i)

A2
i,j

≤ 2 sup
i 6=j

W (xj − xi)
∑

j 6=i∈N (i)

1
Wh(xj − xi)

A2
i,j

Hence, the quadratic cost function is coercive on the subspace defined by the constraint
�1 = 0.

Let us now show that the least-norm corrected compatible DMLS gradient is Chiu’s
segregated gradient. First, we introduce the following operator on the space of gradient
coefficients:

P (µ)i,j
def=
∑
k∈C

µi,k

(
δk,j − δi,j −

1
Vi

(xk − xi) ·ADMLS
i,j

)
(2.56)

P is such that the coefficients of ∼�DMLS read
∼
A
DMLS

= ADMLS + P (λ), where λ are the
correction coefficients. We now compute P 2(µ): ∀ i, j ∈ C,

P 2(µ)i,j =
∑
k∈C

P (µ)i,k
(
δk,j − δi,j −

1
Vi

(xk − xi) ·ADMLS
i,j

)
=
∑
k∈C

∑
p∈C

µi,p

(
δp,k − δi,k −

1
Vi

(xp − xi) ·ADMLS
i,k

)(
δk,j − δi,j −

1
Vi

(xk − xi) ·ADMLS
i,j

)
=
∑
p∈C

µi,p

(
δp,j − δi,j −

1
Vi

(xp − xi) ·ADMLS
i,j

)
− (1− 1− (xi − xi) ·ADMLS

i,j )

−(xp − xi) · (ADMLS
i,j − δi,j Vi�DMLS

i 1︸ ︷︷ ︸
=0

−�DMLS
i (x− xi)︸ ︷︷ ︸

=Id

·ADMLS
i,j )

=
∑
p∈C

µi,p

(
δp,j − δi,j −

1
Vi

(xp − xi) ·ADMLS
i,j

)
= P (µ)i,j

Hence, P is a linear projection. Its image is the set of correction coefficients µ such that
P (µ) = µ, namely such that: ∀ i, j ∈ C,(∑

k∈C

µi,k

)
δi,j + 1

Vi

(∑
k∈C

µi,k(xk − xi)
)

Ai,j (2.57)

Since for all i we have Id = �
DMLS
i (x − xi) =

∑
j∈CAi,j(xj − xi), the vectors (Ai,j)j 6=i∈C

necessarily span Rd. Thus, expression (2.572.57) implies:

∑
k∈C

µi,k = 0

∑
k∈C

µi,k(xk − xi) = 0
(2.58)

These equations characterize the image of P . Interestingly enough, this is an alternative
proof of the definition 2.212.21.
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With these newly introduced notations, the optimality conditions (cf proposition B.1B.1) for
the DMLS local optimization problems (definition D.5D.5) read: ∀ µ : C × C → Rd | P (µ) = µ,
we have ADMLSW−1µ = 0, or using the fact that P is a projection, ∀ µ : C × C → Rd,
ADMLSW−1P (µ) = 0.

Similarly to the projection P onto the space of linear consistent corrections, let us intro-
duce the projection onto the space of compatible operators: ∀ i, j ∈ C,

L(µ)i,j
def=
∑
k∈C

µk,j(δi,k − δi,j) (2.59)

Using L, the optimality conditions for the least-norm correction for compatibility (definition
2.222.22) read: ∀ µ | L ◦ P (µ) = P (µ), we have: λW−1µ = 0.
Let us now prove that P (λ) = λ: Firstly, since P (P (λ) − λ) = 0 = L ◦ P (P (λ) − λ), we
have in particular: λW−1(P (λ)− λ) = 0. Let us now compute P (λ)W−1(P (λ)− λ):

P (λ)W−1(P (λ)− λ) =
∑
i,j∈C

1
W (xi − xj)

P (λ)i,j(P (λ)− λ)i,j

= −
∑
i,j∈C

1
ViW (xi − xj)

P (λ)i,j
∑
p∈C

λi,p(xp − xi) ·ADMLS
i,j

= P (λ′)W−1ADMLS

Where λ′i,j
def= − 1

Vi

(∑
p∈C λi,p(xp − xi)

)T
λi,j . And thus, using the optimality con-

ditions for the DMLS local optimization problems, we have P (λ)W−1(P (λ) − λ) = 0.

Thus, (P (λ) − λ)W−1(P (λ) − λ) = 0, which in turn implies P (λ) = λ, and
∼
A
DMLS

=
ADMLS + P (λ) = ADMLS + λ.

Hence, we finally have: ∀ µ : C × C → Rd | P (µ) = µ and L(µ) = µ, we have
∼
A
DMLS

W−1µ = ADMLSW−1µ + λW−1µ = 0. Thus,
∼
A
DMLS

satisfies the optimality
conditions of Chiu’s segregated problem.

2.7 Inheriting compatibility from meshes: the construc-
tion of Smoothed Finite Element Method operators

In the last section, we defined a procedure to restore compatibility of a set of first order
consistent meshless operators via the resolution of a global linear system. In this section, we
illustrate the other case of the meshless curse: we show how a mesh can be used to define
sets of consistent compatible discrete operators.

We first expose a nodal mesh-based example of compatible operators in section 2.7.12.7.1. Its
reinterpretation in a meshless context leads to a generalization of the SFEM operators in
section 2.7.22.7.2, for which we give a compatibility-preserving mesh-based integration procedure
in section 2.7.32.7.3.

2.7.1 Gauss gradient: a mesh-based example of discrete operators
The aim of this section is to give a mesh-based example of nodal operators achieving

both first order consistency and compatibility. The following construction is very close to
those of Qian [189189] and Schaap [200200]. It can be generalized to the construction of meshless
compatible operators in several ways as explored in sections 2.7.22.7.2 and 3.7.13.7.1.
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i C(i)/ ∂C(i)/
i S F=S\i

a) b)

Figure 2.5 – Agglomerate cells are formed around each node of the simplex mesh, and
provide a well-defined cell for the definition of a nodal Gauss gradient.
a) The agglomerate cell /C(i) is the union of all simplices containing node i.
b) Its boundary ∂ /C(i) is a set of faces of the original simplex mesh.

Definition 2.23 (Discrete mesh-based nodal Gauss gradient).
Let us suppose that Ω is a domain covered by a simplex meshM. We define the point cloud
as the set of 0-cells (or nodes) in the mesh: (C,X) = (C0, (xi)i∈C0). Let us define nodal
volumes as the volume of the corresponding cell of the dual meshM∗ (see definition 1.81.8 and
figure 1.41.4). In terms of the primal mesh, this is equivalent to defining the volume of a node
i ∈ C as the volume of the "aggregate cell" made of all simplices containing i, scaled by a
factor 1

d+1 to compensate for overlaps (see figure 2.52.5 a)).

V Gauss
i

def= 1
d+ 1V (/C(i)) = 1

d+ 1
∑
S3i

V (S) (2.60)

Then, we define the discrete gradient operator �Gauss as the Gauss gradient (see definition
1.161.16) on this aggregate cell /C(i) def=

⋃
S3i S using nodal integration on simplex faces (see

proposition 1.161.16): ∀ f : C → R,

V (/C(i))�Gauss
i f

def=
∑

F∈∂ /C(i)

o(F, /C(i))�
ˆ Nodal

F

f (2.61)

=
∑

F∈∂ /C(i)

o(F, /C(i))Γ(F )
d

∑
j∈F

fj

In coordinates, the above definition reads: ∀ i, j ∈ C,

AGauss
i,j

def= 1
d(d+ 1)

∑
F∈∂ /C(i)
F3j

o(F, /C(i))Γ(F ) (2.62)

This way of introducing the mesh-based nodal Gauss gradient emphasizes its link with
vertex-centered finite volume methods.
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i

j

i
j

a) b)

Figure 2.6 – Edges of the graph of the Gauss gradient correspond to pairs of aggregate
cells with d-simplices in their intersection. The corresponding edge vector coefficients can be
expressed using the vector areas of the faces of the boundary of this intersection.
a) If at least one node is an interior node, the boundary of the intersection of aggregate cells
is made of the boundary faces of both aggregate cells.
b) If both nodes are boundary nodes, the boundary of the intersection of aggregate cells also
contains the boundary faces that are incident to both nodes.

Proposition 2.6 (Linear consistency of the Gauss gradient).
The discrete operator �Gauss is linear consistent.

Proof. We need to check consistency on constant and linear fields. For f = 1, we have:

V (/C(i))�Gauss
i 1 =

∑
F∈∂ /C(i)

o(F, /C(i))�
ˆ Nodal

F

1

=
∑

F∈∂ /C(i)

o(F, /C(i))Γ(F )

= 0
For a ∈ Rd and f = a · x, we have:

V (/C(i))�Gauss
i a · x =

∑
F∈∂ /C(i)

o(F, /C(i))�
ˆ Nodal

F

a · x

=
∑

F∈∂ /C(i)

o(F, /C(i))Γ(F )x(F ) · a

= V (/C(i))Id · a

Proposition 2.7 (Alternative expression of the discrete mesh-based Gauss gradient).
Let < . > denote the piecewise affine reconstruction on the simplices of a mesh and Ni the
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corresponding shape functions. Their piecewise expressions match the barycentric coordi-
nates of definition 1.151.15. Then, the Gauss nodal volumes read: ∀ i ∈ C,

V Gauss
i =

ˆ
x∈Ω

Ni(x) dV (2.63)

Moreover, the discrete mesh-based Gauss gradient has the following expression: ∀ f : C → R,

Vi�
Gauss
i =

ˆ
x∈Ω

Ni(x)∇ < f > (x) dV (2.64)

And the gradient vector coefficients read: ∀ i, j ∈ C,

AGauss
i,j =

ˆ
x∈Ω

Ni(x)∇Nj(x) dV (2.65)

Proof. The expression for the nodal volumes is a consequence of proposition 1.111.11. Using
the expression for the barycentric coordinates given in proposition 1.101.10, we can write the
constant value gradient of the shape function Nj on the convex hull of the simplex S = (F, j)
as:

∇Nj = −o(F, S)1
d

Γ(F )
V (S) (2.66)

Hence, we have: ∀ i 6= j ∈ C,ˆ
x∈Ω

Ni(x)∇Nj(x) dV =
ˆ

x∈/C(i)∩/C(j)
Ni(x)∇Nj dV

=
∑
S3i,j

1
d+ 1V (S)× (−o(S\j, S))Γ(S\j)

d

= − 1
d(d+ 1)

∑
S3i,j

o(S\j, S))Γ(S\j)

The boundary of /C(i)∩ /C(j) decomposes into three groups of faces (see figure 2.62.6): faces
of the form S\j, faces of the form S\i and boundary faces containing both i and j. Forsaking
symmetry, we can rewrite these last two groups as faces of ∂C(i) containing j. Thus, using
the closure property (see proposition 1.131.13), we can rewrite the above as:ˆ

x∈Ω
Ni(x)∇Nj(x) dV = 1

d(d+ 1)
∑

F∈∂ /C(i)
F3j

o(F, /C(i))Γ(F ) (2.67)

Which is exactly AGauss
i,j .

Under the form given in proposition 2.72.7, we recognize in �Gauss the expression of nodal
strains in the Node-Smoothed Finite Element Method (compare for instance with expressions
(7-11) of [149149] and section 6.3 of [150150]). In the next section, we generalize the Gauss and
the SFEM operators replacing the linear interpolation on a mesh with any kind of (possibly
meshless) reconstruction.
Remark. Using the expression for the barycentric coordinates given in proposition 1.101.10, we
can easily deduce the following formula: ∀ i, j ∈ C, ∀ x ∈ Ω,

Ni(x)∇Nj(x) = −∂Nj
∂xi

(x) (2.68)

This proves that the Gauss discrete operator can also be thought of as a volume-based SFEM
operator. This family of meshless operators is studied in section 3.7.13.7.1.
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2.7.2 The general construction of Smoothed Finite Element Method
discrete operators

The Node-Smoothed Finite Element Method is a recent mesh-based simulation method
developed by Liu et al. in [147147, 148148, 149149]. The main idea underlying the construction of
Smoothed Finite Element Method (SFEM) is to define a so-called smoothed strain (analogous
to our discrete gradient operator) by integration on dual cells of the mesh, hence providing
a node-based definition of the strain.

An interesting feature of the Node SFEM is to provide an upper bound of the unknown
exact solution on elliptic problems. This is especially convenient when used in conjunction
with the classical P-1 Finite Element Method, which provides a lower bound. Recent reviews
of the Smoothed Finite Element Methods principles can be found in [150150, 235235].

In this section, we generalize the construction of section 2.7.12.7.1 that was found identical
to the SFEM on simplicial meshes to arbitrary shape functions. For this reason, we call the
corresponding meshless discrete operator "SFEM operators". This is not the first time that
these operators appear in a meshless context, as they are almost identical to the MLSPH
operators devised by Dilts [7777, 7878]. The difference with Dilts’ work however is that we do
not consider these definitions as "a convenient theoretical device to guide us to a reasonable
evolution equation", but as a completely legitimate set of discrete operators.

Definition 2.24 (Smoothed Finite Element Method discrete integration operator).
Let (C,X) be a point cloud. Let us assume given a reconstruction operator < . > on (C,X)
with shape functions (φi)i∈C . Inspired by the expression of the Gauss volumes given in
expression (2.632.63), we define the SFEM discrete volume integration operator as: ∀ f : C → R,

�

ˆ SFEM

C
f

def=
ˆ

x∈Ω
< f > (x) dV (2.69)

The corresponding volume weights read:

V SFEMi
def=
ˆ

x∈Ω
φi(x) dV (2.70)

In a sense, the nodal basis functions φi play the part of the dual cells of a mesh. Even
if they might overlap, the fact that constant functions are exactly reproduced means that
basis functions sum to unity on the whole domain. This property, called partition of unity
is a relaxed version of the requirement that the cells tile the domain.

Proposition 2.8 (Reproducibility entails exactness of discrete integration).
With the above notations, if < . > reproduces a continuous function f on Ω, then the SFEM
discrete integration operator is exact on f .

Proof. The proof is a direct consequence of the definition. Reproducibility reads: ∀ x ∈ Ω,

f(x) =
∑
i∈C

φi(x)f(xi)

Integrating both sides of the above expression and using linearity of the integral, we get:
ˆ

x∈Ω
f(x) dV =

∑
i∈C

V SFEMi f(xi)

Hence, �́SFEMC is exact on f .
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In particular, proposition 2.82.8 shows that it is possible to build discrete integration op-
erators that have arbitrarily high order of consistency. The next definition is inspired by
proposition 2.72.7: substituting the mesh-based barycentric coordinates with any set of mesh-
less shape functions generates the following discrete gradient operator.

Definition 2.25 (Smoothed Finite Element Method discrete gradient).
Let (C,X) be a point cloud, and < . >: (C → R) → (Rd → R) a reconstruction operator
on the point cloud with shape functions (φi)i∈C . We define the following SFEM discrete
gradient operator: ∀ f : C → R, ∀ i ∈ C,

Vi�
SFEM
i f

def=
ˆ

x∈Ω
φi(x)∇ < f > (x) dV (2.71)

In coordinates, the above operator reads: ∀ i, j ∈ C,

ASFEM
i,j

def=
ˆ

x∈Ω
φi(x)∇φj(x) dV (2.72)

Remark. We readily see using expression (2.722.72) that edges (i, j) of the graph of the SFEM
discrete gradient are such that the intersection of the supports of φi and φj has nonzero
measure. These overlaps are the SFEM analogues of oriented faces of a mesh, with vector
surface areas given by the gradient coefficients Ai,j .

If for instance (as in the MLS case, see section D.2D.2), supp(φi) ⊂ Bd(xi, h), then ASFEM
i,j 6=

0 implies ‖xj − xi‖ < 2h. In other words, �SFEM inherits its locality property from the
reconstruction operator < . >. This idea is further developed on figure 2.72.7.

Proposition 2.9 (Linear consistency of the SFEM discrete gradient).
With the above notations, if < . > reproduces affine functions on Ω, then �SFEM is linear
consistent.

Proof. Let a ∈ Rd and b ∈ R. We have: ∀ i ∈ C,

Vi�
SFEM
i (a · x + b) =

ˆ
y∈Ω

φi(y)∇ < a · x + b > (y) dV (2.73)

=
ˆ

x∈Ω
φi(x)∇(a · x + b) dV

=
(ˆ

x∈Ω
φi(x) dV

)
a

= V SFEMi a

Hence, �SFEM is linear consistent.

Note that this computation also incidentally shows that consistency of higher order is
not achieved even if the reconstruction operator reproduces higher order polynomials.

Definition 2.26 (SFEM discrete boundary integration and dual gradient).
Let (C,X) be a point cloud, and < . >: (C → R) → (Rd → R) a reconstruction operator
on the point cloud with shape functions (φi)i∈C . We define the following symmetric SFEM
discrete boundary integration operator: ∀ f : C → R, ∀ u : C → Rd,

“ SFEM

∂C
fu def=

ˆ
x∈∂Ω

< f > (x) < u > (x) · n dS (2.74)
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supp(φ)

supp(φ)

∂Ω

supp(φ)

a) b)

∂Ω

supp(φ)

supp(φ)

∂Ω

supp(φ)

supp(φ)

c) d)

Figure 2.7 – Intersections of supports of the shape functions give the graph of the SFEM
operators. Several iso-values of the Shepard shape functions are represented above.
a) The supports of the red node and the blue node do not intersect, thus Ablue,red =
Ared,blue = 0: neither (blue, red) nor (red, blue) are edges of the graph of �SFEM .
b) The red node is not a boundary node since the intersection of supp(φ) with the boundary
∂Ω has non vanishing measure.
c) If a shape function intersects the boundary ∂Ω, then the corresponding node is a bound-
ary node. Hence both the red node and the blue are boundary nodes. Moreover, these two
supports intersect, so Ared,blue 6= 0. However, supp(φ) ∩ supp(φ) does not intersect the
boundary, hence Γred,blue = Γblue,red = 0.
d) The intersection of the supports of the two shape functions and the boundary is non-empty,
thus Γred,blue = Γblue,red 6= 0.
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In coordinates, the above operator reads: ∀ i, j ∈ C,

ΓSFEMi,j
def=
ˆ

x∈∂Ω
φi(x)φj(x)n dS (2.75)

With this definition, the gradient operator is symmetric: �SFEM = �
SFEM ∗. In particular,

this means that�SFEM ∗ is linear consistent, and consequently,
(
�́
SFEM

C ,
› SFEM
∂C ,�SFEM

)
form a set of compatible discrete operators.

Proof. Using integration by parts, we have: ∀ i, j ∈ C,

ASFEM
i,j =

ˆ
x∈Ω

φi(x)∇φj(x) dV

= −
ˆ

x∈Ω
φj(x)∇φi(x) dV +

ˆ
x∈∂Ω

φi(x)φj(x)n dS

= −ASFEM
j,i + ΓSFEMi,j

= ASFEM ∗
i,j

Remark. We have devised a compatible set of discrete meshless operators. Does it neces-
sarily mean that the SFEM operators break the meshless curse (see conjecture 2.42.4)? The
main difficulty with the SFEM operators is to compute the exact integrals of the shape func-
tions (e.g.

´
Ω φi(x) dV ): unfortunately, there is no currently known set of local and linear

consistent meshless shape functions with closed-form integrals. Thus, the SFEM operators
cannot be exactly computed in practice, only approximated, and their existence thus does
not contradict conjecture 2.42.4.

The difficulty of the discrete integration process consists in preserving the good properties
of the SFEM operators. In the next section, we exploit the structure of a background
integration mesh to define a compatible set of mesh-integrated SFEM operators.

2.7.3 A mesh integration procedure for the Smoothed Finite Ele-
ment Method operators

Since we have in general no closed form formula to compute the SFEM operators de-
fined in section 2.7.22.7.2, we need to use a numerical quadrature method. Contrary to most
discrete integration procedures for meshless methods (see [155155] for a quick review), we do
not focus the analysis on the precision of the formula, but rather on the exact conservation
of interesting properties of the exactly integrated case. The numerical quadrature of the
SFEM operators has already been attempted by Dilts [7777, 7878] in a fully meshless context,
but his methods either fail to transfer compatibility to the discrete level, or leads to non-local
boundary operators.

In this section, we propose to use a background integration mesh to give approximation
of these operators. Our approach is directly inspired by the Gauss approximation of section
1.3.2.21.3.2.2 and bears strong similarities with the older stabilized conforming nodal integration
method of Chen et al. (see [5555, 5656]), where discrete integration is performed on the Voronoi
tessellation (see the definition given in expression F.1F.1) of the point cloud. We prove that this
approach is able to preserve the locality, the first order consistency and the compatibility of
the exact SFEM operators.
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Let us define the following mesh-integrated SFEM discrete operators on the point cloud:

Definition 2.27 (Mesh-integrated SFEM discrete operators).
Let (C,X) be a point cloud, and < . >: (C → R)→ (Rd → R) a reconstruction operator on
the point cloud with shape functions (φi)i∈C . LetM be a d-dimensional mesh with oriented
cells (see section FF). The discrete volume integration method is defined as the approximation
of expression (2.692.69) using the one point integration method (definition 1.171.17) on cells of the
mesh: ∀ f : C → R,

�

ˆ SFEM M

C
f

def= �

ˆ
M
< f > (2.76)

The corresponding nodal volume weights read: ∀ i ∈ C,

V SFEM M
i

def=
∑

/Cd∈M
V (/Cd)φi(x(/Cd)) (2.77)

Similarly, we define the discrete boundary integration method as the approximation of ex-
pression (2.742.74) using the one point integration method (definition 1.171.17) on the boundary
mesh ∂M: ∀ f : C → R, ∀ u : C → Rd,

“ SFEM M

∂C
fu def=

“
∂M

< f >< u > (2.78)

The corresponding vector boundary integration weights read: ∀ i ∈ C

ΓSFEM M
i,j

def=
∑

/Cd−1∈∂M

Γ(/Cd−1)φi(x(/Cd−1))φj(x(/Cd−1)) (2.79)

In the above expression, the orientation of mesh boundary faces is chosen such that vector
face areas point outwards.

Finally, the discrete gradient is defined as the approximation of expression (2.712.71) combin-
ing the one point integration method (proposition 1.171.17) and the one-point integrated Gauss
gradient (definition 1.171.17) on cells of the mesh: ∀ i ∈ C, ∀ f : C → R,

Vi�
SFEM M
i f

def=
∑

/Cd∈M
φi(x(/Cd))

∑
/Cd−1∈∂ /Cd

o(/Cd−1, /Cd)Γ(/Cd−1) < f > (x(/Cd−1)) (2.80)

The corresponding gradient coefficients read:

ASFEM M
i,j f

def=
∑

/Cd∈M
φi(x(/Cd))

∑
/Cd−1∈∂ /Cd

o(/Cd−1, /Cd)Γ(/Cd−1)φj(x(/Cd−1)) (2.81)

Note that these expressions (2.802.80) and (2.812.81) do not require the evaluation of the gradient
of the shape functions.

Remark. The construction of the mesh-integrated SFEM operators only requires a mesh
for the discrete integration procedure. The reconstruction operator can be chosen to be
purely meshless (see for instance the MLS reconstruction operator of definition D.4D.4).

The discrete operators defined above are similar to the exact SFEM discrete operators,
but the discrete nature of the integration on the mesh subtly changes the properties of the
mesh-integrated SFEM operators compared to the exact ones. Some other features are lost:
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the gradient is no longer symmetric: �SFEM M 6= �
SFEM M ∗, and the dual gradient is

not linear consistent.
However, the discrete integration method cleverly takes advantage of the structure of the

mesh and retains the most important features of the exact integration: the mesh-integrated
SFEM discrete operators are local and form a compatible set of operators!
Proposition 2.10 (Compatibility of the mesh-integrated SFEM operators).
If the reconstruction operator < . > is first order consistent, then the mesh-integrated SFEM
operators form a compatible set of discrete operators.
Proof. Let us first check that �SFEM M is linear consistent: ∀ a ∈ Rd, ∀ b ∈ R, ∀ i ∈ C,
Vi�

SFEM M
i a · x + b =

∑
/C∈M

φi(x(/C))
∑

/Cd−1∈∂ /C
o(/Cd−1, /C)Γ(/Cd−1) < a · x + b > (x(/Cd−1))

=
∑
/C∈M

φi(x(/C))
∑

/Cd−1∈∂ /C
o(/Cd−1, /C)Γ(/Cd−1)(a · x(/Cd−1) + b)

=
∑
/C∈M

φi(x(/C))V (/C)a

= V SFEM M
i a

Now we need to check that Stokes’s theorem holds at a discrete level: ∀ f : C → R,

�

ˆ SFEM M

C
�f =

∑
i∈C

Vi�
SFEM M
i f

=
∑
i∈C

∑
/C∈M

φi(x(/C))
∑

/Cd−1∈∂ /C
o(/Cd−1, /C)Γ(/Cd−1) < f > (x(/Cd−1))

=
∑
/C∈M

∑
/Cd−1∈∂ /C

o(/Cd−1, /C)Γ(/Cd−1) < f > (x(/Cd−1))

=
∑

/Cd−1∈M

Γ(/Cd−1) < f > (x(/Cd−1))
∑

/C | /Cd−1∈∂ /C
o(/Cd−1, /C)

The sum
∑

/C | /Cd−1∈∂ /C o(/Cd−1, /C) vanishes except for all faces of the mesh that are not in
∂M. Assuming that these boundary faces are positively oriented, we have:

�

ˆ SFEM M

C
�f =

∑
/Cd−1∈∂M

Γ(/Cd−1) < f > (x(/Cd−1))

=
“ SFEM M

∂C
1f

Which is the desired result.

Note that the compatibility of the mesh-integrated SFEM operators does not contradict
the meshless curse (conjecture 2.42.4) since we used a background integration mesh.
Remark. The graph of the mesh-integrated SFEM gradient operator is quite different from
its exactly integrated counterpart, especially if M is coarse compared to C. An edge (i, j)
is in the graph of �SFEM M if there is a cell /C in M whose centroid x(/C) is in supp(φi)
and if one of its faces /Cd−1 ∈ ∂ /C has its centroid in supp(φj). Hence, it is possible that
ASFEM M
i,j = 0 even if supp(φi)∩supp(φj) has non empty interior. In their mesh-integrated

form however, it is possible that ASFEM M
i,j 6= 0 even if supp(φi)∩ supp(φj) = ∅! Examples

of such cases are shown in figure 2.82.8.
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∂M

x(Cd−1)/

a) b)

∂M ∂M

c) d)

Figure 2.8 – Discrete mesh-integrated SFEM operators can have a slightly different graph
from their exact analogues (see figure 2.72.7), especially if the mesh M is coarse compared to
the point cloud.
a) The red node and the blue node have non-intersecting supports. Still, there is a cell whose
centroid is in supp(φ) and which has a face whose centroid is in supp(φ). Hence, (blue, red)
is an edge of the graph of �SFEM M.
b) Even if the intersection of supp(φ) with the exact boundary ∂Ω is empty, the centroid of
a boundary face lies inside supp(φ). Thus, Γred,red 6= 0 and the red node is a boundary node.
c) Both the red and the blue nodes are boundary nodes since each corresponding support
contains the centroid of a face of the boundary of the mesh. Moreover, Γred,blue = Γblue,red =
0 as in the continuous case. There is a cell of the mesh whose centroid is in supp(φ) with
a face whose centroid is in supp(φ), so Ablue,red 6= 0. However, there is no cell of the mesh
whose centroid is in supp(φ) and with a face whose centroid is in supp(φ), so Ared,blue = 0.
In particular, it is clear that �SFEM M is not symmetric contrary to the continuous case.
d) Both the red and the blue nodes are boundary nodes. However, supp(φ) ∩ supp(Ψ) does
not contain the centroid of a face of the boundary of the mesh, which means that Γred,blue =
Γblue,red = 0 contrary to the continuous case.
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Similarly, an edge (i, j) is in the graph of
› SFEM M
∂C if there is a boundary face /Cd−1

whose centroid is in the supports of both nodes: x(/Cd−1) ∈ supp(φi)∩ supp(φj). Hence, the
graph of the boundary integration operator is affected by two factors. Firstly, ifM does not
accurately capture the geometry of Ω (for instance in the presence of curved boundaries),
there can be some disagreements between the two graphs, but this is an expectable side-
effect of discretization. More subtly, if supp(φi)∩ supp(φj) does intersect the discrete mesh
boundary, but not at a face centroid, then Γi,j = 0.

In order to complete the discretization of Neumann and Dirichlet boundary conditions
using Nitsche’s weak form (as presented in section 4.2.14.2.1), we need to give discrete versions
of
´
∂Ω fv dS where one of the fields is discrete, and the other one is continuous. A straight-

forward adaptation of expression (2.782.78) simply yields for f : ∂Ω→ R and u : C → Rd,
“ SFEM M

∂C
fu def=

“
∂M

f < u > (2.82)

This discretization coincides with
› SFEM M
∂C fu for a reproduced field f and it only requires

values of f at the boundary.

A quick summary
This second chapter is dedicated to the exposition of a nodal meshless framework. In this

framework, the geometric basis for the discretization of fields is the point cloud (hence the
name "meshless"), and the reduction operator, which maps continuous fields onto discrete
fields, is chosen to be evaluation at nodes of the point cloud (hence the name "nodal").

In section 2.22.2, we define several meshless discrete operators: volume and boundary in-
tegration, differentiation and reconstruction. These operators are recognized as a meshless
substitute for the structure defined by a mesh. Volumes are associated to nodes giving them
a status similar to that of cells of a mesh. The boundary integration and differentiation
operators define graphs on the point cloud, and associate vector areas to edges of this graph.
Although this graph does not come natively with a chain complex structure (we cannot de-
fine a boundary operator ∂ verifying ∂ ◦ ∂ = 0), it is the meshless analogue of the incidence
relation in an abstract cell complex as it defines a neighborhood relation between nodes.

The quality of the meshless operators is assessed in section 2.32.3 with the notions of exact-
ness and consistency order. We also describe renormalization techniques for the recovery of
zeroth and first order consistency of meshless discrete gradient operators.

In section 2.42.4, we use the duality pairing of discrete fields to define a dual gradient oper-
ator inspired by the integration by parts formula. Consistency of the dual gradient operator
characterizes how well the initial volume integration, boundary integration and differentia-
tion operators work together. Its consistency of order zero – which we call compatibility – is
equivalent to a discrete Stokes formula and is a paramount feature of the discretization. It
can be viewed as a meshless equivalent of the idea that faces of a mesh enclose the volume
defined by cells, and that these cells are arranged without superimposition or gaps.

The computational effort of devising first order consistent compatible sets of meshless
operators is speculated to be at least that of solving a global system of linear equations, or
that of effectively building a mesh. We call this conjecture the "meshless curse", and it is
the most important notion of this chapter.

In section 2.52.5, we fully detail the construction of the classical SPH operators. Their
poor compatibility properties pushes us to devise a correction procedure to make first order
consistent gradients compatible. This construction obeys the meshless curse as a global
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linear system needs to be solved. We also prove that corrected DMLS gradients are globally
optimal, lowering the cost of building these operators.

Finally, we give a generalization of the first order consistent compatible SFEM operators,
and propose a mesh-based discrete integration method that conserves compatibility. Again,
this method does not break the meshless curse since its compatibility properties are inherited
from the mesh via the discrete integration procedure.

In the next chapter, we fully develop a new theory for the generation of meshless dis-
cretization operators. Its key ingredient is to exploit the dependency of the meshless nodal
volume integration weights with respect to geometrical parameters (node positions in par-
ticular) to define all other meshless operators.



Chapter 3

The Volume Method

Contents
3.1 Volume integration bears a gradient operator3.1 Volume integration bears a gradient operator . . . . . . . . . . . . . . 79

3.1.1 Primal gradient: from node movement arises an operator3.1.1 Primal gradient: from node movement arises an operator . . . . . . . . . . . 80
3.1.2 Local error of volume-based primal gradients3.1.2 Local error of volume-based primal gradients . . . . . . . . . . . . . . . . . . 83
3.1.3 Global error of volume-based primal gradients3.1.3 Global error of volume-based primal gradients . . . . . . . . . . . . . . . . . 85
3.1.4 The price of linear consistency of volume-based primal gradients3.1.4 The price of linear consistency of volume-based primal gradients . . . . . . . 87

3.2 Volume-based boundary integration operator3.2 Volume-based boundary integration operator . . . . . . . . . . . . . . . 90
3.2.1 Separating the domain dependency from pure node movement3.2.1 Separating the domain dependency from pure node movement . . . . . . . . 90
3.2.2 The structure theorem and its consequences3.2.2 The structure theorem and its consequences . . . . . . . . . . . . . . . . . . 91

3.3 Volume-based dual gradient operator3.3 Volume-based dual gradient operator . . . . . . . . . . . . . . . . . . . 93
3.3.1 Local error of volume-based dual gradients3.3.1 Local error of volume-based dual gradients . . . . . . . . . . . . . . . . . . . 94
3.3.2 Global error of volume-based dual gradients3.3.2 Global error of volume-based dual gradients . . . . . . . . . . . . . . . . . . 96
3.3.3 Comparison between the primal and dual volume-based gradients3.3.3 Comparison between the primal and dual volume-based gradients . . . . . . 96

3.4 Volume-based shape functions3.4 Volume-based shape functions . . . . . . . . . . . . . . . . . . . . . . . . 98
3.4.1 Definition and properties of Sibson shape functions3.4.1 Definition and properties of Sibson shape functions . . . . . . . . . . . . . . 99
3.4.2 Link between Sibson shape functions and dual gradient3.4.2 Link between Sibson shape functions and dual gradient . . . . . . . . . . . . 101

3.5 Smooth Particle Hydrodynamics revisited3.5 Smooth Particle Hydrodynamics revisited . . . . . . . . . . . . . . . . 102
3.6 Nodal positions for approximate compatibility3.6 Nodal positions for approximate compatibility . . . . . . . . . . . . . . 103

3.6.1 Maximizing the total discrete volume3.6.1 Maximizing the total discrete volume . . . . . . . . . . . . . . . . . . . . . . 103
3.6.2 Numerical experiments3.6.2 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.7 SFEM revisited in the volume-based approach3.7 SFEM revisited in the volume-based approach . . . . . . . . . . . . . . 109
3.7.1 A volume function from the reconstruction operator3.7.1 A volume function from the reconstruction operator . . . . . . . . . . . . . . 109
3.7.2 A mesh integration procedure for the volume-based SFEM operators3.7.2 A mesh integration procedure for the volume-based SFEM operators . . . . 113

In chapter 22, we have introduced the notions of point clouds and meshless operators. On
a point cloud (C,X), our discrete equivalent of the computational domain Ω ⊂ Rd, we have
defined four main discrete operators: a volume integration operator �́C with volume weights
(Vi)i∈C (definition 2.62.6) , a boundary integration operator

›
∂C with surface vector weights

(Γi,j)i,j∈C (definition 2.72.7), a discrete gradient operator � with vector coefficients (Ai,j)i,j∈C

77
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(definition 2.92.9), and a reconstruction operator < . > with shape functions (φi)i∈C (definition
2.102.10). These operators can be combined to define a fifth one: the dual gradient �∗ with
vector coefficients (A∗i,j)i,j∈C (definition 2.172.17).

In this chapter, we motivate the idea that the choice of an appropriate procedure to
define the volume integration operator �́C is sufficient to define all other discrete operators.
The key ingredient is to exploit the dependency of the volume weights with respect to the
geometrical parameters X, Ω and C. This general idea is not new and has already been used
successfully to define both mesh-based and meshless discretization methods.

Early versions of the concept (see [121121, 156156, 199199]) already featured derivatives of the
volume of cells of a logically rectangular grid with respect to node position. In [153153], Loubère
et al. argue that this method of defining discrete operators is the only sensible method to
reconcile energy and entropy conservation within a staggered Lagrangian scheme. In [5151, 6262],
Carré and coworkers use derivatives of the volume of cells to devise a cell-centered Lagrangian
hydrodynamics scheme. Their scheme achieves both weak consistency [7373] and conservation
of linear and angular momenta [7474], and their method of defining discrete operators can be
considered as a mesh-based analogue of the method described in this chapter.

In the meshless community, the earliest usage of volume-based operators can be found
in the work of Gingold and Monaghan (see [104104] for instance) with the Lagrangian interpre-
tation of SPH, closely followed by the work of Mikhailova et al. (see [158158, 210210] for instance)
where similar definitions are given on a Voronoi tessellation. While the SPH community
focused their efforts towards conservation properties of the scheme (see [161161, 163163]), resorting
to sometimes ad-hoc stabilization procedures to improve consistency or avoid the so-called
"tensile instability", a term coined by Swegle et al. in [220220] (also see [221221] by the same author
on the subject) and characterized by a catastrophic failure of the method when a tensile
stress threshold is reached.

The two main ideas proposed in the literature to get rid of the tension instability have
been either to improve the discrete integration procedure (see [8282, 8383] for instance) with
the introduction of so-called "stress points" i.e. additional points for the discrete nodal
integration staggered with respect to the point cloud, or by introducing additional terms
in the advection equation (see [160160, 164164]), a method mainly referred to as modified SPH or
XSPH. In this chapter (specifically in sections 3.33.3 and 3.63.6), we give novel interpretations of
the role of these modifications and reinterpret them both as achieving the very same goal:
improving the consistency of the dual gradient.

To the author’s knowledge, volume-based operators have not gained much traction be-
sides SPH and Voronoi-based volumes. Even though some researchers have slightly general-
ized the approach (see the work of Serrano et al. in [8787, 204204, 205205, 206206] and that of de Goes
et al. in [6767] for example), no radically new propositions have been made in the past decades,
and a general theory of volume-based operators is still missing.

The aim of this chapter is to fulfill this need. Even if the historical motivation for
the definition of volume-based operators is to develop discretizations of the equations of
hydrodynamics (see appendix GG), we show in this chapter that they can have all the desired
properties for the discretization of elliptic equations, and give examples of successful use in
this context in chapter 44.

We first recall this volume-based construction of the primal gradient operator and widely
extend existing characterizations of its consistency properties, even proving a previously
unknown impossibility result.

Then, we separate the dependency of the volume weights with respect to node positions
into two parts. The first contribution is purely nodal. We interpret it as the (opposite of the)
volume-based dual gradient operator, and give local and global conditions for its consistency.
Then, we generalize the construction of Sibson shape functions to general volume functions
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(not necessarily based on a Voronoi diagram), and study its tight relationship with the dual
gradient operator.

The second contribution to the volume weights is a composite dependency involving
variations with respect to the computational domain Ω. This last term – which we recognize
as a boundary integration operator – is presented here for the first time. It provides a
means to impose boundary conditions within the volume-based operator context and without
resorting to ad-hoc procedures as is commonplace in the literature.

Finally, we adapt the SPH and SFEM ideas to construct volume-based discrete oper-
ators. In particular, we give a theoretical construction of operators with maximal primal
consistency and of arbitrary dual consistency.

3.1 Volume integration bears a gradient operator
The foundation of the so-called volume method is the following definition of a volume

function:
Definition 3.1 (Volume function).
A volume function is a procedure to compute a volume integration operator from geometri-
cal parameters:

V : P(Rd)× N× (N→ Rd) → (N→ R) (3.1)
(Ω, C,X) 7→ V (Ω, C,X)

Namely, a volume function is a procedure that defines the value of volume weights as a
function of:

• The shape of the continuous computational domain Ω
• The (number of) nodes in the point cloud: C = [[1, nn]]
• The position of these nodes: X = (x1, . . . ,xnn)
Assuming the existence of a volume function is actually a very weak requirement. Volume

weights do need to be generated somehow, and the definition of the volume function is only
the realization that volume weights might vary as geometrical parameters of the problem
vary. We have already given examples of volume functions in chapter 22, which are revisited
in sections 3.53.5 and 3.73.7.
Definition 3.2 (Node indiscernibility).
A volume function V is said node indiscernible if it is invariant with respect to node re-
labeling, i.e. under shuffling of node positions, or in mathematical terms if: ∀ π ∈ Sym(C),
∀ (x1, . . . ,xnn) : C → Rd, ∀ i ∈ C,

Vπ(i)(Ω, C,x1, · · · ,xnn) = Vi(Ω, C,xπ(1), · · · ,xπ(nn)) (3.2)

In a sense, we can argue that methods that are the "most meshless" respect node indis-
cernibility. Indeed, any transgression of invariance with respect to node re-labeling requires
the definition of an additional structure on the point cloud. This additional structure can for
instance be a set of nodal weights (like mass weights in the SPH method of section 2.52.5), an
imposed weighted graph (as in MLS-type reconstruction with imposed weights, see appendix
DD), or even a mesh (as for the Gauss operators of section 2.7.12.7.1).
Proposition 3.1 (Representation of node indiscernible volume functions).
A volume function V satisfies node indiscernibility if and only if there exists a function
W : P(Rd)× N× (C → Rd)→ R symmetric in its last n− 1 variables such that: ∀ i ∈ C,

Vi(Ω, C,x1, · · · ,xnn) = W (Ω, C,xi,x1, · · · ,xnn︸ ︷︷ ︸
xi is missing

) (3.3)



80 CHAPTER 3. THE VOLUME METHOD

In this case, the function W is unique.

Proof. If such a function exists, choosing i = 1 and π = id in expression (3.33.3) yields:
∀ (x1, · · · ,xnn) : C → Rd,

W (Ω, C,x1, · · · ,xnn) = V1(Ω, C,x1, · · · ,xnn) (3.4)

This necessary form proves uniqueness. Additionally, ∀ π ∈ Sym(C), ∀ i ∈ C,

Vi(Ω, C,xπ(1), · · · ,xπ(n)) = W (Ω, C,xπ(i),xπ(1), · · · ,xπ(n))
= W (Ω, C,xπ(i),x1, · · · ,xnn)
= Vπ(i)(Ω, C,x1, · · · ,xnn)

This proves that V is invariant with respect to node re-labeling. Conversely, if V is invariant,
let us define W as in equation (3.43.4). Then, ∀ π ∈ Sym(C) | π(1) = 1:

W (Ω, C,x1,xπ(2), · · · ,xπ(n)) = V1(Ω, C,x1,xπ(2), · · · ,xπ(n))
= V1(Ω, C,xπ(1), · · · ,xπ(n))
= Vπ(1)(Ω, C,x1, · · · ,xnn)
= V1(Ω, C,x1, · · · ,xnn)
= W (Ω, C,x1, · · · ,xnn)

Hence, W has the desired symmetry property. Moreover,
Vi(Ω, C,x1, · · · ,xnn) = V1(Ω, C,xi,x1, · · · ,xnn)

= W (Ω, C,xi,x1, · · · ,xnn)
Which concludes the proof.

3.1.1 Primal gradient: from node movement arises an operator
In the rest of this section, we consider the restricted case where the volume weights are

functions of nodes position only. We explain in section 3.2.13.2.1 how this special case fits into
the general picture. Hence, the number of nodes nn is fixed and the volume integration
operator reads: ∀ f : C → R:

�

ˆ
C
f =

∑
i∈C

Vi(x1, . . . ,xnn)fi (3.5)

The definition of the volume-based gradient operator is inspired by the following contin-
uous transport theorem:

Definition 3.3 (A transport theorem).
Let us consider that the integration domain Ω is advected (transported) by a regular vector
field v : Ω→ Rd. Then, for any regular enough time-dependent scalar field f : R× Ω→ R,
we have:

d
dt

ˆ
Ω
f dV =

ˆ
Ω

df
dt + f∇ · v dV (3.6)

This formula shows that two factors influence the variation of the integral of f over Ω:

• df
dt : The point-wise evaluation variation of the scalar field on advected points of Ω.
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• f∇ · v: A volumetric term accounting for stretching or compression of neighborhoods
of points in Ω, expressed as the divergence of the advection vector field.

The following definition transposes the above transport theorem to the discrete setting,
and identifies the discrete divergence of a vector field as the variation of discrete volume
during the advection process.

Definition 3.4 (Volume-based gradient operator).
In order to transpose expression (3.63.6) to the discrete realm, we consider time-dependent
discrete fields f : R× C → R and v : R× C → R. Nodes of the point cloud are advected by
v: ∀ t ∈ R, ∀ i ∈ C, dxi

dt = vi(t). We now define the volume-based gradient as:

d
dt �
ˆ
C
f

def= �

ˆ
C

df
dt + f� · v (3.7)

Which amounts to writing: ∀ v : C → Rd,

Vi�i · v
def=
∑
j∈C

∂Vi
∂xj
· vj (3.8)

In terms of the gradient coordinates Ai,j (see definition 2.92.9), the above definition reads:

Ai,j
def= ∂Vi

∂xj
(3.9)

Proof. With the notations introduced above, we have:
d
dt �
ˆ
C
f = d

dt
∑
i∈C

Vi(x1, . . . ,xnn)fi

=
∑
i∈C

Vi(x1, . . . ,xnn)dfi
dt + fi

d
dtVi(x1, . . . ,xnn)

=
∑
i∈C

Vi(x1, . . . ,xnn)dfi
dt + fi

∑
j∈C

∂Vi
∂xj

(x1, . . . ,xnn)︸ ︷︷ ︸
def= Ai,j

·dxj
dt

= �
ˆ
C

df
dt + f� · v

Remark. Expression (3.93.9) allows us to interpret the graph of �: the edge (i, j) is present
in this graph if ∂Vi∂xj 6= 0, i.e. if the volume of node i locally depends on the position of node
j.

Proposition 3.2 (Representation of node indiscernible volume-based gradients).
Node indiscernibility (definition 3.23.2) translates to the volume-based gradient as: ∀ π ∈
Sym(C), ∀ (x1, · · · ,xnn) ∈ (C → Rd), ∀ i, j ∈ C:

∂Vπ(i)

∂xπ(j)
(x1, · · · ,xnn) = ∂Vi

∂xj
(xπ(1), · · · ,xπ(nn)) (3.10)
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Moreover, it entails that there exists a unique function denoted Z : ([[1, nn]] → Rd) → Rd
(which is not the gradient of the function W introduced in (3.33.3)) symmetric in its last n− 2
variables such that ∀ i 6= j ∈ C,

∂Vi
∂xj

(x1, · · · ,xnn) = Z(xi,xj ,x1, . . . ,xnn︸ ︷︷ ︸
xi and xj are missing

) (3.11)

Proof. Using proposition 3.13.1, we can write: ∀ a ∈ Rd, ∀ i, j ∈ C,
∂Vπ(i)

∂xπ(j)
· a = d

dtVπ(i)(x1, . . . ,xπ(j) + ta︸ ︷︷ ︸
position π(j)

, . . . ,xnn)
∣∣∣∣∣
t=0

= d
dtVi(xπ(1), . . . ,xπ(j) + ta︸ ︷︷ ︸

position j

, . . . ,xπ(nn))
∣∣∣∣∣
t=0

= ∂Vi
∂xj

(xπ(1), . . . ,xπ(nn)) · a

The rest of the proof is identical to that of proposition 3.13.1.

Remark. Getting rid of the scalar field f , and only retaining the advection vector field
v = dx

dt , expression (3.73.7) can equivalently be written as: ∀ i ∈ C,

Vi�i · v = dVi
dt (3.12)

Under this form, the volume-based divergence operator is completely identical to those given
in the literature (expression (3.5) of [158158] and expression (14) of [8787]). Moreover, expression
(3.123.12) is obviously intimately linked with the kinematics of the point cloud, namely the
advection of discretization nodes: the value of the primal divergence of a vector field v
evaluated at node i depends on the local variation of a single scalar volume weight Vi during
the collective movement of neighboring nodes following the vector field. Of course, this
displacement is virtual: no discretization node needs to actually move to compute Vi� · v.

In order to make the above remark more precise for continuous fields, we need the
definition of the flow of a vector field (also see chapter 4 of [22]):

Definition 3.5 (Flow of a vector field).
Let v : Rd → R be a smooth enough vector field (C1 regularity is sufficient). Then there
exist an application Flv : I×Rd → Rd with 0 ∈ I̊ ⊂ R called the flow of v such that ∀ x ∈ Rd,
∀ ε ∈ I̊, 

Flv0 (x) = x
d
dεFlvε (x) = v(Flvε (x))

(3.13)

Corollary 3.3 (Volume-based gradient in terms of flow).
The discrete divergence of the continuous field v can be written in terms of its flow as:
∀ i ∈ C,

Vi�i · v = d
dεVi(Flvε (x1), . . . ,Flvε (xnn))

∣∣∣∣
ε=0

(3.14)

Of course, the above equation is the continuous counterpart to expression (3.123.12).

Proof. The Right Hand Side (RHS) of expression (3.143.14) can be re-written as:
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d
dεVi(Flvε (x1), . . . ,Flvε (xnn))

∣∣∣∣
ε=0

=
∑
j∈C

∂Vi
∂xj
· d

dεFlvε (xj)
∣∣∣∣
ε=0

=
∑
j∈C

∂Vi
∂xj
· v(Flv0 (xj))

=
∑
j∈C

∂Vi
∂xj
· v(xj)

= Vi� · v

Hence, � is related to the evolution of the volume integration operator �́C under the flow
transformation.

3.1.2 Local error of volume-based primal gradients
We have seen in the previous section that the volume-based gradient operator reflects the

evolution of the volume integration operator as the domain of integration is (infinitesimally)
advected. In the continuous world, the change of variable formula (see chapter 8, and
especially theorem 8.1.2 of [22]) can be used to express the updated integral in terms of the
original non-advected space:

Proposition 3.4 (Change of variable formula).
Let Ω be an open subset of Rd and ϕ : Ω → ϕ(Ω) be an orientation-preserving diffeomor-
phism with Jacobian Jϕ = ∂ϕ

∂x . Then, for all integrable scalar field f : Ω→ R, we have:
ˆ

y∈ϕ(Ω)
f(y) dV =

ˆ
x∈Ω

f ◦ ϕ(x) det(Jϕ)(x) dV (3.15)

The flow Flv of a continuous vector field v : Ω → Rd provides infinitely many diffeo-
morphisms mapping the "reference" computational domain Ω to its advected counterparts
Flvε (Ω) ∀ ε ∈ I and the change of variable formula is applicable for each of these transforma-
tions (left side of figure 3.13.1). In the discrete world however, the change of variable formula
does not hold in general (right side of figure 3.13.1).

Proposition 3.53.5 shows that the amount by which the change of variable formula fails at
the discrete level for small ε is precisely the error on the primal divergence of v. In other
words, the consistency error of the primal differential operator makes the diagram in figure
3.13.1 non-commutative.

Proposition 3.5 (Integral expression of the error for volume-based gradients).
Let f : Ω→ R v : Ω→ Rd be regular enough continuous fields. Then, the following formula
holds:

�

ˆ
C
f (�−∇) · v = d

dε

(
�

ˆ
Flvε (C)

f − �

ˆ
C
f ◦ Flvε det(JFlvε )

)∣∣∣∣∣
ε=0

(3.16)

This integrated form of the error of the primal differentiation operator is local in the sense
that it only involves one particular set of node positions (x1, . . . ,xnn).

Proof. The proof is nothing but a direct computation. The RHS of (3.163.16) reads:
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ˆ
Flvε (Ω)

f dV

ˆ
Ω
f ◦ Flvε det(JFlvε ) dV

�

ˆ
Flvε (C)

f

�

ˆ
C
f ◦ Flvε det(JFlvε )

= ∀ ε

Discretization

Discretization

= if ε = 0
6= in general

Figure 3.1 – The change of variable formula is in general not valid at the discrete level.
The picture at the center represents a cloud of points advected by a smooth vector field. On the
left, the continuous change of variable formula ensures that the top and bottom expressions
are equal, but such a result does not hold for their discrete equivalent on the right. The
associated error is directly linked to the consistency error of the primal gradient as stated in
proposition 3.53.5.

d
dε

(
�

ˆ
Flvε (C)

f − �

ˆ
C
f ◦ Flvε det(JFlvε )

)∣∣∣∣∣
ε=0

= d
dε

(∑
i∈C

Vi(Flvε (x1), . . . ,Flvε (xnn))f(Flvε (xi))− Vi(x1, . . . ,xnn)f(Flvε (xi)) det(JFlvε )(xi)
)∣∣∣∣∣

ε=0

=
∑
i∈C

d
dε (Vi(Flvε (x1), . . . ,Flvε (xnn))− Vi(x1, . . . ,xnn) det(JFlvε )(xi))

∣∣∣∣∣
ε=0

f(xi)

=
∑
i∈C

∑
j∈C

∂Vi
∂xj

(Flvε (x1), . . . ,Flvε (xnn)) · dFlvε
dε (xj)

− Vi(x1, . . . ,xnn) det(JFlvε ) Tr
(

J−1
Flvε

dJFlvε
dε

)
(xi)

∣∣∣∣
ε=0

f(xi)

=
∑
i∈C

∑
j∈C

∂Vi
∂xj

(x1, . . . ,xnn) · u(xj)

− Vi(x1, . . . ,xnn)∇ · u(xi)

 f(xi)

=
∑
i∈C

Vi(x1, . . . ,xnn)f(xi)(�iu−∇ · u(xi))

= �
ˆ
C
f (�−∇) · u

Much like the integral definition 3.43.4 can be reformulated in point-wise form as corollary
3.33.3, the integral error of proposition 3.53.5 is expressed in point-wise form below:
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Corollary 3.6 (Pointwise expression of the error of the primal gradient).
Getting rid of the scalar field f , and only retaining the advection vector field v, we can
derive the following point-wise expression of the error: ∀ i ∈ C,

Vi(�i · v−∇ · v(xi)) = d
dε
Vi(Flvε (x1), . . . ,Flvε (xnn))

det(JFlvε (xi))

∣∣∣∣
ε=0

(3.17)

Proof. The proof is again nothing but a direct computation. The RHS of expression (3.173.17)
reads:

d
dε
Vi(Flvε (x1), . . . ,Flvε (xnn))

det(JFlvε (xi))

∣∣∣∣
ε=0

= 1
det(JFlvε (xi))

∑
j∈C

∂Vi
∂xj
· dFlvε

dε

∣∣∣∣∣∣
ε=0

− Vi
1

det(J2
Flvε

(xi))
Tr
(

J−1
Flvε

dJFlvε
dε

)
(xi)

∣∣∣∣∣
ε=0

= Vi(�i · v−∇ · v(xi))

Remark (Structure of the kernel of the error on the primal gradient).
Figure 3.13.1 is similar to figure 2.32.3, where the operator Op is the flow Flvε . The integral
(proposition 3.53.5) and pointwise (corollary 3.63.6) expressions of the error show that covariance of
the discrete volume integral with respect to small transformations of space entails exactness
on the infinitesimal generator.

More generally, this remains true if the flow is replaced with any Lie subgroup of dif-
feomorphisms of Rd: failure of the change of variable formula on a Lie group of space
transformations G directly translates to an error of the primal divergence of the vector
fields of the corresponding Lie algebra g i.e. the tangent space to the Lie group at the
identity transformation. As a consequence, if � is exact on the vector fields u and v, then
it is exact on their Lie bracket [u,v].
Example (Expression of the error of volume-based gradients on constant and linear fields).

Applying corollary 3.63.6 to the Lie group of uniform translations (resp. affine transformations)
yield the following local expression of the error of the volume-based discrete gradient on
constant (resp. linear) fields:

Vi�i1 = ∂

∂uVi(x1 + u, . . . ,xnn + u)
∣∣∣∣
u=0

(3.18)

Vi(�ix− Id) = ∂

∂B
1

det(B)Vi(Bx1, . . . ,Bxnn)
∣∣∣∣
B=Id

(3.19)

3.1.3 Global error of volume-based primal gradients
Corollary 3.63.6 can be refined into a global set of requirement, which characterizes the

exactness of the primal gradient for all node positions:
Proposition 3.7 (Global consistency conditions of volume-based gradients).
Let Flv : I× Ω→ Rd denote the flow of a regular vector field v : Rd → Rd and i a node of
the point cloud (C, (x1, . . . ,xnn)). The following statements are equivalent:

• The discrete primal operator is exact on v for any nodal positions:
∀ (x1, . . . ,xnn) : C → Rd,

Vi�i · v = Vi∇ · v(xi) (3.20)
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• The nodal volume weights are proportional to the nodal evaluation of the determinant
of the Jacobian of the corresponding transformation.
∀ (x1, . . . ,xnn) : C → Rd,∀ ε ∈ R,

Vi(Flvε (x1), . . . ,Flvε (xnn)) = det(JFlvε (xi))Vi(x1, . . . ,xnn) (3.21)

Proof. Let us prove separately that each statement implies the other:
•Expression (3.213.21) implies expression (3.203.20): This is a direct consequence of corollary 3.63.6:
differentiate expression (3.213.21) with respect to ε and evaluate at ε = 0, which gives expression
(3.203.20).
•Expression (3.203.20) implies expression (3.213.21): Let ε ∈ I. Since expression (3.203.20) is supposed
to hold for any node position, let us apply it at (Flvε (x1), . . . ,Flvε (xnn)). From corollary 3.63.6,
the following quantity vanishes:

Vi(�i · v−∇ · v(Flvε (xi))) = d
dµ

Vi(Flvµ(Flvε (x1)), . . . ,Flvµ(Flvε (xnn)))
det(JFlvµ(Flvε (xi)))

∣∣∣∣∣
µ=0

(3.22)

From Lie group theory and elementary properties of the exponential map, the flow operator
defines a group morphism between (R,+) and transformations of Rd. In particular, Flvµ ◦

Flvε = Flvµ+ε and consequently, d
dµ

Vi(Flvµ(x1),...,Flvµ(xnn ))
det(JFlvµ

(xi))

∣∣∣∣
µ=ε

= 0. This being true for all

ε ∈ I, the quantity is constant with respect to ε and evaluation at ε = 0, yields expression
(3.213.21).

Remark. Similarly to its local version, this global theorem remains true when the flow
one-parameter subgroup is substituted for any Lie subgroup of the diffeomorphisms on Rd:
evolution of volume weights proportionally to the pointwise values of the determinant of the
Jacobian matrix of the transformation entails exactness of the primal gradient on the vector
fields of the corresponding Lie algebra (adaptation of the above proof is straightforward).
Conversely, exactness on a given Lie algebra of vector fields implies proportional evolution
of volume weights and pointwise values of the determinant of the Jacobian matrix of the
transformations of the (unique) simply connected associated Lie group (this is an immediate
consequence of corollary 3.63.6). This result effectively endows the space of discrete functions
on which the primal gradient is exact with a Lie algebra structure, extending the previous
formulae given in the literature (equations (8-9) of [206206] for instance).

Example (Characterization of global consistency of order zero and one).
Necessary and sufficient conditions for global zeroth and first order consistency at node
i ∈ C of the primal differentiation operator can be written: ∀ (x1, . . . ,xnn) : C → Rd,∀ a ∈
Rd,∀ B ∈ GL+

d (R),
Vi(x1 + a, . . . ,xnn + a) = Vi(x1, . . . ,xnn) (3.23)
Vi(Bx1, . . . ,Bxnn) = det(B)Vi(x1, . . . ,xnn) (3.24)

Expressions (3.233.23) and (3.243.24) are the global counterparts of expressions (3.183.18) and (3.193.19).
As a consequence, choosing a = −xi in expression (3.233.23) proves that the volume weight Vi
yields a zeroth order consistent primal gradient Vi�i if and only if there exists a function
Ui such that Vi reads: ∀ X : C → Rd,

Vi(x1, . . . ,xnn) = Ui(x1 − xi, . . . ,xnn − xi) (3.25)

Example (Covariance with respect to rigid motion).
Applying proposition 3.73.7 to the Lie group of isometric transformations (also known as rigid
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motions) of space is a bit more subtle. This group is isomorphic to Rd × Od(R), and its
Lie algebra at the identity is isomorphic to Rd × Ad(R). Hence, covariance of the volume
function with respect to translations and rotations is equivalent to zeroth order consistency
and vanishing of the skew-symmetric part of �ix (or equivalently, the symmetry of the
matrix �ix). In particular if d = 3, this is equivalent to the fact that the curl of the
coordinate field vanishes: �i × x = 0. We use this property in appendix GG, where it is
equivalent to conservation of linear and angular momenta.

Volume functions that are invariant with respect to rigid motions are those representable
under the form given in expression (3.253.25), where Ui is an isotropic scalar valued function. As
a consequence of Cauchy’s representation formula for isotropic scalar valued functions (see
[209209, 228228] for more information about representation theorems for isotropic functions), rigid
motion invariant volume weights are expressible only in terms of scalar products between
shifted positions: ∀ X : C → Rd,

Vi(x1, . . . ,xnn) = Ui (((xj − xi) · (xk − xi))j,k∈C) (3.26)

3.1.4 The price of linear consistency of volume-based primal gradi-
ents

This section is devoted to the construction of a counter-example showing that under
quite restrictive conditions, it is not possible to choose a volume function yielding a globally
first order consistent volume-based gradient.

Conjecture 3.8 (Local primal volume gradients are not first order consistent).
There is no volume function V satisfying:

• Continuity with respect to node positions.
• Locality of the dependency with respect to node positions.
• Global affine covariance with respect to node positions: ∀ (x1, . . . ,xnn) : C → Rd,
∀ a ∈ Rd, ∀ B ∈ Md(R),

• Global affine covariance with respect to node positions: ∀ (x1, . . . ,xnn) : C → Rd,
∀ a ∈ Rd, ∀ B ∈ Md(R),

Vi(Bx1 + a, . . . ,Bxnn + a) = det(B)Vi(x1, . . . ,xnn) (3.27)

This requirement is equivalent to first order consistency of the corresponding volume-
based gradient (see proposition 3.73.7).

• The volume function is not constant with respect to node positions, or equivalently,
the corresponding volume-based gradient is non-vanishing.

Even though we believe conjecture 3.83.8 to hold, maybe under slightly more restrictive
assumptions, the technical aspects of the proof only lets us formulate the following proposi-
tion:

Proposition 3.9 (Local primal volume gradients are not first order consistent).
Under the following assumptions:

• The space dimension d is larger that 2.
• The volume function is C1-continuous with respect to node positions and satisfies node

indiscernibility (definition 3.23.2).
• V is local in the following sense: there exists a symmetric smoothing length function
h : (C → Rd)→ R+ such that: ∀ (x1, . . . ,xnn) : C → Rd,

∀ i, j ∈ C, (‖xj − xi‖ > h(x1, . . . ,xnn))⇒
(
∂Vi
∂xj

(x1, . . . ,xnn) = 0
)

(3.28)
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• The corresponding volume-based gradient is globally consistent of order one: ∀ (x1,
. . . ,xnn) : C → Rd,∀ i ∈ C, {

Vi�i1 = 0
Vi(�ix− Id) = 0

we have, ∀ i ∈ C, ∀ f : C → R:

Vi�if =
∑
j∈C

∂Vi
∂xj

fj = 0 (3.29)

In other words, volume weights do not vary with node positions: they are constants.

Remark. Before detailing the proof, let us first discuss the assumptions of proposition 3.93.9:

• The dimension of ambient space is taken to be at least two. This assumption is purely
technical and not very restrictive as the case d = 1 is of little practical interest. Actu-
ally, the special topological properties of R imply that point clouds in one dimension
actually define meshes, limiting the validity of the term "meshless method". More-
over, these very topological properties prevent nodes from "mixing while not crossing",
rendering our proof invalid.

• The property is formulated for volume functions satisfying node indiscernibility, but
is believed to hold even without this assumption.

• Locality as defined above only really makes sense for infinite point clouds (as in the
proof). Indeed, if C is finite, the smoothing length can be chosen as h = maxi,j∈C 1 +
‖xj − xi‖ rendering every volume function "local". Practical computing time consider-
ations obviously prohibit using the corresponding differential operator for simulation
purposes, and another notion of locality is needed. Moreover, considering the dis-
cretization of Rd allows us to circumvent the problem of the boundary (which we
address in section 3.23.2).

• The locality assumption is essential. Indeed, appendix D.4D.4 provides an example of
non-local volume function yielding a first order consistent primal gradient.

In the author’s opinion, this theorem is strong enough to forsake any hope of finding a
globally defined volume function with associated primal gradient consistent of order p ≥ 1
to be successfully used in a Lagrangian discretization context (see appendix GG).

Proof of proposition 3.93.9. The proof is given for d = 2, but can straightforwardly be extended
to higher space dimensions. We build a point cloud so that it remains invariant with respect
to a set of affine transformations. From consistency at every node position, we deduce that
every partial derivative of the volume function is zero, hence the result. Let (C = Z2,X)
a countable infinite cloud of points positioned on the regular lattice of integer coordinate:
∀ i ∈ C, xi =

(
i1
i2

)
. Let i 6= j ∈ C. For all p ∈ Z, let us consider the following affine

transformations of R2:  aip(x) = xi + Ap(x− xi)

bip(x) = xi + Bp(x− xi)

Of course, aip(xi) = bip(xi) = xi. Only integers appear in their definitions, thus aip and
bip are affine homomorphisms. In particular, they map Z2 to a subset of Z2. Moreover,
det(Ap) = det(Bp) = 1, which is invertible in Z, proving that both aip and bip are affine
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isomorphisms mapping Z2 to itself: the set of node positions remains unchanged and so
does h.
Since we assumed primal consistency of order zero and one, we have:

Vi((xk)k∈C) = 1
det(Ap)

Vi((aip(xk))k∈C) = Vi((aip(xk))k∈C)

⇒ ∂Vi
∂xj

((xk)k∈C) = AT
p

∂Vi
∂xj

((aip(xk))k∈C) (3.30)

And similarly for bip. A quick computation gives:

aip(xj)− xi =
(

yj − yi
−(xj − xi)

)
+ p

(
xj − xi + yj − yi
xj − xi + yj − yi

)
(3.31)

bip(xj)− xi =
(
−(yj − yj)
xj − xi

)
+ p

(
xj − xi − (yj − yi)
yj − yi − (xj − xi)

)
(3.32)

Thus, both {aip(xj)− xi}p∈N and {bip(xj)− xi}p∈N are bounded if and only if:(
1 1
1 −1

)(
xj − xi
yj − yi

)
=
(

0
0

)
(3.33)

Whose only solution reads xi = xj . This is not the case (we assumed i 6= j). Hence
∃ p ∈ Z | ‖aip(xj) − xi‖ > h or ‖bip(xj) − xi‖ > h. Because of our locality assumption,
either ∂Vi

∂xj ((aip(xk))k∈C) = 0 or ∂Vi
∂xj ((bip(xk))k∈C) = 0, which proves that ∂Vi

∂xj ((xk)k∈C) = 0
in virtue of (3.303.30).
Then, 0 = Vi�i1 =

∑
j∈C

∂Vi
∂xj ((xk)k∈C) = ∂Vi

∂xi ((xk)k∈C). Thus, Vi is a constant function,
proving the desired result.

Remark (Maximality of rigid motion covariance). Our proof actually shows a slightly
stronger result: since all matrices considered in the proof have unit determinant, we in
fact showed that the special linear group SL+

n (R) cannot be a subgroup of the group of
covariant transformation of the volume function. On the other hand, we give in sections 3.53.5,
3.73.7 and appendix D.4D.4 and FF several examples of volume functions which are covariant with
respect to O+

n (R) ⊂ SLn(R), the group of isometric transformations.
A general result of Noll (see [176176]) states that O+

n (R) is a maximal subgroup of SL+
n (R).

Applied to our case, this means that it is pointless to expect exactness of primal volume-
based gradients on a function space strictly larger than the space of skew-symmetric affine
transformations, since such a function space would necessarily include the Lie algebra of
volume-preserving affine transformation on which the primal gradient cannot be exact.

Remark (Compatibility of volume-based operators).
The most important take-away from conjecture 3.83.8 and proposition 3.93.9 is that the consistency
order of volume-based primal gradient cannot exceed zero. The search for a first order
consistent compatible set of operators thus apparently ends here.

In section 3.23.2, we define a boundary integration operator from a volume function, and
in section 3.33.3, we study the resulting dual gradient operator. In particular, we see that the
volume-based dual gradient operator does not have a theoretical limit on its consistency or-
der. Since, the labels "primal" and "dual" are completely arbitrary – what is really important
is that the differentiation operators form a conjugate pair with respect to the integration
operators –, we can for all intents and purposes invert the roles of the primal and dual
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gradients. And indeed, we succeed in exhibiting sets of volume-based operators that are
first order consistent and compatible in this sense, see section 3.73.7 and appendix FF.

In chapter 44, where we present simulation results, we implicitly invert the roles of these
two operators, keeping the highest consistency order for the primal gradient. Note that this
also means that we transpose the boundary integration operator, inverting the roles of the
two discrete fields.

3.2 Volumes depend on the computational domain: De-
finition of a boundary integration operator

In this section, we still consider the number of nodes nn fixed, but we now explicitly
write the dependency of the volume weights with respect to the computational domain Ω:
∀ f : C → R:

�

ˆ
C
f =

∑
i∈C

Vi(Ω,x1, . . . ,xnn)fi (3.34)

Once again, let us clarify that the computational domain Ω is assumed given, and that
we do not attempt to retrieve it from the point cloud. While expression (3.343.34) is clearly
more general than expression (3.53.5), let us explain in this section why nothing from section
3.13.1 is invalidated.

In order to fall back to the special case where the volume function only depends on
node positions, let us suppose for a moment that Ω is itself a function of node positions:
Ω(x1, . . . ,xnn). If the nodes are advected as before with the discrete field dx

dt = v, we should
be able to make sense of the following chain rule to compute the discrete divergence of v.
Starting from expression (3.123.12), we have: ∀ i ∈ C,

Vi� · v = d
dtVi(Ω(x1(t), . . . ,xnn(t)),x1(t), . . . ,xnn(t)) (3.35)

=
∑
j∈C

dVi
dxj

(Ω(x1, . . . ,xnn),x1, . . . ,xnn) · dxi
dt

=
∑
j∈C

(
∂Vi
∂Ω ·

∂Ω
∂xj

+ ∂Vi
∂xj

)
· vj

In section 3.2.23.2.2, we show that the term ∂Vi
∂Ω ·

∂Ω
∂xj should be understood as the coordinates

Γi,j of a volume-based boundary integration operator and in section 3.33.3, we interpret the
term ∂Vi

∂xj as the coordinates A∗i,j of the (opposite of the) resulting volume-based dual gradient
operator.

3.2.1 Separating the domain dependency from pure node move-
ment

While instructive, the assumption that Ω is a function of the positions of the discretiza-
tion nodes is flawed. It would mean that we have a procedure to build the underlying
computational domain Ω from a point cloud (C,X). We do not make this very strong as-
sumption in this work. Instead, we replace it with the following strictly weaker one: we
suppose given a procedure to define how points of the computational domain x ∈ Ω are
dragged around as the nodes of the point cloud move. In other words, we declare that
that the movement of space points is driven by the movement of discretization nodes, which
amounts to defining the continuous equivalent dx

dt =< v > (x) to the discrete field dxj
dt = vj
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as a linear combination. This is tantamount to assuming the existence of a reconstruction
map (definition 2.102.10) for vector fields.

This representation of dependency is called "transformations generated by velocities" by
Delfour and Zolésio. This choice is not the only possible one, and the work of Delfour and
Zolésio [7070] provides an in-depth exposition of the topic. In this work, we always assume
enough regularity of motion for the main results to hold.

More precisely, we assume given some kind of matrix shape functions Ψj : Ω × (C →
Rd)→ Md(R) and write:

< v > (x) def=
∑
j∈C

ΨT
j (x,x1, . . . ,xnn) · vj (3.36)

As Ψj stands for the local evolution of nodes of Ω with respect to variations of the
discretization nodes xj , it makes sense to denote Ψj = ∂Ω

∂xj .

Remark. Once the (Ψj)j∈C are given, the volume function can really locally be considered
as a function of the node positions only. Notation-wise, the corresponding variation is
denoted with a total derivative. The results of section 3.13.1 still hold if we substitute the
partial derivatives in definition 3.13.1 with full derivatives as:

Vi�i · v
def=
∑
j∈C

dVi
dxj
· vj (3.37)

Remark. In most examples, the definition of the shape functions (Ψj)j∈C is either implicit,
or there is an obvious good choice available.

The definition of the shape functions (Ψj)j∈C bridges the gap between the definition of
volume functions in terms of node coordinates only (section 3.13.1) and the introduction of a
dependency with respect to the computational domain. This link is only assumed to hold
locally, in a tangent form: the movement of points can be deduced from the movement of
points through the shape functions (Ψj)j∈C , but we do not assume Ω itself to be retrievable
from the point cloud. This still allows the decomposition of the primal volume-based gradient
into a boundary integration operator and a dual gradient operator as we explain in the
following sections.

3.2.2 The structure theorem and its consequences
Once the dependency of the discretization domain with respect to discretization nodes is

specified, we still need to compute the sensitivity of the volume function with respect to the
computational domain. To this end, we need a generalized form of the Reynolds transport
theorem called the "structure theorem". See chapter 9 of [7070], and especially theorem 3.6 for
a more detailed exposition of the topic.

The structure theorem 3.1.
Let f : P(Rd) → R be a regular real-valued "shape functional", i.e. a function whose
argument is a domain Ω ⊂ Rd. Then, the support of the gradient of f at Ω is contained
in ∂Ω. In other words, for all regular enough Ω ⊂ Rd, there exists a scalar boundary field
φ : ∂Ω→ R such that the variation of f as Ω is advected by the flow (see definition 3.53.5) of
a continuous vector field v : Rd → Rd reads:

∂f

∂Ω · v
def= d

dεf(Flvε (Ω))
∣∣∣∣
ε=0

=
ˆ

x∈∂Ω
φ(x)v(x) · n dS (3.38)
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It makes sense to write φ = ∂f
∂Ω since φ encodes variations of f as Ω evolves. With this

notation, expression (3.383.38) is reminiscent of the chain rule for computing the derivative of
the composition of two functions. The main differences are that the finite sum is replaced
by an integral, and more importantly (this is the true meaning of the structure theorem)
that the only non-vanishing contributions occur at the boundary ∂Ω.

Let us denote φi = ∂Vi
∂Ω the gradient of Vi with respect to the domain variable. In-

terestingly enough, φi can also be interpreted as a shape function, namely as the nodal
contribution to a continuous reconstruction. To understand that, let us imagine that the
computational domain Ω moves in Rd. Loosely speaking, as ∂Ω progressively reaches x
with an infinitesimal step dx, this point contributes to the definition of Vi by an amount of
φi(x) dx · n dS = φi(x) dV . This notion is very close to that of "partition of unity", which
appears in the definition of the integral over a manifold (see chapter 8 of [22]).

Using the reconstructed velocity field < v > of expression (3.363.36) as an advection field
for points of Ω, we can write definition 3.13.1 for all discrete scalar field f : C → R constant
with respect to time (df

dt = 0) as:

�

ˆ
C
f� · v def= d

dt �
ˆ
C
f

=
∑
i∈C

fi
∑
j∈C

(
∂Vi
∂Ω ·

∂Ω
∂xj

+ ∂Vi
∂xj

)
· vj

=
∑
i∈C

∑
j∈C

fi

(ˆ
∂Ω
φiΨj · n dS

)
· vj −

∑
i∈C

vi ·
∑
j∈C
−∂Vj
∂xi

fj (3.39)

The first term of expression (3.393.39) vanishes far from the boundary . It is thus tempting
to give the following definition:

Definition 3.6 (Volume-based boundary integration operator).
Given a volume function V , the volume-based boundary integration operator is defined as:

“
∂C
fv def=

∑
i,j∈C

fi

(ˆ
∂Ω
φiΨj · n dS

)
· vj (3.40)

In terms of the boundary coordinates Γi,j (see definition 2.92.9), the above definition reads:

Γi,j
def=
ˆ

x∈∂Ω
φi(x)Ψj(x) · n dS (3.41)

A priori,
›
∂C is a non-symmetric bi-linear operator. This is consistent with definition 2.92.9.

Inspecting the cases where Γi,j = 0, this definition conveys two different notions of "being
a boundary discretization node":

• A left-sided version: ∂Vi
∂Ω = 0 ⇒ ∀ j ∈ C,Γi,j = 0. If Vi does not locally depend on

Ω, then i is inside, else it is on the boundary.
• A dual right-sided version: ∂Ω

∂xj = 0 ⇒ ∀ i ∈ C,Γi,j = 0. If Ω does not locally depend
on xj , then j is inside, else (in accordance with the structure theorem) it is a boundary
discretization node.

In general, boundary edges are characterized by overlaps of the supports of ∂Vi∂Ω and ∂Ω
∂xj on

the boundary:

(i, j) ∈ ∂C ⇒ ∃ x ∈ ∂Ω | φi(x) 6= 0 and Ψj(x) 6= 0 (3.42)
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We do not give any expression for the error of the volume-based boundary integration
operator, or characterization of its consistency. Instead, the properties of this operator
should be analyzed through those of the primal and dual volume-based gradients.

In the next section, we identify the leftmost sum of expression (3.393.39) as the dual differ-
entiation operator.

3.3 Volumes depend on the computational domain: De-
finition of the resulting dual gradient

In accordance with definition 2.172.17, the presence of nodal volume �́C and boundary
›
∂C

integration operators and a discrete gradient operator � readily entail the definition of a
dual gradient operator:

Definition 3.7 (Volume-based dual gradient).
As a consequence of expression (3.393.39) for the primal gradient coefficients and of definition
3.63.6 of the boundary integration operator, the volume-based dual gradient is fully determined.
It reads: ∀ f : C → R, ∀ i ∈ C,

Vi�
∗
i f = −

∑
j∈C

∂Vj
∂xi

fj (3.43)

The corresponding coordinates of the volume-based dual gradient read: ∀ i, j ∈ C,

A∗i,j
def= −∂Vj

∂xi
(3.44)

Remark. Ignoring boundary effects, the graph of the volume-based dual gradient is the
transpose of that of the primal gradient: the edge (i, j) is present in this graph if ∂Vj∂xi 6= 0,
i.e. if the volume of node j does not locally depend on the position of node i as Ω is kept
fixed. As a consequence, the value of the dual gradient is related to the variation of the
contributions of each function value (through the volume weights) to the total integral as a
single node is moved. This behavior is exactly the opposite of that of the primal gradient

If the primal gradient emerges from the advection of both the computational domain Ω
and the discretization nodes (x1, . . . ,xnn) (linked through the definition of shape functions
Ψ), then separating the respective influences of both terms allows the definition of the
boundary operator

›
C and the dual gradient �∗.

In this sense, �∗ and
›
∂Ω are more fundamental than �, which is a composite operator

born from their combination. Hence the most logical way to introduce these operators
would have been to first define the volume dependency as Vi(Ω,x1, . . . ,xnn) and define
�
∗, then link the movement of the computational space and discretization nodes through

< v > and define
›
∂C . At this point, the definition � is a direct consequence of the

chain rule i.e. the primal gradient should be understood as a total derivative. Instead,
we chose to first introduce the primal gradient as it chronologically was the first to be
discovered. Moreover, we feel that the mathematical tools needed for its definition are
easier to manipulate. Incidentally, this might be one of the reasons why the dependency
of volume functions with respect to the domain Ω has been completely overlooked in the
meshless literature, often leading to ad hoc treatments of the natural boundary conditions.

Corollary 3.10 (Point-wise expression of the volume-based dual gradient).
We have seen that the volume-based dual gradient arises from the intrinsic dependency of
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d
dε

(ˆ
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ε (Ω)

f dV
)∣∣∣∣∣

ε=0

ˆ
∂Ω
fv · n dS

d
dε

(
�

ˆ
Fl<v>
ε (C)

f

)∣∣∣∣∣
ε=0

“
∂C
fv · n

=

Discretization

Discretization

6= in general

Figure 3.2 – Reynolds transport theorem is in general not valid at the discrete level.
The picture at the center represents a point cloud, and a smooth scalar field defined at the
nodes. Each node is nudged slightly in an arbitrary direction and the point values of the
scalar field changes accordingly. On the left, the Reynolds transport theorem states that the
integral only changes by a boundary flux term. On the right, the discrete correspondent
quantities do not match. The associated error is directly linked to the consistency error of
the dual gradient as stated in proposition 3.113.11.

the discrete integral with respect to discrete node position. Consequently, it is independent
of the choice of shape functions (Ψj)j∈C (see section 3.2.13.2.1), and it can be expressed as the
derivative of the discrete integral, considering the computational domain Ω as motionless:
∀ f : C → R, ∀ i ∈ C,

Vi�
∗f = − d

dxi
�

ˆ
C
f

∣∣∣∣
Ω=cst

(3.45)

In the next section, we characterize the consistency of the volume-based dual gradient
operator in terms of the volume function from which it is derived.

3.3.1 Local error of volume-based dual gradients
In order to translate the consistency results of section 3.1.23.1.2 to the dual gradient operator,

we need to consider a situation where the two influences do not overlap. In the continuous
world, the Reynolds transport theorem states that the variations of the integral of a function
over a domain Ω bear the independent contributions of the variation of the domain Ω
itself through a boundary integral, and of the intrinsic dependency of the function with
respect to the parameter. For a function independent of the parameter (∂f∂ε = 0), this
situation is represented on the left side of figure 3.23.2. In the discrete world, the Reynolds
transport theorem does not hold in general (right side of figure 3.23.2). Interestingly enough,
its discrete failure (i.e. the lack of commutation of the diagram in figure 3.23.2.) is related to
the consistency of the dual gradient via the following proposition:
Proposition 3.11 (Expression of the error of the dual gradient).
For a regular enough continuous field f and a discrete field v, the following formula holds:

�

ˆ
C

(�∗ −∇) f · v =
“
∂C
fv− d

dε �
ˆ

Fl<v>
ε (C)

f

∣∣∣∣∣
ε=0

(3.46)
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The above formula is valid if we consider that discretization nodes (xk)k∈C are advected
with the discrete velocity field v : C → Rd, whereas the points of the computational domain
are advected with the reconstructed velocity field < v >.

Proof. The proof is nothing but a direct computation:

d
dε �
ˆ

Fl<v>
ε (C)

f

∣∣∣∣∣
ε=0

= d
dε
∑
i∈C

Vi(Fl<v>
ε (Ω),x1(ε), . . . ,xnn(ε)) f(xi(ε))

∣∣∣∣∣
ε=0

=
∑
i∈C

∂Vi
∂Ω ·

dΩ
dε +

∑
j∈C

∂Vi
∂xj
· dxj

dε

 f(xi) + Vi∇f(xi) ·
dxi
dε

=
∑
i∈C

ˆ
∂Ω
φi(x) < v > (x) · n +

∑
j∈C

∂Vi
∂xj
· vj

 f(xi) +Vi∇f(xi) ·vi

=
“
∂C
fv + �

ˆ
C

(∇−�∗) f · v

While the above form of the theorem highlights the correspondence between the contin-
uous and the discrete world, it might look a bit confusing. It can be re-written under the
following node-wise form, in which no flow or reconstruction appear:

Corollary 3.12 (Point-wise expression of the error of the dual gradient).
The point-wise error of the volume-based dual gradient of continuous function f : Rd → R
can be expressed as:

Vi(�∗i f −∇f(xi)) = − d
dxi

�

ˆ
C
f

∣∣∣∣
Ω=cst

(3.47)

The RHS of expression (3.473.47) is formally identical to that of corollary 3.103.10, but its meaning
is different. Here, f is a continuous function evaluated at discretization nodes and this value
changes as nodes are moved. In expression (3.453.45), f is a discrete function, i.e. a collection of
values attached to the discretization nodes and these values do not change during advection.

This expression allows the following interpretation of the dual gradient: in sharp contrast
with the primal gradient, the dual gradient is not related to advection since the computa-
tional space Ω is held fixed as the discretization nodes move. And indeed, the choice of
shape functions Ψj (relating the advection of nodes of the point cloud and points of space,
see equation (3.363.36)) does not play a role in the definition of the dual gradient. Rather, the
value of the dual gradient of a function f evaluated at node i depends on the local varia-
tion of every volume weight Vj as a single node i is perturbed. The consistency order of
the dual gradient thus characterizes how well the volumes work together regardless of the
discretization node positions.

Remark. In particular for a constant unit function, expression (3.473.47) gives a relationship
between the error on the dual gradient of a constant field and the variations of the total
discretized volume as a node is nudged. This fact is exploited in section 3.6.13.6.1 where several
common regularization procedures are re-interpreted as total volume maximization proce-
dures, eventually yielding the sought-after zeroth order consistency of the dual gradient.
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3.3.2 Global error of volume-based dual gradients
From the previous local result, we can formulate the following global consistency require-

ment:

Proposition 3.13 (Global consistency conditions of volume-based dual gradients).
The dual gradient of a scalar function is exact at every node position of an open set of
configurations if and only if the value of its discrete integral is independent of the said node
positions:

�

ˆ
C
f = cst(Ω) (3.48)

In particular, global consistency of the discrete integration operator entails global consistency
of the resulting dual gradient operator.

Proof. This is a direct consequence of corollary 3.123.12.

Example (Characterization of global dual consistency of order zero and one).
Necessary and sufficient conditions for global zeroth and first order consistency at node i ∈ C
of the volume-based dual gradient operator are the independence of the total volume and of
the centroid of the point cloud with respect to node positions: ∀ (x1, . . . ,xnn) : C → Rd,

Vtot(C) =
∑
i∈C

Vi = cst (3.49)

Vtot(C)xtot(C) =
∑
i∈C

Vixi = cst (3.50)

Contrary to the primal case (see section 3.1.43.1.4), there does exist volume functions such
that the corresponding dual gradient operator is both local and linear consistent. Actually,
dual consistency of any order can be achieved as shown in section 3.73.7.

3.3.3 Comparison between the primal and dual volume-based gra-
dients

The primal and dual volume-based gradients are two opposite sides of the same coin.
As we have seen in earlier sections, the expression of the primal gradient at a given node is
given by the variation of one volume weight during the collective movement of all neighboring
discretization nodes. Its quality is thus impacted by co-variance properties of the volume
method with respect to space transformations. Unfortunately, linear space transformations
can stretch neighborhoods at will and consequently, linear consistent volume-based primal
gradients are not local.

On the other hand, the expression of the dual gradient at a given node is given by the
variation of the opposite of the integral when the node position is perturbed. Hence, its qual-
ity properties describe how well volume weights all work together to give an approximation
of integrals independently of the position of each individual node. This does not preclude
the dual gradient to achieve arbitrarily high orders of consistency while remaining local.

Figure 3.33.3 recapitulates the important formulae of the previous sections, and compares
the behavior of the primal and dual volume-based gradients.

The following proposition investigates the possibility of defining a gradient using the
volume method with built-in symmetry (i.e. � = �

∗).



3.3.
V

O
LU

M
E-B

A
SED

D
U

A
L

G
R

A
D

IEN
T

O
PER

AT
O

R
97

Primal Gradient: Vi�i · v =
∑
j∈C

dVi
dxj
· vj Dual Gradient: Vi�∗i f = −

∑
j∈C

∂Vj
∂xi

fj

Point-wise
expression for
discrete fields

Vi�i · v = d
dεVi(Flvε (x1), . . . ,Flvε (xnn))

∣∣∣∣
ε=0

Corollary 3.33.3

Vi�
∗f = − d

dxi
�

ˆ
C
f

∣∣∣∣
Ω

Corollary 3.103.10

Integral form of
the error on
continuous

fields

�

ˆ
C
f (�−∇) · v = d

dε

(
�

ˆ
Flvε (C)

f − �

ˆ
C
f ◦ Flvε det(JFlvε )

)∣∣∣∣∣
ε=0

Proposition 3.53.5

�

ˆ
C

(�∗ −∇) f · v =
“
∂C
fv− d

dε �
ˆ

Fl<v>
ε (C)

f

∣∣∣∣∣
ε=0

Proposition 3.113.11

Point-wise form
of the error on
continuous

fields

Vi(�i · v−∇ · v(xi)) = d
dε
Vi(Flvε (x1), . . . ,Flvε (xnn))

det(JFlvε (xi))

∣∣∣∣
ε=0

Corollary 3.63.6

Vi(�∗i f −∇f(xi)) = − d
dxi

�

ˆ
C
f

∣∣∣∣
Ω=cst

Corollary 3.123.12

Exactness
conditions on
continuous

fields

Vi(Flvε (x1), . . . ,Flvε (xnn)) = det(JFlvε (xi))Vi(x1, . . . ,xnn)
Proposition 3.73.7

�

ˆ
C
f = cst(Ω)

Proposition 3.133.13

Consistency of
order zero Vi(x1 + a, . . . ,xnn + a) = Vi(x1, . . . ,xnn) (3.233.23)

∑
i∈C

Vi = cst (3.493.49)

Consistency of
order one Vi(Bx1, . . . ,Bxnn) = det(B)Vi(x1, . . . ,xnn) (3.243.24)

∑
i∈C

Vixi = cst (3.503.50)

Possibility of
local linear
consistent
gradient?

% Conjecture 3.83.8 ! See section 3.7.13.7.1

Figure 3.3 – Compared summary of the properties of the primal and dual volume-based gradient
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Proposition 3.14 (Characterization of volume-based symmetric gradients).
Ignoring the boundary, demanding that the primal and dual volume-based gradients are
equal reads in terms of coefficients: ∀ i, j ∈ C,

∂Vi
∂xj

+ ∂Vj
∂xi

= 0 (3.51)

These equations formally look like Killing equations in differential geometry. If we assume
each Vi, i ∈ C to be globally twice continuously differentiable, we have the following repre-
sentation property: ∀ i, j, k ∈ C, ∃ Z{i,j,k} ∈ Md(R) | ZT{i,j,k} = −Z{i,j,k} and:

∂2Vi
∂xjxk

= ∂2Vk
∂xixj

= ∂2Vj
∂xkxi

= Z{i,j,k} (3.52)

Proof. Differentiation of expression (3.513.51) with respect to xk and permutation of the deriva-
tives in the first term (to restore cyclic invariance) gives: ∀ i, j, k ∈ C,(

∂2Vi
∂xj∂xk

)T
+ ∂Vj
∂xk∂xi

= 0 (3.53)

Then the permutation i 7→ k, j 7→ i, k 7→ j reads: ∀ i, j, k ∈ C,(
∂2Vk
∂xi∂xj

)T
+ ∂Vi
∂xj∂xk

= 0 (3.54)

Combining expressions (3.533.53) and (3.543.54), and completing the cyclic permutation, we get:
∀ i, j, k ∈ C,

∂Vj
∂xk∂xi

= ∂2Vk
∂xi∂xj

= ∂2Vi
∂xj∂xk

(3.55)

Furthermore, comparing expression (3.553.55) and expression (3.543.54), we conclude that all these
matrices are skew symmetric.

Remark. In the case of one dimensional discretizations (d = 1), we have Z{i,j,k} = 0
because of skew-symmetry, and thus each Vi is linear: ∃ wi,j |wi,j = −wj,i and

Vi = Vo i +
∑

j∈N (i)

wi,jxj (3.56)

Order zero consistency reads ∀ i ∈ C,
∑
j∈N (i) wi,j = 0 and order one consistency reads

∀ i ∈ C, Vo i = 0 Thus, such a volume formula reads:

Vi =
∑

j∈N (i)

wi,j(xj − xi) (3.57)

The properties of these symmetric one-dimensional discretization operators are discussed in
great lengths in [129129].

3.4 Volumes depend on the number of nodes: Definition
and characterization of Sibson shape functions

In the previous section, we investigated the consequences of considering the computa-
tional domain as a variable in the definition of volume functions. In this section, we now
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consider that the number of nodes itself is a variable coming into play in the definition of
volume functions. This allows us on the one hand to generalize the well-known Sibson shape
functions to arbitrary volume functions and on the other hand to provide a new perspective
to the study of the dual gradient.

3.4.1 Definition and properties of Sibson shape functions
Let us consider the two following point clouds (C = [[1, nn]], (x1, . . . ,xnn)) and (C′ =

[[1, nn + 1]], (x1, . . . ,xnn ,x)), with associated volume weights V and V ′. Clearly, C′ extends
C by the addition of a (nn + 1)th "fictitious" node at position x.

Definition 3.8 (Sibson shape functions).
With the above definitions, we define the evaluation of Sibson shape functions on C at point
x as: ∀ i ∈ C, ∀ x ∈ Rd | V ′nn+1(x1, . . . ,xnn ,x) 6= 0,

φSi (x) def= Vi(x1, . . . ,xnn)− V ′i (x1, . . . ,xnn ,x)
V ′nn+1(x1, . . . ,xnn ,x) (3.58)

This generic construction is identical to that of Sibson in [208208] for the particular case
of Voronoi tessellations (see section FF), and for this reason we call them the Sibson shape
functions. Although elaborating shape functions from volumes is a recurring theme (see
[9999] for several examples), we did not come across any occurrence of the above general
construction in the dedicated literature.

Proposition 3.15 (Characterization of reproducibility of Sibson shape functions).
Let us assume that the discrete volume integral of a given continuous function f : Rd → R
is invariant with respect to the addition of a node at position x ∈ Ω into the point cloud.
Then, the Sibson shape functions reproduce f at x.

Proof. The key point is to assume that the discrete volume integral of a given function f :
Rd → R is invariant with respect to this cloud manipulation: ∀ x ∈ Rd | V ′nn+1(x1, . . . ,xnn ,x) 6=
0,

�

ˆ
C′
f = �
ˆ
C
f∑

i∈C′
V ′i (x1, . . . ,xnn ,x)f(xi) =

∑
i∈C

Vi(x1, . . . ,xnn)f(xi)

V ′nn+1(x1, . . . ,xnn ,x)f(x) =
∑
i∈C

(Vi(x1, . . . ,xnn)− V ′i (x1, . . . ,xnn ,x)) f(xi)

f(x) =
∑
i∈C

Vi(x1, . . . ,xnn)− V ′i (x1, . . . ,xnn ,x)
V ′nn+1(x1, . . . ,xnn ,x) f(xi)

= < f >SC (x)
Hence, f is reproduced at point x thus concluding the proof.

Remark. Proposition 3.153.15 essentially states that the Sibson reconstruction is exact on
f : Ω → R if �́C f does not depend on the number of nodes in the discretization. This
characterization of exactness is very close to that of the dual gradient: �

∗ is exact on
f : Ω → R if �́C f does not depend on the positions of the nodes. The link between these
two operators is further discussed in section 3.4.23.4.2.
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Proposition 3.16 (Support of Sibson shape functions).
With the above notation, the volume of a node i ∈ C is left unchanged by the addition of
a (nn + 1)th node at position x, if and only if φSi (x) = 0. In particular, the Sibson shape
function φSi has a compact support if and only if the addition of a node at x in C only
influences nearby nodes volume weights.

Moreover, assuming node indiscernibility (see definition 3.23.2), we have the additional
characterization: If (j, i) is an edge of the graph of �C∗, then (x1, . . . ,xnn ,xj) is in the
support of φSi .

Proof. The first result is a trivial consequence of the definition of Sibson shape functions
(definition 3.83.8). To prove the second result, suppose (x1, . . . ,xnn ,xj) is not in the support
of φSi . Then, ∀ k ∈ C,

∂Vi
∂xj

(x1, . . . ,xnn) = ∂V ′i
∂xj

(x1, . . . ,xnn ,xj) (3.59)

And,

0 = ∂V ′i
∂x (x1, . . . ,xnn ,xj) (3.60)

Let us consider the transposition π ∈ Sym(C′) defined as π(j) = nn + 1, π(nn + 1) = j, and
π(i) = i ∀ i 6= j ∈ C. Then using proposition 3.23.2, expression (3.603.60) entails:

0 =
∂V ′π(i)

∂xπ(j)
(x1, . . . ,xnn ,xj)

= ∂V ′i
∂xj

(xπ(1), . . . ,xπ(nn),xπ(j))

= ∂V ′i
∂xj

(x1, . . . ,xnn ,xj)

= ∂Vi
∂xj

(x1, . . . ,xnn)

Hence , (j, i) is not an edge of �C∗, thus concluding the proof by contrapositive.

Proposition 3.17 (Delta-property of Sibson shape functions).
The Sibson shape functions satisfies the delta property if and only if the introduction of a
new node in the point cloud at an existing node position xi splits the corresponding volume
weight Vi into two parts, and does not change the value of any other volume weights. More
precisely, we have:

φSi (xj) = δi,j ∀ j ∈ C (3.61)

If and only if:

Vi(x1, . . . ,xnn) = lim
x→xj

V ′i (x1, . . . ,xnn ,x) ∀ j 6= i ∈ C (3.62)

And,
Vi(x1, . . . ,xnn) = lim

x→xj
V ′i (x1, . . . ,xnn ,x) + V ′nn+1(x1, . . . ,xnn ,x) (3.63)

The split condition is stated with a limit to account for the possibility of a discontinuity of
the volume function when two node positions are identical.

Proof. This result is a straightforward consequence of definition 3.83.8.
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Proposition 3.18 (Positivity of Sibson shape functions).
If node volumes weights are positive and the introduction of a node does not increase the
value of any volume weight, then the Sibson shape functions are non-negative.

Proof. Again, this result is a direct consequence of definition 3.83.8.

The original Sibson shape functions fully exploit the underlying Voronoi tessellation of a
point cloud to satisfy the conditions of both propositions 3.173.17 and 3.183.18, and are consequently
positive and satisfy the delta property.

3.4.2 Link between Sibson shape functions and dual gradient
We have seen in proposition 3.133.13 that invariance of the discrete integral of a function

with respect to node positions meant exactness of the its dual gradient, and in proposition
3.153.15 that its invariance with respect to node addition meant reproducibility by Sibson shape
functions. It is hence natural to expect a direct link between the Sibson shape functions
and the dual gradient, given by the following proposition.

Proposition 3.19 (Expression of the gradient of Sibson shape functions).
Let (C,X) be a point cloud equipped with volume function denoted V C . The corresponding
dual gradient is denoted �

C∗. Let us denote C\j the cloud made of nodes of C except j
and < f >SC\j the Sibson reconstruction of a discrete function f on C\j. Then we have the
following relationship between the dual gradient on C and the evaluation of the gradient of
the Sibson reconstruction on C\j:

V Cj

(
�
C∗
j f −∇ < f >SC\j (xj)

)
=
(
< f >SC\j (xj)− fj

) ∂V Cj
∂xj

(3.64)

Proof. Let us first compute ∇φSi (xj):

∇φSi (xj) = d
dxj

V
C\j
i (x1, . . . ,xj−1,xj+1, . . . ,xn)− V Ci (x1, . . . ,xnn)

V Cj (x1, . . . ,xnn)

= −V
C\j
i − V Ci
V C 2
j

∂V Cj
∂xj

− 1
V Cj

∂V Ci
∂xj

= −1
V Cj

(
φSi (xj)

∂V Cj
∂xj

+ ∂V Ci
∂xj

)
And finally,
∇ < f >SC\j (xj) =

∑
i∈C
i6=j

∇φSi (xj)fi

= −1
V Cj

∑
i∈C

∂V Ci
∂xj

fi + 1
V Cj

∂V Cj
∂xj

fj + −1
V Cj

∂V Cj
∂xj

∑
i∈C
i 6=j

φSi (xj)fi

= �
∗ C
i + 1

V Cj
(fj− < f >SC\j (xj))

∂V Cj
∂xj

Hence the result.
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Remark. Proposition 3.193.19 confirms the equivalence between reproducibility of a function f
by the Sibson shape functions φS and the exactness of �C∗f . Moreover, it reveals that the
deviation of the dual gradient on C from the gradient of the Sibson approximation on C\j
is directly controlled by the deviation of the discrete value fj to the reconstruction at xj on
C\j. It can thus be shown that under the following (very reasonable for an approximation
of order p, see [233233] chapter 3) assumptions,

• V Cj = O(hd)
• ∂V Cj

∂xj = O(hd−1)
• ‖ < f >C\j (xj)− f(xj)‖ = O(hp+1)
• ‖∇ < f >C\j (xj)−∇f(xj)‖ = O(hp)

we can derive:
‖�C∗j f −∇f(xj)‖ = O(hp) (3.65)

And thus, the approximation power of the dual gradient is the same as that of the Sibson
reconstruction.

In the next sections of this chapter as well as in appendices EE and FF , we give both well-
known and new concrete examples of volume-based meshless operators. In particular, we
give formulae for the computation of consistent dual gradients of any given order, effectively
showing that contrary to the volume-based primal gradient, the dual gradient suffers no
limit of consistency order.

3.5 Smooth Particle Hydrodynamics revisited
We have seen in section 2.52.5 that the SPH formalism defines volume weights as a function

of particle position and constant mass nodal weights. This fits our definition of volume
function, and we now study these volume-based SPH operators:
Definition 3.9 (Volume Smooth Particle Hydrodynamics operators).
We have seen in definition 2.192.19 that given nodal weightsmi, the SPH methodology introduces
the following volume function:

V SPHi (x1 . . . ,xn) = mi∑
j∈CmjWh(‖xj − xi‖)

(3.66)

V SPHi is node indiscernible only if all the weights mi are equal. Furthermore, node j con-
tributes to V SPHi only if the distance ‖xj − xi‖ is lower than h. The volume weights
are neither explicitly nor implicitly functions of the computational domain Ω, so the corre-
sponding volume-based boundary integration operator vanishes. In particular, this means
that simulation using the SPH operators will always be dependent on ad hoc tricks for the
imposition of boundary conditions.

Because of their ‖xj − xi‖ dependency which is translation and rotation invariant and
following the global characterization of primal consistency (proposition 3.73.7), �V SPH is con-
sistent of order zero, and �V SPHx is a symmetric matrix. Differentiation of the SPH volume
function gives: ∀ i 6= j,

AV SPH
i,j = −

(
V SPHi

)2 mj

mi
∇Wh(xj − xi) (3.67)

In SPH-friendly form, the associated primal gradient thus reads: ∀ f : C → R,

ρi�
V SPH
i f = −

∑
j∈N (i)

mj∇Wh(xj − xi)(fj − fi) (3.68)
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This form of the SPH gradient is very similar to the renormalized SPH gradient of order
zero (see expression 2.492.49), the main difference being that the summation includes density
weights and not only volume weights.

The volume-based SPH dual gradient reads: ∀ f : C → R,

ρi�
∗ V SPH
i f = −

∑
j 6=i∈C

mj∇Wh(xj − xi)
(
fj
ρ2
j

+ fi
ρ2
i

)
(3.69)

Just like its counterparts of section 2.52.5, the volume-based dual SPH gradient is not even
zeroth-order consistent for general node positions since the total volume is not independent
of particle positions. It should thus be surprising to know that �∗ V SPH is the preferred
gradient for the evaluation of stresses in the SPH community (see [161161] for instance). One
of the main reasons for its success is that the consistency properties of the its dual operator
(i.e. the primal volume-based SPH gradient �V SPH) translate into conservation properties
of Lagrangian-based formulations (see appendix GG for more details).

Even if the volume SPH operators are not compatible for general node positions, the
question remains whether we can find particular node positions for which the compatibility
error either vanishes or remains low enough to retain optimal convergence. This idea, which
we develop in the next section, amounts to introducing a stabilizing term into the discrete
equations. We consider it as one of the most promising way around the meshless curse (see
conjecture 2.42.4).

3.6 Achieving approximate compatibility through the
adjustment of nodal positions

Several well-known volume functions (like the SPH volume function) do not provide an
approximation of the total volume of the simulation domain which is independent of nodal
positions. As a consequence of the global characterization of dual consistency (see propo-
sition 3.133.13), these volume functions do not yield compatible discrete operators. However,
compatibility for arbitrary node position is a stronger requirement than needed for simula-
tion: what we really want is compatibility (or even approximate compatibility as explained in
section 4.3.24.3.2) for one particular set of nodal positions X. In this section, we take advantage
of the point-wise expression of the error of the dual gradient of corollary 3.123.12 to re-interpret
several known stabilization methods as procedures seeking to lower the compatibility error.

3.6.1 Maximizing the total discrete volume
We have seen in corollary 3.123.12 that the compatibility error of volume-based operators

can be written in terms of the total discrete volume as:

Vi�
∗
i 1 = − d

dxi

∑
j∈C

Vj

∣∣∣∣∣∣
Ω=cst

(3.70)

Note that in the above expression, only discretization nodes are supposed to move, while the
underlying computational domain Ω remains motionless. Hence, in the case of volume-based
operators, finding node configurations such that �∗1 = 0 essentially comes down to finding
extremal points of the total volume considered as a function of X. Such configurations can
either be extrema of the total volume (either minima or maxima), or saddle points.
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In order to understand why maxima of the volume function are the most desirable al-
ternative, let us take the example of the volume-based SPH volumes (see expression 3.663.66).
If every node of the discretization is set at a distance greater than the smoothing length h
from every other node in the discretization, then each volume weight is maximal, with value
V SPHmax = 1

Wh(0) . In particular, this shows that the total volume is bounded from above. On
the other end of the spectrum, the total volume is minimal when every node is in the same
position, and in this case, it has the same value as that of an isolated node: V SPHtot min = 1

Wh(0) .
Of course, in such extreme situations, either the density of nodes compared to the smooth-

ing length is not well suited to represent the computational domain, since every node should
"be responsible for" a volume greater than the volume enclosed in its "field of view" (the ball
centered in the node position of radius h in the case of SPH), or the node distribution does
not allow a good representation of continuous fields. Nevertheless, this example hints at the
following idea: volume functions are designed so that nodes have greater volumes when they
are isolated and far apart from other nodes than when they are clumped together. Maxi-
mizing node volumes while constraining node positions inside Ω will thus tend to space out
nodes evenly in an harmonious fashion, whereas minimizing node volume tends to group
nodes together. Saddle points are in-between configurations. In fact maximization of SPH
node volumes has been proposed as a method to generate "blue noise" configuration, i.e.
configuration of nodes that are both harmonious and unstructured (see [9292] for instance).

One of the best known methods to solve this type of optimization problem is the gradient
descend, which consists in following gradient flow lines of the function to optimize. In its
time-continuous version, it can be stated in the following form: in order to find a local
maximum of Vtot, advect nodes i of the point cloud with velocity proportional to the gradient
of the cost function. In our case, this reads:

dxi
dt = α

∂Vtot
∂xi

= −αVi�∗i 1 (3.71)

The total volume function indeed increases with (fictitious) time since we have:

Vtot(t)− Vtot(0) =
ˆ t

0

dVtot
dt dt

=
ˆ t

0

∑
i∈C

∂Vtot
∂xi

· dxi
dt dt

=
ˆ t

0

∑
i∈C

(
∂Vtot
∂xi

)2
dt ≥ 0

As a consequence of monotony and boundedness, Vtot(t) converges to a finite value
denoted V∞tot as t → +∞. Of course, we want to constrain node to stay within the compu-
tational domain and avoid the fact that nodes drift as far as not to be in smoothing length
range from each other. To that end, we introduce a few layers of regularly spaced nodes
around Ω as represented in figure 3.43.4.

As the nodes move, the value of V∞tot − Vtot(t) =
´∞
t

∑
i∈C

(
∂Vtot
∂xi

)2
dt decreases. With

an additional regularity assumption on the volume function (such as a Lipschitz condition on
the partial derivatives of Vtot for instance), we can prove that the value of ∂Vtot

∂X = −Vi�∗1
tends to vanish. In other words, we asymptotically reach a node distribution with exact
compatibility.

Several correction procedures present in recent SPH formulations found in the meshless
fluid simulation literature bear striking similarities with this idea. In fact, the Fick-based
shifting of Lind et al. (see equation (24) of [143143]) can be reinterpreted in the light of the
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Figure 3.4 – The generation of point clouds well-suited for meshless simulations is some-
how similar to the meshing procedure in mesh-based methods: it should not be performed
regardless of the numerical method that follows. The advection method presented in this
section adapts a point cloud to the chosen set of operators, lowering the error on the discrete
dual gradient on uniform fields.
a) Initial Halton sequence made of 2500 nodes, enclosed in two layers of regularly distributed
nodes. This boundary layer of motionless nodes ensures that interior nodes stay within the
computational domain, and that the total volume has local maxima. On this non-optimized
node distribution, the Stokes error is ‖�V SPH ∗1‖L2(C) ≈ 29.1.
b) The point cloud after a few iterations of the gradient descent. Note how regular the node
distribution has become: the inter-node spacing looks much more homogeneous, but periodic
or quasi-periodic structures have not yet started to appear. Convergence was stopped as soon
as the Stokes error reached ‖�V SPH ∗1‖L2(C) / 1.
c) The point cloud after more iterations of the gradient descent algorithm. The node distri-
bution now presents a grain-like structure of regularly arranged nodes reminiscent of atomic
arrangement in crystals. Convergence was stopped as soon as the Stokes error reached
‖�V SPH ∗1‖L2(C) / 5× 10−3.
d) The point cloud after a more strict convergence of the gradient descent algorithm. Visu-
ally, the situation is very close to c). Convergence was stopped as soon as the Stokes error
reached ‖�V SPH ∗1‖L2(C) / 5× 10−8.



106 CHAPTER 3. THE VOLUME METHOD

gradient descent method described above. Indeed, it is tantamount to the subtraction of
an Arbitrary Lagrangian-Eulerian (ALE) velocity term of the form ci = αVi�

∗
i 1. The final

system of Ordinary Differential Equations (ODEs) thus becomes:

∀ i ∈ C,


mi

dvi
dt = fi

dxi
dt = vi − αVi�∗i 1

(3.72)

This idea is itself a modification of the classical modified SPH (or XSPH) of Monaghan (see
equation (2.4) of [164164]). More recently, the addition of a uniform background pressure in
the conservation of momentum equation has been a recurring theme, with for instance the
contributions of Adami et al. (see equation (13) of [44]) and Litvinov et al. (see equation (17)
of [146146]). Roughly speaking, all these proposition come down to writing the additional term
as a force, and not as a velocity:

∀ i ∈ C,


mi

dvi
dt = fi − βVi�∗i 1

dxi
dt = vi

(3.73)

In order to understand why this has a beneficial effect on compatibility, we remark that in
the presence of dissipative forces (fi · vi < 0 in expression (3.733.73), for instance fi = −Dvi
where D denotes a positive definite tensor), the following expression is decreasing:

L
(

X, dX
dt

)
=
∑
i∈C

1
2v2

i − βVi(X) (3.74)

Any equilibrium will thus be a local minimum of L and verify ∂L
∂X = 0, which are exactly

the compatibility conditions: �∗1 = 0.
In the next section, we devise a numerical experiment to test the volume maximiza-

tion procedure in a simple case and derive guidelines for the most adequate values of the
stabilization coefficients α and β.

3.6.2 Numerical experiments
In the context of Lagrangian simulation of a fluid flow, the point cloud is evolving at

every time step following the velocity streamlines. In the previous section, we reinterpreted
the Fick-based shifting procedure of Lind et al. (see [143143]) as an ALE term corresponding to
the gradient descent optimization procedure. The aim of this section is to investigate how
the addition of this regularizing source term quantitatively impacts the kinematics of the
fluid, and to find a balance between the desired compatibility level and the magnitude of
the ALE source field.

In order to design a numerical experiment, let us suppose that the physical velocity field
is extremely well captured by the simulation. The top left plot of figure 3.53.5 shows an initially
Cartesian nodal distribution advected by a smooth divergence-free Taylor-Green flow after
two full turns. Even if the divergence-free condition ensures that the transformation does
not change the density at the continuous level, the corresponding node distribution does not
look regular any more. The direction of the flow is then reversed, and the nodes come back
in their initial positions (top right plot). The middle and bottom rows of figure 3.53.5 show
the very same process, but with non-vanishing gradient descent coefficient α. The node
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Figure 3.5 – Even in the case of the divergence-free Taylor-Green flow, a stabilization
procedure is necessary to avoid node clumping and creation of voids. The above plots shows
the result of the modified advection (see equation (3.723.72)) of an initially Cartesian distribution
on nodes. On the left column, the advection is shown after two full turns. The advection
velocity is then reversed and two full turns are again carried out. In order to follow the
distribution, nodes are colored according to their initial y-coordinate.
Top row: the descent coefficient is set to α = 0: the advection is exact. Notice how the initial
Cartesian regularity is completely lost at mid-time but then completely recovered at the final
time.
Middle row: the descent coefficient is set to α = 0.003. The node distribution is much more
regular and does not present periodic substructures.
Bottom row: the descent coefficient is set to α = 0.1. Notice how the nodes organize in
locally structured patterns reminiscent of atomic arrangement in crystals.
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Figure 3.6 – Stokes L2 error of an initially
Cartesian point cloud of 400 nodes advected by
the Taylor-Green flow, and relaxed by formula-
tion 3.723.72 as a function of time. At mid-time,
the Taylor-Green flow is reversed. The system of
ODEs is only reversible in the case α = 0. The
values of α used are: 0.3, 0.1, 0.03, 0.01, 0.003,
0.001 and 0.
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Figure 3.7 – Time-averaged Stokes’ error as a
function of the parameter α in the case of the
modified Taylor-Green vortex flow. The number
of nodes used are: 400, 900, 2500, 4900, 10000
and 22500.
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Figure 3.8 – Time-averaged Stokes error as a function of discretization length in the case of the
modified Taylor-Green vortex flow with the SPH volume function. The values of γ used are: 0.3, 0.1,
0.03, 0.01, 0.003, 0.001 and 0.
Left: Stokes error of the volume-based SPH gradient.
Right: Stokes error of the renormalized volume-based SPH gradient of order one.
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distribution remains more regular throughout the process, but nodes do not come back to
their original positions after being advected with the reversed flow. Yet, the original colors
are still more or less retrieved.

Figure 3.63.6 gives the instantaneous Stokes error during the advection process for a partic-
ular point cloud. In the non-modified case, the flow is exactly reversed. Notice how in the
ALE case, the Stokes error manages to stay close to a constant plateau, except at the very
beginning, and at mid-time when the flow is reversed. Figure 3.73.7 gives the time-averaged
Stokes error throughout the test for several point cloud refinement levels as a function of
the ALE coefficient α. A least-square fit reveals the following approximate dependency:
‖�V SPH ∗‖L2(C) ∝ α−0.65.

The left plot of figure 3.83.8 gives the time-averaged Stokes error of the volume-based SPH
operators as a function of the discretization length for several values of the ALE coefficient
α. Notice how the behavior is completely different for α = 0 and α 6= 0. In the first case,
the Stokes error grows as ∝ h−1 whereas as soon as α 6= 0, the Stokes error decreases
with the smoothing length. A least square fit gives the following approximate dependency:
‖�V SPH ∗‖L2(C) ∝ h0.35. Even if these exponents are probably case-dependent, they still
seem to indicate that we can choose a value α = O(

√
h) in order to keep bounded values

of the Stokes error as the smoothing length decreases. This choice would ensure that the
advection velocity goes to zero as the cloud is refined as ‖ci‖ = α‖Vi�∗i 1‖ = O(

√
h), so that

the method is asymptotically Lagrangian instead of fully ALE. Of course, other compromises
could also be made.

Finally, the right plot of figure 3.83.8 gives the time-averaged Stokes error of the renormal-
ized volume-based SPH operators as a function of the discretization length for point clouds
advected in the Taylor-Green flow modified with an ALE term based on the SPH volume.
Even if this methodology does not guarantee that the Stokes error should converge to zero
– or even decrease at all –, we do observe such a behavior. Unfortunately, its value still in-
creases with h so that the method cannot be made asymptotically Lagrangian while keeping
the Stokes error bounded.

The results of this section again confirm that approximate compatibility is sufficient to
ensure second order convergence of meshless weak discretizations of elliptic systems. More-
over, the particle arrangement has a big impact on Stokes’s error. Even though classical
stabilization procedures can be re-interpreted as trying to restore dual consistency of order
zero of volume-based gradient operators. We observed that they decrease the Stokes error
of other formulations as well, justifying their widespread use.

3.7 The Smoothed Finite Element Method operators
revisited in the volume-based approach

In this section, we investigate the operators generated by the SFEM volume function
defined in section 2.7.22.7.2. In a nutshell, these operators have extremely good properties,
achieving consistency of any order for the integration and dual gradient operator as well as
compatibility. The mesh-based background integration procedure of section 2.7.32.7.3 is adapted
to the present context, and is shown to be able to preserve first order consistency and
compatibility of the discrete operators.

3.7.1 A volume function from the reconstruction operator
In this section, we assume given a reconstruction operator. This might be the Moving

Least Squares (MLS) reconstruction (see section D.2D.2), the P-1 reconstruction on a simplex



110 CHAPTER 3. THE VOLUME METHOD

mesh (see section 2.7.12.7.1), the Reproducing Kernel Hilbert Space (RKHS) reconstruction
(see section EE), et cetera . . . The following definition provides volume function from the
reconstruction operator. This definition is identical to that of the SFEM integration operator
(definition 2.242.24). We recall it here with slightly different notations to insist on the fact that
the shape functions are functions of the evaluation point x, but also of the node positions
X = (x1, . . . ,xnn).

Definition 3.10 (Smoothed Finite Element Method volume function).
Let (C,X) be a point cloud, and < . >: (C → R)→ (Rd → R) a reconstruction operator on
the point cloud. We define the SFEM discrete integration operator as: ∀ f : C → R,

�

ˆ V SFEM

C
f

def=
ˆ

x∈Ω
< f > (x) dV (3.75)

The corresponding volume weights read:

V V SFEMi (Ω,x1, . . . ,xnn) def=
ˆ

x∈Ω
φi(x1, . . . ,xnn ,x) dV (3.76)

The volume function depends on node positions through the shape functions, and on Ω
through the integration domain.

Although these are exactly the classical SFEM volume weights introduced in section
2.7.22.7.2, the next proposition shows that applying the theoretical results of sections 3.13.1-3.43.4
concerning volume functions to the SFEM volume weights yields differentiation operators
that are akin, but not identical to the classical SFEM differentiation operators in general.
In particular, while classical SFEM (primal or dual) gradients typically do not achieve high
order consistency (see proposition 2.92.9), we can already state the following result:

Proposition 3.20 (Volume-based dual gradient of arbitrary consistency order).
If < . > reproduces a continuous function f on Ω, then �

V SFEM ∗ is exact on f . In
particular, there exists volume functions whose derived dual gradient operator is local and
consistent of any order p ∈ N.

This result concerning volume-based dual gradients comes in stark contrast with the
primal case, which cannot achieve first order consistency while remaining local (see section
3.1.43.1.4).

Proof. There exist local reconstruction operators that reproduce polynomials of any order
(see for instance the MLS shape functions and proposition D.4D.4). Since the exactness of
the integration operator stated in proposition 2.82.8 is valid for any node configuration, the
value of the discrete integral of a reproduced function is always equal to the value of the
exact integral. In particular, this value does not depend on the node positions, and as a
consequence of the global consistency conditions given in proposition 3.133.13, the dual gradient
is exact.

Since it heavily uses previous results, this proof might not seem very convincing. We
give an alternative proof using dual gradient coordinates on page 111111.

Proposition 3.21 (Expression of the volume-based dual SFEM gradient).
The associated dual gradient operator reads:

Vi�
V SFEM∗
i f = −

ˆ
x∈Ω

∑
j∈C

∂φj
∂xi

(x1, . . . ,xnn ,x)fj dV (3.77)
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Or in coordinate form:

AV SFEM∗
i,j = −

ˆ
x∈Ω

∂φj
∂xi

(x1, . . . ,xnn ,x) dV (3.78)

Using these expressions, we conclude that (i, j) is an edge of the graph of �SFEM ∗ if and
only if the shape function φj , locally depends on the position of node i. Figure 3.93.9 goes
further in the description of this graph in the case of the Shepard shape functions.

Proof. This is a direct application of the definition of volume-based dual gradient (definition
3.73.7).

Using the coordinate form of the dual gradient, let us give an alternative proof of propo-
sition 3.203.20.

Coordinate proof of proposition 3.203.20. Differentiating the reproducibility conditions with re-
spect to xi, we get: ∀ x ∈ Ω,

φj(x1, . . . ,xnn ,x)∇f(xi) = −
∑
j∈C

∂φj
∂xi

(x1, . . . ,xnn ,x)f(xj) (3.79)

Integration of the above expression over Ω yields:(ˆ
x∈Ω

φi(x1, . . . ,xnn ,x) dV
)
∇f(xi) =

∑
j∈C

(
−
ˆ

x∈Ω

∂φj
∂xi

(x1, . . . ,xnn ,x) dV
)
f(xj)

(3.80)
Which is exactly the coordinate form of the exactness conditions for the SFEM volume-based
dual gradient on f .

Remark. The expression of the volume-based SFEM dual gradient coefficients incorporates
the term −∂φj∂xi , replacing the term φi∇φj of the classical SFEM operator. These two terms
behave quite differently of a reproduced function f :

• The classical term φi∇φj allows the reproduction of ∇f under the integral sign. If
f is affine (as in expression (2.732.73)), its gradient is constant and matches the nodal
value, which is sufficient to ensure first order consistency. Else, the exact gradient
gets smoothed away by the φi factor in the integral and the nodal value is not exactly
captured.

• In contrast, the −∂φj∂xi term of the volume SFEM allows the exact value of the gradi-
ent at node xi to appear in expression (3.793.79) and survive the integration process in
expression (3.803.80), yielding exactness of the dual gradient for any reproduced function.

Remark (Sibson shape functions of SFEM volumes). The methodology described in this
section allows the construction of a volume function given a reconstruction operator. As we
have seen in section 3.43.4, it is also possible to generate the Sibson reconstruction operator from
a volume function. In both cases, reproducibility of a continuous function f is equivalent
to constancy (a slightly weaker notion than exactness) of both the discrete integration and
dual gradient operators. It is thus natural to wonder whether the Sibson shape functions
of a SFEM volume function are the original shape functions. Such a result would truly be
amazing: Integration and addition of a node in the point cloud would thus become two
inverse operations. The examples detailed in appendices EE and FF show that it might or
might not be the case depending on the specificities of the initial shape functions.
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Figure 3.9 – The intersection of the supports of shape functions give the graph of the SFEM
operators. Several iso-values of the Shepard shape functions are represented above, both for
the integration reconstruction and the advection reconstruction.
a) The supports of the integration shape function φ and the advection shape function Ψ do
not intersect, thus Ared,blue = 0. In other words, (red, blue) is not an edge of the graph of
�
V SFEM ∗. In particular, locality of the shape functions imply locality of �V SFEM ∗.

b) The red node is not a boundary node since the intersection of supp(φ) with the boundary
∂Ω has non-vanishing measure.
c) The support of the integration shape function φ intersects the boundary ∂Ω, so the cor-
responding node is a left-sided boundary node. Similarly, the support of the advection shape
function Ψ intersects the boundary, so the corresponding node is a right-sided boundary node.
d) The intersection of the supports of the two shape functions and the boundary is non-empty,
thus Γred,blue = Γblue,red 6= 0.
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Proposition 3.22 (Volume SFEM boundary integration and primal gradient operators).
Let us denote < . >Ψ the advection reconstruction operator, i.e. the operator defining the
domain local dependency with respect to node movement (see section 3.2.13.2.1). The corre-
sponding shape functions are denoted Ψj : Rd → Md(R). As a consequence of the Reynolds
transport theorem, the boundary operator reads: ∀ f : C → R, ∀ v : C → Rd,

“ V SFEM

∂C
fv =

ˆ
x∈∂Ω

< f > (x) < v >Ψ (x) · n dS (3.81)

In coordinate form, this reads: ∀ i, j ∈ C,

ΓV SFEMi,j =
ˆ

x∈∂Ω
φi(x)Ψj(x) · n dS (3.82)

The graph of the boundary integration operator is interpreted on figure 2.72.7.

Remark. The simplest choice for the advection reconstruction operator is obviously <
. >Ψ=< . >, i.e. ∀ i ∈ C, ∀ x ∈ Ω, Ψi(x) = φi(x)Id. With this choice, the boundary
operator is symmetric and coincides with the classical SFEM boundary integration operator
(see definition 2.262.26): ∀ i, j ∈ C,

ΓV SFEMi,j = ΓV SFEMj,i =
ˆ

x∈∂Ω
φi(x)φj(x)n dS

Proposition 3.23 (Expression and consistency of the volume SFEM primal gradient).
The corresponding primal gradient reads: ∀ v : C → Rd,

Vi�
V SFEM
i · v =

∑
j∈C

(ˆ
x∈Ω

∂φi
∂xj

(x) dV
)
· vj +

ˆ
x∈∂Ω

φi(x) < v > (x) · n dS (3.83)

Or in coordinate form: ∀ i, j ∈ C,

AV SFEM
i,j =

ˆ
x∈Ω

∂φi
∂xj

(x) dV +
ˆ

x∈∂Ω
φi(x)Ψj(x) · n dS (3.84)

As we have seen in section 3.1.43.1.4, we cannot expect affine covariance of the volume function
equivalent to first order consistency of �V SFEM while retaining locality. In this case, the
best one can expect is to achieve covariance with respect to isometric transformations. As a
straightforward consequence of proposition 3.73.7, rigid motion covariance is achieved as long
as the integration shape functions themselves are rigid motion covariant and the advection
shape functions reproduce vector fields of the form v(x) = Ax + b where A = −AT .

Similarly to the classical SFEM case, the volume-based SFEM construction is mostly
theoretical: there is for instance no known closed-form formula for the integration of meshless
shape functions such as the MLS shape function, and it is doubtful that such formulae
even exist. However, it is still possible to devise a mesh-based integration procedure that
preserves the compatibility of the operators, as developed in section 3.7.23.7.2. Once again, this
construction does not break the meshless curse (see conjecture 2.42.4) since the integration is
performed using an underlying mesh.

3.7.2 A background mesh integration procedure for the volume-
based SFEM operators

In this section, we develop a discrete integration procedure for the volume-based SFEM
operators introduced in section 3.7.13.7.1 using a mesh. As we have seen in propositions 3.73.7 and
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3.133.13, primal consistency is a consequence of covariance properties of the volume weights with
respect to space transformations, whereas dual consistency is a consequence of the fact that
the discrete integral of polynomials does not depend on the specific values of the positions
of the discretization nodes. The challenge of a discrete integration procedure for the volume-
based SFEM operator is to find a way to keep these properties from the continuous world
inside the discrete world.

Let us thus suppose given an integration mesh denotedM. We have seen in section 2.7.32.7.3
that the following discretization of the SFEM volume weights yields a first-order consistent
volume integration operator on a point cloud: ∀ i ∈ C,

V V SFEM M
i

def=
∑

/Cd∈M
V (/Cd)φi(x(/Cd)) (3.85)

Consistency does not appear out of thin air: rather, it is transferred from the reconstruc-
tion procedure < . > to the volume integration operator �́V SFEMC through another discrete
volume integration operator (here, we used the mesh-based one point formula). Hence, if we
wanted to transfer a higher consistency order to the mesh-integrated SFEM integration oper-
ator �́V SFEMC , we would need to use a discrete integration method with a higher consistency
order.

Following the mantra of the volume-based meshless operator framework, the primal gradi-
ent is obtained by differentiation of the nodal volume weights considering that the underlying
space is dragged along with the discretization nodes through the advection reconstruction
< . >Ψ. Here, the computational space is present in its discrete version: M. Advection of
the mesh is achieved through the advection of its nodes, we thus define: ∀ i, j ∈ C,

AV SFEM M
i,j

def= d
dxj

∑
/Cd∈M

V (/Cd)φi(x(/Cd))

=
∑

/Cd∈M
V (/Cd) ∂φi

∂xj
(x(/Cd)) (3.86)

+
∑

/C0∈∂ /Cd
ΨT
j (x(/C0)) ·

(
φi(x(/Cd))∂V (/Cd)

∂x(/C0)
+ V (/Cd)∂x(/Cd)

∂x(/C0)

T

· ∇φi(x(/Cd))
)

In the above expression, the derivatives of the volumes and centroids of cells of the mesh
with respect to node movement appear. Since the advection field is very general, we cannot
guarantee that planar p-cells of the mesh (i.e. cells of dimension p that are contained in an
affine subspace of dimension p) are kept planar in the process. For this reason, we need a way
to be able to compute volumes and centroids of cells of a mesh, as well as their derivatives
with respect to node position in a very general setting. This task is carried on in section
1.21.2.

Proceeding similarly to the continuous case, a first choice for the discretization of the
dual gradient is to recognize the first term of expression (3.863.86) as the opposite of the dual
gradient operator. Equivalently, this means we use the same discrete integration on M as
for volume weights, which gives: ∀ i, j ∈ C,

AV SFEM M ∗
i,j = −

∑
/Cd∈M

V (/Cd)∂φj
∂xi

(x(/Cd)) (3.87)

A straightforward adaptation of the coordinate proof of proposition 3.203.20 given on page 111111
shows that – as in the exactly integrated case – this definition converts the reproducibility
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of a continuous function f by < . > into exactness of �V SFEM ∗f , without any restriction
on f ! This astonishing result however comes at a price: the resulting boundary integration
operator is the second term of expression (3.863.86), which – unlike its name suggests – involves
every vertex in the mesh. Consequently, we have Γi,j 6= 0 for nodes i and j of the point
cloud arbitrarily far from the boundary.

In order to avoid this awkward behavior, we prefer to forsake the surprising possibility
of dual consistency of arbitrarily high order, and instead include nodes that do not belong
to the boundary of the mesh in the definition of the dual gradient: ∀ i, j ∈ C,

AV SFEM M ∗
i,j

def= −
∑

/Cd∈M
V (/Cd)∂φj

∂xi
(x(/Cd)) (3.88)

+
∑

/C0 /∈/Cd
/C0∈∂M

ΨT
i (x(/C0)) ·

(
φj(x(/Cd))∂V (/Cd)

∂x(/C0)
+ V (/Cd)∂x(/Cd)

∂x(/C0)

T

· ∇φj(x(/Cd))
)

The first term of expression (3.883.88) is the consistent term of expression (3.873.87), while the
second is a differential integration error that does not break consistency of maximal order
p = 1. This order limitation would be pushed back if we were to use a discrete integration
formula of higher order for the volume weights.

This choice ensures that the boundary integration operator vanishes for edges that are
located far away from the boundary since the corresponding boundary integration coefficients
read: ∀ i, j ∈ C,

ΓV SFEM M
i,j =

∑
/Cd∈M

∑
/C0∈∂ /Cd
/C0∈∂M

ΨT
j (x(/C0)) ·

(
φi(x(/Cd))∂V (/Cd)

∂x(/C0)
+ V (/Cd)∂x(/Cd)

∂x(/C0)

T

· ∇φi(x(/Cd))
)

(3.89)
These definitions for the mesh-integrated volume-based SFEM operators allow us to state

the following result:

Proposition 3.24 (Consistency of mesh-integrated volume-based SFEM operators).
The mesh-integrated volume-based SFEM operators whose coefficients are given in expres-
sions (3.853.85), (3.863.86), (3.883.88) and (3.893.89) inherit all consistency properties of their exactly inte-
grated analogs up to order p = 1. Moreover, the boundary cloud is restricted to nodes that
are close to the boundary compared to the size of the supports of shape functions and the
integration mesh.

Let us now compare the mesh-integrated classical and volume-based SFEM operators.
First of all, as in the exactly integrated case, the corresponding volume integration operators
are identical. Indeed, the only concern when discretizing the volume integration operator is
to transfer first order consistency of the reconstruction operator via the mesh-based integra-
tion.

Secondly, even though the exactly integrated discrete boundary integration operators
coincide (in the case Ψ = φId), their two mesh-integrated equivalents differ. The reason
for this difference is that the two methods choose different paths to exploit the topological
structure of the mesh in order to pass on the properties of the exactly integrated discrete
operators to their mesh-integrated analogues:

On the one hand, the mesh-integrated classical SFEM operators take advantage of the
cell-face relation of the mesh using Gauss-type integration for the gradient – an approach
reminiscent of FVM-type discretizations – and the oriented face vector areas Γ(/Cd−1). This
approach makes the most of the chain complex structure of the mesh (see proposition 1.51.5):
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∂M

x(Cd−1)/

a) b)

∂M ∂M

c) d)

Figure 3.10 – Discrete mesh-integrated volume-based SFEM operators can have a slightly
different graph from their exact analogues (see figure 3.93.9), especially if the meshM is coarse
compared to the point cloud. On each subgraph, we represent in red the support of a recon-
struction basis function φ, and in blue the support of an advection basis function Ψ.
a) supp(φ) and supp(Ψ) do not intersect. Still, there is a cell whose centroid is in supp(φ)
and which has a node in supp(Ψ). Hence, (red, blue) is an edge of the graph of �V SFEM M.
b) Contrary to the same situation using the classical mesh-integrated SFEM operator (see
figure 2.82.8 b)), the red node is not a boundary node.
c) Even though supp(φ), supp(Ψ) and ∂M have an empty triple intersection, supp(Ψ) con-
tains a node of ∂M which is in the boundary of a cell whose centroid is in supp(φ). Conse-
quently, (red, blue) is a boundary edge.
d) For the same reason, (red, blue) is an edge of the volume-based mesh-integrated SFEM
boundary integration operator contrary to the classical mesh-integrated case (see figure 2.82.8
d)).
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compatibility is ensured thanks to the closure property, its immediate geometric consequence,
which certifies that faces of the boundary of a cell in a mesh adequately enclose the cell
volume (see expression (1.311.31)).

On the other hand, the mesh-integrated volume-based SFEM operators capitalize on the
fact that the formulae for the volumes and centroids of cells in a mesh developed in section
1.21.2 (in particular proposition 1.131.13) take their validity from the fact that the topological
cell-tuple structure of the mesh retains its soundness for a wide range of node positions. In
particular, the fact that p-cells are not assumed to be embedded in a linear subspace of
dimension p lets us move the nodes of the mesh with an arbitrary velocity field, enabling
an appropriate transfer of the volume-based methodology from the exact integration case
to the discrete integration level. As a consequence, the relevant topological relation is no
longer the cell-face relation, but the full cell-node relation through the computation of the
derivatives of cell volumes and centroids with respect to node positions.

As a result of this discrete integration, the graphs of mesh-integrated volume-based
SFEM operators are slightly different from the exactly integrated operators. For instance,
(i, j) is an edge of the graph of �V SFEM M (i.e. AV SFEM M

i,j 6= 0) if there is a cell /Cd ∈M
with centroid x(/Cd) in the support of φi and either with centroid in the support of Ψj as
well, or with a node /C0 ∈ ∂ /Cd in the support of Ψj . Figure 3.103.10 shows several examples of
subtle configurations using the MLS reconstruction.

In order to complete the discretization of Neumann and Dirichlet boundary conditions
using Nitsche’s weak form (as presented in section 4.2.14.2.1), we need to give discrete versions
of
› V SFEM M
∂C fv where one of the fields is discrete, and the other one is continuous. This

discretization must coincide with
›
∂C fv dS for linear fields, and above all, it needs to only

use values of the continuous function on ∂Ω. This last requirement is there because boundary
condition fields (Dirichlet values and Neumann fluxes) are only defined on the boundary.

First, let us rewrite the formula for the vector boundary integration weights (expression
(3.893.89)) as:

ΓV SFEM M
i,j =

∑
/C0∈∂M

ΨT
j (x(/C0)) · ∂

∂x(/C0) �
ˆ
M
φi (3.90)

Hence,
› V SFEM M
∂C fv can be re-written as:

“ V SFEM M

∂C
fv =

∑
/C0∈∂M

< v >Ψ (x(/C0)) · ∂

∂x(/C0) �
ˆ V SFEM M

C
f (3.91)

This suggests the following discretization if v is continuous and f is discrete:
“ V SFEM M

∂C
fv =

∑
/C0∈∂M

v(x(/C0)) · ∂

∂x(/C0) �
ˆ V SFEM M

C
f (3.92)

The above expression only involves evaluations of v at the boundary and coincides with
expression (3.913.91) if v is reproduced by < . >Ψ. If on the other hand f is continuous and
v discrete, we need to find a linear consistent approximation of ∂

∂x(/C0)

´
x∈M f(x) dV that

only uses values of f on the boundary. This highly non-trivial task requires an in-depth
understanding of the geometry of polygonal meshes, and especially of non-planar cells. It is
performed in section 1.3.2.31.3.2.3.
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Definition of �
ˆ
C

Volume weights Vi

Computation space Ω Node positions
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∂C
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f
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Vi =

ˆ
Ω
φi(x) dx

Figure 3.11 – This diagram recapitulates the objects defined via the volume function through
variations with respect to every possible variable, and links the desirable properties of the
volume integration method with their consequences on the derived operators.

A quick summary

In this chapter, we have presented a general method to exploit the dependency of volume
integration weights with respect to its geometrical variables in order to generate derived
primal and dual differential operators, a discrete boundary integration operator and nodal
shape functions. We then related local and global consistency characterizations for these
derived operators to properties of the initial volume weights, providing guidelines for the
development of reliable discrete structures. The main definitions and theoretical results are
summarized on figure 3.113.11.

We found that primal consistency at a given node was related to covariance of the
corresponding volume weights with respect to transformations of space. Furthermore, we
proved that first order consistency of the primal gradient could not be reconciled with
locality.

We then proposed to decouple the different contributions of discretization nodes and
computational space: considering variations of discrete volume weights with respect to the
computational space only allowed us to define a boundary integration operator and to de-
scribe the corresponding dual gradient. This is the first time that a similar treatment has
been given in the literature. In contrast to its primal counterpart, we showed that dual
consistency at a given node was related to the invariance of the value of the integral as
this node is moved, and that this notion was equivalent with the reproducibility property
of Sibson shape functions. With this idea in mind, we could re-interpret classical stabiliza-
tion procedures in SPH as actually trying to find a particular set of node positions that
maximizes the discrete total volume, making it locally invariant, thus locally achieving dual
consistency.

These theoretical results were highlighted with the examples of the SPH and volume-
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based SFEM operators. In particular, we developed a simple discrete integration procedure
allowing the computation of compatible linear consistent nodal meshless operators.
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In this chapter, we use the meshless framework and operators developed in earlier chap-
ters to solve systems of elliptic differential equations.

In section 4.14.1, we recall two continuous formulations of elliptic PDEs: the classical weak
form and the symmetric Nitsche weak form. Since the two formulations only differ in their
way to handle boundary conditions, their nodal discretization have one central patch test
necessary conditions: compatibility. We verify throughout this chapter that compatibility –
or at least approximate compatibility – is indeed necessary for optimal convergence.

On the one hand, the Nitsche formulation imposes Dirichlet boundary conditions weakly.
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Even though it is somewhat cumbersome with its numerous added boundary terms and the
fact that it requires a specific boundary stabilization to ensure coercivity, its weak nodal
discretization is almost immediate in our meshless framework once every discrete operator
is available.

In section 4.24.2, we compare the performance of the classical and the volume-based SFEM
operators on this formulation. We realize that the classical formulation is less prone to
under-integration issues, but its volume-based alternative does not require any additional
bulk stabilization. We then give numerical evidence that these advantages can be combined
in an element-free Galerkin discretization with non-nodal integration.

In section 4.34.3 on the other hand, we investigate the possibility of handling Dirichlet
boundary conditions in an essential way. A naive first proposal necessitates the positioning
of boundary nodes exactly on the boundary of the computational domain. In our effort to
circumvent this inconvenient restriction, we augment our meshless framework with a general
method to build a discrete trace operator and H1

0 Sobolev spaces and treat the Dirichlet
boundary conditions essentially. Provided adequate discrete operators can be built, we give
numerical evidence that this new formulation performs equally well as a linear finite element
method.

Finally, these two ways of handling boundary conditions are compared on a common
linear elasticity test case.

4.1 Several continuous formulations of elliptic partial
differential equations

In this section, we detail the several continuous formulations of elliptic equations. See
Gilbarg and Trudinger [103103] for a thorough theoretical treatment of the Poisson problem.

4.1.1 The scalar diffusion equation

Let Ω be a compact subset of Rd with non-empty interior and regular enough boundary
∂Ω. The boundary is split into two disjoint sets: ∂Ω = ∂ΩD ∪ ∂ΩN where ∂ΩD ∩ ∂ΩN = ∅
and ∂ΩD 6= ∅. Let D : Ω → S++

d (R), s : Ω → R, g : ∂ΩN → R and uD : ∂ΩD → R
respectively denote a regular positive definite diffusion tensor field on Ω, an integrable source
field on Ω, a Neumann source field on ∂ΩN and Dirichlet boundary values on ∂ΩD (see [8888]
for a detailed account of the influence of the regularity of the boundary and the different
fields on the analysis).

The strong form of the Poisson equation reads: Find u ∈ C2(Ω) such that:
−∇ ·D · ∇u = s

u = uD on ∂ΩD
∇u ·D · n = g on ∂ΩN

(4.1)

In the case D = Id, the Left Hand Side (LHS) of the bulk equation is the opposite of the
Laplace operator ∆ def= ∇ · ∇.

The usual weak form of the Poisson equation treats Dirichlet boundary conditions in an
essential way, i.e. with the introduction of H1

0,D(Ω), the Sobolev space of weakly derivable
functions with vanishing trace on the Dirichlet boundary ∂ΩD. It reads: Find u ∈ H1(Ω)
such that for all v ∈ H1

0,D(Ω), we have:
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ˆ

Ω
∇u ·D · ∇v dV =

ˆ
Ω
sv dV +

ˆ
∂ΩN

gv dS

u = uD on ∂ΩD
(4.2)

It is also possible to treat Dirichlet boundary conditions in a natural way, i.e. with
a weak form that does not explicitly mention the trace operator and does not need the
definition of H1

0 spaces. For instance, the symmetric Nitsche’s weak form [9797, 175175] reads:ˆ
Ω
∇u ·D · ∇v dV −

ˆ
∂ΩD

(∇u ·D · n) v dS −
ˆ
∂ΩD

u∇v ·D · n dS + a∂ΩD stab(u, v)

=
ˆ

Ω
sv dV +

ˆ
∂ΩN

gv dS −
ˆ
∂ΩD

uD∇v ·D · n dS + a∂ΩD stab(uD, v) (4.3)

The stabilization bilinear form a∂ΩD stab is devised so that the formulation is coercive.
The classical choice, which we also make here consists in defining:

a∂ΩD stab(u, v) def= γ

ˆ
∂ΩD

uv dS (4.4)

In the above expression, γ denotes a positive scalar penalization factor. It should be large
enough to ensure coercivity of the formulation, but very large values are not desirable in
practice as they lead to ill-conditioned discretizations. A compromise thus needs to be found
on a case-by-case basis.

4.1.2 Derivation of the weak forms of the scalar diffusion equation
The computation here is only formal and is not concerned with regularity of the functions.

Starting from −∇ ·D · ∇u = s, we multiply both sides by any test function v and integrate
on Ω, yielding: ∀ v,

−
ˆ

Ω
(∇ ·D · ∇u) v dV =

ˆ
Ω
sv dV

Integrating the LHS of the above expression by parts, we have:
ˆ

Ω
∇u ·D · ∇v dV −

ˆ
∂Ω

(∇u ·D · n) v dS =
ˆ

Ω
sv dV

Using additivity of integration on disjoints subsets, the boundary integral can be split into
a Dirichlet part on ∂ΩD and a Neumann part on ∂ΩN . The value of D · ∇u · n is replaced
with the Neumann flux field g on the Neumann boundary ∂ΩN and transferred to the RHS,
yielding:

ˆ
Ω
∇u ·D · ∇v dV −

ˆ
∂ΩD

(∇u ·D · n) v dS =
ˆ

Ω
sv dV +

ˆ
∂ΩN

gv dS (4.5)

The derivations of the usual and symmetric Nitsche weak forms bifurcate here. On the one
hand, if we make the essential choice, we restrict ourselves to test functions which vanish on
the Dirichlet boundary ∂ΩD, hence the term

´
∂ΩD v∇u ·D · n dS vanishes. This gives:

ˆ
Ω
∇u ·D · ∇v dV =

ˆ
Ω
sv dV −

ˆ
∂ΩN

gv dS

Which is nothing but the first equation of (4.24.2).
On the other hand, starting back from equation (4.54.5), we can restore symmetry with the

addition of a transposed Dirichlet boundary term on both sides of the equation. The value
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of the solution is replaced in the RHS with its imposed value, which yields:ˆ
Ω
∇u ·D · ∇v dV −

ˆ
∂ΩD

(∇u ·D · n) v dS −
ˆ
∂ΩD

u∇v ·D · n dS

=
ˆ

Ω
sv dV +

ˆ
∂ΩN

gv dS −
ˆ
∂ΩD

uD∇v ·D · n dS

Finally, adding a stabilization term on the Dirichlet boundary gives the Nitsche weak
formulation:ˆ

Ω
∇u ·D · ∇v dV −

ˆ
∂ΩD

(∇u ·D · n) v dS −
ˆ
∂ΩD

u∇v ·D · n dS + a∂ΩD stab(u, v)

=
ˆ

Ω
sv dV +

ˆ
∂ΩN

gv dS −
ˆ
∂ΩD

uD∇v ·D · n dS + a∂ΩD stab(uD, v)

4.1.3 Linear elasticity: a vector elliptic equation
We now detail different formulations of the equations of linear elasticity. These equations

are extremely similar to their scalar counterpart given in section 4.1.14.1.1. The only significant
change is the possibility to have different types of boundary conditions at the same boundary
location for the normal and tangential components of the unknown or boundary stress.
Physically speaking, this for instance allows the modeling of roller boundary conditions, but
also symmetry and anti-symmetry planes.

More precisely, the boundary of the domain is supposed split twice into non-overlapping
regular domains ∂Ω = ∂Ω⊥D ∪ ∂Ω⊥N = ∂Ω\\D ∪ ∂Ω\\N where ∂Ω⊥D ∩ ∂Ω⊥N = ∂Ω\\D ∩ ∂Ω\\N = ∅,
appropriate boundary fields u⊥D,g⊥,u

\\
D and g\\ and interior fields H and s given.

The orthogonal projection on the normal space is denoted P⊥ = n⊗n and the orthogonal
projection on the tangential space is denoted P\\ = Id − P⊥.

Defining εv def= (∇v +∇vT )/2, the strong form of the elasticity equations reads: Find
u ∈ C1,d(Ω) such that:

−∇ · (H : εu) = s
u · n = u⊥D on ∂Ω⊥D

P\\ · u = u\\D on ∂Ω\\D
((H : εu) · n) · n = g⊥ on ∂Ω⊥N
P\\ ((H : εu) · n) = g\\ on ∂Ω\\N

(4.6)

The standard weak form of the elasticity equations read: Find u ∈ H1,d(Ω) such that for all
v ∈ H1,d

0,D⊥,D\\(Ω) (the space of square integrable vector valued functions on Ω with square
integrable derivatives and whose trace has a vanishing orthogonal (resp. parallel) component
on ∂Ω⊥D (resp. ∂Ω\\D)), we have:

ˆ
Ω
εu :H : εv dV =

ˆ
Ω

s · v dV +
ˆ
∂Ω⊥

N

g⊥n · v dS +
ˆ
∂Ω\\

N

g\\ · v dS

u · n = u⊥D on ∂Ω⊥D
P\\ · u = u\\D on ∂Ω\\D

(4.7)

The corresponding Nitsche weak form reads:
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ˆ
Ω
εu :H : εv dV −

ˆ
∂Ω⊥

D

n · (H : εu) · P⊥ · v dS −
ˆ
∂Ω\\

D

n · (H : εu) · P\\ · v dS

−
ˆ
∂Ω⊥

D

u · P⊥ · (H : εv) · n dS −
ˆ
∂Ω\\

D

u · P\\ · (H : εv) · n dS

+a∂Ω⊥
D

stab(u,v) + a
∂Ω\\

D
stab(u,v) (4.8)

=
ˆ

Ω
s · v dV +

ˆ
∂Ω⊥

N

g⊥n · v dS +
ˆ
∂Ω\\

N

g\\ · v dS

−
ˆ
∂Ω⊥

D

uD · P⊥ · (H : εv) · n dS −
ˆ
∂Ω\\

D

uD · P\\ · (H : εv) · n dS

+a∂Ω⊥
D

stab(u⊥Dn,v) + a
∂Ω\\

D
stab(u\\D,v)

Where the stabilization forms are usually defined as: ∀ � ∈ {⊥, \\},

a∂Ω�
D

stab(u,v) def= γ�
ˆ
∂Ω�

D

u · P� · v dS (4.9)

In the sections 4.24.2 and 4.34.3, we develop meshless discretization methods based on the
previously detailed continuous formulations.

4.1.4 Discretization principles and a common test case
The governing principle behind the elaboration of discrete formulations is the following:

we translate one of the many forms of the continuous equation into a discrete set of equations
using the tools introduced in chapter 22. In most cases, we bluntly replace the continuous
operators with their discrete counterparts. The main difficulty of this step is to take the
boundary conditions – especially the essential boundary conditions – into account while
imposing as few constraints on the point cloud as possible. This is the first major hurdle
when designing meshless methods for the discretization of PDEs.

Then we analyze the properties of the resulting discrete problem by means of an alto-
gether widely celebrated (see [217217, 224224]) and highly criticized (see [8585, 218218]) criterion: the
patch test. In a nutshell, we want to make sure that in cases where the exact solution
is a linear field, it is exactly captured by the discretization. This analysis always reveals
the necessity for the discrete structure to verify some kind of relation between the discrete
integration and differentiation, which takes a form reminiscent of Stokes’s theorem (see ex-
pression (1.91.9)). In most cases, these requirements are exactly the compatibility conditions
of definition 2.182.18, justifying our intense search for compatible sets of discrete operators.

The quality of the different discretizations is assessed on a common two-dimensional
(d = 2) smooth analytical test-case with simple square geometry (Ω = [0, 1] × [0, 1] ⊂ R2)
with unit scalar diffusivity D = Id. Source and boundary fields are chosen so that the exact
manufactured solution reads: ∀ x ∈ Ω,

uex(x) =
d∏
i=1

sin(kixi) (4.10)

We choose k = 2π
(

2
4

)
. The results are then compared based on the following relative L2

discrete error:
Err2L2(C)

def=
�́C(u

ex − unum)2

�́C u
ex 2 (4.11)
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Figure 4.1 – Exact analytical solution of the diffusion test case on a Halton point cloud.

This exact solution is represented on a Halton point cloud with 4900 nodes on figure 4.14.1.

4.2 Meshless discretizations of the Nitsche weak form
In this section, we build discretizations starting from the Nitsche weak form of elliptic

equations (see expression (4.34.3) in the scalar case). In section 4.2.14.2.1, we brutally substitute
every continuous operator for its discrete analogue to form nodal operator-based discretiza-
tions, and in section 4.2.24.2.2, we detail meshless Bubnov-Galerkin discretizations.

4.2.1 Nodal operator-based discrete formulation
In this section, we give a nodal operator-based discretization of the Nitsche formulation

of the diffusion equation.. The discretization process is simply the following: start from the
continuous Nitsche weak form (expression (4.34.3)) and replace every continuous operator by
their discrete analogue defined in chapter 22. More precisely, we give the following definitions:

Definition 4.1 (Nitsche discretization of the Poisson problem).
Let D : Ω→ S+

d (R) be a diffusion tensor field, s : Ω→ R a scalar source field, uD : ∂ΩD → R
and g : ∂ΩN → R Dirichlet boundary values and Neumann boundary fluxes. Then, the nodal
meshless discretization of the Nitsche weak form reads: Find u : C → R such that for all
v : C → R, we have:
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�

ˆ
C
�u ·D ·�v −

“
∂CD

(D ·�u)v −
“
∂CD

(D ·�v)u+ a∂CD stab(u, v) (4.12)

= �
ˆ
C
sv +

“
∂CN

gv −
“
∂CD

(D ·�v)uD + a∂CD stab(uD, v)

We insist on the fact that the order of the fields under a discrete boundary integration
is important. The right order is the one given in the above expression. The resulting
discretization is symmetric.

In expression (4.124.12), we use the notation
›
for three distinct meanings:

• The terms
›
∂CD (D · �u)v and

›
∂CD (D · �v)u use the regular bilinear boundary inte-

gration operator of definition 2.72.7 since both D ·�u and v are discrete fields.
• The term �́

∂CN gv contains both a continuous field g (on the left) defined on ∂ΩN only
and a discrete field v (on the right). Discretization of this kind of terms as a linear
form acting on discrete fields is briefly mentioned in sections 2.2.12.2.1, 2.7.32.7.3 and 3.7.23.7.2.

• Symmetrically, the term
›
∂CD (D·�v)uD uses the other linear form, with the continuous

field uD on the right, and the discrete field D ·�v on the left.

Remark. In fact, the boundary integration operators need to be restricted to integrate on
∂ΩN and ∂ΩD respectively. The specifics on how to proceed vary with the set of discrete
operators and the representation of the boundary.

In the case of the classical mesh-integrated SFEM operators, we have seen that the
boundary is represented by boundary faces, and a restriction of the sum in expression (2.822.82)
is a good choice.

The case of the volume-based mesh-integrated SFEM operators is slightly different, as
we have seen that the relevant object to represent the boundary are its nodes. In order to
stay consistent and not attribute regions of the boundary twice, the restriction of the sum
in expression (3.923.92) to Neumann boundary nodes entails that expression (1.421.42) should be
restricted to Dirichlet boundary nodes.

Proposition 4.1 (Linear patch test conditions for the nodal Nitsche weak form).
Let a ∈ Rd and b ∈ R. Let us consider the discrete system defined above with a uniform
diffusion tensor field, vanishing source field and boundary conditions given by uD = a ·
x + b and g = a · D · n. If the following conditions are met, then the nodal Nitsche weak
discretization of the Poisson problem admits the affine field u = a · x + b as a solution:

• The gradient operator is first order consistent.
•
(
�́C ,
›
∂C ,�

)
form a compatible set of discrete operators.

• If the left field in the bi-linear boundary is constant, then it reduces to the correspond-
ing linear boundary integration operator.

• If the right field in the bi-linear boundary is affine, then it reduces to the corresponding
linear boundary integration operator.

Proof. We replace the boundary conditions by their value and u by a · x + b in expression
(4.124.12). Using the first order consistency of �, the system becomes: ∀ v : C → R,

�

ˆ
C

a ·D ·�v −
“
∂CD

(D · a)v −
“
∂CD

(D ·�v)(a · x + b) + a∂CD stab(a · x + b, v) (4.13)

=
“
∂CN

(D · a)v −
“
∂CD

(D ·�v)(a · x + b) + a∂CD stab(a · x + b, v)

Both the boundary stabilization terms a∂CD stab(a · x + b, v) and the symmetric Nitsche
consistent terms

›
∂CD (D ·�v)(a ·x + b) in the LHS and the RHS cancel each other out. The
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equation can now be re-written as:

�

ˆ
C
(D · a) ·�v =

“
∂C

(D · a)v (4.14)

Since the field D · a is uniform, the above expression is exactly the compatibility of the
discrete operators (see definition 2.182.18).

Convergence study

Let us now compare the results of this formulation using the classical mesh-integrated
SFEM set of discrete meshless operators defined in section 2.7.32.7.3 and their volume-based
analogues of section 3.7.23.7.2 using the MLS shape functions with a linear reconstruction basis.
Both these sets of operators satisfy the linear patch test sufficient conditions of proposi-
tion 4.14.1. Let us note that both sets of discrete operators use the same volume integration
weights, and consequently the cloud-integrated errors (see expression 4.114.11) are immediately
comparable.

The test-case is the diffusion problem with exact solution given in expression (4.104.10),
with k = 2π

(
2, 4
)
. The top half of the boundary is treated with Neumann boundary

conditions (i.e. ∂ΩN = {x ∈ ∂Ω | x2 ≥ 1
2} and the bottom half is treated with Dirichlet

boundary conditions. The Nitsche boundary stabilization term a∂CD stab is given by the
mesh-integrated discretization of expression (4.44.4) using expression (2.792.79) in the LHS and
expression (4.244.24) in the RHS. The boundary stabilization γ is chosen just high enough so
that the formulation is stable but no too high as to avoid ill-conditioning in accordance
with recommended usage. Specifically, we used the value γ = 1×101

h for this test-case. The
smoothing length is set as 4

√
V (Ω)
πnn

, so that the volumes of the supports of the MLS shape
functions decrease linearly with the number of particles.

On the top row of figure 4.24.2, we compare the cloud-integrated error of the Nitsche
formulation for both classical and volume-based mesh integrated SFEM operators.

The classical SFEM formulation gives extremely poor results for all meshes and point
clouds, the error level is almost always > 100%. The volume-based formulation has a very
different behavior: if the background integration mesh is fine enough, then we have a second
order convergence as the point cloud is refined (the measured rate is h1.9). But if the
integration mesh is too coarse compared to the point cloud, our linear solver (an in-house
deflated GMRES solver) simply cannot solve the corresponding equations, and the error is
obviously very high.

In order to improve the behavior of the simulation, especially for the classical SFEM
case, we take full advantage of the fact that the MLS reconstruction does not satisfy the
delta property (see definition 2.112.11) and define the following stabilization term. Notice that
it is completely independent of the mesh.

astab(u, v) =
∑
i∈C

wi(ui− < u > (xi))(vi− < v > (xi)) (4.15)

This stabilization term is symmetric and non-negative provided the nodal stabilization
weights wi are non-negative. It vanishes when u is a reproduced function, thus does not
change the patch test conditions since we use linear MLS shape functions. The right scaling
for the stabilization weights is wi = δ Vih2 . The error on the test case using this stabilization
is given on the medium and bottom row of figure 4.24.2.

For a low value of the stabilization factor (δ = 1× 10−3), the convergence profile of the
simulation using the classical SFEM operators with a given mesh is clearly separated in
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Figure 4.2 – Relative error on the nodal meshless discretization of the Nitsche weak form of the
diffusion equation as a function of the smoothing length. Integration is performed on a mesh made of
2574 cells, 11480 cells, 47492 cells and 124422 cells.
Top row: unstabilized simulation δ = 0. B: the scale is different on the top left plot.
Middle row: low stabilization factor δ = 1× 10−3.
Bottom row: medium stabilization factor δ = 2× 100.
Left column: mesh-integrated classical SFEM operators (see section 2.7.32.7.3).
Right column: mesh-integrated volume-based SFEM operators (see section 3.7.23.7.2).
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Figure 4.3 – Relative error on the nodal meshless discretization of the Nitsche weak form of the
diffusion equation as a function of the nodal stabilization coefficients (formulation of expression (4.154.15)).
The meshless operators are the mesh-integrated classical SFEM operators defined in section 2.7.32.7.3. The
point clouds follow a Halton distribution with 900 nodes, 2500 nodes, 4900 nodes, 10000 nodes, 19600
nodes, 40000 nodes, 90000 nodes, 160000 nodes.
Left column: node-integrated error. Right column: mesh-integrated error.
Top row: integration mesh with 2574 cells. Middle row: integration mesh with 11480 cells. Bottom row:
integration mesh with 124422 cells.
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Figure 4.4 – Relative error on the Galerkin discretization of the Nitsche weak form of the diffusion
equation as a function of the nodal stabilization coefficients (formulation of expression (4.154.15)). The
meshless operators are the mesh-integrated volume-based SFEM operators defined in section 3.7.23.7.2. The
point clouds follow a Halton distribution with 900 nodes, 2500 nodes, 4900 nodes, 10000 nodes, 19600
nodes, 40000 nodes, 90000 nodes, 160000 nodes.
Left column: node-integrated error. Right column: mesh-integrated error.
Top row: integration mesh with 2574 cells. Middle row: integration mesh with 11480 cells. Bottom row:
integration mesh with 124422 cells.
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two regions: first a convergent region where the mesh is sufficiently fine to provide a good
approximation of the meshless operators. In this region, the measured convergence rate
is h1.9. Then, an under-integrated region characterized by slower convergence and then a
divergence. On the other hand, the results of the simulation using the volume-based SFEM
operators are hardly affected by the stabilization.

A higher stabilization (δ = 2× 100, bottom row of figure 4.24.2) still greatly improves the
behavior of the classical SFEM operators, regardless of the integration level. For the finest
mesh (124422 cells), the convergence is clearly second order (the measured rate is h2.05) for
all point clouds. The addition of the stabilization term delays the under-integration phe-
nomenon: In general, for a given mesh, the error strictly decreases with the cloud refinement
level until the number of nodes is 3 – 4 times higher than the number of cells. Moreover,
the convergence keeps a second order rate until the number of nodes is 1.5 – 2 times higher
than the number of cells.

For the volume-based SFEM operators, the stabilization decreases the error in the well-
integrated cases by a factor ≈ 5− 8, but does not delay the effect of under-integration. The
error level still undergoes a very sharp transition in the under-integration case since our
linear solver still cannot solve the corresponding equations.

The choice of stabilization parameter

It is clear that a good choice of this stabilization parameter is crucial for a good behavior
of the simulation. We now investigate its effect in details. In addition to the cloud-based
error, we also compare the linear MLS reconstruction < u > of the discrete solution with
the following mesh-based measure of the error:

Err2L2(M)
def=

�́M(uex− < unum >)2

�́M uex 2 (4.16)

On figure 4.34.3, we represent the evolution of the cloud and mesh-integrated errors with
the reconstruction-based stabilization coefficient δ using the classical SFEM operators with
linear consistent MLS functions. These plots clearly show that the formulation is not stable
since the error increases rapidly as δ gets closer to zero. The error behavior is unimodal:
it first rapidly decreases, then reaches a slightly slanted plateau. It slowly decreases again,
then again quickly decreases to reach a minimum located in a narrow valley, and then quickly
increases to a value of ≈ 100% in the over-stabilized cases.

Both the refinement level of the point cloud and the integration mesh have an influence on
the value of the minimum of the error. For a given point cloud, the minimum of the error first
decreases as the mesh is refined (under-integration), and then stagnates (over-integration).
For a given integration mesh, the behavior is a bit more subtle: in the over-integrated regime,
the minimum of the error first decreases as the cloud gets finer, and is reached for a constant
value of the stabilization factor (δ ≈ 2×101 for this test case). Then, as the cloud gets finer,
we enter the under-integrated regime. In this case, the minimum of the error is reached for
higher values of the stabilization factor. The value of this minimum does not depend on the
point cloud, only on the integration mesh. We interpret this effect as a saturation of the
integration capability of the point cloud. We also see that there is not much of a difference
between the cloud-integrated error and the mesh-integrated error for the classical SFEM
operators.

On figure 4.34.3, we represent the evolution of the cloud and mesh-integrated errors with
the reconstruction-based stabilization coefficient δ using the volume-based SFEM operators
with linear consistent MLS functions. Contrary to the classical SFEM operators, we see that
the formulation is stable (the error does not diverge for low stabilization levels). The general



4.2. MESHLESS DISCRETIZATIONS OF THE NITSCHE WEAK FORM 133

behavior of the mesh-integrated and cloud-integrated errors are a bit different: in the over-
integrated case, the cloud-integrated error first decreases, reaches a minimum in a wide valley,
and then increases. On the other hand, the mesh-integrated error is at its minimum value
for low values of the stabilization factor and only increases with it, first very slowly, and then
more quickly. Even with such a behavior, it is still interesting not to use a zero stabilization
factor as the resulting system is better conditioned and between two and three times fewer
iterations are needed to achieve convergence. On figure 4.34.3, we represent the evolution of
the cloud and mesh-integrated errors with the reconstruction-based stabilization coefficient
δ using the volume-based SFEM operators with linear consistent MLS functions. Contrary
to the classical SFEM operators, we see that the formulation is stable (the error does not
diverge for low stabilization levels). The general behavior of the mesh-integrated and cloud-
integrated errors are a bit different: in the over-integrated case, the cloud-integrated error
first decreases, reaches a minimum in a wide valley, and then increases. On the other hand,
the mesh-integrated error is at its minimum value for low values of the stabilization factor
and only increases with it, first very slowly, and then more quickly. Even with such a
behavior, it is still interesting not to use a zero stabilization factor as the resulting system is
better conditioned and between two and three times fewer iterations are needed to achieve
convergence. The behavior in the under-integrated case is very bad: the linear solver simply
does not converge at all and the error is ≈ 100%.

The values of the minimal error of the volume-based SFEM formulation is very similar
to that of the plateau of the classical SFEM formulation. The minimal value of the error
of the classical SFEM formulation is approximately two times lower, but the sensitivity to
the stabilization coefficient near the minimum is so high that devising a reliable heuristic to
aim for it seems difficult.

In conclusion, the classical and volume-based SFEM operators can both achieve second
order convergence and comparable error levels on this test case if a proper stabilization
is used. Each method has its strengths and weaknesses: the volume-based version does
not require stabilization at all, especially if we consider the reconstructed solution < u >.
However, its behavior regarding under-integration is very brutal: as soon as the background
mesh is too coarse, the discrete system gives a worthless solution.

This is not the case of the classical SFEM operators, which can always give a sound solu-
tion even in the under-integrated case, provided adequate stabilization is used. The problem
with this formulation is precisely that the stabilization needs a fine-tuning to perform the
best given the fineness of the point cloud and the background integration mesh, contrary to
its volume-based analogue.

In section 4.2.24.2.2, we continue our investigations related to the Nitsche weak form, and
compare several mesh-integrated Galerkin formulations of the diffusion equation.

4.2.2 Meshless Galerkin discretization of elliptic equations
In this section, we develop the basics of Element Free Galerkin Methods (EFGs) using

weakly imposed Dirichlet boundary conditions with Nitsche boundary conditions. We insist
in particular on the corresponding patch test conditions and give numerical evidence of the
potential gains in verifying them.

Definition 4.2 (Galerkin method).
Suppose we are interested in finding a solution of the following weak abstract problem: Find
u ∈ U (the trial space) such that ∀ v ∈ V (the test space), we have:

a(u, v) = L(v) (4.17)
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Existence and unicity of the solution of the above problem are usually studied through
Lax-Milgram type theorems (see section 2.7 of [4141] for instance).

Let Uh and V h be finite dimensional subspaces of U and V respectively. Then a Petrov-
Galerkin method seeks the solution in the discrete trial space as the restriction of the weak
requirements to the discrete test space, namely: Find uh ∈ Uh such that for all vh ∈ V h,
we have:

a(uh, vh) = L(vh) (4.18)

Assuming the discrete trial and test spaces are equipped with known bases, equation (4.184.18)
reduces to a linear system of size nDOF . In the case where a is symmetric, U = V and
Uh = V h, the system is symmetric and the method is called a Bubnov-Galerkin method.

Galerkin methods are at the heart of mesh-based simulation. Indeed a Finite Element
Method (FEM) is a Galerkin method using function spaces of finite dimension built using
geometric considerations on the mesh. For instance, the classical linear finite element method
uses the piecewise affine reconstruction on a simplex mesh (see definition 1.151.15).

The meshless Garlerkin discretization

The so-called Element Free Galerkin Method (EFG) introduced by Belytschko et al. in
[2727] is a Galerkin method using bases of meshless functions. In other words, it is defined
using the image of the reconstruction operator as the discrete test and trial spaces of a
Galerkin method: Uh = V h = Im(< . >) = span((φhi )i∈C).

In most meshless situations however, there is no analytical formula to compute the
values of a(φi, φj) and L(φi), for all i, j ∈ C, and thus, the discrete system (4.184.18) itself
cannot be formed exactly. This is where approximate integration comes in: we need to find
discrete versions of the continuous operators a and L to approximate the Galerkin system
of equations.

In this section, we introduce several such procedures using the MLS shape functions
(defined in appendix D.2D.2). First, we adapt the mesh-based integration procedure for SFEM
operators (see section 2.7.32.7.3) to the context of EFG, which satisfies exactly the compatibility
conditions (the Gauss MLS operator below). This method is compared to the one point
integration procedure, which does not satisfy the compatibility condition (the 1 point FMLS
operator below), and to the one point integration of the DMLS approximation of the exact
derivatives (the 1 point DMLS operator below). Let us thus define ∀ u, v ∈ C → R:

Gauss MLS This is the Gauss-type one point compatible integration using cell faces (see
definition 1.171.17):

�

ˆ Gauss

M
�u ·D ·�v def=

∑
i,j∈C

ui

 ∑
/Cd∈M

AGauss
/Cd,i ·D(x(/Cd)) ·AGauss

/Cd,j
V (/Cd)

 vi (4.19)

Where we denoted: ∀ /Cd ∈M, ∀ i ∈ C

AGauss
/Cd,i

def= �

ˆ Gauss 1pt

/Cd
∇ < δi >=

∑
/Cd−1∈/Cd

o(/Cd−1, /Cd)Γ(/Cd−1)φi(x(/Cd−1)) (4.20)

Let us recall that the Gauss integration method does not require explicit computation of
the gradient of shape functions at any point.
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One point FMLS This is the one point integration formula on cells of the mesh (see
proposition 1.171.17) using the exact derivatives of the linear MLS shape functions (see definition
D.6D.6):

�

ˆ 1 pt FMLS

M
�u ·D ·�v def=

∑
i,j∈C

ui

 ∑
/Cd∈M

V (/Cd)∇φi(x(/Cd)) ·D(x(/Cd)) · ∇φj(x(/Cd))

 vj (4.21)

One point DMLS This is the one point integration formula on cells of the mesh (see
proposition 1.171.17) using only the consistent part of the MLS derivatives (see definition D.5D.5)
denoted ψDMLS here:

�

ˆ 1 pt DMLS

M
�u ·D ·�v def=

∑
i,j∈C

ui

 ∑
/Cd∈M

V (/Cd)ψDMLS
i (x(/Cd)) ·D(x(/Cd)) ·ψDMLS

j (x(/Cd))

 vj

(4.22)

Remark. All three discrete diffusion operators defined above can be put under the form
given in expression (4.194.19) reminiscent of expression (4.274.27) of the node-integrated weak dif-
fusion operator. The coefficients A/Cd,i form a discrete gradient operator mapping scalar
valued fields defined on the point cloud to vector valued fields defined on cells of the mesh
� : (C → R)→ (M→ Rd).

The meshless framework of chapter 22 could almost entirely be adapted to accommodate
these mixed operators whose integration space (functions defined on cells of a mesh in this
case) is different from their degrees of freedom space (functions defined on nodes of a point
cloud in this case) as already pointed out in [184184]. The only major difference with the
node-integrated case would be that we cannot define a dual gradient operator. This remark
justifies the notations �́M and� by analogy with the previous node-integrated case of section
4.34.3.

Going further, the classical SFEM operators of definition 2.272.27 are in fact nothing but
mesh-integrated reconstructions of these mixed operators. Specifically for the mesh-integrated
SFEM gradient operator, this remark reads: ∀ f : C → R, ∀ i ∈ C

Vi�
SFEM Mf =

∑
/Cd∈M

V (/Cd)φi(x(/Cd))�Gauss
/Cd f (4.23)

In all three discretizations, we use the symmetric SFEM boundary integration operator
(see expressions (2.782.78) and (2.792.79)) for the bilinear uses, and the following counterpart for
linear uses: ∀ v : C →, ∀ g : ∂Ω→ R,

“ SFEM M

∂M
< u > g =

∑
i∈C

 ∑
/Cd−1∈∂M

Γ(/Cd−1)φi(x(/Cd−1))g(x(/Cd−1))

ui (4.24)

In other words, there is no need to project the boundary fields onto Im(< . >|∂Ω).
Replacing the above discrete operators into expressions (4.34.3) yields the discrete Nitsche

formulation. Similarly to the nodal integration weak nodal discretization of section 4.24.2, the
patch test conditions of the final discrete diffusion system are formally equivalent to Stokes’s
theorem.

�

ˆ
M
�v =

“
∂M

v (4.25)

These are exactly the compatibility conditions, in the non-nodal integration context. These
conditions were already pointed out in [1212, 1414] in the very context of EFG.
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The proof of proposition 2.102.10 can easily be adapted to show that the Gauss integration
method satisfies the above requirement exactly. The 1 point FMLS method does not satisfy
the requirements exactly, but the integration error decreases to arbitrarily low values with
the fineness of the mesh (see proposition 1.171.17): it is asymptotically compatible. The one
point DMLS method does not satisfy expression (4.254.25) neither exactly nor asymptotically
as the integration mesh is refined.

Numerical experiments

In this section, we perform a battery of tests comparing the different integration proce-
dures of the Galerkin weak form introduced in the previous section using the MLS shape
functions with a linear reconstruction basis. The problem is the diffusion test-case with
exact solution given in expression (4.104.10), with k = 2π

(
2, 4
)
. The top half of the boundary

is treated with Neumann boundary conditions (i.e. ∂ΩN = {x ∈ ∂Ω | x2 ≥ 1
2} and the bot-

tom half is treated with Dirichlet boundary conditions. The Nitsche boundary stabilization
term is given by the discretization of expression (4.44.4) using expression (2.792.79) in the LHS and
expression (4.244.24) in the RHS. The boundary stabilization γ is chosen just high enough so
that the formulation is stable but no too high as to avoid ill-conditioning in accordance with
recommended usage. Specifically, we used the value γ = 1×101

h for this test-case. In order to
compare the numerical result to the exact analytical solution, we use the mesh-integrated
error defined in expression (4.164.16). The smoothing length is set as 4

√
V (Ω)
πnn

.
On the left column of figure 4.54.5, we plot the error on the diffusion problem as a function

of the smoothing length for several levels of mesh refinement with a very low stabilization
coefficient (δ = 1× 10−3). Roughly speaking, for the Gauss integration, the error decreases
superlinearly with cloud refinement as long as the number of nodes in the point cloud remains
lower than approximately 1 – 2 times the number of cells in the mesh (in this region, the
measure convergence rate is h1.65, then increases. For the one point FMLS integration, the
error decreases with the same rate, but only as long as the number of nodes remains lower
than ≈ 30% of the number of cells. As for the one point DMLS integration method, it
does not converge past a ≈ 10% error level, and the error increases approximately as the
nodes outnumber the cells. On this first test, we see that the Gauss integration method
systematically performs the best. The result using the Gauss and the one point FMLS
integration methods are quite similar as long as the point cloud is fine enough. On the other
hand, the one point DMLS formulation systematically performs poorly.

On the right column of figure 4.54.5, we perform the same tests, but with a higher stabi-
lization coefficient (δ = 1 × 101). In all cases, this change postpones the instability due to
under-integration with little change in the error of well-integrated cases. The Gauss and
one point FMLS integration methods exhibit a clear second order convergence rate (the
measured rate is h2.13), and the error of the one point DMLS integration method seems to
exhibit a shy ∝ h1.3 behavior when the mesh is fine enough.

On figure 4.64.6, we further study the influence of the stabilization coefficient on the final
error. For the Gauss integration, we see that if the mesh is fine enough, the error decreases
with the smoothing length and is never lowered with added stabilization. However, when
under-integration occurs, stabilization allows the error to reach a threshold only determined
by the fineness of the integration mesh. The behavior of the one point FMLS integration
method is roughly the same except for a few important details: under-integration occurs
much more quickly, the error threshold is a bit higher and the width of the low error "valleys"
is smaller, especially for highly under-integrated cases. This means that in these cases, the
sensitivity with respect to the stabilization coefficient is greater. These plots again show
that the one point DMLS integration method performs poorly: in the over-integrated cases,
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Figure 4.5 – Relative mesh-integrated error on the Galerkin discretization of the Nitsche weak form
of the diffusion equation as a function of the smoothing length. The point clouds follow a Halton
distribution. Integration is performed on a mesh made of 2574 cells, 11480 cells, 47492 cells and
124422 cells. Left column: the stabilization coefficient is δ = 1× 10−3, which is very low. Right column:
the stabilization coefficient is δ = 1 × 101. Top row: compatible Gauss MLS operators. Middle row:
asymptotically compatible one point FMLS operators. Bottom row: non-compatible one point DMLS
operators.
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Figure 4.6 – Relative mesh-integrated error on the Galerkin discretization of the Nitsche weak form
of the diffusion equation as a function of the stabilization coefficients. The point clouds follow a Halton
distribution with 900 nodes, 2500 nodes, 4900 nodes, 10000 nodes, 19600 nodes, 40000 nodes, 90000
nodes, 160000 nodes.
Left column: the integration mesh is composed of 11480 cells. Right column: the integration mesh is
composed of 124422 cells.
Top row: compatible Gauss MLS operators. Middle row: asymptotically compatible one point FMLS
operators. Bottom row: non compatible one point DMLS operators.
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Figure 4.7 – Relative mesh-integrated error on the Galerkin discretization of the Nitsche weak form of
the diffusion equation as a function of the stabilization coefficients. The discrete operators are the exactly
compatible Gauss MLS operators, the asymptotically compatible one point FMLS operators and the non
compatible one point DMLS operators all using a mesh with 47492 integration cells. The simulation is
performed on point clouds following a Halton distribution with 4900 nodes (top left), 10000 nodes (top
right), 19600 nodes (middle left), 40000 nodes (middle right) 90000 nodes (bottom left) and 160000
nodes (bottom right).
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the error does not decrease with the smoothing length. Surprisingly enough, the error does
decrease with added stabilization though, but sensibility to the stabilization coefficient at
the optimal value is extremely high, making it hard to devise reliable heuristics.

We have seen that the classical mesh-integrated SFEM gradient operator is nothing but a
reconstruction of the Gauss gradient of the shape functions (see expression 4.234.23). With this
in mind, we would expect the behavior of the Gauss MLS operators to be similar to that
of the classical mesh-integrated SFEM on the diffusion test-case. However, a qualitative
comparison of figures 4.34.3, 4.44.4 and 4.64.6 show that in the well-integrated case, its behavior
is much closer to that of the volume-based SFEM operators. Actually, the Gauss MLS
operators seem to reconcile the best of both SFEM formulations: stabilization is not a pre-
requisite for convergence when the mesh is fine enough (as with the volume-based SFEM
formulation), and the transition to the under-integrated case can effectively be smoothly
tempered with an appropriate stabilization (as with the classical SFEM formulation).

Finally, figure 4.74.7 compares the stabilization profiles of the three integration methods.
For over-integrated systems (top left plot), the Gauss and the one point FMLS behaviors
are almost identical. This is to be expected: in this case, discrete integration is fine enough
to approximate the Galerkin system well enough compared to the approximation level of
the (exact) Galerkin system to the continuous diffusion problem. In opposition, the DMLS
integration does not approximate the Galerkin system to a reasonable level.

As the point cloud is refined, the exact corresponding Galerkin system better approxi-
mates the continuous diffusion problem, but since the discrete integration is performed on
the same mesh, the integration error on the Galerkin system increases. This is where the
compatibility error of the FMLS integration method reaches too high a value. As the com-
patibility error increases, the stabilization profile of the FMLS integration method drifts off
from that of the exactly compatible Gauss integration method and gradually switches to
that of the non-compatible DMLS method. Notice how thin the range of optimal stabiliza-
tion coefficient is in FMLS and the DMLS case compared to the Gauss case when the ratio
of cloud size to mesh size is the highest (bottom right plot).

In conclusion, we can say that the real benefit of using exactly compatible sets of opera-
tors as opposed to asymptotically compatible ones or even non-compatible ones is to exploit
the discrete integration structure (which is given by the mesh in this case) to its full potential.
If the mesh is fine enough, compatible operators yield the optimal second order consistency,
and when it is coarse compared to the point cloud, compatible operators reach the lowest
possible error permitted by the mesh when combined with an appropriate stabilization pro-
cedure. In this regard, a compatible of the Galerkin formulation combines the best of the
classical and volume-based SFEM operators of the nodal discretization described in section
4.2.14.2.1: it does not suffer the instability of the classical SFEM operators, and still allows for a
smooth transition in the under-integrated case contrary to the volume-based SFEM opera-
tors. On the other hand, if nothing is implemented to control the error on Stokes’s formula,
any formulation is very likely to be wildly unstable and require unreasonably fine-tuning of
the stability factors in order to yield satisfactory convergence behavior.

Finally, let us point out another computational detail in favor of the Galerkin approach:
for a same discretization level, the number of connectivities (hence of stored non-zero values)
is lower in the case of the Galerkin discretization than in the case of the nodal weak form
with SFEM operators. In the exactly integrated case, two nodes i and j participate to a
non-zero coefficient if the support of their shape functions intersect in the Galerkin case, and
if these supports each intersect that of a common node k in the SFEM case. Denoting h the
radius of the MLS shape functions, this translate to a maximum distance between nodes of
‖xj − xi‖ ≤ 2h in the Galerkin case and ‖xj − xi‖ ≤ 4h in the SFEM case. The analysis is
a bit more subtle if we take discrete integration into account. Nevertheless, we numerically
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verified on our two dimensional test case with Halton point clouds that the number of non-
zeros is ≈ 3.2 times greater for the nodal weak form with the SFEM operators than for
the Galerkin weak form in the over-integrated case, and this discrepancy increases in the
under-integrated case.

4.3 Meshless discretization of the classical weak form:
dealing with essential boundary conditions

In this section, we study nodal operator-based discretizations of the classical weak form
of elliptic equations. In the scalar case, the continuous formulation is given in expression
(4.24.2). In section 4.3.14.3.1, we give a first naive version that has the major drawback of requiring
boundary nodes to be placed exactly on the boundary. In section 4.3.44.3.4, we address this
limitation and propose a formulation that circumvents this problem through the definition
of discrete Sobolev spaces.

4.3.1 A first approach with discretization nodes on the boundary
Bluntly replacing continuous operators with their discrete equivalents yields the following

nodal discretization:

Definition 4.3 (Weak discretization of the Poisson problem).
We suppose given a set of discrete operators

(
�́C ,
›
∂C ,�

)
on a point cloud (C,X). Then,

the weak nodal discretization of the Poisson problem reads: find u : C → R such that we
have: �

ˆ
C
�u ·D ·�v = �

ˆ
C
sv +

“
∂CN

gv ∀ v : C → R such that v|∂CD = 0,

ui = uD(xi) ∀ i ∈ ∂CD
(4.26)

The weak discrete diffusion operator is symmetric. In coordinates, it reads: ∀ i, j ∈ C,

�

ˆ
C
�δi ·D ·�δj =

∑
k∈C

Ak,i ·Dk ·Ak,j

Vk
(4.27)

Moreover, it is non-negative if the volume integration operator is non-negative since in this
case, we have: ∀ v : C → R,

�

ˆ
C
�v ·D ·�v ≥ 0 (4.28)

In the special case where we only have Dirichlet boundary conditions (∂CN = ∅), these
equations can be rewritten in the following pointwise form:{

−�∗i ·D ·�u = s(xi) ∀ i ∈ C\∂C,
ui = uD(xi) ∀ i ∈ ∂C

(4.29)

Hence, this type of weak symmetric elliptic operator is nothing but the composition of the
dual and the primal differentiation operators.

Remark. The space of real valued discrete functions which vanish on the Dirichlet boundary
is a discrete version of the Sobolev space of square integrable fields with square integrable



142 CHAPTER 4. APPLICATION TO THE DISCRETIZATION OF ELLIPTIC PDES

weak derivatives whose trace vanishes on the Dirichlet boundary. A possible notation for
this space could thus be:

H1
0,D(C) def= {v : C → R | v|∂CD = 0} (4.30)

Combined with our a priori choice of reduction operator (see definition 2.42.4), this essential
choice of handling Dirichlet boundary conditions constrains Dirichlet boundary nodes to lie
exactly on the boundary since the Dirichlet field uD is only defined on the boundary of
Ω. For this reason, we suppose in this section only that boundary nodes lie exactly on the
boundary. Of course, this drastically reduces the panel of operators available from chapters
22 and 33. For simplicity reasons, we furthermore suppose the boundary integration operator
diagonal, so that we only need to define vector boundary integration weights of the form
(Γi)i∈∂C .

In section 4.3.44.3.4, we explore the possibility of building discrete Sobolev spaces in the case
where nodes of ∂C do not necessarily lie on the boundary of the continuous domain ∂Ω.

Let us now derive the patch test conditions for the above discrete formulation:

Proposition 4.2 (Patch-test conditions for system (4.264.26)).
If � is P-1 consistent and

(
�́C ,
›
∂C ,�

)
form a compatible set of discrete operators (see

definition 2.182.18), then the weak discretization of the diffusion equation given in definition 4.34.3
passes the linear patch test.

Proof. Setting D = cst, u = a · x + b, s = 0, g = a · D · n in equation (4.264.26), we get:
∀ v : C → R such that v|∂CD = 0,

a ·D�
ˆ
C
·�v = a ·D ·

“
∂C
v (4.31)

Which is a consequence of compatibility.

This characterization of the first order consistency of the weak diffusion operator is the
reason why we invest so much effort into designing compatible gradients.

Numerical experiments
Let us now compare the results of this formulation. As remarked above, we need the

boundary nodes to be placed exactly on the boundary. The point clouds are thus augmented
with a row of nbou evenly distributed nodes on the boundary of the domain. These nodes
are chosen as boundary nodes and the discrete boundary operator is defined as:

“
∂C

u =
∑
i∈∂C

Area(∂Ω)
nbou

ui · n(xi) (4.32)

In other words, the boundary integration weights are Γi,j
def= Area(∂Ω)

nbou
δi,jn(xi) ∀ i, j ∈ C.

Similarly, we choose uniform volume weights. This choice is made so that the integration
operator satisfy the necessary condition for compatibility (see 2.32.3).

On figure 4.84.8, we compare the cloud-integrated error of the weak discretization using
several discrete gradients with different consistency properties on the test-case with exact
solution given in expression (4.104.10) using Dirichlet boundary conditions. We use two differ-
ent nodal arrangements for these simulations: the Cartesian and Halton distributions (see
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Figure 4.8 – Relative L2 errors on the diffusion test case as a function of the smoothing length. The
ratio hd/V is kept constant for all point clouds. Tests were made using the standard SPH gradient (see
expression 2.442.44), the renormalized SPH gradient of order zero (see expression 2.492.49), the renormalized
SPH gradient of order one, and the linear DMLS gradient using a singular weight function.
Left plot: Cartesian distribution. Right plot: Halton distribution.
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Figure 4.9 – Relative L2 errors on the diffusion test case as a function of the smoothing length,
with added stabilization. Tests were made using the standard SPH gradient (see expression 2.442.44), the
renormalized SPH gradient of order zero (see expression 2.492.49), the renormalized SPH gradient of order
one, and the linear DMLS gradient using a singular weight function.
The stabilization factors are chosen as: wi,j = δ

√
ViVj

(h/α)2+‖xj−xi‖2 with α = 20 and δ = 5× 10−2.
Left plot: Cartesian distribution. Right plot: Halton distribution.
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figure 2.12.1 a) and c)) and four discrete gradient operators: the classical SPH gradient, its
renormalized versions of order zero and one as well as the DMLS gradient.

On the Cartesian arrangement, every discrete gradient achieves first order convergence
on the diffusion system measured in the discrete L2 norm. However, this behavior is not
reproduced on the Halton distribution, where no simulation yields a relative error lower than
100%. The highly oscillatory pattern of the error suggests that the formulation is not stable
on the Halton distribution, which prevents convergence.

Since the SPH method does not define first order accurate reconstruction, the stabiliza-
tion given in expression 4.154.15 would hurt the consistency of the formulation (i.e. the patch
test conditions would not be the same).

We thus want to devise a stabilization term that does not harm first order consistency of
the diffusion system. Supposing that � is first order consistent (this is one of the patch test
conditions), and that u is a discrete fields with a locally linear behavior around a node i,
i.e. that the restriction of u to N (i) is linear. Then the first order Taylor approximation at
node i is exact on its neighborhood: ∀ j ∈ N (i), uj = ui + (xj −xi) ·�iu. This observation
suggests the following stabilization term to be added in the weak formulation:

astab(u, v) =
∑
i∈C

∑
j∈N (i)

wi,j(uj − ui − (xj − xi) ·�iu)(vj − vi − (xj − xi) ·�iv) (4.33)

This term is symmetric and non-negative provided the stabilization weights wi,j are non-
negative. It vanishes if u is a linear field, thus does not affect the patch test conditions. Its
role is to penalize the solution field from deviating from locally (i.e. on each neighborhood
of the point cloud) deviating from a linear function.

Remark. Considering physical dimensions, the right scaling for the edge stabilization coeffi-
cients is wi,j ∝ ‖D‖hd−2. Moreover, an appropriate choice of weight stabilization coefficients
can be made such that astab has the same matrix coefficients as those of the least-norm cor-
rection of definition 2.222.22. Exploiting this fact in a simulation code results in reduced memory
footprint and CPU effort. While very practical, such a choice is not motivated in theory,
and for our tests, we used the following value for edge coefficients:

wi,j = δ

√
ViVj

(h/α)2 + ‖xj − xi‖2
(4.34)

The factor α 6= 0 is added as to avoid divergence in the case where two nodes are very close
to each other. Its value is (somewhat arbitrarily) set to 20, and is of secondary importance.
On the other hand, the choice of an adequate value for δ is crucial to achieve the best
possible level of convergence.

On figure 4.94.9, we compare the L2 errors of the weak discretization with added stabi-
lization on the diffusion test case. On the Cartesian arrangement, every gradient achieves
at least first order convergence on the diffusion system. The DMLS gradient even achieves
second order convergence. On the Halton arrangement however, the classical SPH gradient
does not lead to a convergent discretization, whereas all the other gradients yield an oscil-
lating convergence with rate close to one. And indeed, the standard SPH gradient is not
even consistent of order zero, whereas all other gradients are consistent of order at least zero,
ensuring the consistency of order zero of the weak Laplace operator. This test confirms that
stable meshless discretizations that have order zero consistency are convergent of order one.

Achieving consistency of order one (i.e. passing the linear patch test) not only requires
the gradient operator to be linear consistent, but also zeroth-order dual consistent. The
next section addresses this topic.
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Figure 4.10 – Relative L2 errors on the diffu-
sion test case using the non-corrected order one
renormalized SPH gradient on a Halton distribu-
tion with 2500 nodes as a function of the non-
dimensional stabilization factor δ. The evolution
of the error is comprised of two steps: it first de-
creases from the unstabilized value δ = 0 to the
optimal value (δ ≈ 1× 10−1 here), then the error
steadily increases towards / 100% as δ →∞.
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Figure 4.11 – Relative L2 errors on the diffusion
test case as a function of the smoothing length.
We used the corrected renormalized SPH gradient
of order one and the linear DMLS gradient, with
(dashed lines, δ = 5 × 10−2) and without (plain
lines) stabilization on Halton distributions.
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Figure 4.12 – L2 norm of the error on the dual
of a unit field on Halton distributed point clouds
with the standard SPH gradient, the renormalized
SPH gradient of order zero, the renormalized SPH
gradient of order one, and the linear DMLS gra-
dient.
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Figure 4.13 – Relative L2 errors on the dif-
fusion test case using partially-corrected DMLS
gradients.
‖�∗1‖L2(C) ≤ 50, ‖�∗1‖L2(C) ≤ 20,
‖�∗1‖L2(C) ≤ 10, ‖�∗1‖L2(C) ≤ 5,
‖�∗1‖L2(C) ≤ 2, ‖�∗1‖L2(C) ≤ 1,
‖�∗1‖L2(C) ≤ 0.5, ‖�∗1‖L2(C) ≤ 0.2,
‖�∗1‖L2(C) ≤ 0.1
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4.3.2 Is compatibility really beneficial?
On figure 4.114.11, we represent the L2 errors of the weak discretization on the same test-case

using two first order consistent compatible gradients generated with the correction procedure
described in section 2.6.22.6.2. On this figure, we see that the convergence is greatly increased
(the measured rate of convergence is h1.8), and that the error level is always lower compared
to non-compatible discretization. For an unknown reason, the compatible gradients did
not exhibit the same loss of convergence due to unstable behavior as their non-compatible
analogues: it seems that compatibility has a regularizing effect on the system. This effect
is not total as the error level is still lowered by a multiplicative factor ranging from 3 to 5
with the addition of the stabilization term.

Compatibility, i.e. zeroth order consistence of the dual gradient is thus confirmed to
be a highly desirable feature. However, most of the purely meshless operators described
in the literature are not compatible. Even worse, the error on their dual gradients quickly
increases with the fineness of the point cloud when the nodal distribution is not regular. On
figure 4.124.12, we represent the L2 norm of the error of the dual gradient on a unit field as a
function of the smoothing length for several non-corrected gradient operators on the Halton
distribution. For first order consistent operators, this quantity varies roughly as ∝ h0.9.

In order to solve the correction system and generate the corrected gradients, we explicitly
form the covariance matrix of the constrained least squares problem and used an in-house
deflated restarted Generalized Minimal Residuals (GMRES) linear solver. The iterative
nature of this procedure makes it possible to stop the algorithm before convergence, and
generate discrete operators with a lower but still non-vanishing Stokes error. This feature
allows us to test the following hypothesis: is it really needed to require that the dual gra-
dient of a uniform field exactly vanishes for the weak discretization to ensure convergence?
Instead, it is possible to retain optimal convergence, only bounding the value of ‖�∗1‖L2(C)
independently of the level of refinement of the point cloud (i.e. ‖�∗1‖L2(C) = O(1) instead
of O(hα) with α close to 1).

On figure 4.134.13, we represent the relative L2 error on the diffusion test case for partially
corrected DMLS gradients, i.e. corrected DMLS gradients whose correction coefficients are
the result of the partially converged GMRES algorithm. Iterations are stopped when the
integrated Stokes error ‖�∗1‖L2(C) decreases below a given threshold. As expected, the
error on the diffusion system is a decreasing function of the threshold on the Stokes error.
Interestingly enough, a quasi-second order rate of convergence is restored in all cases, and
the error on the diffusion system reaches a plateau at ‖�∗1‖L2(C) ≈ 0.5. Lower values of
Stokes errors does not have any beneficial effect on the error on the diffusion system.

Remark. In fact, compatibility is also to be credited for convergence in the case of non-
corrected gradients on the Cartesian distribution (see figure 4.94.9 a)). Indeed, we observed that
the symmetries in the nodal distribution helped the error on the primal gradient to remain
low on the regular Cartesian cloud compared to that on the irregular Halton arrangement:
the measured behavior of the Stokes error in the Cartesian case as a function of the smoothing
length is only ‖�∗1‖L2(C) ∝ h0.17, namely a much lower increase rate than for the more
irregular Halton distribution.

This remark shows that the regularity and symmetry properties of the point cloud can
greatly influence the properties of the discrete operators built on it. This is similar to mesh-
based simulation, whose accuracy is in most cases heavily influenced by the quality of the
mesh (skewness of cells, aspect ration, . . . ). We have already seen in section 3.63.6 that several
classical stabilization procedures (e.g. XSPH, background pressure, Fick-based shifting . . . )
of the SPH method having a regularizing effect on the nodal distribution can actually be
re-interpreted as gradient descent algorithms seeking to decrease the Stokes error. The
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Figure 4.14 – Relative error of the laplacian system as a function of discretization length
using the volume-based SPH gradient (left) and the renormalized volume-based SPH gradient
of order one (right) on point clouds with Stokes error kept below 100, 50, 30, 10, 5, 3, 1,
0.5 and 0.3.

resulting point clouds exhibit little variation in distance to the closest neighbor, producing
"harmonious" and "eye-pleasing" nodal distributions. The regularity of these arrangements
(see figure 3.43.4) is clearly akin to that of Cartesian point clouds.

In particular, these intrinsically iterative algorithms can be stopped as soon as a desired
level of convergence is achieved, producing point distributions on which the volume-based
SPH operators (see section 3.53.5) achieve any level of compatibility error. This gives us
another means of confirming that bounding the compatibility error as the point cloud is
refined actually suffices to ensure second order convergence.

In order to run simulations on these point clouds, we impose the values of nodes in the
motionless "protective" layer of nodes to the exact solution values, which is tantamount to
considering these nodes as Dirichlet boundary nodes. The fact that these nodes do not lay
on the boundary does not mean that we have lifted this constraint of the discretization.
Rather, it is a numerical trick commonly referred to as "ghost nodes" or "ghost particles"
(see [152152, 165165, 193193, 202202] for some examples of usage of ghost particles). We do not consider
that using ghost particles is a satisfying method for the imposition of boundary conditions,
but it is a good enough placeholder to prove our point.

The corresponding discrete L2 error on the diffusion test case using the volume-based
SPH gradient without stabilization term is plotted on the left of figure 4.144.14. The point
clouds are generated starting from the Halton distribution and solving the system of ODEs
defined in expression (3.713.71) until the Stokes error reaches the required level. On the finest
point cloud, the error is ≈ 30 times lower on the optimized point cloud compared to the
non-optimized ones, which we interpret as the consequence of increased compatibility. The
plot shows a reduced convergence rate as the smoothing length increases. This behavior is
expected since the volume-based SPH gradient is not first-order compatible.

During our tests, we were surprised to discover that the blue noise distributions generated
by the optimization procedure were susceptible to give low values of the Stokes error, even for
gradients for which it was not initially designed. For instance, we were able to decrease the
Stokes error for the renormalized version of the volume-based gradient (which we could not
itself re-interpret as a volume-based gradient) to values as low as ‖�V SPH R1 ∗1‖ ≤ 0.3 for
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all tested point cloud refinement levels. Even if convergence to a zero value is not eventually
achieved, this represents a very significant improvement, with a huge impact on the results
of the diffusion test case. The corresponding error is plotted on the right of figure 4.144.14. In
particular, the three last curves (Stokes error below 1, 0.5 and 0.3 respectively) exhibit a
clear second order convergence behavior.

The key take-away is the following: what is really necessary in order to ensure a correct
convergence behavior is to be able to control the compatibility error of the discrete operators.
In the author’s opinion, this is the most promising approach to circumvent the meshless curse
and devise efficient truly meshless discretization of PDEs.

In the next section, we assess the main issues and limitations of the previous formulations,
especially concerning the enforcements of boundary conditions.

4.3.3 Critique of the nodal weak formulation

We have seen in sections 4.3.14.3.1 and 4.3.24.3.2 that the classical weak discretization of the
diffusion equation of definition 4.34.3 can achieve very satisfying quasi-second-order convergence
rates if used with compatible sets of first order consistent discrete operators.

However, in most cases of operator construction with built-in compatibility (for instance
with the SFEM operators of sections 2.7.22.7.2 and 2.7.32.7.3), it is difficult to ensure that boundary
nodes do lie on the boundary. Indeed, the formulation is very restrictive when it comes
to the boundary cloud ∂C. Specifically, boundary nodes have to be placed exactly on the
boundary of the domain: ∀ i ∈ C, xi ∈ ∂Ω. This constraint appears because boundary
condition fields (Dirichlet uD and Neumann g field) are only defined on the boundary and
our choice of reduction map entails that function evaluations only occur at nodes of the
point cloud. Furthermore, this condition cannot be relaxed for Dirichlet nodes if we insist
on treating them as loci for the essential boundary conditions, i.e. if we keep on imposing
ui = uD(xi) ∀ i ∈ ∂CD.

The alternative is to combine different discrete operators in a set without built-in com-
patibility (such as the renormalized SPH methods). In this case, we have seen that there is
much to gain either from correcting the gradient operator (which is a CPU and memory in-
tensive operation), or using harmonious distributions of points which typically have a lower
Stokes error. Unfortunately, designing harmonious point distributions with the constraint
that boundary nodes are exactly on ∂Ω can also prove very challenging.

A second objection to the weak formulation presented earlier concerns the role of nodes
and edges of the graph of the point cloud. As we have seen in section 2.2.22.2.2, nodes in a point
cloud are analogous to cells in a mesh (they hold a volume, . . . ), and edges are analogous
to faces (they separate cells, they hold vector surface areas, . . . ). It is thus surprising that
boundary conditions representing the behavior of the sought field on a surface should be
imposed on discrete objects analogous to a volume. It would instead be more coherent to
impose boundary conditions on edges of the graph rather than on nodes.

Let us note that these problems are specific to the classical weak formulations with
essential treatment of the Dirichlet boundary conditions, and do not occur with the Nitsche
symmetric formulation using either the operator-based discretization of section 4.2.14.2.1 or the
Galerkin-type discretization of section 4.2.24.2.2.

In order to overcome these issues, we propose a new scheme for the discretization of the
diffusion equation: in section 4.3.44.3.4, we augment the operator framework with a definition
of boundary edge positions, allowing for the imposition of edge-based essential boundary
conditions through the introduction of appropriate discrete Sobolev spaces.
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4.3.4 Essential enforcement of Dirichlet boundary conditions: De-
signing discrete function spaces

In this section, we address the weaknesses detailed in section 4.3.34.3.3, and devise a novel
meshless method with a different treatment of the boundary. This method is inspired by the
work of Krongauz and Belytschko [131131] concerning meshless Galerkin discretizations (see
also the related "continuous blending" method by Huerta [9595, 9696, 119119, 120120]).

This new formulation still treats Dirichlet boundary conditions essentially, i.e. via a
restriction of the trial space (the space of candidate solutions to the problem). For our
diffusion test case, this means in particular that we need to find a discrete analogue of
H1(Ω)0,D. This is achieved with the definition of positions for boundary edges: in sharp
contrast with the boundary nodes of the weak operator discretization detailed in section 4.34.3,
boundary edges do not correspond to degrees of freedom in the final discrete Poisson system,
they do not hold a volume integration weight Vi and the are not loci of the definition of the
discrete gradient.

Let us initially ignore the issue of the boundary and consider a point cloud (U ,X) of
a space larger than Ω. This point cloud is called "the universe". We suppose built on the
universe a discrete integration �́U and a first order consistent gradient operator �U . We
show how the actual discretization of the computational domain Ω can be inherited from
operators defined on U , even though the actual process of generating the discrete operators
might not go through this detour.

In a first step, it seems natural to only retain the nodes of the universe U that are located
inside Ω. Thus, let us define the interior cloud C̊ as:

C̊ = {i ∈ U | xi ∈ Ω} (4.35)

On figure 4.154.15 a), the nodes of C̊ are displayed in blue and the nodes of U\C̊ in black.
This restricted cloud is naturally equipped with the following volume quadrature method,
inherited from the original cloud U : ∀ f : U → R,

�

ˆ
C
f

def= �

ˆ
U
fδC̊ =

∑
i∈C̊

Vifi (4.36)

This approximation is obviously quite crude, but nevertheless points to the fact that
L2(C) def= C̊ → R, along with a positive volume quadrature method, is a good choice for a
discrete equivalent of L2(Ω).

Ultimately, the semi-norm of a function f in a discrete equivalent of H1(Ω) should read:

|f |2H1(C) = �
ˆ
C
‖�f‖2 =

∑
i∈C̊

Vi‖�if‖2 (4.37)

If the gradient operator � used in this definition is chosen to be the restriction of the
gradient operator defined on U , then the right hand side of equation (4.374.37) is ill defined.
Indeed, there are nodes in C̊ whose neighborhood is not included in C̊: they have at least
one neighbor in U\C̊, where the fi values are not defined. In other words, edges that join
nodes inside Ω to outside nodes prevent equation (4.374.37) from being well defined. We define
∂C to be the set of those edges:

∂C def= {(i, o) ∈ C̊ × U\C̊ | o ∈ N (i)} (4.38)
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Figure 4.15 – Restriction of the "universe" i.e. a covering point cloud U to the computa-
tional domain gives a way to capture the boundary.
a) The continuous boundary ∂Ω separates the interior nodes C̊ from the exterior nodes U\C̊.
b) Boundary edges ∂C are edges that cross the physical boundary.
c) Boundary node positions are defined as the intersection of boundary edges and the physical
boundary.
d) Structure of the point cloud at the vicinity of the boundary. A traversing edge is detected
since it has a single interior node i. The geometrical intersection of the straight line repre-
senting this edge with the exact boundary ∂Ω gives the position associated to the boundary
edge xb. The trace operator effectively maps a function defined on i and its interior neighbors
j to a value at b.
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At this point, let us point out that this choice of boundary edges is not the only possible
one, but presents several desirable properties mentioned later and its actual construction
can easily be automated.

This situation is represented in figure 4.154.15 b). The new point cloud C naturally inherits
the graph structure defined on U , and the ∂C is the set of edges that "go outside", i.e. that
are not linked to a node of C̊. It is convenient to attach a node to each of these edges, but
the status of these "boundary nodes" is quite different from the "interior nodes". Indeed,
they are linked only to a single interior node (we do take advantage of this feature when
building the discrete trace operator), and they do not possess a volume.

Another (equivalent) justification for the definition of the boundary cloud ∂C is the
following: the boundary ∂C is made up of the objects that separate C̊ and U\C̊. Indeed, any
continuous path on the graph of U joining a node of C̊ to a node of U\C̊ necessarily contains
at least one edge in ∂C. The continuous equivalent of this remark is found when applying
the intermediate value theorem to the signed distance function to Ω: each continuous path
joining a point of Ω̊ and a point of Rd\Ω crosses its zero level-set ∂Ω at least once. In
particular for every edge b = (i, o) of ∂C, there exists at least one point of the segment
[xi,xo] lying on ∂Ω as pictured on figure 4.154.15 c). In coordinates, the corresponding system
of equations reads: 

xb = (1− αb)xi + αbxo
αb ∈ [0, 1]
xb ∈ ∂Ω

(4.39)

Provided the discretization is fine enough and non-degenerate, there is only one solution
to this problem, which we denote xb and call position of the boundary node b.

Remark. This process can easily be adapted to the modeling of inner boundaries as shown
on figure 4.164.16. Contrary to regular boundaries, inner boundaries cut edges joining two
interior nodes, so that one boundary node needs to be introduced on either side of the
boundary, for a total of two boundary nodes per cut edge. At the end of this process, the
edge joining two interior nodes separated by an inner boundary is effectively severed, replaced
by two edges each joining an interior node and a boundary node, with both boundary nodes
sharing the same position.

Similarly to definition 2.72.7, we define a linear integration operator for fields defined on
the boundary: ∀ f : ∂C → R, “

∂C
f =

∑
b∈∂C

Γbfb (4.40)

Where Γi > 0. We also denote L2(∂C) def= ∂C → R equipped with the scalar product
(f, g)L2(∂C) =

›
∂C fg.

Remark. Because of the dual status of the discrete boundary (its components are simulta-
neously edges and nodes), this definition does not contradict definition 2.72.7. Instead of using
nodal values for the boundary integration – which somehow forced us to define a bi-linear
boundary integration operator in order to define the dual gradient operator – we define a
position for boundary edges and define edge values . . . which makes boundary edges very
comparable to nodes. For this reason, we do not try to distinguish the two notions further
and define the whole point cloud as C def= C̊ ∪ ∂C.

The fact that we do not define volume weights for boundary nodes does not allow the
definition of a dual gradient operator. Consequently, compatibility takes a different form
than the simple �∗1 = 0, but is no less essential as confirmed by our tests.
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Figure 4.16 – Cloud of points with inner boundary.
a) Discretization of the body at rest. Every edge of the initial point cloud intersecting the
inner boundary is split into two edges, and two boundary nodes are introduced at the same
position.
b) Deformed cloud with inner boundary in a traction test simulation. The two sides of the
inner boundary are now clearly visible.

Finally, we can adapt the definition of the gradient operator. Equation (4.374.37) only
requires the gradient of a function to be defined in the interior cloud C̊. Thus the discrete
gradient operator � : (C → R) → (C̊ → Rd) naturally maps discrete (scalar) fields defined
on the cloud with its boundary to discrete (vector) fields defined on the interior cloud:
∀ f : C → R,∀ i ∈ C̊ :

Vi�if
def=
∑
j∈C

Ai,jfj (4.41)

At this point, the only missing ingredient is the definition of discrete Sobolev spaces.
Although the trivial choice H1

0 (C) def= {f : C → R | ∀ b ∈ ∂C , ub = 0} is satisfying, the
space (C → R) should not be chosen as a discrete version of H1(Ω): it is too big. Indeed,
its dimension is the total (interior and boundary) number of nodes, which is higher that the
dimension of L2(C) = C̊ → R. More precisely, we can argue that (f, g) 7→ �́C fg is not a
scalar product on C → R because of its rank deficiency on the boundary (boundary nodes
do not hold a volume).

The ability to define a discrete equivalent of the Sobolev space H1(Ω) is closely linked
with the representation of the boundary. Indeed, H1(Ω) is rich enough to define the "restric-
tion" (or trace, see [8888] for a rigorous introduction to the trace operator) of a function to the
boundary ∂Ω in a continuous way whereas L2(Ω) is not restrictive enough. In other words,
the differentiability properties of functions in H1(Ω) give enough structure to the space to
be able to define boundary values. This remark suggests using our discrete differentiation
operator to define a trace operator. The simplest way to do that is to perform a linear
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reconstruction of boundary values: ∀ u : C → R, ∀ b = (i, o) ∈ ∂C:

ûb = ui + (xb − xi) ·�iu (4.42)

Setting interior values and requiring that every reconstructed value ûb should match the
boundary value ub constitutes a system of linear equations. There is exactly one equation
and one unknown per boundary node, hence this system cannot be overdetermined. If it is
underdetermined, we consider the solution with the least L2 norm. This procedure implicitly
defines a trace operator TrC : (C̊ → R)→ (∂C → R).

A careful examination of equation (4.424.42) reveals that the definition of the trace of a
discrete function at a boundary node b = (i, o) only requires the values of the neighbors j ∈ C̊
of its sole interior neighbor i ∈ C̊ as depicted on figure 4.154.15 d). Indeed, every boundary node
has only one interior neighbor, so that there is no coupling between boundary nodes relative
to different interior nodes. Consequently, writing boundary values as linear combinations
of interior values (a technique known as static condensation) only requires the inversion
of small and local linear systems. This desirable property is a direct consequence of the
definition of boundary nodes as edges of U traversing ∂Ω.

Our discrete version of H1(Ω) is then made up of functions defined on the point cloud
C, whose values on the boundary agree with their linear approximations:

H1(C)={u : C → R | u|∂C = TrC(u|C̊)} (4.43)

={u : C → R | ∀ b = (i, o) ∈ ∂C, ub = ui + (xb − xi) ·�iu}
Finally, in order to define H1

0,D(C), we demand that Dirichlet boundary node values
should vanish, and that the others should match the linearly reconstructed value:

H1
0,D(C) = {u : C → R | ∀ b = (i, o) ∈ ∂C\∂CD, ub = ui + (xb − xi) ·�iu (4.44)

∀ b ∈ ∂CD, ub = 0 }
Since interior values suffice to define an element of H1

0,D(C), its dimension (the number
of degrees of freedom of the problem) is the number of interior nodes (the cardinal of C̊). In
the end, the spaces H1(C), H1

0,D(C) and H1
0 (C) all have the same dimension and are strictly

distinct subspaces of (C → R).
We now have all the tools we need to write a discretization of the diffusion problem on

C: Given discrete fields D, s, g and uD, find u : C → R such that for all v ∈ H1
0,D(C), we

have: 
�

ˆ
C
�u ·D ·�v = �

ˆ
C
sv +

“
∂CN

gv

u− uD ∈ H1
0,D(C)

(4.45)

Once again, necessary conditions to pass the linear patch test are the first order consis-
tency of � as well as the following discrete version of Stokes’s theorem:

∀ v : C → R, �
ˆ
C
�v =

“
∂C
vn (4.46)

Making use of the fact that boundary nodes are linked to a single interior node, let us
re-write the above compatibility requirements in coordinates:

∑
i∈C̊

Ai,j = 0 ∀ j ∈ C̊

Ai,b = Γbnb ∀ b = (i, o) ∈ ∂C
(4.47)
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Figure 4.17 – The clipping procedure described in this section allow the representation of
the boundary from a covering point cloud. Each boundary node corresponds to a traversing
edge in the original point cloud.
a) Clipped Halton distribution with 1277 interior nodes on Ω = [0, 1]2. The clipping procedure
retains 644 interior nodes and creates 411 boundary nodes.
b) Clipped blue noise distribution with 1277 interior nodes on Ω = [0, 1]2 . The clipping
procedure retains 645 interior nodes and creates 457 boundary nodes.

For boundary nodes, the above equation states that the gradient coefficients Ai,b should
be normal to the boundary and have the magnitude of the boundary integration coefficient
Γb. This strengthens the belief that graph edges are the meshless equivalent of mesh faces.
For interior nodes, equation (4.474.47) states that the sum of incoming gradient coefficients to
any cell should vanish. This condition might be interpreted as the closedness of the meshless
"cell". Adaptation of the least-norm correction procedure for compatibility (see definition
2.222.22) to the above system of equations is almost straightforward.

Numerical experiments on the diffusion equation

We test the method described in the previous section on a similar test case of the diffusion
equation. The exact solution is still given by expression (4.104.10). The computational domain

is a ball Ω = B2(
(

0.5
0.5

)
, 0.4). In order to build the point clouds for the test, we clip point

clouds on [0, 1]2 using the procedure described in the previous section (see figure 4.174.17). Note
that the blue noise point cloud are optimized for compatibility using the volume-based SPH
gradient, and hence are not supposed to verify the compatibility equations for the tested
gradients, a fortiori not at the boundary.

For all these tests, the volume and boundary integration operators are chosen as inte-
grals of Shepard shape functions, with ad-hoc overkill discrete integration formulae on a
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Figure 4.18 – Evolution of the Stokes error as a function of the smoothing length for of
the renormalized SPH gradient of order zero and the linear DMLS gradient on the Halton
distribution (plain lines) and the blue noise distribution (dashed lines).

background Cartesian grid:

Vi =
ˆ

Ω

Wh(x− xi)∑
j∈CWh(x− xj)

dV (4.48)

Γb =
ˆ
∂Ω

Wh(x− xb)∑
j∈CWh(x− xb)

dS (4.49)

These integration weights are then projected on the space of weights verifying the necessary
conditions for compatibility (see proposition 2.32.3).

On figure 4.194.19, we compare the relative error for increasing discretization fineness for sev-
eral point clouds and boundary conditions. The plots show a roughly first order convergence
behavior on clouds following the blue noise distribution and no convergence at all (relative
error > 100%) on clouds following the Halton distribution, regardless of the boundary con-
dition (full Dirichlet or Neumann) and of the consistency order of the gradient. Once again,
this hints at the fact that the blue noise distribution has better properties than the Halton
distribution.

Previous tests revealed that the Stokes error (before correction) seems to be affected
by the choice of node distribution: the more "harmonious" and eye-pleasing, the lower the
Stokes error. Even though we cannot define a dual gradient operator on C with the updated
treatment of the boundary, we can still define the Stokes error as:

sup
v∈ H1

0,D(C)
‖v‖L2(C)=1

‖�
ˆ
C
�v −

“
∂C
v‖ (4.50)

This quantity is represented on figure 4.184.18. A least-square fit reveals that the Stokes error
grows as ∝ h−1 on the Halton point cloud and only as ∝ h− 1

2 on the blue noise distribution,
confirming yet again the benefit of using more regular point distributions.

On figure 4.204.20, we compare the relative error on the same diffusion test-case with cor-
rected gradients. For both boundary conditions and point clouds, a satisfying second order
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Figure 4.19 – Relative L2 errors on the diffusion test case as a function of the smoothing length of the
non-stabilized weak formulation. We used the non-corrected renormalized SPH gradient of order zero
and the linear DMLS gradient, on the Halton distribution (plain lines) and the blue noise distribution
(dashed lines). Left: Dirichlet boundary conditions are imposed on the whole boundary. Right: Neumann
conditions are imposed on the whole boundary except for a contiguous arc of 20° (i.e. ≈ 5.56% of the
boundary).
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Figure 4.20 – Relative L2 errors on the diffusion test case as a function of the smoothing length of
the non-stabilized weak formulation. We used the corrected renormalized SPH gradient of order zero
and the linear DMLS gradient, on the Halton distribution (plain lines) and the blue noise distribution
(dashed lines). Left: Dirichlet boundary conditions are imposed on the whole boundary. Right: Neumann
conditions are imposed on the whole boundary except for a contiguous arc of 20° (i.e. ≈ 5.56% of the
boundary).
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Figure 4.21 – Relative L2 errors on the diffusion test case as a function of the smoothing length of
the non-stabilized and stabilized weak formulation. We used the corrected linear DMLS gradient, on the
Halton distribution (plain lines) and the blue noise distribution (dashed lines). Left: Dirichlet boundary
conditions are imposed on the whole boundary. Right: Neumann conditions are imposed on the whole
boundary except for a contiguous arc of 20° (i.e. ≈ 5.56% of the boundary).
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Figure 4.22 – Relative H1 errors on the diffusion test case as a function of the smoothing length of
the non-stabilized and stabilized weak formulation. We used the corrected linear DMLS gradient, on the
Halton distribution (plain lines) and the blue noise distribution (dashed lines). Left: Dirichlet boundary
conditions are imposed on the whole boundary. Right: Neumann conditions are imposed on the whole
boundary except for a contiguous arc of 20° (i.e. ≈ 5.56% of the boundary).
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Figure 4.23 – Relative L2 errors on the diffusion test case as a function of the stabilization coefficient
δ on the Halton (left plot) and the blue noise (right plot) distributions. The smoothing length is set to
h = 5.5× 10−2, 3.9× 10−2, 2.7× 10−2, 1.9× 10−2, 1.4× 10−2, 9.2× 10−3 and 6.9× 10−3.
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Figure 4.24 – Node-wise signed error for the smallest point cloud using Dirichlet boundary conditions
and the corrected linear DMLS gradient. Left: non-stabilized formulation. Notice that the error varies
with a high space-frequency pattern (alternating blue-red colors for neighboring nodes) characteristic of
a mild instability. Right: stabilized formulation with δ = 3× 10−1. The error is much lower in absolute
value and the high-frequency pattern has disappeared.
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convergence is achieved when using the first order consistent DMLS gradient. In contrast,
the zeroth order renormalized SPH displays what appears to be a pre-asymptotic phase
where the error decreases as h decreases, but then appears to stagnate around a few per-
cents. This behavior is very similar to the one observed on the case where compatibility is
achieved via adaptation of the nodal positions with the volume-based SPH operators (see
left plot of figure 4.144.14). While this behavior is still an improvement over the non-corrected
gradient which systematically leads to a higher error, the only formulation that exhibits opti-
mal convergence is the compatible first order consistent formulation, namely the formulation
that passes the linear patch test.

Figure 4.244.24 represents the signed point-wise error of the first order consistent compatible
discretization on the diffusion test-case. Its unphysical high frequency pattern (alternating
blue and red dots) suggests the introduction of an additional smoothing stabilization term
in the discrete formulation. We thus added the consistent stabilization term defined in
expression (4.334.33) with α = 0.3. Visually, its effect is to both smooth out and lower the
absolute value of the error as seen on the right hand side of figure 4.244.24.

On figure 4.214.21, we compare the evolution of the relative L2 errors of the stabilized and
unstabilized formulations. These plots reveal that the stabilization term systematically has
a beneficial effect on the results, reducing the error by a factor of eight to ten in the case of
Dirichlet boundary conditions, and by a factor of two to four in the case of the Neumann
boundary conditions. Actually, adding this stabilization term has an even more significant
impact on the result than going from the Halton distribution to the blue noise distribution.

Very similar observations can be made concerning the approximation of the fluxes as
pictured on figure 4.224.22 which compares the relative H1 errors of the stabilized and unstabi-
lized formulations for patch-test compliant operators. In all cases, the measured convergence
behavior of the flux is at least ∝ h1, which is what we expect of a first order formulation.

On figure 4.234.23, we compare the error level for several values of the stabilization coefficient
δ. This plot shows that a compromise needs to be found between under-stabilization (left
side of the plot, the error tends to a finite value: the result of the unstabilized case), and over-
stabilization (the solution is constrained to be linear, and the error is ≈ 100%). The optimal
value is confirmed to be independent on the fineness of the point cloud (i.e. expression 4.344.34
is a good scaling) and on the distribution to a large extend.

4.3.5 Linear elasticity: minor theoretical tweaks

As developed in section 4.1.34.1.3, the equations of linear elasticity are vector analogs of
scalar diffusion. As a consequence, their discretization can easily be obtained using the line
of thought described earlier.

At a discrete level, we suppose the gradient operator to act coordinate-wise on vectors.
Hence, the discrete gradient of a vector field reads: ∀ v : C → Rd,∀ i ∈ C̊ :

Vi�iv
def=
∑
j∈C

Ai,jvTj (4.51)

With this choice, first order consistency and compatibility still constitute sufficient conditions
on the discrete operator to pass the linear patch test. Mixed boundary conditions make the
construction of function spaces slightly more involved, but add no real conceptual complexity
to the discretization process. Denoting P⊥b = nbnTb (resp. P\\b = Id − P⊥b ) the orthogonal
projectors onto the normal (resp. tangent) direction to the boundary at xb, we define the
discrete equivalent of H1,d

0,D⊥,D\\(Ω) as:
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H1,d
0,D⊥,D\\(C) = {u : C → Rd | ∀ b = (i, o) ∈ ∂C\∂C⊥D, P⊥b ub = P⊥b ui + (�i(P⊥b u))T (xb−xi)

∀ b ∈ ∂C⊥D, P⊥b ub = 0 (4.52)

∀ b = (i, o) ∈ ∂C\∂C\\D, P\\b ub = P\\b ui + (�i(P\\b u))
T

(xb − xi)

∀ b ∈ ∂C\\D, P\\b ub = 0 }
Let us remark that once again, these equations cannot be overdetermined. Indeed, the

coordinate-wise definition of the gradient operator implies a commutation with symmetric
tensors, which in turn means that:

Pui + (�i(Pu))T (xb − xi) = P(ui +�iuT (xb − xi)) (4.53)

Furthermore, comparing the range and nullspaces of both orthogonal projectors shows that
each boundary node contributes d independent equations as well as d unknowns in equation
(4.444.44).

Denoting ¹iv
def= (�iv +�ivT )/2, the discrete weak formulation reads: ∀ v ∈ H1,d

0,D⊥,D\\(C),
�

ˆ
C
¹u :H : ¹v = �

ˆ
C

s · v +
“
∂C⊥
N

g⊥n · v +
“
∂C\\
N

g\\ · v

u− (u⊥Dn + u\\D) ∈ H1,d
0,D⊥,D\\(C)

(4.54)

The analysis of the patch test is again identical to that presented in section 4.3.44.3.4 and
first order consistency and compatibility still constitute sufficient conditions.

Numerical results on the elasticity equation
In this section, we consider the classical example of a finite square plate of half width

b = 1 m pierced in its center with a circular hole of radius a = 0.2 m loaded in unidirectional
tension normal to one side, as pictured on figure 4.254.25. The analysis is performed using an
isotropic elasticity tensor:

H = λId ⊗ Id + 2µId (4.55)
There are no body forces and there are only Neumann boundary conditions in two dimen-
sions, so that the theoretic stress profile does not depend on the actual values of λ and
µ.

Using symmetry, we only discretize the problem on one fourth of the geometry, which
reduces the size of the problem and allows our discrete displacement-based formulation to
be well-posed even in the absence of Dirichlet boundary conditions in the initial model.

Figure 4.264.26 compares the stress profile as computed by our meshless method and the
P-1 finite element method. We clearly recognize a tensile stress concentration (in dark blue)
above the hole as well as a compression dominated area (in red) as predicted by the theory.

Our meshless model is generated using a covering point cloud following a blue noise
distribution and the clipping process exposed earlier. The final point cloud is made of 1235
interior nodes (2470 degrees of freedom in the final formulation) and 645 boundary nodes.
For the simulation, we use the corrected MLS gradient with stabilization (δ = 0.3). The
maximal tensile stress is computed to be ≈ 3.22 times the prescribed boundary stress, i.e.
≈ 2.3% more than the theoretical value of 3.13. (which includes the finite width correction
given in [185185]).

The finite element method on a triangular mesh is made of 2111 cells and 1113 nodes
for a total of 2226 degrees of freedom for displacements. The overall aspect of the stress
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Figure 4.25 – Geometry of the stress concentration approximation test-case.

profile looks very similar to our computation. With this method, the maximal tensile stress
is computed to be ≈ 3.38 times the prescribed boundary stress, i.e. an overestimation of
≈ 8.0% compared to the theoretical value. This example illustrates well the similarities of
approximation power between the two methods.

4.4 Comparison of the Nitsche and classical discretiza-
tions on a linear elasticity test case

In this section, we compare our two propositions for the imposition of boundary condi-
tions in a nodal integrated meshless framework on a common test case: the evaluation of
the stress intensity factor of a two-dimensional finite square plate with centered crack under
uniform uniaxial tensile stress treated in the linear elastic regime The exact geometry of the
test case can be found in figure 4.274.27. The ratio of crack length to square side is chosen to
be a

b = 0.2. The elasticity tensor is assumed isotropic, and the Lamé coefficients (λ, µ) (see
expression (4.554.55) of the elasticity tensor) can be written in terms of the Young modulus Y
and Poisson ratio ν as:

λ = Y ν

(1 + ν)(1− (d− 1)ν) µ = Y

2(1 + ν) (4.56)

The difficulty in this test case lies with the non-regularity of the cracked geometry, which
is conveyed to the solution. At the tip of the crack, the stress concentration on such a test
case cannot be characterized by the ratio σmax

σ∞
as in the pierced plate test case of section

4.3.54.3.5. Indeed, the stress tensor of the exact linear elastic solution is typically unbounded in
the vicinity of crack tips. Instead, the theory predicts the finiteness of the following limit,
written in polar coordinates:

K
def= lim

r→0
θ=0

√
2πrσ (4.57)

Consequently, accurately capturing the stress profile in the vicinity of the tip means being
able to derive an accurate estimate of the so-called "stress intensity factor" K (see [2121] for
more information about stress intensity factors, their relation to energy release rates as well
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a) b)

Figure 4.26 – Simulated stress profile in a finite plate with circular hole in horizontal ten-
sion. Only a quarter of the physical domain is simulated and symmetry (mixed: Dirichlet in
the normal direction and Neumann in the tangent direction) boundary conditions are applied
on the left and bottom side of the simulation domain. Homogeneous Neumann boundary con-
ditions are applied to the top side and the circular portion, and a normal traction is applied
on the right side, as sketched on figure 4.254.25.
The corresponding discretization structure is shown in gray. The background color scales
with the stress eigenvalue of largest absolute value and the arrows represent the stress tensor
in an orthonormal basis in which it is diagonal.
a) The proposed meshless method.
b) Linear finite element method of Comsol [11].

as fracture theory in general). If the plate is assumed infinite (i.e. a
b = 0), a classical result of

bi-dimensional elasticity theory states that the stress intensity factor is exactly K = σ
√
πa.

Taking finite effects into account, Rooke and Cartwright [197197] give the following approximate
correction:

K = σ
√
πa

1− a
2b + 0.326

(
a
b

)2√
1− a

b

(4.58)

For a
b = 0.2, the relative magnitude of the correction is ≈ 2%.
Similarly, it is possible to relate the stress intensity factor and the normal displacements

near the crack tip (see [113113] for instance). In two dimensions, (or equivalently for a 3-
dimensional plane stress approximation), this reads (in polar coordinates):

K = lim
r→0
θ=π

Y

4

√
2π
r

u · n (4.59)

There are two main classical methods to estimate the stress intensity factor. The first
method is quite primitive: it consists in approximating one of the limits (4.574.57) or (4.594.59)
directly. This second expression is easier to evaluate with the method developed in section
4.3.44.3.4 since the displacements are readily available at boundary "nodes", but not the stresses.
These boundary nodes are apparent on the left plot of figure 4.284.28. Since we do not have
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Figure 4.27 – Geometry of the stress intensity factor approximation test-case.

nodes on the boundary with the nodal Nitsche formulation of section 4.2.14.2.1, we need to use
the reconstructed displacements. The right plot of figure 4.284.28 shows the displaced nodes
and the MLS reconstruction of the boundary.

In order to numerically evaluate the limit (4.594.59), we extrapolate the RHS of expression
(4.594.59) from the segment [ε1, ε2] h away from the point r = 0 with θ = π. The choice of the
reconstruction method (especially that of the non-dimensional parameters r1 and r2) needs
to accommodate the following concerns:

• By definition, ε1 < ε2.
• If the extrapolation segment is too close to the singularity (low values of ε1), the errors

in the displacements are greatly amplified by the factor
√

2π
r .

• If the extrapolation segment is too narrow (ε2 − ε1 small), the reconstruction is very
sensitive to any error, and thus might not be very robust.

• If the extrapolation segment is too far from the singularity (high values of ε2), the
local behavior of the displacement field noticeably deviates from the theoretical local
prediction u ∝

√
rex.

• The extrapolation method should be robust and precise enough. Here, we compare
the LLS reconstructions (see section D.1D.1) of order 0, 1 and 2.

The second method to compute the stress intensity factor is to exploit its link with the
energy release rate during crack growth. For instance, via the evaluation of the J-integral, a
path independent quantity first investigated by Rice et al. in [195195], or the dual I-integral of
Bui [4949] (see [4848] for a comparison of both integrals). In our test case, their common value
is 1

Y K
2.

This method found a new light with the work of Destuynder et al. (see [7575, 7676]), who
proposed to consider the derivative of the potential energy of the system with respect to
geometrical changes (opening of the crack). A very clear introduction to this so-called
"theta method" and generalizations can be found in the thesis by Suo [219219] (in French).
In particular, its theorem 2.3 gives the derivative of the mechanical energy in the system
E = 1

2
´

Ω εu : H : εu dV −
´
∂Ω f · u dS with respect to the domain Ω contracted with a
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Figure 4.28 – Simulated displacements on the centered crack test case. The two simulation
are performed on Halton distributions with 4900 initial nodes. The symmetry of the problem
is exploited so that only one fourth of the geometry needs to be discretized.
a) Results using the method described in section 4.3.44.3.4 for the essential imposition of boundary
conditions using the corrected DMLS gradient.
b) Results using the method described in section 4.2.14.2.1 for the weak Nitsche imposition of
boundary conditions using volume-based mesh-integrated SFEM operators.

vector field θ as:

G = −∂E
∂Ω · θ =

ˆ
Ω

(
Tr((H : εu)∇u∇θ)− 1

2 Tr(εu :H : εu)∇ · θ
)

dV = 1
Y
K2 (4.60)

Even though the structure theorem (see theorem 3.13.1) states that the above expression can
be written as a boundary integral of the form

´
∂Ω ψ(u)θ · n dS (such a formula is given in

expression (2.35) of [219219] for instance), the above expression is more convenient for numerical
evaluation since the virtual displacement field θ only appears through its gradient. Thus, θ
can be designed so that the non-vanishing contributions are not in the direct vicinity of the
crack tip.

The above expression is quite convenient for a direct evaluation in our meshless context
since discrete integration and differentiation operators are readily available, but the result
does depend on the specific choice of virtual displacement field θ. In our tests, we com-
pare several displacement fields representing the same infinitesimal boundary displacement:
nothing moves, and the crack opens straight. Specifically, denoting r = ‖x− xtip‖, we used:

θ =



ey if r < r1(
1−

(
r − r1

r2 − r1

)2
)2

ey if r1 < r < r2

0 if r2 < r

(4.61)

With this definition, θ is C1 and has a compact support. Its gradient is non-vanishing only
in the annulus r1 < r < r2, and only nodes in this region contribute to the computation
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Figure 4.29 – Numerical comparison of the different methods for the approximation of the stress in-
tensity factors. The simulation was performed on regular blue noise point clouds.
Top row: Relative error between the theoretical prediction and the meshless approximation of the stress
intensity factor as a function of the smoothing length.
Bottom row: Relative standard deviation on the approximation of the stress intensity factor amongst
all parameter values as a function of the smoothing length. Low values means that the estimation is not
very sensitive to the parameters, and that fine-tuning is not vital.
Left column: Essential boundary conditions of section 4.3.44.3.4 using the corrected DMLS gradient.
Right column: Weak Nitsche boundary conditions of section 4.2.14.2.1 using volume-based mesh-integrated
SFEM operators.
Blue curve: Average value of the stress intensity factor using the theta method with parameters
r1 ∈ {0.05, 0.06, 0.07, 0.08, 0.09, 0.1} and r2 ∈ {0.12, 0.13, 0.14, 0.15, 0.16, 0.17}.
Red, green and orange curves: Average value of the stress intensity factor using the displacement recon-
struction method. The reconstruction method is the LLS of order zero, one and two, with parameters
ε1 ∈ {1, 1.2, 1.4, 1.6, 1.8, 2} and ε2 ∈ {2.4, 2.6, 2.8, 3.0, 3.2, 3.4}.
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of the stress intensity factor. Similarly to the previous method, we want this region to be
far enough from the crack tip so as no to suffer too much from this low accuracy region
(r1 not too small), to be big enough to average possible stress inaccuracies and avoid high
gradients of θ (r2 − r1 not too small), but not so large as to include irrelevant information
(other singularity or other boundary conditions in particular).

On the top row figure 4.294.29, we compare the relative errors on the approximation of the
stress intensity factor between the essential and the weak imposition of boundary conditions.
Since these methods are expressed in terms of the arbitrary parameters εi and ri, each curve
is an average of the results obtained using several choices for those parameters.

For the simulation using the essential imposition of boundary conditions (left plot), the
accuracy of the result is the best in the case of the LLS reconstruction of the displacements
of order zero. The second best is the theta method, and then come the reconstruction-based
approximations of order 1 and 2. The error levels are rather oscillatory from one simulation
to another for all reconstruction-based methods contrary to the theta method, which does
not present such a strong oscillatory profile.

For the simulation using the Nitsche-type boundary conditions (right plot), the error
levels are far less oscillatory. The most precise method is clearly the theta method, which
reaches levels of accuracy comparable to the simulation using essential boundary conditions.
The reconstruction-based approximation gives a higher error than the theta method, and
the error increases with the order of the reconstruction.

The bottom row of figure 4.294.29 shows the relative standard deviation of the approximation
of the stress intensity factor on the set of parameters that we used. This is a way of measuring
the sensitivity of the results with respect to parameters. For both methods of imposition of
boundary conditions, the theta method is the least sensitive, then come the reconstruction-
based approximations in increasing order. For this reason, and also considering its low error
levels, the theta method appears to be a better way of estimating the stress intensity factor.

A possible explanation for the better result of the reconstruction-based method in the
case where boundary conditions are imposed essentially is that the displacement information
is readily available at the boundary of the domain (via the definition of boundary nodes).
On the other hand, our method for imposing the Nitsche boundary conditions evaluates
discrete integrals with the field value of nodes near the boundary, but not exactly at the
boundary, so that a transition between the two is needed: the MLS reconstruction. The
final approximation is an extrapolation of a reconstruction, possibly explaining the loss in
accuracy.

A quick summary
This last chapter is dedicated to the development of numerical methods for the dis-

cretization of elliptic PDEs using the meshless operators developed in earlier sections. For
each of the discretizations, we detail patch test conditions and give numerical evidence that
passing the linear patch test, i.e. having order one consistency on the final system of dis-
crete equations, is tightly linked with second order convergence. This is consistent with
the hypothesis of the Bramble-Hilbert lemma. Note that all tests are performed on non-
regular point clouds (and background integration meshes when relevant), i.e. on structures
with non-periodic substructures such as low discrepancy sequences of points or blue noise
distributions.

For the most part, we restrict ourselves to weak nodal integrated meshless methods. In
this case, necessary conditions for the linear patch test are first order consistence of the
primal gradient, and satisfaction of a discrete analogue of Stokes’s theorem. This is the
reason why chapters 22 and 33 mainly focus on the concept of compatibility. The case of
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meshless Galerkin discretization with more general integration is quickly treated in section
4.2.24.2.2, and the conclusions are the same.

Regardless of the chosen method to enforce boundary conditions, we numerically demon-
strate that it is indeed crucial to ensure low values of the compatibility error to observe
second-order convergence of elliptic systems. More precisely, this error should be kept
bounded as the point cloud is refined, contrary to its usual diverging behavior. Conse-
quently, compatibility is not stricto sensu required for optimal convergence: this is the most
important result of this chapter as it suggests a way out of the meshless curse, which only
concerns exact compatibility.

Using the weak Nitsche formulation to impose Dirichlet boundary conditions is extremely
straightforward in our nodal meshless framework: we simply replace every continuous opera-
tor with their discrete counterpart to form the discrete system. This formulation presupposes
the availability of a first consistent (quasi-)compatible set of discrete operators, and is thus
particularly well-suited to our classical and volume-based SFEM operators.

Here is how the two compare: the classical SFEM operators show signs of a mild insta-
bility, but are robust regarding under-integration, which can always be mitigated using an
adequate stabilization. On the contrary, volume-based SFEM operators do not require any
additional "bulk" stabilization (as opposed to boundary stabilization, which is compulsory
in both cases) if the background integration structure is fine enough. However, the effects
of under-integration are very sudden, and systematically leads to a dramatic failure of the
discretization system, no matter the amount of added stabilization. Interestingly enough,
a compatible integration of the Element-Free Galerkin reconciles the good behaviors of the
two sets of SFEM discrete operators and avoid their shortcomings.

We also explore the possibility of imposing Dirichlet boundary conditions in an essential
way. The most straightforward approach is quite inconvenient since it forces boundary nodes
to be placed on the geometrical boundary of the domain. We propose an alteration of the
meshless framework that completely alleviates this restriction thanks to the definition of
boundary edge positions and a discrete trace operator. These boundary positions can easily
be constructed as an intersection between an extended point cloud and the computational
domain. Provided we can build compatible first order consistent operators on this new
structure, we show that the optimal order of convergence is retrieved, and the error level is
shown to be of the same order of magnitude as that of a mesh-based linear finite element
method on a linear elasticity test case.

We compare the classical and the Nitsche formulations for the imposition of the boundary
conditions on a Stress Intensity Factor (SIF) evaluation test case. The SIF is approximated
using two methods, either exploiting the normal boundary displacements at the tip of the
crack (reconstruction based method), or the stress distribution in a patch around the crack
tip (theta method). In a nutshell, the essential formulation is more reliable for the evaluation
of boundary displacements, and the weak Nitsche formulation performs slightly better for
the evaluation of stresses. In both case, the theta method has the lowest variability, and is
thus the recommended alternative.





Conclusions

The main focus of this thesis has been the meshless discretization of elliptic equations
using nodal integrated weak symmetric formulations. We studied them within a novel general
meshless nodal operator framework, and clearly showed that regardless of the chosen method
to impose boundary conditions, we were able to achieve second order convergence on this
type of problems as long as the linear patch test conditions are fulfilled. These conditions
can be split into the following simple guidelines: the discrete operators need to be first order
consistent and collectively satisfy a discrete analogue of Stokes’s theorem, which we called
compatibility.

We recognized the difficulty to build such discretizations in a purely meshless context,
and materialized it in the following conjectured "meshless curse": effectively computing a
set of first order consistent compatible operators requires either some use of a mesh or
the solution of a globally coupled system of linear equations. And indeed, any set of such
operators studied in this work – or in the literature – fall into either category. Or almost:
it can be shown that the exact consistency and compatibility properties of both classical
and volume-based SFEM operators can survive the discretization process as long as the
approximation for the integrals itself satisfies first order consistency and compatibility. The
mesh is simply the only currently known tool that breaks this vicious circle.

We have shown however that exact compatibility is not a strict requirement. In general,
methods that succeed in constraining the error on the discrete version of Stokes’s formula to
a bounded behavior as the point cloud is refined still do allow second order convergence on
elliptic problems. In the author’s opinion, this is the most promising approach to circumvent
the meshless curse and devise efficient and truly meshless discretization of PDEs.

This observation actually led to the reinterpretation of several classical stabilization
procedures as actually decreasing the compatibility error, via the addition of either an ALE
velocity source term or a uniform background pressure.

The common trait of such methods is that the gradient operator appears via differentia-
tion of the integration volume weights with respect to node positions. In fact, we discovered
that the functional dependency of the nodal volume weights with respect to geometrical
parameters allows the definition of so-called "volume-based" meshless operators: gradient
operator, boundary integration (and resulting dual gradient), and shape functions. Above
all, we showed that the properties of volume-based operators could be fully characterized in
terms of properties of the original volume weights.

In particular, patch test conditions are fulfilled by sets of meshless operators arising
from translation invariant volume functions that are first order consistent for general node
positions. This result sheds yet another light on patch test condition compliant operators:
although translation invariance (the compatibility part) is fulfilled by virtually any sound
volume function, first order consistency for general node position is more difficult to ensure
without resorting to some kind of background mesh-based integration procedure. This comes
in strong contrast with the usual constructions of meshless gradients, which easily ensure

169
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first order consistency, but struggle with compatibility.
As an important consequence of this characterization, we proved an order limitation

result concerning volume-based operators: if the volume function is local (and other tech-
nicalities), then it cannot yield a primal gradient consistent of order one. This forbids
the existence of purely meshless method with high compatibility orders within this nodal
volume-based approach. On the other hand, we proved with an example that volume-based
meshless dual gradient can theoretically achieve arbitrary high consistency order.

Once all meshless operators are defined, the discretization of the Nitsche weak form is
straightforward. As expected, we showed that SFEM operators are ideally suited to this
formulation of elliptic equations, and confirmed experimentally that they achieve a very
satisfying second order convergence behavior. We compared our two alternatives (classical
and volume-based SFEM), and showed that classical SFEM operators are robust to under-
integration, which can always be mitigated using proper stabilization. On the contrary,
volume-based SFEM operators do not require any additional "bulk" stabilization, but is less
robust to under-integration. Interestingly enough, a compatible integration of the Element-
Free Galerkin reconciles the good behaviors of the two sets of SFEM discrete operators and
avoid their shortcomings, for a reduced CPU cost and memory footprint. Its interpretation
in terms of the definition of mixed operators with non-nodal integration could be an effective
approach to defeat the meshless curse.

On these tests, the geometry of the problem and the background compatible integration
procedure were provided by a mesh. The extension to a fully meshless procedure requires new
structures to replace both these needs. We demonstrated that our meshless framework could
be augmented to capture the geometry of the computational domain using traversing edges
of a covering point cloud. The key conceptual steps of our method are to effectively sever
the communication between inside and outside node, and define a discrete trace operator to
map discrete values from the interior point cloud to the boundary, allowing the definition of
discrete Sobolev spaces to be used in classical weak formulation. We showed that compatible
operators could be built on this graph via the resolution of a global set of linear equations.

We numerically demonstrated that the resulting boundary displacements in the simula-
tion of the opening of a crack led to a more precise estimation of the stress intensity factor
than with the Nitsche weak form. Still, the theta method proved a more reliable alternative
with both Nitsche and classical formulations, confirming the accuracy of the evaluation of
the stresses in the vicinity of the crack tip.

Perspectives and future work
Several practical aspects of the meshless simulation have not been treated during our

PhD, and are left to future investigations. In the short term, we would still like to assess the
meshless capabilities for local and/or adaptive refinement, and give quantitative answers to
the following questions:

• How sharp can the transition be between a dense and a less populated region of the
point cloud?

• How to locally accommodate the background integration procedure to changes in the
discretization fineness?

• What is the consequence of adding or removing a node from the point cloud in terms
of computational effort and memory management?

• What precautions should we take when treating anisotropic distributions of nodes with
a tensorial definition of the smoothing length?
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In a more distant future, we would also like to study the possibility to rely at little
as possible on the background integration mesh. For instance, we could use an adaptive
locally Cartesian grids in the bulk of the domain, coupled with third-party representations
of the boundary (using level-set methods for instance). In the vicinity of the boundary, the
geometry of the cut cells could be effectively described with a cell-tuple structure. Even
though the results of our work are extremely promising, we are still a long way off the
fully meshless simulation of metal manufacturing processes involving ductile fracture (like
riveting for instance), which will require the addition of several ingredients. Among them,
let us cite:

• The transition to transient mechanics. This should not pose too many problems for the
bulk equations, especially for volume-based formulations, as this discretization process
is rather mature for fluid simulations (see appendix GG).

• The treatment of boundary conditions for transient problems is a bit more subtle:
the main missing ingredient is a dynamic representation of the boundary. A promis-
ing approach could be to exploit the flexibility and versatility of level-set functions,
which have already shown their ability to represent complex changes in geometry and
topology.

• An efficient contact (including self-contact) algorithm: we should avoid at all costs the
"numerical fusion" of two parts brought close to each other.

• The choice of a plasticity model.

Several theoretical aspects of meshless methods also call for more work. Of course, the
first example that comes in mind is a deeper understanding and a more precise formulation
of the meshless curse, since it is the most critical theoretical hurdle to design efficient fully
meshless simulation methods. We believe that the next step in the history of meshless meth-
ods can only be written if this conjecture is either proved or if a counter-example is found.
Going even further, our work has also not been able to exhibit sets of meshless operators
with high (i.e. first and more) order of compatibility in addition to consistency – that are
not the result of the solution of a global linear system. We believe that such operators do
exist even though we proved that they cannot be generated with locality properties within
the volume method.

On a more modest theme, it would be desirable to design a Lagrangian-based meshless
discretization of diffusion and elasticity. The main ambition is to be able to use or adapt
the volume method to achieve discrete conservation of global energy as well as linear and
angular momenta akin to those of the Lagrangian formulation of hydrodynamics. Moreover,
this would readily yield a Noetherian theorem relative to the variation of the boundary,
giving a fully discrete interpretation of the theta method and the design of energy-based
fracture criteria.





Appendix A

Sobolev spaces and the
Bramble-Hilbert lemma

In this appendix, we introduce a few notions from Sobolev space theory needed to show
the convergence of the mesh-based integration formulae given in section 1.3.21.3.2.

Definition A.1 (Norms and semi-norms in Sobolev spaces).
Let Ω be a bounded domain in Rn with boundary ∂Ω, k ∈ N and p ∈ N∗ ∪∞. We denote
W k
p (Ω, Y ) the Sobolev space of all functions defined on Ω with values in a normed Banach

space Y with weak derivatives ∂
∂αx of order |α| ≤ k in Lp(Ω, Y ). The classical Sobolev norms

and semi-norms are defined as: ∀ u ∈W k
p (Ω, Y ),

‖u‖Wk
p (Ω,Y )

def=

∑
|α|≤k

∥∥∥∥ ∂u∂αx
∥∥∥∥p
Lp(Ω,Y )

 1
p

(A.1)

|u|Wk
p (Ω,Y )

def=

∑
|α|=k

∥∥∥∥ ∂u∂αx
∥∥∥∥p
Lp(Ω,Y )

 1
p

(A.2)

The space of functions whose W k
p (Ω, Y ) semi-norm vanishes is denoted Pk−1(Ω). It is

the space of polynomials of n variables on Ω whose total degree does not exceed k − 1.

Definition A.2 (Strong cone property).
A domain Ω ⊂ Rn satisfies the strong cone property if there exists an open cover (Ωk)k of
Ω and corresponding cones (Ck)k with vertices at the origin such that for each point x of
Ω ∩ Ωk, the cone x + Ck is contained in Ω.

The strong cone property, much like its dual equivalent the Poincaré cone property
(which is the cone property on Rn\Ω) can be understood as a weak convexity requirement
as discussed in [6161]. The strong cone property is a weaker property than the strong Lipschitz
property, and is almost equivalent in the case of bounded domain (in a sense made clear in
[55] page 67).

Informally, it ensures that the boundary ∂Ω does not have any "thin pointy ends". See
figure A.1A.1 for a few two-dimensional examples.

Bramble-Hilbert lemma A.1.
Let Ω ⊂ Rn be a bounded domain satisfying the strong cone property. Then there exists
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a) b) c)

d) e)

Figure A.1 – The strong cone condition property means that Ω should not have any "thin
pointy ends".
a) The square is convex with non-empty interior, hence satisfies the strong cone property.
In particular, sharp corners are allowed.
b) Non-convex polygons are still strong Lipschitz, hence satisfy the strong cone condition.
c) The slit square satisfies the strong cone condition but is not Lipschitz since it is not locally
on one side of its boundary.
d) The cardioid has a thin pointy pit (or cavity), which does not impair the weak cone
property, but does not satisfy the strong cone property.
e) The astroid has four thin pointy ends where the strong cone property is not satisfied.

a constant C(Ω,m) independent of p and u such that for any u ∈ W k
p (Ω), there exists a

polynomial v ∈ Pm−1 such that for all k ∈ [[0,m]],

|u− v|Wk
p (Ω) ≤ C(Ω,m)|u|Wm

p (Ω) (A.3)

Proof. See [229229] for instance.

Remark. The dependence with respect to homogeneous scaling x 7→ ax can be made more
explicit. Indeed for a > 0, let us consider the scaled domain aΩ = {y ∈ Rn | ∃ x ∈
Ω | y = ax}. There, we can define ua : aΩ → Y by the formula ua(y) = u( y

a ) for
y ∈ Ω. The derivatives of ua then satisfy ∂ua

∂αy (y) = 1
a|α|

∂u
∂αy ( y

a ), which entails |ua|Wm
p (aΩ) =

ad−m|u|Wm
p (a). Thus, choosing the scaling factor as the inverse of the diameter of the domain

a = 1
D(Ω) , we can write the following alternative version of expression (A.3A.3):

|u− v|Wk
p (Ω) ≤ C

(
1

D(Ω)Ω,m
)
D(Ω)m−k|u|Wm

p (Ω) (A.4)
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The constant C
(

1
D(Ω)Ω,m

)
is obviously invariant with respect to homogeneous scaling.

The relevance of the Bramble-Hilbert lemma is best understood when stated under the
following alternative form:
Corollary A.2 (Operator form of the Bramble-Hilbert lemma).
Let Ω ⊂ Rn be a domain satisfying the interior cone property and ` : W k

p (Ω) → Y be a
continuous linear operator. Suppose that ` vanishes on polynomials of maximal order m−1:
`(v) = 0 ∀ v ∈ Pm−1. Then there exists a constant C such that:

‖`(u)‖Y ≤ C
(

1
D(Ω)Ω,m

)
‖`‖L(Wk

p (Ω),Y ) D(Ω)m−k|u|Wm
p (Ω) (A.5)

Proof. This is a straightforward combination of expression (A.4A.4) and the continuity of `.

Under this form, the Bramble-Hilbert lemma is particularly useful to prove error bounds
of numerical integration formulae. The sketch of such proofs is always the same: we want
to use the Bramble-Hilbert lemma on the error functional `. The hypothesis `(v) = 0 ∀ v ∈
Pm−1 is a consistency requirement on the discrete operator. Convergence then follows from
the regularity of Ω in a norm |.|Wm

p (Ω)for which ` is continuous. The exponent m − k is
called the order of accuracy of the method, since the transformation Ω 7→ aΩ changes the
error bound by a factor am−k.

For sufficiently simple shapes, the dependency of the constant can be made more explicit.
For this, we need the following definition:
Definition A.3 (Strongly star-shaped domains and chunkiness).
A domain Ω ⊂ Rn is strongly star-shaped if there exists a ball B ⊂ Ω such that the for
every point x of Ω, the convex hull of B ∪ {x} is a subset of Ω. In particular, a strongly
star-shaped domain satisfies the strong cone condition.
Let us denote ρ(Ω) the supremum of the diameters of such balls. The following ratio is
called the chunkiness of Ω.

γ(Ω) def= D(Ω)
ρ(Ω) (A.6)

The following result relating chunkiness to the bound given in the Bramble-Hilbert lemma
was first established by Dupont and Scott in [8080].
Proposition A.3 (Dependency with respect to space shape in the Bramble-Hilbert lemma).

With the notations of lemma A.1A.1, if we further assume that Ω is strongly star-shaped, then
the reduced constant of expression (A.4A.4) may only depend on Ω through its chunkiness and
the dimension of embedding space: C

(
1

D(Ω)Ω,m
)

= C(γ(Ω),m, n).

Proof. This result (albeit in a slightly different form) is stated as the Bramble-Hilbert lemma
in (4.3.8) of [4141]. A complete proof can be found in this book.

This result can be extended to more general shapes, for instance where Ω is the union of
finitely many strongly star-shaped domains (see [8080] for more details). Uniform boundedness
of the chunkiness of cells in a sequence of meshes is routinely assumed in FEM proofs of
convergence in order to use the Bramble-Hilbert lemma with constants that are independent
of mesh refinement.

The takeaway of this section is that polynomial consistence of discrete operators play a
central role in their convergence proofs using the Bramble-Hilbert lemma. For this reason,
consistency is always our prime concern when devising discrete operators in the rest of this
work.





Appendix B

Quadratic optimization

In this appendix, we state a few useful results related to quadratic optimization needed
for our proofs.

Definition B.1 (Least norm solution of quadratic optimization problem).
Let A ∈ Mm,n(R) and b ∈ Rm. Solving a set of linear equations means in general finding
x ∈ Rn such that the following holds:

Ax = b (B.1)

Depending on the properties of A and b, equation (B.1B.1) may have either no solution, a unique
solution or infinitely many solutions. In order to overcome thus indeterminacy issues, it is
common to solve the above problem in the least square sense, i.e. to instead seek x ∈ Rn
such that: {

‖x‖2 is minimal, under the constraint that
‖Ax− b‖2 is minimal.

(B.2)

Proposition B.1 (Characterization of solutions).
Assuming there exists at least one solution to the system (B.1B.1) (i.e. assuming b ∈ Im(A))
then, solutions are characterized by orthogonality with the kernel of A: x is the solution of
equation (B.2B.2) if and only if:{

Ax = b
x · y = 0 ∀ y | Ay = 0 (B.3)

Proof. Let x be a solution of equation (B.2B.2) and y such that Ay = 0. Then for all ε ∈ R+∗,
we have A(x + εy) = b. Thus by optimality of x, we have:

0 ≤ ‖x + εy‖2 − ‖x‖2

= ε(2x · y + ε‖y‖2)
Simplifying the above expression by ε and having ε −→ 0, we get 0 ≤ x · y. Repeating

the process for −y, we get x · y = 0.
Reciprocally, suppose that x is a solution of equation (B.3B.3). Then let z satisfy the

constraint Az = b. We have A(z− x) = 0 and thus, x · (z− x) = 0. Incidentally, we have:
‖z‖2 = ‖x + z− x‖2

= ‖x‖2 + 2x · (z− x) + ‖z− x‖2
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= ‖x‖2 + ‖z− x‖2

≥ ‖x‖2

And thus, x is optimal.

Proposition B.2 (Moore-Penrose pseudo-inverse).
Let m,n ∈ N and A ∈ Mm,n(R). There exists a unique matrix in Mn,m(R) called the
Moore-Penrose pseudo-inverse of A and denoted A+ satisfying the following conditions:

• AA+A = A
• A+AA+ = A+

• AA+ =
(

AA+
)T

• A+A =
(

A+A
)T

Moreover, the set of vectors x minimizing the cost expression ‖Ax− b‖2 can be written in
terms of the Moore-Penrose pseudo-inverse as:

arg min
x
‖Ax− b‖2 = {A+b + (In −A+A)z, z ∈ Rn} (B.4)

And the least-norm solution is x = A+b. In the particular case where A has full rank r, the
Moore-Penrose pseudo-inverse can be expressed using matrix inversion:

A+ =
(

ATA
)−1

AT if m ≥ n = r

A+ = AT
(

AAT
)−1

if n ≥ m = r

Proof. See the excellent review paper by Barata and Hussein [1717].

Proposition B.3 (Derivative of Moore-Penrose pseudo-inverse).
Let A,B ∈ Mm,n(R) be two real matrices and C : R → Mm,n(R) be a differential matrix
valued real function such that d

dtC(t)
∣∣
t=0 = B. Then, the application t 7→ (A + C(t))+

is continuous at t = 0 if and only if A + C(t) is of constant rank for all values of t in a
neighborhood of the origin. In this case, it is furthermore differentiable, and its differential
reads:

∂A+

∂A : B def= d
dt (A + C(t))+

∣∣∣∣
t=0

= −A+BA+ + (In −A+A)BTA+TA+ + A+A+TBT (Im −AA+)

Proof. See [106106] and [215215] for the complete proof.

This proposition generalizes the well-known formula for the derivative of the inverse of a
matrix. The two additional terms contain the matrices (In −AA+) and (Im −A+A) which
should be interpreted as orthogonal projectors onto the kernel of A and A+ respectively (see
proposition 3.3 of [1717]). If A is invertible A ∈ GLn(R), these projectors vanish and the two
formulae coincide.



Appendix C

Positivity of discrete integration

Positivity of the integration formula is a desirable property with heavy consequences on
the stability of simulation schemes. In order to characterize the existence of positive nodal
integration schemes with imposed exactness properties, we need the following "alternative
result" characterizing the existence of systems of linear equations and inequations. This
result is very related to Farkas’s lemma [8989], Gordan’s theorem [107107] and Stiemke’s theorem
[216216]. It is a particular case of the general Motzkin’s transposition theorem [167167, 168168]. A
short yet detailed account of the topic of alternative theorems in linear algebra can be found
in Ben-Israel [3030]

Proposition C.1 (Strict alternative result).
Let A ∈ Mm,n(R) and b ∈ Rm. The following propositions are alternatives:

a. ∃ x ∈ Rn | Ax = b and x > 0
b. ∃ y ∈ Rm | ATy ≥ 0 and b · y ≤ 0 and

(
ATy 6= 0 or b · y 6= 0

)
Equivalently, the following problem: find x ∈ Rn such that:{

Ax = b
x > 0

(C.1)

has a solution if and only if we have: ∀ y ∈ Rm(
ATy ≥ 0 and b · y ≤ 0

)
implies

(
ATy = 0 and b · y = 0

)
(C.2)

Proof. Substitute
(
A −b

)
for A in theorem 6 of [3030].

The following proposition fully characterizes the existence of positive nodal integration
schemes with imposed exactness properties.

Proposition C.2 (Existence of positive discrete integration formulae).
Let us suppose given a point cloud (C,X) and a continuous function space ϕ ⊂ (Ω → R)
of finite dimension nϕ ∈ N with basis (ϕk)k∈[[1,nϕ]]. There exists a positive discrete nodal
integration operator on (C,X) that is exact onϕ if and only if all functions ofϕ that are
non-negative on X and have non-positive integral actually vanish on X and have zero mean
on Ω.

More precisely, denoting Φ the matrix of evaluation of basis functions Φj,k = R(ϕk)j =
ϕk(xj), and I(ϕ)k the value of the integral of the basis function ϕk on the domain I(ϕ)k =´

Ω ϕk(x) dV , there exists (Vi)i∈C such that:
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• Vi > 0 ∀ i ∈ C • V > 0

• �

ˆ
C
ϕ =

ˆ
Ω
ϕ(x) dV ∀ ϕ ∈ϕ • ΦTV = I(ϕ)

If and only if the following inequalities (with ϕ =
∑
k = 1nϕaiϕk ∈ϕ)

• ϕ(xi) ≥ 0 ∀ i ∈ C • Φa ≥ 0

•
ˆ

Ω
ϕ(x) dV ≤ 0 • I(ϕ) · a ≤ 0

imply the following equalities:
• ϕ(xi) = 0 ∀ i ∈ C • Φa = 0

•
ˆ

Ω
ϕ(x) dV = 0 • I(ϕ) · a = 0

Proof. Using the matrix-vector notations of the right hand column, this is a direct applica-
tion of proposition C.1C.1.

Example. Let us illustrate proposition C.2C.2 on a simple 1-D case. Suppose we want to
characterize first order consistent positive one node integration formulae on segments. In
other words, we consider the case Ω = [−1, 1] ⊂ R, (C,X) = ({1}, {x}) andϕ = R1[X]. We
seek V > 0 such that V × (ax+ b) =

´ 1
−1 ax+ b dx for all a, b ∈ R.

Proposition C.2C.2 states that such formulae exist if and only if
(
ax + b ≥ 0 and

´ 1
−1 ax +

b dx ≤ 0
)
implies

(
ax+ b = 0 and

´ 1
−1 ax+ b dx = 0

)
. Let us split the analysis into three

distinct cases:

• x > 0: b = −1 and a = 1
x + 1 show that no such formulae exists.

• x < 0: b = −1 and a = − 1
x + 1 show that no such formulae exists.

• x = 0: a × 0 + b ≥ 0 and b ≤ 0 indeed implies a × 0 + b = 0 and b = 0. Hence, a
discrete integration formula exist. The theorem is non-constructive: the solution is
guaranteed to exist, but we still need to find it. In this simple case, we can easily
verify that V = 2 is the only solution.



Appendix D

Meshless Least Square
approximations

In this section, we recall the construction of several locally defined meshless operators:
the Local Least Squares (LLS) and MLS reconstruction and the DMLS and Full Moving
Least Squares (FMLS) gradients. These approximation techniques can achieve consistency
of any order and are probably the most widespread in the meshless literature, and we heavily
use them in the rest of this work. According to Wendland, the first published occurrence of
the MLS can be traced back to Lancaster and Salkauskas [133133] (with particular cases going
back earlier e.g. [207207]). More information can be found in the work of Wendland [232232, 233233],
Fasshauer [9090] and Mirzaei et al. [159159].

All the gradients and reconstruction operators presented in this appendix can effectively
be computed via the resolution of small linear problems, i.e. whose dimension does not
depend on the total number of nodes in the point cloud. Instead – via the definition of
compactly supported weight functions – their computation only involves a few neighboring
nodes. The most important take-away of this section is that there exist efficient techniques
to compute discrete gradient and reconstruction operators that are consistent of any order.
These operators are used throughout this work.

D.1 Local Least Squares approximation

Local Least Squares (LLS) approximations aim at building a continuous local reconstruc-
tion y 7→< f >LLSx (y) of a discrete function f : C → R in a neighborhood of the point x ∈ Ω,
which best fits the nodal data in a least square sense. The approximation function space
is typically the space of d−variate polynomials up to a given degree p ∈ N, in which case
the LLS approximation is termed "of order p". The function space may possibly be enriched
with a few other functions exploiting a priori knowledge of the function to approximate (see
[2424, 9898] for examples of the so-called extrinsic MLS enrichment).

Definition D.1 (Local Least Squares approximation).
Let us suppose given an approximation function space ϕ ⊂ Ω → R of finite dimension
nϕ ∈ N with basis (ϕk)k∈[[1,nϕ]]. The Local Least Squares (LLS) seeks an approximation of
a discrete function around a given fixed point of space x ∈ Ω as a linear combination of the
basis functions. Expressed in terms of its coefficients (ck(f,x))k∈[[1,nϕ]], it necessarily reads:
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−1.0

−0.5

0.0

0.5

1.0

1.5

C

Wh(x− y)

f : C −→ R

x

Figure D.1 – The LLS procedure gives the closest approximation of the scattered data
(xi, fi)i∈C in the chosen function space around the point x.
On the figure, green nodes make up the point cloud (C,X) on which a discrete function
f : C → R is defined by the black markers ×. The graph shows LLS approximation with
weight function Wh(x− y) of order zero, order one and order two.

∀ f : C → R,

< f >LLSx (y) def=
nϕ∑
k=1

ck(f,x)ϕk(y) = c(f,x) ·ϕ(y) (D.1)

Approximation quality is locally gauged at around x using a weight function y 7→Wh(x−
y). This weight function typically has compact support of size h ∈ R+ with rotational
symmetry and is radially decreasing, but we do not impose constraints on the value of its
integral contrary to the SPH kernels. The coefficients (ck(f,x))k∈[[1,nϕ]] are chosen so that
the LLS is the best approximation in the least-square sense, i.e they form the minimum
norm solution to the minimization of the following positive quadratic expression:

∑
j∈C

Wh(x− xj)
(
nϕ∑
k=1

zkϕk(xj)− fj

)2

(D.2)

Figure D.1D.1 gives a 1-D example of LLS reconstruction.

Proposition D.1 (Closed form of the LLS approximation).
Denoting the weight matrix as

√
Wx i,j =

√
Wh(x− xj)δi,j , and the matrix of nodal values

of the basis functions as Φj,k = R(ϕk)j = ϕk(xj), the LLS approximation has the following
closed form:

< f >LLSx (y) = f ·
√
Wx

(
ΦT
√
Wx

)+
·ϕ(y) (D.3)

Where A+ denotes the Moore-Penrose inverse of the matrix A.

Proof. See proposition B.2B.2.
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Remark. The matrix ΦWxΦT has nϕ lines and #{i ∈ C | ‖x − xi‖ < h} non-vanishing
columns. Hence, the LLS procedure is local in the sense that its cost does not depend on
the size of the entire point cloud, but rather on the complexity of the reconstruction space
ϕ and the number of cloud points in the neighborhood of x.

Definition D.2 (LLS shape functions).
As a consequence of proposition D.1D.1, the application f : (C → R) → R; f 7→< f >LLSx (y)
is linear. Hence, for every x ∈ Ω, the LLS approximation defines a local reconstruction
operator. The corresponding LLS shape functions φLLSx are the best approximation in ϕ
of the discrete Kronecker delta functions around x in the least-square sense. They can be
expressed as:

φLLSx (y) def=
√
Wx

(
ΦT
√
Wx

)+
·ϕ(y) (D.4)

Definition D.3 (Unisolvent and h-unisolvent point cloud).
A point cloud (C,X) is unisolvent onϕ if the zero function is the only function inϕ that
vanishes on all points. In other words, (C,X) is unisolvent on ϕ if the intersection of ϕ
with the null-space of the reduction operator is {0}.
Similarly, a point cloud (C,X) is h-unisolvent onϕ with h > 0 if X∩Bd(x, h) is unisolvent
onϕ for all x ∈ Ω.

Example (Unisolvence for polynomials spaces of low degree). In the particular case where
the approximation space is the space of constant functions, a point cloud (C,X) is unisolvent
if and only if it has at least one node. Similarly, if the approximation space is the space
of affine functions, a point cloud (C,X) is unisolvent if and only if its nodes do not lie in a
(d− 1)-dimensional hyperspace.

Proposition D.2 (Reproducibility of LLS).
If the point cloud (C,X) is h-unisolvent onϕ, then the LLS procedure reproduces functions
inϕ.

Proof. The h-unisolvence property of the point cloud implies that for all x ∈ Ω, the matrix
ΦT
√
Wx has full line rank. Then, using the expression for the pseudo inverse of proposition

B.2B.2, we have
(
ΦT
√
Wx
)+ =

√
WxΦ

(
ΦTWxΦ

)−1 and we can write the LLS approximation
of an element of the approximation space as: ∀ ψ ∈ϕ, ∀ y ∈ Ω,

< ψ >LLSx (y) = R(ψ) ·
√
Wx

(
ΦT
√
Wx

)+
·ϕ(y)

= R(ψ) ·WxΦ
(
ΦTWxΦ

)−1 ·ϕ(y)

=
((

ΦTWxΦ
)−1 · (ΦTWxR(ψ))

)
︸ ︷︷ ︸

By definition, this is the vector of coefficients of ψ on the basis (ϕk)k∈[[1,nϕ]]

·ϕ(y)

= ψ(y)
Hence, ψ is reproduced by the LLS procedure.

D.2 Moving Least Squares reconstruction
The LLS methodology described in the previous section gives a locally determined non-

local reconstruction. The fit is the best on the data set – as measured by a local weighted
L2 norm – in the approximation space, for instance a polynomial space. However, it is built
only around a single point x. The Moving Least Square reconstruction defined in this sec-
tion remedies this limitation by stitching together LLS reconstructions. The corresponding
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Figure D.2 – The MLS procedure provides a way to globally approximate scattered meshless data with
polynomial consistency via the definition of local shape functions.
The point cloud (C,X), the discrete function f and the weight function Wh are the same as those of
figure D.1D.1.
The left column gives the MLS approximation of the data with order 0 accuracy in 1-a), order 1 accuracy
in 1-b) and order 2 accuracy in 1-c).
The corresponding MLS shape functions are given for a specific node on the right column. Note that the
MLS shape functions of order > 0 are not necessarily positive, and indeed, φMLS2

i has a negative part.
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approximate does not lie in the approximation space, but is still able to reproduce functions
in the approximation space. Moreover, it is local in the sense that the nodal values only
influence the reconstruction of nearby nodes.
Definition D.4 (Moving Least Squares reconstruction).
The Moving Least Squares (MLS) reconstruction at a point x is defined as the evaluation of
the LLS reconstruction around x evaluated at x: ∀ f : C → R,

< f >MLS (x) def=< f >LLSx (x) (D.5)

The corresponding shape functions read: ∀ i ∈ C, ∀ x ∈ Ω,
φMLS
i (x) def= φLLSx (x)

=
√
Wx

(
ΦT
√
Wx

)+
·ϕ(x) (D.6)

In particular, the support of φMLS
i is included in Bd(xi, h).

Figure D.2D.2 gives several 1-D examples of MLS reconstruction.
Example (Shepard shape functions). In the particular case where the approximation space
is the space of constant functions, the MLS reconstruction reduces to the well-known Shepard
approximation (see the original publication of Shepard [207207]). The Shepard shape functions
have the particularly simple following form: ∀ i ∈ C, ∀ x ∈ Bd(xi, h),

φShepardi (x) = Wh(x− xi)∑
j∈CWh(x− xj)

(D.7)

Under this form, it is obvious that the Shepard shape functions are positive. This feature is
not true in general for other MLS shape functions. A two dimensional example of Shepard
shape function is sketched on figure D.3D.3.
Proposition D.3 (Backus-Gilbert formulation of Moving Least Squares).
The MLS shape functions are themselves solution of the following optimization problem:
Find φ(x) = (φ1(x), . . . , φnn(x)) such that the following expression is minimized, where
∀ z : C → R,

z ·W−1
x · z =

∑
i∈C

1
W (x− xi)

z2
i (D.8)

Under the constraint that φ(x) is a minimizer of the cost function defined as: ∀ z : C → R,

nϕ∑
k=1

(
ϕk(x)−

∑
i∈C

ϕk(xi)zi

)2

=
∥∥ΦT z −ϕ(x)

∥∥2 (D.9)

Remark. As the weight functions have local support, many of the nodes are such that
W (x−xi) so that the weight matrix W−1

x in equation (D.8D.8) is ill-defined. Formally writing
1
0 =∞ there, the cost function takes finite values only of the unknowns zi corresponding to
nodes i such that Wh(x−xi) = 0 (equivalently ‖x−xi‖ >= h) vanish. Hence, actually very
few nodes participate to the optimization problem, which thus remains a local problem.

Proof of proposition D.3D.3. Substituting y for
√
Wx
−1
z, the solution of the above nested opti-

mization problem can be re-written as the minimum norm solution of the following quadratic
optimization problem: Find y such that the expression

∥∥ΦT
√
Wxt−ϕ(x)

∥∥2 is minimal. As
a consequence of proposition B.2B.2, the solution of this problem reads y =

(
ΦT
√
Wx
)+ ·ϕ(x),

and thus the solution of the original problem is φ(x) =
√
Wx

(
ΦT
√
Wx
)+ · ϕ(x), which is

exactly expression (D.6D.6) of the MLS shape functions.
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supp(φShepard)

Figure D.3 – Shepard shape functions are positive meshless shape functions that can re-
produce constant fields. Like all MLS shape functions, their support is a ball of radius h
centered on their associated node.

This formulation was first given by Backus and Gilbert. Historically speaking, the
Backus-Gilbert formulation is anterior to the standard MLS formulation (it was first pub-
lished in 1968 [1515], whereas the standard form of the MLS reconstruction in its full generality
was first published in 1981 by Lancaster and Salkauskas [133133]). The correspondence between
the two formulations was realized by Abramovici [33] for the special case of the Shepard shape
functions and by Bos and Salkauskas [4040] in the general case.
Remark (Delta property and the Moving Least Square reconstruction). A long standing
criticism of the MLS reconstruction stems from the fact it does not satisfy the delta property
in general. Nevertheless, it can be shown (see section 4 of [133133]) that the delta property is
verified if we use singular weight functions, i.e. weight functions satisfying Wh(x) −→

x→0
+∞.

Proposition D.4 (Reproducibility and approximation order of MLS).
If the point cloud (C,X) is h-unisolvent on ϕ, then the MLS shape functions reproduce
functions inϕ. Moreover, for multivariate polynomials,ϕ = Rp[X1, . . . , Xn] and assuming
quasi-uniformity of the point cloud (see definition 2.22.2) and an additional regularity assump-
tion on the computational domain Ω, the MLS approximation verifies:

‖f− < f >MLS p ‖W 0
∞(Ω) ≤ Chp+1|f |Wp+1

∞
(D.10)

The constant C in the above bound can be made explicit: see theorem 4.7 and corollary 4.8
of Wendland [233233] for the exact result.
Proof. Reproducibility of the MLS shape functions immediately results from reproducibility
of the LLS shape functions. Moreover, under an additional regularity condition on the
computational domain and the point cloud similar to the strong cone condition of definition
A.2A.2, the approximation property stems from a discrete analogue of the Bramble-Hilbert
lemma A.1A.1 given in theorems 3.2 and 3.14 of [233233]. A complete proof can be found in this
book.
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D.3 Diffuse Moving Least Squares gradient
Just like the MLS reconstruction takes advantage of a different LLS approximation at

each point x ∈ Ω, we now define the Diffuse Moving Least Square gradient operator, which
exploits the local behavior of the LLS approximation around each node of the point cloud.

Definition D.5 (Diffuse Moving Least Squares gradient).
Let (C,X) be a point cloud and f : C → R be a discrete function. The Diffuse Moving Least
Squares (DMLS) approximation of the gradient of f at a point x ∈ Ω is the evaluation at x
of the gradient of the LLS approximation of f around x:

< ∇f >DMLS (x) def= ∂

∂y < f >LLSx (y)
∣∣
y=x (D.11)

Evaluation of expression (D.11D.11) at every node of the point cloud yields the following DMLS
gradient operator:

�
DMLS
i f

def=< ∇f >DMLS (xi) (D.12)

The DMLS discrete gradient of order inherits its exactness properties on an h-unisolvent
point cloud from the reproducibility properties of the LLS shape functions (proposition
D.2D.2). In particular, it means that it is possible to build discrete gradient operators that are
consistent of any order p ∈ N .

The coordinates of the DMLS gradient read: ∀ i, j ∈ C,
ADMLS
i,j = Vi

(
∇φLLSxi j

)
(xi)

= Vi

(√
Wxi

(
ΦT
√
Wxi

)+
· ∇ϕ(xi)

)
j

(D.13)

In the next section, we prove that the DMLS gradient of order one can be rephrased as
a volume-based primal gradient.

D.4 A new formula for first order Diffuse Moving Least
Squares

In order to build a first order consistent volume primal gradient, the volume function
needs to comply with the linear covariance property stated in expression (3.243.24). We now
give an example of such a volume function, and then prove that the corresponding primal
gradient coincides with the linear DMLS gradient. Given a point cloud C equipped with a
graph structure and positive edge weights wi,j > 0, we define:

V
DMLS{x−xi}
i (x1, . . . ,xn) def=

det
∑

j∈N (i)

wi,j(xj − xi)(xj − xi)T
1/2

(D.14)

In this definition, node positions only appear through the expression xj − xi, which en-
sures invariance with respect to translation, hence zeroth order consistency of the associated
gradient. The inner sum is composed of positive semi-definite matrices. Consequently, the
volume weights are non-negative. Since only nodes j for which wi,j does not vanish appear
in definition (D.14D.14), we can say that the graph induced by this volume function is contained
into the assumed initial graph defined alongside the edge weights. We can prove that under
mildly restrictive conditions, the two graphs exactly coincide. In the special case where
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N (i) is a d-dimensional simplex and weights are chosen as wi,j = δj∈N (i), expression (D.14D.14)
effectively computes d! times the volume of this simplex. In any case, this expression has
long been recognized in the literature as a possible definition of the volume of the position
matrix (see [2929] for more information).
For B ∈ Mn(R), let us compute V DMLS{x−xi}

i (Bx1, . . . ,Bxn):

V
DMLS{x−xi}
i (Bx1, . . . ,Bxn) =

det
∑

j∈N (i)

wi,j(Bxj − Bxi)(Bxj − Bxi)T
1/2

=

det B
∑

j∈N (i)

wi,j(xj − xi)(xj − xi)TBT
1/2

=
√

det(BBT )V DMLS{x−xi}
i (x1, . . . ,xn)

= |det(B)| V DMLS{x−xi}
i (x1, . . . ,xn)

Hence, from (3.243.24), we conclude that the �DMLS{x−xi} is first order consistent.
Let us denote MDMLS{x−xi}

i =
∑
j∈N (i) wi,j(xj−xi)(xj−xi)T . Using the Jacobi formula

for the derivative of a determinant, we can write for i 6= j,
∂V

DMLS{x−xi}
i

∂xj
= 1

2V DMLS{x−xi}
i

∂

∂xj
det
(

MDMLS{x−xi}
i

)

= 1
2V

DMLS{x−xi}
i Tr

(
(MDMLS{x−xi}

i )−1 ∂MDMLS{x−xi}
i

∂xj

)

= V
DMLS{x−xi}
i wi,j

(
MDMLS{x−xi}
i

)−1
· (xj − xi)

This formula is exactly that of the so-called "diffuse" moving least squares approximation
around node i (see expression D.13D.13) using a linear basis and singular weights. A similar
computation shows that the following volume function yields the standard diffuse MLS
gradient with respect to the affine basis {1,x} and non-singular weights:

V
DMLS{1,x}
i (x1, . . . ,xn) =

det
∑

j∈N (i)

wi,j

(
xj
1

)(
xj
1

)T1/2

(D.15)

This expression of diffuse moving least squares approximation constitutes an original
result. Formulae (D.14D.14) and (D.15D.15) were designed using the global result (3.243.24) as a basis,
and their link with MLS approximations was unexpected. Let us remark that these formulae
are of little practical value since edge weights are not allowed to vary and, in most situations,
there is no known guideline to choose appropriate values. In particular, this means that the
graph is static independently of nodes positions, which violates the locality principle. Hence,
this does not contradict proposition 3.93.9 concerning linear primal consistency of volume-based
gradient operators.
Remark. Using the fact thatWh is radial, we can prove that the renormalized SPH gradient
operator of order one can be re-interpreted as a kind of linear consistent DMLS gradient
with singular weights. Indeed, denoting W ′ the derivative of W with respect to its scalar
argument, we can write the renormalized SPH gradient of order zero of a linear field as:

Vi�
SPH R0
i x = −Vi

∑
j∈C

(
Vj

1
cd(W )h‖xj − xi‖

W ′(‖xj − xi‖)
)

(xj − xi)(xj − xi)T (D.16)
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Hence, denoting wi,j = Vj
1

cd(W )h‖xj−xi‖W
′(‖xj − xi‖) for i 6= j, the expression of �SPH R1

coincides with that of the DMLS gradient using a linear basis.

Proposition D.5 (Optimality of Diffuse Moving Least Squares gradient coordinates).
The vector coefficients of the discrete DMLS gradient �DMLS constitute the minimum norm
solution to the minimization of the following positive quadratic function: Find

(
ADMLS
i,j

)
i,j∈C

such that the following expression is minimized:∑
i,j∈C

1
ViWh(xj − xi)

A2
i,j (D.17)

Under the constraint that ADLMS is also a minimizer of the following cost expression:

∑
i∈C

nϕ∑
k=1

∇ϕk(xi)−
1
Vi

∑
j∈C

Ai,jϕk(xj)

2

=
∑
i∈C

∥∥∥∥ 1
Vi

ΦTA−∇ϕ(xi)
∥∥∥∥2

(D.18)

Proof. The proof is essentially identical to that of proposition D.3D.3.

Remark. Even though proposition D.5D.5 and especially expression (D.18D.18) suggest that com-
puting the DMLS gradient requires solving a global system of linear equations, expression
(D.13D.13) shows that the actual cost is that of nn local problems.

D.5 Full Moving Least Squares gradient
Just like the DMLS gradient operator is defined as the derivative of the LLS reconstruc-

tion at nodes of the point cloud, we define the Full Moving Least Squares gradient as the
derivative of the MLS approximation at each node:

Definition D.6 (Full Moving Least Squares gradient).
Let (C,X) be a point cloud and f : C → R be a discrete function. Suppose that the
MLS approximation of f is differentiable, then, the Full Moving Least Squares (FMLS)
approximation of the gradient of f at a point x ∈ Ω is defined as the evaluation at x of the
gradient of the MLS approximation of f :

< ∇f >FMLS (x) def= ∇ < f >MLS (x) (D.19)

Evaluation of expression (D.19D.19) at every node of the point cloud yields the following FMLS
gradient operator:

�
FMLS
i f

def=< ∇f >FMLS (xi) (D.20)

The FMLS discrete gradient of order inherits its exactness properties on an h-unisolvent
point cloud from the reproducibility properties of the MLS shape functions (proposition
D.4D.4).

Proposition D.6 (Differentiability of Moving Least Squares shape functions).
Suppose that the weight function Wh and the approximation basis (ϕk)k∈[[1,nϕ]] are differ-
entiable. If the point cloud (C,X) is h-unisolvent on ϕ, then the MLS reconstruction is
differentiable. Moreover, in this case, the coordinates of the FMLS gradient read: ∀ i, j ∈ C,

AFMLS
i,j = Vi

(
∇φMLS

j

)
(xi)
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= Vi
∂

∂x
√
Wx

(
ΦT
√
Wx

)+
·ϕ(x)

∣∣∣∣
x=xi

= Vi
√
Wxi

(
ΦT
√
Wxi

)+
· ∇ϕ(xi)︸ ︷︷ ︸

=ADMLS
i,j

+Vi
∂

∂x

(√
Wx

(
ΦT
√
Wx

)+
)
·ϕ(x)

∣∣∣∣
x=xi

(D.21)

In particular, this expression shows that �FMLS is the sum of the consistent term �
DMLS

and another term that does not affect consistency. Proposition B.3B.3 can be used to derive the
full expression of ∂

∂x

(√
WxΦT

√
Wx

(
ΦT
√
Wx
)+) necessary for a practical implementation.

However, we do not consider that this intricate expression is informative enough to be written
here.

Proof. This is a direct consequence of the full rank of ΦT
√
Wx and proposition B.3B.3.

D.6 Comparison of DMLS and FMLS gradients
The related LLS and MLS procedures yield two different discrete gradients �DMLS and

�
FMLS , which we now qualitatively compare.
On the one hand, proposition D.5D.5 ensures that �DMLS is the best approximation of the

gradient in the least-square sense. This feature was remarked by Mirzaei et al. in theorem
3.1 of [159159], and is a strong argument in favor of DMLS gradients. The adjective "diffuse"
might be a reason of the comparative unpopularity of DMLS gradients, but as Mirzaei et al.
indicate, "there is nothing diffuse or uncertain about them". This term was coined in 1992
in [174174] where they were used in a Galerkin-like formulation to form the first instance of
Diffuse Element Method (DEM).

Supporters of �FMLS argue that it is the point-wise evaluation of a globally defined
function. This property is especially useful when the MLS shape functions are used in
a Galerkin formulation (see section 4.2.24.2.2), or for post-processing purposes. However, de-
tractors of �FMLS point out the fact that its consistency in merely a consequence of the
consistency of �DMLS , and that the addition of the last term of expression (D.21D.21) is a
useless computational burden.

The fact that both DMLS and FMLS gradients lead to consistent approximation of any
order sets them on equal theoretical footing. Moreover, none of these gradients are part of
known sets of compatible operators, and are thus – as is – not completely satisfying choices
for the simulation of PDEs.

Building compatible operators around the DMLS and FMLS concepts lead to widely
different strategies, which correspond to the two cases of the meshless curse (see conjecture
2.42.4): In section 2.7.22.7.2 and 3.7.13.7.1 on the one hand, we propose two variation of the Smoothed
Finite Element Method (SFEM) that exploit the fact that the MLS reconstruction is globally
valid to form a discrete integration operator. The corresponding discrete gradient operators
use the derivative of the MLS shape functions, and are thus in essence very close to the
FMLS operator. In these methods, the details of the integration process are capital to ensure
compatibility, and we propose mesh-based integration techniques that allow the practical
computation of compatible operators.

On the other hand, we define in the section 2.62.6 a correction procedure to retrieve com-
patibility of a set of meshless operators with first order consistency. This procedure is
particularly well suited to the DMLS gradient as illustrated in proposition 2.52.5, which states
that this correction transfers the local optimality of DMLS to a global optimality.



Appendix E

Volume-based reproducing
kernel operators

The theory of Reproducing Kernel Hilbert Space (RKHS) gives a framework for the
study of functions spaces in which point evaluation (our favorite choice of reduction map)
is a continuous functional. In particular, it develops a powerful approximation theory and
provides several optimality results for the reconstruction of functions given scattered nodal
data (see [8484, 201201, 233233] and references therein for more information). This theory seems
particularly well suited for the development of meshless methods, and has been successfully
used in a meshless simulation context, with the work of Fasshauer [9191] and Wendland [231231]
(also see [186186, 238238]).

Using the methodology described in section 3.7.13.7.1, we can exploit the RKHS reconstruc-
tion to build a volume function, transferring reproducibility of the shape functions into
consistency of the discrete integration and dual gradient. The idea of designing a meshless
nodal integration procedure using the RKHS principle was first studied by Sommariva and
Vianello in [211211, 212212]. In particular, these authors perform an interesting error analysis of
the resulting volume weights.

In this section, we first recall the definition of the RKHS reconstruction operator. Then,
we quickly review the consistency properties of the resulting volume-based SFEM operators
and prove an amusing result concerning the corresponding Sibson reconstruction. Finally,
we investigate the formal similarities between this approach and the SPH methodology in
section E.1E.1.

Following definition 6.2 of [201201], we introduce the main notion for RKHS reconstructions:

Definition E.1 (Conditionally positive (semi-)definite reproducing kernel).
A conditionally positive (semi-)definite reproducing kernel of order m is a symmetric func-
tion: {

K : Rd × Rd → R
(x,y) 7→ K(x,y) = K(y,x)

(E.1)

Such that for all finite point cloud (C,X) with distinct node positions, the symmetric matrix
KC ∈ Mnn(R) with the following coefficients:

KC
def=

 K(x1,x1) . . . K(x1,xnn)
... . . . ...

K(xnn ,x1) . . . K(xnn ,xnn)

 (E.2)

191
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defines a symmetric positive (semi-)definite quadratic form on the subspace:

Vm,X
def= {α : C → R |

∑
i∈C

αip(xi) = 0 ∀ p ∈ Pm−1} (E.3)

In the above expression, Pm−1 denotes the space of d-variate polynomials of maximum
degree m− 1.

Example. The following compactly supported "Wendland" kernel (see [230230]) is C2-continuous
and conditionally positive definite of order m = 0 for space dimensions d ≤ 3: ∀ x,y ∈ Rd,

K(x,y) =
{

(1− ‖y− x‖)4(4‖y− x‖+ 1) if ‖y− x‖ ≤ 1
0 else

(E.4)

It is proved in [233233] to be part of a larger family of compactly supported kernels with
arbitrarily high differentiability order in arbitrarily high space dimensions.

Definition E.2 (Reproducing Kernel Hilbert Space reconstruction).
The dimension of Pm−1 is np =

(
m+d−1

d

)
. We denote (p1, . . . , pnp) one of its basis, and P

the matrix of nodal evaluations of basis functions Pj,q = R(pq)j = pq(xj). If (C,X) is an
unisolvent point cloud on Pm−1 (see definition D.3D.3), andK is a conditionally positive definite
reproducing kernel, then the Reproducing Kernel Hilbert Space (RKHS) approximation of
a discrete function f : C → R reads: ∀ x ∈ Rd,

< f >RKHS (x) def=
∑
i∈C

αiK(x,xi) +
np∑
q=1

βqpq(x) (E.5)

In the above expression,
(
α
β

)
is the unique solution to the following system of linear equa-

tions: (
KC P
PT 0

)
·
(
α
β

)
def=
(
f
0

)
(E.6)

The first nn lines of the above system ensure that the reconstruction given in expression (E.5E.5)
satisfies the delta property (see definition 2.112.11). The last np lines ensure that the solution
satisfies the vanishing moment conditions characteristic of Vm,X defined by expression E.3E.3.
Defining ki(x) = K(x,xi), the RKHS reconstruction finally reads:

< f >RKHS (x) =
(
k(x)
p(x)

)
·
(

KC P
PT 0

)−1
·
(
f
0

)
(E.7)

So that the RKHS basis functions are linear combinations of polynomials and kernel func-
tions. They read:

φRKHS(x) =
((

KC P
PT 0

)−1
·
(
k(x)
p(x)

))
1:nn

(E.8)

The subscript 1 : nn means that only the first nn coefficients of the vector are retained. In
particular, these functions do not have compact support in general, even if the reproducing
kernel K is local.

Proposition E.1 (Consistency of RKHS reconstruction).
Let K be a conditionally positive definite reproducing kernel of order m and (C,X) a Pm−1-
unisolvent point cloud (see definition D.3D.3). Then the RKHS reconstruction reproduces
polynomials of degree up to m− 1.
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Proof. See theorem 8.21 of [233233].

Definition E.3 (Reproducing Kernel Hilbert Space discrete integration operator).
The RKHS volume discrete integration operator can be defined using the volume SFEM
methodology of section 3.7.13.7.1:

�

ˆ RKHS

C
f

def=
ˆ

x∈Ω
< f >RKHS (x) dV (E.9)

Denoting
(
IC
J

)
def=
ˆ

x∈Ω

(
k
p

)
(x) dV the values of the integrals of the partial evaluations of

the kernel at node positions and of the basis polynomials, we can write the RKHS volumes
as: (

V RKHS

0

)
=
(

KC P
PT 0

)−1
·
(
IC
J

)
(E.10)

As pointed out earlier, the RKHS shape functions depend on all nodes of the point cloud in
a non-local way, hence, the RKHS volume function is non-local.

Proposition E.2 (Consistency of RKHS volume-based operators).
The RKHS integration operator inherits its exactness on polynomials of maximum total
degree m−1 from the reproducibility properties of the RKHS reconstruction. In accordance
with proposition 3.133.13, this in turn implies consistency of orderm−1 of the dual volume-based
gradient.

Consistency of the primal volume based gradient is a consequence of the covariance
property of the volume function. Invariance with respect to isometric transformations is
achieved if the kernel is a Radial Basis Function (RBF), namely if: ∀ x,y ∈ Rd,

K(x,y) = W (‖y− x‖) (E.11)

This is for instance the case of the Wendland kernel defined earlier.

Proposition E.3 (Sibson reconstruction of RKHS volumes is the RKHS reconstruction).
The Sibson procedure of definition 3.83.8 applied to the RKHS volume function yields the
RKHS reconstruction.

Proof. Let us denote (C′, (x,X)) the point cloud (C,X) augmented by the addition of a

nn+1th node. For convenience, the index of this node is i = 0, and we denote D =
(

KC P
PT 0

)
and ψ(x) =

(
k(x)
p(x)

)
. Hence, denoting I0 =

ˆ
y∈Ω

K(x,y) dV , the RKHS volumes on C′ read:

(
V RKHSC′

0

)
=
(
K(x,x) ψ(x)T
ψ(x) D

)−1
·

I0IC
J

 (E.12)

Since the sub-matrix D is invertible, we can re-write the above matrix inverse using the
Schur complement.(
K(x,x) ψ(x)T
ψ(x) D

)−1
=
(

0 0
0 D−1

)
+ 1
K(x,x)− ψ(x)TD−1ψ(x)

(
1 −ψ(x)TD−1

−D−1ψ D−1ψ(x)ψ(x)TD−1

)
And thus, the RKHS volumes on C can be expressed in terms of the RKHS volumes on C:
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V RKHSC′ 0 = I0 − k(x)TV RKHSC

K(x,x)− ψ(x)TD−1ψ(x)

V RKHSC′ 1:nn = V RKHSC − I0 − k(x)TV RKHSC
K(x,x)− ψ(x)TD−1ψ(x)

(
D−1ψ(x)

)
1:nn

Hence, the corresponding Sibson shape functions on C evaluated at x read:

φRKHS S(x) =
V RKHSC − V RKHSC′ 1:nn

V RKHSC′ 0

=
(
D−1ψ(x)

)
1:nn

=
((

KC P
PT 0

)−1
·
(
k(x)
p(x)

))
1−nn

= φRKHS(x)
Which is the desired result.

E.1 Similarities between RKHS volumes and SPH
Let us have a more in-depth look at the particular case m = 0, namely the case where no

reproducibility property is sought. Suppose Ω = Rd in order to avoid technicalities near the
boundary. Using a compactly supported RBFs denoted Wh, scaled so that its integral over
space is unity, we can re-write expression (E.10E.10) of the RKHS volumes weights as: ∀ i ∈ C,∑

j∈C
V RKHSj Wh(xj − xi) = 1 (E.13)

Formally, this is exactly equivalent to choosing volume weights in such a way that the
SPH reconstruction (see expression (2.412.41)) of a unit field is unity when evaluated at node
positions: ∀ i ∈ C, < 1 >SPH (xi) = 1. This definition for nodal volumes is very similar to
the standard definition of SPH volumes, which in the case of equal mass weights reads as:∑
j∈C V

SPH
i Wh(xj − xi) = 1. Of course, this subtle change makes the RKHS volumes fully

implicit. The connection with SPH is strengthened with the following result:

Proposition E.4 (A SPH-like convergent splitting for equation (E.13E.13)).
Let Wh be a conditionally positive definite of order m = 0, that is also a SPH kernel (in
the sense of definition 2.192.19). Denoting Wi,j = Wh(xj − xi) and Di,j = δi,j

∑
k∈CWi,k, the

linear system (E.13E.13) can be re-written as:

V RKHS = D−11 + (I−D−1W)V RKHS (E.14)

The above expression suggests the following iterative algorithm to solve system (E.13E.13): ∀ i ∈
C, ∀ k ∈ N, 

V
(0)
i = V0

V
(k+1)
i =

1−
∑
j∈N (i)(V

(k)
j − V (k)

i )Wh(xj − xi)∑
j∈N (i)Wh(xj − xi)

(E.15)

The above splitting is convergent if the graph of W is strongly connected (i.e. if for two
nodes i, j of the point cloud there is a path (k1, . . . , kp) of nodes from i to j verifying
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‖xkq+1 − xkq‖ < h). Its first iteration (k = 1) exactly gives the classical SPH volumes (see
expression (3.663.66)).

Proof. Every coefficient of the matrix W is non-negative since we assume Wh to be a SPH
kernel. The matrix D−1W is non-negative and satisfies D−1W1 = 1. It is irreducible thanks
to the connectivity assumption on the point cloud. The Perron-Frobenius theorem (see [196196]
for an introduction to Perron-Frobenius theory) thus applies and shows that its spectrum
is included in ]0, 1]. Consequently, the spectrum I−D−1W is a subset of [0, 1[. This means
that I−D−1W is a convergent matrix and the iterative algorithm converges.

Remark. The above proposition provides a link between the RKHS and the SPH volume
functions. It is thus natural to seek similarities between the two methods. Differentiation of
expression (E.13E.13) with respect to node position gives an implicit relationship for the gradient
coefficients, which can be re-arranged into the following expression for the nodal evaluation
of the reconstruction of the volume-based RKHS primal gradient: ∀ i ∈ C,

< �
RKHSf > (xi) = −

∑
j∈N (i)

V RKHSj ∇Wh(xj − xi)(fj − fi) (E.16)

Similarly, we can prove the following implicit relationship involving the corresponding dual
gradient: ∀ i ∈ C,

Vi�
RKHS ∗
i (Wf) = −

∑
j∈N (i)

(V RKHSj fi + V RKHSi fj)∇Wh(xj − xi) (E.17)

In particular, replacing f with V RKHS in the above expression yields the expression of the
dual gradient of a unit field:

Vi�
RKHS ∗
i 1 = −2

∑
j∈N (i)

V RKHSi V RKHSj ∇Wh(xj − xi) (E.18)

This expression is formally identical to that of the classical dual renormalized SPH gradient
of order zero (see expression (2.502.50)).





Appendix F

Voronoi and power
diagram-based volume function

One of the most successful ideas in the meshless community has arguably been to define
the volume of a node as the volume of its associated Voronoi cell. To the author’s knowledge,
the first apparition of this idea comes from Mikhailova, Shashkov and coworkers (see [158158]
for instance, where first order dual consistency is not even pointed out). This construction
has been used successfully several times since, and we mention the important contributions
of Serrano and Español in [206206] and the weighted version of de Goes et al. in [6767] called
power diagrams. Unfortunately, none of the previously stated contributions have provided
an operator based treatment of the boundary, thus requiring ad-hoc tricks for the imposition
of non-homogeneous boundary conditions, the most popular being the introduction of "ghost"
nodes as in [193193] with imposed values.

The Voronoi cell Vori corresponding to node i in the point cloud C is defined as:

Vori
def= {x ∈ Ω | ∀ j ∈ C, ‖x− xi‖ ≤ ‖x− xj‖} (F.1)

The corresponding volume weight is the volume of the Voronoi cell:

V V ORi =
ˆ

Vori
1 dV =

ˆ
Ω

1|Vori dV (F.2)

Computing the corresponding partial derivatives require the computation of mesh geometric
quantities. Indeed, denoting Fi,j the scalar area of the common mesh face between cells Vori
and Vorj , and bi,j its centroid, it can be shown (see [6767]) that:

∂V V ORi

∂xj
= Fi,j
‖xi − xj‖

(xj − bi,j) (F.3)

As illustrated on figure F.1F.1 , this means that two nodes are neighbors if their correspond-
ing Voronoi cells share a face. The previously stated characterization of primal and dual
consistency immediately gives the following results:

• Translation covariance of the Voronoi volumes translate to zeroth order consistency of
the associated primal gradient (see equation 3.233.23). Moreover, covariance with respect
to rotations readily entails the symmetry of �V ORx.

• A tiling (meshing!) of space is effectively built. Thus, node volumes always add up
to the total volume of the domain. As a consequence of proposition 3.133.13, this means
that the dual gradient is zeroth order consistent.
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Vor

Vor

Ω

Figure F.1 – In the case of Voronoi volumes, the value of a nodal volume weight locally
depends on the position of another node if the corresponding Voronoi cells share a face (whose
intersection with Ω has non-vanishing d − 1-dimensional measure). Hence, AV OR ∗

red,blue 6= 0.
Furthermore, the volume of a node locally depends on Ω if the corresponding Voronoi cell
intersects the boundary ∂Ω. In particular, the red cell is a left-sided boundary node while the
blue node is not.

• Amazingly enough, the dual gradient is moreover first order consistent. This highly
non-trivial fact can be proved using the early result detailed in [208208] in conjunction
with proposition 3.193.19 of the present article. This superconsistency property is a long
known fact and the main reason for the success of the Voronoi volumes.

In a nutshell, Voronoi volumes are first order dual consistent and zeroth order primal
consistent, which make them very attractive options for simulation. Finally, let us point out
that this method does not break the meshless curse (see conjecture 2.42.4) since a mesh still
needs to be built.

Remark. Originally, the Sibson reconstruction (see [208208]) was developed for Voronoi di-
agrams. Recently, the Sibson shape functions have been shown by by Hiyoshi, Sugihara
and coworkers to be a part of a more general family of linear consistent shape functions.
The corresponding construction (see [118118] for instance) is extremely reminiscent of our own
Sibson-SFEM cycle, but we have not managed to either prove or disprove that the two
methods coincide.



Appendix G

Volume-based meshless
discretization of hydrodynamics

The equations of hydrodynamics or gas dynamics are arguably the most popular set of
equations addressed by meshless methods (see for instance [8787, 158158, 162162, 206206]), even giving
its name to SPH. This appendix quickly states a few results concerning the discretization of
hydrodynamics using the volume-based operators described in chapter 33. The discretization
process is always more or less the same and is comprised of three distinct phases, which we
quickly sum up.

Firstly, we need to define a frame in which the kinematics are described. Eulerian,
Lagrangian or any in-between (ALE) is allowed, but this section focuses on Lagrangian
descriptions, the simplest and most frequent choice for meshless methods. In practice, since
the reduction map is assumed to match nodal evaluations, this means that the physical
velocity is used for the advection of nodes. In other words, the kinematics of discretization
nodes is governed by vi = dxi

dt , and no other velocity field is defined.
The second step is to postulate conservation of mass in any of the following equivalent

discrete forms relating the scalar density field ρ : C → R and the velocity field. We insist
on the fact that all of those expressions are formally identical to their continuous equivalent
continuity equation.

• Existence of nodal mass weights mi independent of time such that mi = ρiVi. This
particular form of the conservation of mass stresses the fact that ρ is the Radon-
Nikodym derivative of the (discrete) mass measure with respect to the volume measure.

• Global conservation for every "control" set of particles: ∀ U ⊂ C,

d
dt �
ˆ
U
ρ

def= d
dt
∑
i∈U

Vi(x1, . . . ,xn)ρi = 0 (G.1)

• Reynolds transport theorem for specific properties: ∀ f : R× C → R,

d
dt �
ˆ
C
ρf = �

ˆ
C
ρ

df
dt (G.2)

• Local continuity equation: ∀ i ∈ C,

dρi
dt + ρi�i · v = 0 (G.3)

199



200 APPENDIX G. VOLUME-BASED MESHLESS HYDRODYNAMICS

Equivalence between all of those expressions is readily proved using expression (3.73.7). Let us
note that since mass conservation is intimately linked with the geometrical transformation
– the kinematics – underwent by the physical body, the relevant differentiation operator is
naturally the primal gradient operator as highlighted on figure 3.13.1.

The next step is to write the discrete form of the conservation of momentum:

ρi
dvi
dt = −�∗i · σ + ρif exti (G.4)

This equation (or similar ones in nature) has been extensively used for decades in the
meshless community (this is the dominant practice in SPH simulations for example, see [161161]
for instance). The most important detail in equation (G.4G.4) is that we define the interior
forces as the dual divergence of the stress. Choosing two different differential operators
(primal and dual) in the same system of equations should seem surprising, in particular
since the SPH dual gradient �SPH ∗ (see (3.693.69)) is not even first order consistent in general!
The realistic results obtained in those cases can only be explained by two factors:

Firstly, more or less elaborate corrections are usually used (XSPH in [161161], transport-
velocity formulation in [44], . . . ), and their effect can be understood as ALE methods trying
to remain close to nodal positions where the zeroth order dual consistency error remains low
as developed in section 3.63.6.

Secondly, instead of aiming at a consistent approximation of the stresses, the SPH
methodology focuses on conservation. Indeed, we can show that conservation of the total
linear and angular momenta is a consequence of consistency properties of the differentiation
operator dual to the one used in the momentum equation (G.4G.4): in the absence of body and
boundary forces, and if � is zeroth order accurate,

dP
dt = d

dt �
ˆ
C
ρx

= �
ˆ
C
ρ

dx
dt (G.2G.2) was used here

= �
ˆ
C
−�∗ · σ

= �
ˆ
C
σ ·�1 = 0 (G.5)

Similarly for the angular momentum,
dL
dt = d

dt �
ˆ
C
ρx× v

= �
ˆ
C
ρ

dx× v
dt (G.2G.2) was used here

= �
ˆ
C
ρv× v + x× ρdv

dt

= �
ˆ
C
−x×�∗ · σ

= �
ˆ
C
�× x : σ = 0 (G.6)

Let us note that if d 6= 3 then L should be understood as a skew symmetric rank-2 tensor,
and the result still holds. Hence, using �∗ in equation (G.4G.4) entails that conservation of
linear and angular momenta follow from �1 = 0 and � × x = 0, which are consequences
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of the covariance of the volume function with respect to isometric transformations (transla-
tions and rotations). This situation is analogous to the continuous one: linear and angular
momenta are Noether invariants associated to isometric transformations of space.

This standard choice of dual gradient can further be justified in the specific case of
Lagrangian systems. Let us postulate a discrete least action principle as stationarity of the
following functional S =

´
L dt, and write the Lagrange functional as depending on particle

positions via volume weights L(V1(x1, . . . ), . . . ,x1, . . . ,v1, . . . ). Then the corresponding
Euler-Lagrange equations read: ∀ i ∈ C,

d
dt
∂L

∂vi
=
∑
j∈C

∂L

∂Vj
· ∂Vj
∂xi

+ ∂L

∂xi
= −Vi�∗j

∂L

∂V
+ ∂L

∂xi
(G.7)

Hence, regardless of the specific form of the Lagrangian, the relevant gradient operator to
be used in the conservation of momentum is our dual gradient. A typical Lagrangian for
hydrodynamics reads (see [162162]) L = �́C ρ

( 1
2v2 − u(ρ)− φ(x)

)
, which becomes once ρ is

replaced using conservation of mass:

L =
∑
i∈C

mi

(
1
2v2

i − u(mi/Vi(x1, . . . ,xn))− φ(xi)
)

(G.8)

Defining the pressure field as Pi = ρ2
i
∂u
∂ρ (ρi) (this is the first law of thermodynamics) and

writing f consi = −∂φ∂x (xi), the conservation of momentum reads the same as (G.4G.4) if we set
σ = −P Id:

ρi
dvi
dt = −�∗iP + ρif consi (G.9)

This variational derivation highlights the fact that the dual gradient effectively computes
the infinitesimal work needed to displace a single node, relating volume and pressure as
a conjugate pair of thermodynamic variables. This interpretation is consistent with our
earlier interpretation of the dual gradient: forces are variations of energy with respect to
displacements. The discrete variational principle from which equation (G.9G.9) was derived
gives it another desirable conservation property: the total energy H is conserved. This
is a direct consequence of Noether’s theorem, but let us still go through the steps of the
computation: in the absence of boundary forces,

dH
dt = d

dt �
ˆ
C
ρ

(
1
2v2 + u(ρ) + φ(x)

)
= �
ˆ
C
ρ

d
dt

(
1
2v2 + u(ρ) + φ(x)

)
(G.2G.2) was used here

= �
ˆ
C
ρv · dv

dt + ρ
∂u

∂ρ

dρ
dt + ρ

∂φ

∂x ·
dx
dt

= �
ˆ
C

v · (−�∗P − ρf cons + ρf cons)− P� · v

= −�
ˆ
C

v ·�∗P + P� · v

= −
“
∂C
Pv = 0

At the discrete level, the power of internal forces is compensated by the variation of
kinetic energy, and only boundary forces remain thanks to � and �

∗ being dual of each
other.





Acronyms

ALE Arbitrary Lagrangian-Eulerian.
CDO Compatible Discrete Operator.
DEC Discrete Exterior Calculus.
DEM Diffuse Element Method.
DMLS Diffuse Moving Least Squares.
DOF Degree Of Freedom.
EFG Element Free Galerkin Method.
FD Finite Differences.
FEEC Finite Element Exterior Calculus.
FEM Finite Element Method.
FMLS Full Moving Least Squares.
FPM Finite Pointset Method.
FSI Fluid-Structure Interaction.
FTL Fortran Template Library.
FVM Finite Volume Method.
GMRES Generalized Minimal Residuals.
KDE Kernel Density Estimation.
LHS Left Hand Side.
LLS Local Least Squares.
MFD Mimetic Finite Differences.

MLPG Meshless Local Petrov-Galerkin.
MLS Moving Least Squares.
NS-FEM Node Smoothed Finite Element

Method.
ODE Ordinary Differential Equation.
PDE Partial Differential Equation.
RBF Radial Basis Function.
RHS Right Hand Side.
RKHS Reproducing Kernel Hilbert Space.
RKPM Reproducing Kernel Particle

Method.
RMD Renormalized Meshfree Derivatives.
SFEM Smoothed Finite Element Method.
SI International System of Units. Abbrevi-

ated from the French Système Inter-
national d’unités.

SIF Stress Intensity Factor.
SPH Smooth Particle Hydrodynamics.
VEM Virtual Element Method.
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An(A) Module of n×n skew-symmetric matrices with coefficients in the ring
A.

Bp(x, r) Open ball or cube of center x and radius r in Rp.
Bp Unit open ball or cube centered at the origin. Shorthand for Bp(0, 1).
∂p Boundary operator acting on p-chains.
#X Cardinal of a set X . If X is finite, #X is the number of elements in

X .
/Cp A cell of intrinsic dimension p in an abstract cell complex or a mesh.
S Closure of a subset S of a complete metrizable space.
C A point cloud.
f(x, y) = cst(x) An expression that is invariant with respect to y, but that might still

vary with respect to x.
d The intrinsic dimension of space, as opposed to the embedding di-

mension.
D(Ω) Diameter of a domain Ω.
A ·B Contraction of two tensors on one pair of indices. In the case of

two vectors, this is the dot product : x · y = xTy. The symbol is
sometimes omitted when there is no ambiguity as with the matrix-
vector multiplication Ax = A · x

∅ The empty set.
∃ Existence quantifier. Reads "there exists".
∃ ! Uniqueness quantifier. Reads "there exists a unique".
dp Exterior derivative acting on p-forms (or p-cochains).
∀ Universal quantifier. Reads "for all".
(X → Y) Set of maps (or functions) from a set X (the domain) to a set Y (the

co-domain).
f : X → Y A particular map from X to Y. This is a shorthand notation for

f ∈ (X → Y).
GLn(A) The general linear group : group of n × n invertible matrices with

coefficients in the ring A.
Grp(V ) The Grassmannian : space of p-dimensionnal linear subspaces of a

vector space V .
Lp(Ω, Y ) Lebesgue space of functions with integrable pth power with values in

a normed Banach space Y . For p = ∞, this is understood as the
space of essentially bounded Lebesgue measurable functions.

Im(f) Image of an homomorphism f .
In Real identity matrix of order n.
ι Inclusion map. If X ⊂ Y then ι : X → Y,∀ x ∈ X , ι(x) = x.
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[[p, q]] Inclusive integer interval bewteen p and q defined as [[p, q]] def= {n ∈
Z | p ≤ n ≤ q}.

ιx Interior product with the vector field x.
Ker(f) Kernel of an homomorphism f .
δi,j Kronecker symbol of i and j. Its value is 0 if i 6= j and 1 if i = j.
M A manifold.
M A mesh.
Mn(A) Module of n×n matrices (i.e. n lines and n columns) with coefficients

in the ring A.
Mn,m(A) Module of n ×m matrices (i.e. n lines and m columns) with coeffi-

cients in the ring A.
n The dimension of the affine embedding space.
On(R) Group of n × n real orthogonal matrices i.e. elements R of Mn(R)

satisfying RRT = RTR = In.
Ap[X1, . . . , Xd] Space of d-variate polynomials with coefficients in the ring A.
P(X ) Powerset of a set X , i.e. set of all subsets of X .
P(V ) Projective space of a vector space. Shorthand for Gr1(V ).
A+ Moore-Penrose pseudo-inverse of a matrix. See annexe BB for its defi-

nition and properties.
R The set of real numbers.
R+ The set of non-negative real numbers.
R+∗ The set of positive real numbers.
Z The set of relative integers.
SLn(A) The special linear group : group of n×n matrices with unit determi-

nant and coefficients in the ring A.
Sn(A) Module of n× n symmetric matrices with coefficients in the ring A.
S+
n (K) Cone of n × n symmetric positive semidefinite matrices with coeffi-

cients in the field K.
S++
n (K) Cone of n × n symmetric positive definite matrices with coefficients

in the field K.
W k
p (Ω, Y ) Sobolev space of functions u with weak derivatives ∂u

∂αx of order |α|
up to k in Lp(Ω, Y )

S(∂Ω) Surface area of the boundary of a regular enough domain Ω.
Sym(X ) The symmetric group of X , i.e. the set of bijective maps from X to

itself.
Sym(p) Shorthand for Sym([[1, p]]).
A⊗B Tensor product of two tensors. In the particular case of vectors, we

have x⊗y = xyT . When there is no possible ambiguity, we sometimes
write A⊗B = AB.

V (Ω) Volume of a measurable domain Ω.
α ∧ β Wedge product of two differential forms.
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Titre: Contribution à l’amélioration des méthodes sans maillage appliquées à la mécanique des milieux continus
Mots clefs: Sans-maillage; Simulation; Mécanique des milieux continus; SPH
Résumé: Cette thèse présente un cadre général pour l’étude de schémas de discrétisation nodaux sans maillage
formulé en termes d’opérateurs discrets définis sur un nuage de points : intégration volumique et de bord, gradient
et opérateur de reconstruction. Ces définitions dotent le nuage de points d’une structure plus faible que celle
définie par un maillage, mais partageant avec elle certain concepts fondamentaux. Le plus important d’entre eux
est la condition de compatibilité intégro-différentielle. Avec la consistance linéaire du gradient discret, cet analogue
discret de la formule de Stokes constitue une condition nécessaire à la consistance linéaire des opérateurs elliptiques
en formulation faible. Sa vérification, au moins de manière approchée, permet d’écrire des discrétisations dont le taux
de convergence est optimal. La construction d’opérateurs discrets compatibles est si difficile que nous conjecturons
– sans parvenir à le démontrer – qu’elle nécessite soit la résolution d’un système linéaire global, soit la construction
d’un maillage : c’est "la malédiction sans-maillage". Trois grandes approches pour la construction d’opérateurs
discrets compatibles sont étudiées. Premièrement, nous proposons une méthode de correction permettant de calculer
l’opérateur gradient compatible le plus proche – au sens des moindres carrés – sans mettre à mal la consistance
linéaire. Dans le cas particulier des gradients DMLS, nous montrons que le gradient corrigé est en réalité globalement
optimal. Deuxièmement, nous adaptons l’approche SFEM au cadre opérateur et constatons qu’elle définit des
opérateurs consistants à l’ordre un et compatibles. Nous proposons une méthode d’intégration discrète exploitant
la relation topologique entre les cellules et les faces d’un maillage qui préserve ces caractéristiques. Troisièmement,
nous montrons qu’il est possible de générer tous les opérateurs sans maillage rien qu’avec la donnée d’une formule
d’intégration volumique nodale en exploitant la dépendance fonctionnelle des poids volumiques nodaux par rapport
à la position des nœuds du nuage, l’espace continu sous-jacent et le nombre de nœuds. Les notions de consistance des
différents opérateurs sont caractérisées en termes des poids volumiques initiaux, formant un jeu de recommandation
pour la mise au point de bonnes formules d’intégration. Dans ce cadre, nous réinterprétons les méthodes classiques
de stabilisation de la communauté SPH comme cherchant à annuler l’erreur sur la formule de Stokes discrète.
L’exemple des opérateurs SFEM trouve un équivalent en formulation volume, ainsi que la méthode d’intégration
discrète s’appuyant sur un maillage. Son écriture nécessite toutefois une description très précise de la géométrie
des cellules du maillage, en particulier dans le cas où les faces ne sont pas planes. Nous menons donc à bien
une caractérisation complète de la forme de telles cellules uniquement en fonction de la position des nœuds du
maillage et des relations topologiques entre les cellules, permettant une définition sans ambigüité de leur volume et
centre de gravité. Enfin, nous décrivons des schémas de discrétisation d’équations elliptiques utilisant les opérateurs
sans-maillage et proposons plusieurs possibilités pour traiter les conditions au bord tout en imposant le moins
de contraintes sur la position des nœuds du nuage de points. Nous donnons des résultats numériques confirmant
l’importance capitale de vérifier les conditions de compatibilité, au moins de manière approchée. Cette simple
recommandation permet dans tous les cas d’obtenir des discrétisations dont le taux de convergence est optimal.

Title: Contribution to the improvement of meshless methods applied to continuum mechanics
Keywords: Meshless; Simulation; Continuum Mechanics; SPH
Abstracts: This thesis introduces a general framework for the study of nodal meshless discretization schemes. Its
fundamental objects are the discrete operators defined on a point cloud : volume and boundary integration, discrete
gradient and reconstruction operator. These definitions endow the point cloud with a weaker structure than that
defined by a mesh, but share several fundamental concepts with it, the most important of them being integration-
differentiation compatibility. Along with linear consistency of the discrete gradient, this discrete analogue of Stokes’s
formula is a necessary condition to the linear consistency of weakly discretized elliptic operators. Its satisfaction, at
least in an approximate fashion, yields optimally convergent discretizations. However, building compatible discrete
operators is so difficult that we conjecture – without managing to prove it – that it either requires to solve a global
linear system, or to build a mesh. We dub this conjecture the "meshless curse". Three main approaches for the
construction of discrete meshless operators are studied. Firstly, we propose a correction method seeking the closest
compatible gradient – in the least squares sense – that does not hurt linear consistency. In the special case of
MLS gradients, we show that the corrected gradient is globally optimal. Secondly, we adapt the SFEM approach
to our meshless framework and notice that it defines first order consistent compatible operators. We propose a
discrete integration method exploiting the topological relation between cells and faces of a mesh preserving these
characteristics. Thirdly, we show that it is possible to generate each of the meshless operators from a nodal discrete
volume integration formula. This is made possible with the exploitation of the functional dependency of nodal volume
weights with respect to node positions, the continuous underlying space and the total number of nodes. Consistency
of the operators is characterized in terms of the initial volume weights, effectively constituting guidelines for the
design of proper integration formulae. In this framework, we re-interpret the classical stabilization methods of the
SPH community as actually seeking to cancel the error on the discrete version of Stokes’s formula. The example of
SFEM operators has a volume-based equivalent, and so does its discrete mesh-based integration. Actually computing
it requires a very precise description of the geometry of cells of the mesh, in particular in the case where its faces
are not planar. We thus fully characterize the shape of such cells, only as a function of nodes of the mesh and
topological relations between cells, allowing unambiguous definition of their volumes and centroids. Finally, we
describe meshless discretization schemes of elliptic partial differential equations. We propose several alternatives for
the treatment of boundary conditions with the concern of imposing as few constraints on nodes of the point cloud
as possible. We give numerical results confirming the crucial importance of verifying the compatibility conditions,
at least in an approximate fashion. This simple guideline systematically allows the recovery of optimal convergence
rates of the studied discretizations.
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