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Résumé

Cette thèse est consacrée à l’étude statistique des systèmes complexes à travers l’analyse

de signaux expérimentaux, de signaux synthétiques et de signaux générés à partir de

modèles théoriques. On a choisi la turbulence comme paradigme d’étude en raison de

ses propriétés: dynamique non linéaire, comportement multi-échelle, cascade d’énergie,

intermittence ...

Afin de faire une caractérisation statistique d’un système complexe on s’intéresse à

l’étude de la distribution (fonction de densité de probabilité), des corrélations et dépen-

dances, et des relations de causalité de Wiener, des signaux qui décrivent le système. La

théorie de l’information apparâıt comme un cadre idéal pour developer ce type d’analyse.

Dans le cadre de la théorie de l’information on a développé deux méthodologies,

différentes mais reliées, pour analyser les propriétés d’auto similarité d’un système com-

plexe, et plus précisément de la turbulence. La première méthodologie est basée sur

l’analyse des incréments du processus étudié, avec l’entropie de Shannon et la divergence

de Kullback-Leibler. La deuxième méthode, qui permet d’analyser des processus non sta-

tionnaires, est basée sur l’analyse du processus avec le taux d’entropie de Shannon. On

a étudié la relation entre les deux méthodologies, lesquelles caractérisent la distribution

d’information du système et la déformation de la distribution des incréments, à travers

les échelles.
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Introduction: buts et contributions

Cette thèse vise à développer de nouvelles méthodologies pour la caractérisation des
systèmes complexes.

La définition de systèmes complexes reste encore vague, et en conséquence ses
fontières sont imprécises [144]. Par système complexe, nous comprenons celui composé
de plusieurs parties qui interagissent entre elles de manière non linéaire. La plupart du
temps ces systèmes sont multi-échelles, i.e., ils presentent des échelles différentes avec des
comportements différents. Cette définition de système complexe inclue un grand nombre
de systèmes comme: le marché financier [140], un ecosystème [141], le cerveau [179], la
Terre [54], une colonie de fourmis [143] ...

Le prototype idéal de système complexe est la turbulence des fluides, car elle est
hautement non linéaire et multi-échelles [66]. À cause de la facilité de généralisation à
n’importe quel système complexe des méthodologies capables de caractériser la turbulence,
et aussi parce que la turbulence représente un sujet très intéressant, nous utilisons la
turbulence pleinement developée comme notre objet d’étude tout au long de la thèse.

Nous proposons de décrire statistiquement un système complexe par l’étude de sa
distribution, ses correlations et dependences, et les relations de causalité entre différentes
observables du système. La théorie de l’information [176, 49] fournit le cadre parfait pour
accomplir ce type d’analyse [163, 132].
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Chapitre 1: Aspects théoriques

La théorie de l’information cherche à décrire les lois mathématiques qui gouvernent la
transmission, le stockage, le traitement, la mesure et la représentation de l’information.
Claude E. Shannon a développé proprement les bases de la théorie de l’information en
1948, dans son article “A Mathematical theory of communication” [176] puis l’a étendu
avec Weaver [177]. Comme le titre du premier article (de Shannon) le souligne, la théorie
de l’information apparait initialement comme une théorie de la communication. Nean-
moins, depuis les années cinquante, les applications ont commencé à se généraliser dans
d’autres domaines comme les systèmes dynamiques [110, 111, 183, 113]. Ce saut des pro-
cessus stochastiques, l’objet naturel d’étude de la théorie de l’information, aux systèmes
dynamiques a supposé un progrès très important dans le développement de la théorie de
l’information, qu’a permis son propagation á une gamme très large de domaines.

Aujourd’hui la théorie de l’information est utilisée dans un spectre de domains très
large: thermodynamique [100, 101, 206, 156], thermodynamique quantique [93], neuro-
science [209, 217, 221], etc. En plus, depuis le premier article de Shannon, le nombre
de quantitées différentes en théorie de l’information a augmenté significativement. Parmi
ces objects théoriques on peut trouver: taux d’entropie [177], divergence de Kullback-
Leibler [121, 120], entropie de transfert [172], information dirigée [115] ...

Récemment, l’accés à des ordinateurs de plus en plus puissants et le plus large nombre
de domaines d’application de la théorie de l’information ont rendu cette théorie un sujet
de recherche très interessant à la fois dans des aspects théoriques et appliqués.

Dans ce chapitre se presente le cadre de la théorie de l’information utilisé pendant la
thèse, avec l’entropie de Shannon comme brique de base. Cependant le nombre de cadres
differents est grand [41]. En plus, comme il a été montré que la théorie de l’information
sert á la déscription des systèmes stochastiques ainsi qu’á la déscription des systèmes
dynamiques [117, 118, 62, 128], tout au long de ce manuscrit on applique la théorie de
l’information sur tous les deux sortes de processus.
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Chapitre 2: Estimateurs non-paramétriques

Afin d’appliquer la théorie de l’information au traitement de signal, il est nécessaire de
développer des codes numériques fiables, lesquels doivent estimer proprement les entropies.
À notre connaissance, il y a principalement trois sortes d’algorithmes non paramétriques
utilisés pour estimer des entropies: des algorithmes basés sur des histogrammes, algo-
rithmes basés sur l’utilisation de noyaux, ou algorithmes basés sur la recherche des plus
proches voisins. Chaque sorte d’algorithme suit differentes approximations pour estimer
les fonctions de densité de probabilité, ou pour estimer les mesures d’entropie directement.
Naturellement, d’autres sortes d’estimateurs des entropies existent, mais, tout au long de
la thèse seulement des estimateurs non paramétriques ont été utilisés.

Tout au long de ce chapitre on utilise la littérature précédente et des nouveaux résultats
pour choisir les estimateurs les plus fiables des mesures de théorie de l’information. Les
résultats nouveaux obtenus pendant la thèse sont debillés et reliés à l’article correspon-
dant. Le chapitre est organisé comme suit: la première section énumère les différents
algorithmes pour estimer les fonctions de densité de probabilité, la deuxième présente
l’algorithme de Kozachenko et Leonenko pour estimer directement l’entropie de Shan-
non [114, 184, 127], la troisième est dediée à l’estimateur de Kraskov, Stögbauer et
Grassberger pour l’information mutuelle [116], la quatrième section présente une nou-
velle méthode pour estimer le taux d’entropie d’ordre m [78], basée sur les estimateurs de
Kozachenko et Leonenko, et celui de Kraskov, Stögbauer et Grassberger. La cinquième
section presente comment utiliser la prescription de Theiler pour sonder la dynamique et
la complexité à une échelle λ donnée. Finalement, la dernière section présente l’estimateur
de Kraskov, Stögbauer et Grassberger pour l’information mutuelle conditionnée.
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Chapitre 3: Statistiques d’ordre supérieure de bruits non Gaussiens

Afin de caractériser un processus ergodique X(t), qui évolue le long d’une dimension
t, e.g., le temps, on a besoin de décrire simultanément: les statistiques à un point du
processus à un temps donné t et les dépendances entre n points xt à temps differents.
Pour analyser ces dépendances, il faut faire une hypothèse de stationnarité.

La fonction de correlation, ou sa transformé de Fourier, le spectre de puissance, sont
conventionnellement utilisées pour caractériser les dépendances des processus stochas-
tiques stationnaires, et des processus déterministes chaotiques. Cependant, l’étude des
dépendances via l’analyse spectrale ou les correlations sonde seulement des interactions
à deux points, et en conséquence ne prend en compte que des statistiques d’ordre deux
seulement des processus analysés. Ces correlations d’ordre deux ensemble avec la moyenne
et la variance de la fonction de densité de probabilité (PDF) du processus caractérisent
completement les processus ayant une distribution Gaussienne. Neanmoins, pour des pro-
cessus avec une PDF non Gaussienne il est nécessaire de prendre en compte des statistiques
d’ordre supérieure de la PDF.

Les outils de théorie de l’information sont construits sur l’entropie de Shannon, et,
comme l’entropie de Shannon, ils sont des fonctions de la PDF du processus analysé. En
conséquence, ils dependent de tous les moments de la PDF et par voie de conséquence
des statistiques d’ordre supérieur, comme detaillé dans la section 1.5.

L’auto information mutuelle, définie dans la section 1.4.2, et le taux d’entropie d’order
m, défini dans la section 1.4.1, sont capables de mesurer des interactions à deux points
au même temps qu’elles prennent en compte des statistiques de tout ordre de la PDF
du processus analysé. Ces deux quantités permettent alors l’étude des dépendances, et
non pas seulement des correlations, d’un processus. En plus, en augmentant la dimension
d’embedding m, tous les deux peuvent mesurer des interactions á m + 1 points, et ils
peuvent alors se concentrer sur les statistiques d’ordre superieur de la PDF.

L’auto information mutuelle, eq.(1.26), et le taux d’entropie d’ordre m, eq.(1.24) ou
eq.(1.25), mesurent les dépendances à une échelle particulière d’interaction (section 1.5),
et très peu d’articles analysent l’évolution de ces quantités à travers les échelles [5, 80].
On propose de réaliser cette analyse à travers les échelles pour obtenir une analyse
des dépendances à travers les échelles, laquelle peut être intéressante pour étudier des
systèmes, comme par exemple, la turbulence.



16

À titre d’exemple, cette méthodologie est appliquée sur deux processus synthétiques
non Gaussiens avec une structure de dépendance différente, mais avec la même fonction de
corrélation et la même PDF marginale. Notre méthodologie est alors capable de mesurer
les différences qu’il y a dans les statistiques d’ordre supérieur des processus.



Chapitre 4: Étude de processus non stationnaires

La théorie de l’information a été initialement conçu pour travailler avec des proces-
sus stationnaires, où les mesures ont une interprétation claire en termes d’information
(chapitre 1). Neanmoins, deux questions aparaissent immédiatement:

• Peut-on appliquer la théorie de l’information sur de processus non-stationnaires?

• Est-ce que les interprétations sur des processus stationnaires restent valides pour
des processus non-stationnaires?

Dans la vie réel, un grand nombre de processus comme: la température environnemen-
tal, l’évolution des ressources d’eau, séries temporelles macroéconomiques ou le mouve-
ment Brownien, sont non-stationnaires. Par conséquent, la caractérisation et l’analyse de
ce type de processus deviennent très importants. Parce que l’étude des processus non-
stationnaires est très difficile, sa caractérisation est normalement fait à travers l’étude des
increments ou des dérivés temporelles. Pourtant, dans ce chapitre, nous sommes interessés
par l’analyse direct des processus non-stationnaires.

Pour un processus temporel non-stationnaire M(t) dont sa PDF et ses dependences,
évoluent en temps, son entropie H(M(t)) évolue avec le temps.

On peut mesurer l’entropie d’un processus à un temps donné Ht(M(t)) en moyennant
à travers les réalisations. Dans ce cadre, l’interprétation de l’entropie pour des processus
stationnaires reste valide [74]. De la même manière, on peut mesurer les dépendances du
processus à temps t. Réaliser ces analyses à un temps donné pour différents temps, permet
de caracériser non seulement la distribution et les dépendances du processus au temps t,
mais aussi son évolution en temps. Malhereusement, l’analyse à un temps donné t exige
d’avoir nombreuses réalisations du processus afin de construire sa PDF sans avoir besoin
de l’hypothèse d’ergodicité. Cette exigence n’est pas facilement soluble, spécialement
quand on travaille avec des signaux expérimentaux.

Afin d’éviter cette exigence, nous voulons étudier un processus M(t) en analysant un
signal expérimental de longueur T . On peut mesurer son entropie pendant la fenêtre
temporelle [0, T ], HT (M(t)), mais l’interprétation de cette entropie n’est plus la même.
We interprète HT (M(t)) comme la complexité, ou la quantité totale d’information requis
pour caractériser une trajectoire temporelle Mt ∀ t ∈ [0, T ] du processus M(t). De cette
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manière, la distribution doit prendre en compte ne seulement le space de phase du pro-
cessus mais aussi son évolution temporelle [211]. Le principal inconvénient de ce point de
vue est la nécesitée de définir une taille T de fenêtre, limitant l’évolution de la distribution
en temps.

Même si la théorie de l’information a été conçu pour analyser des processus station-
naires, quelques travaux ont essayé de réaliser un analyse des processus non-stationnaires
avec des outils de théorie de l’information [211, 165, 74]. Dans ce chapitre, le but
est de développer un cadre de théorie de l’information pour analyser processus non-
stationnaires génériques. Ensuite, on développe dans ce cadre le cas spécifique des mou-
vements auto-similaires non-stationnaires avec des incréments stationnaires, dans lequel
on est spécialement intéressés. Les mouvements auto-similaires avec décroissance en loi
de puissances sont particulièrement intéresants parce qu’ils modélisent un grand nombre
de systèmes physiques, biologiques ou sociaux. Une fois la théorie est développé, on la
vérifie numériquement et on l’utilise pour caractériser differents mouvements.



Chapitre 5: Turbulence pleinement developpée

La théorie de Kolmogorov de 1941 (K41) pour la turbulence pleinement developpée,
inspirée par la description multiéchelles de Richardson [167], a secoué les piliers de la
mécanique des fluides. Inspiré par la description de Richardson, Kolmogorov divise dans
sa théorie, les échelles de la turbulence en trois domaines: le domaine integral qui com-
prend les grandes échelles où l’énergie est injectée, le domaine inertiel, constitué par les
échelles plus petites que l’échelle integrale L et plus grandes que l’échelle dissipative ηK ,
où l’énergie injectée dans les grandes échelles cascade vers les petites, et finalement le do-
maine dissipatif formé par les échelles plus petites que l’échelle dissipative et où l’énergie
est dissipé. Kolmogorov a postulé que l’anisotropie des grandes échelles est perdue dans
le transfert d’energie vers les petites échelles, et il existe donc une gamme d’échelles où
la turbulence pleinement developpée a un comportement statistiquement isotrope et ho-
mogène. Cette gamme d’échelles définit le domaine inertiel et dissipative.

Kolmogorov identifie les échelles avec les increments de vitesse turbulente, et arrive
à caractériser statistiquement la distribution d’énergie [108, 109] et la cascade d’énergie
à travers les échelles [107]. Pour y arriver, Kolmogorov étudie les fonctions de structure
d’ordre deux et trois de la vitesse.

Des résultats expérimentaux postérieurs ainsi que des nouvelles interrogations théo-
riques ont suggeré le besoin d’ameliorer la théorie de Kolmogorov 1941. Un raffinement
a été proposé par lui même et par Oboukhov dans la théorie connu aujourd’hui comme
Kolmogorov-Oboukhov 1962 [112, 150], qui introduit le phénomene d’intermittence.

Dans ce chapitre on décrit brièvement les théories de Kolmogorov 1941 et Kolmogorov-
Oboukhov 1962. On presente, ensuite la théorie multifractale de la turbulence [67] qui est
capable de décrire les modèles de Kolmogorov 1941 et Kolmogorov-Oboukhov 1962 mais
aussi des modèles postériurs comme celui de She and Leveque [178].
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Chapitre 6: La théorie K41 du point de vue de la théorie de

l’information

On propose dans ce chapitre un point de vue de la turbulence, et en particulier de la théorie
K41 (section 5.1), basé sur la théorie de l’information. On décrit d’abord la distribution
d’information (dans le sens de Shannon) à travers les échelles de la turbulence, puis on
montre et explique la forte connexion avec la distribution d’énergie. On explore aussi
l’existence d’une cascade d’énergie dans la turbulence avec la théorie de l’information.

Afin d’étudier la turbulence, et retrouver les résultats de la théorie K41 dans le cadre
de la théorie de l’information, on analyse des signaux expérimentaux de vitesse obtenus
avec differents montages expérimentaux, ainsi qu’un mouvement Brownien fractionnaire,
qui est un processus synthétique monofractal proposé par Kolmogorov pour modéliser la
turbulence (section 5.2).

Dans un premier temps, on montre comment le taux d’entropie est capable de décrire
la distribution d’information à travers les échelles, et on illustre la relation entre le taux
d’entropie du processus analysé et l’entropie de ses increments (chapitre 4). Dans un
deuxième temps, on designe une procédure de conditionnement du signal, et on montre
que ce conditionnement permet une très fine exploration de l’assymétrie de la distribution
des increments, ce qui permet d’inférer l’éxistence d’une skewness finie et d’une cascade
d’energie. Les méthodes presentées ici sont d’intérêt général dans l’étude de signaux avec
dynamiques complexes.
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Chapitre 7: L’intermittence revisitée

Comme evoqué dans le chapitre 5, la turbulence présente un phénomène appelé inter-
mitence. Cette intermittence se manifeste comme un comportement non linéaire des ex-
posants des fonctions de structure ζ(p) et donc comme la déformation de la PDF à travers
les échelles. Cette déformation de la PDF a souvent été quantifiée par l’evolution de sa
flatness [66], mesurée comme la kurtosis normalisée de la distribution: 〈(δlv)4〉/〈(δlv)2〉2 =
S4(l)/S2(l)2. Aux grandes échelles, au voisinage superieur de l’échelle integrale L, la PDF
des incréments de vitesse est quasiment Gaussienne et a une flatness très proche de 3 (la
valeur attendu pour une Gaussienne). Pour des échelles de plus en plus petites, la PDF
est de moins en moins Gaussienne et en conséquence la flatness augmente. Des évolutions
fines de la PDF, et donc l’intermitence, ont été étudiées avec la flatness, comme par ex-
emple, l’augmentation rapide de l’intermittence quand l’échelle est réduite en dessous de
l’échelle dissipative [39]. Neanmoins, la flatness décrit la déviation du comportement
linéaire de ζ(p) n’en prenant en compte que la fonction de structure d’ordre 4 (S4(l)). On
propose, dans ce chapitre, une mesure de l’intermittence que implique toutes les fonctions
de structure.

Nous proposons mesurer l’intermittence, interpretée comme la déformation de la PDF.
Pour cela, on considère la divergence de Kullback-Leibler [120] (KL) (section 1.3.2) entre
la PDF et la PDF Gaussienne définie avec la même variance. Comparer la PDF — définie
par tous ses moments — et son approximation Gaussienne — définie par le moment
d’ordre deux seulement — revient à mesurer l’évolution de tous les moments par rapport
à la variance, i.e., à caractériser exhaustivement la déformation de la PDF. Mesurer
l’intermittence avec la divergence de KL fournit une généralisation des mesures comme la
flatness (p = 4), hyperflatness (p = 6), etc.

Même si l’on étudie ici la turbulence, nos définitions sont très générales et n’ont besoin
que d’un signal pour sonder l’intermittence. Notre approche n’a pas besoin ni d’une
connaisance a priori, ni d’aucun modèle du système qui a produit la signal. Il peut
donc être un outil très puissant pour l’analyse des systèmes complexes qui présentent des
comportements en loi de puissances ou des dépendances multiéchelles.

Ce chapitre est organisé comme suit. Dans la section 7.1, on definit notre mesure de
l’intermittence basée sur la théorie de l’information, que implique l’entropie de Shannon
et une divergence de KL bien choisie. Dans la section 7.2, on calcule cette quantité
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pour des mesures expérimentales du champ de vitesse Eulerienne provenant de différents
montages expérimentaux avec des nombres de Reynolds differents. Enfin, la section 7.3
revient à quelques modèles phénoménologiques afin de mieux comprendre et décrire nos
observations.



Chapitre 8: Causalité de Wiener à travers les échelles de la

turbulence

La caractérisation et la comprehension complètes de la cascade d’énergie décrit par Ri-
chardson (chapitre 5) sont loin d’être atteints, et les questions suivantes restent à l’heure
actuelle sans reponse: Est-ce que cette cascade est due à la rupture des grands tourbillons
en petits? Combien de temps met l’énergie pour aller d’une échelle à une autre? Est-ce
que ce temps dépend des échelles? Avec les résultats de recherche actuels la discussion
est ouverte, et les conclusions ne sont pas claires. On propose donc dans ce chapitre
de creuser ces questions en utilisant la théorie de l’information. Plus précisement, nous
proposons d’étudier les interactions entre les échelles de la turbulence avec l’entropie de
transfert (section 1.6.2).

L’entropie de transfert, definie dans la section 1.6.2, est une mesure de la causalité de
Wiener entre deux séries temporelles. Elle a été souvent interpretée comme une mesure
de flux d’information (section 1.6). Donc, la question émerge de manière naturelle: est-ce
que des flux d’informations entre les échelles de la turbulence existent? Ou: y a-t’il des
relations de causalité entre les différentes échelles de la turbulence? Et, si l’on peut les
mesurer, aident-ils à la caractérisation de la cascade d’énergie?

Afin de sonder l’existence de relation de causalité entre les échelles de la turbulence,
nous étudions différentes séries temporelles: d’un coté des mesures expérimentales de
vitesse turbulente (presentées dans la section 6.1), de l’autre coté différents mouvements
Browniens fractionnaires (section 4.2) avec différents exposants de Hurst, et sans cascade
d’énergie entre les échelles.

Les résultats obtenus dans ce chapitre sont non-concluants pour l’instant, car les
mesures d’entropie de transfert melangent des informations dus à la physique du système
étudie avec des informations dus à la manière de générer les échelles. Cet effet fait difficile
l’interpretation des résultats.
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Chapitre 9: Application à l’analyse du rythme cardiaque des foetus

Parce que c’est important de fournir les obstétriciens avec information significative reliée
à l’état de santé du fetus pendant l’accouchement, Le suivi du rythme cardiaque du foe-
tus (fetal heart rate, FHR) pendant l’accouchement est une tâche quotidienne dans les
hôpitaux, qui permet aux obstétriciens d’évaluer l’état de santé du foetus. En parti-
culier il permet à un oeil expert d’anticiper l’acidose du foetus qui peut entrainer des
conséquences sevères pour le foetus et la mere. Par consequence une decision pertinente
et opportune est importante pour faciliter une intervention rapide et un accouchement
opérationnel [35]. Dans l’activité clinique quotidienne, FHR est majoritairement inspecté
visuellement, en suivant les lignes cliniques directrices formalisées par la International
Federation of Gynecology and Obstetrics (FIGO) [14, 194]. Neanmoins, cette inspection
visuelle est très variable entre individus, et il y a même une importante variabilité pour
un même individu [94]. La dynamique temporelle du FHR est en effet complexe et diffi-
cile à évaluer. Les critères FIGO conduisent à une evaluation exigeante, car ils combinent
plusieurs aspects de la dynamique FHR: dérive de la baseline, décélérations, accélérations,
variabilités de courte et longue durée.

L’analyse FHR automatisée est compliquée à cause de l’éxistence de deux étapes dif-
ferentes de l’accouchement. L’étape de dilatation (Stage 1) consiste en une dilatation
cervicale progressive et des contractions régulières. L’étape de poussée active (Stage 2)
est caracterisée par un col de l’uterus completement dilaté et des contractions d’expulsion.
Les approches les plus communes en analyse FHR, soit ne distinguent pas ces deux étapes
et réalisent une analyse globale [46, 214], ou bien se concentrent sur l’étape de dilata-
tion seulement, puisque elle est plus documentée car plus fréquemment enregistrée et
analysée [70, 188]. Pour le moment, il n’a pas été étudie si la dynamique temporelle de
chaque étape est differente ou pas (a contrario [186, 131]). Pourtant, récemment, quelques
contributions ont commencé à realiser des comparaisons systématiques [189, 79].

Cette contribution reste dans la catégorie des travaux cherchant à développer de
nouveaux outils pour l’analyse FHR, basés ici sur des concepts avancés de théorie de
l’information. Ces outils, qui sont l’auto information mutuelle, l’entropie de Shannon, le
taux d’entropie, la “Approximate entropy” et la “Sample entropy”, sont appliqués sur
une large base de données de grande qualité et bien documentée, rassemblée à travers
des années dans un hôpital publique en France. La base de données est divisée en deux
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ensemble de données associés chacun avec une étape de l’accouchement. Cela permet en
second lieu, d’évaluer et comparer la qualité de la détection de l’acidose de chaque outil
indépendamment dans chaque étape, et troisièmement, de remarquer les différences de la
dynamique temporelle du FHR entre les deux étapes.



Conclusions et perspectives

Les méthodologies presentées dans ce manuscrit ont été utilisées pour caractériser des
processus synthétiques ou des mesures de vitesse expérimentale de haute qualité. Seule-
ment dans l’application biomedical (chapitre 9), ces méthodologies ont été testées sur
des données de mauvaise qualité. Comme on a expliqué tout au long de la thèse, ces
méthodologies peuvent être appliquées de manière général et ainsi être utilisées pour
étudier des systèmes génériques. Par conséquent, quelques problèmes dans les méthodo-
logies pourraient être révélés par des nouvelles applications sur des données du monde réel,
et spécialement sur des données de mauvaise qualité. Ces applications pourraient aussi
révéler des aspects qu’ont besoin d’être ameliorés afin que les mesures soient instructives
quand elles sont utilisées sur ce type de données.

Tout au long du manuscrit, on a analysé des processus stationnaires et non-stationnai-
res, stochastiques ou chaotiques, et on a donné une interprétation à nos mesures pour
chaque type de processus. Dans le cas des processus non-stationnaires, on l’a fait même
dans deux cadres différents. La question qui émerge de manière naturelle est si on peut
utiliser les méthodologies developpées pendant la thèse pour caractériser des processus
déterministes non-chaotiques, et quelles sont les interprétations de nos mesures dans ce
cas.

Dans l’analyse de flux d’information et relations de causalité est, peut être, où plus
des questions restent ouvertes. On a conclu que les mesures de causalité entre échelles
d’un processus temporel sont fortement influencées par la manière de générer ces échelles.
Pourtant, pour toutes les fonctions d’échelle utilisées, on trouve que les petites échelles
causent les grandes échelles. Ce résultat général, trouvé pour tous les systémes étudiés et
pour toutes les fonctions d’échelle utilisées, doit être étudié plus attentivement. Un autre
progrès important dans la caractérisation de la turbulence peut être fait en étudiant la
causalité entre séries temporelles expérimentales avec une signification d’échelle. Ainsi,
l’influence due à la manière de générer les échelles d’une série temporelle serait eliminée
et la mesure de causalité dépendrait seulement des proprietés du système étudié.



30



Abstract

This thesis aims at the statistical study of complex systems through the analysis of sig-

nals obtained from: experiments, synthetic generation and theoretical models. We have

choosen turbulence as the paradigm of study because of its properties: non-linear dynam-

ics, multi-scale behavior, energy cascade, intermittency ...

In order to perform a statistical characterization of a complex system, we study the

distribution (probability density function), the correlations and dependences, and the

Wiener causality relationships, of signals describing the system. Information theory ap-

pears as the ideal framework to perform this kind of analysis.

In this information theory framework, we developed two different, but related, method-

ologies to analyse the self-similarity properties of complex systems, and more precisely, of

turbulence. The first methodology is based on the analysis of the increments of the stud-

ied process using Shannon entropy and Kullback-Leibler divergence. The second method,

which allows to analyse non-stationnary processes, is based on the analysis of processes

via Shannon entropy rate. We studied the relationship between these two methodolo-

gies which are able to characterize the distribution of information across scales and the

deformation of the probability density function of the increments across scales.
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Notation and Terminology

General notation

X(m,λ) ≡ process of dimension m and sampling distance λ (distance between

consecutive samples).

X
(m,λ)
i ≡ random variable of X(m,λ) with index i, embedding dimension m and

sampling distance λ.

x
(m,λ)
i ≡ possible value of X

(m,λ)
i .

x(m,λ) ≡ possible value of X(m,λ).

if m = 1 :





X(m,λ) ≡ X

X
(m,λ)
i ≡ Xi

x
(m,λ)
i ≡ xi

x(m,λ) ≡ x

The notation above is completely generic and can be applied to any kind of processes.
Consequently, it will be used for general developments. Nevertheless, throughout this
dissertation we mainly focus on temporal processes, and then we use the specific notation
presented below when analysing them.

Time processes notation

X(m,τ) ≡ process of dimension m and sampling τ .

X
(m,τ)
t ≡ random variable of X(m,τ) at time t, embedding dimension m and

sampling time τ .

x
(m,τ)
t ≡ possible value of X

(m,τ)
t .

x(m,τ) ≡ possible value of X(m,τ).

if m = 1 :





X(m,τ) ≡ X

X
(m,τ)
t ≡ Xt

x
(m,τ)
t ≡ xt

x(m,τ) ≡ x
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Introduction

Signal processing is omnipresent in almost any domain of science. From physics to
chemistry and throughout engineering, experimental measures and records have to be
processed in order to be useful and informative. What do we mean by signals? and by
processing? We define a signal as a function bringing information from the properties
or from the behaviour of a given phenomenon. So, the temperature of a nuclear reactor,
population of a city, the luminosity of a star, a voice record or a photograph, are signals.
By processing, we consider the analysis, modification, recording, transport or synthesis
of a signal [162]. This processing can have multiple goals, such as the extraction of
information from the signal or the reduction of its size, and it can be as basic as the
conversion of volts into Kelvin for thermocouple measures, but also as challenging as the
analysis of image textures using multifractal analysis and wavelets decomposition.

The correct processing and analysis of the high-quality (not always as high) measures
obtained from experimental set-ups, is one of the most important parts of experimental
research.

Throughout this thesis, which combines signal processing and physics, we use signal
processing to progress in the understanding of physical systems and, at the same time,
we use a physical approach to develop signal processing methods.

Objectives

The objectives of this PhD can be summarized as developing methodologies for the char-
acterization of complex systems.

The definition of complex systems still remains vague, and so its frontiers are im-
precise [144, 98]. We understand a complex system as being composed of several parts
interacting together in a non-linear way. Most of the time they are multi-scale, i.e. they
present a continuum of coupled scales, in which the different scales exhibit different be-
haviours. This definition of complex systems includes a huge number of systems such as:
financial markets [24, 26, 140], ecosystems [141], the brain [179], the Earth [54], colonies
of ants [143], geographycal systems [2] ...

A prototype of complex system is turbulence, which is highly non-linear and multi-



42 Introduction

scale [66].
Most people when hearing the word “turbulence” think of the violent mouvements

shaking an aeroplane, and indeed, these motions are due to turbulence, more precisely
to the turbulent behaviour of the air around the plane. When a fluid flow is turbulent,
many eddies of different sizes appear. But turbulence is not only present in the air around
planes, we can find turbulence in the flows of rivers, the smoke from cigars, the storm
clouds and even in breakfast coffee (when we stir the coffee to cool it, we are modifying the
state of the fluid “coffee”, and more precisely we are inducing turbulence). A turbulent
flow is characterized by chaotic trajectories of its fluid particles, and we say that a flow
is turbulent when two very close particles of the fluid at a given time t will be arbitrarily
far at another time t + ∆t, for a small ∆t. Understanding turbulence is very important
for many different fields such as meteorology and climate sciences, aeronautic, naval or
vehicle engineering, or, mixing reactions in chemistry. Because of the easy generalization
to any complex system of methodologies capable of characterizing turbulence, and also
because of the very interesting topic it represents, we use fully developed turbulence as
our object of study almost all along the PhD.

In order to accomplish the description of a complex system we are interested in the
study of the distribution, the statistical dependences and the (Wiener) causality rela-
tionships of experimental measures of different observables of the system. Information
theory [176, 49] provides the perfect framework to perform this kind of analysis [163, 132].

Framework

Throughout this thesis, we propose to characterize complex systems and in particular
turbulence, in terms of Shannon information [176]. We thus take a statistical viewpoint
of complex systems. Experimental measures can be used to study the properties and
behaviours of systems and phenomena, for example, the changes in temperature of a fluid
during a chemical reaction. Once the experimental measures have been obtained, it is
necessary to analyse them in order to grasp all the information they contain. We aim
to characterize complex systems by analysing experimental measures with information
theory tools.

Information theory characterizes a signal or process in terms of complexity, the
amount of information needed to characterize the signal, and in terms of dependences, the
amount of information shared by different parts of the signal. Furthermore, information
theoretic measures are able to grasp non-linear effects, and high order dependences. This
together with its applicability to stochastic as well as to deterministic processes [117,
118, 62, 128], and the consistency of its interpretation, makes information theory a very
interesting approach in the analysis of complex systems [152, 209, 217] and more precisely,
in the study of turbulence, where information theory has been very rarely used [29, 96, 33].

A very large number of systems in different domains such as physics, sociology, ecology
etc, present multi-scale behaviour [17, 130, 19, 18, 152, 141]. Therefore, in these kind
of systems the analysis at different scales (how the system behaviour evolves with the
scale), and the analysis of possible interactions between scales (how the behaviour at a
given scale can forecast the behaviour at another scale), become of utmost significance.
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For this reason, during the PhD we developed an information theory approach to analyse
the complexity and dependences of a process across scales. We also studied the possible
(Wiener) causality relationships between different scales.

Contributions

Along the PhD we:

• Developed a multi-scale framework to analyse the distribution and dependences of a
process and to characterize it in terms of complexity. We showed the ability of infor-
mation theoretic measures to grasp high order statistics and the whole dependence
structure of the studied processes.

– To illustrate this ability we performed the discrimination between two pro-
cesses with identical marginal distribution and correlation function but with
differences at high order statistics.

– We used this framework to analyse fully developed turbulence and recover
Kolmogorov’s 1941 theory [108, 109, 107]. We characterized fully developed
turbulence in terms of complexity by studying experimental velocity signals
and theoretical models, as well as synthetic processes modelling turbulence.
Finally, we found the energy cascade of turbulence by performing a very precise
analysis, also based on information theory, of the skewness of the velocity
increment distributions.

– We used this framework to analyse fetal heart rate signals during delivery in
order to detect acidosis and characterize the dynamics of its development.

• Developed a methodology which allows to analyse the scale invariant properties,
mono and multi fractality, of a process across scales. This methodology characterizes
the deformation of the distribution of a process across scales. This methodology is
applicable to any multi-scale system.

– We applied this methodology to fully developed turbulence and found the
multifractal nature of it. We compared the results for a set of experimen-
tal turbulent signals at different Reynolds and theoretical models, in order to
corroborate the validity of the models.

• We presented a general framework to analyse non-stationary processes at a given
time t using information theory. We also developed a new framework in which we
compute information theory quantities on time windows of length T of the processes.

– We applied the analysis of non-stationnary processes to study their self-similarity
properties.
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Structure of this thesis

This thesis is composed of three main parts:

Information theory:

• In chapter 1 we present the main information quantities used during the PhD, we
also show their properties and interpretations. We classify them in three different
groups: static measures, dynamic measures and causality measures.

• In chapter 2 we enumerate and characterize the main non-parametric algorithms
used to compute information theory quantities. Then, we choose the most robust
estimators in order to use them along the PhD.

• In chapter 3 we show the ability of information theory to measure dependences and
to probe high order statistics of a process. We present some information theory
tools as more general versions of correlation function and power spectrum.

• In chapter 4, we generalize information theory to the analysis of non-stationary
processes. In order to do that, we develop two different frameworks to study non-
stationary processes. The obtained analytical results are supported by numerical
computations.

Turbulence:

• Chapter 5 is a summary of the state of the art in three dimensional fully devel-
oped turbulence. We present Kolmogorov theories and the multifractal theory of
turbulence first introduced by Frisch and Parisi.

• In chapter 6, we study turbulence using information theory and develop a new
framework capable to explain Kolmogorov 1941 theory. This chapter is based on
the article “Scaling of information in turbulence” published in “Europhysics let-
ters” [80].

• In chapter 7 we go one step further and develop an information theory framework
capable of quantifying multifractality in turbulence across scales by measuring the
deformation of the probability density functions with the scale. This framework
can be generally applied to characterize the multifractal nature of any multi-scale
system. This chapter is based on the article “Kullback Leibler divergence measure
of intermittency: Application to turbulence” published in “Physical Review E” [81].

• In chapter 8 we try to measure flows of information between scales in turbulence,
understood as Wiener causality relations between the different scales. To do that we
analyse interactions between scales on several different systems. The interactions
are quantified using transfer entropy and directed information.
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Biomedical applications:

• In chapter 9 we apply information theory to analyse fetal heart rate dynamics during
delivery. We perform this analysis in order to discriminate between healthy babies
and acidotic ones. This chapter is based on the article “Information Theory to Probe
Intrapartum Fetal Heart Rate Dynamics” published in the journal “Entropy” [77].

A conclusion chapter with the summary of contributions and perspectives closes the
dissertation.
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Part I

Information Theory





CHAPTER 1

Theoretical aspects

Information Theory is a theoretical viewpoint aiming at describing the mathematical laws
governing the transmission, storage, processing, measurement and representation of infor-
mation. Claude E. Shannon developped the proper basis of information theory in 1948,
in his article “A Mathematical theory of Communication” [176] and expanded it later
together with Weaver in a book [177]. As the title of the first article (of Shannon) points
out, Information Theory appeared initially as a theory of communication. Nevertheless
since the fifties, applications started to generalize to other fields such as dynamical sys-
tems [110, 111, 183, 113]. This leap from stochastic processes, the natural object of study
of information theory, to dynamical processes suppose a very important advance in the
development of information theory, allowing its spread to a very wide range of fields.

Nowadays Information theory is used in an extraordinary large array of different fields:
thermodynamics [100, 101, 206, 156], quantum thermodynamics [93], neuroscience [209,
217, 221], etc. In addition, from the first article of Shannon until now, the number of
different information theoretical objects increased significantly. Amongst these theoretical
objects we can find: Entropy rate [177], Kullback Leibler divergence [121, 120], Transfer
Entropy [172], Directed Information [115] ...

Recently, access to increasingly powerful computers together with the broader fields
of application of Information Theory render it a very interesting research topic both in
theoretical aspects and in applied ones.

Here, we present the Information Theory framework used during the PhD for the
analysis of stationnary processes, with Shannon entropy as the elementary brick. In
addition, as information theory has been proved to be able to describe both stochastic
and dynamical systems [117, 118, 62, 128], throughout this manuscript information theory
is applied over both kinds of processes.
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1.1 Stochastic and Dynamical processes

Random variables
A measurable space (Ω,B) consists of a sample space Ω together with a σ-algebra

B. This σ-algebra B is a collection of subsets of Ω that includes the empty subset and is
closed under any countable sequence of set theoretic operations such as union, intersection,
complement ...

A random variable, f , defined on a measurable space (Ω,B) and taking values on
another measurable space (A,BA) is a function f : (Ω,B)→ (A,BA) such that:

if F ∈ BA, then f−1(F ) = {ω : f(ω) ∈ F} ∈ B
One then defines a probability space as (A,BA, Pf ), where the measurable space (A,BA)

is called the alphabet of the random variable f , and Pf is the probability measure, which
assigns a real number to every member F of BA. The probability measure should satisfy
the following conditions:

• Nonnegativity: Pf (F ) ≥ 0 ∀ F ∈ BA.

• Normalization: Pf (A) = 1

• Countable additivity: If Fi ∈ BA , i = 1, 2, · · · are disjoint, then Pf (∪∞i=1Fi) =∑∞
i=1 Pf (Fi)

The given definition of random variable ensures that the output of the random variable
inherits its own probability measure, also called the probability density distribution of the
random variable [85, 155]:

Pf (F ) = P (f−1(F ))

Two random variables defined on a common probability space are considered to be
the same if their distributions are the same [85, 155].

Random processes
A random process X is a family of random variables {Xi}i∈I defined on a common

probability space (Ω,B, P ), where I is a d-dimensional index set. In general I is only
required to be closed under addition. It is assumed that all the random variables Xi share
a common alphabet A [85, 155].

Dynamical processes
On the other hand, a dynamical system consists of a probability space (Ω,B, P ) to-

gether with a measurable transformation T : Ω → Ω [85, 193]. By measurable, one
means that if F ∈ B, then also T−1F ∈ B. (Ω,B, P, T ) is called a dynamical system in
ergodic theory. Roughly speaking, in a dynamical system a function describes the time
dependence of a point in a geometrical space.

This definition of a dynamical system leads to an alternative description of random
processes. This description, based on dynamical systems, consists on considering a random
variable together with a transformation defined on the underlying probability space [85].
With inverse reasoning, a chaotic (deterministic) dynamical system defined by a time
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function ft(x) can be seen as a random process where the input/state (x) of the dynamical
system is a random variable.

The instability of chaotic systems with respect to initial conditions implies that time
sequences generated by chaotic systems behave, from the point of view of information
theory, as authentic stochastic processes [62, 128]. This equivalence between time se-
quences of dynamical systems and time sequences of stochastic processes is shown by
Jewett-Krieger theorem [117, 118, 62], see section 1.4.1.

1.2 Multidimensional random variables: embedding

It is possible to show that collections of random variables, X I = {Xi; i ∈ I} such as
Xn = X1, X2, · · · , Xn, are also random variables [11, 85]. The measurable space (Ω, B)
and the probability measure P of the new constructed random variables X I are different
from those of the separate single random variables Xi.

In order to properly characterize a stochastic process X taking into account both its
static and dynamic properties, we need families or collections of random variables formed
by sampling the process. With this purpose one uses a delay-embedding procedure [197]
to construct a m dimensional stochastic process X(m,λ), sampled by λ, from the initial
stochastic process X by defining m-dimensional random variables from the 1-dimensional
ones:

X
(m,λ)
i = (Xi, Xi−λ, Xi−2λ, ..., Xi−(m−1)λ) (1.1)

where m is the embedding dimension, λ is the sampling distance between random variables
of X, and X

(m,λ)
i is a random variable of X(m,λ).

This development of embedding is independent of the base dimension d of the initial
random variables Xi. For a generic process X of dimension d 6= 1 the total dimension
obtained for the embedded process X(m,λ), is m × d. Throughout this dissertation, for
simplicity and because of the perfect equivalence between dimensions d and embedding
dimensions m, we fix d = 1 unless noted otherwise. Consequently the total dimension of
the embedded process X(m,λ) is given by the embedding dimension m.

1.3 Static measures

In this section, we present several information theory objects capable of studying static
properties of processes, i.e. properties that take into account neither interactions nor
dependences between previous and next samples of the process. In the case of a one-
dimensional process X, these objects depend on the marginal distribution of X. For n-
dimensional processes, they depend on the n-dimensional joint distribution of the process.

The embedding procedure (section 1.2) allows the static measures to take also into
account the dynamics of a process X: in the case of embedded processes X(m,τ), static
measures are functions of the m-dimensional joint PDF, and consequently, they take into
account interactions between samples inside the m-dimensional embedded vector.
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1.3.1 Shannon Entropy

Discrete framework

Information theory started with the definition of Shannon Entropy [176]. The Shannon
entropy of a discrete process X is defined as the uncertainty that one has of the process
X i.e. the amount of information that characterizes the process. It is a function of the
probability density function (pdf) of the process:

H(X) = −
∑

x∈A
pX(x) log(pX(x)) (1.2)

where the sum is over all the possible values x of X and pX is the probability distribution
of X.

Information and thus Shannon entropy should satisfy some important properties [176,
128]:

• The entropy should be continuous in the probabilities: small changes in the PDF
should imply small changes in the entropy.

• For a given number n of possible events defining the alphabet A, the entropy is a
maximum and equal to log(n) when all the pX(x) are equal (pX(x) = 1/n ∀x ∈
A). This is the most uncertain situation. With equally likely events there is more
uncertainty when there are more possible events n.

• Additivity: The entropy of a system Y can be expressed in function of the entropies
of its subsystems X if the relations between the system and the subsystems and
between the subsystems themselves are known. We define a system Y = {Yi} as:

Y1 = {X1, · · · , Xk1}
Y2 = {Xk1+1, · · · , Xk1+k2}

...

Ym = {Xn−km+1, · · · , Xn}

with the probability of Yi as:

pYi =

k1+···+ki−1∑

l=k1+···+k(i−1)

pXl

where pXl is the probability of Xl. We then define the entropy of X as:

H(pX1 , · · · , pXn) = H(pY1 , · · · , pYm) +
m∑

i=1

pYiH

(pXk1+···+k(i−1)

pYi
, · · · ,

pXk1+···+ki−1

pYi

)
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• Concavity: Shannon entropy is concave in the probability density function.

H(apX1 + (1− a)pX2) ≥ aH(pX1) + (1− a)H(pX2)

for any probability density functions and 0 ≤ a ≤ 1.

• The entropy is positive and vanishes if and only if all the pX(x) but one are zero,
thus when there is no uncertainty.

• Given two different processes X and Y , let pX,Y (x, y) be the probability of the joint
occurrence of x ∈ AX and y ∈ AY . The joint entropy is the uncertainty of the joint
occurrence:

H(X, Y ) = H(Y,X) = −
∑

x∈AX ,y∈AY
pX,Y (x, y) log(pX,Y (x, y)). (1.3)

It should respect:
H(X, Y ) ≤ H(X) +H(Y ) (1.4)

where the equality is obtained if and only if the two processes are independent.

• Given two processes X and Y , for any particular value x that X can take with
probability pX(x) > 0, we can define the conditional probability, pY |X(y|x), that Y
has the value y:

pY |X(y|x) =
pX,Y (x, y)

pX(x)
.

We can define the conditional entropy of Y , H(Y |X) as the average of the entropy of
Y for each value of X weighted according to the probability of getting that particular
value of X:

H(Y |X) = −
∑

x∈AX ,y∈AY
pX,Y (x, y) log(pY |X(y|x)). (1.5)

The conditional entropy measures how uncertain we are of Y when X is known. It
satisfies:

H(Y |X) = H(X, Y )−H(X). (1.6)

From eq.(1.4) and eq.(1.6) we see that:

H(Y ) ≥ H(Y |X)

which can be intuitively inferred by noting that knowing X can only help in the
characterization of Y . In the worst-case scenario, if X and Y are independent,
knowing X will not alter how uncertain we are of Y , and then H(Y |X) = H(Y ).

Continuum framework
Generalizing the information measure to continuous processes is not straightforward.

Differential entropy defined by Shannon [177] as:

H(X) = −
∫

A
pX(x) log(pX(x))dx (1.7)
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is not invariant under change of variables and can be negative. In addition, differential
entropy is maximal for the multivariate Gaussian distribution instead of the uniform
distribution. Thus differential entropy is not a good measure of information [102]. Instead
of the straightforward definition in eq.(1.7) intuited by Shannon, the correct measure of
information in the continuous case is [102]:

H(X) = −
∫

A
pX(x) log

(
pX(x)

m(x)

)
dx (1.8)

where m(x) is the measure function defined by:

∫ b

a

m(x)dx = lim
Ne→∞

(# of events in a < x < b)

Ne

(1.9)

In eq.(1.9) Ne is the number of discrete events in the whole domain of A, and a and b
define an infinitely small segment of A.

In the following we use the discrete formalism unless said otherwise.

Interpretation of Shannon entropy and relation with thermodynamical entropy

• Shannon entropy, as presented above, is a measure of the total uncertainty that
one has of a process. Shannon entropy measures the amount of information that
completely characterizes a processs . The more complex the process the larger the
Shannon entropy.

• Thermodynamical entropy, was defined by Clausius [31, 43] as:

∆SC(1→ 2) =

∫ 2

1

dQ

T
(1.10)

where T is the temperature of the system and dQ is the heat.

In his article, “Gibbs vs Boltzmann entropies” [103], Jaynes showed that Gibbs
entropy defined as:

HG = kB

∫

Ω

WN log(WN)dΩ, (1.11)

where kB is the Boltzmann constant and WN is the N -particle distribution function,
which gives the probability density in the full phase space Ω of the system, verifies in
the case of thermal equilibrium (canonical distribution) and reversible path 1→ 2:

(HG)2 − (HG)1 = ∆HG(1→ 2) =

∫ 2

1

dQ

T
. (1.12)

The fact that Shannon entropy and Gibbs entropy share the same mathematical ex-
pression, does not in itself establish any connection between this two entropies.
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• Maximum-Entropy Principle

In order to properly relate Shannon entropy to thermodynamic entropy, Jaynes for-
mulated the maximum-entropy principle [100, 101]. Jaynes built maximum-entropy
principle in the framework of subjectivist or Bayesian statistics, which understands
probabilities as expressions of human ignorance. Thus, the probability of an event
is a formal expression of our expectation that the event occur, based on the avail-
able information. The problem that Jaynes formulated was to find “... a prob-
ability assignment which avoids bias, while agreeing with whatever information is
given” [100].

Information theory provides a measure of the amount of uncertainty characterizing
a discrete probability distribution. The only unbiased statement one can conclude
with a given amount of information, is that one must use the probability distribution
which maximizes the entropy subject to whatever is known. This is known as the
maximum-entropy principle.

Then Jaynes interpreted the probability density in the full phase space of the system
at time zero, WN(t = 0), and consequently its Gibbs entropy as measuring “our
degree of ignorance as to the true unknown microstate, when the only information
we have consists of the macroscopic thermodynamic parameters” [103].

1.3.2 Kullback-Leibler Divergence

Kullback-Leibler divergence, also called Relative entropy or Kullback-Leibler distance, is
defined as the measure of the distinguishibility between two probability density functions,
pX and qX , of the same process X. Kullback-Leibler divergence measures the inefficiency
of assuming probability density function qX when the true one is pX [120, 49]:

KpX ||qX =
∑

x∈A
pX(x) log

(
pX(x)

qX(x)

)
(1.13)

Kullback-Leibler divergence measures how “similar” the distribution qX is to the dis-
tribution pX . Some Kullback-Leibler divergence properties are:

• It’s always non-negative and only zero for pX = qX .

• It’s not a distance, since it is not symmetric:

KpX ||qX 6= KqX ||pX (1.14)

• It remains well-defined for continuous distributions:

KpX ||qX =

∫ +∞

−∞
pX(x) log

(
pX(x)

qX(x)

)
dx (1.15)

Chernoff-Stein’s lemma gives an easy interpretation of Kullback-Leibler divergence in
terms of “surprise” [41, 49]. After n realizations of X, with X distributed with pX(x),
the probability to mistake p̂X,n(x) (observed distribution after n realizations) for qX(x)
decays exponentially with KpX ||qX :

P (qX(x)|p̂X,n(x)) ≈ e−nKpX ||qX (1.16)
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1.3.3 Mutual Information

A specific but famous case of Kullback-Leibler divergence is mutual information. Given
two different processes X and Y , mutual information measures the shared (common) in-
formation between both processes, i.e. the “distance” between independence and depen-
dence of the processes. It is defined as the Kullback-Leibler divergence between the joint
probability of both processes pX,Y (x, y) (general case) and the product of the marginals
pX(x)pY (y) (thus assuming the independence of X and Y ) [177]:

I(X, Y ) =
∑

x∈AX ,y∈AY
pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
(1.17)

Mutual Information can be expressed in function of Shannon entropies:

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (1.18)

From eq.(1.18) it is easy to verify the symmetry of mutual information, I(X, Y ) =
I(Y,X).

As for Shannon entropy it is possible to define a conditional version of Mutual infor-
mation [222]:

I(X, Y |Z) =
∑

z∈AZ
pZ(z)

∑

x∈AX ,y∈AY
pX,Y |Z(x, y|z) log

(
pX,Y |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)

)
(1.19)

It can also be expressed in function of conditional entropies:

I(X, Y |Z) = H(X|Z) +H(Y |Z)−H(X, Y |Z) (1.20)

Conditional Mutual information in eq.(1.19) measures the shared information between
X and Y that is not contained in Z.

1.4 Dynamic measures

Dynamic measures are able to characterize interactions and dependences between previous
and next samples of a process X, and then, connections between the different samples of
the process.

1.4.1 Entropy Rate

In order to measure how the entropy of a sequence of m random variables grows with
m, Shannon presented the entropy rate [177]. Entropy rate of a process X = {Xi}i∈I is
defined as [49]:

h(X) = lim
m→∞

1

m
H(X1, X2, X3, · · · , Xm) (1.21)

Entropy rate defined in eq.(1.21) is the entropy per symbol of the m-dimensional
random variable characterizing the process. Another possible, definition of entropy rate
is [49]:
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h′(X) = lim
m→∞

H(Xm+1|Xm, Xm−1, Xm−2, · · · , X1) (1.22)

In this case (eq.(1.22)) entropy rate is defined as the entropy of the m + 1th random
variable, knowing the previous ones, Xi ∀ i ∈ [1 : m]. For a stationary process, these two
definitions of entropy rate (eq.(1.21) and eq.(1.22)) are equivalent, both limits exist and
are equal [49].

Entropy rate probes the dynamical evolution of the process. It measures the effect of
the previous samples of the process on the next one (eq.(1.22)), or the contribution of
each one-dimensional random variable Xi to the total entropy of the process characterized
by a m-dimensional random variable, eq.( 1.21).

m-order entropy rate

m-order entropy rate is an approximation of entropy rate from eq.(1.22), where m doesn’t
go to infinity but takes a finite value m, indicating the dimension of the analysed random
variables (section 1.2) and hence the order of the entropy rate [128]:

h(m)(X) = H(Xm+1|Xm, Xm−1, Xm−2, · · · , X1) (1.23)

= H(Xm+1, Xm, · · · , X1)−H(Xm, Xm−1, · · · , X1)

Due to the impracticability of computing entropy rate as defined in eq.(1.21) or
eq.(1.22), the approximation of entropy rate to its mth order (eq.(1.23)) has been ex-
tensively used [58, 92, 23, 129]. In definitions (1.21),(1.22) and (1.23) of entropy rate
the distance between consecutive samples of process X is fixed to λ = 1. In order to
generalize the definition of m-order entropy rate the use of embedding notation presented
in section 1.2 can be useful:

h(m,λ)(X) = H(Xi+λ|X(m,λ)
i ) = H(X(m+1,λ))−H(X(m,λ)) (1.24)

This abreviated notation allows to easily indicate variations on the index i and the sam-
pling distance λ.

m-order entropy rate can be understood as a kind of derivative of the entropy, mea-
suring how much the entropy varies between two consecutive dimensions m and m+ 1. It
can be seen also as a measure of the information of Xi+λ not contained in the m previous

random variables X
(m,λ)
i , or, the new information about the process X brought by Xi+λ

if X
(m,λ)
i is known.
A very important characteristic of entropy rate is that it can be applied in the analysis

of data from both deterministic and stochastic sources [62, 128].

Kolmogorov-Sinai Entropy and relation with entropy rate

In the 1960s, Kolmogorov and Sinai adapted Shannon’s information theory to the study
of dynamical systems. The divergence of trajectories starting from different, but undis-
tinguishable initial conditions can be pictured as creating uncertainty, so creating infor-
mation. Metric entropy, also known as the Kolmogorov–Sinai entropy hKS(ρ), measures



58 Chapter 1: Theoretical aspects

the mean rate of creation of information by a dynamical system with ergodic probabil-
ity measure ρ. Metric entropy is constructed exactly as the Shannon entropy rate from
information theory, but using the density ρ of trajectories in phase space instead of the
probability density p. Metric entropy is related to Shannon entropy rate by hKS = h if
Shannon entropy rate is defined using natural logarithm [62, 128]. A very important result
relating dynamical system and stochastic processes is Jewett-Krieger theorem [117, 118]:
A continuous valued deterministic system in discrete time and with finite entropy is equiv-
alent to a stochastic process with a finite number of states. The minimum number of states,
ms, required for the theorem to be valid, is given by ehKS < ms < 1 + ehKS.

The exact analogy between the Shannon entropy rate and the metric entropy supports
the validation and meaning of Information Theory analysis over dynamical systems [62,
128].

1.4.2 Auto-Mutual Information

Another way to express Shannon m-order entropy rate is using mutual information be-
tween two consecutive chunks of a process Xi+λ and X

(m,λ)
i :

h(m,λ)(X) = H(X)− I(Xi+λ, X
(m,λ)
i ) (1.25)

where H(X) is the total Shannon entropy of the process X.
From this expression of Shannon entropy rate, we can separate two different contri-

butions: H(X), which only depends on the one-point distribution of X and is hence a
static property; Conversely, I(m,1,λ)(X) gathers all information conveyed by linear and
non linear dynamics, irrespective of the variance of X, but dependent on the shape of its
distribution [80].

Figure 1.1: Embedded vectors X
(p,λ)
i+pλ and X

(m,λ)
i of process X.

We define auto-mutual information [49, 73, 61, 223], also called information storage,

as the information shared between Xi+λ and X
(m,λ)
i , i.e. the mutual information between
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them, I(Xi+λ, X
(m,λ)
i ). Information storage can be understood as the part of information

contained in sample i+ λ of process X (Xi+λ) that can be predicted by the knowledge of

previous samples (X
(m,λ)
i ).

Information storage definition can be generalized to “the mutual information between
X

(p,λ)
i+pλ and X

(m,λ)
i ” (figure 1.1):

I(X
(p,λ)
i+pλ, X

(m,λ)
i ) = H(X

(p,λ)
i+pλ) +H(X

(m,λ)
i )−H(X

(m+p,λ)
i+pλ ) (1.26)

In order to simplify the expression of auto mutual information we denote I(X
(p,λ)
i+pλ, X

(m,λ)
i ) =

I(m,p,λ)(X)

Auto-mutual information Symmetry

Auto-mutual information of stationnary processes is symmetrical with respect to the
embedding dimension:

I(m,p,λ)(X) = I(p,m,λ)(X) (1.27)

Proof. If we develop the MI expression in function of the entropies, for both cases, left
and right sides of the above equation:

I(X
(p,λ)
i+pλ, X

(m,λ)
i ) = H(X

(p,λ)
i+pλ) +H(

(m,λ)
i )−H(X

(p,λ)
i+pλ, X

(m,λ)
i )

As we work with the same process X delayed:

H(X
(p,λ)
i+pλ, X

(m,λ)
i ) = H(X

(p+m,λ)
i+pλ ) (1.28)

and invoking stationarity:

H(X
(p,λ)
i+pλ) = H(X(p,λ))

H(X
(m,λ)
i ) = H(X(m,λ))

H(X
(p+m,λ)
i+pλ ) = H(X(p+m,λ))

1.5 Information dynamics across scales

In order to analyse the dynamics across scales of a 1-dimensional process X, we build
m-embedded processes X(m,λ), where λ indicates the scale at which the process is studied
(section 1.2). Then, we estimate the entropy rate (section 1.4.1) and the auto mutual
information (section 1.4.2) for different λ values.
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The scale λ of the statistics:

At the scale λ, consecutive elements of the m-dimensional vectors are samples of the ini-
tial process X with a distance λ between them, eq.(1.1). Consequently we focus on the
dynamics of the process at this scale λ. When λ → 0, so at the small scales, the depen-
dences between two consecutive coordinates of the embedded vector increase. Conversely,
when λ→ +∞, then at the large scales of the process, all dependences disappear.

Of course the entropy of X(m,λ) (H(X(m,λ))) and then, the entropy rate (h(m,λ)(X))
and auto mutual information (I(m,1,λ)(X)) probe the dynamics of X at this scale and
behave accordingly to the dependences. When the dependences are null H(X(m,λ)) =
mH(X), I(m,1,λ)(X) = 0 and h(m,λ)(X) = H(X). However when the dependences increase,
H(X(m,λ)) < mH(X), I(m,1,λ)(X) increases and h(m,λ)(X) decreases.

I(m,1,λ)(X) measures the shared information between current m-points dynamics and
future 1-point dynamics at the given scale λ.

The order m of the statistics:

The Shannon entropy of a 1-dimensional stationnary process X involves arbitrarily high
order moments of the PDF, and therefore high order statistics, although it importantly
does not depend on the first moment of the PDF and one can work with centered processes.
In the case of no embedding, there is no dependence of the entropy on λ, so we need at
least two samples of the 1-dimensional process to define a scale λ.

Theoretically, the embedding dimension m indicates the number of points directly
involved in the statistics, so, for embedding dimension equals m, m-points statistics will
be directly caught by IT tools, even if all IT tools work over the complete PDF, and
then indirectly they work always on all order statistics. In this way, for the m-embedded
version of the stationnary process X(m,λ), the Shannon entropy focuses on the m-order
statistics, and depends on the scale parameter λ.

The entropy rate of order m and the auto mutual information of order m, as the en-
tropy, probe statistics of any order, but eq.(1.24) and eq.(1.25) suggest that for a given
m, they focus on the extra information contained in order m + 1 statistics. Therefore,
when the embedding dimension m increases, higher and higher order statistics are taken
into account. As the Shannon entropy of the m-embedded process X(m,λ), both Shan-
non entropy rate and auto mutual information depend on the scale λ of the embedding
procedure.

The Gaussian and log-normal processes presented in section 1.7 will be used as illus-
tration.

1.6 Causality measures

In this section we present three measures capable of quantifying causal relations between
processes. The second and the third measures are based on Wiener causality [218, 82, 72,
170, 28, 7, 132], i.e. a process X causes another process Y if the prediction of Yi using
the previous samples of both processes X and Y is more succesful than the prediction of
Yi using only previous samples of Y . The first measure that we present is more basic and
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causality is here understood in a simpler way: a process X causes another process Y if Yi
and previous samples of X share some information.

1.6.1 Delayed Mutual Information

As we show in section 1.3.3, Mutual information measures the shared information between
two processes X and Y . By adding a lag δ, MI can measure the directional exchanged
information from X to Y and vice versa. Delayed mutual information from X to Y is
defined as:

I(X → Y )δ = I(Xi, Yi+λ) (1.29)

We can define equivalently, the delayed mutual information from Y to X:

I(Y → X)δ = I(Xi+λ, Yi) (1.30)

Unfortunately delayed mutual information presents at least three main flaws [172, 153]:

1 Common history of both processes can influence the measure.

2 Common input for both processes can influence the measure. Even if neither X
causes Y nor Y causes X some causality relationships can be obtained between X
and Y , if a third process Z causes both of them.

3 Exchanged information measured in one direction can be a reminiscent residue of
exchanged information in the other direction. A positive measure of I(X → Y )δ
can be due to a residue of the Wiener causality from Y to X.

1.6.2 Transfer Entropy

In order to fix flaws 1 and 3, Schreiber developed Transfer Entropy (TE) [172, 153, 209]:

TE(X(p,λ) → Y (m,λ))δ = H(Yi|Y (m,λ)
i−δ )−H(Yi|Y (m,λ)

i−δ , X
(p,λ)
i−δ ) (1.31)

= MI(Yi, X
(p,λ)
i−δ |Y

(m,λ)
i−δ ) (1.32)

Transfer Entropy measures the causal relations, in Wiener-Granger terms, that X has
over Y at a distance equals δ. It can be seen as the information contained in Yi which is
not contained in Y

(m,λ)
i−δ but in X

(p,λ)
i−δ . Transfer entropy can be expressed as a conditional

mutual information, see eq.(1.32). In order to give a dynamical meaning to CMI, the
conditioning is done on the past of the target process, e.g. in eq.(1.32) on the past of Y .

As we can see in eq.(1.31), conditioning only by previous samples of Y in the first
conditional entropy and previous samples of X and Y in the second conditional entropy
makes Transfer Entropy not symmetrical, TE(X(p,λ) → Y (m,λ))δ 6= TE(Y (m,λ) → X(p,λ))δ.
This non-symmetry allows to measure directionality and dynamics. In order for Transfer
Entropy to be causal, δ must be larger than zero, in this way it does not take into account
instantaneous interactions.

Later Wibral et al. state that, in order to be Granger-Wiener causal, another definition
of TE is needed [217, 132]:
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TE(X(p,λ) → Y (m,λ))δ = H(Yi|Y (m,λ)
i−1 )−H(Yi|Y (m,λ)

i−1 , X
(p,λ)
i−δ ) (1.33)

= MI(Yi, X
(p,λ)
i−δ |Y

(m,λ)
i−1 )

In this definition the knowledge of previous samples of Y come until the ith sample,
and the distance δ only remains in the causation process X.

1.6.3 Directed Information

Another measure of influence of a system X to another one Y is Directed Information [115]
(DI):

DI(X → Y )M =
M∑

m=1

(
H(Ym|Y (m−1,λ)

m−λ )−H(Ym|Y (m−1,λ)
m−λ , X(m,λ))

)
(1.34)

=
M∑

m=1

MI(X(m,λ), Ym|Y (m−1,λ)
m−λ ) (1.35)

where M is called the order and indicates the maximum embedding dimension of the
measure.

We can compare Transfer Entropy to Directed Information, finding that the structure
of the measures is very similar (compare eq.(1.31) to eq.(1.34)), both of them can be
expressed as a conditional mutual information (see eq.(1.32) and eq.(1.35)). But contrary
to Transfer entropy, Directed Information takes into account instantaneous interactions.
These instantaneous interactions measured by DI are symmetric under directionality, i.e.
are identical in both directions.

We present transfer entropy and directed information as measures of Wiener causality.
Initially, both transfer entropy and directed information were presented as measures of
directional information flows between two systems. Since their definitions they have been
often used as measures of exchanged information, or measures of sent/received informa-
tion. Some recent works have questioned this interpretation, pointing out some possible
misconceptions and some possible problems in TE and DI [219, 220, 99, 40]. The most
interesting example is the possibility of having a third system Z influencing both X and
Y . A conditioning, not only on the past of X and the past of Y , but also on the rest of
systems interacting, would solve, or at least reduce (It’s imposible to take into account
all the possible sources of influence), the problem. Some other objections, such as the
possibility of adding synergetic information with the conditioning procedure (the con-
ditioning on two, or more variables may provide information that is not available from
either alone), or the possibility of being measuring influences not related to information
exchanges, have to be studied. The interpretation of TE and DI as measures of influence
and causality seems well accepted, and we adopt this point of view. Nevertheless we let
the door open to other possible quantitities to measure information flows.
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1.7 Specific distributions

In this section we express the Shannon entropy, the entropy rate and the auto mutual
information for some specific distributions.

1.7.1 Gaussian distribution

If X is a stationary Gaussian process, hence fully defined by its variance σ2 and normalized
correlation function c(λ), its entropy is [226]:

H(X(p,λ)) =
p

2
log
(
2πeσ2

)
+

1

2
log
(
|Σ(p)|

)
(1.36)

where Σ(m) is the m × m correlation matrix of the process X; Σi,j = c(|i − j|λ) and
|Σ(1)| = 1.

Using eq.(1.36) we can obtain the information storage of X:

I(X
(p,λ)
i+pλ, X

(m,λ)
i ) =

1

2
log

( |Σ(m)||Σ(p)|
|Σ(m+p)|

)
(1.37)

For the particular case p = 1 we have:

H(X) =
1

2
log
(
2πeσ2

)
(1.38)

I(Xi+λ, X
(m,λ)
i ) =

1

2
log

( |Σ(m)|
|Σ(m+1)|

)
(1.39)

so we directly obtain the m-order entropy rate of a Gaussian process:

h(m,λ)(X) =
1

2
log
(
2πeσ2

)
− 1

2
log

( |Σ(m)|
|Σ(m+1)|

)
(1.40)

which clearly illustrates the decomposition of the entropy rate according to eq.(1.25):
the first term H(X) depends only on the static (one-point) statistics (via σ2), and the

second term I(Xi+λ, X
(m,λ)
i ) depends on the temporal dynamics (and in this simple case,

only on the dynamics, via the auto-correlation function c(λ)).

1.7.2 Other distributions

Given a bijective transformation F that maps the Gaussian signal X into a signal Y =
F (X), formulae (1.36,1.37) can be rewritten for the signal Y :

H(Y ) = H(X) + 〈lnF 〉X
=

1

2
ln(2πeσ2

x) + 〈lnF 〉X (1.41)

I(m,p,τ)(Y ) = I(m,p,τ)(X)

=
1

2
ln

( |Σ(m)||Σ(p)|
|Σ(m+p)|

)
(1.42)
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where 〈lnF 〉X is the average of lnF (x) using the probability density of X, and hence is
a constant, σ2

x is the variance of the Gaussian variable X, and Σ(m) is the m-dimensional
covariance square matrix of X. As previously observed in [116], the MI is invariant under
re-parametrization of its arguments. So, knowing the underlying Gaussian process X
allows to estimate the theoretical entropy, auto-mutual information and then entropy
rate of process Y .

Example: Log-normal distribution

If we consider as a particular case a stationary log-normal process Y , defined as Y =
F (X) = eX with X Gaussian of mean µ and standard deviation σ, its entropy is [226]:

H(Y (p,λ)) =
p

2
log
(
2πeσ2

)
+

1

2
log
(
|Σ(p)|

)
+ pµ (1.43)

where Σ(m) is the m × m correlation matrix of the process X; Σi,j = c(|i − j|λ) and
|Σ(1)| = 1, and µ is the mean of the process X.

Using eq.(1.43) we can obtain the information storage of Y :

I(Y
(p,λ)
i+pλ , Y

(m,λ)
i ) =

1

2
log

( |Σ(m)||Σ(p)|
|Σ(m+p)|

)
(1.44)

For the particular case p = 1 of eq.(1.43) and eq.(1.44), we have:

H(Y ) =
1

2
log
(
2πeσ2

)
+ µ (1.45)

I(Yi+λ, Y
(m,λ)
i ) =

1

2
log

( |Σ(m)|
|Σ(m+1)|

)
(1.46)

The m-order entropy rate of a log-normal process is:

h(m,λ)(Y ) =
1

2
log
(
2πeσ2

)
− 1

2
log

( |Σ(m)|
|Σ(m+1)|

)
+ µ (1.47)



CHAPTER 2

Non-parametric estimators

In order to apply Information Theory in Signal Processing, it is mandatory to develop
reliable numerical codes which estimate properly entropy measures. From our knowledge,
there are three main kinds of non-parametric algorithms used to estimate information
quantities: algorithms based on histograms, algorithms based on kernel density estima-
tions (KDE), or algorithms based on nearest neighbors search (NNS). Each kind of al-
gorithm follows different approaches to estimate the probability density function, or to
estimate the entropy measures directly. Of course, other kind of estimators of informa-
tion quantities exist, nevertheless, in the course of the PhD only non-parametric estimates
have been used.

Along this chapter we use previous literature and new original results to choose the
most reliable estimates of Information theory measures. All the already known conclusions
are supported with their respectives original papers. The new results obtained during the
PhD, are properly explained (and related with their corresponding article). The chap-
ter is organized as follows: the first section enumerates different algorithms to estimate
PDF’s, the second one presents the Kozachenko-Leonenko algorithm to compute Shannon
entropy [114, 184, 127], the third section is dedicated to Kraskov-Stögbauer-Grassberger
estimate of Mutual Information [116], the fourth section presents a new method to cal-
culate the m-order Shannon entropy rate [78] (based on those of Kozachenko-Leonenko
and Kraskov-Stögbauer-Grassberger), the fifth section explains how to use Theiler pre-
scription to probe dynamics and complexity at a given scale λ, and finally the last section
presents the Kraskov-Stögbauer-Grassberger estimate for conditional mutual information.

2.1 Probability Density Function Estimates

Historically, the first entropy estimates were based on histogram estimation of probability
density functions [173, 198]. These estimates present two free parameters: the origin,
and the size of the bins. Changes in both of them, especially the size of the bins, affect
seriously the estimation of the PDF [198]. The bias of these algorithms is significant and
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renders the measure difficult to interpret [198]. In order to enhance estimations several
variations of histograms alorithms were developed [174, 182], which “eliminate” the origin
as a parameter of the estimate and then “eliminate” this source of bias. Nevertheless,
using bins still generates a high bias of the measure [173, 198].

A very important improvement is achieved when the shape of the bin is made smoother.
We call this a kernel estimate [171, 157, 30]. The function defining the shape of the
bins must obey some properties which make the estimation well behaving and reduce its
bias [173, 198]. However, as the size of the kernels is still fixed a bias remains [173, 198]
specially for long tailed PDFs [182]. Various improvements on kernel estimations have
been done along the last fifty years [200, 1, 201].

Nearest Neighbor Search algorithms were then developed to deal with constant-length
problems of kernels [133]. The idea is to vary the size of the kernel according to the density
of samples in the area [133, 182]. Bias due to fixed size of the kernels disappears but we
recover the bias due to their “square” shape [135, 146]. Some mixtures of kernel and NNS
estimates of PDF have been later developed [27], improving the estimation properties. Fi-
nally, Walter and Blum, and, Terrel and Scott showed that many different nonparametric
PDF estimators, among them NNS, can be understood as kernel estimators [212, 201].

Once the PDF has been estimated, it should be inserted in the specific formula of
the corresponding information theory measure. Calculating the PDF to later compute
the information theory measure presents an important bias. For this reason, algorithms
performing straightforward estimations of information theory objects are usually better
than those that first estimate the PDF. These “direct” algorithms are normally based
on the same strategies: histograms, KDE or NNS, and they search for bias reductions or
compensations.

2.1.1 Histogram algorithms

Histogram algorithms base the estimation of the probability density function of a random
variable on a simple box counting method. The domain of possible values that the random
variable can take is divided in boxes of a chosen size with a given origin, and then the
number of times the random variable Xi takes a value in each box is counted. Given an
origin x0 and a bin width ∆x we define the bins as [x0 +m∆x, x0 +(m+1)∆x) for positive
and negative integers m. The estimate of the distribution is defined by [53, 182, 97, 175]:

f̂(x) =
1

N
× nb. of xi in same bin as x

∆x
(2.1)

where xi ∈ Ai represents the possible values of Xi, N is the number of realizations of
the random variable, and the bin width ∆x controls the amount of smoothing in the
procedure.

One can generalize the histogram algorithm by allowing the bin width to vary [53,
182, 175]. Nevertheless, histogram estimators depend on both origin x0 and width of
the bins ∆x. The existence of two parameters affecting the distribution estimation to-
gether with the discontinuity of the estimated PDF lead to the necessity of more accurate
estimators [182, 97].
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2.1.2 Kernel algorithms

Kernel estimator is a generalization of histogram estimator in which every observation xi
is the center of a bin. In this way, kernel estimator does not depend anymore on the origin
x0 that disappear as a parameter of the estimation. On the other hand, kernel estimator
allows a wide range of different shapes K for the bins. Then, kernel estimator with kernel
K is defined by [157, 171, 30, 53, 182, 175, 145]:

f̂(x) =
1

N∆x

∑

xi∈Ai
K

(
x− xi

∆x

)
(2.2)

where ∆x is the window width or band width. The kernel estimator is a sum of bump
functions K, centered at the observations xi.

For f̂ defined in eq.(2.2) to tend to the real distribution f , the kernel function should
be a Borel function satisfying [157, 171, 30, 97]:

sup−∞<x<∞|K(x)| <∞ (2.3)

∫ ∞

−∞
|K(x)|dx <∞ (2.4)

lim
x→∞
|xK(x)| = 0 (2.5)

∫ ∞

−∞
K(x)dx = 1 (2.6)

and the window width ∆x should satisfy:

lim
N→∞

∆x|N = 0 (2.7)

For the most basic kernel estimator, called the naive estimator, the kernel function K
is a weight function, K(x) = 1/2 if |x| < 1 and zero otherwise [157, 30, 192]. The choice
of bin width still remains and controls the amount by which the data are smoothed to
produce the estimate. As the basic histogram estimator the naive one is not a continuous
function of x [182, 97].

More complex kernel estimators can be obtained by replacing the weight function
by a smoother kernel function K as for example Gaussian. A table containing some
kernel functions satisfying the above properties was presented by Parzen [157]. From the
definition of kernel estimates one obtains that if K is a probability density function, then
f̂ is a probability density function which inherits all the continuity and the differentiability
properties of the kernel [182, 97].

The main drawback of this kind of estimators appears when applied to data from
long-tailed distributions. The density of this kind of distributions strongly varies from
high values in the region near the mode of the distribution to small densities in the tails.
Nevertheless the band width is fixed across the entire sample, and then there is a tendency
for spurious noise to appear in the tails of the estimates, where density is small [182, 138].
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2.1.3 Nearest Neighbors Search algorithms

In NNS estimators the degree of smoothing is determined by the distance to the kth
nearest neighbor dk(x) . The kth nearest neighbor density estimate is defined by [135,
146, 53, 182, 175]:

f̂(x) =
k

2Ndk(x)
(2.8)

The nearest neighbor estimate is inversely proportional to the size of the box needed
to contain k number of observations. Then, in the tails of the distribution, the distance dk
will be larger than in the center, and the problem of undersmoothing in the tails should
be reduced.

The nearest neighbor estimate f̂ , is continuous and positive everywhere but have
discontinuous derivatives [182].

2.1.4 Combinations of KDE and NNS

Kernel generalization of nearest neighbor estimate

WithK(x) a normalized kernel function, the generalized nearest neighbor estimate reads [53,
182, 175]:

f̂(x) =
1

Ndk(x)

∑

xi∈Ai
K

(
x− xi
dk(t)

)
(2.9)

where f̂(x) is precisely the kernel estimate with window width dk(x). However, the
derivative of the generalized nearest neighbor estimate will remain discontinuous when
dk(x) has discontinuous derivative [182].

The variable kernel method

This estimate is constructed similarly to the classical kernel estimate but the scale param-
eter of the bumps is allowed to vary from one data point to another. We define K as the
kernel function as above, and di,k as the distance from xi to the kth nearest observation.
The variable kernel estimate with smoothing parameter ∆x is [53, 182, 175]:

f̂(x) =
1

N

∑

xi∈Ai

1

∆xdi,k
K

(
x− xi
∆xdi,k

)
(2.10)

where the band width of the estimate placed on the point Xi is proportional to di,k, i.e.
data points in regions where the data are sparse will have flatter kernels associated with
them. Finally for fixed k the degree of smoothing depends on ∆x.

As the basic kernel estimate, the variable kernel estimate is a probability density
function by definition.

In the above sections we have presented three different strategies of computing the
PDF of a process: histograms, KDE and NNS. In addition, for each strategy we presented
different algorithms. Nevertheless, estimating the entropy of a process by computing its
PDF and using eq.(1.2) is not the less biased approach. In sections 2.2, 2.3 and 2.4 we
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present a straightforward methodology based on NNS to compute respectively the entropy,
the mutual information and the m-order entropy rate. These three straightforwards es-
timators based on NNS have been proved to be less biased than the strategies presented
above and other straightforward strategies [210, 116, 154, 213, 203].

2.2 Kozachenko-Leonenko estimate for Shannon En-

tropy

The nearest neighbor search estimator described by Kozachenko and Leonenko [114, 184,
127] is based on the measure of the density µ(x) of the distribution, by calculating ε so
that there are k points inside a ball of radius r = ε/2 whose center is the point xi of the
process X. The expression of the entropy becomes:

H(X) = −
∫

A
dxµ(x) log(µ(x)) = −〈log(µ(x))〉 = − 1

N

N∑

i=1

log µ(xi) (2.11)

where N is the number of realizations of the process X.
It’s important to remark that in the Kozachenko estimator the number of neighbors

k is fixed and ε varies in function of the density µ(x) around xi.

The recipe to compute the Kozachenko-Leonenko estimate of entropy is:

i) For a process X, with values in a metric space, and whose density is µ(x), we define

its Shannon entropy in eq.(2.11). Unbiased estimator of the density ̂log(µ(x)) =

log(µ(x)) implies unbiased estimator of the entropy Ĥ(X) = H(X).

ii) We want to calculate ̂log(µ(xi)). In order to do this, we consider:

1. Pk(ε) ≡ Probability distribution for the distance between xi and its kth nearest
neighbour.

2. Pk(ε)dε ≡ Probability of having one point with distance r ∈ [ε/2, ε/2 + d(ε/2)]
from xi, having k− 1 points with smaller distances, and N − k− 1 with larger
distances.

3. pi ≡ Mass of the ε ball centered at xi.

iii) We can obtain (using the trinomial formula):

Pk(ε)dε =
(N − 1)!

1!(k − 1)!(N − k − 1)!

dpi(ε)

dε
dε× pk−1

i (1− pi)N−k−1 (2.12)

with

∫
dεPk(ε) = 1 (2.13)
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iv) We can therefore calculate the expectation value of log(pi(ε)):

E(log(pi)) =

∫ ∞

0

dεPk(ε) log(pi(ε)) = ψ(k)− ψ(N) (2.14)

with ψ(x) ≡ Digamma function and E the average over the positions of the other
N − 1 points, with xi kept fixed.

v) We suppose µ(x) ≡ cte within the ε ball (This is the only approximation).

pi(ε) ≈ cdε
dµ(xi) (2.15)

where d is the dimension of X, cd is the volume of the d-dimensional unit ball (it
depends on the space metric).

vi) We take the logarithm on both sides of eq.(2.15) and then its expectation value, so
we arrive at:

log µ(xi) ≈ ψ(k)− ψ(N)− dE(log(ε))− log(cd) (2.16)

vii) We finally obtain:

Ĥ(X) = −ψ(k) + ψ(N) + log(cd) +
d

N

N∑

i

log(ε(i)) (2.17)

with ε(i) twice the distance from xi and its kth nearest neighbour.

The only approximation made in eq.(2.15) implies that ̂log(µ(x)) and then Ĥ(X)
are unbiased only if the density µ(x) is strictly constant. In the following, unless said
otherwise, we use the Kozachenko-Leonenko estimator for entropy calculations and use
infinite norm when computing it. We reserve the notation Ĥ(X) for the Kozachenko-
Leonenko estimate of entropy.

Rate of Convergence: Bias and Variance

Gao et al. studied the rate of convergence of the Kozachenko-Leonenko estimator over
probability density functions with bounded support [69]. They showed that under some
assumptions for the PDF’s and for finite k = O(1) and dimension m = O(1) the bias of

the Kozachenko-Leonenko estimator is Õ(N−
1
d ), its variance is Õ(1/N) and hence the l2

error of the Kozachenko-Leonenko estimator is Õ( 1√
N

+N−
1
d ).

Comparisons between Kozachenko-Leonenko algorithm and kernel density estimation
algorithms for Shannon entropy estimates have shown the advantages of the first one,
especially for high dimensions [69, 223]. The Kozachenko-Leonenko Shannon entropy
estimate presents also better properties, as smaller bias or faster convergence, than bin
strategies for entropy estimation [210].
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2.3 Kraskov-Stögbauer-Grassberger estimate for Mu-

tual Information

As MI can be expressed as a combination of entropies, a direct way to calculate MI is to
use the Kozachenko-Leonenko estimator for the three entropies involved in MI definition.
Procceding this way, the bias of the measure is large because the different bias provided
of the different entropy estimations have no reason to compensate and add up into a huge
bias for the MI measure [116, 69].

To get a better measure of the Mutual Information, Kraskov et al. [116] developed two
methods based on the Kozachenko-Leonenko estimate for Shannon entropy. The Kraskov-
Stögbauer-Grassberger estimators fix a k neighbors value for the joint space (X ∪ Y ),
then, in this space they obtains the distance to the kth neighbor, ε. Once ε is obtained in
the joint space, it remains fixed for the marginal spaces (X and Y ), where the number of
neighbors can vary. Fixing ε for all the entropy calculations produces a bias compensation
between them. As such, we can understand the Kraskov-Stögbauer-Grassberger estimate
as a mixture between NNS and KDE.

Next we detail the recipe to compute the Kraskov-Stögbauer-Grassberger estimates
for mutual information.

First Mutual Information estimator. We consider maximum norm and the 2D ran-
dom variable Z(X, Y ), defined as Z = X ∪ Y . We take one point zi and we consider the
distance ε/2 to its kth nearest neighbour. We find eq.(2.12) and eq.(2.14) and we can
write eq.(2.15) in 2D:

pi(ε) ≈ cdxcdyε
dzµ(zi) (2.18)

where dz = dx + dy. And we obtain:

Ĥ(X, Y ) = −ψ(k) + ψ(N) + log(cdxcdy) +
dx + dy
N

N∑

i

log(ε(i)) (2.19)

With this method Ĥ(X), Ĥ(Y ), Ĥ(X, Y ) could be given, and we could find the MI

using eq.(1.18). But if we use the same number of neighbors k for Ĥ(X), Ĥ(Y ) and

Ĥ(X, Y ) their bias is so different that they do not cancel.

It’s therefore better to have different values of k in the calculation of Ĥ(X), Ĥ(Y )

and Ĥ(X, Y ). To obtain adequate values for the number of neighbors of each different
distribution, we fix k for the joint distribution Z(X, Y ) and we obtain the distance to
the kth nearest neighbour ε(i). Then using this distance ε(i), we calculate the number of

neighbours nx(i) + 1 lying on a segment x = xi ± ε(i)
2

of the X dimension, i.e. lying on
−∞ ≤ Y ≤ ∞, xi − ε(i)/2 ≤ X ≤ xi + ε(i)/2.

Consequently, ε(i)/2 is the distance to the nx(i) + 1st neighbour of xi. We use the
same developement for Y and we obtain that ε(i)/2 is the distance to the ny(i) + 1st
neighbour of yi. That’s not really true, but is not a bad approximation. The errors in
Ĥ(X), Ĥ(Y ), Ĥ(X, Y ) will not cancel exactly in general, but the chances that they will
do approximately are bigger with this last procedure. We arrive to:
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1) Î(X, Y ) = ψ(k) + ψ(N)− 〈ψ(nx) + ψ(ny)〉 (2.20)

Second Mutual Information estimator. In this development we don’t use hyper-
cubes in the joint space but hyper-rectangles. Now we don’t have a single ε but two, εx
and εy. We therefore replace Pk(ε) by:

Pk(εx, εy) =

(
N − 1
k

)
d2[qki ]

dεxdεy
(1− pi)N−k−1 + (k − 1)

(
N − 1
k

)
d2[qki ]

dεxdεy
(1− pi)N−k−1

(2.21)

where qi ≡ qi(εx, εy) is the mass of the rectangle of size εx × εy centered at (xi, yi) and pi
is the mass of the square of size ε = max εx, εy. Using the maximum norm we guarantee
that there are no points in the square that are not in the rectangle.

We can calculate the expectation value of the logarithm of the mass of the hyper-
rectangles:

E(log qi) =

∫ ∫ ∞

0

dεxdεyPk(εx, εy) log(qi(εx, εy)) = ψ(k)− 1

k
− ψ(N) (2.22)

If we say now that nx(i) and ny(i) are the number of points with distance less than or
equal to εx/2 and εy/2 respectively, and following the above procedure we arrive to:

2) Î(X, Y ) = ψ(k) + ψ(N)− 〈ψ(nx) + ψ(ny)〉 −
1

k
(2.23)

From here till the end of the PhD manuscript, even if both mutual information esti-
mates are equally robust, when computing mutual information we will use the first mutual
information estimator with infinite norm, unless said otherwise.

Rate of Convergence: Bias and Variance

In their initial article, Kraskov et al. derived and showed a bias behaviour of the Kraskov-
Stögbauer-Grassberger estimate in k

N
[116]. This result was later studied and supported

by Gao et al. [69] who showed that the bias of the estimator is Õ(
(
k
N

) 1
dx+dy ) and the

variance Õ(1/N). Its l2 error is Õ( 1√
N

+
(
k
N

) 1
dx+dy ).

Since the apparition of Kraskov-Stögbauer-Grassberger estimator of mutual informa-
tion numerous comparisons between this NNS based estimator and others based on KDE
or bins have been done [116, 69, 223, 203]. While Kraskov et al. [116], Gao et al. [69],
and Xiong et al. [223], support the use of the Kraskov-Stögbauer-Grassberger estimator
over KDE and bins, Tobin et al. [203] show that their KDE estimator produce very simi-
lar results. Kraskov-Stögbauer-Grassberger estimator appears always as better than bins
estimators.
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2.4 m-order entropy rate estimate

The simplest entropy rate estimation would use eq.(1.24) with two Kozachenko-Leonenko
entropy estimators:

ĥ
(m,λ)
1 (X) = Ĥ(X(m+1,λ))− Ĥ(X(m,λ)). (2.24)

We propose instead to use eq.1.25 with Kozachenko-Leonenko estimate for the entropy
and the Kraskov-Stögbauer-Grassberger estimate for the mutual information Î.

ĥ
(m,λ)
2 (X) = Ĥ(X)− Î(Xi+λ, X

(m,λ)
i ) (2.25)

As we showed above, both estimators Ĥ and Î are consistent with a variance O(1/N)

and a bias O(( k
N

)
1

dtotal ) where N is the number of samples of the analysed process and k
the number of neighbors in the search.

From here till the end we estimate them-order entropy rate by computing the Kozachenko-
Leonenko entropy and the Kraskov-Stögbauer-Grassberger mutual information (ĥ

(m,λ)
2 (X)),

unless said otherwise.
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ĥ
(m)
1 = H(m+1) − H(m)

log2(N)

va
ri

a
n
ce

log2(N)

ĥ
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Figure 2.1: Entropy rate performances (at fixed τ) on the Gaussian process.
Bias and standard variation of the estimates in function of the number of samples N
for both entropy rate estimators. The scale τ is fixed (τ = 3) and chosen such that
the correlation coefficient between two succesive points is c(τ) = 0.94. In c) and d) the

straight line correspond to f ∝
√
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N
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Rate of Convergence: Bias and Variance
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ĥ
(m,τ)
2 = H − I(m,1,τ)

(c) (d)

6 8 10 126 8 10 12
1010

−2

1010
−1

1010
0

0

0.2

0.4

0.6

0.8

Figure 2.2: Entropy rate performances (at fixed τ) on the log-normal process.
Bias and standard variation of the estimates in function of the number of samples N
for both entropy rate estimators. The scale τ is fixed (τ = 3) and chosen such that
the correlation coefficient between two succesive points is c(τ) = 0.94. In c) and d) the
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In order to compare both estimators of entropy rate, we study their bias and standard
deviation [78] when computed for two kinds of temporal processes (for temporal processes
the sampling distance λ is noted τ) with different marginals and correlation functions but
with the same entropy rate [226]. The first process X is obtained by low-pass filtering a
Gaussian white noise. The used filter is defined as:

F (ω) =
1

1 + i f
fc

(2.26)

where fc represents the cut-off frequency of the filter and i =
√
−1. Next we normalize the

signal by its variance, so that σ2 = 1, and we obtain a Gaussian process whose correlation
function is:

c(t− t′) = e−2πfc|t−t′|. (2.27)

The entropy rate of process X is deduced from eq.(1.40).
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The second process is defined as Y = eX with X being the above defined Gaussian
process. We define thus a process with log-normal marginal and correlation function:

cLN(t− t′) =
ec(t−t

′) − 1

e1 − 1
. (2.28)

If the mean of the Gaussian process X is zero, the entropy and entropy rate of the
log-normal process Y defined in eq.(1.43) and eq.(1.47) have the same expressions as the
entropy and entropy rate of the Gaussian process X [226], see eq.(1.36) and eq.(1.40).

In figures 2.1 and 2.2 we analyse the evolution of the bias and standard deviation
in function of the size N of the analysed process, the scale parameter is fixed to τ = 3
and the number of neighbors k is fixed to 5. Indeed the different estimators depend very
slightly on this parameter if k � N .

The new entropy rate estimator defined as the difference between the entropy and
the mutual information appears as better than the estimator defined as the difference of
entropies. Indeed, this new estimator is not only less biased and less dependent on the
embedding dimension but also its bias is much less dependent on the process statistics
(see figures 2.1 a) and b) and figures 2.2 a) and b)). This is an important feature as the
statistics of the processes are a priori unknown in applications.
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Figure 2.3: Analysis of the Bias of the Gaussian and the log-normal processes

in function of
(
k
N

) 1
m+1 for the new entropy rate estimator. The scale τ is fixed at (τ = 3)

and chosen in order for the correlation coefficient between two succesive points to be
c(τ) = 0.94. The number of neighbors is 5 ≤ k ≤ 10, the sizes of the processes are
comprised between 6 ≤ log2(N) ≤ 12 and the embedding dimensions are 1 ≤ m ≤ 6.

Figure 2.3 verifies that the bias of the new entropy rate estimator behaves asO(( k
N

)
1

m+1 )
and supports the results already shown by Kraskov et al. [116] and by Gao et al. [69],
but this time for our estimator of entropy rate. In figure 2.3 the number of neighbors in
the search varies between 5 and 10, k = [5, 10]. The number of samples increases from
a minimum value of N = 64 to a largest value of N = 4096. The embedding dimension
varies from m = 1 to m = 6. In both figures 2.3(a) and (b) the bias goes to zero when
k/N → 0. In addition there is another intermediate value of k/N for which the bias
is zero, k/N |0. This intermediate value depends on the analyzed process. When k/N
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is between zero and k/N |0, the theoretical value h(m,λ)(X) is underestimated. However
when k/N is higher than k/N |0 the theoretical value is overestimated. These results are
in agreeement with the Kraskov et al. study [116].

We also checked that the variance of the new entropy rate estimator behaves asO(1/N)
(see figures 2.1 d) and 2.2 d)).

2.5 Dynamics at a given scale: Adapted Theiler pre-

scription

Takens embedding procedure (section 1.2) inherently defines a distance λ between samples
of the analysed process X. In this way, we generate a process X(m,λ), for which each
sample is an m-dimensional vector, and each vector is composed of consecutive elements
of X separated by λ. The distance between consecutive m-dimensional vectors defining
the embedded process, X(m,λ), is another important sampling distance λth. Then, from a
process X, we reconstruct an embedded one X(m,λ), composed by m-dimensional vectors
with a separation between consecutive vectors of λth. The classical Theiler prescription
consists on choosing λth higher or equal to the correlation distance of the process, in order
to eliminate all the dependencies between consecutive vectors of the embedded process.
Therefore, only the static properties of the embedded process are taken into account. This
correction, known as Theiler prescription [202], is usually used in order to avoid the effect
of spurious correlations on the PDF of the studied signal [105].

We are interested in the study of the dynamics of the process at a given scale λ. With
this purpose we modify the classical Theiler prescription to take into account the statistics
and dynamics of the process at this scale, and we choose λth = λ. In this way, we force the
distance between consecutive vectors to be exactly λ, the distance between consecutive
samples inside the m-dimensional vectors, in order to eliminate the dependencies until
the analysed scale λ. This is very important in order to take into account only desired
interactions.
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Figure 2.4: a) Entropy rate of a low-pass filtered Gaussian noise (fc = 0.1) b) Phase
space of a low-pass filtered Gaussian noise. The entropy rates have been computed with
a constant number of N = 2000 samples and averaged over 50 realizations.
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Figure 2.5: a) Entropy rate of fractional Gaussian noise (H = 0.7) b) Phase space of
fractional Gaussian noise. The entropy rates have been computed with a constant number
of N = 2000 samples and averaged over 50 realizations.
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Figure 2.6: a) Entropy rate of fBm (H = 0.7) b) Phase space of fractional Brownian
motion. The entropy rates have been computed with a constant number of N = 2000
samples and averaged over 50 realizations.

We show, by analysing some temporal processes that, varying λ in the embedding
procedure with an adapted Theiler prescription allows an efficient analysis of high order
statistics across scales. We study the effect of performing an adapted Theiler prescrip-
tion in four different temporal processes: a Gaussian filtered noise (the filter is defined in
eq.(2.26)), a fractional Gaussian noise (section 3.1), a fractional Brownian motion (sec-
tion 4.2) and Modane experimental turbulent velocity signal (section 6.1).

We can see in figures 2.4,2.5,2.6 and 2.8 that the adapted Theiler prescription is not
equally important for every process. It depends on the importance of the spurious corre-
lations remaining: the more correlated the process the more important the application of
a Theiler correction to only take into account the desired statistics. In order to illustrate
the importance of the spurious correlations on each analysed process, we plot in figures 2.4
b),2.5 b),2.6 b) and 2.8 b) their corresponding phase space. The more scattered the points
in the phase space, the more uncorrelated the process.

We have analysed two noises with different dependence structure (figures 2.4 and 2.5),
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Figure 2.7: Entropy rate of fBm (H = 0.7) in function of the effective size of the analyzed
process. The entropy rates have been computed with a constant number of N = 2000
samples and averaged over 50 realizations.
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Figure 2.8: a) Entropy rate of a turbulent velocity signal b) Phase space of a turbulent
velocity signal. The entropy rates have been computed with a constant number of N =
1300 samples and averaged over 20 realizations.

but for noises, where correlations are usually weak (figures 2.4 b),2.5 b)), Theiler pre-
scription is not very important. Only for pathological cases where the noises are specially
correlated Theiler correction starts to be necessary. We find the opposite situation when
analysing motions (figure 2.6). Motions are defined as processes where each step is char-
acterized by a corresponding noise, see section 4.2. Motions are more correlated than a
noise (figure 2.6 b)), and Theiler prescription is therefore very important.

Figure 2.7 shows the effect of the size N of the analyzed process: increasing the size
of the process it is possible to reduce the effect of spurious correlations. We can see in
figure 2.7 that both limits τth = 1, τ = 30 and τth = 30, τ = 1 tend to their spected
values, those at τth = τ , when N increases. Nevertheless the convergence towards the
Theiler corrected measure when N increases is very slow.

We also present the results obtained when analysing an experimental signal of turbu-
lent velocity 2.8. The importance of Theiler prescription in this case is not surprising as
the turbulent velocity field is modeled in terms of correlations by a fractional Brownian
motion, see section 5.2.1.
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2.6 Kraskov-Stögbauer-Grassberger estimate for Con-

ditional Mutual Information

Kraskov-Stögbauer-Grassberger estimates for mutual information, see section 2.3, can be
generalized for conditional mutual information [65, 209, 74, 132]. As for the mutual infor-
mation, this procedures allows to reduce the bias of the estimate by a bias compensation
of the terms. The conditional mutual information of eq.(1.19) can be expressed as:

I(X, Y |Z) = H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z)

To extend the first Kraskov-Stögbauer-Grassberger estimate we calculate in the joint
space (X ∪ Y ∪ Z) the distance (using max norm) ε to the kth nearest neighbor. In
the same way as for the mutual information, nz is the number of neighbors lying strictly
within the ball of diameter ε in the marginal space Z, and nxz and nyz are the number
of neighbors strictly within a ball of diameter ε in the joint spaces X ∪ Z and Y ∪ Z
respectively. We obtain:

1) Î(X, Y |Z) = ψ(k)− 〈ψ(nxz)− ψ(nyz) + ψ(nz)〉 (2.29)

The second estimate of Kraskov-Stögbauer-Grassberger for mutual information can be
also extended to conditional mutual information, leading to:

2) Î(X, Y |Z) = ψ(k) +

〈
ψ(nz)− ψ(nxz)− ψ(nyz) +

1

nxz
+

1

nyz

〉
− 2

k
(2.30)

As transfer entropy can be expressed as a conditional mutual information we can
exploit these algorithms to compute it, and from here till the end of the manuscript every
transfer entropy is computed following these algorithms.
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CHAPTER 3

High order Statistics on non-Gaussian noises

The analysis of correlations and dependences covers an important fraction of the signal
processing research. In order to characterize a process X(t), evolving along a given di-
mension t, e.g., the time, one needs to describe simultaneously: the one-point statistics
of the process at a given time t and the dependences between n samples xt at different
times. The one-point statistics are given by the probability distribution, and amounts
to the knowledge of all the moments. The dependences between n samples, or n-point
dependences, are usually hard to assess and very often limited to 2 points.

To analyse one-point statistics and dependences, we assume, unless said otherwise,
that the process is stationary. One-point statistics are then independent of the time t and
n-point dependences depend on the n− 1 time delays separating the n samples.

The correlation function in direct space, or the power spectrum in Fourier space,
are commonly used to characterize dependences in stationary processes. These measures
give insight into the underlying dynamics; they are essential tools in statistics and data
analysis and have been widely used in many different fields. In neurosciences, the analysis
of correlations between neurons [147, 44] or between stimulus and brain activity [16, 84,
142] is essential. In fluid mechanics, Kolmogorov’s empirical theory of turbulence [108]
characterizes the multiscale distribution of energy with the power spectrum of the velocity
field [8]. The analysis of dependences also supports useful descriptions in terms of complex
networks for, e.g., ecology [225], climatology [224] or traffic [151].

Correlation analysis and power spectrum probe two-point interactions and involve only
the statistics of order two of the one point disctribution. This is satisfying for processes
with Gaussian distribution: these are completely characterized by their two-point inter-
actions together with the mean and variance of the distribution. On the contrary, the
complete characterization of non-Gaussian processes requires higher order statistics.

A first way to explore higher order statistics is to generalize the two point correlation
function and consider n different points. This increase of the dimensionality naturally
involves the n first moments of the one-point distribution, and hence n-order statistics.
Three-point correlation functions, defined as an extension of the classical two-point cor-
relation function, have been used in cosmology, where they were related to cosmological
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parameters [195, 185]. Unfortunately the definition of three-point correlation functions is
not unique, which may lead to ambiguities.

Another way to probe higher order statistics is to generalize the power spectrum: the
bi-spectrum [86, 45] combines Fourier transforms at two different frequencies and therefore
takes into account up to the third order statistics of the distribution. In the same spirit,
the tri-spectrum [45, 36] probes the distribution up to the fourth order moment. Numerous
applications of both bi-spectrum and tri-spectrum were proposed in cosmology [25, 139,
205], in medicine [148, 95, 106] and other fields [12, 48]. It is important to note that
in order to probe higher order statistics with n-point correlations or multispectra, it is
necessary to increase the dimension of the analysis.

An efficient way to probe high order statistics without increasing the dimensionality
of the analysis is to use Shannon’s information theory, see chapter 1. Shannon entropy
characterizes the one-point distribution of the process and as such it naturally depends
on all the moments of this probability density function, see section 1.3.1. Besides entropy,
we are interested in the entropy rate, see section 1.4.1 and the auto mutual information,
see section 1.4.2. Applications of the entropy rate have been reported in a wide range
of domains, such as biology [92], dynamical systems [23, 129], fluid turbulence [80] or
analysis of languages [58, 196]. Mutual information is also very popular, especially in
computer sciences, e.g., in machine learning [204]. AMI has been used in very different
domains [4, 5, 79, 73, 61].

Entropy rate and AMI probe dependences at a particular scale or delay, and until
recently, very few papers explore their evolution with the scale [5, 80]. Finally, these
quantities probe arbitrarily high order dependences when considering only two points,
but they can be straigthforwardly generalized to consider interactions between more than
two points.

The main goal of the chapter is to demonstrate the ability of information theory to
describe high order statistics. To this end, we illustrate the use of entropy rate and
auto-mutual information to characterize non Gaussian processes across scales in the same
way as power spectrum and correlation function characterize Gaussian processes. As
an example, we consider two synthetic log-normal processes with different dependence
structure but with identical correlation function and identical marginal statistics. We
show that we are able to measure differences in the high order statistics of the processes.
In section 3.1, we present the synthetic processes that we study. In section 3.2, we report
the convergence and the performance of the estimators of AMI and entropy rate. In
section 3.3, we show their ability to measure high order dependences. We present their
evolution across scales and emphasized that, contrary to classical correlation analysis,
they allow a fine characterization of non Gaussian processes.

3.1 Data and procedure

3.1.1 Synthetic processes

In order to show the ability of entropy rate and auto mutual information in characterizing
high order statistics of a signal, we synthesize two log-normal processes which have a
different dependence structure, but identical one-point and two-point statistics. To show
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the generality of the method we use two frequently encountered covariance structures:
exponential decay and long range dependence.

To synthesize a process Y , we need to impose the PDF and the correlation function.
To obtain a log-normal PDF, we apply a transformation F on a Gaussian process X ′,
which has the cumulative functionFG and the correlation function cx′(τ). This allows
to map the Gaussian statistics of X ′ to the prescribed log-normal statistics of Y using
y = F−1

LN ◦ F (x′) where F−1

LN is the inverse of the cumulative log-normal distribution.

The correlation function cy(τ) of the process Y can be related to cx′(τ) using Hermite
polynomial expansions. In some case, this relation can be inverted and cx′(τ) can be
obtained from the targeted correlation function cy(τ) of the log-normal process.

The methodology proposed in [91] allows the synthesis of two log-normal processes by
using two different transformation functions F . They lead to two log-normal processes
with same marginal and correlation function but with different dependence structure.

Standard transformation We consider the bijective transformation

F (x′) = FG(x′) (3.1)

Applied to a white Gaussian variable, this commonly used transformation leads naturally
to the desired log-normal marginal distribution for Y . Due to the specific dependence
structure of the log-normal process generated in this way, the correlation function of the
Gaussian distribution cx′(τ) is obtained by inversion of the targeted correlation function
cy(τ) [91].

cx′(τ) =
1

σ2
x′

ln((eσ
2
x′ − 1)cy(τ) + 1) (3.2)

Even transformation Now, we consider the transformation

F (x′) = 2(FG(|x′|)− 1/2) (3.3)

which is even (∀x′, F (−x′) = F (x′)). In that case, the transformation that relates the
correlation function cx′(τ) of the underlying Gaussian process to the correlation of the
log-normal process cy(τ) is not known. However, it can be approximated using circulant
embedding, as presented in [91].

Correlation structures

We impose for both log-normal processes, two different correlation structures with either
short or long range dependences.

Exponential decay We impose the following covariance of the log-normal processes:

cy(τ) = σ2
ye
−fc|τ |, fc > 0.

where σy is the standard deviation of the process. The corresponding power spectrum is
Lorentzian.
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Power law decay A long range dependence process is often modelled by a fractional
Gaussian noise (fGn) indexed by a coefficient 0.5 < H < 1, called Hurst exponent. We
impose the covariance of the log-normal processes to be the one of the fGn, which is [164]:

cy(τ) =
σ2
y

2

[
(τ − 1)2H − 2τ 2H + (τ + 1)2H] , (3.4)

The corresponding power spectrum behaves as a power law with exponent −(2H− 1).

For each correlation structure, we synthesize two log-normal processes and a Gaussian
one with the toolbox provided at www.hermir.org. We normalize these processes such
that the standard deviation, σy, is equal to one.

In order to express analytically the auto mutual information defined in eq.(1.44) and
the entropy rate in eq.(1.47), it’s necessary to know the correlation of the process X =
log Y . The standard transformation amounts to choose X ′ = log Y = X, so eq.(3.2) can
be directly used to express Σ appearing in eq.(1.44) and eq.(1.47). However, for the even
transformation, the complex dependence structure of Y doesn’t allow to express explicitly
cx(τ). As a consequence, there is no analytical expression of the auto mutual information
and the entropy rate, although the entropy, which only depend on the PDF, is identical
to the one obtained with the standard transformation.

Throughout this chapter, we work only with temporal processes, and then we note the
sampling distance λ as τ .

3.1.2 Estimation Setup

For two given correlation structures, exponential decay or power law decay, we consider
two log-normal and a Gaussian process. For each process, we generate a set of realizations
of size N . We choose fc = 0.1 for the exponential decay correlation and a Hurst exponent
H = 0.7 for the power law decay.

First, we characterize the three estimators Ĥ, Î(m,p,τ) and ĥ(m,τ) at a fixed scale τ , by
measuring their bias and variance when varying both the signal size N and the number of
nearest neighbors k. We also analyse their bias and variance when varying the correlation
coefficient c(τ). We do so with m = p = 1 for the Gaussian process and the standard log-
normal, for which we have the analytical expressions, see section 1.7. Then, we present
a new log-normal process with the identical marginal and correlation function of the
standard log-normal one, but with different dependence structure. For each correlation
structure (exponential decay, power law decay) we present the behavior of our quantities
across scales τ for all the processes. Finally we show how the AMI behaves when the
embedding dimension m and p are increased. For all the estimations we compute the
average of 100 independent realizations and use the standard deviation over realizations
as error bars in the different graphs.

3.2 Characterization of the estimates

The study performed in this section allows to understand and characterize the effect that
the non-physical parameters, such as the size of the analysed process N (section 3.2.1),
or the number of neighbors used in the nearest neighbors search k (section 3.2.2), have

http://www.hermir.org
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on the measures. In section 3.2.3 we characterize the effect of the correlation strength on
the estimations.

Figures 3.1, 3.2 and 3.3 present biases and standard deviations of the three different
estimators Ĥ (upper row), Î(1,1,1) (middle row) and ĥ(1,1) (bottom row). Figure 3.1 shows
the behaviour of the estimators with N , figure 3.2 with k, and 3.3 with c(τ). Troughout
this chapter, the results for the standard log-normal process are depicted in blue, while
the ones for the Gaussian are depicted in black.

3.2.1 Dependence on the data size N .
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Figure 3.1: Bias of entropy, auto mutual information and entropy rate for m = 1, p = 1,
c(τ) = 0.32, k = 5 and varying N , for the standard log-normal (blue) and the Gaussian
(black) processes. Left column: exponential decay fc = 0.1. Right column: power law
decay with H = 0.7. The errorbars correspond to the standard deviation.

Figures 3.1 shows the behaviour of the estimates when N varies from N = 28 to
N = 216, for a fixed k = 5. For the entropy estimator, figures 3.1(a) and (b) show that
the bias BĤ = E[Ĥ − H] goes to zero when the signal size N increases. The standard
deviation of the estimate, represented as the error bar of the bias, also tends to zero
when N increases. The auto mutual information and entropy rate estimators behave
similarly, see figure 3.1(c),(d) and (e),(f), respectively. So, as a first conclusion, our three
estimates are asymptotically unbiased with a vanishing variance, for any dependence
structure (exponential or power law decay) and for any one-point distribution (Gaussian
or log-normal). They are therefore robust [116, 69], and have (very) satisfying performance
as soon as N ≥ 210.

In the following, we use N = 216 to discard finite size effects.
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3.2.2 Dependence on the number of neighbors k.
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ĥ
(1

,1
)

4 6 8 10 12 144 6 8 10 12 14
−0.01

0

0.01
−0.01

0

0.01
−0.01

0

0.01

Figure 3.2: Bias of entropy, auto mutual information and entropy rate for m = 1, p = 1,
c(τ) = 0.32, N = 216 and varying k, for the standard log-normal (blue) and the Gaussian
(black) processes. Left column: exponential decay fc = 0.1. Right column: power law
decay with H = 0.7. The errorbars correspond to the standard deviation.

Figure 3.2 shows how our three estimators depend on k for a signal size N = 216.
For any estimate, and any dependence structure, we barely see any evolution with k,
although we have observed a small increase of bias when k increases. Because the choice
of k does not impact significatively our estimates, we set k = 5 in the following to reduce
the computation time.

3.2.3 Influence of the correlation strength

We now briefly study the behaviour of the AMI estimator when the correlation varies.
With our choice of (fc,H), we have a correlation c(τ = 1) = 0.90 for the exponential
decay and c(τ = 1) = 0.32 for the power law, when τ = 1.

In figure 3.3, we observe that both the bias and the standard deviation of the estimator
increase when the correlation increases. For N = 216 the bias doesn’t increase significantly
when c(τ) increases. Nevertheless, the standard deviation still depends on c(τ) for large
sizes.

For both correlation structures (exponential decay and power law decay) the log-
normal statistics lead to a larger standard deviation than the normal ones do, but a very
similar bias. In addition, for a given correlation c(τ) the power law correlation structure
shows a larger bias and standard deviation than the exponetial decay.
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Figure 3.3: Bias of entropy (a,b), auto mutual information (c,d) and entropy rate (e,f) for
m = 1, p = 1, k = 5, N = 212 and varying c(τ), for the standard log-normal (blue) and
the Gaussian (black) processes. Left column: exponential decay fc = 0.1. Right column:
power law decay with H = 0.7. The errorbars correspond to the standard deviation.

3.3 Dependence structure across scales

Once characterized our estimates, we explore their evolution on the scale τ , as well as on
the embedding dimension. We show how these estimations can be used to discriminate
processes that only differ on high-order dependences.

3.3.1 Dependence on the scale τ for fixed embedding dimen-
sions.

Figures 3.4 and 3.5 compare the classical estimators (histogram, power spectrum and
correlation function) with our estimators (entropy, entropy rate and AMI) for m = p = 1
when varying the scale τ . The results for the even log-normal process are reported in red.

Classical estimators cannot distinguish the two log-normal processes. Prescribing the
PDF (figure (3.4,a)) univocally prescribe the entropy (figure (3.4,d)). It is therefore not
surprising that the Gaussian and the log-normal processes have different entropies and
that the entropy of the two log-normal processes are undistinguishable.

Exponential decay

For processes with the prescribed correlation function c(τ) = e−fcτ , the power spectrum
decreases as 1/(1+(f/fc)

2). The three synthetic processes have identical power spectrum
— and hence identical correlation functions — so they cannot be distinguished with these
estimators, see figures 3.4(b)(c).
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Figure 3.4: Exponential decay fc = 0.1. Classical analysis: histogram (a), power
spectrum (b) and correlation function (c). Information theory analysis for m = 1, p = 1:
entropy (d), entropy rate (e) and auto mutual information (f). The color indicates the
process: blue for standard log-normal, red for even log-normal and black for Gaussian.
The continuous lines in (e,d,f) correspond to analytical expressions. We used N = 216

and k = 5.

On the contrary, AMI and entropy rate behave differently across scales for each of the
three processes. Although AMI vanishes for larger τ , its value at τ = 1 is different in
each case. The observation is identical for the entropy rate: its value for smaller τ is also
different for the three processes, although it converges to the entropy H for τ larger than
the cut-off scale 1/fc. Analytical expressions (1.44 and 1.47) are presented as straight lines
in 3.4(e) and 3.4(f) and they perfectly describe the scale-evolution of our estimations for
the standard log-normal signal. The even (red) log-normal deviates significantly from the
”standard” log-normal for smaller values of τ , where not only correlations are stronger, but
also the complete dependence structure is different. We also report different behavior of
the AMI of Gaussian and log-normal signals, although they all have the same correlation
function (figure 3.4(c)). Again, this illustrates the sensitivity of AMI on higher order
dependences. Studying the evolution of either AMI or entropy rate across scales reveals
subtle differences in the dependence structures of the signals.

Power law decay

For scale invariant processes, there is no cut-off scale and both the power spectrum and
the correlation function are power laws of the scale. As for the exponential correlation
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structure, classical measures are identical for both log-normal processes (figures 3.5(a,b,c))
but AMI and entropy rate evolve differently for each process ((figures 3.5(e,f)). Again,
AMI always converges to zero for large τ but takes different values for τ = 1. Again,
entropy rate tends to the entropy for large τ while evolving differently from its value at
τ = 1, which depends noticeably on the process.

For stronger dependences (here the exponential decay, due to our choice of (fc =
0.1,H = 0.7), see section 3.2.3), AMI is larger and so are the differences between the
processes. For scale invariant processes, AMI and entropy rate are again able to probe
details of the dependence structure that originate from higher orders. In this case, the
difference between both log-normal processes is smaller but still significant.
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Figure 3.5: Power law H = 0.7. Classical analysis: histogram (a), power spectrum (b)
and correlation function (c). Information theory analysis for m = 1, p = 1: entropy (d),
entropy rate (e) and auto mutual information (f). The color indicates the process: blue
for standard log-normal, red for even log-normal and black for Gaussian. The continuous
lines in (e,d,f) correspond to analytical expressions. We used N = 216 and k = 5.

Dependence structure beyond correlations

AMI measures statistical dependences between two consecutive points of a process, while
correlation function measures is limited to only two-point correlations. Figures 3.4 and 3.5
show how information theory probes high order dependences, which allow to discriminate
two very similar processes when performing an analysis across scales τ . We interpret AMI
as a generalization of correlation function.
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3.3.2 Dependence on embedding dimensions for fixed τ .

We now want to probe explicitly dependences between more than two points. To do so,
we can increase the number of points that are involved in the definition of AMI, as this
quantity provides a direct measure of dependences between its arguments, see eq.(1.17).
A straightforward generalization is to increase any embedding dimension m or p appearing
in eq.(1.26). This can be interpreted as probing how additional points increase the shared
information, or in other words as measuring multiple-point dependences. We note that
this shared information is a non decreasing function of m or p, i.e. it can be constant
or increase. This increase of AMI hints at the evolution of multiple-point dependences
when considering additional points, and we expect it to be larger for long-range than for
short-range dependence processes.
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Figure 3.6: Auto mutual information vs total embedding m + p. Left column:
exponential decay fc = 0.1. Right column: power law H = 0.7. The color indicates the
process: blue for standard log-normal (c,d), red for even log-normal (e,f) and black for
Gaussian (a,b). The continuous lines in (a-d) correspond to analytical expressions. We
used N = 216, k = 5, c(τ) = 0.32 (τ = 1 for the scale invariant and τ = 11 for the
exponential decay).

For the exponential decay, the analytical curves (straight lines) in figure 3.6(a,c) show
that AMI is independent of the total embedding dimension m+ p. The estimations agree
with the analytical curve, even if the existence of a bias unfortunately impairs an arbitrary
increase of the embedding dimensions. This is known as the curse of dimensionality [21].

For the power law decay, figure 3.6(b,d,f) shows a small increase of analytical and
estimated AMI when the total embedding dimension increases. Indeed, the estimations
closely follow the analytical prediction and the increase is very similar for the three pro-
cesses. In this case the bias is almost negligeable, nevertheless it slightly increases when
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increasing m+ p.
A comparison between exponential and power law decay confirms that the increase

of AMI with m and p indicates long range dependences. For long range dependence
structures, any additional point contains new information. In that case, we can make
another observation from figure 3.6: it is not equivalent to increase m or p. For a fixed
m+p, AMI is larger when m and p are closer. This can be understood as a closer similarity
between the two embedded vectors appearing as the arguments of the AMI in eq.(1.26).

All these observations indicate the more complex dependence structure of the long-
range correlation processes.

3.4 Conclusion

2-point interactions: We proposed to explore the evolution of AMI and entropy rate
on the scale parameter. AMI and entropy rate measure the strenght of the dependences
between two points of a process. These quantities probe statistics of any order, and hence
non-linear interactions, and as such appear as unambiguous generalizations of the corre-
lation function and the power spectrum. As an illustration, we analyzed two log-normal
processes with identical 1-point distribution and identical correlation function. We were
able to discriminate these two processes, which appear as identical for classical analy-
sis: so our measures enlight differences in high order dependences of the two processes.
The behavior of our quantities along scales reveal the existence of stronger high-order
dependences at smaller scale, which allows an easier separation of processes.

More than 2-point interactions: In addition, AMI generalizes easily to consider
explicitly interactions between more than two points. We thus probe the complexity of
the dependence structure above linear order, i.e., the additional information measured
by AMI when considering an extra point should indicate the existence and relevance
of next-order interactions. As an example, comparing the effect of increasing the order
of interactions for two dependence structures showed that while exponential decay —
short range — dependences do not involve next order interactions, power law — long
range — dependences do. This result could show that increasing the embedding allows
to discriminate between short and long range dependences.

The same qualitative results were obtained when considering an exponential one-point
distribution, which supports the validity of the methodology for any distribution and
dependence structure. This generality should make the methodology very interesting to
perform non-Gaussian processes characterization in several different applications.
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CHAPTER 4

Information theory of non-stationary processes

In real life, a high number of processes such as: weather temperature, water ressources
evolution, macroeconomic time series or Brownian motion, are non-stationnary. Con-
sequently, the characterization and analysis of such processes become very important.
However, because of the difficulty of studying non-stationnary processes, their charac-
terization is usually done by studying their increments or time derivatives. During this
chapter, we are interested in the direct analysis of non-stationnary processes.

Information theory was initially conceived to work with stationnary processes, where
the measures have a clear interpretation in terms of information, see chapter 1. Never-
theless, two questions appear immediately:

• Can we apply information theory on non-stationnary processes?

• Do the interpretations on stationnary processes remain valid for non-stationnary
ones?

For a non-stationnary time process M(t) whose PDF and dependences evolve in time,
its entropy H(M(t)) evolves with time.

We can measure the entropy of a process at a given time Ht(M(t)) by averaging over
the realizations. In this framework, the interpretation of the entropy for stationnary pro-
cesses remains valid [74]. In the same way, we can measure the dependences of the process
at time t. Performing these analysis at fixed time for different times allows to charac-
terize not only the distribution and dependences of the process at time t but also their
evolution in time. Unfortunately, the analysis at a given time t requires having numerous
realizations of the process to build its PDF without requiring ergodic hypothesis. This
requirement is not easily resolve, specially when dealing with experimental signals.

In oder to avoid this requirement, we want to study a process M(t) by analysing a
experimental signal of length T . We can measure its entropy during the time window
[0, T ], HT (M(t)), but the interpretation of this entropy is not anymore the same. We
interpret HT (M(t)) as the complexity, or the total amount of information needed to
characterize a temporal trajectory Mt ∀ t ∈ [0, T ] of the process M(t). In this way,
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we consider the temporal dimension as a new dimension of the process and then, the
distribution of the process should take into account not only the distribution of the process
in its phase space but also in the temporal dimension [211]. The main disadvantage of
this viewpoint is the necessity of defining a window size T , restricting the evolution of the
distribution in time.

Even if the natural environment of information theory is the analysis of stationnary
processes, some scarce works have tried to perform an information theory analysis of
non-stationnary processes [211, 165, 74]. In this chapter, the goal is to develop an in-
formation theory framework to analyse generic non-stationary processes. Once it is done
we develop inside this framework the specific case of non-stationary self-similar motions
with stationary increments, on which we are specially interested. Self similar power law
decay motions are particularly interesting due to the high number of physical, biological
or social systems (between others) that they can model. Once the theory is developed we
verify it numerically and we use it to characterize some different motions.

4.1 Information Theory for Non-Stationary processes

4.1.1 General framework

Shannon entropy
We note M(t) a continuous non-stationnary stochastic time process, and pMt(x) =

p(M(t) = x) its probability density function at time t. We can naturally build the time
embedded process M (m,τ)(t) [197].

The entropy of a non-stationnary time embedded process M (m,τ)(t) at time t is defined
as:

H(M (m,τ)(t)) = Ht(M
(m,τ)) = −

∫

Rm
p
M

(m,τ)
t

(x) log(p
M

(m,τ)
t

(x))dx (4.1)

Entropy rate
The entropy rate of order m at time t measures the variation of Shannon entropy be-

tween M
(m+1,τ)
t and M

(m,τ)
t−τ , two successive time-embedded versions of the non-stationnary

stochastic process M(t):

h(m,τ)(M(t)) = h
(m,τ)
t (M) = Ht(M

(m+1,τ))−Ht−τ (M
(m,τ)). (4.2)

Mutual Information
The mutual information measures the amount of information shared by two processes

L
(m,τ)
t and M

(p,τ)
t′ at time t and t′, and is defined by :

I(M
(p,τ)
t′ , L

(m,τ)
t ) = (4.3)

=

∫

Rm+p

p
M

(p,τ)

t′ ,L
(m,τ)
t

(y,x) log

(
p
M

(p,τ)

t′ ,L
(m,τ)
t

(y,x)

p
M

(p,τ)

t′
(y)p

L
(m,τ)
t

(x)

)
dydx (4.4)

Auto Mutual Information
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In order to analyse the nonlinear temporal dynamics of process M , we use auto mutual
Information, defined in [77].

I(m,p,τ)(M(t)) = I
(m,p,τ)
t (M) = I(M

(p,τ)
t ,M

(m,τ)
t−pτ ) . (4.5)

I
(m,p,τ)
t (M) measures the shared information at time t between current p-points dynamics

and past m-points dynamics.
Following eq.(1.25), the entropy rate can then be expressed as:

h
(m,τ)
t (M) = Ht(M)− I(m,1,τ)

t (M) . (4.6)

Relation between the entropy rate of a process and the entropy of its incre-
ments

For any process M , we have the following relation:

h(m,τ)(M(t)) = h(m−1,τ)(δτM(t))− I
(
M(t− τ), δτM(t)|δτM (m−1,τ)(t)

)
. (4.7)

In the special case m = 1, we have:

h(1,τ)(M(t)) = H(δτM(t))− I(M(t− τ), δτM(t)) . (4.8)

Proof. The demonstration does not involve any hypothesis on the process, which may not
be scale invariant. The stationarity of the increments is not required.

Step 1 : We say that:

H(M (m,τ)(t)) ≡ H (M(t),M(t− τ),M(t− 2τ), ...,M(t− (m− 1)τ))

= H (M(t), δτM(t), δτM(t− τ), ..., δτM(t− (m− 2)τ)) . (4.9)

This follows from expressing the movement M as a sum of its ”recent” increments,
and using chained conditioned probabilities.

Another way to derive eq.(4.9) is to transform the embedded vector M (m,τ)(t), using
a linear transformation:

M (m,τ) 7→M ′(m,τ)(t) = Qm.M
(m,τ)(t),

where Q is the band matrix defined as:

Qm ≡




1 0 0 · · · 0 0
1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 0
0 0 0 · · · 1 −1



. (4.10)

Note that only the diagonal and the subdiagonal are populated. Note also that Qm is not
orthogonal, and not unitary, but its determinant is

det(Qm) = (−1)m−1 , (4.11)
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so |det(Qm)| = 1, which is enough to write H(M ′(m,τ)(t)) = H(M (m,τ)(t)), which proves
eq.(4.9).

Step 2 : We combine the entropies according to eq.(4.2) and get:

h(m,τ)(M(t)) = H(δτM
(m,τ)(t))− I

((
M(t− τ), δτM

(m−1,τ)(t− τ)
)
, δτM

(m,τ)(t)
)

(4.12)

which can straightforwardly be rewritten as eq.(4.7).

Self Similar motions: Non-Stationary processes with Stationary increments

Along the above section we have setted a framework where applying information theory
to non-stationnary processes. In this section we focus on self similar motions with sta-
tionnary increments and we deduce the behaviour of the above tools in function of the
time t and the scale τ of analysis.

We suppose stationary increments
For stationary increments, the statistics of δτM(t) do not depend on time t and we

can write pδτM(t) = pδτ .

We suppose scale invariance
For scale-invariant processes there exists a value H ∈ R, 0 < H < 1 such that for all

a ∈ R+, x ∈ R we have an equality in law between the statistics of M(at) and aHM(t).

pMat(x) =
1

aH
pMt(

x

aH
).

This is also true for the embedded signal.

p
M

(m,aτ)
at

(x) =
1

amH
p
M

(m,τ)
t

( x

aH

)
.

With the stationarity of the increments pδτM(t) = pδτ and setting M(t = 0) = 0, M(t)
can be seen as an increment, M(t) = M(t)−M(0) = δt(t), which is itself scale invariant.

pδaτ (x) =
1

aH
pδτ

( x

aH

)
.

It is easy to show that a sum of scale invariant processes with parameter H is also
scale invariant with the same parameter H [].

When there is scale invariance, the special time dependence can be recast to unit-
time (t=1). This simply amounts to rescaling each dimension. This is easy to do with
M ′(m,τ)(t). Unfortunately, all the results above do not give explicit formulas for the
“constants” that appear.

Shannon entropy
The Shannon entropy defined in eq.(4.16), of the set of points M (m,τ)(t) at time t is:

H(M (m,τ)(t)) = H0(M (m,τ/t)(1)) +H ln t+ (m− 1)H ln τ (4.13)

Entropy rate
Once we know the Shannon entropy of a process M for any embedding m we can

calculate the entropy rate using eq.(4.17) or eq.(4.19) arriving to:
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h(m,τ)(M(t)) = h
(m,τ/t)
0 (M(1)) +H ln τ (4.14)

The “constants”H0 or h0 are given by the dependence structure of either the movement
or its increments (i.e., the noise) between times (1, 1− τ/t, ..., 1− (m−1)τ/t). They have
no reason to be independent on τ/t, but the dependence on τ/t is weak, hence the naming
“constants”.

4.1.2 T -length window framework

In order to work within this framework, the stationarity of the increments δτ (M(t)) of the
analysed process is required. In this framework we study non-stationnary processes by
fixing a window size T of analysis, and defining the PDF of apparition of a value M (m,τ)

during a time interval of length T .

p̄M(m,τ),T (x) =
1

T

∫ ti+T

ti

p
M

(m,τ)
t

(x)dt (4.15)

Shannon entropy
The entropy of this PDF is:

H̄T (M (m,τ)) = −
∫

Rm
p̄M(m,τ),T (x) log(p̄M(m,τ),T (x))dx (4.16)

As such, it involves arbitrarily high order moments of the PDF p̄M(m,τ),T (x), and
therefore high order statistics. Nevertheless, as the entropy doesn’t depend on the first
moment of the PDF and the increments δτ (M(t)) are stationnary, H̄T (M (m,τ)) only depend
on T and not on the initial time value ti defining p̄M(m,τ),T (x).

This entropy H̄T (M (m,τ)) represents the entropy of the set of values of the process
M (m,τ)(t) during a time interval of size T . As for stationnary processes, in the case of
m = 1, there is no dependence of the entropy on τ , and then, from here till the end we
will write H̄T (M) = H̄T (M (1,τ)).

Entropy rate
As for the Shannon entropy we can define the entropy rate during a time interval of

size T :

h̄
(m,τ)
T (M) = H̄T (M (m+1,τ))− H̄T (M (m,τ)). (4.17)

Auto Mutual Information
We can define the auto mutual information during a time interval of size T as:

Ī
(m,p,τ)
T (M) = H̄T (M (m,τ)) + H̄T (M (p,τ))− H̄T (M (m+p,τ)) (4.18)

Following eq.(1.25), the entropy rate during a time interval of size T can then be
expressed as:

h̄
(m,τ)
T (M) = H̄T (M)− Ī(m,1,τ)

T (M) . (4.19)

All the above time-averaged measures, H̄T (M (m,τ)), Ī
(m,p,τ)
T (M) and h̄

(m,τ)
T (M) depend

on the window size T and the scale τ .



98 Chapter 4: Information theory of non-stationary processes

Analytical results for fractional Brownian motion

Fractional Brownian motion (hereafter fBm) is a continuous-time random process pro-
posed by Mandelbrot and Van Ness [137] in 1968, which quickly became a major tool in
various fields where concepts of self-similarity and long-range dependence are relevant.
Although this signal is non stationary, its increments are Gaussian and stationary. The
non-stationary covariance structure E{B(t)B(t+ τ)} = σ2

0c(t, τ) is given by

σ2
0c(t, τ) =

σ2
0

2

[
t2H + (t+ τ)2H − |t− (t+ τ)|2H

]
(4.20)

The pre-factor σ0 is a normalization constant.

The fBm has Gaussian statistics, we can therefore write its entropy following eq.(1.36).
In addition, the fBm is non stationary, but if we consider a signal of finite temporal
extension T � τ and Hölder exponent H, if we note H0

FBM ≡ 1
2

ln (2πeσ2
0), we find:

Entropy

H̄
(1,τ)
T (B) = H0

FBM +H lnT (4.21)

Auto-mutual information

Ī
(1,1,τ)
T (B) = −H ln

( τ
T

)
+ C

( τ
T

)
(4.22)

with

C
( τ
T

)
=

1

2
ln

(
τ

2T
+ 1

2H+1

( τ
T

+ 1
2H+1

)

)

which has been numerically shown to be very few dependent on the embedding.
Entropy rate

h̄
(m,τ)
T (B) ' H0

FBM +H ln τ − C
( τ
T

)
(4.23)

which is independent of T up to corrections in τ/T , which are negligible if T is large
enough compared to the range of τ used. The entropy rate of the fBm is therefore linear
in ln(τ), with a constant slope H, independent of the temporal extension. This analitycal
result has been numerically probed to be very few dependent of the embedding. We can
observe how the main dependance on ln(T ), appearing in the expressions of H̄T (B) and

Ī
(m,p,τ)
T (B) dissapears in the entropy rate h̄

(m,τ)
T (B), just because of a compensation of the

dependances in the entropy and the auto mutual information.

Relation between the entropy rate of fBm and the entropy of its increments
We can write the entropy of the increments of a fBm, which are stationnary and

Gaussian, as:

H(δτB) = H0
FBM +H ln(τ) (4.24)

Looking at eq.(4.23) and eq.(4.24), we can straightforwardly write:

h̄
(m,τ)
T (B) ' H(δτB)− C

(
τ

Tmax

)
(4.25)
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To obtain these relations for a fBm, we have calculated the different coefficients of
the covariance matrix of eq.(1.36). Then, we can calculate the determinant of this matrix
and the mean over time of the determinant between tmin = 0 and tmax = T . With the
determinant and eq.(1.36), we can obtain the different entropies involved in the different
equations of H̄T , ĪT and h̄T respectively. It’s important to suppose that T � τ .

4.2 Data and procedure

In order to build different self-similar non-stationary processes M(t) with stationary in-
crements x(t), we use eq.(4.26) with the three different processes defined in section 3.1 as
increments.

M(t) =
t∑

i=1

x(i) (4.26)

Using the fractional Gaussian noise of section 3.1, we generate a fractional Brown-
ian motion (fBm), which is the only Gaussian self-similar process with stationary incre-
ments [137]. Using the two log-normal noises of section 3.1, we generate two different
self-similar motions, that we call “standard” and “even” log-normal motions depending
on the respective transformation used to generate them (section 3.1).

We characterize each motion by computing its entropy, auto mutual information and
entropy rate, using the Kozachenko-Leonenko and Kraskov-Stögbauer-Grassberger algo-
rithms for entropy and mutual information (see chapter 2).

4.3 Numerical analysis: T -length window framework

4.3.1 Characterization of the estimates

Standard deviation characterization

We present the variation of the standard deviation (std) of h̄
(m,τ)
T when N is varied,

and in particular we compare it to the std of the two separate terms H̄T and Ī
(m,τ)
T in

eq.(4.19). We observe in figure 4.1 that the std of each contribution separately is much

higher than the std of h̄
(m,τ)
T : There is a partial cancellation of the standard deviations

in the estimation of the entropy and the mutual information, respectively, such that the
standard deviation of h̄

(m,τ)
T is much smaller.

Bias characterization

We have tried to quantify how the bias depends on both N and k and observed that the

convergence seems to be in k/N
1

m+1 — in agreement with the results of [116, 69] for the
mutual information estimator that we use — as can be seen in figure 4.2 where we have
gathered all possible values of the couples (log2(N), k) ∈ [9, ..., 17]× [4, ..., 18].
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Figure 4.1: Standard deviations of H̄
(1,τ)
T (triangles), Ī

(1,1,τ)
T (circles) and h̄

(1,τ)
T (stars), as

functions of N , in a) for the fBm and in b) for the two log-normal processes. In blue the
standard log-normal process; in red the even log-normal process.
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Figure 4.2: Dependence of h̄
(1,τ=2)
T on k/N

1
2 for the fBm (a) and for the standard (b) and

even (c) log-normal processes.

Conclusions

The standard deviation of h̄
(m,τ)
T can be made arbitrarily small, especially compared to

the ones of the entropy or the auto mutual information. Both the bias and the standard
deviation of our estimator increase when k is increased or N is reduced. We choose k = 5
in the remainder of this chapter, and use datasets of N = 216 points.

4.3.2 Dependence of h̄
(m,τ)
T and H̄

(m,τ)
T on T and the scale τ

In this section, we want to numerically verify if the analytical behaviors of entropy and
entropy rate obtained in the general framework for self similar motions remain valids in
the T -length window framework. To do that, we compute numerically the entropy and
entropy rate of a fBm for different window sizes T , and independently, for different scales
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Figure 4.3: a) Entropy H̄T (M (m,τ)) and b) entropy rate h̄
(m,τ)
T (M) in function of the loga-

rithm of the window size ln(T ) of the analysis for a fixed scale τ . c) Entropy H̄T (M (m,τ))

and d) entropy rate h̄
(m,τ)
T (M) in function of the logarithm of the scale of analysis ln(τ)

for a fixed T = 216. All the estimators were applied on a fBm with H = 0.7. In a) and
d) the black line represents a straight line of slope H = 0.7. In c) the different measures
follow a linear behaviour of slope (m− 1)H.

The behavior of H̄
(m,τ)
T in figure 4.3 (a) agrees with the behavior of H

(m,τ)
t in eq.(4.13).

The Shannon entropy H̄
(m,τ)
T at a given scale, in function of T , shows a slope equal to H

independently of the embedding. On the other hand, in figure 4.3 (b), the entropy rate

h̄
(m,τ)
T shows an almost constant behaviour for any embedding, in agreement with eq.(4.14)

for h
(m,τ)
t . The small dependence of the entropy rate on T can be due to bias effects, whose

importance increases with the embedding, but it can also be due to a different behavior
of the entropy rate in the different frameworks when the embedding increases.

Figures 4.3 c) and d) show a behaviour of H̄
(m,τ)
T and h̄

(m,τ)
T in function of τ according

to eq.(4.13) and eq.(4.14) for H
(m,τ)
t and h

(m,τ)
t . Shannon entropy H̄

(m,τ)
T behaves as

(m − 1)H ln(τ) while entropy rate behaves as H ln(τ) for any embedding m. Figure 4.4

shows the differences between the computed entropy rates h̄
(m,τ)
T in function of τ and

their main supposed behaviours H ln(τ) for different embedding. When the embedding

dimension increases, the difference between the behaviour of h̄
(m,τ)
T and H ln(τ) increases.
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Figure 4.4: Entropy rate h̄
(m,τ)
T (M) −H ln(τ) for a fBm with H = 0.7 . The embedding

dimension m varies from 1 to 4. The time window size is fixed to T = 216.

This result is in agreement with figure 4.3 b), and probably due to a different behavior of
the entropy rate in the different frameworks when the embedding increases.

We find the same behaviours of h̄
(m,τ)
T and H̄

(m,τ)
T in function of T and τ for the different

self-similar motion that we studied.

4.3.3 Relation between the entropy rate of the motion and the
entropy of its increments
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Figure 4.5: Mutual information between the motion and its increments I(Mt−τ , δτMt) in
function of the rate τ/t. The motion is a fBm with H = 0.7.

Returning to the general framework, figure 4.5 shows the behaviour of I(Mt−τ , δτMt)
in function of τ/t which varies from 0 in both limits to a maximum value of 0.08 when
τ/t = 0.5. In figure 4.5, the red line correspond to the analytical prediction, while the
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black lines correspond to multiple curves for different t and different τ . Consequently,
the only important parameter defining the magnitude of I(Mt−τ , δτMt) is τ/t and the
importance of this term in eq.(4.8) is very few for any rate τ/t.

Figure 4.6 a) shows that eq.(4.8) is valid in the T -window framework for scale invariant
motions with stationnary increments. The black line indicates the entropy of the different
increments of size τ of a fBm M . The blue line is the entropy rate of the fBm at scale
τ . The red line is the entropy rate of the fBm computed as the right hand side of
eq.(4.8). Finally, the magenta line is the mutual information between the increments of
the motion and the motion itself. This mutual information term is negligeable for τ � T .
In addition, the behaviour of ĪT (Mt−τ , δτMt) in τ/T is expected to be similar to that of
I(Mt−τ , δτMt) (figure 4.6), and numerical computations show that both I(Mt−τ , δτMt)
and ĪT (Mt−τ , δτMt) are of the same maginitude for τ/t = τ/T .

Figure 4.6 b) shows how the entropy rate of the fBm match almost perfectly (in the
errorbars) with the entropy of the increments of the fBm.
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Figure 4.6: a) Entropy rate of the motion h̄
(1,τ)
T (Mt), entropy of the increments H̄T (δτM),

mutual information between the motion and the increments ĪT (Mt−τ , δτMt), and the
difference between the two H̄T (δτM) − ĪT (Mt−τ , δτMt). b) Entropy rate of the motion

h̄
(1,τ)
T (Mt) minus entropy of the increments H̄T (δτM), and mutual information between

the motion and the increments. The motion is a fBm with H = 0.7. The time window
size is T = 1024.
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4.4 Application: Discrimination between processes
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Figure 4.7: h̄
(1,τ)
T value for an standard (blue) and even (red) log normal signals and a

fBm (black) in function of the logarithm of the τ . Number of neighbors k = 5 and data
size N = 216. The standard deviation is obtained with 100 realisations. The straight lines
in (b) indicate the theoretical values of the entropy of the processes.

We now study the dependence of h̄
(m,τ)
T on the time lag τ for the three motions pre-

sented in section 4.2. Varying τ is analogous to varying the time scale at which the signal
is sampled [80], and then, we can analyse the self-similarity properties of the processes
and look for fine differences between them.

Results for fixed size, N = 216, k = 5 neighbors and embedding dimension m = 1, are
reported in figure 4.7 (a). The behaviors accross scales of the three motions are linear in
ln(τ). To get a more precise insight, we substract, for the three motions, the dependence
H ln(τ) obtained numerically for self-similar processes in the precedent section. Results
are presented in figure 4.7 (b).

We obtain for the fBm a constant value very close to the theoretical value 1
2

log(2πe) '
1.42. The red, even log-normal motion does not depend on τ anymore. So, just like in the
fBm case, the slope is exactly H, as expected for a self-similar process. On the contrary,
the blue, standard log-normal motion still depends slightly on τ , sharing the same value
with the other log-normal process for τ = 1, and the same value with the fBm for large τ .
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Figure 4.8: PDF of the normalized increments with τ = 2j, from j = 0 (bottom) up to
j = 6 (up) of (a) Hermitian and (b) even Hermitian log-normal motions. Curves have
been arbitrarily shifted on the Y-axis for clarity.

We can state that the fBm and the even log-normal (red) motions are self-similar with
Holder exponent H = 0.7. Their values at τ = 1 are directly related to the probability
density function of the noises defining the motions, see eq.(4.8) for the general framework.
We can state also that the standard log normal process (blue) is not self-similar with an
evolution of its pdf across scales.

The different behaviors of h̄
(m,τ)
T observed for the two log-normal motions should be

therefore related to different evolutions of the pdfs of the increments when τ is increased.
To check this, we plot in figure 4.8 the normalized pdfs (std=1) of the increments δτM(t) =
M(t)−M(t− τ), for various values of τ .

While the pdf of the increments of the, even log-normal process (red) does not change
when τ is increased, this is not the case for the increments of the standard log-normal
motion (blue): the shape of the pdf changes from log-normal for small τ to Gaussian for
large τ . Note that for τ = 1, the pdf of the increments of the motion is nothing but the
pdf of the noise, which is the same for both log-normal processes. Indeed, the entropy
rate has very similar values for the two log-normal motions when τ = 1. While for the
red, even log-normal process, h̄

(m,τ)
T remains constant across scales τ , this is not the case

for the blue, standard process, for which the entropy rate converges to the value obtained
for the Gaussian process, see figure 4.7 (b).

4.5 Discussion and Conclusions

In the first part of the chapter, we develop analytically the expression of entropy rate
h

(m,τ)
t (M) at a given time t and scale τ for a generic non-stationary process M(t), and

we obtain the analytical relationship between this entropy rate and the entropy of its
increments H(δτM), which are very strongly connected (eq.(4.8)). This connection allows
us to argue that the self-similarity properties of any motion can be studied by measuring
its entropy rate across scales. In the case of monofractal motions, we show analytically
that the entropy rate across scales gives a measure of the Hurst exponent. However, we
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don’t show the specific analytical expressions for multifractal processes.
In the second part of the chapter, we propose a new framework where analysing

non-stationnary processes using information theory. In this framework, we analyse time
windows of size T of the processes. In order to do that, we define the probability density
function of a process in a time window of size T , as the mean of the different PDF’s of the
process at the different times inside the window. Then, the information theory quantities
are computed using this averaged PDF. The interpretation of these information theory
quantities is not anymore the same as in the general framework. We interpret H̄T (M(t))
as the complexity, or the total amount of information needed to characterize a temporal
trajectory Mt ∀ t ∈ [0, T ] of a process M(t).

In this framework, we develop the analytical expressions of entropy, auto mutual
information and entropy rate of a fractional Brownian motion, for which the covariance is
known. We also show numerically the behaviours of entropy, and entropy rate in function
of T and τ for self similar processes and conclude that these behaviours are in agreement
with the ones predicted for H

(m,τ)
t (M) and h

(m,τ)
t (M). We show numerically the validity

in this framework of the analytical relationship between the entropy rate of a process
and the entropy of its increments, obtained in the generic framework. The validity, in
this new framework, of this analytical relationship is shown for a fBm. However, it is
valid for any process, either monofractal or multifractal. This methodology, based on the
measure of the entropy rate computed in a window size of time T , is strongly related
to a new methodology that we develop in chapter 7. This new methodology works on
the increments of the analysed processes, and both are able to describe the self-similarity
properties of any process.

Finally, we use h̄
(m,τ)
T (M) to analyse three different a priori self similar non-stationnary

processes, and obtain fine differences in their self similarity properties (figure 4.7). We ob-

serve that while the fBm and the even log-normal motions are self-similar with h̄
(m,τ)
T (M) =

H0 +H ln(τ) , the standard log-normal motion presents a non-linear entropy rate across
scales. This application allows to corroborate the close relationship between the entropy
rate across scales of a process and the entropy, and consequently the PDF, of its incre-
ments. In this application, the three analysed motions have been built with the noises
of chapter 3 as smaller increment. Comparing the results of chapter 3 with the results
obtained in section 4.4, we can conclude that analysing the motion is not equivalent to
analysing the generator noise. More precisely, the entropy rate of the motions characterize
their self-similarity properties and the entropy rate of the noise doesn’t.
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Turbulence





CHAPTER 5

Fully developed turbulence

Two different descriptions of a fluid flow are usually adopted to study fluid mechanics:
the Eulerian framework and the Lagrangian one. In both, one supposes the fluid to be
composed of particles of size larger than molecular scales but smaller than dissipative
ones (defined below).

• In the Eulerian framework, the observables of the fluid particles: velocity, pressure,
temperature, etc depend on space r and time t.

• In the Lagrangian framework, one follows the particles and studies the observables
of each particle over time.

During my PhD, I focused on Eulerian turbulence and so, in the following, we develop
the theory using the Eulerian framework. In this framework a flow of a fluid of viscosity
ν is characterised by:

• Conservation of momentum or Navier-Stokes equations:

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+∇ · τ (5.1)

where p is the pressure, ρ the density of the fluid, v the velocity and τ is the viscous
stress tensor.

• Conservation of mass or continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0 (5.2)

• Conservation of energy:

ρcp

[
∂T

∂t
+ (v · ∇)T

]
= k∇2T + φ (5.3)
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where cp is the specific heat of the fluid, φ is the dissipation function representing
the work done against viscous forces, and T is the temperature.

In the following we develop the theory only for incompressible and isothermal flows.
For an incompressible flow (ρ ≡ cte) with constant temperature (T ≡ cte):

• Conservation of momentum or Navier-Stokes equations becomes:

∂v

∂t
+ (v.∇)v = −∇p

ρ
+ ν∇2v (5.4)

• Conservation of mass or continuity equation becomes:

∇.v = 0 (5.5)

• Conservation of energy becomes:

φ = 0 (5.6)

Eq.(5.4) describes the dynamics of the velocity v(r, t) of an incompressible fluid of
viscosity ν and density ρ. It shows the competition between different forces acting on the
fluid:

• ∂v
∂t

+ (v.∇)v are the inertial terms. The first one indicates the variation in time of
the velocity, while the second one, which is non-linear, describes advection.

• −∇p
ρ

is the internal force.

• ν∇2v is the diffusion term due to the viscosity of the fluid.

The competition between the non-linear advective and the linear diffusion terms de-
fines the Reynolds number:

R =
(v.∇)v

ν∇2v
(5.7)

The Reynolds number, initially introduced by Stokes and later generalized by Reynolds,
characterises the behaviour of the flow. A low Reynolds number corresponds to a laminar
flow and a high Reynolds number indicates a turbulent flow. Fully developped turbulence
is defined in the limit of infinite Reynolds number. With dimensional analysis one can
approximate the Reynolds number as [66]:

R ≈ σL

ν
(5.8)

where the characteristic velocity σ is the r.m.s velocity fluctuation of the fluid at the
characteristic scale L of the flow, defined as σ =

√
〈(δLv(x))2〉.

In 1921 Richardson presented an account of turbulence, which still prevails. In
Richardson’s description, turbulence is presented as a hierarchy of whirls of different
sizes, with an energy cascade from larger eddies down to smaller ones [167], see figure 5.1.
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This description defines inherently two important domains: the integral (large scales) do-
main where energy is injected and the dissipative (small scales) domain where energy is
mostly dissipated. So, from Richardson’s picture, we note a very important characteristic
of turbulence: it is multi-scale, see figure 5.2.

L

Figure 5.1: Richardson cascade description of turbulence [66].

Inspired by Richardson’s vision of turbulence, A.N. Kolmogorov built a revolutionary
theory of turbulence, Kolmogorov 1941 theory, abbreviated as K41.

5.1 Kolmogorov’s theory

Influenced by Richardson’s description of turbulence, Kolmogorov differentiated three
different domains of scales in turbulence:

• The integral region: large scales, equal to or larger than the integral scale L. The
integral domain is defined as the domain where energy is injected in the system.

• The inertial range: scales smaller than L but larger than the Kolmogorov dissi-
pative scale ηK . In the inertial domain, energy cascades from large to small scales.

• The dissipative domain: scales smaller than ηK . In the dissipative domain,
energy is dissipated.

The inertial region is characterized by a clear predominance, in the Navier-Stokes
equation, of the advective term over the diffusive one, while in the dissipative domain
both terms are equally important.

In order to develop his theory, Kolmogorov made two hypotheses [108]:
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Figure 5.2: P.S.D. of turbulence.

• The first similarity hypothesis: “At very high, but not infinite, Reynolds num-
ber, all the small scale statistical properties are uniquely and universally determined
by the scale l, the mean energy dissipation rate 〈ε〉 and the viscosity ν.”

• The second similarity hypothesis: “In the limit of infinite Reynolds number,
all the small-scale statistical properties are uniquelly and universally determined by
the scale l and the mean energy dissipation rate 〈ε〉.”

which we can summarize as: for Reynolds number going to infinity, the small scales
(scales smaller than the integral scale L) of turbulence are statistically isotropic and
independent of the large scales [66, 37].

The mean energy dissipation rate is defined as [108]:

〈ε〉 =
1

2
ν
∑

i,j

(
∂vi
∂xj

+
∂vj
∂xi

)2

(5.9)

Using only his first similarity hypothesis, Kolmogorov shows in [108] that the dissipa-
tion scale ηK , below which diffusion is relevant, can be expressed as:

ηK ≈
ν3/4

〈ε〉1/4
(5.10)

Using the two universality assumptions and phenomenological analysis [66], Kol-
mogorov statistically characterized the behaviour of the velocity increments in the inertial
region [109]:

δlv(x) = vx(x+ l)− vx(x) ≈ ε1/3l1/3 (5.11)

Eq.(5.11) leads to specific scaling behaviours of the moments of the velocity increments,
called structure functions [109]:

Sp(l) ≡ 〈(δlv)p〉 = Cp(l 〈ε〉)p/3 (5.12)
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where p is the order of the structure function and Cp are the universality constants that
only depend on the order of the structure function.

From the scaling behaviour of the second order structure function S2(l) one obtains
the spectral energy distribution of Eulerian fully developed turbulence (see figure 5.2):

E(k) =
〈
‖vx(k)‖2〉 ∝ k−5/3 (5.13)

where l = 1/k.

The relations above (eq.(5.11), eq.(5.12) and eq.(5.13)) are valid for any scale l in the
inertial region, where there is neither direct energy injection nor direct energy dissipation,
but a flux of energy Π from integral scale L to dissipative scale ηK . Consequently with
the eq.(5.11), the flux of energy Π should be independent of the scale and equal to the
mean energy dissipation rate:

Π ≈ 〈(δlv(x))3〉
l

≈ 〈ε〉 (5.14)

In particular, very close to the integral scale L we arrive to

〈ε〉 ≈ 〈(δLv(x))3〉
L

, (5.15)

showing the finiteness of the mean energy dissipation rate.

Four-fifths law

The a priori phenomenological definition of the mean energy dissipation rate of eq.(5.15)
was directly derived by Kolmogorov from the Navier-Stokes equations. Kolmogorov ob-
tained an exact relation for the third order structure function S3(l) [107], which should
be respected for any model of turbulence:

In the limit of infinite Reynolds number, the third order structure function of homoge-
neous isotropic turbulence, evaluated for increments l small compared to the integral scale,
is given in terms of the mean energy dissipation rate by

S3(l) = −4

5
〈ε〉 l (5.16)

The four-fifths law shows the existence of an energy cascade in fully developed turbu-
lence from large scales to smaller ones.

From the estimation of the Kolmogorov scale in eq.(5.10) and the approximation of
the mean energy dissipation rate of eq.(5.15) it is possible to show that for large enough
Reynolds number the inertial range is sufficiently large [125, 112].

ηK
L
≈ R−3/4 (5.17)

This relation shows that for Reynolds number going to infinity the distance between
L and ηK becomes infinite (infinite inertial range) and one is in the framework of fully
developped turbulence.
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In order to avoid anisotropic effects of integral scales, L, in the definition of the
Reynolds number, it is useful to define the Reynolds number at a smaller scale, called the
Taylor scale λ. This Taylor scale is defined through the relation:

1

λ2
=
〈(v − 〈v〉)2〉
〈(∂xv(x))2〉 (5.18)

The associated Reynolds number is defined as:

Rλ ≈
σλλ

ν
(5.19)

where σλ is the r.m.s velocity fluctuation of the fluid at the scale λ.
Using a phenomenological approach and eq.(5.15) (result obatined directly from the

finiteness of the energy dissipation) one can shows [66]:

Rλ ≈
√
R (5.20)

This definition of the Reynolds number is specially advantageous for experimentalists,
who can measure the Reynolds number taking advantage of the isotropy of the flow at
the Taylor scale, which is located in the inertial range.

Kolmogorov-Oboukhov 1962 correction

Kolmogorov’s 1941 theory assumes that “Since 〈ε〉 is almost constant in regions which
are small in comparison with the external scale L, when l � L it may be supposed that
〈εl〉 = 〈ε〉”. This assumption was quickly constested by Landau, as it does not take into
account that with the increase of the ratio L/l the variation σ2

ε of the dissipation of energy
ε defined in the K41 theory (see eq.(5.9)) would increase without limit [125, 112, 66].

Experimental support for the criticism of K41 theory came later with observations
of turbulent intensity variations when analysing spectral fluctuations [88, 150]. These
observations indicated the inhomogeneity of the dissipation rate. In the seventies, exper-
iments analysing the deformation of the PDFs of velocity increments across scales [199]
(see figure 5.4) and later the scalings of the structure functions of order higher than 3 [8]
corroborate the innacuracy of K41 theory.

Kolmogorov and Oboukhov corrected the previous K41 theory by supposing an asymp-
totic behaviour for the dispersion of the logarithm of ε, σlog(ε). The main correction made
by Oboukhov and Kolmogorov to the K41 theory was the definition of a local energy dis-
sipation εl instead of a global one ε [112, 150]. They defined εl distributed with log-normal
statistics and they found:

δlv(x) = vx(x+ l)− vx(x) ≈ (εll)
1/3 (5.21)

Sp(l) = 〈(δlv)p〉 = Cp(l 〈εl〉)p/3 (5.22)

The assumption of a non-constant dissipation rate leads to different scalings of the
increments, and hence of the structure functions, across scales. This phenomenon is
called intermittency.
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5.2 Multifractal approach of Kolmogorov’s theory

Frisch and Parisi [67], recovered all of the Kolmogorov theory of turbulence using the
multifractal approach [66, 37, 191]. This is done by reformulating the scaling behaviour
of increments and structure functions across scales:

δlv(x) ≈ lh (5.23)

Sp(l) ≈ lζ(p) (5.24)

where h, called the Hölder exponent, indicates the order of the singularities characterising
the turbulent velocity and ζ(p) defines the scaling exponents of turbulent velocity. Any
model is characterized by the set of their scaling exponents, ζ(p), as they appear in
eq.(5.24). The four-fifths law imposes ζ(3) = 1 and this should be respected by any
model or process representing turbulence, see figure 5.3 a).

In multifractal theory h is a random variable with probabilty density:

Pl(h) ≈ l3−D(h) (5.25)

with D(h) the singularity spectrum (see figure 5.3 b)), which is related to the probability
of finding the Hölder exponent h [67, 208]. The number 3 in eq.(5.25) indicates the
dimension of the flow.

The scaling exponents and the singularity spectrum are related by a Legendre trans-
form [67, 208]:

ζ(p) = minh [ph + 3−D(h)] (5.26)

Monofractal

LN

LP

Modane

LN

Monofractal

LP

Modane

h

b)a)

D
(h

)

ζ
(p
)

p
0.2 0.4 0.6 0.8 11 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

Figure 5.3: a) Scaling exponents ζ(p) versus order p and b) Singularity spectrum D(h)
versus Hölder exponent h, both for three different models of turbulence in the inertial
domain, together with an experimental Eulerian velocity measure (Modane, black sym-
bols). Models are: monofractal fractional Brownian motion (cyan, continuous straight
line), multifractal log-normal (blue, dashed line) and multifractal log-Poisson (red, dot-
ted line). The scaling exponents ζ(p) are computed from the partition functions of the
increments. In order to compute D(h) we use the wavelet leaders methodology [215].
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Another way to describe the scaling exponents is to use the following expansion [52]:

ζ(p) = c1p− c2
p2

2!
+ c3

p3

3!
− · · · (5.27)

where the coefficients cp of the expansion are called log-cumulants.
A linear behavior of the scaling exponents with p characterizes a monofractal process.

In the case of a monofractal process c1 = h is called the Hurst exponent, and noted H.
In contrast, the existence of non-zero log-cumulants cp of order p ≥ 2, and hence a non
linear behavior of the scaling exponents, reveals multifractality, see figure 5.3 a).

5.2.1 Monofractal model

Kolmogorov’s 1941 theory states h ≡ H = 1/3 which places turbulence in the monofractal
regime. This assumption can be formulated as:

• D(h) = δ(h − 1/3) is a single-valued function. For a monofractal process there
is only one possible value for the Hölder exponent h, the Hurst exponent H, see
figure 5.3 b).

• ζ(p) = pH = p
3
. The scaling exponent are linear in p of slope 1/3 (see figure 5.3)

a), so only the first log-cumulant c1 is non zero: c1 = H = 1/3.

• Sp(l) ≈ lp/3 normal power laws.

• Self similarity: statistical properties of the increments remain unchanged across
scales. The scale invariance implies the following relation between the probability
distributions pδlX and pδl0X of the increments of scales l and l0:

pδlX(δlX) =

(
l0
l

)H
pδl0X

((
l0
l

)H
δlX

)
, (5.28)

This relation is valid for all pairs of scales (l, l0).

Figure 5.3 a) shows that, when p increases, the scaling exponents of experimental
turbulent velocity deviate from the linear behaviour predicted by the monofractal model.
Therefore, following K41 to model turbulence is not very satisfying for larger p.

5.2.2 Multifractal models

Intermittency is manifested in different ways, which are related. First, one can under-
stand intermittency as the multivaluation of h which leads to the non-linearity of the
scaling exponents ζ(p) [13, 8]. This non-linearity directly implies the abnormal power law
behaviour of the structure functions of the velocity increments [8].

A related manifestation of intermittency is the evolution of the PDF of the velocity
increments when the size of the increment varies, see figure 5.4. The PDF of the velocity
increments, close to Gaussian for scales higher or equal to the integral scale L, deforms
across the inertial domain: it develops larger tails and a dissymetry [199, 13, 149]. The
deformation of the PDF is faster when entering the dissipative range [39].

Intermittency corrections give a multifractal status to turbulence and then:
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• h takes different values. Consequently, the singularity spectrum D(h) is multivalued,
see figure 5.3 b). In the case of KO62 theory the singularity spectrum is parabolic.

• ζ(p) 6= p
3

non linear.

• Sp(l) ≈ lζ(p) modified power laws.

• No self similarity: statistical properties of the increments change across scales. Their
pdfs deform across scales.

δlv(x)/σl

P
(δ

lv
(x

)/
σ
l)

Figure 5.4: Deformation of the PDF of velocity increments across scales, from Gaussian
at large scales to strongly non Gaussian at small scales.

Different multifractal models of turbulence exist. Each one of them takes into account
intermittency in a slightly different way. Between the most famous models are the log-
normal model and the log-Poisson one.

Intermittent log-normal model

This model for turbulence was introduced by Kolmogorov and Oboukhov in 1962 [112, 150]
and extensively studied by Chevillard et al. [38]. It was the first intermittent model of
turbulence, with the following scaling exponents:

ζ(p) = c1p− c2
p2

2

The non-linear dependence of the scaling exponents in p indicates the multifractal
nature of the model, which is quantified by c2. All log-cumulants cp of order p ≥ 2 are
zero. Its singularity spectrum is:
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D(h) = 1− (h− c1)2

2c2

(5.29)

This multifractal process offers a satisfying representation of the scaling exponents
of turbulence if c2 = 0.025 and c1 = 1/3 + 3c2/2 = 0.371. The c2 value for a correct
log-normal modeling of turbulence was obtained experimentally. Once c2 is fixed, the
four-fifths law imposes the c1 value for the model.

Intermittent log-Poisson model

This model was introduced by She and Leveque [178]. This heuristic model leads to
scaling exponents of the form:

ζ(p) = −γp− λ(βp − 1)

The four-fifths law, together with the assumption of a finite support of dissipation

when the viscosity tends to zero [178], imposes λ = 2, β =
(

2
3

)(1/3)
and γ = −1/9. For

these values the model describes the scaling exponents ζ(p) as well as the log-normal
model does.

It has later been interpreted as a log-Poisson model with a singularity spectrum

D(h) = 1− λ+
h + γ

ln(β)

(
ln

(
h + γ

−λ ln(β)

)
− 1

)
(5.30)

The corresponding log-cumulants are:

c1 = −γ − λ ln(β) (5.31)

cm = λ ln(β)m, m ≥ 2 (5.32)

5.2.3 Conclusion

This multifractal formalism of turbulence developed by Frisch and Parisi can describe
both Kolmogorov 1941 and Kolmogorov-Oboukhov 1962 theories. This formalism is also
able to characterize modern physical theories such as the β-model [68, 22, 66] or She and
Leveque model of turbulence [178].

A possible objection to the formalism is that it moves away from physical phenomena.
Nevertheless, it provides an ideal framework to statistically characterize processes and
signals. In part II, we characterize turbulence by analysing experimental and synthetic
processes together with theoretical models, using information theory. We rely on multi-
fractal formalism to describe turbulence and to give an interpretation to our measures.



CHAPTER 6

An information theory viewpoint of K41 theory

We propose in this chapter an information theory perspective on turbulence, and espe-
cially on K41 theory (section 5.1). We first describe the distribution of information (in
Shannon’s sense) across scales in turbulence and then show and explain its close connexion
with the energy scaling. We also explore the existence of an energy cascade in turbulence
via information theory.

In order to study turbulence, and recover the K41 theory in the information theory
framework, we analyse experimental velocity signals obtained from different experimental
setups and a fractional Brownian motion, which is the monofractal synthetic process
proposed by Kolmogorov to model turbulence (section 5.2).

In a first stage, we report how the entropy rate is able to describe the distribution
of information amongst scales, and the relation between the entropy rate of the analysed
process and the entropy of its increments (chapter 4). In a second stage, we design a
conditioning procedure of the signal and we show that this allows for a very fine exploration
of the asymmetry of the increments distribution and hence the inference of the existence
of a finite skewness and an energy cascade.

6.1 Turbulent experimental systems and signals

We analyze two different sets of experimental turbulent data, in order to show the ability
of our measures to grasp inherent properties of turbulence.

The first system consists of a temporal measurement of the longitudinal velocity (V )
at one location in a grid turbulence setup in the wind tunnel of ONERA at Modane [104].
The Taylor-scale based Reynolds number Rλ is about 2500, with a turbulence intensity
of about 8%. The inertial region spans approximately three decades. The sampling
frequency is fs = 25 kHz and the mean velocity of the wind in the tunnel is 〈v〉 = 20.5
m/s. The probability density function of the data is almost Gaussian although there is
some visible asymmetry: the skewness is about 0.175± 0.001.

The second system is a set of temporal velocity measurements at different Reynolds
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numbers in a jet turbulence experiment with Helium [34]. The Taylor-scale based Reynolds
number Rλ is respectively 89, 208, 463, 703, 929, with a turbulence intensity about 23%.

Using the Taylor hypothesis [66] and the mean velocity 〈v〉 of the flow, we interpret
these time series as the spatial evolution of the longitudinal velocity. The time scale τ
and the spatial scale l are related by l = 〈v〉τ . We note the integral time scale T and
the integral spatial scale L, and we have L = 〈v〉T . During this chapter, we represent
our results in function of ln 1

τ
. We define the temporal variable τ being multiple of dt

where dt = 1/fs with fs the sampling frequency in the case of experimental signals. This
representation together with Batchelor model presented in section 6.2.1 allows to estimate
the integral and Kolmogorov scales of the studied flow. In the case of the generated fBm
we analysed in this section, we can suppose fs = 1. In chapter 7 we present all our results
as functions of the ratio τ/T = l/L between the scale of the increment and the integral
scale.

6.2 Scaling of information in turbulence

In order to study the dynamics of the signals, we compute the entropy rate h(m,λ) across
scales (see sections 1.5 and 2.5).

The size of the analysed processes N = 217 is kept constant for all the scales τ . The
entropy rate is computed, and then averaged, over 195 independent realizations in the
case of the Modane turbulent velocity data and the fractional Brownian motion and over
10 realizations in the case of the jet turbulence.

6.2.1 Grid turbulence

Our results are presented in figure 6.1 as a function of log(1/τ). Three regions are ob-
served: above 36ms are the integral scales, below ∼ 0.18ms is the dissipative range, and
in-between them is the inertial range. At larger (integral) scales, the auto-correlation
function vanishes and the entropy rate is equal to the entropy H of the signal (m = 1)
which depends only on one-point statistics. We can interpret this first result as indicating
that the integral scales, where energy is injected and turbulence is generated, are the most
disorganized. In the inertial range, the entropy rate decreases almost linearly with a slope
close to -1/3, represented by a straight line in figure 6.1. As the time — or space — scale
is decreased, the flow appears more and more organized in the sense that the amount of
”new” information brought to one point by another point at a distance τ decreases with
τ . In the dissipative range, the entropy rate decreases faster and faster, as the dissipation
become stronger and stronger. We interpret this as a consequence of the flow being more
and more organized.

The entropy rate displays differently from the power spectrum the separation between
the different domains, as can be seen in figure 6.1. Remaining in the real space we avoid
some perturbing efects of the Fourier transform over the spectrum [134]. The integral and
Kolmogorov scales shown in this figure have been obtained using the Batchelor model [20]
for fully developed turbulence, as detailed below.

We checked that our estimation of the entropy rate does not depend on the number
of neighbors used in the k-nn search algorithm (k = 5 and 10) nor on the sample size N
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Figure 6.1: Top: Power Spectral Density of the experimental signal. The straight line
corresponds to the K41 scaling. Bottom: entropy rate h(m,τ), as a function of the scale
(f = 1/τ) for different embedding dimensions m ∈ {1, 2, 3}. The blue curve corresponds
to eq.(1.40) using the autocorrelation function. The thin straight line is a line of slope
-1/3, the thick straight line has a slope -1.

(N = 216, 217 and 219). The standard deviation of the entropy rate estimation is of the
order of 0.03 for small τ and increase to 0.08 for large τ .

We varied the embedding dimension m and observed a dependance of the entropy rate
in the dissipative range only, for scales τ smaller than 0.18ms. Going deeper and deeper
in this range, the signal is more and more continuous so the knowledge of an increasing
number m of points in the past (separated by the scale τ) decreases significantly the
”new” information brought by a (m+1)th point in the future (figure 6.1). But for m > 2,
there is no measurable evolution anymore, even in the dissipative range.

Batchelor Model: Entropy rate and autocorrelation

Here we present the Batchelor model for fully developed turbulence [20]. Batchelor pro-
vided a model for the inertial and dissipative regions of S2(l), the second-order structure
function:

S2(l) =
(l/L)2/3

(
1 + (ηk/l)

2)2/3
. (6.1)
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L is the integral scale and ηk the dissipation scale, l is the current scale.

Eq.(6.1) imposes on the second-order structure function to have a slope 2/3 in the
inertial range and 2 in the dissipative range, with a smooth transition between these two
regions. Noting that S2(l) = 1−c(l) and assuming Gaussian distribution for the turbulent
velocity, we can use eq.(1.40) and obtain:

h(1,l)(X) = H(X) +
1

2
log(S2

2(l)− 2S2(l)) (6.2)

Substituting the expression of the second order structure function of eq.(6.1) into
eq.(6.2) one derives for the entropy rate h(1,l) two linear behaviors in log(1/l): one with
a slope −1/3 in the inertial region and another one with a slope of −1 in the dissipative
range. This analytical development shows the narrow connection between the traditional
Kolmogorov 1941 scaling law (section 5.1) and our scaling law for the entropy rate.

Fitting S2, the structure function, or fitting the entropy rate (with the Batchelor
model) can be used to estimate the scales L and ηk. Thus, for a serie of measures where
L is kept constant and the Reynolds number (Re) varied, Batchelor model allows to
verify, the well known relation between the Kolmogorov scale (ηk) and the integral one
(L) showed in eq.(5.17).

This can be understood as another test (and application) for our entropy rate esti-
mator, in order to check if the physics of turbulence is well grasped by the entropy rate.
Theoretically, being directly related with the second-order structure function by eq.(6.2),
the entropy rate can also be used to corroborate eq.(5.17).

Fractional Brownian motion

As the turbulent velocity distribution is almost Gaussian, in the K41 theory Kolmogorov
proposed fractional Brownian motion (see section 4.2) with Hurst exponent H = 1/3
to model the dependency structures of turbulent velocity in the inertial range, see sec-
tion 5.2.1. Fractional Brownian motion with Hurst exponent H = 1/3 presents a power
spectral density with a power law of exponent −5/3, like that of the turbulent velocity,
see figure 5.2.

The entropy rate of the fBm is therefore linear in ln(τ), with a constant slope H,
independent of the temporal extension, as we can see in figure 4.3. Figure 6.5 shows the
entropy rate h(1,τ) of a synthesized fBM with H = 1/3. The measured slope of the entropy
rate in function of ln(τ) is 0.32± 0.01, in agreement with the theoretical value H = 1/3.
We have also computed h(m,τ) for 2 ≤ m ≤ 4 and observed a small deviation from the
linear behavior for large τ , while the slope slightly increases to reach 0.34±0.01 for m = 4.
We attribute this to finite size effects, especially in the corrections to eq.(4.23).

The fBm, being monofractal (see section 5.2.1), has no characteristic scales (neither
integral nor Kolmogorov scale), so the slope of its entropy rate is unperturbed. Therefore,
analysing the behaviour of such a process with Hurst exponent H = 1/3 allowed us to
explain the scaling behaviour of the entropy rate of our turbulence data in the inertial
range.
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Entropy rate of the velocity and the entropy of its increments

The turbulent velocity is stationary, and eq.(4.8) can be used to show the analytical
relationship between the entropy rate of the velocity and the entropy of its increments.
Figure 6.2 shows numerically the correctness of eq.(4.8). Figure 6.2 b) shows the border
effects in both limits: when τ is small, under the dissipative scale, the filtering effects of
the experimental set-up affects differently the velocity signal and its increments; for large
scales, the effects of the available statistics are also different. Nevertheless, figures 6.2
a) and b) show the close relationship between the entropy rate of the velocity and the
entropy of its increments.
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Figure 6.2: a) Entropy rate of the velocity h(1,τ)(V ), entropy of its increments H(δτV ),
mutual information between the velocity and its increments I(Vt−τ , δτVt), and the differ-
ence between the two last H(δτV )−I(Vt−τ , δτVt). b) Entropy rate of the velocity h(1,τ)(V )
minus entropy of its increments H(δτV ), and mutual information between the velocity
and its increments. The velocity signal is the one from the wind tunnel at Modane . The
time window size is T = 216.

The case of fractional Brownian motion, being non-stationary, is completely studied
in chapter 4, sections 4.1.2 and 4.3.
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Figure 6.3: Top: entropy rates h(1,τ) for different Reynolds numbers, as a function of the
scale (f = 1/τ). The entropy has been normalised to put all the curves over the lowest
Reynolds number measure. The thin straight line is a line of slope -1/3, the thick straight
line has a slope -1. Bottom: entropy rates h(1,τ), as a function of the scale (f = 1/τ) for
different Reynolds numbers, and the Batchelor fits for each of them (points).

6.2.2 Jet turbulence in Helium

As in the grid turbulent system, in the jet turbulence on Helium we find three different
regions, figure 6.3: integral, inertial and dissipative, with three different behaviors. As
predicted by the theory developed by Batchelor we find a slope −1/3 in the inertial range,
a slope tending to −1 in the dissipative region and a convergence to the entropy value
of the velocity signal in the integral domain. The interpretation is the same than in the
first system. We can see in figure 6.3 how the Batchelor Model is able to fit the behavior
of the entropy rate in the inertial and dissipative domains, and the transition between
them. Another important result is the maximum value of the entropy rate increasing with
the Reynolds number. That can be understood as the total information contained in the
system increasing with the Reynolds number, and then, increasing with the development
of turbulence. The higher the Reynolds the more developed the turbulence, the larger the
value of information contained in the system. It’s important to remark that the maximum
value of the entropy rate is the value of the entropy of the signal and mainly depends on
the standard deviation of the signal.

In this system we have access to different Reynolds number flows, and thus we can
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analyse the variation of the inertial region length of turbulence as measured by the entropy
rate in function of Rλ. We can observe in figure 6.3 how qualitatively the inertial region
length of turbulence measured by the entropy rate decreases when the Reynolds number
decreases, as expected. Using Batchelor model we can fit the different Reynolds number
curves and obtain the integral and Kolmogorov scales predicted by the model for each
curve. The integral scale L is the same for the different analysed signals as they come
from the same experimental set-up, in which Rλ was changed without modifying L.

When the embedding dimension increases we find similar results to the obtained in
the first system. The estimation doesn’t vary, except in the dissipation domain.

6.3 Conditioned Entropy rate

In a general way we can define the conditioned entropy rate h(m,λ)(Xcond) as the entropy
rate applied over a subsampled signal Xcond obtained by conditioning the mother signal
X.

In chapters 3 and 4 we showed that the entropy rate of a random variable X is able to
show the distribution of information along the scales. Even if the entropy rate, as defined
in eq.(1.25), is related to all order statistics, it cannot probe finely the existence of a non
zero skewness because of the effect of a very large 2-point correlation hiding the higher
order statistics of the random variable distribution.

To probe more accurately the symmetry of the two points PDF of a signal X, we pro-
pose a conditioning procedure over its increments. Given a random variable X composed
by a set of points x(i) we can define the increment signal δλX composed by the points
δλ(i) = x(i)− x(i− λ).

We define the signal X+, resp. X−, as the subset of points x(i) from X such that
δλ(i) = x(i)−x(i−λ) > 0, resp. δλ(i) < 0. We then define the conditioned PDF p+, resp.
p−, of the signal X+, resp. X−. Although signals X+ and X− are one-dimensional and
take their values in the same vector space S as X does, they contain some information
provided by the increments, namely the sign of the local increment δλ(i) associated with
x(i). And then the PDF’s of the signals X+ and X− will be, generically, different from
the PDF of X.

It is important to note here that if the statistics of the increments δλ(i) of the signal
X are skewed, then the joint PDF of (x(i), x(i − λ)) is not symmetrical with respect to
the origin. The reciprocal may not hold.

We then define the increment conditioned entropy rate h+,(m,λ), resp. h−,(m,λ), of the
signal X as the entropy rate h(m,λ) of the conditioned signal X+, resp. X−. In practice,
we compute the same quantity as before, defined by eq.(1.25), but using only a subset of
all data points; this subset is obtained by retaining points x(i) with a given sign of δλ(i).
The conditioning is performed at the single date i, whatever the embedding dimension m
is, so not looking at the (sign of) increments δλ(i− kλ), 1 ≤ k ≤ m− 1.

The entropy rate considers an embedded signal of dimension m + 1, so even for the
smallestm = 1, the entropy rate probes 2-points dependences (see chapter 3), between x(i)
and x(i− λ). In that case, the additional conditioning on the sign of the increment allows
the conditioned entropy rate to probe the asymmetry of the joint PDF p(x(i), x(i− λ)),
which is related to the skewness of the increments.
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If the joint PDF is symmetrical with respect to the origin, it is easy to check that
p+(x) = p−(−x) and therefore

h+,(m,λ)(X) = h−,(m,λ)(X).

On the contrary, if the statistics of the increments are skewed, then the joint pdf does
not have the central symmetry and we may have h+,(m,λ)(X) 6= h−,(m,λ)(X).

To check the robustness of our results, we perform two different tests using skewed
signals. First, because of the skewness of the increments, the fraction of points of X in
subsets X+ and X− can be quite different. As this may cause a difference in conditioned
entropy rates, we recomputed h−,(m,λ) when imposing that X− has the same number
of points as X+. To do so, we simply discarded the extra points from X− (randomly
chosen). This procedure does not change the correlations of X−, nor the statistics and
hence the pdf. Again, we will find the same significant difference between h+,(m,λ) and
h−,(m,λ). Second, we replaced the conditioning on the sign of the increments by a random
sub-sampling of X, in order to obtain a subsampled signal Xrand. In that case we will
obtain h(m,λ)(Xrand) = h(m,λ)(X), as expected, although the number of points in X and
Xrand differ by a factor 2.
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Figure 6.4: Left: bi-variate PDF of (v(t), v(t − τ)), the velocity field. Right: p(X) (in
red), p+(X) (blue) and p−(X) (black).

6.4 Skewness of turbulent velocity increments

We compute the conditioned entropy rate, h+,(m,τ), resp. h−,(m,τ) (section 6.3) with the
embedding dimension always kept as one (m = 1). The size of the analysed signals is
N = 219, constant. The conditioned entropy rate is averaged over over 195 independent
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Figure 6.5: Top: conditioned entropy rates h+,(1,τ) (red) and h−,(1,τ) (blue) as function of
scale for turbulence data for embedding m = 1. The entropy rate h(1,τ) (black) is reported
for comparison. Bottom: difference (h+,(1,τ) − h−,(1,τ)) (black) and standard deviation of
h+,(1,τ) (blue) and h−,(1,τ) (red).

realizations in the case of the Modane turbulent velocity data and the fractional Brownian
motion and over 10 realizations in the case of the jet turbulence.

Grid turbulence:

Above we showed that the entropy rate of a turbulent velocity signal can be well de-
scribed using only the autocorrelation function (blue line in figure 6.1), because the sig-
nal statistics are very close to Gaussian. Nevertheless, the statistics of the increments
δτ (t) ≡ x(t)− x(t− τ) of a turbulent velocity signal can be far from Gaussian, especially
for smaller scales τ . In particular, the PDF of increments is skewed (see eq.(5.16)). A
non-vanishing skewness of the increments or a non-vanishing order-3 structure function,
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Figure 6.6: Top: conditioned entropy rates h+,(1,τ) (red) and h−,(1,τ) (blue) as function of
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S3(l) ≡ E{(x(t)−x(t− τ))3} results in an energy cascade [108, 109, 107] (see section 5.1).
The PDFs of the subsampled conditioned signals and the joint PDF of the signal are
shown in figure 6.4. In order to probe this energy cascade, measurements of conditioned
entropy rates are reported in figure 6.5.

For the turbulent velocity signal, the two conditioned entropy rate give significant
different results, with an almost constant difference around 0.1 ± 0.01 (compared to the
standard deviation of h(m,τ)(X±) which is around 0.03± 0.01), see figure 6.5.

Jet turbulence:

As in the precedent system, the difference between the two conditioned entropy rates,
h+,(1,τ) and h−,(1,τ), is significant for all the different reynolds numbers, see figure 6.6. For
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all the different Reynolds numbers, the behaviour of the entropy rate and the conditioned
entropy rates is the same, being the constant value at large scales, and then the entropy
of the velocity signal, the only variation.

Fractional Brownian motion

Figure 6.5 shows how for the fBm, the conditioned entropy rates are indistinguishable
and follow the same linear behavior as the entropy rate h(m,τ), as expected for a Gaussian
(no-skewed) distribution.

6.5 Conclusions

We measured the information content of several turbulent velocity signal by computing
the entropy rate as a function of the scale at which the signal is considered. We found
that the distribution of information is reminiscent of the energy scaling, and we related
it to the second order structure function. The entropy rate is able to separate properly
the different domains as the second order structure function does. We argued that the
entropy rate is more sensitive to dependences than the Power Spectrum (chapter 3), in
particular because it can take into account higher order correlations, especially for large
embeddings. For this reason, Information Theory perspective may give some new insight
on turbulence.

In the entropy rate measure of the longitudinal velocity, the distinction between the
contribution of the second order and the higher order moments (concretely the skewness)
is unclear. As a consequence, we are not able to probe either the weak skewness of the tur-
bulence signal or the larger skewness of its increments via entropy rate. We then designed
a conditioning procedure of the data, based on the sign of the increments. Applying the
entropy rate to this conditioned data, we were able to illustrate an effect of the skewness
of the velocity increments.

The procedures described here are of general interest for the study of complex systems,
especially those having multiscale dynamics, as can be found in, e.g., economy, ecology,
neuroscience, and of course fluid dynamics. Given the plethora of laws governing such
different systems, the model-free and nonlinear nature of information theory makes it
a very interesting approach. In the particular case of turbulence, we showed not only
that the entropy rate allows one to measure in all generality the information distribution
amongst scales, in perfect agreement with known models, but also that a well-chosen
conditioning of the data allows one to prove the existence of the energy cascade. Using
information theory only, we recovered all classical characteristics of second order moment
of turbulence, as well as the existence of an energy cascade via the third order moment.
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CHAPTER 7

Rediscovering intermittency

As we explain in chapter 5, sections 5.1 and 5.2, turbulence displays intermittency which
manifests in a non linear behaviour of the scaling exponents ζ(p) and also in the defor-
mation of the PDF across scales. This deformation of the PDF has been conventionally
quantified by the evolution of its flatness [66], measured as the normalized kurtosis of the
distribution: 〈(δlv)4〉/〈(δlv)2〉2 = S4(l)/S2(l)2. At larger scales, about or above the inte-
gral scale L, the PDF of the velocity increments is almost Gaussian and has a flatness very
close to 3. For smaller and smaller scales, the PDF is less and less Gaussian as the PDF
of the normalized increments becomes wider and wider; therefore the flatness increases.
Fine evolutions of the PDF, and hence intermittency, have been studied with the flatness,
such as a rapid increase of intermittency when the scale is reduced down or below the
Kolmogorov dissipative scale [39]. S2 evolves according to the 2/3 law predicted by K41
theory (see section 5.1), so, the kurtosis only involves one higher-order structure function,
namely S4, and as such it does not describe the deviation of all the scaling exponents
ζ(p) from their linear behavior in p. This is why, we propose in this chapter a measure of
intermittency that involves all structure functions.

We propose to measure intermittency, interpreted as the deformation of a PDF which is
Gaussian at large scales. To do so, we consider the Kullback-Leibler (KL) divergence [120]
(see section 1.3.2) between the PDF and the Gaussian PDF defined with the same stan-
dard deviation. By comparing the PDF — defined by all its moments — and the Gaussian
approximation of this PDF — defined by the second order moment only — we measure
not only the growth of the pth order moment with respect to the variance, but also the
evolution of all the moments with respect to the variance, i.e., we exhaustively charac-
terize the deformation of the PDF. Measuring the intermittency with a KL divergence
provides a generalization of measures such as flatness (p = 4), hyperflatness (p = 6), etc.

Although we propose to study turbulence as an application of our framework, our
methodology is very general, and it does not require any a priori knowledge of the signal,
neither any underlying model of the system that produced the signal. As such, it can
prove a very powerful tool to analyze complex systems exhibiting power law behaviors or
multiscale dependencies. We apply it to characterize intermittency in turbulence.



132 Chapter 7: Rediscovering intermittency

This chapter is organized as follows. In section 7.1, we define our information theoret-
ical measure of intermittency that involves Shanon entropy and a well chosen Kullback-
Leibler divergence. In section 7.2, we compute this quantity for experimental measure-
ments of the Eulerian velocity field in several setups and several Reynolds numbers. We
then turn in section 7.3 to some phenomenological modelings in order to better understand
and describe our observations.

7.1 Definitions

7.1.1 KL divergence from Gaussianity

Shannon entropy, H(X), of a process X of PDF pX(x) is the total information that defines
the process, see section 1.3.1. Eq.(1.2) shows that entropy depends on all the moments
of the PDF pX(x) except the first order one.

We know that a Gaussian process, XG, is uniquely defined by the prescription of its
mean, variance, and two-point correlation function. Therefore, its Shannon entropy only
depends on its variance σXG

, as eq.(1.38) shows. For a generic process X which is a
priori non-Gaussian and has the variance σ2

X , we define the “entropy under Gaussian
hypothesis” HG(X) as the entropy that one would get assuming the process is Gaussian
and using eq.(1.38):

HG(X) =
1

2
ln(2πeσ2

X) , (7.1)

where σX is the standard deviation (std) of the generic process X. So, the ”entropy under
Gaussian hypothesis” of X is a measure of the entropy of a Gaussian PDF with same std
as the real PDF of X. If X is Gaussian, obviously HG(XG) = H(XG).

For any process X with probability density function pX(x), we can measure the dif-
ference between the ”real” PDF pX(x) of X and the Gaussian approximation pG(x) using
the Kullback-Leibler divergence defined in section 1.3.2:

KpX ||pG(X) =

∫

R
pX(x) ln

(
pX(x)

pG(x)

)
dx . (7.2)

Using the definitions of H(X) and HG(X), we have:

KpX ||pG(X) = HG(X)−H(X) ≥ 0 . (7.3)

KpX ||pG(X) is a measure of the distance from Gaussianity of the process X, i.e., the
distance between the PDF pX(x) of X, and a Gaussian PDF pG(x) which has the same std.
The maximum entropy principle [100, 101] states that for a given standard deviation, the
Gaussian PDF maximizes the entropy, see also [49]. So this distance is also a comparison
between the total information needed to define the process and the total information
defining the most ambiguous process with same std. The maximization of the entropy
for the Gaussian case ensures that the difference HG(X) − H(X) is always positive, as
expected for a KL divergence (see section 1.3.2) and vanishes only when X has a Gaussian
distribution.



Definitions 133

7.1.2 Distance from Gaussianity across scales

We analyze the process X at scale τ by studying its increments of size τ :

δτX(t) = X(t+ τ)−X(t) (7.4)

We note Dτ (X) the KL divergence KpX ||pG(δτX) which measures the distance from
Gaussianity of the increments at scale τ of a process X:

Dτ (X) = KpX ||pG(δτX) = HG(δτX)−H(δτX) (7.5)

This quantity measures the deformation of the PDF of the increment as a function of
the size τ of the increment: it quantifies the evolution of the shape of the PDF, which
depends on all the moments of the process, except its mean.

Indeed, at each scale τ , the increment δτX has a different standard deviation. The
larger the scale τ the higher the standard deviation. So, changing τ changes quantita-
tively the entropies H(δτX) and HG(δτX), which both depend strongly on the standard
deviation. Subtracting the two entropies eliminates most of this quantitative variation
because the std is by construction the same in both expressions HG(δτX) and H(δτX)).
Dτ (X) thus only measures subtle and delicate evolutions of the shape of the PDF than
the trivial rescaling induces by the std.

In the specific case of turbulence, the PDFs of the increments of size equal or larger
than the integral scale L are almost Gaussian. As a consequence, we expect that the
distance from Gaussianity Dτ (X) tends to zero when τ approaches the integral scale.
Conversely, it is expected to increase in the inertial range down to the dissipative scale
where it should increase faster [39]. Our distance from Gaussianity should therefore be
able to probe intermittency of turbulence by measuring the deformation of the PDF of
velocity increments.

7.1.3 Methodology

In order to compute accurately H from experimental data, we use the estimator described
in section 2.2. We chose the usual value k = 5 which is large enough to estimate the
Shannon entropy correctly within a reasonable computational time.

Following Theiler [202], when computing the entropy of δτX(t), we only retain data
points separated in time by a delay time τmax, defined as the size of the largest increment
that we compute. This prescription has two benefits. Firstly, two successive points of
the subsampled dataset are uncorrelated, because the increments of size τ are typically
correlated over a time τ ≤ τmax. Secondly, the numberN of points used in the computation
of the entropy of δτX is independent of τ , so the bias due to finite size effects is constant
when τ is varied.

To compute the entropy under Gaussian hypothesis HG, we compute the standard
deviation of X and then use eq.(1.38).

In the remainder of this chapter, all quantities are computed using N = 512 points
(BiasĤ . 0.01), τmax = 4096, so signals with a total of Nτmax = 221 points. We also aver-
age our results over independent realizations, in order to compute the standard deviation
of the quantities and provide error bars to the estimations. We use 12 realizations for
experimental signals and 8 realizations for synthetic processes.
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Figure 7.1: (a) Power spectrum (b) Flatness (c) Entropies (d) KL distance from Gaussian-
ity, for the Modane experimental data, as functions of ln(τ/T ) = ln(l/L), the logarithm
of scale normalized by the integral scale. In (a) and (c), the straight lines indicate the
theoretical scaling in the inertial region predicted by Kolmogorov K41 theory.

7.2 Application to turbulent velocity signals

In figure 7.1, we present the analysis of the Modane data (section 6.1). In the left column,
we report the classical viewpoint and compare it to the information theory viewpoint in
the right column.

We first plot the power spectrum of the velocity signal V as a function of the inverse
frequency 1/f = τ in figure 7.1(a) : it shows the distribution of energy across scales
following the well known 5/3 Kolmogorov law. In order to measure the deformation
of the PDF of the velocity increment when the scale τ is varied, we follow Frisch [66],
and compute the flatness as the kurtosis 〈(δτv)4〉/〈(δτv)2〉2 of the velocity increments
normalized by 3, the kurtosis of a Gaussian PDF. Results are reported in figure 7.1(b).
For τ & T , i.e., l & L, the flatness is 1, as expected for a Gaussian PDF. Reducing τ , the
flatness increases. When τ is smaller than the dissipative scale [39], the increase of the
flatness is sharper. Three different regions can be distinguished in both figures: integral,
inertial and dissipative.

The right column of figure 7.1 is devoted to the information theory viewpoint. We first
plot the entropy of the increments in figure 7.1(c) and compare it with the PSD in Fig.
a. We then plot Dτ (V ) in figure 7.1(d) and compare its behavior in τ with the flatness.

In figure 7.1(c) we see that the entropy of the increments (H(δτV )) increases with
τ . The larger the scale, the higher the total Shannon information needed to completely
characterize the increments. We can distinguish three different ranges with different de-
pendence of the entropy on the scale. For the large scales, larger than the integral scale,
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the entropy reaches its highest value and is then constant. So, the most disorganized
or complex scales — the ones requiring more information to be completely character-
ized — are the scales in the integral domain. Within this region, the characterization
of the scale does not require more entropy when the size of the increment increases . A
linear behavior of the entropy in ln(τ/T ) is found in the inertial region, τ ∈ [10, 400]
samples i.e. τ ∈ [0.0004, 0.016] seconds, l ∈ [0.0082, 0.328] meters. The complexity of the
scales, as measured by H(δτV ), decreases linearly in ln(τ/T ) between the integral and
the Kolmogorov scales. For the smallest scales, below the Kolmogorov scale — which we
can measure at ln(τ/T ) ≈ −5 — we observe a steeper decrease of the disorganization
when the scale decreases. So, using the entropy of the increments, we recover the same
qualitative results as using the entropy rate of the velocity measures (chapter Chap7).

Both entropies H(δτV ) and HG(δτV ) in figure 7.1,c) are indistinguishable in the in-
tegral domain. They start to separate when they enter into the inertial region. In fig-
ure 7.1,d, we plot the difference between these two entropies, which, according to eq.(7.5)
is the distance from Gaussianty Dτ (V ). Starting from 0 at scales larger than the integral
one, it increases when the scale decreases. The vanishing of Dτ (V ) for scales larger than
the integral scale implies that the PDF of the velocity increments is almost Gaussian,
as expected. Below this integral scale the PDF starts to deform, and becomes less and
less Gaussian when the scale decreases. The evolution of Dτ (V ) is almost linear between
the integral and the Kolmogorov scales. Finally, in the dissipative range, we observe
an abrupt deformation of the PDF, in perfect agreement with the rapid increase of the
flatness in figure 7.1,b). [39]

In the four sub-plots of figure 7.1, the three different domains of turbulence are distin-
guishable: integral, inertial and dissipative. Figure 7.1c) allows us to interpret these three
domains in terms of organization and complexity of velocity increments. Figure 7.1,d)
shows that the KL divergence allows us to quantify the evolution of intermittency amongst
scales τ . We not only recover the three different ranges with our measures based on in-
formation theory, but the qualitative behavior of intermittency in each domain is also in
perfect agreement with previous studies. Moreover, our measure of intermittency doesn’t
depend on a specific ratio between selected moments of the PDFs like the kurtosis. Dτ (V )
takes into account all the moments defining the PDFs: this makes our KL distance from
Gaussianity across scales a good candidate for a quantitative measure of intermittency.

In figure 7.2, we have compiled information theory results for all the experimental
signals presented in section 6.1, in order to study the influence of the Reynolds number.
The entropy as a function of the scale is reported in figure 7.2(a); we observe how the size of
the inertial range varies with the Reynolds number, with the Kolmogorov scale increasing
when the Reynolds number decreases. This classical behavior of the Kolmogorov scale
is also recovered with the KL divergence, represented in figure 7.2(b). The steeper slope
— that indicates the dissipative domain — appears at higher scales when the Reynolds
number is lower; we recover the dependence of the Kolmogorov scales with the Reynolds
number.

The behaviors of both the entropy and the distance from Gaussianity are qualitatively
the same for different experimental setups and for any Reynolds number. The dependence
of the entropy H(δτV ) of the increments is, at first order, in agreement with the K41
theory: we recover the scaling law in the inertial domain [80]. The KL divergence Dτ (V )
then enlightens the deformation of the PDF across scales, which is qualitatively compatible
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with the K062 theory and hence the intermittency in turbulence.
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Figure 7.2: a) Entropy H(δτV ) of the Eulerian velocity increments as a function of
ln(τ/T ) = ln(l/L). b) KL divergence Dτ (V ) = HG(δτV ) − H(δτV ). Different experi-
mental signals with various Reynolds numbers have been used.

7.3 Modeling

In order to get some insight on the quantitative results obtained with our Kullback-Leibler
divergence Dτ , we now turn to some theoretical descriptions of the inertial domain of fully
developed turbulence.

First, we study different processes generated to imitate the behavior of turbulence in
the inertial region according to a corresponding model. Amongst the simplest, popular and
most important is fractional Brownian motion (fBm) [108, 137] which, as a monofractal
process, doesn’t display intermittency. We also explore multifractal processes, which
exhibit intermittency: Multifractal Random Walk (MRW) [15, 126], Random Wavelet
Cascade (RWC) with log-normal [126, 9] or log-Poisson distribution of multipliers [126,
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9, 178]. We then examine the propagator formalism [32], a phenomenological model that
provides an analytical expression of the PDF of the velocity increments [38].

7.3.1 Synthetic processes

We now briefly present the different processes that we numerically generated, according
to the prescriptions of section 5.2.

Monofractal process We use the spectral procedure presented by Helgason to synthe-
size a fractional Brownian motion (fBm) [90] with Hurst exponent H = 1/3, as introduced
by Kolmogorov [108].

Log-normal multifractal processes We use two different synthetic processes with
log-normal statistics: a Random Wavelet Cascade (RWC) [126, 9] and a Multifractal
Random Walk (MRW) [15]. Multifractality requires the existence of an integral scale T ,
from or towards which the PDF evolves. For both processes, we impose the integral scale
T to be equal to the size of the signal.

Log-Poisson multifractal process We use a RWC with log-Poisson statistics [9].
Again, our synthesis fixes the integral scale T to the size of the generated signal.

7.3.2 Results

Classical multifractal analysis offers a way to estimate the log-cumulants c1 and c2, but
fails to estimate c3 and higher order log-cumulants. It can therefore be interpreted as
projecting the different models onto their log-normal approximation, with varying (c1, c2).
For example, the multifractal analysis of a realistic log-Poisson model of turbulence leads
the couple of values given in table 7.1, and no additional higher order log-cumulant.
As a consequence, such an analysis is not able to discriminate which process — log-
normal or log-Poisson —better represents turbulence. For this reason, we compute the
KL divergence Dτ which takes into account all moments of the PDF of increments, and
hence higher order log-cumulants [208], in order to obtain a finer analysis of the inertial
domain of turbulence.

In figure 7.3(a) we plot for the four synthetic signals the entropy H(δτX) as a function
of ln(τ/T ), the logarithm of the scale. We also plot the entropy under Gaussian hypothesis,
HG(δτX), but it is indistinguishable from H(δτX).

From eq.(5.28), it is possible to show that for a monofractal, and then non-intermittent
(K41 theory), process:

H(δτX) = H(δτ0X) +H ln(τ/τ0) . (7.6)

For any process, the entropy under Gaussian hypothesisHG is computed using eq.(7.1).
It involves the second order moment S2(τ) only, which we express using eq. (5.24) as

S2(τ) = σ2
τ = σ2

T

( τ
T

)ζ(2)

.



138 Chapter 7: Rediscovering intermittency

H
(δ

τ
X

)

(a)H(δτX)

HG(δτX)

ln(τ/T )

D
τ
(X

)

(b)

−16 −14 −12 −10 −8
0

0.04

0.08

0.12

0.16

−12

−10

−8

−6

−4

−2
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fBm MRW log-N log-P
c1 1/3 0.371 0.371 0.381
c2 0 0.025 0.025 0.036
ζ(2)/2 1/3 0.345 0.345 0.345
ĉ1 0.333 0.42 0.372 0.382
ĉ2 1e−4 0.038 0.026 0.035

ζ̂(2)/2 0.332 0.363 0.353 0.356
∆ln(τ)HG(δτX) 0.33±0.01 0.37±0.01 0.35±0.01 0.35±0.01

Table 7.1: The first three lines indicate the values of parameters (c1 and c2 and hence ζ(2))
used in the generation. Estimates ĉ1, ĉ2 and ζ̂(2) are obtained by classical multifractal
analysis. Last line reports the slopes ∆ln(τ)HG(δτX) of the entropy HG(δτX) as a function
of ln(τ/T ), for the four different models, which according to eq.(7.7) provides another
estimate of ζ(2)/2.

We then obtain the dependence of HG on the scale τ :

HG(δτX) = HG(δTX) +
ζ(2)

2
ln (τ/T ) . (7.7)

In figure 7.3(a), we observe that the slope of the curves, which should be ζ(2)
2

is very
similar for all processes: we report in table 7.1 the different values we measured, and
compare them to the prescribed value (1/3 for fBM and 0.345 for all three multifractal
processes). The distribution of information along the scales for the four different models
is in agreement with the prescribed Kolmogorov K41 scaling [80].

Up to this point, looking at the entropies, the four models cannot be distinguished in
the inertial domain. In figure 7.3(b) we plot the Kullback-Leibler divergence Dτ (X) as
a function of ln(τ/T ) = ln(l/L), for scales ranging from τ/T = 1/224 to τ/T = 4096/224

where the integral scale is T = 224.
For a monofractal process, the entropy is given by eq.(7.6), and the entropy under

Gaussian hypothesis is given by eq.(7.7) with H = ζ(2)/2, so Dτ (X) = HG(δτX) −
H(δτX) is constant and does not depend on the scale τ . If the monofractal process has
Gaussian statistics — which defines the fBm — Dτ (X) = 0 by construction. Looking at
figure 7.3(b), Dτ for the fBm is not exactly zero; this is due to the bias in the estimation
of H(δτX) and HG(δτX). This bias is constant across scales, because our procedure was
built to use a constant number of points in the range of τ we use.

For the three multifractal processes, Dτ (X) decreases monotonically when τ increases,
and tends to zero when the scale tends to the integral scale. So in the three multifractal
models, the PDF of the increments deforms into a Gaussian PDF when approaching the
integral scale. Moreover, in figure 7.3(b), we observe that the three processes, which
indeed have different statistics, do not converge to zero in the same way. The distance
from Gaussianity Dτ , by involving all the moments of the probability distributions, is
able to reveal fine differences between processes.
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Figure 7.4: Kullback-Leibler divergence Dτ for the log-normal propagator model, for
varying values of the log-cumulant c2, as a function of ln(τ/T ) = ln(l/L) (a) or as a
function of c2 ln(τ/T ) (b).

The synthetic processes used above are good representations of the inertial range only.
They do not properly take into account either the dissipative nor the integral scales.
Nevertheless, the synthesis imposes an effective integral scale that corresponds to the size
of the generated signal. In order to study more precisely the deformation of the PDFs at
large scale, we now turn to descriptions that explicitly involve the integral scale.

7.3.3 Phenomenological model : the propagator formalism

First introduced by Castaing [32], the propagator formalism describes the statistics of the
Eulerian velocity increment δlv as identical, in the probabilistic sense, to the statistics of
the product of two random variables: the large scale fluctuations σLδ and the propagator
(l/L)h. The large scale fluctuations are supposed Gaussian, with standard deviation σL,
and δ is therefore a Gaussian variable with unit variance. The propagator deforms the
large-scale statistics when the scale l is reduced below the integral scale L. In the simple
situation where no dissipative scale is taken into account, and where the propagator is
supposed independent of large scale statistics, one can write formally the PDF of the
Eulerian velocity increments δlv = σL(l/L)hδ as [38]:

pδlv(δlv) =

∫ ∞

−∞

1

σL

(
l

L

)−h
Pδ
[
δlv

σL

(
l

L

)−h]
Ph[h]dh (7.8)

where h is the Hölder exponent. We have noted Pδ(δ) and Ph(h) the probabilities of the
independent random variables δ and h. The PDF Ph(h) depends only on the singularity
spectrum D(h). See [38] for a detailed explanation.

We integrate numerically eq.(7.8) to get the PDF of the increments δlv, and then
compute the KL divergence Dτ by introducing this PDF in eq.(7.5) for several singularity
spectra, either log-normal or log-Poisson.
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Figure 7.5: Kullback-Leibler divergence Dτ as a function of c2 ln(τ/T ) for the log-Poisson
propagator model, for varying values of λ (a) and β (b). The dotted line represents the
single curve obtained for the log-normal propagator (figure 7.4(b)).

log-normal model . We varied the value of the log-cumulant c1 and didn’t observe any
dependence of Dτ on c1. On the contrary, varying c2 strongly changes the convergence.
Results are presented in figure 7.4(a). We observe and report in figure 7.4(b) that curves
for different values of c2 can be collapsed into a single curve when plotted as a function
of c2 ln(τ/T ) = c2 ln(l/L).

To understand this scaling behavior, we performed a saddle-node expansion of expres-
sion (7.8) in the log-normal case, and obtained the following simplified expression for the
PDF of the normalized increments y = δlv/σl at scale l:

py(y) =
e

3
2
c2x

√
2π

e
− 2W+W2

8c2x√
1 +W

(7.9)

where we have noted x ≡ − ln(l/L) the logarithmic scale, and W the value of the Lambert
W-function of argument 2c2xy

2e4c2x. Eq.(7.9) is a non-Gaussian PDF which converges to
the Gaussian PDF of variance σ2

L when x→ 0. From eq.(7.9), the PDF of the increments
only depends on ln(l/L) = ln(τ/T ) and c2 via the product c2 ln(l/L). As a consequence,
the entropy of the increments depends on the scale l as c2 ln l/L only. This implies that
the KL divergence Dτ for the log-normal process has the scaling observed in figure 7.4(b).

log-Poisson model We varied independently γ, λ and β. We didn’t observe any change
of Dτ when γ was varied. This can be understood as γ only changes the value of c1 (see
eq.(5.31)), which does not impact Dτ . Varying λ changes the convergence, as this amounts
to change c2 (see eq.(5.32)), but we observe again that Dτ depends only on c2 ln(τ/T ),
see figure 7.5(a). This can be understood by noting that all log-cumulants are linear in
λ; thus varying λ amounts to a change of c2 while keeping higher order cumulants within
the same ratio. On the contrary, varying β has more impact on the convergence, and the
re-scaling in c2 ln(τ/T ) is then not perfect, albeit still relevant, see figure 7.5(b). This can
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be understood by noting that changing β does not only change c2, but also the ratio of
all higher order cumulants.

Comparison between models The rescaling in c2 ln(τ/T ) — which absorbs most, if
not all, the dependence of Dτ on c2 — allows a direct comparison of models. As can
be seen in figure 7.5, all curves obtained with the log-Poisson propagator model clearly
differs from the ones obtained with the log-normal propagator, especially for smaller
scales. This probably results from the presence of higher order log-cumulants cp, p > 2 in
the log-Poisson propagator. As a consequence, whatever the choices of the propagators
parameters, the KL divergence behaves very distinctly in the log-normal and log-Poisson
models.

Comparison with turbulence data Amongst open questions regarding statistical
descriptions of Eulerian turbulence is the choice of a log-normal or log-Poisson modeling
of its multifractal nature. We of course want to address this issue, and we explore both the
flatness and the KL divergence to compare the two propagator models with experimental
data in figure 7.6. In both models, parameters are set to the values acknowledged for
turbulence (see section 5.2). For experimental data, we remove the bias from the KL
divergence estimation by subtracting the small constant value that we measured for a
fBm signal, see figure 7.3(b). As the c2 value for turbulence is a priori unknown, we do
not rescale the x-axis with c2. Let us remark though that the c2 value we have used in
the log-normal propagator (c2 = 0.025) is exactly the one measured in experimental data,
using multifractal analysis [38].

In the inertial range, although the flatness behaves differently for the two propagator
models, the difference is small and remains within the error bars of the estimation per-
formed on experimental data. On the contrary, when looking at the KL divergence, our
results show a much better agreement of the log-normal model with the experimental data.
Although this may be due to the very appropriate choice of c2 in the log-normal model, the
log-Poisson model does not allow such a choice and fixes all the log-cumulants [178]. As
a consequence, we can state that the deformation of the experimental velocity increments
PDF in the inertial range is better modelled by a multiplicative cascade with log-normal
multipliers.

Similar results are obtained by using wavelet multifractal analysis, which allows to
probe both sides of the singularity spectrum, see figure 5.3 b). Measures of D(h) for
experimental turbulent velocity together with log-normal and log-Poisson models suggests
that log-normal can model turbulence better than log-Poisson does [216, 10]. Nevertheless,
the results obtained by performing this analysis depend a lot on the chosen parameters
in the estimation, and then the interpretation is difficult.

In the dissipative range, i.e., for smaller scales ln(τ/T ) . −5, we observe a rapid
increase of Dτ for the experimental data, which the two models (continuous lines in
figure 7.6) fail to reproduce. This is expected, as both propagator models were proposed
to describe the inertial range only, and as such do not incorporate any modeling of the
dissipative scales. To probe the dissipative range, we use the extension described in [38],
and indicate the results for both propagators with dashed lines in figure 7.6. The rapid
increase of intermittency in the dissipation range is captured by the flatness and the
KL divergence. Although great care should be taken when commenting on the lowest
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with errorbars), as a function of ln(τ/T ): (a) normalized flatness, (b) KL divergence. The
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the dissipative range [38].
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accessible scales in the experimental data (mainly due to the acquisition process), we
observe once again that the KL divergence indicates — much more clearly than the flatness
does — that the log-normal propagator model is closer to the experimental observations.

7.4 Discussion and Conclusions

We have measured the Shannon entropy of the Eulerian turbulent velocity increments,
and studied its dependence on the scale. We have recovered the same qualitative results as
with the entropy rate of the velocity (chapter 6), in perfect agreement with K41 theory. A
closer look at the entropy of the increments, and especially a comparison with its Gaussian
approximation, which only takes into account the variance of the signal – exactly as the
PSD does — allows a much finer description and in particular, a measure of intermittency,
as introduced in KO62.

We have proposed a quantitative measure of intermittency. Although some quan-
tities were already used as an intermittency coefficient, most, if not all, were ratios of
structure functions [66], and as such, they were depending on the chosen ratio: flatness,
hyper-flatness [8] or higher order ratios. We interpret intermittency as the distance from
Gaussianity, and measure it as Dτ , the Kullback-Leibler divergence between the com-
plete PDF p(δτV ) and its Gaussian approximation pG(δτV ); the first involves all the
statistical moments while the second one only depends on the variance. Our measure of
intermittency, by comparing complete PDFs, takes into account all the moments of the
distributions, which leaves no room for ambiguity on the choice of the moments.

We have checked the robustness of our approach by analyzing several experimental
datasets, from two different experimental setups, and with varying Reynolds numbers.

The quantity Dτ is not only able to measure intermittency in turbulence, but also
to discriminate very easily monofractal from multifractal processes. Furthermore, the
evolution of Dτ with the scale depends on the process: this provides a much more precise
characterization of the process than the bare set of log-cumulant values (c1, c2) given by
a regular multifractal analysis. This may be exploited to discriminate log-Poisson from
log-normal models of intermittency in turbulence.

We have investigated the dependence of Dτ on the log-cumulants. Dτ does not de-
pend on c1 and we have captured its dependence on c2, and especially how it affects the
convergence to 0 at large scales. Because Dτ appears to mainly depend on c2 ln(τ/T ), we
can state that the speed of the deformation of the PDF, starting from a Gaussian at large
scale L, depends on c2. For a given scale l/L, or equivalently τ/T , the deformation of the
PDF, and hence the intermittency, is an increasing function of c2. Conversely, for a fixed
value of c2, the influence — or reminiscence— of the integral scale persists down to scales
l/L smaller and smaller when c2 is reduced. Because the typical c2 of turbulence is small,
the influence of the integral scale persists in the inertial domain, down to the dissipative
domain, unless the Reynolds number tends to arbitrarily large values. We have shown
that Dτ depends on higher order log-cumulants cp, for p > 2, by looking at the special
case of log-Poisson statistics (figure 7.5). The dependence seems weak, but is nevertheless
present, and could be exploited.

Our measure of intermittency substantially differs from the existing measure involving
the flatness. KL divergence gives a sharper contrast between propagator models; this is
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not surprising as KL divergence offers a complete perspective on the PDF and all its
moments. In addition, the errorbars of the KL divergence of experimental data are suffi-
ciently small to allow a quantitative comparison of experiments with model predictions.
This comparison was not instructive using previously existing tools. Our results show that
KL divergence offers quantitative arguments in favor of a log-normal description of the
propagator for modelling the distribution of Eulerian velocity increments across scales.

Although we have put a strong emphasis on turbulence, we want to point out that our
approach is extremely general and should find successful applications in many other fields.
It should prove particularly interesting for non-Gaussian processes, the most common in
Nature and Society. Figure 7.7 shows the performance of this approach (right column),

together with the entropy rate across scales h̄
(m,τ)
T presented in chapter 4 (left column),

when analysing the non-stationnary processes presented in chapter 4. Both methodologies
describe the processes in a very similar way. However, while the methodology presented
in chapter 4 requires the previous knowledge of H to obtain figure 7.7 b), the approach
presented in this chapter doesn’t require any a priori knowledge of the process.

We can conclude that, the self-similarity properties of any process can be analyzed
combining H(δτ ) and Dτ . The local intermittency measure that Dτ provides can be used
to characterize the process at any scale.
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CHAPTER 8

Wiener Causality across scales of turbulence

The complete characterization and understanding of the energy cascade in turbulence is
far from being reached. Is this energy cascade due to the splitting of large eddies into
smaller ones? How much time does the energy take to go from one scale to another?
Does this time depend on the range of scales? Within the current research frameworks
the discussion is open, and the conclusions are not always clear. So, we propose in this
chapter to look for conclusive results using information theory, and more precisely to
use transfer entropy (section 1.6.2), to analyse turbulent velocity measures and synthetic
processes modelling turbulence. We then propose to study interactions between scales in
turbulence from this new viewpoint.

Transfer entropy, defined in eq.(1.31), is a measure of Wiener causality between time
series, and has been frequently interpreted as a measure of information flows, (section 1.6).
Then, the question naturally arises, do information flows between scales of turbulence
exist? or, at least, are there Wiener causality relationships between different scales of
turbulence? And if we can measure them, do they bring information about the energy
cascade?

In order to probe the existence of Wiener causality relationships between scales of
turbulence, we study different time series: on one hand, the experimental grid turbulent
velocity measures presented in section 6.1, on the other hand fractional Brownian mo-
tions, (section 4.2), with different Hurst exponents. The third order structure function of
turbulent velocity data is non-zero and thus it shows the existence of an energy cascade.
This is not the case for fBm, where no energy cascade takes place.

8.1 Definitions of the scale

In order to measure causality relationships between scales of a time series, first, we have
to define these scales. This step is very delicate, as the definition of the scales can influ-
ence the transfer entropy measures between them, and so, distort the results. We define
the scales of a time-series X(t) by applying a transformation fτ on it. Then, we define
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Figure 8.1: Left:Increments initial emplacement. Right: Increments coincidence. The red
increment is the lagged one.

the diferent scales of X(t) as fτ (X(t)) where τ indicates the size of the scale. There-
fore, the scales are also time-series. However, the transformation fτ can itself introduce
Wiener causality relationships between its different versions fτ , fτ ′ . Relationships that
are unconnected to the physical system.

We can generate the different scales of a time-series by using different transforma-
tions: increments, wavelets, filtering, embedding ... Each of these transformations lead to
different time series defining the scales of the initial time series X(t). As a consequence,
even if the transfer entropy interpretation remain constant, concerning Wiener causality
between time series, the question is: how much part of the measure is due to the way of
generating the scales? Can we really talk about Wiener causality between scales or just
between these transformed time series?

To answer these questions, we perform a complete study of transfer entropy between
scales of a time series by using three different scale definitions: increments, filtering and
embedding. Having seen the wide range of possibilities in the definition of scales, we
have decided to use increments, completely localized in the direct space, filtered signals,
completely localized in the Fourier space, and embedded signals, in which the scale is
defined by a couple of points of the initial time series X(t) separated by τ .

8.1.1 Increments

From an initial time-series, we generate different scales by generating increments of differ-
ent sizes. The length of the increments indicates the size of the scale. The corresponding
transformation fτ (X(t)) is defined as:

fτ (X(t)) = δτX(t) = X(t)−X(t− τ) (8.1)

Then, for two different scales we have two increments δτ1X(t) = X(t)−X(t− τ1) and
δτ2X(t) = X(t)−X(t− τ2) defined in order to fix the same present t, for both scales, see
figure 8.1 (left).

In the example of figure 8.1 (right), transfer entropy definition of eq.(1.31) is a cal-
culation of the information of the red increment (δτlX(t + lag)) that is contained in the
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small increment (δτsX(t)) but not in the large one (δτlX(t)).
We define lag as the time delay which separates a future sample at t + lag from the

present one at t. We interpret it as a time of interaction. With the above definition of
transfer entropy, the delay lag is the same between the caused increment (δτlX(t+ lag))
and both, the condition (δτlX(t)) and the causal increment (δτsX(t)). We can see in
figure 8.1(right) the effect of coincidence of increments when lag = τl − τs and lag = τl,
that will define the emplacement of the peaks of transfer entropy between scales.

In the definition of transfer entropy of eq.(1.33), lag only indicates the distance between
the caused (δτlX(t + lag)) and the causal increment (δτsX(t)). With this definition, the
distance between the caused (δτlX(t+ lag)) and the conditioned increment is always the
smallest possible. The effect of coincidence of increments, when lag = τl−τs and lag = τl,
still defines the emplacement of the peaks of transfer entropy between scales.

This definition of scale allow to precisely localize the position and size of the scale in
the direct space, nevertheless the localization of the scale in the Fourier space is unclear.

8.1.2 Filtering

Another way to define a scale is to filter the initial time series. In order to do that, three
different kind of causal filter transformations have been used: Low pass (LP), defined
in eq.(8.2), High Pass (HP), defined in eq.(8.3) and Band Pass (BP) filter, defined as
the addition of a High and a Low Pass. The idea behind this generation of scales is to
completely localize the scales in frequency, but not at all in space, so, the contrary to the
increments case.

F (f)LP =
1

1 + i f
fc

(8.2)

F (f)HP =
i f

fc

1 + i f
fc

(8.3)

where fc is the cutoff frequency, indicating the frequencies contained in the filtered signal.
In the case of the LP filter the frequencies contained in the signal are the frequencies
smaller than fc, in the case of HP filter the frequencies higher than fc, and in the case of
a BP filter the frequencies between fcHP and fcLP.

For all the above filters, LP, HP and BP, we consider that the higher the cutoff
frequency the smaller the scale generated.

8.1.3 Embedding

Increasing the dimension of the initial time series also allows to define a scale. We use
the embedding procedure proposed by Takens:

fτ (X(t)) = X(2,τ)(t) = (X(t), X(t− τ)) (8.4)

Thus, we define a scale τ as a 2-dimensional vector composed by two samples of the initial
time series separated by τ . As in the case of the increments, the effect of coincidence of
samples, will define the emplacement of the peaks of transfer entropy between scales
(figure 8.1 (right)).
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8.2 Results for different scale functions

In this section, we characterize the information flow between scales for three different
systems: Modane velocity data, a fBm with H = 0.3 and a fBm with H = 0.5 and for
the three different ways of generating the scales presented before.In order to analyse the
dynamics of information in a given system, we choose an observable of the system, in this
section velocity, and we build the scales by applying the corresponding function fτ to the
observable. Then, we calculate the TE between two scales, from the larger to the smaller
and vice versa.

8.2.1 Increments

We build the scales of V (t) by generating the increments of the observable. We calculate
the TE, defined in eq.(1.31), where X = δτ1V (t) and Y = δτ2V (t).

Figure 8.2 shows that TE is different from zero only from small scales to large ones,
and is zero from large to small scales. This can be seen for turbulent velocity in figure 8.2
a), but it’s general for any system, see figures 8.2 b) ,8.2 c). For all the studied systems:
turbulence and fBm with different Hurst exponents the small scales Wiener cause the
large ones.

Figures 8.2 a) b) and c) also show the behavior of the time of interaction between
scales (lag). We find that the maximum intensity of the interaction between two scales
appears at time delay lag = |τl− τs|. The time of interaction between two scales depends
directly on the difference of the length of the scales; the larger the diference of length the
longer the time of interaction. This result is directly related to the definition of the scales
as increments.

Another general result is, the closer the scales, the strong the interaction, i.e. the
interaction between two scales is stronger when the sizes of the scales interacting are
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closer, see figure 8.3.
We now consider separately each system. It’s well known that a fBm with Hurst

exponent H = 1/3 models the distribution of energy of turbulence in the inertial range.
We compare the results obtained for two interacting scales of turbulent velocity, both of
them in the inertial region, and the same interacting scales of a fBm with Hurst exponent
H = 1/3. We find the same time of interaction for both systems, as we expected from the
coincidence of increments at lag = τl−τs. In addition, the maximum of the intensity of the
interaction is the same for both systems. However, the way of reaching the maximum value
of the interaction is different, being smoother for the turbulent system, see figure 8.2 b).
This smoothness can be due to the dissipation existing in turbulence but not in the fBm,
or it can be due to intermittency or even to the energy cascade. Another observation from
figure 8.2 is the non-symmetry of the interaction between the two sides of the maximum
of the interaction, i.e. the way of reaching the maximum is different from the left and
from the right, but it seems to be symmetric when we are very close to the maximum for
both systems turbulence and fBm.

If we compare two fBm with H = 1/3 and H = 1/2 we see that there are differences in
the measures, see figure 8.2 c). The Wiener causality relationships between scales depend
on the self-similarity exponent of the system.

8.2.2 Scales obtained with filtering

In this section we generate scales by filtering signals. We filter the same turbulent velocity
signal analysed above, and the same fBm with H = 0.3.

We generate the scales using three different filters: low pass, band pass and high pass.
Using LP and BP filtering we obtain that the small scales cause the large ones for both
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systems: turbulence (figures 8.4 a) and c)) and fBm (figures 8.5 a) and c)). In the case of
the HP filtering we obtain no clear causality relationships between scales, see figure 8.4
b) and figure 8.5 b).

In this case, the maximum of the TE between scales is always at lag = 0 and the
amplitude of the maximum decreases when the scales are closer, see figure 8.6. When
scales are obtained by filtering, the cut-off frequency associated with the large scale defines
the decay length of the TE measure, see figure 8.4 and figure 8.5.
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8.2.3 Scales obtained by embedding

The third way of generating the scales is by embedding the data. As in the case of
the increments, the maximum amplitudes of TE measures are localized for lag values
where a sample of the caused vector coincide with a sample of the causal vector. We
find qualitatively similar results, with an information flow from small to large scales,
(figure 8.7). Even if this time a new peak appears in the TE from large to small scales, this
new peak is much smaller than the peak from small to large (figure 8.7). The qualitative
results are the same for turbulence and both fBm, but we can observe some differences in
the amplitudes and the shapes of the peaks.
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8.3 Results for different observables of turbulence

In this section, we study the causality relationships between scales of different observables
of turbulence. We use increments as scales and we analyse: the turbulent velocity incre-
ments δτv(t) analysed above, the increments of the square of the velocity δτv

2(t), and the
square of the velocity increments (δτv(t))2.
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Figure 8.8: Transfer entropy between scales for different observables of turbulence. Circles
indicate TE from small to large scales. Triangles indicate TE from large to small scales. a)
TE for turbulent velocity increments δτ (v(t)). b) TE for the square of turbulent velocity
increments (δτv(t))2. c) TE for the increments of the square of the turbulent velocity
δτ (v(t))2.

Figure 8.8, shows the TE between scales for these three observables of turbulence.
The qualitative behavior of the causality is common for the three analysed observables:
we find that small scales cause large scales, causality from large scales to small scales is
null, the maximum amplitude of the causality appears at lag = τl − τs, the causality is
more important when the scales are closer. Figure 8.8, shows that the TE between the
increments of the velocity δτv(t) and the TE between the increments of the square of the
velocity δτv

2(t) are almost identical. However, the TE between the square of the velocity
increments (δτv(t))2 presents lower values. We find the same results for fBm with both
Hurst exponents.

8.4 Conclusions and perspectives

In this chapter, we study several signals: velocity and square of the velocity, obtained from
various complex systems: turbulence and fBm with two different Hurst exponents H. We
generate the scales of the studied processes using three different methods: computing
the increments of the process, filtering the process, or embedding the process. Next, we
compute the transfer entropy between scales of the time process, and we find for any
system and any scale function the same qualitative result: transfer entropy is larger from
small to large scales than from large to small scales. We interpret transfer entropy as a
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measure of the Wiener causality between two time series, and eventually as a measure
of information flows. With this interpretation of TE, our results indicate that the small
scales of a complex system cause the large scales.

We show the existence of an information flow from small to large scales, independently
of the system, the definition of the scales and the observable. Nevertheless, generating
the scales of a process by applying a transformation to the initial process influences the
causality measure and we cannot distinguish if this causation comes from the physics of
the initial process or from the transformation used to generate the scales. Consequently,
our search of a flow of information between scales is not meaningful for the moment.
Nevertheless, the measures are not meaningless, and the shapes of the obtained peaks can
be used to study the dependences of the process.

In order to confirm the causality from small to large scales, we have tested different
causality measures: transfer entropy of eq.(1.32), transfer entropy of eq.(1.33) and directed
information. The qualitative results obtained with the different measures are the same:
small scales Wiener cause large scales. We propose as a next step, to use experimental
time series allowing to generate the scales without the above transformations, or even
experimental time series with scale meaning. These experimental processes would allow to
isolate the origin of the Wiener causality measures to the physics of the studied processes.
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Part III

Biomedical Signal Processing





CHAPTER 9

Information Theory to Probe Intrapartum Fetal Heart Rate

Dynamics

Intrapartum fetal heart rate monitoring: Because it is likely to provide obstetri-
cians with significant information related to the health status of the fetus during deliv-
ery, intrapartum fetal heart rate (FHR) monitoring is a routine procedure in hospitals.
Notably, it is expected to permit detection of fetal acidosis, which may induce severe
consequences for both the baby and the mother and thus requires a timely and relevant
decision for rapid intervention and operative delivery [35]. In daily clinical practice, FHR
is mostly inspected visually, through training by clinical guidelines formalized by the In-
ternational Federation of Gynecology and Obstetrics (FIGO) [14, 194]. However, it has
been well documented that such visual inspection is prone to severe inter-individual vari-
ability and even shows a substantial intra-individual variability [94]. This reflects both
that FHR temporal dynamics are complex and hard to assess and that FIGO criteria lead
to a demanding evaluation, as they mix several aspects of FHR dynamics (baseline drift,
decelerations, accelerations, long- and short-term variabilities). Difficulties in performing
objective assessment of these criteria has led to a substantial number of unnecessary Cae-
sarean sections [6]. This has triggered a large amount of research world wide aiming both
to compute in a reproducible and objective way the FIGO criteria [14] and to devise new
signal processing-inspired features to characterize FHR temporal dynamics (cf. [187, 89]
for reviews).

Related works: After the seminal contribution in the analysis of heart rate variability
(HRV) in adults [3], spectrum estimation has been amongst the first signal processing tools
that has been considered for computerized analysis of FHR, either constructed on models
driven by characteristic time scales [76, 207, 181] or the scale-free paradigm [63, 55, 57].
Further, aiming to explore temporal dynamics beyond the mere temporal correlations,
several variations of nonlinear analysis have been envisaged both for antepartum and
intrapartum FHR [59], based, e.g., on multifractal analysis [55], scattering transforms [42],
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phase-driven synchronous pattern averages [136] or complexity and entropy measures [160,
159, 124]. Interested readers are referred to e.g., [187, 89] for overviews. There have
also been several attempts to combine features different in nature by doing multivariate
classification using supervised machine learning strategies (cf. e.g., [71, 187, 50, 214, 188]).

Measures from complexity theory or information theory remain, however, amongst
the most used tools to construct HRV characterization. They are defined independently
from (deterministic) dynamical systems or from (random) stochastic process frameworks.
The former led to standard references, both for adult and for antepartum and intrapartum
fetal heart rate analysis: approximate entropy (ApEn) [160, 51] and sample entropy (Sam-
pEn) [168], which can be regarded as practical approximations to Kolmogorov–Sinai or
Eckmann–Ruelle complexity measures. The stochastic process framework leads to the
definitions of Shannon and Rényi entropies and entropy rates. Both worlds are connected
by several relations, cf., e.g., [87, 122] for reviews. Implementations of ApEn and Sam-
pEn rely on the correlation integral-based algorithm (CI) [160, 83], while that of Shannon
entropy rates may instead benefit from the k-nearest neighbor (k-NN) algorithm [114],
which brings robustness and improved performance to entropy estimation [161, 190, 223].

Labor stages: Automated FHR analysis is complicated by the existence of two distinct
stages during labor. The dilatation stage (Stage 1) consists of progressive cervical dilata-
tion and regular contractions. The active pushing stage (Stage 2) is characterized by a
fully-dilated cervix and expulsive contractions. The most common approaches in FHR
analysis consist of not distinguishing stages and performing a global analysis [46, 214] or
of focusing on Stage 1 only, as it is better documented and usually shows data with better
quality, cf., e.g., [70, 188]. Whether or not temporal dynamics associated with each stage
are different has not been intensively explored yet (see a contrario [186, 131]). However,
recently, some contributions have started to conduct systematic comparisons [189, 79].

Goals, contributions and outline: The present contribution remains in the category
of works aiming to design new efficient features for FHR, here based on advanced infor-
mation theoretic concepts. These new tools are applied to a high quality, large (1404
subjects) and documented FHR database collected across years in an academic hospital
in France and described in section 9.1. The database is split into two datasets associated
each with one stage of labor, which enables us first to assess and compare acidosis de-
tection performance achieved by the proposed features independently at each stage and
second to address differences in FHR temporal dynamics between the two stages. Reex-
amining formally the definitions of entropy rates in information theory, section 1.4 first
establishes that they can be split into two components: Shannon entropy, which quantifies
static data properties, and auto-mutual information (AMI), which characterizes tempo-
ral dynamics in data, combining both linear and nonlinear (or higher order) statistics.
ApEn and SampEn, defined from complexity theory, are then explicitly related to en-
tropy rates and, hence, to AMI (cf. section 9.2.2). Estimation procedures for Shannon
entropy, entropy rate and AMI, based on k-nearest neighbor (k-NN) algorithms [114], are
compared to those of ApEn and SampEn, constructed on correlation integral algorithms
[160, 47, 83]. Acidosis detection performances are reported in section 9.3.1. Results are
discussed in terms of quality versus analysis window size, k-NN or correlation integral-
based procedures and differences between Stages 1 and 2. Further, a longitudinal study
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consisting of sliding analysis in overlapping windows across the delivery process permits
showing that processes characterizing Stages 1 and 2 are different (section 9.3.4).

9.1 Datasets: Intrapartum Fetal Heart Rate Times

Series and Labor Stages

Data collection: Intrapartum fetal heart rate data were collected at the academic
Femme-Mère-Enfant hospital, in Lyon, France, during daily routine monitoring across
the years 2000 to 2010. They were recorded using STAN S21 or S31 devices with internal
scalp electrodes at 12-bit resolution, 500-Hz sampling rate (STAN, Neoventa Medical,
Sweden). Clinical information was provided by the obstetrician in charge, reporting de-
livery conditions, as well as the health status of the baby, notably the umbilical artery
pH after delivery and the decision for intervention due to suspected acidosis [56].

Datasets: For the present study, subjects were included using criteria detailed in [56,
188], leading to a total of 1404 tracings, lasting from 30 min to several hours. These
criteria essentially aim to reject subjects with too low quality recording (e.g., too many
missing data, too large gaps, too short recordings, etc.). As a result, for subjects in the
database, the average fraction of data missing in the last 20 min before delivery is less
than 5%. The first goal of the present work is to assess the relevance of new information
theoretic measures; their robustness to poor quality data is postponed for future work.

The measurement of pH, performed by blood test immediately after delivery, is sys-
tematically documented and used as the ground-truth: When pH ≤ 7.05, the newborn is
considered has having suffered from acidosis and is referred to as acidotic (A, pH ≤ 7.05).
Conversely, when pH > 7.05, the newborn is considered not having suffered from acidosis
during delivery and is termed normal (N, pH > 7.05). In order to have a meaningful pH
indication, we retain only subjects for which the time between end of recording and birth
is lower than or equal to 10 min.

Following the discussion above on labor stages, subjects are split into two different
datasets. Dataset I consists of subjects for which delivery took place after a short Stage
2 (less than 15 min) or during Stage 1 (Stage 2 was absent). It contains 913 normal and
26 acidotic subjects. Dataset II gathers FHR for delivery that took place after more than
15 min of Stage 2. It contains 450 normal and 15 acidotic subjects.

Beats-per-minute time series and preprocessing: For each subject, the collection
device provides us with a digitalized list of RR-interarrivals ∆k in ms. In reference to
common practice in FHR analysis and for the ease of comparisons amongst subjects, RR-
interarrivals are converted into regularly-sampled beats-per-minute times series, by linear
interpolation of the samples {. . . , 36,000/∆k, . . .}. The sampling frequency has been set
to fs = 10 Hz as FHR do not contain any relevant information above 3 Hz.
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9.2 Methods

Outline: We describe in this section the five features that we use to analyze heart rate
signals. We propose to apply information theory, as defined by Shannon, to the analysis
of cardiac signals. We do so by computing three features from information theory, the
Shannon entropy, see section 1.3.1, the Shannon entropy rate, see section 1.4.1 and the
auto-mutual information, see section 1.4.2. The first section reports the definitions of two
features rooted in complexity theory: approximate entropy (ApEn) and sample entropy
(SampEn), which are classically used in cardiac signal analysis. Although we use them in
practice only as benchmarks, we devote the second section to their relation with the new
features we propose.

Information theory and complexity theory only differ in the nature of the objects
under study. Information theory, on the one hand, aims to analyze random processes and
defines functionals of probability densities. Complexity theory, on the other hand, aims
to analyze signals produced by dynamical systems and assumes the existence of ergodic
probability measures to describe the density of trajectories in phase space, so that they
can be manipulated as probability densities. In this spirit, we consider throughout this
chapter the signals to analyze as random processes, although they indeed originate from
a dynamical system.

Assumptions: For the sake of simplicity in the description of the features and for
practical use, we assume that signals are monovariate (unidimensional) and centered
(zero mean) because the five features we use are independent of the first moment of
the probability density function. We also assume that signals are stationary. Although
this may seem at first a very strong assumption, it is very reasonable when examining
time windows smaller than the natural time scale of the evolution between Stages 1 and
2, as we discuss in section 9.3.4, and larger than events such as contractions. Finally,
we also assume that the signals contain N points, sampled at a constant frequency. All
estimates depend on N via finite size effects. In the following, we do not mention this
dependence explicitly in the notations and only compare features computed over the same
window size.

Time-embedding: Because we are interested in the dynamics of the signal, we use
the delay-embedding procedure introduced by Takens [197] in the context of dynamical
systems, see section 1.2.

9.2.1 Features from Complexity Theory

In the 1960s, Kolmogorov and Sinai adapted Shannon’s information theory to the study
of dynamical systems. The divergence of trajectories starting from different, but undis-
tinguishable initial conditions can be pictured as creating uncertainty, so creating infor-
mation. Kolmogorov complexity (KC), also known as the Kolmogorov–Sinai entropy and
denoted hKS(ρ) in the following, measures the mean rate of creation of information by a
dynamical system with ergodic probability measure ρ. KC is constructed exactly as the
Shannon entropy rate from information theory, using eq.(1.21) and the same functional
form as in eq.(1.7), but using the density ρ of trajectories in phase space instead of the
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probability density p. In the early 1980s, the Eckmann–Ruelle entropy K2(ρ) [83, 60] was
introduced following the same steps, but using the functional form of the Rényi order-two
entropy [166]. The interest of K2 relies in its easier and hence faster computation from
experimental time series, which was at the time a challenging issue.

Kolmogorov–Sinai and Eckmann–Ruelle entropies: The ergodic theory of chaos
provides a powerful framework to estimate the density of trajectories in the phase space of
a chaotic dynamical system [60]. For an experimental or numerical signal, it amounts to
assimilating the phase space average to the time average. Given a distance d(., .), usually
defined with the L2 or the L∞ norm, in the m-dimensional embedded space, the local
quantity:

Cm
i (ε) =

number of j such that d
(
x

(m,τ)
i , x

(m,τ)
j

)
≤ ε

N −m+ 1
, (9.1)

provides, up to a factor ε, an estimate of the local density ρ in the m-dimensional phase
space around the point x

(m,τ)
i . The following averages:

Φm(ε) =
1

N −m+ 1

N−m+1∑

i=1

lnCm
i (ε) , (9.2)

Cm(ε) =
1

N −m+ 1

N−m+1∑

i=1

Cm
i (ε) , (9.3)

are then used to provide the following equivalent definitions of the complexity mea-
sures [60]:

hKS(ρ) = lim
ε→0

lim
m→∞

lim
N→∞

(
Φm(ε)− Φm+1(ε)

)
, (9.4)

K2(ρ) = lim
ε→0

lim
m→∞

lim
N→∞

ln

(
Cm(ε)

Cm+1(ε)

)
. (9.5)

Approximate Entropy

Approximate entropy (ApEn) was introduced by Pincus in 1991 for the analysis of babies’
heart rate [158]. It is obtained by relaxing the definition (9.4) of hKS and working with
a fixed embedding dimension m and a fixed box size ε, often expressed in units of the
standard deviation σ of the signal as ε = rσ. ApEn is defined as:

ApEn(m, ε) = Φm(ε)− Φm+1(ε) . (9.6)

On the practical side, and in order to have a well-defined Φm(ε) in eq.(9.2), the counting
of neighbors in the definition (9.1) allows self-matches j = i. This ensures that Cm

i (ε) > 0,
which is required by eq.(9.2). ApEn depends on the number of points N in the time series.
Assuming N is large enough, we have:

lim
ε→0

lim
m→∞

ApEn(m, ε) = hKS . (9.7)

We interpret ApEn as an estimate of the m-order Kolmogorov–Sinai entropy hKS at finite
resolution ε. The larger N , the better the estimate. More interesting is that the non-
vanishing value of ε in its definition makes ApEn insensitive to details at scales lower than
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ε. On the one hand, this is very interesting when considering an experimental (therefore
noisy) signal: choosing ε larger than the rms of the noise (if known) filters the noise, and
ApEn is then expected to measure only the complexity of the underlying dynamics. This
was the main motivation of Pincus and explains the success of ApEn. On the other hand,
not taking the limits ε→ 0 and m→∞ makes ApEn an ill-defined quantity that has no
reason to behave like hKS. In addition, only very few analytical results have been reported
on the bias and the variance of ApEn.

Although m should in theory be larger than the dimension of the underlying dynamical
system, ApEN is defined and used for any possible value of m, and most applications
reported in the literature use small m (1 or 2) without any analytical support, but with
great success [158, 119].

Sample Entropy

A decade after Pincus’s seminal paper, Richman and Moorman pointed out that ApEn
contains in its very definition a source of bias and was lacking in some cases “relative
consistency”. They defined sample entropy (SampEn) on the same grounds as ApEn:

SampEn(m, ε) = ln

(
Cm(ε)

Cm+1(ε)

)
. (9.8)

So that:
lim
ε→0

lim
m→∞

SampEn = K2 . (9.9)

On the practical side, the counting of neighbors in eq.(9.1) does not allow self-matches.
Cm
i (ε) may vanish, but when averaging over all points in eq.(9.3), the correlation integral

Cm(ε) > 0. In practice, SampEn is considered to improve on ApEn as it shows lower
sensitivity to parameter tuning and data sample size than ApEn [169, 123].

We interpret SampEn as an estimate of the m-order Eckmann–Ruelle entropy K2 at
finite resolution ε.

Estimation

We note by the following ApEn(m) and SampEn(m) the estimated values of ApEn and
SampEn using our own MATLAB implementation, based on Physio-Net packages. We
used the commonly-accepted value, ε = 0.2σ, with σ the standard deviation of X, and
m = 2. For all quantities, we used τ = 5 = fs/fmax with fmax = 2 Hz the cutoff frequency
above which FHR times series essentially contain no relevant information [55]; this time
delay corresponds to 0.5 s.

9.2.2 Connecting Complexity Theory and Information Theory

We consider here for clarity only the relation between ApEn and m-order Shannon entropy
rate, although the very same relation holds between SampEn and the m-order Rényi order-
two entropy rate. In information theory terms, ApEn appears as a particular estimator of
the m-order Shannon entropy rate that computes the probability density by counting, in
the m-dimensional embedded space, the number of neighbors in a hypersphere of radius
ε, which can be interpreted as a particular kernel estimation of the probability density.
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Limit of Large Datasets and Vanishing ε: Exact Relation

When the size ε of the spheres tends to 0, the expected value of ApEn for a stochastic
signal X with any smooth probability density is related, in the limit N → ∞, to the
m-order Shannon entropy rate [122]:

ApEn(m, ε) '
ε→0

h(m,τ)(X)− log(2ε) . (9.10)

Both terms involve m-points correlations of the process X. This relation allows a quan-
titative comparison of ApEn with the m-order Shannon entropy rate h(m,τ). The log(2ε)
difference corresponds to the paving, with hyperspheres of radius ε, of the continuous m-
dimensional space over which the probability p(x

(m,τ)
t ) involved in eq.(1.7) is defined and,

thus, h(m,τ). This paving defines a discrete phase space, over which eq.(9.1), eq.(9.2) and
eq.(9.6) operate to define ApEn [102]. This illustrates that, for a stochastic signal, ApEn
diverges logarithmically as the size ε approaches 0, as expected for hKS. Fortunately, ε
is fixed in the definition of ApEn, which allows one in practice to compute it for any
signal/process.

New Features

Having recognized the success of ApEn and remembering its relation to h(m,τ), it seems
interesting to probe other m-order Shannon entropy rate estimators. A straightforward
improvement would be to consider a smooth, e.g., Gaussian, kernel of width ε instead
of the step function used in eq.(9.1). We prefer to reverse the perspective and use a
k-nearest-neighbor (k-NN) estimate. Instead of counting the number of neighbors in a
sphere of size ε, this approach searches for the size of the sphere that accommodates k
neighbors. In practice, we compute the entropy H with the Kozachenko and Leonenko
estimator [114, 184], which we denote Ĥ. We compute the auto-mutual information
I(m,p,τ) with the Kraskov et al. estimator [116], which we denote Î(m,p). We then combine
the two according to eq.(1.25) to get an estimator ĥ(m) of the m-order Shannon entropy
rate. We use k = 5 neighbors and set τ = 5 (see section 9.2.1).

We report in the next section our results for the five features when setting m = 2, p = 1
and compare their performances in detecting acidosis. The dependance of the m-order
entropy rate (and its estimators) on m is expected to give some insight into the dimension
of the attractor of the underlying dynamical system, but as we have pointed out, the
dynamics is indeed contained in the AMI part of the entropy rate. This is why we further
explore the effect of varying the embedding dimensions m and p on the AMI estimator
Î(m,p).

9.3 Results: Acidosis Detection Performance

9.3.1 Comparison of Features’ Performance, Using a Single Time
Window, Just Before Delivery

Average features value for normal and abnormal subjects: We compute the five
features: ApEn(m), SampEn(m), ĥ(m), Ĥ and Î(m,p) for normal and acidotic (abnormal)
subjects in Datasets I and II using data from the last T = 20 mn before delivery, which are
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Î

Dataset I (20 mn)
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ĤÎ

Dataset II (20 mn)
ĥ
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Dataset I (10 mn)

Î
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ĥ

Î
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Figure 9.1: Box plot-based comparisons of the five different (normalized) estimates
(ApEn(m) (AE), SampEn(m) (SE), Shannon entropy rate h(m) (ĥ), Shannon entropy (Ĥ)
and auto-mutual information (AMI) I(m,p) (Î)) for normal (N) and pathological (A for
“abnormal”) subjects, for Dataset I (top) and Dataset II (bottom). Each column corre-
sponds to a different window size: T = 20 mn, 10 mn and 5 mn. All features are computed
with m = 2, p = 1.

the most crucial. We use the classical values m = 2 and p = 1 for embedding dimensions.
To compare the performance, we present the box plots of the five normalized (zero-mean,
unit-variance) estimates in the left column of figure 9.1. For Dataset I, the average of
ApEn and SampEn for acidotic subjects is smaller than for normal subjects, while the
average of the Shannon entropy rate does not show any tendency. This is surprising as
one might have expected for ĥ(m) a behavior similar to ApEn and SampEn (see section
9.2.2). Average values of Ĥ and Î(2,1) are larger for acidotic subjects. The larger value
of Shannon entropy H indicates that the acidotic FHR signals contain more information.
The larger value of AMI indicates a stronger dependence structure in the dynamics of
abnormal subjects.

For subjects in Dataset II, it is harder to find any tendency by looking at the average
values.

Features performance: Fetal acidosis detection performance is assessed with the p-
value given by the classical Wilcoxon rank sum test. This non-parametric test of the null
hypothesis, which corresponds to identical medians of the distributions of estimates in
the normal and abnormal classes, is reported in table 9.1. We have added one ? symbol
when the p-value is less than 0.05, two ?? when less than 0.01. We see that for Dataset I,
ApEn(m), SampEn(m), Ĥ and Î(m,p) for m = 2 discriminate normal and acidotic subjects,
while ĥ(m) does not. Out of the three estimates (ApEn(m), SampEn(m), ĥ(m)) based on
entropy rates, the nearest-neighbors one for Shannon entropy rate is the poorest, although
its decomposition into Shannon entropy (static one-point information) and AMI (which
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Dataset I Dataset II
AUC p-Value AUC p-Value

ApEn(2) 0.76 4.08e-06 ?? 0.61 1.33e-01
SampEn(2) 0.79 5.92e-07 ?? 0.67 2.35e-02 ?

ĥ(2) 0.50 9.75e-01 0.39 1.36e-01

Ĥ 0.76 8.36e-06 ?? 0.56 4.23e-01

Î(2,1) 0.84 2.00e-09 ?? 0.68 1.69e-02 ?

Table 9.1: Area under Receiver Operational Characteristics curves (as shown in figure
9.2) and p-value obtained from the Wilcoxon rank-sum test, for each of the five different
estimates, all with m = 2.
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Figure 9.2: Receiver operating characteristics (ROC) curves for SampEn(m) (black) and
AMI estimator Î(m,p) (red), for subjects in Datasets I (left) and II (right). m = 2, p = 1.

includes dynamic information) leads to two satisfying estimates figure 9.1 and table 9.1
both show that the best performing estimators are SampEn(m) and Î(m,p). In Dataset
II, although all features performs more poorly than in Dataset I, SampEn and AMI are
again the best ones, with a p-value lower than 0.05. We focus on these two features in
the following.

Receiver operating characteristics: To compare the two best performing features,
SampEn and AMI, we plot receiver operating characteristics (ROC) curves in figure 9.2,
both for Datasets I and II, using data from the last T = 20 mn before delivery. For
Dataset I, AMI better discriminates acidotic subjects from normal ones. For Dataset
II, AMI discrimination is only slightly better than SampEn. The area under the curve
(AUC) of the ROC of the features is reported in table 9.1, with bold font indicating the
estimator with the largest AUC. Performance is much worse in Dataset II than in Dataset
I: the AUC is reduced. Nevertheless, AMI is always the better performing estimator (its
AUC reduces from 0.84 to 0.68), followed by SampEn (AUC reducing from 0.79 to 0.67).
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SampEn(2) Î
(2,1)

Î
(3,3)

AUC p-value AUC p-value AUC p-value

Dataset I
20 mn 0.79 5.92e-07 ?? 0.84 2.00e-09 ?? 0.88 5.46e-11 ??
10 mn 0.76 1.22e-07 ?? 0.84 2.22e-09 ?? 0.87 1.40e-10 ??
5 mn 0.72 1.97e-07 ?? 0.83 7.47e-09 ?? 0.86 6.26e-10 ??

Dataset II
20 mn 0.67 2.35e-02 ? 0.68 1.69e-02 ? 0.71 5.36e-03 ??
10 mn 0.62 1.56e-02 ? 0.64 5.87e-02 0.68 1.66e-02 ?
5 mn 0.62 5.16e-02 0.60 1.70e-01 0.64 7.29e-02

Table 9.2: AUC and p-value of Wilcoxon test of SampEn and AMI in datasets I and II
using data from the last 20, 10 or 5mn before delivery.

9.3.2 Effect of Window Size on Performance

We investigate the robustness of the detection performance when the window size T is
reduced, using data from T = 20, 10 and five minutes. Results are reported in figure 9.1
and table 9.2. p-values and AUC both indicate that Î(2,1) and SampEn(2) provide robust
discrimination in Dataset I even when the observation length is reduced. Again, Î(2,1)

performs better: its AUC is reduced from 0.84 to 0.83 when T is reduced from 20 mn to
5 mn, where the AUC of SampEn is reduced from 0.79 to 0.72. In Dataset II, once again,
performance degrades, but AMI is still better at discriminating acidotic from normal
subjects. In the following, we focus on AMI estimates only.

9.3.3 Effect of the Embedding Dimensions on the (Fetal Acido-
sis Detection) Performance of AMI

In order to improve the acidosis detection performance of the AMI, especially in Dataset
II, we increase the embedding dimensions m and p used in computing Î(m,p). This way,
we probe a higher order dependence structure in the dynamics. Because of the symmetry
of AMI (eq.(1.27)) and aiming at probing the effect of increasing either m or p, we plot
the AUC of ROC as a function of m+ p only. The dependence of AMI on m− p is much
smaller and not reported here. These computations have been done with a larger value
k = 15 in the k-NN algorithms, in order to accommodate the possibly large embedding
dimensions (m+ p up to 12). Results are presented in figure 9.3.

For a fixed window size, the AUC increases when m + p increases and reaches a
maximum; it then remains constant or decreases slightly. This behavior is observed in
both Datasets I and II and for any window size T ∈ [5, 10, 20] mn. Varying T dos not
seem to change the location of the maximum of the AUC in a given dataset. The optimal
embedding dimension is m+ p = 6 in Dataset I and m+ p = 10 in Dataset II. This hints
at a difference in the dynamics of the FHR in the two datasets. Because both bias and
computation time increase with the total dimensionality [69], the maximal embedding is
restricted to m = p = 3. A reduction of the AUC is observed when the analysis window
is reduced, but this is only significant for Dataset II.

We reported in table 9.2 the AUC and p-values of the AMI for two embedding dimen-
sions: Î(2,1) and Î(3,3), for Datasets I and II and several window sizes. The best performing
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Figure 9.3: AUC of ROC for Î(m,p) as a function of the total embedding dimension m+p,
with m ≥ p, for time windows of size T = 20, 10, 5 mn, for data in Dataset I (first line)
and Dataset II (second line). Black circles indicate the special case p = 1 corresponding
to the classical definition of Shannon entropy rate (see eq.(1.25)). Red squares correspond
to p ≥ 2.

estimator is indicated in bold. For all observation windows and for the two datasets, Î(3,3)

achieves the best performance. Their AUC is always larger than the one obtained using
SampEn or AMI with m = 2 and p = 1.

9.3.4 Dynamical Analysis

We now explore how long before delivery the AMI can diagnose fetal acidosis on an FHR
signal. To do so, we do not restrict our analysis to the last data points before delivery,
but we apply it to an ensemble of windows scanning the first and second stages of labor.
We examine the dynamics of Î(3,3), the best performing feature, for both normal and
abnormal subjects.

Dataset I: Rapid Delivery

In this first section, we focus on Dataset I and probe Stage 1, including early labor, active
labor and transition. Using the time at which Stage 1 ends as a reference (setting it at
t0 = 0), we compute for each subject Î(3,3) in a set of time windows [ti− T, ti], 0 ≤ i ≤ 50
of fixed size T ending at ti = t0− i∗2 mn, so separated by 2 mn. We perform this analysis
for three window sizes T ∈ [20, 10, 5] mn. The value of AMI computed in the i-th window
is then assigned to time ti−T/2, at the center of the interval. By construction of Dataset
I, delivery occurs less than 15 min after pushing started and can be as short as 1 mn, so
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we completely discard data from Stage 2. We then average the values of AMI over the
population of normal subjects and over the population of acidotic subjects, respectively.
Results, including p-values, are presented in figure 9.4.
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Î
(3
,3
)

−80 −60 −40 −20 0

−80 −60 −40 −20 0

−80 −60 −40 −20 0

1

1.5

2

2.5

3

1

1.5

2

2.5

3

1

1.5

2

2.5

3

lo
g
1
0
(p

va
l)

Stage I

Time (mn)

5 mn window

Stage I
lo

g
1
0
(p

va
l)

lo
g
1
0
(p

va
l)

Time (mn)

Stage I

20 mn window

10 mn window

Time (mn)

−80 −60 −40 −20 0

−80 −60 −40 −20 0

−80 −60 −40 −20 0

−12

−10

−8

−6

−4

−2

0

−12

−10

−8

−6

−4

−2

0

−12

−10

−8

−6

−4

−2

0

Figure 9.4: Left: Average AMI Î(3,3) for normal (black) and abnormal (red) subjects in
Dataset I (delivery occurring less then 15 mn after pushing started). AMI is computed in
windows of size T = 20 mn (first line), 10 mn (second line) and 5 mn (third line) shifted
by 2 mn. The vertical magenta line indicates the beginning of Stage 2 (pushing). Right:
Corresponding p-value. A single black + symbol in the AMI plot indicates a p-value lower
than 0.05, two ++ indicate a p-value lower than 0.01. The gray-shaded region represents
the time window used to compute the last value of AMI.

A first observation is that AMI is always larger for acidotic subjects than for normal
subjects. As labor progresses, AMI increases in both populations, but the increase is
stronger for acidotic subjects. As a consequence, the p-value of the test decreases clearly,
so the feature performs better and better when approaching delivery. Detection of acidosis
using the AMI feature and T = 20 mn can be obtained in Dataset I as early as 80 min
before entering the second stage. Using shorter windows, T = 10 mn or 5 mn, detection
is still reliable as early as one hour before Stage 2. We interpret this reduced forecast of
acidosis detection in Dataset I as a direct consequence of the reduction of the statistics
when the window size T is reduced.



Results: Acidosis Detection Performance 171

Dataset II: Delivery after Pushing More Than 15 mn

For Dataset II, we performed the same dynamical analysis as in the previous section,
using the end of Stage 1 as the reference time (t0 = 0). Because there is now enough
data in the pushing stage, we also perform the analysis of this stage using the delivery
time (t0 = D) as the reference. All results are presented in figure 9.5. At the end of
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Figure 9.5: Left: Average AMI Î(3,3) for normal (black) and abnormal (red) subjects in
Dataset II (delivery occurring more then 15 mn after pushing started). AMI is computed
in windows of size T = 20 mn (first line), 10 mn (second line) and 5 mn (third line) shifted
by 2 mn. The vertical magenta line indicates the beginning of Stage 2 (pushing), and
the vertical blue line indicates delivery. Right: Corresponding p-value. Black + symbols
in the AMI plot indicate a p-value lower than 5% (+) or lower than 1% (++). The
gray-shaded region represents the time window used to compute the last value of AMI.

Stage 1, we observe again that AMI is larger for acidotic subjects than for normal ones,
but the difference is not significant in this group (see the corresponding p-value on the
right of figure 9.5). The situation is identical at the end of Stage 2, although we obtain a
lower p-value in some windows. The p-value does not decrease clearly when approaching
delivery time, as it was in Dataset I, see figure 9.4. For subjects in Dataset II, it is very
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difficult to make an early detection of acidosis. However, we observe in figure 9.5 that the
average AMI is significantly larger at the end of Stage 2 than at the end of Stage 1. The
increase of AMI is larger for abnormal subjects.

To examine more precisely the dynamical increase of AMI, especially when entering
Stage 2, we computed Î(3,3) over an ensemble of windows of size T = 20 mn spanning con-
tinuously a large time interval that includes the end of the active labor and the beginning
of the pushing stage. Results are reported in figure 9.6. We see a continuous increase
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Figure 9.6: Average behavior of AMI Î(3,3) (left) and Shannon entropy Ĥ (right) for
normal (black) and acidotic (red) subjects in Dataset II (delivery occurring more than
15 mn after pushing started).Quantities are computed in windows of size T = 20 mn.
The vertical magenta line indicates the beginning of Stage 2 (pushing). We have used a
different color code for windows spanning both Stages 1 and 2: blue for normal subjects
and magenta for acidotic ones.

of AMI values when evolving from Stage 1 to Stage 2. The increase is more important
for abnormal subjects, which corroborates the findings in figure 9.5. For smaller window
sizes, the situation is less clear.

We also studied the dynamical evolution of the Shannon entropy estimate Ĥ, which,
together with the AMI, combines into the Shannon entropy rate (see eq.(1.25)). Changes
in the Shannon entropy H indicate changes in the probability density of the signal. Results
are presented in figure 9.6, side by side with the AMI. We observe a dramatic rise of
the value of Ĥ when subjects evolve from Stage 1 to Stage 2. This increase is clearly
observed for normal and abnormal subjects. No significant difference between normal
and acidotic subjects is observed for this static quantity. The start of pushing implies a
strong deformation of the probability density of the FHR, indicating strong perturbations
of the FHR, for both normal and acidotic subjects.

9.4 Discussion, Conclusions and Perspectives

We now discuss the interpretation of Shannon entropy and AMI measurements in different
stages of labor. The fetuses are classified as normal or acidotic depending on a post-
delivery pH measurement, which gives a diagnosis of acidosis at delivery only. There is
no information on the health of the fetuses during labor.

The physiological interpretation of a feature, and especially its relation to specific
FHR patterns, e.g., like those detailed in [64, 14], is a difficult task that is only scarcely
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reported in the literature [180, 75]. In this chapter, we have averaged our results over large
numbers of (normal or acidotic) subjects, which jeopardizes any precise interpretation in
terms of a specific FHR pattern that may appear only intermittently.

9.4.1 Acidosis Detection in the First Stage

We can nevertheless suggest that the value of the Shannon entropy H is related to the
frequency of decelerations in the FHR signals. Indeed, Shannon entropy strongly depends
on the standard deviation of the signal (e.g., see eq.(1.38)), which in turn depends on the
variability in the observation window. A larger number of decelerations in the observation
window deforms the PDF of the FHR signal by increasing its lower tail; in particular,
this increases the width of the PDF and hence increases the standard deviation and the
Shannon entropy. This explains our findings in figure 9.1 (for Dataset I).

When acidosis develops in the first stage of labor, the Shannon auto-mutual informa-
tion estimator Î(m,p) significantly outperforms all other quantities both in terms of p-value
and AUC. The performance of AMI is robust when tuning either the size of the observa-
tion, and hence the number of points in the data, and the embedding dimensions (m, p).
In addition, the performance slightly increases when the total embedding dimension m+p
increases; although one has to care about the curse of dimensionality.

For abnormal subjects from Dataset II, AMI is not able to detect acidosis using data
from Stage 1. This suggests that acidosis develops later, in the second stage of labor.

For all datasets, AMI computed with τ = 0.5 s is always larger for acidotic subjects
than for normal subjects. This is in agreement with results obtained with ApEn and
SampEn, which are both lower for acidotic subjects. This shows that FHR classified
as abnormal have a stronger dependence structure at a small scale than normal ones.
We can relate this increase of the dependence structure of acidotic FHR to the short-
term variability and to its coupling with particular large-scale patterns. For example, a
sinusoidal FHR pattern [14], especially if its duration is long, should give a larger value
of the AMI, because its large-scale dynamics is highly predictable. As another example,
we expect variable decelerations (with an asymmetrical V-shape) and late decelerations
(with a symmetrical U-shape and/or reduced variability) to impact AMI differently. Of
course, the choice of the embedding parameter τ is then crucial, and this is currently
under investigation.

AMI and entropy rates depend on the dynamics as they operate on time-embedded
vectors. AMI focuses on nonlinear temporal dynamics, while being insensitive to the
dominant static information. AMI is independent of the standard deviation, which on the
contrary contributes strongly to the Shannon entropy. This explains why AMI performs
better than entropy rate estimates, such as ApEn(m), SampEn(m) and ĥ(m), which depend
also on the standard deviation.

9.4.2 Acidosis Detection in Second Stage

The results reported for Stage 2 show a severe decrease in the performance of the five
estimated quantities. Analyzing Stage 2 is far more challenging than analyzing Stage
1, which suggests that temporal dynamics in Stage 2 differ notably from those of Stage
1 [189] or simply that our database does not contain enough acidotic subjects in that case.
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Î(m,p) achieves the best performance in terms of p-value and AUC; this clearly underlines
that the analysis of nonlinear temporal dynamics is critical for fetal acidosis detection in
Stage 2. As in Stage 1, the AMI is always larger in Stage 2 for acidotic subjects than for
normal subjects.

Although the Shannon entropy computed from the last 20 mn of Stage 2 before de-
livery does not show a clear tendency in figure 9.1 for Dataset II, looking at figure 9.6
clearly shows that Ĥ increases as labor progresses: this is probably related to the average
increase of the number of decelerations, which is expected in both the normal and acidotic
population.

SampEn(2) is also able to perform discrimination in Stage 2. From these observations,
one may envision the definition of a new estimator that would measure the auto-mutual
information using the Rényi order-two entropy by applying eq.(1.25). Nevertheless, it
should be emphasized that Rényi order-q entropy is lacking the chain rule of conditional
probabilities as soon as q 6= 1, which may jeopardize any practical use of such an estimator.

9.4.3 Probing the Dynamics

Increasing the total embedding dimensions in AMI improves the performance in the de-
tection of acidotic subjects, in both the first and second stages. The best performance
is found for different total embedding dimension in the two datasets. This suggests that
FHR dynamics is different in each stage.

As seen in eq.(1.25), the Shannon entropy rate can be split into two contributions: one
that depends only on static properties (the Shannon entropy, estimated by Ĥ) and one
that involves the signal dynamics (the auto-mutual information, estimated by Î(m,1)). By
following the time evolution of these two parts, we were able to relate Shannon entropy
Ĥ with the evolution of the labor and AMI not only with the evolution of the labor, but
also with possible acidosis. Looking at subjects for which the pushing phase is longer
than 15 mn, it clearly appears that all fetuses are affected by the pushing, as evidenced
by a large increase of the Shannon entropy Ĥ and a small increase of AMI. Additionally,
the increase of AMI is steeper for abnormal subjects than for normal ones, which may
indicate different reactions to the pushing and can be related to specific pathological FHR
patterns. When the pushing stage is long (Dataset II), fetuses reported as acidotic do not
show any sign of acidosis until prolonged pushing. These fetuses appear as normal until
delivery is near.

When acidosis develops during the first stage of labor, in Dataset I, we observe clearly
that while AMI increases steadily till delivery for healthy fetuses, it increases faster for
acidotic ones. This suggests that acidotic fetuses in Dataset I react to early labor, as
early as one hour before pushing starts. This could not only indicate that some fetuses
are prone to acidosis, but also may pave the way for an early detection of acidosis in this
case.
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Most of the time when studying a system, scientists face processes whose properties
are a priori unknown. Characterising these processes is a major task to describe the
studied system. During this thesis, which combines signal processing and physics, we were
mainly motivated by the study of complex systems and turbulence, and consequently,
we were interested in the study of regularity and self-similarity properties, long range
dependence structures and multi-scale behavior. In order to perform this kind of study, we
use information theory quantities, which are functions of the probability density function
of the analysed process, and so depend on any order statistics of its PDF (chapter 3).

We developed different, but related, data analysis methodologies, based on information
theory, to analyse a process across scales τ . These scales are usually identified with the
sampling parameter of Takens embedding procedure (section 1.2), but also with the size
of the increments of the process (chapters 7 and 8). The methodologies developed during
this thesis, can be used to characterize stationnary and non-stationnary processes by
analysing time windows of length T of the studied signal (chapter 4).

Characterization of a process

Regularity

In order to characterize the regularity of an unknown process X, we combine entropy rate
h(m,τ)(X) (section 1.4.1) and an adapted Theiler prescription (section 2.5) to perform an
analysis across scales. The entropy rate across scales, that quantifies the unknown infor-
mation of a sample knowing the m previous ones, can be expressed following eq.(1.25).
Consequently, entropy rate across scales presents two different contributions: the en-
tropy of the process, which only depends on its PDF, and the auto-mutual information
across scales (section 1.4.2) that quantifies the shared information between two consecu-
tive chunks of the signal.

Both, auto-mutual information and entropy rate across scales perform very similar
statistical characterizations of a process (see eq.(1.25)). However, entropy rate presents
some estimation advantages: it is less biased and has a smaller standard deviation than
auto-mutual information, when analysing non-stationnary processes (section 4.3.1). The
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local slope of entropy rate across scales in a given range of scales, can be related to a
measure of the exponent of “global regularity” of the process in this range (chapter 4):

• If the local slope, in a range of scales, is 0, the process, sampled at these scales,
corresponds to a white noise. The analysed process can be seen as discontinuous
at these scales (figure 9.7, a)). Furthermore, when the scale decreases the slope
of entropy rate can only increase (or remains constant), due to the increase of
dependences between samples of the process at these scales. This effect indicates
the increase of the regularity of the process for the small scales.

• A local slope between 0 and 1 (∈ (0, 1)), in a range of scales, indicates the continuity
but non-differentiability of the process at these scales. The value of the slope char-
acterizes the exponent of “global regularity” of the process in this range (figure 9.7,
b)).

• A local slope of 1, in a range of scales, indicates that the process is differentiable
with a continuous derivative at these scales (figure 9.7, c)).

h(1,τ)(X)

ln(τ)

(a) (b)

ln(τ)

(c)

ln(τ)

h
(1

,τ
)

H(δτX)

0 1 2 30 1 2 30 1 2 3

1

2

3

4

5

1

2

3

4

1.4

1.5

1.6

1.7

1.8

Figure 9.7: Entropy rate across scales (black) and entropy of the increments (blue) for: a)
fractional Gaussian noise with H = −0.3, the red line indicates the slope 0, b) fractional
Brownian motion with H = 0.7, the red line indicates the slope 0.7 c) process with
H = 1.7 generated by integrating a fractional Brownian motion with H = 0.7, the red
line indicates the slope 1.

Scale invariance

A rigorous linear behavior of entropy rate in function of the logarithm of the scale in-
dicates the scale invariance (monofractality) of the analysed process, and therefore the
non-existence of integral scale. In this case the exponent of global regularity is equal to
the Hurst exponent of the process.

The entropy rate across scales of a process and the entropy of the increments of the
process are strongly connected (eq.(4.8)). Their relationship is completely general: it is
valid for both stationnary and non-stationnary processes and it is independent of the PDF
and the regularity properties of the process. In addition, for scale-invariant processes, we
show that both measures are almost identical, and both characterize the Hurst exponent
of the process (figures 9.7, b) and c)). This equality shows the strong relation between
entropy rate across scales of a process and the PDFs of its increments.
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Self-similarity: monofractality and multifractality

While for scale-invariant processes the entropy rate is linear in function of the logarithm
of the scales, for multifractal processes, the non-linear behaviour of entropy rate across
scales allows to describe the distance from monofractality of the process (figure 7.7),
and indicates the existence of an integral scale. This non-linear behavior for multifractal
processes is explained since the regularity is not defined by a single exponent but by a
distribution of exponents (Hölder exponent) characterized by the singularity spectrum of
the process (section 5.2). Nevertheless, the entropy rate across scales mainly depends on
the second order moment of the analysed process and deviations from linearity, due to
higher order moments, are in general very weak, and difficult to study. For multifractal
processes, the dominant linear behavior of entropy rate across scales characterizes the
exponent of global regularity of the process defined as the Hölder exponent of order 2,
h(p) = ∂ζ(p)

∂p
with p = 2 (see section 5.2).

In order to properly characterize self-similarity and discriminate between monofractal
and multifractal processes, we used the concept of Kullback-Leibler distance between two
PDFs. We define a measure of distance from Gaussianity of a PDF (section 7.1) as the
Kullback-Leibler divergence between this PDF and its Gaussian approximation (Gaussian
PDF with same standard deviation). Then, we measure the distance from Gaussianity of
the increments of the analysed process to measure the deformation of their PDFs across
scales and hence the intermittency of the process (chapter 7).

Long-range dependences

Combining Takens embedding procedure with information theory allows to measure de-
pendences by taking into account n-points interactions, with n being defined by the total
embedding dimension of the measure (section 3.3.2). This provides the framework to test
Markov properties and long-range dependences. In order to identify long range depen-
dences in a process, we can derive it until obtaining a discontinuous process (order of
exponent of global regularity less than or equal to 0). Then, we measure auto-mutual
information for different embedding dimensions m and p in order to vary the number of
points interacting in the measure. For long range dependences, the auto-mutual infor-
mation measure should increase when the embedding increases, while for short-range de-
pendences, the auto mutual information remains constant when the embedding increases
(figure 3.6).

Information flows

We also looked for causality relationships between the different scales of a process (chap-
ter 8). We used transfer entropy (section 1.6.2) as a Wiener causality measure between
two time processes. However, the generation of the scales of a time process has a strong
influence on the causality measures, and renders their interpretation very difficult, i.e. we
are not able to distinguish which contribution of the measure is due to the properties of
the system and which one is due to the way of generating the scales (section 8.2). The
results we obtained are therefore negative results, considering that no knowledge from
the analysed process was obtained. However, all the studied systems presented a flow of
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information from small to large scales for any way of generating the scales, which can
suggest the generality of this result for dynamical systems.

We used the above methodologies mainly in the study of turbulence (chapters 6, 7
and 8), but also in a bio-medical application (chapter 9), and discrimination between
processes (chapters 3 and 4).

Perspectives

The methodologies presented in this manuscript have been used to characterize synthetic
processes or high quality experimental velocity measures. Only in the biomedical appli-
cations, (chapter 9), these methodologies have been tested on low quality data. As we
explained throughout the thesis, these methodologies are of general application and can
be used to study generic systems. New applications of the above methodologies on real
world datasets, and specially on low quality datasets could reveal some flaws of the meth-
ods, or some aspects that need to be improved in order to keep the measures instructive
when dealing with this kind of data.

Throughout the manuscript, we analysed stationnary and non-stationnary, stochastic
or chaotic processes and we give an interpretation to our measures for all these kinds of
processes. In the case of non-stationnary processes, we did that in two different frame-
works. The question that naturally arises is if we can use the methodologies developed
during the thesis to characterize non-chaotic deterministic processes (for exemple, a sine
wave), and what are the interpretation of the measures in this case. This study can be
interesting to analyse independently the stochastic and deterministic components of a
process; for exemple, a noise on a sine wave.

In the analysis of information flows and causality relationships is, perhaps, where more
questions remain opened. We concluded that the causality measures between the scales
of a time series are strongly influenced by the way of generating the scales. However,
for any scale function we found that the small scales cause the large ones. This general
result for any process and any scale function needs to be studied carefully. On the other
hand, to avoid the generation of the scales of a time series, we propose, as future research,
to analyse the causality between experimental signals with a meaning of scale, i.e. not
generating the different scales from an only signal, but experimentally measuring several
signals associated with different scales. This way, with the scales measured experimentally
and turned into different time series, the causality measures would be only due to the
properties of the system.
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[74] Gómez Herrero, G., Wu, W., Rutanen, K., Soriano, M. C., Pipa, G., and Vicente,
R. (2015). Assessing coupling dynamics from an ensemble of time series. entropy,
17:1958–1970.
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