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Thèse présentée et soutenue à Orsay, le 4 septembre 2018, par

Hadrien Vroylandt

Composition du Jury :

Cécile Monthus
DR (CEA Saclay) Présidente du jury

Christian Van den Broeck
Professeur (Hasselt University) Rapporteur

Sergio Ciliberto
DR (ENS Lyon) Rapporteur

Raphaël Chetrite
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Abstract

Abstract

Small machines – like molecular motors or active particles – operate in highly
fluctuating environments that affect their efficiency and power. This thesis aims
at describing small machines using stochastic thermodynamics and large deviation
theory. By relating mean currents to thermodynamic forces, locally first and then
at the global level, we introduce the non-equilibrium conductance matrix that
generalizes the Onsager matrix for stationary non-equilibrium systems. We use it
to bound machine efficiency by a universal function depending only on the degree
of coupling between input and output currents and to find new general power-
efficiency trade-offs. On the fluctuations side, the non-equilibrium conductance
matrix can be used to find a quadratic bound on the large deviation function
of currents. This enables to revisit the fluctuation-dissipation theorem as an
inequality when dealing with far-from-equilibrium systems, but also to derive
bounds on the efficiency large deviation function. Finally, we study the effects
of ergodicity breaking on the fluctuations of observables like activity, currents
or efficiency. In particular, we derive the efficiency large deviation function for
a model of interacting nanomachines, for which tight coupling and ergodicity
breaking emerge in the thermodynamic limit.

Keywords: Stochastic thermodynamics, Large deviations theory, Efficiency,
Thermodynamic machines, Fluctuations

Résumé

Les petites machines, comme les moteurs moléculaires ou les particules actives,
fonctionnent dans un environnement fortement fluctuant qui affecte leur effi-
cacité ou leur puissance. L’objectif de cette thèse est de décrire les petites ma-
chines à l’aide de la thermodynamique stochastique et de la théorie des grandes
déviations. En reliant localement puis globalement les courants aux forces ther-
modynamiques, on introduit une matrice de conductance hors d’équilibre, qui
généralise la matrice d’Onsager pour un système stationnaire hors d’équilibre.
Cela permet de majorer l’efficacité des machines par une fonction universelle qui
ne dépend que du degré de couplage entre les courants d’entrée et de sortie.
On obtient aussi de nouvelles relations générales entre puissance et efficacité.
Du point de vue des fluctuations, la matrice de conductance hors d’équilibre est
reliée à une borne quadratique pour les fonctions de grande déviation des courants.
Cette borne permet d’obtenir des bornes pour les fonctions de grande déviation de
l’efficacité, mais aussi de revisiter le théorème de fluctuation-dissipation comme
une inégalité dans le cas des systèmes loin de l’équilibre. Pour terminer, on
étudie l’effet d’une brisure d’ergodicité sur les fluctuations d’observables comme
l’activité, les courants ou l’efficacité. En particulier, on calcule la fonction de
grande déviation de l’efficacité pour un ensemble de nanomachines en interac-
tion pour lesquelles un couplage fort et une brisure d’ergodicité apparaissent à la
limite thermodynamique.

Mots-clefs: Thermodynamique Stochastique, Théorie des grandes déviations,
Efficacité, Machines thermodynamique, Fluctuations
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directeur du laboratoire Sébastien Descotes-Genon pour m’avoir permis de par-
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un environnement scientifique riche, que ce soit de par l’organisation d’école d’été
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Notations

Notations

Linear algebra and graph theory

We denote vectors with a bold notation u and linear forms as transposed vectors
wT. Subscripts indicate the space of the vector or linear form. When looking at
components of the vectors, by abuse of notation, the label are removed and the
index indicate the space of origin.

uv Vertex vector ux Element for state x
ue Edge vector u(x,y) Element for edge (x, y)
uc Cycle vector uc1 Element for cycle c1

ur Reservoir vector ur1 Element for reservoir r1

u Physical vector uX Element for physical quantity X

Ns Number of states Rev Number of reservoirs
Ed Number of edges Ph Number of physical quantities
Cy Number of cycles Lc Number of conservation laws

Id Identity matrix
D Incidence matrix (Ns× Ed) Eq. (1.1)
C Cycle matrix (Ed× Cy) Eq. (1.3)
R Reservoir matrix (Rev × Ed) Eq. (1.42)
V Selection matrix (Rev × Ph) Eq. (2.40)
P Physical matrix (Ph× Cy) Eq. (2.43)
` Vector of a conservation law Eq. (2.38)

Probability and random variables

Random variables are almost always represented by uppercase letters, while the
specific outcomes of these random variables are denoted by lowercase letters.
The probability of outcome o for random variable O is denoted Pr (O = o). The
expectation of a random variable O is denoted IE [O] and its most probable value
ō.

πv Stationary probability Eq. (1.36)
ω(x,y) Transition rate from y to x Eq. (1.18)
K Transition matrix Eq. (1.20)
γ, κ Counting fields Eq. (2.12)
Kγ Tilted matrix Eq. (2.18)
G(xf, xi, γ) Propagator of the generating function Eq. (6.14)
I(o) Large deviation function (LDF) Eq. (2.7)
φ(γ) Cumulant generating function (CGF) Eq. (2.12)
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Notations

Units and physical quantities

We work in natural units, i.e. the Bolztmann’s constant kB is set to 1. The
typical energy fluctuation of one of the reservoir set the energy scale, i.e. one
of the inverse temperature is set to 1. The typical time constant of one of the
reservoir set the time scale, i.e. one of the coupling constant is set to 1.

L Onsager matrix Eq. (3.4)
G Non-equilibrium conductance matrix Eq. (4.1)
R Non-equilibrium resistance matrix Eq. (4.29)
Cov Covariance matrix Eq. (3.8)
σ Entropy production rate Eq. (1.49)
η Efficiency Eq. (3.2)
ξ Degree of coupling Eq. (4.61)
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Introduction

Foundations of thermodynamics 1769: James Watts patented his version
of a steam engine, whose rising use contributed to the industrial revolution. This
invention and its further developments have raised new fundamental questions
about the physical description of engines and the improvement of their efficiency.
Answers to these questions have emerged gradually as a new branch of physics
called thermodynamics [5]. Thermodynamics is, as stated by Lord Kelvin in 1882,
“the subject of the relation of heat to forces acting between contiguous parts of
bodies, and the relation of heat to electrical agency” [17].

Thermodynamics was formalized through the definition of the laws of ther-
modynamics. The first law follows from the experiment of Joule, who showed
that heat and mechanical work were both a form of energy transfer.

The second law originates in work on thermal machines by Carnot, who stated
the impossibility for a machine to have an efficiency in energy conversion greater
than the Carnot efficiency, the latter efficiency depending only on the tempera-
tures of the exterior heat baths. The second law was later formulated by Clausius,
who introduced entropy as a quantity that describes the direction, thermodynam-
ically, in which a system can evolve . Based on entropy, one can quantify the useful
work that can be extracted from a system.

These two laws have been widely used as guiding principles for the improve-
ment of heat engines.

Entropy remained a mysterious quantity until an interpretation was given by
Boltzmann through the development of equilibrium statistical mechanics. Equi-
librium statistical mechanics connects thermodynamic quantities (such as temper-
ature, pressure, ...) to microscopic behavior of systems. Within this framework,
entropy is related to the number of microscopic configurations that are consistent
with the macroscopic quantities characterizing the system.

Thermodynamics and statistical physics are now an important part of the
description of many macroscopic systems, ranging from chemical to astrophysical
systems. They feature the thermodynamic limit , i.e. a large system limit, as a
key ingredient. This limit allows us to characterize macroscopic systems by few
degree of freedom upon averaging on most of the microscopic degrees of freedom.
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Brownian motion In contrast to systems with a thermodynamic limit, study-
ing “small” systems reveals huge fluctuations that influence the behavior of the
systems. These fluctuations were discovered by Brown, who observed the erratic
trajectory of particles inside a grain of pollen suspended in water. This Brown-
ian motion was studied intensively in the 19th century (Gouy, Perrin, Langevin,
Einstein, ...) and several properties were established :

- The Brownian motion is fully erratic and never stops.

- The nature of the particle does not matter, but its size matters, and for a
big enough particle, the motion is unobservable.

- The viscosity and the temperature of the surrounding fluid affect the mo-
tion.

The Brownian motion originates in the collision of the particle with the fast-
moving molecules in the fluid. Due to the high complexity of the many-body
dynamics that governs the molecular motion, these collisions appear as random.
As a consequence only probabilistic models can be employed to describe the
surrounding fluid, in conjunction with the molecular chaos hypothesis. These
probabilistic models are parametrized by the temperature of the fluid, which
sets the typical energy scale of the interaction between the fluid molecules and
the particle. When the particle is big enough the energy changes due to the
collisions with the fluid molecules become negligible compared with the typical
kinetic energy of the particle, and the effect of the fluctuating environment is
unobservable.

Stochastic thermodynamics Over the last two decades, stochastic thermody-
namics has emerged as a comprehensive framework for the description of “small”
systems in contact with a fluctuating environment. We consider here that a
“small” system is a system on which the effect of the environmental fluctuations
are perceptible, unlike the classical thermodynamics where these fluctuations are
absent. Examples range from colloids in solution [180] to the complex machinery
of life [156, 165].

Stochastic thermodynamics is rooted on one hand, in the development of non-
equilibrium statistical mechanics, on the other hand in the mathematical theory
of stochastic processes. Non-equilibrium statistical physics was initially developed
in the close-to-equilibrium regime. The concept of Onsager matrix, fluctuation-
dissipation theorem or Green-Kubo relations have emerged within the framework
of linear response theory [10, 113, 131, 132]. Some of these results can now
be understood through extremization principles for entropy production used to
predict non-equilibrium currents or steady-states [130, 135, 20]. On the math-
ematical side, Markov processes have been introduced to describe formally the
random evolutions of small systems [13]. The elaboration of large deviation the-
ory has improved the mathematical foundation of equilibrium statistical physics
and suggested directions for its out-of-equilibrium generalization [43, 73–76, 78,
14, 25].
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Stochastic thermodynamics has led to important results based on a precise
framework:

- Thermodynamic quantities are defined at the level of a single trajectory, e.g.
energy [168, 24] or entropy [167], and the connection with large deviation
theory are clearly stated [133, 136].

- A symmetry of the probability distribution of entropy production exists
and is called the ‘fluctuation theorem’ (or ‘relations’). This symmetry was
first observed in numerical simulations of sheared fluids [88], and has been
generalized to numerous cases [86, 104, 114, 117]

- There has been experimental validation of stochastic thermodynamics using
modern experimental techniques in single-molecule pulling, optical trapping
of colloidal particles, and single-electron counting in mesoscopic electronic
devices, among many others [62]. Let us cite the measurement of free energy
difference for various systems, from a torsion pendulum [77] to DNA fold-
ing/unfolding [68, 120], the determination of the probability distribution of
entropy production for a single electron box [111], or various realizations
about the connection between information and stochastic thermodynam-
ics [47, 180].

Nowadays, stochastic thermodynamics aims at answering new questions, among
which:

- The study of specific systems: biological and chemical systems [21, 158],
systems with time-dependent driving [52] , quantum systems [58, 174] or
connection with the information theory [134]

- The definition of dynamical ensembles to generalize the notion of micro-
canonical and canonical ensemble of equilibrium statistical physics [60].

- The study of dynamical phase transitions found in various systems [36],
such as glassy systems [92] or simple models of lattice gases [11, 18].

- The connection between mean values of observables and their fluctuations [39,
40], aiming in particular at infering hidden properties of a system [31, 94].

Energy conversion by machines is still today intensively studied in the frame-
work of stochastic thermodynamics:

The impossibility of extracting power from the fluctuations of the environment
has been revisited. This question was studied through the design of gedanken
experiments [66, 67, 137, 161, 183], the analysis of biological molecular motors
[55, 106, 115] and the realization of artificial stochastic machines [49, 125, 153,
159, 169].

As an extension of the work of Carnot, general laws and constraints of ma-
chines operation have been considered, e.g. the condition of operation of machines
at Carnot efficiency is a widely debated subject [51, 53, 57, 81, 148, 154, 160,
171], and general power-efficiency relations have been derived using the close-to-
equilibrium framework [109, 152].
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Small machines operate in the presence of highly fluctuating input and output
energy fluxes associated with large efficiency fluctuations. The study of efficiency
probabilities at large time have revealed surprising results, with the Carnot effi-
ciency being the least likely efficiency of stationary machines [186, 189].

In this manuscript, we focus on the study of small machines within the large
deviation framework, with the following questions in mind:

• What is the appropriate description of small machines?

• In view of the description of machines in the close-to-equilibrium regime [109],
can we extend based on Refs. [40, 141, 149] this remarkable theory to far-
from-equilibrium machines?

• In Ref. [189], general results were established about efficiency fluctuations
after a very long time. What happens for machines with losses or ergodicity
breaking in the thermodynamic limit?

Outline and contributions of this manuscript

This manuscript can be divided into three parts:

• The first part is composed of the chapters 1, 2 and 3. It consists of a detailed
introduction. Ch. 1 introduces first the description of stochastic processes
and stochastic thermodynamics in the framework of graph theory; Ch. 2
develops the large deviation theory that is used to describe fluctuations of
observables such as heat fluxes and defines the notion of dynamical ensem-
bles; Ch. 3 focuses on thermodynamic machines both at the average and
fluctuating level.

• The second part is composed of the chapters 4 and 5. Ch. 4 defines the
non-equilibrium conductance matrix used to describe average behavior of
machines and approximate the fluctuations. Ch. 5 uses the non-equilibrium
conductance matrix to bound efficiency fluctuations. We also study there
efficiency fluctuations in the presence of losses.

• The third part is composed of the chapters 6 and 7. Ch. 6 studies when
the equivalence between dynamical ensembles defined in sec. 2.1 is broken.
Ch. 7 introduces a model derived from the fully-connected Ising model to
study how of the non-equivalence of dynamical ensembles impacts efficiency
fluctuations.

Main results The contributions of the first part are mainly of pedagogical
value and the author hopes that this part may be useful to introduce future
students to stochastic thermodynamics. The second and the third part includes
some original results (at least to a certain degree, and up to our knowledge):

• The introduction of the non-equilibrium matrix for physical currents as a
generalization of the Onsager matrix, sec. 4.1 [A.3].
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• Various bounds on the non-equilibrium conductance matrix (sec. 4.2) and its
connection with the thermodynamic uncertainty relations, sec. 4.2.3[A.3].

• The generalization of the notion of degree of coupling to far-from-equilibrium
machines, Eq. (4.61)[A.3].

• A formula for the maximum efficiency of any machine based solely on the
degree of coupling, Eq. (4.68)[A.3].

• The definition of a power-efficiency trade-off from the non-equilibrium con-
ductance matrix and its connection with previously established power-efficiency
trade-off, sec. 4.4.3[A.3].

• The derivation of a bound on the scale of efficiency large deviation function
from total entropy production rate, Eq. (5.5).

• The derivation of a bound on the efficiency large deviation function from
the non-equilibrium conductance matrix, Eq. (5.7).

• The study of efficiency fluctuations for machines with three fluxes, sec. 5.2.3
[A.1].

• The consistency between efficiency fluctuations of machines with losses and
“ideal” machines of Ref. [189], sec. 5.2.4 [A.1].

• The computation of non-convex large deviations functions from the propa-
gator of the generating function, sec. 6.1.2 [A.4].

• The study of fluctuations of dynamical observables for the fully-connected
Ising model in presence of ergodicity-breaking, sec. 6.2 [A.4].

• The link between mixing time and non-convex large deviations functions,
sec. 6.3 [A.4].

• The emergence of a tight coupling in the thermodynamic limit for some
models and its interpretation as an emergent conservation laws, sec. 7.2
[A.2].

• The efficiency large deviation function in the presence of ergodicity breaking
for the Brownian Donkey, sec. 7.3.3 [A.5].

– 5 –





1

Stochastic thermodynamics

This first chapter introduces the mathematical tools used to describe non-
equilibrium processes, starting with graph theory. Next we switch to the dynam-
ical evolution of systems, in particular in presence of an external environment.
Finally, we study the stochastic behavior of our system by introducing the ob-
servables we will use throughout the manuscript.

The material presented in this chapter mainly comes from the current litera-
ture. Readers can refers to the following publications for more details:

• The book of N. Biggs [3] and the thesis manuscript of M. Polettini [19]
present many interesting aspects of algebraic graph theory.

• The thesis manuscript of B. Wynants [30] contains a very nice introduction
to Markov stochastic processes and their use for non-equilibrium physics.

• On the connection with an external environment, we base our explanations
on two articles by Bulnes-Cutera, Polettini, Rao and Esposito [147, 157].
The review by U. Seifert [23] is also a central reference.

State space A system is described by its states or configurations. These are
the values of the variables used for modeling the system under consideration. For
example, the system state may be the vector of the positions and momenta of the
atoms of a gas, the set of spin configurations for a magnet or just the position for
a colloidal particle in a viscous fluid. The set of states or configurations, denoted
Ω, can be continuous or discrete, bounded, compact or finite.

We assume in this manuscript that Ω is a discrete and finite space of size Ns.
Such state space are well described by graph theory, the state space being set as
the vertex of a graph. We concentrate on the algebraic graph theory where graph
elements are considered as vectors and manipulated through algebraic relations.
This algebraic formulation of graph theory allows for a simple description and
manipulation of the various concepts used in stochastic thermodynamics.
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Chapter 1. Stochastic thermodynamics

1.1 Algebraic graph theory

A graph G is a set of vertices x that are connected by edges. We denote Ns
the number of vertices and Ed the number of edges. Each vertex represents a
possible state of the system and each edge a possible transition between states.
We also introduce an arbitrary orientation on the graph, for each couple of states
(x, y) (we choose arbitrarily an orientation (y → x)) such that y is the origin of
the edge and x its end. We define (y, x) as the oriented edge with the reverse
orientation (x→ y).

In this thesis, we focus on multigraphs without loops, that is to say that it
is possible to have several edges between two vertices, but no edges connecting a
vertex to itself.

Figure 1.1: (a) Example of graph with 5 vertices and (b) an arbitrary orientation.
(c) A possible choice for the fundamental cycle basis and (d) another possible
choice. (e) An example of multigraphe with three vertex and a loop.

1.1.1 Properties of graphs: connected graphs and cycles

Connected graphs We say that a graph is connected if there is a path of
edges connecting any pair of vertices in the graph. A graph is decomposable into
a set of connected components, and Kc is the number of these components. We
shall consider, with some exceptions, only connected graphs. If a graph is not
connected, then it suffices to consider separately each of its connected components
as an independent graph.
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1.1. Algebraic graph theory

Cycles A cycle is a set of consecutive edges that form a closed paths on the
graph. A simple cycle is a cycle with no edge repetition. We define a cycle by the
successive list of edges belonging to the cycle. A graph without a cycle is called
a tree. Given two cycles c1 and c2, that share at least one edge, we construct a
third cycle by considering the set of edges that belong to c1 or c2 but not to both,
see Fig. 1.1.

Then there exists a basis of cycles such that any cycle is decomposable as a sum
of cycles of the basis. Such a basis is called a fundamental cycle basis. The number
of fundamental cycles Cy is given by the Euler formula Cy = Ed − Ns + Kc.
Like for edges, we orient arbitrarily the fundamental cycles.

A graph with a unique cycle, like the three state model of Fig. 1.2 is called
a unicyclic system. Due to their simplicity, unicyclic systems are quite popular
as model example, but they have drawbacks for modeling of machines that we
discuss in sec. 3.1.3.

Figure 1.2: (a) Unicyclic three state graph and (b) its three spanning trees

Spanning trees There is a simple procedure to obtain a fundamental cycle
basis for connected graphs. Consider a spanning tree T , that is, a subgraph of
G connecting all the vertices of G but without cycle. By Euler formula, it is
thus a graph with Ns − 1 edges. The edges that do not belong to T are called
chords, so there are Cy chords. To obtain a cycle of the fundamental cycle base,
we choose one of the chords of the graph and add it to T , to produce exactly one
cycle. We then remove all the edges not belonging to the cycle and we orient the
cycle in the direction of the chord. Doing this for all chords, we obtain a basis of
fundamental cycles. This basis is not unique, by choosing another spanning tree,
we can obtain another basis of fundamental cycles, as shown on Fig. 1.1c-d.

1.1.2 Incidence matrix

The algebraic graph theory uses algebraic theory to study graphs. Many ap-
proaches are possibles, for instance using group theory [3], but we concentrate on
the use of linear algebra to extract graph properties from particular matrices.
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Chapter 1. Stochastic thermodynamics

We define the incidence matrix D that contains all the information on graph
topology and edge orientation. Its elements are

Dz,(x,y) =


−1 if z = y
+1 if z = x
0 else

. (1.1)

where y is the origin of the oriented edge (x, y).

Connected components As a first property of D, let’s show that for each
connected component Gk, the sum on the vertex belonging to the component is
zero, i.e.

∑
z∈Gk

Dz,(x,y) = 0. Indeed for each edge, the sum over the vertices
give −1 + 1 since we count the starting vertex as −1 and the final vertex as +1.
Therefore the vector (1, . . . , 1, 0, . . . , 0)T, with 1 for the vertex member of one
connected components and 0 for the other components, is a member of the kernel
of DT. The rank of the incidence matrix is then Ns−Kc. For a connected graph
(1, . . . , 1)T is the only member of the kernel of DT.

Cycles The kernel of D also informs on the graph properties: an element c of
the kernel is a combination of edges such that

∀z ∈ G ,
∑
(x,y)

Dz,(x,y)c(x,y) = 0 (1.2)

that is the definition of cycles. Indeed, for a cycle c, let’s consider the vector c
such that for each edge e

c(x,y)


+1, if (x, y) ↑ c,
−1 if (x, y) ↓ c,
0 else ,

(1.3)

where (x, y) ↑ c means that edge (x, y) belong to the cycle c with an orientation
similar to the one of the cycle and (x, y) ↓ c the orientation is opposite. At each
vertex

∑
(x,y) Dz,(x,y)c(x,y) is zero. The kernel of D is then the cycle space of the

graph. Hence a basis of the kernel is a basis of fundamental cycles. We denote
by C the Ed× Cy matrix composed of the vector forming a basis of kerD.

We remark that the Euler formula is recovered from the fundamental theorem
of linear algebra. Indeed, we have

REd = kerD ⊕ imDT ⇒ Ed = dim kerD + dim imD (1.4)

that gives again the Euler formula Ed = Cy +Ns−Kc.

Laplacian matrix From the incidence matrix, we build the Laplacian matrix
∆ = −DDT, this is the matrix

∆x,y =


1 if x and y are connected by an edge,
−degx if x = y,
0 else ,

(1.5)
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1.1. Algebraic graph theory

where degx is the degree of the vertex, that is the number of edges connected
to the vertex. Notice that the Laplacian matrix is independent of the chosen
orientation.

The matrix-tree theorem is an important result of algebraic graph theory. The
number of spanning trees of the graph is given by any minor of the Laplacian
matrix, that is the determinant of the Laplacian matrix with row and column
corresponding to one state removed.

1.1.3 Vectors and linear forms

We consider now functions on the edges of the graph G . Such function u assigns a
value for each edge (x, y) of the graph that could depend on the edge orientation
u(x,y) 6= u(y,x). We decompose edge functions between the symmetric (u(x,y) +
u(y,x))/2 and the antisymmetric part (u(x,y) − u(y,x))/2.

Vertex, edge and cycle space as vector space Let’s consider the vector
with elements being the value on edge of the antisymmetric part of any function.
This vector is then a member of the edge space REd. The edge space REd can be
considered as real vector space and its elements are called the edge vectors.

Similarly, we consider the linear forms that are elements of the dual of the
vector space REd. They are called the edge linear forms.

We generalize these interpretations of edge space as a vector space to vertex
and cycle space. We therefore define elements of ARNs−1 as vertex vector and
element of RCy as cycle vector, and similarly for the dual vector space. ARNs−1

being the affine space of dimension Ns − 1 that is RNs with an additional con-
straint between coordinates.

We denote vectors with a bold notation u and linear forms as transposed
vectors wT. Subscripts indicate the space of the vector or linear form: edge
quantities are denoted with e subscript as ue, cycle quantities with c as uc and
vertex quantities with v as uv. When looking at components of the vectors, by
abuse of notation, the label v, e and c are removed and the index indicate the
space of origin, ux, u(x,y) and uc1 are respectively elements of the vectors uv, ue

and uc.

The vectors and linear forms can be related one to another, but this requires
to define an inner product, or a metric. This question relies on the definition of
a dynamics on the graph and is treated in sec 1.2.

Decomposition of vectors and linear forms The incidence matrix and the
cycle matrix are now considered as linear maps between vector spaces. They
relate edge vectors to cycle vectors or vertex vectors. For instance a cycle vector
uc generates an edge vector ue such that ue = C · uc, and a vertex linear form
wv

T generates an edge linear form we
T = wv

T ·D.

As imC = kerD, we have the exact sequence[119]

ARNs−1 D←− REd C←− RCy, (1.6)
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Chapter 1. Stochastic thermodynamics

meaning that REd = ARNs−1 ⊕ RCy. This is another form of relation (1.4). As
a consequence, for an edge vector ue, there exists a cycle vector ud

c and an edge
vector ud

e such that

ue = ud
e +C · ud

c with D · ud
e = D · ue = uv. (1.7)

The d superscript denotes the decomposition. This mean that an edge vector
decomposes into a cycle part and the rest.

In the same idea, for an edge linear form we
T there exists a vertex linear form

wd
v

T
and an edge linear form wd

e
T

such that

we
T = wd

v

T ·D +wd
e

T
with wd

e

T ·C = we
T ·C = wc

T. (1.8)

There is a connection between these decompositions and the Helmholtz de-
composition, and more generally with Hodge theory. The linear map D is a kind
of divergence for vector and gradient for linear form. The cycle matrix is a kind
of curl. We advise to read the introduction by Lim [119] for more details.

Building the decomposition The decomposition (1.7) or (1.8) can be com-
puted as follows. We pick one of the spanning tree of the graph G .

• For an edge vector ue, we define the elements of the cycle vector ud
c as the

components of ue that correspond to chords, since each chord is associated
to a cycle. The other part of the decomposition is simply obtained from
the remaining vector ud

e = ue −C · ud
c . Cycle vectors being in the kernel

of the incidence matrix, we have D · ud
e = D · ue. Cycle vectors will be

later interpreted as flow of quantities along cycle, whereas the remaining
part represents sources and sinks.

• For an edge linear form we
T, we build a vertex linear form wd

v
T

by consid-
ering each edge (x, y) belonging to the spanning tree such that

w(x,y) = wd
y − wd

x. (1.9)

This lead to a consistent definition of the vertex linear form as this imposes
Ns−1 equations for Ns−1 values to be determined. The other part of the

decomposition is obtained as the remaining linear formwd
e

T
= we

T−wd
v

T·D
and verify wd

e
T · C = we

T · C as the cycle matrix is in the kernel of the
incidence matrix. Vertex linear forms are also called potential functions,
and cycle linear forms are circulations around the cycle.

Illustration of the decomposition Let’s illustrate the decomposition (1.7)
with a simple example. We consider the three state unicyclic graph of Fig. 1.2 It
has incidence and cycle matrices

D =

 1 0 −1
−1 1 0
0 −1 1

 , C =

1
1
1

 . (1.10)
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1.2. Markovian processes in continuous time

We aim at decomposing the edge vector uex
e = (1, 2, 3)T into vertex and cycle

contributions. Using the three spanning tree of the Fig. 1.2b, we obtain these
three equivalent decompositions

uex
e = C · (1) +

0
1
2

 = C · (2) +

−1
0
1

 = C · (3) +

−2
−1
0

 (1.11)

such that

D · uex
e = D ·

0
1
2

 = D ·

−1
0
1

 = D ·

−2
−1
0

 =

−2
1
1

 . (1.12)

Non unicity of the decomposition and gauge invariance The previous
example shows that different spanning trees give different decompositions of edge
vectors and linear forms. Among these decompositions we have some invariants.
For an edge vector with two decompositions ue = ud1

e +C ·ud1
c = ud2

e +C ·ud2
c , we

always obtain the same vertex vector uv = D ·ud1
e = D ·ud2

e = D ·ue. Therefore
the vertex vector uv is an invariant of the decomposition. Similarly for linear
forms, the cycle linear form wc

T = we
T ·C is an invariant of the decomposition.

As the matrix D and C are singular, the problem of finding solutions xe

to the inverse problem D · xe = yv has multiple solutions. This implies the
non-unicity of the decomposition, see the appendix A.1.3 for more details. This
non-unicity of the decomposition can be seen as a gauge invariance, as the various
decomposition can be related through local symmetry operations [144, 146].

However, if we assume that the vertex vector is zero, i.e. D ·ue = 0, the cycle
vector is uniquely determined by

ud
c = C+ · ue (1.13)

where C+ is the Moore-Penrose pseudo inverse of the matrix C (see App. A.1.3).
For linear forms, the nullity of the cycle linear form, i.e. we

T ·C = 0, assures the
unicity of the vertex linear form

wd
v

T
= we

T ·D+. (1.14)

The symmetric part The symmetric part is also defined on the oriented
graph, but its value is independent of the orientation. It is noted also with a
bold notation, the context should allow to distinguish between symmetric and
antisymmetric part. In general, it cannot be decomposed on cycle and vertex
parts.

1.2 Markovian processes in continuous time

We are interested in the dynamical properties of our systems. Due to fluctuations,
we use stochastic processes as a tool to explore the statistical properties of theirs
evolution.

– 13 –



Chapter 1. Stochastic thermodynamics

A stochastic process visits over the time various states of the system. The
actual system state at time t is then a random variable X(t). The study of
stochastic processes focuses on the computation of the probability for the system
to be at x at time t, denoted ρx(t) = Pr (X(t) = x). Discrete stochastic processes
are also called jump processes.

1.2.1 Markov assumption

A Markov process is a stochastic process whose probability of finding the sys-
tem at a later time step in some state, only depends on the present state,
not on the former one. In a more formal way, this means that the probabil-
ity Pr (X(t′) = y|X(t) = x) to be in y at time t′ knowing it was in x at time t
respects the Markov assumption, for a sequence of times t1 6 t2 6 . . . 6 tn 6 t:

Pr (X(t) = y|X(tn) = xn, . . . , X(t1) = x1) = Pr (X(t) = y|X(tn) = xn) . (1.15)

In other words, the knowledge of the state of the system at past time ti does not
bring more information on its future evolution than the knowledge of its state in
the present time tn. In the remaining of this manuscript, we always assume our
process to be Markovian.

There are two common reasons to justify such an assumption. First, Markov
assumption amount to memory-less assumption. This means that the system loses
at each time the memory of its past. In reality, if the system loses rapidly memory
on a small timescale, one can focus on the dynamics for the bigger timescale that
is Markovian. The other reason is a sort of determinism. In classical mechanics,
the initial conditions allow to compute the future states. For stochastic process,
the state of the system is a random variable, but its probability distribution
should be obtained in a deterministic way, i.e. the knowledge of the probability
distribution of state at actual time is sufficient to compute the future probability
of each state [7, 30].

1.2.2 Master equation

Transition rates Our processes being Markovian, the transition probability
respects the Chapman-Kolmogorov equation, if t′′ > t′ > t, then

Pr (X(t′′) = z|X(t) = x) =∑
y

Pr (X(t′′) = z|X(t′) = y) Pr (X(t′) = y|X(t) = x) . (1.16)

We assume in the following, that the process is time-homogeneous, i.e. there is
an invariance of the transition probability with time-translation, more formally

∀t,∆t Pr (X(t+ ∆t) = y|X(t) = x) = Pr (X(∆t) = y|X(0) = x) . (1.17)

We introduce the transition rate from y to x

ωx,y = lim
∆t→0

Pr (X(∆t) = x|X(0) = y)

∆t
. (1.18)
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1.2. Markovian processes in continuous time

This implies that all transitions rates are non-negative. We also assume that if a
transition is allowed ωx,y > 0 then the reverse transition is also allowed ωy,x > 0,
sometimes called microreversibility.

Master equation Eq. (1.16) allows the derivation of the master equation that
rules the evolution of the probability ρv(t) [28]

ρ̇v(t) = K · ρv(t), (1.19)

where ρ̇v(t) is the time derivative of the probability ρv(t). K is the transition
matrix whose elements are

Kx,y =

{
ωx,y if x 6= y
−τx if x = y

. (1.20)

The escape rate τx from the state x is given by the sum of rate leaving the state
x,

τx =
∑
z

ωz,x. (1.21)

Probability current and activity To each transition matrix, we associate
the graph G whose vertices are the state of the system. A couples of states,
x, y is an edge of the graph if the transition rate between both states is positive
ωx,y > 0. For an oriented edge (x, y), we use the notation ω(x,y) = ωx,y. The
master equation is a conservation equation for the probability flow on the graph.
We introduce the probability current along the edge (x, y)

jρ(x,y)(t) = ω(x,y)ρy(t)− ω(y,x)ρx(t), (1.22)

the first term is the probability per unit time that the system jumps from the
origin y of the edge (x, y) to its end x, while the second term the probability per
unit time for the reverse transition. We emphasize that jρ(x,y)(t) is a deterministic
variable, the master equation being a deterministic equation for probability. The
evolution of the probability distribution is then the difference between incoming
and outgoing probability currents. Using the incidence matrix, this gives

ρ̇(t) = D · jρe (t), (1.23)

which is why D is interpreted as a divergence when applied to an edge vector.
The probability current is here an edge vector and the time derivative of the
probability a vertex vector.

For latter reference, we introduce the symmetric counterpart of the probability
current, that is the probability activity [30]

aρ(x,y)(t) = ω(x,y)ρy(t) + ω(y,x)ρx(t). (1.24)

It provides the jump frequency along an edge independently of the orientation.
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Normalization of the probability From the last form of the master equation
(1.23), it is easy to see that the norm of the probability is conserved. Indeed,
the vector 1T = (1, . . . , 1) is a left eigenvector with eigenvalue 0 of the incidence
matrix D. This leads to

1T ·D · jρe = 0 = 1T · ρ̇(t). (1.25)

Hence the norm of the probability distribution is constant.

Decomposition of the transition rate The rates may also be written as

ω(x,y) =
√
ω(x,y)ω(y,x) exp

[
1

2
ln
ω(x,y)

ω(y,x)

]
. (1.26)

The probability current is then given by the relation

jρ(x,y)(t) = gρ(t) sinh

[
1

2
fωρ(x,y)(t)

]
, (1.27)

with the geometrical activity

gρ(t) = 2
√
ω(x,y)ω(y,x)ρy(t)ρx(t) (1.28)

and the edge affinity

fωρ(x,y)(t) = ln
ω(x,y)ρy(t)

ω(y,x)ρx(t)
. (1.29)

The probability activity writes then

aρ(x,y)(t) = gρ(t) cosh

[
1

2
fωρ(x,y)(t)

]
. (1.30)

The edge affinity being a linear form, it can be decomposed into

fωρe
T = −fρv T ·D + fωe

T = −fρ/qv

T ·D + fωqe
T (1.31)

where qv is any probability distribution and the vertex affinity f
ρ/q
v

T
is defined

by

fρ/qx = ln
ρx(t)

qx
. (1.32)

When qv is the uniform distribution, we simply remove it from the superscript.
The decomposition being non unique, we can freely choose the probability distri-
bution qv. The cycle affinities, that are invariant of the decomposition, are given
by

fc
T = fωρe

T ·C = fωe
T ·C. (1.33)

The last equality contains only time-independent quantities, such that the cycle
affinities are also time-independent. When the cycle affinities are all zero, the
system satisfies the detailed balance. The decomposition of the edge affinities is
then uniquely determined from the Eq. (1.14). This definition of detailed balance
is also call Kolmogorov’s criterion.

Eq. (1.27) can be seen as a non-linear way of connecting vectors and linear
forms generalizing the notion of metric that does so linearly [107, 112].
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1.2.3 Properties of the transition matrix

Formal solution to the master equation The solution of the master equa-
tion is formally determined from the set of eigenvalues and eigenvectors of K.
We denote λn, n = 0 . . . , Ns− 1 the eigenvalues of K, rnv , n = 0 . . . , Ns− 1 the
right eigenvectors and lnv , n = 0 . . . , Ns−1 the left eigenvectors. Given the initial
probability distribution ρi

v, the probability distribution at time t is

ρv(t) =
Ns−1∑
n=0

eλntrnv l
n
v

T · ρi
v. (1.34)

Irreducible transition matrix Properties of the graph G are equivalent to
those of K. In particular an irreducible transition matrix is a matrix whose
associated graph is connected.

Perron-Frobenius theorem The off-diagonal elements of the transition ma-
trix being all non negative, the transition matrix is a Metzler matrix. Therefore
when K is irreducible, the Perron-Fröbenius theorem is valid and implies the
following sentences [16]

• The highest eigenvalue λ0 is real and unique.

• K has a right and left eigenvector with eigenvalue λ0 whose components
are all positive.

• The only eigenvector whose all components are positive is the one associated
with the eigenvalue λ0.

For K defined by the Eq. (1.20), the vector 1T = (1, . . . , 1) is a left eigenvectors
with eigenvalues 0. Being a vector with components all positive, this is the
eigenvector with the highest eigenvalue λ0 = 0. Then the right eigenvector πv

is a stationary solution of the master equation (1.19), and all others eigenvalues
have a negative real part.

The solution of the master equation then rewrite

ρv(t) = πv +
Ns−1∑
n=1

eλntrnv l
n
v

T · ρi
v. (1.35)

When K is an irreducible matrix, whatever the initial probability distribution is,
the probability distribution ρ(t) converges towards the stationary distribution.
The independence of the stationary probability distribution with the initial prob-
ability distribution highlights the ergodicity of irreducible Markov processes in
continuous time [45].

Steady state solution We turn to the study of the stationary solution, i.e.
the solution of

K · πv = 0. (1.36)
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There exists a well-know graph theoretical expression for the steady state prob-
ability distribution. The transition matrix is the equivalent of the Laplacian
matrix (1.5) for an oriented weighted graph [19]. Using the matrix-tree theorem,
we obtain the steady state solution as a sum of the minor of the transition matrix.
This solution has a nice interpretation in term of spanning tree of the associated
graph [163]. Consider all the spanning tree of the graph. For each state x we
orient all spanning tree T towards this state, producing the rooted spanning tree
Tx. We then denote ω(Tx) the spanning tree polynomial that is the product
of the transition rates along all oriented edges of the spanning tree. Then the
stationary probability is

πx =

∑
Tx

ω(Tx)∑
x

∑
Tx

ω(Tx)
, (1.37)

where the sum
∑

Tx
runs over all spanning trees of the graph rooted into x. The

denominator ensures the normalization of the stationary probability.
At steady state, the conservation equation on the currents implies the nullity

of the divergence of the stationary edge current j̄e = jπe such that

D · j̄e = 0. (1.38)

We have introduced the notation j̄ for stationary currents. The vertex contribu-
tion to the edge current is then null, and there exists a unique stationary cycle
current j̄c such that

j̄e = C · j̄c. (1.39)

Moreover when we have detailed balance, the edge affinity is given from a
vertex affinity. As for any choice of spanning tree, the decomposition (1.9) is
identical, we obtain

fωρe
T = −fρ/πv

T ·D (1.40)

resulting in the detailed balance condition

ω(y,x)

ω(x,y)

=
πy
πx
. (1.41)

As a consequence of detailed balance, using the Eq. (1.27) at stationary state all
edge current are zero. Hence the stationary cycle current are also zero. This is
what is called equilibrium stationary state.

1.2.4 Thermodynamics of stochastic processes in contact
with reservoirs.

State variables As stated before, states are the values of the collection of
variables used to model the system (microstates variables). However we would
like to characterize the states by a small number of thermodynamic variables
(macrostates) that describe globally the system.

For example, a gas is characterized by the occupied volume, the number of
particles and the sum of the energy of each of its components. We provide example
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of such variable in the table 1.1. We emphasize that these macrostate variables
do not substitute to the formal description of the microstate, as two microstates
with the same macrostate variable are in most cases different. As an example,
for a magnet there are many different microstates that leads to the same global
magnetization.

The existence of such macrostate variables is derived from the Noether’s the-
orem. The theorem states that conservation laws follow from symmetries of the
dynamics. Hence, macrostates variables correspond to quantities that are con-
served for an isolated system. As an example, for system that are invariant by
translation in time, from the Noether’s theorem, the energy is a conserved quan-
tity and is then a state variable.

In this thesis, we consider only non-isolated systems. Thermodynamics ap-
proach consists into separating the system from its environment, system plus
environment being called “universe” [5]. Our goal is to study the flux of the
macrostate variables that the system exchanges with the environment.

Extensive macrostate variables Intensive forces
Energy Inverse temperature
Particles number Chemical potential
Charge Electric potential
Displacement Generic force
Angle Torque
Volume Pressure
Magnetization Magnetic field

Table 1.1: Examples of state variables with theirs conjugated intensive forces.

Reservoirs and reservoirs matrix The environment could be further sepa-
rated into various subsystems that we call reservoirs.

A reservoir is an equilibrium system that is assumed bigger than the system
such that all exchanges with the system do not affect its macrostate. Each reser-
voirs is assumed to be of one type, such that it exchange only a particular state
variable with the system. The reservoirs are characterized by an intensive vari-
able conjugated to the extensive state variable. Examples are provided in the
table 1.1. The number of reservoirs connected to the system is denoted Rev.

For a system modeled by a graph, we describe system-reservoirs interaction
as follows: For each oriented edge, we have a variation of the state variables, this
variation corresponds to an exchange with one of the reservoirs. We denote M
the macrostate variable exchanged with reservoir r. We introduce the Rev ×Ed
reservoir matrix that describe the interactions of the system with the reservoirs.

Rr,(x,y) =

{
Mx −My if on the edge (x, y) M is exchanged with the reservoir r,
0 otherwise,

(1.42)
that is the inflow of the macrostate variable M coming from the reservoir r to the
system. Macrostate variables are exchanged with their corresponding reservoir
type only, i.e. particle with particle reservoirs, charge with charge reservoirs,. . .
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The flow Ṁr(t) of macrostate quantities between the reservoirs and the system
is then written from the edge probability current (1.22) as

Ṁr(t) = R · jρe (t). (1.43)

We emphasize that the reservoirs currents are oriented towards the system.
Remark: In this manuscript, exchange with reservoirs only occurs during

transitions. We do not consider time-dependent control parameter that would
enable work exchange with a work source even when the system remains in the
same state [187, 188].

Figure 1.3: Sketch of a unicyclic system connected to two energy reservoirs at
inverse temperature βhot and βcold and one work source associated with torque
F .

Example of reservoir matrix Let’s consider as simple example the system
depicted on Fig. 1.3. The state variables are (E, θ), the energy and the angle of
each state, we set θ3 as θ2. It is connected to three different reservoirs, two energy
reservoirs at inverse temperature βhot and βcold and one work source associated
with torque F . We denote Ėhot (resp. Ėcold) the energy flux from the hot (resp.
cold) energy reservoirs, and θ̇angle the angle flux. The current of the state variable
with the reservoirs is Ėhot

Ėcold

θ̇angle

 (t) =

E2 − E1 0 E1 − E3

0 E3 − E2 0
θ2 − θ1 0 θ1 − θ2

jρ(2,1)

jρ(3,2)

jρ(1,3)

 (t). (1.44)

The matrix connecting probability currents to the reservoir currents is then the
reservoir matrix R.

1.2.5 Entropy production

Kullback-Leibler divergence An important quantity to study stochastic pro-
cesses is the Kullback-Leibler divergence (KL-divergence), defined for a probabil-
ity distribution pv and a prior distribution qv by

D(pv‖qv) =
∑
x

px ln
px
qx
. (1.45)
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It is not a distance in the mathematical terms, since it is neither symmetric nor
does it satisfy the triangle inequality. Nevertheless it quantifies the difference
between two probability distributions, here pv and qv. When qv is the uniform
probability distribution 1v, the KL-divergence becomes minus the Shannon en-
tropy

S(pv) = −D(pv‖1v) = −
∑
x

px ln px. (1.46)

Entropy production rate The time derivative of the KL-divergence of the
probability ρv(t) with a time-independent probability qv is the scalar product of
vertex current with vertex affinity

d

dt
D(ρv(t)‖qv) = fρ/qv

T · ρ̇v(t). (1.47)

Using the master equation (1.23) and Eq. (1.31), we can go further

d

dt
D(ρv(t)‖qv) = fρ/qv

T ·D · jρe = −fωρe
T · jρe + fωqe

T · jρe . (1.48)

The scalar product

fωρe
T · jρe =

∑
(x,y)

fωρ(x,y)j
ρ
(x,y) = fωqe

T · jρe −
d

dt
D(ρv(t)‖qv) (1.49)

is called the total entropy production rate [87]. From its edge expression

fωρe
T · jρe =

∑
(x,y)

fωρ(x,y)j
ρ
(x,y) =

∑
(x,y)

(
ω(x,y)ρy(t)− ω(y,x)ρx(t)

)
ln
ω(x,y)ρy(t)

ω(y,x)ρx(t)
> 0

(1.50)
it is a non-negative quantity, due to the non-negativity of the function (x −
y) log(x/y). It is a central quantity of stochastic thermodynamics, as it charac-
terizes the irreversibility of the evolution.

Decomposition of the entropy production rate From the Eq. (1.48), the
entropy production rate is the sum of two terms that depends on the choice of
the decomposition. We emphasize some choices of qv that have been used

• qv = 1v the KL-divergence is now minus the Shannon entropy (1.46), the
total entropy production is so the sum of Ṡ(ρ), the internal entropy variation
and fωe

T · jρe the entropy flow.

• qv = πv this is the adiabatic/non-adiabatic splitting of the entropy produc-

tion. The adiabatic contribution is fωπe
T · jρe , whereas − d

dt
D(ρv(t)‖πv) is

called the non-adiabatic contribution. For this splitting, both contributions
are non-negative [87].
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Particular cases Let’s now characterize two particular cases where the decom-
position (1.49) is unique. At stationary state, the current decomposition is given
by Eq. (1.39), then the total entropy production rate σ̄ is simply given by the
cycle current and affinity, as

σ̄ = fωπe
T · j̄e = fωπe

T ·C · j̄c = fc
T · j̄c. (1.51)

When the system respects detailed balance, the entropy production rate is
given by minus the time derivative of the KL-divergence between the probability
ρv(t) and the stationary probability πv

fe
T · jρe = − d

dt
D(ρv(t)‖πv). (1.52)

It is then possible to show that the system evolves following the gradient of
Shannon entropy, such that the equilibrium stationary state is the maximum of
the entropy with respect to the system’s constraints [33, 112]. This makes the
connection with equilibrium statistical mechanics. We say that detailed balance
system are equilibrium systems. In particular, equilibrium systems do not produce
entropy in the stationary state.

1.2.6 Entropy exchange with reservoirs

From Eq. (1.49), the entropy production rate is the sum of two terms. Stochastic
thermodynamics assumes [184, 30]:

(i) The relevant prior distribution qv is the uniform probability distribution
1v.

(ii) The entropy flow fωe
T · jρe corresponds to entropy exchanged by the system

with the reservoirs.

(iii) The reservoirs do not interact with each others.

(iv) The reservoirs are weakly coupled with the system such that the system
does not affect the stationary (equilibrium) probability of the reservoir.

We have some heuristic arguments for theses assumptions. Assumption (i) is
connected with a similar assumption for equilibrium statistical physics. If the
system is let evolve alone in absence of any information about its dynamics, we
expect to observe a uniform distribution. Assumption (ii) is valid if the system
plus the reservoirs (the “universe”) are isolated, such that entropy production
of the “universe” is solely due to time variation of its entropy. For assumption
(iii), if the system interacts locally in time and space with each reservoirs, one at
time, the reservoirs are independent of each others [30]. The last assumption (iv)
is simply the assumption that the reservoirs are big enough to exchange entropy
with the system without affecting their stationary probabilities.

These assumptions give constraints on the transition rates, that will depend
on the way reservoirs are connected to the system. In order to characterize these
entropy fluxes, we first study a system in equilibrium with one reservoir only.
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1.2. Markovian processes in continuous time

Equilibrium dynamics with heat baths Let’s consider a system in contact
with a unique energy reservoir at inverse temperature β. Its reservoir matrix is
then an 1× Ed matrix of elements

Rr,(x,y) = Ex − Ey (1.53)

with Ex the energy of the state x. From equilibrium statistical mechanics, the
stationary probability is given by

πeq
x =

e−βEx

Z
(1.54)

with Z =
∑

x e
−βEx . We also know that the system has no stationary currents.

Using the detailed balance condition, we then have

fω(x,y) = ln
ω(x,y)

ω(y,x)

= ln
πeq
x

πeq
y

= −β(Ex − Ey). (1.55)

Writing now the entropy balance (1.49), we have the entropy flux from the system
into the environment using assumption (i) and (ii)

fωe
T · jρe = −

∑
(x,y)

β(Ex − Ey)jρ(x,y) (1.56)

We recognize the reservoir matrix and obtain

fωe
T · jρe = −βĖ. (1.57)

Such that the entropy flux from the system into the environment is minus the
product of the inverse temperature and the energy flux Ė into the system, i.e.
the reservoir current. Defining −β as the affinity fr of the energy reservoir, the
entropy flux is then frĖ. The minus originates in the choice of orienting reservoirs
currents towards the system. The energy fluxes are also called heat fluxes, and
energy reservoirs are often called heat baths or thermal baths.

Equilibrium dynamics with others type of reservoirs We now connect
also to the system a reservoir that is not an heat bath, but corresponds to an
intensive force F , such reservoirs are also called non conservative work sources.
When the work source exchanges a state quantity with the system during a tran-
sition between two states x and y, this induces a work F (Mx − My) done by
the reservoirs on the system. Due to energy conservation, we must also connect
an heat bath of inverse temperature β to complete the energy balance. The
energy difference between the two states being Ex − Ey, the heat bath gives
Ex − Ey − F (Mx −My) to the system during the transition. The entropy flux
into the heat bath is then

− β (Ex − Ey − F (Mx −My)) j
ρ
(x,y). (1.58)

We decompose this entropy flux into a contribution from the heat bath −β(Ex−
Ey)j

ρ
(x,y) and a contribution from the non-conservative work source as βF (Mx −

My)j
ρ
(x,y), such that βF defines the affinity of the non-conservative work source.
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As an example, for chemical reservoirs, the intensive force is the chemical
potential µ and the exchanged state quantity the number of particles nx, such
that the entropy flux is −β (Ex − Ey − µ(nx − ny)) jρ(x,y) and the affinity of the
chemical reservoir is βµ.

Information reservoirs Another category of reservoirs are the information
reservoirs. These are reservoirs that only exchange entropy with the system. In-
troducing these reservoirs is very convenient to understand the Maxwell’s demon,
the Szilard engine or the Landauer’s eraser [37, 46, 47, 99, 121, 138, 180]. When
the system exchanges entropy with an information reservoir, we add entropy flux
into the reservoir matrix R, the reservoir affinity is then simply one.

Taking into consideration error rates for the transfer of entropy between the
information reservoirs and the system modifies the reservoir affinities [37].

Entropy production at reservoirs level in presence of several reservoirs
Let’s now connect several reservoirs to our system. During a transition, the
system will exchange quantities with some reservoirs, if necessary we connect a
heat bath to the transition to complete the energy balance. For each reservoir,
we have a reservoir affinity. It is minus the inverse temperature −βr for heat
baths, and the product of the inverse temperature of the heat bath connected to
the transition with the intensive force for the work sources. The linear form of
the reservoir affinities is denoted fr

T.
As a consequence of the assumptions (i)-(iv), the entropy flow σexch is the sum

of all entropy exchanges with each reservoirs, such that

σexch = fr
T · Ṁr. (1.59)

Local detailed balance The condition of thermodynamic consistency requires
that the entropy exchange with reservoirs coincides with the entropy flow at edge
level. This implies the constraint

fr
T · Ṁr = fr

T ·R · jρe = fωe
T · jρe (1.60)

The thermodynamic consistency is respected when edge affinity are defined by
the local detailed balance [108, 123, 124]

fωe
T = fr

T ·R. (1.61)

Therefore the local detailed balance set constraints on the antisymmetric part
of the transition rates. The symmetric part is to be determined as it describes
the strength of the exchanges with the baths. Often it is set to a constant.

As shown, the local detailed balance is a direct consequence of the assump-
tion (i)-(iv) of stochastic thermodynamics. The locality refers to the locality of
interaction with reservoirs in time and space during the evolution [30].

A weaker condition can be obtained on the edge affinity, if one asks for example
only the equality of the reservoir entropy exchange with cycle entropy production

– 24 –



1.2. Markovian processes in continuous time

rate, that is the entropy production rate at stationary state. The constraint is
now

fr
T · jr = fr

T ·R ·C · j̄c = fc
T · j̄c. (1.62)

This only gives an equation for the cycle affinities

fc
T = fr

T ·R ·C. (1.63)

Therefore, due to the non unique solution for the definition of the edge affinity
from the cycle affinity, see sec. 1.1.3, the edge affinity are non uniquely defined.

We emphasize that when the matrix R · C is zero, the cycle affinities fc
T

are necessary zero and the system respects then detailed balance with stationary
probability given by equilibrium probability.

Internal entropy States can also have internal entropy that originates in the
coarse-graining of many similar microstates into a unique mesostate. When con-
sidering entropy flow we must consider this additional term. Denoting sv

T the
internal entropy of each mesostate, the entropy balance is modified as [82]

fe
T · jρe = fωe

T · jρe + sv
T ·D · jρe +

d

dt
S(ρv(t)) (1.64)

with ρv(t) the probability of the mesostates and assuming that no jumps are
allowed inside a mesostate. The second term must then be included into the
exchanged entropy and modify the local detailed balance

fωe
T = fr

T ·R+ sv
T ·D. (1.65)

We provide in Ch. 6 examples where the transition rates do include an internal
entropy in their definition.

Examples of local detailed balanced system We come back to the example
of sec. 1.2.4, represented on Fig. 1.3. It is a unicyclic system connected to two
heat baths. The reservoirs affinities are given by

fr
T = (−βhot,−βcold, βhotF ). (1.66)

Using local detailed balance, and denoting Γi, for i = 1, 2, 3 the symmetric part
of the transitions rates, the transition rates are

ω(2,1) = Γ1e
−βhot

2
[E2−E1−F (θ2−θ1)], ω(1,2) = Γ1e

−βhot
2

[E1−E2−F (θ1−θ2)]; (1.67)

ω(3,2) = Γ2e
−βcold

2
[E3−E2], ω(2,3) = Γ2e

−βcold
2

[E2−E3]; (1.68)

ω(1,3) = Γ3e
−βhot

2
[E1−E3−F (θ1−θ3)], ω(3,1) = Γ3e

−βhot
2

[E3−E1−F (θ3−θ1)]. (1.69)
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1.3 Trajectories and observables

A realization of a stochastic process, i.e. the list of states that the system visits,
is called a trajectory or a path. Examples of trajectories are shown on Fig. 1.4.

We denote {x(t)}Tt=0 a trajectory starting at t = 0 and ending at t = T .
They are realization of the stochastic process {X(t)}Tt=0. Considering the set
of all possible trajectories, we can compute the path probability density func-
tion dP[{x(t)}T0 ], that is the probability of the trajectory {x(t)}Tt=0. Note that
the trajectory depends on its initial condition, which is drawn from the initial
probability ρi

v.
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Figure 1.4: (a) Examples of a trajectory for the three state unicyclic system
with rates of Eqs. (1.67–1.69). The time is the distance to the origin and the
position on the graph is encoded in the angle. (b) Total number of jumps for 5
different trajectories as a function of the time. Parameters are Γ1 = Γ2 = Γ3 = 1,
E1 = 0.5, θ1 = 0.5,E2 = 1, θ2 = 1,E3 = 1.5, βhot = 1, βcold = 2 and F = 0.5.

Path probability density function From the master equation (1.19), the
probability of a path {x(t)}Tt=0 can be explicitly determined. We index by i the
consecutive states xi (with i = 0, . . . , n) the system visits and the times ti at
which it jumps, such that

x(t) = xi for ti 6 t < ti+1. (1.70)

We have t0 = 0 and tn the last jump time before T . The path probability density
function is then

dPK [{x(t)}T0 ] = ρi
x0

n−1∏
i=0

[
ωxi+1,xie

−τxi (ti+1−ti)dti
]
e−τxn (T−tn)dtn. (1.71)

That can be condensed in the more elegant form

dPK [{x(t)}T0 ] = ρi
x0

exp

[
n−1∑
i=0

lnωxi+1,xi −
∫ T

0

τx(t)dt

]
n∏
i=0

dti. (1.72)
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Observables When studying stochastic processes, we aim at computing some
observables that contain less information that the whole set of trajectories but still
enough information for being useful. A simple way of withdrawing information
on the system evolution over time is to look at time average observables. To that
purpose, we consider the generic random variable O defined along a trajectory
{X(t)}t=Tt=0 by [60, 61]

O =
1

T

∫ T

0

f(Xt)dt+
1

T

∑
06t6T :∆Xt 6=0

g(Xt+ , Xt−) (1.73)

where f and g are two arbitrary functions, and the sum is a sum over all jumps
along the trajectory. For example, if we choose f = 0 and g = 1, O becomes the
average number of jumps over the trajectory also called activity. Another choice
could be f = 1S the indicator function and g = 0, O becomes the fraction of time
the system spends into the set S.

The expectation value of observable (1.73) is then obtained from the path
probability density function as

IE [O] =

∫
dP[{x(t)}T0 ]O({x(t)}Tt=0), (1.74)

where the integration is done over all possible trajectories and all possible initial
conditions. This formula can be futher simplified as

IE [O] =

∫
do o

∫
dP[{x(t)}T0 ]1o(O({x(t)}Tt=0)) =

∫
do oPr (O = o) . (1.75)

where 1y(x) is the indicator function that is one only if y = x.

Empirical occupations times and jump fractions Among the various ob-
servables, we introduce the empirical occupations times

Rx =
1

T

∫ T

0

1x(X(t))dt (1.76)

and the empirical jump fractions

Qx,y =
1

T

∑
06t6T :∆Xt 6=0

1x(Xt+)1y(Xt−). (1.77)

Both correspond to given choices of the observable O (1.73), with f = 1x and
g(x, y) = 1x1y. Any observable given by Eq. (1.73) can be written as

O =
∑
x

f(x)Rx +
∑
x,y

g(x, y)Qx,y (1.78)

if f(x) and g(x, y) are time-independent.
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Empirical activity and currents The jump fraction can be decomposed into
its symmetric and antisymmetric part. For each edge (x, y), we have the orien-
tation y → x. We define the empirical activity

A(x,y) = Qx,y +Qy,x =
1

T

∑
06t6T :∆Xt 6=0

1x(Xt+)1y(Xt−) + 1y(Xt+)1x(Xt−) (1.79)

and the empirical current

J(x,y) = Qx,y −Qy,x =
1

T

∑
06t6T :∆Xt 6=0

1x(Xt+)1y(Xt−)− 1y(Xt+)1x(Xt−). (1.80)

The empirical activity counts the number of jumps for edge (x, y) whereas the
empirical current counts the flow along edge (x, y).

Reservoir currents Let’s look at the variation of a state variable M along a
trajectory, this can be computed as

∆M =
∑

06t6T :∆Xt 6=0

(
MXt+

−MXt−

)
. (1.81)

The state variable being exchanged with reservoirs, this can be rewrite as

∆M =
∑

06t6T :∆Xt 6=0

∑
r

(
MXt+

−MXt−

)
δ(r, (Xt+ , Xt−)) (1.82)

where the delta-Dirac ensures that the edge (Xt+ , Xt−) is connected to the reser-
voir r. The empirical reservoir current Jr1 , that is the rate of exchange with a
particular reservoir r1, is then

Jr1 =
1

T

∑
06t6T :∆Xt 6=0

(
MXt+

−MXt−

)
δ(r1, (Xt+ , Xt−)). (1.83)

It could be derived also from Eq. (1.73) by taken f = 0, and g to be the antisym-
metric function g(x, y) = Rr1,(x,y). We emphasize that the empirical reservoirs
currents are oriented towards the system.

The vector of empirical reservoir currents Jr is the collection of all empirical
reservoir currents. Like for mean currents, we can write for the empirical currents
Je

Jr = R · Je. (1.84)

Entropy production at trajectory level One of the main results of recent
years was the definition of the entropy production at the level of trajectories [167].
Let’s consider a particular trajectory {x(t)}T0 and define the reversed trajectory
{x̂(t)}T0 as

x̂(t) = x(T − t). (1.85)
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The reversed trajectory has for probability of its initial state, the probability of
the final state of the normal trajectory ρf

XT
, leading to the path probability for

the reversed trajectory

dPK [{x̂(t)}T0 ] = ρf
XT

exp

[
n−1∑
i=0

lnωxi,xi+1
−
∫ T

0

τx(t)dt

]
n∏
i=0

dti. (1.86)

The entropy production is then defined as

∆Stot = ln
dPK [{X(t)}T0 ]

dPK [{X̂(t)}T0 ]
= ln

ρi
X0

ρf
XT

+
n−1∑
i=0

ln
ωXi+1,Xi

ωXi,Xi+1

. (1.87)

It is a measure of the irreversibility as it quantifies the difference between the
forward and backward evolution in time. The last equation has to be compared
with the Eq. (1.49). We have

IE [∆Stot] =

∫
dtfωe

T · jρe (t) + S(ρv(T ))− S(ρv(0)). (1.88)

Therefore, we define the empirical exchanged entropy ∆Sexch, that is also the
stochastic heat, and the entropy variation ∆Ssys of the system as

∆Sexch =
n−1∑
i=0

ln
ωXi+1,Xi

ωXi,Xi+1

and ∆Ssys = ln
ρi
X0

ρf
XT

. (1.89)

The empirical entropy flow Σexch = ∆Sexch/T is then an observable of the form
(1.73) with f = 0 and

g(x, y) = ln
ω(x,y)

ω(y,x)

. (1.90)

Using the edge affinity and the local detailed balance condition, the entropy flow
is written as

Σexch = fωe
T · Je = fr

T · Jr. (1.91)

That is similar to Eq. (1.59) but for stochastic observable.
Using a different prior, we can also write the entropy production as

∆Stot = ln
ρi
X0

ρf
X(T )

+
n−1∑
i=0

ln
πXi+1

πXi
+

n−1∑
i=0

ln
ωXi+1,XiπXi
ωXi,Xi+1

πXi+1

. (1.92)

That leads to the adiabatic/non-adiabatic splitting of the entropy variation as

∆Sad =
n−1∑
i=0

ln
ωXi+1,XiπXi
ωXi,Xi+1

πXi+1

and ∆Sna = ln
ρi
X0
πX(T )

ρf
X(T )πX0

. (1.93)

1.3.1 Fluctuations relations

One of the important features of the empirical entropy production is a symmetry
on its probability distribution, that is the fluctuations relation or fluctuations
theorem.
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Detailed fluctuation theorem We consider the ratio of the probability to
have a given empirical entropy production over the probability to have the oppo-
site empirical entropy production. The detailed fluctuation theorem imposes the
symmetry [86]

Pr (∆Stot = ∆stot)

Pr (∆Stot = −∆stot)
= e∆stot (1.94)

for stationary systems. Many results are available about fluctuation theorem [35,
54, 86, 88–91, 114, 117, 139, 164, 194].

For Markov jump processes, the fluctuation theorem is easily proved from the
path probability (1.71). Interested readers can refer to Refs [35, 86, 114, 29] and
references therein.

Other relations are available for the adiabatic/non-adiabatic splitting of the
entropy production [86],

Pr (∆Sad = ∆sad)

Pr (∆Sad = −∆sad)
= e∆sad and

Pr (∆Sna = ∆sna)

Pr (∆Sna = −∆sna)
= e∆sna . (1.95)

Among particular cases of the fluctuation theorem, we have the Crooks re-
lation [70, 71] that have be used to experimentally determine RNA folding free
energies [32, 68], but also for others experimental systems [63, 77].
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Figure 1.5: (a) Entropy production computed on trajectories of Fig. 1.4
(b) Probability distribution of the entropy production (solid line) compared with
e∆stot Pr (∆Stot = −∆stot) (crosses). The probability distribution is an histogram
made from 106 trajectories of length T = 30. The vertical dashed line indicates
the mean value, that is positive as expected from Eq. (1.97). Parameters are the
same as in Fig. 1.4.

Integral fluctuation theorem and the second law of thermodynamics
Previous results are named detailed fluctuation theorem because they apply on
the probability distribution of empirical entropy production. We can average over
empirical entropy production to obtain the integral fluctuation theorem [103, 104,
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167]

IE
[
e−∆Stot

]
=

∫
d∆Stot Pr (∆Stot) e

−∆Stot = 1. (1.96)

The integral fluctuation theorem allows connection with the second law of ther-
modynamics. From Jensen inequality IE [ex] > eIE[x], we obtain the second law of
thermodynamics

IE [∆Stot] = IE [∆Ssys] + IE [∆Sexch] > 0. (1.97)

Therefore the second law of thermodynamics holds on average [105].
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2

Dynamical fluctuations

Equilibrium and non-equilibrium systems are increasingly studied with methods
borrowed from the theory of large deviations [2, 78, 15, 26]. This theory is a
powerful tool developed in the 1970s by Donsker and Varadhan and Freidlin and
Wentzell [73–76, 14], even if the first calculations go back to Boltzmann [79].

In this chapter, we introduce the theory of large deviations. Next we use this
theory for the stochastic observables defined in the previous chapter, allowing
practical computations of the dynamical fluctuations. Finally, we explicit the
notion of equivalence of dynamical ensemble, that generalizes equivalence of en-
semble from equilibrium statistical mechanics. This equivalence allows the char-
acterization of the fluctuations of a stochastic process as the typical realization
of another stochastic process.

• Large deviation theory: The main document that we use is the review of
Hugo Touchette [25]. The book of Ellis [12] is also a good starting point.

• Equivalence of ensemble: The main source is the article by Raphaël Chetrite
and Hugo Touchette [60].

2.1 Large deviation theory

2.1.1 Introductory example: the random walk

Let’s begin with a simple example. Consider a single particle moving on the infi-
nite discrete line starting at position 0. The particle can hop to left or right with
rate ω. This is a symmetric random walk, see Fig. 2.1a for a set of trajectories.
We aim at studying the number of times the walker jumps during a trajectory of
duration T . Denoting X(t) the random position of the walker at time t, we look
at the random variable

A =
∑

06t6T :∆Xt 6=0

1. (2.1)

Example of realizations of this stochastic process are shown on Fig. 2.1b
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Figure 2.1: (a) A set of 8 trajectories for ω = 1. The thick black line is the mean
behavior of the position. Insert: Sketch of the random walker. (b) Activity versus
time. Insert: Large deviation function of the number of jump per unit time.

Law of large numbers By virtue of the law of large numbers, we expect the
number of jumps A at large time to be 2ωT . However at finite time, as shown
on Fig. 2.1b, the activity fluctuates around the expected value. A finer analysis
is required.

Central limit theorem As a first approach of the fluctuations, we could use
the central limit theorem. The central limit theorem states that the distribution
probability of the number of jump will approaches a normal distribution as

Pr

(
1√
T

(A− 2ωT ) = u

)
→ 1

N exp

(
u2

4ω

)
(2.2)

with N a normalization factor. The theorem accounts for fluctuations around

the mean value of the order of
1√
T

, that we call small fluctuations.

Large deviations The simplicity of the system allows the direct computation
of the probability of the number of jumps, that is given by the Poisson distribution
of parameter 2ω

Pr (A = aT ) =
(2ωT )aT e−2ωT

(aT )!
. (2.3)

For large time, we use Stirling approximation to obtain

1

T
log Pr

(
A

T
= a

)
' −a ln

a

2ω
+ a− 2ω. (2.4)

At large time, the approximation we made becomes exact, and we write the
probability as

Pr

(
A

T
= a

)
' e−TI(a). (2.5)
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where I(a) = a ln(a/2ω)−a+2ω is a positive function, shown on insert of Fig. 2.1,
that is only zero for a = 2ω. Such approximation allows a finer result than the
central limit theorem or the law of large number. The probability to observe
a deviation from the average behavior decreases exponentially with time. The
function I(a) controls the rate of decay of the probability.

Such an exponential behavior is an instance of a large deviation principle that
turns out to be common in statistical physics and stochastic processes [25]. We
establish next the main results based on this framework.

2.1.2 Large deviation principle

We recall the expression of the generic observable that we introduce in the pre-
vious chapter, for a trajectory {X(t)}t=Tt=0 , our generic observable O is

O =
1

T

∫ T

0

f(Xt)dt+
1

T

∑
06t6T :∆Xt 6=0

g(Xt+ , Xt−) (2.6)

where f and g are two arbitrary functions. We emphasize the 1/T scaling. Indeed,
such generic observable will grow with time.

We say that the probability Pr (O = o) satisfies a large deviation principle if
there exists a function I(o) such that

I(o) = − lim
T→+∞

1

T
log Pr (O = o) . (2.7)

I(o) is called the rate function or the large deviation function (LDF), and quan-
tifies the rate of exponential decay toward a delta-dirac probability distribution
at IE [O]. We have some properties of the LDF:

• LDF are non-negative: I(o) > 0. This prevents divergence of the probabil-
ity, that is forbidden from normalization conditions.

• The limit (2.7) may not exist. This corresponds to decay of the probability
distribution faster than exponentially in T . In this case the LDF is set to
+∞.

• The LDF may be zero for some values of the random variable, meaning that
the probability distribution decays slower than exponentially with T .

The definition could be generalized to the case of multiple random variables
or even random functions, in which case the LDF becomes a functional.

The formal definition of large deviation requires additional mathematical de-
tails, that we do not provide here. Moreover we do not prove the large deviation
principle, assuming it holds for all our probabilities. We refer to Ref. [12] for full
mathematical analysis.

We focus here on time integrated observables and their large deviations as
time goes by, but it exists large deviation in system size or number of particles
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also. The formal definition is similar, but deals instead with observables of the
form

A =
1

Ns

Ns∑
i=1

Ai. (2.8)

Equilibrium statistical mechanics can be framed within this large deviation
setup [25]. Most of the results presented here can be used also with large deviation
in size.

2.1.3 Contraction of large deviation functions

Suppose we are given a new random variable B, defined trough a function of O
such that B = h(O). The relation between B and O is not necessary isomorphic,
and is often many-to-one. We aim at computing the LDF of the new variable from
the LDF of the old one. The contraction principle states that the probability of
B obeys a large deviation principle and the LDF of B is given by the contraction
of the LDF I(o)

J(b) = inf
o|h(o)=b

I(o). (2.9)

This can be justified heuristically as follows: the probability distribution of B is

Pr (B = b) =

∫
o|h(o)=b

do Pr (O = o) '
∫
o|h(o)=b

do e−TI(o), (2.10)

where the approximation uses the large deviation principle for O. We then use
the saddle point method or Laplace approximation to derive the limit

− lim
T→+∞

1

T
log

∫
o|h(o)=b

do e−TI(o) = inf
o|h(o)=b

I(o) = J(b). (2.11)

2.1.4 Gärtner-Ellis theorem

Cumulant generating function The scaled cumulant generating function
(CGF) is defined as

φ(γ) = lim
T→+∞

1

T
log IE

[
eTγO

]
. (2.12)

This is the dominant behavior of the generating function IE
[
eTγO

]
at large time.

From the CGF, we can extract by simple derivation all the cumulants of our
observable. The first and second cumulants are

lim
T→+∞

IE [O] =
d

dγ
φ(γ)

∣∣∣
γ=0

(2.13)

lim
T→+∞

TVar(O) = lim
T→+∞

T
(
IE
[
O2
]
− IE [O]2

)
=

d2

dγ2
φ(γ)

∣∣∣
γ=0

. (2.14)

The CGF is also given by the Legendre-Fenchel transform of the LDF. Indeed
using the saddle-point approximation, we have

φ(γ) = sup
o

(γo− I(o)) . (2.15)
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Gärtner-Ellis theorem The Gärtner-Ellis theorem states that if the CGF
exists and is differentiable for all γ, then Pr (O = o) respects a large deviation
principle and the LDF is given by the Legendre-Fenchel transform of the CGF

I(o) = sup
γ

(γo− φ(γ)) . (2.16)

Therefore the LDF I(o) is a convex function by properties of the Legendre-Fenchel
transform. We will study in Ch. 6 the global validity of this property.

Tilted matrix Consider now the generating vector, µx(t) = IE
[
etγO

]
x

where
the trajectory average is conditioned on the final state x at time t. This generating
vector evolves according to the modified master equation [60]

d

dt
µv(t) = Kγ · µv(t) (2.17)

where the titled matrix is

Kγ
x,y =

{
ωx,ye

γg(x,y) if x 6= y
−∑y ωx,y + γf(x) if x = y

. (2.18)

The CGF is then obtained as the highest eigenvalue of the tilted matrix.

2.1.5 Law of large numbers and central limit theorem

The law of large numbers and the central limit theorem are natural consequences
of the large deviation principle, as we show in the following.

Law of large numbers We assume that the LDF I(o) has a unique global
minimum at o = ō. This minimum necessary satisfies I(ō) = 0. Indeed, by
definition φ(0) = 0 and we have

0 = φ(0) = sup
o
−I(o) = −I(ō). (2.19)

Furthermore the expected value of O is

IE [O] =

∫
do oPr (O = o) '

∫
do oe−TI(o) = argmin I(o) = ō. (2.20)

From which we conclude that

Pr (O = ō) −→
T→+∞

1 and Pr (O 6= ō) −→
T→+∞

0. (2.21)

This is the law of large number. Therefore for LDF with a unique global minimum,
expected value and most probable value are equal.
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Ergodic theorem When the transition matrix (1.20) is irreducible, the jump
process is ergodic. The average values of observables are then deducible from the
ergodic theorem. In particular we have for the occupation and jump fraction for
all state x, y in terms of the steady state probability πv

lim
T→+∞

IE [Rx] = r̄x = πx and lim
T→+∞

IE [Qx,y] = q̄x,y = ωx,yπy. (2.22)

We derive from the previous expression, the expected empirical current and em-
pirical activity as the stationary current and activity

lim
T→+∞

IE
[
J(x,y)

]
= j̄(x,y) = jπ(x,y) and lim

T→+∞
IE
[
A(x,y)

]
= ā(x,y) = aπ(x,y). (2.23)

There are the stationary values of the probability current (1.22) and activity
(1.24).

Central limit theorem When I(o) has a unique global minimum at ō and is
smooth enough, we can expand I(o) about its minimum

I(o) ≈ 1

2

d2I

do2

∣∣∣
o=ō

(o− ō)2 (2.24)

The probability has then a Gaussian shape at large time

Pr (O = o) ' exp

[
−T

2

d2I

do2

∣∣∣
o=ō

(o− ō)2

]
. (2.25)

Which is a form of central limit theorem, valid for small fluctuations close to the
most probable value.

2.1.6 Level 2.5 large deviation function

LDF of occupations times and jump fractions The LDF I2.5(rv, q) of
empirical occupation times (1.76) and of empirical jump fractions (1.77) is known
for any ergodic Markov process. We call it the level 2.5 LDF [12] and it writes in
terms of the transition rates ωx,y [38, 45, 100, 122]

I2.5(rv, q) =
∑

x,y|x 6=y

[
qx,y ln

qx,y
ωx,yry

− qx,y + ωx,yry

]
, (2.26)

with stationary condition

∀y,
∑
x

(qx,y − qy,x) = 0. (2.27)

This level 2.5 LDF is derived from the path probability density function (1.72)
and the Girsanov formula [38, 122, 30].
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LDF of occupations times, currents and activities From the level 2.5
LDF, the LDF I(rv,ae, je) of occupations times (1.76), activities (1.79) and cur-
rents (1.80) is obtain by the change of variable q → a, j

I2.5(rv,ae, je) =
∑
(x,y)

a(x,y)

2
ln

a2
(x,y) − j2

(x,y)

4ryrxω(x,y)ω(y,x)

+
j(x,y)

2
ln
a(x,y) + j(x,y)

a(x,y) − j(x,y)

ryω(x,y)

rxω(y,x)

− a(x,y) + rxω(y,x) + ryω(x,y). (2.28)

The stationary condition (2.27) becomes

∀y,
∑
x

j(x,y) =
∑
x

j(y,x), (2.29)

that is the sum of current flowing to the state y is equal to the sum of current flow-
ing from the state y. Using the probability current and the probability activity,
the level 2.5 LDF rewrites using Eqs. (1.27-1.30)

I2.5(rv,ae, je) =
∑
(x,y)

[
a(x,y)

2
ln

a2
(x,y) − j2

(x,y)

ar(x,y)
2 − jr(x,y)

2

+
j(x,y)

2
ln
a(x,y) + j(x,y)

a(x,y) − j(x,y)

ar(x,y) − jr(x,y)

ar(x,y) + jr(x,y)

− a(x,y) + ar(x,y)

]
. (2.30)

Stationary condition The empirical current (1.80) is an antisymmetric func-
tion on edges. Therefore, it undergoes a decomposition on cycles. This de-
composition can be thought as follow: let’s pick up one state z and consider a
particular trajectory. With respect to this state z, we can cut the trajectory into
three pieces. The first part between the initial time and the first time t1 we arrive
at z, the part between the first time we arrive at z and the last time tn we arrive
at z and the final part of the trajectory between the last time we arrive at z and
the final time. When computing the empirical current on the three pieces, the
middle part is the cyclic part of the decomposition, the empirical current being
only computed on cyclic trajectory. While the two remaining parts are the vertex
part of the decomposition.

The empirical current becomes

J(x,y) =
1

T

[ ∑
06t<t1:∆Xt 6=0

1x(Xt+)1y(Xt−)− 1y(Xt+)1x(Xt−)

+
∑

t16t<tn:∆Xt 6=0

1x(Xt+)1y(Xt−)− 1y(Xt+)1x(Xt−)

+
∑

tn6t6T :∆Xt 6=0

1x(Xt+)1y(Xt−)− 1y(Xt+)1x(Xt−)

]
. (2.31)

The graph being finite, the initial and final sum have necessary a finite number
of elements. When taking the long time limit, they can be ignored, and the em-
pirical edge currents have only a cyclic contribution. This leads to the stationary
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condition

D · je = 0, (2.32)

that is another form of the condition (2.29).

LDF of occupation times and currents It is possible to realize the con-
traction of the level 2.5 LDF (2.26) to obtain the level 2.5 LDF of empirical
occupations times and currents, that is [122]

I2.5(rv, je) =
∑
(x,y)

j(x,y)arcsinh

(
j(x,y)√

4ryrxω(x,y)ω(y,x)

)
− 1

2
j(x,y) ln

rxω(y,x)

ryω(x,y)

+
√

(ryω(x,y) − rxω(y,x))2 + 4ryrxω(x,y)ω(y,x) −
√
j2

(x,y) + 4ryrxω(x,y)ω(y,x). (2.33)

Using the relation (1.27) that connects the probability current, the geometrical
activity and the edge affinity, we have [93]

I2.5(rv, je) =
∑
(x,y)

j(x,y)arcsinh

(
j(x,y)

gr(x,y)

)
− j(x,y)arcsinh

(
jr(x,y)

gr(x,y)

)

+
√
jr(x,y)

2 + gr(x,y)
2 −

√
j2

(x,y) + gr(x,y)
2 (2.34)

=
∑
(x,y)

j(x,y)arcsinh

(
j(x,y)

jr(x,y)

sinh
f r(x,y)

2

)
− j(x,y)

f r(x,y)

2

+

√√√√√jr(x,y)
2 +

jr(x,y)
2

sinh2
f r(x,y)

2

−
√√√√√j2

(x,y) +
jr(x,y)

2

sinh2
f r(x,y)

2

. (2.35)

Contraction of level 2.5 LDF The LDF of any observable O could be derived
from the level 2.5 LDF by contraction using the Eq. (1.78)

I(o) = min
r, q | ∑x f(x)rx+

∑
x,y g(x,y)qx,y=o

I(rv, q). (2.36)

But this formula is not useful in practice and we usually prefer to compute LDF
from the Gärtner-Ellis theorem. Among contractions, the LDF of occupation
times is called the level 2 LDF and explicit formula exists when the system re-
spects detailed balance [44, 100].

2.1.7 Physical currents

When studying long time behavior of systems, simplifications occur in their de-
scription if one focus on physically relevant currents like currents exchanged with
the reservoirs.
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Conservation laws Due to the stationary condition (2.32) on empirical edge
currents, the latter are decomposable on cycle. Therefore the empirical reservoir
currents write then

jr = R ·C · jc. (2.37)

The cycle-reservoir matrix R ·C counts the exchanged quantities with the reser-
voirs for each cycle of the graph. The entries of the cycle-reservoirs matrix are
the influx of state variables along each cycle.

The cycle-reservoir matrix is not in general a full-rank matrix. Let’s consider
`r

T such that

`r
T ·R ·C = 0. (2.38)

Such vector are named conservation laws since `r
T · jr = 0 [147, 157]. They form

quantities that are conserved during the evolution of the system. Indeed `r
T ·R

is an edge linear form that is decomposable on vertices and there exits `v
T such

that

`r
T ·R = `v

T ·D. (2.39)

Then `v
T is a vertex quantity that is constant during the evolution and so a

conserved quantity. The number of conservation laws is denoted Lc.

We expect to have at least one conservation laws by state variable, as these
are conserved quantities, but the topology of the graph embedded into the cycle
matrix C can allow for supplementary conserved quantities. We emphasize that
if one of the state variable is not conserved by cyclic trajectories, the system
cannot reach a stationary-state, as these variable will evolve permanently due to
cyclic currents.

If the cycle-reservoirs matrix is zero, then there no permanent flux from the
reservoirs to the system and the system reaches an equilibrium state. In partic-
ular, this appends when we have at most one reservoirs per state variable M .

Physical currents The conservation laws induce relations between reservoirs
currents. Hence it is not necessary to observe all reservoirs currents to have a
good knowledge of the system evolution. It suffices to observe only Ph = Rev−Lc
currents, the others currents being obtained from the conservation laws. We call
the observed currents the physical currents, there are Ph of them. They are
labeled with index X = 1, . . . , Ph and the vector of physical currents is j without
subscript.

Remark: In Ref. [147], reservoirs observables are called physicals observables,
and physical observables are called fundamental observables.

There exists a well defined procedure to select physical currents that is similar
to the one used to decompose edge current between vertex and cycle currents.
Let’s introduce the Rev × Ph selection matrix V such that for all conservation
laws `r

T

`r
T · V = 0. (2.40)

Then, we have the relation

jr = V · j, (2.41)
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between reservoirs and physical currents. We emphasize that the matrix V is not
unique, as one has a choice on the currents to observe.

The matrix V has independent columns, we can then invert Eq. (2.41) to
obtain the connection between physical and reservoir currents

j = V + · jr. (2.42)

As a short notation, we introduce the physical matrix P that connects cycle
currents to physical currents

P = V + ·R ·C, (2.43)

such that

j = P · jc. (2.44)

The matrix V selects a independent set of currents. However, one can ob-
serve more currents than required by the numbers of reservoirs and conservation
laws Ph = Rev − Lc. This is done by forgetting some conservation laws in the
definition (2.40). In this case, the remaining conservation laws induce relations
between currents, as it is the case for tight coupled engines that we describe in
sec. 3.1.3.

If we observe not enough currents, we miss a part of the flows between the
reservoirs and the system and we cannot accurately describe the dynamics of the
system.We study consequences of such missing currents in the sec. 5.2.4.

Partial entropy production rates Once the physical currents are defined,
we also defined the physical affinities fT from the reservoir affinities as

fT = fr
T · V . (2.45)

The entropy production rate σ is then simply given by the scalar product

σ = fT · j =
∑
X

fXjX. (2.46)

The partial entropy production rates σX = fXjX is the entropy production rates
corresponding to the physical current jX.

Fluctuations relation and large deviation theory The fluctuation theorem
is a kind of symmetry of the LDF for the entropy production rate and currents.
We define the LDF I(σ) of the total entropy production as

I(σ) = lim
T→+∞

1

T
ln Pr

(
∆Stot

T
= σ

)
. (2.47)

The fluctuation theorem (1.94) writes then

I(σ)− I(−σ) = −σ. (2.48)
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The fluctuation theorem also imposes a symmetry on the CGF φ(γ) of the total
entropy production. From the Legendre transform and the Eq. (2.48), we have

φ(γ) = φ(−1− γ). (2.49)

The CGF, being a convex function, has a unique minimum. This minimum is
located at γ = −1/2 from the symmetry relation (2.49).

When considering instead the LDF for the current, the fluctuation theorem
write then

I(j)− I(−j) = −fT · j, (2.50)

fT being the associated affinities such that fT · j is the entropy production. And
the symmetry on the CGF φ(γ) for the current becomes

φ(γ) = φ(−f − γ). (2.51)

2.2 Equivalence of dynamical ensembles

A dynamical ensemble is a set of trajectories with a particular path probability
density function dP[{X(t)}T0 ]. We consider the set of all possibles trajectories on
the state space Ω as the support of all dynamical ensembles. We make the refer-
ence on the support of trajectory implicit in the notation and denote a dynamical
ensemble by its path probability density function dP.

Few questions arise: Can we connect a particular dynamical ensemble with a
well defined stochastic process? Under which conditions two dynamical ensembles
lead to the same statistics for some observables. Both questions are related
through the notion of ensemble equivalence, as a stochastic process defines a
dynamical ensemble through its path probability density (1.72).

To discuss the dynamical ensemble equivalence, one needs to define when
two path probabilities dP[{X(t)}T0 ] and dQ[{X(t)}T0 ] are equivalent. They do
when [60, 61]

lim
T→+∞

1

T
ln
dP
dQ

[{X(t)}T0 ] = 0 (2.52)

almost everywhere with respect to dP[{X(t)}T0 ]. This means that dP[{X(t)}T0 ]
and dQ[{X(t)}T0 ] are equal up to subexponential terms in T for almost all paths.
As a consequence, if two path ensembles are equivalent, the mean value (at large
time) of any observable will be the same if computed with one or the other
path ensemble. We emphasize that the definition of equivalence requires that
dP[{X(t)}T0 ] is absolutely continuous with respect to dQ[{X(t)}T0 ] to have the ex-
istence of the Randon-Nikodym derivative dP/dQ. This requires that dP[{X(t)}T0 ]
vanishes at least when dQ[{X(t)}T0 ] does. Formally, dP[{X(t)}T0 ] is absolutely
continuous with respect to dQ if for all trajectories {x(t)}T0

dQ[{x(t)}T0 ] = 0⇒ dP[{x(t)}T0 ] = 0. (2.53)
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Dynamical ensembles The microcanonical ensemble of trajectories is defined
by filtering the trajectory ensemble through a condition on the value of an ob-
servable, e.g. O = o. We write the path probability of these trajectories

dPo[{X(t)}T0 ] = dP[{x(t)}T0 |O = o] =
dP[{X(t)}T0 ]

Pr (O = o)
1o(O). (2.54)

In the microcanonical path ensemble, the observable O does not fluctuate and
always achieves the same value for all trajectories in the ensemble.

The canonical ensemble of trajectories is define by fixing the mean value of
the observable O only. The path probability for this ensemble can be computed
by tilting (or biasing) the process as follows:

dPγ[{X(t)}T0 ] =
eTγOdP[{X(t)}T0 ]

IE [eTγO]
. (2.55)

Notice that this path probability is normalized by construction. The canonical
ensemble is also called s-ensemble [92], driven, biased or tilted ensemble [102].

These two dynamical ensembles are analogs of the equilibrium statistical en-
sembles. For equilibrium statistical ensembles, the constraint is set on the system
energy and the counting field γ is replaced by the inverse temperature.

Equivalence condition from LDF convexity When O respects a large de-
viation principle with LDF I(o), Chetrite and Touchette proved the equivalence
between the microcanonical path ensemble and the canonical path ensemble.
Whether dPo and dPγ are equivalent depends on the convexity of I(o). In [60],
Touchette and Chetrite distinguished three cases:

• (Equivalence) If I(o) is a strictly convex function at o, then there exists
a unique γ ∈ R such that dPo and dPγ are equivalent.

• (Non equivalence) If I(o) is a non-convex function at o, then there are
no γ such that dPo and dPγ are equivalent.

• (Partial equivalence) If I(o) is a convex function but not strictly convex
function at o, then numerous values of o correspond to the same γ: It may
correspond to linear parts in a convex function or to set of points at which
the slope is the same.

We remark that the microcanonical path ensemble dPo is absolutely contin-
uous with respect to the canonical path ensemble dPγ, but the converse is not
true.

2.2.1 Driven process

We ask now the following question, given a dynamical ensemble dP, can we find a
jump process, with transition matrix K, whose path probability density function
dPK is equivalent to the dynamical ensemble dP?
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For canonical path ensemble dPγ, the response is positive. Using the tilted
matrix (2.18), its highest eigenvalue the CGF (2.12) and its left eigenvector lγ ,
the Doob’s transform of the tilted matrix writes

Kdriven = Diag(lγ) ·Kγ ·Diag(lγ)−1 − φ(γ)Id, (2.56)

where Diag(l) is the diagonal matrix with diagonals elements

Diag(l)x,y =

{
0 if x 6= y
l(x) if x = y

. (2.57)

Kdriven is the transition matrix of a jump process, called the driven process. From
the results of [60], the dynamical ensemble dPMdriven generated by this transition
matrix is equivalent to the canonical path ensemble. We emphasize that the edge

affinity fe,drivenT
of the driven process are related to the one f e

T of the original
process by the shifting

fe,drivenT
= f e

T + γge
T + f l

γ

v

T ·D (2.58)

where the edge affinity γge
T is the antisymmetric part of the function γg(x, y),

it comes from the tilting of Eq. (2.18), and f l
γ

v
T

being a vertex affinity, with
components to be the logarithm of the left eigenvector lγ .

When the microcanonical ensemble dPo is equivalent to the canonical ensem-
ble, it is also equivalent to the ensemble generated by the driven process. In this
case, the driven process is the process that realizes as most probable event, the
value of the observable o used as a condition to define the microcanonical en-
semble dPo. In other words, it is the process where the affinity and other kinetic
parameters has been changed to realized o as most probable event.

2.2.2 Equivalence condition from CGF differentiability

The convexity properties of the LDF I(a) are connected to the differentiability
properties of the CGF through the Gärtner-Ellis theorem. We define I∗∗(a) as
the Legendre-Fenchel transform of the CGF

I∗∗(o) = max
γ

(γo− φ(γ)) = γ(o)o− φ(γ(o)), (2.59)

with γ(o) the value of γ realizing the minimum. The Gärtner-Ellis theorem
states that if φ(γ) is a differentiable function then I(o) = I∗∗(o). The properties
of the Legendre-Fenchel transform implies that I∗∗(o) is a convex function. The
strict convexity of the LDF and the differentiability of the CGF are then dual
conditions. Therefore we have the three following cases:

• (Equivalence) If φ(γ(o)) is differentiable at γ(o), then I(o) = I∗∗(o) from
the Gärtner-Ellis theorem, and moreover o = ∂γφ(γ). I(o) is then a strictly
convex function at o and the equivalence holds.

• (Non equivalence) If φ(γ(o)) is not differentiable at γ(o) and I(o) 6=
I∗∗(o), then I(o) is non-convex function at a and we have a non equivalence
between microcanonical and canonical ensembles.

– 45 –



Chapter 2. Dynamical fluctuations

• (Partial Equivalence) If φ(γ(o)) is not differentiable at γ(o) and I(o) =
I∗∗(o), then I(o) is a convex function but not strictly convex function at o
and we have a partial equivalence.

Hence, the non-equivalence of ensembles prevents to compute the LDF from the
CGF. In this case I∗∗(o) is only the convex hull of I(o).

2.2.3 Ensemble equivalence for ergodic systems

Since ensemble equivalence for a stochastic variable relies on the convexity of
the corresponding LDF, it is crucial to determine (i) whether the level 2.5 LDF
I2.5(rv, q) is convex and (ii) whether the convexity can be inherited upon con-
traction via Eq. (2.36). The following theorem appearing in Ref. [4] provides an
answer to point (ii) when the new variable is additive:

Theorem. Let f(x, z) be a convex function and U(z) an additive function, i.e.
a function verifying

U(αz1 + (1− α)z2) = αU(z1) + (1− α)U(z2), (2.60)

then

g(y) = min
x∈C,z∈Cy

f(x, z) with C convex, and Cy := {z |U(z) = y} (2.61)

is a convex function.

Proof. We consider (x∗1, z
∗(y1)) the couple of variables realizing the minimum in

Eq. (2.61) for y1, and similarly (x∗2, z
∗(y2)) for y2. The convexity of C implies

that αx∗1 + (1− α)x∗2 ∈ C when α ∈ [0, 1]. Moreover, the additivity of U implies
that αz∗(y1) + (1− α)z∗(y2) ∈ Cαy1+(1−α)y2 . Hence, we have

g(αy1 + (1− α)y2) = min
x∈C,z∈Cαy1+(1−α)y2

f(x, z)

6 f(αx∗1 + (1− α)x∗2, αz
∗(y1) + (1− α)z∗(y2)),

6 αf(x∗1, z
∗(y1)) + (1− α)f(x∗2, z

∗(y2)),

6 αg(y1) + (1− α)g(y2),

where we get the third line by using the convexity of f , and the fourth line using
our knowledge of the minimizers of Eq. (2.61) for both y1 and y2.

We now address the point (i) about the convexity of the level 2.5 LDF
I2.5(rv, q) (2.26). It is convex since it writes as the sum of a linear part∑

(x,y)

[
ryω(x,y) − q(x,y)

]
and a KL-divergence between q and rω

D(q‖rω) =
∑
(x,y)

q(x,y) ln
q(x,y)

ryω(x,y)

. (2.62)

– 46 –



2.3. Example: a quantum dot

This KL-divergence is convex as a consequence of the log-sum inequality (or
Jensen’s inequality) [8]

D

(∑
i

αiqi

∣∣∣∣∣
∣∣∣∣∣∑

i

αirik

)
≤
∑
i

D (αiqi||αirik) (2.63)

for
∑

i αi = 1. Using the previous theorem with z = (rv, q), the additivity of O
the convexity of the level 2.5 LDF for both the occupation ratio and the jump
fraction, we conclude the contracted LDF I(o) is also convex: The ensemble
equivalence holds for ergodic Markov jump processes. In particular, the ensemble
equivalence holds for irreducible finite size Markov jump processes since they are
always ergodic.

Alternatively, one can prove heuristically the ensemble equivalence using the
differentiability of the CGF, that is the dual condition with respect to the LDF
convexity. To determine the CGF differentiability, one consider the CGF as the
highest eigenvalues of the titled matrix Kγ defined in Eq. (2.18). From Perron-
Fröbenius theorem for irreducible finite size matrices like Kγ, the highest (real)
eigenvalue is unique: Its multiplicity is always one independently of the value of
the counting field and no crossing between the two highest eigenvalues can occur.
Moreover, the components of the tilted matrix are differentiable yielding that the
CGF is itself differentiable. By duality, the LDF is strictly convex.

From this analysis, we conclude that the non-equivalence between the micro-
canonical and canonical ensembles based on observables like O may only happen
when the Markov operator is reducible or of infinite dimension. Then, the LDF
of the variable o may not be convex. We will study in Chs. 6 and 7 examples of
systems associated to non-equivalent ensembles.

2.3 Example: a quantum dot

2.3.1 Model description

Our example is a simple model of a nanothermoelectric device that have been
introduced in Ref. [84]. It consists of a single quantum dot embedded between
two leads at different temperatures and chemical potentials. The quantum dot
exchanges electrons with the leads, but due to quantum effect we can have at
most one electron at a time in the quantum dot. Transitions between the states
are possible by exchanging electrons with each of the leads. The sketch of the
system is depicted in Fig. 2.2, this is a two state and two edge model. The graph
being a multigraph, we denote the edge of the system as (x, y; ν). We orient all
edges toward the state b such that the incidence matrix is

D =

(
−1 −1
1 1

)
. (2.64)

Therefore its cycle matrix is given by

C =

(
1
−1

)
. (2.65)
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Figure 2.2: (a) Sketch of the quantum dot connected to two leads. (b) Graph of
the model.

Reservoirs The system is connected to four different reservoirs, a cold and
hot heat bath at inverse temperature βhot and βcold and two chemical reservoirs
of electrons at chemical potential µleft and µright. The state is characterized by
two state variables, the energy Ex and the number of electrons nx, such that
(Ea, na) = (0, 0) correspond to the empty state and (Eb, nb) = (∆E, 1) to the
filled state. The reservoirs matrix and the cycle-reservoirs matrix are then

R =


0 ∆E

∆E 0
1 0
0 1


Cold bath
Hot bath
Left lead

Right lead

and R ·C =


−∆E
∆E

1
−1

 . (2.66)

The reservoirs affinities are given by fr
T = (−βcold,−βhot, βhotµright, βcoldµleft).

Local detailed balance From the local detailed balance, we have a constraint
on the edge affinity that are

fωe1 = −βhot(∆E − µright) (2.67)

fωe2 = −βcold(∆E − µleft). (2.68)

We choose the transition rates to be

ω(b,a;1) =
2e−

βhot
2

(∆E−µright)

cosh

(
βhot

2
(∆E − µright)

) , ω(a,b;1) =
2e

βhot
2

(∆E−µright)

cosh

(
βhot

2
(∆E − µright)

)(2.69)

ω(b,a;2) =
2e−

βcold
2

(∆E−µleft)

cosh

(
βcold

2
(∆E − µleft)

) , ω(a,b;2) =
2e

βcold
2

(∆E−µleft)

cosh

(
βcold

2
(∆E − µleft)

) .(2.70)

Contrary to previous examples, the symmetric part of the transition rates is not
set to a constant to consider the quantum statistics.

Conservation laws We have three conservation laws that correspond respec-
tively to the conservation of the energy `1r = (1, 1, 0, 0) , the conservation of the
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number of electrons `2r = (0, 0, 1, 1) and a supplementary law due to the unicyclic
properties of our system `3r = (1, 0,∆E, 0). This lead to the selection matrix and
its Moore-Penrose pseudo inverse

V =


−∆E
∆E

1
−1

 and V + =
1

2((∆E)2 + 1)

(
−∆E ∆E 1 −1

)
. (2.71)

As a consequence we have only one physical current that is equal to the cycle
current jc. The entropy production rate is then obtain as

σ = [(βcold − βhot)∆E + βhotµright − βcoldµleft] jc = fcjc. (2.72)

using the cycle affinity fc = fωe1 − fωe2 .

2.3.2 Fluctuation of entropy production rate

Entropy production rate We look at the statistics of the entropy production
rate. For that purpose, we compute the CGF φ(γ). This is the highest eigenvalue
of the tilted matrix

Kγ =

(
−ω(b,a;1) − ω(b,a;2) ω(a,b;1)e

−γfe1 + ω(a,b;2)e
−γfe2

ω(b,a;1)e
γfe1 + ω(b,a;2)e

γfe2 −ω(a,b;1) − ω(a,b;2)

)
. (2.73)

We have

φ(γ) = −ω
2

+

√(ω
2

)2

+ 2Γ

[
cosh

(
fc(γ +

1

2
)

)
− cosh

(
fc
2

)]
(2.74)

where ω = ω(a,b;1) +ω(a,b;2) +ω(b,a;1) +ω(b,a;2) and Γ =
√
ω(a,b;1)ω(a,b;2)ω(b,a;1)ω(b,a;2).

By Legendre-Fenchel transform the LDF of the entropy production rate is

I(σ) =
|σ|
fc

arccosh(Y )− σ

2
+
ω

2
−
√(ω

2

)2

+ 2Γ

[
Y − cosh

(
fc
2

)

)]
(2.75)

where

Y =
σ2

Γf 2
c

+

√
1 +

σ2

Γf 2
c

(
ω2

4Γ
− 2 cosh

(
fc
2

))
+

(
σ2

Γf 2
c

)2

. (2.76)

The last result being also obtained from the level 2.5 LDF (2.33). The CGF
and the LDF are plotted on the Fig. 2.3 and present all expected features. Both
functions are convex and respect the expected fluctuation symmetry (2.51). The
LDF is a positive function with I(σ̄) = 0.

Here the simplicity of the transition matrix allows for explicit computation of
the CGF and the LDF but this is not the case in general . Then, one must rely
on numerical computation of the the highest eigenvalues of the titled matrix.
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Figure 2.3: (a) CGF φ(γ) of Eq. (2.74) (solid line) compared to φ(−1−γ) (crosses)
(b) LDF of the entropy production rate of Eq. (2.75) (solid line) compared to
I(−σ) − σ (crosses). Parameters are ∆E = 3, βhot = 0.5, βcold = 1, µleft = 1.0
and µright = 2.0.

Driven process As the CGF is always differentiable, we have equivalence of
dynamical ensembles. From Eq. (2.56) and the computation of left eigenvectors
of the titled matrix (2.73), we can deduce the transition matrix of the driven
process

Kdriven =

(
−ω(b,a;1) − ω(b,a;2) − φ(γ) +ω(a,b;1) + ω(a,b;2) + φ(γ)
+ω(b,a;1) + ω(b,a;2) + φ(γ) −ω(a,b;1) − ω(a,b;2) − φ(γ)

)
. (2.77)

The driven process is then the jump process whose mean entropy production rate
is given by the derivative of the CGF,

σ̄driven =

Γfc sinh

(
fc(γ +

1

2
)

)
√(−ω

2

)2

+ 2Γ

[
cosh

(
fc(γ +

1

2
)

)
− cosh

(
fc
2

)

)] . (2.78)
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3

Thermodynamic machines

A thermodynamics machine is a system that converts energy from one form to
another. The study of thermal engines that convert heat to work is at the origin
of thermodynamics, in particular the work of Carnot about maximal efficiency [6].

When considering stochastic energy converters, either natural (molecular mo-
tor, chloroplast,...) or artificial (quantum dot, colloidal particles,...) we have to
take care of their fluctuations and how they matters.

In this chapter, we show how the framework of stochastic thermodynamics
is used to describe stochastic energy converters. Then we study the close-to-
equilibrium regime that gives first results about the physics of such machines.
Finally, we consider the fluctuation of the efficiency that exhibits remarkable
generic features.

3.1 Stochastic systems as energy converters

From our point of view, we call machine any system that has only two physical
currents, one of which is called fueling or input current and the other one useful
or output current. Recent experimental realizations have demonstrated the the
relevance of considering highly fluctuating machines [49, 125, 169].

We denote in the following the input current by j1 and the output current
by j2, the currents being directed towards the machine. To these two currents
are associated two thermodynamic forces f1 and f2. We consider here machines
whose currents are fluctuating while the thermodynamic forces are fixed.

For machines, the entropy production rate is then

σ = σ1 + σ2 = j1f1 + j2f2. (3.1)

A device operating as a machine (in average) uses a fueling process (the input)
flowing in the spontaneous direction of its corresponding forces σ̄1 > 0 (e.g., a heat
flowing down a temperature gradient or particle flowing down a chemical potential
gradient) in order to power a second process (the output) flowing against the
spontaneous direction of its corresponding forces σ̄2 6 0 (e.g., a particles flowing
up a chemical potential gradient or a coordinate moving against the direction of
a mechanical force).

– 51 –



Chapter 3. Thermodynamic machines

Figure 3.1: Sketch of a typical machine setup with two physical currents and
affinities.

3.1.1 Characterizing the machine

Efficiency We define the stochastic efficiency of the machine by

η =
−σ2

σ1

(3.2)

which characterizes the ability of the machine to transform the input current into
the output current. Since the two partial entropy production rates are stochastic
quantities, efficiency is also a stochastic quantity.

Macroscopic efficiency is defined by

η̄ =
−σ̄2

σ̄1

6 1. (3.3)

Due to the positivity of the average entropy production rate σ̄ > 0, the macro-
scopic efficiency is bounded by the so-called reversible (or Carnot) efficiency
η̄rev = 1. The macroscopic efficiency does not correspond to the average of the
stochastic efficiency, which has no moment, but to its most probable value, see
sec. 3.3.

It should be noted that the efficiency is often defined in a slightly different
way, for example for a macroscopic thermal machine between two heat sources at
temperature Th and Tc where the work supplied to the machine is denoted W and
the heat coming from the hot source Qh, the efficiency is then ηtherm = −W/Qh

and the Carnot efficiency is ηC = 1 − Tc/Th. Our definition of efficiency then
amounts to normalizing efficiency as η = ηtherm/ηC . The traditional definition of
efficiency is called type ’I’ efficiency while ours is type ’II’ efficiency [1].

Output power Whereas the efficiency characterizes the performance of the
conversion, we need also to characterize the output power of the machine. In this
manuscript we call −σ2 the output power. The average output power being then
−σ̄2.
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3.1.2 Machines behavior

Operating modes As the efficiency is a stochastic variable, the fluctuating
machine will not always behave as a machine, but can be running in various
modes. We distinguish three different operating modes:

• In the normal operating mode, the machine works as expected, using flow
from the fueling process to power the output process. This corresponds to
0 6 η 6 1.

• In the reversed mode, the machine still converts energy but using the flow
from the output process to power the fueling process. The role of each
process is then exchanged. This corresponds to η > 1.

• A useless mode, or dud engine, for which no flow goes against its thermo-
dynamic force. We then have η 6 0.

The occurrence of these various type of trajectory depends on the noise level of
the machine and it disappears completely in the context of large machines for
which only the most probable behavior is observed.

When varying the physical affinities of the machines, we also change the
macroscopic efficiency and the average operating mode of the device. The di-
agram that represent the operating mode as a function of the physical affinities
is call operation diagram. An example is provided in the sec. 3.4.

Optimization of the machine Beyond stochastic aspects, we seek to optimize
the average behavior of machines. To this end, we look at the conditions such
that the machine works at maximum efficiency or at maximum power [57, 65, 83,
85, 162, 166, 171, 182, 185].

Since these two conditions are generally incompatible, we look at the efficiency
at maximum power or the power at maximum efficiency. Another option is to
obtain (if possible) the power-efficiency relationship curves.

This optimization can be conceived in several ways, by either optimizing the
kinetic parameters of the machine or the affinities of the machine, that means
its external conditions. In the latter case, we fix the first affinity f1 and we only
vary the affinity f2 linked to the output power.

3.1.3 Tight coupled machines

Some machines have a particular property that is call tight coupling [65, 96, 170].
This corresponds to devices where we have an hidden conservation law between
input and output fluxes. As a consequence, the efficiency of such machines is
fixed by the conservation laws at fluctuating and macroscopic level. The typical
examples of tight coupled machines are the unicyclic system as we have only one
possible physical current due to the conservation laws.

The fluctuations of the partial entropy production rates are given by a degen-
erate form of the LDF that only allows fluctuations that respect the conservation
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laws. This means that the LDF of the partial entropy production rates is fi-
nite only when σ2 = −η̄σ1. In this case the LDF of partial entropy production
rates and of the total entropy production rate include the same information sine
σ = σ1 + σ2 = σ1(1− η̄), and similarly for CGFs.

We will see that tight coupling is an important property for a machine to
reach reversible efficiency.

3.2 Linear thermodynamics

The connection between the fundamental currents and the fundamental affinities
comes from the dynamics that have been described in sec. 1.2 and is in general
a non-linear relation. However for small affinities, we can assume a linear rela-
tionship between currents and affinities. This approximation is at core of linear
thermodynamics and has been a successful direction of research [42].By construc-
tion, the system is almost at equilibrium (close to equilibrium) since physical
affinities are small.

Onsager matrix The Onsager matrix L connects linearly mean currents and
affinities [131, 132]:

j̄ = L · f (3.4)

where f is the transpose of the linear form fT. This matrix has few properties.
First due to non-negativity of the entropy production, we have

σ̄ = fT · j̄ = fT ·L · f > 0. (3.5)

Hence, the Onsager matrix is semi-positive definite (see App. A.1.2). Another
important property is the Onsager reciprocal relation

LT = L (3.6)

that becomes the Onsager-Casimir symmetry when considering time-dependent
driving or external magnetic field.

Remark: The Onsager matrix could be interpreted as a metric that transform
affinities (linear forms) into currents (vectors), the resistance matrix being the
inverse metric that transform current (vectors) into affinities (linear forms).

3.2.1 Fluctuations in linear regime

Fluctuation-dissipation theorem An important result of the physics of close-
to-equilibrium systems is the fluctuation-dissipation theorem, sometimes also
called fluctuation-response theorem [113]. With words, this theorem relates the
response to a perturbation and spontaneous fluctuations of the system. There are
several versions of this theorem, that vary on the detail of the chosen observable
or the way the external perturbation is applied on the system. In our case, the
fluctuation-dissipation theorem states the equality between the Onsager matrix
and half of the equilibrium covariance matrix

L =
Coveq

2
. (3.7)
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The covariance matrix is the matrix whose elements are the covariance between
currents

CovXY = lim
t→∞

t [IE [JXJY ]− IE [JX] IE [JY ]] =
∂2φ

∂γX∂γY
(0, 0). (3.8)

This is also the Hessian matrix of the CGF. The equilibrium covariance matrix
Coveq is obtained by taken the expectation in the case of the equilibrium system,
i.e. when physical affinities are zero.

We give here an simple proof of the fluctuation-dissipation theorem, we send
for more complete proof and finite-time result to Refs. [34, 114, 23, 29]

Given that physical affinities are small, we can assume that the fluctuations
of currents close-to-equilibrium are Gaussian such that the LDF of the current
Ieq(j) close to equilibrium is given by the following quadratic form

Ilr(j) =
1

2
(j − j̄)T ·Cov−1

eq · (j − j̄). (3.9)

From the fluctuation theorem Ilr(j)− Ilr(−j) = −fT · j, we obtain

Ilr(j)− Ilr(−j) = −2j̄T ·Cov−1
eq · j = −fT · j. (3.10)

The last equality being valid for any j, this give

2j̄T ·Cov−1
eq = fT (3.11)

to be put in relation with Eq. (3.4) to obtain the fluctuation-dissipation theorem.

Gaussian fluctuations Due to the fluctuation-dissipation theorem, the fluc-
tuations of the currents are obtained from the Onsager matrix. The LDF is given
by

Ilr(j =
1

4
(j − j̄)T · L−1 · (j − j̄) (3.12)

and the CGF is

φlr(γ) = min
j

[
γTj − Ilr(j)

]
= γT ·L · γ + γT · j̄. (3.13)

3.2.2 Machines in linear regime

When studying machines in linear regime, the Onsager framework is particularly
powerful [152]. It has been useful in the description of thermoelectric effects [42,
72, 195]. For machines, the Onsager matrix is a 2× 2 matrix(

j̄1

j̄2

)
=

(
L1,1 L1,2

L2,1 L2,2

)(
f1

f2

)
. (3.14)

From Onsager reciprocal relation, the Onsager matrix is symmetric L1,2 = L2,1.
Being a semi-positive definite matrix, we have L1,1 > 0 et L2,2 > 0. In order to
have a working machine, we need L1,2 < 0.
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Degree of coupling We introduce the linear response degree of coupling [109]

ξlr =
L1,2√
L1,1L2,2

. (3.15)

The constraints on the Onsager matrix require ξlr ∈ [−1, 1]. The degree of
coupling characterize the influence of the fueling process on the output process.
When |ξ| = 1, both fluxes are perfectly coupled and the machine falls into the
case of tight coupled machines.

We note also that in the literature on thermoelectricity [42], it is customary
to use the figure of merit ZT instead of the degree of coupling. The two notions

are simply related by ZT =
ξlr

2

1− ξlr2 , so that ZT is a real positive number which

goes to infinity when ξlr tends to ±1.

Maximum efficiency This degree of coupling allows the derivation of useful
relations on efficiency and power for machine in linear regime.

Indeed, the efficiency is bounded by a maximum efficiency that solely depends
on the degree of coupling

η̄ 6 η̄max,lr =
1−

√
1− ξlr2

1 +
√

1− ξlr2
. (3.16)

In particular the reversible efficiency may only be reached by tight coupled ma-
chine in linear regime [81].

Maximum power The output power

− σ̄2 = −f2(L1,2f1 + L2,2f2) (3.17)

is maximum with respect to f2 when

f2 = − L1,2

2L2,2

f1 (3.18)

and is given by

− σ̄2,max,lr =
L1,2

2

4L2,2

f1
2. (3.19)

Note that the output power in (3.17) is a quadratic function of f2 and the max-
imum is obtained for the value corresponding to half of the so-called stalling
affinity. The stalling affinity

f2,stall,lr = −L1,2

L2,2

f1 (3.20)

is the affinity at which the output power vanishes.
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Power-efficiency relations Not only, we have bounds on the maximum ef-
ficiency and power, but we can also derive the relation between efficiency and
power as

−σ̄2

−σ̄2,max,lr

= 2η̄

(
2

ξlr
2 − (1 + η̄)±

√
(1 + η̄)2 − 4η

ξlr
2

)
. (3.21)

This relation is shown on Fig. 3.2. This shows that the relation between power
and efficiency is in general bi-valued.
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Figure 3.2: Power-efficiency relation for different degrees of coupling.

3.3 Efficiency fluctuations

Using the framework of large deviation theory and stochastics thermodynamics,
various results have been established about efficiency fluctuations since 2014. Re-
markably, the shape of the efficiency LDF is quite generic and displays universal
features [95, 186, 189]. These features have been illustrated on different mod-
els [150, 155], some of which have gaussian fluctuations [145], an experimental
realization has confirmed the results that least likely efficiency is the reversible
efficiency and has validated the shape of the efficiency LDF [153].

The efficiency probability Pr (η) is obtained from the probability of entropies
productions σ1, σ2 as follows

Pr (η) =

∫
dσ1dσ2 Pr (σ1, σ2) δ

(
η +

σ2

σ1

)
. (3.22)

Using the change of variable (σ1, σ2)→ (η, σ2), we obtain

Pr (η) =

∫
dσ2 Pr

(
σ2

η
, σ2

) ∣∣∣∣σ2

η2

∣∣∣∣ . (3.23)

For large efficiency, the probability of efficiency is a power-law distribution with
tails [95, 150]

Pr (η → ±∞) ∝ η−2. (3.24)
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As a consequence, the efficiency has no finite moment. In particular the macro-
scopic efficiency is not the average efficiency, but its most probable value as we
will shown later.

Efficiency LDF The long time limit of the efficiency probability gives the
efficiency LDF

J(η) = lim
t→+∞

1

t
ln Pr (η) . (3.25)

We assume that the entropy production probability also respects a large deviation
principle, such that the LDF is

I(σ1, σ2) = lim
t→+∞

1

t
ln Pr (σ1, σ2) . (3.26)

Using the Lapace approximation on the integral (3.22), we obtain that the ef-
ficiency LDF is given by the contraction over the partial entropy productions
LDF

J(η) = min
σ1

I(σ1,−ησ1). (3.27)

This contraction formula is the starting point for the derivation of the main
properties of the efficiency LDF J(η).

We assume that the entropy productions LDF satisfies two quite general fea-
tures:

• The entropies production LDF I(σ1, σ2) is a positive convex function with
I(σ̄1, σ̄2) = 0. The LDF is defined for all (σ1, σ2) ∈ R2. This has been
shown to hold for finite size engines in sec. 2.2.3.

• The machine is in a steady state such that the fluctuations relation holds,
i.e. I(σ1, σ2)− I(−σ1,−σ2) = −σ1 − σ2.

The important case of time-periodic driven machines is not treated in this
manuscript as we focus on stationary processes, but has been studied elsewhere [95,
189]

3.3.1 Shape of the efficiency LDF

The shape of the efficiency LDF is constrained by the above assumptions.

First, the efficiency LDF is a bounded function. Indeed from the contraction
formula (3.27), we have

J(η) 6 I(0, 0), (3.28)

where the upper bound follows from the contraction formula (3.27). We used
the assumption on the entropy productions LDF that I(0, 0) < +∞ to guarantee
that the upper bound is finite.
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Most probable efficiency The minimum of the efficiency LDF is located at
the macroscopic efficiency, since the efficiency LDF vanishes at η̄

J(η̄) = min
σ1

I(σ1, σ1
σ̄2

σ̄1

) = 0 (3.29)

where the minimum is reached for σ = σ̄1. If the entropy production has an
unique minimum, η̄ is the unique minimum of the efficiency LDF. However if
the entropies production LDF has a constant region around its minimum, the
efficiency LDF exhibits a plateau at the minimum as well.

Least likely efficiency The location η? of the maximum can be obtained from
the fluctuation theorem. We call η? the least likely efficiency because it has the
highest decay rate J(η?).

Along a contour line of the entropy productions LDF, the total differential of
I vanishes,

dI =
∂I

∂σ1

dσ1 +
∂I

∂σ2

dσ2 = dσ1

(
∂I

∂σ1

+
∂I

∂σ2

dσ2

dσ1

)
= 0. (3.30)

At the origin, we have η∗ = −dσ2/dσ1. So,

η∗ =
∂I

∂σ1

∣∣∣∣
0

(
∂I

∂σ2

∣∣∣∣
0

)−1

. (3.31)

We now use the fluctuation theorem for the entropy productions:

I(σ1, σ2)− I(−σ1,−σ2) = −σ1 − σ2. (3.32)

Taking the partial derivatives of this equation at origin yields

∂I

∂σ1

∣∣∣∣
0

=
∂I

∂σ2

∣∣∣∣
0

= −1

2
. (3.33)

Then the least likely efficiency is the reversible efficiency:

η∗ = 1 = ηrev, (3.34)

following from Eqs. (3.31) and (3.33).

Extremas of the LDF We are also able to give the general shape of the
efficiency LDF from the convexity of the entropies production LDF. Let’s study
the zeros of the derivative of the efficiency LDF

dJ

dη
(η) = 0. (3.35)

Since the efficiency LDF follows from the contraction formula (3.27), we introduce
the fonction σ̃1(η) as the solution of

0 =
dI

dσ̃1

[I(σ̃1,−ησ̃1)] =
∂I

∂σ1

(σ̃1,−ησ̃1)− η ∂I
∂σ2

(σ̃1,−ησ̃1). (3.36)
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This allows us to write the efficiency LDF as

J(η) = I(σ̃1(η),−ησ̃1(η)), (3.37)

because σ̃1 is realizing the maximum in Eq. (3.27). From this equation, the
derivative of J may be written as

dJ

dη
(η) =

∂σ̃1

∂η
(σ̃1(η),−ησ̃1(η))−

(
η
∂σ̃1

∂η
+ σ̃1

)
∂I

∂σ2

(σ̃1(η),−ησ̃1(η)). (3.38)

Combining this equation with Eq. (3.36), we obtain for the derivative of J

dJ

dη
(η) = σ̃1(η)

∂I

∂σ2

(σ̃1(η),−ησ̃1(η)) (3.39)

which shall vanish at the extremum of J(η).
We now distinguish two different cases: either the partial derivative of I

vanishes, and we recover the minimum of J previously obtained, or the function
σ̃1(η) vanishes. In the later case, we look for the efficiency such that the function
σ̃1(η) = 0. Coming back to the contraction formula (3.27), and assuming the
efficiency to be finite, we obtain

J(η) = I(0, 0) (3.40)

such that we retrieve the extrema given by the reversible efficiency. At the con-
trary, at the limite of infinite efficiency, the contraction formula (3.27) becomes

lim
η→±∞

J(η) = lim
η→±∞

I(σ̃1(η),−ησ̃1(η)) 6 I(0, 0). (3.41)

From the last inequality and the convexity of I, we conclude that ησ̃1(η) stays
finite when η → ±∞ and necessarily,

lim
η→±∞

σ̃1(η) = 0. (3.42)

The derivative of J vanishes at infinite efficiency, and the efficiency LDF converges
to a finite value J(∞) at large efficiency since J is bounded.

Therefore the general shape of the efficiency LDF is the one sketched on
Fig. 3.3, with one minimum at η̄, one maximum at η∗ and a plateau at infinite
value.

This shape follows from a geometrical point of view as well, as shown by
Verley et al. [189].

3.3.2 Efficiency LDF from entropy productions CGF

The efficiency LDF can also be derived from the entropies production CGF
φ(γ1, γ2) instead of the LDF. As it is more convenient to derive the CGF of the
entropy productions than the LDF, this is very helpful for practical computation
of efficiency LDF.

– 60 –



3.3. Efficiency fluctuations

Figure 3.3: Shape of the efficiency LDF

The convexity of the entropy productions LDF assures that the LDF is ob-
tained from the Legendre conjugate of the CGF

I(σ1, σ2) = max
γ1,γ2

[γ1σ1 + γ2σ2 − φ(γ1, γ2)] . (3.43)

With the efficiency η = −σ2/σ1, we can write

I(σ1,−ησ1) = max
γ1,γ2

[
(γ1 − γ2η)σ1 − φ(γ1, γ2)

]
(3.44)

and the minimization of Eq. (3.27) gives

J(η) = min
σ1

max
γ1,γ2

[
(γ1 − γ2η)σ1 − φ(γ1, γ2)

]
. (3.45)

We set γ = γ1 − γ2η to obtain

J(η) = min
σ1

max
γ

{
γσ1 + max

γ2

[
− φ(γ + γ2η, γ2)

]}
. (3.46)

We now define the function

fη(γ) = −max
γ2

{
− φ(γ + γ2η, γ2)

}
= min

γ2
φ(γ + γ2η, γ2) (3.47)

and its Legendre transform

Fη(σ1) = max
γ

{
γσ1 − fη(γ)

}
. (3.48)

Then the efficiency LDF can be rewritten

J(η) = min
σ1

max
γ

{
γσ1 − fη(γ)

}
= min

σ1
Fη(σ1)

= −max
σ1

{
−Fη(σ1)

}
= −fη(0), (3.49)

– 61 –



Chapter 3. Thermodynamic machines

where we used the fact that Fη and fη are Legendre-conjugated in the last step.
Using Eq. (3.47), we conclude that

J(η) = −min
γ2

φ (γ2η, γ2) . (3.50)

This last formula is interpreted geometrically as follows: We consider the
contour line of the CGF in the plane (γ1, γ2). They form closed convex lines
encircling the point (−1/2,−1/2) where the CGF reaches its minimal value. For
each value of the efficiency, we draw a straight line with slope 1/η and crossing
the origin: γ2 = γ1/η. The corresponding value of the efficiency LDF J(η) is then
minus the minimum of the CGF φ(γ1, γ2) along this line.

3.3.3 Various specific cases

There are two specific cases for which the efficiency LDF is explicitly known.

Efficiency fluctuations for linear engines For linear regime, the CGF of
physical currents is known from the Onsager matrix and the physical affinities,
as

φlr(γ1, γ2) =
∑

X,Y=1,2

γXγY fXfYLX,Y +
∑
X=1,2

γXσ̄X. (3.51)

The previous formula (3.43) allows us to calculate the efficiency LDF as the ratio
of two quadratic form [189]

Jlr(η) =
1

4

(ησ̄1 + σ̄2)2

η2f1
2L1,1 + 2ηf1f2L1,2 + f2

2L2,2

. (3.52)

Assuming Gaussian fluctuations for the currents, we can go a step further and
obtain the explicit finite-time probability distribution of the efficiency [145].

Efficiency fluctuations for tight coupled engines For tight coupled en-
gines, the fluctuations are degenerate such that the CGF is given by

φtc(γ1, γ2) = φtc(γ1 − η̄γ2). (3.53)

The efficiency LDF is then calculate to be

Jtc(η) =

{
0 if η = η̄
φtc(−1/2,−1/2) else

. (3.54)

Due to the fluctuation theorem, φtc(−1/2,−1/2) = Itc(0, 0), we have so only
two regimes of fluctuations. For the first regime, the efficiency is equal to his
macroscopic values, that corresponds to all non-zero fluctuations of the currents,
as they are perfectly proportional. The other regime correspond to a fluctuation
for which input current is zero, that gives an undefined value of the efficiency.

The tight coupling condition realizes the collapse between the maximum value
of the efficiency LDF with its value at infinite efficiency.
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Figure 3.4: (a) Sketch of the four-state atom connected to three external heat
baths. (b) Graph of the model with color indicating how reservoirs promote the
various transitions (c) Chosen basis of fundamental cycles.

3.4 Common example: a simple laser

3.4.1 Modeling a laser

We consider a four state atom to model a simple laser. We assume that each
state is described by its energy (Ea, Eb, Ec, Ed) such that Ea < Ed < Ec < Eb.
We connect the system to three different external heat baths that represent the
environment of our atom. We assume that the atom is surrounded by a gas of
particles of inverse temperature βgas, the atom is also connected to two other heat
baths, the first one of inverse temperature βpump represent the thermal pumping
of the atom and the second of inverse temperature βpump is intended to represent
the laser radiation [27]. We emphasize that we do not take into account the state
of the light field, and model the laser radiation by a thermal bath. The model is
sketched on Fig. 3.4a.

We think of the laser as a machine converting the energy flux from the pump
to an energy flux of laser radiation.

Graph Edge orientation is shown on Fig. 3.4b. The two fundamental cycles are
represented on Fig. 3.4c . The incidence matrix and cycle matrix are obtained
using the results of sec. 1.1.2.
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Exterior reservoirs From the connection of the edge transition to the reser-
voirs the reservoir matrix is

R =

Ea − Eb 0 0 0 Ec − Ea
0 0 Ed − Ec 0 0
0 Eb − Ec 0 Ea − Ed 0

 pump
laser
gas

(3.55)

The product of the reservoir matrix with the cycle matrix gives

RC =

Ec − Eb Ec − Ea
0 Ed − Ec

Eb − Ec Ea − Ed

 (3.56)

which has for unique left null eigenvector (1 1 1) such that the total energy of
the system is conserved by cyclic trajectories. Hence from Eq. (2.45) relating
conservation laws and physical affinities the system has two physical affinities
and can be consider as a machine. These two physical affinities are

f1 = (βgas − βpump), f2 = (βgas − βlaser). (3.57)

as expected from Eq. (1.63).

Transition rates Using the local detailed balance (1.61), the antisymmetric
part of the transition rates follows from the reservoir matrix (3.55) and the reser-
voir affinity fr

T = (βpump βlaser βgas). The symmetric part is simply set to a
constant characterizing the coupling with the reservoirs. The transition rates are
then

ωe1 = Γpumpe
−βpump

2
(Ea−Eb), (3.58)

ωe2 = Γgase
−βgas

2
(Eb−Ec), (3.59)

ωe3 = Γlasere
−βlaser

2
(Ed−Ec), (3.60)

ωe4 = Γgase
−βgas

2
(Ea−Ed), (3.61)

ωe5 = Γpumpe
−βpump

2
(Ec−Ea). (3.62)

Remark: The coupling to the reservoirs is here set to a constant, as we do not
consider any quantum effect for simplicity. Taking into account these quantum
effects gives to the reservoir couplings Γ a dependence in the reservoir affinities.

The transition matrix is then

M =


−ω−e1 − ωe5 − ω−e4 ωe1 ω−e5 ωe4

ω−e1 −ωe1 − ω−e2 ωe2 0
ωe5 ω−e2 −ω−e5 − ωe2 − ωe3 ω−e3
ω−e4 0 ωe3 −ωe4 − ω−e3

 .

(3.63)
The determination of the cycle affinities from the transition rates and from

the cycle-reservoirs matrix is consistent and gives

fc1 = (βgas − βpump)(Ec − Eb), (3.64)

fc2 = (βgas − βpump)(Ec − Ea) + (βgas − βlaser)(Ed − Ec). (3.65)

as expected from Eq. (1.63).
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3.4.2 Machine behavior on average
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Figure 3.5: (a) Various operating modes of the machine. (b) Average output
power −σ̄2 as a function of the affinities Parameters for both figures are Γpump =
0.1, Γlaser = 10, Γgas = 1, Ea = 0.5, Eb = 4, Ec = 1.5, Ed = 1. The violet point
denotes the specific values of affinities taken for other figures.

From the transition matrix (3.63), we compute the stationary probability and
the mean currents. The stationary probability is obtained from the spanning tree
formula (1.37)

πa = (ω−e2ωe3ωe4 + ωe1ωe2ω−e3 + ωe1ωe2ωe4 + ωe1ωe3ωe4
+ω−e2ω−e3ω−e5 + ωe1ωe4ω−e5 + ω−e2ωe4ω−e5 + ωe1ω−e3ω−e5)/Z, (3.66)

πb = (ωe2ω−e3ω−e4 + ω−e1ωe2ω−e3 + ω−e1ωe2ωe4 + ω−e1ωe3ωe4
+ωe2ω−e3ωe5 + ω−e1ωe4ω−e5 + ωe2ωe4ωe5 + ω−e1ω−e3ω−e5)/Z, (3.67)

πc = (ω−e2ω−e3ω−e4 + ω−e1ω−e2ω−e3 + ω−e1ω−e2ωe4 + ωe1ω−e3ω−e4
+ω−e2ω−e3ωe5 + ωe1ωe4ωe5 + ω−e2ωe4ωe5 + ωe1ω−e3ωe5)/Z, (3.68)

πd = (ω−e2ωe3ω−e4 + ω−e1ω−e2ωe3 + ωe1ωe2ω−e4 + ωe1ωe3ω−e4
+ω−e2ωe3ωe5 + ωe1ω−e4ω−e5 + ω−e2ω−e4ω−e5 + ωe1ωe3ωe5)/Z, (3.69)

where Z is a normalization factor such that πa + πb + πc + πd = 1. The cycle
currents are then determined from the stationary current of their associated chord,
we have

j̄c1 = j̄πe1 = πb ωe1 − πa ω−e1 , (3.70)

j̄c2 = j̄πe3 = πc ωe3 − πd ω−e3 . (3.71)

Using the mean energy flux from the pump bath j̄pump and the mean energy
flux from the laser bath j̄laser obtained from the cycle-reservoir matrix RC and
from the cycle current (3.70), the mean entropy productions are

σ̄1 = f1j̄pump, σ̄2 = f2j̄laser (3.72)
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and the macroscopic efficiency

η̄ =
−σ̄2

σ̄1

. (3.73)

Using the previous expression of the mean currents and macroscopic efficiency,
we determine the various operating modes of the machine. They are represented
on the Fig. 3.5. Depending on the affinities, the machine works in various regime,
we choose the affinities such that the machine converts energy from the pump to
the laser (heat engine mode).

3.4.3 Stochastic behavior
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Figure 3.6: (a) CGF of the physical currents J − 1 and j2 (b) Corresponding
LDF. The light blue dots denote the position of the minimum of the CGF and
the LDF. Parameters are f1 = 0.5, f2 = 0.75, Γpump = 0.1, Γlaser = 10, Γgas = 1,
Ea = 0.5, Eb = 4, Ec = 1.5, Ed = 1

Entropy production fluctuations We obtain the CGF via the highest eigen-
value of the tilted matrix (2.18). The numerical computation of the CGF is shown
on Fig. 3.6a . We also plot the numerical Legendre-Fenchel transform of the CGF
that give the LDF I(σ1, σ2).

Efficiency fluctuations We determine the efficiency LDF J(η) from Eq. (3.50).
The result is shown in Fig. 3.7. This efficiency LDF reproduces the features de-
scribed in sec. 3.3.
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Figure 3.7: Efficiency LDF. The vertical line indicates the location of the re-
versible efficiency. Parameters are f1 = 0.5, F2 = 0.75, Γpump = 0.1, Γlaser = 10,
Γgas = 1, Ea = 0.5, Eb = 4, Ec = 1.5, Ed = 1
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4

Non-equilibrium conductance matrix

In the linear response regime near equilibrium, currents become linear function of
the affinities, which defines the Onsager response matrix. The framework based
on this response matrix has been very successful to describe thermoelectric effects
[72, 195], to determine the degree of coupling between influx and outflux [59,
109], or to predict the efficiency at maximum power [85, 182]. A key result of this
approach is Onsager’s reciprocity relations which can be deduced from a more
general symmetry property called fluctuation theorems [34, 35, 23].

Beyond the linear regime, the physical currents become non-linear functions
of the affinities but it is not known whether the concept of Onsager matrix can
still be used for systems in non-equilibrium stationary state. Previous attempts
to generalize the notion of Onsager matrix to non-equilibrium stationary states
lead to non-symmetric Onsager matrices, so that many properties were lost for
that reason.

In this chapter, building on the work of Bulnes-Cuetara, Esposito, Lazarescu
and Polettini [147, 149], we introduce precisely a non-equilibrium conductance
matrix that keeps the same symmetry property of the Onsager response matrix,
except that its coefficients now become functions of the affinities. Intuitively,
such a conductance matrix should exist at the macroscopic scale, because it can
be constructed by associating conductances between every pair of states from the
microscopic scale up to the macroscopic scale. Naturally, the question whether a
symmetric matrix can be constructed in this way even when the system is in a
non-equilibrium stationary state requires a more careful analysis.

4.1 Construction of the non-equilibrium

conductance matrix

We aim to build a matrix G, which we call the non-equilibrium conductance
matrix, such that we have the following relation between physical affinities and
physical currents

j̄ = G · f, (4.1)

with real and symmetric coefficients. An important difference with the close
to equilibrium case is that the coefficients of the matrix G are now necessarily
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functions of the affinities F1 and F2 unlike the constant coefficients of the Onsager
matrix L. Importantly these assumptions together with Eq. (4.1) do not define
a unique matrix G, and a more involved procedure must be used.

As a first property, the entropy production is obtained from the conductance
matrix as

σ̄ = fT · j̄ = fT · G · f > 0. (4.2)

and must be a non-negative quantity. As it should be true whatever the value of
the affinities, the conductance matrix should be a semi-positive definite matrix
(see App. A.1.2).

When the conductance matrix is positive definite, it has an inverse R that we
name the resistance matrix. The relation between physical currents and affinities
becomes

fT = j̄T ·R = j̄T · G−1. (4.3)

4.1.1 Microscopic framework for the non-equilibrium
conductance matrix

In the following, we build G with emphasis on the physical meaning of G as a
conductance matrix. We intend to show how to switch from the resistance matrix
at the edge level to the conductance matrix at the level of physical currents.

Force-current relation at edge level Starting at the edge level, we introduce
the edge resistance matrix Re as the diagonal matrix in the space of edge of
elements

R(x,y) =
fωπ(x,y)

j̄(x,y)

. (4.4)

It connects the stationary edge current j̄(x,y) = jπ(x,y) = ω(x,y)πy − ω(y,x)πx to the

edge affinity fωπ(x,y) = ln
ω(x,y)πy
ω(y,x)πx

as

fωπe = Re · j̄e. (4.5)

The last expression being reminiscent of the Ohm law for electric circuits. The
inverse of the edge resistance matrix is the edge conductance matrix Ge = R−1

e .
We remark that the elements of the resistance matrix depend on the physical
affinities through transition rates and stationary probability.

Remark: We make an abuse of notation to avoid the introduction of a dif-
ferent notation for each level of description, and we use the same notation for
resistance and conductance matrix at each level. Matrix subscript or indexation
of elements are used to distinguish the levels of description (like for vectors and
linear forms).

Force-current relation at cycle level We recall that stationary cycle cur-
rents and affinities are connected to the stationary edge current using the cycle
matrix:

j̄e = C · j̄c and fc
T = fωπe

T ·C. (4.6)
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At the level of cycles, the matrix Rc for cycle resistance connects cycle affini-
ties and currents via

fc =
∑
c′

Rc,c′ j̄c′ . (4.7)

Indeed, using Eq. (4.6) in Eq. (4.4), one may express Rc as a function of Re

since

fωπ(x,y) =
∑
c

R(x,y)C(x,y),cj̄c, (4.8)

fc′ =
∑
c

∑
(x,y)

(CT)c′,(x,y)R(x,y)C(x,y),cj̄c, (4.9)

where we have used Eq. (4.6) in the second step. This leads to the cycle resistance
matrix

Rc′,c =
∑
(x,y)

(CT)c,(x,y)R(x,y)C(x,y),c. (4.10)

Here the analogy with electric circuits holds: electrical resistances add when
connected in series. The cycle conductance matrix Gc is then

Gc = R−1
c = (CT ·Re ·C)−1 = C+ · Ge ·CT+. (4.11)

Force-current relation at physical level At the level of physical observables,
the NE conductance connects currents to affinities via

j̄Y =
∑
X

GY ,XfX. (4.12)

Considering that the amount of physical quantity Y exchanged with the environ-
ment during cycle c is PY ,c and using Eqs. (4.7), one gets

j̄Y =
∑
c

PY ,cj̄c =
∑
c,c′

PY ,cGc,c′fc =
∑
X

∑
c,c′

PY ,cGc,c′PT
c,XfX. (4.13)

Therefore, the physical conductance matrix writes

G = P · (CT ·Re ·C)−1 · P T = P ·C+ · Ge · (P ·C+)T. (4.14)

The electrical analogy also holds: cycle conductances add when connected in
parallel which makes senses when considering that the current flows from one
reservoir to another through sequences of cycles.

Properties of the non-equilibrium conductance matrix From its defini-
tion, we have some properties of the conductance matrix. The edge resistances
are non negative number. Indeed we have

fωπ(x,y)

j̄(x,y)

=

ln
ωy,xπx
ωx,yπy

ωy,xπx − ωx,yπy
> 0 (4.15)

as the function ln(a/b)/(a− b) is a non-negative function. Therefore, the conduc-
tance matrix is a real semi-positive definite matrix as required [16]. Moreover, it
is a symmetric matrix, a properties that is reminiscent of the Onsager symmetry.
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4.1.2 Stochastic construction

In this section, we show that the non-equilibrium conductance matrix appears
also when studying LDF of currents.

Quadratic bound on the edge current LDF We start from the occupation-
current LDF (2.33-2.34), that is the level 2.5 LDF. We recall its expression

I(rv, je) =
∑
(x,y)

j(x,y)arcsinh

(
j(x,y)

gr(x,y)

)
− j(x,y)arcsinh

(
jr(x,y)

gr(x,y)

)

+
√
jr(x,y)

2 + gr(x,y)
2 −

√
j2

(x,y) + gr(x,y)
2 (4.16)

=
∑
(x,y)

Ψ(j(x,y), j
r
(x,y), g

r
(x,y)) (4.17)

where Ψ(j, j̃, g) = jarcsinh

(
j

g

)
− jarcsinh

(
j̃

g

)
+

√
j̃2 + g2 −

√
j2 + g2. The

edge current LDF is then given by contraction of the level 2.5 LDF

I(je) = min
rv

I(rv, je). (4.18)

As we cannot realize this minimization explicitly, we bound the currents LDF
in two steps. First we bound the minimum in Eq. (4.18) by any normalized
probability density. Chosing the stationary probability π gives

I(je) 6 I(πv, je) =
∑
(x,y)

Ψ(j(x,y), j
π
(x,y), g

π
(x,y)). (4.19)

Next, we can bound each of the elements of the sum by a quadratic function, as
shown in Ref. [93] ,

Ψ(j, j̃, g) 6 (j − j̃)2 1

2j̃
arcsinh

j̃

g
. (4.20)

For stationary probability, we have the relation (1.27) between geometric activity,
probability current and edge affinity

1

2jπ(x,y)

arcsinh
jπ(x,y)

gπ(x,y)

=
fωπ(x,y)

4jπ(x,y)

=
R(x,y)

4
(4.21)

leading to the quadratic bound for the LDF of edge currents in the form

I(je) 6
1

4

∑
(x,y)

(j(x,y) − j̄(x,y))
2R(x,y). (4.22)

We retrieve the edge resistance introduced in sec. 4.1.1. We emphasize that the
stationary condition on the current (2.29) is still valid. Hence the currents must
be cycle currents.
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Contraction towards cycle currents Now, the cycle currents jc are con-
nected to the edge currents je by the cycle matrix. When using Eq. (4.6) as a
change of variable into Eq. (4.22), we obtain

I(jc) 6
1

4
(jc − j̄c)

T ·Rc · (jc − j̄c), (4.23)

where Rc is the cycle resistance matrix of components

Rc,c′ =
∑
(x,y)

C(x,y),cR(x,y)C(x,y),c′ . (4.24)

Contraction towards physical currents By contracting Eq. (4.23) over cycle
currents, one obtains an upper bound for the LDF of physical currents j1, j2. The
LDF we are interested in reads

Iquad(j) =
1

4
min
{..}

(jc − j̄c)
T ·Rc · (jc − j̄c), (4.25)

where {..} denotes the minimum over currents jc such that j = P · jc, with j
the vector of physical currents (j1, j2). Since the function to be minimized is
quadratic and the constraints are linear, this contraction can be achieved exactly
as follows: The function to be minimized is

fquad =
1

4
(jc − j̄c)

T ·Rc · (jc − j̄c)−ΛT · (j − P · jc) , (4.26)

where Λ is a Lagrange multiplier. After minimizing fquad with respect to jc, one
obtains an expression of j as a function of Λ. Then using again the constraint
j = P · jc, one finds

Λ = −1

2

[
P ·R−1

c · P T
]−1 ·

(
j − j̄

)
. (4.27)

Inserting this expression into jc and using it into Iquad, one obtains

Iquad(j) =
1

4

(
j − j̄

)T ·R ·
(
j − j̄

)
. (4.28)

where we have R as the 2× 2 resistance matrix in the basis of physical currents

R =
(
P ·R−1

c · P T
)−1

. (4.29)

The resistance matrix is exactly the inverse of the conductance matrix (4.14). In
the end, we obtain the following inequality for the LDF of physical currents:

I(j) 6 Iquad(j). (4.30)
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Fluctuation theorem The quadratic bound on the LDF used in Eq. (4.22)
has been built to respect the fluctuation theorem [93, 23]. Therefore, at the level
of physical observables the quadratic bound obeys the relation

Iquad(j)− Iquad(−j) = −jT · f. (4.31)

Once Eq. (4.28) is inserted into this equation, we obtain jT ·R · j̄ = jT · f for
all j, or equivalently R · j̄ = f and we recover Eq. (4.1).

To summarize, the property that edge current fluctuations in non-equilibrium
stationary states are more likely than those predicted by linear response analysis
[93, 141] which is Eq. (4.22), carries out to the level of cycles and from there
to the level of physical macroscopic currents. This approach also leads to a
relation between affinities and physical macroscopic currents that defines the
non-equilibrium conductance matrix.

When G is non invertible It could happen that G is not invertible. This
happens in particular when two of the physical current are strongly coupled, i.e.
there exists a strong relation between both currents. In this case, the current
LDF is not defined for currents that do not respect this coupling relation, and
the resistance matrix should be defined trough the Moore-Penrose pseudo-inverse
instead of the regular matrix inverse.

4.1.3 Close-to-equilibrium limit and the Onsager matrix

Close to equilibrium, the non equilibrium conductance matrix should be the On-
sager matrix. It is easy to show that the limit of vanishing affinity leads to the
Onsager matrix. At equilibrium, we have the detailed balance condition with the
equilibrium probability distribution πeq

v

ωy,xπ
eq
x = ωx,yπ

eq
y . (4.32)

We consider steady state πv of our system close to equilibrium such that

∀x, ux =
πx − πeq

x

πeq
x

� 1 (4.33)

Therefore, we have

j̄(x,y)

fωπ(x,y)

=
ωy,x(π

eq
x ux + πeq

x )− ωx,y(πeq
y uy + πeq

y )

ln
ωy,xπ

eq
x

ωx,yπ
eq
y

1 + ux
1 + uy

(4.34)

Using Eq. (4.32) and developing at first order we obtain

j̄(x,y)

fωπ(x,y)

=
ωy,xπ

eq
x (ux − uy)

ln
1 + ux
1 + uy

' ωy,xπ
eq
x = ωx,yπ

eq
y (4.35)

The use of the last result as edge conductance in the Eq. (4.14) gives then the
Onsager matrix [163]. The current LDF being quadratic close to equilibrium, the
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inequality (4.30) derived in the sec. 4.1.2 is then an equality. We remark also
that, due to Eq. (4.32), the edge conductance at equilibrium is given by half of
the geometric activity (1.28), which highlights the role of the geometrical activity
as a local metric.

4.2 Bounds on the conductance matrix

There exists some bounds on the non-equilibrium conductance matrix that allow
to derive additional results, e.g. thermodynamics uncertainty relations.

4.2.1 Degenerate case

We introduce the Ph × Ph matrix Gmin whose elements are defined from the
physical current j̄ as

Gmin
X,Y =

j̄X j̄Y
σ̄

. (4.36)

As σ̄ is a positive quantity, the matrix Gmin is semi-definite positive. Indeed for
any x ∈ RPh, we have

xT · Gmin · x =
(
∑

X
xX j̄X)

2

σ̄
> 0. (4.37)

The matrix Gmin is a matrix of rank one. Therefore it has only one non-zero
eigenvalue, that is non-negative as proved by Eq. (4.37).

The matrix Gmin is a bound for the conductance matrix, as

G > Gmin. (4.38)

The proof is as follow: let’s consider any x ∈ RPh, the conductance matrix
being positive semi-definite, it defines a semi-inner product and we can apply the
Cauchy-Schwartz inequality [16] (Theorem 5.1.8)

xT · G · x >

(
xT · G · f

) (
fT · G · x

)
fT · G · f

= xT · Gmin · x. (4.39)

The last equality uses the relation (4.1) that convert affinities into currents and
the symmetry of the conductance matrix.

The matrix Gmin also connects affinities and currents as

j̄ = Gmin · f. (4.40)

The matrix Gmin being of rank one, it corresponds to the case where all physical
currents are strongly coupled. In particular, the inequality Eq. (4.38) becomes
an equality for unicyclic systems
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4.2.2 Fluctuation-dissipation inequality

We now look for an upperbound for G. The Legendre transform of the quadratic
LDF is the quadratic CGF

φquad(γ) = max
j

[(γT · j − Iquad(j)]. (4.41)

From Eq. (4.30), we have a bounds on the CGF φ(γ)

φquad(γ) 6 φ(γ), (4.42)

where φquad(γ1, γ2) can be explicitly determined using Eq. (4.28) and using the
property R−1 = G:

φquad(γ) = γT · G · γ + j̄ · γ. (4.43)

Since, the functions φ and φquad have the same value at origin and the same
first derivative with respect to γ at the origin, the inequality (4.42) can be carried
out to second order derivatives. The result is the following inequality

∀γ ∈ R2, γT · G · γ 6
1

2
γT ·Cov · γ, (4.44)

where the matrix Cov has been introduced in sec. 3.2 as the currents covariance
matrix. In term of matrix partial order we end with G 6 Cov/2.

Choosing γ = (0, . . . , 0, γX, 0, . . . , 0)T in Eq. (4.44) leads to the tight bound
derived in Ref. [147] between the variance of the partial entropy production ΣX =
JXf

2
x and the element of the conductance matrix:

GX,XfX2 6
Var(ΣX)

2
, (4.45)

after multiplying the inequalities by fX
2. These inequalities are saturated in

the linear regime close to equilibrium, where the non-equilibrium conductance
matrix becomes the standard Onsager matrix L and the relation L = Cov/2 is
the well-known fluctuation-dissipation relation.

4.2.3 Thermodynamics uncertainty relations

By combining the inequality G 6 Cov/2 obtained in the previous section with
Eq. (4.38), one obtains

Gmin 6 G 6
Cov

2
, (4.46)

where the first inequality on the left hand side becomes saturated only if the sys-
tem has strongly coupled physical currents. The relation Gmin 6 Cov/2 implies
inequalities by choosing particular values of the vector x, namely (0, . . . , 0, fX, 0, . . . , 0)T

and f. These are the so-called thermodynamics uncertainty relations [40, 93, 94,
141]:

σ̄2
X

σ̄
6

Var(ΣX)

2
(4.47)
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for the partial entopy production ΣX, and

σ̄ 6
Var(Σ)

2
(4.48)

for the total entropy production Σ =
∑

X
ΣX. We emphasize that the first in-

equality is not saturated close to equilibrium except when the physical currents
are strongly coupled, i.e. when the inequality (4.38) is an equality.

4.2.4 Bound from activity

We start by bounding by below the edgewise resistance matrix as follows

R(x,y) =
fωπ(x,y)

j̄(x,y)

>
2

aπ(x,y)

> 0, (4.49)

where aπ(x,y) = πyω(x,y) + πxω(y,x) is the mean activity along edge (x, y) defined in

Eq. (1.24). To prove Eq. (4.49), we remark that [172]

(π(x)k(x, y)− π(y)k(y, x)) log
π(x)k(x, y)

π(y)k(y, x)
= j̄(x,y)f

ωπ
(x,y)

> 2
(π(x)k(x, y)− π(y)k(y, x))2

π(x)k(x, y) + π(y)k(y, x)
= 2

j̄2
(x,y)

aπ(x,y)

. (4.50)

Since the mean activity is positive, using the edge diagonal matrix Ae of
elements A(x,y) = aπ(x,y), we can build the matrix

A = P ·
(
CT ·A−1

e ·C
)−1 · P T (4.51)

which share obvious similarity with the conductance matrix.

Thanks to the properties of semi-positive definite matrices [16] (Corrollary
7.7.4), the inequality (4.49) holds at the level of matrices

G 6
A
2

(4.52)

This last result allows us to obtain bounds on currents from combination of edge
activity, in particular the total entropy production is bounded by

σ̄ =
∑
X,Y

GX,Y fXfY 6
∑
X,Y

AX,Y

2
fXfY . (4.53)

We emphasize that the inequality (4.52) becomes an equality in the close-to-
equilibrium case. Indeed the matrix A/2 is the Onsager matrix in this case, as
seen in sec. 4.1.3.
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4.2.5 Distance between edgewise and cyclewise
conductance matrix

The way non-equilibrium conductance matrix is constructed is complicated, in-
volving matrix inverse and knowledge of a cycle basis. In this section, we look for
a simpler matrix built directly from the edge level to the physical level. Starting
from Eq. (4.14) and the physical matrix P = V + ·R ·C giving the contribution
of cycles to fundamental currents, the non-equilibrium conductance matrix writes

G = V + ·R ·C ·
(
CT · G−1

e ·C
)−1 · (V + ·R ·C)T (4.54)

C is a matrix with linearly independent columns: C+ is only a left inverse of C
and the product CC+ is not the identity, but is a symmetric matrix.

Let’s now consider the conductance matrix G# such that

G# = V + ·R · Ge ·
(
V + ·R

)T
(4.55)

this is a conductance matrix that respect Eq. (4.1) and a semi-definite positive
matrix. We seek for a relation between G# and G. Using the lemma of sec. A.1.4
and the properties of semi-positive definite matrix, we have

G# > G. (4.56)

In particular the bounds on LDF does not hold anymore, and all bounds derived
from G# will be weaker than the one derived from G.

The conductance matrix is derived for systems in a stationary state, the cur-
rents must be stationary currents, i.e. cycle currents. This is why we have
contracted on cycle currents in sec. 4.1.2. When using the matrix V + ·R instead
of the matrix P , we do not assure that currents are stationary anymore.

4.3 Applications to machines

We now specialize to a thermodynamic machine where the number of physical
currents is reduced to 2. The first process is the driving process and the second
process is the output process. Hence the partial entropy production rate of the
first process verifies σ1 > 0 while σ2 6 0 for the second process. We use now the
non-equilibrium conductance matrix to deduce constraints on power and efficiency
of machines.

Using the properties of the non-equilibrium conductance matrix, we get for
the partial entropy production rates

σ̄1 = j̄1f1 = G1,1f1
2 + G1,2f1f2, (4.57)

σ̄2 = j̄2f2 = G2,1f1f2 + G2,2f2
2. (4.58)

The conductance matrix is a semi-positive definite matrix. Since G1,2 = G2,1 this
means:

G1,1G2,2 > G1,2
2. (4.59)
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Using Eqs. (4.57–4.58) combined with the conditions σ1 > 0 and σ2 6 0 leads to
the inequalities

G1,1f
2
1 > −G1,2f1f2 > G2,2f

2
2 > 0, (4.60)

which are valid for arbitrary affinities.

4.3.1 General parametrization of the efficiency

Thanks to the last two inequalities of the previous section, we can introduce the
functions

ϕ =

√
G2,2f

2
2

G1,1f 2
1

, and ξ =
G1,2√
G1,1G2,2

sign(f1f2). (4.61)

These functions are direct generalizations of the ones used in the close-to-equilibrium
regime [109]. The parameter G1,1f

2
1 determines the dissipation of the driving pro-

cess when there is no output process coupled to the driving process or when there
is one but we choose to ignore it. In the following, we call this quantity the intrin-
sic dissipation of the driving process. Then ϕ = ϕ(f1, f2) is the relative intrinsic
dissipation of the output process with respect to the driving process, and finally
ξ = ξ(f1, f2) quantifies the degree of coupling [42, 59, 85, 109, 145]. From the
constraints of Eqs. (4.59-4.60), these functions are bounded by

ξ ∈ [−1, 0[, ϕ ∈ [0,−ξ], (4.62)

for the system to operate as a machine. If it does not, the above parametrization
could still be used but with a modified range of the parameters, namely ϕ > 0
and ξ ∈ [−1, 1]. Note that we have also excluded the value ξ = 0 from our
analysis which corresponds to having independent driving and output processes
for which G1,2 = 0. In this case, the system cannot work as a machine because its
efficiency would be negative with η̄ = −ϕ2 6 0. Note also that in the literature on
thermoelectricity [42, 109], it is customary to use the figure of merit ZT instead
of the degree of coupling. The two notions are simply related by ZT = ξ2/(1−ξ2),
so that ZT is a real positive number which goes to infinity when ξ tends to −1.

Efficiency Restricting ourselves to a working machine, we use Eqs. (4.57–4.58)
in the definition (3.2) of thermodynamic efficiency to obtain

η̄ = −G1,2f1f2 + G2,2f
2
2

G1,1f 2
1 + G1,2f1f2

, (4.63)

which can be turned into

η̄ = −ϕ
2 + ξϕ

1 + ξϕ
, (4.64)

with the aid of Eq. (4.61). We emphasize that with this new parametrization, the
machine efficiency does not depend explicitly on the intrinsic dissipation G1,1f

2
1 ,

but only depends on the relative intrinsic dissipation ϕ and on the degree of
coupling ξ. The specific dependence of the efficiency on the affinities is then
completely transferred to ϕ and ξ. As we shall see below, this new parametriza-
tion of the efficiency provides useful insights into the machine properties. One
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important benefit in particular is the ability to bound the machine efficiency and
output power.

4.3.2 Tight coupling far from equilibrium

In this section, we discuss the notion of tight coupling far-from-equilibrium based
on the non-equilibrium conductance matrix and the (G1,1f

2
1 , ϕ, ξ) parametrization.

Tight coupling between two entropy fluxes means that the elementary steps must
produce entropy in constant proportion. In other words, the physical quantities
corresponding to the driving and output processes must be always exchanged in
the same proportion in such a way that the two equations in (4.1) are linearly
dependent. The latter condition implies that the matrix G is of rank one, which
means that it can be written in the form

G =

(
G1,1 G1,2

G2,1 G2,2

)
= G1,1

(
1 α
α α2

)
, (4.65)

in terms of a real coefficient α. Using Eq. (4.1), one finds j̄1 = αj̄2, thus α is pre-
cisely the proportionality factor between the two currents. Then comparing with
Eq. (4.36), one finds G = Gmin. Thus Gmin is the non-equilibrium conductance
matrix of the system if it operates in the tight coupling regime. Furthermore, this
shows that the inequality of Eq. (4.38) becomes saturated in the tight coupling
regime.

Now, from Eqs. (4.61) and (4.64), the coupling parameter reaches the value
ξ = sign(f1f2α) = −1, because ξ ∈ [−1, 0[, and η̄ = ϕ = |αf2/f1|. Thus, in the
tight coupling regime, the degree of coupling reaches its minimum value.

Going back to the general case, one deduces from Eq. (4.64) that

∂η̄

∂ξ

∣∣∣∣
ϕ

= −ϕ(1− ϕ2)

(1 + ξϕ)2
, (4.66)

which is always negative since ϕ ∈ [0, 1]. Therefore, the efficiency monotonously
increases when ξ decreases, and the maximum value of the efficiency at fixed
value of ϕ is reached when ξ = −1, i.e. at tight coupling.

4.3.3 Maximum efficiency as function of the degree of
coupling

We now bound the efficiency η̄ = η̄(ξ, ϕ) of Eq. (4.64) by looking at the value
of the function ϕ that yields the maximum efficiency in Eq (4.64) at a fixed
degree of coupling ξ. The condition ∂η̄/∂ϕ|ξ = 0 leads to a simple second degree
polynomial equation

ξϕ2 + 2ϕ+ ξ = 0. (4.67)

Multiplying the numerator and denominator of Eq. (4.64) by 2 + ξϕ and using
(4.67), we find that the maximum efficiency becomes η̄max = −ξϕ/(2 + ξϕ).
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Using the solution of Eq. (4.67) in this expression of η̄max, we obtain the maximal
machine efficiency in terms of the degree of coupling function ξ,

η̄max(ξ) =
1−

√
1− ξ2

1 +
√

1− ξ2
, (4.68)

which is such that
η̄max(ξ) > η̄(ξ, ϕ) (4.69)

for all ξ and ϕ in the allowed range. This inequality is illustrated in sect. 4.4. As
expected from the previous section, Eq. (4.68) also confirms that the maximum
of the curve η̄max(ξ) is reached when the condition of tight coupling holds namely
ξ = −1 since at this point η̄max = 1.

Since the maximum efficiency depends only on the degree of coupling ξ, it is
possible to bound the efficiency by measuring the degree of coupling. For instance,
if it is known that ξmin 6 ξ for all conditions of operation of the machine, then
we can deduce from Eq. (4.69) that η̄ 6 η̄max(ξmin).

4.3.4 Power-efficiency relations

Exact relations from the conductance matrix In this section we derive
two upper bounds for the entropy production rate of the output process, a quan-
tity which is the product of the output power of the machine with its affinity.
These bounds are functions of the efficiency and hence are called power-efficiency
relations, since they represent a constraint for reaching both high power and high
efficiency.

To obtain the first bound, we factorize G1,1f
2
1 in Eq. (4.58):

− σ̄2 = −G1,1f
2
1

(G1,2f2

G1,1f1

+
G2,2f

2
2

G1,1f 2
1

)
= −G1,1f

2
1

(
ξϕ+ ϕ2

)
. (4.70)

From Eq. (4.64) we have −(ξϕ+ ϕ2) = η̄(1 + ξϕ) and therefore

− σ̄2 = G1,1f
2
1 η̄ (1 + ξϕ) , (4.71)

then using again Eq. (4.64), we can express ϕ in terms of η̄ and ξ as

ϕ± = −ξ (η̄ + 1)

2
± 1

2

√
(η̄ + 1)2ξ2 − 4η̄, (4.72)

where we have used Eq. (4.68-4.69) to guarantee that ϕ is real. Inserting these
two solutions in Eq. (4.71), we obtain

− σ̄±2 = G1,1f
2
1 η̄

(
1− ξ2 1 + η̄

2
∓ ξ
√
ξ2

4
(1 + η̄)2 − η̄

)
. (4.73)

This equation shows that the relation between the output entropy production
rate −σ̄2 and the efficiency is in general bi-valued, which means that there are
two possible values of the output entropy production rate for the same value of
the efficiency. This relation becomes single-valued when ξ = −1, i.e. for tight
coupling, since in this case −σ̄−2 is equal to zero, and only −σ̄+

2 remains.

– 81 –



Chapter 4. Non-equilibrium conductance matrix

Bounds on power from efficiency In the general case of arbitrary coupling,
it is enough to upper bound −σ̄+

2 to obtain a general bound on the output entropy
production rate because −σ̄+

2 > −σ̄−2 for ξ ∈ [−1, 0[. Since one can also show
that −σ̄+

2 is always a decreasing function of ξ at fixed η̄, its maximum value is
reached at ξ = −1, which corresponds to the tight coupling condition. When
inserting ξ = −1 into the expression of −σ̄+

2 , we obtain the first inequality:

− σ̄2 6 G1,1f
2
1 η̄(1− η̄). (4.74)

Alternatively, one can start from Eq. (4.58) and factorize G2,2f
2
2 which leads

to σ̄2 = G2,2f
2
2 (1+ξ/ϕ). Then, using again the explicit solution of ϕ as a function

of ξ and η̄, one obtains an expression which when evaluated at ξ = −1 leads to
the second inequality

− σ̄2 6 G2,2f
2
2

1− η̄
η̄

. (4.75)

Pietzonka-Seifert efficiency-power trade-off There are similarities between
Eqs. (4.74) and (4.75) with the bounds recently derived in Ref. [143]. We now
show how the latter can be derived from the previous bounds. When using the
above inequalities (4.45) into (4.74–4.75), one obtains

−σ̄2 6 G1,1f
2
1 η̄(1− η̄) 6

Var(Σ1)

2
η̄(1− η̄), (4.76)

−σ̄2 6 G22f
2
2

1− η̄
η̄

6
Var(Σ2)

2

1− η̄
η̄

. (4.77)

Thus we retrieve the power-efficiency trade-offs derived by Pietzonka and Seifert [143]

−σ̄2 6
Var(Σ1)

2
η̄(1− η̄), (4.78)

−σ̄2 6
Var(Σ2)

2

1− η̄
η̄

. (4.79)

Shiraishi et al. efficiency-power trade-off Shiraishi, Saito and Tasaki have
proposed another power efficiency relation involving the machine activity [172],
see also Ref. [148] for another derivation of the result. Their result can be retrieved
from the conductance matrix framework.

From the power-efficiency relation of Eq. (4.74) and the result of sec. 4.2.4,
we derive the power-efficiency trade-off

− σ̄2 6 A1,1
f1

2

2
η̄(1− η̄). (4.80)

We introduce next the matrix

A# = V ·R ·Ae · (V ·R)T (4.81)

with the matrix Ae being defined in the sec. 4.2.4. Therefore from the results of
the sec. 4.2.5, we have A#

1,1 > A1,1. Hence, we recover the result of Ref. [172],
namely

− σ̄2 6 A#
1,1
f1

2

2
η̄(1− η̄). (4.82)
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where the coefficient is

A#
1,1 =

∑
(x,y)

(V + ·R)1,(x,y)a
π
(x,y)(V ·R)T

(x,y),1

 . (4.83)

This result indicates that higher activity produces a higher upper bound for NE
conductance matrix enabling to reach higher output power. This seems fairly
intuitive: whenever the machine undergoes very few transitions per unit time
it cannot provide any useful power. The result is here valid only for stationary
currents, but it was derived for currents at any time in Ref. [172]. The full case
including time-dependent current is left for future work.

4.4 Common example: a simple laser

We illustrate the results of this section on our simple model of laser defined in
sec. 3.4.

4.4.1 Non-equilibrium conductance matrix

Using the formula (4.14) and defining Rei as the resistance of the ith edge, the
elements of the non-equilibrium conductance matrix are

G1,1 =
1

NG
[(Ec − Eb)2(Re3 +Re4) + (Ea − Eb)2Re5 + (Ec − Ea)2(Re1 +Re2)]

G1,2 =
(Ed − Ec)
NG

[(Ec − Ea)(Re1 +Re2) + (Eb − Ea)Re5 ]

G2,1 =
(Ed − Ec)
NG

[(Ec − Ea)(Re1 +Re2) + (Eb − Ea)Re5 ]

G2,2 =
1

NG
[(Ed − Ec)2(Re1 +Re2 +Re5)] (4.84)

with

NG = (Re1 +Re2 +Re5)(Re3 +Re4 +Re5)−R2
e5
. (4.85)

As expected, it is a real symmetric positive definite-matrix.

Degree of coupling The degree of coupling is then deduced from the conduc-
tance matrix

ξ =
(Ed − Ec)[(Ec − Ea)(Re1 +Re2) + (Eb − Ea)Re5 ]

[(Ec − Eb)2(Re3 +Re4) + (Ea − Eb)2Re5 + (Ec − Ea)2(Re1 +Re2)]

× 1

[(Ed − Ec)2(Re1 +Re2 +Re5)]
(4.86)
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Onsager matrix In the close to equilibrium case, the conductance matrix is
the Onsager matrix. We plot the Frobenius norm of G−L in Fig. 4.1 varying one
of the physical affinity when holding the other to zero. We have equality between
G and L for equilibrium when both physical affinities are zero. We also shown the
equality case in Eqs. (4.44) and (4.52) for equilibrium. Unlike the previous matrix,
the degenerate matrix Gmin does not collapse with the conductance matrix nor
with the Onsager matrix for equilibrium case. In particular, this implies that the
thermodynamics uncertainty relation (4.47) are not an equality at equilibrium
when considering only partial entropy production.
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Figure 4.1: Frobenius matrix norm of
Cov

2
− G (light blue line with crosses)

A
2
− G ( green dashed line), Gmin − G (red line) and G − L (yellow dot-dashed

line) as a function of f1 when f2 = 0. The kinetic parameters are Γpump = 0.1,
Γlaser = 10, Γgas = 1, Ea = 0.5, Eb = 4, Ec = 1.5, Ed = 1.

4.4.2 Maximum efficiency

The maximal efficiency given by Eq. (4.68) is shown as function of the degree of
coupling in Fig. (4.2). This maximal efficiency is compared with the efficiency of
the laser model which is analytically solvable. In order to test this bound, we vary
either (i) the thermodynamic forces (3.57), via the variation of the heat baths
inverse temperature, which together characterize the distance to equilibrium, or
(ii) the kinetic parameters of the model (the baths coupling constant and the
energy levels). The test (i) is carried out in the main figure in which either the
affinity f2 is varied at fixed f1 or vice versa, covering a large regime of conditions
far from equilibrium. The test (ii) is carried out in the inset, by scanning over
a large panel of kinetic parameters. Both figures confirm that the maximum
efficiency only depends on the degree of coupling. These figures also show that
this maximum efficiency is physically accessible.
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Figure 4.2: Illustration of the bound of Eq. (4.69) on efficiency (blue solid line)
for the laser model. For a given βpump the inverse temperature βlaser is varied.
The kinetic parameters are Γpump = 0.1, Γlaser = 10, Γgas = 1, Ea = 0.5, Eb = 4,
Ec = 1.5, Ed = 1. Inset: Efficiency versus degree of coupling when varying
all kinetic parameters at fixed affinities f1 = 0.5 and f2 = 0.75. The kinetic
parameters listed above are randomly chosen by multiplying the values used in
the main figure by ex with x drawn uniformly within [−2, 2].

4.4.3 Power-efficiency relation

Power-efficiency from the condutance matrix Fig. 4.3a and 4.3b illustrate
the power-efficiency trade-off, by showing the mean output entropy production
rate −σ̄2 as function of the efficiency η. A striking feature in these plots is that
the entropy production rate is bi-valued as explained in section 4.3.4. In order to
test the inequality of Eqs. (4.74–4.75), we compare −〈σ2〉 (solid line) evaluated
using exact expressions of the average currents, with the power-efficiency bounds
of Eqs. (4.74–4.75) (empty symbols).

Pietzonka-Seifert power-efficiency trade-off The Fig. 4.3a shows a com-
parison with the power-efficiency inequalities derived by Pietzonka and Seifert
[143] (full symbols). The variances appearing in these inequalities have been
evaluated from the cumulant generating function of the currents obtained from
the highest eigenvalue of tilted matrix. We confirm with this figure that the new
bound derived from the present framework is better than the bounds derived in
Ref. [143], in agreement with Eqs. (4.76).

Shiraishi et al. power-efficiency trade-off The Fig. 4.3b shows a compar-
ison with the power-efficiency inequality derived by Shiraishi et al. [172] (line
with symbols) and the one derived from matrix A (full circles) As expected, the
bounds of Shiraishi et al. [172] is less tight due to the difference between edgewise
and cyclewise matrix, as explained in sec. 4.2.5.
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Figure 4.3: Output power as a function of the machine efficiency using exact ex-
pression (solid blue line) compared to various power-efficiency bounds. (a) Power-
efficiency bounds of Eqs. (4.74) (green open squares) and (4.75) (yellow open cir-
cles) compared to Pietzonka-Seifert trade-offs (4.78) (magenta full squares) and
(4.79) (blue full circles) (b) Power-efficiency bounds of Eqs. (4.74) (green dashed
line) and (4.80) (violet full circles) compared to Shiraishi et al. trade-off (4.82)
(blue full circles)
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5

Efficiency fluctuations

In this chapter, we address two different questions about efficiency fluctuations.
First, we explore the consequences of the non-equilibrium conductance matrix
framework. Using the bound on the currents LDF, we demonstrate the existence
of bounds on the efficiency LDF. These bounds are related with the mean value of
the entropy production rate or alternatively to the non-equilibrium conductance
matrix.

Next we study the efficiency fluctuations for machines with three physical
currents. We aim to model machines with losses, when not all currents in the
systems are known. We show the consistence with the result of sec. 3.3, namely
when the losses are small, we retrieve the previously derived properties of the
efficiency LDF.

5.1 Bounds on efficiency LDF

Bounds on efficiency fluctuations can be established either from bound on the
entropy production LDF I(σ) or from the conductance matrix. Both ways offers
different insight into efficiency fluctuations.

5.1.1 Scale of the LDF

Pietzonka et al. [141] have derived numerous bounds on entropy production LDF
I(σ). We show in this section, that these bounds constrain the scale of the
efficiency LDF.

Bounds from Entropy production LDF Let’s first show that a bound on
I(σ) give a bound on J(1). As this is the maximum of the efficiency LDF, we
obtain the scale of the efficiency LDF.

The total entropy production LDF I(σ) is obtained from the partial entropy
productions LDF I(σ1, σ2) as

I(σ) = min
σ1

I(σ1, σ − σ1). (5.1)
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Due to the symmetry of the fluctuation theorem I(σ1,−σ1) = I(−σ1, σ1) and
the convexity of I, the minimum of I(σ1,−σ1) is obtained for σ1 = 0 such that
I(0) = I(0, 0). From the results of sec. 3.3.1, the maximum of the efficiency LDF
is J(1) = I(0, 0). Hence, any bound on I(0) gives a bound on the scale of the
efficiency LDF.

Parabolic bound The first result from Ref. [141] is a parabolic bound on
entropy production LDF as

I(σ) 6 I(0) 6
(σ − σ̄)2

4σ̄
(5.2)

Notice that this bound is also a particular case of the quadratic bound derived
in the previous chapter. This bound yields

J(η) 6
σ̄

4
. (5.3)

Therefore the efficiency fluctuations have higher probability and accordingly take
more time to decay when the system dissipates less. Indeed the time scale on
which an efficiency fluctuation disappears is roughly given by the inverse of the
maximum value of the efficiency LDF, that is bounded by the mean total entropy
production rate. This seems quite intuitive, the more the system dissipates, e.g.
by taking a macroscopic limit, the less the efficiency fluctuates.

Exponential bound Another interesting bound from Ref. [141] is an exponen-
tial bound

I(σ) 6



ātot

σ̄

(
σ̄ + σ − σ ln

∣∣∣σ
σ̄

∣∣∣)− σ σ 6 −σ̄ exp

[
− σ̄

2ātot

]
ātot

σ̄

(
σ̄ − σ + σ ln

∣∣∣σ
σ̄

∣∣∣) σ > σ̄ exp

[
− σ̄

2ātot

]
atot

(
1− exp

[
− σ̄

2ātot

])
− σ

2
otherwise

, (5.4)

in terms of the mean total activity ātot =
∑

(x,y) a
π
(x,y). That yields

J(η) 6 ātot

(
1− exp

[
− σ̄

2ātot

])
6
σ̄

2
(5.5)

The second inequality is obtained from 1 − e−x 6 x. These bounds are plotted
in Fig. 5.1a for the laser model introduced in sec. 3.4 with random parameters.
We observe that the parabolic bound is quite close to J(1) and gives in general
better bounds than the exponential bounds but not always.

Others bounds Others bounds have been derived on entropy production LDF [140,
141, 149]. They require more information on the system in general, but give more
precise bounds on the entropy production fluctuations. Evaluating these alter-
native bounds at zero entropy production will produce new bounds on efficiency
LDF.
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5.1.2 Bounds from conductance matrix

However to obtain bounds not only on the maximum of the efficiency LDF but
on the whole efficiency LDF, we need a bound on the entropy productions LDF
I(σ1, σ2). We use now the result of sec. 4.1.2 to construct a bound on the efficiency
LDF derived from the non-equilibrium conductance matrix.

Quadratic bound A quadratic bound on entropy production LDF is easily
derived from the quadratic bound (4.30) on currents LDF as

Iquad(σ1, σ2) = (σ1, σ2)

(
G1,1f

2
1 G1,2f1f2

G1,2f1f2 G2,2f
2
2

)−1(
σ1

σ2

)
. (5.6)

The quadratic bound on efficiency LDF is obtained by contraction of Eq. (5.6)

Jquad(η) =
σ̄2

1

4

(η − η̄)2

G1,1f 2
1 η

2 + 2G1,2f1f2η +G2,2f 2
2

(5.7)

=
σ̄2

1

4G1,1f 2
1

(η − η̄)2

η2 + 2ξϕη + ϕ2
, (5.8)

using the parametrization of the efficiency of sec. 4.3.1. Not only the conduc-
tance matrix is connected to the macroscopic efficiency, but it also constrains the
efficiency fluctuations. We also connect the functional form of Eq. (5.7) with the
one of the efficiency LDF in linear response case (3.52), given in both case by the
ratio of two quadratic forms.
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Figure 5.1: (a) Comparison of bounds (5.3) (blue crosses) and (5.5) (green
squares). The red solid line is the line of equation y = x. (b) Quadratic bound
of Eq. (5.7) (greem dashed line) compared to the efficiency LDF J(η) (blue solid
line). Figures are drawn using the laser model defined in sec. 3.4. The kinetic
parameters are Γpump = 0.1, Γlaser = 10, Γgas = 1, Ea = 0.5, Eb = 4, Ec = 1.5,
Ed = 1 for right figure. For left figure they are randomly chosen by multiplying
the previous values ex with x drawn uniformly within [−2, 2]. Affinities are set
to f1 = 0.5 and f2 = 0.75 for both figures.
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Connection with parabolic bound The maximum of the quadratic bounds
(5.7) is

Jquad(1) =
σ̄

4
. (5.9)

To connect with Eq. (5.3). When the degree of coupling in Eq. (5.8) is −1, the
bounds becomes

J(η) 6

{
0 if η = η̄
σ̄

4
otherwise

. (5.10)

The parabolic bound (5.3) then assumes the tight coupling of entropy production.
The bounds of Eqs. (5.7) and (5.9) are plotted on Fig. 5.1b for the simple

model of machine already defined in sec. 3.4. As expected, the maximum of the
quadratic bound Jquad(1) is obtained for σ̄/4 given by the parabolic bound.

5.2 Efficiency fluctuations of small machines in

presence of losses

Beyond bounds on efficiency LDF, we also study the case of efficiency fluctuations
in presence of losses.

5.2.1 Modeling the losses

As defined in sec. 3.1, a machine is a system with two physical fluxes. We consider
now system with three fluxes. The first and second fluxes still represent input
and output process. Our third process will either flow spontaneously σ̄3 > 0, and
the machine will have two input processes, the third process helping with the
machine objective; or in the opposite direction when σ̄3 < 0, and the machine
will have two output processes, in this case the third process models losses, i.e.
energy that goes somewhere else.

We define the stochastic efficiencies η1, η2, and η3 by

η1 = −σ1

σ1

= −1, η2 = −σ2

σ1

and η3 = −σ3

σ1

, (5.11)

where η1 has been introduced by convention. The most probable values of η2 and
η3 converge in the long time limit to the macroscopic values η̄2 and η̄3 defined by

η̄2 = − σ̄2

σ̄1

and η̄3 = − σ̄3

σ̄1

, (5.12)

which are the conventional thermodynamic efficiencies. Since the second law
imposes σ̄ > 0, we have the following constraint on the macroscopic efficiencies

η̄2 + η̄3 6 1, (5.13)

that is reminiscent of the Carnot Bound for machines with two physical currents
and a unique efficiency. We remark here that the third process may model losses
since it decreases the upper bound of the efficiency η̄2 6 1− η̄3.
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Below, we study the fluctuations of the efficiencies (η2, η3) considering that
the statistics of all the entropy productions (σ1, σ2, σ3) is accessible. We will next
consider the case where the statistics of the third entropy production is unknown,
that is presumably a more common situation.

5.2.2 Definition of the large deviation function of the
efficiencies

We denote by Pt(σ1, σ2, σ3) the probability density of the entropy production
rates σ1, σ2, σ3 after a time t. Assuming that a large deviation principle holds,
this probability density is asymptotically given at large time by

Pt(σ1, σ2, σ3) � exp {−tI(σ1, σ2, σ3)}. (5.14)

Following Ref. [189], we obtain the LDF of the efficiencies from the LDF of the
entropy productions. The joint probability density at time t to observe efficiencies
η2 and η3 is given by

Pt(η2, η3) =

∫
dσ1dσ2dσ3Pt(σ1, σ2, σ3)× δ

(
η2 +

σ2

σ1

)
δ

(
η3 +

σ3

σ1

)
. (5.15)

Using Eq. (5.14) in Eq. (5.15) and the saddle point method to compute the
integral, we find for large time

Pt(η2, η3) � exp {−tJ(η2, η3)}, (5.16)

where
J(η2, η3) = min

σ1
I(σ1,−η2σ1,−η3σ1)}. (5.17)

From this, we deduce that J is a non-negative and bounded function, with for all
η2, η3

0 6 J(η2, η3) 6 I(0, 0, 0), (5.18)

Efficiency LDF from CGF The efficiency LDF also follows from the cumulant
generating function (CGF) φ(γ1, γ2, γ3) of the entropy productions [189]. Indeed,
when I is convex, φ and I are conjugated by Legendre transform

I(σ1, σ2, σ3) = max
γ1,γ2,γ3

{ 3∑
i=1

γiσi − φ(γ1, γ2, γ3)
}
. (5.19)

We can write

I(σ1,−η2σ1,−η3σ1) = max
γ1,γ2,γ3

[
(γ1 − γ2η2 − γ3η3)σ1 − φ(γ1, γ2, γ3)

]
(5.20)

and the minimization of Eq. (5.17) gives

J(η2, η3) = min
σ1

max
γ1,γ2,γ3

[
(γ1 − γ2η2 − γ3η3)σ1 − φ(γ1, γ2, γ3)

]
. (5.21)
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We set γ = γ1 − γ2η2 − γ3η3 to obtain

J(η2, η3) = min
σ1

max
γ

{
γσ1 + max

γ2,γ3

[
− φ(γ + γ2η2 + γ3η3, γ2, γ3)

]}
. (5.22)

We now define the function

fη2,η3(γ) = −max
γ2,γ3

{
− φ(γ + γ2η2 + γ3η3, γ2, γ3)

}
= min

γ2,,γ3
φ(γ + γ2η2 + γ3η3, γ2, γ3) (5.23)

and its Legendre transform

Fη2,η3(σ1) = max
γ

{
γσ1 − fη2,η3(γ)

}
. (5.24)

Then the efficiency LDF can be rewritten

J(η2, η3) = min
σ1

max
γ

{
γσ1 − fη2,η3(γ)

}
= min

σ1
Fη2,η3(σ1)

= −max
σ1

{
−Fη2,η3(σ1)

}
= −fη2,η3(0). (5.25)

Using Eq. (5.23), we conclude that

J(η2, η3) = −min
γ2,γ3

φ(γ2η2 + γ3η3, γ2, γ3). (5.26)

This formula is of particular interest since CGF are more convenient to compute
in practice.

5.2.3 Shape of the efficiencies LDF

In this section we look for the specific features of the various extrema of the
efficiency LDF J . We first show that the location of the maxima follows from a
linear constraint on the efficiencies, second that J has a unique global minimum,
and third that no other extremum exists at finite values of the efficiency. All
these features are illustrated in Sec. 5.2.6.

Maximum of the efficiency LDF We look for the location of the maxima of
J . Since we have J(η2, η3) 6 I(0, 0, 0), if there exists at least one couple (η∗2, η

∗
3)

satisfying
J(η∗2, η

∗
3) = I(0, 0, 0), (5.27)

then (η∗2, η
∗
3) is the position of a maximum. Along a contour line of the entropy

productions LDF, the total differential of I vanishes,

dI =
3∑
i=1

∂I

∂σi
dσi = dσ1

(
∂I

∂σ1

+
∂I

∂σ2

dσ2

dσ1

+
∂I

∂σ3

dσ3

dσ1

)
= 0. (5.28)
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At the origin, we have η∗i = −dσi/dσ1 with i = 2, 3 where the η∗i are defined by
J(η∗2, η

∗
3) = I(0, 0, 0). So,

∂I

∂σ2

∣∣∣∣
0

(
∂I

∂σ1

∣∣∣∣
0

)−1

η∗2 +
∂I

∂σ3

∣∣∣∣
0

(
∂I

∂σ1

∣∣∣∣
0

)−1

η∗3 = 1 (5.29)

where the subscript 0 indicates evaluation in the origin. All efficiencies respecting
Eq. (5.29) also verify Eq. (5.27). This ensemble is a straight line in the plane
(η2, η3) .

We now use the fluctuation theorem for the entropy productions:

I(σ1, σ2, σ3)− I(−σ1,−σ2,−σ3) = −σ1 − σ2 − σ3. (5.30)

Taking the partial derivatives of this equation at origin yields

∂I

∂σi

∣∣∣∣
0

+
∂I

∂σi

∣∣∣∣
0

= −1 with i ∈ {1, . . . , 3}. (5.31)

This allow to simplify Eq. (5.29) into

η∗2 + η∗3 = 1. (5.32)

From Eq. (5.13) we see that the efficiencies satisfying Eq. (5.32) correspond to
efficiencies obtained along the reversible trajectories (even though the system is
out of equilibrium). The unique, reversible, and least likely efficiency of an engine
with two processes is replaced, for an engine with three processes, by a couple
of reversible efficiencies, one of arbitrary value and the other one following from
Eq. (5.32).

Global minimum of the efficiency LDF Assuming the convexity and no
constant region, I has a unique minimum at (σ̄1, σ̄2, σ̄3). The efficiency LDF J
vanishes at the macroscopic efficiencies (η̄2, η̄3) given by Eq. (5.12),

J(η̄2, η̄3) = min
σ1

I

(
σ1, σ1

σ̄2

σ̄1

, σ1
σ̄3

σ̄1

)
= 0, (5.33)

where the minimum is reached for σ1 = σ̄1. Since J is a non-negative function,
(η̄2, η̄3) is a global minimum.

If I has a constant region, due to its convexity, it is necessarily a region
around (σ̄1, σ̄2, σ̄3) where the LDF of entropy production vanishes. In this case,
the minimum of J is not unique, but is a domain including (η̄2, η̄3).

Asymptotic behavior of the efficiency LDF Let us now verify that J has
no other extremum than (η̄2, η̄3) and (η∗2, η

∗
3). To do so, we look for the zeros of

the partial derivatives of J with respect to η2 and η3,

∂J

∂η2

(η2, η3) = 0 and
∂J

∂η3

(η2, η3) = 0. (5.34)
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Since J follows from a minimization on σ1, see Eq. (5.17), we introduce the
function σ̃1(η2, η3) as the solution of

0 =
d

dσ̃1

[I(σ̃1,−η2σ̃1,−η3σ̃1)] =
∂I

∂σ1

− η2
∂I

∂σ2

− η3
∂I

∂σ3

, (5.35)

with all partial derivatives evaluated in (σ̃1,−η2σ̃1,−η3σ̃1). This allows us to
write the efficiency LDF as

J(η2, η3) = I(σ̃1(η2, η3),−η2σ̃1(η2, η3),−η3σ̃1(η2, η3)). (5.36)

From this equation, the partial derivative of J may be written as

∂J

∂η2

(η2, η3) =
∂σ̃1

∂η2

∂I

∂σ1

−
(
η2
∂σ̃1

∂η2

+ σ̃1

)
∂I

∂σ2

− η3
∂σ̃1

∂η2

∂I

∂σ3

, (5.37)

where partial derivatives are still taken at (σ̃1,−η2σ̃1,−η3σ̃1), with σ̃1 = σ̃1(η2, η3).
From Eqs. (5.35) and (5.37), it is possible to rewrite Eq. (5.34) as

σ̃1
∂I

∂σ2

(σ̃1,−η2σ̃1,−η3σ̃1) = 0, (5.38)

σ̃1
∂I

∂σ3

(σ̃1,−η2σ̃1,−η3σ̃1) = 0. (5.39)

We distinguish now two different cases: first, the partial derivatives of I may
vanish and we recover the minimum of J studied in Sec. 5.2.3; secondly, the
function σ̃1(η2, η3) vanishes. In the latter case, we look for (η̃2, η̃3) such that
σ̃1(η̃2, η̃3) = 0. In this view, we evaluate Eq.(5.36) at (η̃2, η̃3) yielding, if η̃2 and
η̃3 are finite,

J(η̃2, η̃3) = I(0, 0, 0), (5.40)

such that we retrieve the extrema (η̃2, η̃3) ∈ (η∗2, η
∗
3) of Sec. 5.2.3. Alternatively,

if one of the efficiencies, for instance η2, is infinite, Eq. (5.36) becomes

lim
η2→±∞

J(η2, η3) = lim
η2→±∞

I (σ̃1(η2, η3),−η2σ̃1(η2, η3),−η3σ̃1(η2, η3)) (5.41)

6 I(0, 0, 0). (5.42)

From the last inequality and the convexity of I we conclude that η2σ̃1(η2, η3) stays
finite when η2 → ±∞, and necessarily

lim
η2→±∞

σ̃1(η2, η3) = 0. (5.43)

The derivative of J vanishes at infinite efficiencies and the efficiency LDF con-
verges to a finite value at large efficiencies since J is bounded. Moreover the
limit lim

η2→±∞
η2σ̃1(η2, η3) is a constant independent of η3, it follows that the limit

lim
η2→±∞

J(η2, η3) is also independent of η3, if η3 remains finite. The same argu-

ments hold when taking the limit η3 → ±∞ keeping η2 finite. In the end, we
have recovered all the extrema at finite values of the efficiencies and shown that
the two partial derivatives of J vanish at large efficiencies.
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5.2.4 Efficiency statistics of a machine with three
processes: Forgetting the third process

We now study the fluctuations of the efficiency η2 without taking into account the
statistics on the third process. This may correspond to an experimental set-up for
which the third current exists, but cannot be measured. In this case, we consider
that η3 (or equivalently σ3) always takes the typical value associated with some
given efficiency η2: this leads to contracting the LDF J(η2, η3) on η3. We analyze
in this section the general shape of the contracted LDF and study its extrema.

The contracted LDF is by definition

Jct(η2) = min
η3

J(η2, η3) = min
σ1

Ict(σ1,−η2σ1), (5.44)

with
Ict(σ1, σ2) = min

η3
I(σ1, σ2,−η3σ1) = min

σ3
I(σ1, σ2, σ3). (5.45)

As in the previous case, we can express the contracted efficiency LDF in terms of
the CGF:

Jct(η2) = −min
γ2

φ(γ2η2, γ2, 0). (5.46)

We now determine some properties of this contracted LDF. From (5.44), we have
for all η2

0 6 Jct(η2) 6 Ict(0, 0), (5.47)

so Jct is a non-negative, bounded function. In particular, we are interested in the
extrema of Jct.

First, looking for the minimum, we have

Jct(η̄2) 6 J(η̄2, η̄3) = 0, (5.48)

so, due to the positivity of Jct, the efficiency η̄2 is a global minimum of Jct, and
corresponds to the macroscopic efficiency.

Second, we look for the maximum of Jct(η2). We call η∗2,ct the efficiency such
that Jct(η

∗
2,ct) = Ict(0, 0), and, reasoning as sec. 5.2.3, we have

η∗2,ct =

(
∂Ict

∂σ1

∣∣∣∣
0

)(
∂Ict

∂σ2

∣∣∣∣
0

)−1

, (5.49)

Since Ict follows from the minimization of Eq. (5.45) over σ3, we introduce
σ̃3(σ1, σ2) the solution of this minimization, yielding,

Ict(σ1, σ2) = I(σ1, σ2, σ̃3(σ1, σ2)). (5.50)

And next, we find

∂Ict

∂σ2

∣∣∣∣
0

=
∂I

∂σ2

(0, 0, σ̃3(0, 0)), (5.51)

∂Ict

∂σ1

∣∣∣∣
0

=
∂I

∂σ1

(0, 0, σ̃3(0, 0)). (5.52)
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After contraction on σ3, Eq. (5.49) yields the least likely efficiency

η∗2,ct =

(
∂I

∂σ1

(0, 0, σ̃3(0, 0))

)(
∂I

∂σ2

(0, 0, σ̃3(0, 0))

)−1

. (5.53)

In this equation we see that the least likely efficiency is achieved when processes 1
and 2 evolve reversibly while the third process evolves typically (with the condi-
tion that the first two processes are reversible). In other words, at the least likely
efficiency, the system chooses the most probable trajectories compatible with the
reversibility of the first two processes. Since in the general case Ict will not satisfy
a fluctuation theorem, we have no constraint on the location of the maximum of
Jct(η2). If σ̃3(0, 0) is small, a Taylor expansion of Eq. (5.53) around (0, 0, 0) shows
that the maximum is slightly moved away from η∗2 given by Eq. (5.32) taken at
η∗3 = 0. But for arbitrary value of σ̃3(0, 0), the maximum of Jct can be anywhere,
even below η̄2. This does not contradict the second law of thermodynamics since
the third process (that is ignored here) may fuel the machine as much as waste
its power.

Finally, we verify the absence of another extremum of Jct at finite efficiency.
To do so, we seek as earlier the zeros of the derivative of Jct

dJct

dη2

= 0. (5.54)

To find an expression for this derivative, we introduce the function σ̃′1(η2) realizing
the minimum in Eq. (5.44), such that

Jct(η2) = Ict(σ̃
′
1(η2),−η2σ̃

′
1(η2))

= I(σ̃′1(η2),−η2σ̃
′
1(η2),−σ̃3(σ̃′1(η2),−η2σ̃

′
1(η2))).

(5.55)

The total derivative of Jct(η2) yields

dJct

dη2

(η2) = −σ̃′1(η2)
∂I

∂σ2

. (5.56)

With arguments similar to those of Sec. 5.2.3, the above derivative vanishes only
at the previously obtained extrema and for infinite values of efficiency. Since Jct

is bounded, it converges to finite values when η2 → ±∞.
Therefore, Jct has the typical shape of the efficiency LDF for two external pro-

cesses [189] but with a displaced maximum. An example is provided in Fig. 5.5.

5.2.5 Close-to-equilibrium machine

Close to equilibrium, the cumulant generating function of entropy productions is
a quadratic function. From the Onsager matrix (3.4), it is written as

φ(γ1, γ2, γ3) =
3∑

i,j=1

Lfi,jγiγj +
3∑
i=1

γiσ̄i, (5.57)
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where Lfi,j is a short notation for the product of Onsager coefficient and physical
affinities Li,jfifj. From Eqs. (5.26) and (5.57) we calculate the efficiency LDF

J(η2, η3) =

3∑
i,j=2

(σ̄i + ηiσ̄1)M5−i,5−j (σ̄j + ηjσ̄1)∑
s,s′
ε(s)ε(s′)ηs(1)ηs′(1)Lfs(2),s′(2)L

f
s(3),s′(3)

(5.58)

where s denote a permutation of three elements and ε(s) its parity and

Mi,j = (−1)i+j
(
Lfi,j + Lf1,iη̄j + Lf1,j η̄i + Lf1,1η̄iη̄j

)
(5.59)

for i, j = 2, 3. We can also rewrite J(η2, η3) in a form that is convenient for
generalization

J(η2, η3) =

∑
s,s′
ε(s)ε(s′)ηs(1)ηs′(1)Lfs(2),s′(2)σ̄s(3)σ̄s′(3)∑

s,s′
ε(s)ε(s′)ηs(1)ηs′(1)Lfs(2),s′(2)L

f
s(3),s′(3)

. (5.60)

As in ref. [189], the close-to-equilibrium efficiency LDF is the ratio of two quadratic
forms. It vanishes as expected at the macroscopic efficiencies (η̄2, η̄3). A compar-
ison between the close-to-equilibrium case and a general calculation on efficiency
LDF is provided in Sec. 5.2.6 for a specific model.

Furthermore, from linear response theory, the mean entropy production rates
are connected to the asymptotic covariances of entropy production as follows

σ̄i =
1

2

3∑
j=1

Lfi,j (5.61)

Then, Eq. (5.60) may be rewritten using only the coefficient Lfi,j

J(η2, η3) =

∑
s,s′

3∑
i,j=1

ε(s)ε(s′)ηs(1)ηs′(1)Lfs(2),s′(2)L
f
i,s(3)L

f
j,s′(3)

2
∑
s,s′
ε(s)ε(s′)ηs(1)ηs′(1)Lfs(2),s′(2)L

f
s(3),s′(3)

. (5.62)

Since the asymptotic covariances are proportional to the response coefficient of
the machine, the close-to-equilibrium efficiency LDF is completely known from
the response property of the machine.

From this LDF for the two efficiencies we now explicitly compute Jct. After the
contraction on the efficiency η3, we retrieve the functional form of the efficiency
LDF for a machine with two processes [189],

Jct(η2) =
1

2

(η2σ̄1 + σ̄2)2

(η2)2Lf1,1 + 2η2Lf1,2 + Lf2,2
, (5.63)
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keeping in mind that we have now σ̄i =
∑3

j=1 Lfi,j/2 and not σ̄i =
∑2

j=1 Lfi,j/2 as
in Ref. [189]. The maximum is no longer at η2 = 1 but at η2 = η∗2,ct, with

η∗2,ct =
Lf2,2Lf1,1 + Lf1,3Lf2,2 − Lf1,2

2 − Lf1,2Lf2,3
Lf2,2Lf1,1 + Lf2,3Lf1,1 − Lf1,2

2 − Lf1,2Lf1,3
. (5.64)

As expected, when Lf1,3 and Lf2,3 vanish, η∗2,ct = 1: when the third process decou-
ples from the others, we retrieve the least likely efficiency of a machine with only
two processes.

We emphasize that bounds similar to Eq. (5.7) can be derived for machines
with three physical fluxes. They take the same functional form that the close-to-
equilibrium efficiency LDFs (5.62) and (5.63) with the Onsager matrix substituted
by the non-equilibrium conductance matrix.

5.2.6 Example: Photoelectric device with losses

Model We use as an example a simple model of photoelectric device first stud-
ied in Ref. [64, 160]. The device is composed of two quantum dots each with
a single energy level El and Er (Er > El), cf. Fig. 5.2. It is powered by two
black-body sources at inverse temperature βh and βm, and a cold heat reservoir
at inverse temperature βc. Each quantum dot can exchange electrons with an
electronic lead at inverse temperature βc, the left (right) dot being connected to
the left (right) lead. Each lead is at a different voltage and is modeled by an
electron reservoir at chemical potential µr > µl. The three different states of the
machine are indexed by j = 0, l, r, corresponding respectively to no electron in
the device, one electron in the left quantum dot, and one in the right dot. The
three different heat reservoirs are labeled by ν = c, m, h. Sketch and graph of the
model are represented on Fig. 5.2. The cycle and reservoirs matrices are given by

C =


1 0 0
0 1 0
1 1 1
0 0 1
0 0 1

 , R =


Er − El 0 0 0 0

0 Er − El 0 0 0
0 0 El − Er Er −El
0 0 0 0 −1
0 0 0 1 0

 (5.65)

with the reservoirs affinities fr
T = (βh, βm, βc,−βcµr,−βcµl). Using local de-

tailed balance, the transition rates are written [160, 190]

ω(0,l) =Γl
2e−

βc
2

(El−µl)

cosh (βc(El − µl)/2)
, ω(l,0) = Γl

2e
βc
2

(El−µl)

cosh (βc(El − µl)/2)
; (5.66)

ω(0,r) =Γr
2e−

βc
2

(Er−µr)

cosh (βc(Er − µr)/2)
, ω(r,0) = Γr

2e
βc
2

(Er−µr)

cosh (βc(Er − µr)/2)
; (5.67)

ω(r,l;ν) =Γν
2e−

βν
2

(Er−El)

sinh (βν(Er − El)/2)
, ω(l,r;ν) = Γν

2e
βν
2

(Er−El)

sinh (βν(Er − El)/2)
. (5.68)
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Engine

Left

lead

Right

lead

Phonon bath

Black-body 

radiation

Black-body 

radiation

Figure 5.2: (a) Sketch of the photoelectric device. The device is made of two
single-level quantum dots (in white) connected to two leads (in blue) at inverse
temperature βc and at different chemical potentials µr and µl. The electron
transitions between left and right quantum dots are induced either by photons
from black-body radiation at inverse temperature βh (in red) or βm (in orange), or
by phonons at temperature βc (in blue). The arrows indicate possible electronic
transitions between different energy levels and the Γ’s represent the coupling
strengths with the reservoirs. (b) Graph of the model with labeled edges.

The total rate for the left to right transition is ω(r,l) =
∑

ν ω(r,l;ν) and similarly
for the right to left transition. The Γ’s are the different coupling strengths with
the reservoirs, see Fig. (5.2), and the symmetric part of the rates is intented to
consider quantum statistics, as in the example of sec. 2.3.

Physical currents Using the cycle and reservoirs matrices (5.65), we determine
two conservation laws

`1r
T

= (1, 1, 1, 0, 0) `2r
T

= (0, 0, 0, 1, 1). (5.69)

Such that the selection and physical matrices are obtained as

V =


−1 0 0
0 0 −1
1 0 1
0 1 0
0 −1 0

 , P =

Er − El 0 0
0 0 Er − El
0 1 0

 . (5.70)

We have now three physical fluxes that are associated with physical affinities

f1 = βc − βh, f2 = βc(µr − µl) f3 = βc − βm. (5.71)

With all these elements, the mean entropy production rates σ̄i, i = 1, 2, 3 are
determined leading to the operation diagram of Fig. 5.3.
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Figure 5.3: Diagram representing the various operating modes of the photoelectric
cell as a function of the affinities f1 and f3 for (a) a small chemical potential
difference ∆µ = 0.035, (b) a large chemical potential difference ∆µ = 1. Black
dots correspond to the three studied cases: the close-to-equilibrium case “CE”,
the small loss case “SL”, and the far from equilibrium case “FE”. (1) to (3): Heat
Engine, for each label σ̄2 < 0, and more specifically (1) σ̄1 > 0 > σ̄3, (2) σ̄1 > 0,
σ̄3 > 0, (3) σ̄1 < 0 < σ̄3, (4): Dud Engine, σ̄1 > 0, σ̄2 > 0, σ̄3 > 0. (5) to (7):
Refrigerator and Heat Pump, for each label σ̄2 > 0, and more specifically (5)
σ̄1 > 0 > σ̄3, (6) σ̄1 < 0, σ̄3 < 0, (7) σ̄1 < 0 < σ̄3. Parameters for the machine are
Er = 2.5, El = 0.5, Γc = 1, Γm = 5, and Γh = Γl = Γr = 10, and more specifically
in the CE case: Tc = 1, µl = 1, µr = 1.035, Tm = 1.025, and Th = 1.05 ; in the
FE case: µl = 1, µr = 2, Tc = 1, Tm = 5, and Th = 10 ; and in the SL case:
µl = 1, µr = 2, Tc = 1, Tm = 1.1, and Th = 10.

Efficiency fluctuations We now turn to the study of the efficiencies fluc-
tuations. Below, the fluctuations of the efficiencies (η2, η3) are quantitatively
analyzed in three different cases: a close-to-equilibrium (CE) case, a far-from-
equilibrium (FE) case, and a small loss (SL) case. The parameter values in each
case are summarized in the caption of Fig. 5.3. The efficiencies statistics has
been obtained first by computing numerically the highest eigenvalue of the tilted
matrix yielding the CGF φ(γ1, γ2, γ3) of the various entropy production rates, and
in a second step, by using Eq. (5.26) to get the efficiency LDF from φ(γ1, γ2, γ3).

In Fig. 5.4(a) and 5.4(b) we show the efficiency LDF J(η2, η3) in the CE and
FE cases respectively. As expected, the maximum of J is located on the line η2 +
η3 = 1 corresponding to the reversible efficiencies. The minimum corresponds to
the macroscopic efficiencies (η̄2, η̄3) = (0.19, 0.14) in the CE case, and to (η̄2, η̄3) =
(0.24, 0.33) in the FE case.

In Fig. 5.4(c) we verify the validity of the CE limit developed in Sec. 5.2.5.
The cross-sections of the efficiency LDF J obtained by direct numerical compu-
tation are in perfect agreement with the same cross-sections, but obtained from
Eq. (5.62). In Fig. 5.4(d), we also show the cross-sections of J , but in the FE
case illustrating that all the fluctuations associated to a large efficiency becomes
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Figure 5.4: Efficiency LDF J(η2, η3) for the photoelectric device of Fig. 5.2 oper-
ating on average as a heat engine. (a) and (b) Color map of the efficiency LDF
J(η2, η3) The maximum of J is achieved on the red contour line while black solid
lines are contour lines for smaller J . The straight line of equation η2 + η3 = 1
is shown with cross marks. (c) and (d) Cross-sections of J(η2, η3) for various η3.
Symbols in (c) are obtained from Eq. (5.62). The efficiency LDF are normalized
by the mean total entropy production rate with σ̄ = 0.00187 for CE case and
σ̄ = 1.056 for FE case. The figures on the left and on the right are for the CE
and the FE cases respectively, see the parameters of Fig. 5.3.

generically equally likely independently of the value of the other efficiency: the
LDF flattens and converges to the same limit at infinity for the different cross-
sections. Comparing Fig. 5.4(c) and 5.4(d), we remark that the time scale on
which an efficiency fluctuation disappears is much longer close to equilibrium
than far from equilibrium. Indeed the order of magnitude of this time scale is
roughly the inverse of the maximum value of the efficiency LDF, and this maxi-
mum is connected to the mean total entropy production.

Finally, we comment the effect of the contraction in Eq. (5.44) on the statis-
tics of the remaining efficiency. This situation corresponds to ignoring the third
process even though it is still influencing the machine dynamics. In Fig. 5.5 we
provide the contracted LDF Jct(η2). It displays the generic shape of an efficiency
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Figure 5.5: Contracted LDF Jct(η2) (thick dashed red line) and various cross-
sections of J(η2, η3) (thin blue lines) for η3 ∈ [−10; 10]. The LDF are normalized
by the mean total entropy production rate σ̄. (a) Far-from-equilibrium contracted
LDF Jct(η2). The minimum is for η̄2 = 0.24. The mean total entropy production
rate is σ̄ = 1.056. (b) Contracted LDF Jct(η2) for small losses. The minimum
is for η̄2 = 0.14 and the maximum for η∗2,ct = 1.08. The mean total entropy
production rate is σ̄ = 3.027. Insert: zoom on the maximum.

LDF excepted that no constraint exists on the position of the maximum, e.g. it is
below η̄2 in the FE case. This would be forbidden by the laws of thermodynamics
in a machine with only two processes, but it is allowed whenever an additional
process has been ignored in the description of the machine. Logically, when the
ignored process is weakly irreversible as in the SL case of Fig. 5.5(b), the max-
imum of the efficiency LDF must be located close to the reversible efficiency:
in the limit of a vanishing affinity for the ignored process, we retrieve the usual
efficiency fluctuations of a stationary machine with only two processes for which
the reversible efficiency is the least likely.
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6

Non equivalence of dynamical ensembles

The microcanonical and canonical ensembles are equivalent when the same com-
putations done within one or the other ensemble leads to the same result. Compu-
tations are in general more difficult within the microcanonical ensemble and easier
within the canonical ensemble. Hence, the ensemble equivalence is of particular
importance, and its validity conditions are essential for practical use. Beyond the
case of equivalent ensembles, we aim at obtaining relevant informations within
one ensemble from computations done in the other ensemble.

For dynamical ensembles, we saw in previous chapters that equivalence holds
for ergodic systems. In this chapter, we are interested in the case where equiv-
alence for dynamical ensembles breaks down, due to the existence of several
metastable states. Adapting a method developed by Touchette [177, 178] to
compute non concave entropy within the equilibrium ensembles, we are able to
obtain the non-convex LDF of dynamical observables for systems in or out of
equilibrium.

We apply this method on a dynamical version of the fully connected Ising
model to determine the asymptotic probability of activity and magnetization.
For this model, the non-equivalence emerges in the thermodynamic limit, making
crucial the order of large size and long time limit, that we discuss in the last
section of this chapter.

6.1 Explicit calculation of a LDF for

non-ergodic systems

First, we adapt the method developed in Ref. [177] for equilibrium ensembles
to compute non-convex LDF from their corresponding generating function. We
start with a simple example of non-ergodic system to explain how to compute a
non-convex LDF from the propagator of the generating function.
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6.1.1 A four state model with non-convex LDF of
activity

LDF from explicit probability Let’s consider a four state system made of
two subsystems with two states (1, 2) and (3, 4). The four state system evolves
according to the master equation

d

dt


ρ1

ρ2

ρ3

ρ4

 =


−1 1 0 0
1 −1 0 0
0 0 −2 2
0 0 2 −2

 ·

ρ1

ρ2

ρ3

ρ4

 . (6.1)

The Markov operator is reducible yielding to a non ergodic process. We aim
at computing the system activity assuming that one cannot distinguish in which
subsystem a transition occurs. The activity rate Atot is the total number of jumps
per unit time: It is given by Eq. (1.73) when f(x) = 0 and g(x, y) = 1 for all
(x, y). By definition of the Markov operator in the right hand side of Eq. (6.1),
the activity probability distribution of each subsystem is a Poisson distribution
of mean value T for the subsystem (1, 2) and 2T for the subsystem (3, 4). Indeed
there is respectively 1 and 2 jumps per unit time in each subsystem respectively.
The probability distribution of the total number of jumps is the sum of Poisson
distributions weighted by the respective initial probability ρi

n to start in state n.
The probability of having aT jumps after a time T is

Pr (AtotT = aT ) = (ρi
1 + ρi

2)
(T )aT e−T

(aT )!
+ (ρi

3 + ρi
4)

(2T )aT e−2T

(aT )!
(6.2)

For T large enough, Pr (AtotT = aT ) will be bimodal, and the LDF within
the microcanonical ensemble reads

Imca(a) = − lim
T→+∞

1

T
ln Pr (Atot = a) =

{
a ln a− a+ 1 if a < 1/ ln 2

a ln
a

2
− a+ 2 if a > 1/ ln 2

, (6.3)

where we have used Stirling formula and chosen the minimum of the two LDF
corresponding to each Poisson distribution. The above non-convex LDF of activ-
ity is shown in Fig. 6.1b. It is crucial to note that the initial condition plays a
fundamental role here: if the system never starts in states 1 or 2, i.e. ρi

1 = ρi
2 = 0,

the LDF will include the branch corresponding to the second line of Eq. (6.3) only.
The non-ergodicity impacts the long time statistics of the dynamical observables
through the choice of initial conditions.

Propagator of the generating function For the four state model, it is
straightforward to determine the probability of the activity, but for other systems
or observables this task may be more challenging: one must often compute the
CGF instead. Let’s derive the result of Eq. (6.3) in this way using the propagator
for the generating function of the activity defined by G(xf, xi, γ) = IE

[
eTγAtot

]
xf,xi

,

where the subscripts xi and xf provide respectively the initial and final states of
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the trajectories appearing in the average. Using standard approach [25, 28], the
propagator is obtained from the tilted matrix

Kγ =


−1 eγ 0 0
eγ −1 0 0
0 0 −2 2eγ

0 0 2eγ −2

 (6.4)

as the components of its matrix exponential [exp(TKγ)] (xf, xi) = G(xf, xi, γ).
Using eigenvalues and eigenvectors decomposition of Kγ, we explicit the matrix
exponential as

exp [TKγ] = eT (−1+eγ)


1/2
1/2
0
0

 · (1 1 0 0
)

+ e2T (−1+eγ)


0
0

1/2
1/2

 · (0 0 1 1
)

+ e−T (1+eγ)


1/2
−1/2

0
0

 · (1 −1 0 0
)

+ e−2T (1+eγ)


0
0

1/2
−1/2

 · (0 0 1 −1
)
.

(6.5)

The orthogonal basis of eigenvectors has normalized right eigenvectors, and the
scalar products of the left and right eigenvectors associated to the same eigenvalue
are all equal to 1. We notice that the eigenvectors separate in two sets whose
supports are disjoint and correspond to each subsystem respectively. We remark
also that the above propagator should be norm conserving when γ = 0, but the
two terms in the second line of Eq. (6.5) do not fulfill this requirement. We do
not consider them as physical and keep only the first two terms in Eq. (6.5).
Then, the activity LDF is recovered from this propagator by summing first over
the initial and final states

IE
[
eTγAtot

]
=
∑
xf,xi

G(xf, xi, γ)ρi
xi , (6.6)

second, by applying an inverse Laplace transform, and finally by taking the limit
T → ∞. For ergodic systems, this procedure leads to the same LDF whatever
the order of these operations. On the contrary, the order matters for non-ergodic
systems.

LDF from CGF For our 4 state model, the generating function writes

IE
[
eTγAtot

]
= (ρi

1 + ρi
2)eT (−1+eγ) + (ρi

3 + ρi
4)e2T (−1+eγ). (6.7)

Its inverse Laplace transform yields the probability density function of activity
given in Eq. (6.2). However, first computing the long time limit of the generating
function leads to the CGF

φ(γ) = lim
T→+∞

1

T
ln
∑
xf,xi

G(xf, xi, γ)ρi
xi =

{
eγ − 1 if γ < 0,
2(eγ − 1) if γ > 0

, (6.8)
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Figure 6.1: (a) Four eigenvalues of the tilted matrix (6.4) (solid line) and cor-
responding CGF (cross). (b) Partial LDFs (solid lines) corresponding to the
Legendre transform of the two highest eigenvalues, canonical LDF (cross) and
microcanonical LDF (squares).

as long as ρi
x > 0 for all x. Noticing that the limit T → +∞ enables to

use a saddle-point method to approximate the inverse Laplace transform into a
Legendre-Fenchel transform, the asymptotic probability of activity follows from
its corresponding LDF

Ica(a) = max
γ

[aγ − φ(γ)] =


a ln a− a+ 1 if a < 1
0 if a ∈ [1, 2]

a ln
a

2
− a+ 2 if a > 2

, (6.9)

that is not the one of Eq. (6.3). It corresponds to the LDF computed within
the canonical ensemble. The former LDF is convex because a Legendre-Fenchel
transform only yields convex functions by definition, while the latter is not convex.

LDF from the propagator of the generating function Alternatively, one
may obtain the microcanonical LDF by taking the long time limit on the propa-
gator of the generating function of Eq. (6.5), and not on the generating function
itself, yielding

φxi(γ) = lim
T→+∞

1

T
lnG(xf, xi, γ) =

{
(eγ − 1) if xi = 1, 2
2(eγ − 1) if xi = 3, 4

. (6.10)

The Legendre-Fenchel conjugates of these two branches associated to differ-
ent initial states are precisely the two branches of the microcanonical LDF in
Eq. (6.3):

Ixi(a) = max
γ

[aγ − φxi(γ)] =

{
a ln a− a+ 1 if xi = 1, 2

a ln
a

2
− a+ 2 if xi = 3, 4

(6.11)

The summation over initial and final conditions is now carried out using an asymp-
totic approximation, which can be written heuristically as

e−TImca(a) '
∑
xi

ρi
xie
−TI

xi
(a) ' exp

(
−T min

xi
Ixi(a)

)
(6.12)
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explaining why a minimum on the branches of Eq. (6.11) appears in the final non
convex LDF of Eq. (6.3). To summarize, from the Legendre-Fenchel conjugate of
all the eigenvalues appearing in the tilted matrix of Eq. (6.4), we determined the
partial LDFs. The minimum among these partial LDFs produces the microcanon-
ical LDF. We illustrate this procedure in Fig. 6.1. From this figure, we conclude
on the ensemble equivalence for this model: it holds for a ∈ [0, 1[

⋃
]2,+∞[, but

the equivalence is partial at a = 1, 2 and there is no equivalence for a ∈]1, 2[.

6.1.2 General framework

In the above example, we have seen that one can determine the asymptotic fluc-
tuations of a physical observable by switching from one dynamical ensemble to
another as long as the LDFs are piecewise-convex. In this section, we develop this
approach for the more general framework of sec. 2.2. In practice, this amount to
express the inverse Laplace transform as a Legendre-Fenchel transform, using the
saddle point method and taking care of the initial condition appropriately.

Microcanonical LDF By definition, the microcanonical LDF for the observ-
able O (1.73) writes

Imca(o) = lim
T→+∞

−1

T
ln

∫ b+i∞

b−i∞
dγ e−Tγo

∑
xf,xi

G(xf, xi, γ)ρi
xi , (6.13)

in term of the propagator

G(xf, xi, γ) = IE
[
eTγO

]
xf,xi

(6.14)

that generates the cumulants of O under given initial and final conditions. Indeed,
the argument of the logarithm is exactly the probability distribution function of
O. Since solely the most probable events contribute to the LDF, we can focus on
the initial conditions leading to the minimal value of the LDF (as seen in section
6.1.1):

Imca(o) = min
xf,xi

lim
T→+∞

−1

T
ln

∫ b+i∞

b−i∞
dγ e−TγoG(xf, xi, γ)ρi

xi . (6.15)

Finally, the complex integral for the inverse Laplace conjugate follows from the
saddle point method:

Imca(o) = min
xf,xi

max
γ

(
γo− lim

T→+∞

1

T
lnG(xf, xi, γ)ρi

xi

)
. (6.16)

Convex hull of the LDF Alternatively, the convex hull of Imca(o) is the
Legendre-Fenchel conjugate of the CGF for the observable O, namely

Ica(o) = max
γ

γo− lim
T→+∞

1

T
ln
∑
xf,xi

G(xf, xi, γ)ρi
xi

 , (6.17)
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That is also the LDF computed within the canonical ensemble. As seen in section
6.1.1, the propagator G may have an eigendecomposition for which the terms
contributing to the CGF in the limit T → ∞ depend on the initial or final
conditions. Hence, a maximum on xf and xi must appear

Ica(o) = max
γ

(
γo−max

xf,xi
lim

T→+∞

1

T
lnG(xf, xi, γ)ρi

xi

)
, (6.18)

to select the dominant asymptotic behavior in the limit T → ∞. In view of
comparing with Eq. (6.16), the maximization can be modified into a minimization
through the commutation with the minus sign:

Ica(o) = max
γ

min
xf,xi

(
γo− lim

T→+∞

1

T
lnG(xf, xi, γ)ρi

xi

)
. (6.19)

In the end, the difference between the LDF Imca(o) and its convex hull Ica(o)
comes from the non commutation of maxγ and minxf,xi as a consequence of the
dependence on the initial conditions, i.e. of the non-ergodicity. Of course, if
both microcanonical and microcanonical LDF are convex, the ordering of these
extremizations would not matter.

Eigenvalues of the propagator The eigendecomposition of the propagator G
involves the eigenvalues of the tilted matrix of Eq. (2.18). For a non ergodic sys-
tems or when the state space is infinite, the assumption of the Perron-Fröbenius
theorem does not hold and several eigenvalues may cross each other. To com-
pute exactly the microcanonical LDF, one needs all the branches corresponding
to each eigenvalue that becomes the highest eigenvalue for at least one γ. Only
those branches matters, and other eigenvalues will not contribute, so as can be
understood from the following argument: Be two eigenvalues φ1(γ) and φ2(γ)
such that φ1(γ) > φ2(γ). Since γo− φ1(γ) < γo− φ2(γ), we have

I1(o) = max
γ
{γo− φ1(γ)} < I2(o) = max

γ
{γo− φ2(γ)} . (6.20)

The last minimization in Eq. (6.16) on the partial LDFs withdraws the contribu-
tion coming from the eigenvalue φ2(γ) if it is smaller that φ1(γ) for all γ.

Systems with several subparts Physically speaking, we study a rare event
in a system that has several independent subparts. We assume that the initial
probability cannot be zero in all states of a subsystem, otherwise this subsystem
shall be ignored. Each subpart of the system has its own probability to realize
the rare event at stake. The subpart for which the event is the most likely will
determine the event probability. This will be so if the rare event corresponds
to a fluctuation of a time average quantity over a sufficiently long time so as to
neglect the role of the initial state probability.

Mathematically speaking, when dealing with reducible tilted matrices whose
highest eigenvalue is the CGF of interest, we must divide the matrix into irre-
ducible sub-matrices for which holds the ensemble equivalence. For every sub-
matrices we proceed normally using the ensemble equivalence to determine the
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partial LDFs of the chosen observable from the Legendre-Fenchel transform of
the highest eigenvalue of the sub-matrix. The final LDF for the total system is
then given by the minimum over all partial LDFs. This explains why the final
LDF is piecewise convex.

Connection with driven processes The non-equivalence arises, due to the
crossing of two eigenvalues. At this point, the highest eigenvalue is associated
with two different eigenvectors. This leads to the definition of two different driven
processes, that are connected with the various subparts of the system.

We emphasize that there is another possibility to have a non-equivalence of
dynamical ensemble when the driven process cannot be defined. This appends for
non-compact state spaces where the left eigenvector cannot be normalized [118,
127, 175].

6.2 Mean field Ising model

Using the results of sec. 6.1.2, we study the activity and magnetization of an
infinite range Ising model. This model is ergodic when considering a finite number
of spins, but breaks ergodicity in the thermodynamics limit. In the following, we
first introduce the model and its mean field (MF) treatment. Second, we provide
the propagator of the generating function for magnetization and activity, and
next use it to determine the CGF and both the canonical and microcanonical
LDFs.

6.2.1 Model description and thermodynamics limit

Model We consider the fully connected Ising model made of N interacting
spins {s} = (s1, . . . , sN). Each spin si can hop between states +1 and −1 by
exchanging heat with a thermostat at inverse temperature β. The interaction
energy between two spins is V/N when the spins are not aligned and vanishes
for parallel spins. The interaction energy is independent of the distance between
spins. Beside the spin-spin interaction, each spin has a potential energy −siH
due to the presence of an external magnetic field. We introduce the free energy
Fn = En − Sn/β of the mesostate n =

∑N
i=1 si in term of the total energy given

(up to a constant) by

En = −V
N

∑
16i6j6N

sisj −H
∑

16i6N

si = −n2 V

2N
− nH (6.21)

and of the internal entropy

Sn = lnN !/[

(
N + n

2

)
!

(
N − n

2

)
!]. (6.22)

The stationary probability πn is the equilibrium probability

πn =
e−Fn

Zeq

with Zeq =
N∑
n=0

e−Fn . (6.23)
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The system is in thermal equilibrium and the transition rates satisfy the detail
balance equation

ln
ωn+2ε,n

ωn,n+2ε

= −β(Fn+2ε −Fn), (6.24)

We chose the transition rate from n to n+ 2ε (with ε = ±1) to be

ωn+2ε,n = Γ (N − εn) e
β
2

((2εn+2)V/N+2εH). (6.25)

In the following we take Γ = 1 and β = 1 to set the time and energy scales
respectively. The probability ρv(t) evolves according to the master equation

ρ̇v(t) = K · ρv(t), (6.26)

with the transition matrix K of elements

Kn,n = −
∑
ε=±1

ωn+2ε,n;

Kn,n+2 = ωn,n+2ε; (6.27)

Kn,n−2 = ωn,n−2.

Observables The time-averaged stochastic magnetization is obtained from Eq. (1.73)
by choosing the state dependent function f(n) = n/N and a vanishing function
g(n, n′) = 0 for all (n, n′):

M =
1

NT

∫ T

0

dtX(t), (6.28)

where X(t) is the mesostate at time t. We denote by m some real value that
can be achieved by the stochastic variable M . The mean magnetization in the
stationary state writes

IE [M ] =
1

N

N∑
n=0

nπn. (6.29)

The activity rate is obtained from Eq. (1.73) by choosing g(n, n′) = 1/N and
f(n) = 0 for all (n, n′):

A =
1

NT

∑
06t6T :∆nt 6=0

1 (6.30)

The activity rate is thus a time-symmetric observable : the number of spin flips
(per unit time and per spin) are identical in a trajectory and its time reversal.
We denote by a some real value that can be achieved by the stochastic variable
A. The mean activity in the stationary state writes

IE [A] =
1

N

N∑
n=0

∑
ε=±1

πnωn+2ε,n. (6.31)
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Figure 6.2: (a) Stable (dark blue) and unstable (light blue) mean field steady
state densities m̄mf versus interaction energy V . (b) Stable (dark blue) and
unstable (light blue) mean field steady state activity āmf versus interaction energy
V . For both figures, H = 0.

Thermodynamic limit In the thermodynamic limit, when taking the con-
tinuous limit for the mesostate x = n/N ∈ [−1, 1], the system energy changes
by

lim
N→∞

[En+2ε − En] = 2ε(V x+H) (6.32)

for a transition from n to n+2ε. Accordingly, the transition rates are in the same
limit

Jε(x) = lim
N→+∞

ωxN+2ε,xN

N
= (1− εx) eε[V x+H]. (6.33)

In this case, the master equation Eq. (6.26) can be transformed into an evolution
equation for x in the mean field (MF) approximation

¯̇x =
∑
ε=±1

εJε (x̄) . (6.34)

The steady state solution of this equation is the mean field magnetization x̄ = m̄mf

verifying
J− (m̄mf) = J+ (m̄mf) . (6.35)

Using Eq. (6.33), the previous equation is equivalent to the transcendental equa-
tion

m̄mf = tanh (V m̄mf +H) . (6.36)

The MF activity follows from the mean-field magnetization:

āmf = J− (m̄mf) + J+ (m̄mf) = [1− m̄mf] eV m̄
mf+H + [1 + m̄mf] e−V m̄

mf−H . (6.37)

The MF magnetization and activity are shown in the bifurcation diagram of
Fig.6.2. At a critical value of the interaction energy, three MF magnetizations
appear instead of a unique one, due to the well studied ferromagnetic transition
in the Ising model. This bifurcation also affects the system activity as shown
on the Fig.6.2b and as expected from Eq. (6.37) since āmf is a function of m̄mf.
We remark that the system activity is an even function of the magnetization and
hence the bifurcation diagram for activity has two branches only. We also notice
that the MF activity is higher for the branch that does not break the system
symmetry.
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6.2.2 Propagator of the generating function for
magnetization and activity

Like in the four state model of sec. 6.1.1, we look for the propagator of the
generating function for the activity and magnetization:

G(xf, xi, κ, γ) = IE
[
eNT (κm+γa)

]
xf,xi

, (6.38)

where as before the subscripts indicate a conditioning on the initial and final
states, respectively xi = ni/N and xf = nf/N . From a path integral approach [33,
107, 22], an asymptotic expression of the propagator reads

G(xf, xi, κ, γ) 'N→+∞ exp

(
N

∫ T

0

dtL (xt, ẋt, κ, γ)

)
, (6.39)

where L is the Lagrangian

L (x, ẋ, κ, γ) =
ẋ

2
ln

(
−ẋ+

√
ẋ2 + ϕ(x, γ)

2J−(x)eγ

)
−
∑
ε=±1

Jε(x) +
√
ẋ2 + ϕ(x, γ) + κx,

(6.40)
with

ϕ(x, γ) = 4
∏
ε=±1

Jε(x)eγ = 4(1 + x)(1− x)e2γ. (6.41)

The propagator of Eq. (6.39) is almost explicit: the path xt starting in xi and
ending in xf must be determined using the Euler-Lagrange equation

∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
. (6.42)

Hence, the propagator of the generating function is fully determined by the initial
and final conditions.

As explained in sec. 6.1.2, we now vary initial and final conditions to obtain
the dominant contributions to the generating function. As the large size and
long time limit of the propagator is evaluated with large size limit first and
then long time limit, the system is non-ergodic. Due to this non-ergodicity, the
dominant contributions are obtained from stationary trajectories, i.e. element of
the propagator G(x∗, x∗, κ, γ) such that

∂L

∂x
(x∗, 0, κ, γ) = 0. (6.43)

and we denote x∗(κ, γ) the various solution of this equation. These constant
trajectories are the only ones that will dominate for at least one value of (κ, γ).
Following sec. 6.1.2, we can restrain the extremization over initial and final con-
ditions to these stationary trajectories.

We provide an heuristic argument for the choice of stationary trajectories:
Dominant trajectories correspond to long-time behavior of the tilted system. We
expect the tilted system to be in a stationary state at long-time, as we study
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an equilibrium system. Neglecting the boundary terms due to long time limit,
we restrain to trajectories starting and ending into a stationary state. The sys-
tem being non-ergodic, we forbid trajectories that start and end into different
stationary states. This approach is confirmed by numerical computation of the
CGF that we will see in the next section.

In the next section, we use the propagator of Eq. (6.39) to derive the CGF of
magnetization and activity. For taking advantage of the left/right symmetry, we
set H to zero.

6.2.3 CGF of magnetization and activity
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Figure 6.3: Cross-sections of the CGF φ(κ, γ) along (a) κ = 0 and (b) γ = 0
(solid lines), and corresponding CGFs for the finite size system with N = 10
(dot-dashed lines) and N = 25 particles (dashed lines). Inserts: Zoom on the
non-differentiable point of the light blue line for which V = 1.5. (c) CGF φ(κ, γ)
and level lines for V = 1.5 (d) CGF φ(κ, γ) and level lines for V = 0.5. For all
figures H = 0.

The CGF proceeds from the leading elements of the propagator of the gener-
ating function

φ(κ, γ) = lim
N,T→∞

1

NT
ln IE

[
eNTγA+NtκM

]
= max

xf,xi
lim

N,T→∞

1

NT
lnG(xf, xi, κ, γ)ρi(xi). (6.44)

As explained above, we can focus on stationary trajectories that solve Eq. (6.43).
Then, solving for x amounts to find the extrema of L (x, 0, κ, γ). Assuming that
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ρi(x) > 0 for all x, one can safely drop the initial probability ρi in Eq. (6.44)
ending with

φ(κ, γ) = max
x

L (x, 0, κ, γ) =
√
ϕ(x∗(κ, γ), γ)−

∑
ε=±1

Jε(x
∗(κ, γ)) + κx∗(κ, γ),

(6.45)
Unfortunately, the determination of x∗(κ, γ) involves a transcendental equation.
We solved this equation numerically to provide the CGFs before and after the
bifurcation in Fig 6.3d and 6.3c respectively. Cross-sections of the CGF in the
plane κ = 0 and γ = 0 are shown in Fig 6.3a-b. After the bifurcation for V = 1.5,
the CGF is clearly not differentiable. The left and right partial derivatives at
(κ, γ) = (0, 0) leads to different mean magnetization and activity in agreement
with the bifurcation diagram of Fig 6.2 of the mean-field framework. We notice on
Fig 6.3d that before the transition the CGF has a non differentiability not located
at the origin of the (γ, κ) plane. Hence the mean magnetization and activity are
unique but their fluctuations are impacted by the phase transition. We confirm
our results by computing numerically the CGF as the highest eigenvalue of the
tilted matrix

Kγ,κ
x,y =

{
ω(x,y)e

γ/N if x 6= y∑
y ω(x,y) + κx/N if x = y

, (6.46)

for systems with N = 10 and N = 25 spins. As explained in sec. 2.2.3, the CGFs
of finite size systems are everywhere differentiable and only approach gradually
the non-differentiable CGF in the thermodynamic limit.

6.2.4 Canonical LDF of magnetization and activity

The canonical LDF Ica(m, a) shown in Fig. 6.4c-d is the Legendre-Fenchel conju-
gate of the CGF

Ica(m, a) = max
κ,γ
{κm+ γa− φ(κ, γ)} . (6.47)

At low interaction energy V , we observe a smooth function whose unique mini-
mum is given by the mean-field solution of Eqs. (6.36-6.37). However at higher
interaction energy, a plateau appears in the LDF between the MF solutions. This
plateau, in association with the non-differentiability of the CGF, indicates a phase
transition. As emphasized before, we always have ergodicity within the canonical
ensemble, and this plateau is the result of a “temporal coexistence” of MF states:
the system spends most of its time into the various MF states leading to a time
averaged magnetization and activity belonging to the convex area defined by the
MF solutions, here a triangle.

The contracted LDF for activity Ica(a) and magnetization Ica(m) defined by

Ica(m) = min
a
Ica(m, a) = max

κ
{κm− φ(κ, 0)} (6.48)

Ica(a) = min
m

Ica(m, a) = max
γ
{γa− φ(0, γ)} , (6.49)

are shown in Fig. 6.4a-b, together with the LDFs for the finite size systems
obtained from the Legendre transform of their corresponding CGFs in Fig. 6.3a-
b. The latter LDFs converge towards the plateau with a speed that is lower for
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the activity LDF than for the magnetization LDF in agreement with the fact
that the plateau for the LDF of activity lies between a stable MF solution and an
unstable MF solution, while the plateau for the magnetization lies between two
stable solutions.
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Figure 6.4: Canonical LDF Ica(m, a) of activity and magnetization. (a) Canon-
ical LDF Ica(a) (solid lines) and finite size LDF for N = 10 (dot-dashed lines),
N = 25 (dashed lines) and N=100 (long-dashed lines). (b) Canonical LDF Ica(m)
(solid lines) and finite size LDF forN = 10 (dot-dashed lines) andN = 25 (dashed
lines). Parameters are for (a-b): V = 0.5 (magenta lines) and V = 1.5 (light blue
lines). (c) Canonical LDF and level lines for V = 1.5. (d) Canonical LDF and
level lines for V = 0.5. Beige squares indicate the location of the stable solutions
of Eqs. (6.36-6.37) whereas dark-blue squares are for unstable solutions. For all
figures H = 0. For figure (c-d), the color map replaces the level lines for low
values of the LDFs.

6.2.5 Microcanonical LDF of magnetization and activity

As explained in the sec. 6.1.2, the microcanonical LDF follows from the Legendre-
Fenchel transform of the elements of the propagator of the generating function.
Therefore Eq. (6.16) yields

Imca(m, a) = min
xf,xi

max
κ,γ

[
κm+ γa− lim

N,T→∞

1

NT
lnG(xf, xi, κ, γ)ρi(xi)

]
(6.50)

Each stationary solution of Eq. (6.43) denoted x∗ defines a partial LDF

Ix∗(m, a) = max
κ,γ
{κm+ γa−L (x∗(κ, γ), 0, κ, γ)} . (6.51)
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If the initial magnetization is in the attraction basin of the solution x∗, the
system’s fluctuations are best described by Ix∗(m, a). When ensemble averaging
on the initial condition, we look for the minimum on the stationary trajectories
to obtain the microcanonical LDF

Imca(m, a) = min
x∈{x∗}

Ix(m, a). (6.52)

From the fact that Ica is the convex hull of Imca, we get the following inequality
between the two LDFs:

Imca(m, a) > Ica(m, a). (6.53)

The microcanonical LDF Imca(m, a) is shown after the bifurcation on Fig. 6.5c,
We also provide in Fig. 6.5a-b the partial LDF for activity and magnetization
(after contraction) and their convex hulls. As expected, the microcanonical LDF
is not convex: the ensemble equivalence does not hold (in a specific interval of
magnetization and activity) for our model in the thermodynamics limit, due to
non-ergodicity.

Comparing the canonical LDF obtained from Eq. (6.48) and the microcanon-
ical LDF, we notice that the former is as expected the convex hull of the latter.

6.3 Non convex LDF and divergent mixing

time

In the previous sections, we have obtained the two LDF of activity and magne-
tization for two different ensembles at thermodynamic limit. In this limit, the
ensemble equivalence is broken. However at finite size, we have equivalence of
the ensemble. We now explore the transition from equivalence to non-equivalence
when increasing the size of the system, putting the emphasis on the order of the
large size and long time limits in the computation of the statistics of magnetiza-
tion and activity.

In this section, we point out the existence of a mixing time tmix that depends on
the system size. For systems of finite size, the mixing time governs the fluctuation
regime. First, we define the mixing time from the spectral gap of the finite size
transition matrix K. Second, we give an estimate of the mixing time for the
Ising model and prove that it diverges when N →∞. This means that for large
systems, it is impossible to fully relax from the initial condition, this leads to an
ergodicity breaking. Finally, we explore the different regimes of fluctuations at
finite size and time with numerical simulations, enlightening the coherence of our
previous results.

For our numerical simulations in this section, the magnetic field is non zero
(H = 0.2) in order to break the up-down symmetry of the Ising model. Without
the magnetic field, one would see bi-modality of the activity probability density
function at large N only, in such a way that the unstable MF activity matters.
This is beyond numerical reach. The use of a magnetic field simply overcome this
difficulty, leading to two different stable MF activities and thus to a bi-modality
in the activity fluctuations.
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tization, the microcanonical LDF being the minimum over those branches. Solid
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Level lines of the microcanonical LDF of activity and magnetization (color plot
informs on the small values of the LDF only). For all figures, parameters are:
H = 0 and V = 1.5. For figure (c), the color map replaces the level lines for low
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6.3.1 Decay of fluctuations for stationary finite size
systems

Definition of the mixing time We come back to a finite size process with
a transition matrix K. We assume that this Markov operator is diagonalizable.
The eigenvalues are λn, n = 0 . . . , N , where λ0 = 0 and all other eigenvalues
are negative. The eigenvectors are lnv , r

n
v with n = 0 . . . , N where l0v = 1v is a

uniform vector and r0
v = πv the stationary probability. The spectral gap ∆λ of

the matrix K is the difference between the largest eigenvalue λ0 and the real part
of its second eigenvalues λ1. Considering the initial probability ρi

v, the probability

ρv(t) = eKt · ρi
v = πv +

N∑
n=1

eλntrnv l
n
v

T · ρi
v (6.54)

is a formal solution to the master equation (1.19). Since the spectral gap ∆λ
of the operator K is positive, the probability ρv(t) converges towards πv. The
mixing time tmix(ε) is used to quantify the time that the system takes to relax
to the stationary probability [9]. By definition, the mixing time tmix(ε) is the
minimal time for which starting from any initial probability the system is at
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most at a distance ε of the stationary probability. Formally, the mixing time is

tmix(ε) = inf

{
t > 0 : max

ρi
‖etK · ρi

v − πv‖TV 6 ε

}
, (6.55)

where the total variation distance is defined as ‖u‖TV = supA u(A). A common
choice for ε is e−1, such that tmix = tmix(e−1). The mixing time quantifies the
time needed to reach stationary probability whatever the initial probability. In
particular, an infinite mixing time is a feature of non-ergodic systems. When
considering large deviation statistics, we must formally take long time limit. We
emphasize that if we are at time long with respect to the mixing time, the large
deviation statistics are approximately valid.

Estimation of the mixing time from the spectral gap The mixing time
of Eq. (6.55) is a maximization over all initial probability, therefore looking at
‖etKρi − πv‖TV for a uniform initial probability ρi

v = 1v underestimates the
mixing time. We plot on Fig. 6.6c, the evolution of this distance for various sizes.

First, we observe an exponential scaling of the total variation distance with
time. When comparing with Eq. (6.54), we expect the mixing time to be con-
nected with the spectral gap. Indeed we have for Markov processes [9]

1

∆λ
6 tmix 6 − log ρi

min

∆λ
(6.56)

where ρi
min = minn ρ

i
n and ∆λ is the spectral gap.

Second, at very short times, the evolution of total variation distance have
a different scaling. This short time behavior is the manifestation of the other
eigenvalues whose influence over the probability ρv(t) disappears quickly.

Finally, the evolution of the total variation distance with system size reveals
the strong dependencies of the mixing time on the system size allowing for longer
and longer transient behavior.

Structure of fluctuations around the mixing time At finite time, the
fluctuations critically differ if T � tmix or if T � tmix. On Fig. 6.6a and 6.6b
we show the empirical density probability of activity and magnetization for a
system of N = 60 spins and trajectories of duration T , with tmix ' 100. And on
Fig. 6.6d, we plot the empirical probability density of activity for a system size
N = 200 where tmix ' 105.

For T � tmix, the long time probabilities of magnetization and activity, are
the ones of an ergodic systems and are then linked with the convex LDFs of
the sec. 6.2.4. As we add a small magnetic field, they are unimodal probability
density functions, see Fig. 6.6a and 6.6b at T = 300.

Otherwise when the second eigenvalue is well separated from the others eigen-
values, i.e. when ∆λ� |λ0 − λ3|, the probability ρv(t) is well approximated for
0� T � tmix by

ρv(t) ' πv + e−t∆λr1
vl

1
v

T · ρi
v. (6.57)
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Figure 6.6: (a) Activity and (b) magnetization probability density functions ob-
tained from numerical simulations of various duration T for N = 60. (c) Log-
arithm of the total variation distance between eTK · ρi

v and πv as a function of
the duration of the evolution for various system size N . We simulate the evolu-
tion of N spins using the Gillespie algorithm. For each size and time, a total of
15.104 trajectories are drawn. The initial condition of the trajectory is draw from
uniform distribution 1v. The probability density functions are computed from a
histogram of 75 bins between the minimum and maximum values. The total vari-
ation distance is the maximum of the difference between an histogram of the final
value of the trajectory and an histogram of 15.104 points drawn from probability
of Eq. (6.23). (d) Activity probability density functions obtained from numerical
simulations of various duration T for N = 200. The parameters are: V = 1.7,
H = 0.2.

It contains a term coming from the second eigenvalue. This second term induces
the secondary peak on the probability density function. Therefore, for intermedi-
ate times before the mixing time, the system behaves as an effective non-ergodic
system with fluctuations around each MF states (the system lacks of time to
switch between states). We have a transient behavior where the probabilities of
magnetization and activity are then bimodal, see Fig. 6.6d, and are linked with
the microcanonical LDF of sec. 6.2.5.

– 119 –



Chapter 6. Non equivalence of dynamical ensembles

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4
(a)

(b)

N

10−10
10−8
10−6
10−4
10−2
100
102
104

0 50 100 150 200 250 300 350 400

∆
λ

V

∆
λ

N

V=1.0

V=1.5

V=1.7

V=2.0

Figure 6.7: (a) Spectral gap as a function of the interaction energy V for various
system size between N = 1 and N = 1000. (b) Spectral Gap (lines with symbols)
and bound of Eq. (6.66) (symbols) as a function of the system size for various
interaction energy V . Parameter: H = 0.2.

6.3.2 Estimation of the spectral gap for equilibrium
system

In order to determine how the mixing time scales with the system size, we now
look for an upper bound on the spectral gap of equilibrium systems. Then, we
can estimate using Eq. (6.56) the scaling of the mixing time with the system size
from this bound.

Cheeger constant For equilibrium Markov processes, we can estimate the
spectral gap from the Cheeger bound. Indeed, transition matrices for equilibrium
systems are similar to symmetric matrices for which exact result on the gap
exist. We introduce the matrix Diag(

√
π) as the diagonal matrix with elements

Diag(
√
π)n,n =

√
πn. If the transition matrix K respects detailed balance, then

the matrix

Diag(
√
π) ·K ·Diag(

√
π)
−1

(6.58)

is symmetric, and we can use the Cheeger constant as a bound for the spectral
gap. We introduce the Cheeger constant as

Φ = inf
Ξ⊂Ω, 0<π(Ξ)61/2

Q(Ξc,Ξ)

π(Ξ)
(6.59)

where Ξ is any subset of the set of state of our system Ω such that π(Ξ) =∑
x∈Ξ πx < 1/2 and,

Q(Ξc,Ξ) =
∑

x,y|x∈Ξ, y∈Ξc

πxωy,x (6.60)
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is the sum of probability flow from the subset Ξ to the complementary of Ξ,
denoted Ξc. From Ref. [116], we have

∆λ 6 2Φ. (6.61)

Upper bound for the Cheeger constant Computing the Cheeger constant
is not easy in general, but it is quite easy to bound it from above. For a subset
Ξ, the probability flow from Ξ to Ξc, is simply bounded by

Q(Ξc,Ξ) 6 Nbπx́ωý,x́ (6.62)

where Nb is the number of edge connecting Ξ and Ξc and

(x́, ý) = argmax
x∈Ξ, y∈Ξc

πxωy,x, (6.63)

the edge supporting the biggest probability flow from Ξ to Ξc. Denoting then x̃
the most probable state in Ξ, we have

Φ 6
Nbπx́ωý,x́

πx̃
. (6.64)

As we are mainly interested in the large size limit of the mixing time, let’s
now assume that the stationary probability respects a large deviation principle

πx 'N→+∞ e−NI (x). (6.65)

We consider a connected subset of states Ξ such that the state x̄ with I (x̄) = 0 is
not in Ξ. For large enough N , the probability of Ξ is surely less than 1/2. Using
the bound (6.64) on the Cheeger constant, we have a large deviation estimate as

Φ 6
Nbπx́ωý,x́

πx̃
' Nbωý,x́e

N(I (x̃)−I (x́)). (6.66)

Therefore if it exists Ξ such that the LDF I (x) has a local minimum on Ξ that is
not a global minimum, we will have I (x̃)−I (x́) < 0. Then if the product Nbωý,x́
is not diverging exponentially, we have bounded the spectral gap by something
going to 0 as N → +∞. Therefore the mixing time diverges with the system size,
and the divergence is even exponential.

Application to the Ising model In our case. we consider the subset of state
Ξ− = {x|x 6 0}, if H > 0 it has a stationary probability less than 1/2, otherwise
if H < 0, we consider the subset Ξ+ = {x|x > 0}. We have then Nb = 1, x́ = 0−

and ý = 0+, the lower and upper closest states to 0. The stationary probability
respects a large deviation principle, with a local minimum appearing after the
phase transition. Therefore, we have a diverging mixing time after the phase
transition, but not before.

These results are confirmed by numerical computation of the spectral gap. On
Fig. 6.7a, we plot the spectral gap as a function of the system size N and of the
interaction energy V . Before the phase transition, the spectral gap remains finite
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and so does the mixing time. After the phase transition, the spectral gap goes
to zero when increasing N . The speed of convergence of the spectral gap is well
caught by the bounds (6.66) as indicates the exponential decay with increasing
N shown on Fig. 6.7b. The mixing time is so at least diverging exponentially
with the system size.

6.3.3 Non convexity and ergodicity

Fluctuations and mixing time From the previous results, we are now able
to explain the transition between equivalence and non-equivalence of ensembles.
As emphasized, the fluctuations are different before and after the mixing time,
and the mixing time is diverging with the system size. Therefore if we take long
time limit before large size limit, we overcome the mixing time, the system stays
ergodic. As the equivalence remains valid, the correct behavior of the fluctuations
is given by the canonical LDF. However if we take large size limit first, the mixing
time is infinite such that we stay in the regime of fluctuations before the mixing
time, i.e. the LDF is non convex.

Metastability in equilibrium systems We also emphasize that from the
sec. 6.3.2, the presence of equilibrium metastable states leads to non-ergodicity
and then to the non-equivalence of dynamical ensembles. The existence of such
metastable states originates in the breaking of equivalence for equilibrium ensem-
bles.

When considering the equilibrium ensembles, the question of the equivalence
have been studied in detail [179], the non-equivalence is connected with either
long-range interactions [41, 50, 56] or phase transitions [69, 80]. In particular, the
fully connected Ising model that we studied in the sec. 6.2 exhibits both infinite
range interactions and phase transitions.

Hence, we reveal a connection between the equivalence of equilibrium en-
sembles and the equivalence of dynamical ensembles when studying systems in
equilibrium.

Zeros of the LDF The most probable states are determined from the zeros
of the LDF. When the system is non-ergodic and the LDF is non-convex, we
observe separate zeros of the LDF. As the ergodicity is broken, they correspond
to the most probable value of the observable generated by each metastable state,
for the fully connected Ising model this is the various mean-field value of the
observables. Theirs relative probability is determined from the initial probability
to start within each subpart of the state space.

On the contrary, when the system is ergodic and the LDF convex, we observe
a whole continuous set of observables values for which the LDF is zero, e.g.
the triangle region in Fig. 6.4c. These values corresponds to trajectories that
will spend a fraction of time around one metastable state and another fraction
around another metastable state, the final value of the observables being the
time average on the trajectory. The move between metastable states is allowed
due to the ergodicity. These trajectories are connected with the instantons of
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the Lagrangian, i.e. trajectories going from a stationary solution to another
stationary solution of the Euler-Lagrange equation [14, 97, 130]. We did not take
them in account in the minimization of Eq. (6.44). However, taking them into
account does not modify the canonical LDF, but gives instead another LDF at a
different scaling of large deviation [128].
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A complex model of machine: the
Brownian Donkey

We introduce in this chapter a more complex model of machine, the Brownian
Donkey, which is a non-equilibrium version of the model studied in the previous
chapter [67]. This model is used to study the effects of interaction between
several nanomachines on efficiency and power. The chosen interaction is here
simple enough to allow (almost) analytical computations, as a coarse-grained
representation of the model is available. We observe on this model emergent
features in the thermodynamic limit, such as an emergent tight coupling and
a phase transition. We study their consequences on the average efficiency and
power. At fluctuating level, we obtain efficiency LDF with singular properties
that we examine and explain.

7.1 Model definition and first properties

7.1.1 Association of simple machines

Simple unicyclic machines We start by considering a single noninteracting
unicyclic nanomachine i, sketched in Fig. 7.1(a). It can be thought as a particle
which can hop in two ways between a lower state si = 0 of energy zero and an
upper state si = 1 of energy H. One way involves crossing an energy barrier of
height Ea by exchanging energy with the cold reservoir ν = c while another way
involves crossing another energy barrier of the same height but by exchanging
energy with the hot reservoir ν = h. Furthermore, hopping from si = 1 to si = 0
via cold channel requires to do work against the external nonconservative force
F , while doing the same via hot channel gains work from F . The transition rates

ωε;c = Γe−
βc
2

[Ea+εH−εF ] (7.1)

ωε;h = Γe−
βh
2

[Ea+εH+εF ] (7.2)

therefore describes the probability per unit time for hopping upward (ε = +1) or
downward (ε = −1) via channel ν = c, h. We set the transitions rates to zero if
the transition is not allowed. Γ = 1 sets the time scale unit.
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Figure 7.1: (a) Single two state machine subjected to a nonconservative force
F and which can change state due to two reservoirs. (b) Ensemble of N = 6
interacting machines in state n = 2.

In absence of force, the particle will in average move clockwise (i.e. go up via
the hot reservoir and down via the cold one). When doing the same in presence
of force, the machine operates as a heat engine which produces work by rotating
against the force. When rotating on average counterclockwise (i.e. up via cold
and down via hot reservoir), the machine operates as a heat pump since work is
spent to bring energy from the cold to the hot reservoir.

This is one of the simplest model of thermal machines. However, being an
unicyclic model, the machine is tight coupled.

Interaction We now turn to a collection of N such unicyclic nanomachines as
shown in Fig.7.1(b) interacting via an infinite range pairwise repulsive interaction
of value V/N between the particles with opposite states. The internal energy is
thus

E{s} = H
N∑
i=0

si +
V

N

N∑
i=0

N∑
j=0

si(1− sj), (7.3)

where {s} denotes a many-body state of the collective machine.
Via the mapping of state si on the spin value 2si − 1, the internal energy of

Eq. 7.3 is that of the infinite range Ising model with coupling constant V/4 and
magnetic field H/2. We thus recover the Ising model when βc = βh and F = 0.

This collection of machines have been introduced in Ref [67, 183] as the Brow-
nian Donkey, in order to study how negative mobility originates from fluctuations,
explaining the origin of the name.

Coarse-graining of the dynamics The exact dynamics in term of micro-
scopic states (i.e. many-body states), {s}, introduced in Eq. (7.1), can be ex-
actly mapped into a dynamics on mesostates n({s}) =

∑N
i=0 si denoting the

number of nanomachines in state si = 1. The mesostate probability ρn(t) =∑
{s} ρ{s}(t)δn({s}),n evolves according to the master equation

∂

∂t
ρn(t) =

∑
ε=±1

ρn+ε(t)ω(n+ε,n) − ρn(t)
∑
ε=±1

ω(n,n+ε), (7.4)
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where the transition rates for jumping from n → n + ε due to reservoir ν are
given by

ω(n+ε,n;ν) =
∑
i

ωε;νδn,n({s})δsi,(1−ε)/2. (7.5)

We have for the cold and hot channel

ω(n+ε,n;c) = N

(
1 + ε

2
− ε n

N

)
e−

βc
2

(Ea+En+ε−En−εF ) (7.6)

ω(n+ε,n;h) = N

(
1 + ε

2
− ε n

N

)
e−

βh
2

(Ea+En+ε−En+εF ) (7.7)

with En = V n(N − n)/N + Hn the energy of the mesostate n. This result
is due to the fact that the microscopic rates in Eq. (7.1) are the same for all
microstates {s} associated to the same mesostate n. We also define the total
rates ω(n+ε,n) =

∑
ν ω(n+ε,n;ν).

Cycle and reservoirs matrix The graph of the coarse-grained system is rep-
resented on Fig. 7.2. It has N + 1 states, 2N edges and N cycles. The edges
are labeled as e2n−1, n = 1, . . . , N for edges connected to the cold bath and
e2n, n = 1, . . . , N for edges connected to the hot bath. The cycles c1, . . . , cN are
obtained from the cycle matrix

C =


1 0 0 . . .
−1 0 0 . . .
0 1 0 . . .
0 −1 0 . . .
... 0

. . .

 . (7.8)

The nonconservative force F is applied on all transition, , see sec. 1.2.6, such that
the reservoirs matrix is a 4×2N matrix (the two columns represented correspond
to edge e2n−1 and e2n)

R =


En − En−1 0

. . . 0 En − En−1 . . .
−1 0
0 1

 , (7.9)

with reservoir affinities

fr
T = (−βc,−βh, βcF, βhF ). (7.10)

Using the reservoirs matrix, the mesoscopic rates satisfy the local detailed
balance

ln
ω(n+ε,n;c)

ω(n,n+ε;c)

= −βc(En+ε − En − εF ) + Sn+ε − Sn, (7.11)

ln
ω(n+ε,n;h)

ω(n,n+ε;h)

= −βh(En+ε − En + εF ) + Sn+ε − Sn (7.12)

where each state has now an associated internal entropy Sn = lnN !/[n!(N −n)!].
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Figure 7.2: Graph representation of an ensemble of N interacting machines with
identification of the edges and cycles; the two types of edges correspond to the
hot (red) and cold (blue) heat reservoirs.

Stationary probability We derive the explicit stationary probability enabling
to compute currents of the collective machine with a finite number of particles.
The stationary probability is given by the spanning tree formula [163]:

πn ∝
∑
Tα(n)

∏
(n,ε)∈Tα(n)

∑
ν

ω(n+ε,n;ν). (7.13)

The sum runs on all spanning trees Tα(n) rooted in n. The product spans all
possible edges (oriented to the root) in a tree: (n, ε) is the edge associated to the
transition n → n + ε. For the graph displayed in Fig. 7.2, the sum on spanning
trees can be factorized into the more explicit expression

πn =
1

Z

[
n−1∏
m=0

∑
ν

ω(m+1,m;ν)

][
N∏

m=n+1

∑
ν

ω(m−1,m;ν)

]
, (7.14)

where Z is a normalization constant scaling like NN . Using this stationary prob-
ability, the steady state cycle current per machine jcn of the cycle cn reads

Njcn = ω(n+1,n;2)πn − ω(n,n+1;2)πn+1 = ω(n,n+1;1)πn+1 − ω(n+1,n;1)πn. (7.15)

Tree-like system Even if the system is set out of equilibrium by its external
reservoirs, the total rates ω(n+ε,n) respect detailed balance with respect to the
stationary probability (7.14). Indeed if we join togheter the two edges linking
each pair of states, the graph of the system of Fig. 7.2 becomes a linear tree and
do not have cycles.

7.1.2 The Brownian Donkey as a machine

We study the assembly of machines as a single machine, let’s see how to obtain
the physical currents of the coarse-grained system.

Physical currents and partial entropy rate From the cycle and reservoirs
matrix, we have two conservations laws

`1r
T

= (1, 1, 0, 0) and `2r
T

= (0, 0, 1,−1). (7.16)
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We set the selection matrix and physical matrix (the represented column corre-
sponds to cycle cn) as

V =


1 −F/2
−1 F/2
0 1/2
0 1/2

 P =

(
. . . En − En−1 + F . . .
. . . −2 . . .

)
(7.17)

such that the two physical affinities are given by

f1 = βc − βh (7.18)

f2 = βcF. (7.19)

Power and efficiency From the physical matrix, the partial entropy produc-
tion rates are the input entropy production rate

σ1 = (βc − βh)
N∑
n=1

[En − En−1 + F ] jcn , (7.20)

this is the entropy production rate associated with the heat coming from the hot
reservoir, and the output entropy production rate

σ2 = −2βcF
N∑
n=1

jcn , (7.21)

this is the entropy production rate associated with the work done by the external
non-conversative force.

From Eqs. (7.20–7.21), we see that in absence of interactions, V = 0, the
property of tight coupling is satisfied. Indeed both the input and the output en-
tropy production rates are in this case proportional to the same current

∑N
n=1 jcn .

However, this property is lost in presence of interaction since the input entropy
production rate looses this proportionality while the input does not.

Based on the entropy production decomposition (7.20–7.21), the efficiency of
the machine operating as a heat engine ensues

η =
−σ2

σ1

and η̄ =
−σ̄2

σ̄1

. (7.22)

Indeed, in average work is extracted, σ̄2 < 0, heat is absorbed from the hot
reservoir, σ̄1 > 0, particles rotate on average in the clockwise direction. When
σ̄2 > 0 and σ̄1 < 0, the machine operates as a heat pump, particles rotate in the
counter clockwise direction on average, and the macroscopic efficiency of the heat
pump, 1/η, is bounded by 1 ≥ 1/η̄ > 0. The dud engine regime occurs when
η̄ < 0.

Remark: The coarse-graining does not affect the entropy production rates.
In the absence of transition between microstates inside the same mesostate, the
determination of the entropy production rates from the coarse-grained transi-
tion rates is the same than the one determined from the microstate transition
rates [82].
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7.1.3 Thermodynamics limit

In the following, we set H to zero for simplicity.

Mean-field density In the thermodynamic limit, i.e. when N � 1, the energy
change for the transition n→ n+ ε becomes

lim
N→∞

En+ε − En = ε∆E(x) = εV (1− 2x) (7.23)

where the state of the system is now a density of particle x = n/N . In the same
idea, the transition rates are

Jε;ν(x) = lim
N→+∞

ω(xN+ε,xN ;ν)

N

=


(

1 + ε

2
− εx

)
e−

βc
2

[Ea+ε∆E(x)−εF ] ν = c;(
1 + ε

2
− εx

)
e−

βh
2

[Ea+ε∆E(x)+εF ] ν = h.
(7.24)

In the continuous limit, the master equation Eq. (7.4) can be transformed into
an evolution equation for the density

〈ẋ〉 =
∑
ε=±1

ε〈Jε(x)〉, (7.25)

with Jε(x) = Jε;c(x) + Jε;h(x). The serie expansion of Eq. (7.25) shows that
momenta 〈xm〉 of order m ≥ 1 appear in the right hand side: the equation is
not closed. Upon mean field approximation, whose validity is studied in the next
paragraph, we close this equation into the following non linear equation

〈ẋ〉 =
∑
ε=±1

εJε (〈x〉) . (7.26)

Its steady state solutions are the mean field densities xmf verifying

J− (xmf) = J+ (xmf) . (7.27)

These densities are represented in the branching diagram of Fig.7.3a. At a critical
value of the interaction energy V mf

cr of the interaction, three MF densities appear
instead of a unique density. The complete phase diagram of the model is provided
in the next section.

Fokker-Planck equation We confirm the validity of the mean-field approxi-
mation by expanding (up to second order) the master equation (7.4) leading to
the Fokker-Planck equation:

ρ̇x(t) = − ∂

∂x
{[J+(x)− J−(x)]ρx(t)}+

1

2N

∂2

∂x2
{[J+(x) + J−(x)]ρx(t)} . (7.28)

The last term disappears when N → +∞ and the mean field approximation is
exact: the state xmf will be the state of maximum probability in the stationary
state.
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Figure 7.3: Stable (black) and unstable (light blue) mean field steady state
densities xmf versus interaction (a) In a presence of a first order phase transition,
F = 0.5. energy V . Insets: density LDFs versus the density x for four values of V
indicated by vertical dashed lines. The value of the minimum of the density LDF
changes abruptly across the phase transition denoted by the thick dashed line
(red). (b) In a presence of second order phase transition, F = 0. The value of the
minimum of the density LDF changes smoothly at V 2

cr. The other parameters
are: Ea = 2, βc = 10, βh = 1.

LDF of density We can go a step further and compute the large size limit
of the stationary probability πv (7.14). We use the following convention for the
continuous limit

n−1∑
m=0

1

N
−→

∫ x

0

dx′ , (7.29)

to obtain

πx =
1

Z
exp

[
N

∫ x

0

dx′ ln J+(x′) +N

∫ 1

x

dx′ ln J−(x′)

]
(7.30)

Z =

∫ 1

0

dx exp

[
N

∫ x

0

dx′ ln J+(x′) +N

∫ 1

x

dx′ ln J−(x′)

]
. (7.31)

We use the Laplace’s method to compute the non-equilibrium partition function
Z for large N . The exponent is maximum for each densities xmfi corresponding
to the ith mean field solutions (ordered in growing order by convention) of the
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master equation J− (xmf) = J+ (xmf). Let’s denote κ the total number of mean
field solutions xmf for which the exponent in Eq. (7.31) has the same global
maximum value. In this case, we have

Z ' κ exp

[
N

∫ xmf

0

dx′ ln J+(x′) +N

∫ 1

xmf
dx′ ln J−(x′)

]
. (7.32)

Remark that the other solutions xmfi for which the exponent has a smaller local
maximum do not contribute in the large N limit. Thanks to this expression of the
non-equilibrium partition function, we can obtain the large deviation function of
density for this model defined by

I (x) = lim
n→∞

−1

N
lnπ(x= n

N ) (7.33)

Using Eqs. (7.30) and (7.32), we get

I (x) =

∫ xmf

x

dx′ ln
J+(x′)

J−(x′)
, (7.34)

whose vanishing minimum is at the mean field density xmf with highest proba-
bility. The stationary probability for density writes asymptotically

πx � e−NI (x). (7.35)

This density LDF is shown in the inset of Fig. 7.3a for different values of the
interaction energy V .

Phase diagram Eq. (7.27) exhibits one or several solutions, indicating a critical
behavior. This phase transition has been studied by Cleuren and Van den Broeck
to show that it was associated with negative response phenomena when apply-
ing the external nonconservative force [67]. Noticing that a negative response
is equivalent to a work production, we aim at describing the thermodynamic
behavior of the machine in the presence of the phase transition.

At the mean-field level, the transition (at the critical interaction energy V mf
cr )

from one to three MF densities is the signature of a phase transition. The ana-
lytical value of V mf

cr can be computed for F = 0 [67]

V mf
cr = 2

e−βcEa/2 + e−βhEa/2

βce−βcEa/2 + βhe−βhEa/2
. (7.36)

The new MF densities may not be reached right after crossing the critical value
V mf

cr . This is illustrated by the inset of Fig.7.3a representing the large deviation
function of density whose extrema are located at the MF densities. We observe
that the minimum of the LDF, corresponds to the most likely density and changes
abruptly for V 1

cr ' 2.4 > V mf
cr . Therefore, the system undergoes a first order phase

transition on the critical line V 1
cr at higher energy than the mean field critical

line V mf
cr . The corresponding phase diagram is provided in Fig.7.4. This phase

transition is of significant relevance since the discontinuity of the density produces
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Figure 7.4: (a) Non-equilibrium phase diagram of the machine. A cross-section
for βc = 10 is projected on the back left face, and for F = 0.5 on the back right
face. The solid blue line represents the locus of the transition V 1

cr, and the dot-
dashed green line, the locus of η̄ = 1. The frontier between the red and salmon
area is the line V mf

cr . The yellow (V = 1.6), green (V = 1.8), violet (V = 2.2) and
blue (V = 2.5) points indicate the location in the phase diagram corresponding
to the parameters taken for other figures. The critical line V 2

cr is projected on
the bottom face (solid brown line): this line is the intersection of the locus of the
transition V 1

cr with the red area (b) Zoom over the cross-section for F = 0.5 to
emphasize the possibility of 5 MF solutions. The parameters are: Ea = 2, βh = 1.

a discontinuity of other thermodynamic variables, like for instance the entropy
production rates or the efficiency due to the dependence of these variables on the
MF density.

The system undergoes also a second order phase transition on the critical
line V 2

cr, as show on Fig. 7.3b. In this case, the phase transition coincides with
the appearance of the new MF densities. Outside of the zone delimited by this
critical line, the system no longer has a phase transition, and is supercritical. In
particular, we retrieve the classical order-disorder phase transition of the Ising
model for the system under equilibrium conditions, i.e. F = 0 and βc = βh. We
emphasize also the possibility to have five different MF solutions to Eq. (7.27),
as shown on Fig. 7.4b.
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7.2 Emerging tight coupling

7.2.1 Efficiency and power in the thermodynamic limit

We now turn to the mean field approximation for the input and output parts of
the entropy production rate per machine that become

σ̄mf
1 = (βc − βh) [∆E(xmf) + F ] jcNxmf (7.37)

σ̄mf
2 = −2βcFjcNxmf , (7.38)

because the number of particles in the upper state converges to Nxmf in the
macroscopic limit. Note that the mean field approximation restores the tight
coupling property in presence of interaction as both the input and output entropy
production rates become proportional to jcNxmf in the macroscopic limit and hence
proportional to each other. The macroscopic efficiency becomes in the mean field
description

η̄mf = − σ̄
mf
2

σ̄mf
1

=
2βcF

(βc − βh) [∆E(xmf) + F ]
. (7.39)

Due to the tight coupling property one expects this efficiency to be higher than
the efficiency of a finite ensemble of interacting machines.

The emergent tight coupling originates in a local coupling between output
and input entropy production rates. Indeed for each cycle, we can define a local
efficiency as

ηl
cn =

2βcF

(βc − βh)[(En+1 − En) + F ]
, (7.40)

which is the ratio between input and output entropy production rates for each
cycle. In the thermodynamic limit, only few cycles around cNxmf contribute to
the total entropy production rate. As a consequence, the local efficiency (7.40)
for cycle cNxmf becomes the macroscopic efficiency (7.39). The existence of a
local efficiency function of the state n will significantly influence the efficiency
fluctuations in connection with the critical behavior of the particle density.

7.2.2 Non-equilibrium conductance matrix

Previous results can be confirmed by looking at the non-equilibrium matrix.
From the cycle and physical matrix (7.8) and (7.17), we can compute the non-
equilibrium matrix. The corresponding degree of coupling is given by

ξ = −

∑N
n=1(En − En−1 + F )

jcn
fcn√(∑N

n=1(En − En−1 + F )2
jcn
fcn

)(∑N
n=1

jcn
fcn

) , (7.41)

with fcn = (βc − βh)(En − En−1) − (βc + βh)F the affinity of the cycle cn. The
degree of coupling is plotted as a function the system size N in Fig. 7.6. When
the system is composed of only one nanomachine we have tight coupling. This
property is lost as soon as two nanomachines are coupled together, but reappears
in the infinite size limit. We emphasize that the sign of the degree of coupling is
in accordance with the efficiency of Fig. 7.5b.
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Figure 7.5: (a) Input (resp. output) entropy production rate σ̄1 (resp. −σ̄2)
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interacting machines, as a function of the interaction energy V . Black (and light
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our four value of V . Dot-dashed lines (pink, orange and brown) correspond to
input entropy production rate for various values of N . Inset: Zoom of the input
and output entropy production rates for V ∈ [0, 2]. (b) Macroscopic efficiency for
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DE denotes respectively the Heat Engine, the Heat Pump and the Dud Engine
regimes. The heat engine regime is hatched by gray lines. The parameters are:
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7.3 Currents and efficiency fluctuations

We now turn to the study of the currents and efficiency fluctuations in the large
size and long time limit. Based on the results of Ch. 6, we compute the propagator
of the generating function and obtain the efficiency LDF within microcanonical
and canonical ensemble.
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7.3.1 Propagator of the generating function

Tilted matrix For a finite number of machines, the fluctuations are obtained
from the tridiagonal tilted matrix Kγ1,γ2 of elements

Kγ1,γ2
n,n = −

∑
ε=±1, ν=c,h

ω(n,n+ε;ν)

Kγ1,γ2
n+1,n = ω(n+1,n;c) + ω(n+1,n;h)e

γ1(βc−βh)(En+1−En+F )−2γ2βcF (7.42)

Kγ1,γ2
n−1,n = ω(n−1,n;c) + ω(n−1,n;h)e

−γ1(βc−βh)(En−1−En+F )+2γ2βcF

We remark that the tilted matrix is similar to the symmetric tridiagonal matrix
Kγ1,γ2

sym of elements [16]

Kγ1,γ2
sym n,n

= Kγ1,γ2
n,n; (7.43)

Kγ1,γ2
sym n+1,n

= Kγ1,γ2
sym n−1,n

=
√
Kγ1,γ2

n+1,nKγ1,γ2
n−1,n. (7.44)

Then all the eigenvalues of the tilted matrix are real, and we can use results
of Ch. 6. This is in accordance with the tree-like structure of graph 7.2 when
considering total transition rates.

Large size propagator From standard methods [33, 107, 22], we obtain the
propagator of the generating function of the entropy production rates as

G(xf, xi, γ1, γ2) = IE
[
eNT (γ1+γa2)

]
xf,xi

(7.45)

'N→+∞ exp

(
N

∫ T

0

dtL (xt, ẋt, γ1, γ2)

)
(7.46)

where L is the Lagrangian

L (x, ẋ, γ1, γ2) = ẋ ln

−ẋ+
√
ẋ2 + ϕ(x, γ1, γ2)

2
∑
ν=1,2

J−1;ν(x)e−fν(x,γ1,γ2)


−

∑
ε=±1,ν=c,h

Jε;ν(x) +
√
ẋ2 + ϕ(x, γ1, γ2) (7.47)
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with
ϕ(x, γ1, γ2) = 4

∏
ε=±1

∑
ν=c,h

Jε;ν(x)eεfν(x,γ1,γ2), (7.48)

and

fc(x, γ1, γ2) = 1; (7.49)

fh(x, γ1, γ2) = γ1(βc − βh)(∆E(x) + F )− 2γ2βcF

= (βc − βh)(∆E(x) + F )(γ1 − ηl(x)γ2). (7.50)

where ηl(x) is equivalent to ηl
cn introduced in the Eq. (7.40) with x = n/N . Notice

the similarity with the Lagrangian (6.40) for the fully connected Ising model. The
propagator of Eq. (7.45) is almost explicit: the path xt starting in xi and ending
in xf must be determined using the Euler-Lagrange equation

∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
. (7.51)

Due to the large size limit and as explained in the previous chapters, the
model is non-ergodic. At large time, the dominants contribution are obtained
from stationary solutions of Euler-Lagrange equation that we denote x∗.

7.3.2 CGF of the currents

The CGF proceeds from the leading elements of the propagator of the generating
function

φ(γ1, γ2) = max
xf,xi

lim
N,T→∞

1

NT
lnG(xf, xi, γ1, γ2)ρi(xi) = max

x
L (x, 0, γ1, γ2). (7.52)

The CGF is plotted on Fig. 7.7 for various values of the interaction strength.
It reveals interesting features in connection with the properties of the Brownian
Donkey studied in sec. 7.1.3 and 7.2.

Metastability For certain values of (γ1, γ2), the CGF is non differentiable, the
locus of this non differentiability is represented on Fig. 7.7 by a gray dashed line.
In particular the point (γ1, γ2) = (0, 0) becomes a point of non differentiabil-
ity when three MF solutions appear (this is the case for V = 2.2). This is in
accordance with results of Ch. 6.

Emergent tight coupling The property of local proportionality of cycle en-
tropy production rates leads to a particular symmetry of the Lagrangian. We
introduce the function

γ̃(γ, x) = −1/2 + (γ + 1/2)ηl(x), (7.53)

Accordingly, the Lagrangian verifies the symmetry

∀x ∈ R L (x, 0, γ̃(γ2, x), γ2) = L (x, 0,−1

2
,−1

2
) (7.54)
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The same symmetry holds for the partial derivatives with respect to x at constant
γ1, γ2 of L (x, 0, γ1, γ2). As a consequence, these partial derivative evaluated in
(x∗) and (γ̃(γ2, x

∗), γ2) vanishes. Hence if a stationnary trajectory x∗ is a solution
for (γ1, γ2) = (−1/2,−1/2) it is also a stationary solution of the Euler-Lagrange
equation along the line γ̃(γ2, x

∗) of Eq. (7.53) in the γ1, γ2 space. As such, it
is at least a local extremum of the action and may be a global maximum. The
fact that the same maximizing trajectory, here x∗, exists for different values of
γ1, γ2 implies that the classical action stays constant leading to a degeneracy of
φ(γ1, γ2) in the γ space.

There are now three possible cases:

(i) x∗ is the maximizing trajectory along the whole line of Eq. (7.53) and the
machine displays tight coupling in the large size limit.

(ii) x∗ is a maximizing trajectory on a segment of the line of Eq. (7.53) due to
the apparition of (at least) one new maximizing trajectory when changing γ1, γ2.
This is related to the presence of a dynamical phase transition in the system
between a null entropy production phase and higher entropy production phase.

(iii) x∗ is never a maximizing trajectory, excepted at (γ1, γ2) = (−1/2,−1/2):
another maximizing trajectory immediately appears when deviating from this
point.

This symmetry leads to a degeneracy of the minimum of the CGF, that is
illustrated in Fig. 7.7 by a green solid line. For the Brownian Donkey, we are in
the case (ii) the degeneracy is interrupted by the presence of the dynamical phase
transition.
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Figure 7.8: (a–d): Long time efficiency LDF at finite N (dashed lines) and
N → ∞ (solid line) for our four values of V . The solid black squares mark
the position of the stable MF efficiencies while the empty blue squares mark the
position of the unstable MF efficiency. The dashed vertical lines are located at
the efficiency values ηA and ηB corresponding to slopes of the lines crossing the
boundaries of the plateaus on Fig. 7.7(a–d) We used the same parameters as in
Fig. 7.5.

7.3.3 Efficiency fluctuations

Ergodic case First, we compute the efficiency LDF within the canonical en-
semble. The efficiency LDF is obtained directly from the Eq. (3.50)

Jca(η) = −min
γ2

φ(γ2η, γ2). (7.55)

The results are presented on the Fig. 7.8 for different values of the interaction
energy V smaller and higher than the critical value V 1

cr. We remark two particular
features of these curves regarding its maximum and minimum.

First, we notice that the maximum is a plateau at any interaction energy V .
The height of this plateau is given by the opposite of the degenerated minimum of
the CGF φ(γ1, γ2) of Fig. 7.7 (green solid line). Hence, the plateau is associated
with the degeneracy of the minimum of the entropy production CGF that we
discussed earlier. Using a geometrical interpretation of Eq. (7.55), a straight line
crossing the origin in Fig.7.7 can be associated with an efficiency η given by its
slope; then the minimum of φ(γ1, γ2) along this line yields −Jca(η). Hence, the
boundaries ηA and ηB of the higher plateaus of the efficiency LDF are the slopes
of the lines crossing A and B in Fig.7.7. These points are at the intersection of
the line of Eq. (7.53) with the critical line (gray dashed line) at which the classical
trajectory changes abruptly. Therefore, even though the interaction energy is far
below the critical value V = 2.4, the phase transition impacts the rare efficiency
fluctuations producing the higher plateau of Jca(η).

Second, the minimum of the efficiency LDF is given by another plateau con-
necting MF values of the efficiencies. Since the partial derivatives of φ(γ1, γ2) at
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Figure 7.9: (a–d): Long time efficiency LDF for N → ∞ for our four values of
V . The solid black squares mark the position of the stable MF efficiencies while
the empty blue squares mark the position of the unstable MF efficiency. Solid
lines are for the microcanonical LDF and lines with squares are for the canonical
LDF. We used the same parameters as in Fig. 7.5.

the origin (γ1, γ2) = (0, 0) gives the mean entropy production rate, the efficiency
line tangent to the contour φ(γ1, γ2) = 0 at the origin corresponds to the macro-
scopic efficiency. On Fig.7.7a, this macroscopic efficiency is well defined. On
Fig.7.7b as well, but the critical line (gray dashed line) is approaching the origin.
On Fig.7.7c–d a cusp has appeared at the origin for the critical line meaning
that the tangent may take two different values. This means that a subdominant
trajectory (soon to become dominant) starts to play a role as a local extremum
of the action. This subdominant trajectory first flattens Jca(η) on Fig.7.8b and
produces the plateau connecting the MF efficiencies in Fig.7.8c–d when becoming
a dominant trajectory.

We note that the numerical results at finite size show a faster convergence on
the right side of this plateau as compared to the left side. Indeed, the left part
of the plateau is due to the unstable MF efficiency. In the large size limit, i.e.
when the system undergoes no fluctuations, this efficiency is a correct solution
at long time, however at smaller size, the fluctuations exponentially reduce the
probability of the unstable MF efficiency.

However this lower plateau is a result of the non equivalence of the canoni-
cal and microcanonical ensembles because the efficiency LDF is computed from
the convex hull of the LDF for the entropy production rates. As a consequence,
a number of entropy production rates are equally probable, just as the corre-
sponding efficiencies. As explained in sec. 6.3.3, another LDF with a different
large deviation scaling appears on this plateau and gives a finer analysis of the
efficiency relative probability [128]
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Non-ergodic case Next, we compute the efficiency LDF within the micro-
canonical ensemble. The microcanonical efficiency LDF comes from

Jmca(η) = −max
xf,xi

min
γ2

lim
N,T→∞

1

NT
lnG(xf, xi, γ2η, γ2)ρi(xi) (7.56)

= −max
x∗

min
γ2

L (x∗, 0, γ2η, γ2). (7.57)

Denoting Jx∗(η) = −min
γ2

L (x∗, 0, γ2η, γ2) the various branches of the efficiency

LDF deriving from each stationary solutions of the Euler-Lagrange equation, we
have

Jmca(η) = min
x∗

Jx∗(η). (7.58)

When comparing both efficiency LDF, we have

∀η, Jmca(η) > Jca(η). (7.59)

The microcanonical LDF of efficiency is provided in Fig. 7.9 and compared with
the canonical LDF.

We first note the persistence of the higher plateau, even if it can be of different
size (see Fiq. 7.9a and b for example). As the symmetry of the Eq. (7.53) is still
valid for all branches having a solution for (γ1, γ2) = (−1/2,−1/2), they have
also the plateau. In particular, for η = 1 the solution is found for both cases at
γ2 = −1/2 and therefore the canonical and the microcanonical efficiency LDF
have the same value for η = 1.

Second, we comment the behavior of the minimum of the LDF in the micro-
canonical case. There is now a finite number of zeros given by the MF values
of the efficiency. Due to the ergodicity breaking, they correspond to the most
probable efficiencies associated to each subpart of the state space, as explained
in sec. 6.3.3. Their relative probabilities are then given by the initial probability
to start within each subspace according to Eq. (7.56).
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Our journey across the world of small machines in stationary state stops here.
We have investigated various aspects of the thermodynamics and fluctuations of
machines.

Small machines with a discrete state space are described by Markov processes
on graphs. The relation between Markov processes and the graph theory gives first
insights into the behavior of small machines: the evolution of probability, ruled
by the master equation, depends on the edge currents and impact the physics
of the system at various levels of description. The thermodynamics structure is
set by the connection with the environment, through the reservoir matrix. This
setup provides an efficient description of stochastic machines.

Mean operation We have introduced the non-equilibrium conductance ma-
trix as a generalization of the close-to-equilibrium Onsager matrix. It connects
affinities and mean currents. The extension of close-to-equilibrium concepts to
far-from-equilibrium gives an effective parametrization of the efficiency of ma-
chines.

The degree of coupling constrains the maximum efficiency, specifying that
Carnot efficiency is only reachable by tight coupled machines. The tight coupling
is generally a properties of unicyclic systems but we have seen a model where the
tight coupling emerges in the thermodynamics limit.

Beyond maximum efficiency, the conductance matrix also constrains the re-
lation between power and efficiency and we have unified the various available
power-efficiency trade-offs into a common structure.

Fluctuations We have studied the fluctuations in the framework of large devi-
ation theory. Efficiency LDF can be derived and reveals surprising features, e.g.
the maximum of efficiency LDF is connected to the reversible efficiency, and the
shape of the efficiency LDF is universal. We have shown that these features are
conserved for machines with more than two physical fluxes, with the extra fluxes
modeling machines losses. When the losses are unknown and small, the efficiency
LDF is almost the one without losses.

We have also considered mean-field interacting models. They feature an er-
godicity breaking in the thermodynamics limit, that can be related to the presence
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of metastable states. This affects the equivalence of dynamical ensembles that
is widely used to compute LDFs. We have demonstrated how one can overcome
this difficulty by taking care of the metastable branches of the CGF. The effi-
ciency LDF for the Brownian Donkey have been then computed and compared
with efficiency LDF obtained from a convex entropy production rates LDF.

Connection between mean and fluctuating level Fluctuations and mean
values of currents are not independent. The non-equilibrium conductance matrix
not only set the mean values of the currents but also bounds the currents and
efficiency LDF. Through this connection, we have derived generalized fluctuation-
dissipation relations. Therefore the determination of the non-equilibrium conduc-
tance matrix gives insights into the behavior of small machines.

Open problems

Even if this manuscript answers a few questions about the thermodynamics and
fluctuations of small machines, there are still questions to be answered. We list
here some of the directions that can be explored:

Diffusive system Diffusive systems have a continuous state space and are not
covered by this manuscript. However, we expect that most of the results
could be extended. The quadratic structure of the fluctuations should even
simplify the description by a non-equilibrium conductance matrix [126, 149].
For ergodic continuous state space, there is a possibility of non-equivalence
of ensembles when the left eigenvectors of the tilted matrix cannot be nor-
malized [127, 129, 175], and this impacts efficiency fluctuations [98].

Time-periodic machines This manuscript concentrates on time-independent
machines. However, we can also drive machines by considering time-periodic
driving. Standard engine protocols, including the Carnot and Stirling cy-
cles, feature such time-periodic driving and generally lack time-reversal
symmetry in both macroscopic and microscopic realizations [49]. This
broken time-reversal symmetry affects many of the results derived in this
manuscript, e.g. we have modified versions of the detailed fluctuation theo-
rem [86, 173] or of the Onsager matrix [151, 154]. For efficiency fluctuations,
the maximum of the efficiency LDF is no longer the Carnot efficiency [95,
189]. Being an active direction of research, there is a growing number
of results about time-periodic driven systems, but questions about gener-
alization of non-equilibrium conductance matrix and associated relations
(thermodynamics uncertainty relations, efficiency-power trade-offs, bounds
on efficiency LDF,...) are still open.

Finite time fluctuations The results derived in this manuscript are focused on
large time fluctuations. We could seek for the extension of our results to
finite-time systems or at least the derivation of finite-time corrections to
large deviation regime. There has been a recent derivation of finite-time
thermodynamics uncertainty relations [101, 142] that represents a good
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starting point for the extension of the non-equilibrium conductance matrix
and subsequent relations. About efficiency fluctuations, it exists results for
all time fluctuations of close-to-equilibrium machines [145], and the gener-
alization of these results to machines with several fluxes seems straightfor-
wards. We expect that the finite-time conductance matrix could provide
a useful framework for approximating efficiency fluctuations at all time for
far-from-equilibrium machines.

Mixing time The mixing time gives an approximate time scale upon which
large deviations begin to be valuable. The Cheeger bound of sec. 6.3.2 is
only valid for equilibrium systems [116], but its generalization to out-of-
equilibrium systems could give new insights to the mixing time and the
different time scales at play in non-equilibrium systems.

Dynamical phase transition For systems with a dynamical phase transition
but ergodic [181], the LDF can feature a plateau for the minimum (zero)
values. We emphasize in sec. 6.3.3 that another LDF with a different scaling
has to be considered [25]. The study of fluctuations at this different scaling
is a fully open question [128].

Experiments This manuscript stays at a rather theoretical level, but this is the
hope of the author that the tools and results developed here will find use-
ful applications for modeling real physical systems. The question remains
open to known whether the non-equilibrium conductance matrix can itself
be determined experimentally or used to design efficient machines. The
results about non-equivalence of dynamical ensembles could be used in the
description of glassy systems that features large mixing time [48, 92, 110].
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Appendix

A.1 Matrix glossary

Matrices are often used in this manuscript. For this reason, we recall in this
section few useful definitions and properties of matrices.

A.1.1 Positive matrix

A matrix is a positive when its components are all positive. A matrix A is a
Metzler matrix if there exists a constant c such that A+c Id is a positive matrix.
Hence, this is a matrix with positive off-diagonals elements.

A nonnegative matrix A ∈ Rn×n is a matrix whose all components are non-
negative, morever it is a irreductible matrix if and only of (Id+A)n−1 is a positive
matrix.

For nonnegative matrices the Perron-Fröbenius theorem is [16]

Theorem: Perron-Fröbenius. Let A ∈ Rn×n be a irreducible and nonnegative
matrix, and suppose that n > 2. Then

a) There is a positive real number λ0, called the Perron–Frobenius eigenvalue
(also called the leading eigenvalue or dominant eigenvalue), such that λ0 is
an eigenvalue of A and any other eigenvalue λ is stricly smaller than λ0 in
absolute value.

b) λ0 is an algebraically simple eigenvalue of A

c) A has a unique right eigenvector r with eigenvalue λ0 whose components
are all positive.

d) A has a unique left eigenvector l with eigenvalue λ0 whose components are
all positive.

A.1.2 Positive-definite matrix

A matrix A ∈ Rn×n is positive-definite if

∀x ∈ Rn, xT ·A · x > 0 (A.1)
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and it is positive semi-definite if the equality case is allowed in the previous
equation.

We introduce a matrix order for symmetric matrices, called Loewner partial
order [16]. It is defined in such a way that A > B means that A−B is a positive
semi-definite matrix. This implies that for two symmetric n× n matrices A and
B:

A > B ⇔ ∀x ∈ Rn, xT ·A · x > xT ·B · x. (A.2)

A.1.3 Moore-Penrose pseudo inverse

Definition The Moore-Penrose pseudo inverse is a generalization of the inverse
matrix. Lets’ A be a n ×m real matrix, the Moore-Penrose pseudo inverse A+

is the unique matrix satisfying the following four conditions

• A ·A+ ·A = A

• A+ ·A ·A+ = A+

• (A ·A+)T = A ·A+

• (A+ ·A)T = A+ ·A

Properties We have some properties

• As A is a real matrix, A+ is also a real matrix.

• If A is invertible, the pseudo-inverse is just the inverse A+ = A−1.

• The pseudoinverse of the pseudoinverse is the original matrix: (A+)+ = A.

• The pseudoinversion commutes with transposition (AT)+ = (A+)T.

• The kernel and image of A+ are given by those of AT: ker(A+) = ker(AT)
and im(A+) = im(AT).

Solutions of linear systems We consider the linear system

A · x = b (A.3)

The Moore-Penrose pseudo-inverse provides a least squares solution, as x = A+ ·
b, but is not the unique solution to this equation. The whole set of solution is
given by

x = A+ · b +
[
Id−A+ ·A

]
·w, (A.4)

where Id is the identity matrix and w an arbitrary vector. The solution requires
that A+ ·A · b = b, otherwise the system does not have solutions.
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Some particular cases

• When A is a non zero-vector, then A+ =
AT

AT ·A
• When A have linearly independent columns, then A+ = (AT ·A)−1 ·AT

• When A have linearly independent rows, then A+ = AT · (AT ·A)−1.

A.1.4 A useful lemma

Let’s proove the following lemma:

Lemma. If A is a n× n positive-definite diagonalizable matrix and B a n×m
full rank matrix with m 6 n then we have

B ·
(
BT ·A−1 ·B

)−1 ·BT 6 A (A.5)

Proof. As A and B are full-rank, we can decompose the inversion using Moore-
Penrose pseudo-inverse,

B ·
(
BT ·A−1 ·B

)−1 ·BT = B ·B+ ·A ·
(
B ·B+

)T
. (A.6)

Now, B · B+ is an orthogonal projector whose eigenvalue are either 0 or 1.

Therefore, B ·
(
BT ·A−1 ·B

)−1 · BT shares m eigenvalues with A while the
n−m other eigenvalues are 0. Hence the result on the ordering from eigenvalues
comparaison.
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Résumé du manuscrit

Le développement de la machine à vapeur, brevetée en 1769 par James Watt,
est une des causes de la révolution industrielle. Son usage croissant a apporté
de nouvelles questions sur la description physique de ces machines, en partic-
ulier sur la conversion de la chaleur en travail. Pour y répondre, une nouvelle
branche de la physique, la thermodynamique, se développe progressivement au
cours du XIXe siècle. La formulation des lois de la thermodynamique a permis
d’apporter des réponses sur le fonctionnement et l’amélioration des machines à
vapeur. Le lien entre la thermodynamique et le comportement au niveau mi-
croscopique des systèmes a ensuite été explicité par l’émergence de la physique
statistique d’équilibre.

Ces deux théories étudient spécifiquement des systèmes macroscopiques qui
peuvent alors être caractérisés par un petit nombre de degré de liberté.

A l’inverse quand on se concentre sur des petits systèmes, les fluctuations dues
à l’environnement vont influer fortement sur leur comportement. Le mouvement
de collöıdes dans l’eau, ou mouvement Brownien, est un exemple typique de petits
systèmes. Quand leur taille augmente, les systèmes ne sont plus sensibles à ces
fluctuations et on retrouve le cadre de la thermodynamique. On appelle ainsi
petit système un système pour lequel les fluctuations de l’environnement sont
perceptibles.

La thermodynamique stochastique s’est développée ces vingt dernières années
pour fournir un cadre conceptuel à la description des petits systèmes en contact
avec un environnement fluctuant. Parmi les résultats majeurs de la thermody-
namique stochastique, on peut citer :

- La définition des quantités thermodynamiques à l’échelle des trajectoires,
par exemple l’énergie ou l’entropie. Ce qui a par la suite facilité l’usage de
la théorie des grandes déviations.

- Le théorème de fluctuations, qui impose une symétrie sur la distribution
de probabilité de la production d’entropie. Cette symétrie a d’abord été
observée dans des simulations numérique de fluides cisaillés puis généralisée
à de nombreux cas.

- La validation expérimentale de la thermodynamique stochastique à travers
de nombreuses expériences sur la manipulation de molécules uniques, le
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confinement optique de collöıdes ou le comptage d’électrons uniques sur des
systèmes électroniques mésoscopiques. Par exemple, la mesure de différences
d’énergie libre pour des petits systèmes allant du pendule de torsion à la
molécule d’ADN, la détermination de la distribution de probabilité de la
production d’entropie pour un électron unique ou bien diverses réalisations
connectant information et thermodynamique stochastique.

Parmis les problématiques initiales de la thermodynamique, la conversion
d’énergie est toujours intensivement étudiée dans le cadre de la thermodynamique
stochastique. Dans ce manuscrit, nous étudions les petites machines, en utilisant
la théorie des grandes déviations, pour répondre aux questions suivantes :

• Comment décrire les petites machines dans le cadre de la thermodynamique
stochastique?

• Est-t-il possible de généraliser, en se basant sur les relations d’incertitude
thermodynamique, la description linéaire proche équilibre aux machines loin
de l’équilibre?

• L’étude des fluctuations d’efficacité a révélé les propriétés générales de la
fonction de grande déviations de l’efficacité. Que se passe-t-il dans les cas
plus généraux non encore étudiés, en particulier le cas de systèmes avec
pertes ou non-ergodique?

Pour les petites machines, il est généralement possible d’adopter une descrip-
tion discrète de leur espace des états. Dans ce cas, l’espace des états est souvent
de taille fini et peut être décrit via la théorie des graphes. Celle-ci est décrite
dans la section 1.1 via l’introduction des cycles qui permettent la description de
la topologie du graphe.

Au delà de la géométrie de l’espace des états, la dynamique de l’évolution est
décrit par la théorie des processus markoviens, dans la section 1.2. En partic-
ulier, l’évolution des probabilités est donnée par l’équation mâıtresse. La rela-
tion entre les processus markoviens et la théorie des graphes donne une première
approche du comportement des petites machines : l’évolution des probabilités
dépend fortement des courants d’arêtes et de cycles. Cette description introduit
les deux premiers niveaux de description des systèmes qui sont complétés ensuite
par l’introduction des réservoirs. La structure thermodynamique est établie par la
connection avec l’environnement. Ce formalisme fournit une description efficace
des petites machines.

L’étude des fluctuations des petites machines se fait dans le cadre de la
théorie des grandes déviations, décrite dans le chapitre 2. L’objectif de la théorie
des grandes déviations est de fournir une estimation à temps long des proba-
bilités d’une observable, via la fonction de grande déviation. Cette observable
est calculée le long d’une trajectoire unique du système, comme expliqué dans
la section 1.3. Dans le cadre de la théorie des grandes déviations, de nombreux
résultats sont disponibles, notamment la possibilité de calculer la fonction de
grande déviation via le calcul, souvent plus simple dans notre cas d’un espace
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d’états discrets, de la fonction génératrice des cumulants. Lorsque que ce calcul
est possible on parle alors d’équivalence d’ensembles dynamiques.

La définition formelle des petites machines est faite dans le chapitre 3. A l’aide
de la matrice d’échange avec les réservoirs, et en utilisant les lois de conservations,
on construit la matrice physique qui quantifie les échanges avec l’environnement.
Une machine est alors un système avec deux courants physiques associés à deux
affinités physiques. La relation entre affinités et courants physiques caractérise
alors le comportement des petites machines. La thermodynamique linéaire, pro-
pose une relation linéaire entre courants et affinités en introduisant la matrice
d’Onsager. Les propriétés de cette matrice, développées dans la section 3.2, don-
nent des contraintes fortes sur le fonctionnement des machines dans le régime
proche de l’équilibre.

Au delà des courants moyens, les fluctuations induites par l’environnement
influent le comportement des petites machines, en particulier leurs efficacités.
La section 3.3 expose la forme générale de la fonction de grande déviation de
l’efficacité, dont la forme possède des propriétés surprenantes et universelles. Par
exemple la fonction de grande déviation de l’efficacité est borné et son maximum
est relié à l’efficacité de Carnot.

Dans le chapitre 4, on introduit la notion de matrice de conductance comme
une généralisation de la matrice d’Onsager proche de l’équilibre. Elle relie les
affinités et les courants moyens arbitrairement loin de l’équilibre au prix d’une
dépendance dans les affinités. Toutefois, cela permet l’extension des concepts
introduit en thermodynamique linéaire, comme le degré de couplage. Le degré
de couplage contraint l’efficacité maximum, spécifiant que l’efficacité de Carnot
peut être atteinte pour les machines en régime stationnaire uniquement pour
les machines en couplage fort. Au delà de cette contrainte sur l’efficacité maxi-
mum, la matrice de conductance contraint également la relation entre l’efficacité
et la puissance et fournit une vision unifiée des différentes relations efficacité-
puissance précédemment dérivées par d’autres auteurs. La matrice de conduc-
tance a également un lien avec les fluctuations, puisqu’elle fournit une borne
quadratique sur la fonction de grande déviation des courants physiques.

L’étude des fluctuations d’efficacité est traitée dans le chapitre 5. D’une part
par l’introduction de bornes sur la fonction de grande déviation de l’efficacité. Ces
bornes issues de l’étude de la matrice de conductance relient la dissipation aux
fluctuations d’efficacité. D’autre part, l’étude d’une machine avec trois courants
physiques dans la section 5.2 montre la convervation des propriétés de la fonction
de grande déviation de l’efficacité dans ce cadre plus général. De plus, quand
le troisième courant physique est inconnu et petit, on retrouve la fonction de
grande déviation de l’efficacité avec deux courants physiques ce qui démontre la
robustesse des propriétés des grandes déviations de l’efficacité.

Le chapitre 6 s’intéresse aux effets d’une brisure d’ergodicité sur les pro-
priétés des fonctions de grandes déviations. Cette brisure d’ergodicité a, entre
autres, pour origine l’existence d’une interaction à longue portée dont l’exemple
le plus simple est une interaction de champ moyen et est reliée à l’existence
d’états métastables. Cela affecte la possibilité de calculer les fonctions de grande
déviations à partir des fonctions génératrices des cumulants, brisant alors l’équiva-
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lence des ensembles dynamiques. On regarde alors comment passer outre cette
difficulté via le calcul des branches métastables de la fonction génératrice des
cumulants pourobtenir les non-convexités des fonctions de grande déviation.

Dans le chapitre 7, l’accent est mis sur l’étude d’un modèle plus complexe
de machines en interaction. Au niveaux des courants est montré l’émergence,
quand le nombre de machines augmente, d’un couplage fort. En relation avec
l’interaction de champ moyen entre les machines, les techniques développées au
chapitre 6 sont utilisées pour étudier les fluctuations à la fois des courants et de
l’efficacité. L’effet à la fois du couplage fort et de la brisure d’ergodicité est alors
visible sur les courbes de fluctuations d’efficacité.

En conclusion, cette thèse apporte une étude précise du comportement des
machines stationnaires loin de l’équilibre à la fois au niveau des courants moyens
et des fluctuations. Il reste néanmoins plusieurs questions qui mériterait d’être
débattues, dont la généralisation de ces résultats aux machines conduites périodi-
quement.
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