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Méthodes de pénalisation pour la simulation des interactions 
fluide-solide avec des réseaux variés de particules résolues. 

Résumé : Les simulations des écoulements diphasiques particulaires à l’échelle réelle de 
l’application nécessitent des modèles pour les termes non fermés des équations 
macroscopiques. Des simulations numériques directes de particules résolues utilisant la 
méthode de pénalisation visqueuse ont été réalisées afin de mesurer les interactions entre des 
particules de différentes formes (sphérique et ellipsoïdale) et le fluide porteur à différents 
régimes d'écoulement (de stokes à l'inertiel). Deux méthodes ont été développées durant cette 
thèse afin d'extraire les forces hydrodynamiques ainsi que les transferts de chaleur sur les 
frontières immergées représentant les particules. Plusieurs validations ont été conduites pour 
différentes configurations de particules : de la simulation d’une particule isolée à un réseau 
aléatoire de sphères en passant par un réseau cubique face centrée de sphères. Une corrélation 
du nombre de Nusselt est proposée pour un sphéroïde allongé plongé dans un écoulement 
uniforme. 

Mots clés : [Ecoulement diphasique, Modélisation numérique, Particules résolues, Forces 
hydrodynamiques, Transfert de chaleur, Particules non-sphériques] 

 

 
Penalty methods for the simulation of fluid-solid interactions with 

various assemblies of resolved scale particles 

Abstract : The simulations of multiphase flows at real application scale need models for 
unclosed terms in macroscopic equations. Particle-Resolved Direct Numerical Simulations 
using Viscous Penalty Method have been carried out to quantify the interactions between 
particles of different shapes (spheres, ellipsoids) and the carrier fluid at different regimes 
(from Stokes to inertial). Two methods have been developed to extract hydrodynamic forces 
and heat transfers on immersed boundaries representing the particles. Validations have been 
conducted for various configuration of particles: from an isolated sphere and spheroid to 
Face-Centered Cubic to a random arrangement of spheres. A correlation of the Nusselt 
number for an isolated prolate spheroid past by a uniform flow is proposed. 

Keywords : [Multiphase flow, Numerical modeling, Particle-Resolved DNS, 
Hydrodynamic forces, Heat transfer, Non-spherical particles] 
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Chapter 1

Introduction

Multiphase flows involving solid particles interacting with a carrier fluid are part
of a very active research area. Indeed, they are widely encountered in nature, for
instance in volcanic eruptions [10, 33], sand storms or beach erosion under wave
impact. They also occur in many industrial processes such as pneumatic conveying
systems as well as fluidized beds [77, 109], gas phase polymerization reactors [46],
chemical looping combustion [2, 67, 71, 117], fluid catalytic cracking reactors [3],
oil refining and blast furnaces, to name a few.

The achievement and improvements of these industrial applications depends on
the engineers ability to determine theirs best designs by using simulations of partic-
ulate flow (limited in this work to fluid-solid flows) in industrial devices. This kind
of simulations are also used to understand the environmental phenomena where they
took place in order to better prevent their impacts. These simulations, conducted at
the application scale, are based on statistical approaches for both the fluid-particle
interactions and the continuous phase. This is due to the huge disparity of scales
between the particle size and the process scale (for the fluid-particle interactions),
and between the smallest and largest eddy scales in the continuous phase at high
Reynolds numbers.

Continuous phase modeling

Direct Numerical Simulations (DNS) is the most accurate method to simulate the
continuous phase as it resolve the finest details of the flow in space and time.
However, at high Reynolds numbers, two constraints make this approach very ex-
pansive in CPU time and memory, leading to a limited possible investigation of the
approach. On one hand, the Eulerian mesh has to be fine enough to resolve even
the smallest velocity and pressure oscillations and capture the energy dissipating
eddies. On the other hand, the domain size has to be large enough to account
for the larger scale structures of the flow. Thus, other approaches are adopted at
high Reynolds number: Large Eddy Simulation (LES) is considered when only large
scale vortices are needed to be resolved, while the small eddies are filtered out and
energy dissipation occurring at this eddy scale is approximated by sub-grid mod-
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els. The second methodology belongs to Reynolds Averaged Navier-Stokes (RANS)
models. It is more often used for general purposes, as it gives an average solution of
the flow and the fluctuations flow contribution are modeled by semi-empirical laws
(k-‘ ...). This method is still less expensive than DNS or even LES since a coarser
mesh and larger time-steps can be utilized even if the need of semi-empirical models
introduces additional equations to solve and more empiricism in the modeling.

Note that, in the case of particulate flows, the Reynolds number is often moder-
ate (Re < 300), therefore direct numerical simulations are used to resolve the fluid
especially for dense flows where the collisions are dominant.

Fluid-Particles interactions modeling
Depending on the solid volume fraction –d i.e. the proportion of the solid phase
in the mixture, two approaches exist to simulate particulate flows abroad the mi-
croscale:

• Eulerian-Lagrangian (EL) approach (for –d < 0.1): in this method each parti-
cle is treated individually, which requires computation of both particle-particle
and particle-fluid interaction for every body immersed in the flow. Moreover,
the motion of every particle has to be calculated separately.

• Eulerian-Eulerian (EE) approach ( for –d > 0.1): unlike Eulerian-Lagrangian
approaches, the particles in this method are not treated individually but
are considered as a continuous phase inter-penetrating with the carrier fluid.
Therefore, two Navier-Stokes equations (one for the fluid and one for the
averaged particles), linked by the volume fraction, are solved.

Both approaches are based on an important assumption: the scale separation
between the size of the particles (the radius Rp for spherical particles) and the
size of the problem at the macroscopic scale or more precisely, the size of the cell
mesh �x. To be valid, Rp << �x. Both models (EL and EE) do also require
the knowledge of constitutive laws for drag, lift, torque, collisions or heat transfers
to close specific particle-fluid interaction terms. Famous correlations do exist for
monodispersed spherical particles: Schiller and Naumann [97] for drag force and
Ranz and Marshall [88] for heat transfer used in EL method when the solid volume
fraction is very low. Moreover, Ergun [42] and Wen & Yu [114] are used for drag
force as well as Gunn [47] for heat transfer. However, the particles in most appli-
cations are non-spherical and polydispersed. Therefore, new drag and lift laws as
well as Nusselt correlations have to be designed. This will be the main contribu-
tion of our particle-resolved DNS modeling, which is detailed in the next sections:
allowing to simulate new particle arrangements or shapes in order to provide new
drag, lift or Nusselt correlations, that could be used in larger scale EE or EL models.

Theoretical and experimental approaches have been widely investigated to model
the unclosed terms representing the average interphase transfer of momentum and
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energy between the fluid and the particles. However, these approaches have shown
significant limitations: on one hand, theoretical results are limited to Stokes or
moderate Reynolds number regimes [1, 81]. On the other hand, experimental mea-
surements showed huge di�erences of Nusselt number at high volume fraction be-
cause of limited optical access [112]. This motivates the community to consider
and develop Particle-Resolved Direct Numerical Simulations (PR-DNS) to directly
compute the fluid-particle interaction and the associated heat transfer closure laws.

Particle-Resolved Direct Numerical Simulations (PR-DNS)
In the framework of finite-size particle motions, many numerical approaches have
been developed to perform PR-DNS of fluid-solid flows. These can be classified on
one hand by those that rely on an unstructured body-fitted mesh to simulate the
fluid area in the two-phase flow and impose boundary conditions at particles sur-
faces [29, 56, 57, 72, 98]. However, building such a finite-volume or finite-element
mesh in three-dimensions is not easy and requires automatic remeshing as the solid
particles move according to time and space. Moreover, the remeshing process at
each calculation step is time consuming [62] and can be very di�cult to manage
automatically in computer softwares when the global shape of the fluid-solid inter-
face is changing at each calculation step [40].

On the other hand, there exist those approaches called Fictitious domain meth-
ods [60, 78] that employ a fixed Cartesian grid in the whole domain. With these
methods, the mesh is not adapted to the fluid-solid interfaces and includes both
phases. Thus, on a mesh point of view, this approach is simpler than the previous
one but di�culty lies in taking into account the presence of particles as interface
is not explicitly tracked by the mesh that does not conform to the fluid/particle
interface. To overcome this problem, a phase function is introduced to locate each
phase.

Among the wide variety of fictitious domain approaches, i.e. particles are
treated as immersed interfaces on a fixed mesh, we can cite the Distributed La-
grangian Method (DLM) of Glowinski and co-workers [78, 79], the Physalis tech-
nique of Prosperetti and co-workers [83, 101, 118], the Immersed Interface Method
of Li and Lai [66] and the most used among them detailed hereafter:

Immersed Boundary Method (IBM)

The immersed boundary method consists in adding to the Navier-Stokes equation
a forcing term to impose a solid behaviour at the particle surface. This method
was initially developed by Peskin [80] where the forcing was deduced from the force
applied on the particle. Due to instabilities, Ulmann [105] improved it by deducing
the forcing term in Navier-Stokes equation from the desired velocity at the particle
surface. Although this method has proven its e�ciency for handling finite-size
particle simulations [36, 102, 105, 106, 113, 116], the forcing on the particle surface
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contaminate the fluid area near the interface, which makes hydrodynamic force or
heat transfer computation on the surface not straightforward. To overcome this
issue, Tenneti et al. [103] proposed a new technique called PUReIBM where the
forcing term is restricted to the Eulerian grid points that lie in the particle , ensuring
that the flow solution in the fluid phase is uncontaminated by the forcing. It is worth
noting that an immersed boundary method can be implemented in any CFD code
without any need to modify the underlying solver. Moreover, the use of particle
meshes representing their body shape to impose the desired velocity makes this
method very e�cient regardless of the particle shapes and then allows the study of
flows past complex particle shapes.

Lattice Boltzmann Method (LBM)

Contrary to the methods based on classical Navier-Stokes approaches which are
using macroscopic values, LBM is based on Boltzmann equation with mesoscopic
values resolved on a discrete system of fictitious fluid called “particles” (not to be
confused with solid bodies immersed in the fluid). These fluid “particles” moves
with discrete steps and collides with each others according to specific rules. This
method is also very popular [12, 51, 53, 64, 65] as it is very e�cient and easy to
implement in parallel. In LBM, specific techniques are implemented to account for
immersed particles such as bounce back or IBM type methods.

Viscous Penalty Method

This method was originally proposed by Ritz and Caltagirone [91] and improved
by Vincent et. al. [20, 109] to what is called Implicit Tensorial Penalty Method
(ITPM). It consists in resolving Navier-Stokes equations in the whole domain and
imposing by means of a phase function a large value of viscosity in the Eulerian
cells belonging to the dispersed phase. This ensures a solid behavior in the parti-
cles [108, 109, 110]. This is the method utilized in this work. It is fully detailed
in the next chapter 2. The penalty modeling strategy developed hereafter is based
on this approach and will be reported in the next section. The main reason why
we choose to use the ITPM instead of IBM for example is that ITPM is fully
implicit and compatible with the pressure-velocity treatment that we considered,
called augmented Lagrangian method. Another important motivation in investi-
gating particle-resolved simulations with ITPM is that this appraoch is very robust
and allows for handling particle flows at any kind of density ratios or solid fractions
[34, 35, 77, 85, 86, 109].

Thesis outline

This work aims at providing a reliable tool to investigate and ultimately model
the particle-fluid interactions in the framework of finite-size particle motions. This
manuscript describes the di�erent methods implemented during this research work
as well as the numerical simulations carried out in this study. It is organized as
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follows:

• The second chapter 2 presents the Viscous Penalty Method and details some
of its main features. A new method to compute the solid phase function
Cµ located at the o�-diagonal viscosity coe�cients is proposed. A numerical
study of the parameters controlling the viscous penalty method is investigated
using a uniform Stokes flow past a cylinder, to better set up the Particle-
Resolved Direct Numerical Simulations parameters. Moreover, the viscous
penalty method set up with the new numerical parameters is validated at
higher Reynolds number using the uniform flow past a square configuration
of cylinders, where its friction factor is calculated with our particle-resolved
simulation approach and compared to Ergun correlation [42] for various solid
volume fractions.

• The third chapter 3 presents a new force calculation method based on a third
order Lagrange extrapolation coupled with a a third order Taylor interpola-
tion for immersed interfaces. This aspect is very important to extract accurate
physics from PR-DNS simulations. The way the drag, lift or Nusselt coe�-
cients are obtained thanks to fictitious domains methods is rarely explained
in the literature. This aspect of the PhD is one of the major contributions
in terms of numerical developments. This chapter also discusses the order
of approximations and associated accuracy of the force calculation method.
Validations for flows interacting with isolated spherical particles at various
Reynolds numbers are presented as well as simulations and validations of flows
through fixed Faced-Centered Cubic arrangement of mono- and bi-dispersed
spheres as well as fixed random arrangements of mono-dispersed spheres.

• The fourth chapter 4 is dedicated to the heat transfer computation using
the same method as in the second chapter 3 i.e. a third order Lagrange
extrapolation coupled with a third order Taylor interpolation. Validations of
this method are presented for flows interacting with isolated spherical particles
at various Reynolds number. Moreover, simulations of a uniform flow past a
Face-Centered cubic array of spheres are discussed as well as flows through
random arrangements of mono-dispersed spheres.

• The fifth chapter 5 is devoted to ellipsoidal particle. In a first part, a brief
description is given for the phase functions (C and Cµ) computation with
ellipsoidal particles. The extension of the force and heat transfer calculation to
ellipsoidal particles is briefly recalled. Thereafter, estimation of drag, lift and
Nusselt for uniform flows around an isolated ellipsoidal particle is presented.
Comparisons to existing correlations of the literature are investigated and a
new Nusselt correlation is considered for various Reynolds and attack angles.

• The sixth chapter 6 introduces an original method to compute forces and heat
transfer based on Aslam extension rather than Lagrange extrapolation used up
to now. Thereafter, Aslam extension numerical parameters are detailed and
validated. Estimated drag and Nusselt coe�cient for uniform flows around
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an isolated sphere are compared to those given by Lagrange extrapolation
in order to assess the improvements brought by Aslam extension. The same
study is presented for flows through fixed arrangements of mono- and bi-
dispersed spheres.

• The seventh chapter 7 summarizes general conclusions and discusses perspec-
tives of future works.



Chapter 2

Improvement of the Viscous
Penalty Method for
particle-resolved simulations

This chapter is the article [26] authored by M.-A. Chadil, S. Vincent and J.-L.
Estivalezes

Abstract

A numerical study of the parameters controlling the viscous penalty method is
investigated to better set up Particle-Resolved Direct Numerical Simulations (PR-
DNS) of particulate flows. Based on this analysis, improvements of the methods are
proposed in order to reach an almost second order convergence in space. The viscous
penalty method is validated in Stokes regime by simulating a uniform flow past a
fixed isolated cylinder. Moreover, it is also utilized in moderate Reynolds number
regime for a uniform flow past a square configuration of cylinder and compared in
terms of friction factor to the well-known Ergun correlation.

2.1 Introduction

The motion of rigid particles interacting with a carrier fluid is a very active re-
search area that is commonly found in the fields of environment and industrial
processes. Among them, we can cite fluidized beds and chemical engineering, ma-
terial manufacturing and design, sand dynamics, beach erosion under wave impact
or nano-particle impact on human health. The simulation of such real problems is
based on the use of Eulerian-Eulerian or Eulerian-Lagrangian models that require
knowledge of constitutive laws for drag, lift, torque, collisions or heat transfers for
the fluid-particle interactions. One way of designing these laws or validating them
is to use resolved-scale particle approaches, in which all scales associated with the
fluid flow and the hydrodynamic forces on the particle are directly simulated, unlike
in point-particle or Eulerian-Eulerian approaches where drag and lift correlations
are required a priori to simulate the problem.
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Chapter 2. Improvement of the Viscous Penalty Method for

particle-resolved simulations

The numerical simulation of resolved-scale particle motion is a highly developed
field of research mainly based on fixed structured grids, as unstructured meshes
adapted to the particle motion are di�cult to design in three dimensions and CPU
time consuming [62]. Among the wide variety of fictitious domain approaches, i.e.
particles are treated as immersed interfaces on a fixed mesh, we can cite the nu-
merical methods based on Lattice Boltzmann models [12, 51, 53, 64, 65] and the
approaches that uses the Navier-Stokes equations, such as the Immersed Bound-
ary Method (IBM) of Uhlmann [105, 106], the PURe-IBM approach of Tenneti et
al. [103], the Distributed Lagrangian Method (DLM) of Glowinski and co-workers
[78, 79] and the Implicit Tensorial Penalty Method (ITPM) of Vincent et. al.
[20, 109], also called viscous penalty method.

In the present work, we choose to investigate viscous penalty methods on fixed
Cartesian grids for fixed particles. Compared to other fictitious domains techniques,
the main interest of penalty methods is to rely on fully coupled velocity solving with
incompressible and solid constraints satisfaction instantly, thanks to an augmented
Lagrangian method for the fluid and viscous penalty for the solid phase. Our main
goal is first to characterize the accuracy and convergence order of the ITPM method
on reference particle motion test cases but also to improve the numerical method
and the setting of numerical penalty parameters, what has never been done. The
reference method from which we left is published in [24, 109]. We choose to use
ITPM instead of Darcy penalty method [60] because ITPM was demonstrated to
be second order convergence in space [109] whereas Darcy penalty is only first order
[6]. In addition, ITPM is a more general approach allowing to deal with moving
particles, that is our objective in future works.

The paper is organized as follows. In Section 2.2, the main features of the vis-
cous penalty method are presented and discussed. In particular, a new definition
of the solid phase function located at the o�-diagonal viscosity coe�cients is pro-
posed. The uniform Stokes flow past a cylinder is considered in section 2.3. Various
numerical parameters such as the numerical diameter of the particle, the penalty
viscosity, the augmented Lagrangian parameter or the solid phase function evalua-
tion are studied. At the end, the best set of parameters is proposed for an improved
ITPM method, whose convergence order is almost 2. Section 2.4 is devoted to the
uniform flow past a square configuration of cylinders. With the previous best set of
parameters of ITPM, the friction factor is calculated with our particle-resolved sim-
ulation approach. It is compared to Ergun correlation [42] for various solid volume
fractions. Conclusions and perspectives are finally drawn in section 2.5.

2.2 Model and numerical methods

Fictitious domain approach

The simulation of solid particles interacting with a carrier fluid is di�cult to imple-
ment with unstructured meshes in particular with 3D geometries. The commonly
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developed alternative approach consists in simulating this kind of flow on a fixed
mesh not adapted to the shape of the particle, i.e. by considering a solid phase
fraction, and to locate the fluid-solid interface thanks to an auxiliary phase function
such as the Volume Of Fluid or the Level Set [95]. The concept that separates the
particle interfaces and the mesh used to solve the conservation equations is called
fictitious domain approach [60, 87]. Indeed, from the motion equation point of view,
the interface is not known, only the presence of the solid phase is taken into account
into the motion conservation equations thanks to a volume auxiliary function and
associated specific forcing terms.

One-fluid model

As previously presented in [109], incompressible two-phase flows involving a car-
rier fluid and a solid particle phase can be modeled on a fixed mesh with fictitious
domain approaches by considering the incompressible Navier-Stokes equations to-
gether with a phase function C describing the particle phase shape. By definition,
the phase function C equals to 1 in the solid phase and 0 in the fluid medium. The
fluid-solid interface is located by the isosurface C = 0.5. As explained by Kataoka
[59] for fluid/fluid two-phase flows and Vincent [109] for particle flows, the resulting
one-fluid model takes implicitly into account the coupling between di�erent phases
separated by resolved interfaces, i.e. the particles are larger than the mesh cell size.
The motion equations reads

Ò · u = 0 (2.1)

fl

3
ˆu
ˆt

+ (u · Ò) u
4

= ≠Òp + flg + Ò ·
Ë
µ(Òu + Òtu)

È
+ Fsi + Fm (2.2)

ˆC

ˆt
+ u · ÒC = 0 (2.3)

where u is the velocity in all phases (fluid and solid), p the pressure, t the time,
g the gravity vector, fl and µ respectively the density and the dynamic viscosity
of the equivalent fluid. The four-way coupling between particles and fluid motions
is ensured in the momentum equations by the presence of a solid interaction force
Fsi [17, 74] which is not considered in the present work as only fixed particles are
dealt with. The source term Fm is used to impose a flow rate to the fluid. In the
present work, only fixed particles are considered, so equation (2.3) will be discarded.

The one-fluid model is almost identical to the classical incompressible Navier-
Stokes equations, except that the local properties of the equivalent fluid (fl and µ)
depend on C. They will be discussed later on in the present work. In the present
form, equations (2.1-2.3) do not account for incompressibility and solid constraints.
Satisfying these mechanical properties requires developing specific numerical meth-
ods called penalty approaches. They are detailed in the next section 2.3.
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Penalty methods
As previously explained, the one-fluid model and the fictitious domain approach for-
mulated to deal with particle flows require to consider each di�erent phase (fluid,
solid) as a fluid medium with specific material properties (density and viscosity for
an isothermal flow). The domain is covered by a set of representative elementary
volumes, i.e. the mesh cells on a numerical point of view, that are belonging to
di�erent sub-domains located by the phase function C. A way to satisfy fluid and
solid constraints is to define penalty terms in the momentum equation (2.2). The
first publication that reports on this approach was by Saulev [96]. For fixed par-
ticles, various improvements were suggested based on Darcy and Volume penalty
methods [6, 60, 63]. Concerning moving particles, the viscous penalty method of
first order of convergence in space was initially proposed by Ritz and Caltagirone
[91]. The method was then improved by [20, 87, 109, 110] to become a second order
in space penalty method called ITPM. This method is detailed in the rest of this
section and will be used in the present work.

Ensuring the solid behavior in the solid zones where C = 1 requires defining a
specific rheological law for the rigid fluid part without imposing the velocity. As
reported by [109] the solid constraint is intrinsically maintained if the deformation
tensor is nullified in the solid sub-domain �s:

’P œ �s
, Òu + ÒT u = 0 (2.4)

For the resolution of the momentum conservation equation (2.2) in the Navier-
Stokes equations, this condition is asymptotically verified when µ æ +Œ. In other
words, viscous penalty method consists in imposing large values of viscosity in the
particles compared to the fluid viscosity to implicitly impose the solid behavior and
also the coupling between fluid and solid. For fixed particles, the velocity of the
Eulerian cells near the centroid of the particle is assumed to be zero. A Darcy
penalty method is utilized to satisfy this conditions. The viscous penalty method
is used in the rest of the solid particles. Indeed, it propagates the zero velocity in
the whole solid medium. The e�ect of the ratio between the particles and the fluid
viscosities will be studied in this work.

A specific model is designed for handling the solid particle behavior in the one-
fluid Navier-Stokes equations. It is based on a decomposition of the strain tensor
‘ = Òu + ÒT u. Following the work of Caltagirone and Vincent [20], the strain
tensor can be reformulated so as to distinguish several natural contributions of the
strain tensor dealing with tearing, shearing and rotation. The interest of this de-
composition is then to act distinctly on each term in order to strongly impose the
associated stress. If we assume that the Navier-Stokes equations for a Newtonian
fluid contain all physical contributions traducing shearing or pure rotation e�ects,
the splitting of the viscous stress tensor allows to impose separately these contri-
butions by modifying the orders of magnitude of each term, through the related
viscosity coe�cients. These penalty terms act directly in the motion equations and
so ensure the coupling between the fluid and the solid part of the simulation domain
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instantaneously.

Decomposing ‘ according to the partial derivative of the velocity in Cartesian
coordinates for the sake of simplicity, we obtain [20]

‘ = 2

S

WWU

ˆu
ˆx 0 0
0 ˆv

ˆy 0
0 0 ˆw

ˆz

T

XXV + 2

S

WWU

0 ˆu
ˆy

ˆu
ˆz

ˆv
ˆx 0 ˆv

ˆz
ˆw
ˆx

ˆw
ˆy 0

T

XXV

≠

S

WWU

0 ˆu
ˆy ≠ ˆv

ˆx
ˆu
ˆz ≠ ˆw

ˆx
ˆv
ˆx ≠ ˆu

ˆy 0 ˆv
ˆz ≠ ˆw

ˆy
ˆw
ˆx ≠ ˆu

ˆz
ˆw
ˆy ≠ ˆv

ˆz 0

T

XXV (2.5)

This decomposition is written in compact form as

‘ij = 2 �ij + 2 �ij ≠ �ij (2.6)

where � is the tearing tensor, � is the shearing tensor and � is the rotation tensor.

 

 

 

 

 

 

 

 

 

 

 
 

        
        
        
        
        
        
        
        

Figure 2.1: Discrete interpretation of the split viscous penalty approach on stag-
gered grids: ( ) pressure points, arrows for velocity components and ( ) for pure
shearing and rotations viscosities. The black line represents the interface between
a particle and the carrier fluid.

Consequently, the divergence of the viscous stress tensor for a Newtonian fluid
appearing in the one-fluid model (2.2) reads

Ò ·
1
µ(Òu + Òtu)

2
= Ò · [µt �(u)] + Ò · [µsh �(u)] ≠ Ò · [µr �(u)] (2.7)
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The main interest of formulation (2.7) is to dissociate stresses operating in a
viscous flow and then to make the implementation of a numerical penalty method
easier. For instance, in a solid phase, if µ is chosen larger than the surrounding
fluid viscosity, (2.7) imposes that the local solid flow admits no shearing, no tearing
and a constant rotation according to the surrounding flow constraints. These flow
constraints are implicitly transmitted to the particle sub-domain as they are solved
with the fluid motion at the same time. In the same way, the modifications of the
flow motion by the particle movement are directly accounted for (two-way coupling).

For obtaining a second order convergence in space [109], a staggered grid (see
Figure2.1) is needed to implement this strain tensor decomposition where the tear-
ing viscosity µt = 2µ is located at the pressure nodes whereas the pure shearing
µsh = 2µ and rotation µr = µ viscosities lie on a specific grid, at the center of the
mesh grid cells. Defining µ in the solid 2 to 3 orders of magnitude larger than the
fluid velocity is equivalent to having µt, µsh and µr tending to large values and so
acting as viscous penalty terms in the motion equation. In these grid cells, the local
medium will be almost solid.

Phase function

The phase function C located at pressure nodes is automatically built by projecting
particles onto the pressure mesh (black nodes in Figure 2.1). The color function
is defined as the amount of solid in a pressure cell, i.e. the local solid fraction.
Therefore, in the cells containing the interface, C is computed thanks to virtual test
points [109]. In a given pressure cell, 10 test points are seeded in each direction,
as illustrated in Figure 2.2. By counting the number of test points belonging to
the particle and dividing this number by the total number of test points, the solid
fraction C is naturally obtained. It has been previously demonstrated that using
10 points by directions provides an error on C lower than 1% [109].

In our second order convergence penalty approach, a phase function Cµ located
at the viscous mesh nodes (white nodes in Figure 2.1) is introduced. As in [109], it
can be interpolated from C:

Cµ = 1
4

ÿ

N

CN (2.8)

where N denotes the indices of the pressure nodes located at the vertices of the cell
to which Cµ belongs.

Alternatively, a projection of the particle on the viscous mesh is proposed in
this work to provide the phase function Cµ by using test points, as presented in
figure 2.2, instead of interpolating it. The e�ect of this improvement is studied in
this paper.
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Figure 2.2: Virtual points ( ) on a pressure cell in a staggered grid.

Local properties of the equivalent fluid

On a discrete point of view, the flow grid cells cut by the fluid-solid interface must
be distinguished compared to those entirely included in the particles or in the
fluid. Di�erent methods can be designed to define the homogenized viscosity µ in
these mixed cells. Three di�erent numerical viscous laws have been investigated
according to the fluid and solid viscosities (µf and µs respectively), C for the
diagonal viscous stress tensor terms, Cµ for the o� diagonal viscous contributions
and also a conditional indicator function IC satisfying IC<0.5 = 1 if C < 0.5 or
ICØ0.5 = 1 if C Ø 0.5:

1. Discontinuous law:
µ = [µf IC<0.5 + µsICØ0.5]

2. Arithmetic law:
µ = [(1 ≠ C)µf + Cµs]

3. Harmonic law:
µ =

C
µf µs

Cµf + (1 ≠ C)µs

D

In the previous laws, C can be replaced by Cµ if the viscosity is located at shearing
µsh or pure rotations µr nodes. Concerning the density, an arithmetic average is
used whatever its location on the discretization grid. The e�ect of the choice of the
viscosity average law is studied in this work.
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Augmented Lagrangian method

Following the pioneer work of Fortin and Glowinski [45], an augmented Lagrangian
method is applied to the unsteady Navier-Stokes equations dedicated to particulate
flows. It allows dealing with the coupling between the velocity and pressure and to
satisfy the fluid and solid constraints at the same time by solving a saddle point
problem. Starting with uú,0 = un and p

ú,0 = p
n, the augmented Lagrangian solu-

tion reads

while ||Ò · uú,m|| > ‘AL , solve

(uú,0
, p

ú,0) = (un
, p

n)

fl

A
uú,m ≠ uú,0

�t
+ uú,m≠1 · Òuú,m

B

≠ Ò(rÒ · uú,m)

= ≠Òp
ú,m≠1 + flg + Ò · [µ(Òuú,m + ÒT uú,m)] + Fsi

p
ú,m = p

ú,m≠1 ≠ rÒ · uú,m

(2.9)

where r is an augmented Lagrangian penalty parameter used to impose the in-
compressibility constraint, m is an iterative convergence index and ‘AL a numerical
threshold controlling the constraint. The augmented Lagrangian method is a kind
of penalty technique: if r æ +Œ, the incompressibility is imposed but the solving
of the linear system is di�cult with iterative solvers as the conditionning of linear
system is degraded while r æ 0 does not act on the fluid constraint and keeps the
conditioning of the matrix unchanged. As recommended by [45], a constant value
of r is used, for example equal to the average between the minimum and maximum
eigenvalues of the linear system for Stokes flows [45]. From numerical experiments,
optimal values are found to be of the order of fli and µi in each phase (fluid or solid)
to accurately solve the motion equations in the related zones [108, 110]. Algebraic
improvements have also been proposed by Vincent [111] to automatically estimate
the local values of r. In the present work, an automatic algebraic estimate of r will
be used to optimize as much as possible the conditionning of the linear system while
maintaining expected incompressible and solid constraints in the related zones. The
e�ect of the Lagrangian parameter r is considered in the following section 2.3.

Discretization schemes and solvers

All the schemes and solvers utilized in the present work are presented and discussed
in detail in [109]. The mass and momentum conservation equations, containing the
viscous and augmented Lagrangian penalty terms, are discretized with implicit
Finite volumes on structured staggered meshes (see figure 2.1). The time derivative
is approximated with a second order Euler scheme while the inertial, viscous and
augmented Lagrangian terms are discretized with second-order centered schemes.
All fluxes are written at time (n + 1)�t, except the non-linear inertial term that is
linearized with a second order Adams-Bashforth scheme as follows

u · Òu ¥
1
2un ≠ un≠1

2
· Òun+1 (2.10)
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The obtained linear system can be solved in three-dimensions with a BiCGSTAB II
iterative solver [48], preconditionned under a Modified and Incomplete LU approach
[39] to speed-up the convergence of the solver. In this work, direct MUMPS solver
[4, 5] is preferred as it provides computer error residuals. All the code is working
on massively parallel computers by using MPI devices and exchanges [109].

2.3 Uniform Stokes flow past a cylinder

A validation of the presented method and a numerical study of some of its param-
eters are conducted considering the steady uniform Stokes flow past an isolated
cylinder. The analytical solution is illustrated in Figure 2.3. According to [13, 19],
a uniform Stokes flow (Re = 10≠3) past a cylinder of diameter d = 2m, with the
undisturbed velocity being noted UŒ = 1m/s, is solution of the Brinkman equation
≠Òp + µ�ui ≠ µ

K
ui = 0. The reference solution is given in polar coordinate frame

(r, ◊), centered on the particle, by:

uú (rú
, ◊) =

Y
]

[

1
rú

1
≠

1
1 + 2K1(⁄)

⁄K0(⁄)

2
1
rú + r

ú + 2
⁄K0(⁄)K1(⁄r

ú)
2

cos ◊

≠
1
1 +

1
1 + 2K1(⁄)

⁄K0(⁄)

2
1

(rú)2 ≠ 2
K0(⁄)

1
K0(⁄r

ú) + K1(⁄rú)
⁄rú

22
sin ◊

(2.11)

p
ú (rú

, ◊) = 2
Re

⁄
2

3
≠

3
1 + 2K1(⁄)

⁄K0(⁄)

4 1
rú ≠ r

ú
4

cos ◊ (2.12)

where uú = u
UŒ

, p
ú = p

flU2
Œ

, r
ú = 2r

d
, fl = 1kg.m

≠3 is the fluid density, ⁄ = d
2

4K

is the dimensionless permeability of the porous medium in Brinkman sens, K is
the permeability of the inside and outside the porous cylinder, K0 and K1 are the
modified Bessel functions of rank 0 and 1. For K æ 0, the porous cylinder can be
likened to an impermeable solid particle whereas outside the cylinder, K æ +Œ to
obtain a fluid behavior.

Simulations setup

The computational domain used to simulate a uniform Stokes flow past a cylinder
is a square of a Length L = 2d, and the spatial discretization, using a regular Carte-
sian grid called Eulerian mesh, is represented by the number of grid cells across the
diameter of the particle d

�x
= 20. The velocity and pressure exact solutions ((2.11),

(2.12) respectively) for a Stokes flow past a cylinder were taken as initial condition,
as illustrated in Figure 2.3. They were also implemented at boundary conditions
as a Dirichlet condition to be able to simulate such a flow in a numerically small
domain not extending to infinity as Stokes flow would require.

A first simulation of a uniform flow past a cylinder is carried out using a reference
set of parameters presented bellow:

• Viscous law: Arithmetic average law is chosen for this simulation.
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(a) (b)

(c)

Figure 2.3: Exact solution for a Stokes flow past a fixed cylinder: the first velocity
component field u1 (a), the second velocity component field u2 (b) , and the pressure
field p (c), are plotted at each point of the domain (fluid and solid).

• Numerical radius: it has been previously mentioned [109] that on a numerical
point of view, the cylinder radius has to be tuned according to its physical
radius. Indeed, interpolations are used in the cells cut by the fluid-solid
interface for viscous discrete nodes, inducing numerical variations of the solid
phase compared to the real one. In our simulations, the numerical radius Rn

of the cylinder is given by:

Rn = d

2 + e
�x

16

e is a correction coe�cient on Rn. It is imposed to be e = 0, i.e. Rn = d

2 , so
that Rn is the physical radius of the cylinder for this simulation.

• Computation of Cµ: For the first simulation, it is interpolated from C, known
in the pressure mesh, on the viscous mesh.
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• The viscosity ratio µs

µf
between the viscosity imposed in the Eulerian cells

inside the cylinder µs and the fluid viscosity µf is chosen such that µs

µf
= 500

for this simulation.

• The Lagrangian parameter is r = 105.

Figure 2.4 shows the relative error in each point of the domain for the velocity

Error =
I |uSimu≠uAnalytic|

|uAnalytic| if uAnalytic ”= 0
|uSimu| if uAnalytic = 0

(2.13)

and the pressure between the simulation results and the analytical solution given
by (2.11) and (2.12). This error is about 100% for the pressure in the fluid domain
as illustrated in Figure 2.4(c) and more than 50% in the fluid region near the cylin-
der and about 10% in the rest of the fluid domain for both velocity components as
illustrated in Figure 2.4(a), Figure 2.4(b).

Facing this huge error for both pressure and velocity, we decided to conduct a
numerical study on the e�ect of previously listed numerical parameters on the sim-
ulation results. Our main goal is to set up the selection of parameters to minimize
these errors. At the end of each study, the simulation results obtained with new
parameters will be given in order to show the improvement made.

Sensitivity of simulations to viscous law, numerical radius Rn and
phase function computation Cµ on the viscous mesh
The viscous law and the numerical radius are first investigated. To do so, several
simulations are carried out with discontinuous, arithmetic and harmonic average
laws (for both C and Cµ which is interpolated at this state) and for di�erent nu-
merical radius as follows:

Rn = d

2 + e
�x

16 e œ J≠16, 16K

All other parameters remain unchanged: µs

µf
= 500 and r = 105.

Figure 2.5 shows the velocity L1 relative error in the whole domain

Error =
q

|uSimu ≠ uAnalytic|q
|uAnalytic|

(2.14)

for the Stokes flow past a cylinder for di�erent viscous laws. It can be observed that
the minimum error for arithmetic average law is reached for Rn = d

2 ≠ �x whereas

it is reached for a numerical radius Rn = d

2 + �x

8 for harmonic and discontinuous
average laws. This minimum error is about 1% for both harmonic and discontinu-
ous law whereas it is 0.5% larger for the arithmetic law with Rn being modified in
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(a)

(b)

(c)

Figure 2.4: Relative error (%) in the whole domain (fluid and solid zones) of the
first component of velocity u1 (a), the second component of velocity u2 (b) and the
pressure p (c) for Stokes flow past cylinder.
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Figure 2.5: Relative error (%) of the first component of velocity u1 (left) and the
second component of velocity u2 (right) for Stokes flow past a cylinder simulated
using di�erent viscous laws: ( ) discontinuous ,( ) harmonic and ( ) arithmetic
average. Cµ is interpolated from C computed by projecting the cylinder on the
pressure mesh.

a larger extent. A first conclusion here is that choosing harmonic or discontinuous
averages is more desirable as Rn is closer to the physical cylinder radius and the
obtained error is smaller

Until now, the color function on the viscous mesh Cµ was interpolated from C

computed on the pressure mesh [109]. One interesting issue is how the error implied
by the di�erent average laws will change if Cµ is computed directly on the viscous
mesh by projecting the cylinder shape with the virtual point procedure presented
before in figure 2.2. To answer this question, the same study is conducted on Rn

and average viscous laws by considering the Cµ directly calculated on the viscous
points without using the pressure nodes.

Figure 2.6: Relative error (%) on the first component of velocity u1 (left) and the
second component of velocity u2 (right) for Stokes flow past a cylinder simulated
using di�erent viscous laws: ( ) discontinuous ,( ) harmonic and ( ) arithmetic
average. Cµ is computed by projecting directly the cylinder shape on the viscous
mesh.



20
Chapter 2. Improvement of the Viscous Penalty Method for

particle-resolved simulations

Figure 2.6 shows the velocity L1 relative error in the whole domain (2.14) for
Stokes flow past a cylinder for the three viscous laws discussed above but with
the color function Cµ computed on the viscous mesh instead of interpolating it
from the C function on the pressure nodes as in previous simulations. One can
observe that the minimum error is reached for a numerical radius Rn = d

2 ≠ �x

2 for

arithmetic average law instead of Rn = d

2 ≠ �x when Cµ was interpolated, whereas
the new Cµ computation seems to have no influence on the discontinuous law re-
sults. On the other hand, for the harmonic average law, not only the minimum
error is divided by 10 but also this error is reached for the physical diameter of
the cylinder Rn = d

2 . Therefore, and for the rest of this work, the color function
Cµ will always be computed by projecting the particle shape on the viscous mesh,
together with the use of the harmonic average law to compute the viscosity in the
Eulerian mesh containing the interface. This important conclusion is new and has
never been obtained in previous penalty simulations of particle flows [34, 35, 77, 109]

A new simulation is carried out with a new set of parameter -conclusion of the
numerical study above-. They are given by:

• Viscous law: harmonic average law instead of arithmetic law.

• Numerical radius: it is kept unchanged i.e. equal to the physical cylinder
radius Rn = d

2 .

• The color function Cµ is computed on the viscous mesh instead of being
interpolated from C.

• The viscosity ratio is the same µs

µf
= 500.

• The Lagrangian parameter r = 105 remains the same.

With this new set of numerical parameters, Figure 2.7 shows the huge improve-
ment brought by the new set of numerical parameters on relative error for the
velocity (2.13) and the pressure. Indeed the error decreases from 100% to less than
5% for the pressure in the fluid domain, except in the cells containing the interface
as illustrated in Figure 2.4(c). If we refer to Figures 2.4(a) and 2.4(b), the error
went from 50% to 10% in the fluid region near the cylinder and from 10% to less
than 2% in the rest of the fluid domain for both velocity components.

E�ect of the viscosity ratio and the augmented Lagrangian param-
eter r

The viscous penalty method consists in imposing large values of viscosity in the
Eulerian cells belonging to the solid phase, compared to the fluid viscosity. This
penalty method allows ensuring the solid behavior in the particles. Therefore, the
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(a)

(b)

(c)

Figure 2.7: Relative error (%) of the first component of velocity u1 (a), of the
second component of velocity u2 (b) and of the pressure p (c) for Stokes flow past
cylinder in the whole domain.
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viscosity ratio µs

µf
is to be carefully considered to simulate gas-solid flows as best

as possible with the viscous penalty method. For this motivation, numerous sim-
ulations of a uniform Stokes flow past an isolated fixed cylinder were carried out,
with di�erent values of µs

µf
, to study the viscosity ratio e�ect on the viscous penalty

method accuracy.

Figure 2.8: Relative error (%) on the first component of velocity u1 ( ) and the
second component of velocity u2 ( ) for Stokes flow past a cylinder simulated with
di�erent viscosity ratio.

Figure 2.8 shows the velocity L1 relative error in the whole domain (2.14) for
Stokes flow past a cylinder for a viscosity ratio between 100 and 1000. It can be
observed that the error of the second component of velocity seems to be viscosity
ratio independent from µs

µf
Ø 600 and to stabilize for the first component of velocity

when µs

µf
Ø 900 . Therefore, µs

µf
= 1000 seems to be a reasonable choice in order to

get a viscosity ratio independent solution. This viscosity ratio will be used in the
rest of this work.

The last numerical parameter to be studied in this work is the Lagrangian
parameter r. Indeed, the augmented Lagrangian method is a kind of penalty tech-
nique, and the incompressibility is imposed when r æ +Œ. Therefore, knowing
from which value of r the solution does no longer depend on it is an important
matter to be carefully studied. Indeed, the larger r is, the worse is the solving of
the linear system. As a consequence, r has to be large to impose incompressibility
and at the same time the smallest possible to keep the conditioning of the linear
system as small as possible too.
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Figure 2.9: Relative error (%) on the first component of velocity u1 ( ) and the
second component of velocity u2 ( ) for Stokes flow past a cylinder simulated with
di�erent Lagrangian parameter values.

Figure 2.9 shows the velocity L1 relative error in the whole domain (2.14) for
Stokes flow past a cylinder for a Lagrangian parameter r between 103 and 109. One
can observe that the solution is augmented Lagrangian parameter independent for
r Ø 105. This is the value that will be used in the rest of this work. Note that in
this work, the resolution of the linear system is ensured by a direct solver, which
allows us to use a large values of r. On the other hand, the use of an iterative
solvers can be di�cult in the case of r = 105. This point is not addressed in the
present work.

A new simulation is carried out with the set of all most e�cient parameters,
summarized bellow:

• Viscous law: harmonic average law.

• Numerical radius: physical cylinder radius Rn = d

2 .

• The color function Cµ is computed on the viscous mesh.

• The viscosity ratio is µs

µf
= 1000 instead of µs

µf
= 500.

• The Lagrangian parameter is kept r = 105.

Figure 2.10 shows the relative error for the velocity (2.13) and the pressure
between the results of the penalty simulation with the best set of parameters and
the analytical solution. It can be seen that error is now lower than 1% for either
velocity and pressure in the fluid area far from the particle, and about 10% in the
region containing the interface. This is mainly due to the one-fluid model for which
the physical proprieties of the equivalent fluid in the mixed cells are neither fluid
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(a)

(b)

(c)

Figure 2.10: Relative error (%) on the first component of velocity u1 (a), the second
component of velocity u2 (b) and the pressure p (c) for Stokes flow past cylinder in
the whole domain.
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nor solid but an average of them, consequently the velocity and the pressure in
these cells are less accurate.

Order of convergence

Given the fact that we have been able to find a satisfactory set of parameters to
obtain accurate result on velocity and pressure, as illustrated in Figure 2.10, a study
of convergence order of the viscous penalty method is conducted by simulating a
series of uniform flow past a cylinder using the best set of parameters and by chang-
ing the Eulerian mesh resolution using di�erent d

�x
.

101 102
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Figure 2.11: Relative error (%) on both velocity components for Stokes flow past a
cylinder with respect to Eulerian mesh refinement.

Figure 2.11 shows L1 relative error in the whole domain (2.14) for both com-
ponent of velocity with respect to the Eulerian mesh resolution given by d

�x
. The

order of convergence computed from these error between the simulation results and
(2.11), (2.12) is 1.67 based on a logarithmic data fit. It can be observed that some
oscillations appears when refining the Eulerian mesh. A possible reason could be
the e�ect of the particle interface position with respect to the Eulerian mesh. To
assess this assumption, we have conducted di�erent simulation by changing only
the position of the cylinder inside the same Eulerian mesh: the cylinder center
coordinates (xc, yc) are:

xc = i
�x

10 , where i œ J0, 10K

yc = j
�y

10 , where j œ J0, 10K

Figure 2.12 shows the e�ect of the position of the Lagrangian mesh with respect
to the Eulerian mesh. It is observed that the way that the interface intersects the
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(a) (b)

Figure 2.12: Relative error (%) on the first component of velocity u1 (a) and the
second component of velocity u2 (b) for Stokes flow past cylinder with respect to
cylinder center position.

Eulerian mesh clearly a�ects the velocity results. In the convergence order study,
the Eulerian mesh refinement changes the way the interface cuts the Eulerian cells,
which explains the oscillations.

2.4 Uniform flow past a square configuration of cylin-
ders

To validate the viscous penalty method outside the Stokes regime and with the new
set of parameters prescribed in previous section 2.3, an additional test is investi-
gated: a uniform flow past a square configuration of cylinders. This configuration
consists in putting a cylinder of a diameter d in a periodic square of length L. This
configuration is equivalent to an infinite array of cylinders equidistant from each
other in each direction. The Eulerian mesh refinement respects the condition given
in [24]: �x = d

5
Ô

Re
which ensure the boundary layer resolution if Re > 16 and

�x = d

20 if Re < 16. The fluid is accelerated using a pressure drop Fm = �P

L
as

a source term in the momentum equation. The domain length L is fixed, given a
solid volume fraction –d, by:

L

d
= 1

2

Ú
fi

–d

An illustration of a uniform flow past a square configuration of cylinders for di�er-
ent solid volume fraction (–d = 0.2, –d = 0.4 and –d = 0.6) is given in Figure 2.13.

The aim of this section is to validate the superficial mean fluid velocity
Èuf Í = (1 ≠ –d)

s
V (1 ≠ C)udVs
V (1 ≠ C)dV

, where u is solution of the Navier-Stokes equation

using the viscous penalty method (ITPM) with the best set of parameters proposed
in the previous section 2.3. Numerous correlation have been proposed for predicting
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(a) (b)

(c)

Figure 2.13: Streamlines and u1 component of velotcity field for a steady uniform
flow along the x-axis of a square configuration of cylinders for di�erent solid volume
fractions: –d = 0.2 (a), –d = 0.4 (b), –d = 0.6 (c).

�P

L
from the Èuf Í: Darcy [32] was the earlier pioneer in the subject by proposing

in the Stokes limit the linear relation �P

L
= µ

K
Èuf Í. At higher Reynolds number,

this relation is no longer linear due to inertial e�ects. Ergun [42] established a
semi-empirical relation given by:

�P

L
= 150 –

2
d

(1 ≠ –d)3
µÈuf Í

d2 + 1.75 –d

(1 ≠ –d)3
flÈuf Í2

d
(2.15)

This relation is a generalization of the Forchheimer equation [44].
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Given the non-dimensional friction factor fp defined as:

fp = �P

L

d

flÈuf Í2 (2.16)

and the Reynolds number Re given by:

Re = flÈuf Íd
µ–d

the Ergun equation (2.15) can be writen as:

fp = –d

(1 ≠ –d)3

3150
Re

+ 1.75
4

(2.17)

The validation consists in

• simulating a uniform flow past a square configuration of cylinders, for a given
pressure drop �P

L
and a solid volume fraction –d

• extracting from the velocity field the superficial mean fluid velocity Èuf Í

• computing the friction factor fp using (2.16)

• comparing fp to the Ergun correlation [42] given by (2.17).

10�2 10�1 100 101 102
100

102

104

Re

f p

Ergun

↵d = 0.2

↵d = 0.4

↵d = 0.6

Figure 2.14: Friction factor for a uniform flow past a square configuration of cylin-
ders.

Figure 2.14 shows the good agreement of the friction factor deduced from the
superficial mean fluid velocity Èuf Í using (2.16) and Ergun’s correlation [42]. This
validate the viscous penalty method at Higher Reynolds number with the best set
of parameters found in the previous section 2.3: harmonic average for viscous laws,
Rn = d

2 , Cµ computed on the viscous mesh, µs

µf
= 1000 and r = 105.
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2.5 Conclusions and Suggestions
The Viscous Penalty Method ITPM [109] has been used to simulate two-dimensional
fixed particulate flows. The first goal of the work was to set up the best numerical
parameters in order to obtain lower errors as possible when the simulations are
compared to the analytical solution for the Stokes flow around a cylinder. The
viscosity ratio between the fluid and the penalty viscosity µs inside the particle, the
augmented Lagrangian parameter r, the viscous law, the solid fraction estimate Cµ

at the viscous nodes and the numerical radius of the particle were investigated. For
the first time, we have been able to demonstrate that if Cµ is directly calculated by
projecting the real shape of the particle on the viscous nodes, the numerical radius
of the particle Rn does not have to be adapted compared to its real physical value.
Moreover, the best accuracy is obtained when an harmonic law on the viscosity is
used to build the equivalent properties of the one-fluid model in cells cut by the
fluid/particle interface. Concerning the penalty viscosity, imposing 1000 times the
fluid velocity is the best compromise between error level and solving e�ciency. To
finish with setting of ITPM parameters, r = 105 allows to satisfy the incompress-
ibility and solid constraints with lower errors as possible. Using larger values of µs

and r does not improve the accuracy of ITPM, due to numerical errors coming from
the rest of the numerical methods and solver e�ciency. A convergence study was
conducted with respect to mesh refinement. An order of 1.67 was obtained for all
velocities inside the fluid.

A second problem was considered at larger particle Reynolds number: the uni-
form flow past a square arrangement of cylinders. With the best set of ITPM
parameters, comparisons of simulations with reference correlations of Ergun al-
lowed us to demonstrate that for various solid fractions ranging from 0.2 to 0.6, the
simulations were in very good agreement with the expected values.

Ongoing works are developed in several directions:

• the ITPM is used to extract the drag and lift force coe�cient for various
arrangements of spherical particles [24]

• the ITPM is extended to heat transfers in particulate flows. As for the force
coe�cient, the heat transfer coe�cient is extracted for any particle inside
various arrangements of spheres [23]

• the viscous penalty method is utilized to simulate the force exerted by an
incompressible flow on ellipsoidal particles as well as heat transfer coe�cients
[25]





Chapter 3

Accurate estimate of drag forces
using particle-resolved direct
numerical simulations

This chapter is the article [24] authored by M.-A. Chadil, S. Vincent and J.-L.
Estivalezes

Abstract

An accurate force estimate for finite-size particle simulations is proposed based
on Lagrange extrapolation of third order, coupled with a Taylor interpolation of
same order, to estimate pressure and viscous constraints on the surface of particles.
The main point of our approach is to upwind the interpolation support in the
normal direction to the fluid/solid interface so as to use only fluid values to estimate
forces. Also, detailed validations of forces are considered for estimating accuracy
and convergence order of the method on various incompressible motions such as
the flow around an isolated particle at various Reynolds numbers and flows across
packed spheres under Faced-Centered Cubic, random and bi-disperse arrangements.

3.1 Introduction

In the framework of finite-size particle motions, the numerical simulation of a par-
ticulate flow interacting with a surrounding fluid can be investigated following two
di�erent numerical strategies: unstructured or structured grids. This important
choice is in particular motivated by the instantaneous description of the evolving
complex shape represented by the interface between the carrier fluid and a set of
moving particles. On the one hand, the more natural discretization seems to be the
implementation of an unstructured body-fitted grid to simulate the fluid area in
the two-phase particle flow [29, 56, 57, 72]. Building such a finite-volume or finite-
element mesh in three-dimensions is not easy and requires automatic remeshing as
the solid particles move according to time and space. The remeshing process at each
calculation step is time consuming and can be very di�cult to manage automatically
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in computer softwares when the global shape of the fluid-solid interface is changing
at each calculation step [40]. On the other hand, it can be imagined to develop a
fixed structured grid approach to simulate particulate flows. With this method, the
mesh is not adapted to the fluid-solid interfaces and includes both phases. On a
mesh point of view, this approach is simpler than the previous one. The di�culty
lies in taking into account the presence of particles in the fluid whose interface is
not explicitly tracked by the mesh that does not conform to the fluid/particle inter-
face. This type of modeling and numerical problem belongs to the class of fictitious
domains [60, 78]. The penalty modeling strategy[108, 109, 110] developed hereafter
is based on this approach and will be reported in the next section 3.2.

One major interest of finite-size particle motion simulation is to provide a local
estimate of all flow characteristics (velocity, pressure, viscous stress) together with
a local description of the particle-fluid interface. The resolved scale particle motion
does not require any force modeling nor interaction model as soon as the mesh is re-
fined enough. In the present work, we will demonstrate that having at least 5 points
in the boundary layer attached to a given particle allows to recover all the physics
of the particle flow without using any force or interaction model (drag, lift, lubrica-
tion, etc). As a consequence, the finite-size particle approach can be considered as a
kind of fully resolved Direct Numerical Simulation (DNS) of the particulate flow as
soon as no modeling is required to solve the problem. The mesoscopic or macrocopic
particle flow models (Eulerian-Lagrangian, Eulerian-Eulerian) do require the knowl-
edge of interaction forces to close specific particle-motion interaction terms. For an
isolated particle in an infinite medium, the drag force law of Schiller and Naumann
[97] is well known and often used in large scale models. For fixed and moving beds
of particles, we can cite the correlations based on experiments proposed by Ergun
[42] and Wen&Yu [114] and also Gobin [46] who proposed a correlation based on
these two correlations. As soon as the solid fraction is high and the particle size
or shape of particles is not constant (bi-dispersed flows, spheroidal particles, etc),
drag and lift laws have to be designed. This is the main objective of the present
work, i.e. providing a DNS framework with accurate force calculation in order to
finally obtain new force laws for various particulate motions.

Numerous numerical works have been devoted to performing DNS of finite-
size particulate flows and obtaining resulting drag force laws from the macroscopic
analysis of local flow motions in the vicinity of the particle surface. The first class
of numerical models, generally investigated for fixed arrangements of particles, is
the Lattice Boltzmann approach. It was used in numerous works by Ladd [64, 65]
for particle suspensions, by Hill et al. [51] for monodisperse face cubic centered
(FCC) array of spheres, by Hoef et al. [53] and Beetstra et al. [12] for random
monodisperse and bidisperse array of spheres to cite a few. Another class of very
popular methods for handling finite-size particle is the Immersed Boundary Method
(IBM) coupled with incompressible Navier-Stokes equations initially developed for
particulate flows by [105, 106, 113]. For random monodisperse array of spheres,
the work of Tenneti et al. [103] is very interesting as it covers a wide range of
solid fractions –d = 0.1 ≠ 0.4, and also Reynolds number up to 300. At the end,
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a new correlation is proposed for drag force laws. The last interesting class of
numerical approaches is the body fitted mesh method, that is restricted to fixed
array of particles as it is impossible to generate automatically a three-dimensional
mesh that adapts to the motion of particles. Among the most interesting works in
the field, we can cite the simulations and analysis of Massol [70] for monodispersed
FCC arrays of spheres. The Massol’s work [70] was conducted using AVBP code
[98] destined to unsteady simulation. This is an unstructured mesh code with third
order finite volume scheme in time and space. Massol [70] studied various grid type
(hexahedra and hybrid prims/tetrahedra) and resolution e�ects on the drag force.
Indeed, simulations of Face-Centred Cubic arrangements of spheres were carried out
at Reynolds number 50 and solid volume fraction of 0.15 with hexahedra grids when
the number of points changed from 304904 to 812312 and drag di�erence was of
2%. With hybrid prisms/tetrahedra grids, when the number of points changed from
249619 to 559893, the maximum drag di�erence was of 1%. Finally the maximum
drag di�erence between the two grid type was about 2%.

In all these numerical approaches, the drag force can be deduced in di�erent
ways:

• with Darcy penalty methods [84], it can be obtained directly from the source
term used to accelerate the fluid outside the particles.

• with the LBM, the drag force exerted by the fluid on the particles is calculated
according to the momentum exchange algorithm of Ladd [64].

• In the IBM approach, the forces exerted by the fluid on the particles can be
deduced from the reaction IBM force imposed in the momentum equations to
satisfy a solid behaviour [18, 113], or by using the velocity and pressure fields
solution of the Navier-Stokes equation [73, 103].

• with the Volume Penalty Method (VPM), Bizid [14] uses Taylor extrapola-
tions to get the pressure and viscous stress projection on particle surface.

Our major contribution is to propose an accurate force estimate for finite-size
particle simulations. Even if all full DNS of particle flows extract forces on particles
[57, 85, 105, 109], few works report on how practically these forces can be calcu-
lated and what is the accuracy or convergence order of the forces. Among the wide
literature devoted to full DNS of particle motions, we can cite the work of Bizid
[13, 14] who uses Taylor extrapolation to estimate pressure and viscous constraints
on the particle surface. This approach is of low accuracy as it utilizes velocity and
pressure values that can be inside the particle volume. The most advanced work
on force calculation on immersed interfaces is due to Zastawny et al. [116] with an
improved mirroring immersed boundary method. In the present work, a new force
calculation is proposed based on Lagrange extrapolation of third order, coupled
with a Taylor interpolation of same order. The main point of our approach is to
upwind the interpolation support in the normal direction to the fluid/solid interface
so as to use only fluid values to estimate forces. Detailed validations of forces are
considered for estimating accuracy and convergence order of the proposed method.
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The article is structured as follows. A presentation of the models and numeri-
cal methods is first proposed in section 3.2, paying attention to describe fictitious
domain and penalty methods used to model and approximate incompressible par-
ticulate motions. In the third section 3.3, a new force calculation for immersed
interfaces is proposed, with discussions conducted on order of approximations and
associated accuracy. Validations for flows interacting with isolated spherical par-
ticles at various Reynolds number are presented in the fourth section 3.4. Section
3.5 is devoted to simulations and validations of flows through fixed arrangements of
mono- and bi-dispersed spheres. Finally, conclusions and perspectives are drawn.

3.2 Model and numerical methods
3.2.1 Fictitious domain approach
The modeling and simulation of moving objects (bubbles, droplets, solid particles)
interacting with a carrier fluid is impossible to realize with unstructured meshes as
soon as these objects deform or move in a 3D geometry. The commonly developed
alternative approach consists in simulating this kind of flow on a fixed grid and to
locate the interface thanks to an auxiliary phase function such as Volume Of Fluid
or Level Set functions [95]. The concept that disconnects the interface motion and
the mesh used to solve the conservation equations is called fictitious domain ap-
proach [60, 87]. Indeed, from the motion equation point of view, the interface is
not known, only its presence is taken into account thanks to a volume auxiliary
function. In these approaches, the interface tracking and the associated building of
the phase function is of primary importance.

As proposed in [109], incompressible two-phase flows involving a carrier fluid and
a solid phase can be modeled on a fixed mesh with fictitious domain approaches
by considering the incompressible Navier-Stokes equations together with a phase
function C describing the particle phase shape evolutions through an advection
equation on the corresponding phase function. As explained by Kataoka [59] for
fluid/fluid two-phase flows and Vincent [109] for particle flows, the resulting model
takes implicitly into account the coupling between di�erent phases separated by
resolved interfaces, i.e. larger than the mesh cell size. The motion equations reads

Ò · u = 0 (3.1)

fl

3
ˆu
ˆt

+ (u · Ò) u
4

= ≠Òp + flg + Ò ·
Ë
µ(Òu + Òtu)

È
+ Fsi + Fm (3.2)

ˆC

ˆt
+ u · ÒC = 0 (3.3)

where u is the velocity, p the pressure, t the time, g the gravity vector, fl and µ

respectively the density and the viscosity of the equivalent fluid. The two-way cou-
pling between particle and fluid motions is ensured in the momentum equations by
the presence of a solid interaction force Fsi [17, 74] which is not considered in the
present work as only fixed particles are dealt with. The source term Fm , given by
’Eq. 3.23’, is used to impose a flow rate to the fluid if required, for example when
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pipe flows are considered.

The one-fluid model is almost identical to the classical incompressible Navier-
Stokes equations, except that

• the local properties of the equivalent fluid (fl and µ) depend on C. In the
present work, an arithmetic average is used for density (fl = Cfls + (1 ≠ C)flf )

and an harmonic average is considered for viscosity
A

µ = µsµf

Cµf + (1 ≠ C)µs

B

[109].

• the interface localization requires the solving of an additional equation on
C. Instead of solving this equation on the Eulerian mesh, which is source
of numerical di�usion or tearing of interfaces, a Lagrangian representation is
preferred. A specific mesh (linear elements in 2D and set of triangles in 3D)
is considered for the particle surface S. Equation (3.3) is reformulated as
dXb

dt
= Vp, with Xb the centroid of the spherical particle and Vp the veloc-

ity of the particle interpolated with surrounding Eulerian velocities coming
from the solving of equations (3.1-3.2). The approximation of the Lagrangian
tracking of Xb is detailed in [109]. Once Xb is known, the position of each
particle surface mesh element is also known. The phase function C is auto-
matically build by projecting the Lagrangian particle mesh onto the Eulerian
mesh [95]. For non-spherical particles the rotational motion has to be con-
sidered. It is for example solved with Quaternions [41]. In the present work,
only fixed arrangements of particles are dealt with. As a consequence, the
Lagrangian particle tracking is not considered even if the Lagrangian mesh
for representing particles is used to calculate forces.

Satisfying the incompressible and solid constraints in fluid and particles requires
developing a specific model. Two penalty approaches are proposed and detailed in
the next section 3.3 to tackle with these constraints.

3.2.2 Penalty methods
As explained in the previous section 3.1, the one-fluid model and the fictitious do-
main approach formulated for dealing with particle flows require to consider each
di�erent phase (fluid, solid) as a fluid domain with specific material properties (den-
sity and viscosity for an isothermal flow). Each sub-domain is located by a phase
function C.

In addition to local physical characteristics of the fluid that change over time due
to particle motion, the local constraints that have to be fulfilled change potentially
at each time step. Indeed, a given point or cell can be inside a fluid zone at time
n�t and can be solid at the next time step (n+1)�t. Here, n is the time index and
�t the associated time step. Two di�erent numerical methods are used to satisfy
in a coupled way and at the same time the fluid incompressibility and the solid
behavior:
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• Ensuring the solid behavior in the solid zones where C = 1 requires to define
a specific rheological law for the rigid fluid part without imposing the velocity,
as the particle velocities are not always known a priori in particulate motions
(particle sedimentation, fluidized beds, turbulence particle interaction). A
specific model is implemented for handling the solid particle behavior in the
one-fluid Navier-Stokes equations. It is based on a decomposition of the vis-
cous stress tensor and on a penalty method that acts on the viscosity which
tends to large values in the particles [20] to implicitly impose the solid behav-
ior and also the coupling between fluid and solid motion. For fixed particles,
the velocity of the cell containing the centroid of the particle is imposed equal
to zero. The viscous penalty method propagates the zero velocity in the whole
solid medium.

• Following a similar walkthrough as in the work on Stokes and Navier-Stokes
equations proposed by Fortin and Glowinski [45], an augmented Lagrangian
method is applied to the unsteady Navier-Stokes equations dedicated to par-
ticulate flows. The main objective is to deal with the coupling between velocity
and pressure and to satisfy the fluid and solid constraints at the same time.
Starting with uú,0 = un and p

ú,0 = p
n, the augmented Lagrangian solution

reads
while ||Ò · uú,m|| > ‘, solve

(uú,0
, p

ú,0) = (un
, p

n)

fl
n

A
uú,m ≠ uú,0

�t
+ uú,m≠1 · Òuú,m

B

≠ Ò(rÒ · uú,m)

= ≠Òp
ú,m≠1 + fl

ng + Ò · [µn(Òuú,m + ÒT uú,m)] + Fsi + Fm

p
ú,m = p

ú,m≠1 ≠ rÒ · uú,m

(3.4)

where r is an augmented Lagrangian parameter used to impose the incom-
pressibility constraint, m is an iterative convergence index and ‘ a numerical
threshold controlling the constraint. The augmented Lagrangian method is a
kind of penalty technique: if r æ +Œ, the incompressibility is imposed but
the solving of the linear system is di�cult with iterative solvers while r æ 0
does not act on the fluid constraint and keeps the conditioning of the matrix
unchanged. Usually, a constant value of r is used, for example equal to the
average between the minimum and maximum eigenvalues of the linear system
for Stokes flows [45]. From numerical experiments, optimal values are found
to be of the order of fli and µi in each phase (fluid or solid) to accurately solve
the motion equations in the related zone [108, 110]. Algebraic improvements
have also been proposed by Vincent [111] to automatically estimate the local
values of r. In the present work, a constant value of r will be used.

The penalty method has been validated on numerous analytical and experimental
reference solutions in [20, 34, 77, 87, 109, 110, 111].
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3.2.3 Discretization schemes and solvers
The schemes and solvers used in the present work are detailed in [109]. The mass
and momentum conservation equations, containing the viscous and augmented La-
grangian penalty terms, are discretized with implicit finite volumes on structured
staggered meshes. The time derivative is approximated with a first or second or-
der Euler scheme while the inertial, viscous and augmented Lagrangian terms are
discretized with a second-order centered scheme. All fluxes are written at time
(n + 1)�t, except the non-linear inertial term that is linearized at first or second
order as follows

• u · Òu ¥ un · Òun+1 for first order linearization

• u · Òu ¥
!
2un ≠ un≠1"

· Òun+1 for second order Adams-Bashforth like lin-
earization

The obtained linear system is solved with a BiCGSTAB II iterative solver [48],
preconditionned with a Modified and Incomplete LU approach [39]. All the code is
working on massively parallel computers by using MPI devices and exchanges [109].
As an example, the simulation of the bidisperse case presented in section 3.5.2, with
Re = 100, –d = 0.15 and a 1703 mesh, takes 2 days of CPU time on 216 processors
to reach the steady state after 10000 iterations. These results have been obtained
on intel (r) IVYBRIDGE 2.8 GHz processors.

3.3 Lagrangian extrapolation of forces for immersed
boundary methods

The drag force due to the fluid-solid interaction at a surface S of the solid phase is:

FD = Fp + Fv (3.5)

where the pressure force Fp and the viscous force Fv are:

Fp =
j

S
≠p n dS (3.6)

Fv =
j

S
2µ‘.n dS (3.7)

Here, ‘ is the fluid strain tensor.

The computation of these forces consists in discretizing S on a set of N elements
(triangles in 3d and segments in 2d) called Lagrangian mesh (see figure 3.1), such
that:

Fp ¥
Nÿ

l

≠pl nl dSl (3.8)

Fv ¥
Nÿ

l

2µ‘l.nl dSl (3.9)
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where pl, ‘l and nl are respectively the pressure, strain tensor and outgoing nor-
mal vector at the center Cl of the l

th element of the Lagrangian mesh as illustrated
in figure 3.1. Normal nl and element surface dSl are deduced from the coordinates
of the nodes constituting the l

th element.
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Figure 3.1: Details of a 2D discretization of the particle surface S used in drag force
computation

3.3.1 Low order naive approach
Given that the pressure field p and the viscous stress tensor ‘, used in the drag
force computation, are known on the Eulerian mesh and not on the Lagrangian
mesh as explained above, the naive approach to overcome this problem consist in
interpolating them from the Eulerian mesh on the Lagrangian mesh using a second
order Taylor interpolation detailed in Appendix 1 (3.7).

To validate this approach, we compute the drag force exerted by a uniform
Stokes flow (Re = 10≠3) on an isolated cylinder (2D) and an isolated sphere (3D),
as detailed below.

Uniform Stokes flow past a cylinder

According to [13], a uniform Stokes flow (Re = 10≠3) past a cylinder of diameter
d = 2m, with the undisturbed velocity being noted UŒ = 1m/s, is solution of the
Brinkman equation ≠Òp + µ�ui ≠ µ

K
ui = 0. In the polar coordinate frame (r, ◊)

centered on the particle, it reads:

uú (rú
, ◊) =

Y
]

[

1
rú

1
≠

1
1 + 2K1(⁄)

⁄K0(⁄)

2
1
rú + r

ú + 2
⁄K0(⁄)K1(⁄r

ú)
2

cos ◊

≠
1
1 +

1
1 + 2K1(⁄)

⁄K0(⁄)

2
1

(rú)2 ≠ 2
K0(⁄)

1
K0(⁄r

ú) + K1(⁄rú)
⁄rú

22
sin ◊

(3.10)
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p
ú (rú

, ◊) = 2
Re

⁄
2

3
≠

3
1 + 2K1(⁄)

⁄K0(⁄)

4 1
rú ≠ r

ú
4

cos ◊ (3.11)

The corresponding drag force is:

FD = 2fi

Re

3
2⁄

2 + 4⁄K1(⁄)
K0(⁄)

4
ex (3.12)

where uú = u
UŒ

, p
ú = p

flU2
Œ

, r
ú = 2r

d
, fl = 1kg.m

≠3 is the fluid density, ⁄ = d
2

4K

is the dimensionless permeability of the porous medium in Brinkman sens, K is the
permeability of the porous cylinder, K0 and K1 are the modified Bessel functions
of rank 0 and 1. For K æ 0, the porous cylinder can be likened to an impermeable
solid particle.

Uniform Stokes flow past a sphere

For the uniform flow past a sphere in Stokes regime, the velocity and pressure are
[11] :

u (x, y, z) =

Y
_____]

_____[

UŒ ≠ 3
4(d

2)UŒ
1

x2

r3 + 1
r

2
+ 3

4(d
2)3

UŒ
1

x2

r5 ≠ 1
3r3

2

3
4UŒ

3
( d

2 )3

r5 ≠ ( d
2 )

r3

4
xy

3
4UŒ

3
( d

2 )3

r5 ≠ ( d
2 )

r3

4
xz

(3.13)

p = ≠3
4µdUŒ

x

r3 (3.14)

where r =


x2 + y2 + z2.

The drag force is analytically given by:

FD = 3fiµdUŒex (3.15)

Simulations setup

The computational domain used to simulate a uniform Stokes flow past a cylinder
(resp. a sphere ) is a square (resp. a cube) of a Length L = 2d, and the spatial
discretization, using a regular Cartesian grid called Eulerian mesh, is represented
by the number of grid cells across the diameter of the particle Dm = d

�x
= 20. The

exact solution (3.10), (3.11) (resp. (3.13), (3.14)) for a Stokes flow past a cylinder
(resp. a sphere) was implemented at boundary conditions to be able to simulate
such a flow in a numerically small domain not extending to infinity as Stokes flow
would require. Practically, the considered simulation domain is two particle diam-
eter long in each space direction.
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Figure 3.2: Drag force relative error (%) for the Stokes flow past a cylinder (left),
and the Stokes flow past a sphere (right) in terms of Lagrangian mesh refinement -
the force is computed with the naive 2nd order Taylor interpolation method. The
size of the Lagrangian particle surface mesh element is l while the size of the Carte-
sian Navier-Stokes mesh is �x.

Results

Figure 3.2 shows that the computation of the drag force with a naive approach is
not accurate, the error being about at least 40% even if the surface Lagrangian
mesh is refined. This is due to the use of pressure and strain tensor values in the
cells containing the fluid-solid interface where the error with the analytic solution
is the highest, as illustrated in figure 3.3 for the uniform flow past a cylinder (2D)
and a sphere (3D). This error is due to the fact that the physical characteristics
(µ, fl) in the mixed fluid-solid cells are the average between those of the fluid and
those of the solid.

Figure 3.3: Relative error (%) of the first component of velocity for Stokes flow past
cylinder (left) and Stokes flow past sphere (right) in the whole domain

To prevent the use of wrong pressure and velocities in the cells cut by the fluid-
particle interface, we have to extrapolate the pressure and the strain tensor from the
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fluid area far from the particle to the interface. To do so, a Lagrange extrapolation is
considered, as detailed below. The same contamination of the flow field is expected
with standard IBM methods [105, 116]. To preclude this drawback in IBM method,
extrapolation techniques were proposed by [116] in the force computation, with a
lower order as what is explained in the next section 3.4. Another approach is the
PUReIBM [103] that avoid the contamination of the fluid nodes in the Eulerian
cells cut by the interface, allowing a direct interpolation of the stress tensor.

3.3.2 New high order method based on Lagrange extrapolation
Given a function f : X œ R3 æ R and a set of k points Pi, i = 1..k, the k

th Lagrange
extrapolation of f at point Cl is given by:

f(Cl) =
kÿ

i=1
f(Pi)Li(Cl) , where Li(Cl) =

kŸ

j ”=i

|Cl ≠ Pj |
|Pi ≠ Pj | (3.16)

The k
th order of the drag force computation consists now of interpolating (us-

ing the k
th order Taylor interpolation detailed in Appendix 1) the pressure and the

strain tensor on k Pi fictitious points built along the normal (see figure 3.4 for third
order), and then using the k

th order Lagrange extrapolation (3.16) to compute them
at Cl. With (3.5), (3.8), (3.9), the friction force exerted by the fluid on the particle
can be calculated.
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Figure 3.4: Details of third order Lagrange extrapolation used in drag force com-
putation

In figure 3.4, points P1, P2 and P3 are the fictitious points used in third order
Lagrange extrapolation of the pressure and viscous components of the force on the
particle surface. The zone between the particle surface S (solid line) and the dash
line corresponds to the Eulerian discrete points that have an influence on the force
calculation. Parameter ” is the minimum distance between the first fluid point and
S that is required to obtain a correct force estimate.
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Note that the order of the drag force computation may not be the same on all
the Lagrangian mesh element. Indeed the choice of the computation order located
at the centre Cl of each Lagrangian mesh element is governed by the fact that all
the points used in the Lagrange extrapolation and the Taylor interpolation have to
be fully fluid, i.e the fluid-phase indicator function C = 0 on these points. When
two particles are close, the drag force computation order is adapted for each La-
grangian mesh cell in a way that no extrapolation or interpolation point belongs
to a neighboring sphere. If one of these points is located in a solid zone, the order
of drag force computation is downgraded until all the calculation points belongs to
the fluid. At least an order 1 is considered.
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Figure 3.5: Drag force relative error (%) according to extrapolation distance ”

(written in �x unit) for the Stokes flow past a cylinder (left) and the Stokes flow
past a sphere (right) at di�erent order: ( ) first, ( ) second, ( ) third, and ( )
fourth orders are plotted.

Considering that the pressure and strain tensor have to be extrapolated from the
nearest fluid region in the vicinity of the particle, where the physical characteristics
belong to the fluid, to the interface region where the drag force is computed, the first
step consists in increasing the distance ” (see figure 3.4) until the computation of the
force is accurate enough. As illustrated in figure 3.5, the minimum error is reached
for ” = �x and remains stable for the third and fourth order Lagrange interpolation,
for both simulations, namely the Stokes flow past a cylinder (left), and past a sphere
(right). This conclusion holds for our method and probably for all the methods that
contaminate the fluid cells cut by the interface. Di�erent behavior would certainly
be observed with PURe-IBM [103]. To limit the computational e�ort while keeping
a good accuracy, the third order force computation with ” = �x will be considered
thereafter as it requires less computational e�ort. The errors obtained with the
new high order force calculation method are reported in figure 3.6. Compared to
the naive approach, the error levels for both cylinder and sphere cases are now
always less or around 2% as soon as the local size of the Lagrangian surface mesh
elements is comparable to �x. Thanks to the novel force estimate, the error has
been reduced by a factor of 20. In the rest of the work, the value of ” will be chosen
to be �x if not specified.
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Figure 3.6: Drag force relative error (%) for the Stokes flow past a cylinder (left) and
the Stokes flow past a sphere (right) in term of the Lagrangian mesh refinement l:
force computed using 3rd Lagrange extrapolation and 2nd order Taylor interpolation

3.4 Validation on flows interacting with an isolated par-
ticle

3.4.1 Drag coe�cient
For validation purpose, the force acting on a particle and in particular the corre-
sponding drag coe�cient is recalled. It is defined as [31]:

Cd = |FD|
1
2flŨ2Ap

(3.17)

where Ũ = |UŒex ≠ Up| is the relative velocity between the particle and the fluid
velocity at infinity, UŒex is fluid velocity in the mean flow direction far from the
particle, Up is the particle velocity, ‹ is the fluid kinematic viscosity and Ap = fi

4 d
2

the cross-sectional area of the particle.

The drag coe�cient is dependent on the flow regime determined by the Reynolds
number:

Re = Ũd

‹
(3.18)

The drag coe�cient in Stokes regime, i.e. when Re æ 0, is:

Cd = 24
Re

(3.19)

The correlation of drag coe�cient for a finite Reynolds number, proposed by
Schiller & Naumann [97] is:

Cd = 24
Re

1
1 + 0.15 Re

0.687
2

(3.20)

3.4.2 Simulations setup
The computational domain is first chosen, its lengths being Lx = 16d and Ly = Lz =
8d in each Cartesian direction. The Eulerian mesh refinement is constant in a box of
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extension [(2d, 3d, 3d) ; (6d, 5d, 5d)] centered around the particle position. Outside
this box, the Eulerian mesh is exponentially coarsen from the box to the boundaries
of the simulation domain. Accurate drag force calculation needs properly resolved
boundary layers around the particle. It is expected that a 5 cell resolution in the
boundary layer thickness will be enough at least for the range of Reynolds numbers
studied in the present article. This choice is also consistent with the compact
support of cells needed to get third order Lagrange extrapolation accuracy (see
figures 3.4 3.25). A numerical study of the Eulerian mesh e�ect was conducted to
assess this assumption (see figure 3.7). It can be observed that the error stabilizes
for dÔ

Re
Ø 5 which is in accordance with the choice made for the Eulerian mesh

criteria. This gives dÔ
Re

= 5�x according to scaling laws for laminar dynamic
boundary layers. Therefore, in the box surrounding the particle, the minimum cell
size is:

�x = d

5
Ô

Re
(3.21)
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Figure 3.7: Drag force relative error (%) for the uniform flow past sphere at Re =
100 as function of the number of Eulerian cells in the boundary layer.

The Eulerian meshes used in all simulated cases of the present work will fulfill
(3.21). The inlet boundary conditions is u = UŒex (see figure 3.8) and Neumann
conditions are applied elsewhere.

3.4.3 Study of numerical parameters for the Lagrange extrapola-
tion

As an extension of the work carried out for the Stokes regime, we have performed
the same kind of study for a higher finite Reynolds number Re = 100 when inertial
e�ects are important. The e�ect on the drag force computation of the distance ”

between the particle interface points Cl and the first Eulerian mesh extrapolation
point P1 has been considered. The role played by the Lagrangian mesh refinement
have also been analyzed. Unlike the stokes flow there is no analytical results for
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Figure 3.8: Illustration of instantaneous stream lines obtained for a uniform flow
past an isolated sphere at Re=290. The upstream unperturbed velocity UŒ is
imposed at the left boundary condition.

drag force at higher Reynolds number, therefore the error here is estimated with
respect to Schiller & Naumann [97] correlation.
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Figure 3.9: Drag force relative error (%) for the uniform flow past sphere at Re =
100. Di�erent orders of Lagrange extrapolation are considered: ( ) first, ( ) second,
( ) third, and ( ) fourth order. The distance between the first Eulerian point used
to extrapolate forces and the particle surface is ”.

One can observe in figure 3.9 a similar behaviour of error as already found for
Stokes flows (the reader can refer to figure 3.5 right) indicating that in this range,
Reynolds number have little influence on drag force errors at least for 2nd, 3rd and
4th order Lagrange extrapolations. To conclude on the distance between Eulerian
interpolation points and particle surface, as soon as ” Ø �x, the error on drag
force calculation is less than 2% for 3rd and 4th order Lagrange extrapolation in
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Stokes and Navier-Stokes regimes. In this case, a 3rd order Lagrange extrapolation
is considered, as being a good compromise between implementation complexity, cal-
culation time and accuracy.
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Figure 3.10: Drag force relative error (%) according to Lagrangian surface element
size l for uniform flow past sphere at Re = 100.

As illustrated in figure 3.10, the Lagrangian mesh refinement does not a�ect a
lot the drag force computation as soon as the Lagrangian particle surface element
size l is of the order of �x. For Re = 100, the error is around 2% on the drag force
calculation.

In the rest of the present work, the 3rd order Lagrange extrapolation will always
be used together with l = �x.

3.4.4 Result on the drag coe�cient
The transition area between axisymmetric flow and non-axisymmetric vortex shed-
ding regime being around Re = 300, for a uniform flow past a fixed isolated
sphere, we have conducted several simulations for Reynolds numbers up to 290
(Re = 0.1, 1, 10, 20, 40, 60, 80, 100, 150, 200, 250, 290). In each case, the simulations
are stopped when the steady state of the flow is reached. The drag coe�cient ob-
tained at the final step of each simulation is compared to the correlations (3.19)
and (3.20). Figure 3.11 shows a very good agreement of the numerically calculated
drag coe�cient compared to the correlation of Schiller & Naumann [97]. This test
case provides an interesting validation of the force calculation for a single particle.

3.4.5 Pressure coe�cient
The analysis of local pressure profiles can give insight into the pressure behavior
depending on the Reynolds number. The local pressure coe�cients are defined
by equation (3.22) in a spherical coordinate system (see figure 3.12). They are
considered along the azimuthal angle ◊ as follows:
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Figure 3.11: Drag coe�cient for uniform flow past sphere at di�erent Reynolds
number: ( ) Schiller & Naumann [97], ( ) present work.

Cp(◊) = p(◊)
1
2flU2

Œ
(3.22)

Figure 3.12: Spherical coordinate system around a particle. The flow direction is
represented by the undisturbed velocity UŒ.

The pressure coe�cient distribution according to ◊ is compared for Re = 1, 10, 100
to some available body fitted simulations results conducted by Magnaudet [68], Den-
nis & Walker [38], LeClair et al. [30] and Massol [70]. The results are presented
in figure 3.13. It can be observed that a very good agreement is found between
our force calculations and reference results. We can observe that the local pressure
profile is symmetric with respect to ◊ = 90 for Re = 1 as shown in figure 3.13 a) and
become increasingly asymmetric while increasing the Reynolds number in figures
3.13 b) and c). This feature of the flow is clearly highlighted for Re = 10 where the
local pressure profile is no more symmetric with a negative pressure region that took
place after ◊ = 60. For Re = 100, the same conclusion holds where the negative
pressure region appears at ◊ = 50.
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Figure 3.13: Pressure coe�cient for a uniform flow past an isolated sphere at
(a)Re = 1, (b)Re = 10,(c)Re = 100 : ( ) Dennis et al. [38], ( ) Magnaudet et
al. [68], ( ) LeClair et al. [30], ( ) Massol [70], and ( ) present work

3.5 Forces in fixed arrangements of spheres
In the previous section 3.4, we have exhibited various successful validations of the
force calculation for uniform flows past a fixed isolated sphere. We can now con-
fidently complexify the simulated particulate motion by investigating a flow past
fixed particle assemblies which corresponds to a gas-solid flow with high Stokes
number. Two way are possible to set up a uniform flow past fixed packed particles:

• by imposing a constant pressure gradient in the domain. In this configuration,
the mean fluid velocity Èuf Í =

s
V (1 ≠ C)udVs
V (1 ≠ C)dV

evolves to reach a steady state

corresponding to the imposed pressure gradient.

• by choosing a desired mean fluid velocity Èuf Í = ud, and so a desired Reynolds
number. A source term

Fm = ≠fl
Èuf Í ≠ ud

�t
+

qNp

i FD
i

Vf
(3.23)

is inserted in the momentum conservation equations. It is adjusted until the
desired Reynolds number is reached. This is the method used in this work.
Its main advantage is to be able to simulate a prescribed Reynolds number
without a trial and error procedure unlike to what is require in the pressure
gradient technique.
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Two ways to distribute the particles are studied in this work: a Face-Centered
Cubic arrangement of spheres for both mono and bi-dispersed flows, and random
assemblies of spheres only for mono-dispersed flows.

The particulate Reynolds number Re = |Èuf Í|d
‹

is used studying the Face-Centered
Cubic arrangement of spheres following the work of Massol [70]. On the other hand,
in the random assemblies of spheres, another Reynolds number based on the super-
ficial velocity (1 ≠ –d)|Èuf Í| is considered to take into account the solid loading in
the characterization of the flows [12, 103]. It is given by:

ReS = (1 ≠ –d)|Èuf Í|d
‹

(3.24)

The relation between the solid volume fraction –d and the number of particle
Np is:

Np = 6
fi

3
L

d

43
–d (3.25)

As for the uniform flow past an isolated sphere, the grid resolution is fixed by
imposing 5 Cartesian cells in the boundary layer as �x = d

5
Ô

ReS
.

The mean non-dimensional drag force for all the particles is then defined as:

F = |ÈFDÍ|
3fiµd(1 ≠ –d)|Èuf Í| (3.26)

with ÈFDÍ = 1
Np

Npÿ

i

FD
i , FD

i being the drag force computed over the i
th particle.

3.5.1 Monodispersed arrangements of spheres

3.5.1.1 Face-Centred Cubic periodic arrangement of spheres

A Face-Centered Cubic (FCC) array is a cube where three spheres are placed on
the faces centers, and one sphere is located on the vertices with periodic boundary
conditions, as illustrated in the figure 3.14.

This configurations was widely studied [51, 70, 103] to understand and separate
the wake e�ects, observed when spheres are aligned along the flow direction, i.e.
streamwise interactions, from the blocking e�ects, where the spheres are aligned
along the direction perpendicular to the flow direction, i.e. lateral interactions.
Two regimes, i.e. attached and separated flows, govern the uniform flow past a
FCC array of spheres, depending on the Reynolds number and the solid volume
fraction. They are considered below.
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Figure 3.14: Streamlines of a steady flow along the x-axis of a Face-Centred Cubic
array of spheres at Re = 50 and –d = 0.5. The particle shape is plotted in blue.

Regime 1: attached flows

For low Reynolds numbers, the boundary layer remains attached to the particles.
Unlike the isolated sphere configurations, the boundary layer detachment occurs
for higher Reynolds numbers when FCC arrays are considered, due to the blocking
e�ect of the surrounding particles. In fact, the presence of lateral spheres speeds-
up the flow between the spheres and blocks the detachment of the boundary layer.
Figure 3.15 illustrates this regime for Re = 50, –d = 0.15. A very good agreement
is observed for the pressure distribution over the spheres in both plans — = 0¶

and — = 45¶ as shown in figure 3.15(a) and 3.15(b), compared to the results of
Massol [70] obtained with body fitted meshes. The same agreement is observed
for the axial friction coe�cient as illustrated in figure 3.15(c) and 3.15(d) for the
plans — = 0¶ and — = 45¶, the spherical coordinates – and — are illustrated in the
figure 3.12. It is worthwhile to note that the flow is non-axisymmetric even if all
particles see the same flow due to the symmetry of the array and the periodicity of
boundary conditions. Note that the pressure coe�cient is known at the center of
each Lagrangian element. The Cp value given on each — plan is that of the nearest
Lagrangian element to the given plan.

Regime 2: separated flows downstream of the spheres

With increasing Reynolds numbers, a separation of the boundary layer occurs in the
downstream hemisphere of the particles. As noticed for an isolated sphere, the re-
circulating zone length increases with the Reynolds number. The flow confinement
due to the presence of the lateral particles is so significant that high speed jet flows
are obtained between the particles. These jet flows impact the spheres onto the
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Figure 3.15: Pressure coe�cient [(a) — = 0, (b) — = 45] and axial friction coe�cient
[(c) — = 0, (d) — = 45], for a uniform flow past a FCC at Re = 50, –d = 0.15 : ( )
Massol [70], and ( ) present work

upstream hemisphere. As illustrated in figure 3.16(a), this mechanism induces the
development of a fountain e�ect on the vertical plan — = 0¶, the direct consequence
of which is that the maximum pressure is no longer at ◊ = 0¶ but at ◊ = 36¶. Note
that the same result was found by Massol [70]. Figures 3.16(a) and 3.16(b) show
again the good agreement of the pressure distribution on the vertical and lateral
plans with the body fitted simulations of Massol [70], and the same conclusions is
observed in the figures 3.16(c) and 3.16(d) for the axial friction coe�cient distribu-
tion. It can be noticed that for this Reynolds number of 300, larger di�erences are
observed between our force calculation and body fitted grid results, mostly in the
vicinity of the pressure peaks in the — = 0¶ plans.

Drag force

The non-dimensional drag force F normalized by the isolated sphere non-dimensional

drag force (given by Schiller & Naumann [97]) Fs = 1 + 0.15Re
0.687
S

(1 ≠ –d)2 , noted as F

Fs
,

is compared to existing literature results:

• Tenneti et al. [103]:
FT = Fs + F„ + F„,ReS (3.27)

F„ = 5.81„

(1 ≠ –d)2 + 0.48 –

1
3
d

(1 ≠ –d)3
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Figure 3.16: Pressure coe�cient [(a) — = 0, (b) — = 45] and axial friction coe�cient
[(c) — = 0, (d) — = 45], for a uniform flow past a FCC at Re = 300, –d = 0.15: ( )
Massol [70], and ( ) present work

F„,ReS = (1 ≠ –d)–3
dReS

A

0.95 + 0.61–
3
d

(1 ≠ –d)2

B

• Gobin et al. [46]:

FG =
I

FW Y if –d Æ 0.3
min(FW Y , FE) otherwise

FW Y = Fs(1 ≠ –d)≠1.7 Wen & Yu[114]

FE = 150
18

–d

(1 ≠ –d)2 + 7
4

1
18

ReS

(1 ≠ –d)2 Ergun[42]

• Beetstra et al. [12]:

FB = 10–d

(1 ≠ –d)2 + (1 ≠ –d)2 (1 + 1.5Ô
–d) + 0.413

(1 ≠ –d)2
ReS

24
1

(1≠–d) + 3(1 ≠ –d)–d + 8.4Re
≠0.343
S

1 + 103–dRe
≠0.5≠2–d
S

(3.28)

Our FCC results are compared to FCC results of Massol [70] and Randrianarivelo
et al. [84]. Laws corresponding to random configurations are also considered, fol-
lowing the conclusion of Massol [70] that FCC arrangement of spheres provides a
better agreement to random configurations compared to simple cubic, tetragonal
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and centered cubic arrangements. These comparisons are presented in figure 3.17 at
di�erent Reynolds number Re = 10 figure 3.17(a), Re = 50 figure 3.17(b), Re = 100
figure 3.17(c) and Re = 300 figure 3.17(d). It can be observed that a nice match is
found between our results and those of Massol [70] which was extracted from body
fitted simulations and with those of Tenneti et al. [103] extracted from IBM simu-
lations. Reasonable agreement is also observed with Gobin et al. [46], and Beetstra
et al. [12] even if larger di�erences are noticed for Re = 300 with Beetstra’s results
et al. [12] which can be a consequence of insu�cient Eulerian mesh resolution at
that Reynolds number.
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Figure 3.17: Drag force for a uniform flow past a FCC, normalized by Schiller
& Naumann [97] drag force for a uniform flow past an isolated sphere. Results
are presented as a function of the solid volume fraction –d and Reynolds number
(a)Re = 10, (b)Re = 50,(c)Re = 100 ,(d)Re = 300 : ( ) Tenneti et al. [103], ( )
Gobin et al.. [46], ( ) Beetstra et al. [12], ( ) Randrianarivelo [84], ( ) Massol
[70], and ( ) present work.

3.5.1.2 Random periodic arrangement of spheres

A new step is taken in the complexity of the problem by randomly distributing a
set of spheres in a box for a given solid volume fraction. An illustration is given
in figure 3.18 for ReS = 50 and –d = 0.3. Following the work of Tenneti et al.
[103] the box lengths are Lx = Ly = Lz = 5d (d is the spheres diameter) which
ensures simulations statistically converged in terms of number of spheres. The lo-
cations of the spheres are randomly drawn to distribute them in the domain until
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the desired compacity is reached with no overlapping between the spheres. To sim-
ulate an infinite domain, periodic boundary conditions are specified in all directions.

Figure 3.18: Random periodic arrangement of spheres, for ReS = 50 and –d = 0.3
- The particle shape is plotted in blue while black lines represent streamlines.

To be statistically converged in terms of number of realizations, we performed
for most cases five Multiple Independent Simulations (MIS), Tenneti et al. [103]
conducted the same number of MIS to obtain their correlation for the drag force
(due to CPU time requirements, 5 MIS were not conducted for all Reynolds numbers
and solid fractions). Consequently, the representative non-dimensional drag force
numerically obtained is an average of those calculated over the di�erent realiza-
tions (MIS). Simulations with various solid volume fraction –d = 0.1, 0.15, 0.2, 0.3
have been investigated, together with di�erent superficial Reynolds numbers rang-
ing from 20 to 200.

The results presented in figure 3.19 demonstrate again a good global agreement
of our results with existing correlations of Tenneti et al. [103], Gobin et al. [46]
and Beetstra et al. [12] for each solid volume fractions studied here as shown in
figures: 3.19(a) for –d = 0.1, 3.19(b) for –d = 0.15, 3.19(c) for –d = 0.2 and 3.19(d)
for –d = 0.3, all function of the superficial Reynolds number. In all cases, for larger
ReS , the correlation of Beetstra et al. [12] is farther from other works.

The pressure profiles according to ◊ are given in figures 3.20 and 3.21. They
have been obtained with our force calculation and our simulations. It can be no-
ticed that the pressure contribution on the drag force increase with the solid volume
fraction in both vertical plan — = 0¶ as illustrated in figure 3.20(a) and lateral plan
— = 45¶ see figure 3.20(b). On the contrary, it seems that the Reynolds number
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Figure 3.19: Normalized drag force for a uniform flow past random packed spheres as
function of the superficial Reynolds number ReS and solid volume fraction (a) –d =
0.1, (b) –d = 0.15, (c) –d = 0.2, (d) –d = 0.3: ( ) Tenneti et al. [103], ( ) Gobin
et al. [46], ( ) Beetstra et al. [12] and ( ) present work. The error bars represent
95% confidence intervals over 5 MIS in the estimation of the normalized drag force.

has a small e�ect on the distribution of the pressure over the particles, and here
again for both plans, as illustrated in figure 3.21. This result has previously been
obtained in the study of Tenneti et al. [103]. One can observe that the same result
is obtained for both plans —.
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Figure 3.20: Pressure coe�cient for a uniform flow past random packed spheres at
ReS = 200 as function of –d (a)— = 0, (b)— = 45: ( ) –d = 0.1, ( ) –d = 0.2 and
( ) –d = 0.3
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Figure 3.21: Pressure coe�cient for a uniform flow past random packed spheres at
–d = 0.2 as function of ReS (a)— = 0, (b)— = 45: ( ) ReS = 50, ( ) ReS = 100, ( )
ReS = 150 and ( ) ReS = 200

As can suggest the correlation of Gobin et al. [46], our results (see figure 3.22)
show that the drag force in a random arrangement of spheres is having the same
dependence on the Reynolds number as for an isolated sphere. On the contrary,
di�erent behaviours are noticed for Tenneti and Beetstra simulations.
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Figure 3.22: Drag force for a uniform flow past random packed spheres, normalized
by Schiller & Naumann [97] drag force for a uniform flow past an isolated sphere, as
function of the superficial Reynolds number ReS and solid volume fraction (a) –d =
0.1, (b) –d = 0.15, (c) –d = 0.2, (d) –d = 0.3: ( ) Tenneti et al. [103], ( ) Gobin
et al. [46], ( ) Beetstra et al. [12] and ( ) present work. The error bars represent
95% confidence intervals over 5 MIS in the estimation of the normalized drag force
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3.5.2 Bidisperse arrangements of spheres
For a bidisperse arrangement of sphere, i.e. with two types of particle size, we
studied a Face-Centred Cubic periodic arrangement for the two species of spheres:
the larger particles are distributed in the same configuration as the one previously
presented for monodisperse arrangements while the smaller particles are positioned
at the center of the vertices and at the center of the cubic simulation domain. This
geometry of the particle arrangement is illustrated in figure 3.23.

Two additional dimensionless parameters, for each species, are now necessary to
characterize the flow:

xi = –i

–d
, yi = di

ds
(3.29)

where di and –i are the particle diameter and the solid volume fraction of the specie
i respectively. The Sauter mean diameter ds is given by:

ds =
C 2ÿ

i

xi

di

D≠1

The Sauter mean diameter is one of the most important characteristic dimension
for the bidisperse particle arrangement that is often used in the literature [12].

Figure 3.23: FCC/FCC bidisperse arrangement of spheres for Re = 50 and –d = 0.3
- the particle shape is plotted in blue and the black lines are the streamlines.

We have performed simulations of FCC/FCC bidispersed arrangement of spheres,
for which d1

d2
= 2, at Reynolds number Re = 50 and 100. The solid volume fractions

for the larger particles are –1 = 0.15 and 0.3. The corresponding values of xi, yi

and ds are reported in Table 3.1.
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Table 3.1: values of the parameters characterizing the bi-disperse flows simulated
in this work.

x1 x2 y1 y2 ds

0.88889 0.11111 1.11111 0.55556 0.0009m

Our force calculation results are given in figure 3.24. They are compared to
Beetstra et al. [12] correlation that provides the drag force for the i

th species of
particle as follows:

(FB)i = ((1 ≠ –d)yi + –dy
2
i + 0.0064(1 ≠ –d)y3

i )FB

where FB is the Beetstra drag force for a mono-dispersed arrangement of spheres
given in equation (3.28). Mehrabadi et al. [73] took over the Tenneti et al. mono-
dispersed work [103] and extend it to bidispersed arrangement of spheres. A corre-
lation was proposed from the PR-DNS data, it is given by:

(FM )i = ((1 ≠ –d)yi + –dy
2
i )FT

where FT is the Tenneti drag force for a mono-dispersed arrangement of spheres
given in equation (3.27). The values of forces obtained with our method are com-
pared to Beetstra [12] and Mehrabadi [73] correlations and to Massol body fitted
results [70] in Figure 3.24. It can be observed that for all Reynolds numbers and
solid fractions, our drag forces are in better agreement with Massol simulations
than with Beetstra and Mehrabadi laws extracted from their simulations. The drag
forces computed on the larger particles (y1) seems to be lower than those in random
arrangement case, when the drag forces on the smaller particles (y2) are greater.
This can be explained by the fact that in FCC/FCC arrangement of spheres, all the
smaller particles are not in flow wake of the greater spheres. It can be assumed that
the flow sped up by the lateral larger spheres comes to impact the small particles
increasing the FCC drag force compared to the random arrangement case. In this
later configuration, some of the small spheres can be behind the larger particles.
The di�erence between FCC/FCC and random configuration forces increases with
solid volume fraction (see Figure 3.24 (b) and (d)). This discrepancy is less impor-
tant for the larger spheres of the bidisperse arrangement (see Figure 3.24).

3.6 Conclusions and perspectives

A new method has been designed for estimating forces in finite-size particle sim-
ulations. It is based on Lagrange extrapolation and Taylor interpolation of third
order. In our method, a Lagrangian mesh is used to describe the particle shape
over time on the Eulerian Cartesian mesh devoted to the flow motion. One of the
most original part of our approach is to upwind the interpolation support in the
normal direction to the fluid/particle interface in order to use only fluid values to
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Figure 3.24: Normalized drag force for a uniform flow past a FCC/FCC packed
spheres as function of the solid volume fraction –d (a) : (Re = 50, y1), (b) : (Re =
50, y2), (c) : (Re = 100, y1), (d) : (Re = 100, y2), : ( ) Beetstra & al. [12] , ( )
Mehrabadi et al. [73] , ( ) Massol [70], ( ) present work.

estimate forces. Various parameters of the method have been tested such as e�ect
of interpolation and extrapolation orders or the size of the particle surface elements
on the error observed on forces.

Based on a second order fictitious domain method using penalty techniques and
augmented Lagrangian procedures for the incompressibility constraint, we have sim-
ulated various particulate flow motions ranging from incompressible flows around
an isolated particle at various Reynolds numbers to flows across packed spheres
under Faced-Centered Cubic, random and bi-disperse arrangements. In all configu-
ration, the drag forces have been compared to reference results of the literature for
various solid fractions and Reynolds numbers. The general conclusion that we have
obtained is that our force calculation method fits always nicely to body fitted sim-
ulations of Massol et al. [70] and our results are also in very good agreement with
correlations of the literature such as Schiller and Naumann [97] for single particle
flows and Tenneti and coworkers [73, 103] for various arrangements of particles. It
has also been demonstrated that having at least 5 points in the boundary layer
attached to a particle ensures to recover all the physics of the interaction between
the carrier fluid and particles without using any force or interaction model. To our
understanding, for obtaining a correct force calculation in finite-size particle sim-
ulations, the most important parameter is not the number of Eulerian cells along
a particle diameter but the number of mesh cells belonging to the boundary layer
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Figure 3.25: Details of Taylor interpolation points for the drag force computation
at point Cl of the surface Lagrangian mesh. E is the nearest fluid point to the
particle/fluid interface. The crosses represent the discrete compact support of the
fluid points required for a 3rd order Taylor interpolation.

surrounding the particle, whatever the particle diameter.

Future works and ongoing developments are devoted to extending our method to
heat flux calculation and extraction of heat transfer coe�cients in particulate flows.
Another interesting way of possible improvement of the accuracy of our approach
is the use of Aslam extensions [8] to replace the Lagrange extrapolation in our
force calculation method. Other interesting issues are the extension of the present
force calculation to more complex and realistic particle shapes such as spheroid or
spherocylindrical particles.

3.7 Appendix 1: Taylor Interpolation

Let us consider f : X œ R3 æ R a n-di�erentiable function at a given point E.
The n

th order Taylor Interpolation of f at point Cl is:

f(Cl) =
n≠1ÿ

|–|=0

1
–!

ˆ
–
f

ˆx–
(E)(Cl ≠ E)– + O(||Cl ≠ E||n)

where – = (–1, –2, –3) œ N3 is the sum multi-index. As described in figure 3.25,
E denotes the nearest point to the Lagrangian particle surface point Cl. Point E
belongs to the fluid domain and so is located on the fixed Eulerian mesh.

The four first order or Taylor interpolation are the following:

• First order:

f(Cl) = f(E) + O(||Cl ≠ E||) (3.30)
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• Second order:

f(Cl) = f(E) + ˆf

ˆxi
(E)((Cl)i ≠ Ei) + O(||Cl ≠ E||2) (3.31)

• Third order:

f(Cl) = f(E) + ˆf

ˆxi
(E)((Cl)i ≠ Ei) + 1

2
ˆ

2
f

ˆx
2
i

(E)((Cl)i ≠ Ei)2

+ ˆ
2
f

ˆxiˆxj
(E)((Cl)i ≠ Ei)((Cl)j ≠ Ej) + O(||Cl ≠ E||3)

(3.32)

• Fourth order:

f(Cl) = f(E) + ˆf

ˆxi
(E)((Cl)i ≠ Ei) + 1

2
ˆ

2
f

ˆx
2
i

(E)((Cl)i ≠ Ei)2

+ ˆ
2
f

ˆxiˆxj
(E)((Cl)i ≠ Ei)((Cl)j ≠ Ej) + 1

6
ˆ

3
f

ˆx
3
i

(E)((Cl)i ≠ Ei)2

+
ÿ

i”=j

1
2

ˆ
3
f

ˆx
2
i ˆxj

(E)((Cl)i ≠ Ei)2((Cl)j ≠ Ej)

+ ˆ
3
f

ˆx1ˆx2ˆx3
(E)((Cl)1 ≠ E1)((Cl)2 ≠ E2)((Cl)3 ≠ E3)

+ O(||Cl ≠ E||4)
(3.33)

For each order of interpolation, we have to discretize the partial derivative used
in it by considering the same order of discretization. To avoid using solid point in
the approximation of these derivatives, we choose to use, depending on the sign of
the outgoing normal vector nl, a forward (resp. a backward) di�erence scheme if
(nl)i > 0 (resp. (nl)i < 0). The forward di�erence scheme for the derivatives used
in (3.30), (3.31), (3.32), (3.33) is detailed below. The backward di�erence scheme
is straightforwardly obtained.

Gradient approximation

ˆf

ˆxi
= 3fi ≠ 4fi+1 + fi+2

≠2�xi
+ O(||�x||2)

ˆf

ˆxi
= 11fi ≠ 18fi+1 + 9fi+2 ≠ 2fi+3

≠6�xi
+ O(||�x||3)

ˆf

ˆxi
= 25fi ≠ 48fi+1 + 36fi+2 ≠ 16fi+3 + 3fi+4

≠12�xi
+ O(||�x||4)
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Hessian approximation

ˆ
2
f

ˆx
2
i

= 35fi ≠ 104fi+1 + 114fi+2 ≠ 56fi+3 + 11fi+4
12�x

2
i

+ O(||�x||3)

ˆ
2
f

ˆxiˆxj
= 539fi,j ≠ 781fi+1,j + 297fi+2,j ≠ 55fi+3,j ≠ 781fi,j+1 + 1035fi+1,j+1

192�xi�xj

≠303fi+2,j+1 + 49fi+3,j+1 + 297fi,j+2 ≠ 303fi+1,j+2 + 3fi+2,j+2
192�xi�xj

+ 3fi+3,j+2 ≠ 55fi,j+3 + 49fi+1,j+3 + 3fi+2,j+3 + 3fi+3,j+3
192�xi�xj

+ O(||�x||3)

ˆ
2
f

ˆx
2
i

= 45fi ≠ 154fi+1 + 214fi+2 ≠ 156fi+3 + 61fi+4 ≠ 10fi+5
12�x

2
i

+ O(||�x||4)

ˆ
2
f

ˆxiˆxj
= 117fi,j ≠ 73fi+1,j ≠ 83fi+2,j + 42fi+3,j ≠ 3fi+4,j ≠ 73fi,j+1 ≠ 243fi+1,j+1

60�xi�xj

477fi+2,j+1 ≠ 173fi+3,j+1 + 12fi+4,j+1 ≠ 83fi,j+2 + 477fi+1,j+2
60�xi�xj

+ ≠528fi+2,j+2 + 137fi+3,j+2 ≠ 3fi+4,j+2 + 42fi,j+3 ≠ 173fi+1,j+3
60�xi�xj

+ 137fi+2,j+3 ≠ 3fi+3,j+3 ≠ 3fi+4,j+3 ≠ 3fi,j+4 + 12fi+1,j+4 ≠ 3fi+2,j+4
60�xi�xj

+ ≠3fi+3,j+4 ≠ 3fi+4,j+4
60�xi�xj

+ O(||�x||4)

Third order derivative approximation

ˆ
3
f

ˆx
3
i

= 49fi ≠ 232fi+1 + 461fi+2 ≠ 496fi+3 + 307fi+4 ≠ 104fi+5 + 15fi+6
≠8�x

3
i

+ O(||�x||4)
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ˆ
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≠480�x
2
i �xj

≠390fi+5,j ≠ 4085fi,j+1 + 11931fi+1,j+1 ≠ 13489fi+2,j+1
≠480�x

2
i �xj
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2
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≠480�x
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i �xj

+ fi+4,j+3 + fi+5,j+3 + 10fi,j+4 ≠ 14fi+1,j+4 + fi+2,j+4 + fi+3,j+4
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2
i �xj

+ fi+4,j+4 + fi+5,j+4 + 10fi,j+5 ≠ 14fi+1,j+5 + fi+2,j+5 + fi+3,j+5
≠480�x

2
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+ fi+4,j+5 + fi+5,j+5
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Chapter 4

Accurate calculation of heat
transfer coe�cients for motions
around particles with a
finite-size particle approach

This chapter is the article [23] authored by M.-A. Chadil, S. Vincent and J.-L.
Estivalezes

Abstract

The calculation of heat transfers between an incompressible fluid and a set of
resolved-scale particles is a complex task as soon as the simulation mesh is not
adapted to the shape of the particles. In the present work, an Implicit tensorial
Viscous penalty method is used to resolve the particulate flow. A new Lagrange
extrapolation coupled to a Taylor interpolation of high order [24] is extended to the
accurate estimate of heat transfer coe�cients on an isolated sphere, a fixed Faced-
Centered Cubic array of spheres and a random pack of spheres. The simulated heat
transfer coe�cients are compared with success to various existing Nusselt laws of
the literature.

4.1 Introduction

Gas-solid flows are widely encountered in nature, for example in volcanic eruptions
[10, 33]. They also participate to heat transfers in many industrial processes such
as petroleum refining, blast furnaces or chemical looping combustion [2, 67, 71].
Due to the scale disparity between these applications and the particle size at the
industrial scale, the CFD simulations of such applications are based on statistical
approaches where the average interphase transfer of energy between the fluid and
the particles need to be modeled.
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Theoretical and Experimental approaches have been widely investigated to model
theses unclosed terms with significant limitations. Indeed, theoretical results are
limited to creepy Stokes flows or moderate Reynolds number regimes [1, 81]. In
addition, experimental measurements showed huge di�erences of Nusselt number
at high volume fraction because of limited optical access [112]. This motivates the
community to consider and develop Particle-Resolved Direct Numerical Simulations
(PR-DNS) to directly compute the fluid-particle interaction and the associated heat
transfer closure laws.

In the last decade, many researchers have conducted numerical studies to char-
acterize, understand and then model the energy interphase exchange in gas-solid
flows for numerous configurations of particulate motions. Among them, we can cite
Massol [70] who studied heat transfers in a fixed array of monodisperse spheres us-
ing a body fitted three-dimensional PR-DNS (AVBP code [98]). This configuration
will be studied in this work and our results will be compared to those of Massol
[70]. Deen et al. [36] and Tavassoli et al. [102] used Immersed Boundary Methods
(IBM) for three-dimensional PR-DNS with inflow and outflow boundary conditions
to compute the gas-solid Nusselt number that is compared with Gunn’s correlation
[47]. Note that Gunn [47] proposed his correlation based on experimental results.
Tenneti et al. [104] utilized the so called PUReIBM with a periodic boundary con-
ditions and proposed a correlation from their results for various flow configurations.
Later, Deen et al. [37] proposed a correlation based on Tavassoli et al. [102] and
Tenneti et al. [104] results. Tenneti et al. [104] simulations were carried out for
a limited range of Reynolds number and solid volume fraction. As a consequence,
Sun [99] took over this work and extended it to larger values of Reynolds numbers
and solid volume fractions and proposed a correlation that fits their PR-DNS data.

Our contribution is to propose an accurate heat flux estimate for finite-size par-
ticle simulations using Implicit Tensorial Penalty Method (ITPM) [109]. This work
is an extension of the developments conducted to compute the drag force [24] in
previous studies. The proposed method uses a fixed Eulerian structured mesh for
the flow solving. It manages to avoid the contaminated flow in the Eulerian cells
cut by the interface, and therefore extract the accurate heat flux needed to compute
the Nusselt number.

The article is structured as follows. A presentation of the models and numer-
ical methods is first proposed in section 4.2. In the third section 4.3, validations
for flows interacting with isolated spherical particles at various Reynolds number
are discussed. Simulations of a uniform flow past a Face-Centered cubic array of
spheres are presented in the fourth section 4.4. Section 4.5 is devoted to simulations
and validations of flows through random arrangements of monodispersed spheres.
Finally, conclusions and perspectives are drawn in 4.6.
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4.2 Numerical Methodology
Conservation equations
The motion equations of incompressible two-phase flows, involving a carrier fluid
and a solid particle phase, are based on one-fluid model as explained in [26, 109].
They are given by:

Ò · u = 0 (4.1)

fl

3
ˆu
ˆt

+ (u · Ò) u
4

= ≠Òp + flg + Ò ·
Ë
µ(Òu + Òtu)

È
(4.2)

flCp

3
ˆT

ˆt
+ u · ÒT

4
= Ò · (kf ÒT ) (4.3)

where u is the velocity, p the pressure, T the temperature, t the time, g the gravity
vector, fl, µ, Cp and kf respectively the density, the viscosity, the specific heat and
the thermal conductivity of the equivalent fluid. By equivalent fluid we mean the
fluid that is considered in both fluid and solid phases in our fixed mesh approach,
i.e. densities, viscosities, specific heat and conductivities are continuous accross in-
terface in the cells cut by the particle surface. Specific arithmetic or harmonic laws
are used to defined them according to a phase function C. This phase function is
directly obtained by projecting the shape of the particles on the Eulerian mesh [24]
[109]. The discretization, solving and validation of equations (4.1-4.3) is developed
in [109] and [63].

The particles in this work are motionless. Numerically, their velocity is set to
zero by imposing the velocity of the Eulerian cells near their centroids to zero, and
the viscous penalty method propagates the zero velocity in the whole solid medium.
The particle temperatures being also constant, they are imposed in the whole solid
medium.

Heat transfer rate computation for immersed boundary methods
The goal of this work is to extract from the temperature field, that is solution of
the energy equation 4.3, the Nusselt number given by:

Nu = Hpd

kf
(4.4)

where d is the particle diameter and Hp is the heat transfer rate given by:

Hp = Qp

(Ts ≠ Tf ) fid2 (4.5)

where Ts and Tf are the temperatures of the particle and the fluid respectively, and
Qp is the heat flux across the particle surface S. It is given by:

Qp =
j

S
≠kf ÒT · n dS (4.6)
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Figure 4.1: Notations for the third order Lagrange extrapolation (left) and the third
order Taylor interpolation (right), used in heat flux computations.

The computation of the heat flux consists in discretizing S on a set of N elements
called Lagrangian mesh (see Figure 4.1), such that:

Qp ¥
Nÿ

l

≠kf (ÒT )l · nl �Sl (4.7)

where the ongoing normal to the l
th element nl and its area �Sl are deduced from

its nodes coordinates. However, the temperature T being solved on the Eulerian
mesh, the temperature gradient (ÒT )l is not known at the l

th element center Cl.
To deal with this problem, we have implemented the same approach that we used
to obtain the stress tensor ‡l components on the Lagrangian mesh in the drag force

computation F ¥
Nÿ

l

‡l.nl�Sl. This was detailed in [24]. In this previous work, we

have observed that the velocity and the pressure values were inaccurate in the cells
containing the interface. Therefore, we had to extrapolate the stress tensor from
the area far from the particle to the particle surface. After a numerical study of all
the extrapolation parameters, we have reached the conclusion that the third order
Lagrange extrapolation (whose notations are illustrated in Figure 4.1) is the best
compromise between accuracy and computational cost [24]. Similarly as for force
coe�cients, we have the temperature gradient at the center of each Lagrangian
mesh element as follows:

(ÒT ) (Cl) =
3ÿ

i=1
(ÒT ) (Pi)Li(Cl) , where Li(Cl) =

3Ÿ

j ”=i

|Cl ≠ Pj |
|Pi ≠ Pj | (4.8)

Given that the temperature gradient is computed on the Eulerian mesh and that
the extrapolation points P1, P2 and P3 are constructed in the normal direction to
the particle surface (see Figure 4.1), the temperature gradient at these points are
not known. Once again, we relayed on the work [24] to interpolate the temperature
gradient from the Eulerian mesh to the extrapolation point Pk (k = 1, 2, 3) using
the third order Taylor interpolation:
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f(Pk) = f(E) + ˆf

ˆxi
(E)((Cl)i ≠ Ei) + 1

2
ˆ

2
f

ˆx
2
i

(E)((Cl)i ≠ Ei)2

+ ˆ
2
f

ˆxiˆxj
(E)((Cl)i ≠ Ei)((Cl)j ≠ Ej) + O(||Cl ≠ E||3)

(4.9)

where E is the nearest Eulerian point to Pk.

Another pertinent value to consider when studying the distribution of heat
transfers on the surface of the particle, is the local Nusselt number given in the
spherical system (see Figure 4.2) by:

Nuloc(◊) = ≠ÒT · n d

(Ts ≠ Tf ) (4.10)

where for each Lagrangian mesh element center (Cl = (x, y, z)), the azimuthal
angle ◊, and the polar angle — are given by:

◊ = (fi ≠ arctan 2(
Ò

y2 + z2, x))180
fi

, — = arctan 2(z, y)180
fi

(4.11)

Figure 4.2: Spherical coordinate system around a particle. The flow direction is
represented by the undisturbed velocity UŒ.

4.3 Convective heat transfer forced by a uniform flow
around a stationary sphere

The first case considered to validate heat transfers solved with the viscous penalty
method, is the convection forced by uniform flow past a hot sphere, illustrated in
Figure 4.3. This case was previously used to validate the drag force computation,
and all its parameters are detailed in [24]. In the simulations carried out for this
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case as well as for all the cases studied in this work, we have imposed that the hy-
drodynamic boundary layer contains 5 Eulerian cells. This mesh refinement ensures
that the hydrodynamic boundary layer contains a su�cient number of extrapola-
tion points to be accurate on force calculations at the particle surface. We have
also chosen a Prandlt number Pr = 0.72, which means that the thermal boundary
layer is larger than the hydrodynamic boundary layer. In this way, we ensure that
enough extrapolation points are available in the thermal boundary layer as well (see
Figure 4.1).

Figure 4.3: Streamlines and temperature field for a uniform flow past a sphere at
Re = 100.

E�ect of the extrapolation distance (”)
One of the extrapolation parameter studied in the drag force computation work
[24] was the distance ” between the Lagrangian mesh and the first extrapolation
point P1 (see Figure 4.1). Indeed, during that study [24], inaccurate pressure and
velocity values were observed in the cells cut by the interface, therefore we had to
extrapolate the stress tensor from the fluid area far from the particle to the surface.
And as illustrated in (Figure 4.4 left), the accurate drag force is reached at ” = �x.

The temperature being function of the velocity (Eq.4.3), inaccurate tempera-
ture gradient values are also expected in the Eulerien cells containing the interface.
Thus, we have conducted the same study for the Nusselt number computation to
locate the extrapolation area. But unlike the drag force (Figure 4.4 left), the Nus-
selt number computation does not seem to depend on the distance ” (Figure 4.4
right). Facing this unexpected results, we have compared the distribution of the
local Nusselt number to Massol [70] results at Re = 100 where the flow is symmetric
with respect to its direction, as illustrated in Figure 4.5. The local Nusselt number
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Figure 4.4: Drag force relative error to Schiller & Naumann [97] correlation (left)
and Nusselt number relative error to Ranz&Marshall [88] correlation (right), as
function of the distance ” at Re = 100.

Figure 4.5: Streamlines and temperature field for a uniform flow past a sphere at
Re = 100.

computed for ” = 0 does not reflect the flow symmetry as illustrated in (Figure 4.6
a), and the error between our result (Nuloc) and Massol’s (NulocMassol) given byqN

i=1 | (Nuloc)i ≠ (NulocMassol)i |
qN

i=1 | (NulocMassol)i |
is about 25%. This error decreases as the distance

” increases until being lower than 10% for ” Ø 1 (Figure 4.6 c). It is worth not-
ing that for this distance, the local Nusselt number distribution translates in better
way the symmetrical behavior of the flow as it satisfies almost the same distribution
for all the polar angle (—) plans (Figure 4.6 b). So, as for the drag force computa-
tion [24] and in the rest of this work, the extrapolation distance will always be ” = 1.

Result on the Nusselt coe�cient

The numerical parameters of the heat transfer on the particle surface being set
up, the global Nusselt number for a uniform flow past a hot sphere at di�erent
Reynolds number (Re = 10, 20, 40, 60 , 80, 100, 150, 200, 250, 290) is computed using
the presented method and compared to existing literature results:
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Figure 4.6: Local Nusselt coe�cient for a uniform flow past an isolated sphere at
Re = 100, as function of the azimuthal angle ◊, for all points on the particle surface
(for all — plans) at (a) ” = 0 and (b) ” = 1: ( ) present work, ( ) Massol [70].
(c) is local Nusselt number relative error to Massol’s result [70] as function of the
extrapolation distance ”.

• Ranz & Marshall [88]:

Nu = 2. + 0.6 Re
0.5

Pr
1
3 (4.12)

• Feng & Michaelides [43]:

Nu = 0.992 + (RePr)
1
3 + 0.1 Re

2
3 Pr

1
3 (4.13)

• Whitaker [115]:

Nu = 2. +
1
0.4 Re

0.5 + 0.06 Re
2
3
2

Pr
0.4 (4.14)

Figure 4.7 provides the comparisons of our results to literature references. It can
be observed that our simulated Nusselt values belong to the same value ensemble
as literature works for all considered Reynolds numbers. If we go into more details,
the Nusselt numbers simulated with ITPM show a better agreement with Feng &
Michaelides and Whitaker correlations than with Ranz & Marshall.

4.4 Face-Centered Cubic periodic arrangement of spheres
The second case studied in this work is a uniform flow past a Face-Centered Cubic
(FCC) array of hot spheres illustrated in Figure 4.8. This case was previously used
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Figure 4.7: Nusselt coe�cient for the uniform flow past a hot sphere at di�erent
Reynolds numbers: ( ) Ranz & Marshall [88], ( ) Feng & Michaelides [43], ( )
Whitaker [115], ( ) present work.

to validate the drag force computation [24]. All its parameters were fully detailed
in this reference. In that work, the drag force was computed when the study state
of the flow was reached. The simulations considered here take that steady state
as initial condition for the momentum equation ’Eq. 4.2’. In addition, the initial
temperature conditions for the energy equation ’Eq. 4.3’ are Ts = 1, Tf = 0.5, re-
spectively the sphere and the fluid temperature. In this problem, the fluid heats up
until it reaches the sphere temperature (see Figure 4.9 left). In the meantime and
after a time initialization of the temperature gradient around the spheres, a bal-
ance is reached between the heat flux and the di�erence between the fluid and the
particle temperature (see Figure 4.8). This results in the apparition of a plateau in
the global Nusselt coe�cient temporal evolution as illustrated in Figure 4.9 right.
The values of the Nusselt number for uniform flow past a FCC array of spheres will
be chosen at this stabilized state.

The global and local Nusselt coe�cients for a uniform flow past an array of Np

particles are an average of those computed on each sphere such as:

ÈNuÍ = 1
Np

Npÿ

i

Nui ÈNulocÍ = 1
Np

Npÿ

i

(Nuloc)i (4.15)

where Np = 4 for a FCC array.

Using the local Nusselt coe�cient distribution presented in figure 4.10, two
regimes can be observed, i.e. attached (illustrated in Figure 4.8 left) and separated
(Figure 4.8 right) flows, that govern the uniform flow past a FCC array of spheres,
depending on the Reynolds number and the solid volume fraction –d:

Attached flows

For low Reynolds numbers, the local Nusselt number is having the same behavior
as an isolated sphere (see Figure 4.10 left). The increase of its value is due to the
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Figure 4.8: Streamlines and temperature field for a steady flow along the x-axis
of a Face-Centered Cubic array of spheres at Re = 50, –d = 0.15 (left), and at
Re = 300, –d = 0.15 (right)
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Figure 4.9: Left: Time evolution of fluid temperature for a uniform flow past a
Face-Centered Cubic array of spheres at Re = 50 and ( ) –d = 0.05, ( ) –d = 0.1,
( ) –d = 0.15, ( ) –d = 0.3, ( ) –d = 0.4, ( ) –d = 0.5, ( ) –d = 0.6. Right: Time
evolution of averaged Nusselt coe�cient for a uniform flow past a Face-Centered
Cubic array of spheres at Re = 50 and –d = 0.4.

presence of the other spheres (blocking e�ect) that speed up the flow and therefore
flatten the boundary layer which increases the temperature gradient. We can also
observe that the presence of surrounding particles breaks the symmetry of the flow.
Indeed, (Figure 4.10 left) shows two distinct distribution of the local Nusselt number
for two di�erent plans (— = 0) and (— = 45), and these results are in good agreement
with Massol body fitted simulations [70].

Separated flows downstream of the spheres

By increasing the Reynolds number, a separated flow appears downstream of the
spheres together with a fountain e�ect upstream of the spheres (see Figure 4.8
right). These phenomena can be observed also in the local Nusselt number distri-
bution. Indeed, the higher value of the Nusselt number is no more at the upstream
stagnation point ◊ = 0, due to the fountain e�ect that induces a low heat flux. With
increasing ◊, i.e. leaving the fountain zone, the Nusselt number increases as the
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boundary layer shrinks due to the fluid acceleration in this zone. It then decreases
until the separation point, where the fluid temperature is the highest. Finally, the
Nusselt increases again in the recirculating zone behind the sphere.
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Figure 4.10: Left: Local nusselt number for a uniform flow past an isolated sphere
at Re = 50 ( ) and for a uniform flow past a FCC array of spheres at Re = 50, –d =
0.15: — = 0 (( ) Massol [70], ( ) present work ) and — = 45 (( ) Massol [70], ( )
present work ). Right: Local Nusselt number for a uniform flow past a FCC array
of spheres at Re = 300, –d = 0.15: — = 0 ( ), — = 22.5 ( ), — = 45 ( ).

Global Nusselt coe�cient

The Nusselt number of a uniform flow past a FCC array of spheres normalized by the
isolated sphere Nusselt number (given by Ranz&Marshall [88]) Nus = 2. + 0.6 Re

0.5
Pr

1
3 ,

noted ÈNuÍ
Nus

, is compared to existing literature results. This comparison, illustrated
in Figure 4.11, shows a nice match with Massol [70] results at di�erent Reynolds
number and for a large range of solid volume fraction (0.05 Æ –d Æ 0.6). A good
agreement is also observed with Gun [47] correlation for low loading of sphere
(–d Æ 0.15), which means that for this range of –d, the FCC configuration is a
good approximation of uniform flow past a random assembly of spheres.

This study shows the strong dependence of the global Nusselt number to the
solid volume fraction and Reynolds number. Indeed, increasing the solid volume
fraction increases the blocking e�ect which thins the thermal boundary layer and
at the same time, increases the temperature gradient and consequently the Nusselt
number. This e�ect is enhanced significantly with solid volume fraction becoming
larger. Indeed, Nusselt number for a sphere in FCC configuration can be five times
the one of an isolated sphere for high particle concentrations.

4.5 Finite size random arrangement of spheres in a
channel

In order to assess the ability of the presented method to deal with more complex
particulate flows, the last case studied in this work is a uniform channel flow past
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Figure 4.11: Global Nusselt coe�cient for a uniform flow past a FCC, normalized by
Ranz&Marshall [88] Nusselt coe�cient for a uniform flow past an isolated sphere.
Evolution as a function of the solid volume fraction –d at Reynolds numbers (a)
Re = 10, (b) Re = 50, (c) Re = 100: ( ) Gunn [47] , ( ) Massol [70], ( ) present
work.

a random assembly of fixed hot spheres of diameter d (illustrated in Figure 4.12).
The computational domain lengths are Lx = 9d and Ly = Lz = 5d, where, given a
solid volume fraction –d, the particles are randomly distributed in the sub-domain
[(2d, 0, 0) ; (7d, 5d, 5d)], using hard sphere collisions model [22] to prevent them from
overlapping. A cold fluid flows through the channel in x-direction (streamwise), by
imposing at the inlet a temperature TŒ and a velocity UŒx deduced from the
Reynolds number Re = UŒd

‹
. Periodic boundary conditions are imposed in cross-

wise directions. The Np spheres are maintained at a constant temperature Ts, the

number of spheres is deduced from the solid volume fraction by Np = 6
fi

3
Ly

d

43
–d.

A fixed bed Nusselt number is considered here. It is defined as an average of
individual particle Nusselt numbers:

ÈNuÍ = 1
Np

Npÿ

i

(Qp)i

(Ts ≠ (ÈT Íf )i) fid2 (4.16)

where (Qp)i is the i
th sphere heat flux given by ’Eq. 4.7’. Estimating the local

average temperature of the fluid (ÈT Íf )i is not straightforward. As suggested by
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Figure 4.12: Streamlines and temperature field of a channel steady flow along the
x-axis of a random array of spheres at Re = 100 and –d = 0.1.

Deen et al. [36], a good estimate is given by:

(ÈT Íf )i =
sss

(1 ≠ C) T gi(r)sss
(1 ≠ C) gi(r) (4.17)

where T , C are the temperature field and color function respectively, and gi(r) is
the filter that cover the fluid volume in a 4d length box containing the i

th sphere,
both having the same center. It is given by:

gi(r) = exp
3≠2r

d

4
, 0 < r < 2d (4.18)

Simulations of uniform flow past a random hot spheres were performed for low
solid volume fractions –d = 0.05, 0.1 at di�erent Reynolds numbers Re = 10, 50, 100.
Their results are compared to the following correlations:

• Gun [47]:

Nu =
1
7 ≠ 10 (1 ≠ –d) + 5 (1 ≠ –d)2

2 1
1 + 0.7Re

0.2
Pr

1
3
2

+
1
1.33 ≠ 2.4 (1 ≠ –d) + 1.2 (1 ≠ –d)2

2
Re

0.7
Pr

1
3

• Deen et al. [37]:

Nu =
1
7 ≠ 10 (1 ≠ –d) + 5 (1 ≠ –d)2

2 1
1 + 0.17Re

0.2
Pr

1
3
2

+
1
1.33 ≠ 2.31 (1 ≠ –d) + 1.16 (1 ≠ –d)2

2
Re

0.7
Pr

1
3

• Sun et al. [99]:

Nu =

1
≠0.46 + 1.77 (1 ≠ –d) + 0.69 (1 ≠ –d)2

2

(1 ≠ –d)3

+
1
1.37 ≠ 2.4 (1 ≠ –d) + 1.2 (1 ≠ –d)2

2
Re

0.7
Pr

1
3
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Figure 4.13 shows that our results are in the same range of values than the re-
sults given in the literature, which is very encouraging as first results of real particle
flow arrangements.
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Figure 4.13: Nusselt coe�cient for a uniform flow past a random arrangement of
hot spheres as a function of the solid volume fraction –d at the Reynolds numbers
(a)Re = 10, (b)Re = 50,(c)Re = 100: ( ) Gunn [47], ( ) Deen et al. [37], ( )
Sun et al. [99] and ( ) present work.

4.6 Conclusion
In the framework of a finite-size particle approach, an accurate procedure for the
calculation of heat transfer coe�cients for motions around fixed particles has been
proposed based on third order Lagrange extrapolation coupled to third order Taylor
interpolation methods. This method is an extension of the techniques proposed for
drag force estimates published in [24]. The procedure allowing the estimate of heat
transfer coe�cients at a particle surface has been validated with success on fixed
isolated spheres, FCC and random arrangements of spheres. Comparisons have
been presented to reference Nusselt correlation of the literature.

Future works will be devoted to applying our heat transfer calculation method
to arrangements of ellipsoidal particles and extracting correlation laws for these
configurations. Other interesting lines of work concern the use of our method in
the context of other resolved-scale particle methods such as IBM.



Chapter 5

Drag, lift and Nusselt
coe�cients for ellipsoidal
particles using particle-resolved
direct numerical simulations

This chapter is the article [25] authored by M.-A. Chadil, S. Vincent and J.-L.
Estivalezes

Abstract

Particle-Resolved Direct Numerical Simulations has been performed using an im-
plicit tensorial viscous penalty method applied to ellipsoidal particles. Based on
the simulations, the drag and lift forces exerted by the fluid on the particles and
the Nusselt number of the particles has been extracted. The simulations results
are compared to existing correlations for a single ellipsoid by changing the incident
angle at di�erent Reynolds number. A new Lagrange extrapolation coupled to a
Taylor interpolation of high order are used to calculate the drag and lift forces as
well as the heat flux. This work is an extension of preliminary studies for a spher-
ical particle [23, 24]. A simple correlation is proposed for the Nusselt number of a
prolate spheroid with aspect ratio of 2.5 and Reynolds number between 10 and 100.

5.1 Introduction

Multiphase flows involving solid particles can be met in various natural phenomena
such as volcanic eruptions [10, 33] but also in numerous industrial processes such as
petroleum refining, blast furnaces or chemical looping combustion [2, 67, 71], fluid
catalytic cracking reactors [3], gas phase polymerization reactors [46] and fluidized
beds [77, 109].

The simulation of such particulate motions is based, at the real problem scale,
on statistical approaches due to the huge disparity of scales between the particle
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and the macroscopic size of the process. These simulations are carried out using
macroscopic Eulerian-Eulerian or mesoscopic Eulerian-Lagrangian models for which
the average interphase transfer of momentum and energy between the fluid and the
particles need to be modeled.

Numerous well-known drag force laws are classically used in large scale models.
Among them, we can cite Schiller and Naumann [97] correlation for a single sphere
whereas for fixed and fluidized beds of spheres, the correlations proposed by Ergun
[42] and Wen&Yu [114] are often utilized. Heat transfers have also extensively been
modeled for a single sphere using Ranz & Marshall [88] correlation, as well as for
random arrangements of spheres with Gunn [47] law, to name the most famous
of them. However, spherical particles are rarely encountered in both natural and
industrial processes, and particle non-sphericity can a�ect not only the structure
of the particle aggregates but also the velocity and the temperature of the fluid by
changing the momentum and heat transfer between the fluid and the particles [50].
Therefore, many studies were conducted in the past decades in order to character-
ize the non-sphericity e�ect on gas-solid flows and to adapt existing hydrodynamic
force and heat transfer correlations for non-spherical particles at larger scales.

Since the nineteen century, many theoretical and experimental works on the hy-
drodynamic forces acting on non-spherical particles have been conducted. Indeed,
Oberbeck (1876) [75], Je�ery (1922) [58], Venkates (1961) [107], Breach (1961) [15]
and Brenner (1963)[16] theoretically derived the forces acting on particles of di�er-
ent shapes in Stokes regime. Although these studies have to be restricted to low
Reynolds numbers [69], they are often used to model the motion of non-spherical
particles. The use of these models for estimating the forces acting on non-spherical
particles is almost unavoidable since there are few available correlations which pre-
dict all the coe�cients (drag, lift and torque) as a function of the particle orientation
at higher Reynolds number regimes. Chhabra et al. (1999) [28] were the first to
compile and classify the most used of these correlations. They showed that some dis-
crepancies exist between them. Recently, several studies based on Particle-Resolved
Direct Numerical Simulations (PR-DNS) have been conducted in order to propose
new hydrodynamic force coe�cients for di�erent particle shapes and a large range
of particle Reynolds number. Hölzer and Sommerfeld (2008) [55] derived a corre-
lation for the drag coe�cient of arbitrary shaped particles using a large number
of experimental data and their Lattice Boltzmann (LBM) simulation results [54].
Later, Zastawny et al. (2011) [116] proposed correlations for drag, lift and torque
coe�cients extracted from Immersed Boundary Method (IBM) simulations. More
recently, Ouchene et al. [76] proposed a correlation for these coe�cients as well.
They used body fitted simulations conducted with ANSYS FLUENT commercial
code. To our knowledge, the last work proposed in this purpose was Sanjeevi et al.
[92] correlations extracted from LBM simulations.

Otherwise, rare are the studies for which a correlation for the Nusselt number or
the heat transfer coe�cient between non-spherical particles and fluid is considered.
Indeed, Kishore et al. [61] and Richer et al. [89] proposed a correlation for an aver-
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aged Nusselt number over the attack angle – for a uniform flow past an ellipsoidal
particle. Later, Richer et al. [90] suggested a correlation for the Nusselt number of
an isolated ellipsoidal particle as function of its attack angle – with respect to the
flow direction.

The main purpose of the present work is to use a particle-resolved Implicit Ten-
sorial Penalty Method (ITPM) [21, 26, 86, 109] to simulate flows and heat transfers
interacting with ellipsoidal particles in various flow regimes. Once these small scale
simulations have been conducted, the accurate estimate of forces and heat transfers
acting at the ellipsoidal particle surface will be accurately estimated by means of
high order Taylor interpolations and Lagrange extrapolations of third order first
proposed for spheres in [23, 24]. If possible, correlations of drag, lift or Nusselt will
be proposed according to ellipsoidal particle orientation or Reynolds number.

The structure of this manuscript is as follows. In section 5.2, the model and
numerical methods used in the ITPM are briefly recalled and an extension of the
force and Nusselt calculation to ellipsoidal particles is proposed. Thereafter, sec-
tion 5.3 is devoted to estimating drag, lift and Nusselt for uniform flows around an
isolated ellipsoidal particle. Comparisons to existing correlations of the literature
are investigated and a new Nusselt correlation is considered for various Reynolds
and attack angles. Conclusions are finally drawn in section 5.4.

5.2 Numerical Methodology
Conservation equations
Following the work of Vincent and co-workers on the generalization of the two-phase
Navier-Stokes equations [63, 109] for particulate flows, the non-isothermal motion
equations for incompressible flows interacting with resolved-scale particles are

Ò · u = 0 (5.1)

fl

3
ˆu
ˆt

+ (u · Ò) u
4

= ≠Òp + flg + Ò ·
Ë
µ(Òu + Òtu)

È
(5.2)

flCp

3
ˆT

ˆt
+ u · ÒT

4
= Ò · (kf ÒT ) (5.3)

where u is the velocity, p the pressure, T the temperature, t the time, g the gravity
vector, fl, µ, Cp and kf respectively the density, the viscosity, the specific heat and
the thermal conductivity of the equivalent fluid. By equivalent fluid, we mean that
the Eulerian simulation mesh will be fixed and that the local cells properties fl, µ,
Cp and kf will potentially change according time (moving particles not considered
in this work) depending on a local solid fraction C. This phase function is obtained
by projecting the shape of the particles on the Eulerian fixed mesh.

In a first approach, only motionless particles are considered in this work. On a
numerical point of view, they are fixed by imposing the velocity of the Eulerian cells
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near their centroids to zero, and the viscous penalty method propagates the zero
velocity in the whole solid medium. The particle temperatures will be considered
constant over time, they are imposed at a fixed value in the whole solid medium.

Ellipsoidal particles

Ellipsoids are shaped using the solid fraction or phase function C which is computed
by browsing the Eulerian mesh and assessing each point whether it is in the ellipsoid
(C = 1) or not (C = 0). To project the particle shape on the Eulerian solving grid,
an equation for the ellipsoid is used: lets have an ellipsoid E centred at x0, � a
diagonal matrix such that �ii = 1

‡i
, ‡i being the length of the ellipsoid i

th semi-axis,
thus all points belonging to the ellipsoid E verify [82]:

E =
Ó

x | ||�R(q)T (x ≠ x0)|| Æ 1
Ô

(5.4)

where :

R(q) =

Q

ca
1 ≠ 2(q2

2 + q
2
3) 2q1q2 ≠ 2q0q3 2q0q2 + 2q1q3

2q1q2 + 2q0q3 1 ≠ 2(q2
1 + q

2
3) 2q2q3 ≠ 2q0q1

2q0q2 + 2q1q3 2q2q3 + 2q0q1 1 ≠ 2(q2
1 + q

2
2)

R

db (5.5)

is the rotation matrix based on the quaternion q = [q0, q1, q2, q3]. Quaternions,
introduced by Sir Hamilton[49], are used to characterize a rotation and to prevent
the Gimbal Lock problem [52] encountered when Euler angles are used. So, given
a rotation of an angle – and a direction e = (e1, e2, e3), its quaternion is:

q =
5
cos

3
–

2

4
, sin

3
–

2

4
e1, sin

3
–

2

4
e2, sin

3
–

2

4
e3

6

Hydrodynamic force and Heat flux computation for immersed bound-
ary methods

The computation for a spherical particles of the hydrodynamic force F =
j

S
‡.n dS

and the heat flux Qp =
j

S
≠kf ÒT · n dS, was fully detailed in [24] and [23] re-

spectively. It consists in discretizing the particle surface S by a set of N elements
called Lagrangian mesh (see figure 5.1), such that:

F ¥
Nÿ

l

‡l.nl dSl (5.6)

Qp ¥
Nÿ

l

≠Kf (ÒT )l · nl �Sl (5.7)
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where the ongoing normal to the l
th element nl and its area �Sl are deduced from

its node coordinates. On the other hand, the stress tensor ‡l and the temperature
gradient (ÒT )l are not known at the l

th element center Cl given that the pressure p,
the velocity u and the temperature T are located on the fixed structured Eulerian
mesh. Moreover, we have observed that the velocity and the pressure values [24]
as well as the temperatures [23] are inaccurate in the cells cut by the fluid/solid
interface, therefore we have to extrapolate the stress tensor and the temperature
gradient from the Eulerian mesh nodes far from the particle to the surface. A third
order Lagrange extrapolation (illustrated in 5.1 left) is used to achieve that [23, 24]:

f(Cl) =
3ÿ

i=1
f(Pi)Li(Cl) , where Li(Cl) =

3Ÿ

j ”=i

|Cl ≠ Pj |
|Pi ≠ Pj | (5.8)

f being the stress tensor components in the force computation ‡ij or the temper-
ature gradient components (ÒT )i in the heat transfer computation. A third order
Taylor interpolation (illustrated in 5.1 right) is used to interpolate them at the
extrapolation points P1, P2 and P3 [23, 24]:

f(Pk) = f(E) + ˆf

ˆxi
(E)((Cl)i ≠ Ei) + 1

2
ˆ

2
f

ˆx
2
i

(E)((Cl)i ≠ Ei)2

+ ˆ
2
f

ˆxiˆxj
(E)((Cl)i ≠ Ei)((Cl)j ≠ Ej) + O(||Cl ≠ E||3)

(5.9)

where E is the nearest Eulerian point to Pk.
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Figure 5.1: Details of the third order Lagrange extrapolation (left) and the third
order Taylor interpolation (right), used in heat flux computation.
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5.3 Drag, Lift and Nusselt for an isolated stationary
ellipsoid past by a uniform flow

The hydrodynamic force F exercised by the fluid on the ellipsoid is extracted from
the pressure and the velocity fields , solution of the Navier-Stokes equations 5.1,5.2,
using the method presented in the previous section 5.2. Two non-dimensional coe�-
cients are introduced to characterize this force: the drag coe�cient Cd = F.x

0.5flU2
ŒAp

and lift coe�cient Cl = F.x‹

0.5flU2
ŒAp

, with UŒ the velocity of the undisturbed fluid

far from the particle, fl the fluid density and Ap = fid2
eqV

4 the cross-sectional area
of the sphere, of diameter deqV , having the same volume than the ellipsoid, as in
previous studies [55, 76, 93, 116]. On the other hand, the heat transfer between the
hot ellipsoid and the fluid, considered across the particle surface, is characterized by
the non-dimensional Nusselt number Nu = QpdeqS

kf (Ts ≠ Tf ) Sp
, where Qp is the heat

flux extracted from the temperature field using the method of the previous section
5.2. Here, Ts and Tf are the temperatures of the particle and the fluid respectively
and Sp = fid

2
eqS is the sphere, of diameter deqS . Attention, a nuance is introduced

here, we propose that the sphere used to estimate Nu is having the same surface
than the ellipsoid instead of the same volume. This choice is due to the fact that
the heat flux is linked to the particle surface in contrary to the hydrodynamic force
which is linked to the particle volume.

Simulation setup

A hot Spheroid of semi-axis a and b (a > b) and aspect ratio r = a

b
= 2.5 (il-

lustrated in Fig. 5.2) is immersed in a cold fluid for di�erent attack angles –,
i.e. rotation angle of the spheroid with respect to z axis. The simulations at
di�erent Reynolds number Re = UŒdeqV

‹
are driven with a computational do-

main whose lengths are Lx = 16deqV and Ly = Lz = 8deqV in each Carte-
sian direction. The Eulerian mesh refinement is constant in a box of extension
[(2deqV , 2deqV , 3deqV ) ; (6deqV , 6deqV , 5deqV )] centered around the particle position.
Outside this box, the Eulerian mesh is exponentially coarsen from the box to the
boundaries of the simulation domain. The inlet boundary conditions are u = UŒex

, T = TŒ and Neumann conditions are applied elsewhere. As an example, the flow
around a spheroid at Re = 100 and two di�erent attack angle, – = 0 and – = 90,
is shown in Figure 5.3.

As for the simulations of spherical particle [23, 24], the Eulerian mesh resolution
is chosen so that the dynamic boundary layer contains 5 cells in order to ensure
that the extrapolation points are in it (see in Fig. 5.1 left). This is a necessary con-
dition to accurately compute the hydrodynamic force. Moreover, Prandt number is
imposed here at Pr = 1, to ensure that the thermal boundary layer has the same
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Figure 5.2: Illustration of an ellipsoid of aspect ratio r = 2.5 and attack angle
– = 45. The flow comes from the left.

width as the dynamic one. This way, it contains the extrapolation points as well.
Therefore, the mesh resolution changes with the Reynolds number �x = deqV

5
Ô

Re
ac-

cording to scaling laws for laminar dynamic boundary layers.

Drag coe�cient

The drag coe�cient for an uniform flow past a hot spheroid is compared to various
existing correlations, written as:

Cd = Cd,–=0 + (Cd,–=90 ≠ Cd,–=0) sin2
– (5.10)

with

• Sanjeevi et al. [92]:

Cd,–=0 =
323.1

Re
+ 3.397

Re0.364

4
e

≠0.0008Re + 0.169
1
1 ≠ e

≠0.0008Re
2

(5.11)

Cd,–=90 =
327.93

Re
+ 4.286

Re0.234

4
e

≠0.0018Re + 0.815
1
1 ≠ e

≠0.0018Re
2

(5.12)

• Zastawny et al. [116]:

Cd,–=0 = 5.1
Re0.48 + 15.52

Re1.05 (5.13)

Cd,–=90 = 24.68
Re0.98 + 3.19

Re0.21 (5.14)

• Ouchene et al. [76] found in [7] due to typographical errors in [76]:

Cd,–=0 = 24
Re

A

K–=0(r) + 0.15r
≠0.8

Re
0.687 + (r ≠ 1)0.63

24 Re
0.41

B

(5.15)



88
Chapter 5. Drag, lift and Nusselt coe�cients for ellipsoidal particles

using particle-resolved direct numerical simulations

Figure 5.3: Illustration of instantaneous stream lines and temperature field obtained
for an uniform flow past a hot isolated spheroid at Re = 100 for attack angles – = 0
(top) and – = 90 (bottom). The upstream unperturbed velocity UŒ is imposed at
the left boundary condition. Aspect ratio r = 2.5.
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Cd,–=90 = 24
Re

A

K–=90(r) + 0.15r
≠0.54

Re
0.687 + r

1.043(r ≠ 1)≠0.17

24 Re
0.65

B

(5.16)
where:

K–=0(r) =
8
3r

≠ 1
3

≠2r
r2≠1 + 2r2≠1

(r2≠1)
3
2

ln
1

r+
Ô

r2≠1
r≠

Ô
r2≠1

2

K–=90(r) =
8
3r

≠ 1
3

r
r2≠1 + 2r2≠3

(r2≠1)
3
2

ln
1
r +

Ô
r2 ≠ 1
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Figure 5.4: Drag coe�cient for an uniform flow past a spheroid as a function of
the attack angle – at di�erent Reynolds numbers: (a) Re = 10, (b) Re = 50, (c)
Re = 100. ( ) Sanjeevi et al. [92], ( ) Zastawny et al. [116], ( ) Ouchene et
al. [76] and ( ) present work.

Figure 5.4 shows the drag force for an uniform flow past a spheroid as a function
of the attack angle – at di�erent Reynolds numbers. It can be observed that our
results matches nicely the correlation of Sanjeevi et al. [92], extracted from LBM
simulations. Sanjeevi et al. [92] simulations were carried out after a grid resolution
and a domain independence studies. Moreover, our results are in good agreement
with the correlation of Zastawny et al. [116], extracted from IBM simulations,
for high Reynolds number. However, this correlation seems to be less adapted
for lower Reynolds number. This was also observed by Sanjeevi et al. [92] for
R = 0.1. To finish with, the results of Ouchene et al. [76], extracted from ANSYS
FLUENT simulations, seems to be less accurate especially for – = 90¶, which
certainly a�ects the obtained values for – smaller than 90¶ through Eq. (5.10).
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The present study validates the drag force computation for ellipsoidal particles
simulated using a viscous penalty method.

Lift coe�cient
The lift coe�cient for an uniform flow past a hot spheroid, extracted from the
previous simulations, is compared to the following correlations:

• Sanjeevi et al. [92]:

Cl =
34.484

Re
+ 1.326

Re0.122

4
sin –

(1+0.016Re0.286) cos –
(1≠0.01Re0.332) (5.17)

• Zastawny et al. [116]:

Cl =
3 6.079

Re0.898 + 0.704
Re≠0.028

4
sin –

(1.067+0.0025Re0.818) cos –
1.049 (5.18)

• Ouchene et al. [7, 76]:

Cl =
3

F (r)Re
0.25 + G(r)

Re0.755

4
sin –

(1.002Re) cos – (5.19)

where:
F (r) = 0.1944

1
r

≠0.93 ≠ 1
2

ln (r) + 0.2127(r ≠ 1)0.47

G(r) = 1.9183r
ln (r) ≠ 4.0573

1
r

≠1.61 ≠ 1
2

The lift coe�cient results are compared in Figure 5.5 for an uniform flow past a
spheroid. They are presented at di�erent Reynolds numbers as function of the at-
tack angle –. It can be observed, as in Drag coe�cient results (see Figure 5.4), that
our results are in good agreement with those of Sanjeevi et al. [92] and those of
Zastawny et al. [116]. However, the Ouchene et al. [76] correlation seems, as for
drag correlation, less accurate. This could be due to inaccurate results or insu�-
cient mesh resolution for some cases simulated to extract their correlations or, as
suggested by Sanjeevi et al. [92], it could be an e�ect of their method to fit the
body fitted simulation data.

Nusselt coe�cient
The Nusselt number for an uniform flow past a hot ellipsoid was rarely studied and
few correlations exist for it: [61] and [89] gave a correlation for a Nusselt number
averaged over the attack angle – and [90] proposed a correlation of the Nusselt
number for an aspect ratio r = 2, which makes a comparison with this correlation
impossible given that r = 2.5 in our work.

In a preliminary approach, a first order correlation of the Nusselt number is
proposed for a uniform flow past a spheroid of aspect ratio r = 2.5 at Prandlt
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Figure 5.5: Lift coe�cient for an uniform flow past a spheroid as a function of
the attack angle – at di�erent Reynolds numbers: (a) Re = 10, (b) Re = 50, (c)
Re = 100. ( ) Sanjeevi et al. [92], ( ) Zastawny et al. [116], ( ) Ouchene et
al. [76] and ( ) present work.

number Pr = 1. Our correlation is expressed according to the Ranz & Marshall [88]
Nusselt number correlation for a sphere having the same surface than the ellipsoid.
Ranz & Marshall [88] correlation is given by:

Nus = 2. + 0.6 Re
0.5

Pr
1
3 (5.20)

Our proposed correlation is written as:

Nu = Nus

1
8.53 10≠1 + 3.68 10≠4

Re + –

1
4.2 10≠4 + 1.24 10≠5

Re

22
(5.21)

Figure 5.6 shows the simulated Nusselt number for an uniform flow past a hot
spheroid compared to the proposed correlation Eq. 5.21. The maximum error to
the correlation is 2.5% for a spheroid oriented with – = 60¶ at Reynolds number
Re = 50.

5.4 Conclusion
The viscous penalty method was utilized to perform resolved scale particle simula-
tion of the flow and associated heat transfers past a spheroid at various Reynolds
numbers and attack angles. For all considered quantities (drag and lift coe�cients,
Nusselt numbers), our simulations are validated favorably against correlations of
the literature. It has been demonstrated that the results of Sanjeevi et al. [92]
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Figure 5.6: Nusselt coe�cient for an uniform flow past a spheroid as a function of
the attack angle – at di�erent Reynolds numbers: (a) Re = 10, (b) Re = 50, (c)
Re = 100. ( ) simulation results and ( ) proposed correlation Eq. (5.21).

and Zastawny et al. [116] are in good agreement with our simulations while the
correlation of Ouchene et al. [76] under predicts force coe�cients.

A new Nusselt correlation has been proposed for ellipsoids. IT fits nicely the
resolved scale particle simulations. This work has to be completed and extended to
various flow configurations, Reynolds numbers and attack angle in order to general-
ize the Nusselt correlation. We have illustrated the interest of leading fully resolved
particle simulations to extract macroscopic physical correlations such as on Nusselt.



Chapter 6

Novel method to compute drag
force and heat transfer for
motions around spheres

This chapter is the article [27] authored by M.-A. Chadil, S. Vincent and J.-L.
Estivalezes

Abstract

A viscous penalty method is used to simulate the interaction between spheres and
flows with Particle-Resolved Direct Numerical Simulations. An original method
has been developed and validated in order to extract from these simulations the
hydrodynamic forces and heat transfers on immersed boundaries representing the
particles thanks to Aslam extensions [9]. This method is an improvement of a
previous work based on Lagrange extrapolations [23, 24]. Comparisons between
these two approaches are considered on various incompressible motions such as
the flow around an isolated particle at various Reynolds numbers and flows across
packed spheres under Faced-Centered Cubic mono- and bi-disperse arrangements.

6.1 Introduction

Fluid/Solid flows are widely encountered in nature as well as in various industrial
processes. Among the wide variety of applied problems, we can cite volcanic erup-
tions [10, 33], oil refining, blast furnaces or chemical looping combustion [2, 67, 71],
fluid catalytic cracking reactors [3], gas phase polymerization reactors [46] and flu-
idized beds [77, 109]. Their modeling and simulation at the application scale are
generally based on statistical approaches where macroscopic Eulerian-Eulerian or
mesoscopic Eulerian-Lagrangian models (the average interphase transfer of momen-
tum and energy between the fluid and the particles) are needed to be modeled.

Numerous well-known drag force laws are classically used in large scale models.
The most popular are Schiller and Naumann [97] correlation for a single sphere
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whereas for fixed and fluidized beds of spheres, the correlations proposed by Ergun
[42] and Wen and Yu [114] are often utilized. Heat transfers have also extensively
been modeled for a single sphere using Ranz and Marshall [88] correlation, as well as
for random arrangements of spheres with Gunn [47] law, to name the most famous
of them.

Particle-Resolved Direct Numerical Simulation (PR-DNS) has been the privi-
leged tool of many researchers in order to model unclosed terms in macroscopic
statistical equations. Many numerical approaches have been developed to perform
PR-DNS of gas-solid flows. These can be classified in two types of approaches.
The first one rely on body-fitted mesh to impose boundary conditions at particle
surface. Many codes use this technique, as for instance AVBP code [98] used by
Massol [70] to conduct his work. The second type of approaches is called Ficti-
tious domain methods. They employ a fixed Cartesian grid in the whole domain,
where each phase is located thanks to phase or color function C = 1 in the solid
phase and C = 0 in the fluid phase. It is utilized in Lattice Boltzmann approach
[12, 51, 53, 64, 65]. Another class of very popular fictitious domain method for han-
dling finite-size particle on fixed meshes is the Immersed Boundary Method (IBM)
[36, 102, 105, 106, 113, 116]. The approach used in this work is the Viscous Penalty
Method [26, 109]. We have recalled here the most used methods in the literature.

The treatment of the fluid/solid interface in Navier-Stokes equations results in
contaminated solution fields that do not correspond to unmodified Navier-Stokes
equations. Tenneti et al. [103] proposed what they called the PUReIBM method
where the immersed boundary (IB) forcing is restricted to the Eulerian grid points
that lie in the solid phase, ensuring that the flow solution in the fluid phase is uncon-
taminated by the IB forcing. This allows them to easily compute drag forces [103]
and heat transfers [99, 104]. In the case of VPM that we consider, we proposed, in
a previous work [24], a Lagrange extrapolation for the drag force computation in
order to reach the uncontaminated fluid area far from the particle/fluid interface
ensuring in that way accurate results for drag coe�cients. This method was used
also in the heat transfer computation [23], and extended to ellipsoidal particles [25].

The purpose of this work is to propose an original alternative to Lagrange ex-
trapolation in the hydrodynamic force and heat transfer computation in order to
avoid contaminated solution of the Navier-Stokes equations near the solid-fluid in-
terface. This original method is based on Aslam extension [9] to extrapolate velocity,
pressure and temperature from the uncontaminated fluid area to the interface.

This paper is structured as follows. In section 6.2, the model and numerical
methods used in the VPM are briefly recalled and a description as well as a valida-
tion of Aslam extension are detailed. Thereafter, section 6.3 is devoted to setting up
Aslam extension numerical parameters and estimating drag and Nusselt coe�cient
for uniform flows around an isolated sphere and comparing them to those given
by Lagrange extrapolation in order to assess the improvements made by Aslam
extension. The same study is presented in section 6.4 for flows through fixed ar-
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rangements of mono- and bi-dispersed spheres. Conclusions are finally drawn in
section 6.5.

6.2 Numerical Methodology

6.2.1 Conservation equations

As explained by [26, 109], the motion equations describing incompressible two-phase
flows that involve a carrier fluid and a solid particle phase are based on the one-fluid
model. Their formulation is given by:

Ò · u = 0 (6.1)

fl

3
ˆu
ˆt

+ (u · Ò) u
4

= ≠Òp + flg + Ò ·
Ë
µ(Òu + Òtu)

È
(6.2)

flCp

3
ˆT

ˆt
+ u · ÒT

4
= Ò · (kf ÒT ) (6.3)

where u is the fluid or solid velocity, p the pressure, T the temperature, t the time,
g the gravity vector, fl, µ, Cp and kf respectively the density, the viscosity, the spe-
cific heat and the thermal conductivity of the equivalent fluid depending on a local
solid fraction C. This phase function is obtained by projecting the shape of the
particles on the Eulerian fixed mesh. The advection equation on C is not reported
in the one-fluid model as only fixed particles are considered in the present work.

6.2.2 Fictitious domain approach and viscous penalty method

In the present work, fixed staggered Cartesian grids are used to discretized both
fluid and solid media. The particles are viewed as fictitious domains sliding with
their own Lagrangian surface mesh onto the fixed mesh used to solve the conserva-
tion equations (6.1-6.3). The details of the viscous penalty method and fictitious
domain approach considered here are provided in [24, 87, 109].

In a first approach, only motionless particles are considered in this work. On a
numerical point of view, they are fixed by imposing the velocity of the Eulerian cells
near their centroids to zero, and the viscous penalty method propagates the zero
velocity in the whole solid medium. The particle temperatures will be considered
constant over time, they are imposed at a fixed value in the whole solid medium
also thanks to a penalty method used in the energy equation (6.3) [63].

6.2.3 Drag force and heat flux computation using Aslam extension

As mentioned in the introduction, the aim of this work is to propose an original
method to compute the hydrodynamic force F and the heat flux Qp of a particulate
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flow from the velocity, pressure and temperature fields extracted from PR-DNS
simulations. They are given by:

F =
j

S
‡.n dS and Qp =

j

S
≠Kf ÒT · n dS

The computation of F and Qp consists in discretizing the particle surface S on
a set of N elements called Lagrangian mesh (see figure 6.1), such that:

F ¥
Nÿ

l

‡l.nl dSl and Qp ¥
Nÿ

l

≠kf (ÒT )l · nl �Sl (6.4)

where kf is the thermal conductivity, ‡l and (ÒT )l are the fluid stress tensor and
the temperature gradient located at the l

th element center Cl, nl is the ongoing
normal to the l

th element and �Sl its area.
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Figure 6.1: Details of a 2D discretization of the particle surface S and extrapolation
points Pi of the third order Lagrange method used in drag force and heat flux
computation.

When nl and �Sl are easily deduced from the nodes coordinates of the l
th el-

ement, getting the stress tensor ‡l and the temperature gradient (ÒT )l at the l
th

element center Cl is not straightforward when viscous penalty method is used to
simulate fluid-solid flows. Indeed, velocity, pressure and temperature values, solu-
tion of Eqs (6.1-6.3), are inaccurate in the Eulerian cells cut by the interface [23, 24].
To address this numerical issue, a Lagrange extrapolation coupled to a Taylor in-
terpolation of third order was proposed to extrapolate the stress tensor [24] and
the temperature gradient [23] from the fluid area far from the interface to the La-
grangian mesh (see figure 6.1). This approach was fully detailed and validated in
[23, 24]. These validations showed the e�ciency of the method in the computation
of the drag force and heat flux. Indeed the drag coe�cient and the Nusselt number,
both given bellow, were found in good agreement with many reference results of
the literature.
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The force and heat transfer coe�cients at the particle surface are defined as
follows:

• Drag coe�cient:
Cd = |F|

1
2flŨ2Ap

(6.5)

where Ũ = |UŒex ≠ Up| is the relative velocity between the particle and the
fluid velocity at infinity, UŒex is the fluid velocity in the mean flow direction
far from the particle, Up is the particle velocity, ‹ is the fluid kinematic
viscosity and Ap = fi

4 d
2 the cross-sectional area of the particle.

• Nusselt number:
Nu = Qpd

kf (Ts ≠ Tf ) Sp
(6.6)

where Qp is the heat flux, kf the thermal conductivity and Sp = fid
2 the area

of the sphere. The temperatures of the particle and the fluid are respectively
Ts and Tf .

By using the Lagrange extrapolation coupled to the Taylor interpolation of
3rd order, some oscillations were observed in the distribution of both the pressure
coe�cient given in the spherical system (see the figure 6.2) by:

Cp(◊) = p(◊)
1
2flU2

Œ
(6.7)

and the local Nusselt number

Nuloc(◊) = ≠ÒT · n d

(Ts ≠ Tf ) (6.8)

especially at low Reynolds number [23, 24]. These oscillations could be an expla-
nation of some di�erences observed between our results and literature references,
even if these oscillations were observed only for a few cases among the multitude
conducted in [23, 24] .

Another way to extrapolate the velocity, pressure and temperature from the
fluid area ,where they are not contaminated by the viscous penalty, to the region
containing the interface, is proposed here to improve the accuracy of the current
hydrodynamic force and the heat flux computations results. It is based on Aslam
extensions [9].

Description of Aslam extension

Lets consider a sphere of diameter d circumscribed by a surface S, and a domain �
divided in three sub-domains as illustrated in Fig. 6.3:

• �1 the area inside the sphere of radius (d

2 ≠ �x), where �x is the Eulerian
cell mesh size.
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Figure 6.2: Spherical coordinate system around a particle. The flow direction is
represented by the undisturbed velocity UŒ.

• �2 the area outside the sphere of radius (d

2 + ”). This is the region where
the velocity, pressure and temperature are not contaminated by the viscous
penalty. ” is then the distance between �2 and the interface.

• a band B bounded by the surfaces of the two sphere of radius (d

2 ≠ �x) and

(d

2 + ”) respectively. It contains the interface S. It is represented as the grey
area in Fig. 6.3.
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Figure 6.3: Details of the domain subdivision for Aslam extension [9]

Consider also a function g defined in �2. For example, g is a velocity component
or the pressure used to compute the hydrodynamic force or either the temperature
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utilized to estimate the heat flux coe�cient at the particle surface. Applied to these
quantities, the Aslam extension [9] consists then in extrapolating g from �2 to B
by solving a series of advection equations given by (6.9).

Assuming a signed distance level set function Â is available on B (Â > 0 inside
the particle), a normal field to S inside the band can be defined as:

n = ÒÂ

||ÒÂ||

In our approach and for a particle of any form, Â is computed by a Ray-casting
Method [94] based on the use of the Lagrangian mesh describing the particle surface
S. However, for a spherical particle of diameter d and centred in x0, n and Â are
given by:

’x œ B n = x ≠ x0
||x ≠ x0|| Â = d

2 ≠ ||x ≠ x0||

To perform a m
th order Aslam extrapolation, the equations (6.9) are successively

resolved for decreasing values of k = m, m ≠ 1, ..., 1:

ˆgk

ˆ‡
+ HÒgk · (≠n) = gk+1 (6.9)

where ‡ is a fictitious time, H is a Heaviside function defined by:

H(x) =
I

1 if x œ B
0 otherwise

and gk is the projection on the normal field of the k
th order di�erential of the

function g:
g1 = g

g2 = Òg1 · (≠n)
g3 = Òg2 · (≠n)

...
gm = Ògm≠1 · (≠n)

gm+1 = 0

these derivatives are computed in �2 using a second-order upwind finite di�erence
scheme:

(gk)i = 3(gk≠1)i ≠ 4(gk≠1)i≠1 + (gk≠1)i≠2
2sgn(ni)�xi

ni (6.10)

Using an upwind scheme rather than a Central finite di�erence scheme as pro-
posed in Aslam [9] allows the use of the same Heaviside function H for all m equa-
tions (6.9) resolved for the m

th order Aslam extension, and not a specific Heaviside
function Hk for each equation as proposed by Aslam [9].

The equations (6.9) are resolved until steady state is reached, using a first-order
upwind finite di�erence scheme for the time derivative and a second-order TVD
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"SuperBee" scheme [100] for the space derivative. It is worth noting that when the
steady state is reached in the B band, g verifies in B:

Ògm · (≠n) = 0
Ògm≠1 · (≠n) = gm

...
Òg2 · (≠n) = g3
Òg · (≠n) = g2

Once the velocity and pressure fields for hydrodynamic force computation and
temperature for heat flux computation, are extrapolated in the band B using the m

th

order Aslam extension, the stress tensor and the temperature gradient are computed
in B and then interpolated onto the Lagrangian mesh using a m

th order Taylor
interpolation which was fully detailed in [24]. This interpolation is formulated as:

g(Cl) =
m≠1ÿ

|–|=0

1
–!

ˆ
–
g

ˆx–
(E)(Cl ≠ E)– + O(||Cl ≠ E||m)

where – = (–1, –2, –3) œ N3 is the sum multi-index and E denotes the nearest
Eulerian point to the point Cl, as illustrated in Fig. 6.4 for a third order Taylor
interpolation.
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Figure 6.4: Details of Taylor interpolation points for drag force/heat flux compu-
tation at point Cl of the surface Lagrangian mesh. E is the nearest fluid point to
the particle/fluid interface. The crosses represent the discrete compact support of
the fluid points required for a 3rd order Taylor interpolation.

Validation of Aslam extension

To validate these extension we used the same example as Aslam [9] i.e. a [≠fi, fi]2
2D domain with a particle located at the center of the domain and a function g to



6.2. Numerical Methodology 101

be extrapolated given by:

g(x) =
I

cos(x1) sin(x2) if Â(x) > 0 (i.e. inside the particle)
0 otherwise

In this example the function g is defined inside the particle i.e. in �1. It has to
be extrapolated in the band B as illustrated in Figure 6.5.
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Figure 6.5: Details of the Aslam extension validation example.

This example was extended to non-spherical particles, with an ellipse and a
square. Figure 6.6 shows the contours of g inside (a) a circle, (b) an ellipse and (c)
a square which will be extrapolated in B i.e. the delimited white zone outside the
particle, using equations (6.9).

The function g is extrapolated using Aslam extension, i.e. resolving equations
(6.9), for four di�erent orders:

• Constant Aslam extension m = 1: it consists in resolving equation ˆg

ˆ‡
+ HÒg · n = 0

in B until g reaches a steady state i.e. ˆg

ˆ‡
= 0, i.e. ˆg

ˆn = Òg · n = 0, which
means that extrapolated g is constant on the normal direction to the particle
surface in the extrapolation region B as illustrated in Figure 6.7.

• Linear Aslam extension m = 2: it consists in extrapolating the first normal
derivative g2 = ˆg

ˆn from �1, where it is computed from g using (6.10), to the
band B using Constant Aslam extension. Then g is extrapolated from �1 to
B by resolving equation ˆg

ˆ‡
+ HÒg · n = g2 until g reaches a steady state.

An illustration of such function is given in Figure 6.8 where one can observe
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(a) (b)

(c)

Figure 6.6: Contour (with a 0.2 increment) of the initials conditions of g for Aslam
extension from: (a) a circle, (b) an ellipse and (c) a square.

that g is no more constant on the normal direction to the particle surface in
B (Òg · n = g2).

• Quadratic Aslam extension m = 3: it consists in extrapolating the sec-

ond normal derivative g3 = ˆg2
ˆn = ˆ

2
g

ˆn2 from �1,where it is computed from
g2 using (6.10), to the band B using Constant Aslam extension. Then, g2
is extrapolated using Linear Aslam extension with g3 as second member of
the extrapolation equation. And finally g is extrapolated by resolving in B
ˆg

ˆ‡
+ HÒg · n = g2 until g reaches a steady state. In Figure 6.9, the extrapo-

lated part of g seems to converge toward the initial function g. Note that the
incoherent values of the extrapolated g in the corner region for the square case
are the consequence of the fact that the normal is unknown in this region.
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(a) (b)

(c)

Figure 6.7: Contour (with a 0.2 increment) of the function g extrapolated using
Constant Aslam extension (m = 1) from: (a) a circle, (b) an ellipse and (c) a
square.

• Cubic Aslam extension m = 4: it consists in extrapolating the third normal
derivative g4 = ˆg3

ˆn from �1, to the band B using Constant Aslam extension.
In a second step, g3 is obtained using Linear Aslam extension with g4 as
second member of the extrapolation equation. Then g2 is extrapolated using
Quadratic Aslam extension with g3 as second member of the extrapolation
equation. Finally g is approximated by resolving ˆg

ˆ‡
+ HÒg · n = g2 until

g reaches a steady state. The results obtained with this extrapolation are
illustrated in Figure 6.10.

A convergence study was conducted for these four Aslam extension orders using
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(a) (b)

(c)

Figure 6.8: Contour (with a 0.2 increment) of the function g extrapolated using
Linear Aslam extension (m = 2) from: (a) a circle, (b) an ellipse and (c) a square.

the relative error, in the band B, between exact g values and those obtained with
extrapolation Aslam procedures. It can be observed in Figure 6.11 that these errors
are always small (from 0.1 to 10≠8 %), and that the expected orders are found for
extensions of the circle and the ellipse shape. However, in the case of an extension
from a square surface, the order could not be reached because of the inaccurate
values in the region near the square corner, where the normal to the surface is not
defined.

The exact same study was conducted for three dimensional cases. Indeed, a
[≠fi, fi]3 3D domain with a particle (sphere, ellipsoid, cube) located at the center
of the domain and a function g to be extrapolated are considered here to validate
Aslam extension in 3D. Now, the function g is defined by:

g(x) =
I

cos(x1) sin(x2) cos(x3) if Â(x) > 0 (i.e. inside the particle)
0 otherwise
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(a) (b)

(c)

Figure 6.9: Contour (with a 0.2 increment) of the function g extrapolated using
Quadratic Aslam extension (m = 3) from: (a) a circle, (b) an ellipse and (c) a
square.

Figure 6.12 shows that, similarly as in the 2D cases, the expected extension
orders are found for the sphere and the ellipsoid, even if the relative errors are two
order of magnitude greater than in 2D cases. As for the 2D case, the non-definition
of the normal to the cube in the vicinity of its corners lead to inaccurate values
of the extrapolated function in the region near to these corners. This explains the
errors behavior that makes the extension order computation impossible in this case.

6.3 Isolated stationary sphere past by a uniform flow

The aim of this work is to assess how Aslam extension could improve the computa-
tion of the hydrodynamic force and the heat flux compared to the results obtained
using Lagrange extrapolation. To do that, we conducted the same simulations
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(a) (b)

(c)

Figure 6.10: Contour (with a 0.2 increment) of the function g extrapolated using
Cubic Aslam extension (m = 4) from: (a) a circle, (b) an ellipse and (c) a square.

carried out in [23, 24] to validate the force and heat transfer computation using
Lagrange extrapolation. The first case considered here is a forced convection by
uniform flow past a hot stationary sphere, illustrated in figure 6.13. All the details
and description of this problem are reported in [23, 24].

6.3.1 Drag force computation

Following the steps of the study of the drag force computation using Lagrange
extrapolation [24], we will first determine how far we have to go from the particle
to reach uncontaminated velocity and pressure of the fluid to extrapolate them
to the interface in order to get accurate values of drag force. The e�ect of Aslam
extrapolation order will be studied at the same time on these values. Moreover, some
perturbations were observed in the local pressure distribution on the particle surface
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(a) (b)

(c)

Figure 6.11: Convergence orders in 2 dimensions for Aslam extension from: (a) a
circle, (b) an ellipse and (c) a square. ( ) m = 1, ( ) m = 2, ( ) m = 3 and ( )
m = 4.

(a) (b)

(c)

Figure 6.12: Convergence orders in 3 dimensions for Aslam extension from: (a) a
sphere, (b) an ellipsoid and (c) a cube. ( ) m = 1, ( ) m = 2, ( ) m = 3 and ( )
m = 4.
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Figure 6.13: Streamlines and temperature field for a uniform flow past a sphere at
Re = 100.

in [24]. We will see how Aslam extension could prevent these oscillations. Finally,
we will compare the drag coe�cient values computed with Lagrange extrapolation
[24] with those computed with Aslam extension.

E�ect of the extrapolation distance ”

One of the main drag force computation parameter using Lagrange extrapolation,
studied in [24], was the distance (”) between the particle and the first point of
extrapolation P1 (see Figure 6.1). Indeed, as reported in [24] and as illustrated in
Figures (6.14 a) at Stokes regime and (6.14 c) at Re = 100, the drag force values,
computed using Lagrange extrapolation, are inaccurate for ” Æ 1. This is due to
contaminated values of velocity and pressure induced by the viscous penalty method
[26] in the Eulerian cells cut by the interface. The study of the e�ect of this distance
” (illustrated in Figure 6.3) is conducted for drag force computation using Aslam
extension as well. The Figures (6.14 b) (6.14 d) show that, in order to get an accu-
rate drag force using Aslam extensions, a third order is required. Therefore, for the
rest of this work, a third order Aslam extension coupled with a third order Taylor
interpolation will be used in the drag force computation. One can also observe in
these figures that the distance to go far from the interface is reduced to ” = 0.5
with Aslam approach. One possible explanation of this improvement is that, it is
actually the pressure and the velocity that are extrapolated by Aslam extension
in the drag force computation rather than the stress tensor components, i.e. the
gradients of these variables, as it is the case when the Lagrange extrapolation is
used. Indeed, the stress tensor is computed using centered di�erence schemes which
utilizes contaminated values of velocity and pressure for ” Æ 1 (and even solid val-
ues for ” = 0). On the other hand, extrapolating directly the velocity components
and the pressure using Aslam extension and then computing the stress tensor from
these extrapolated values reduces the distance to which how far we have to move
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away from the particle to reach accurate drag force values.
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Figure 6.14: Drag force relative error (%) for the uniform flow past a sphere in
Stokes regime (a) for Lagrange extrapolation and (b) for Aslam extrapolation and
at Re = 100 for (c) Lagrange extrapolation and (d) Aslam extrapolation. Di�erent
extrapolation orders are considered: ( ) first, ( ) second, ( ) third, and ( ) fourth
order. The distance between the first Eulerian point used to extrapolate forces and
the particle surface is ”.

Pressure coe�cient

The analysis of local pressure profiles in [24] was used to better understand the
behavior of the pressure on the sphere depending on the Reynolds number. The
local pressure coe�cients are defined by equation (6.7) in a spherical coordinate
system (see figure 6.2).

The pressure coe�cient distribution according to ◊ was compared in [24] to
some available body fitted simulations results conducted by Magnaudet et al. [68],
Dennis and Walker [38], LeClair et al. [30] and Massol [70] at di�erent Reynolds
numbers. The results are presented in Figures (6.15 a), (6.15 c) and (6.15 e) for
Re = 1, 10, 100 respectively.

It is well-known that, for this range of Reynolds number, the flow is symmetric
with respect to its direction, as illustrated in Figure 6.16. Therefore, the pressure
coe�cient distribution must be the same for all the polar angle (—) plans, translat-
ing by that the flow symmetry. This expected behavior was mostly observed when
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Figure 6.15: Pressure coe�cient for a uniform flow past an isolated sphere at Re =
1: (a) for Lagrange extrapolation, (b) for Aslam extrapolation, Re = 10: (c) for
Lagrange extrapolation, (d) for Aslam extrapolation, Re = 100: (e) for Lagrange
extrapolation, (f) for Aslam extrapolation. ( ) Dennis et al. [38], ( ) Magnaudet
et al. [68], ( ) LeClair et al. [30], ( ) Massol [70], and ( ) present work.

Lagrange extrapolation was used in the drag force computation [24] (see Figures
(6.15 a), (6.15 c), (6.15 e)). However, some local pressure values diverge from the
expected ones, especially for low Reynolds number (Re = 1, 10) as illustrated in
Figures (6.15 a), (6.15 c).

The use of Aslam extension in the drag force computation seems to reduce the
pressure oscillations, which is a good point of the method, although only few pres-
sure points exhibited values far from expected ones when Lagrange extrapolation
is used. Indeed, the same distribution of the pressure coe�cient is observed for all
— plans in Figures (6.15 b), (6.15 d), (6.15 f).
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Figure 6.16: Streamlines and temperature field for a uniform flow past a sphere at
Re = 100.

Drag coe�cient

The last step in the study of drag force computation, using a third order Aslam
extension, is devoted to the drag coe�cient, given by the Eq(6.5) and extracted
from PR-DNS. It is compared to Schiller and Naumann [97] correlation for a wide
range of Reynolds number (Re = 0.1 ≠ 290). This comparison was conducted in
[24] when the drag force was computed using Lagrange extrapolation.

10�1 100 101 102

100

101

102
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C
d

Figure 6.17: Drag coe�cient for uniform flow past sphere at di�erent Reynolds
number: ( ) Schiller and Naumann [97], ( ) present work using Aslam extension
and ( ) using Lagrange extrapolation.

Figure 6.17 shows the good agreement of our results with Schiller and Naumann
[97]. It also shows that, at least for this particular case, the drag force computed
using Aslam extension is quite the same than the one computed using Lagrange ex-
trapolation. Indeed, as it has been discussed earlier, Aslam extension improvement
was the reduction of the distance ” to go away from the particle to get accurate
drag force, and the correction of the few inaccurate values of the pressure on the
particle surface. In the case of an isolated sphere the distance ” does not a�ect



112
Chapter 6. Novel method to compute drag force and heat transfer for

motions around spheres

the outcome of the drag force as soon as the accurate value is found whatever the
force calculation method used (Lagrange extrapolation or Aslam extension). On
the contrary, in the case of arrangement of spheres which will be discussed in the
section 6.4, the distance ” will be an important parameter especially for high solid
volume fraction. Moreover, the number of inaccurate pressure values in the pressure
coe�cient distribution is not important enough to really influence the total drag
force in the present case of an isolated sphere.

6.3.2 Heat transfer computation

The e�ect of choosing ” is now considered with respect to the heat transfer com-
putation. This e�ect is estimated using the local Nusselt number computed using
a third order Aslam extension [9] coupled to a third order Taylor interpolation,
followed by a comparison of this local Nusselt number distribution to the one com-
puted using Lagrange extrapolation [23]. Once the parameter ” is set, the global
Nusselt number for the problem of a uniform flow past a hot sphere is compared
to the correlations given by Ranz and Marshall [88], Feng and Michaelides [43] and
Whitaker [115].

E�ect of the extrapolation distance ”

To study the ” e�ect, the local Nusselt number distribution was compared to the
one provided by Massol [70] thanks to body-fitted PR-DNS results at Re = 100. As
previously explained for the pressure coe�cients, this distribution is also expected
to be symmetric with respect to the flow direction, as illustrated in Figure 6.16.

The local Nusselt number computed for ” = 0 does not reflect the flow symme-
try neither for the one computed using Lagrange extrapolation ( see Figure 6.18
a) nor the one computed using Aslam extension (see Figure 6.18 b), even if the
latest improved sensibly the result with lower amplitude of Nusselt oscillations.
Indeed, the error between our result (Nuloc) and Massol’s (NulocMassol) given byqN

i=1 | (Nuloc)i ≠ (NulocMassol)i |
qN

i=1 | (NulocMassol)i |
(illustrated in Figure 6.19) is about 25% for La-

grange extrapolation and less than 15% for the Aslam extension. This error de-
creases as the distance ” increases until being lower than 10% for ” Ø 1 in case of
Lagrange extrapolation use, and about 5% in the case of Aslam extension use for
” = 1 as illustrated in Figure 6.19. Moreover, Figures ( 6.18 c) and ( 6.18 d) show
the distribution of the local Nusselt number for ” = 1 with respectively Lagrange
and Aslam extrapolations and they show also that Aslam extension improves the
Heat transfer computation with an almost symmetrical distribution of the local
Nusselt number for ” = 1. Therefore, the extrapolation distance will always be
” = 1 in the rest of the present work.
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Figure 6.18: Local Nusselt coe�cient for a uniform flow past an isolated sphere
at Re = 100, as function of the azimuthal angle ◊ at ” = 0: (a) for Lagrange
extrapolation, (b) for Aslam extrapolation, ” = 1: (c) for Lagrange extrapolation,
(d) for Aslam extrapolation. ( ) present work, ( ) Massol [70].
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Figure 6.19: Local Nusselt number relative error compared to Massol’s result [70]
as a function of the extrapolation distance ”: ( ) using Aslam extension and ( )
using Lagrange extrapolation.

Nusselt number

After setting up the numerical parameter for the heat transfer computation, the
Nusselt number obtained when considering a uniform flow past a hot fixed sphere is
computed using Aslam extension and compared to the values computed using La-
grange extrapolation [23] and to some of the existing correlations of the literature.
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Figure 6.20: Nusselt coe�cient for the uniform flow past a hot sphere at various
Reynolds numbers: ( ) Ranz and Marshall [88], ( ) Feng and Michaelides [43],
( ) Whitaker et al.. [115], ( ) present work using Aslam extension and ( ) using
Lagrange extrapolation.

Figure 6.20 shows the good agreement of our results to correlations, with clear
improvement when Aslam extension is used to compute the Nusselt number. Indeed,
unlike the drag force computation and as it was discussed in the previous subsection
6.3.1, the Aslam extension has an e�ect on the obtained local Nusselt number values.
This naturally improves the global Nusselt number that converges toward the well-
known Ranz and Marshall correlation [88] (see Figure 6.20), which is expected to
be the reference law used in the literature.

6.4 Face-Centered Cubic arrangement of stationary sphere
past by a uniform flow

As explained in subsection 6.3.1, Aslam extension does not improve the drag force
computation of an isolated sphere. Indeed, Aslam extension reduced the distance
” to go far from the particle to reach accurate drag value, going from ” = 1 for
Lagrange to ” = 0.5 for Aslam. Moreover, for an isolated sphere, this distance does
not a�ect the computed value of the drag as long as an accurate value is reached
whatever the extrapolation technique used (see Figure 6.14). However, it is obvious
that for an assembly of spheres, the distance ” would a�ect the drag force computed
on each sphere as the distance between the spheres reduces when the solid volume
fraction increases. Two configuration of sphere assemblies , mono- and bi-dispersed
arrangements of spheres, are studied in this section following in that the work done
in [23, 24] when Lagrange extrapolation was used in the drag force and heat transfer
computation in order to compare the two extrapolation method outcomes.
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6.4.1 Monodispersed Face-Centred Cubic periodic arrangement of
spheres

The first case considered here is a uniform flow past a Face-Centered Cubic (FCC)
array of spheres. We wish to study whether or not Aslam extension improves the
drag force and the heat transfer computations, when a sphere is surrounded by
other particles, in comparison to those computed using Lagrange extrapolation.
FCC arrangement of spheres consists in a cube where three spheres are placed on
the faces centers, and one sphere is located on the vertices with periodic boundary
conditions, as illustrated in the figure 6.21. This case was fully detailed in [23, 24].

Figure 6.21: Streamlines and temperature field for a steady flow along the x-axis of
a Face-Centered Cubic array of spheres at Re = 300, –d = 0.15

Drag force

When the flow steady state is reached at the desired Reynolds number, as explained
in [24], the mean non-dimensional drag force F for all the particles is then deduced
from the drag forces computed over each particle by:

F = |ÈFDÍ|
3fiµd(1 ≠ –d)|Èuf Í| (6.11)

with ÈFDÍ = 1
Np

Npÿ

i

FD
i , FD

i being the drag force computed over the i
th particle.

The non-dimensional drag force F normalized by the isolated sphere non-dimensional

drag force (given by Schiller and Naumann [97]) Fs = 1 + 0.15Re
0.687

(1 ≠ –d)2 , noted as
F

Fs
, is compared to Massol’s results [70] extracted from body-fitted simulations and
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taken here as reference results, and to the drag force results computed using La-
grange extrapolation in order to assess the Aslam extension e�ect on the drag force
computation.
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Figure 6.22: Drag force for a uniform flow past a FCC, normalized by Schiller
and Naumann [97] drag force for a uniform flow past an isolated sphere. Results
are presented as a function of the solid volume fraction –d and Reynolds number
(a)Re = 10, (b)Re = 50,(c)Re = 100 ,(d)Re = 300 : ( ) Massol [70], ( ) present
work using Aslam extension and ( ) present work using Lagrange extrapolation.

Figure 6.22 shows the non-dimensional normalized drag force F
Fs

computed using
Aslam extension, the one computed using Lagrange extrapolation and finally the
Massol’s results [70] used here as a reference to illustrate the possible improvement
brought by the Aslam extension applied to the drag force computation. One can
observe that for Re = 10, 50, 100 the drag force computed using Aslam extension
converge toward the reference body fitted values provided by Massol [70]. Aslam
simulations match Massol results better than the values computed using Lagrange
extrapolation. This shows clearly the positive e�ect of the reduction, by Aslam
extension, of the extrapolation distance ” on the drag force computation. It is
worth noting that Massol simulations were under resolved for Re = 300 which
could explain the discrepancies with our results.

Nusselt coe�cient

Although Aslam extension improvement was observed for an isolated sphere on the
Nusselt number results (unlike for the drag force), a study of its e�ect is conducted
here for a FCC array of spheres in order to test its e�ciency for the heat transfer
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computation in an assembly of spheres. The global Nusselt coe�cient for a uniform
flow past a FCC array of spheres is deduced from the Nusselt computed on each
sphere by:

ÈNuÍ = 1
4

Npÿ

i

Nui (6.12)

where Nui is the Nusselt number computed over the i
th particle.
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Figure 6.23: Global Nusselt coe�cient for a uniform flow past a FCC, normalized
by Ranz and Marshall [88] Nusselt coe�cient for a uniform flow past an isolated
sphere. Evolution as a function of the solid volume fraction –d at Reynolds numbers
(a) Re = 10, (b) Re = 50, (c) Re = 100: ( ) Massol [70], ( ) present work using
Aslam extension and ( ) present work using Lagrange extrapolation.

Figure 6.23 shows the normalized Global Nusselt coe�cient Nu
Nus

for a uniform
flow past a FCC array of spheres, computed using on one hand Aslam extension and
on the other hand Lagrange extrapolation. It also shows Nu

Nus
extracted from Mas-

sol’s body fitted simulations [70]. One can observe that Aslam extension improves
the heat transfer computation for a packed spheres even if it seems to overestimate
it with respect to Massol’s results for high solid volume fraction.

Bidisperse Face-Centred Cubic periodic arrangement of spheres

The last case investigated in this work to assess the possible improvement brought
when Aslam extension is used for the drag force computation is a bidisperse Face-
Centred Cubic periodic arrangement for two species of spheres: the larger parti-
cles are distributed in the same configuration as the one previously presented for
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monodisperse arrangements while the smaller particles are located at the center of
the vertices and at the center of the cubic simulation domain as illustrated in figure
6.24. The parameter to set up this case were fully detailed in [24].

Figure 6.24: FCC/FCC bidisperse arrangement of spheres for Re = 50 and –d = 0.3
- the particle shape is plotted in blue and the black lines are the streamlines.

The two species are characterized by the following dimensionless parameters:

xi = –i

–d
, yi = di

ds
(6.13)

where di and –i are the particle diameter and the solid volume fraction of the specie
i respectively. The Sauter mean diameter ds is given by:

ds =
C 2ÿ

i

xi

di

D≠1

Figure 6.25 shows the non-dimensional drag force F for a uniform flow past
a FCC/FCC packed spheres computed using Aslam extension as well as the one
computed using Lagrange extrapolation [24]. Those results are compared to the
body fitted Massol drag force taken as a reference results. It can be observed that
drag forces computed using Aslam extension are closer to Massol’s results than
those computed using Lagrange extrapolation, and that for both species y1 and y2
at Re = 50, 100.

6.5 Conclusions
An original method has been designed for estimating forces and heat transfer in
Particle-resolved Direct Numerical Simulations. It is based on Aslam extension
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Figure 6.25: Non-dimensional drag force F for a uniform flow past a FCC/FCC
packed spheres as function of the solid volume fraction –d (a) : (Re = 50, y1),
(b) : (Re = 50, y2), (c) : (Re = 100, y1), (d) : (Re = 100, y2), : ( ) Massol [70],
, ( ) present work using Aslam extension and ( ) present work using Lagrange
extrapolation.

coupled with Taylor interpolation both of third order. This method was first vali-
dated without flow resolution for various particle shapes (spherical, ellipsoidal and
cubical particles) and a numerical study has been conducted in both two- and
three-dimensions. The expected convergence orders were obtained for spherical
and ellipsoidal particles. This method is constructed to be a better alternative
to the approach proposed for drag force and heat transfer estimates published in
[24] and [23] respectively. This improvement was shown by comparing the results
of both techniques applied to multiple test cases. First, in a uniform flow past
an isolated hot sphere, Aslam extension use reduces significantly the extrapolation
distance. It also correct some inaccurate local pressure values on the sphere. The
Aslam extension e�ect on the drag and Nusselt coe�cients was more significant in
more complex flows as mono- and bi-disperse Faced-Centered Cubic arrangement
of spheres.

The general conclusion that we have obtained is that drag force and heat transfer
calculation using Aslam extensions fits to body fitted simulations of Massol et al.
[70] better than the computation using Lagrange extrapolations.

Future works will be devoted to applying our hydrodynamic force and heat
transfer calculation method to random arrangements of spherical and ellipsoidal
particles and extracting correlation laws for these configurations.





Chapter 7

Conclusions and perspectives

Multiphase flows are plentifully met in both natural and industrial process. There-
fore studying them in order to accurately predict their behaviour is crucial. The
CFD simulations of these applications are based on statistical approaches, where
the fluid-solid interactions (hydrodynamic forces, heat transfers ...) appears as un-
closed terms. Particle-Resolved Direct Numerical Simulations (PR-DNS) is often
utilized to model these terms. This work aims at providing a reliable tool for in-
vestigating and ultimately model the particle-fluid interactions in the framework of
finite-size particle motions.

Improvement of Viscous Penalty Method [109], used in this work to perform
PR-DNS, has been proposed and extensive numerical study of its most impor-
tant parameters has been conducted: the viscosity ratio between the fluid and the
penalty viscosity µs inside the particle, the augmented Lagrangian parameter r, the
viscous law used to defined µ in the cells cut by the fluid/solid interface, the solid
fraction estimate Cµ at the viscous nodes and the numerical radius of the particle.
The best set of these parameters has been established in order to obtain lower er-
rors as possible when the simulations are compared to the analytical solution for the
Stokes flow around a cylinder. For the first time, we have been able to demonstrate
that if Cµ is directly calculated by projecting the real shape of the particle on the
viscous nodes, the numerical radius of the particle does not have to be adapted
compared to its real physical value. A convergence study was conducted with re-
spect to mesh refinement. An order of 1.67 was obtained for all velocities inside
the fluid. It is worth noting that the major part of the error is concentrated in the
Eulerian cells cut by the fluid-solid interface because the equivalent fluid properties
are not physical (they are an average of those of fluid and solid in the cell).

Moreover, simulations of uniform flow past a square arrangement of cylinders
at larger particle Reynolds number have been carried out in order to assess this
new set of VPM parameters abroad the Stokes regime. comparisons of these simu-
lations results with reference correlations of Ergun allowed us to demonstrate that
for various solid fractions ranging from 0.2 to 0.6, the simulations were in very good
agreement with the expected values.

After having improved the VPM method used to perform PR-DNS simulations,
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a new method has been designed for estimating hydrodynamic forces and heat
transfer in these finite-size particle simulations. It is based on a third order La-
grange extrapolation coupled with a third order Taylor interpolation, utilized to
avoid the inaccurate velocity, pressure and temperature values on the Eulerian cells
cut by the interface. Various parameters of the method have been tested and set up
through the study of the e�ect of interpolation and extrapolation orders or the size
of the particle surface elements on the error observed on forces and Nusselt num-
bers. Afterwards, we have simulated various particulate flow motions ranging from
incompressible flows around an isolated particle (sphere and ellipsoid) at various
Reynolds numbers to flows across packed spheres under Faced-Centered Cubic, ran-
dom and bi-disperse arrangements. In all configurations, the hydrodynamic forces
and the Nusselt numbers have been compared to reference results of the literature
for various Reynolds numbers, solid fractions for packed spheres and attack angle for
ellipsoids. The general conclusion that we have obtained is that our force and heat
transfer calculation method results are in a very good agreement with the reference
correlations in the literature and that for obtaining a correct force calculation in
finite-size particle simulations, the most important parameter is not the number of
Eulerian cells along a particle diameter but the number of mesh cells belonging to
the boundary layer surrounding the particle. A new Nusselt correlation has been
proposed for an isolated ellipsoid. This work has to be completed and extended to
various flow configurations, Reynolds numbers and attack angle in order to gener-
alize the Nusselt correlation.

Although force and heat transfer computation method based on Lagrange ex-
trapolation gave good results in several configurations, the local distribution of pres-
sure coe�cient and Nusselt number over the particles computed using this method
showed some inaccurate results. Thus, an original method has been designed for es-
timating forces and heat transfer in Particle-resolved Direct Numerical Simulations
in order to prevent these errors. This new approach is based on third order Aslam
extension rather than Lagrange extrapolation. It is also coupled with a third order
Taylor interpolation. The improvements of the local distribution of the pressure
coe�cient and the local Nusselt number and hence of the hydrodynamic forces and
the global Nusselt numbers were highlighted by comparing the results of both ap-
proaches in multiple cases.

future work

Following the work of Ozel et. al. [77], simulations of liquid–solid fluidized bed
will be conducted by applying our force and heat transfer calculation method to
better understand the phenomena taking place in the bed and hydrodynamic of
a particle with respect to its position in the bed. Obtaining drag, lift or Nusselt
correlations in fluidized beds for a moderate Stokes number is still a challenging
task for macroscopic models used in industrial codes.

Giving the lack of correlation of an isolated ellipsoid Nusselt number, a more
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detailed study of a uniform flow past a spheroid can be conducted for a wider range
of Reynolds number, aspect ratio, attack angle and Prandt number. Thus, a more
general correlation of Nusselt number than the one extracted from this work would
be proposed.

A campaign of simulations of a random fixed arrangements of ellipsoidal parti-
cles could be carried out in order to extract correlation laws for drag, lift and heat
transfer.

Ellipsoid motion in the code should be implemented as well as ellipsoids collision
in order to study fluid-particle and particle-particle interactions in a fluidized bed
of non-spherical particles.
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