
HAL Id: tel-01968404
https://theses.hal.science/tel-01968404v1

Submitted on 3 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Satisfiability Modulo Theories: state-of-the-art,
contributions, project

Pascal Fontaine

To cite this version:
Pascal Fontaine. Satisfiability Modulo Theories: state-of-the-art, contributions, project. Logic in
Computer Science [cs.LO]. Université de lorraine, 2018. �tel-01968404�

https://theses.hal.science/tel-01968404v1
https://hal.archives-ouvertes.fr

École doctorale IAEM Lorraine

Satisfaisabilité Modulo Théories

Satisfiability Modulo Theories

state-of-the-art, contributions, project

Habilitation à Diriger des Recherches

Pascal Fontaine

14 août 2018

Membres du Jury:

Rapporteurs:

Sylvain Conchon Université Paris-Sud 11, France
Renate Schmidt University of Manchester, UK
Roberto Sebastiani Università di Trento, Italy

Examinateurs:
Stephan Merz Université de Lorraine, CNRS, Inria, Loria, France
Jeanine Souquières Université de Lorraine, CNRS, Loria, France
Viorica Sofronie-Stokkermans Universität Koblenz-Landau, Germany
Cesare Tinelli The University of Iowa, USA

1 Introduction: on the importance of SMT 4

2 A gentle introduction to SAT and SMT 5

2.1 Solving the SAT problem . 6

2.1.1 Boolean Constraint Propagation (BCP) 7

2.1.2 Conflict Analysis . 9

2.1.3 Non-chronological backtracking 11

2.1.4 Heuristics . 12

2.1.5 Drawbacks of modern SAT solving 14

2.2 Solving the SMT problem . 14

2.2.1 From SAT to SMT . 16

2.3 Theories of interest . 18

2.3.1 Uninterpreted symbols 19

2.3.2 Arithmetic . 21

2.3.3 Combining theories . 22

2.3.4 Quantifiers . 24

3 Contributions, advances and perspectives 25

3.1 Decision procedures and combination schemes 26

3.2 Automated reasoning vs. symbolic computation 30

3.3 Quantifier reasoning . 33

3.4 SMT for HOL and proofs . 36

3.5 Tools and applications . 39

4 From logic to education in computer science 40

5 Conclusion 41

A selection of five publications 59

Fellner, Fontaine, Woltzenlogel Paleo, 2017 60

Déharbe, Fontaine, Guyot, Voisin, 2014 74

Chocron, Fontaine, Ringeissen, 2014 99

Déharbe, Fontaine, Merz, Woltzenlogel Paleo, 2011 114

Bouton, Caminha B. de Oliveira, Déharbe, Fontaine, 2009 132

2

About this document

Unlike for PhD theses, where there is a firm deadline in the form of the end of
available funding, the habilitation has no such constraint. The consequences of
not going through the ritual of the habilitation remain for long imperceptible,
except that more and more esteemed people around you start to tell you in
a quite direct way, that you should submit your habilitation, now. I wish
to thank those esteemed people, because their influence has been crucial in
putting an end to procrastination and making me start thinking seriously
about it. Among them, I wish to particularly thank Jeanine and Stephan for
they put quite a lot of energy in pushing me.

Once it is clear that submitting a manuscript is unavoidable, the next
question is the content of this manuscript. My time is extremely limited,
between my teaching duties, my administrative tasks, the urge to continue
doing research and supervising students, and taking care of a family. I must
admit this had a direct influence on the form this document, which is simply
a short and informal essay on the state-of-the-art in the field, followed by my
contributions and project. I leave for later times the ambition to write a longer
meaningful, complete, formal scientific memoir, and hope that readers of this
short text will find it both easy and interesting to read.

For readers who want a more traditional entry point to Satisfiability Mod-
ulo Theories, I most strongly recommend the survey on SMT in the Handbook
of Satisfiability [16] and this general audience article [15]. It may happen in
this text that some common knowledge about SMT misses a reference about
well known results; then the reader will have no problem to find the right refer-
ence in [16]. This document also introduces propositional satisfiability solving
for which more information can be found in [116] from the same collection of
articles [22] all related to various aspect of the satisfiability checking problem.

3

1 Introduction: on the importance of SMT

Propositional Satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
have many industrial applications that should suffice to convince anyone of the
interest to study this field. My involvement was mainly around verification;
I contributed to the integration of SMT within verification platforms (Rodin,
Atelier B) and interactive theorem provers with some success. However, if
this serves well to justify my salary, the very reason for my interest for SMT
does not rely on industrial applications. My previous life as a physics student
gave me the very uncomfortable feeling that scientific reasoning is sometimes
extremely imprecise, even when the right conclusions are drawn. I have found
myself many times guilty of having completely false intuitions, and sometimes
even writing very wrong proofs. I believe now that most hand written proofs
are wrong or miss details, and a good hand written proof is not a correct
one, but one that can easily be corrected. Rigor and precision are not easy to
achieve. When the meanders of life brought me by pure chance to logic and to
the right people to study it with, it was clear that I wanted to contribute to
it. I was impressed by computer scientists who spend considerable time and
energy to model, completely formally, large fragments of mathematics inside
interactive theorem provers. In my very naive understanding of the world as
a post teenager, I was even believing that some day, we would do the same
with physics, chemistry, economy, law and politics. Part of this dream still
lives on.

It was clear at that time that interactive theorem provers, although al-
ready awesome, were not yet perfect. In particular, automation was lacking.
My bottom-up attitude to everything — after all, I studied physics to under-
stand the world, and logic at first because I was unsatisfied with my sloppy
understanding of the reasoning rules underlying physics — led me directly to
propositional satisfiability checking. It was though also already clear to me
that arithmetic, first-order logic, and quantifiers were to be added to the game
for expressivity. In another environment or with a slightly different little influ-
ence, my core interest might have been superposition theorem proving [10, 99],
but I discovered STeP (The Stanford Temporal Prover [23, 91]) and SVC (The
Stanford Validity Checker [18], the ancestor of CVC4 [14]). Basically, my main
research topic was settled on SMT. I can proudly assert that I never thought
SMT would solve all problems easily. Indeed this has occupied me for nearly
twenty years now.

In the first chapters, I will provide an informal and personal introduction

4

to SAT and SMT. The next chapters are dedicated to some of my research
directions, where I will present my contributions and objectives. The last
chapter is a digression with a plan for educating young computer scientists to
the basics of computer science alongside my research interests.

2 A gentle introduction to SAT and SMT

It is not easy to understand the true reasons for the success of classical propo-
sitional logic, propositional logic for short in the following. It is arguably not
the historical foundation of logic, Artistotle’s syllogistic logic [6] being closer
to first-order predicate logic than to propositional logic. Without a clear defi-
nition of simplicity, propositional logic can also not be said to be the simplest
logic: intuitionistic propositional logic actually does not impose the law of the
excluded middle, and in that sense, is simpler. But considering intuition, clas-
sical propositional logic is unchallenged: it is very easy to make children and
students believe a proposition is either true or false, and quickly understand in
this context the basic notions of logic, e.g., satisfiability, equivalence or what
is a decision procedure. While the expressivity of propositional logic is quite
limited, many relevant problems can be encoded within classical propositional
logic. Last, but not least for our part, propositional logic is the basis of a series
of logic with increasing expressivity. The methodology used in SMT solving
values this, eventually reducing expressive languages into propositional logic.

The SAT problem, i.e., checking the satisfiability of propositional formu-
las, is an NP-complete problem. It is in NP, since it is possible to check in
polynomial time if a formula is true under a given valuation of the proposi-
tions, assigning to each of them either the value true or false. It is NP-hard
since any problem in NP can be encoded polynomially into SAT [37]. The
SMT problem includes the SAT problem, that is, a SAT formula can be seen
as an SMT formula, for the usual theories of interest. Thus SMT is NP-hard.
Depending on the background theory and the restriction of the input language,
the SMT problem may also be in NP. This is indeed the case whenever the
satisfiability problem for conjunctive sets of literals in the SMT logic is itself
in NP, e.g., for quantifier-free first-order logic with uninterpreted functions
and predicates (see e.g., [98]), and linear arithmetic on rationals and integers
(see e.g., [101]). In this context, solving the SMT problem with the help of
a background SAT solver can just be seen as an on-the-fly encoding of an
NP-complete problem into another. In the solving techniques, just like for the
above complexity considerations, propositional SAT solving is central.

5

2.1 Solving the SAT problem

The paradigm at the core of most modern SAT solvers is Conflict-Driven
Clause Learning (CDCL, see Chapter 4 of the Handbook of Satisfiability [22]).
It is often claimed to be a refinement of the DPLL algorithm, by Davis, Put-
tnam, Logemann and Loveland [39, 38]. There is no doubt that the ideas in
DPLL were of primal importance to the design of modern SAT solvers. But
ignoring the history of the design of CDCL and understanding CDCL starting
from truth tables might just be easier.

Checking if a propositional logic formula can be true or not can be as
simple as checking the truth value for each possible assignment, i.e., building
a truth table. Each line in the truth table states one assignment, and since
there are only 2n possible valuations assigning true or false to n propositional
variables, a truth table for a formula with n variables contains 2n lines. Cre-
ating the whole truth table is exponential in space, but keeping track of every
assignment is of course not required. An algorithm using linear space would
simply iterate over the assignments; when a satisfying assignment is found,
the algorithm stops and declares the formula to be satisfiable. Let us how-
ever assume that the algorithm records the “failed” assignments, i.e., the ones
that have been tried but do not satisfy the formula. The algorithm now picks
successive assignments in no particular order, and uses exponential space to
record them. Surprisingly, this makes the naive and inefficient algorithm of
truth tables quite close to the state-of-the-art and efficient CDCL framework:
iterating over assignments is also at the core of CDCL. Although CDCL does
not record failing assignments, it learns conflict clauses, standing for all the
assignments making this clause false, i.e., a set of failing assignments.

Consider now a formula (b1 ∨ b2) ∧ G(b3, . . . bn) over n Boolean variables
b1, . . . bn. Obviously, if b1 and b2 are false, it is not necessary to complete the
assignment with valuations for b3, . . . bn and check every of the 2n−2 possible
completions. Provided the algorithm can detect some cases of unsatisfiabil-
ity with partial assignments, this can lead to a dramatic improvement over
checking all 2n full assignments. If the formula is a set of clauses, i.e., a con-
junctive set of disjunctions of literals, the algorithm could for instance detect
when a clause is false under the current partial assignment, that is, when all
its literals are set to false by the current partial assignment. Assuming that
the input formula is a conjunctive normal form (CNF, a conjunctive set of
clauses) significantly simplifies automated reasoning techniques, and the price
to pay is reasonable: every formula can be transformed into an equisatisfiable
conjunctive normal form in linear time, by introducing new Boolean variables

6

for subformulas, a technique known as Tseitin’s transformation [104, 121]. It
can be argued that this transformation, even if linear and mostly reversible,
potentially hurts the solving since the structure of the formula is somehow
lost. In practice, it is easier to find mitigating techniques for this structure
loss rather than designing algorithms for arbitrary formulas.

2.1.1 Boolean Constraint Propagation (BCP)

Although we just promised a dramatic improvement in the truth table algo-
rithm by detecting unsatisfiable clauses early, we have not yet mentioned how
to concretely detect when a clause becomes unsatisfiable, or conflicting, under
a partial assignment. This task has to be done for every clause, and each
time the partial assignment is extended: simply iterating over the whole set
of clauses is thus impractical. If a partial assignment is extended with, let’s
say, a valuation to true for a propositional variable p, any clause containing p
negatively might become conflicting and only those ones. This thus calls for
an indexing of clauses by the negations of their literals. If a partial assignment
is extended by setting a literal to true, only the clauses in the corresponding
list might actually become conflicting.

Notice that, with such an indexing, every conflicting clause with n liter-
als has been examined n times during the building of the partial assignment
conflicting with the clause. And it is only useful the last time, i.e., when
detecting the conflict. In fact, if a clause is not yet satisfied by the current
partial assignment, it is only necessary that it appears in the list associated
to the negation of one of its unassigned literals. To guarantee the detection
of all conflicting clauses, it then suffices to enforce the invariant that every
non-satisfied clause (that is, every clause without any literal set to true under
the current assignment) is indexed by at least one of its unassigned literals,
called the watched literal. This requires that, each time a literal is set to false,
all the clauses indexed by this literal have to be indexed again by another of
its literals that is unassigned or true under the current assignment. If it is
not possible to find a replacement literal for a clause, the clause is in conflict
with the current partial assignment, and no completion of the assignment can
satisfy the CNF.

An obvious improvement is possible: rather than building partial assign-
ments until a clause gets conflicting, it is much more profitable to extend the
partial assignment as soon as a clause, called unit, imposes a choice on the
assignment. In other words, if all the literals of a clause but one are false

7

under a partial assignment, then the last literal should be set to true. This is
called propagation: partial assignment are extended with the aim of satisfying
clauses rather than relying on guesses to make the clause true. Again, a pos-
sible but inefficient way to detect such propagating clauses would be to check
all clauses every time a partial assignment is extended by a new literal. But it
is also easy to improve the above technique based on watched literals to also
accommodate propagation. To ensure detection of conflicts, it is necessary to
have one (watched) unassigned literal per clause. To detect propagation, it
suffices to inspect the clauses whose assigned literals are all false when the
next but last unassigned literal becomes false. The same technique still works
however, using two watched literals instead of one. The invariant becomes:
every non-satisfied clause (that is, every clause without any literal set to true
under the current assignment) is indexed by two of its unassigned (watched)
literals. Every assignment, let’s say, of a literal ` to false, might break the
invariant. To repair it, the algorithm checks every clause with ` as watched
literal, and, if it is not satisfied, ensures that it is indexed by two of its unas-
signed literals. Concretely, the clause is removed from the list associated to
` and added in the list associated to another of its unassigned literal while
ensuring both watched literals are different. If this fails, it is either because
there is only one unassigned literal, in which case the other literal has to be
assigned positively immediately, or it is because there is no unassigned literals
at all, and then the clause is conflicting. Conflicts can indeed still happen:
a clause may have all its literals (including both watched literals) falsified by
propagation from other clauses before it is itself considered for propagation.
In the assignment stack — the stack of assigned literals by chronological order
— some recently assigned literals (e.g., by propagation) may have not been
yet fully taken into account for propagation.

Compared to the truth table algorithm with conflict detection on partial
assignments, there is now less non-determinism in building the partial assign-
ment. Some literals are now assigned by propagation. It can happen however
that no literal can be propagated at some point. Then guessing is used to
assign an additional literal, which may or may not trigger propagation. The
process stops when a conflict occurs, or no more literal is unassigned, in which
case the formula is satisfiable. In case of conflict, either no literal has been
guessed and the formula is unsatisfiable, or one or several guessed literals have
to be changed. Backtracking is the subject of Section 2.1.3.

Propagation is a central aspect of SAT solving, drastically reducing guess-
ing and promoting deduction. In modern SAT solvers, the solving time is

8

generally dominated by Boolean constraint propagation, and most literal as-
signments are due to propagation. Watched literals, first introduced in the
Chaff [95] SAT solver, were one essential factor of its success.

Using watched literals rather than a full indexing of clauses by literals
trades the examination of each clause every time the partial assignment is
extended, for a dynamic index instead of a static one. In modern SAT solving,
it appears that this indexing is not as dynamic as one might fear. In a sense,
thanks to the decision heuristics, the watched literals of a clause remain quite
stable, because the order of assignment is also evolving slowly. The watchers
stabilize themselves with respect to this order, i.e., they become the literals
assigned last, and remain so for some time.

2.1.2 Conflict Analysis

Propagation prevents extending a partial assignment in an obviously wrong
way, when a clause imposes the value of one Boolean variable because all but
one of its literals are false. Conflicts can still occur, when a same variable can
be propagated both positively and negatively by two different clauses. In such
a situation, the partial assignment is not extendable to a model of the formula.
The clause comprising the negation of all literals in this partial assignment is
a logical consequence of the original formula, and therefore adding it to the
formula preserves logical equivalence. It may however be possible to add a
stronger clause, i.e., a clause containing only a subset of the negation of the
literals in the assignment. This clause records the failing (partial) assignment,
and the stronger it is, the more total assignments it discards. Furthermore, it
would be nice if such a clause would prevent, through propagation, to reach
the same state again. In this context also, a stronger clause is always better: it
can be propagating earlier, and may cut out a larger part of the search space.

One admissible stronger clause would contain only the negations of deci-
sion literals, i.e., only the (negation of) literals in the assignment that have
not been propagated but guessed. All the propagated literals are indeed a
consequence by propagation of the decision literals. So if any of those propa-
gated literal is false in a model of the formula, at least one of those decision
literal should be false. The clause containing only the negations of decision lit-
erals in a conflicting partial assignment is a logical consequence of the original
formula. Notice also that this clause is propagating in the expected way: it
would prevent the decisions that led to the previous conflict to occur again. It
would propagate the variable decided last, with the opposite polarity, cutting

9

off the search space that led to the previous conflict.

Among all the decision literals in the assignment stack in a conflict state,
not all decision literals actually contributed to the conflict. To analyze this,
it suffices to recall for each propagated literal the clauses that forced this
propagation. One may then draw a directed implication graph, where each
node is a literal, and its parents are the literals that implied the propagation.
A node and all its parents thus represent a propagating clause, the parents
corresponding to the negated literals in the clause. The directed graph is
acyclic, since no propagated literal is indirectly responsible for its own value.
All leafs (i.e., nodes without parents) in this graph are decision literals, since
all propagated literals have parents. In a conflicting state, there exists a
variable such that both polarities are present in the graph. For convenience,
consider that there is a special conflict node whose unique parents are those
two literals on the same variable. The interesting part of the implication graph
is the conflict graph, i.e., the subgraph rooted by this conflict node. The full
graph may have disconnected subgraphs, and many leafs without a directed
path to the conflict node. Any decision literal that does not occur in the
conflict graph did not take part in the chain of propagations that eventually
led to the conflict, and can therefore be removed from the conflict clause.

It occurs that using a conflict clause containing only (the negation of) de-
cision literals is often not the best choice. There indeed exists some freedom.
Instead of a (decision) literal, one can for instance select all its consequences.
Another legitimate conflict subgraph can be obtained by eliminating recur-
sively from the conflict graph all parents of some nodes. Then, the leafs of
this subgraph are a subset of the partial assignment that generate the conflict.
It might then contain both decision and propagated literals. In practice, the
first unique implication point (FUIP) [92] technique gives good results. Start-
ing from the conflicting pair of literals, a growing conflict subgraph is built by
repeatedly adding the parents of the literal propagated the latest, until there
is only one leaf of the subgraph that is a descendant of the last decision. This
leaf can be the decision itself, but it can also be a consequence of it that is
sufficient (with all other decisions) to cause the conflict. It is called the first
unique implication point. Using the FUIP technique is in practice better than
collecting all relevant decision literals. Although there is no absolute theoret-
ical reasons to prefer the FUIP, the rationale is that the unique implication
point is in some sense the real reason of the conflict; it appears nearer to the
conflict than the last decision literal, and continuing collecting reasons of the
FUIP might augment the conflict clause with many more literals.

10

The above techniques keep only one literal at the last decision level, that
is, the last decided literal or one literal propagated after this last decision. At
previous decision levels however some literals in the conflict clause may imply
some others. The conflict graph can also easily be used to remove such implied
literals and thus refine the conflict clause to a stronger one [118]. In practice,
this leads to significant speed-ups.

To refer again to truth tables, conflict analysis is a clever way to not
try several times assignments that will fail to provide a model for the same
reason, or in other words to cache reasons for failing assignments. The only
requirement to the added clause is that it should be a consequence of the
original set of clauses. In the case of FUIP conflict analysis, the learned clause
is indeed a consequence, by resolution, of all the clauses at play in the conflict.
As a side note, we can here notice that it is trivial for CDCL solvers to output
resolution proofs of unsatisfiability.

An important question is whether CDCL solvers are able to find short
proofs, if they exist. Truth tables cannot, of course, because an exponential
number of interpretations with respect to the number of propositional variables
have to be checked systematically, whatever the formula is. CDCL however,
and mainly thanks to clause learning, is as powerful as general resolution [19]:
with the right choices, it can find a short proof if there is a short resolution
DAG-like proof.

2.1.3 Non-chronological backtracking

If a conflict is reached while building a partial assignment by deciding liter-
als and using propagation, a conflict clause is learned. This clause can, as
explained above, be computed using the FUIP technique, in which case it con-
tains only one literal at the last decision level, i.e., either the (negation of the)
last decided literal or one literal propagated after this last decision. Actually,
having just one literal at the last decision level is a required feature of the con-
flict clause generation. Remember that, in the truth table algorithm, failed
assignments are stored to avoid to check them several time; the conflict clause
plays the same role, but with a bonus. There is no need to check if the conflict
clause is invalidated. Thanks to propagation, this clause will prevent the same
literals to be assigned again, since as soon as all but one literals involved in
the previous conflict are assigned to true, the last becomes assigned to false
by propagation. The core of the naive truth table algorithm is an iteration
on assignments. In CDCL, conflict analysis and propagation together with

11

backtracking play the role of this iteration loop.

Every time a conflict happens, the conflict clause is learned, and the algo-
rithm backtracks the assignment to the earliest decision level where the conflict
clause is propagating. Another possibility would be to only backtrack the last
and conflicting decision level and propagate from this point on. Besides exper-
imental evidence, there are arguments however in favor of backtracking to the
propagation level of the conflict clause. First, since decisions are to some ex-
tent arbitrary, it is preferred to assert every implied literal as soon as possible,
soon meaning early in the assignment stack; the next conflict might then be
more general, not influenced by the dispensable decision levels. Second, the
code to support propagation without backtracking to the propagation level
would be more complex, and might induce overhead to the algorithm: the
watched literals technique is only applicable for the immediate propagation
(when the penultimate literal of a clause becomes false), and is not suitable
to remember the literals that have been propagated late.

As a final remark on backtracking, notice that, because the learned clause
was computed using the FUIP and not the last decision literal, it may happen
that the exact same decisions occur again, with the same order (but the stack
would differ on the propagated literals). Some early solvers learned all the
unique implication points clauses. It was later noticed that just learning the
FUIP clause was experimentally better. It may be useful to reevaluate this in
the recent contexts though.

2.1.4 Heuristics

Boolean constraint propagation, conflict analysis, learning and non-chrono-
logical backtracking are the core of the CDCL algorithm. Some freedom still
exists in the implementation of the algorithm, and in particular, in the pro-
cedure that decides which Boolean variable to assign first and which polarity
to pick. Remember that, for a satisfiable formula, a perfect decision heuristic
would pick literals in such a way that the solver builds a full assignment with-
out conflicting and backtracking, that is, in linear time. This is obviously a
hard problem, and also due to the efficient data-structures and in particular
the watched literal, the amount of knowledge on which to base the decision
is limited. For instance, it could make sense to assign to true the literal oc-
curring most often in non-satisfied clauses, but the solver data-structures do
not provide this information at low cost. Modern SAT solvers rely on de-
cision heuristics finely tuned to their inner working. A popular heuristic is

12

the Variable State Independent Decaying Sum (VSIDS) [95], which picks the
most active variable first, a very active variable being one involved often in
the recent conflicts. As a result, the VSIDS heuristic focuses sequentially on
groups of tightly coupled variables.

When a variable is picked as a decision, it can be assigned either false or
true. It happens that it is better to remember which polarity it has been last
assigned, and picking the same polarity for the decision. This process, called
phase caching [103] ensures the solver focuses on one part of the search rather
than randomly exploring the search space. Assigning a variable by decision
to a new polarity might indeed force the search in a completely different area
of the search space. Again as it is the case for many techniques in SAT
solving, this explanation comes from experimental observation rather than as
a property of the algorithm.

If it is often good for a solver to focus on a part of the search space, and
exhaust this part before examining another, this might also have drawbacks,
and in particular, the solver might be stubborn at solving less relevant parts
of the problem. Restarting (see e.g., [21, 80] for discussions on restart) the
solver is beneficial in practice to get out of a corner, and is used quite a lot in
modern tools. This is less fundamental for SMT instances than for hard SAT
instances, since the SAT abstraction of SMT problems is most often very easy
compared to the SAT problems usually given to solvers.

During the search, a solver generates many clauses, and many of them are
used at most a couple of times. Learned clauses however slow down the solver,
mostly since they have to be handled in the Boolean constraint propagation
algorithm. It thus makes sense to periodically eliminate clauses, and modern
solvers typically eliminate most of the learned clauses. Notice however that
these might, depending on the strategy, break the completeness of the solver.
Useful clauses might also be forgotten.

State-of-the-art solvers also use many techniques to simplify the input
problem (preprocessing) [57], or even to simplify the problem within the search
(inprocessing) [83]. Many of those techniques are specific to purely Boolean
problems and do not apply to SMT. Others are simply not useful for Boolean
abstractions of SMT problems. For instance, a lot of effort has been invested
to exploit symmetries in Boolean problems [114]. Our symmetry preprocessing
technique [50] (see selection of papers on page 65) tailored for SMT is however
much easier to express directly at the SMT level rather than relying on this
effort for Boolean symmetry breaking.

13

2.1.5 Drawbacks of modern SAT solving

If a variable appears only positively (or negatively) in a formula, a satisfying
assignment can always be modified to assign this variable to true (resp. false).
This simple observation leads to the pure literal rule: if an unassigned variable
appears pure — i.e., always with the same polarity — in the unsatisfied clauses,
it can be asserted with the polarity making all those clauses true. This is not a
proper propagation, since it does not necessarily imply that there is no model
with the variable having the opposite polarity, but setting the variable with
this polarity cannot hurt. Modern SAT solvers do not use the pure literal rule
since the optimized CDCL data-structure does not provide the facilities to
quickly detect pure literals (under a given partial assignment). Anyway, the
pure literal rule does not hold for Boolean abstractions of SMT formulas — a
literal might appear pure although it would appear with opposite polarity in
theory clauses — so in our context this is a lesser evil. The pure literal rule is
however an example of a good technique that could not find its place in CDCL
solvers.

The Boolean constraint propagation is triggered by watched literals. An
alternative, less efficient, implementation could count, for each clause, the
number of positive and negative literals, and could also take note for each
unassigned literal, of how many clauses it could contribute to satisfy if as-
signed. It would trigger propagation when the number of negative literals in
a clause with n literals is n − 1, and could implement a counter for satisfied
clauses with a marginal cost. The CDCL data-structures in the algorithm do
not allow to easily detect when all clauses are satisfied. There is furthermore
no way to know if a decision actually helps satisfying clauses. As a conse-
quence, some and even many literals in the stack of a satisfying assignment
for a CNF might be unnecessary. Finding good partial satisfying assignments
for formulas is important in the context of SMT solving in presence of hard
theories or for quantifier handling; for instance, a decision procedure that is
given a full assignment will have to deal with many literals irrelevant for satis-
fiability. We have contributed to an efficient algorithm to compute a minimal
implicant (a “best” partial assignment) from a full assignment generated by a
SAT solver [47].

2.2 Solving the SMT problem

In the context of Satisfiability Modulo Theories we consider formulas in more
expressive languages than SAT. They may contain functions and predicates.

14

Variables are not only propositional but may take their value in a domain,
either partially or fully specified by the theory, or left uninterpreted. As an
example, the UFLIA language (Uninterpreted Functions and Linear Integer
Arithmetic) of the SMT-LIB includes the usual Boolean connectives, equal-
ity, uninterpreted functions and predicates of any arity (including nullary:
constants and propositions), the arithmetic comparison operators, and lin-
ear expressions on integers; the sort of each argument of each predicate and
function symbol, and of the range of each function, can either be integer or
one of finitely many uninterpreted sorts. Typical theories handled by SMT
solvers include linear (or non-linear) arithmetic on reals and integers, unin-
terpreted symbols, arrays, bitvectors, abstract data-types and strings. Some
SMT solvers can also reason on quantified formulas, but these quantifiers are
currently only first-order.

Historically, research on practical SMT started after satisfiability checking
for propositional logic, but quite some time before CDCL. For instance, one
could arguably set the birth of modern age SMT to the design of the Stanford
Pascal Verifier [96], the Stanford Temporal Prover STeP [23] used internally
some SMT techniques, and the SVC solver [18] is an ancestor of the current
CVC4 solver. The first SMT solvers using CDCL were adapting older SMT
methods to suit CDCL, but they were not designed as extensions of CDCL
for SMT. Only quite recently, with Model-Constructing Satisfiability Modulo
Theories (MCSAT) [41], did the SMT community thoroughly try to extend the
various phases (propagation, decision, learning) of CDCL to SMT. The success
of CDCL is also starting to drive research on CDCL-inspired procedures for
first-order logic [25].

In a propositional context with n variables, there are at any time at most
2n possible decisions and learning will produce a clause among 3n possible
ones since each variable may appear in a clause either positively, negatively,
or not at all. If clauses are never forgotten, termination is a direct and trivial
consequence of this finite space for the search tree. In an SMT context however,
and for instance in presence of integer variables, there are an infinite number
of possible decisions (e.g., a given variable may be given any integer value)
or propagations (e.g., any bound on a variable might be propagated) and the
learned facts can also belong to an infinite space since there are an infinite
number of non-equivalent linear constraints that can be part of a learned
clause. MCSAT [41] restores completeness with an explicit side condition that
learning should produce clauses on a finite and fixed set of atomic formulas.
Nonetheless, the freedom given by MCSAT is extremely large, and the success

15

of current MCSAT-based solvers (see e.g., [84, 85, 76, 125]) relies also on
carefully designed heuristics. There is probably still a lot to understand how
to optimally convert this freedom into a deterministic framework with a small
search space. Classic SMT simply imposes the set of literals to be the obviously
finite set of atoms occurring in the input formula. Only those literals can be
propagated, and decisions are essentially similar to propositional ones.

Another orthogonal approach to SMT stems not from SAT but from first-
order theorem proving (FOL). Driven by the success of SMT, there are several
ongoing initiatives [3, 107] to combine theory reasoning within the superposi-
tion calculus. Again, for historical reasons, I have not worked on this trend,
but the future will hopefully show convergence of both approaches; superpo-
sition is clearly the way to handle some types of quantifiers.

2.2.1 From SAT to SMT

Letting aside the urge to generalize CDCL to satisfiability modulo theories,
a pragmatic approach is quite simple. Remember that Boolean propagation,
early conflict detection, and precise conflict analysis are useful aspects for ef-
ficiency, but not mandatory for completeness. Applying them only leniently
does not break completeness, but breaks down the behavior of the algorithm
closer to the naive truth table approach. With this in mind, one can always
view an SMT problem as a propositional problem with a hidden set of the-
ory clauses specifying the relation between the atoms. The CDCL algorithm
considers atoms as simple Boolean variables, and propagations only occur at
the Boolean level, thanks to the clauses from the input problem, but without
contribution from the hidden set of theory clauses. Soundness is recovered
simply by discarding each set of literals computed as a model by the CDCL
algorithm if it is not satisfiable according to the theory. The major advan-
tage of this approach is that the underlying CDCL algorithm takes care of
the Boolean structure of the formula, whereas the decision procedure for the
theory only has to deal with conjunctive sets of literals. Refuting the tentative
CDCL models is again done by adding new clauses to the original problem,
these clauses containing only atoms from the input formula, thus guarantee-
ing termination. The original formula is abstracted down to a propositional
one handled by the CDCL algorithm, and successively refined by the deci-
sion procedure that provide the missing clauses; the refinement loop somehow
progressively reveals the theory clauses lacking from the original formula, and
explaining the meaning of the atoms to the CDCL algorithm.

16

Unfortunately this approach shares several drawbacks that were already
pointed out for truth tables. Indeed, the propositional abstraction is most of
the time under-constrained: the CDCL algorithm would enumerate a large
number of models, and each of them would have to be refuted one by one,
pretty much like every interpretation is examined separately in a truth table.
A mandatory improvement is for the theory decision procedure to provide, in
case of conflict, a strong theory clause, i.e., a clause that does not contain the
negation of all literals in the model of the propositional abstraction, but only
of a small, as minimal as possible, subset of those literals. For each variable
that is not mentioned in a stronger clause, the amount of models the clause
can refute is doubled compared to a clause that would spuriously contain a
literal on this variable; there is theoretically and experimentally a potential
exponential gain.

Other improvements might be useful: the theory decision procedure might
declare unsatisfiability of a partial model while it is built by the CDCL al-
gorithm, without waiting for a full model of the propositional abstraction.
Obviously, this is only practical if the decision procedure is efficient and will
not significantly slow down the underlying CDCL algorithm. The procedure
should furthermore be capable of incrementally checking the satisfiability of a
set of literals: the amount of computation required to check the satisfiability
of a set of literals, and then the same set augmented by a few new literals, is
not exceedingly larger than for the last set alone. Also, the procedure should
be backtrackable: once a set augmented by a few literals has been checked for
satisfiability, only minimal work should be needed for the decision procedure
to come back to the state after checking the original set of literals. These
features are necessary since the literal stack of the CDCL algorithm will be
checked many times for satisfiability by the theory decision procedure, with
very minor differences between the successive checks.

Checking the consistency of the literal stack on-the-fly gives to the CDCL
algorithm a more immediate knowledge of the hidden, virtual set of theory
clauses. However, it is not yet as if those clauses were fully known to CDCL,
since no propagation occurs. A decision procedure can feature theory propa-
gation: while being aware of all the atoms in the input formula, it can assert
their value in the CDCL stack as soon as it is implied by other literals in
the stack. Even for simple decision procedures, this feature might come at
a cost: while congruence closure is quasi-linear, congruence closure with full
propagation is hard. The current trend in SMT is to do theory propagation
with a best effort policy: decision procedures only do easy propagations.

17

Some theories however are better handled with a tighter coupling with
propositional reasoning. Indeed, some data-structures are inherently Boolean.
This includes bit-vectors (and machine integers) and floats. The difficulty then
resides in designing the appropriate techniques to convert the problem into a
Boolean one, e.g., using abstraction and lazy translation to SAT [124, 126].

2.3 Theories of interest

The SMT theory should answer a need for expressivity, have a decidable
ground problem, be tractable and have a sufficiently efficient decision proce-
dure for the purpose. The SMT framework ensures that the decision procedure
only has to deal with conjunctions of literals.

One of the simplest and most useful theories to consider is the theory of
equality and uninterpreted symbols (functions and predicates). It is handled
in quasi-linear time by the congruence closure algorithm [98]. Despite its
simplicity, it is useful in itself to model in an abstract way many aspects
of computer systems. It is also at the core of decision procedures for more
concrete data-structures, like arrays [119], or inductive data-types and co-
datatypes [109].

Another obviously interesting set of theories are the arithmetic ones: there
are indeed various theories differing by their expressivity and complexity, from
difference logic [89] which has very efficient decision procedures but is quite
inexpressive, to non-linear arithmetic on integers (a.k.a. Hilbert 10th prob-
lem) which is undecidable even for conjunctions of ground literals [93]. In
between, a sweet spot is linear arithmetic on mixed integers and reals (or
equivalently, rationals). The decision procedure for conjunctive sets of con-
straints is polynomial for reals and NP-complete for integers (see e.g., [24]),
but current decision procedures are efficient for practical cases. Even in the
real case, one relies on the simplex method, which is exponential [56, 24] in
the worst case; in practice, simplex-based algorithms are more efficient than
other algorithms that are optimal in the worst case [24].

Despite important applications — for instance, the B method [2] and the
TLA+ [90] language use some set theory as their underlying logic — SMT solv-
ing on set theory was, at the time of starting writing these lines, surprisingly
not very well supported in SMT besides some first results [11] and the exis-
tence of a preliminary standard [88]. Solvers for set theory based verification
platforms (e.g., the prover for Atelier B) use mainly rewriting based heuristic
techniques, that can provide good results even for quite evolved proof obli-

18

gations, but are even less predictable than the classical SMT approach and
do not provide any guarantee of completeness. This is quite similar to the
automation provided within some proof assistants, e.g., within Isabelle [102],
but quite in opposition to the bottom-up SMT approach to add expressivity
to SAT solving while maintaining decidability. A set theory in the SMT phi-
losophy would be so restricted in expressivity that it would be of little help
in itself. I believe the right approach is, just like for higher-order logic, to
translate problems into SMT and progressively extend SMT to natively han-
dle more and more useful constructions to deal with sets. In a sense, this is
the line of the very promising approach in [11].

An essential aspect of SMT is that the theory reasoner can actually deal
with a combination of theories. It is then possible to consider formulas contain-
ing, e.g., both uninterpreted symbols and arithmetic operators. Combination
frameworks ensure that a decision procedure for the union of several theories
can be built on the decision procedures for the component theories. On the
one hand, these combination frameworks provide decidability results for com-
binations, and on the other, they also provide a modular way to actually build
the decision procedures.

2.3.1 Uninterpreted symbols

The theory of equality, also known in the context of SMT as the theory of un-
interpreted symbols, has one of the most mature decision procedures for SMT
solving: it is efficient and has all the nice features for an optimal integration
into the SMT framework.

In a nutshell, a union-find data-structure maintains a partition of terms
into congruence classes according to asserted equalities. Possible inconsisten-
cies with asserted disequalities are detected on the fly. A new asserted equality
might result in a merge of two partition, if the terms asserted equal were not
already in the same partition. The congruence closure algorithm also detects
congruence, i.e., it ensures that two terms with the same top symbol and pair-
wise equal arguments are in the same partition. This is done efficiently by
storing in a hash table the signature — the top symbol applied to congruence
classes of the arguments — corresponding to each term. Notice that two terms
with the same signature should belong to the same congruence class. This hash
table can thus serve to detect congruence. Every time the congruence class
of a term changes (because of some merge), the signature of its predecessors
(the terms having that term as a direct argument) has to be updated. It may

19

happen that the updated signature conflicts with one that is already present
in the hash table. If so, the two terms with the same signature should be put
in the same class, if they aren’t already. Conflict detection with the asserted
disequalities is simply done by investigating, each time the class of a term is
updated, the disequalities in which it takes part.

The algorithm directly inherits from union-find data-structures its m +
n log n complexity for m operations on a partition of n objects assuming con-
stant time operations on the hash table [54], thanks also to the fact that
congruence and conflict detection can be implemented efficiently. Backtrack-
ing can also be done quite efficiently either using persistent data-structures
that are designed to be backtrackable, or carefully engineering the algorithm
to store in a stack-like manner the necessary information to undo each change.

To produce proofs and small conflicts, it is sufficient to maintain aside
a congruence graph. Two classes are merged either because of an asserted
equality or because of a congruence between two terms. For each merge, an
edge between those two terms is added to the graph, and is labeled by the
reason for the merge, that is, either by the asserted equality or by a place-
holder standing for congruence. The congruence graph has one and only one
path between two terms in the same class, and the equality of those terms is
implied, by transitivity (and symmetry and reflexivity) of the equality, by the
asserted equalities in the labels and by the equalities between directly con-
nected congruent terms. The congruences themselves are a consequence (by
congruence of the equality relation) of the fact that arguments are pairwise
equal. From this congruence graph, it is not difficult to build a resolution proof
involving only the asserted equalities and instances of the axioms (schemas) of
symmetry, transitivity, reflexivity and congruence of equality. Collecting the
involved asserted equalities, together with a conflicting disequality, provides a
small conflict, although not the smallest one, and not even minimal. Providing
the smallest conflict is NP-complete, and providing a minimal one is polyno-
mial, but not linear [58, 59]. In practice, producing minimal conflicts rather
than the (possibly non-minimal) small ones stemming from the congruence
graph does not pay off the computing overhead with today’s algorithms.

One last important aspect is theory propagation. Again, congruence clo-
sure can handle it very easily. Much like conflict detection, when a relevant
equality becomes true because both members are put in a same class, the
equality is propagated; it is also easy to propagate the disequalities congruent
to some asserted disequality. However, we believe full disequality propagation

20

is a hard problem.1

2.3.2 Arithmetic

Although there are many results worth mentioning about arithmetic in SMT
if one wants to be complete, it is not easy to present a mature description
of an arithmetic decision procedure to embed in SMT. State-of-the-art SMT
solvers use a simplex-based algorithm, often a variant of [55, 56], to handle
linear arithmetic constraints occurring in formulas. It differs from text book
simplex algorithms on these points: it is not an optimization algorithm but
only finds a satisfiable assignment or concludes unsatisfiability, variable values
do not necessarily need to be positive, the algorithm is essentially incremental
and backtrackable. In a nutshell, an assignment for variables is maintained,
and repaired to take into account every additional constraint incrementally. In
contrast to usual linear programming software, it is generally implemented in
exact rational arithmetic, and relies on a number of techniques to accommo-
date integer variables. Probably the best resource to understand the battery of
methods useful to tackle linear arithmetic on mixed real and integer constraints
as found in SMT is the description of the MathSAT procedure [75]. However,
I believe there is still place for a lot of improvements. Although current algo-
rithms are not really the bottleneck for practical use of SMT, mixed integer
linear programming algorithms, e.g., Gurobi [100], are impressively more effi-
cient than SMT solvers to solve conjunctions of linear arithmetic constraints.
In fact, it greatly pays off to integrate a linear programming system into the
linear arithmetic decision procedure [86]. One can argue that linear program-
ming systems use machine arithmetic, and this accounts for the difference in
efficiency. My intuition is that SMT algorithms are simply naive compared to
the state-of-the-art in linear programming. The MCSAT approach for linear
arithmetic [84] also exhibits interesting results; it would be of the highest inter-
est to better understand its relation to the simplex algorithm as implemented
in SMT.

Beyond linear arithmetic, and even less mature, are the procedures to
handle non-linear arithmetic constraints and transcendental functions. We
are actively contributing to this line of research, so we delay giving further
information until the second part of this document.

1At the time of writing this lines, we believe the complexity of full disequality propagation
is still an open problem.

21

2.3.3 Combining theories

Because of their applications, the input language of SMT solvers naturally
often involves several kinds of symbols, related to different objects or theories,
e.g., lists, arrays, or absolutely free data-structures, arithmetic constraints,
and uninterpreted symbols. While it is possible to design a decision procedure
for each of those theories separately, the only conceivable way to design a pro-
cedure to deal with sets of literals — remember that the SMT infrastructure
allows the procedures to only reason on conjunctive sets of literals — mixing
all theories is to proceed in a modular way. Now, given a set of literals mixing
several disjoint theories, it is always possible to build an equisatisfiable set
such that every literal is either totally or not at all relevant for each theory.
Considering uninterpreted symbols and arithmetic, an occurrence of p(x+ 1)
can be replaced by the two literals p(y) and y = x+ 1 while preserving satisfi-
ability (p is an uninterpreted predicate, and y is a fresh symbol of appropriate
type). This process is called purification. After purification, one can use the
decision procedure for each theory on only the relevant literals. This simple
procedure might suffice to detect an unsatisfiable set, but there are cases where
it does not. It may indeed happen that there is a model for each theory of
the combination, but there is no model for the combination of theories. This
simply means it is not possible to build a model for the combination of the
theories from the models for each theory. These models either disagree on
the domains (they have different cardinalities) or on the interpretation for the
shared symbols (and in particular equality).

In order to have a working combination of decision procedures, it is nec-
essary to ensure that, if all decision procedures in the combination find a
model, there exists a model also for the combination. This requires the de-
cision procedures to agree both on the domains (i.e., their cardinalities) and
on the interpretation of shared symbols. The original Nelson-Oppen com-
bination scheme [97, 112, 120] considers disjoint theories: only equality and
uninterpreted nullary symbols (called uninterpreted constants, variables, or
parameters in the literature) are shared. It furthermore assumes that the the-
ories are stably-infinite, which means that every satisfiable set of literals has
a countable infinite model. In this context, it suffices that the decision pro-
cedures agree on an arrangement of the shared uninterpreted nullary symbols
with respect to equality, e.g., by non-deterministically choosing a priori a par-
tition of these symbols in equivalence classes. Thanks to the stably-infiniteness
property, models found by the decision procedures can be made to agree on
cardinalities, and on the interpretation of equality.

22

A priori agreeing on an arrangement, that is, a partition of the shared
uninterpreted nullary symbols, is quite an inefficient way to ensure that deci-
sion procedures will have matching interpretations of equality. In practice, the
decision procedure rather exchange information, and for instance, they propa-
gate entailed equalities between shared terms to each other. For completeness
though, and even in the case of simple combinations of disjoint stably-infinite
theories, propagating only equalities is not sufficient. Consider for instance a
combination including arithmetic and another theory, and five integer terms
all between 0 and 3. Inevitably two of them are equal. Assume that the con-
straints in the other theory enforce those terms to all be distinct. No equality
can be shared, but the combination is unsatisfiable. It is also necessary to
propagate entailed disjunctions of equalities between shared terms; if such
disjunctions are propagated, it is easy to prove that this propagation of infor-
mation is equivalent to agreeing on a partition of the shared terms. So, for
convex theories — theories such that, if a disjunction is entailed, one of the
disjunct is entailed — propagating equalities is a complete way to agree on an
arrangement. The empty theory (uninterpreted symbols with equality), and
linear arithmetic on rationals can be considered as convex. For non-convex
theories, it is very impractical and inefficient to detect and propagate entailed
disjunctions of equalities. Part of the answer is provided by delayed the-
ory combination [29], where disjunctions are handled by the underlying SAT
solver. In the same philosophy, model-based combination [44, 45] exploits
models provided by the individual decision procedures to enable the combi-
nation. These models are used to assert which shared terms are equal and
which are not. Disagreement on these equalities leads to conflicts, but if an
arrangement exists that would satisfy all theories, it will eventually be found
after some iterations with the SAT solver.

If theories in a combination are not disjoint, because they share other
symbols than equality and nullary uninterpreted symbols, the procedure also
has to ensure that those shared symbols are interpreted by all theories in a
compatible way. Local theory extensions [117] is a successful and practical
framework for some kind of non-disjoint theories. Alternatively, disjoint the-
ories can be combined by reduction to a decidable language [123]. Concretely
however, non-disjoint combinations are not yet as commonly implemented as
the classical Nelson-Oppen framework for stably-infinite theories. Some of
those combinations have a high complexity, are somehow specific, or do not
yet have the practical techniques and heuristics to make them work in prac-
tice. We will come back to this in the contribution, advances and perspectives
part of this document.

23

2.3.4 Quantifiers

Solving the propositional satisfiability problem, checking the satisfiability of
sets of literals with uninterpreted symbols, and combining disjoint theories are
I believe mature aspects of SMT. Linear arithmetic decision procedures are
satisfactory. Arithmetic beyond the linear case is still in its infancy. From our
point of view, two major aspects that still require a lot of work and insight
are non-disjoint combinations and, last but not least, handling quantifiers.
SMT beyond first-order logic is mainly unexplored and central to our research
project.

The Herbrand theorem (see [60] for a many-sorted version with equality)
provides a tool to build a complete procedure for first-order logic formulas on
the basis of a decision procedure for ground formulas. Indeed it suffices to
instantiate an unsatisfiable formula sufficiently many times to get an unsatis-
fiable ground logical consequence, and a finite number of instances is always
enough. The difficulty lies in the fact that, although the amount of necessary
instances is finite, they have to be picked within an infinite though enumerable
set. Since the set is enumerable, and assuming the ground problem is decid-
able — as it is for pure first-order logic with equality — a trivial complete
procedure is to fairly enumerate instances and check the ground formulas so
generated for unsatisfiability. This process will either eventually terminate on
an unsatisfiable ground formula, it will terminate for lack of instances in the
case of a finite Herbrand domain, or it will run for ever if the original formula is
satisfiable. At the dawn of automated reasoning, this has been tried, quickly
considered a dead end, and was abandoned in favor of the more promising
approach of resolution and superposition theorem proving [10, 99]. Modern
SAT and SMT solvers are now changing the landscape. The instantiation
based SMT solver CVC4 is competitive in the annual competition of first-
order provers, and even strong supporters of superposition are reconsidering
instantiation [108].

Instantiation techniques in SMT often rely on the information provided
by the satisfiability check of the ground abstraction of the formula, that is,
the formula where all quantified subformulas are abstracted as propositional
variables. This information can be a model, or simply a satisfying assignment
for the ground atoms. Modern SMT solvers use a portfolio of instantiation
techniques. Besides simply enumerating instances — which has its advantages,
if done properly; we will come back to this in the perspective part of this
document — the oldest technique is probably pattern-based E-matching [96,
51, 42]. Quantified formula are associated with patterns, that is, sets of terms

24

in the quantified formula containing all the quantified variables. Heuristics are
designed to find out the effective patterns that will be efficient at finding the
right instances of the formulas. Given a satisfying assignment for the ground
formula, pattern-based E-matching simply tries to find out terms explicitly
mentioned in this assignment which match the patterns, modulo the equalities
in the satisfying assignment. This technique is thus perfectly suited to unfold
axiomatized definitions.

Model-based quantifier instantiation [74] relies on a full model for the
ground abstraction of the formula. The quantified formulas are evaluated
in this full model, and all instances falsified in the model are added to the
ground formula. It should be noted however that generating a full model
also introduces quite a lot of arbitrary choices in this model, and thus also
introduces randomness in the instantiation generation. As a consequence,
many useless instances might actually be added to the ground formula. For
instance, a partial model for a formula might leave a certain unary function
totally unassigned. Any full model would though provide an assignment for
this function, and this assignment would have to be iteratively repaired, by
the instantiation generation process, until it agrees with all quantified formulas
mentioning the function.

Conflicting instances is a technique that is not sufficient in itself, but that
never generate useless instances [110, 13]. It tries to find, for each formula, an
instance that will be sufficient to refute the current satisfying assignment for
the ground atoms. Of course, this fails for most quantified formulas, but any
instance generated this way is useful. In contrast to the previous two methods,
this will not overwhelm the ground SMT solver with many instances.

3 Contributions, advances and perspectives

In the above, we gave a brief description of the state-of-the-art in SAT and
SMT solving. My previous work as well as my current research are mainly
focused on advancing this state-of-the-art. Many of my contributions are re-
lated to decision procedures and combinations, that is, procedures to decide
the satisfiability of sets of literals with interpreted symbols, and ways to com-
bine them into procedures to decide the satisfiability of sets of literals con-
taining symbols from a mixture of decidable fragments. Section 3.1 gives an
account of the previous results and planned work in this direction. Although
the predilection domain of SMT is decidable fragments, SMT techniques are
increasingly extended to also tackle much richer languages, beyond decidable

25

ones. In particular, I have been active in improving quantifier reasoning in
SMT (Section 3.3), and a major part of my time in the near future will be
devoted to bringing higher-order reasoning capabilities to SMT (Section 3.4).
This includes studying the convergence of SMT with other kinds of approaches,
notably superposition theorem provers. Computer algebra systems are yet an-
other kind of automated reasoning engine; I have advocated in the past for
more synergies between these systems and SMT, and my project includes pur-
suing this line of research, with the aim to boost arithmetic handling within
SMT (Section 3.2). Improving the use of SMT solving not only requires aug-
menting its expressivity and efficiency, it is equally mandatory to facilitate
embeddability of solvers in larger frameworks. Two issues can be pointed out.
First, there should be languages and tools to help writing the input problems:
this is one of the main goals of the SMT-LIB initiative, to which I contribute
as one of the three current SMT-LIB managers. Second, solvers should provide
a precise account of their results, i.e., by outputting either models or proofs.
I have been very active already in promoting proofs for SMT solvers. The
issue is however non trivial and will continue to require work in the future.
Since this strongly relates also to the use of SMT in HOL platforms, both
proofs and SMT for HOL are discussed together in a unique section (Sec-
tion 3.4). Section 3.5 mentions the more applicative aspects of SMT to which
I contributed.

3.1 Decision procedures and combination schemes

Uninterpreted symbols

One of the simplest decision procedure used in SMT decides the satisfiability of
conjunctions of literals with only uninterpreted symbols and equality, a.k.a. the
empty theory. In one of my very early works [63], we studied how to actually
use this decision procedure in an SMT context — at that time, we were using
BDDs as underlying procedure for propositional logic instead of CDCL. A key
aspect for the success of using a decision procedure in an SMT framework is
to be able to extract a small conflict set, i.e., a subset of an unsatisfiable input
set of literals which is itself unsatisfiable. The smaller this conflict set is, the
stronger the conflict clause is, and the overall convergence towards a model
or unsatisfiability is quicker. Computing the smallest conflict set for sets of
literals in the empty theory was long believed to be hard, although there was
no proof of this. We recently proved it is indeed NP-complete [58, 59], by
reduction of the SAT problem; this result is one of the selected papers (see

26

page 65). In practice, we use heuristics to compute small conflict sets. One
might be tempted to hope for a better algorithm, but this result states that a
perfect technique would anyway be computationally expensive.

Combining theories

Building decision procedures for expressive languages sometimes naturally
leads to combining simpler language together. The classical combination
framework for theories is due to Nelson and Oppen [97] and better understood
later by Ringeissen [112] and Tinelli [120]. It assumes that the theories in the
combination are decidable, disjoint — the only shared function or predicate
symbols are the equality predicate and uninterpreted constants, i.e., nullary
functions, often called variables in the context of theory combinations — and
stably infinite — every satisfiable set of literals is satisfiable in an infinite
model. Since my early works, I have contributed to better understand com-
bination frameworks and lift the requirements for combination of theories to
work. In an early work [65], I have considered non-stably infinite theories,
expressed as a set of interpretations, i.e., not necessarily as a set of axioms.
More recently [69], I studied how to build combination frameworks that pre-
serve refutational completeness when combining disjoint but not necessarily
decidable theories. I contributed also to a better understanding of Nelson-
Oppen in practice, using (model-)equality propagation [45, 46]. Indeed, the
Nelson-Oppen framework generally involves exchanging implied disjunctions of
equalities, which is not practical. This model-equality propagation framework
is quite similar in essence to the better known model-based theory combination
approach [44].

Combining first-order fragments

The properties required from the theories in a combination are used to ensure
completeness of the combination. The initial set of literals to consider in the
union of theories is split in several sets, each considered in one theory. If every
of these split sets is satisfiable in its theory, one has to guarantee that there
is a model in the union of the theories. For disjoint theories, it is essentially
necessary to ensure that cardinalities of the models for the splits sets are
reconcilable; it is trivially ensured by the stably infinite property for instance.
If one want to avoid this property, some other properties have to be found.

Among decidable theories, it is quite natural to consider the first-order
decidable fragments. Most of them are not stably infinite. I have contributed

27

to show however that they have nice properties that compensate the lack of
stable infiniteness. I have considered the Ackerman and guarded fragments
in [4], the Löwenheim class (monadic first-order logic with equality, but with-
out functions), the Bernays-Schönfinkel-Ramsey class, and the two-variable
fragment of first-order logic in [61, 62].

It is much more difficult to drop the disjointness requirement for combin-
ing theories. However, I have showed that a few interesting cases, namely the
Löwenheim and the Bernays-Schönfinkel-Ramsey classes, satisfy an appro-
priate property that enables non-disjoint combination, sharing unary pred-
icates [32] (see selected paper on page 65). It is still an open problem to
consider also other first-order decidable classes (e.g., the Ackerman class, the
guarded fragment, and the two-variable fragment of first-order logic) in this
non-disjoint framework.

I have contributed to other non-disjoint combinations of theories, but
theses combination rather relate to data structures, discussed just below.

Combining data structures

From the verification point of view, data structures are, with arithmetic, ex-
tremely important to consider for combinations of decidable theories. I have
contributed in early works to show that the empty theory [65], the theory of
arrays [65], and theories for lists [71] can be combined with non-stably in-
finite theories. These theories behave sufficiently well not to impose strong
conditions like stable infiniteness to the other theories in the combination.

In this context also, non-disjoint combinations are of great interest. It
is indeed often the case that data structures involve functions connecting
(bridging) them to some arithmetic theory. Consider for instance lists with
length, or trees with depth or size. We have contributed to extend combina-
tion frameworks for these bridging functions. This is a kind of non-disjoint
combination, since the bridging functions are relevant to both theories. Our
approach [33, 35, 34] is based on rewriting and reduction to disjoint combina-
tions.

Project

The ultimate goal in combining theories is, from my point of view, to get
a framework to check the satisfiability of formulas in a modular way. This
framework should benefit from the properties of some parts of the formulas,

28

for instance, if some part of the formula belongs to a decidable, stable infinite
or convex fragment. If parts of the formulas are loosely connected by only
a few shared symbols, non-disjoint combination would then enable to reason
on those parts separately and in parallel, the framework taking care of ex-
changing the necessary information between the reasoners. Providing decision
procedures to combine decidable fragments should not be the only goal, be-
cause in many cases, restricting languages to decidable ones is too much of
a constraint for expressivity. Aiming at combination frameworks that main-
tain refutational completeness, notably when combining arbitrary first-order
theories and decidable fragments, is also a valuable goal.

To further extend the expressivity and usefulness of SMT solvers, it seems
natural to consider (and combine within the SMT solver) more decision proce-
dures for data structures. In particular, distributed algorithms maintain spe-
cific data structures (e.g., distributed token trees for mutual exclusion) and
employ variations of common data-structures (e.g., queues). Studying each
of these possible data structures separately, and hard-coding each of them in
an SMT solver is unfeasible. One solution to tackle this variety is to express
those specific data structures using lower-level data structures that are directly
supported by the reasoning infrastructure, such as arrays. This approach is
unfortunately not very well suited for formal verification, especially when us-
ing automated tools: replacing the high-level operations by combinations of
operations on low-level data structures makes the proof search prohibitively
expensive. We propose a different approach based on plugging user-defined
theories describing those specific data structures into SMT solvers, thus en-
abling the tools to reason on the high-level objects directly rather than on the
complex implementation using lower-level constructs.

Enabling SMT solvers to accept plug-in theories poses serious practical,
but also and foremost theoretical problems. As previously mentioned already,
SMT solvers are based on combination frameworks that require that compo-
nent theories satisfy precise and rather constraining properties. In order to
accept plug-in theories, one must either (1) relax those constraining properties,
specify criteria for the theories to be combinable in the framework, and define
decision procedures that verify those criteria (like we have proposed in [4, 61])
or (2) find new ways to combine arbitrary decision procedures in a sound, if
incomplete way. In practice the (semi-)decision procedures for plug-in theories
would be implemented using generic automatic theorem provers. Those theo-
ries are indeed relatively small sets of quantified formulas, but proofs may be
intricate. Saturation first-order theorem provers will explore the theories and

29

assumptions exhaustively in order to find a refutation. They thus provide effi-
cient and refutationally complete reasoning engines. Furthermore, it has been
shown that saturation theorem provers can be used to efficiently implement
decision procedures for several decidable first-order fragments [7, 9, 73, 81].
For certain theories modeling data structures, it even appears [7, 115] that
generic first-order provers compete with reasoning modules written specifi-
cally to handle those data structures. In that context, a specific decision
procedure for a data structure will only need to be implemented if it is worth-
while, that is, if this data-structure occurs frequently in the usual verification
tasks, if reasoning on this data structure represents a bottleneck for checking
proof obligations, and if a specific decision procedure would bring a significant
improvement in complexity or practical efficiency. In this line, we already
proposed [69] and mentioned earlier a sound and complete way to combine a
refutationally complete procedure and a decision procedure, to build a refuta-
tionally complete procedure for the union of a decidable theory and a disjoint
arbitrary (not necessarily decidable) theory represented by a finite set of first-
order axioms. We are working to further develop this framework, and to apply
it in practice.

3.2 Automated reasoning vs. symbolic computation

Reasoning in various fragments of arithmetic is a fundamental and ubiquitous
requirement in verification. By arithmetic we here mean any theory whose
language includes arithmetic constants and functions (0, 1, +, × but possibly
also mod, ÷, exponentiation, trigonometric functions, etc.), interpreted over
integer, rational, real or complex numbers (or a mix of those). There are
well-known fundamental results about the decidability (and then, complexity)
and undecidability of fragments of arithmetic that impose strict limits on the
capabilities of automatic tools. For many practical applications, it is however
enough to handle restricted subsets of arithmetic.

An important direction of research to extend the expressivity of SMT
solvers is the quest for better arithmetic reasoning modules. If linear arith-
metic on both integers and reals is quite well integrated in state-of-the-art
SMT solvers, there are signs that SMT solvers handle those constraints in far
less efficient ways than dedicated tools: the CVC4 solver managed to outper-
form all others [86] by finding an appropriate way to interact with a modestly
efficient linear programming tool, despite inappropriate interface (that is, non-
incremental, non-backtrackable, non-exact arithmetic) of the linear program-
ming tool. The situation is even worse for non-linear arithmetic. Some inno-

30

vative techniques implemented in Z3 [85] are quite efficient for SMT problems
in the SMT-LIB, but non-linear capabilities of SMT solvers currently hardly
compare to dedicated tools on their own benchmarks. Non-linear arithmetic is
a research subject in its own, with considerable knowledge accumulated over
decades. We believe the right way to tackle this problem is to work together
with the community of computer algebra, to increase their awareness of our
problems, and to come up with solutions that will not reinvent the wheel.
Working together might also have as a side effect to better advertise to the
computer algebra some techniques that are successful within SMT, e.g. [84, 85].

I have been very active in bringing the computer algebra and SMT com-
munities together, to share knowledge and techniques. Notably, the SMArT
ANR-DFG project I have been coordinating (2014-2017) was along these lines,
I was an organizer of the Dagstuhl seminar 15471 on Symbolic Computation
and Satisfiability Checking in November 2015, and I am a principal investi-
gator of the SC2 initiative and the Coordination and Support Action H2020-
FETOPEN-2015-CSA 712689 [1].

As a result of the SMArT ANR-DFG project, the veriT solver integrates
the computer algebra system Reduce with Redlog as a means to decide the
satisfiability of polynomial constraints on the reals. For this cooperation to
work, it has been necessary to adapt real quantifier elimination methods for
conflict set computation [82]: it is based on tracing the reasons of unsatisfia-
bility and to compute a small conflict set using the collected information. The
results of this cooperation using techniques from [82] are already good. In a
work in progress unpublished at the time of writing these lines, this is further
greatly improved by using as a preprocessor a thin layer implementing interval
constraint propagation, i.e. a technique that computes over-approximations of
the possible values for each variable in the constraints as intervals. These quick
over-approximations are exploited fruitfully by the decision procedures that
work downstream. Among my previous contributions, we also extended arith-
metic reasoning capabilities of SMT solvers by adapting techniques developed
in the context of computer algebra, namely subtropical satisfiability [70]. This
heuristic boils down, when checking the satisfiability of a set of constraints, to
investigate the constraints only at the extremities of the domain space of the
variables: this works surprisingly often to actually find satisfiable points.

31

Project

My main objective for this line of work is to design decision procedures for
rich arithmetic inside SMT solving.

For the linear case, more effort should be put in filling the gap between
SMT decision procedures and optimization tools. Optimization tools are in-
deed typically much faster than SMT to handle conjunctions of constraints.
The techniques used there should be carefully analyzed, to evaluate if they
can be adapted to an SMT context. On a heuristic side, efficient simple, well
known, heuristic techniques that work well for linear arithmetic should also
be tried to tackle mixed real-integer polynomial constraints. Of course, the
problem is undecidable [93], but heuristics might be good enough in practice.
There might even be criteria to characterize problems that can be solved using
these techniques. Among the heuristics to investigate are branch and bound,
finite domain analysis, and adapting the method in [31, 30] to the non-linear
case.

Interval constraint propagation (ICP, see e.g., [72]) is already in use in
the veriT solver, bringing significant efficiency improvements for satisfiability
modulo polynomial constraints. There are other places where ICP could also
lead to efficiency improvements in procedures occurring in computer algebra
systems. In particular, we believe this should be investigated in the context of
virtual substitution (see e.g., [87]), not only as a preprocessing phase as it is
currently in the veriT solver, but with a tighter integration at each step of the
procedure. In a similar spirit, decision procedures for polynomial constraints
used in the SMT framework might benefit from a tighter integration with
the embedded SAT solver. SAT solvers are indeed recognized as being a
very efficient way to handle disjunctions and case splits. Some techniques in
computer algebra, notably for quantifier elimination, do intensively use case
splittings. We believe there is an opportunity to build on SAT solvers, and
reuse CDCL techniques for those case splittings.

Quantifier handling is another aspect for which computer algebra tech-
niques and SMT could be combined, to tackle problems currently outside of
the scope of each. While SMT deals with quantifiers using trigger or enumer-
ative instantiation, quantifier elimination is at the heart of many computer
algebra techniques. It might be possible to use quantifier elimination as found
in computer algebra tools, as a mean to deal with some quantifiers found in for-
mulas given to SMT. Currently, most SMT solvers are incomplete when given
quantified formulas with quantifiers ranging over real or integer variables.

32

Just like not everything is linear when considering arithmetic in, e.g.,
verification tasks, polynomial arithmetic is sometimes not sufficient either. For
transcendental functions, a very interesting approach consists in linearizing
them incrementally [36]. The approach could be investigated further, e.g.,
by rather translating into polynomial constraints of low degree, and then use
other usual techniques to handle those polynomial constraints.

When integrated within an SMT framework, it is useful that decision pro-
cedure produce proofs, and ideally proofs are small and easy to check. We are
also currently investigating proofs for arithmetic decision procedures. In the
linear case, Farkas’ Lemma (see e.g., [24]) is the basis for providing proofs that
are easily checkable; the simplex algorithm — currently at the core of most
SMT reasoners for linear arithmetic — readily provide such proofs. Decision
procedures for polynomial constraints, e.g., virtual substitution and cylin-
drical algebraic decomposition, do not readily provide such nice certificates.
The Hilbert’s Nullstellensatz and Stengle’s Positivstellensatz could be used to
represent unsatisfiability certificates for sets of polynomial constraints respec-
tively on the complex and on the real numbers. It is currently not clear how to
extract Stellensätze for decision procedures. It is however possible to obtain
a certificate, when using Gröbner bases as a decision procedure for polyno-
mial constraints over complex numbers. This has for instance been used for
Coq [105].

3.3 Quantifier reasoning

Proof obligations often contain quantified formulas, for instance to express
that a certain property holds for every pair of processes taking part in the dis-
tributed algorithm, and these formulas are usually quite large. In contrast to
the quantifiers in axiom sets describing plug-in theories, quantifiers that arise
in this context should be better handled by Skolemization and ground instan-
tiation. Indeed, those quantifiers usually do not require deep reasoning, but
finding the few right instances can be challenging. Guiding the instantiation
of the quantified formulas in SMT is currently done by heuristic rules that can
account for very efficient quantifier elimination. This approach often works
very nicely but sometimes also fails, notably if quantified formulas require
instantiation of many variables at the same time. The main state-of-the-art
instantiation techniques are E-matching based on triggers [42, 52, 113], finding
conflicting instances [110] and model-based quantifier instantiation [74, 111].

The theoretical foundation for instantiation as it is done in SMT solving is

33

simply the Herbrand theorem (see e.g., [60]): a formula in pure first-order logic
with equality is satisfiable if and only if the set of all its ground instances is also
satisfiable. A recent contribution, yet unpublished when writing these lines,
refines the classical Herbrand theorem in the context of SMT to a stronger
version that requires considering less instances. E-matching based on triggers
and model-based quantifier instantiation were designed to avoid the numer-
ous instances generated by simply using Herbrand instantiation. When done
carefully and with the use of this stronger Herbrand theorem, our experiments
show however that simple enumerative instantiation is actually quite powerful.

Among our recent contributions related to quantifier handling, we showed
that the major instantiation techniques can be cast in a unifying frame-
work for handling quantified formulas with equality and uninterpreted func-
tions [13]. This framework reduces instantiation to the problem of E-ground
(dis)unification, a variation of the classic rigid E-unification problem. We
introduced a sound and complete calculus to solve this problem in practice:
Congruence Closure with Free Variables (CCFV). In particular, we now use
CCFV to implement finding conflicting instances. This greatly improved the
performances of the veriT solver, and was also beneficial for the CVC4 solver.

Project

Many aspects of SMT solving have an engineering aspect, and this is par-
ticularly true for quantifier reasoning: among the many instances that are
generated, how to sort out the good, useful ones, from those that would only
distract the ground solver from its goal? To this aim, it is necessary to eval-
uate usefulness. Besides instances that are clearly not useful, and those that
are very useful, the solver will anyway generate quite a lot of them that might
be useful, but will turn out not to be much so. I believe it is of uttermost
importance to clean the ground solver of these instance. Currently, neither
veriT nor CVC4 implements this. Besides the obvious tedious engineering
work necessary to fix this issue, there is also the scientific aspect of evaluating
usefulness of instances. In SAT solving, finding out good criteria to eliminate
learned clauses was the source of one of the most impressive improvement in
SAT solving lately [8].

Since generating irrelevant instances is very harmful for quantifier rea-
soning in SMT, it is natural to invest efforts in improving the quality of the
information provided by the ground solver. This was the motivation behind
our work on computing prime implicants [47]: prime implicants clear the model

34

from the irrelevant literals, so that instantiation focuses only on relevant lit-
erals. In [42], a notion of relevancy is introduced with a similar objective. I
believe more filtering can be valuable. A formula generally comprises both a
problem and a set of sentences that describe the context (or theory) to study
the problem. In some cases, the context is fixed by the application generating
the formulas, and it is not useful to check it for consistency. The most valuable
terms to take into account for instantiation are the one strongly related to the
problem, and not the ones coming from the context and that are present in
each of the generated formulas.

Pure quantified first-order logic is best handled with resolution and super-
position-based theorem proving [9]. There has been some attempts to unify
such techniques with SMT [43, 40, 26], but the main approach used in SMT
remains instantiation, with quantified formulas reduced to ground ones and
refuted with the help of decision procedures for ground formulas. Designing
a framework unifying state-of-the-art SMT and superposition techniques is a
long term interest of my research. The success of Avatar [122] confirms that
automated reasoning has much to gain in mixing SMT and superposition ap-
proaches. Other step stones exist, and for instance, one direction I will follow
in the near future is investigating the lifting up of resolutions occurring inside
the SMT solver to first-order resolutions.

Some theories (like Presburger arithmetic or the theory of real closed
fields) have dedicated quantifier elimination procedures. Unfortunately, those
procedures currently do not work well in cooperation with either superposi-
tion, or with instantiation. Since adding uninterpreted symbols to arithmetic
signature (see e.g., [77]) often breaks decidability of the language, combining
theory-specific quantifier elimination procedures with first-order reasoning on
uninterpreted symbols will of course not yield decision procedures. It would
be nice however (and valuable for many applications) to preserve refutational
completeness in practice on the considered first-order theory extended with
uninterpreted symbols.

Finding conflicting instances, for which we now use the CCFV algorithm,
is very efficient to generate useful instances. Given an assignment for the
ground part of the formula, it finds out whether there exists one instance
of the quantified formula that would alone contradict this assignment. The
underlying CCFV algorithm can be implemented in a complete way to guar-
antee that if such a single instance exists, it will always be found. Finding
conflicting instance however is not a refutationally complete procedure, since
one single instance might not always suffice to refute the ground assignment.

35

We are currently working on extending conflict based instantiation to also be
complete in the case when two instances are necessary, and eventually to be
complete whatever the number of required instances is. Basically, we plan
to use resolution on the quantified formulas and use conflicting instances as
before. Completeness is not guaranteed in general, but it might be in certain
fragments.

Finally, we believe quantifier handling in automated reasoning can be
inspired by the efficient techniques developed in the context of modal logics,
and conversely, that the SMT point of view can lead to more expressive modal
logics which could be handled efficiently using SMT solvers [5].

3.4 SMT for HOL and proofs

Full automatic proving of formulas is not possible in all cases. In general,
expert human guidance is necessary at the highest levels of a proof, or to state
and prove intermediate lemmas that are used in subtle proof steps. Interactive
theorem provers (ITPs) provide the necessary tools to handle those subtle
tasks for which human guidance is mandatory. An ITP may also serve as a
proof manager, allowing to handle proofs manually, but also delegating some of
the proof steps to various automated theorem provers that act as back-ends.
I believe this is the right way to provide a convenient verification platform
benefiting form the advances in automated reasoning. In particular, the power
of SMT solvers should be made available to ITP users.

To maintain high confidence in the verdicts obtained using the platform
(i.e., the ITP with its back-ends), we rely on proof-producing back-ends. ITPs
are generally based on a very small (a few hundred lines of code) and carefully
engineered kernel. Any proof built in the ITP has to be certified through
this kernel. If a back-end provides proofs, those proofs can also be certified
through the kernel. Any deduced fact, either manually or automatically by
a back-end, is thus accepted as a theorem with the same very high level of
confidence. A buggy external automated prover, or a buggy conduit between
the ITP and the external prover only has as a consequence in the worst case
a certification failure, but will never lead to certify a false theorem. The two
pioneer works in this approach for SMT are the conduits between HOL-Light
and CVC Lite [94], and our work between haRVey (the predecessor of veriT)
and the Isabelle ITP [66].

The integration of automated deduction tools as back-ends of ITPs in-
cludes many engineering tasks, but there are also several theoretical issues to

36

solve for an effective cooperation of tools. First, the size of the proofs out-
put by the solvers should not explode: every proof step should be described
succinctly by the output format, and the proof size should be at most linear
with respect to reasoning time. Some methods used in highly optimized tools
(especially for formula simplification, or Skolemization) are difficult to tackle
without specialized rules, but those specialized rules (involving for instance
deep inference) would basically be implemented very inefficiently within ITPs,
leading in a very inefficient cooperation between the ITPs and the solvers. Sec-
ond, there exists a trade-off between full (and long) proof traces and smaller
“certificates” whose checking may involve a limited amount of proof search.
Third, besides trivial simplification methods like pruning the generated proofs,
and eliminating redundant deductions, there exist methods to compress proofs
that may lead to a significant decrease in proof size, which in turn, could also
lead to a significant decrease of the time needed to rebuild the proof inside
the ITP. I have contributed to several techniques leading to improved proof
size [67, 68]. Some of these techniques are now implemented in an independent
tool, Skeptic [27]. Although we are not involved in its development, we are
still working with the authors of Skeptic on finding new algorithms to further
decrease proof sizes in the SMT context.

Another very important issue for the cooperation of ITPs and automated
tools is the interface. The input language of SMT solvers is standardized
in [106, 17], and this standard is quite widely accepted. This simplifies the
construction of conduits to SMT solvers, since a conduit generating formulas
in this standardized language generates formulas suitable for all SMT solvers
accepting this standard. For the conduit to be fully functional however, proofs
also have to be read from the SMT solver, and replayed back inside the ITP.
There is currently no standardized SMT proof format. Together with Aaron
Stump, we initiated in 2011 the PxTP series of workshop. One of the objectives
of these workshops is specifically to promote the emergence of good proof
formats for automated reasoning tools. In [20] we proposed a preliminary
proof format for SMT. A lot of work remains however to obtain a proof format
accepted by the whole community. The issues are that the format should
be simple, versatile to express proofs from various decision procedures, and
compact. I believe now that standardization cannot be enforced for proofs,
but will come from de facto acceptation of the cleanest way of representing
proofs in SMT. Contrary to the input format, it will always be necessary for
the SMT solver to produce some work to output a proof.

More recently, I have contributed to a proof infrastructure for the pre-

37

processing of formulas [12]. The main components are a generic contextual
recursion algorithm and an extensible set of inference rules. Clausification,
skolemization, theory-specific simplifications, and expansion of ‘let’ expres-
sions are instances of this framework. With suitable data structures, proof
generation adds only a linear-time overhead, and proofs can be checked in
linear time.

Currently there exist conduits to veriT for Coq, Isabelle, Why3, TLAPS
and Rodin. The goal of my project is to improve veriT both on the input and
on the output aspects to increase its usefulness in such conduits.

Project

A major part of my future research will be dedicated to Jasmin Blanchette’s
ERC starting grant Matryoshka2, to which I am associated as senior collab-
orator. The Sledgehammer tool for Isabelle is essentially based on eager
translation of higher-order proof obligations to first-order formulas that are
discharged either by SMT solvers or superposition provers. This tool greatly
contributes to improve efficiency of formal proof efforts, but it has limits: some-
times trivial proofs cannot be found because solvers are lost in translation. In
the Matryoshka project, we want to augment SMT solvers with higher-order
reasoning in a careful manner, to preserve their desirable properties. The
approach is application-oriented, based on the available large repositories of
interactive verification efforts.

We are currently investigating three aspects. First, we are extending con-
gruence closure and instantiation to tackle higher-order constructions. Second,
we are getting inspiration from the automated reasoning capabilities of inter-
active provers to add new kinds of reasoning methods inside SMT. Indeed,
higher-order rewriting as implemented in proof assistants can sometimes be
surprisingly good at finding proofs, whereas hammers fail on the same tasks.
Last but not least, induction is often a crucial aspect for verification tasks,
but this is currently not or insufficiently integrated into SMT solvers.

In the long run, the cooperation between automatic provers, proof as-
sistants, and human users should be less fragmented: currently, users write
theorems that are either proved by the assistant or the automatic provers via
hammers. The future might well be that assistants and provers work together
and rather ask users for input for hard parts of the proofs.

2http://matryoshka.gforge.inria.fr/

38

http://matryoshka.gforge.inria.fr/

3.5 Tools and applications

The primal application of my research was verification of parameterized sys-
tems. In [64, 60], I showed that validation of inductive invariants for some kind
of parameterized systems is a decidable problem, and SMT solvers are essential
components of the decision procedure. Since then, I have been actively devel-
oping stand alone tools that can be used as back-ends for verification platform.
With the veriT solver [28] (the system description paper is in the selection of
papers on page 65), our goal is to provide a stable tool that implements our
research algorithms and make them available in open-source.

On the front-end side, I have been contributing to the integration of SMT
solvers in the verification platform Rodin [48, 49] (see selected paper on page
65). On a set of Event-B models stemming from industrial and academic
problems, our techniques decrease by a factor of four the number of proof
obligations whose verification requires human interaction. According to users,
this is particularly helpful for verification conditions where the major challenge
is the combinatorial aspect of the formula. Thanks to the SMT-LIB initiative
and to the standard SMT-LIB language, building a plugin to use all SMT
solvers is not more difficult than implementing a conduit for just one of them,
at least for the common language. For a few years now I have been active as
an SMT-LIB manager.

Project

Augmenting SMT with higher-order capabilities and improving proof gener-
ation will also improve the usefulness of SMT solvers for applications. I will
continue to devote an increasing part of my time for the management of the
SMT-LIB, and I am looking forward for the next SMT-LIB version, that should
standardize many new features, including higher-order constructs.

Within the Matryoshka project, the objective is to improve SMT support
for platforms. The priority targets are Isabelle and TLAPS. Sometimes how-
ever applications come from unexpected areas. For instance, SAT solvers are
used to check the dependencies of software, or to look over the satisfiability of
configurations for vehicles. The future applications for SMT might well be of
a surprising nature; it is important to recognize them anyway.

39

4 From logic to education in computer science

As computer science reaches maturity, it is necessary to present it differently,
packaged so that students can get the basics in a way that give them a deep
understanding of the inner workings of modern computer systems and at the
same time withhold the awfully specific details real systems are full of. I have
been teaching at various levels and for various kinds of students, but I believe
all need a more polished presentation of computer science than what is given
to them now, which is too tightly tied to rising technologies. For instance,
the religious wars between programming languages are particularly strong on
the field of education. Maybe it is time to comprehend (again) programming
without a specific modern programming language in mind. In the same vein,
modern computers are only understandable with a simplified picture in mind.
But this picture is not sufficiently well drawn.

I advocate that some basic computer science topics all go very well to-
gether: logic, computer structures, assembly language, algorithms and com-
plexity, programming, compilers, and verification. There is some work to
invest to present these in a connected way. In a logic course I have been giv-
ing to second year students for business informatics and cognitive sciences, I
submitted a simple problem of comparing two pieces of code, differing only
by the test in a conditional statement; the tests were logically equivalent but
more than one student out of two asserted that the two pieces of code were
behaving differently although no side effect could account for that. Logic is
also strongly linked to computer structures. In a course I am teaching to the
same second year students, we build, starting with logic gates, a full work-
ing RISC computer, simulated within a software, and that serves as a basis
to program in assembly language. And programming this RISC machine in
assembly language gives the students a full understanding of how loops, recur-
sion, memory and pointers work. Logic comes again at hand when you show
you can actually prove some code you have written, either in the low level,
RISC assembly language, or in a higher level code. But again, understanding
how the higher level code is translated in assembly language is instrumental to
actually prove that the code is correct, since it gives it a clear semantics. This
links verification, logic, computer structures and assembly language to some
aspects of compilation. I have never taught algorithms and complexity, and I
believe it is not easy to teach this to non-scientific students. But again, on a
RISC machine, complexity has a precise definition: it is related to the number
of basic instructions corresponding to an input of a given size. With a high
level language, this notion is not clear at all: instructions deeply embedded

40

in the language have a non trivial (and often not documented) complexity.
One school of thought is going away from the details in computer science. I
believe we have to get back to details, but on a reconstructed abstraction of
reality. Nobody can understand today’s combustion engines in details, but
understanding well conceived abstractions provides sufficient grounds not to
be afraid when approaching the real thing. It is not only necessary to give
knowledge to students so that they are able to perform in companies; pro-
viding them with a deep understanding of the principles underlying computer
science will help them better. And this is not possible to do it anymore on
the basis of state-of-the-art computers and programming languages.

5 Conclusion

It was once a time when logic and automated theorem proving was fully part
of what people call artificial intelligence. Today, as I am writing these lines,
there is again some diffuse fear that artificial intelligent entities will take over
the world. Probably this is not more true than before, but it is true however
that modern techniques of artificial intelligence have a deep impact on some
scientific areas, and for instance completely modifies the state-of-the-art and
techniques for speech recognition, or automatic treatment of natural language.
It is not clear yet what impact it will have on automated reasoning. But I
firmly believe it will not kill automated reasoning as we know it, just like
it will not kill traditional programming. Probably, and this is a fact that
is completely absent of my research program, machine learning will find its
place in automated reasoning, and will greatly improve it. Perhaps automated
reasoning might also find its place in artificial intelligence, as a complement
module to rigorously check soundness of deduction, or to efficiently evaluate
problems that can be translated to logic?

If we consider the publication of Hoare logic as a birth date [78], ver-
ification will soon turn fifty. Those years saw great hopes, and great dis-
illusionment. Reading today Dijkstra’s point of view [53] on the failure of
programming in 1972 is funny in a sad way: many of his statements are still
valid fifty years later. The verifying compiler, once expected as an outcome of
the newborn science of verification, never really existed; Tony Hoare quite re-
cently advocated to revive this challenge [79]. On the other hand, the situation
is not that desperate. There exist verified compilers (see e.g. the CompCert
project) and verified kernels, and large companies are surely all aware of and

41

use verification techniques.3 It is impossible to know how the world would
feel like without verification at all, but all major companies do find an eco-
nomic value in maintaining a formal verification department. Many discoveries
(think about quantum mechanics or DNA) are full of promises, and later re-
veal themselves to be more difficult to use than expected, but anyway lead to
great practical advances. We are unable to prove every program easily just
like we are unable to solve the Schrödinger equation for all systems. Anyway,
the importance of verification and automated reasoning will continue to grow,
while the pervasiveness of algorithms, computer systems and the cloud will
increase. I do not believe it will one day become easy, but with the same
effort, we will push verification much further. I do believe though that one
day, automated deduction integrated within interactive theorem proving will
discharge most non-creative thinking out of formally verified proofs.

3In the context of a project with RATP, I was myself quite surprised to realize that many
people with a verification background work there.

42

References

[1] Erika Ábrahám, John Abbott, Bernd Becker, Anna Maria Bigatti, Mar-
tin Brain, Bruno Buchberger, Alessandro Cimatti, James H. Davenport,
Matthew England, Pascal Fontaine, Stephen Forrest, Alberto Griggio,
Daniel Kroening, Werner M. Seiler, and Thomas Sturm. SC2: Sat-
isfiability checking meets symbolic computation - (project paper). In
Michael Kohlhase, Moa Johansson, Bruce R. Miller, Leonardo Mendonça
de Moura, and Frank Wm. Tompa, editors, Intelligent Computer Math-
ematics (CICM), volume 9791 of Lecture Notes in Computer Science,
pages 28–43. Springer, 2016.

[2] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[3] Ernst Althaus, Evgeny Kruglov, and Christoph Weidenbach. Superposi-
tion modulo linear arithmetic SUP(LA). In Silvio Ghilardi and Roberto
Sebastiani, editors, Frontiers of Combining Systems (FroCoS), volume
5749 of Lecture Notes in Computer Science, pages 84–99. Springer, 2009.

[4] Carlos Areces and Pascal Fontaine. Combining theories: The acker-
man and guarded fragments. In Cesare Tinelli and Viorica Sofronie-
Stokkermans, editors, Frontiers of Combining Systems (FroCoS), vol-
ume 6989 of Lecture Notes in Computer Science, pages 40–54. Springer,
2011.

[5] Carlos Areces, Pascal Fontaine, and Stephan Merz. Modal satisfiability
via SMT solving. In Rocco De Nicola and Rolf Hennicker, editors, Soft-
ware, Services and Systems. Essays Dedicated to Martin Wirsing on the
Occasion of His Emeritation, volume 8950 of Lecture Notes in Computer
Science, pages 30–45. Springer, 2015.

[6] Aristotle. Prior Analytics. 350BCE. Translation into English by Arthur
J.J. Jenkinson, 1928.

[7] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan
Schulz. New results on rewrite-based satisfiability procedures. ACM
Trans. Comput. Log., 10(1), 2009.

[8] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality
in modern SAT solvers. In Craig Boutilier, editor, IJCAI 2009, Proceed-

43

ings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pages 399–404, 2009.

[9] Leo Bachmair and Harald Ganzinger. Rewrite-Based Equational The-
orem Proving with Selection and Simplification. Journal of Logic and
Computation, 4(3):217–247, 1994.

[10] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In
John Alan Robinson and Andrei Voronkov, editors, Handbook of Au-
tomated Reasoning, volume I, chapter 2, pages 19–99. Elsevier Science
B.V., 2001.

[11] Kshitij Bansal, Andrew Reynolds, Clark W. Barrett, and Cesare Tinelli.
A new decision procedure for finite sets and cardinality constraints in
SMT. In Nicola Olivetti and Ashish Tiwari, editors, International Joint
Conference on Automated Reasoning (IJCAR), volume 9706 of Lecture
Notes in Computer Science, pages 82–98. Springer, 2016.

[12] Haniel Barbosa, Jasmin Christian Blanchette, and Pascal Fontaine. Scal-
able fine-grained proofs for formula processing. In Leonardo de Moura,
editor, Proc. Conference on Automated Deduction (CADE), volume
10395 of Lecture Notes in Computer Science, pages 398–412. Springer,
2017.

[13] Haniel Barbosa, Pascal Fontaine, and Andrew Reynolds. Congruence
closure with free variables. In Axel Legay and Tiziana Margaria, ed-
itors, Tools and Algorithms for Construction and Analysis of Systems
(TACAS), volume 10206 of Lecture Notes in Computer Science, pages
214–230. Springer, 2017.

[14] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli.
CVC4. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification (CAV), volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, 2011.

[15] Clark Barrett, Daniel Kroening, and Thomas Melham. Problem solving
for the 21st century: Efficient solvers for satisfiability modulo theories.
Technical Report 3, London Mathematical Society and Smith Institute
for Industrial Mathematics and System Engineering, June 2014. Knowl-
edge Transfer Report.

44

[16] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli.
Satisfiability modulo theories. In Armin Biere, Marijn J. H. Heule, Hans
van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications, chapter 26,
pages 825–885. IOS Press, February 2009.

[17] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB stan-
dard : Version 2.0, March 2010. First official release of Version 2.0 of
the SMT-LIB standard.

[18] Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity check-
ing for combinations of theories with equality. In Mandayam K. Srivas
and Albert John Camilleri, editors, Formal Methods In Computer-Aided
Design (FMCAD), volume 1166 of Lecture Notes in Computer Science,
pages 187–201. Springer-Verlag, November 1996.

[19] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Towards under-
standing and harnessing the potential of clause learning. Journal of
Artificial Intelligence Research, 22:319–351, 2004.

[20] Frédéric Besson, Pascal Fontaine, and Laurent Théry. A flexible proof
format for SMT: a proposal. In Workshop on Proof eXchange for The-
orem Proving (PxTP), 2011.

[21] Armin Biere. Adaptive restart strategies for conflict driven SAT solvers.
In Hans Kleine Büning and Xishun Zhao, editors, Theory and Applica-
tions of Satisfiability Testing (SAT), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer, 2008.

[22] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, edi-
tors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009.

[23] Nikolaj Bjorner, Anca Browne, Eddie Chang, Michael Colon, Arjun Ka-
pur, Zohar Manna, Sipma Sipma, and Tomas E. Uribe. STeP: The
stanford temporal prover (educational release) user’s manual. Technical
Report CS-TR-95-1562, Stanford University, Department of Computer
Science, November 1995.

[24] Alexander Bockmayr and V. Weispfenning. Solving numerical con-
straints. In John Alan Robinson and Andrei Voronkov, editors, Handbook

45

of Automated Reasoning, volume I, chapter 12, pages 751–842. Elsevier
Science B.V., 2001.

[25] Maria Paola Bonacina, Ulrich Furbach, and Viorica Sofronie-
Stokkermans. On first-order model-based reasoning. In Narciso Mart́ı-
Oliet, Peter Csaba Ölveczky, and Carolyn L. Talcott, editors, Logic,
Rewriting, and Concurrency - Essays dedicated to José Meseguer on the
Occasion of His 65th Birthday, volume 9200 of Lecture Notes in Com-
puter Science, pages 181–204. Springer, 2015.

[26] Maria Paola Bonacina, Christopher Lynch, and Leonardo Mendonça
de Moura. On deciding satisfiability by theorem proving with specu-
lative inferences. Journal of Automated Reasoning, 47(2):161–189, 2011.

[27] Joseph Boudou, Andreas Fellner, and Bruno Woltzenlogel Paleo. Skep-
tik: A proof compression system. In Stéphane Demri, Deepak Kapur,
and Christoph Weidenbach, editors, International Joint Conference on
Automated Reasoning (IJCAR), volume 8562 of Lecture Notes in Com-
puter Science, pages 374–380. Springer, 2014.

[28] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe, and
Pascal Fontaine. veriT: an open, trustable and efficient SMT-solver.
In Renate Schmidt, editor, Proc. Conference on Automated Deduction
(CADE), volume 5663 of Lecture Notes in Computer Science, pages 151–
156, Montreal, Canada, 2009. Springer.

[29] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi
Junttila, Silvio Ranise, Peter van Rossum, and Roberto Sebastiani. Ef-
ficient satisfiability modulo theories via delayed theory combination. In
Kousha Etessami and Sriram K. Rajamani, editors, Computer Aided
Verification (CAV), volume 3576 of Lecture Notes in Computer Science,
pages 335–349. Springer, 2005.

[30] Martin Bromberger, Thomas Sturm, and Christoph Weidenbach. Linear
integer arithmetic revisited. In Amy P. Felty and Aart Middeldorp, ed-
itors, Proc. Conference on Automated Deduction (CADE), volume 9195
of Lecture Notes in Computer Science, pages 623–637. Springer, 2015.

[31] Martin Bromberger and Christoph Weidenbach. Fast Cube Tests for LIA
Constraint Solving. In Nicola Olivetti and Ashish Tiwari, editors, Inter-
national Joint Conference on Automated Reasoning (IJCAR), volume

46

9706 of Lecture Notes in Computer Science, pages 116–132. Springer,
2016.

[32] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A gentle
non-disjoint combination of satisfiability procedures. In Stéphane Demri,
Deepak Kapur, and Christoph Weidenbach, editors, International Joint
Conference on Automated Reasoning (IJCAR), volume 8562 of Lecture
Notes in Computer Science, pages 122–136. Springer, 2014.

[33] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. Satisfia-
bility modulo non-disjoint combinations of theories connected via bridg-
ing functions. In Silvio Ghilardi, Ulrike Sattler, and Viorica Sofronie-
Stokkermans, editors, Automated Deduction: Decidability, Complexity,
Tractability (ADDCT), 2014.

[34] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A polite
non-disjoint combination method: Theories with bridging functions re-
visited. In Amy P. Felty and Aart Middeldorp, editors, Proc. Confer-
ence on Automated Deduction (CADE), volume 9195 of Lecture Notes
in Computer Science, pages 419–433. Springer, 2015.

[35] Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A rewriting
approach to the combination of data structures with bridging theories. In
Carsten Lutz and Silvio Ranise, editors, Frontiers of Combining Systems
(FroCoS), volume 9322 of Lecture Notes in Computer Science, pages
275–290. Springer, 2015.

[36] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and
Roberto Sebastiani. Satisfiability modulo transcendental functions via
incremental linearization. In Leonardo de Moura, editor, Proc. Confer-
ence on Automated Deduction (CADE), volume 10395 of Lecture Notes
in Computer Science, pages 95–113. Springer, 2017.

[37] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[38] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Communications of the ACM, 5(7):394–
397, July 1962.

47

[39] Martin Davis and Hilary Putnam. A computing procedure for quantifi-
cation theory. Journal of the ACM, 7(3):201–215, July 1960.

[40] Leonardo Mendonça de Moura and Nikolaj Bjørner. Bugs, moles and
skeletons: Symbolic reasoning for software development. In Jürgen Giesl
and Reiner Hähnle, editors, International Joint Conference on Auto-
mated Reasoning (IJCAR), volume 6173 of Lecture Notes in Computer
Science, pages 400–411, Berlin, Heidelberg, 2010. Springer-Verlag.

[41] Leonardo Mendonça de Moura and Dejan Jovanovic. A model-
constructing satisfiability calculus. In Roberto Giacobazzi, Josh Berdine,
and Isabella Mastroeni, editors, Verification, Model Checking, and Ab-
stract Interpretation (VMCAI), volume 7737 of Lecture Notes in Com-
puter Science, pages 1–12. Springer, 2013.

[42] Leonardo Mendonça de Moura and Nikolaj Bjørner. Efficient E-matching
for SMT solvers. In Frank Pfenning, editor, Proc. Conference on Auto-
mated Deduction (CADE), volume 4603 of Lecture Notes in Computer
Science, pages 183–198. Springer, 2007.

[43] Leonardo Mendonça de Moura and Nikolaj Bjørner. Engineering
DPLL(T) + saturation. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, International Joint Conference on Automated
Reasoning (IJCAR), volume 5195, pages 475–490, Berlin, Heidelberg,
2008. Springer-Verlag.

[44] Leonardo Mendonça de Moura and Nikolaj Bjørner. Model-based the-
ory combination. Electronic Notes in Theoretical Computer Science,
198(2):37–49, 2008.

[45] Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine.
Combining decision procedures by (model-)equality propagation. Elec-
tronic Notes in Theoretical Computer Science, 240:113–128, 2009. Pro-
ceedings of the Eleventh Brazilian Symposium on Formal Methods
(SBMF 2008), Salvador, Brazil, 26-29 August 2008.

[46] Diego Caminha B. de Oliveira, David Déharbe, and Pascal Fontaine.
Combining decision procedures by (model-)equality propagation. Sci-
ence of Computer Programming, 77(4):518–532, 2012.

[47] David Déharbe, Pascal Fontaine, Daniel Le Berre, and Bertrand Mazure.
Computing prime implicants. In Formal Methods In Computer-Aided
Design (FMCAD), pages 46–52. IEEE, 2013.

48

[48] David Déharbe, Pascal Fontaine, Yoann Guyot, and Laurent Voisin.
SMT solvers for Rodin. In John Derrick, John A. Fitzgerald, Stefania
Gnesi, Sarfraz Khurshid, Michael Leuschel, Steve Reeves, and Elvinia
Riccobene, editors, ABZ, volume 7316 of Lecture Notes in Computer
Science, pages 194–207. Springer, 2012.

[49] David Déharbe, Pascal Fontaine, Yoann Guyot, and Laurent Voisin.
Integrating SMT solvers in Rodin. Science of Computer Programming,
94:130–143, 2014.

[50] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel
Paleo. Exploiting symmetry in SMT problems. In Nikolaj Bjørner and
Viorica Sofronie-Stokkermans, editors, Proc. Conference on Automated
Deduction (CADE), volume 6803 of Lecture Notes in Computer Science,
pages 222–236. Springer, 2011.

[51] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem
prover for program checking. Technical Report HPL-2003-148, Hewlett
Packard Laboratories, July 23 2003.

[52] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem
Prover for Program Checking. J. ACM, 52(3):365–473, 2005.

[53] Edsger W. Dijkstra. The humble programmer. Communications of the
ACM, 15(10):859–866, October 1972.

[54] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the
common subexpressions problem. Journal of the ACM, 27(4):758–771,
October 1980.

[55] Bruno Dutertre and Leonardo Mendonça de Moura. A Fast Linear-
Arithmetic Solver for DPLL(T). In Computer Aided Verification (CAV),
volume 4144 of Lecture Notes in Computer Science, pages 81–94.
Springer-Verlag, 2006.

[56] Bruno Dutertre and Leonardo Mendonça de Moura. Integrating Simplex
with DPLL(T). Technical Report SRI-CSL-06-01, SRI International,
2006.

[57] Niklas Eén and Armin Biere. Effective preprocessing in SAT through
variable and clause elimination. In Fahiem Bacchus and Toby Walsh,
editors, Theory and Applications of Satisfiability Testing (SAT), volume

49

3569 of Lecture Notes in Computer Science, pages 61–75. Springer, June
2005.

[58] Andreas Fellner, Pascal Fontaine, Georg Hofferek, and Bruno Woltzen-
logel Paleo. NP-completeness of small conflict set generation for con-
gruence closure. In Vijay Ganesh and Dejan Jovanović, editors, Inter-
national Workshop on Satisfiability Modulo Theories (SMT), 2015.

[59] Andreas Fellner, Pascal Fontaine, and Bruno Woltzenlogel Paleo. NP-
completeness of small conflict set generation for congruence closure. For-
mal Methods in System Design, 51(3):533–544, December 2017.

[60] Pascal Fontaine. Techniques for verification of concurrent systems with
invariants. PhD thesis, Institut Montefiore, Université de Liège, Bel-
gium, September 2004.

[61] Pascal Fontaine. Combinations of theories for decidable fragments of
first-order logic. In Silvio Ghilardi and Roberto Sebastiani, editors, Fron-
tiers of Combining Systems (FroCoS), volume 5749 of Lecture Notes in
Computer Science, pages 263–278. Springer, 2009.

[62] Pascal Fontaine. Combinations of theories for decidable fragments of
first-order logic, 2009. Available at http://www.loria.fr/~fontaine/
Fontaine12b.pdf.

[63] Pascal Fontaine and E. Pascal Gribomont. Using BDDs with combina-
tions of theories. In Matthias Baaz and Andrei Voronkov, editors, Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR), volume
2514 of Lecture Notes in Computer Science, pages 190–201. Springer-
Verlag, 2002.

[64] Pascal Fontaine and E. Pascal Gribomont. Decidability of invariant val-
idation for parameterized systems. In Hubert Garavel and John Hatcliff,
editors, Tools and Algorithms for Construction and Analysis of Systems
(TACAS), volume 2619 of Lecture Notes in Computer Science, pages
97–112. Springer-Verlag, 2003.

[65] Pascal Fontaine and E. Pascal Gribomont. Combining non-stably infi-
nite, non-first order theories. In W. Ahrendt, P. Baumgartner, H. de Niv-
elle, S. Ranise, and C. Tinelli, editors, Selected Papers from the Work-
shops on Disproving and the Second International Workshop on Prag-
matics of Decision Procedures (PDPAR 2004), volume 125 of Electronic
Notes in Theoretical Computer Science, pages 37–51, July 2005.

50

http://www.loria.fr/~fontaine/Fontaine12b.pdf
http://www.loria.fr/~fontaine/Fontaine12b.pdf

[66] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto,
and Alwen Tiu. Expressiveness + automation + soundness: Towards
combining SMT solvers and interactive proof assistants. In Holger Her-
manns and Jens Palsberg, editors, Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS), volume 3920 of Lecture Notes
in Computer Science, pages 167–181. Springer-Verlag, 2006.

[67] Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. Explor-
ing and exploiting algebraic and graphical properties of resolution. In
Aarti Gupta and Daniel Kroening, editors, International Workshop on
Satisfiability Modulo Theories (SMT), July 2010.

[68] Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo. Com-
pression of propositional resolution proofs via partial regularization. In
Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Proc. Con-
ference on Automated Deduction (CADE), volume 6803 of Lecture Notes
in Computer Science, pages 237–251. Springer, 2011.

[69] Pascal Fontaine, Stephan Merz, and Christoph Weidenbach. Combina-
tion of disjoint theories: Beyond decidability. In Bernhard Gramlich,
Dale Miller, and Uli Sattler, editors, International Joint Conference on
Automated Reasoning (IJCAR), volume 7364 of Lecture Notes in Com-
puter Science, pages 256–270. Springer, 2012.

[70] Pascal Fontaine, Mizuhito Ogawa, Thomas Sturm, and Xuan-Tung Vu.
Subtropical satisfiability. In Clare Dixon and Marcelo Finger, editors,
Frontiers of Combining Systems (FroCoS), volume 10483 of Lecture
Notes in Computer Science, pages 189–206. Springer, 2017.

[71] Pascal Fontaine, Silvio Ranise, and Calogero G. Zarba. Combining lists
with non-stably infinite theories. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 3452 of Lecture Notes in Computer Science, pages 51–
66. Springer-Verlag, 2005.

[72] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and To-
bias Schubert. Efficient solving of large non-linear arithmetic constraint
systems with complex boolean structure. JSAT, 1(3-4):209–236, 2007.

[73] Harald Ganzinger and Hans De Nivelle. A superposition decision pro-
cedure for the guarded fragment with equality. In Logic In Computer
Science (LICS), pages 295–303. IEEE Computer Society Press, 1999.

51

[74] Yeting Ge and Leonardo Mendonça de Moura. Complete instantiation
for quantified formulas in satisfiabiliby modulo theories. In Ahmed Boua-
jjani and Oded Maler, editors, Computer Aided Verification (CAV),
volume 5643 of Lecture Notes in Computer Science, pages 306–320.
Springer, 2009.

[75] Alberto Griggio. A Practical Approach to Satisfiability Modulo Linear
Integer Arithmetic. JSAT, 8:1–27, January 2012.

[76] Leopold Haller, Alberto Griggio, Martin Brain, and Daniel Kroening.
Deciding floating-point logic with systematic abstraction. In Gianpiero
Cabodi and Satnam Singh, editors, Formal Methods In Computer-Aided
Design (FMCAD), pages 131–140. IEEE Computer Society, 2012.

[77] Joseph Y. Halpern. Presburger arithmetic with unary predicates is Π1
1

complete. The Journal of Symbolic Logic, 56(2):637–642, June 1991.

[78] C. A. R. Hoare. An Axiomatic Basis of Computer Programming. Com-
munications of the ACM, 12:576–580, 1969.

[79] C. A. R. Hoare. The verifying compiler: A grand challenge for computing
research. J. ACM, 50(1):63–69, 2003.

[80] Jinbo Huang. The effect of restarts on the efficiency of clause learning.
In Manuela M. Veloso, editor, Proceedings of the International Joint
Conference on Artificial Intelligence, pages 2318–2323, 2007.

[81] Ullrich Hustadt, Renate A. Schmidt, and Lilia Georgieva. A survey of
decidable first-order fragments and description logics. Journal of Rela-
tional Methods in Computer Science, 1:251–276, 2004.

[82] Maximilian Jaroschek, Pablo Federico Dobal, and Pascal Fontaine.
Adapting real quantifier elimination methods for conflict set computa-
tion. In Carsten Lutz and Silvio Ranise, editors, Frontiers of Combining
Systems (FroCoS), volume 9322 of Lecture Notes in Computer Science,
pages 151–166. Springer, 2015.

[83] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In
Bernhard Gramlich, Dale Miller, and Uli Sattler, editors, International
Joint Conference on Automated Reasoning (IJCAR), volume 7364 of
Lecture Notes in Computer Science, pages 355–370. Springer, 2012.

52

[84] Dejan Jovanovic and Leonardo Mendonça de Moura. Cutting to the
chase solving linear integer arithmetic. In Nikolaj Bjørner and Viorica
Sofronie-Stokkermans, editors, Proc. Conference on Automated Deduc-
tion (CADE), volume 6803 of Lecture Notes in Computer Science, pages
338–353. Springer, 2011.

[85] Dejan Jovanović and Leonardo Mendonça de Moura. Solving non-linear
arithmetic. In Bernhard Gramlich, Dale Miller, and Uli Sattler, editors,
International Joint Conference on Automated Reasoning (IJCAR), vol-
ume 7364 of Lecture Notes in Computer Science, pages 339–354. Springer
Berlin Heidelberg, 2012.

[86] Tim King, Clark Barrett, and Cesare Tinelli. Leveraging linear and
mixed integer programming for smt. In Koen Claessen and Viktor Kun-
cak, editors, Formal Methods In Computer-Aided Design (FMCAD),
pages 24:139–24:146, 2014.

[87] Marek Košta. New concepts for real quantifier elimination by virtual
substitution, 2016. Doctoral Dissertation, Saarland University.

[88] Daniel Kröning, Philipp Rümmer, and Georg Weissenbacher. A proposal
for a theory of finite sets, lists, and maps for the SMT-lib standard, 2009.

[89] Shuvendu K. Lahiri and Madanlal Musuvathi. An efficient Nelson-Oppen
decision procedure for difference constraints over rationals. Electronic
Notes in Theoretical Computer Science, 144(2):27–41, 2006.

[90] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, Boston, Mass.,
2002.

[91] Zohar Manna, Anuchit Anuchitanukul, Nikolaj S. Bjørner, Anca
Browne, Edward Chang, Michael Colon, Luca de Alfaro, Harish Devara-
jan, Henny B. Sipma, and Tomas Uribe. STeP: The stanford temporal
prover. Technical Report CS-TR-94-1518, Stanford University, Com-
puter Science Department, June 1994.

[92] João P. Marques-Silva and K. A. Sakallah. GRASP: A new search algo-
rithm for satisfiability. In IEEE International Conference on Computer-
Aided Design (ICCAD), pages 220–227, San Jose, California, USA,
November 10–14 1996. IEEE Computer Society.

53

[93] Yu. V. Matijasevič. Diophantine representation of recursively enumer-
able predicates. In J. E. Fenstad, editor, Proceedings of the Second
Scandinavian Logic Symposium, volume 63 of Studies in Logic and the
Foundations of Mathematics, pages 171–177, Amsterdam, 1971. North-
Holland.

[94] Sean McLaughlin, Clark Barrett, and Yeting Ge. Cooperating theorem
provers: A case study combining HOL-light and CVC lite. Electronic
Notes in Theoretical Computer Science, 144(2):43–51, 2006.

[95] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Design
Automation Conference (DAC), pages 530–535. ACM press, June 2001.

[96] C. G. Nelson. Techniques for program verification. Xerox, Palo Alto Re-
search Center, 1980. CSL-81-10 // XEROX Palo Alto Research Center.

[97] Greg Nelson and Derek C. Oppen. Simplifications by cooperating de-
cision procedures. ACM Transactions on Programming Languages and
Systems, 1(2):245–257, October 1979.

[98] Greg Nelson and Derek C. Oppen. Fast decision procedures based on
congruence closure. Journal of the ACM, 27(2):356–364, April 1980.

[99] Robert Nieuwenhuis and A. Rubio. Paramodulation-based theorem
proving. In John Alan Robinson and Andrei Voronkov, editors, Handbook
of Automated Reasoning, volume I, chapter 7, pages 371–443. Elsevier
Science B.V., 2001.

[100] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2016.

[101] Christos H. Papadimitriou. On the complexity of integer programming.
Journal of the ACM, 28(4):765–768, October 1981.

[102] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828
of Lecture Notes in Computer Science. Springer-Verlag, New York, NY,
USA, 1994.

[103] Knot Pipatsrisawat and Adnan Darwiche. A lightweight component
caching scheme for satisfiability solvers. In João Marques-Silva and
Karem A. Sakallah, editors, Theory and Applications of Satisfiability
Testing (SAT), volume 4501 of Lecture Notes in Computer Science, pages
294–299. Springer, 2007.

54

[104] David A. Plaisted and Steven Greenbaum. A structure preserving
clause form translation. Journal of Symbolic Computation, 2(3):293–
304, September 1986.

[105] Loic Pottier. Connecting gröbner bases programs with coq to do proofs
in algebra, geometry and arithmetics. In Piotr Rudnicki, Geoff Sut-
cliffe, Boris Konev, Renate A. Schmidt, and Stephan Schulz, editors,
LPAR Workshops, volume 418 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

[106] Silvio Ranise and Cesare Tinelli. The SMT-LIB standard : Version 1.2,
August 2006.

[107] Giles Reger, Nikolaj Bjørner, Martin Suda, and Andrei Voronkov.
AVATAR modulo theories. In Christoph Benzmüller, Geoff Sutcliffe,
and Raúl Rojas, editors, Global Conference on Artificial Intelligence
(GCAI), volume 41 of EPiC Series in Computing, pages 39–52. Easy-
Chair, 2016.

[108] Giles Reger, Martin Suda, and Andrei Voronkov. Instantiation and pre-
tending to be an SMT solver with vampire. In Martin Brain and Liana
Hadarean, editors, International Workshop on Satisfiability Modulo The-
ories (SMT), 2017.

[109] Andrew Reynolds and Jasmin Christian Blanchette. A decision proce-
dure for (co)datatypes in SMT solvers. Journal of Automated Reasoning,
58(3):341–362, 2017.

[110] Andrew Reynolds, Cesare Tinelli, and Leonardo Mendonça de Moura.
Finding conflicting instances of quantified formulas in SMT. In Formal
Methods In Computer-Aided Design (FMCAD), pages 195–202. IEEE,
2014.

[111] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan De-
ters, and Clark Barrett. Quantifier Instantiation Techniques for Finite
Model Finding in SMT. In MariaPaola Bonacina, editor, Proc. Confer-
ence on Automated Deduction (CADE), volume 7898 of Lecture Notes
in Computer Science, pages 377–391. Springer, 2013.

[112] Christophe Ringeissen. Combinaison de résolution de contraintes. PhD
thesis, Université de Nancy 1, INRIA-Lorraine, Nancy, France, Decem-
ber 1993.

55

[113] Philipp Rümmer. E-Matching with free variables. In Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR), volume 7180
of Lecture Notes in Computer Science, pages 359–374. Springer, 2012.

[114] Karem A. Sakallah. Symmetry and satisfiability. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 289–338. IOS Press, 2009.

[115] Stephan Schulz and Maria Paola Bonacina. On Handling Distinct Ob-
jects in the Superposition Calculus. In B. Konev and S. Schulz, editors,
Proc. of the 5th International Workshop on the Implementation of Log-
ics, Montevideo, Uruguay, pages 66–77, 2005.

[116] João P. Marques Silva, Inês Lynce, and Sharad Malik. Conflict-driven
clause learning SAT solvers. In Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185
of Frontiers in Artificial Intelligence and Applications, pages 131–153.
IOS Press, 2009.

[117] Viorica Sofronie-Stokkermans. Hierarchical reasoning in local theory ex-
tensions and applications. In Franz Winkler, Viorel Negru, Tetsuo Ida,
Tudor Jebelean, Dana Petcu, Stephen M. Watt, and Daniela Zaharie,
editors, International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC), pages 34–41. IEEE Computer So-
ciety, 2014.

[118] Niklas Sörensson and Armin Biere. Minimizing learned clauses. In
Oliver Kullmann, editor, Theory and Applications of Satisfiability Test-
ing (SAT), volume 5584 of Lecture Notes in Computer Science, pages
237–243. Springer, 2009.

[119] Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt.
A decision procedure for an extensional theory of arrays. In Logic In
Computer Science (LICS), pages 29–37. IEEE Computer Society, June
2001.

[120] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the
Nelson–Oppen combination procedure. In F. Baader and Klaus U.
Schulz, editors, Frontiers of Combining Systems (FroCoS), Applied
Logic, pages 103–120. Kluwer Academic Publishers, March 1996.

56

[121] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus,
pages 466–483. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[122] Andrei Voronkov. AVATAR: the architecture for first-order theorem
provers. In Armin Biere and Roderick Bloem, editors, Computer Aided
Verification (CAV), volume 8559 of Lecture Notes in Computer Science,
pages 696–710. Springer, 2014.

[123] Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combining theories
with shared set operations. In Silvio Ghilardi and Roberto Sebastiani,
editors, Frontiers of Combining Systems (FroCoS), volume 5749 of Lec-
ture Notes in Computer Science, pages 366–382. Springer, 2009.

[124] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer.
Approximations for model construction. In Stéphane Demri, Deepak
Kapur, and Christoph Weidenbach, editors, International Joint Confer-
ence on Automated Reasoning (IJCAR), volume 8562 of Lecture Notes
in Computer Science, pages 344–359. Springer, 2014.

[125] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer.
Deciding bit-vector formulas with mcSAT. In Nadia Creignou and
Daniel Le Berre, editors, Theory and Applications of Satisfiability Test-
ing (SAT), volume 9710 of Lecture Notes in Computer Science, pages
249–266. Springer, 2016.

[126] Aleksandar Zeljic, Christoph M. Wintersteiger, and Philipp Rümmer.
An approximation framework for solvers and decision procedures. Jour-
nal of Automated Reasoning, 58(1):127–147, 2017.

57

Glossary

BCP Boolean Constraint Propagation

CDCL Conflict-Driven Clause Learning

CNF Conjunctive Normal Form

DPLL Davis, Puttnam, Logemann and Loveland algorithm

FOL First-Order Logic

FUIP First Unique Implication Point

ITP Interactive Theorem Prover

MCSAT Model-Constructing Satisfiability Modulo Theories

RISC Reduced Instruction Set Computer

SAT Propositional Satisfiability

SMT Satisfiability Modulo Theories

VSIDS Variable State Independent Decaying Sum

58

A selection of five publications

• Andreas Fellner, Pascal Fontaine, and Bruno Woltzenlogel Paleo. NP-completeness of small conflict
set generation for congruence closure. Formal Methods in System Design 51(3): 533-544 (2017)

Proofs of NP-completeness are often fascinating: they are often not trivial to find although they
can be obvious to follow. This is not an exception. The efficiency of satisfiability modulo theories
(SMT) solvers is dependent on the capability of theory reasoners to provide small conflict sets, i.e.
small unsatisfiable subsets from unsatisfiable sets of literals. We show here the NP-completeness of
generating smallest conflict sets for one of the simplest decidable theory, i.e. sets of literals with only
uninterpreted symbols and equalities. This is proved using a simple reduction from SAT.

• David Déharbe, Pascal Fontaine, Yoann Guyot and Laurent Voisin. Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94(2): 130–143 (2014)

One of the most often used motivation for automated reasoning is verification. In this work, we
investigated the use of SMT in addition to the traditional tools embedded in the Rodin platform
for formal development in Event-B. Our contribution is the definition of a translation of Event-B
proof obligations to the language of SMT solvers, its implementation in a Rodin plug-in, and an
experimental evaluation on a large sample of industrial and academic projects. On this domain,
adding SMT solvers to Atelier B provers reduces significantly the number of sequents that need to
be proved interactively. SMT solvers are now regularly used within Rodin.

• Paula Chocron, Pascal Fontaine, and Christophe Ringeissen. A Gentle Non-Disjoint Combination
of Satisfiability Procedures. In Stéphane Demri, Deepak Kapur and Christoph Weidenbach, editors,
In Proc. International Joint Conference on Automated Reasoning (IJCAR), volume 8562 of Lecture
Notes in Computer Science (LNCS). pages 122–136, Springer, 2014.

This result is at the same time hard (involving an extension of the Ramsey theorem) and quite
simple to understand. A combination framework should ensure that the decision procedures in the
combination share enough information to eventually cooperatively show that the set of formulas is
unsatisfiable, or that the sharing of information will eventually stop and a model for the union of
formulas can be built. This is similar in the case of disjoint or non-disjoint union of theories, only
the shared information changes. For major classes of theories, namely the Löwenheim and Bernays-
Schönfinkel-Ramsey classes, the non-disjoint combination of theories sharing only unary predicates
(plus constants and the equality) is decidable. The shared information is the cardinality of the set of
support of each shared unary predicate, and this is computable for those first-order decidable classes.

• David Déharbe, Pascal Fontaine, Stephan Merz and Bruno Woltzenlogel Paleo. Exploiting symmetry
in SMT problems. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, In Proc. Conference
on Automated Deduction (CADE), volume 6803 of Lecture Notes in Computer Science (LNCS). pages
222–236, Springer-Verlag, 2011.

In this work, we investigate using symmetries in formulas to improve the efficiency of satisfiability
checking. This technique is based on the concept of (syntactic) invariance by permutation of con-
stants. An algorithm for solving SMT by taking advantage of such symmetries is presented. The
technique in itself is certainly interesting, but this paper is mainly an advocacy for better encoding of
problems into SMT. For nearly ten years, many benchmarks in the QF UF category of the SMT-LIB
remained undefeated because they were encoded in a way that enforced solvers to study all equivalent
permutations of the same easy problems.

• Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe and Pascal Fontaine. veriT: an
open, trustable and efficient SMT-solver. In Renate A. Schmidt, editor, In Proc. Conference on
Automated Deduction (CADE). volume 5663 of Lecture Notes in Computer Science (LNCS), pages
151–156. Springer-Verlag, 2009.

This is the published tool description of the veriT solver, which took a significant amount of my time
to design and develop. The current version of the solver also owes Haniel Barbosa some impressive
improvements, particularly on the quantifier handling aspects. The veriT solver is used as back-end
in several platforms, e.g. Isabelle via Sledgehammer and Rodin via the SMT plugin.

59

NP-completeness of small conflict set generation for
congruence closure

Andreas Fellner · Pascal Fontaine ·
Bruno Woltzenlogel Paleo

Abstract The efficiency of Satisfiability Modulo Theories (SMT) solvers is
dependent on the capability of theory reasoners to provide small conflict sets,
i.e. small unsatisfiable subsets from unsatisfiable sets of literals. Decision pro-
cedures for uninterpreted symbols (i.e. congruence closure algorithms) date
back from the very early days of SMT. Nevertheless, to the best of our knowl-
edge, the complexity of generating smallest conflict sets for sets of literals with
uninterpreted symbols and equalities had not yet been determined, although
the corresponding decision problem was believed to be NP-complete. We pro-
vide here an NP-completeness proof, using a simple reduction from SAT.

Keywords Satisfiability Modulo Theories · Decision procedures · Congruence
closure · Complexity

1 Introduction

Satisfiability Modulo Theory solvers are nowadays based on a cooperation
between a propositional satisfiability (SAT) solver and a theory reasoner for
the combination of theories supported by the SMT solver. The propositional
structure of the problem is handled by the SAT solver, whereas the theory
reasoner only has to deal with conjunctions of literals. Very schematically (we

This work has been partially supported by the project ANR-13-IS02-0001 of the Agence
Nationale de la Recherche, by the H2020-FETOPEN-2016-2017-CSA project SC2 (712689),
by an ÖAW APART Stipendium, by FWF W1255-N23, by ERC Start Grants Graph Games
(279307) and Matryoshka (713999), and by FFG project number 845582 (TRUCONF).

A. Fellner
Austrian Institute of Technology and Vienna University of Technology (Austria)
E-mail: andreas.fellner@ait.ac.at

P. Fontaine
Inria, Loria, U. of Lorraine (France)

B. Woltzenlogel Paleo
Vienna University of Technology (Austria) and Australian National University (Australia)

2 Fellner et al.

refer to [1] for more details) the Boolean abstraction of the SMT problem is
repeatedly refined by adding theory conflict clauses that eliminate spurious
models of the abstraction, until either unsatisfiability is reached, or a model of
the SMT formula is found. Refinements can be done by refuting models of the
propositional abstraction one at a time. It is, however, much more productive
to refute all propositional models that are spurious for the same reason at
once. A model of the abstraction is spurious if the set of concrete literals
corresponding to the abstracted literals satisfied by this model is unsatisfiable
modulo the theory. Given such an unsatisfiable set of concrete literals, the
disjunction of the negations of any unsatisfiable subset (a.k.a. core) is a suitable
conflict clause. By backtracking and asserting the conflict clause, the SAT-
solver is prevented from generating the spurious model again. The smaller the
clause, the stronger it is and the more spurious models it prevents. Therefore,
an optimal conflict clause, corresponding to a minimal unsatisfiable subset of
literals (i.e. such that all its proper subsets are satisfiable) or even a minimum
one (i.e. smallest among the minimals) is desirable. This feature of the theory
reasoners to generate small conflict sets (a name adopted in [1]) from their
input is also referred to as proof production [8,9] or explanation generation [10].

Decision procedures for the theory of uninterpreted symbols and equality
can be based on congruence closure [7,3,10]. The decision problem is polyno-
mial and even quasi-linear [3] with respect to the number of terms and literals
in the input set. Producing minimal conflict sets also takes polynomial time.
Indeed, testing if a set S remains unsatisfiable after removal of one of its lit-
erals is also polynomial. It suffices then to repeatedly test the |S| literals of
S to check if they can be removed. The set S pruned of its unnecessary liter-
als is minimal. One could also profit from the incrementality of the decision
procedure [6].

It has also been common knowledge that computing minimum conflict
clauses for the theory of uninterpreted symbols and equality is a difficult prob-
lem. But, to our best knowledge, the complexity of finding the smallest conflict
clause generation for sets of literals with uninterpreted symbols and equali-
ties has never been established. The complexity of the corresponding decision
problem (i.e. of whether there exists a conflict clause with size smaller than
a given k) is mentioned to be NP-complete in [10] — with a reference to a
private communication with Ashish Tiwari — but neither the authors of [10]
nor Ashish Tiwari published a written proof of this fact1.

Our interest in this problem arose from our work on Skeptik [2], a tool for
the compression of proofs generated by SAT and SMT solvers. For the sake of
moving beyond the purely propositional level, we have developed an algorithm
for compressing congruence closure proofs, which consists of regenerating (pos-
sibly smaller) congruence closure conflict clauses while traversing the proof.
Congruence closure conflict clauses are typically generated from paths in the
congruence graph maintained by the congruence closure algorithm [5,10,9].
In order to obtain small conflict clauses, and thereby small congruence clo-

1 We contacted both Ashish Tiwari and the authors of [10], who confirmed this.

NP-completeness of small conflict set generation for congruence closure 3

sure proofs, we (dynamically) assigned weights to the congruence graph and
searched for shortest paths in that graph. The weights of input equations would
be 1, whereas the weight of a congruence edge would be the size of an expla-
nation of its equation. This raised the question whether we could construct
shortest conflict clauses as shortest paths in such weighted congruence graphs,
by applying a polynomial time shortest path algorithm to a graph of polyno-
mial size. We answered this question negatively by proving that the problem
of deciding whether a shorter conflict clause exists is NP-hard. The goal of
this article is to present this proof. The reason why the shortest path method
is not able to find shortest conflict clauses is that the weights for congruence
edges can not be accurately determined a priori. A preliminary version was
presented at the SMT Workshop 2015 [4].

2 Preliminaries

We assume knowledge of propositional logic and quantifier-free first-order logic
with equality and uninterpreted symbols, and only enumerate the notions and
notations used in this article. A literal is either a propositional variable or
the negation of a propositional variable. A clause is a disjunctive set of lit-
erals. A propositional variable x appears positively (negatively) in a clause
C if x ∈ C (resp. ¬x ∈ C). The notations {`1, . . . `n} and `1 ∨ · · · ∨ `n will
be used interchangeably. A clause is tautological if and only if it contains a
variable both positively and negatively. We shall tacitly assume that clauses
are non-tautological, except when explicitly stated otherwise. Clauses being
sets, they cannot contain multiple occurrences of the same literal. A formula
in conjunctive normal form (CNF for short) is a conjunctive set of clauses.
A total (partial) assignment I for a formula in propositional logic assigns a
value in {>,⊥} to each (resp. some) propositional variable(s) in the formula.
An assignment I for a formula F is a model of F , denoted I |= F , if it makes
the formula F true. A formula is satisfiable if it has a model, it is unsatisfi-
able otherwise. A total or partial assignment is perfectly defined by the set of
literals it makes true. By default, an assignment is total unless explicitly said
to be partial. A set of formulas E entails a (set of) formula(s) E′, denoted
E |= E′, if every model of E is a model of E′.

We now define the necessary notions for quantifier-free first-order logic.

Definition 1 (Terms and equations) A signature Σ is a finite set of func-
tion symbols F equipped with an arity function F → N. A constant is a nullary
function. A unary function has arity one. Given a signature Σ, the set of terms
T Σ is the smallest set containing all constants in F and all terms of the form
g(t1, . . . , tn), where g is a function symbol of arity n in F and t1, . . . , tn are
terms in T Σ . An equation between two terms s, t in T Σ is denoted by s = t.

Signatures commonly include predicate symbols. Everything extends smoothly
to signatures with predicates, but to simplify, a quantifier-free first-order logic

4 Fellner et al.

formula is here just a Boolean combination of equalities between terms; a
literal is either an equation or the negation of an equation.

The terms t1, . . . , tn are direct subterms of g(t1, . . . , tn). The subterm re-
lation is the reflexive and transitive closure of the direct subterm relation.
Given a set of equations E, we denote by T (E) the set of terms and subterms
occurring in the equations.

An assignment I on some signature maps each constant to an element
in a universe U , and each function symbol to a function of appropriate arity
on U . By extension, it assigns an element in U to every term, and a value
to every equation s = t, namely > if I(s) = I(t) and ⊥ otherwise. Like in
propositional logic, an assignment on some signature thus gives a truth value
to every formula on this signature.

Definition 2 (Congruence relation) Given a set of terms T closed under
the subterm relation, a relation R ⊆ T × T is a congruence if it is

– reflexive: (t, t) ∈ R for each t ∈ T ;
– symmetric: (s, t) ∈ R if (t, s) ∈ R;
– transitive: (r, t) ∈ R if (r, s) ∈ R and (s, t) ∈ R;
– compatible: (g(t1, . . . , tn), g(s1, . . . , sn)) ∈ R if g is a n-ary function symbol

and (ti, si) ∈ R for all i = 1, . . . , n.

A congruence relation is also an equivalence relation, since it is reflexive, tran-
sitive and symmetric. Therefore a congruence relation partitions its underlying
set of terms T into congruence classes, such that two terms (s, t) belong to the
same class if and only if (s, t) ∈ R. The relations {(t, t) : t ∈ T } and T ×T are
trivial congruence relations. An assignment I on a signature Σ defines a con-
gruence relation on any subset T ⊆ T Σ , that is, R = {(s, t) | I(s = t) = >}.

An equation s = t on terms in a set T can be seen as a singleton relation
{(s, t)} ⊆ T ×T . By extension, a set of equations can also be seen as a relation,
i.e., the union of the singleton relations.

Definition 3 (Congruence closure) The congruence closure E∗ of a set
of equations E on a set of terms T closed under the subterm relation is the
smallest congruence relation on T containing E.

Since congruence relations are closed under intersection, the congruence clo-
sure of a set of equations always exists. Also notice that, if (s, t) ∈ E∗, then
E |= s = t. We say that E is an explanation for s = t.

An algorithm computing the congruence closure of a relation is also a
decision procedure for the problem of satisfiability of sets of equalities and
disequalities in quantifier-free first-order logic with uninterpreted (predicates
and) functions. It suffices indeed to compute the congruence closure of all
equalities on the terms and subterms occurring in the literals. Then, the set
of literals is satisfiable if and only if there is no disequality with both terms
in the same class. A model can be built from the congruence closure, on a
universe with cardinality equal to the number of classes in the congruence.

NP-completeness of small conflict set generation for congruence closure 5

3 Congruence Closure in Practice

The algorithms we consider in the following take as input a set of literals
E. Considering complexity, not only the cardinality of the set is important,
but also the number of terms and subterms as well as the number of their
occurrences. Congruence closure algorithms in modern SMT solvers typically
represent terms with Directed Acyclic Graphs (DAGs) using maximal sharing,
and not trees. The number of term and subterm occurrences does not matter,
but only the number of distinct (sub)terms. The input is also typically not a
set, but successive calls to an assertion function with a literal as argument:
every repetition of the same literal then matters for complexity. Let us assume,
however, that the input is a set E, terms are DAGs with maximal sharing (i.e.
identity of atomic symbols and complex terms can be checked in constant
time). Therefore, we characterize complexity results in terms of number of
literals, terms and subterms of the input set, i.e. |E| and |T (E)|.

Since congruence relations are basically partitions of equivalent terms that
additionally satisfy the compatibility property, it is unsurprising that practical
congruence closure algorithms, or decision procedures for ground sets of first-
order logic literals, are based on some kind of union-find data-structure. Terms
(and subterms) are put into equivalence classes, according to the equalities in
the input. The algorithms furthermore check, every time two classes of the
partition are merged, whether any new equality induced by compatibility has
to be taken into account. Also, it checks that the congruence is consistent with
the set of disequalities. We refer the reader to [7,3,10] for more details. The
complexity of those algorithms depend on the internal data-structures and
on the representation of terms [3]. Algorithms typically implemented in SMT
solvers have complexity O(|E|+ (|T (E)| · log |T (E)|)) assuming constant time
operations on the hash table being used to detect new equalities induced by
compatibility.

The generation of conflict sets or explanations is based on the congruence
graph: its nodes are the terms and subterms considered by the algorithm.
An edge in the graph is either a full edge, linking two nodes s and t and
labeled by an input equation s = t, or a congruence edge (a dotted edge in the
figures in this article), linking two terms with the same leading function symbol
and labeled by the compatibility-deduced equality between both terms. The
graph has a path between two terms if and only if they belong to the same
congruence class. The equality between two terms in the same class is a logical
consequence of the set of equations labeling the path. To get an explanation
for the equality of two terms in the same class, that is, a set of input equations
implying the equality of the two terms, it thus suffices to collect the set of
equations labeling a path, and recursively replace any compatibility equation
g(t1, . . . , tn) = g(s1, . . . , sn) by the explanations of t1 = s1,. . . , tn = sn.

Example 1 A congruence graph for two input equations a = f(f(f(a))) and
a = f(f(f(f(f(a))))) is given on Figure 1. Labeling equations are omitted for
simplicity. There is a path between a and f(a), so both terms are equal if the

6 Fellner et al.

a

f(a)

f(f(a))

f(f(f(a)))

f(f(f(f(a))))

f(f(f(f(f(a)))))

Fig. 1 An example congruence graph

input equations hold. To compute an explanation for a = f(a), it suffices to
collect the equalities on the path, that is, the input equation a = f(f(f(a))))
and the compatibility equation f(a) = f(f(f(a))). This last equation should
then be replaced by the equation between the arguments, i.e., a = f(f(a)))
which is consequence, by transitivity, of another compatibility equation and
of the other input equation a = f(f(f(f(f(a))))). Hence the explanation will
contain both equations.

Practical congruence closure algorithms with explanation build a congru-
ence graph while computing the congruence closure. Every time the decision
procedure merges two classes, either because of an input equation or because
an equality was deduced due to compatibility, a full- or congruence- edge is
added to the graph. Since edges between nodes are only added when their
respective congruence classes are merged, the path between two terms in the
same class is unique. The explanation that two terms are equal is also unique,
but there is no guarantee that this explanation is the smallest one. Indeed,
it may happen that the algorithm considers, e.g. equations a = b and b = c
before a = c, merging a, b and c before considering the last equation, and thus
discarding a = c as redundant: in that case, a = c would have been the small-
est proof that a and c are equal, but the congruence graph would only consider
the two other equalities. There is not even a guarantee that the explanation
is minimal. Again, the congruence closure algorithm can prove that a = f(b)
from the input equations b = f(a), f(a) = f(b) and a = b. The redundant
equality f(a) = f(b) would be recorded in the congruence graph, and thus be
part of the explanation, if it is considered before a = b.

In practice, the congruence closure procedures implemented in SMT solvers
produce explanations efficiently: the complexity of the explanation production
is quasi-linear with respect to the explanation size, which is at most equal
to the size of the input [10]. But the explanations are not optimal, i.e. they
are not always the smallest. In fact, they are not even minimal. It is possible
to compute minimal explanations in polynomial time; it suffices for instance
to compute again the congruence closure iteratively removing every equation
in the explanation, to see if it is redundant or not. One could (naively) hope
to conceive a different congruence closure algorithm generating the smallest

NP-completeness of small conflict set generation for congruence closure 7

explanation in polynomial time. For example, one might attempt to modify
the iterative removal algorithm; or attempt to modify shortest path algorithms
and apply them to congruence graphs enriched with redundant equations as
labels. However, such attempts would be futile. As proven in the next section,
the corresponding decision problem is NP-hard.

4 NP-Completeness of the Small Conflict Set Problem

The function problem of generating the smallest conflict set corresponds to
the decision problem of deciding whether a conflict set with size smaller than
a given k exists.

Definition 4 (Small conflict set problem) Given an unsatisfiable set E
of literals in quantifier-free first-order logic with equality and k ∈ N, the small
conflict set generation problem is the problem of deciding whether there exists
an unsatisfiable set E′ ⊆ E with |E′| ≤ k.

If we had a polynomial-time algorithm α capable of generating the smallest
conflict set for any unsatisfiable set E, then we could decide in polynomial
time any instance of the small conflict set problem by applying α to E and
checking whether α(E) has size smaller than k. However, as proven below, the
small conflict set problem is NP-complete and, therefore, polynomial time gen-
eration of conflict sets with minimum size is not possible (unless P = NP). Our
proof reduces the problem of deciding the satisfiability of a propositional logic
formula in conjunctive normal form (SAT) to the small explanation problem.

Definition 5 (Small explanation problem) Given a set of equations E =
{s1 = t1, . . . sn = tn}, k ∈ N and a target equation s = t, the small explanation
problem is the problem of answering whether there exists a set E′ such that
E′ ⊆ E, E′ |= s = t and |E′| ≤ k.

The small explanation problem and the small conflict set problem are closely
related: there is a small explanation of size k of s = t from E if and only if
there is a small conflict of size k + 1 for E ∪ {s 6= t}.

In the following we describe a polynomial translation from instances of
the propositional satisfiability problem to instances of the small explanation
problem. The translation consists of two parts: a translation of propositional
formulas, here assumed, without loss of generality, to be in CNF (as shown in
Definition 6), and a translation of assignments (as shown in Definition 7).

Definition 6 (CNF congruence translation) Let C be a set of proposi-
tional clauses {C1, . . . Cn} using variables x1, . . . , xm. The congruence trans-
lation EC of C is defined as the set of equations

EC = Connect ∪
⋃

1≤i≤n
Clausei

8 Fellner et al.

with

Connect = {c′i = ci+1 | 1 ≤ i < n}
Clausei = {ci = ti(x̂j) | xj appears in Ci}

∪ {ti(>j) = c′i | xj appears positively in Ci}
∪ {ti(⊥j) = c′i | xj appears negatively in Ci}

where c1, . . . cn, c
′
1, . . . c

′
n, x̂1, . . . x̂m,>1, . . .>m,⊥1, . . .⊥m are distinct constants,

and t1, . . . tn are distinct unary functions.2

Remark 1 Note that the constants >i and ⊥i (for 1 ≤ i ≤ m)) should not be
confused with the Boolean values > and ⊥. The intuitive relationship between
these constants and the boolean values is established in Definition 7.

The translation of clauses is illustrated by the following example.

Example 2 Consider the set of clauses C
{
C1 = x1 ∨ x2 ∨ ¬x3, C2 = ¬x2 ∨ x3, C3 = ¬x1 ∨ ¬x2

}
.

Figure 2 represents the congruence translation of C graphically, an edge be-
tween two nodes meaning that the set contains an equation between the terms
labeling the two nodes.

c1 t1(x̂2)

t1(x̂1)

t1(x̂3)

c′1t1(>2)

t1(>1)

t1(⊥3)

c2

t2(x̂2)

t2(x̂3)

c′2

t2(⊥2)

t2(>3)

c3

t3(x̂1)

t3(x̂2)

c′3

t3(⊥1)

t3(⊥2)

Fig. 2 The congruence translation EC = Connect ∪
⋃

1≤i≤n
Clausei of C.

Definition 7 (Assignment congruence translation) The assignment con-
gruence translation EI of an assignment I on propositional variables x1, . . . , xm
is the set of equations

EI = {x̂j = >j | 1 ≤ j ≤ m and I |= xj}
∪ {x̂j = ⊥j | 1 ≤ j ≤ m and I |= ¬xj}

For convenience, we also define the set

AssignmentEqs = {x̂j = >j , x̂j = ⊥j | 1 ≤ j ≤ m}.
2 It would be possible to define a translation without the c′i constants, but they ease the

presentation.

NP-completeness of small conflict set generation for congruence closure 9

An assignment congruence translation is always a subset of AssignmentEqs.
By extension, a subset of AssignmentEqs is said to be an assignment if it is the
congruence translation of an assignment, that is, if it does not contain both
x̂j = >j and x̂j = ⊥j for some j.

Example 3 (Example 2 continued) Consider the model I = {x1,¬x2, x3} of
C. Figure 3 gives a graphical representation of EI , whereas AssignmentEqs is
represented in Figure 4. Notice that EC ∪ EI |= c1 = c′3, and c1 and c′3 are
connected in the congruence graph of EC ∪EI (Figure 5), the path containing
both full edges corresponding to equalities in EC ∪EI , and dotted edged cor-
responding to equalities due to the compatibility property of the congruence
relation.

x̂1

x̂2

x̂3

>1

⊥2

>3

Fig. 3 Congruence translation of I

x̂1

x̂2

x̂3

>1⊥1

>2⊥2

>3⊥3

Fig. 4 AssignmentEqs

c1 t1(x̂2)

t1(x̂1)

t1(x̂3)

c′1t1(>2)

t1(>1)

t1(⊥3)

c2

t2(x̂2)

t2(x̂3)

c′2

t2(⊥2)

t2(>3)

c3

t3(x̂1)

t3(x̂2)

c′3

t3(⊥1)

t3(⊥2)

x̂1

x̂2

x̂3

>1

⊥2

>3

Fig. 5 The congruence graph for EC ∪ EI

10 Fellner et al.

Lemma 1 Consider a (partial or total) assignment I for non-tautological
clauses C = {C1, . . . Cn}. Then I |= C if and only if EI ∪ EC |= c1 = c′n.

Proof. Let the propositional variables in C be x1, . . . , xm.
(⇐) Consider the congruence graph induced by EI ∪ EC . Besides edges

directly associated to equalities in the set, the only edges are congruence edges
between terms ti(x̂j) and either ti(>j) or ti(⊥j). So any path from c1 to c′n
would go through such a congruence edge for each i. And such an edge exists
for i if and only if the clause i is satisfied by I.

(⇒) If I |= C, then I |= Ci for each clause Ci ∈ C. Assume I makes true
a variable xj , literal of Ci (the case of the negation of a variable is handled
similarly). Then EI |= ti(x̂j) = ti(>j), and EI ∪ Clausei |= ci = c′i. This is
true for each i, and thanks to the equations in Connect, one can deduce using
transitivity that EI ∪ EC |= c1 = c′n. ut

Lemma 2 Consider a (partial or total) assignment I for non-tautological
clauses C = {C1, . . . Cn} on variables x1, . . . , xm. |EI ∪EC | and |T (EI ∪EC)|
are polynomial in n and m.

Proof. EI contains at most m equations, since for no j both I |= xj and
I |= ¬xj . The set Connect contains exactly n − 1 equations. For every i, the
set Clausei contains at most 2m equations, resulting in 2mn equations for all
clauses. In total, we thus have |EI ∪ EC | ≤ n− 1 +m+ 2mn.

EI ∪ EC contains at most 2n + 3m + 3mn terms: 2n for ci, c′i, 3m for
x̂j ,>j ,⊥j and 3mn for all possible combinations of ti(x̂j), ti(>j), ti(⊥j). ut

Considering again Example 3, and particularly Figure 5, any transitivity chain
from c1 to c′3 will pass through c′1, c2, c′2 and c3. Any acyclic path from c1 to c′3
will contain 11 edges: 3 congruence edges, 3 ∗ 2 edges in Clausei for i = 1, 2, 3
and 2 edges from Connect.

Since every interpretation I is such that EI ⊂ AssignmentEqs, one can
try to relate the propositional satisfiability problem for a set of clauses C =
{C1, . . . Cn} to finding an explanation of c1 = c′n in AssignmentEqs ∪ EC .
However, it is necessary that this explanation does not set x̂j equal both to
>j and ⊥j , i.e. at most one of the two equations x̂j = >j and x̂j = ⊥j
should be in the explanation. By restricting assignments to total ones, i.e. by
enforcing that at least one of the two equations x̂j = >j and x̂j = ⊥j belongs
to the explanation, it is also possible, with a single cardinality condition on the
explanation size, to require that at most one of them belong to the explanation.

Lemma 3 A set of non-tautological clauses C = {C1, . . . Cn} using vari-
ables x1, . . . , xm is satisfiable if and only if there is a set E′ such that E′ ⊆
AssignmentEqs ∪ EC′ , E′ |= c1 = c′n+m and |E′| ≤ 3n+ 4m− 1, where C′ is
C augmented with the tautological clauses Cn+i = xi ∨ ¬xi for i = 1, . . .m.

Proof. (⇒) Consider a total model I for C. We show that there is a set E ⊂
EC′ , such that together with the congruence translation EI of I it follows
E′ = E ∪ EI |= c1 = c′n+m and |E′| ≤ 3n+ 4m− 1.

NP-completeness of small conflict set generation for congruence closure 11

The set EI contains m equations, since it is the congruence translation of
a total assignment.

For each clause Ci (i = 1 . . . n+m), there is a literal in Ci that is satisfied
by the model I. Let xj be the variable of that literal.

Suppose I |= xj , then the set E contains equations ci = ti(x̂j), ti(>j) = c′i
of Clausei. These equations are in Clausei, because xj is the satisfying literal
of Ci, thus surely xj ∈ Ci. From compatibility and the fact that x̂j = >j ∈ EI
it follows that E ∪ EI |= ti(x̂j) = ti(>j). Finally, from transitivity and the
three equations ci = ti(x̂j), ti(x̂j) = ti(>j), ti(>j) = c′i it follows that
E ∪ EI |= ci = c′i.

The case I 6|= xj is symmetric, such that via equations ci = ti(x̂j),
ti(x̂j) = ti(⊥j), ti(⊥j) = c′i, it follows E ∪ EI |= ci = c′i.

In addition to 2 equations for each of the (n+m) clauses, the set E contains
all n+m− 1 equations of Connect, that is c′i = ci+1 for i = 1 . . . n+m− 1.
From transitivity it follows that E ∪ EI |= c1 = c′n+m.

In total, E contains 2(n + m) of the sets Clausei, n + m − 1 equations
from Connect and m equations from EI , i.e. |E| = 3n+ 4m− 1.

(⇐) Suppose there is a set of equations E′ ⊆ AssignmentEqs ∪ EC′ such
that E′ |= c1 = c′n+m and |E′| ≤ 3n+ 4m− 1. E′ has to contain 2(n + m)
equations from Clausei (i = 1 . . . n+m), that is one pair of equations ci = ti(.)
and ti(.) = c′i for every clause, and n+m− 1 equations from Connect, since
by construction there is no other possibility to deduce ci = c′i. Furthermore,
thanks to the tautological clauses, E′ also has to contain at least x̂j = >j or
x̂j = ⊥j for each j ∈ {1 . . .m}. Therefore, the cardinality condition |E′| ≤
3n+4m−1 and the fact that E′ contains 3(n + m)−1 equations from Clausei
and Connect, requires that the E′ contains at most one x̂j = >j or x̂j = ⊥j
for each j ∈ {1 . . .m}. Therefore, we have that EI = E′ ∩ AssignmentEqs
is the congruence translation of an assignment and Lemma 1 guarantees the
existence of a model for C′, or equivalently for the original set of clauses C. ut

Example 4 In Lemma 3, the input formula is augmented with tautological
clauses. We demonstrate here the necessity of these extra clauses on the un-
satisfiable formula ϕ = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2).

Figure 6 shows the congruence translation of ϕ together with a subset of
AssignmentEqs that yields an explanation for c1 = c′4. This explanation picks,
besides the necessary equations from the clause and connect parts, two equa-
tions from the AssignmentEqs part. However, this explanation maps x1 to ⊥
and > at the same time, and hence cannot correspond to a (consistent) as-
signment. With the addition of tautological clauses and because the number
of equations in the explanation is upper bounded, spurious explanations of
this kind are ruled out. This is illustrated in Figure 7, depicting the congru-
ence translation of ϕ conjoined with the tautological clauses (x1 ∨ ¬x1) and
(x2 ∨ ¬x2), together with the same subset of AssignmentEqs used in Figure
6. As desired, this subset is not an explanation of c1 = c′6, since the transi-
tivity chain stops at t6(x̂2), x2 being unassigned. In fact, in this congruence
graph, there is no explanation of c1 = c′6 with less than 19 equations. This is

12 Fellner et al.

as expected, since ϕ is unsatisfiable and 3n+4m−1 = 19 in our example with
n = 4 clauses and m = 2 variables.

c1

t1(x̂2)

t1(x̂1)

c′1

t1(>2)

t1(>1)

c2

t2(x̂2)

t2(x̂1)

c′2

t2(>2)

t2(⊥1)

c3

t3(x̂2)

t3(x̂1)

c′3

t3(⊥2)

t3(>1)

c4

t4(x̂2)

t4(x̂1)

c′4

t4(⊥2)

t4(⊥1)

x̂1 >1⊥1

Fig. 6 The congruence translation of ϕ and a spurious short explanation.

c1

t1(x̂2)

t1(x̂1)

c′1

t1(>2)

t1(>1)

c2

t2(x̂2)

t2(x̂1)

c′2

t2(>2)

t2(⊥1)

c3

t3(x̂2)

t3(x̂1)

c′3

t3(⊥2)

t3(>1)

c4

t4(x̂2)

t4(x̂1)

c′4

t4(⊥2)

t4(⊥1)

c5

t5(x̂1)

c′5

t5(⊥1)

t5(>1)

c6

t6(x̂2)

c′6

t6(⊥2)

t6(>2)

x̂1 >1⊥1

Fig. 7 The congruence translation of ϕ with tautological clauses.

Corollary 1 (NP-hardness) The small explanation problem is NP-hard.
Proof. Propositional satisfiability is NP-hard, and can be reduced in polyno-
mial time to the small explanation problem. ut
Lemma 4 (NP) The small explanation problem is in NP.
Proof. Let E be a set of equations and s = t be a target equation. A solution
to the explanation problem for some k ∈ N is a subset E′ ⊆ E, such that
|E′| ≤ k. Let n = |T (E)|+ |E| and n′ = |T (E′)|+ |E′|. We have n′ ≤ n, since
E′ ⊆ E and every term in E′ appears also in E. Checking whether E′ is an
explanation of s = t can be done by computing its congruence closure, which
is possible in polynomial time in n′ [7] and thereby also in n. ut
Theorem 1 (Small explanation NP-completeness) The small explana-
tion problem is NP-complete.
Proof. By corollary 1 and lemma 4. ut
Theorem 2 (Small conflict NP-completeness) The small conflict set
problem is NP-complete.
Proof. The small conflict set problem is at least as hard as the small expla-
nation problem since the small explanation problem has been showed to be
reducible to the small conflict set problem. It is also in NP for exactly the
same reason that the small explanation problem is. ut

NP-completeness of small conflict set generation for congruence closure 13

5 Conclusion

The conflict set generation feature of congruence algorithms is essential for
practical SMT solving. Although one could argue that the important property
of the generated conflicts is minimality (i.e. no useless literal is in the conflict),
it is also interesting to consider producing the smallest conflict. We have shown
that the problem of deciding whether a conflict of a given size exists is NP-
complete. Therefore, it is generally intractable to obtain the smallest conflict.

In [6,8,9], methods to obtain small conflicts, but not necessarily the small-
est, are discussed. In practice, it pays off to prioritize speed of the congruence
closure algorithm and conflict generation over succinctness of conflicts. How-
ever, other applications sensitive to proof size may benefit from other meth-
ods prioritizing small conflict size, at a cost of less efficient solving. Thanks
to the NP-completeness, one option could be to iteratively encode the small
conflict problem into SAT, and use a SAT-solver to find successively smaller
conflicts, until the smallest is found. Perhaps an encoding of the problem can
be found that differentiates between hard constraints representing relevant in-
stantiations of the axioms of equality as well as the target equation, and soft
constraints representing the inclusion of input equations to an explanation.
In that case, Max-SAT solvers could be used to find small explanations, in
order to leverage efforts that combine decision procedures and optimization
techniques.
Acknowledgment. We would like to thank Robert Nieuwenhuis and Ashish
Tiwari for discussions and some preliminary ideas that led us to this proof.
We are grateful to the anonymous reviewers of this paper and of [4] for their
comments.

References

1. Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability
modulo theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby
Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelli-
gence and Applications, chapter 26, pages 825–885. IOS Press, February 2009.

2. Joseph Boudou, Andreas Fellner, and Bruno Woltzenlogel Paleo. Skeptik: A proof com-
pression system. In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, edi-
tors, International Joint Conference on Automated Reasoning (IJCAR), volume 8562
of Lecture Notes in Computer Science, pages 374–380. Springer, 2014.

3. Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the common subex-
pressions problem. Journal of the ACM, 27(4):758–771, October 1980.

4. Andreas Fellner, Pascal Fontaine, Georg Hofferek, and Bruno Woltzenlogel Paleo. NP-
completeness of small conflict set generation for congruence closure. In Vijay Ganesh
and Dejan Jovanović, editors, International Workshop on Satisfiability Modulo Theories
(SMT), 2015.

5. Pascal Fontaine. Techniques for verification of concurrent systems with invariants.
PhD thesis, PhD thesis, Institut Montefiore, Université de Liege, Belgium, 2004.

6. Pascal Fontaine and E. Pascal Gribomont. Using BDDs with combinations of theories.
In Matthias Baaz and Andrei Voronkov, editors, Logic for Programming, Artificial In-
telligence, and Reasoning (LPAR), volume 2514 of Lecture Notes in Computer Science,
pages 190–201. Springer-Verlag, 2002.

14 Fellner et al.

7. Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure.
Journal of the ACM, 27(2):356–364, April 1980.

8. Robert Nieuwenhuis and Albert Oliveras. Union-find and congruence closure algorithms
that produce proofs. In Cesare Tinelli and Silvio Ranise, editors, Pragmatics of Decision
Procedures in Automated Reasoning (PDPAR), 2004.

9. Robert Nieuwenhuis and Albert Oliveras. Proof-producing congruence closure. In Jür-
gen Giesl, editor, Rewriting Techniques and Applications (RTA), volume 3467 of Lecture
Notes in Computer Science, pages 453–468. Springer, 2005.

10. Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. In-
formation and Computation, 205(4):557–580, 2007.

Integrating SMT solvers in Rodin I

David Déharbea, Pascal Fontaineb, Yoann Guyotc, Laurent Voisind

aUniversidade Federal do Rio Grande do Norte, Natal, RN, Brazil
bUniversity of Lorraine, Loria, Inria, France

cCetic, Belgium
dSysterel, France

Abstract

Formal development in Event-B generally requires the validation of a large num-
ber of proof obligations. Some tools automatically discharge a significant part
of them, thus augmenting the efficiency of the formal development. We here in-
vestigate the use of SMT (Satisfiability Modulo Theories) solvers in addition to
the traditional tools, and detail the techniques used for the cooperation between
the Rodin platform and SMT solvers.

Our contribution is the definition of a translation of Event-B proof obliga-
tions to the language of SMT solvers, its implementation in a Rodin plug-in,
and an experimental evaluation on a large sample of industrial and academic
projects. On this domain, adding SMT solvers to Atelier B provers reduces
significantly the number of sequents that need to be proved interactively.

Keywords: Formal methods, Event-B, SMT solving

1. Introduction

The Rodin platform [10] is an integrated design environment for the formal
modeling notation Event-B [2]. Rodin is based on the Eclipse framework [25] and
has an extensible architecture, where new features, or new versions of existing
features, can be integrated by means of plug-ins. It supports the construction
of formal models of systems as well as their refinement using the notation of
Event-B, based on first-order logic, typed set theory and integer arithmetic.
Event-B models should be consistent; for this purpose, Rodin generates proof
obligations that need to be discharged (i.e., proved valid).

IThis work is partly supported by the project ANR-13-IS02-0001-01, the STIC Am-
Sud project MISMT, CAPES grant BEX 2347/13-0, CNPq grants 308008/2012-0 and
573964/2008-4 (National Institute of Science and Technology for Software Engineering—INES,
www.ines.org.br), and EU funded project ADVANCE (FP7-ICT-287563).

Email addresses: david@dimap.ufrn.br (David Déharbe), Pascal.Fontaine@inria.fr
(Pascal Fontaine), yoann.guyot@cetic.be (Yoann Guyot), laurent.voisin@systerel.fr
(Laurent Voisin)

Preprint submitted to Elsevier August 29, 2017

The proof obligations are represented internally as sequents, and a sequent
calculus forms the basis of the verification machinery. Proof rules are applied
to a sequent and produce zero, one or more new, usually simpler, sequents. A
proof rule producing no sequent is called a discharging rule. The goal of the
verification is to build a proof tree corresponding to the application of the proof
rules, where all the leaves are discharging rules. In practice, the proof rules
are generated by so-called reasoners. A reasoner is a plug-in that can either be
standalone or use existing verification technologies through third-party tools.
Most of the time, sequents are not amenable to finite domain encoding, and
engines such as model checkers are not appropriate reasoners.

The usability of the Rodin platform, and of formal methods in general,
greatly depends on several aspects of the verification activity:

Automation Ideally, the validity status of proof obligations is computed au-
tomatically by reasoners. If human interaction is required for discharging
valid proof obligations (using an interactive theorem prover), productivity
is negatively impacted.

Information Validation of proof obligations should not be sensitive to irrele-
vant modifications of the model. When modifying the model, large parts
of the proof can be preserved if the precise facts used to validate each
proof obligation are recorded. It is important that the reasoners are able
to provide such sets of relevant facts, since they can then be used to
automatically construct new proof rules to be stored and tried for after
model changes. Also, other sequents (valid for the same reason) may be
discharged by these rules without requiring another call to the reasoner.

In addition, when reasoners are able to generate counter-examples of failed
proof obligations, this information can be very valuable to the user as hints
to improve the model and the invariants.

Trust When a prover is used, either the tool itself or its results need to be cer-
tified; otherwise the confidence in the formal development is jeopardized.

In this paper, we address the application of a verification approach that may
potentially fulfill these three requirements: Satisfiability Modulo Theory (SMT)
solvers. SMT solvers can automatically handle large formulas of first-order logic
with respect to some background theories, or a combination thereof, such as dif-
ferent fragments of arithmetic (linear and non-linear, integer and real), arrays,
bit vectors, etc. They have been employed successfully to handle proof obliga-
tions with tens of thousands of symbols stemming from software and hardware
verification. This paper extends the work presented in [15], and provides details
of a translation of Event-B sequents to SMT input. The difficulty essentially lies
in the way sets are translated. We here propose two approaches to tackle this
challenge. Notice that these approaches could also be applied to other set-based
formalisms such as the B method [1], TLA+ [20, 19], VDM [16] and Z [27].

The SMT-LIB initiative provides a standard for the input language of SMT
solvers, and, in its last version [5], a command language defining a common

2

SMT formula

SMT solver
Quantifier-free SMT solver

Boolean Model

Conflict clause

Theory
reasoner SAT solver

Instantiation
module

Instance

Model

Model UNSAT (proof/core)

Figure 1: Schematic view of an SMT solver.

interface to interact with SMT solvers. We implemented a Rodin plug-in using
this interface. The plug-in also extracts from the SMT solvers some additional
information such as the relevant hypothesis. Some solvers (e.g. Z3 [12] and
veriT [9]) are able to generate a comprehensive proof for validated formulas,
which can be verified by a trusted proof checker [3]. In the longer term, besides
automation, and information, trust may be obtained using a centralized proof
manager. The plug-in is open-source, distributed under the same license as
Rodin, and its source code is available in the main Rodin repository. The
plug-in is easily installable by users through the update manager of the Rodin
platform.

Overview. We start in Section 2 by giving some insights on the techniques em-
ployed in SMT solvers. Section 3 presents the translation of Rodin sequents
to the SMT-LIB notation. Section 4 illustrates the approach through a simple
example. Section 5 presents experimental results, based on the verification ac-
tivities carried out for a variety of Event-B projects. We conclude by discussing
future work.

Throughout the paper, formulas are expressed using the Event-B syntax [21],
and sentences in SMT-LIB are typeset using a typewriter font.

2. Solving SMT formulas

In this section, we provide some insight about the internals of SMT solvers,
in order to give to the reader an idea of the kind of formulas that can successfully
be handled by SMT solvers. A very schematic view of an SMT solver is presented
in Figure 1. Basically it is a decision procedure for quantifier-free formulas in a
rich language coupled with an instantiation module that handles the quantifiers
in the formulas by grounding the problem. For quantified logic, SMT solvers

3

are of course not decision procedures anymore, but they work well in practice if
the necessary instances are easy to find and not too numerous.

We refer to [4] for more information about the techniques described in this
section and SMT solving in general. There are several SMT solvers support-
ing quantifiers; the plug-in described in this paper makes use of Alt-Ergo [8],
CVC3 [6], Z3 [12], and veriT [9]. This last solver is developed by two of the
authors of this paper.

2.1. Quantifier-free formulas

Historically, the first goal of SMT solvers was to provide efficient decision
procedures for expressive languages, beyond pure propositional logic. Those
solvers have always been based on a cooperation of a Boolean engine, nowadays
typically a SAT solver (see [7] for more information on SAT solver techniques
and tools), and a theory reasoner to check the satisfiability of a set of literals in
the considered language. The Boolean engine generates models for the Boolean
abstraction of the input formula, whereas the theory reasoner refutes the sets of
literals corresponding to these abstract models by conjunctively adding conflict
clauses to the propositional abstraction. This exchange runs until either the
Boolean abstraction is sufficiently refined for the Boolean reasoner to conclude
that the formula is unsatisfiable, or the theory reasoner concludes that the
abstract model indeed corresponds to a model of the formula.

The theory reasoners are themselves based on a combination of decision pro-
cedures for various fragments. In our context, the relevant decision procedures
are congruence closure — to handle uninterpreted predicates and functions —
decision procedure for arrays (typically reduced to some kind of congruence clo-
sure), and linear arithmetic. It is possible, using the Nelson-Oppen combination
method [22, 26], to build a decision procedure for the union of the languages.
The theory reasoner used in most SMT solvers is thus able to decide the sat-
isfiability of literals on a language containing a mix of uninterpreted symbols,
linear arithmetic symbols, and array operators.

For the theory reasoner and the SAT solver to cooperate successfully, some
further techniques are necessary. Among these techniques, if a set of literals
is found unsatisfiable, it is most valuable to generate small conflict clauses,
in order to refine the Boolean abstraction as strongly as possible. Models of
the propositional abstraction are checked for satisfiability while they are being
built, so that unsatisfiability can be detected early. Finally, theory propagation,
in which the theory reasoner provides hints for the SAT solver decisions, has
proved to be very worthwhile in practice.

2.2. Instantiation techniques

Within SMT solvers, solving formulas with quantifiers is done by reduction
to quantifier-free formulas, using instantiation. Indeed, formula ∀xϕ(x) stands
for a conjunction over all combinations of values for x. Any formula of the
form ∀xϕ(x)⇒ ϕ(t), for any terms t, can be added conjunctively to the input
without changing its truth value. To show that a formula is unsatisfiable, it

4

is thus sufficient to find the right instances of quantified formulas to add to
the input. In that context, even if the SMT solver abstracts ∀xϕ(x) to a
Boolean proposition, it is able to reason about the formulas with quantifiers.
The quantifier instantiation module is responsible for producing lemmas of the
form ∀xϕ(x) ⇒ ϕ(t). Automatically finding the right instances of quantified
formulas is a key issue for the verification of sequents (as well as proof obligations
produced in the context of a number of software verification tools). Generating
too many instances may overload the solver with useless information and exhaust
computing resources. Generating too few instances will result in an “unknown”,
and useless, verdict. Handling quantifiers within SMT solvers is still a very
active research subject, and the methods to handle quantifiers vary greatly from
one solver to another. We report here how veriT copes with quantified formulas.
Several instantiation techniques are applied in turn: trigger-based, sort-based
and superposition techniques.

The trigger-based and sort-based instantiation techniques are applied to top-
most quantifiers, that is, to quantifiers that are not themselves in the scope of
other quantifiers. Remember that, when checking the satisfiability of formulas,
existential quantifiers with positive polarity and universal quantifiers with neg-
ative polarity can be eliminated by Skolemization. This satisfiability preserving
transformation replaces suitable quantified variables by witnesses, introducing
new uninterpreted symbols (constants or functions). In veriT, Skolemization au-
tomatically occurs for top-most quantifiers, whereas Skolemizable quantifiers in
the scope of non-Skolemizable quantifiers are not eliminated. As a consequence,
only Skolem constants are introduced, and no Skolem functions. Instantiation
will remove top-most non-Skolemizable quantifiers, some quantifiers in the in-
stance may then become top-most Skolemizable quantifiers in the process, and
are in turn eliminated with the introduction of Skolem constants. This strategy
is effective in practice.

In a quantified formula Qxϕ(x), a trigger is a set of terms T = {t1, · · · tn}
such that the free variables in T are the quantified variables x and each ti is a
sub-term of the matrix ϕ(x) of the quantified formula. Trigger-based instanti-
ation consists in finding, in the formula, sets of ground terms T ′ that match T ,
i.e., such that there is a substitution σ on x, where the homomorphic extension
of σ over T yields T ′. Each such substitution defines an instantiation of the
original quantified formula. Some verification systems allow the user to specify
instantiation triggers. This is not the case in Rodin, and veriT applies heuristics
to annotate quantified formulas with triggers.

If the trigger-based approach does not yield any new instance, veriT falls
back to sort-based instantiation. All ground terms in the formula are collected,
and each quantified formula is instantiated with every term that has the same
type as the quantified variable.

Finally, veriT also features a module to communicate with a superposition-
based first-order logic automated theorem prover, namely the E prover [24]. It
is built upon automated deduction techniques such as rewriting, subsumption,
and superposition and is capable of identifying the unsatisfiability of a set of
quantified and non-quantified formulas. When such a set is found satisfiable,

5

lemmas are extracted from its output and communicated to the other reasoning
modules of veriT. The E prover, like many saturation-based first-order provers,
is complete for first-order logic with equality.

2.3. Unsatisfiable core extraction

Additionally to the satisfiability response, it is possible, in case of an unsat-
isfiable input, to ask for an unsatisfiable core. It may indeed be very valuable to
know which hypotheses are necessary to prove a goal in a verification condition.
For instance, the sequent (1) discussed in Section 4 and translated into the SMT
input in Figure 6 is valid independently of the assertion labeled grd1; the SMT
input associates labels to the hypotheses, guards, and goals, using the reserved
SMT-LIB annotation operator !. A solver implementing the SMT-LIB unsatis-
fiable core feature could thus return the list of hypotheses used to validate the
goals. In the case of the example in Figure 6, the guard is not necessary to prove
unsatisfiability, and would therefore not belong to a good unsatisfiable core.

Recording unsatisfiable cores for comparison with new proof obligations is
particularly useful in our context. Indeed, users of the Rodin platform will
want to modify their models and their invariants, resulting in a need of vali-
dating again proof obligations mostly but not fully similar to already validated
ones. If the changes do not impact the relevant hypotheses and goal of a proof
obligation, comparison with the (previous) unsatisfiable core will discharge the
proof obligation and the SMT solver will not need to be run again. Also a same
unsatisfiable core is likely to discharge similar proof obligations, for instance
generated for a similar transition, but differing for the guard.

The unsatisfiable core production for the veriT solver is related to the proof
production feature. The solver is indeed able to produce a proof, and it has
moreover a facility to prune the proof of unnecessary proof steps and hypotheses.
It suffices thus to check the pruned proof and collect all hypotheses in that proof
to obtain a super-set of the unsatisfiable core that is often minimal in practice.
Other approaches for unsatisfiable core extraction for SMT are presented and
discussed in [4].

3. Translating Event-B to SMT

Figure 2 gives a schematic view of the cooperation framework between Rodin
and the SMT solver. Within the Rodin platform, each proof obligation is rep-
resented as a sequent, i.e. a set of hypotheses and a conclusion. These sequents
are discharged using Event-B proof rules. Our strategy to prove an Event-B
sequent is to build an SMT formula, call an SMT solver on this formula, and,
on success, introduce a new suitable proof rule. This strategy is presented as a
tactic in the Rodin user interface. Since SMT solvers answer the satisfiability
question, it is necessary to take the negation of the sequent (to be validated) in
order to build a formula to be refuted by the SMT solver. If the SMT solver
does not implement unsatisfiable core generation, the proof rule will assert that
the full Event-B sequent is valid (and will only be useful for that specific se-
quent). Otherwise an unsatisfiable core — i.e., the set of facts necessary to

6

RODIN

Event B sequent

negation of
Event B sequent

SMT formula

SMT response:
∙ SAT
∙ UNSAT
 ◦ proof
 ◦ relevant
 hypotheses

Event B
proof rule

SMT solver

Figure 2: Schematic view of the interaction between Rodin and SMT solvers.

prove that the formula is unsatisfiable — is supplied to Rodin, which will ex-
tract a stronger Event-B proof rule containing only the necessary hypotheses.
This stronger proof rule will hopefully be applicable to other Event-B sequents.
If, however, the SMT solver is not successful, the application of the tactic has
failed and the proof tree remains unchanged.

The SMT-LIB standard proposes several “logics” that specify the interpreted
symbols that may be used in the formulas. Currently, however, none of these
logics fits exactly the language of the proof obligations generated by Rodin.
There exists a proposal for such a logic [18], but the existing SMT solvers
do not yet implement corresponding reasoning procedures. Our pragmatic ap-
proach is thus to identify subsets of the Event-B logics that may be handled by
the current tools, either directly or through some simple transformations. The
translation takes as input the Event-B proof obligations. The representation of
proof obligations is such that each identifier has been annotated with its type.
In the type system, integers and Booleans are predefined, and the user may
create new basic sets, or compose existing types with the powerset and Carte-
sian product constructors. Translating Boolean and arithmetic constructs is
mostly straightforward, since a direct syntactic translation may be undertaken
for some symbols: Boolean operators and constants, relational operators, and
most of arithmetic (division and exponentiation operators are currently trans-
lated as uninterpreted symbols). As an example of transformation of an Event-B
sequent to an SMT formula, consider the sequent with goal 0 < n+ 1 under the
hypothesis n ∈ N; the type environment is {n ◦◦ Z} and the generated SMT-LIB
formula is:

(set-logic AUFLIA)

(declare-fun n () Int)

(assert (>= n 0))

(assert (not (< 0 (+ n 1))))

7

(check-sat)

The main issue in the translation of proof obligations to SMT-LIB is the
representation of the set-theoretic constructs. We present successively two ap-
proaches. The simplest one, presented shortly for completeness, is based on
the representation of sets as characteristic predicates [13]. Since SMT solvers
handle first-order logic, this approach does not make it possible to reason about
sets of sets. The second approach removes this restriction. It uses the ppTrans
translator, already available in the Rodin platform; this translator removes most
set-theoretic constructs from proof obligations by systematically expanding their
definitions.

3.1. The λ-based approach

This approach implements and extends the principles proposed in [13] to
handle simple sets. Essentially, a set is identified with its characteristic function.
For instance the singleton {1} is identified with (λx ◦◦ Z | x = 1) and the empty
set is identified with the polymorphic λ-expression (λx ◦◦ X | FALSE), where
X is a type variable. The union of (two) sets is a polymorphic higher-order
function (λ(S1

◦◦ X→BOOL) 7→ (S2
◦◦ X→BOOL) | (λx ◦◦ X | S1(x) ∨ S2(x))),

etc.
SMT-LIB does not provide a facility for λ-expressions, and has limited sup-

port for polymorphism. This approach requires several extensions to SMT-LIB:
λ-expressions, a polymorphic sort system, and macro-definitions. Those ex-
tensions are actually implemented in the veriT parser. Consider the sequent
A ◦◦ P(Z) ` A ∪ {a} = A, the translation to this extended SMT-LIB language
produces:

(declare-fun A (Int) Bool)

(declare-fun a () Int)

(define-fun (par (X) (union ((S1 (X Bool)) (S2 (X Bool))) (X Bool)

(lambda ((x X)) (or (S1 x) (S2 x))))))

(define-fun enum ((x Int)) Bool (= x a))

(assert (not (= (union A enum) A)))

(check-sat)

where X denotes a sort variable. The function definitions union and enum are
inserted by the translator. The former is part of a corpus of definitions for most
of the set-theoretic constructs (see [13, 14] for details). The latter is created on-
the-fly by the translator to denote the set {a}. Both definitions are composed
of a list of sorted parameters, the sort of the result, and the body expressing
the value of the result. The macro processor implemented in veriT transforms
this goal to

(not (forall ((x Int)) (iff (or (A x) (= x a)) (A x))))

i.e., a first-order formula that may then be handled using usual SMT solving
techniques. It is also possible to use veriT only as a pre-processor to produce
plain SMT-LIB formulas that are amenable to verification using any SMT-LIB
compliant solver.

8

P ::= P ⇒ P | P ≡ P | P ∧ · · · ∧ P | P ∨ · · · ∨ P |
¬P | ∀L · P | ∃L · P |
A = A | A < A | A ≤ A |M ∈ S | B = B | I = I

L ::= I · · · I
I ::= Name
A ::= A−A | A div A | A mod A | A expA |

A+ · · ·+A | A× · · · ×A | −A | I | IntegerLiteral
B ::= true | I
M ::= M 7→M | I | integer | bool
S ::= I

Figure 3: Grammar of the language produced by ppTrans. The non-terminals are P (pred-
icates), L (list of identifiers), I (identifiers), A (arithmetic expressions), B (Boolean expres-
sions), M (maplet expressions), S (set expressions).

As already mentioned, the main drawback of this approach is that sets of
sets cannot be handled. It is thus restricted to simple sets and relations. Fur-
thermore its reliance on extensions of the SMT-LIB format creates a dependence
on veriT as a macro processor. The next approach lifts these restrictions.

3.2. The ppTrans approach

Our second approach uses the translator ppTrans provided by the Predi-
cate Prover available in Rodin [17]. This tool translates an Event-B formula to
an equivalent formula in a subset of the Event-B mathematical language. The
grammar of this subset is shown in Figure 3. Note that the sole set-theoretic
symbol is the membership predicate. In addition, the translator performs de-
composition of binary relations and purification, namely it separates arithmetic,
Boolean and set-theoretic terms. Finally ppTrans performs basic Boolean sim-
plifications on formulas. In the following, we provide details on those transfor-
mations, using the notation ϕ ϕ′ to express that the formula (or sub-term) ϕ
is rewritten to ϕ′. Not only does this approach make the plug-in independent of
veriT, but it is also more general with respect to the translation of relations and
functions. However, in the class of formulas suitable for the λ-based approach,
ppTrans would produce similar results.

Maplet-hiding variables. The rewriting system implemented in ppTrans can-
not directly transform identifiers that are of type Cartesian product. In a pre-
processing phase, such identifiers are thus decomposed, so that further rewriting
rules may be applied. This decomposition introduces fresh identifiers of scalar
type (members of some given set, integers or Booleans) that name the compo-
nents of the Cartesian product. Technically, this pre-processing is as follows.
We assume the existence of an attribute T , such that T (e) is the type of ex-
pression e. Also, let fv(e) denote the free identifiers occurring in expression e.
The decomposition of the Cartesian product identifiers is specified, assuming
an unlimited supply of fresh identifiers (e.g. x0, x1,. . .), using the following two

9

definitions ∇ and ∇T :

∇(i) =

{
∇T (T (i)) if i is a product identifier,
i otherwise.

∇T (T) =

{
∇T (T1) 7→ ∇T (T2) if ∃T1, T2 ·T = T1 × T2,
a fresh identifier xi otherwise.

For instance, assume x ◦◦ Z × (Z × Z); then ∇(x) = x0 7→ (x1 7→ x2) and
fv(∇(x)) = {x0, x1, x2} are fresh identifiers.

The pre-processing behaves as follows:

• Quantified sub-formulas ∀x · ϕ(x), such that x is a product identifier, are
rewritten to

∀fv(∇(x)) · ϕ[∇(x)/x],

where e[e′/x] denotes expression e where expression e′ has been substi-
tuted for all free occurrences of x.

Ex. ∀a·a = 1 7→ (2 7→ 3) ∀a0, a1, a2 · a0 7→ (a1 7→ a2) = 1 7→ (2 7→ 3).

• Let ψ denote the top-level formula and let x1 . . . xn be the free Cartesian
product identifiers of ψ. Then:

ψ ∀fv(∇(x1)) · · · fv(∇(xn))·
(x1 = ∇(x1) ∧ · · ·xn = ∇(xn))⇒ ψ[∇(x1)/x1] · · · [∇(xn)/xn].

Ex. ψ ≡ a = b ∧ a ∈ S with typing {a ◦◦ S, b ◦◦ S, S ◦◦ P(Z× Z)}:

ψ ∀x0, x1, x2, x3 ·
(a = x0 7→ x1 ∧ b = x2 7→ x3)⇒

(x0 7→ x1 = x2 7→ x3 ∧ x0 7→ x1 ∈ S)

Purification. The goal of this phase is to obtain pure terms, i.e. terms that
do not mix symbols of separate syntactic categories: arithmetic, predicate, set,
Boolean, and maplet symbols. This is done by introducing new variables. In
Event-B, heterogeneous terms result from the application of symbols with a
signature with different sorts (e.g. symbol ⊆ yields a predicate from two sets).
This phase also eliminates some syntactic sugar. Figure 4 depicts the different
syntactic categories, how the Event-B operators relate them, and the effect of
desugarization. There is an arrow from category X to category Y if a term from
X may have an argument in Y . For instance . ∈ labels the arrow from P to A
since the left argument of ∈ may be an arithmetic term, e.g. in x+ y ∈ S.

First, let us introduce informally the notation Q?P [e∗], where Q is ∀ or ∃,
P a predicate, and e an expression in P such that the syntactic category of e
is not the same as that of its parent (identifiers are considered to belong to all
syntactic categories). This denotes the possible introduction of the quantifier Q
on a fresh variable, so that heterogeneous sub-terms in e are purified, yielding
e∗, as illustrated by the following examples:

10

=, . ∈, <,≤
J 6=, . 6∈, >,≥K

{x·P | F}
{a, . . . , b}

{x·P | F}
{a, . . . , b}

J=, 6=, . 6∈K
. ∈

. ∈
J=, 6=, . 6∈K

{x·P | F}⋂
x·P | F⋃
x·P | F

7→

{a, . . . , b}
{x·P | F}

bool

A

S

MB

P

J=, 6=, 6∈,⊆, 6⊆,⊂, 6⊂,
∈

finite,partitionK

Jmin,max,
card, f()K

7→
7→

Figure 4: The different syntactic categories and the symbols relating them: A for arithmetic
expressions, P for predicates, S for set expressions, B for Boolean expressions and M for
maplet expressions. ppTrans removes all occurrences of the constructs delimited by double-
brackets.

1. ∃?(a 7→ (1 7→ 2))∗ ∈ S represents ∃x0, x1 ·x0 = 1 ∧ x1 = 2 ∧ a 7→ (x0 7→
x1) ∈ S as 1 and 2 are not in the same syntactic category as the maplet.

2. ∀?(a 7→ b)∗ ∈ S does not introduce a quantification and denotes a 7→ b ∈ S.

Appendix A presents the rewriting rules implemented in ppTrans. For read-
ability, they are grouped thematically and the presentation order is not the
same as the rewriting order. The symbols relating the syntactic categories
P (predicates) and S (sets) are reduced to membership (∈) and equality (=)
by application of the rules A.1–A.8 (see Appendix A.1). Moreover rules A.1
and A.2 are also applied when the arguments belong to other syntactic cate-
gories and are responsible for the elimination of all the occurrences of symbols
6= and 6∈. Applications of the equality symbol between syntactic categories S,
M and B are removed by rules A.9–A.18 (Appendix A.2). Due to the sym-
metry property of equality, ppTrans also applies a symmetric version of each
such rule. The symbols that embed arithmetic terms are taken care of with
the rules in Appendix A.3. Rules A.19–A.21 first perform purification, and are
followed by the application of rules A.22–A.29, responsible for the elimination
of the symbols. Appendix A.4 contains rules to rewrite applications of the set
membership symbol according to the rightmost argument. Rules A.30–A.39 ex-
pand the definitions for the different kinds of relation symbols. Rules A.40–A.61

11

handle miscellaneous other cases. Finally, Appendix A.5 presents the rules to
rewrite applications of the set membership symbol according to both arguments,
where the first argument is always a maplet. Again, through the application of
rules A.62 to A.77, several symbols may be eliminated from the proof obliga-
tions.

All the rules in Appendix A are either sound purification rules, or the equiv-
alence of the left and right side terms can easily be derived from the definitions
(see [1]) of the eliminated symbols. Purification rules (Rules A.17, A.19 – A.21,
A.44) eliminate heterogeneous terms and are only applied once. It is not dif-
ficult to order all other rules such that no eliminated symbol is introduced in
subsequent rules. The rewriting system is thus indeed terminating.

Output to SMT-LIB format. Once ppTrans has completed rewriting, the result-
ing proof obligation is ready to be output in SMT-LIB format. The translation
from ppTrans’ output to SMT-LIB follows specific rules for the translation of
the set membership operator. For instance assume the input has the following
typing environment and formulas:

Typing environment Formulas
a ◦◦ S
b ◦◦ T
c ◦◦ U
A ◦◦ P(S)
r ◦◦ P(S × T)
s ◦◦ P(S × T × U)

a ∈ A
a 7→ b ∈ r

a 7→ b 7→ c ∈ s

Firstly, for each basic set found in the proof obligation, the translation pro-
duces a sort declaration in SMT-LIB. However, as there is currently no logic in
the SMT-LIB with powerset and Cartesian product sort constructors, ppTrans
handles them by producing an additional sort declaration for each combination
of basic sets (either through powerset or Cartesian product). Translating the
typing environment thus produces a sort declaration for each basic set, and
combination thereof found in the input. In SMT-LIB, sorts have a name and
an arity, which is non-null for polymorphic sorts. The sorts produced have all
arity 0, and for the above example, the following is produced:

S (declare-sort S 0)

T (declare-sort T 0)

U (declare-sort U 0)

P(S) (declare-sort PS 0)

P(S × T) (declare-sort PST 0)

P(S × T × U) (declare-sort PSTU 0)

Secondly, for each constant, the translation produces a function declaration
of the appropriate sort:

12

a ◦◦ S (declare-fun a () S)

b ◦◦ T (declare-fun b () T)

c ◦◦ U (declare-fun c () U)

A ◦◦ P(S) (declare-fun A () PS)

r ◦◦ P(S × T) (declare-fun r () PST)

s ◦◦ P(S × T × U) (declare-fun s () PSTU)

Third, for each type occurring at the right-hand side of a membership predicate,
the translation produces fresh SMT function symbols:

(declare-fun (MS0 (S PS) Bool))

(declare-fun (MS1 (S T PST) Bool))

(declare-fun (MS2 (S T U PSTU)) Bool)

The Event-B atoms can then be translated as follows:

a ∈ A (MS0 a A)

a 7→ b ∈ r (MS1 a b r)

a 7→ b 7→ c ∈ s (MS2 a b c s)

For instance, A∪{a} = A would be translated to ∀x·(x ∈ A∨x = a)⇔x ∈ A,
that is, in SMT-LIB format:

(forall ((x S)) (= (or (MS0 x A) (= x a)) (MS0 x A)))

While the approach presented here covers the whole Event-B mathematical
language and does not require polymorphic types or specific extensions to the
SMT-LIB language, the semantics of some Event-B constructs is approximated
because some operators become uninterpreted in SMT-LIB (chiefly member-
ship but also some arithmetic operators such as division and exponentiation).
However, we can recover their interpretation by adding axioms to the SMT-LIB
benchmark, at the risk of decreasing the performance of the SMT solvers. Some
experimentation is thus needed to find a good balance between efficiency and
completeness.

Indeed, it appears experimentally that including some axioms of set theory
to constrain the possible interpretations of the membership predicate greatly
improves the number of proof obligations discharged. In particular, the axiom
of elementary set (singleton part) is necessary for many Rodin proof obligations.
The translator directly instantiates the axiom for all membership predicates.
Assuming MS is the membership predicate associated with sorts S and PS, the
translation introduces thus the following assertion:

(assert (forall ((x S))

(exists ((X PS)) (and (MS x X)

(forall ((y S)) (=> (MS y X) (= y x)))))))

This particular assertion eliminates non-standard interpretations where some
singleton sets do not exist. Without it, some formulas are satisfiable because of
spurious models and the SMT solvers are unable to refute them.

13

4. A small Event-B example

As a concrete example of translation, this section presents the model of a
simple job processing system consisting of a job queue and several active jobs.
We define a given set JOBS to represent the jobs. The state of the model has
two variables: queue (the jobs currently queued) and active (the jobs being
processed). This state is constrained by the following invariants:

inv1 : active ⊆ JOBS (typing)

inv2 : queue ⊆ JOBS (typing)

inv3 : active ∩ queue = ∅ (a job can not be both active and queued)

One of the events of the system describes that a job leaves the queue and
becomes active. It is specified as follows:

Event SCHEDULE =̂ (some queued job j becomes active)

any
j

where
grd1 : j ∈ queue (the job j is in the queue)

then
act1 : active := active ∪ {j} (the job becomes active)
act2 : queue := queue \ {j} (the job is removed from the queue)

end

To verify that the invariant labeled inv3 is preserved by the SCHEDULE
event, the following sequent must be proved valid:

inv1, inv2, inv3, grd1 ` (active ∪ {j})︸ ︷︷ ︸
active’

∩ (queue \ {j})︸ ︷︷ ︸
queue’

= ∅ .
(1)

The generated proof obligations thus aims to show that the following formula
is unsatisfiable:

active ⊆ JOBS ∧
queue ⊆ JOBS ∧
active ∩ queue = ∅ ∧
j ∈ queue ∧
¬((active ∪ {j}) ∩ (queue \ {j}) = ∅) .

This proof obligation does not contain sets of sets and both approaches apply.
Figure 5 presents the SMT-LIB input obtained when the approach described in
section 3.1 is applied. Line 2 contains the declaration of the sort corresponding
to the given set JOBS. Lines 3–5 contain the declarations of the uninterpreted
function symbols of the proof obligation, and are produced using the typing
environment. Note that the sets queue and active are represented by unary
predicate symbols. Next, the macros corresponding to the set operators ∅, ∈,

14

1 (set-logic QF_AUFLIA)

2 (declare-sort JOBS 0)

3 (declare-fun active (JOBS) Bool)

4 (declare-fun queue (JOBS) Bool)

5 (declare-fun j () JOBS)

6 (define-fun (par (X) (emptyset ((x X)) Bool false)))

7 (define-fun (par (X) (in ((x X) (s (X Bool))) Bool (s x))))

8 (define-fun (par (X) (inter ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

9 (lambda ((x X)) (and (s1 x) (s2 x))))))

10 (define-fun (par (X) (setminus ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

11 (lambda ((x X)) (and (s1 x) (not (s2 x)))))))

12 (define-fun (par (X) (union ((s1 (X Bool)) (s2 (X Bool))) (X Bool)

13 (lambda ((x X)) (or (s1 x) (s2 x))))))

14 (define-fun enum ((elem JOBS)) Bool (= elem j))

15 (define-fun enum0 ((elem0 JOBS)) Bool (= elem0 j))

16 (assert (= (inter active queue) emptyset))

17 (assert (in j queue))

18 (assert (not (= (inter (union active enum) (setminus queue enum0))

19 emptyset)))

20 (check-sat)

Figure 5: SMT-LIB input produced using the λ-based approach.

1 (set-logic AUFLIA)

2 (declare-sort JOBS 0)

3 (declare-sort PJ 0)

4 (declare-fun MS (JOBS PJ) Bool)

5 (declare-fun active () PJ)

6 (declare-fun j () JOBS)

7 (declare-fun queue () PJ)

8 (assert (! (forall ((x JOBS))

9 (not (and (MS x active) (MS x queue)))) :named inv3))

10 (assert (! (MS j queue) :named grd1))

11 (assert (! (not (forall ((x0 JOBS))

12 (not (and (or (MS x0 active) (= x0 j))

13 (MS x0 queue)

14 (not (= x0 j)))))) :named goal))

15 (check-sat)

Figure 6: SMT-LIB input produced using the ppTrans approach.

15

∩, \, and ∪ are defined in lines 6–13. Lines 14–15 are the definitions of a macro
that represents the singleton set {j} (it occurs twice in the formula). Lines
16–19 are the result of the translation of the proof obligation itself.

Figure 6 presents the SMT-LIB input resulting from the translation approach
described in section 3.2. Since the proof obligation includes sets of JOBS, a
corresponding sort PJ and membership predicate MS are declared in lines 3–4.
Then, the function symbols corresponding to the free identifiers of the sequent
are declared at lines 5–7. Finally, the hypotheses and the goal of the sequent
are translated to named assertions (lines 8–14).

The sequent described in this section is very simple and is easily verified
by both Atelier-B provers and SMT solvers. It is noteworthy that the plug-in
inspects sequents to decide which approach is applied. When the sequents con-
tains no sets or only simple sets (i.e., no sets of sets), the λ-based approach
is applied. Otherwise, the plug-in employs the ppTrans approach. The next
section reports experiments with a large number of proof obligations and estab-
lishes a better basis to compare the effectiveness of these different verification
techniques.

5. Experimental results

We evaluated experimentally the effectiveness of using SMT solvers as rea-
soners in the Rodin platform by means of the techniques presented in this paper.
This evaluation complements the experiments presented in [15] and reinforces
their conclusions. We established a library of 2,456 proof obligations stemming
from Event-B developments collected by the European FP7 project Deploy and
publicly available on the Deploy repository1. These developments originate
from examples from Abrial’s book [2], academic publications, tutorials, as well
as industrial case studies.

One main objective of introducing new reasoners in the Rodin platform is to
reduce the number of valid proof obligations that need to be discharged inter-
actively by humans. Consequently, the effectiveness of a reasoner is measured
by the number of proof obligations proved automatically by the reasoner.

Obviously, effectiveness should depend on the computing resources given to
the reasoners. In practice, the amount of memory is seldom a bottleneck, and
usually the solvers are limited by setting a timeout on their execution time. In
the context of the Rodin platform, the reasoners are executed by synchronous
calls, and the longer the time limit, the less responsive is the framework to
the user. We have experimented different timeouts and our experiments have
shown us that a timeout of one second seems a good trade-off: doubling the
timeout to two seconds increases by fewer than 0.1% the number of verified
proof obligations, while decreasing the responsiveness of the platform.

Table 1 compares different reasoners on our set of benchmarks. The second
column corresponds to Rodin internal normalization and simplification proce-

1http://deploy-eprints.ecs.soton.ac.uk

16

dures. It shows that more than half of the generated proof obligations necessi-
tate advanced theorem-proving capabilities to be discharged. The third column
is a special-purpose reasoner, namely Atelier-B provers. They were originally
developed for the B method and are also available in the Rodin platform. Al-
though they are extremely effective, the Atelier-B provers now suffer from legacy
issues. The last five columns are various SMT solvers applied to the proof obli-
gations generated by the plug-in. The SMT solvers were used with a timeout
of one second, on a computer equipped with an Intel Core i7-4770, cadenced
at 3.40 GHz, with 24 GB of RAM, and running Ubuntu Linux 12.04. They
show decent results, but they are not yet as effective reasoners as the Atelier-B
theorem provers.

N
u

m
b

er
o
f

p
ro

o
f

o
b

li
g
a
ti

o
n

s

R
o
d
in

A
te

li
er

-B

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

2456 1169 2260 2017 2218 2051 2160 2094

Table 1: Number of proof obligations discharged by the reasoners.

Although this comparison is interesting to evaluate and compare the differ-
ent reasoners, it is not sufficient to evaluate the effectiveness of the approach
presented in this paper. Indeed, nothing prevents users to use several other
reasoners once one has failed to achieve its goal. In Table 2, we report how
many proof obligations remain unproved after applying the traditional reason-
ers (Atelier-B theorem provers and the Rodin reasoner) in combination with
each SMT solver, and with all SMT solvers.

N
u

m
b

er
o
f

p
ro

o
f

o
b

li
g
a
ti

o
n

s
le

ft

a
lt

-e
rg

o
-r

2
1
7

cv
c3

-2
0
1
1
-1

1
-2

1

v
er

iT
-d

ev
-r

2
8
6
3

v
er

iT
&

E
-p

ro
v
er

z3
-3

.2

A
ll

S
M

T
so

lv
er

s

196 114 61 94 103 92 31

Table 2: Number of proof obligations not discharged by special-purpose reasoners and by each
SMT solver.

Each of the SMT solvers seems a valuable complement to the special-purpose
provers. However, we would also like to know whether the reasoning capacity
of some of these solvers is somehow subsumed by another solver, or whether
each SMT solver could provide a significant contribution towards reducing the

17

number of proof obligations that need to be discharged by humans. Table 3
synthesizes a pairwise comparison of the SMT solvers on our universe of proof
obligations.

alt-ergo cvc3 veriT veriT+E z3

alt-ergo 2017 2001 1880 1967 1911
cvc3 2001 2218 1953 2088 2031
veriT 1880 1953 2051 1958 1878

veriT+E 1967 2088 1958 2160 2067
z3 1911 2031 1878 1972 2094

Table 3: Number of proof obligations verified by SMT solver A also discharged by solver B.

This comparison signals the results obtained when all available reasoners are
applied: only 31 proof obligations are unproved, down from 196 resulting from
the application of Atelier-B provers. It is also noteworthy that even though
each SMT solver is individually less effective than Atelier-B provers, applied
altogether, they prove all but 97 proof obligations. The important conclusion
of our experiments is that there is strong evidence that SMT solvers comple-
ment in an effective and practical way the Atelier B provers, yielding significant
improvements in the usability of the Rodin platform and its effectiveness to
support the development of Event-B models.

6. Conclusion

SMT solving is a formal verification technique successfully applied to various
domains including verification. SMT solvers do not have built-in support for set-
theoretic constructs found in Rodin sequents. We presented here a translation
approach to tackle this issue. We evaluated experimentally the efficiency of
SMT solvers against proof obligations resulting from the translation of Rodin
sequents. In our sample of industrial and academic projects, the use of SMT
solvers on top of Atelier B provers reduces significantly the number of unverified
sequents. This plug-in is available through the integrated software updater of
Rodin (instructions at http://wiki.event-b.org/index.php/SMT_Plug-in).

The results are very encouraging and motivate us to progress further by
implementing and evaluating new translation approaches, such as representing
functions using arrays in the line of [11]. Elaborating strategies to apply different
reasoners, based on some characteristics of the sequents is also a promising
line of work. Another feature of some SMT solvers is that they can provide
models when a formula is satisfiable. In consequence, it would be possible, with
additional engineering effort, to use such models to report counter-examples in
Rodin.

We believe that the approach presented in this paper could also be applied
successfully for other set-based formalisms such as: the B method, TLA+, VDM
and Z.

18

Cooperation of deduction tools is very error-prone, not only because it relies
on the correctness of many large and complex tools, but also because of the
translations. Certification of proofs in a centralized trusted proof manager would
be the answer to this problem. Preliminary works in this direction exist [23].

Acknowledgments: This paper is a revised and extended version of [15]. We
thank the anonymous reviewers of paper [15] and of this paper for their careful
read and their remarks.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, 2010.

[3] M. Armand, G. Faure, B. Grégoire, L. Théry, and B. Werner. A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In First
Int’l Conference on Certified Programs and Proofs, CPP 2011, volume 7086
of Lecture Notes in Computer Science, pages 135–150. Springer, 2011.

[4] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo
theories. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, chapter 26, pages 825–885. IOS Press, Feb. 2009.

[5] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard Version 2.0,
2010.

[6] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, ed-
itors, Computer Aided Verification (CAV), volume 4590 of Lecture Notes
in Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[7] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Appli-
cations. IOS Press, 2009.

[8] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and
A. Mebsout. The Alt-Ergo automated theorem prover, http://alt-ergo.
lri.fr.

[9] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An Open, Trustable and Efficient SMT-Solver. In Proc. Conference on
Automated Deduction (CADE), volume 5663 of Lecture Notes in Computer
Science, pages 151–156. Springer, 2009.

19

[10] J. Coleman, C. Jones, I. Oliver, A. Romanovsky, and E. Troubitsyna.
RODIN (Rigorous open Development Environment for Complex Systems).
In Fifth European Dependable Computing Conference: EDCC-5 supplemen-
tary volume, pages 23–26, 2005.

[11] J.-F. Couchot, D. Déharbe, A. Giorgetti, and S. Ranise. Scalable Auto-
mated Proving and Debugging of Set-Based Specifications. Journal of the
Brazilian Computer Society, 9:17–36, 2003.

[12] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In C. R.
Ramakrishnan and J. Rehof, editors, Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS), volume 4963 of Lecture Notes in
Computer Science, pages 337–340. Springer, 2008.

[13] D. Déharbe. Automatic Verification for a Class of Proof Obligations with
SMT-Solvers. In M. Frappier, G. Uwe, K. Sarfraz, R. Laleau, and S. Reeves,
editors, Proceedings 2nd Int’l Conf. Abstract State Machines, Alloy, B and
Z, ABZ 2010, volume 5977 of Lecture Notes in Computer Science, pages
217–230. Springer, 2010.

[14] D. Déharbe. Integration of SMT-solvers in B and Event-B development
environments. Science of Computer Programming, 78(3):310 – 326, 2013.

[15] D. Déharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for
Rodin. In J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel,
S. Reeves, and E. Riccobene, editors, Proc 3rd Int. Conf. Abstract State
Machines, Alloy, B, VDM, and Z (ABZ 2012), volume 7316 of Lecture
Notes in Computer Science, pages 194–207. Springer, 2012.

[16] C. B. Jones. Systematic software development using VDM. Prentice Hall
International Series in Computer Science. Prentice Hall, 1991.

[17] M. Konrad and L. Voisin. Translation from Set-Theory to Predicate Cal-
culus. Technical report, ETH Zurich, 2011.

[18] D. Kröning, P. Rümmer, and G. Weissenbacher. A Proposal for a Theory
of Finite Sets, Lists, and Maps for the SMT-LIB Standard. In Informal
proceedings, 7th Int’l Workshop on Satisfiability Modulo Theories (SMT)
at CADE 22, 2009.

[19] L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, Boston, Mass., 2002.

[20] S. Merz. On the logic of TLA+. Computers and Informatics, 22:351–379,
2003.

[21] C. Métayer and L. Voisin. The Event-B mathematical language, 2009.
http://deploy-eprints.ecs.soton.ac.uk/11/4/kernel_lang.pdf.

20

[22] G. Nelson and D. C. Oppen. Simplifications by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, Oct. 1979.

[23] M. Schmalz. The logic of Event-B, 2011. Technical report 698, ETH Zürich,
Information Security.

[24] S. Schulz. E - A Brainiac Theorem Prover. AI Communications,
15(2/3):111–126, 2002.

[25] The Eclipse Foundation. Eclipse SDK, 2009.

[26] C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–
Oppen combination procedure. In F. Baader and K. U. Schulz, editors,
Frontiers of Combining Systems (FroCoS), Applied Logic, pages 103–120.
Kluwer Academic Publishers, Mar. 1996.

[27] J. Woodcock and J. Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

21

Appendix A. Rewriting rules in ppTrans

Appendix A.1. Rules for sets and predicates

x 6= y ¬(x = y) (A.1)

x 6∈ s ¬(x ∈ s) (A.2)

s ⊆ t s ∈ P(t) (A.3)

s 6⊆ t ¬(s ∈ P(t)) (A.4)

s ⊂ t s ∈ P(t) ∧ ¬(t ∈ P(s)) (A.5)

s 6⊂ t ¬(s ∈ P(t)) ∨ t ∈ P(s) (A.6)

finite(s) ∀a·∃b, f ·f ∈ s� a..b (A.7)

partition(s, s1, s2, . . . sn) s = s1 ∪ s2 ∪ . . . ∪ sn∧
s1 ∩ s2 = ∅ ∧ · · · ∧ s1 ∩ sn = ∅∧

...
sn−1 ∩ sn = ∅

(A.8)

Appendix A.2. Elimination of equalities

The notation ∀XT ·P (X) stands for ∀fv(∇(e))·P (∇(e)), with T (X) = T .

s = t ∀XT ·X ∈ s⇔ X ∈ t (A.9)

x1 7→ x2 = y1 7→ y2 x1 = y1 ∧ x2 = y2 (A.10)

x = f(y) y 7→ x ∈ f (A.11)

bool(P) = bool(Q) P ⇔ Q (A.12)

bool(P) = TRUE P (A.13)

bool(P) = FALSE ¬P (A.14)

x = FALSE ¬(x = TRUE) (A.15)

x = bool(P) x = TRUE⇔ P (A.16)

el[bool(s)] = er ∀?el[bool(s)∗] = er (A.17)

e = e > (A.18)

Appendix A.3. Elimination of mixed arithmetic symbols

Purification

mop stands for either min, max, card or a function application, ≺ for either ≤
or < and � for either ≥ or >.

el[mop(s)] = er ∀?el[mop(s)∗] = er (A.19)

a[mop(s)] ≺ b ∀?a[mop(s)∗] ≺ b (A.20)

a ≺ b[mop(s)] ∀?a ≺ b[mop(s)∗] (A.21)

22

Elimination of mixed operators

n = card(s) ∃f ·f ∈ s�� 1..n (A.22)

n = min(s) n ∈ s ∧ n ≤ min(s) (A.23)

n = max(s) n ∈ s ∧max(s) ≤ n (A.24)

a � b b ≺ a (A.25)

max(s) ≺ a ∀x·x ∈ s⇒ x ≺ a (A.26)

min(s) ≺ a ∃x·x ∈ s ∧ x ≺ a (A.27)

a ≺ min(s) ∀x·x ∈ s⇒ a ≺ x (A.28)

a ≺ max(s) ∃x·x ∈ s ∧ a ≺ x (A.29)

Appendix A.4. Rules based on the right argument of set membership

Elimination of membership in relations

The notation func(f) specifies that f is a function, and abbreviates:
∀AU , BV , CV ·A 7→ B ∈ f ∧A 7→ C ∈ f ⇒ B = C, where T (f) = U × V .

e ∈ s↔↔ t e ∈ s←↔ t ∧ t ⊆ ran(e) (A.30)

e ∈ s←↔ t e ∈ s↔ t ∧ s ⊆ dom(e) (A.31)

e ∈ s↔→ t e ∈ s↔ t ∧ t ⊆ ran(e) (A.32)

e ∈ s�� t e ∈ s� t ∧ func(e−1) (A.33)

e ∈ s� t e ∈ s→ t ∧ t ⊆ ran(e) (A.34)

e ∈ s 7� t e ∈ s 7→ t ∧ t ⊆ ran(e) (A.35)

e ∈ s� t e ∈ s→ t ∧ func(e−1) (A.36)

e ∈ s 7� t e ∈ s 7→ t ∧ func(e−1) (A.37)

e ∈ s→ t e ∈ s 7→ t ∧ s ⊆ dom(e) (A.38)

e ∈ s 7→ t e ∈ s↔ t ∧ func(e) (A.39)

23

Other membership rewriting rules

The notation ∀XT ·P (X) stands for ∀fv(∇(e))·P (∇(e)), with T (X) = T .
Likewise, notation ∃XT ·P (X) stands for ∃fv(∇(e))·P (∇(e)), with T (X) = T .

e ∈ s > if T (e) = s (A.40)

e ∈ ∅ ⊥ (A.41)

e ∈ P(t) ∀XT ·X ∈ e⇒ X ∈ t if T (e) = P(T) (A.42)

e ∈ s↔ t ∀XT ·X ∈ e⇒ X ∈ s× t if T (e) = P(T) (A.43)

e ∈ f ∃?e∗ ∈ f if f is an identifier (A.44)

e ∈ N 0 ≤ e (A.45)

e ∈ N1 0 < e (A.46)

e ∈ {x·P | f} ∃x·P ∧ e = f (A.47)

e ∈
(⋂

x·P | f
)
 ∀x·P ⇒ e ∈ f (A.48)

e ∈
(⋃

x·P | f
)
 ∃x·P ∧ e ∈ f (A.49)

e ∈ union(s) ∃x·x ∈ s ∧ e ∈ x (A.50)

e ∈ inter(s) ∀x·x ∈ s⇒ e ∈ x (A.51)

e ∈ r [s] ∃XT ·X ∈ s ∧X 7→ e ∈ r if P(T) = T (dom(r)) (A.52)

e ∈ f(s) ∃XT ·s 7→ X ∈ f ∧ e ∈ X if T = P(T (e)) (A.53)

e ∈ ran(r) ∃XT ·X 7→ e ∈ r if P(T) = T (dom(r)) (A.54)

e ∈ dom(r) ∃XT ·e 7→ X ∈ r if P(T) = T (ran(r)) (A.55)

e ∈ {a1, . . . , an} e = a1 ∨ · · · ∨ e = an (A.56)

e ∈ P1 (s) e ∈ P(s) ∧ [∃XT ·X ∈ e] if P(T) = T (e) (A.57)

e ∈ a..b a ≤ e ∧ e ≤ b (A.58)

e ∈ s \ t e ∈ s ∧ ¬(e ∈ t) (A.59)

e ∈ s1 ∩ . . . ∩ sn e ∈ s1 ∧ . . . ∧ e ∈ sn (A.60)

e ∈ s1 ∪ . . . ∪ sn e ∈ s1 ∨ . . . ∨ e ∈ sn (A.61)

24

Appendix A.5. Rules based on both arguments of set membership

e 7→ f ∈ s× t e ∈ s ∧ f ∈ t (A.62)

e 7→ f ∈ r B− t e 7→ f ∈ r ∧ ¬(f ∈ t) (A.63)

e 7→ f ∈ sC− r e 7→ f ∈ r ∧ ¬(e ∈ s) (A.64)

e 7→ f ∈ r B t e 7→ f ∈ r ∧ f ∈ t (A.65)

e 7→ f ∈ sC r e 7→ f ∈ r ∧ e ∈ s (A.66)

e 7→ f ∈ id e = f (A.67)

e 7→ f ∈ r−1 f 7→ e ∈ r (A.68)

e 7→ f ∈ pred e = f + 1 (A.69)

e 7→ f ∈ succ f = e + 1 (A.70)

e 7→ f ∈ r1 C− · · ·C− rn e 7→ f ∈ rn∨
e 7→ f ∈ dom(rn)C− rn−1∨
e 7→ f ∈ dom(rn) ∪ dom(rn−1)C− rn−2∨
...
e 7→ f ∈ dom(rn) ∪ · · ·dom(r2)C− r1

(A.71)

e 7→ f ∈ r1; . . . ; rn ∃X1
T1
, . . . Xn−1

Tn−1
·e 7→ X1 ∈ r1 ∧ . . . ∧Xn−1 7→ f ∈ rn

if T (ran(ri)) = P(Ti), 1 ≤ i ≤ n

(A.72)

e 7→ f ∈ r1 ◦ . . . ◦ rn e 7→ f ∈ rn; . . . ; r1 (A.73)

(e 7→ f) 7→ g ∈ prj1 e = g (A.74)

(e 7→ f) 7→ g ∈ prj2 f = g (A.75)

e 7→ (f 7→ g) ∈ p⊗ q e 7→ f ∈ p ∧ e 7→ g ∈ q (A.76)

(e 7→ f) 7→ (g 7→ h) ∈ p ‖ q e 7→ g ∈ p ∧ f 7→ h ∈ q (A.77)

25

A Gentle Non-Disjoint Combination of
Satisfiability Procedures

Paula Chocron1,3, Pascal Fontaine2, and Christophe Ringeissen3?

1 Universidad de Buenos Aires, Argentina
2 INRIA, Université de Lorraine & LORIA, Nancy, France

3 INRIA & LORIA, Nancy, France

Abstract. A satisfiability problem is often expressed in a combination
of theories, and a natural approach consists in solving the problem by
combining the satisfiability procedures available for the component theo-
ries. This is the purpose of the combination method introduced by Nelson
and Oppen. However, in its initial presentation, the Nelson-Oppen com-
bination method requires the theories to be signature-disjoint and stably
infinite (to guarantee the existence of an infinite model). The notion of
gentle theory has been introduced in the last few years as one solution
to go beyond the restriction of stable infiniteness, but in the case of dis-
joint theories. In this paper, we adapt the notion of gentle theory to the
non-disjoint combination of theories sharing only unary predicates (plus
constants and the equality). Like in the disjoint case, combining two the-
ories, one of them being gentle, requires some minor assumptions on the
other one. We show that major classes of theories, i.e. Löwenheim and
Bernays-Schönfinkel-Ramsey, satisfy the appropriate notion of gentleness
introduced for this particular non-disjoint combination framework.

1 Introduction

The design of satisfiability procedures has attracted a lot of interest in the last
decade due to their ubiquity in SMT (Satisfiability Modulo Theories [4]) solvers
and automated reasoners. A satisfiability problem is very often expressed in a
combination of theories, and a very natural approach consists in solving the prob-
lem by combining the satisfiability procedures available for each of them. This is
the purpose of the combination method introduced by Nelson and Oppen [15].
In its initial presentation, the Nelson-Oppen combination method requires the
theories in the combination to be (1) signature-disjoint and (2) stably infinite
(to guarantee the existence of an infinite model). These are strong limitations,
and many recent advances aim to go beyond disjointness and stable infiniteness.
Both corresponding research directions should not be opposed. In both cases,
the problems are similar, i.e. building a model of T1 ∪T2 from a model of T1 and

? This work has been partially supported by the project ANR-13-IS02-0001-01 of the
Agence Nationale de la Recherche, by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the STIC AmSud
MISMT

a model of T2. This is possible if and only if there exists an isomorphism between
the restrictions of the two models to the shared signature [24]. The issue is to
define a framework to enforce the existence of this isomorphism. In the particular
case of disjoint theories, the isomorphism can be obtained if the domains of the
models have the same cardinality, for instance infinite; several classes of kind the-
ories (shiny [25], polite [19], gentle [9]) have been introduced to enforce a (same)
domain cardinality on both sides of the combination. For extensions of Nelson-
Oppen to non-disjoint cases, e.g. in [24,27], cardinality constraints also arise. In
this paper, we focus on non-disjoint combinations for which the isomorphism
can be simply constructed by satisfying some cardinality constraints. More pre-
cisely, we extend the notion of gentle theory to the non-disjoint combination of
theories sharing only unary predicates (plus constants and the equality). Some
major classes of theories fit in our non-disjoint combination framework.

Contributions. The first contribution is to introduce a class of P-gentle theo-
ries, to combine theories sharing a finite set of unary predicates symbols P. The
notion of P-gentle theory extends the one introduced for the disjoint case [9].
Roughly speaking, a P-gentle theory has nice cardinality properties not only for
domains of models but also more locally for all Venn regions of shared unary
predicates. We present a combination method for unions of P-gentle theories
sharing P. The proposed method can also be used to combine a P-gentle theory
with another arbitrary theory for which we assume the decidability of satisfiabil-
ity problems with cardinality constraints. This is a natural extension of previous
works on combining non-stably infinite theories, in the straight line of combi-
nation methods à la Nelson-Oppen. Two major classes of theories are P-gentle,
namely the Löwenheim and Bernays-Schönfinkel-Ramsey (BSR) classes.

We characterize precisely the cardinality properties satisfied by Löwenheim
theories. As a side contribution, bounds on cardinalities given in [8] have been
improved, and we prove that our bounds are optimal. Our new result establishes
that Löwenheim theories are P-gentle.

We prove that BSR theories are also P-gentle. This result relies on a non-
trivial extension of Ramsey’s Theorem on hypergraphs. This extension should be
considered as another original contribution, since it may be helpful as a general
technique to construct a model preserving the regions.

Related Work. Our combination framework is a way to combine theories with
sets. The relation between (monadic) logic and sets is as old as logic itself, and
this relation is particularly clear for instance considering Aristotle Syllogisms.
It is however useful to again study monadic logic, and more particularly the
Löwenheim class, and in view of the recent advances in combinations with non-
disjoint and non-stably infinite theories.

In [26], the authors focus on the satisfiability problem of unions of theories
sharing set operations. The basic idea is to reduce the combination problem into
a satisfiability problem in a fragment of arithmetic called BAPA (Boolean Alge-
bra and Presburger Arithmetic). Löwenheim and BSR classes are also considered,
but infinite cardinalities were somehow defined out of their reduction scheme,

whilst infinite cardinalities are smoothly taken into account in our combination
framework. In [26], BSR was shown to be reducible to Presburger. We here give
a detailed proof. We believe such a proof is useful since it is more complicated
that it may appear. In particular, our proof is based on an original (up to our
knowledge) extension of Ramsey’s Theorem to accommodate a domain parti-
tioned into (Venn) regions. Finally, the notion of P-gentleness defined and used
here is stronger than semi-linearity of Venn-cardinality, and allows non-disjoint
combination with more theories, e.g. the guarded fragment.

In [21,22], a locality property is used to properly instantiate axioms connect-
ing two disjoint theories. Hence, the locality is a way to reduce (via instantiation)
a non-disjoint combination problem to a disjoint one. In that context, cardinality
constraints occur when considering bridging functions over a data structure with
some cardinality constraints on the underlying theory of elements [28,21,23].

In [12], Ghilardi proposed a very general model-theoretic combination frame-
work to obtain a combination method à la Nelson-Oppen when T1 and T2 are
two compatible extensions of the same shared theory (satisfying some proper-
ties). This framework relies on an application of the Robinson Joint Consistency
Theorem (roughly speaking, the union of theories is consistent if the intersection
is complete). Using this framework, several shared fragments of arithmetic have
been successfully considered [12,16,17]. Due to its generality, Ghilardi’s approach
is free of cardinality constraints.

It is also possible to consider a general semi-decision procedure for the un-
satisfiability problem modulo T1 ∪ T2, e.g. a superposition calculus. With the
rewrite-based approach initiated in [3], the problem reduces to proving the ter-
mination of this calculus. General criteria have been proposed to get modular
termination results for superposition, when T1 and T2 are either disjoint [2] or
non-disjoint [20]. Notice that the superposition calculus can also be used as a
deductive engine to entail some cardinality constraints, as shown in [5].

Structure of the paper. Section 2 introduces some classical notations and defini-
tions. In Section 3, we introduce the notion of P-gentle theory and we present
the related combination method for unions of theories sharing a (non-empty fi-
nite) set P of unary predicate symbols. All the theories in the Löwenheim class
and in the BSR class are P-gentle, as shown respectively in Section 4 and in
Section 5. A simple example is given in Section 6. The conclusion (Section 7)
discusses the current limitations of our approach and mentions some possible
directions to investigate. Our extension of Ramsey’s Theorem can be found in
Appendix A.

2 Notation and Basic Definitions

A first-order language is a tuple L = 〈V,F ,P〉 such that V is an enumerable set
of variables, while F and P are sets of function and predicate symbols. Every
function and predicate symbol is assigned an arity. Nullary predicate symbols
are called proposition symbols, and nullary function symbols are called constant

symbols. A first-order language is called relational if it only contains function
symbols of arity zero. A relational formula is a formula in a relational language.
Terms, atomic formulas and first-order formulas over the language L are defined
in the usual way. In particular an atomic formula is either an equality, or a
predicate symbol applied to the right number of terms. Formulas are built from
atomic formulas, Boolean connectives (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A
literal is an atomic formula or the negation of an atomic formula. Free variables
are defined in the usual way. A formula with no free variables is closed, and
a formula without variables is ground. A universal formula is a closed formula
∀x1 . . . ∀xn.ϕ where ϕ is quantifier-free. A (finite) theory is a (finite) set of closed
formulas. Two theories are disjoint if no predicate symbol in P or function symbol
in F appears in both theories, except constants and equality.

An interpretation I for a first-order language L provides a non empty domain
D, a total function I[f] : Dr → D for every function symbol f of arity r, a
predicate I[p] ⊆ Dr for every predicate symbol p of arity r, and an element I[x] ∈
D for every variable x. The cardinality of an interpretation is the cardinality of
its domain. The notation Ix1/d1,...,xn/dn

for x1, . . . , xn different variables stands
for the interpretation that agrees with I, except that it associates di ∈ D to
the variable xi, 1 ≤ i ≤ n. By extension, an interpretation defines a value in
D for every term, and a truth value for every formula. We may write I |= ϕ
whenever I[ϕ] = >. Given an interpretation I on domain D, the restriction I ′
of I on D′ ⊆ D is the unique interpretation on D′ such that I and I ′ interpret
predicates, functions and variables the same way on D′. An extension I ′ of I is
an interpretation on a domain D′ including D such that I ′ restricted to D is I.

A model of a formula (theory) is an interpretation that evaluates the formula
(resp. all formulas in the theory) to true. A formula or theory is satisfiable if
it has a model; it is unsatisfiable otherwise. A formula G is T -satisfiable if it is
satisfiable in the theory T , that is, if T ∪{G} is satisfiable. A T -model of G is a
model of T ∪ {G}. A formula G is T -unsatisfiable if it has no T -models. In our
context, a theory T is decidable if the T -satisfiability problem for sets of (ground)
literals is decidable in the language of T (extended with fresh constants).

Consider an interpretation I on a language with unary predicates p1, . . . , pn
and some elements D in the domain of this interpretation. Every element d ∈ D
belongs to a Venn region v(d) = v1 . . . vn ∈ {>,⊥}n where vi = I[pi](d). We
denote by Dv ⊆ D the set of elements of D in the Venn region v. Notice also
that, for a language with n unary predicates, there are 2n Venn regions. Given an
interpretation I, Dc denotes the subset of elements in D associated to constants
by I. Naturally, Dc

v denotes the set of elements associated to constants that are
in the Venn region v.

3 Gentle Theories Sharing Unary Predicates

From now on, we assume that P is a non-empty finite set of unary predicates. A
P-union of two theories T1 and T2 is a union sharing only P, a set of constants
and the equality.

Definition 1. An arrangement A for finite sets of constant symbols S and unary
predicates P is a maximal satisfiable set of equalities and inequalities a = b or
a 6= b and literals p(a) or ¬p(a), with a, b ∈ S, p ∈ P.

There are only a finite number of arrangements for given sets S and P.
Given a theory T whose signature includes P and a model M of T on do-

main D, the P-cardinality κ is the tuple of cardinalities of all Venn regions of
P in M (κv will denote the cardinality of the Venn region v). The following
theorem (specialization of general combination lemmas in e.g. [24,25]) states the
completeness of the combination procedure for P-unions of theories:

Theorem 1. Consider a P-union of theories T1 and T2 whose respective lan-
guages L1 and L2 share a finite set S of constants, and let L1 and L2 be sets of
literals, respectively in L1 and L2. Then L1∪L2 is T1∪T2-satisfiable if and only
if there exist an arrangement A for S and P, and a Ti-model Mi of A∪Li with
the same P-cardinality for i = 1, 2.

The spectrum of a theory T is the set of P-cardinalities of its models. The above
theorem can thus be restated as:

Corollary 1. The T1∪T2-satisfiability problem for sets of literals is decidable if,
for any sets of literals A∪L1 and A∪L2 it is possible to decide if the intersection
of the spectrums of T1 ∪ A ∪ L1 and of T2 ∪ A ∪ L2 is non-empty.

To characterize the spectrum of the decidable classes considered in this paper,
we introduce the notion of cardinality constraint. A finite cardinality constraint
is simply a P-cardinality with only finite cardinalities. An infinite cardinality
constraint is given by a P-cardinality κ with only finite cardinalities and a non-
empty set of Venn regions V , and stands for all the P-cardinalities κ′ such that
κ′v ≥ κv if v ∈ V , and κ′v = κv otherwise. The spectrum of a finite set of cardinal-
ity constraints is the union of all P-cardinalities represented by each cardinality
constraint. It is now easy to define the class of theories we are interested in:

Definition 2. A theory T is P-gentle if, for every set L of literals in the lan-
guage of T , the spectrum of T ∪ L is the spectrum of a computable finite set of
cardinality constraints.

Notice that a P-gentle theory is (by definition) decidable. To relate the above no-
tion with the gentleness in the disjoint case [9], observe that if p is a unary pred-
icate symbol not occurring in the signature of the theory T , then T ∪ {∀x.p(x)}
is {p}-gentle if and only if T is gentle.

If a theory is P-gentle, then it is P ′-gentle for any non-empty subset P ′ of
P. It is thus interesting to have P-gentleness for the largest possible P. Hence,
when P is not explicitly given for a theory, we assume that P denotes the set
of unary predicates symbols occurring in its signature. In the following sections
we show that the Löwenheim theories and the BSR theories are P-gentle.

The union of two P-gentle theories is decidable, as a corollary of the following
modularity result:

Theorem 2. The class of P-gentle theories is closed under P-union.

Proof. If we consider the P-union of two P-gentle theories with respective spec-
trums S1 and S2, then we can build some finite set of cardinality constraints
whose spectrum is S1 ∩ S2. ut

Some very useful theories are not P-gentle, but in practical cases they can be
combined with P-gentle theories. To define more precisely the class of theories T ′
that can be combined with a P-gentle one, let us introduce the T ′-satisfiability
problem with cardinality constraints: given a formula and a finite set of cardinality
constraints, the problem amounts to check whether the formula is satisfiable in a
model of T whose P-cardinality is in the spectrum of the cardinality constraints.
As a direct consequence of Corollary 1:

Theorem 3. T ∪ T ′-satisfiability is decidable if the theory T is P-gentle and
T ′-satisfiability with cardinality constraints is decidable.

Notice that T -satisfiability with cardinality constraints is decidable for most
common theories, e.g. the theories handled in SMT solvers. This gives the theo-
retical ground to add to the SMT solvers any number of P-gentle theories sharing
unary predicates.

From the results in the rest of the paper, it will also follow that the non-
disjoint union (sharing unary predicates) of BSR and Löwenheim theories with
one decidable theory accepting further constraints of the form ∀x . ((¬)p1(x) ∧
. . . (¬)pn(x)) ⇒ (x = a1 ∨ . . . x = am) is decidable. For instance, the guarded
fragment with equality accepts such further constraints and the superposition
calculus provides a decision procedure [11]. Thus any theory in the guarded
fragment can be combined with Löwenheim and BSR theories sharing unary
predicates.

In the disjoint case, any decidable theory expressed as a finite set of first-
order axioms can be combined with a gentle theory [9]. Here this is not the case
anymore. Indeed, consider the theory ψ = ϕ∨∃x p(x) where p does not occur in
ϕ; any set of literals is satisfiable in the theory ψ if and only if it is satisfiable
in the theory of equality. If the satisfiability problem of literals in the theory ϕ
is undecidable, the P-union of ψ and the Löwenheim theory ∀x¬p(x) will also
be undecidable.

4 The Löwenheim Class

We first review some classical results about this class and refer to [6] for more
details. A Löwenheim theory is a finite set of closed formulas in a relational
language containing only unary predicates (and no functions except constants).
This class is also known as first-order relational monadic logic. Usually one
distinguishes the Löwenheim class with and without equality. The Löwenheim
class has the finite model property (and is thus decidable) even with equality.
Full monadic logic without equality, i.e. the class of finite theories over a lan-
guage containing symbols (predicates and functions) of arity at most 1, also has
the finite model property. Considering monadic logic with equality, the class of

finite theories over a language containing only unary predicates and just two
unary functions is already undecidable. With only one unary function, however,
the class remains decidable [6], but does not have the finite model property any-
more. Since the spectrum for this last class is significantly more complicated [13]
than for the Löwenheim class we will here only focus on the Löwenheim class
with equality (only classes with equality are relevant in our context), that is,
without functions. More can be found about monadic first-order logic in [6,8].
In particular, a weaker version of Corollary 2 (given below) can be found in [8].

Previously [9,1], combining theories with non-stably infinite theories took
advantage of “pumping” lemmas, allowing — for many decidable fragments —
to build models of arbitrary large cardinalities. The following theorem is such a
pumping lemma, but it considers the cardinalities of the Venn regions and not
only the global cardinality.

Lemma 1. Assume T is a Löwenheim theory with equality. Let q be the number
of variables in T . If there exists a model M on domain D with |Dv \Dc| ≥ q,
then, for each cardinality q′ ≥ q, there is a model extension or restriction M′ of
M on domain D′ such that |D′v \Dc| = q′ and D′v′ = Dv′ for all v′ 6= v.

Proof. Two interpretations I (on domainD) and I ′ (on domainD′) for a formula
ψ are similar if

– |(Dv ∩D′v) \Dc| ≥ q;
– Dv′ = D′v′ for each Venn region v′ distinct from v;
– I[a] = I ′[a] for each constant in ψ;
– I[x] = I ′[x] for each variable free in ψ.

Considering M as above, we can build a model M′ as stated in the theorem,
such that M and M′ are similar. Indeed similarity perfectly defines a model
with respect to another, given the cardinalities of the Venn regions.

We now prove that, given a Löwenheim formula ψ (or a set of formulas),
two similar interpretations for ψ give the same truth value to ψ and to each
sub-formula of ψ.

The proof is by induction on the structure of the (sub-)formula ψ. It is obvious
if ψ is atomic, since similar interpretations assign the same value to variables
and constants. If ψ is ¬ϕ1, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 or ϕ1 ⇒ ϕ2, the result holds if it
also holds for ϕ1 and ϕ2.

Assume I makes true the formula ψ = ∃xϕ(x). Then there exists some d ∈ D
such that Ix/d is a model of ϕ(x). If d ∈ D′, then I ′x/d is similar to Ix/d and, by

the induction hypothesis, it is a model of ϕ(x); I ′ is thus a model of ψ. If d /∈ D′,
then d ∈ Dv and |(Dv ∩ D′v) \ Dc| ≥ q. Furthermore, since the whole formula
contains at most q variables, ϕ(x) contains at most q − 1 free variables besides
x. Let x1, . . . , xm be those variables. There exists some d′ ∈ (Dv ∩D′v)\Dc such
that d′ 6= I[xi] for all i ∈ {1, . . . ,m}. By structural induction, it is easy to show
that Ix/d and Ix/d′ give the same truth value to ϕ(x). Furthermore Ix/d′ and
I ′x/d′ are similar. I ′ is thus a model of ψ. To summarize, if I is a model of ψ, I ′
is also a model of ψ. By symmetry, if I ′ is a model of ψ, I is also a model of ψ.
The proof for formulas of the form ∀xϕ(x) is dual. ut

Lemma 1 has the following consequence on the acceptable cardinalities for
the models of a Löwenheim theory:

Corollary 2. Assume T is a Löwenheim theory with equality with n distinct
unary predicates. Let r and q be respectively the number of constants and vari-
ables in T . If T has a model of some cardinality κ strictly larger than r +
2n max(0, q − 1), then T has models of each cardinality equal or larger than
min(κ, r + q 2n).

Proof. If a model with such a cardinality exists, then there are Venn regions v
such that |Dv \ Dc| ≥ q. Then the number of elements in these Venn regions
can be increased to any arbitrary larger cardinality, thanks to Lemma 1. If
κ > r + q 2n, it means some Venn regions v are such that |Dv \Dc| > q, and by
eliminating elements in such Venn regions (using again Lemma 1), it is possible
to obtain a model of cardinality r + q 2n. ut

In [8], the limit is q 2n, q being the number of constants plus the maximum
number of nested quantifiers. Now q is more precisely set to the number of
variables, and the constants are counted separately. Moreover, max(0, q − 1)
replaces the factor q.

The case where q and r are both 0 corresponds to pure propositional logic
(Löwenheim theories without variables and constants), where the size of the
domain is not relevant. With q = 1 (one variable), there is no way to compare
two elements (besides the ones associated to constants) and enforce them to be
equal. It is still possible to constrain the domain to be of size at most r, using
constraints like ∀x . x = c1 ∨ . . . ∨ x = cr, but any model with one element not
associated to a constant can be extended to a model of arbitrary cardinality
(by somehow duplicating any number of time this element). Notice also that it
is possible to set a lower bound on the size of the domain that can be r + 2n.
Consider for instance a set of sentences of the form ∃x.(¬)p1(x) ∨ . . . (¬)pn(x);
there are 2n such formulas, each enforcing one Venn region to be non-empty.

Using several variables, a Löwenheim formula can enforce upper bounds
larger than r on cardinalities. For q = 2, it is indeed easy to build a formula that
has only models of cardinality at most (q − 1) 2n = 2n:

∀x∀y .
[∧

0<i<j≤n
pi(x) = pj(y)

]
⇒ x = y.

With a larger number of variables, the following formula (q ≥ 2)

∀x1 . . . ∀xq .
[∧

0<i<j≤n

0<i′<j′≤q

pi(xi′) = pj(xj′)
]
⇒

∨

0<i′<j′≤q
xi′ = xj′

enforces the cardinality of the domain to be at most (q − 1) 2n. To obtain
a formula with constants that accepts only models of cardinality up to r +
2n max(0, q − 1), it suffices to add as a guard in the above formula the conjunc-
tive sets of atoms expressing that the variables are disjoint from the r constants.
So the above condition in Corollary 2 is the strongest one.

Besides the finite model property and the decidability of Löwenheim theories,
Corollary 2 also directly entails the P-gentleness:

Theorem 4. Löwenheim theories on a language with unary predicates in P are
P-gentle.

5 The Bernays-Schönfinkel-Ramsey Class

A Bernays-Schönfinkel-Ramsey (BSR for short) theory is a finite set of formulas
of the form ∃∗∀∗ϕ, where ϕ is a first-order formula which is function-free (but
constants are allowed) and quantifier-free. Bernays and Schönfinkel first proved
the decidability of this class without equality; Ramsey later proved that it re-
mains decidable with equality. More can be found about BSR theories in [6].
Ramsey also gave some (less known) results about the spectrum of BSR theo-
ries [18]. We here give a proof that BSR theories are P-gentle.

For simplicity, we will assume that existential quantifiers are Skolemized. In
the following, a BSR theory is thus a finite set of universal function-free closed
first-order formulas.

Lemma 2. Let T be a BSR theory, andM be a model of T on domain D. Then
any restriction M′ of M on domain D′ with Dc ⊆ D′ ⊆ D is a model of T .

Proof. Consider M and M′ as above. Since M is a model of T , for each closed
formula ∀x1 . . . xn . ϕ in T (where ϕ is function-free and quantifier-free), and for
all d1, . . . , dn ∈ D′ ⊆ D, Mx1/d1,...,xn/dn

is a model of ϕ. This also means that,
for all d1, . . . , dn ∈ D′,M′x1/d1,...,xn/dn

is a model of ϕ, and finally thatM′ is a
model of ∀x1 . . . xn . ϕ. ut

Intuitively, this states that the elements not assigned to ground terms (i.e. the
constants) can be eliminated from a model of a BSR theory. It is known [18,9]
that for any BSR theory T there is a computable finite number k such that if
T has a model of cardinality greater or equal to k, then it has a model of any
cardinality larger than k. Later in this section, we prove that the same occurs
locally for each Venn region.

The notion of n-repetitive models, which we now define, is instrumental for
this. Informally, a model is n-repetitive if it is symmetric for those elements of
its domain that are not assigned to constants in the theory.

Definition 3. An interpretation I on domain D for a BSR theory T is n-
repetitive for a set V of Venn regions if, for each v ∈ V , |Dv \Dc| ≥ n and there
exists a total order ≺ on elements in Dv \Dc such that

– for every r-ary predicate symbol p in T
– for all d1, . . . , dr ∈ D, and d′1, . . . , d

′
r ∈ D with

• |{d1, . . . , dr} \Dc| ≤ n
• d′i = di if di or d′i ∈ Dc ∪⋃v/∈V Dv

• v(d′i) = v(di)

• d′i ≺ d′j iff di ≺ dj, if for some v′ ∈ V , di, dj ∈ Dv′ \Dc

we have I[p](d1, . . . , dr) = I[p](d′1, . . . , d
′
r).

Notice that a same interpretation can be n-repetitive for several Venn regions at
the same time. Also, the above definition allows Dv \Dc to be empty for every
v /∈ V . Previously [9] (without distinguishing regions) we showed that one can
decide if a BSR theory T is n-repetitive by building another BSR theory that is
satisfiable if and only if T is n-repetitive. The same occurs to n-repetitiveness
for Venn regions.

Theorem 5. Consider a BSR theory T with n variables and a model M on
domain D. If M is n-repetitive for the Venn regions V then, for any (finite or
infinite) cardinalities κv ≥ |Dv| (v ∈ V), T has a model M′ extension of M on
domain D′ such that |D′v| = κv if v ∈ V and D′v′ = Dv′ for all v′ /∈ V .

Proof. Assume that ≺ are the total orders mentioned in Definition 3. We first
build an extension M′ of M as specified in the theorem, and later prove it is a
model of T .

Let E be the set of new elements E = D′ \D, and fix arbitrary total orders
(again denoted by≺) onD′v\Dc for all v ∈ V that extend the given orders onDv\
Dc. SinceM′ is an extension ofM, the interpretation of the predicate symbols is
already defined when all arguments belong to D. When some arguments belong
to E, the truth value of an r-ary predicate p is defined as follows:

– (d′1, . . . , d
′
r) 6∈ M′[p] for |{d′1, . . . , d′r} \Dc| > n: the interpretation of p over

tuples with more than n elements outside Dc is fixed arbitrarily. Indeed, such
tuples are irrelevant for the evaluation of the formulas of T : terms occurring
as arguments of a predicate are either variables or constants, and no more
than n variables occur in any formula of T .

– otherwise, to determine M′[p](d′1, . . . , d′r), first choose d1, . . . dr ∈ D such
that d′1, . . . , d

′
r and d1, . . . dr are related to each other just like in Definition 3.

This is possible since, for every Venn region v for which the interpretation is
repetitive, there are at least n elements in Dv\Dc. Then (d′1, . . . , d

′
r) ∈M′[p]

iff (d1, . . . , dr) ∈ M[p]. Observe that all possible choices of d1, . . . , dn lead
to the same definition because M is n-repetitive.

The construction is such that M′ is also n-repetitive for the same regions. It is
also a model of T : all formulas in T are of the form ∀x1 . . . xm . ϕ(x1, . . . , xm),
with m ≤ n. For all d′1 . . . , d

′
m ∈ D′, if {d′1, . . . , d′m} ⊆ D then

M′x1/d′1,...,xm/d′m
[ϕ(x1, . . . , xm)] =Mx1/d′1,...,xm/d′m [ϕ(x1, . . . , xm)]

sinceM′ is an extension ofM. Otherwise, let d1, . . . , dm ∈ D be some elements
related to d′1, . . . , d

′
m like in Definition 3. Since M′ is n-repetitive,

M′x1/d′1,...,xm/d′m
[ϕ(x1, . . . , xm)] =M′x1/d1,...,xm/dm

[ϕ(x1, . . . , xm)]

=Mx1/d1,...,xm/dm
[ϕ(x1, . . . , xm)].

In both cases, M′x1/d′1,...,xm/d′m
[ϕ(x1, . . . , xm)] evaluates to true, and therefore

M′ is a model of ∀x1 . . . xn . ϕ(x1, . . . , xm). ut

Now it is possible to state that the full spectrum of a BSR theory only
depends on (a finite set of) P-cardinalities κ such that, for all Venn region v, κv ≤
k for some finite cardinality k only depending on the theory. The proof requires
an extension of Ramsey’s Theorem which can be found in the appendix A.

Theorem 6. Given a BSR theory T with n variables, there exists a number
k computable from the theory, such that, if T has a model M on domain D
such that |Dv \ Dc| ≥ k for Venn regions v ∈ V , then it has a model which is
n-repetitive for Venn regions V .

Proof. Using Lemma 2, we can assume that T has a (sufficiently large) finite
model M on domain D. We can assume without loss of generality that M is
such that, for every predicate p of the language, (d1, . . . dr) /∈ M[p] whenever
there are more than n elements in {d1, . . . dr}\Dc; indeed, these interpretations
play no role in the truth value of a formula with n variables.

Let ≺ be an order on D\Dc. Given two ordered (with respect to ≺) sequences
e1, . . . , en and e′1, . . . , e

′
n of elements inD\Dc such that v(ei) = v(e′i) (1 ≤ i ≤ n),

we say that the configurations for e1, . . . , en and e′1, . . . , e
′
n agree if for every r-

ary predicate p, and for every d1, . . . , dr ∈ Dc∪{e1, . . . , en}, (d1, . . . , dr) ∈M[p]
iff (d′1, . . . , d

′
r) ∈M[p], with d′i = e′j if di = ej for some j, and d′i = di otherwise.

Notice that there are only a finite number of disagreeing configurations for n
elements in D \Dc: more precisely a configuration is determined by at most b =∑

p (n+ |Dc|)arity(p) Boolean values, where the sum ranges over all predicates in

the theory. Thus the number of disagreeing configurations is bounded by C = 2b.

Interpreting configurations as colors, one can use the extension of Ramsey’s
Theorem given in Appendix A: according to Theorem 7, there is a computable
function f such that, for any N ∈ N, if |D \Dc|V ≥ f(n,N,C), then there exists
a model on D′ ⊆ D with |D′ \Dc|V ≥ N for which configurations agree if they
have the same number of elements in each Venn region of V . Taking N = n, this
is actually building a n-repetitive restriction of M. ut

The BSR class obviously has the finite model property, and is decidable.
Lemma 2 and Theorems 5 and 6 above also prove that BSR theories are (gentle
and) P-gentle:

Corollary 3. BSR theories on a language including unary predicates in P are
P-gentle.

A simple constructive proof of this corollary would consider the finite number
of all P-cardinalities κ such that κv ≤ k (where k comes from Theorem 6). All
such P-cardinalities can be understood as cardinality constraints, the extendable
Venn regions being the ones for which κv > k. Of course this construction is
highly impractical, since it uses some kind of Ramsey numbers, known to be
extremely large. In practice, we believe there are much better constructions:
the important elements of the domain are basically only the ones associated to
constants, and theoretical upper bounds are not met in non-artificial cases.

6 Example: Non-Disjoint Combination of Order and Sets

To illustrate the kind of theories that can be handled in our framework, consider
a simple yet informative example with a BSR theory defining an ordering < and
augmented with clauses connecting the ordering < and the sets p and q (we do
not distinguish sets and their related predicates):

T1 =

∀x. ¬(x < x)
∀x, y, z. (x < y ∧ y < z)⇒ x < z

∀x, y. (p(x) ∧ ¬p(y))⇒ x < y
∀x, y. (q(x) ∧ ¬q(y))⇒ x < y

and a Löwenheim theory

T2 =

{
∃y∀x. (p(x) ∧ q(x)) ≡ x = y
∀x∃y. p(x)⇒ (x 6= y ∧ q(y))

Notice that T2 is not a BSR theory due to the ∀∃ quantification of its second
axiom, but both theories T1 and T2 are actually P-gentle. The theory T1 imposes
either p ∩ q or p ∩ q to be empty (we will assume that the domain is non-empty
and simplify the cardinality constraints accordingly). The theory T2 imposes the
cardinality of p ∩ q to be exactly 1, and the cardinality of p ∩ q to be at least 1.
The following table collects the cardinality constraints:

T1 T2
p ∩ q ≥ 0 ≥ 0 ≥ 0
p ∩ q 0 ≥ 0 ≥ 1
p ∩ q ≥ 0 0 ≥ 0
p ∩ q ≥ 0 ≥ 0 1

The theory T1∪T2 imposes p∩q to be empty, in other words p ⊆ q. Moreover,
the cardinality of p∩q is 1, and so it implies that the cardinality of p is 1. Hence,
the set

T1 ∪ T2 ∪ {p(a), p(b), a 6= b}
is unsatisfiable. As a final comment, there could be theories using directly the
Venn cardinalities as integer variables. For instance, imagine a constraint stating
|p| > 1 in a theory including linear arithmetic on integers. This would of course
be unsatisfiable with T1 ∪ T2.

7 Conclusion

The notion of gentleness was initially presented as a tool to combine non-stably
infinite disjoint theories. In this paper, we have introduced a notion of P-
gentleness which is well-suited for combining theories sharing (besides constants
and the equality) only unary predicates in a set P. The major contributions of
this paper are that the Löwenheim theories and BSR theories are P-gentle. A

corollary is that the non-disjoint union (sharing unary predicates) of Löwenheim
theories, BSR theories, and decidable theories accepting further constraints of
the form ∀x . ((¬)p1(x) ∧ . . . (¬)pn(x))⇒ (x = a1 ∨ . . . x = am) is decidable.

Our combination method is limited to shared unary predicates. Unfortu-
nately, the theoretical limitations are strong for a framework sharing predicates
with larger arities: for instance even the guarded fragment with two variables
and transitivity constraints is undecidable [10], although the guarded fragment
(or first-order logic with two variables) is decidable, and transitivity constraints
can be expressed in BSR. The problem of combining theories with only a shared
dense order has however been successfully solved [12,14]. In that specific case,
there is again an implicit infiniteness argument that could be possibly expressed
as a form of extended gentleness, to reduce the isomorphism construction prob-
lem into solving some appropriate extension of cardinality constraints. A clearly
challenging problem is to identify an appropriate extended notion of gentleness
for some particular binary predicates.

Also in future works, the reduction approach (Löwenheim and BSR theo-
ries can be simplified to a subset of Löwenheim) may be useful as a simplifi-
cation procedure for sets of formulas that can be seen as non-disjoint (sharing
unary predicates only) combinations of BSR, Löwenheim theories and an arbi-
trary first-order theory: this would of course not provide a decision procedure,
but refutational completeness can be preserved. More generally we also plan
to study how superposition-based satisfiability procedures could benefit from a
non-disjoint (sharing unary predicates) combination point of view. In particular,
superposition-based satisfiability procedures could be used as deductive engines
with the capability to exchange constraints à la Nelson-Oppen.

The results here are certainly too combinatorially expensive to be directly
applicable. However, this paper paves the theoretical grounds for mandatory
further works that would make such combinations practical. There are impor-
tant incentives since the BSR and Löwenheim fragments are quite expressive:
for instance, it is possible to extend the language of SMT solvers with sets and
cardinalities. Many formal methods are based on logic languages with sets. Ex-
pressive decision procedures (even if they are not efficient) including e.g. sets and
cardinalities will help proving the often small but many verification conditions
stemming from these applications.

References

1. Areces, C., Fontaine, P.: Combining theories: The Ackerman and Guarded frag-
ments. In Tinelli, C., Sofronie-Stokkermans, V., eds.: Frontiers of Combining Sys-
tems (FroCoS). Volume 6989 of LNCS., Springer (2011) 40–54

2. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)

3. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2) (2003) 140–164

4. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T., eds.: Handbook of Satis-

fiability. Volume 185 of Frontiers in Artificial Intelligence and Applications. IOS
Press (February 2009) 825–885

5. Bonacina, M.P., Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decidability
and undecidability results for Nelson-Oppen and rewrite-based decision procedures.
In Furbach, U., Shankar, N., eds.: International Joint Conference on Automated
Reasoning (IJCAR). Volume 4130 of LNCS., Springer (2006) 513–527

6. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer-Verlag, Berlin (1997)

7. Chocron, P., Fontaine, P., Ringeissen, C.: A Gentle Non-Disjoint Combination of
Satisfiability Procedures (Extended Version). Research Report 8529, Inria (2014)
http://hal.inria.fr/hal-00985135.

8. Dreben, B., Goldfarb, W.D.: The Decision Problem: Solvable Classes of Quantifi-
cational Formulas. Addison-Wesley, Reading, Massachusetts (1979)

9. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic.
In Ghilardi, S., Sebastiani, R., eds.: Frontiers of Combining Systems (FroCoS).
Volume 5749 of LNCS., Springer (2009) 263–278

10. Ganzinger, H., Meyer, C., Veanes, M.: The two-variable guarded fragment with
transitive relations. In: Logic In Computer Science (LICS), IEEE Computer Society
(1999) 24–34

11. Ganzinger, H., Nivelle, H.D.: A superposition decision procedure for the guarded
fragment with equality. In: Logic In Computer Science (LICS), IEEE Computer
Society Press (1999) 295–303

12. Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning 33(3-4) (2004) 221–249

13. Gurevich, Y., Shelah, S.: Spectra of monadic second-order formulas with one
unary function. In: Logic In Computer Science (LICS), Washington, DC, USA,
IEEE Computer Society (2003) 291–300

14. Manna, Z., Zarba, C.G.: Combining decision procedures. In Aichernig, B.K.,
Maibaum, T.S.E., eds.: Formal Methods at the Crossroads. From Panacea to Foun-
dational Support, 10th Anniversary Colloquium of UNU/IIST, Revised Papers.
Volume 2757 of LNCS., Springer (2003) 381–422

15. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. on Programming Languages and Systems 1(2) (October 1979) 245–257

16. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of Abelian
groups. In Schmidt, R.A., ed.: Proc. Conference on Automated Deduction (CADE).
Volume 5663 of LNCS., Springer (2009) 51–66

17. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform. 105(1-2)
(2010) 163–187

18. Ramsey, F.P.: On a Problem of Formal Logic. Proceedings of the London Mathe-
matical Society 30 (1930) 264–286

19. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonsta-
bly infinite theories using many-sorted logic. In Gramlich, B., ed.: Frontiers of
Combining Systems (FroCoS). Volume 3717 of LNCS., Springer (2005) 48–64

20. Ringeissen, C., Senni, V.: Modular termination and combinability for superposition
modulo counter arithmetic. In Tinelli, C., Sofronie-Stokkermans, V., eds.: Frontiers
of Combining Systems (FroCoS). Volume 6989 of LNCS., Springer (2011) 211–226

21. Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In Schmidt, R.A., ed.: Proc. Conference on Automated Deduc-
tion (CADE). Volume 5663 of LNCS., Springer (2009) 67–83

22. Sofronie-Stokkermans, V.: On combinations of local theory extensions. In
Voronkov, A., Weidenbach, C., eds.: Programming Logics - Essays in Memory
of Harald Ganzinger. Volume 7797 of LNCS., Springer (2013) 392–413

23. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In Hermenegildo, M.V., Palsberg, J., eds.: Principles of Programming
Languages (POPL), ACM (2010) 199–210

24. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Computer Science 290(1) (2003) 291–353

25. Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. Journal of Auto-
mated Reasoning 34(3) (April 2005) 209–238

26. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In Ghilardi, S., Sebastiani, R., eds.: Frontiers of Combining Systems (FroCoS).
Volume 5749 of LNCS., Springer (2009) 366–382

27. Zarba, C.G.: Combining sets with cardinals. J. Autom. Reasoning 34(1) (2005)
1–29

28. Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for term algebras with
integer constraints. Inf. Comput. 204(10) (2006) 1526–1574

A An Extension of Ramsey’s Theorem

We define an n-subset of S to be a subset of n elements of S. An n-hypergraph
of S is a set of n-subsets of S. In particular, a 2-hypergraph is an (undirected)
graph. The complete n-hypergraph of S is the set of all n-subsets of S, and its
size is the cardinality of S. An n-hypergraph G is colored with c colors if there is
a coloring function that assigns one color to every n-subset in G. In particular,
a colored 2-hypergraph (that is, a colored graph), is a graph where all edges are
assigned a color. Consider a set S of elements partitioned into disjoint regions
R = {R1, . . . Rm}. We say that a set S′ ⊆ S has region size larger than x and
note |S′|R ≥ x if |S′ ∩ Ri| ≥ x for all i ∈ {1, . . . ,m}. We also say that an n-
hypergraph is region-monochromatic if the color of each hyperedge only depends
on the number of elements belonging to each region. Two hyperedges are said
of the same kind if they have the same number of elements in each region; all
hyperedges of the same kind of a region-monochromatic hypergraph thus have
the same color. The following extension4 of Ramsey’s Theorem holds:

Theorem 7. There exists a computable function f such that,

– for every number of colors c
– for every n,N ∈ N
– for every complete n-hypergraph G on S colored with c colors

if |S|R ≥ f(n,N, c), then there exists a complete region-monochromatic n-sub-
hypergraph of G on some S′ ⊆ S with |S′|R ≥ N .

Proof. The full proof can be found in [7]. ut

4 The classical Ramsey’s Theorem is the case with only one region.

Exploiting symmetry in SMT problems

David Déharbe1, Pascal Fontaine2,
Stephan Merz2, and Bruno Woltzenlogel Paleo3?

1 Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
david@dimap.ufrn.br

2 University of Nancy and INRIA, Nancy, France
{Pascal.Fontaine,Stephan.Merz}@inria.fr

3 Technische Universität Wien
bruno.wp@gmail.com

Abstract. Methods exploiting problem symmetries have been very suc-
cessful in several areas including constraint programming and SAT solv-
ing. We here recast a technique to enhance the performance of SMT-
solvers by detecting symmetries in the input formulas and use them to
prune the search space of the SMT algorithm. This technique is based
on the concept of (syntactic) invariance by permutation of constants.
An algorithm for solving SMT by taking advantage of such symmetries
is presented. The implementation of this algorithm in the SMT-solver
veriT is used to illustrate the practical benefits of this approach. It re-
sults in a significant improvement of veriT’s performances on the SMT-
LIB benchmarks that places it ahead of the winners of the last editions
of the SMT-COMP contest in the QF UF category.

1 Introduction

While the benefit of symmetries has been recognized for the satisfiability problem
of propositional logic [15], for constraint programming [9], and for finite model
finding [4, 7, 11], SMT solvers (see [3] for a detailed account of techniques used
in SMT solvers) do not yet fully exploit symmetries. Audemard et al. [1] use
symmetries as a simplification technique for SMT-based model-checking, and
the SMT solver HTP [14] uses some symmetry-based heuristics, but current
state-of-the-art solvers do not exploit symmetries to decrease the size of the
search space.

In the context of SMT solving, a frequent source of symmetries is when some
terms take their value in a given finite set of totally symmetric elements. The
idea here is very simple: given a formula G invariant by all permutations of some
uninterpreted constants c0, . . . , cn, for any model M of G, if term t does not
contain these constants andM satisfies t = ci for some i, then there should be a
model in which t equals c0. While checking for unsatisfiability, it is thus sufficient
to look for models assigning t and c0 to the same value. This simple idea is very

? This work was partly supported by the ANR DeCert project and the INRIA-CNPq
project SMT-SAVeS.

effective, especially for formulas generated by finite instantiations of quantified
problems. We have implemented our technique in a moderately efficient SMT
solver (veriT [5]), and with this addition it outperforms the winners of recent
editions of the SMT-COMP [2] contest in the QF UF category. This indicates
that detecting symmetries, automatically or based on hints in the input, can be
important for provers to reduce the search space that they have to consider, just
as some constraint solvers already take symmetry information into account.

Outline. We first introduce notations, then define symmetries and give the main
theorem that allows us to reduce the search space. We recast an algorithm to
exploit such symmetries in the context of SMT-solvers. Next, the classical pi-
geonhole problem is analyzed from the perspective of symmetries. Finally, some
experimental results, based on the SMT-LIB, are provided and discussed.

2 Notations

A many-sorted first-order language is a tuple L = 〈S,V,F ,P, d〉 such that S is
a countable non-empty set of disjoint sorts (or types), V is the (countable) union
of disjoint countable sets Vτ of variables of sort τ , F is a countably infinite set of
function symbols, P is a countably infinite set of predicate symbols, and d assigns
a sort in S+ to each function symbol f ∈ F and a sort in S∗ to each predicate
symbol p ∈ P. Nullary predicates are propositions, and nullary functions are
constants. The set of predicate symbols is assumed to contain a binary predicate
=τ for every sort τ ∈ S; since the sort of the equality can be deduced from the
sort of the arguments, the symbol = will be used for equality of all sorts. Terms
and formulas over the language L are defined in the usual way.

An interpretation for a first-order language L is a pair I = 〈D, I〉 where D
assigns a non-empty domain Dτ to each sort τ ∈ S and I assigns a meaning to
each variable, function, and predicate symbol. As usual, the identity is assigned
to the equality symbol. By extension, an interpretation I defines a value I[t] in
Dτ for every term t of sort τ , and a truth value I[ϕ] in {>,⊥} for every formula
ϕ. A model of a formula ϕ is an interpretation I such that I[ϕ] = >. The
notation Is1/r1,...,sn/rn stands for the interpretation that agrees with I, except
that it associates the elements ri of appropriate sort to the symbols si.

For convenience, we will consider that a theory is a set of interpretations for
a given many-sorted language. The theory corresponding to a set of first-order
axioms is thus naturally the set of models of the axioms. A theory may leave
some predicates and functions uninterpreted: a predicate symbol p (or a function
symbol f) is uninterpreted in a theory T if for every interpretation I in T and
for every predicate q (resp., function g) of suitable sort, Ip/q belongs to T (resp.,
If/g ∈ T). It is assumed that variables are always uninterpreted in any theory,
with a meaning similar to uninterpreted constants. Given a theory T , a formula
ϕ is T -satisfiable if it has a model in T . Two formulas are T -equisatisfiable if
one formula is T -satisfiable if and only if the other is. A formula ϕ is a logical
consequence of a theory T (noted T |= ϕ) if every interpretation in T is a model

of ϕ. A formula ϕ is a T -logical consequence of a formula ψ, if every model
M∈ T of ψ is also a model of ϕ; this is noted ψ |=T ϕ. Two formulas ψ and ϕ
are T -logically equivalent if they have the same models in T .

3 Defining symmetries

We now formally introduce the concept of formulas invariant w.r.t. permuta-
tions of uninterpreted symbols and study the T -satisfiability problem of such
formulas. Intuitively, the formula ϕ is invariant w.r.t. permutations of uninter-
preted symbols if, modulo some syntactic normalization, it is left unchanged
when the symbols are permuted. Formally, the notion of permutation operators
depends on the theory T for which T -satisfiability is considered, because only
uninterpreted symbols may be permuted.

Definition 1. A permutation operator P on a set R ⊆ F ∪P of uninterpreted
symbols of a language L = 〈S,V,F ,P, d〉 is a sort-preserving bijective map from
R to R, that is, for each symbol s ∈ R, the sorts of s and P [s] are equal.
A permutation operator homomorphically extends to an operator on terms and
formulas on the language L.

As an example, a permutation operator on a language containing the three con-
stants c0, c1, c2 of identical sort, may map c0 to c1, c1 to c2 and c2 to c0.

To formally define that a formula is invariant by a permutation operator
modulo some rewriting, the concept of T -preserving rewriting operator is intro-
duced.

Definition 2. A T -preserving rewriting operator R is any transformation op-
erator on terms and formulas such that T |= t = R[t] for any term, and
T |= ϕ ⇔ R[ϕ] for any formula ϕ. Moreover, for any permutation operator
P , for any term and any formula, R ◦ P ◦ R and R ◦ P should yield identical
results.

The last condition of Def. 2 will be useful in Lemma 6. Notice that R must
be idempotent, since R ◦ P ◦ R and P ◦ R should be equal for all permutation
operators, including the identity permutation operator.

To better motivate the notion of a T -preserving rewriting operator, consider
a formula containing a clause t = c0 ∨ t = c1. Obviously this clause is symmetric
if t does not contain the constants c0 and c1. However, a permutation operator
on the constants c0 and c1 would rewrite the formula into t = c1 ∨ t = c0,
which is not syntactically equal to the original one. Assuming the existence of
some ordering on terms and formulas, a typical T -preserving rewriting operator
would reorder arguments of all commutative symbols according to this ordering.
With appropriate data structures to represent terms and formulas, it is possible
to build an implementation of this T -preserving rewriting operator that runs
in linear time with respect to the size of the DAG or tree that represents the
formula.

Definition 3. Given a T -preserving rewriting operator R, a permutation oper-
ator P on a language L is a symmetry operator of a formula ϕ (a term t) on the
language L w.r.t. R if R[P [ϕ]] and R[ϕ] (resp., R[P [t]] and R[t]) are identical.

Notice that, given a permutation operator P and a linear time T -preserving
rewriting operator R satisfying the condition of Def. 3, it is again possible to
check in linear time if P is a symmetry operator of a formula w.r.t. R. In the
following, we will assume a fixed rewriting operator R and say that P is a
symmetry operator if it is a symmetry operator w.r.t. R.

Symmetries could alternatively be defined semantically, stating that a per-
mutation operator P is a symmetry operator if P [ϕ] is T -logically equivalent to
ϕ. The above syntactical symmetry implies of course the semantical symmetry.
But the problem of checking if a permutation operator is a semantical symmetry
operator has the same complexity as the problem of unsatisfiability checking.
Indeed, consider the permutation P such that P [c0] = c1 and P [c1] = c0, and a
formula ψ defined as c = c0∧ c 6= c1∧ψ′ (where c, c0 and c1 do not occur in ψ′).
To check if the permutation operator P is a semantical symmetry operator of ψ,
it is necessary to check if formulas ψ and P [ψ] are logically equivalent, which is
only the case if ψ′ is unsatisfiable.

Definition 4. A term t (a formula ϕ) is invariant w.r.t. permutations of unin-
terpreted constants c0, . . . , cn if any permutation operator P on c0, . . . , cn is a
symmetry operator of t (resp. ϕ).

The main theorem follows: it allows one to introduce a symmetry breaking
assumption in a formula that is invariant w.r.t. permutations of constants. This
assumption will decrease the size of the search space.

Theorem 5. Consider a theory T , uninterpreted constants c0, . . . , cn, a formula
ϕ that is invariant w.r.t. permutations of ci, . . . , cn, and a term t that is invariant
w.r.t. permutations of ci, . . . , cn. If ϕ |=T t = c0 ∨ . . . ∨ t = cn, then ϕ is T -
satisfiable if and only if

ϕ′ =def ϕ ∧ (t = c0 ∨ . . . ∨ t = ci)

is also T -satisfiable. Clearly, ϕ′ is invariant w.r.t. permutations of ci+1, . . . , cn.

Proof : Let us first prove the theorem for i = 0.
Assume that ϕ ∧ t = c0 is T -satisfiable, and that M ∈ T is a model of

ϕ ∧ t = c0; M is also a model of ϕ, and thus ϕ is T -satisfiable.
Assume now that ϕ is T -satisfiable, and that M ∈ T is a model of ϕ. By

assumption there exists some j ∈ {0, . . . , n} such that M |= t = cj , hence
M |= ϕ ∧ t = cj . In the case where j = 0, M is also a model of ϕ ∧ t = c0. If
j 6= 0, consider the permutation operator P that swaps c0 and cj . Notice (this
can be proved by structural induction on formulas) that, for any formula ψ,
M |= ψ if and only if Mc0/dj ,cj/d0 |= P [ψ], where d0 and dj are respectively
M[c0] and M[cj]. Choosing ψ =def ϕ ∧ t = cj , it follows that Mc0/dj ,cj/d0 |=
P [ϕ ∧ t = cj], and thus Mc0/dj ,cj/d0 |= P [ϕ] ∧ t = c0 since t is invariant w.r.t.

permutations of c0, . . . , cn. Furthermore, since ϕ is invariant w.r.t. permutations
of c0, . . . , cn, R[P [ϕ]] is ϕ for the fixed T -preserving rewriting operator. Since
R is T -preserving, Mc0/dj ,cj/d0 |= P [ϕ] if and only if Mc0/dj ,cj/d0 |= R[P [ϕ]],
that is, if and only if Mc0/dj ,cj/d0 |= ϕ. Finally Mc0/dj ,cj/d0 |= ϕ ∧ t = c0,
and Mc0/dj ,cj/d0 belongs to T since c0 and cj are uninterpreted. The formula
ϕ ∧ t = c0 is thus T -satisfiable.

For the general case, notice that ϕ′′ =def ϕ ∧ ¬(t = c0 ∨ . . . ∨ t = ci−1) is
invariant w.r.t. permutations of ci, . . . , cn, and ϕ′′ |=T t = ci ∨ . . . ∨ t = cn. By
the previous case (applied to the set of constants ci, . . . , cn instead of c0, . . . , cn),
ϕ′′ is T -equisatisfiable to ϕ∧¬(t = c0 ∨ . . .∨ t = ci−1)∧ t = ci. Formulas ϕ and

(
ϕ ∧ ¬(t = c0 ∨ . . . ∨ t = ci−1)

)
∨
(
ϕ ∧ (t = c0 ∨ . . . ∨ t = ci−1)

)

are T -logically equivalent. Since A∨B and A′∨B are T -equisatisfiable whenever
A and A′ are T -equisatisfiable, ϕ is T -equisatisfiable to

(
ϕ ∧ ¬(t = c0 ∨ . . . ∨ t = ci−1) ∧ t = ci

)
∨
(
ϕ ∧ (t = c0 ∨ . . . ∨ t = ci−1)

)
.

This last formula is T -logically equivalent to

ϕ ∧ (t = c0 ∨ . . . ∨ t = ci−1 ∨ t = ci)

and thus the theorem holds. ut

Checking if a permutation is syntactically equal to the original term or for-
mula can be done in linear time. And checking if a formula is invariant w.r.t.
permutations of given constants is also linear: only two permutations have to be
considered instead of the n! possible permutations.

Lemma 6. A formula ϕ is invariant w.r.t. permutations of constants c0, . . . , cn
if both permutation operators

– Pcirc such that Pcirc[ci] = ci−1 for i ∈ {1, . . . , n} and Pcirc[c0] = cn,
– Pswap such that Pswap[c0] = c1 and Pswap[c1] = c0

are symmetry operators for ϕ.

Proof : First notice that any permutation operator on c0, . . . , cn can be written
as a product of Pcirc and Pswap, because the group of permutations of c0, . . . , cn
is generated by the circular permutation and the swapping of c0 and c1. Any
permutation P of c0, . . . , cn can then be rewritten as a product P1◦· · ·◦Pm, where
Pi ∈ {Pcirc, Pswap} for i ∈ {1, . . . ,m}. It remains to prove that any permutation
operator P1 ◦ · · · ◦ Pm is indeed a symmetry operator. This is done inductively.
For m = 1 this is trivially true. For the inductive case, assume P1 ◦ · · · ◦ Pm−1
is a symmetry operator of ϕ, then

R[(P1 ◦ . . . ◦ Pm)[ϕ]] ≡ R[Pm[(P1 ◦ · · · ◦ Pm−1)[ϕ]]]

≡ R[Pm[R[(P1 ◦ · · · ◦ Pm−1)[ϕ]]]]

≡ R[Pm[ϕ]]

≡ R[ϕ]

P := guess permutations(ϕ);1

foreach {c0, . . . , cn} ∈ P do2

if invariant by permutations(ϕ, {c0, . . . , cn}) then3

T := select terms(ϕ, {c0, . . . , cn}) ;4

cts := ∅ ;5

while T 6= ∅ ∧ |cts| ≤ n do6

t := select most promising term(T, ϕ) ;7

T := T \ {t} ;8

cts := cts ∪ used in(t, {c0, . . . , cn}) ;9

let c ∈ {c0, . . . , cn} \ cts;10

cts := cts ∪ {c};11

if cts 6= {c0, . . . , cn} then12

ϕ := ϕ ∧
(∨

ci∈cts
t = ci

)
;13

end14

end15

end16

end17

return ϕ;18

Algorithm 1: A symmetry breaking preprocessor.

where ≡ stands for syntactical equality. The first equality simply expands the
definition of the composition operator ◦, the second comes from the definition of
the T -preserving rewriting operator R, the third uses the inductive hypothesis,
and the last uses the fact that Pm is either Pcirc or Pswap, that is, also a symmetry
operator of ϕ. ut

4 SMT with symmetries: an algorithm

Algorithm 1 applies Theorem 5 in order to exhaustively add symmetry break-
ing assumptions on formulas. First, a set of sets of constants is guessed (line 1)
from the formula ϕ by the function guess permutations; each such set of con-
stants {c0, . . . , cn} will be successively considered (line 2), and invariance of ϕ
w.r.t. permutations of {c0, . . . , cn} will be checked (line 3). Notice that function
guess permutations(ϕ) gives an approximate solution to the problem of partition-
ing constants of ϕ into classes {c0, . . . , cn} of constants such that ϕ is invariant
by permutations. If the T -preserving rewriting operator R is given, then this
is a decidable problem. However we have a feeling that, while the problem is
still polynomial (it suffices to check all permutations with pairs of constants),
only providing an approximate solution is tractable. Function guess permutations
should be such that a small number of tentative sets are returned. Every ten-
tative set will be checked in function invariant by permutations (line 3); with
appropriate data structures the test is linear with respect to the size of ϕ (as a
corollary of Lemma 6).

As a concrete implementation of function guess permutations(ϕ), partitioning
the constants in classes that all give the same values to some functions f(ϕ, c)
works well in practice, where the functions f compute syntactic information that
is unaffected by permutations, i.e. f(ϕ, c) and f(P [ϕ], P [c]) should yield the same
results. Obvious examples of such functions are the number of appearances of c
in ϕ, or the maximal depth of c within an atom of ϕ, etc. The classes of constants
could also take into account the fact that, if ϕ is a large conjunction, with c0 6= c1
as a conjunct (c0 and c1 in the same class), then it should have ci 6= cj or cj 6= ci
as a conjunct for every pair of different constants ci, cj contained in the class
of c0 and c1. In veriT we use a straightforward detection of clusters c0, . . . , cn
of constants such that there exists an inequality ci 6= cj for every i 6= j as a
conjunct in the original formula ϕ.

Line 3 checks the invariance of formula ϕ by permutation of c0, . . . , cn. In
veriT, function invariant by permutations(ϕ, {c0, . . . , cn}) simply builds, in linear
time, the result of applying a circular permutation of c0, . . . , cn to ϕ, and the
result of applying a permutation swapping two constants (for instance c0 and c1).
Both obtained formulas, as well as the original one, are normalized by a rewriting
operator sorting arguments of conjunctions, disjunctions, and equality according
to an arbitrary term ordering. The three formulas should be syntactically equal
(this is tested in constant time thanks to the maximal sharing of terms in veriT)
for invariant by permutations(ϕ, {c0, . . . , cn}) to return true.

Lines 4 to 15 concentrate on breaking the symmetry of {c0, . . . , cn}. First a
set of terms

T ⊆
{
t | ϕ |= t = c0 ∨ . . . ∨ t = cn}

is computed. Again, function select terms(ϕ, {c0, . . . , cn}) returns an approxi-
mate solution to the problem of getting all terms t such that t = c0∨ . . .∨t = cn;
an omission in T would simply restrict the choices for a good candidate on line 7,
but would not jeopardize soundness. Again, this is implemented in a straight-
forward way in veriT.

The loop on lines 6 to 15 introduces a symmetry breaking assumption on
every iteration (except perhaps on the last iteration, where a subsumed assump-
tion would be omitted). A candidate symmetry-breaking term t ∈ T is chosen
by the call select most promising term(T, ϕ). The efficiency of the SMT solver
is very sensitive to this selection function. If the term t is not important for
unsatisfiability, then the assumption would simply be useless. In veriT, the se-
lected term is the most frequent constant-free term (i.e. the one with the highest
number of clauses in which it appears), or, if no constant-free terms remains, the
one with the largest ratio of the number of clauses in which the term appears
over the number of constants that will be required to add to cts on line 11; so
actually, select most promising term also depends on the set cts.

Function used in(t, {c0, . . . , cn}) returns the set of constants in term t. If
the term contains constants in {c0, . . . , cn} \ cts, then only the remaining con-
stants can be used. On line 10, one of the remaining constants c is chosen non-
deterministically: in principle, any of these constants is suitable, but the choice

may take into account accidental features that influence the decision heuristics
of the SMT solver, such as term orderings.

Finally, if the symmetry breaking assumption
∨
ci∈cts t = ci is not subsumed

(i.e. if cts 6= {c0, . . . , cn}), then it is conjoined to the original formula.

Theorem 7. The formula ϕ obtained after running Algorithm 1 is T -satisfiable
if and only if the original formula ϕ0 is T -satisfiable.

Proof : If the obtained ϕ is T -satisfiable then ϕ0 is T -satisfiable since ϕ is a
conjunction of ϕ0 and other formulas (the symmetry breaking assumptions).

Assume that ϕ0 is T -satisfiable, then ϕ is T -satisfiable, as a direct conse-
quence of Theorem 5. In more details, in lines 6 to 15, ϕ is always invariant by
permutation of constants {c0, . . . , cn} \ cts, and more strongly, on line 13, ϕ is
invariant by permutations of constants in cts as defined in line 9. In lines 4 to
15 any term t ∈ T is such that ϕ |=T t = c0 ∨ . . . ∨ t = cn. On lines 10 to
14, t is invariant with respect to permutations of constants in cts as defined in
line 9. The symmetry breaking assumption conjoined to ϕ in line 13 is, up to the
renaming of constants, the symmetry breaking assumption of Theorem 5 and all
conditions of applicability of this theorem are fulfilled. ut

5 SMT with symmetries: an example

A classical problem with symmetries is the pigeonhole problem. Most SMT or
SAT solvers require exponential time to solve this problem; these solvers are
strongly linked with the resolution calculus, and an exponential lower bound for
the length of resolution proofs of the pigeon-hole principle was proved in [10].
Polynomial-length proofs are possible in stronger proof systems, as shown by
Buss [6] for Frege proof systems. An extensive survey on the proof complexity
of pigeonhole principles can be found in [13]. Polynomial-length proofs are also
possible if the resolution calculus is extended with symmetry rules (as in [12]
and in [17]).

We here recast the pigeonhole problem in the SMT language and show that
the preprocessing introduced previously transforms the series of problems solved
in exponential time with standard SMT solvers into a series of problems solved
in polynomial time. This toy problem states that it is impossible to place n+ 1
pigeons in n holes. We introduce n uninterpreted constants h1, . . . , hn for the n
holes, and n+1 uninterpreted constants p1, . . . , pn+1 for the n+1 pigeons. Each
pigeon is required to occupy one hole:

pi = h1 ∨ . . . ∨ pi = hn

It is also required that distinct pigeons occupy different holes, and this is ex-
pressed by the clauses pi 6= pj for 1 ≤ i < j ≤ n+ 1. One can also assume that
the holes are distinct, i.e., hi 6= hj for 1 ≤ i < j ≤ n, although this is not needed
for the problem to be unsatisfiable.

 0.01

 0.1

 1

 10

 100

 4 6 8 10 12 14 16 18 20

ti
m

e
 (

in
 s

e
co

n
d

s)

Number of pigeons

veriT
veriT w/o sym

CVC3
MathSAT

OpenSMT
Yices

Z3

Fig. 1. Some SMT solvers and the pigeonhole problem

The generated set of formulas is invariant by permutations of the constants
p1, . . . , pn+1, and also by permutations of constants h1, . . . , hn; very basic heuris-
tics would easily guess this invariance. However, it is not obvious from the pre-
sentation of the problem that hi = p1 ∨ . . . ∨ hi = pn+1 for i ∈ [1..n], so any
standard function select terms in the previous algorithm will fail to return any
selectable term to break the symmetry; this symmetry of p1, . . . , pn+1 is not di-
rectly usable. It is however most direct to notice that pi = h1 ∨ . . . ∨ pi = hn;
select terms in the previous algorithm would return the set of {p1, . . . , pn+1}.
The set of symmetry breaking clauses could be

p1 = h1
p2 = h1 ∨ p2 = h2
p3 = h1 ∨ p3 = h2 ∨ p3 = h3

...
pn−1 = h1 ∨ . . . ∨ pn−1 = hn−1

or any similar set of clauses obtained from these with by applying a permuta-
tion operator on p1, . . . , pn+1 and a permutation operator on h1, . . . , hn. Without
need for any advanced theory propagation techniques4, (n + 1) × n/2 conflict
clauses of the form pi 6= hi ∨ pj 6= hi ∨ pj 6= pi with i < j suffice to transform
the problem into a purely propositional problem. With the symmetry break-
ing clauses, the underlying SAT solver then concludes (in polynomial time) the
unsatisfiability of the problem using only Boolean Constraint Propagation.

Without the symmetry breaking clauses, the SAT solver will have to inves-
tigate all n! assignments of n pigeons in n holes, and conclude for each of those
assignments that the pigeon n+ 1 cannot find any unoccupied hole.

4 Theory propagation in veriT is quite basic: only equalities deduced from congruence
closure are propagated. pi 6= hi would never be propagated from pj = hi and pi 6= pj .

The experimental results, shown in Figure 1, support this analysis: all solvers
(including veriT without symmetry heuristics) time out5 on problems of rela-
tively small size, although CVC3 performs significantly better than the other
solvers. Using the symmetry heuristics allows veriT to solve much larger prob-
lems in insignificant times. In fact, the modified version of veriT solves every
instance of the problem with as many as 30 pigeons in less than 0.15 seconds.

6 Experimental results

In the previous section we showed that detecting and breaking symmetries can
sometimes decrease the solving time from exponential to polynomial. We now
investigate its use on more realistic problems by evaluating its impact on SMT-
LIB benchmarks.

Consider a problem on a finite domain of a given cardinality n, with a set of
arbitrarily quantified formulas specifying the properties for the elements of this
domain. A trivial way to encode this problem into quantifier-free first-order logic,
is to introduce n constants {c1, . . . , cn}, add constraints ci 6= cj for 1 ≤ i < j ≤ n,
Skolemize the axioms and recursively replace in the Skolemized formulas the
remaining quantifiers Qx.ϕ(x) by conjunctions (if Q is ∀) or disjunctions (if Q
is ∃) of all formulas ϕ(ci) (with 1 ≤ i ≤ n). All terms should also be such that
t = c1 ∨ . . . ∨ t = cn. The set of formulas obtained in this way is naturally
invariant w.r.t. permutations of c1, . . . , cn. So the problem in its most natural
encoding contains symmetries that should be exploited in order to decrease the
size of the search space. The QF UF category of the SMT library of benchmarks
actually contains many problems of this kind.

Figure 2 presents a scatter plot of the running time of veriT on each formula
in the QF UF category. The x axis gives the running times of veriT without
the symmetry breaking technique presented in this paper, whereas the times
reported on the y axis are the running times of full veriT. It clearly shows a
global improvement; this improvement is even more striking when one restricts
the comparison to unsatisfiable instances (see Figure 3); no significant trend is
observable on satisfiable instances only. We understand this behavior as follows:
for some (not all) satisfiable instances, adding the symmetry breaking clauses
“randomly” influences the decision heuristics of the SAT solver in such a way
that it sometimes takes more time to reach a satisfiable assignment; in any way,
if there is a satisfiable assignment, then all permutations of the uninterpreted
constants (i.e. the ones for which the formula is invariant) are also satisfiable
assignments, and there is no advantage in trying one rather than an other. For
unsatisfiable instances, if terms breaking the invariance play a role in the un-
satisfiability of the problem, then adding the symmetry breaking clauses always
reduces the number of cases to consider, potentially by a factor of nn/n! (where
n is the number of constants), and have a negligible impact if the symmetry
breaking terms play no role in the unsatisfiability.

5 The timeout was set to 120 seconds, using Linux 64 bits on Intel(R) Xeon(R) CPU
E5520 at 2.27GHz, with 24 GBytes of memory.

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

veriT w/o sym. (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

veriT w/o sym. (in s)

Fig. 2. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on all formulas in the QF UF category. Each point represents a benchmark, and its
horizontal and vertical coordinates represent the time necessary to solve it (in seconds).
Points on the rightmost and topmost edges represent a timeout.

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

veriT w/o sym. (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

veriT w/o sym. (in s)

Fig. 3. Efficiency in solving individual instances: veriT vs. veriT without symmetries
on the unsatisfiable instances of the QF UF category.

Nb. of instances Instances within time range (in s) Total time
success timeout 0-20 20-40 40-60 60-80 80-100 100-120 T T ′

veriT 6633 14 6616 9 2 1 3 2 3447 5127
veriT w/o sym. 6570 77 6493 33 14 9 12 9 10148 19388
CVC3 6385 262 6337 20 12 7 5 4 8118 29598
MathSAT 6547 100 6476 49 12 6 3 1 5131 7531
openSMT 6624 23 6559 43 13 6 1 2 5345 8105
Yices 6629 18 6565 32 23 5 1 3 4059 6219
Z3 6621 26 6542 33 23 15 4 4 6847 9967

Table 1. Some SMT solvers on the QF UF category

To compare with the state-of-the-art solvers, we selected all competing solvers
in SMT-COMP 2010, adding also Z3 (for which we took the most recent ver-
sion running on Linux we could find, namely version 2.8), and Yices (which was
competing as the 2009 winner). The results are presented in Table 1. Columns
T and T ′ are the total time, in seconds, on the QF UF library, excluding and in-
cluding timeouts, respectively. It is important to notice that these results include
the whole QF UF library of benchmarks, that is, with the diamond benchmarks.
These benchmarks require some preprocessing heuristic [16] which does not seem
to be implemented in CVC3 and MathSAT. This accounts for 83 timeouts in
CVC3 and 80 in MathSAT. According to this table, with a 120 seconds timeout,
the best solvers on QF UF without the diamond benchmarks are (in decreasing
order) veriT with symmetries, Yices, MathSAT, openSMT, CVC3. Exploiting
symmetries allowed veriT to jump from the second last to the first place of this
ranking. Within 20 seconds, it now solves over 50 benchmarks more than the
next-best solver.

Figure 4 presents another view of the same experiment; it clearly shows that
veriT is always better (in the number of solved instances within a given timeout)
than any other solver except Yices, but it even starts to be more successful that
Yices when the timeout is larger than 3 seconds. Scatter plots of veriT against
the solvers mentioned above give another comparative view; they are available in
Appendix A. Again the benefits on the zone with a time smaller that 3 seconds on
both axes is not always clear. Also, bear in mind that the satisfiable instances do
not benefit from the technique and still exhibit on the scatter plot the somewhat
poor efficiency of veriT without symmetries. But the zone between 3 and 120
seconds on the x axis is clearly more populated than the zone between 3 and
120 seconds on the y axis.

Table 2 presents a summary of the symmetries found in the QF UF bench-
mark category. Among 6647 problems, 3310 contain symmetries tackled by our
method. For 2698 problems, the symmetry involves 5 constants; for most of
them, 3 symmetry breaking clauses were added.

The technique presented in this paper is a preprocessing technique, and, as
such, it is applicable to the other solvers mentioned here. We conducted an
experiment on the QF UF benchmarks augmented with the symmetry breaking

 0.1

 1

 10

 100

 5000 5500 6000 6500 7000

ti
m

e
 (

in
 s

e
co

n
d

s)

solved instances

veriT
veriT w/o sym.

CVC3
MathSAT

OpenSMT
Yices

Z3

Fig. 4. Number of solved instances of QF UF within a time limit, for some SMT solvers.

HHHHHnc

nsym
2 3 4 5 6 7 8 9 10 11

1 2
2 12 8
3 24 2668
4 22 92 3
5 122 166
6 156
7 17
8 11
9 5

10 2

Total 2 12 24 2698 214 325 17 11 5 2

Table 2. Symmetries detected for the QF UF category: nsym indicates the number of
constants involved in the symmetry, nc the number of symmetry breaking clauses.

clauses. We observed the same kind of impressive improvement for all solvers.
The most efficient solvers solve all but very few instances (diamond benchmarks
excluded): within a time limit of 120s and on the whole library, Yices only fails
for one formula, CVC for 36, and the others fails for 3 or 4 formulas. We also
observe a significant decrease in cumulative times, the most impressive being
Yices solving the full QF UF library but one formula in around 10 minutes.
Scatter plots exhibiting the improvements are available in Appendix B.

7 Conclusion

Symmetry breaking techniques have been used very successfully in the areas of
constraint programming and SAT solving. We here present a study of symmetry
breaking in SMT. It has been shown that the technique can account for an
exponential decrease of running times on some series of crafted benchmarks, and
that it significantly improves performances in practice, on the QF UF category
of the SMT library, a category for which the same solver performed fastest in
2009 and 2010. It may be argued that the heuristic has only be shown to be
effective on the pigeonhole problem and competition benchmarks in the QF UF
category. However, we believe that in their most natural encoding many concrete
problems contain symmetries; provers in general and SMT solvers in particular
should be aware of those symmetries to avoid unnecessary exponential blowup.
We are particularly interested in proof obligations stemming from verification of
distributed systems; in this context many processes may be symmetric, and this
should translate to symmetries in the corresponding proof obligations.

Although the technique is applicable in the presence of quantifiers and in-
terpreted symbols, it appears that symmetries in the other SMT categories are
somewhat less trivial, and so, require more clever heuristics for guessing invari-
ance, as well as more sophisticated symmetry breaking tools. This is left for fu-
ture work. Also, our technique is inherently non-incremental, that is, symmetry
breaking assumptions should be retrieved, and checked against new assertions
when the SMT solver interacts in an incremental manner with the user. This is
not a major issue, but it certainly requires a finer treatment within the SMT
solver than simple preprocessing.

The veriT solver is open sourced under the BSD license and is available on
http://www.veriT-solver.org.

Acknowledgements. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
universities as well as other funding bodies (see https://www.grid5000.fr).
We would like to thank the anonymous reviewers for their helpful comments
and suggestions.

References

1. G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model
checking for timed systems. In D. Peled and M. Y. Vardi, editors, In IFIP WG
6.1 International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE), volume 2529 of LNCS, pages 243–259. Springer, 2002.

2. C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo The-
ories Competition. In K. Etessami and S. K. Rajamani, editors, Computer Aided
Verification (CAV), volume 3576 of LNCS, pages 20–23. Springer, 2005.

3. C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability modulo theo-
ries. In A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
chapter 26, pages 825–885. IOS Press, Feb. 2009.

4. P. Baumgartner, A. Fuchs, H. de Nivelle, and C. Tinelli. Computing finite models
by reduction to function-free clause logic. J. Applied Logic, 7(1):58–74, 2009.

5. T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT: an open,
trustable and efficient SMT-solver. In R. A. Schmidt, editor, Proc. Conference on
Automated Deduction (CADE), volume 5663 of Lecture Notes in Computer Science,
pages 151–156. Springer, 2009.

6. S. R. Buss. Polynomial size proofs of the propositional pigeonhole principle. Jour-
nal of Symbolic Logic, 52:916–927, 1987.

7. K. Claessen and N. Sörensson. New techniques that improve MACE-style finite
model finding. In Proceedings of the CADE-19 Workshop: Model Computation -
Principles, Algorithms, Applications, 2003.

8. D. Déharbe, P. Fontaine, S. Merz, and B. W. Paleo. Exploiting symmetry in SMT
problems, 2011. Available at http://www.loria.fr/~fontaine/Deharbe6b.pdf.

9. I. P. Gent, K. E. Petrie, and J.-F. Puget. The Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence, chapter Symmetry in Con-
straint Programming, pages 329–376. Elsevier, 2006. Edited by Francesca Rossi,
Peter van Beek and Toby Walsh.

10. A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297
– 308, 1985.

11. X. Jia and J. Zhang. A powerful technique to eliminate isomorphism in finite model
search. In U. Furbach and N. Shankar, editors, International Joint Conference on
Automated Reasoning (IJCAR), volume 4130 of LNCS, pages 318–331. Springer
Berlin / Heidelberg, 2006.

12. B. Krishnamurthy. Short proofs for tricky formulas. Acta Inf., 22:253–275, August
1985.

13. A. A. Razborov. Proof complexity of pigeonhole principles. In Conference on
Developments in Language Theory (DLT), pages 100–116. Springer-Verlag, 2002.

14. K. Roe. The heuristic theorem prover: Yet another smt-modulo theorem prover.
In T. Ball and R. B. Jones, editors, Computer Aided Verification (CAV), volume
4144 of LNCS, pages 467–470. Springer, 2006.

15. K. A. Sakallah. Symmetry and satisfiability. In A. Biere, M. Heule, H. van Maaren,
and T. Walsh, editors, Handbook of Satisfiability, volume 185 of Frontiers in Arti-
ficial Intelligence and Applications, pages 289–338. IOS Press, Feb. 2009.

16. O. Strichman, S. A. Seshia, and R. E. Bryant. Deciding separation formulas with
SAT. In E. Brinksma and K. G. Larsen, editors, Computer Aided Verification
(CAV), volume 2404 of LNCS, pages 265–279. Springer, July 2002.

17. S. Szeider. The complexity of resolution with generalized symmetry rules. Theory
Comput. Syst., 38(2):171–188, 2005.

A veriT and other solvers

Here are scatter plots exhibiting the performances of veriT in solving individual
instances of QF UF veriT against some other SMT solvers.

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

CVC3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

CVC3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

MathSAT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

MathSAT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

OpenSMT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

OpenSMT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

Yices (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

Yices (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

Z3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

v
e
ri

T
 (

in
 s

)

Z3 (in s)

B Other solvers on formulas with symmetry breaking
clauses

These scatter plots exhibit the gain of efficiency from symmetries for some state-
of-the-art solvers. They compare running times on QF UF formulas with sym-
metry breaking clauses and on original formulas.

 0.1

 1

 10

 100

 0.1 1 10 100

C
V

C
3

 w
it

h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

CVC3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

C
V

C
3

 w
it

h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

CVC3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

M
a
th

S
A
T
 w

it
h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

MathSAT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

M
a
th

S
A
T
 w

it
h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

MathSAT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

O
p
e
n
S
M

T
 w

it
h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

OpenSMT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

O
p
e
n
S
M

T
 w

it
h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

OpenSMT (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

Yi
ce

s
w

it
h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

Yices (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

Yi
ce

s
w

it
h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

Yices (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

Z
3

 w
it

h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

Z3 (in s)

 0.1

 1

 10

 100

 0.1 1 10 100

Z
3

 w
it

h
 s

y
m

m
e
tr

ie
s

(i
n
 s

)

Z3 (in s)

The following table presents the results of some SMT solvers on QF UF
formulas without and with symmetry breaking clauses. 83 timeouts for CVC
and 80 for MathSAT are due to the diamond benchmarks.

Nb. of instances Instances within time range (in s) Total time
success timeout 0-20 20-40 40-60 60-80 80-100 100-120 T T ′

veriT 6633 14 6616 9 2 1 3 2 3447 5127
veriT w/o sym. 6570 77 6493 33 14 9 12 9 10148 19388
CVC 6385 262 6337 20 12 7 5 4 8118 29598
MathSAT 6547 100 6476 49 12 6 3 1 5131 7531
openSMT 6624 23 6559 43 13 6 1 2 5345 8105
Yices 6629 18 6565 32 23 5 1 3 4059 6219
Z3 6621 26 6542 33 23 15 4 4 6847 9967

Hereunder are results on formulas with symmetry breaking clauses

CVC 6528 119 6463 42 9 7 2 5 6495 10815
MathSAT 6563 84 6556 4 1 2 0 0 1665 2145
openSMT 6644 3 6634 6 2 1 1 0 1982 2342
Yices 6646 1 6642 3 0 1 0 0 710 830
Z3 6644 3 6640 3 1 0 0 0 1612 1972

veriT: an open, trustable and efficient SMT-solver

Thomas Bouton2, Diego Caminha B. de Oliveira2,
David Déharbe1, and Pascal Fontaine2

1 Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
david@dimap.ufrn.br

2 LORIA–INRIA, Nancy, France
{Thomas.Bouton,Diego.Caminha,Pascal.Fontaine}@loria.fr

Abstract. This article describes the first public version of the satisfiabil-
ity modulo theory (SMT) solver veriT. It is open-source, proof-producing,
and complete for quantifier-free formulas with uninterpreted functions
and difference logic on real numbers and integers.

1 Introduction

We present the satisfiability modulo theory (SMT) solver veriT, a joint work
of University of Nancy, INRIA (Nancy, France) and Federal University of Rio
Grande do Norte (Natal, Brazil). veriT provides an open, trustable and reason-
ably efficient decision procedure for the logic of unquantified formulas over unin-
terpreted symbols, difference logic over integer and real numbers, and the com-
bination thereof. This corresponds to the logics identified as QF IDL, QF RDL,
QF UF and QF UFIDL in the SMT-LIB benchmarks [15, 3]. veriT also includes
quantifier reasoning capabilities through the integration of a first-order prover
and quantifier instantiation heuristics. Finally, veriT has proof-production capa-
bilities; it outputs proofs that may be used or checked by external tools.

veriT is incremental, i.e. after each satisfiability check, new formulas can be
added conjunctively to the already checked set of formulas. The input format
is the SMT-LIB language [15], but veriT can also be used as a library with
an API following the guidelines of [12]. The tool is open-source and distributed
under the BSD licence at http://www.verit-solver.org. Internally, the solver
is organized to be easily extended by plugging new decision procedures in a
Nelson-Oppen like combination schema. Although not (yet) as fast as the solvers
performing best in the SMT competition [3], veriT has a decent efficiency. We
thus claim that it can already be useful in verification platforms where an open-
source license, extensibility, and proof certification are important.

Selected features of the veriT solver and an experimental evaluation of its
efficiency are presented in Section 2 and 3, respectively. Future developments
are described in Section 4.

2 System description

The reasoning core of veriT uses a SAT solver [9] to produce models of the
Boolean abstraction of the input formula. Such propositional assignments are

given to a so-called theory reasoner, responsible for verifying if they are models
in the background theory. This theory reasoner is a fully incremental combination
of decision procedures à la Nelson and Oppen, where non-convexity of theories
is handled using the model-equality propagation technique [7] which integrates
model-based guessing [5] in a classical Nelson-Oppen equality exchange. Equality
propagation is controlled by the congruence closure algorithm.

The remainder of this section describes some special features of veriT: inte-
gration of a third-party first-order prover, extension of the input language with
macro definitions, and production of proofs certifying the produced results.

2.1 Integrating a first-order prover

As a particular feature inherited from its predecessor haRVey [8] and, to comple-
ment very simple instantiation heuristics, the veriT solver includes a first-order
logic (FOL) superposition prover. However, veriT greatly improves the integra-
tion of the FOL prover with the other decision procedures, notably with con-
gruence closure. Indeed, the first-order prover is seen within the combination à
la Nelson-Oppen as a “decision procedure” that takes an arbitrary FOL theory
as a parameter. However, due to the cost of running the FOL prover and to its
non-incremental nature (when used as a black box), this procedure is called in
last resort. A FOL theory is computed from the quantified sub-formulas in the
assignment, abstracting ground sub-terms in order to minimize the number of
relevant symbols in the theory. In addition, information from congruence clo-
sure is used to abstract all subterms in the assignment that do not contain such
relevant symbols.

The prover may deduce that the given set of formulas is unsatisfiable. In that
case, the deduction tree is parsed to obtain the relevant unsatisfiable subset of
the input. A conflict clause is then built using this set and, again, information
from the congruence closure data structures. Since the prover is given an upper
limit of resources, it always terminates. If the prover terminates without proving
the unsatisfaibility of the given set of formulas, ground equalities and deduced
ground clauses are identified and propagated back to veriT.

In many cases where the superposition calculus is a decision procedure [2]
for the theory represented by the quantified formulas, our technique simulates a
Nelson-Oppen combination with on-the-fly purification. It has been shown that
first-order generic provers may perform quite well even compared to dedicated
decision procedures (see for instance [1]). Currently, the E-prover [16] is used as
the first-order prover, and we plan to include Spass [18], which provides better
sort handling. Fine-tuning the interplay between the instantiation heuristics and
the e-prover is essential for efficiency and remains to be done.

2.2 Macros

The input format for veriT is the SMT-LIB language extended with macro defi-
nitions. This syntactic sugar is particularly useful for instance to write formulas
containing simple sets constructions (see Figure 1). After β-reduction, and after

rewriting equalities between predicates and functions (for instance, if p and q
are unary predicates, p = q is rewritten as ∀x . p(x) ≡ q(x)), the obtained for-
mula is first-order. Such formulas may contain quantifiers but, if no function is
used, they belong to the Bernays-Schönfinkel-Ramsey fragment (the Bernays-
Schönfinkel class with equality) which is decidable. veriT can use the embedded
FOL prover as a decision procedure for this fragment. In many more intricate
cases [10], the resulting formula still belongs to a decidable fragment, but the de-
cision procedure may become very expensive. To be practical, such cases require
heuristics that have not yet been implemented in veriT.

This macro feature is indeed used in tools (e.g. CRefine [14]) that generate
verification conditions for formal developments in set-based modelling languages,
such as Circus [4], and that integrate veriT as a verification engine to discharge
these proof obligations.

(benchmark SET008_3p

:logic UNKNOWN

:extrasorts (ELMT)

:extrapreds ((B ELMT) (C ELMT))

:extramacros

((emptyset (lambda (?v ELMT) . false))

(intersection (lambda (?p (ELMT boolean)) (?q (ELMT boolean)) .

(lambda (?x ELMT) . (and (?p ?x) (?q ?x)))))

(difference (lambda (?p (ELMT boolean)) (?q (ELMT boolean)) .

(lambda (?x ELMT) . (and (?p ?x) (not (?q ?x)))))))

:formula (not (= (intersection (difference B C) C) emptyset)))

Fig. 1. A simple example with the macro capability.

2.3 Proofs

Proof production has two goals. First, this feature increases the confidence in the
tool, the proofs being checked by an independent module inside veriT. Second,
skeptical proof assistants can use such traces to reconstruct proofs of formulas
discharged by veriT (see [11]).

In Figure 2, we give an example of a very simple formula, and the proof output
by veriT. Each line states a fact that can be assumed to hold. It is identified by a
number, followed by a list starting with a label identifying the rule used to deduce
the fact, followed by a clause, and optionally ended by numerical parameters.
In our context, a clause is a disjunctive list of formulas (not literals), maybe
containing a sole formula. The numerical parameters depend on the rule, and
may be either identifiers of previous clauses (e.g. in the resolution rule), or other
place information. As an example, the and rule (for instance the second line
in Figure 2: (and ((= a c)) 1 0)) takes two numerical parameters. The first

(benchmark example

:logic QF_UF

:extrafuns ((a U) (b U) (c U) (f U U))

:extrapreds ((p U))

:formula (and (= a c) (= b c)

(or (not (= (f a) (f b)))

(and (p a) (not (p b))))))

1:(input ((and (= a c) (= b c)

(or (not (= (f a) (f b))) (and (p a) (not (p b)))))))

2:(and ((= a c)) 1 0)

3:(and ((= b c)) 1 1)

4:(and ((or (not (= (f a) (f b))) (and (p a) (not (p b))))) 1 2)

5:(and_pos ((not (and (p a) (not (p b)))) (p a)) 0)

6:(and_pos ((not (and (p a) (not (p b)))) (not (p b))) 1)

7:(or ((not (= (f a) (f b))) (and (p a) (not (p b)))) 4)

8:(eq_congruent ((not (= b a)) (= (f a) (f b))))

9:(eq_transitive ((not (= b c)) (not (= a c)) (= b a)))

10:(resolution ((= (f a) (f b)) (not (= b c)) (not (= a c))) 8 9)

11:(resolution ((= (f a) (f b))) 10 2 3)

12:(resolution ((and (p a) (not (p b)))) 7 11)

13:(resolution ((p a)) 5 12)

14:(resolution ((not (p b))) 6 12)

15:(eq_congruent_pred ((not (= b a)) (p b) (not (p a))))

16:(eq_transitive ((not (= b c)) (not (= a c)) (= b a)))

17:(resolution ((p b) (not (p a)) (not (= b c)) (not (= a c))) 15 16)

18:(resolution () 17 2 3 13 14)

Fig. 2. A simple example with its proof.

numerical parameter refers to the clause C in a previous numbered rule (i.e.
1 refers to the clause in the input rule, at line 1). This clause C is unit and
is hence represented as a list of one formula (the whole input formula in our
example), and this formula is a conjunction a0 ∧ · · · ∧ an. Obviously, each sub-
formula a0, . . . an is a consequence of C, and the second parameter just gives the
identifier of the formula in the new clause, i.e. the second numerical parameter
in rule at line 2 indicates the formula at position 0 in the input.

veriT already provides proof production for formulas with arbitrary Boolean
structure and uninterpreted functions, and is being extended to linear arith-
metics. The first line is the input. Every other fact is either a consequence of
previous ones, or is a tautology. The input formula being unsatisfiable, the last
deduced fact is the empty clause. In the example, lines 2 to 7 account for the
conjunctive normal form transformation. Lines 8, 9, 15, and 16 are tautologies
related to the theory of equality. The remaining facts are deduced by resolution
from the other ones.

Since every proof-related information is handled through a unique module
inside veriT, any proof format for SMT (for instance [17, 6]) can be adopted as

soon as it becomes a standard. Although our previous experiments [11] showed
that the proof size was not the bottleneck for the cooperation with skeptical
proof assistants, the implementation of techniques to greatly reduce the size of
our proof traces is planned.

3 Experimental evaluation

We evaluated veriT, CVC3 and Z3 (both using the latest available version in
February 2009) against the SMT-LIB benchmarks for QF IDL, QF RDL, QF UF
and QF UFIDL (June 2008 version) using an Intel(R) Pentium(R) 4 CPU at
3.00 GHz with 1 GiB of RAM and a timeout of 120 seconds. The following table
presents, for each solver, the number of completed benchmarks.

Solver QF UF QF UFIDL QF IDL QF RDL all
(6656) (432) (1673) (204) (8965)

veriT 6323 332 918 100 7673
CVC3 6378 278 802 45 7503
Z3 6608 419 1511 158 8696

This clearly shows that, although veriT is not yet as efficient as competition
winning tools [3], its efficiency is decent. The proof production capability of veriT
does not come at a cost on efficiency.

4 Future work

veriT is a new SMT-solver that provides an open framework to generate certi-
fiable proofs without sacrificing too much efficiency. The future developments
will notably include features related to efficiency and expressiveness. Consider-
ing efficiency aspects, the tool does not yet implement theory propagation [13],
a technique that is known to greatly improve the efficiency of SMT solvers. Con-
cerning expressiveness, the linear arithmetic decision procedure currently only
handles difference logic; we are now developing a reasoning engine for linear
arithmetic based on the Simplex method, which will extend completeness to full
linear arithmetic. Quantifier reasoning will be improved by including new in-
stantiation heuristics, as well as adding support for patterns guiding quantifier
instantiations. We also plan to integrate the proof production capabilities of the
embedded FOL prover with that of veriT.

Finally, we are working on the application of veriT to formal development
efforts, mainly of concurrent systems. In that context, the ability to handle sets
is very helpful; a major objective is to improve the support for such constructions.

Acknowledgments: We would like to thank Stephan Merz for his comments
and guidance. The ancestor of the veriT solver, haRVey, was initiated by the
third author and Silvio Ranise, to whom we are indebted of several ideas used
in veriT. We are also grateful to the anonymous reviewers for their remarks.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-
based satisfiability procedures. ACM Trans. Comput. Log., 10(1), 2009.

2. A. Armando, S. Ranise, and M. Rusinowitch. A rewriting approach to satisfiability
procedures. Information and Computation, 183(2):140–164, 2003.

3. C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo The-
ories Competition. In Computer Aided Verification (CAV), pages 20–23, 2005.

4. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

5. L. de Moura and N. Bjørner. Model-based theory combination. Electronic Notes
in Theoretical Computer Science, 198(2):37–49, 2008.

6. L. M. de Moura and N. Björner. Proofs and refutations, and Z3. In LPAR Work-
shops, volume 418 of CEUR Workshop Proceedings, 2008.

7. D. Déharbe, D. de Oliveira, and P. Fontaine. Combining decision procedures by
(model-)equality propagation. In Brazil. Symp. Formal Methods, pages 51–66,
2008.

8. D. Déharbe and S. Ranise. Bdd-driven first-order satisfiability procedures (ex-
tended version). Research report 4630, LORIA, 2002.

9. N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, volume 2919 of LNCS, pages 333–336. Springer, 2003.

10. P. Fontaine. Combinations of theories and the Bernays-Schönfinkel-Ramsey class.
In 4th Int’l Verification Workshop (VERIFY), 2007.

11. P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. In Tools and Algorithms for Construction and Analysis of Systems,
volume 3920 of LNCS, pages 167–181. Springer, 2006.

12. J. Grundy, T. Melham, S. Krstić, and S. McLaughlin. Tool building requirements
for an API to first-order solvers. Electronic Notes in Theoretical Computer Science,
144:15–26, 2005.

13. R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation
and its Application to Difference Logic. In Computer Aided Verification (CAV),
volume 3576 of LNCS, pages 321–334. Springer, 2005.

14. M. Oliveira, C. Gurgel, and A. de Castro. Crefine: Support for the Circus refine-
ment calculus. In IEEE Intl. Conf. Software Engineering and Formal Methods,
pages 281–290. IEEE Comp. Soc. Press, 2008.

15. S. Ranise and C. Tinelli. The SMT-LIB standard : Version 1.2, Aug. 2006.
16. S. Schulz. System Description: E 0.81. In Proc. of the 2nd IJCAR, Cork, Ireland,

volume 3097 of LNAI, pages 223–228. Springer, 2004.
17. A. Stump. Proof Checking Technology for Satisfiability Modulo Theories. In

Logical Frameworks and Meta-Languages: Theory and Practice, 2008.
18. C. Weidenbach, R. Schmidt, T. Hillenbrand, R. Rusev, and D. Topic. System

description: Spass version 3.0. In Conference on Automated Deduction (CADE),
volume 4603 of LNCS, pages 514–520. Springer, 2007.

	A selection of five publications
	Fellner, Fontaine, Woltzenlogel Paleo, 2017
	Déharbe, Fontaine, Guyot, Voisin, 2014
	Chocron, Fontaine, Ringeissen, 2014
	Déharbe, Fontaine, Merz, Woltzenlogel Paleo, 2011
	Bouton, Caminha B. de Oliveira, Déharbe, Fontaine, 2009

