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ABSTRACT

Title:
Spiking Neural Networks based on Resistive Memory Technologies for Neural data analysis

The central nervous system of humankind is an astonishing information processing system
in terms of its capabilities, versatility, adaptability and low energy consumption. Its com-
plex structure consists of billions of neurons interconnected by trillions of synapses forming

specialized clusters. Recently, mimicking those paradigms has been attracting a strongly growing
interest, triggered by the need for advanced computing approaches to tackle challenges related to
the generation of massive amounts of complex data in the Internet of Things (IoT) era. This has
led to a new research field, known as cognitive computing or neuromorphic engineering, which
relies on so-called non-von-Neumann architectures (brain-inspired) in contrary to von-Neumann
architectures (conventional computers). In this thesis, we explore the use of resistive memory
technologies such as oxide vacancy based random access memory (OxRAM) and conductive bridge
RAM (CBRAM) for the design of artificial synapses that are a basic building block for neuro-
morphic networks. Moreover, we develop an artificial spiking neural network (SNN) based on
OxRAM synapses dedicated to the analysis of spiking data recorded from the human brain with
the goal of using the output of the SNN in a brain-computer interface (BCI) for the treatment of
neurological disorders. The impact of reliability issues characteristic to OxRAM technology on the
system performance is studied in detail and potential ways to mitigate penalties related to single
device uncertainties are demonstrated. Besides the already well-known spike-timing-dependent
plasticity (STDP) implementation with OxRAM and CBRAM which constitutes a form of long
term plasticity (LTP), OxRAM devices were also used to mimic short term plasticity (STP). The
fundamentally different functionalities of LTP and STP are put in evidence.
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Résumé en francais

Titre:
Réseaux de neurones impulsionnels basés sur les mémoires résistives pour l’analyse de données
neuronales

Le système nerveux central humain est un système de traitement de l’information stupéfiant
en termes de capacités, de polyvalence, d’adaptabilité et de faible consommation d’énergie.
Sa structure complexe se compose de milliards de neurones, interconnectés par plusieurs

trillions de synapses, formant des grappes spécialisées. Récemment, l’imitation de ces paradigmes
a suscité un intérêt croissant en raison de la nécessité d’approches informatiques avancées
pour s’attaquer aux défis liés à la génération de quantités massives de données complexes
dans l’ère de l’Internet des Objets (IoT). Ceci a mené à un nouveau domaine de recherche,
connu sous le nom d’informatique cognitive ou d’ingénierie neuromorphique, qui repose sur les
architectures dites non-von-Neumann (inspirées du cerveau) en opposition aux architectures von-
Neumann (ordinateurs classiques). Dans cette thèse, nous examinons l’utilisation des technologies
de mémoire résistive telles que les mémoires à accès aléatoires à base de lacunes d’oxygène
(OxRAM) et les mémoires à pont conducteur (CBRAM) pour la conception de synapses artificielles,
composants de base indispensables des réseaux neuromorphiques. De plus, nous développons un
réseau de neurones impulsionnels artificiel (SNN), utilisant des synapses OxRAM, pour l’analyse
de données impulsionnelles provenant du cerveau humain en vue du traitement de troubles
neurologiques, en connectant la sortie du SNN à une interface cerveau-ordinateur (BCI). L’impact
des problèmes de fiabilité, caractéristiques des OxRAMs, sur les performances du système est
étudié en détail et les moyens possibles pour atténuer les pénalités liées aux incertitudes des
dispositifs seuls sont démontrés. En plus de l’implémentation avec des OxRAMs et CBRAMs de
la bien connue plasticité fonction du temps d’occurrence des impulsions (STDP), qui constitue
une forme de plasticité à long terme (LTP), les dispositifs OxRAM ont également été utilisés pour
imiter la plasticité à court terme (STP). Les fonctionnalités fondamentalement différentes de la
LTP et STP sont mises en évidence.
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INTRODUCTION

The topic of this thesis is embedded within the three main research fields, being (i) biomed-

ical engineering, (ii) memory technology and (iii) neuromorphic engineering. A short

description of each of these fields is given before explaining the objective of this disserta-

tion in more detail.

Biomedical engineering: Recording and stimulating the brain

Numerous people suffer from paralysis, e.g. after spinal cord injury (SCI), or neurodegenerative

diseases such as Parkinson, Alzheimer, and Huntington’s disease due to traumas and population

aging (WHO, 2014). Official numbers are not available, however, estimations state that approxi-

mately 2.5% and 1.9% of US citizens are affected by neurodegenerative diseases and paralysis,

respectively. This accounts to a total number of approx. 13 million people (7.4M + 5.6M) only

in the USA. Consequences of this are a major loss of life quality for individual patients and

enormous cost for healthcare, since patients are mostly dependent on around the clock assistance.

Innovative therapies are needed in order to cure patients or re-establish their independence.

Modern healthcare approaches do not only rely on molecular and pharmacological products but

embrace more and more technological approaches for rehabilitation including brain-computer

interfaces (BCIs) and neural prostheses (NPs). BCIs are paradigms designed to extract and

decode neural signals to control an external device to restore motor commands or communication,

while NPs use electrical stimulation of the Central Nervous System (CNS) to restore lost or

missing functions as for instance audition with cochlear implants or vision with retinal implants.

Therefore, probing motor cortical activity has recently received increased attention for the ex-

ploitation of human brain signals within BCI systems. It was shown that BCI’s offer promising

rehabilitation possibilities to improve life quality of patients suffering from neurodegenerative

diseases or paralysis [3],[4], i.e. numerous signals have to be stored and decoded resulting in vast

data rates and computational efforts. This requires the ability to precisely collect and analyse

brain signals, e.g. triggered when a person intends to perform movements. The effectiveness

and accuracy of BCI systems scale with the number of simultaneously recorded populations

of neurons [26],[27]. To this end, advanced microelectrode array (MEA) technologies [28] are

unique and increasingly powerful tools exploring the central nervous system in detail. Nowadays,

they consist of hundreds or thousands of microelectrodes that allow recording the activity of
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large neural ensembles and especially spikes (action potentials) generated by the surrounding

single neuron cells. These technologies generate massive data due to sampling rates of typically

20−40 kHz that have to be processed for further use and/or wireless transmission [29]. Spike

sorting is a key technique to drastically reduce the amount of data by extracting relevant in-

formation as how many cells are active and the different instants at which they fire [30]. This

allows to understand the neural code (e.g. of language or motor commands) and thus to develop

revolutionary rehabilitation treatments.

Information storage: From early memories to advanced
technologies for the Internet of Things/Big data era

The advent of portable electronics such as smartphones, tablets etc. has led to an ever increasing

need of high capacity memory technologies operating on low energy budgets. The storage function

was typically satisfied by Flash technologies for many years, more exactly by NOR and NAND

for embedded and stand-alone products. These technologies find various applications in fields

spanning everyday life products, such as micro-controllers, phones, cameras and automotive

applications. Nowadays, novel technologies are emerging from research, appearing to be competi-

tive for the replacement of Flash memories which faces several problems in the continuation of

scaling according to Moores law. Among the new technologies are: phase change memory (PCM,

PCRAM or PRAM), resistive memory (RRAM or ReRAM), ferroelectric memory (FeRAM) and

magnetic memory (MRAM). All of those technologies are non-volatile (like Flash), e.g. do not

require a power supply for data storage. They offer various advantages over Flash technology

such as higher speed and endurance and are achieving storage capacities even higher with

respect to Flash as shown in figure 0.1. The rapid emerging of non-volatile memory technologies,

most importantly PRAM and RRAM, can also be attributed to their excellent suitability for

3-dimensional integration, hence, increasing massively the memory density on chip. Note that,

due to their different characteristics and operation mechanisms, each emerging technology is

believed to fulfil a different task in future memory applications.

Von-Neumann computers vs. Brain-Inspired architectures

The Von-Neumann computer architecture [31], based on the separation of processing (CPU, GPU)

and data storage (memory), has enabled the rapid progress of human development throughout

the late 20th and beginning of 21st century. In parallel, the Internet of Things (IoT) has evolved

with billions of connected devices requiring fast and low energy data exchange. As the vast

amount of data in the IoT era are rather complex and unstructured, the development of efficient

approaches to extract information from them is becoming more and more challenging. Since

the von-Neumann architecture is based on a deterministic approach which requires dedicated
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Figure 0.1: Evolution of storage capacity of several memory technologies: NAND Flash, phase
change memory (PRAM), resistive memory (RRAM), ferroelectric memory (FeRAM) and magnetic
memory (MRAM).

and sophisticated software, parallel processing of unstructured data becomes critical. An alter-

native could be brain-inspired (also known as non-von-Neumann or neuromorphic) computing

approaches. This fundamentally different class of architectures is projected to exploit several new

device technologies and change the computing paradigm with respect to available von-Neumann

technologies, as shown in figure 0.2. Several studies among the last decade have demonstrated

the potential of non-von-Neumann computing paradigms, in particular for (parallel) processing

of vast amounts of complex data [32]. Indeed, the so-called brain-inspired networks are designed

specifically for certain applications, often related to pattern recognition problems. Among the

different approaches mimicking essential functions of biological neural systems are the so-called

artificial neural networks (ANN). Currently, ANN are simulated using conventional computers

which poses a number of problems such as high energy consumption and slow computation speed

when highly parallel computation is needed. These bottlenecks could be overcome by customized

physical implementations of ANN, which promise to achieve higher energy efficiency thus fitting

the requirements of the Internet of Things (IoT) era. In this context, synapse implementations

with novel memory technologies will play a key role as the synapses typically outnumber the

neurons in the ANN by orders of magnitude. Properties as high integration density, CMOS

process compatibility, low power consumption and long lifetime (high cycling numbers) make

resistive RAM (RRAM) one of the main candidates for hardware synapse design.
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BASICS FOR NEUROMORPHIC DEVICES

This chapter aims to provide the basics for the design of neuromorphic systems and

moreover to understand the results in chapters 3 to 6. It is divided according to the pillars

of this dissertation. First, the essentials of neuroscience and rehabilitation approaches for

neurological disorders are described in section 1.1. Second, a survey of state-of-the-art non-volatile

memory technologies as well as emerging memory technologies is given with an emphasis on

resistive memories in section 1.2. Third, the role and potential applications of RRAM technologies

in neuromorphic systems, in particular synapses, is introduced in section 1.3. Finally, the most

sophisticated neuromorphic design concepts demonstrated previously are reviewed in section 1.4.

1.1 Neuroscience

This section introduces the physiological fundamentals of neuroscience in order to understand

basic functional mechanisms governing nervous systems. Therefore, the role of neurons and

synapses are discussed in detail. Furthermore, a comprehensive overview of state-of-the-art

technologies used for sensing and/or stimulating neural activity is given. Finally, this section

focusses on the challenge of recording/detecting single neuron activities with the ultimate goal

to decode and understand the brain’s activity for potential application of such techniques into

brain-computer interfaces.

1.1.1 The central nervous system

The central nervous system (CNS) and the peripheral nervous system (PNS) constitute the two

pillars for sensing, acting and processing information of a human individual [1]. The PNS spans

the whole body and its purpose is to collect and distribute sensory and motor signals, respectively,
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which are send to or received from the CNS. Figure 1.1 shows schematically the location of CNS

and PNS in a human. The CNS consists of the brain and spinal cord and forms the basis for all

higher level information processing. It is based on a large number of neurons communicating

with one another whereas it is known that the brain is organized into specialized functional

areas such as the sensory-motor cortex for motion control [33]. Other areas are, for instance,

responsible for vision or language related tasks. Neurons in such areas may either be hard-wired

or linked temporally by concerted oscillation [34] [35]. Common for all areas in the human brain

is the basic structure, namely a large number of neurons being interconnected by synapses. The

latter are used by neurons in order to communicate with each other. The entire brain is believed

to consist of approximately 1011 neurons connected by some 1014 synapses. A detailed description

of the structural and biochemical basics of neurons and synapses and there crucial role in neural

network dynamics is given in the following sections.

1.1.2 Neurons

Neurons, also called nerve cells, are the principal building block of the human CNS. A neuron is a

complex cell that features generally three cell areas dedicated to certain functions, namely (i) the

soma where the information is processed, (ii) the dendrites as input and (iii) the axon as output

terminals as shown schematically in figure 1.2. The soma is also called cell body and features

the main signal processing of the neuron by receiving inputs from the dendrites and sending

output signals through its axon. The dendritic arbour consists of relatively short branches of

thousands of fine dendrites which establish numerous connections with axons of other neurons.

These electro-chemical connections between individual axons and dendrites are known as the

so-called synapses which are explained in detail in section 1.1.3. It is estimated that each neuron

connects to about 104 other neurons constituting a massive connectivity. The computation and

memory of the brain is based on the massively parallel communication of neurons with each

other that is effected by the propagation of so-called action potentials (AP, also known as spikes)

between neurons. An AP is a sharp electrical impulse with a rather uniform voltage amplitude

of around 100 mV and exhibits a typical duration of about 1 ms. The AP is travelling from the

soma of a pre-synaptic neuron along its axon and it is transmitted via a synapse to the dendrite

of a post-synaptic neuron and finally arrives to this one’s soma.

The electric potential of the inner neuron soma with respect to the area outside the cell body

is governed by concentration gradients of various ion species such as potassium (K+), sodium

(Na+), chlorine (Cl−) or calcium (Ca2+). These concentration gradients are controlled by the

properties of so-called active transporters (made of proteins) which pump ions through the cell

membrane to build up high concentration gradients and ion channels which allow ions to travel

through the cell membrane of a neuron. Typically, a high ion concentration of K+ dominates

inside the cell whereas Na+ exhibits a high concentration outside. Due to a high K+ and low Na+

permeability of the ion channels in the resting state of a neuron, the neurons have an intracellular
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Figure 1.1: Schematic illustration of location of central nervous system (CNS) and peripheral
nervous system (PNS) in human body. Note that the CNS consists of both brain and spinal cord.
Figure taken from [1].

resting potential of around −65 mV . In the event of an action potential, the ion specific channel

permeabilities are inversed resulting in a positive polarization. By the enormous number of

synaptic connections with other neurons, the soma receives numerous input information in the

form of synaptic currents. These currents lead to a change of the intracellular potential.

Neurons exhibit an internal threshold at about −40 mV , below which is called the sub-

threshold region. If the potential rises to this threshold, the neuron emits an AP which is

generated by the rapid depolarization up to +40 mV , followed by a quick recovery towards the

resting potential of −65 mV . 1.2. This behaviour is caused by ion channels which open shortly

and hence allow ions to flow in or out massively in order to create a concentration equilibrium.

After this rapid process, the active ion transporters take control again and establish the resting

potential inside the soma. During the transmission of the AP from the axon of a pre-synaptic
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Figure 1.2: Structural illustration of a cortical neuron consisting of three main parts: the dendrites,
soma and axon.

Figure 1.3: Illustration of a neuronal cell membrane. (a) Active ion transporters move certain
species of ions in one preferable direction resulting in concentration gradients. (b) Ion channels
permeable for certain species allow to equalize concentration gradients. Source: [1]

neuron to the dendrite of a post-synaptic neuron, the AP is converted into a current whose

amplitude is characteristic for the individual synaptic strength.

1.1.3 Synapses

A synapse or synaptic cleft is the interface between two neurons and can be classified into chemical

and electrical synapses. Chemical synapses are the majority and hold their name because they

convert the electrical signal into a current of a specific chemical species. In a chemical synapse,

the AP coming from a pre-synaptic neuron activates voltage-gated ion channels which triggers

the release of neurotransmitters that bind to their corresponding receptors. Those receptors
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Figure 1.4: Schematic internal voltage of a neuron during the emission of an action potential
(spike). Normally, a neuron lies at an internal resting potential of around −65 mV which can be
changed by synaptic inputs. If a threshold at around −40 mV is reached, a rapid depolarization
reaches to approximately +40 mV followed by the rapid re-polarization to the resting potential.
Source: [1]

are located in the membrane of the post-synaptic neuron. When a neurotransmitter arrives to

the post-synaptic neuron, it initiates an electrical response or it activates a second messenger.

These two scenarios will either excite or inhibit the post-synaptic neuron. On the other hand,

electrical synapses are rather rare and are constructed by well aligned gap junctions which are

paired channels in the neuron membranes. They are typically of very short distance and allow

for a direct ionic current flow between individual cells enabling a very fast information transfer

minimizing delays. Due to the domination of chemical over electrical synapses, we will hereafter

focus on chemical synapses. When an AP is transmitted over a synapse, a number of glutamate

neurotransmitters from pre-synaptic vesicles and Na+ via the ion channels is released into the

synaptic cleft. The Na+ causes a current flow which can either be an Excitatory Post-Synaptic

Current (EPSC) or an Inhibitory Post-Synaptic Current (IPSC) and the amplitude depends on

the individual strength of the synapse which is determined by the number of so-called AMPA

(α−amino−3−hydroxyl−5−methyl−4− isoxazole−propionate) receptors. An EPSC creates

an Excitatory Post-Synaptic Potential (EPSP) which leads to the increase of the intracellular

potential of a neuron and therefore increases its likelihood to emit an AP. Accordingly, an IPSC

generates an Inhibitory Post-Synaptic Potential (IPSP) which decreases the intracellular potential

and thus reduces the likelihood of a neuron to emit an AP. It was demonstrated that EPSPs

are affected by fluctuations that might be linked to changing probabilities of neurotransmitter

release [36] or due to the specfic axonal structure [37].

The specialization of the CNS throughout life occurs through learning and the creation of

memory which are not identical, i.e. learning is a rather quick process to gain some capability

and memory is the long term consolidation of the learned feature [38]. It is widely understood

that learning and memory are due to synaptic pruning and synaptic plasticity. The former is the
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elimination of synaptic connections which takes place mainly during early childhood and is a

key mechanism for the beginning specialization of the CNS [39]. Synaptic plasticity is the ability

of synapses to change their strength of connectivity according to their history of activations,

environment and neural processes or even to form new synaptic connections [40]. Effects of

synaptic plasticity can be observed on various time scales, ranging from milliseconds to months

or years with characteristic effects. Several different kinds of plasticity can be observed in a

single synapse making it an incredibly complex structure [41]. Typically, synaptic plasticity is

distinguished between short term and long term effects [42]. While the former tend to exhibit

a rather fast transient behaviour, the latter lead to stable modifications. Known short-term

plasticity effects are: (i) Short-term facilitation (STF): This is the transient increase of synaptic

strength which occurs upon the arrival of two or more APs within a short time at the pre-

synaptic terminal. Its effect is an increased emission of neurotransmitters in the event of an AP.

(ii) Post-tetanic potentiation: This occurs due to high-frequency bursts of pre-synaptic spikes,

known as tetanus, and can be observed with some delay after the burst. Its effect is also an

enhanced neurotransmitter release, however it is of longer duration than the STF. (iii) Short-term

depression (STD): This effect can be regarded as the opposite of STF because repeated pre-

synaptic APs result in a synaptic weakening due to the depletion of synaptic vesicles supplying

neurotransmitters. Typically, a synapse can either feature STF or STD, depending on the initial

state. If the initial probability for neurotransmitter release is high (low), the synapse tends to

perform STD (STF) upon the application of several activations [41].

Known long-term plasticity effects are: (i) Long-term potentiation (LTP) is the persistent

strengthening of a synaptic connection, usually referred to as synaptic efficacy or weight. It

occurs when a weak pre-synaptic stimulus (low frequency) results in the release of glutamate

from the pre-synaptic terminal. The glutamate binds to both NMDA (N-methyl-D-aspartate)

and AMPA receptors while the former are blocked by magnesium (M g2+) in the resting state

and the latter are permeable for Na+. When a pre-synaptic spike activates the synapse, the

M g2+ is removed from NMDA making them permeable for Ca2+. Hence, the Ca2+ can enter the

post-synaptic neuron where its concentration is strongly increases which eventually triggers

the phosphorylation leading to the incorporation of additional AMPA receptors, as shown in

figure 1.5 (a). Thus, the sensitivity to pre-synaptic Na+ release is increased, i.e. more Na+ can

be induced by a pre-synaptic spike. (ii) Long-term depression (LTD) is the opposite of LTP, hence,

the persistent weakening of a synaptic connection, usually referred to as synaptic efficacy or

weight. It is caused by rather long low-frequency (around 1 Hz) pre-synaptic stimuli which lead

to a slight increase of the Ca2+ in the post-synaptic terminal. This results in the activation of

phosphatases which cleave phosphate groups and essentially remove AMPA receptors from the

post-synaptic terminal, as illustrated in figure 1.5 (b). Accordingly, the sensitivity to pre-synaptic

Na+ release is decreased, i.e. less Na+ can be induced by a pre-synaptic spike. Note that the

cellular mechanisms behind LTP and LTD are described for hippocampal synapses here and can
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Figure 1.5: Schematic illustration of (a) Long-term potentiation (LTP) and (b) Long-term depres-
sion (LTD). The synaptic efficacy (strength) depends on the density of so-called AMPA receptors.
Accordingly, LTP or LTD are due to an increased or decreased density of AMPA receptors. Source:
[1]

differ for other CNS regions.

Spike-timing dependent plasticity (STDP) is a so-called learning rule which combines LTP

and LTD based on the correlation of pre- and post-synaptic APs, evidenced by Tsodyks and

Markram [43] as well as Bi and Poo [2]. When a post-synaptic spike occurs shortly after (before) a

pre-synaptic spike, LTP (LTD) is performed on the synapse. Figure 1.6 shows the experimentally

observed STDP. It is described as the change of the EPSC that occurs as a function of the relative

timing of pre- and post-synaptic APs. A strong increase (decrease) was observed if the timing

difference ∆t = tpost − tpre was in the range 0 ms <∆t < 40 ms (−40 ms <∆t < 0 ms). This effect

is also related to Hebbian learning proposed by Donald Hebb. In his theory, he stated that "The

general idea is an old one, that any two cells or systems of cells that are repeatedly active at the

same time will tend to become ’associated’, so that activity in one facilitates activity in the other."

Other kinds of plasticity do certainly exist but are not yet fully understood, e.g. by controlling

the membrane excitability, the CNS can actively adapt its sensitivity to sensory input activities

[44]. It is believed that this threshold adaptation may as well enable or inhibit synaptic plasticity

[45]. Furthermore, oscillation of neuronal ensembles may enhance synaptic plasticity temporally

[34].
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Figure 1.6: Experimental spike-timing-dependent plasticity found by Bi and Poo [2]. If a post-
synaptic neuron spikes after (before) a pre-synaptic neuron, so that ∆T > 0 (∆T < 0), their
synapse is potentiated (depressed) in an LTP or LTD manner. This change of synaptic strength
is expressed by the changed excitatory post-synaptic current (EPSC). A positive change, i.e.
an increased EPSC means the synapse has become stronger whereas a negative change, i.e. a
decreased EPSC indicates a weakened synaptic strength.

1.1.4 Electrophysiological techniques to record the brain activity

Neurodegenerative diseases or injuries can affect the physical structure of the brain as well as

alter mechanisms that are critical for the proper functionality of the CNS. In order to find potential

treatments or curing strategies, it is crucial to understand the functional organization and the

basic principles of neural computation. This can be studied by using a variety of techniques that

aim to record the brain’s activity by means of various approaches:

• Non-invasive:

– Electroencephalography (EEG)

– Magnetoencephalography (MEG)

• Invasive by using implanted macroelectrodes:

– Electrocorticography (ECoG)

– Stereotactic electroencephalography (SEEG)

• Invasive by using implanted microelectrodes:

– Microwires
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– Microelectrode arrays (MEA)

The focus here is on electrophysiological techniques and the most important ones are summa-

rized in figure 1.7. In EEG, one can simply attach a grid of electrodes onto the external surface of

the scalp in order to record electric potentials. However, EEG lacks spatial resolution (usually in

the range of a few cm) due to the large distance between the electrodes and the neurons and the

electrical insulation of the skull (low conductivity of the bone). The electrode grid is positioned

in contact with the brain below the skull (epidural or subdural) in the case of ECoG. By doing

this, the spatial resolution can be increased by an order of magnitude to a few mm and noise

usually decreases due to the absence of the bone. Typically, EEG and ECoG, do rather record

large neuronal ensemble activities, however recent studies have proposed that even single neuron

activities may be recorded by ECoG [46].

Implanted microwires and MEA’s [28] exhibit greater potential for Brain-computer interfaces

(BCI) and neural prostheses (NP) approaches than EEG/ECoG since they allow to record much

more detailed signals from local electric potentials reflecting the activity of a single or a few cells

[3] [4]. Two types of signals can be extracted from intra-cortical extracellular recordings: local

field potentials (LFP’s) and action potentials (APs) [47]. LFP’s result from a number of active

neurons around the electrode. LFP’s mainly reflect synaptic activity and are mainly present in a

frequency range below 200 Hz. With respect to LFP’s, AP’s originate from neurons on a shorter

range with respect to the electrode and exhibit higher frequencies in a range between 200 Hz and

5000 Hz. Note that the AP’s recorded in the signal correspond to the neural activity of different

neurons and therefore may carry the encoded cortical message for a certain function, e.g. a motor

command. To improve BCI performances, the current tendency is to record from several hundreds

of microelectrodes simultaneously [26] [48] [27]. This is typically done at sampling rates ranging

between 20−40 kHz per channel, which generates huge amounts of data. This data needs to be

processed in real time and sometimes transmitted wirelessly [29] [49].

Another technique which is not illustrated in figure 1.7 but should be mentioned is the

Figure 1.7: Overview of brain metrology techniques and their characteristic localization.
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patch-clamp technique, developed around 1980 [50]. This technique uses µm-sized micropipettes

which contacts the cell membrane and thereby encloses a small area of only a few ion channels. A

second electrode is placed nearby the cell, but without contact to it. The setup allows to record

the neuronal behaviour even in the absence of spikes, i.e. in the sub-threshold region. Since only

a few or even just a single ion channel would be involved in the contact area of the micropipette,

this experiment allows a significant improvement for the study of the behaviour of such channels.

Alternative electrodes for neural recording were proposed but remained mostly at research level

for niche applications [51].

1.1.5 Recording of single neurons

It was mentioned in section 1.1.4 that microwires and MEA’s can be used to record the extra-

cellular activity of single neurons, i.e. recorded by an electrode outside the neuron cell body, in

the form of action potentials (or spikes). By doing this, a single electrode may record several

cells in its close vicinity and the resulting signal is composed of a series of slightly different AP

waveforms. Figure 1.8 shows an illustration of a multi-unit spike train (blue) which contains

two characteristic AP waveforms. The shape of an AP strongly depends on the individual cell

morphology, i.e. the geometry of the neuron, the location of the membrane channels involved in

action potential generation and also importantly on the location of the electrode with respect to

the neuron arborization. Typically, those AP waveforms have a rather stable shape that differs

Figure 1.8: Schematic illustration of spike sorting from an extra-cellular electrical signal. Differ-
ent spike waveforms are identified and associated to individual neurons. This allows to extract
the spiking activity of single neurons from a multiplexed recording.
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slightly from one cell to another [52]. Due to various distances between the recording electrode

and individual neurons, the amplitudes (and delay times) differ for the detected APs [24]. Hence,

it is possible to separate the activities in an extracellular signal corresponding to individual cells

by separating the APs by their characteristic shape. This approach is called spike sorting [30]

[53]. Spike sorting allows to follow the dynamics of several individual cells and thus offers great

possibilities for the study of brain dynamics or the exploitation of the extracted information for

brain-computer interfaces. Many spike sorting approaches have been proposed in the literature,

but a current challenge is to implement real-time reliable methods into highly compact hardware

at the level of a single microelectrode or array. Before describing the invention that makes a step

toward this goal, the classical approaches for spike sorting are explained in the following. Note

that the time at which a spike is detected in an extra-cellular signal, is in most cases not equal to

the intracellular spike and it was even shown that extra-cellular spikes may be used to predict

intra-cellular spike events [24].

1.1.6 State-of-the-art spike sorting techniques

The separation of single unit activities from a multiplexed electrical recording of several units

(neurons) is conventionally done by following a 3-step procedure [54] [55]:

• Detection: In the first step, APs need to be discriminated from background noise in the

recorded electrical signal. This is mostly done by defining a threshold level on the signal

[56] [57]. Whenever the signal amplitude crosses this pre-defined threshold level, a spike

is detected. Choosing a reasonable value for this threshold is crucial but not trivial since

too low values can result in the identification of noise as spikes (False Positive) whereas

too high values would miss small spikes for the analysis (False Negative). Automated

spike detection directly implemented into a MEA was proposed in [58] for significant data

bandwidth reduction.

• Waveform analysis: For step 2, the most commonly used techniques are based on template

matching or feature analysis of the spike waveform.

In Template matching, the detected spikes are extracted from the signal and matched to a

certain template or a new spike shape template is created if the spike can not be associated

with the already existing templates. This is done by temporally aligning the detected

spike shape and computing an average waveform. Whether a detected spike matches a

template or a new template is created, depends on tolerance levels specified in advance.

It is possible to use either the entire data set or interpolating the spike shape templates

based on sub-sampling the data. Note that this approach usually requires supervision by

the user.

Feature analysis is based on the characterization of the detected spikes by typical waveform

features extracted from the data. The simplest way of discriminating between different
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spikes is by comparison of their amplitudes (peak-to-peak), which is very fast but can lead

to wrong results when different spikes have similar or equal amplitudes [56]. Hence, other

features such as the local extrema, temporal width, integral, etc. can also be considered.

A combination of n features is typically used for a precise spike shape description, which

results in the representation of each spike by a point in a n-dimensional space, the axis

of which are the features. The number and kind of features for extraction have to be

chosen properly for sufficient spike distinction. Hereby, it is necessary to trade off precision

versus computational effort since the extraction of a lot of features may increase the former

but degrades the latter. For this reason, available spike sorting techniques extract many

features in a first step and in a second step, the features that do not allow to distinguish

different spike classes are eliminated. This results in a multidimensional space of less than

n dimensions. Typical approaches to perform this dimensionality reduction are Principal or

Independent Component Analysis, PCA or ICA, respectively [59] [60] [61].

• Classification: Once features are extracted, spikes are represented as points in a multidi-

mensional space, the so-called feature space. Similar spike shapes typically result in points

with similar location in this space. The definition of different spike classes is typically done

by the so-called clustering which groups agglomerations of single points in the feature space,

i.e. spikes with similar feature values, together. Thus, achieving spike sorting requires

separating the clusters of points corresponding to the same cell signals. By taking n fea-

tures into account, a n-dimensional cluster is created for each spike shape i.e. every cluster

corresponding to one neuron. For this purpose, clustering algorithms such as k-means are

typically used, which are usually very time and energy consuming. Typically it is useful

or even necessary that the number of expected cells is known in advance. Current spike

sorting approaches feature a critical bottleneck of being able to distinguish a maximum

number of spike shapes which may be lower than the actual number of spike classes [55].

Strengths and limitations of standard spike sorting techniques and future
requirements

Automatic unsupervised spike sorting approaches have been developed based on Bayesian clus-

tering but generally lead to high computation loads that are difficult to implement in low-power

consumption hardware [62] [63] [64] [65] [66]. Several studies focussed on low-power hardware

implementations of spike sorting algorithms [65] [67] [68] [69] [68] [70] [71]. Alternative, more

or less automatic, spike sorting approaches were proposed based on various kinds of feature

extraction [54], neural network classifiers [72], iterative algorithms [73] [74], self-organizing

maps [75] [76] [77], sparse data representation [78], wavelets [79] and frequency domain analysis

[80]. However, a key problem is to find fully unsupervised methods allowing not only feature

extraction but also fully automatic classification. Toward this goal, artificial neural networks

incorporating learning capabilities (plasticity) can be considered. In a recent study, a STDP
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neural network has been implemented, aimed at unsupervised spike sorting [81]. The approach

uses a neural network of two layers which classifies snapshots of spikes (32 subsequent 8bits

samples), however, it also relies on the threshold technique for spike detection. New approaches

have to be developed for real time spike sorting of multi-electrode data recordings which can

be integrated directly at the recording level of a micro-electrode array device [82]. Note that

typically the number and characteristics of spikes is not known a priori.

1.1.7 Brain-computer interfaces

Brain-computer interfaces (BCI) are systems which measure the activity of the CNS and extract

and decode specific information via signal processing. The extracted data is then used to control

other technical devices such as prosthetic limbs [83]. BCI’s can be based on both LFP and spiking

data. The data can be recorded by a variety of technologies recording LFP as well as those

which record spiking activities (see section 1.7 for an overview of techniques). As discussed in

section 1.1.6, spiking data can be used in order to identify single neuron activities necessitating a

method for spike sorting. Several studies have shown that best performances are achieved using

spiking information rather than LFP’s [84]. In the particular case of hand-control BCI’s, it was

shown that LFP (ECoG) data allows to achieve 7 different hand movements [85] compared to 10

based on spiking data [86]. Moreover, decoding performance is further increased when spiking

activity has been sorted [87]. Finally, BCI performances increase when increasing the number of

recorded cells [88] [26] [89] and spike sorting is an efficient way to reduce the amount of data to

be transmitted when considering wireless systems.

Figure 1.9 shows two BCI studies by Hochberg et al. [3] [4] where MEA’s were implanted into

the brain of two patients who were tetraplegic, i.e. suffered from full paralysis of both legs and

arms. The recorded signals were treated by sophisticated procedures using a standard computer

whereas the operation was supervised by a scientist. Thanks to the extracted single neuron

activities, the patient in figure 1.9 (a) is able to move a cursor on a computer screen while the

other patient in figure 1.9 (b) was capable of controlling a robotic arm to reach and grasp a bottle

and drink from it. Another study, based on the implantation of a tetraplegic subject with a 96-unit

MEA, demonstrated a BCI that is able to control a prosthetic hand with 10 degrees of freedom

[86] [90]. These are remarkable achievements towards the rehabilitation of paralysed humans.

However, a number of critical bottlenecks follows from the used setup. First, a supervisor is

needed to monitor (and adjust) the algorithm. This is a problem because ultimately BCIs should

re-establish complete independence of patients. Second, the need of rather powerful hardware, i.e.

a PC, in order to run the real-time signal processing prevents this BCI solution to become easily

portable. Third, the MEA is connected to the outside via a cable instead of a wireless connection.

This is not possible here because the data is processed externally by the PC which means that a

huge amount of data needs to be streamed from the MEA to the PC. The problem of the wired

connection is the significantly increased risk of infections at the location of the cable. For those
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Figure 1.9: Selected brain-computer interface cased studies. Two tetraplegic patients were
cortically implanted with multi-electrode arrays (left) and a dedicated setup was used for the
signal treatment. (a) The subject is able to move a cursor thanks to harnessing his brain signals.
(b) The extracted information allowed this subject control a robotic arm to grasp a bottle and
drink independently. Source: [3] [4]

reasons, finding efficient automatic spike sorting methods that can be implemented in highly

compact and real-time hardware is thus of crucial importance for the advance of BCIs and neural

interfaces.

1.1.8 Neural prostheses

Neural prostheses (NP) aim to restore sensory or motor functions that were lost due to neurode-

generative diseases or injuries. Contrary to BCI, the approach of NPs is to stimulate parts of the

human nervous system such as the retina, the cochlea or even the brain by means of implanted

electrodes [91]. Hence, this approach can be used for hearing aids, tremor control, restoring vision

or communication interaction [92]. Ultimately, it would be desired that BCIs and NPs are merged

in a way that BCI are used to extract neural data which can then be used in a NP to control body

functions. For example, the motor neural activity in a paralysed may be recorded and decoded

in a BCI and the decoded information serves then in order to control a NP that stimulates the

muscles of the limbs. Those applications could potentially enable patients to gain independence

again by bypassing the damaged neural connection and using the own body instead of the need

for additional prosthetic devices.
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1.2 Memory technologies for data storage

Storing input and output data is a key function for information processing systems such as

computers. Conventional computers are organized in the so-called von-Neumann computer

architecture [31] where data is computed in a central processing unit (CPU) and stored in

dedicated memory blocks. Those elements are physically separated and connected by a data

bus which serves the information exchange. However, modern applications tend to be very data

intensive which requires high data transfer rates between the CPU and memory. Moreover,

modern CPUs have typical latencies in the range of nanoseconds while state-of-the-art memory

technologies are in the range of microseconds or even higher. Thus, the total power consumption

and speed is often limited by the memory access time and energy. These two issues are well known

as the von-Neumann bottleneck or memory wall. In order to overcome these obstacles, several

memory technologies are available on the market and a new generation of memory technologies

is being researched, referred to as emerging non-volatile memory technologies.

1.2.1 Overview

Different memory technologies are available for the data storage, varying from their basic

physical mechanism to their functional properties. Figure 1.10 shows an overview of the most

important memory technologies which can be classified into volatile and non-volatile memories

[93]. While volatile technologies lose the stored information within a short time after their

power supply is cut off, non-volatile memories retain the data permanently. The established

memory technologies (SRAM, DRAM, Flash) are all based on charge storage but exhibit very

different characteristics which are exploited to fulfill specific roles in the memory hierarchy of

von-Neumann architectures as shown in figure 1.11. The volatile technologies such as Static

Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM) are used for

time-critical tasks close to the processing core such as the cache and main memory, respectively.

While SRAM is used as embedded memory close to the CPU, DRAM is typically used in stand-

alone devices in a plug-and-play mode as main memory for computers. These technologies offer

the lowest latencies (fastest read and write speed) which are necessary to exploit the ultra-low

latency of nowadays processors. However, SRAM and DRAM consume a relatively large chip

area (with SRAM being larger than DRAM) resulting in increased cost and need to be refreshed

Figure 1.10: Overview of state-of-the-art (blue) and emerging (green) memory technologies.
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Figure 1.11: Memory hierarchy of conventional von-Neumann architectures constructed according
the speed of the different technologies. Source: [5]

continuously to prevent data loss. This increases the energy consumption massively. On the other

hand, non-volatile memory (NVM) technologies are generally slower but also occupy less chip

area and therefore allow much higher bit densities. Moreover, they do not consume any power in

standby. The main NVM technology is Flash while the NOR architecture (parallel organization of

single memory cells) is rather used for embedded applications (micro-controllers) and the NAND

(serial organization of single memory cells) is the standard technology for stand-alone products

(USB drives, flash cards, solid state drives). Finally, the highest memory density at lowest cost

and lowest speed is achieved by hard disk drives which are used for bulk data storage.

1.2.2 Emerging Non-Volatile Memory technologies

For several decades, Flash was scaled down leading to an ever increasing density of data storage

[5]. However, Flash technology is facing fundamental scaling difficulties related to its basic

physical mechanisms for switching and storing data. Moreover, its energy consumption for

programming is rather large. Hence, a gap in the memory hierarchy is prospected to evolve

in the future posing a critical challenge for the advancement of the von-Neumann computing

architecture. This gap is projected to be filled by so-called storage-class memory (SCM) solutions

which may be realized by some emerging memory technology (see figure 1.10). Research on

those technologies has largely accelerated during the last decade and first products start to be

commercialized. Unlike SRAM, DRAM or Flash, those emerging technologies are no longer based

on charge storage but deploy some physical mechanism to change their electrical resistance,

thus embodying so-called memristors, introduced by Leon Chua in 1971 [94] and discovered in

2008 [95]. As memristors are non-volatile, this new class of memories is typically referred to as

emerging non-volatile memory (NVM) technologies. The major emerging NVM technologies are

phase change memory (PCM), resistive random access memory (OxRAM), magnetic RAM (MRAM)

and ferroelectric RAM (FeRAM). An increasing interest in the technologies can be observed not
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only for classical NVM application but also for Internet of Things (IoT) related applications

and the implementation of synapses for brain-inspired (so-called non-von-Neumann) computing

architectures. Those applications require large memory densities, low power consumption and

low cost. The most important NVM technologies with a high potential for future implementations

of artificial synapses are introduced in the following.

1.2.2.1 Phase change memory

Phase change memory (PCM, PRAM or PCRAM) devices are based on the transition of a phase

change material between a crystalline and amorphous phase. Those materials are known as

chalcogenides and the most widely used material composition is Ge2Sb2Te5, commonly referred

to as GST. The two states exhibit a large difference in the electrical resistance as shown in figure

1.12 (a). The figure shows the experimental resistance for different chalcogenide materials which

are in a high resistance state (HRS) as-deposited, i.e. R > 1Ωcm. When the temperature is slowly

increased while the resistance is monitored, one can observe a gradual decrease of the resistance.

Furthermore, a sudden drop of the resistance occurs at the crystallization temperature that is

characteristic for each material. This drop is the transition from the amorphous to the crystalline

phase and leads to the low resistance state (LRS).

This resistance difference of several orders of magnitude between LRS and HRS can be

exploited for memory applications, i.e. featuring distinct On (’1’) and Off (’0’) states. Therefore,

the material is integrated in a lateral stack with a heater in series and metallic top and bottom

electrodes which is also known as the mushroom structure, shown in figure 1.12 (b). The function

of the heater is to apply thermal pulses that trigger the temperature induced phase changes

in the chalcogenide. Figure 1.12 (c) illustrates schematically the applied pulses. In order to

Figure 1.12: (a) Resistance as a function of temperature for major phase change materials. When
a material in amorphous state is heated up, a crystalline phase will form at some temperature
resulting in a significantly lower electrical resistance. (b) Typical integration of a phase change
material in a mushroom cell for memory application. (c) Characteristic programming pulses to
trigger conversion into crystalline (Set) or amorphous phase (Reset). Source: [6]
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switch a PCM device to LRS, i.e. the Set operation, a rather long pulse of medium temperature

(Tcrys < Tpulse < Tmelt) has to be applied to provide enough time for a complete crystallization of

the active zone. To switch the PCM device back to the HRS, i.e. the Reset operation, a short pulse

creating a high temperature (Tpulse > Tmelt) is used to melt the material locally and quench

it subsequently resulting in an amorphous region. The read operation is simply a low voltage

IV measurement which should avoid to raise the temperature above Tcrys to prevent altering

the memory state (i.e. ’read disturb’). All device operations can be achieved using the same bias

polarity, hence, PCM devices are called unipolar or nonpolar.

PCM characteristic drawbacks are the high power consumption for programming, in particular

for the Reset operation and the drift of the resistance state, mainly in HRS. The drift is a

problem especially for the design of so-called multi-level cell (MLC) architectures which aim at

implementing more than 1 bit per PCM cell, i.e. instead of only LRS and HRS, intermediate

resistance states are programmed with well defined programming conditions. This allows to

increase the storage density. However, the drift can lead to erratic bits that are linked to single

cells that change their state spontaneously due to the drift phenomenon. A possible solution to

mitigate the drift effect is the projected phase-change memory concept where programming and

reading affect different physical zones of the PCM device and thus drift, resistance-temperature

dependence and thermal current noise can be significantly reduced [96]. Alternatively, a small

additional pulse can be applied immediately after Reset to accelerate the drift effect [97]. Another

trend in PCM research is to reduce the programming current for a lower energy consumption by

means of inter-grain regions [98] or shrinking the device size in so-called confined structures [99].

Strong scalability down to 20nm2 and high integration density at 4F2 were demonstrated for the

confined PCM. Hence, these concepts may allow to drastically reduce the operation currents and

thus the overall energy consumption.

1.2.2.2 Resistive Random Access Memory

Resistive Random Access Memory (RRAM or ReRAM) is a generally broad term which describes

a number of slightly different memory types. As for PCM, the principle of RRAM is the resistance

modulation in order to store ’0’ and ’1’. The basic structure of a RRAM device is very simple,

namely a thin layer of one or multiple metal oxides sandwiched between two metallic Top (TE)

and Bottom electrodes (BE), respectively, in a so-called metal-insulator-metal (MIM) structure,

see figure 1.13 (a). It was reported in the literature that thin oxides exhibit a sudden switching

phenomenon upon the application of a critical electric field between TE and BE that results in a

drop of the electrical resistance of the oxide [100] leading to the so-called Low Resistance State

(LRS). This resistance change is commonly attributed to the formation of the so-called Conductive

Filament (CF). The oxide transformation is partly reversible by breaking the CF which is thought

to create a tunnel barrier between the remaining part of the CF and the electrode thus blocking

the current conduction and leading to the High Resistance State (HRS).
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Figure 1.13: (a) Basic structure of a RRAM cell. (b) Unipolar and (c) Bipolar device operation.
Source: [7]

The resistance levels of LRS and HRS depend on the applied programming condition. While

LRS depends on the current compliance (ICC) level during the set operation, the HRS level is

determined by the applied Reset voltage (VR) and also shows some dependence on ICC [7]. The

LRS dependence on ICC is believed to be due to the CF geometry because a higher ICC lead to a

bigger diameter of the CF (dCF ), hence a lower LRS. On the other hand, the higher VR the longer

the tunnel gap, i.e. the higher the HRS. Moreover, the density of defects induced in the oxide

during the Set operation depends on the ICC and thus indirectly affects the HRS. This is because

only a part of the defects is removed during the Reset operation.

RRAM can be classified according to (i) the IV switching characteristics and (ii) the physical

mechanism that dominates the switching effect. Regarding the IV characteristic, one can discrim-

inate between unipolar and bipolar devices. If the materials used for the TE and BE are both

inert, the set and reset operations can be performed independently of the bias voltage polarity

as it is illustrated in figure 1.13 (b). These devices are called unipolar. If one of the electrodes

is replaced by an oxidizable material, a bipolar device is obtained, i.e. opposite polarities are

necessary to switch the memory as figure 1.13 (c) shows. In some cases, both unipolar and bipolar

switching characteristics could be observed in the same devices [101].

Furthermore, the choice of the materials for the metal electrodes (TE and BE) plays an

important role for the dominating switching mechanism. If non-reactive metals such as platinum

(Pt) or titanium (Ti) are used, the CF is created by anion migration while reactive metal

electrodes such as silver (Ag) or copper (Cu) enable cation migration forming either an oxygen

vacancy or metal ion based CF. Accordingly, it is useful to distinguish between oxide vacancy based

RAM (OxRAM) and Conductive Bridge RAM (CBRAM). Both OxRAM and CBRAM technologies

suffer from cycle-to-cylce as well as device-to-device variability in both LRS and HRS. This is a

major concern for standard non-volatile memory applications.
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Oxide vacancy based Random Access Memory

OxRAM technology relies on a functional oxide, typically transition metal oxides such as hafnia

(H f O2), alumina (Al2O3), titanium oxide (TiO2) or tantalum oxide (TaOx). The electric field

during the Set operation causes the diffusion of oxygen ions (O2−) towards the electrode interface

which leaves oxygen vacancies (V 2+
O ) behind while the path of highest V 2+

O density forms the CF

[7]. The oxide transformation is partly reversible in the Reset process by breaking the CF which

occurs when O2− diffuse back (from the reservoir at the electrode interfaces) and recombine with

V 2+
O of the CF. This is thought to create a tunnel barrier between the remaining part of the CF

and the electrode thus preventing ohmic current conduction and leading to the High Resistance

State (HRS) [102]. It is expected that Joule heating is involved in the Reset process by thermally

activated O2− diffusion [103].

Ultra-low (sub-µA) operation currents [104] [105] [106] [107] [108] [109] were demonstrated

as well as the excellent scalability of OxRAM by 10x10 nm2 functional devices [110]. Endurance of

1011 programming cycles in combination with good retention characteristics were experimentally

demonstrated in [111]. Multi-level capability by tuning the reset voltage was demonstrated in

[112]. The requirement of a forming voltage with a relatively high voltage poses a problem for

potential applications, therefore it was shown in [113] that doping H f O2 with silicon (Si) can

provide forming free OxRAM devices.

On the other hand, variability poses a serious obstacle for the industrialization of OxRAM.

HRS variability is widely attributed to the variation of the tunnel gap length between the CF

Figure 1.14: Illustration of basic physical mechanism involved in switching oxide vacancy based
Random Access Memory. Source: [7]
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and the electrode and the defect density/distribution in the dielectric [114] [115] [116]. HRS

tail bits at low resistance were linked to new traps generated at the end of the reset process

[114]. Relaxation effects were hypothesized to cause a drift of both LRS and HRS within a few

microseconds, effectively reducing the resistance margin [117] [117].

Conductive Bridge Random Access Memory

CBRAM is very simlar to OxRAM, however, its resistance modulation is driven by metallic

cation (Ag+ or Cu+) [118] migration originating from the reactive metal electrode (also known

as active electrode). As shown in figure 1.15, metal ions diffuse into the oxide where they form

a metallic CF during the Set operation. During Reset, the CF is broken which means that the

TE and BE are disconnected resulting in the HRS [8]. The mechanism of the CF growth is

not yet fully understood and in fact there are some controversial theories whether the growth

starts at the interface of the inert or active electrode, mainly between the groups of Waser

et al. [119] and Celano et al. [120]. Using a specialized 3-dimensional tomography technique

based on conductive AFM, it was shown by Celano et al. [121] that the CF may have a conical

shape with its constriction at the electrode interface. This gives rises to the assumption that the

filament growth starts at the active electrode propagating towards the inert electrode and that it

eventually becomes limited by the cation migration at the CF constriction. It was also shown that

the HRS may be formed by breaking the filament in an abrupt process or it can be thinned down

in a gradual Reset [122]. CBRAM is a promising memory technology since it allows to achieve

a large margin between LRS and HRS, known as memory window, even if low programming

Figure 1.15: Illustration of basic physical mechanism involved in switching conductive bridge
Random Access Memory. Source: [8]
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currents (in the range of a few µA) are used [123] [124] [125].

1.2.2.3 Magnetic Random Access Memory

Magnetic Random Access Memory (MRAM) is one of the emerging NVM technologies that bears

high potential to become a ’universal’ memory, a technology that is thoroughly sought after. It

provides some very promising advantages such as non-volatility, high speed, very long lifetime

due to no stress effects and CMOS process compatibility. In MRAM, the information, i.e. 0′s and

1′s, is stored in the magnetization of ferromagnetic materials. The principle origins back to the

giant magnetoresistance effect (GMR) which was discovered three decades ago. It occurs when

electrons pass a stack of two ferromagnetic layers separated by a non-magnetic layer. If the two

layers are magnetized in parallel, the electrons with the spin parallel to that magnetization,

called up electrons, can easily pass from one layer to the other. On the other hand, the neurons

with the spin anti-parallel to the layer magnetization, called down neurons, undergo a strong

scattering effect. Thus, the electrical resistivity for the up electrons is low while it is high for the

down electrons. If one of the layers is magnetized anti-parallel to the other one, both up and down

electrons experience a high electrical resistivity. Hence, a GMR ratio of ∆R = (RAP −RP )/RP

can be observed where RAP and RP are the electrical resistances in anti-parallel and parallel

configuration. This effect is typically used in hard disk drives by keeping the magnetization of

ferromagnetic layer constant while switching the magnetization of the other layer, known as

free layer (FL) [126]. However, the GMR ratio is typically quite low (only a few %). Therefore,

the non-magnetic layer between the two ferromagnetic layers is replaced with a thin dielectric

barrier, the so-called magnetic tunnel junction (MTJ), as shown in figure 1.16. In case of a MTJ

made of Al2O3 and M gO, an effect similar to the GMR, the tunnel magnetoresistance (TMR),

can be observed but with a much higher TMR ratio of around 150−200%. Based on the MTJ,

there is a number of different MRAM technologies as shown in figure 1.17. The toggle technology

(figure 1.17 (a)) uses electric currents through the word lines (WL) to generate magnetic fields

for switching the MTJ. The drawback is that two WL and a bit line and a high write current are

needed, making this design poorly scalable. Figure 1.17 (b) is the thermally-assisted (TA-MRAM)

scheme where programming is achieved by exploiting the thermal effect of the MTJ current with a

coincident magnetic field. This technology offers some interesting properties for niche applications

Figure 1.16: Basic structure of a MRAM cell.
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Figure 1.17: Overview of current MRAM technologies: (a) Toggle, (b) Thermally assisted MRAM,
(c) in-plane STT-RAM, (d) and (e) perpendicular STT-RAM with single and double reference
layers (f) domain wall propagation MRAM (g) Spin orbit torque MRAM. Source: [9]

but still suffer from scalability constrictions. The discovery of the spin-transfer torque (STT)

effect enabled much lower currents and thus a better scalability for MRAM techniques. As shown

in figures 1.17 (c) - (e), STT-MRAM cells exhibit rather simple architectures because the FL

magnetization can be switched directly by means of the MTJ current. This is because the current

becomes spin-polarized when it flows through the pinned layer and it can transfer their spin

(or momentum) to the free layer and thus switch its magnetization [127]. The minimum write

current of approximately 15µA of in-plane STT-MRAM (figure 1.17 (c)) can be further reduced by

the perpendicular STT-MRAM architecture (figure 1.17 (d)) while even achieving better retention

and scalability. Two anti-parallel polarized layers can be used in order to increase the STT

efficiency as shown in figure 1.17 (e). Alternative three-terminal devices such as the domain-wall

propagation (figure 1.17 (f)) or spin orbit torque (figure 1.17 (g)) may be used to design non-volatile

logic elements thanks to the separation of the read and write paths [9].
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1.2.2.4 Ferroelectric Random Access Memory

Ferroelectric Random Access Memory (FRAM or FeRAM) is, like MRAM, a promising technology

for various future applications since it offers non-volatile data storage, fast write and read,

low energy consumption and good retention [128]. It relies on ferroelectric materials, typically

PbZrxTi1−xO3 (PZT), SrBi2Ta2O9 (SBT), (Bi,La)4Ti3O12 (BLT) [129] and ZrO2. Recently,

H f Ox was found to exhibit ferroelectric properties if doped with e.g. Yttrium (Y), Aluminum (Al),

Gadolinium (Gd), Strontium (Sr) or Lanthanum (La) [11] [10]. This offers enormous potential

since H f Ox is among the most widely used materials in standard CMOS technology. FRAM relies

on the spontaneous electric polarization of the mentioned materials while the the polarization

can be inversed by means of the application of an opposite electric field. When the electric field is

removed, the FRAM material keeps its polarization. This leads to a hysteresis of the polarization

as a function of the applied external electric field, as shown in figure 1.18. At E = 0, the two

polarizations provide the two memory states, 0 and 1, respectively. The polarizations can be

measured and exploited in several FRAM device concepts such as 1T −1C, 2T −2C or 1T which

provide different performances [10].

1.2.3 Three-dimensional integration concepts

In order to improve the integration density of 2-terminal devices such as PCM and RRAM, two

main concepts were proposed. Both of them aim to leverage the simple structure and back-end-

Figure 1.18: Principal mechanism of ferroelectric materials. Depending on the orientation of the
crystal structure (note the red atoms), the material exhibits a spontaneous electrical polarization
with positive or negative polarity. Source: [10] [11]
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of-line (BEOL) process compatibility of such emerging NVM. The 3D cross-point architecture

(shown in figure 1.19 (a)) relies on the idea to stack several layers of planar devices on top of

each other [130]. Bit lines and word lines are perpendicular to each other with a memory cell

at each of their intersections. This design allows to use every word and bit line for two layer of

memory devices and thus reduce the number of metal layers by a factor of 2x. Note that for this

reason the polarity of two cells of layer n and n+1 is therefore inverted, i.e. the process flow

for depositing the MIM layers has to be alternated. Due to the very high integration density,

this architecture may be affected by thermal crosstalk of adjacent cross-points due to large

reset currents [130]. Crossbar Inc., working with this 3D integration scheme, has started the

production of ’silver-over-amorphous-silicon’ based RRAM in 2016 [131]. Furthermore, in 2015,

Intel and Micron announced to be working on the commercialization (expected for 2017) of their

so-called 3DX Point technology which is most likely a three-dimensional PCM design [132]. The

second alternative integration concept is called vertical RRAM (VRRAM), illustrated in figure

1.19 (b) [12]. Instead of a planar device structure, the MIM layers are integrated vertically in a

pillar reducing the number of masks, thus reducing the cost. The innermost material (bulk of

the pillar) is the so-called vertical electrode whose side wall is covered by the resistive switching

layer oxide. Another large scale horizontal metal sheet forms the second electrode. The memory

element is located where the horizontal electrode surrounds the vertical one. High bit density at

very low operating current (<µA) was demonstrated in [133].

1.2.4 Comparison

Table 1.20 provides a brief comparison of the current state of main emerging NVM technologies.

Major challenges will be the process integration in the front-end-of-line (FEOL) of FeRAM and

in the back-end-of-line (BEOL) of MRAM to replace Flash. For PCM and RRAM, reliability and

power consumption issues are still restraining the industrial integration into reliable products.

Figure 1.19: (a) 3D cross-point and (b) vertical RRAM (VRRAM) integration architectures. Source:
[12]
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Figure 1.20: Comparison of most important emerging non-volatile memory technologies. Source:
[13]

1.3 Emerging NVM in Neuromorphic Systems

After Leon Chua suggested the existence of a fourth basic electronic circuit element, the memristor

in 1971 [94], he proposed this device class to be used for so-called memristive systems [134], where

essentially the memristors function as synaptic weight elements. Finally, a structure behaving

in the way Chua had postulated, was found in 2008 by HP labs [95]. The same group then

proposed to use such nano-scale memristors as synapse with intrinsic properties that resemble

biological STDP [135] to build neuromorphic systems which are inspired by the human brain.

The discovery of memristors a decade ago, in combination with the development of emerging

non-volatile memory technologies, has sparked a lot of interest and accelerated the worldwide

research effort in the neuromorphic field. Here, computation and memory are co-localized and

distributed in the form of numerous neurons which are interconnected by synapses (making

them fundamentally different from von-Neumann architectures). Since software algorithms of

artificial neural networks (ANN) are very time and energy consuming to run on conventional

von-Neumann computers due to their intrinsic parallelism, it is necessary to develop approaches

for the hardware implementation of ANN. One critical building block are synapses since they

typically outnumber neurons if a connectivity comparable to the brain (around 104) shall be

achieved. Synapses of neural systems as the CNS are essentially variable resistors that change

their conductance according to certain rules. Moreover, they can be considered two terminal

devices which makes them inherently similar to the structure of artificial synapses based on

resistive memory technologies. Some emerging NVM such as RRAM and PCM offer excellent

properties to mimic biological synapse features like low power consumption, high integration
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density, long endurance and other synapse-like properties. In order to develop sophisticated

hardware of plastic synapses and learning rules, it may be beneficial to use test platforms as an

intermediate solution [136] which feature event-based simulation that is faster and more precise

than von-Neumann computing [137]. It is of crucial importance to develop realistic models for

the different types of memristive devices [138].

Both neuron and synapse implementations based on emerging NVM have been proposed.

According to the scope of this dissertation the focus of the following sections will be on concepts

of artificial synapses while neurons will not be explained here. Interested readers are referred to

[139] [140] [141].

1.3.1 Application of NVM in synapses

The input to a neuron with more than one input synapse is essentially the so-called multiply-

accumulate (MAC) function. That is, every synapse performs a multiplication of the activity

impulse with its weight and propagates this value to the neuron. The neuron sums up all input

from its synapses. Multiplication, however, is a computationally expensive process on a von-

Neumann processor. Recent advancements in the field of emerging non-volatile memories have

attracted a great interest by the brain-inspired computing community due to properties that

are very promising for the implementation of artificial neural networks (ANN) in hardware.

Their capability to alter the electrical conductance (or resistance) resembles to some extent the

behaviour of synapses (e.g. in the human nervous system) which can change their density of

ion channels, thus increasing or decreasing their response strength, known as synaptic efficacy.

Hence, it derives naturally to use memory devices (i.e. memristors) as synapses because every

memory cell performs the multiplication intrinsically physically due to Ohms law (i = R ∗ v).

Among the most promising technologies are resistive random access memory (RRAM) and phase-

change memory (PCM). It was demonstrated that RRAM based synaptic arrays perform better

in terms of area and leakage consumption with respect to SRAM based synaptic arrays but

may be worse in latency [142]. Several emerging NVM technologies were explored for synaptic

designs [143] and most often used in hybrid architectures, NVM based synapses and CMOS

based neurons [144]. As biological synapses are complex structures with some characteristic

features, it is however not trivial to mimic their exact behaviour by means of of one specific

memory technology.

1.3.1.1 PCM synapses

It was found that PCM exhibits a progressive Set operation (crystallization) [145] [14] for the

application of short (a few tens of nanoseconds) identical programming pulses as shown in figure

1.21 (a). This is due to the step-by-step crystallization of the active material and indeed a very

promising result for the implementation of synaptic potentiation, i.e. the increase of a synaptic

weight [14]. However, as figure 1.21 (b) shows, the reset process (amorphization) of PCM is abrupt,
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Figure 1.21: (a) Gradual crystallization of PCM cell upon application of identical set pulses. (b)
Abrupt amorphization of PCM cell upon application of identical reset pulses. Source: [14]

i.e. a device is switched from HRS to LRS within one pulse and the resistance can no more be

altered by the application of a pulse with the same parameters. This bottleneck was overcome

with the introduction of the so-called 2-PCM synapse whose concept is the implementation of a

synapse with two PCM devices, shown in figure 1.22 (a). Here, the long-term potentiation (LTP)

and long-term depression (LTD) are performed by dedicated PCM devices. The synaptic weight is

then measured as the differential current of LTP and LTD devices. It is possible that one device

reaches its maximum conductance so that the overall conductance can not be altered any more

by further LTP or LTD operations. Therefore, a refresh mechanism was used (see figure 1.22

(b)) after a fixed time interval or when a certain number of synaptic activations is reached [15].

In this case, both devices are reset to the HRS and the previous synaptic weight is restored by

Figure 1.22: (a) The 2-PCM synapse design. Both LTP and LTD device use gradual crystallization
in order to achieve a progressive potentiation and depression of the synaptic weight which
corresponds to I. (b) Refresh algorithm to prevent saturation of synaptic weights. LTP and LTD
devices are reset and the previous synaptic weight is restored by gradually programming the
device which was stronger before the refresh. Source: [15]
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gradually programming the PCM device which was stronger before the refresh to the desired

level. It was demonstrated that this 2-PCM synapse device can be used to build spiking neural

networks (SNN) [146] [147] [15] [148] and multi-layer perceptrons [149] [150] [151]. Inserting an

additional H f O2 layer between the heater and the plug allows to reduce the energy consumption

in read and program mode and thus for the ANN [152] [153]. Since the 2-PCM synapse exploits

only crystallization, it is inherently unaffected by drift mechanisms [154]. By tuning the Set and

Reset pulse amplitudes, both potentiation and depression can be performed gradually in single

devices [155] [156]. It was also shown that PCM operated in a binary mode, by application of long

enough programming pulses, can be used as binary synapses in SNN [157]. Another approach

was demonstrated in [158] where synapses were implemented with single PCM devices featuring

gradual LTP and abrupt LTD being sufficient for the specific application.

1.3.1.2 OxRAM synapses

Section 1.2.2.2 explained that the programmed resistance in LRS or HRS of an OxRAM cell

depends on the used current compliance (ICC) or reset voltage (VR), respectively. Figures 1.23

(a) and (b) show several set and reset operations while the ICC and VR are gradually increased

from cycle to cycle. As the IV curves indicate, this leads to a gradual decrease or increase of the

OxRAM device resistance. Thus, it is possible to use on OxRAM device as an analogue synapse

by carefully tuning of the programming conditions in order to gradually tune its conductance, as

shown in figure 1.23 (c) [16]. This concept of synaptic plasticity was used based on single devices

[159] [160] [16] [161] [162] and OxRAM arrays [163] [164] [165] [166] [167]. However, tuning the

programming pulse conditions at every programming step requires to read the synaptic state

first and then adapt the driver circuit accordingly to induce a small conductance change. This

increases significantly the circuit complexity and energy consumption. In order to avoid this, two

invariant pulse conditions should be used, one for potentiation and another one for depression.

This will not allow to achieve an analogue but a binary behaviour of the OxRAM devices. While a

Figure 1.23: Gradual programming of OxRAM cell by increasing the (a) current compliance (CC)
and (b) reset voltage (Vstop). (c) Gradual potentiation and depression achieved by tuning the
programing conditions. Source: [16]
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binary synaptic weight may be enough for certain applications, other applications require the

possibility to use analogue weights. To achieve multi-level synapses based on binary devices,

one can use multiple cells organized in a parallel circuit [168]. By doing this, the conductance

of a synapse is equal to the sum of all device conductances, i.e. ranges between all devices in

HRS or LRS. Hence, n devices allow to achieve n+1 levels of conductance (synaptic weight). The

probabilistic programming of this compound synapse bears intrinsic similarity to the biological

STDP [168] such as self adaptation, independently from the initial synaptic state [169], [170].

This strategy was used to implement OxRAM based synapses in Convolutional Neural Networks

(CNN) [171].

It was argued that it is possible to exploit the gradual reset of OxRAM to implement gradual

depression [172] or that it may be even possible to gradually change the resistance of a single

OxRAM cell by applying identical sub-switching voltage pulses [173]. Several groups have

reported the coexistence of short and long term plasticity in single OxRAM devices, i.e. volatile and

non-volatile states with the possibility of a short-to-long transition upon repeated programming

[174] [175] [176] [177]. Moreover, OxRAM synapses allow to implement spike-rate-dependent

plasticity (SRDP) besides STDP [178]. Other designs include 1T1R and 2T1R synapses with

STDP features [179] [180], recurrent OxRAM array based SNN [181] and complementary OxRAM

based synapses which reduce the need for selectors and mitigate sneak paths currents [182].

Another strategy to elude the constriction of binary devices without compromising integration

density may be the vertical RRAM (VRRAM) integration approach (see section 1.2.3). The number

of synaptic levels can be tailored by the number of horizontal electrodes. It was recently shown

how VRRAM based synapses may be used for synaptic plasticity [183] and to implement large

scale CNNs [184].

1.3.1.3 CBRAM synapses

CBRAM shows the same principal switching behaviour like OxRAM when operated with relatively

strong amplitude programming pulses, i.e. binary set and reset. Thus, gradual potentiation and

depression can be achieved in single devices by tuning the programming pulses [185]. Otherwise,

the multiple cell synapse architecture [168] and/or probabilistic programming can be used to

achieve multiple-level synaptic weights [17] [186]. Therefore, the principle of tuning the set and

reset probabilities by tuning the pulse voltages is illustrated in figure 1.24. On the other hand,

the application of short programming pulses on single CBRAM devices allows to control the

CF structure resulting in a short-term to long-term conductance modulation [187]. The authors

claimed that their concept may be used to implement artificial synapses based on single CBRAM

cells.

Sub-µA programming currents can be used to achieve gradual potentiation and depression

in so-called programmable metallization cells (PMC) [188]. Otherwise, carefully tuning the

programming pulses allows to achieve gradual LTP and LTD and thus STDP by means of a
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Figure 1.24: (a) Probabilistic programming is shown for a CBRAM cell. For a number of cycles,
the Set pulses fail to switch the device into LRS. This phenomenon can be used to extract (b)
Reset and (c) Set probabilities. Source: [17]

PMC [189] [190] [191] [192]. A PMC with several kinds of plasticity (STP, STDP, SRDP) was also

proposed [193].

1.3.1.4 MRAM synapses

Switching a STT-MRAM MTJ from anti-parallel (AP) to parallel (P) configuration or vice versa,

requires a certain time of the switching pulse to be applied. As a rule of thumb, the time is reduced

as the applied switching current is higher [194], as shown in figure 1.25 (a). Since the exact

switching time varies from device to device and cycle to cycle due to the fundamental physical

STT mechanism, a switching variability can be derived and tuned by modulating the pulse

voltage and current, shown in figure 1.25 (b) [18]. According to these results, binary synapses

were implemented for STDP network [195]. Moreover, it was shown that the delay between

two programming pulses has an inverse impact on the switching variability and can be used to

balance synaptic modifications between STF and STDP, as demonstrated in figure 1.25 (c) [19]. A

MTJ based synapse featuring a relatively large resistance range of 10%−100% was shown in

[196].

Figure 1.25: (a) Switching time as a function of the applied current density in a MRAM cell.
Switching probability as a function of (b) applied programming time and (c) delay between
programming pulses. Source: [18] [19]
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1.3.1.5 FeRAM synapses

Ferroelectric PZT integrated in thin film capacitors (1C) was used in [20] to implement analogue

synapses. Here, an analogue scheme was possible due to the existence of ferroelectric domains

which can have differing polarizations compared to each other. An analogue weight characteristic

can be achieved by tuning the amplitude of the applied sine wave used to switch the synap-

tic FRAM device, as shown in figure 1.26 (a). Panasonic has proposed an individual synapse

based on a ZnO(60nm)/Pb(Zr,Ti)O3(250nm)/SrRuO3(10nm)/Pt(30nm) stack where the PZT

polarization is controlled by the gate voltage in order to implement analogue synaptic weights,

shown in figure 1.26 (b) [21]. The authors of [22] have used ferroelectric tunnel junctions (FTJs)

based on supertetragonal BiFeO3 (BFO) tunnel barriers combined with (Ca,Ce)MnO3 (CCMO)

bottom and Co top electrodes. As they demonstrated, the ferroelectric domains can be polarized

individually one-by-one, thus inducing a gradual resistance shift, depending on the number of

pulses and applied pulse voltage as shown in figure 1.26 (c).

1.3.2 Neuromorphic concepts based on NVM synapses

Neuromorphic systems can be classified according to the applied strategy for synaptic weight

specialization into the two fundamentally different approaches :

• Supervised artificial neural networks: This kind of ANN’s are trained by means of

large data sets and error back-propagation in order to master a specific classification task

[197] [198]. Supervised ANN’s typically operate on a synchronous time scale and use floating

point numbers instead of spikes for the communication between neurons. The supervised

approach is commonly chosen for deep neural networks (DNN) [199], convolutional neural

networks (CNN), deep belief networks (DBN) and multilayer perceptrons.

• Unsupervised artificial neural networks: These ANN’s are not trained per se but

rather train themselves by following certain learning rules, e.g. STDP, which are inspired

Figure 1.26: (a) Hysteresis loop of ferroelectric polarization indicating gradual polarization
change. (b) Gradual conductance change observed in a FeFET. (c) Ratio of switched polarization
area as function of the cumulated pulse time showing gradual changes. Source: [20] [21] [22]
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by the mechanism of the human brain. This allows them to perform adaptation to a given

task independently from a supervisor. Moreover, it was repeatedly argued that STDP is

a key function for the detection of repeating patterns in the input data [200] [201] [202]

[203] allowing to extract essential information from rather chaotic data. In particular, this

feature was emphasized for using an adress event representation (AER) retina [204] [205]

[206] [207] and an AER ear [208]. Unsupervised ANN’s are also known as spiking neural

networks (SNN) since their neurons communicate via instant action potentials (spikes).

It should be noted that software implemented CNN’s are currently used for very powerful

classification tasks such as face or object recognition and achieve state-of-the art performances

[199]. On the other hand, SNN’s are still more commonly used by the research community due to

a lack of understanding how to effectively train large scale SNN.

1.3.2.1 Spiking Neural Networks based on emerging NVM

Several STDP featuring SNN’s were demonstrated for two-dimensional visual pattern recognition

based on OxRAM [161] [209] [173] [179] [180], CBRAM [17] and PCM [15] [157]. Furthermore,

SNN’s featuring STDP are able to process auditory signals [186] [164]. The gradual, self-limiting

behaviour of OxRAM synapses was pointed out by means of a WTA network [210]. A perceptron

with spike based plasticity in OxRAM memristors was demonstrated by [211]. Recently, binary

synapses based on single STT-MTJ were used in a spiking neural network with dedicated pulse

schemes adapted to the feature STDP achieving recognition rates up to 97% in a AER sensor

visual pattern recognition application [195]. Panasonic has integrated a 9x9 Hopfield neural

network based on three-terminal ferroelectric memory (3T −FeMEM) cells [21] in a hardware

chip. The network features an unsupervised learning rule inspired by biological STDP which

allows them to achieve successful unsupervised learning and recognition of visual patterns.

Crossbar arrays featuring analogue synapses based on single ferroelectric tunnel junctions were

used for the implementation of a STDP network and it was demonstrated that it allows to learn

different patters of two-dimensional visual inputs achieving a recognition rate of almost 100%,

even in presence of noise [22].

It is interesting to note that SNN’s were demonstrated to be extremely robust towards

corrupted data [155] and that their performance is only slightly reduced in presence of various

kinds of synaptic variability [212] [213]. Moreover, it was shown that homeostasis of neurons

(i.e. threshold adaptation) can mitigate degradation of the SNN performance due to threshold

variability.

1.3.2.2 Formal Neural Networks based on emerging NVM

This strategy was shown to be successful for the implementation of synapses in Convolutional

Neural Networks (CNN) where synapses made of n > 14 allow to achieve very high recognition
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rates of above 98% [214] [171]. Furthermore, it was demonstrated that even if OxRAM based

synapses are affected by resistance variability, CNNs exhibit good robustness and still obtain

high recognition rates [215]. Note that this application may be a major driver for future OxRAM

technology application perspectives. The energy improvement of CNNs implemented with RRAM

was investigated in [216]. A 1R RRAM crossbar was trained by the Manhattan update rule

which is a variant of the common supervised training approach and successfully applied to a 3x3

pattern classification [166]. VRRAM based synapses were prospected for synaptic plasticity [183]

and to implement large scale CNNs [184]. Moreover it was demonstrated that the variability

of VRRAM exhibits a short ranged dependence of the resistance as a function of the recent

device history in the order of a few tens of cycles which reduces effectively the overall resistance

variability. This can be used to reduce the number of VRRAM cells per synapse without degrading

the performance as demonstrated in [217]. Note that this is only possible for back-propagation

training approaches where equal or similar cycling numbers of individual devices appear.

1.4 Applications of Neuromorphic Networks

First, it is important to understand that layers of neurons in a neuromorphic networks can be

connected in fully-connected or convolutional scheme, as illustrated in figure 1.27. In a fully-

connected architecture, each neuron of the layer m is connected to every neuron of layer m+1

by a synapse whereas in a convolutional architecture, a neuron of layer m+1 receives only

synapses from a receptive field, i.e. a small number of close neurons in layer m. If all layers are

fully-connected, one typically calls the network a fully-connected neural network (FCNN) whereas

a convolutional neural network (CNN) comprises at least two layers of neurons connected in a

convolutional way.

CNN’s are usually used to extract rather abstract features by means of the receptive kernels

of the single neurons. Those features may even be invariant from the given object type, i.e. a

cat picture may be constructed by the same basic features that are needed to construct a bicycle

picture [218]. Note that this property of feature extraction bears great potential for generalised

classification approaches.

Figure 1.27: Schematic illustration of fully-connected neural network (FCNN) and convolutional
neural network (CNN).
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The applications that can be realized with neuromorphic systems are manifold and essentially

all rely on pattern recognition/detection. They cover:

• Visual pattern analysis: character recognition, object detection, pattern completion

• Auditory pattern analysis: speech synthesizing, sound detection

• Data compression and reconstruction: Images, Video, Sound

• Healthcare: diagnostic applications [219], brain-machine-interfaces based on LFPs [220],

brain-machine-interfaces based on action potentials [221]

• Optimization: Travelling salesman problem, Hamming distance

• Arithmetic computing

• Prediction: weather, stock market
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GOAL OF THIS WORK

A major challenge for the rehabilitation of the steadily growing number of patients affected

by neurodegenerative diseases and injuries is the development of a practical spike sorting

system, i.e. a simple system able to separate single unit activities from a multiplexed

electrical recording of several units (neurons). To this aim, a number of critical tasks needed to

be solved:

• Discrimination between noise and spikes

• Recognition of non-stationary spikes (bursts, dislocation of electrodes over time due to

tissue relaxation, etc.)

• Ability to distinguish between simultaneous neuronal activity (overlapping spike trains)

• Computational effort to be minimal

Recently, brain-inspired computing imitations by means of neuromorphic network architec-

tures have demonstrated to be superior candidates for the detection and prediction of patterns

occuring in complex data with respect to conventional von-Neumann architectures [222], [223],

[166]. For this reason, the key goal of this Ph.D. thesis is the exploration of neuromorphic

systems targeting to perform real-time spike sorting with nanowatt-level power consumption

and reasonable spike sorting performances. Therefore, the approach for the development of

an innovative spike sorting system is to use an artificial neural network that is learns in an

unsupervised manner from the data is put through its topology. Unsupervised learning ANN’s

require a learning rule which is typically inspired by nature such as spike-timing-dependent

plasticity (STDP) applied for tuning the synaptic weights of the spiking neural network (SNN).

A SNN is specifically designed and optimized to perform spike sorting in real-time. In order to

do this, a real-time processing step of the neural signal is necessary before the processed signal
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can be used by the SNN. The spike sorting application requires a quick adaptation to altering

signals, i.e. the SNN needs to be able to learn fast and tune it’s weight rapidly. Emerging resistive

RAM (RRAM) memories are therefore a good candidate for the implementation of synapses

becuase they offer the possibility to build complex brain-like (cognitive) computing hardware

systems that operate with low latencies, are compact and consume low power. While several

concepts for synaptic implementations based on RRAM have been proposed [224], [16], oxide

based RRAM (OxRAM) technology is among the most promising candidates thanks to its low

(sub-µA) operation currents [104], highly scalable lateral dimensions [110], low cost production

and back-end-of-line (BEOL) process compatibility. While OxRAM in typical NVM applications is

operated using switching currents higher than 50 µA for reliability reasons, we have analyzed

the OxRAM device behavior in this paper for switching currents as low as 1 µA in order to

understand the ultra-low energy operation. Switching and conduction properties of these new

emerging technologies will be investigated in the perspective of implementation into potential

artificial synapses for neuromorphic systems. It is well known that RRAM technology is subject

to some issues related to reproducibility in the operation of single devices. The effect of those

characteristic device features on SNN should be therefore thoroughly investigated. Furthermore,

it is necessary that the SNN exhibits a high robustness to noise in the neural signals due to

the nature of these recordings. While sometimes proposed in the literature, that ANN are inher-

ently noise tolerant, this property should be studied and eventually improved by certain ANN

functionalities.

In the following chapters, the results obtained in the framework of this dissertation will

be demonstrated. Chapter 3 describes the electrical characterization of RRAM (OxRAM and

CBRAM) device technologies and the implementation of synapses with RRAM devices. Chapter 4

explains the design of the Spiking Neural Network which was developed to perform real-time

spike sorting based on RRAM synapses as well the real-time signal pre-processing. Chapter

5 studies the impact of RRAM related variability on the system level performances of spiking

neural networks. Chapter 6 proposed a novel plasticity implementation based on RRAM synapses

in order to mimic biological short term plasticity (STP). Finally, chapter 7 concludes the major

thesis results and gives a small perspective to potential future challenges.
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3
SYNAPSE BASED ON RRAM

A critical challenge for the implementation of artificial neural networks (ANN) into a

hardware electronic chip remains in the design of electronic synapses which mimic their

biological counterparts appropriately. This chapter deals with the concept of designing

artificial synapses based on resistive memory technologies (RRAM) such as OxRAM and CBRAM

(see chapter 1). RRAM devices feature a low latency (< 1µs), high integration density (< 1µm2) as

well as a low energy consumption (< 75pJ). An original methodology to use Oxide based RRAM

(OxRAM) as easy to program and low energy synapses is demonstrated.

First, the most critical requirements for the implementation of bio-inspired hardware synapses

are reviewed in section 3.1. Then, section 3.2 presents a thorough investigation of RRAM, more

precisely Oxide based RRAM (OxRAM) and Conductive Bridge RAM (CBRAM). Section 3.3

describes the utilization of OxRAM and CBRAM in an artificial synapse design overcoming the

technology specific bottlenecks. Finally, section 3.4 concludes the findings from the electrical

analysis and synapse concept.

3.1 Requirements to mimic biological synapses

The physiological structure and functionality of neurons and synapses as well as the biological

basis for synaptic plasticity is described in detail in chapter 1. Accordingly, artificial synapses

should fulfil a number of conditions:

• Structural

– Two terminals: In analogy to a biological synapse, hardware implementations of

artificial synapses should resemble a basic structure consisting of an input and an
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output terminal separated by what is in the following called called synapse emulator

(SE).

• Functional

– Plasticity: The SE has to be capable to mimic basic synaptic features such as plasticity

which means that the conductance has to be tunable according to a learning rule.

– Analog character: The conductances which can be achieved for a synapse should be on

a continuous scale, i.e. feature multi-level states.

– Progressive programming: The tuning of the synaptic conductance shall occur in

a progressive (also called cumulative manner). This means that the strength of

modification has to be a function of the number of programming events.

– Non-volatility: Typically, biological plasticity occurs on different time scales whereas

the most important plasticity rule responsible for learning and memory are long-

lasting, i.e. non-volatile.

3.2 Electrical analysis of Resistive RAM

Resistive RAM (RRAM or ReRAM) technology typically includes Oxide vacancy based RAM

(OxRAM) and Conductive Bridge RAM (CBRAM). The resistance modificaition is attributed to

the formation of a conductive filament (CF) due to mainly oxygen vacancy migration (OxRAM) or

metal ion migration (CBRAM). For more details on the physical mechanisms of these technologies

refer to chapter 1. OxRAM and CBRAM devices were co-integrated with n-type metal oxide

semiconductor (NMOS) access devices in a standard 65 nm CMOS technology [225] into so-called

1T1R structures, consisting of a transistor (T) and a resistor (R). The transistor (T) is used as an

access device and to precisely control the current compliance. For OxRAM, the resistive switching

layer (R) is sandwiched between 5 nm or 10 nm Ti and 35 nm TiN electrodes, see figure 3.1

(a). The resistive switching layers of the CBRAM devices are sandwiched between optimized

metals which are not disclosed for confidentiality reasons (see figure 3.1 (b)). As illustrated for

OxRAM, three oxide compositions deposited by Atomic Layer Deposition (ALD) were studied:

(i) 5nm H f O2, (ii) 1nm Al2O3/3nm H f O2 and (iii) 5nm H f O2/4nm TaOx. For CBRAM, an

undoped MOx and a 20% doped MOx, both 53Å in thickness were used.

The 1T1R OxRAM and CBRAM structures were characterized by applying DC voltage sweeps

as shown in figure 3.2. As-fabricated devices exhibit a very high initial resistance (> 1010Ω), also

known as the pristine resistance state (PRS). This is because the ALD grown oxide is virtually free

of defects such as vacancies, interstitials or lattice defects. The first time a positive bias voltage

sweep is applied (Forming), oxygen ions (O2−) drift towards the electrode interface and leave

oxygen vacancies (V 2+
O ) behind. Once a critical number of V 2+

O generated by a certain electrical

field, the resistance of the OxRAM cell changes abruptly up by several orders of magnitude
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Figure 3.1: Schematic of 1-Transistor-1-Resistor (1T1R) co-integration. Overview of device
structure and different material compositions analysed for this study for (a) OxRAM and (b)
CBRAM.

Figure 3.2: Schematic switching of 1-Transistor-1-Resistor (1T1R) co-integrated RRAM devices.
RRAM IV characteristics (here for Al2O3/H f O2 OxRAM device) for Forming (symbols) and
Set/Reset (solid lines, 30 cycles averaged). Operation is shown for different programming currents
(PC)

which can be noted by the significantly higher current flow. This change is due to the formation

of the conductive filament (CF) which brings the cell into the Low Resistive State (LRS). The

voltage at which this shift occurs is termed as the forming voltage (VF ) and depends typically

on the oxide thickness, since the forming occurs at a critical field which depends inversely on

the oxide thickness as E =V /d. Figure 3.2 shows the IV characteristic for two identical OxRAM

devices, using different current compliances (ICC) by varying the gate voltage of the access

transistor. The ICC can typically be used to control the diameter of the CF (dCF ), i.e. the higher

the ICC the higher dCF . Hence, ICC has a direct impact on the value of the LRS which will be
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explained below. By applying a negative voltage sweep (Reset), O2− drift back from the reservoir

at the top electrode into the oxide and occupy a fraction of the V 2+
O , thus rupturing part of the

conductive filament. A rather abrupt drop of the electrical current can be observed at a voltage

which is termed the reset voltage VR . This is where the CF is broken. This much lower current

indicates that the CF was broken and the device was switched to the so-called the High Resistive

State (HRS). Beyond VR , the current still decreases slightly, i.e. the resistance can be further

lowered by some extent. Since the V 2+
O generated during the forming operation are not fully

recovered during a Reset operation, the level of HRS is significantly higher than PRS. Moreover

the OxRAM device can be switched from HRS to LRS (Set) by applying a positive voltage while

the set voltage (VS) where the switch occurs is smaller than VF . While OxRAM in typical NVM

applications is operated using switching currents higher than 50 µA for reliability reasons, the

electrical behaviour of OxRAM was analysed for switching currents as low as 1 µA. Switching

and conduction properties are investigated in the perspective of implementation into potential

artificial synapses for neuromorphic systems. Several OxRAM devices were therefore tested both

by voltage sweeping (DC) and voltage pulses (AC). All resistance readings of the single OxRAM

devices were performed using a bias voltage VA = 0.1 V while reading the static current.

The CBRAM operation is similar to the previously described OxRAM operation. The main

difference is that additionally to to the oxygen anion migration, a metallic cation migration occurs

from the reactive metal electrode and the CF is of metallic nature.

3.2.1 Static IV analysis

Figure 3.3 (a) and (b) show typical IV sweep curves for ICC ranging from 1.5 µA to 340 µA

for Forming (first Set operation), Set and Reset operations for OxRAM and 4.5 µA to 200 µA

for CBRAM. Note that it was not possible to switch the undoped MOx devices using less than

approx. 50µA whereas the ICC could be reduced to as low as 4.5µA for the Hf-doped MOx. During

Forming or Set operations, a positive bias anode voltage (VA) is applied to the TE to switch the

OxRAM/CBRAM devices from HRS to LRS. During Reset operations, a negative bias voltage is

applied to TE switching from LRS to HRS. Although the forming voltages (i.e. voltage of abrupt

current increase) are similar for all operation currents, the Set voltage increases when ICC is

reduced and the Set process appears to be more gradual. Furthermore, the reset current (IReset),

defined as the maximum current during the reset process, is typically equal or slightly higher

than the current compliance during the Set operation. This is true for ICC > 20 µA, however,

if ICC is reduced below 20 µA, IReset drops significantly below ISet (figure 3.4). This applies

regardless of the oxide material whereas the effect is the strongest for the H f O2/TaOx layer

which is the oxide layer with the highest overall thickness of 9 nm tested in this work. This

suggests that the electric conduction involves mainly tunneling transport phenomena.

As dCF is a function of the ICC, the value of the LRS is inversely proportional to the ICC,

i.e. the higher the ICC the lower the LRS, shown in figure 3.5 (a). While the LRS seems to be
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Figure 3.3: IV characteristics (shown for Al2O3/H f O2 OxRAM) for (a) Forming/1stReset and (b)
Set/Reset. Operation is shown for ICC (i.e. current compliance) ranging from 1.5 µA to 340 µA.
Note the shift of the Set IV curve towards higher voltages for reduced ICC.

Figure 3.4: Reset current (IReset) as a function of ICC for OxRAM and CBRAM material composi-
tions.

independent from the oxide material for ICC > 20 µA (in agreement with the literature [226]),

the LRS value shows a strong dependence on the oxide material for ICC < 20 µA. Interestingly,

the LRS increases as a function of the total oxide thickness such that the largest oxide layer

(H f O2/TaOx) exhibits the highest LRS values, giving rise to a non-filamentary conduction

mechanism in the sub− 20µA regime. Moreover, the LRS of all materials seems to depend

strongly on ICC in this low current range. On the other hand, the value of the HRS depends

typically on the number and distribution of the V 2+
O in the oxide layer(s) which in turn is a

function of the ICC and the maximum voltage applied during Reset (VR). The HRS is shown for

various ICC and different OxRAM materials in figure 3.5 (b). A similar trend for HRS depending

on ICC and the oxide thickness can be observed. The slight variation of the experimental results

of this work and reference data from literature may be attributed to statistical variations or
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Figure 3.5: (a) LRS and (b) HRS as a function of ICC for different oxide materials.

slightly different operation conditions such as the programming voltages.

Interestingly, the doped MOx operated with a ICC = 4.5µA exhibits a very low cycle-to-cycle

variability in HRS and still despite the low programming current still offers a relatively large

resistance margin between LRS and HRS as shown in figure 3.6. The high variability of the LRS

may be explained by the same theory as presented for the OxRAM technology using ultra-low

operation currents that no filament is formed during Set but the (intrinsic) distribution of defects

in the oxide material is changed optimizing tunneling paths. The reduced reset current also

points towards a non-filamentary LRS which is rather unstable. Furthermore, the low variability

of the HRS and its level equal to the pristine resistance give rise to the assumption that no

additional defects are introduced into the oxide during application of programming pulses with

such low currents.

Figure 3.6: (a) IV characteristic of doped MOx CBRAM operated using ICC = 4.5µA and (b)
corresponding resistance values for Low and High Resistance States (LRS and HRS) for 30
switching cycles.
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3.2.2 Resistance variability

Both the structure of the CF (in LRS) and the gap between the remaining filament and top

electrode as well as the distribution of V 2+
O (in HRS) fluctuate from one switching cycle to another

as well as among different devices. This behaviour is well known as variability whereas it can be

differentiated between cycle-to-cycle and device-to-device variability. Figures 3.7 and figure 3.8

show the experimental distributions of Low Resistive States (LRS) and High Resistive States

(HRS) varying the ICC during the forming and set operations. Each set of lines (LRS and HRS

for same ICC, one color) represents the complete ensemble of tested RRAM cells cycled 30 times.

A high ICC, e.g. ICC = 367µA, results in a sharp distribution of the LRS whereas the HRS

distribution is rather broad spanning a good order of magnitude. As the ICC is reduced, both LRS

and HRS distributions widen while the entire distributions are shifted towards higher values.

This means, that the variability is largely dependent on the ICC.

The LRS and HRS distributions of each device (obtained through 30 cycles) were used to

investigate the dependence of the variability on the OxRAM resistance. As proposed in [227]

and [116], the mean resistance µR (median) and the resistance variability σR as the resistance

range between 30% and 70% were extracted therefore, see figure 3.9 (a). Figure 3.9 represents

the resistance variability σR of all tested oxide materials as a function of the mean resistance µR .

As we previously stated in [171], the LRS and HRS variabilities form a continuous curve and are

thus presented together for each material. As one can see, σR increases with µR , i.e. when ICC

is reduced. Indeed, the variability depends strongly on the resistance level but is identical for

different oxide materials. The dependence of σR on µR is slightly reduced for µR > 106 Ω.

3.2.3 Resistance margin

As described in section 3.2.1, both LRS and HRS depend inversely on the current compliance

ICC. Moreover, also the variability increases when ICC is reduced which prevents to predict the

exact resistance value upon programming. Relatively high ICC of approximately 100µA and

fixed programming voltages for Set and Reset result in changing the resistance of a OxRAM

device between two rather distinct distributions, LRS and HRS, separated by a gap which is also

known as memory window (MW) or resistance margin. However, as ICC is reduced, the increased

variability results in a shrinking MW which eventually disappears if ICC is below a certain value,

depicted in figure 3.10. The overlapping distributions of LRS and HRS are a critical problem for

conventional memories where a clear separation between LRS and HRS is necessary in order

to determine the memory state reliably in a read operation. The experimental distributions

for LRS and HRS of several devices are used to extract the memory window (MW) at different

confidence intervals, 0σ (median to median), ±1σ, ±2σ and ±3σ, as illustrated in figure 3.11 (a).

Furthermore, the experimental data can be used to extract a dynamic range (DR) of a single

RRAM device, depicted in figure 3.11 (b). The DR is somewhat the opposite of the MW and may be

of more relevance for synapses in neural networks. The choice of the confidence interval (σ-range)
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Figure 3.7: Cumulative distribution functions (CDF) of Low Resistive State (LRS) and High
Resistive State (HRS) as function of the current compliance (ICC) for different OxRAM materials:
(a) LRS and (b) HRS for 5nm H f O2 (c) LRS and (d) HRS for 1nm Al2O3/3nm H f O2 (e) LRS
and (f) HRS for 5nm H f O2/4nm TaOx. Note the shift and widening of the CDF in both LRS and
HRS for reduced ICC.

depends on the number of of memory devices concerned in an array or more general in a memory

based system. Hence, the more devices a system contains, the larger confidence interval has to be

taken into account. Figures 3.12 and 3.13 show the extracted MW and DR as a function of the

programming current (ICC) for the tested OxRAM materials and CBRAM materials, respectively.

While the memory window is critically reduced for small ICC, the dynamic range of OxRAM

devices is increasing by several orders of magnitude due to the large resistance variability. On

the other hand, both the memory window and the dynamic range are reduced for small ICC for
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Figure 3.8: Cumulative distribution functions (CDF) of Low Resistive State (LRS) and High
Resistive State (HRS) as function of the current compliance (ICC) for different CBRAM materials:
(a) LRS and (b) HRS for undoped MOx (c) LRS and (d) HRS for 20%H f −MOx. Note the shift
and widening of the CDF in both LRS and HRS for reduced ICC.

the undoped MOx CBRAM device while they are rather constant for the 20%H f −MOx CBRAM

devices.

3.2.4 Switching variability

The voltage at which an OxRAM cell switches from HRS to LRS during the Set process is affected

by the variability and thus fluctuating from cycle to cycle as on can see in figure 3.2 (b). Since

the chance that a certain LRS is reached, is affected by variability, a switching probability PSet

can be derived which is the cumulative density function of switched devices as a function of the

applied voltage during the set process (VS). As shown in figure 3.14, the higher the VS the higher

PSet. The set switching probability (PSet) can therefore be adjusted between 0 and 1 by tuning

VSet while those values are a function of the ICC used during programming. Similarly to the

resistance variability that increases upon reduction of ICC, also the switching variability, i.e. the

range of VSet to achieve 0< PSet < 1, increases. Note that PSet for the very low ICC, indicated by

the shaded area, corresponds to both the probability to trigger a switch as well as its magnitude
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Figure 3.9: (a) Variability (σR) as a function of programmed mean resistance (µR). (b) µR and σR
extraction methodology from experimental resistance distribution of 30 cycles for one device.

Figure 3.10: LRS and HRS as a function of the current compliance (ICC) for (a) 5nm H f O2,
(b) 1nm Al2O3/3nm H f O2 and (c) 5nm H f O2/4nm TaOx. The bold lines show the geometrical
mean values of LRS and HRS, the shaded areas represent different confidence intervals of the
experimental sample, i.e. 1σ, 2σ and 3σ.

of resistance change, i.e. the higher VSet the higher PSet and ∆G.

3.2.5 Endurance

The lifetime of OxRAM devices was characterized by extended cycling, i.e. repeatedly switching

between Set and Reset using short programming pulses. Different programming currents (ICC)

and reset voltage (VReset) were used to cycle several OxRAM devices 108 times, thus accounting
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Figure 3.11: The extraction of (a) the memory window (MW) and (b) the dynamic range for
different confidence intervals (σ) is schematically illustrated.

Figure 3.12: Memory window as function of ICC for (a) 5nm H f O2, (b) 1nm Al2O3/3nm H f O2
and (c) 5nm H f O2/4nm TaOx. The different lines correspond to different confidence intervals of
the experimental sample, i.e. 0σ, 1σ, 2σ and 3σ. The dashed lines represent a MW of 1, i.e. LRS
and HRS distributions blend into each other. Dynamic range as function of ICC for (a) 5nm H f O2,
(b) 1nm Al2O3/3nm H f O2 and (c) 5nm H f O2/4nm TaOx. The different lines correspond to
different confidence intervals of the experimental sample, i.e. 0σ, 1σ, 2σ and 3σ.

for both device-to-device and cycle-to-cycle variabilities. The set pulse voltage VSet = 2.5V was

not varied as well as the pulse duration tSet,Reset = 1µs. The electrical tests are shown in figure

3.15 where each device is represented by grey lines and the mean values for LRS and HRS

are shown in blue and red, respectively. When VReset =−1.2V , functionality for 108 cycles could

be achieved for all tested OxRAM materials and ICC while device failure occurs around 106
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Figure 3.13: Memory window as function of ICC for (a) undoped MOx and (b) 20%H f −MOx. The
different lines correspond to different confidence intervals of the experimental sample, i.e. 0σ,
1σ, 2σ and 3σ. The dashed lines represent a MW of 1, i.e. LRS and HRS distributions blend into
each other. Dynamic range as function of ICC for (a) undoped MOx and (b) 20%H f : MOx. The
different lines correspond to different confidence intervals of the experimental sample, i.e. 0σ, 1σ,
2σ and 3σ.

cycles for VReset =−1.5V . As expected, both LRS and HRS are increasing as ICC is reduced from

135µA to 30µA. Furthermore, the variability increases strongly, especially for the LRS. Upon

high cycle numbers, some drift towards higher resistance can be observed both in LRS and HRS.

In the case of VReset =−1.5V , this drift affected cycling period (starting from some 103 cycles)

is followed by the device breakdown. For this reason, the drift effect might be an indicator for

device degradation which could be used to predict device breakdown as well as to recondition the

device when its drift is detected.

The experimental distributions for LRS and HRS of several devices are used to extract the

memory window (MW) at different confidence intervals, 0σ (median to median), 1σ, 2σ and

3σ, and different instants of the device cycle number, illustrated in figure 3.11. As shown in

figure 3.19 (c) and (f), using a ICC = 135 µA results in two separated distributions for LRS and

HRS enabling a clear memory window (MW). The MW shrinks for ICC = 85 µA whereas using a

slightly stronger reset condition of VReset =−1.5V (see figure 3.19 (e)) can enhance the MW with

respect to VReset =−1.5V (see figure 3.19 (b)). When reducing the ICC to 30 µA, both LRS and

HRS distributions expand strongly and overlap each other, hence the MW vanishes (as shown in

figure 3.15 (a) and (d)). Even if the strong reset condition is used, the separation between LRS
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Figure 3.14: Probability to perform a Set operation (PSet) as a function of the applied Set voltage
(VSet).

Figure 3.15: H f O2 endurance test using pulsed programming with VS = 2.5V and tSet,Reset = 1µs
and a variation of current compliance ICC and reset voltage VR : (a) ICC = 30µA, VR = −1.2V ,
(b) ICC = 85µA, VR = −1.2V , (c) ICC = 135µA, VR = −1.2V , (d) ICC = 30µA, VR = −1.5V , (e)
ICC = 85µA, VR = −1.5V , (f) ICC = 135µA, VR = −1.5V . The single devices LRS and HRS are
represented in grey lines while the mean LRS and HRS are shown in blue and red.

and HRS distribution is no longer sufficient.

Figure 3.16 shows the extracted MW for different σ ranges and a variation of programming

conditions introduced in figure 3.15. Using a relatively low ICC = 30µA and VReset =−1.2V does

not exhibit a MW for MW > 2σ. The MW is significantly increased by increasing the ICC and/or

VR . However, it seems preferable to increase ICC rather than VReset in order to prevent the
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Figure 3.16: Memory window (MW) for different distribution intervals (σ) of H f O2 endurance
test using pulsed programming with VS = 2.5V and tSet,Reset = 1µs and a variation of current
compliance ICC and reset voltage VR : (a) ICC = 30µA, VR =−1.2V , (b) ICC = 85µA, VR =−1.2V ,
(c) ICC = 135µA, VR = −1.2V , (d) ICC = 30µA, VR = −1.5V , (e) ICC = 85µA, VR = −1.5V , (f)
ICC = 135µA, VR =−1.5V .

enhanced device degradation which is likely to be due to the higher electric field stress.

A number of devices was cycled beyond 108 programming cycles in order to investigate the

device lifetime as function of the reset conditions. The device failure rate is extracted as the

number of devices that break down at different cycle numbers during the endurance test and is

shown in figure 3.17. Accordingly, it is clear that the device lifetime is linked to VR , i.e. a higher

Figure 3.17: Endurance failure rate of RRAM as a function of the reset voltage VR . Early HRS
failure rate is induced by high VR .
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VR leads to much higher failure rates with respect to lower VR . Note that the breakdown occurred

exclusively in LRS.

Figure 3.18 demonstrates for one OxRAM device that it is possible to achieve more than 109

switching cycles, simply by using optimized programming conditions, here VR =−1.2V . Note that

the impact of the set voltage was not studied here.

3.2.6 Filamentary vs. non-filamentary switching

In the previous sections it was explained that the OxRAM operation with very low current, i.e.

ICC < 20 µA, results in a significantly smaller IReset with respect to ISet (figure 3.4), a strong

dependence of LRS and HRS values on ICC (figure 3.10) and a similar variability for LRS and

HRS (figure 3.9). These findings may be explained by bulk switching and conduction mechanisms

rather than filamentary ones [105],[115] when very low ICC (< 20 µA) are used. This means,

that during Set switching from HRS to LRS no filament is created but the spatial distribution

of defects (mainly oxygen vacancies) is changed altering effectively the tunneling or hopping

distances for charge carriers which results in a changed resistance. We believe that in this case

the current conduction in the LRS is dominated by trap-assisted tunneling as it is the case

for the HRS [7]. This assumption is supported by experimental results from pulsed cycling of

the OxRAM devices in both current regimes shown in figure 3.19. Whereas ICC = 30 µA is still

sufficient to achieve a defined switching with a significant resistance margin between LRS and

HRS (see figure 3.19 (b)), the LRS and HRS distributions for ICC = 5 µA cover several orders

of magnitude and are overlapping (i.e. no resistance window). In the case of ICC > 30 µA, the

resistance window can be improved by increasing the ICC.

As explained above, the switching and conduction mechanisms seem to change upon reducing

Figure 3.18: Endurance failure rate of RRAM as a function of the reset voltage VR . Early HRS
failure rate is induced by high VR .
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Figure 3.19: TaOx/H f O2 endurance for pulsed operation using (a) ICC = 5 µA, VSet = 3 V ,
VReset = −1.5 V , tSet/Reset = 10 µs (no resistance window) and (b) ICC = 30 µA, VSet = 2.5 V ,
VReset =−1.5 V , tSet/Reset = 1 µs (1 decade median-median resistance window).

ICC beyond 20 µA. Therefore, two values for ICC were chosen, ICC = 30 µA and ICC = 5 µA. The

switching process depending on the choice of ICC was experimentally studied by applying a train

of identical Set or Reset pulses on the OxRAM device in HRS or LRS, respectively. When a pulse

with ICC = 30 µA is repeatedly applied to a single OxRAM cell in HRS, the Set process occurs

abruptly in a probabilistic manner after a number of pulses, see figure 3.20. Any subsequent

pulses do not result in further changes of the achieved LRS. The Reset process on the other hand

is not as abrupt as the Set process as shown in figure 3.20. When a reset pulse is applied, the

OxRAM cell resistance is immediately reduced by a probabilistic amount achieving a HRS. The

exact value of the HRS can still be tuned in a small range by the application of additional Reset

pulses.

Figure 3.20: Abrupt Set of single TaOx/H f O2 device obtained by applying 100 identical Set
pulses withICC = 30 µA.
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On the contrary, for pulses of ICC = 5 µA, the Set process is no longer abrupt but rather

progressive and the achieved LRS depends on the number of applied Set pulses (see figure 3.21

(a)). A similar behavior can be observed for the Reset process as shown in figure 3.21 (b). Note that

the conductance of single devices (grey lines) changes over several orders of magnitude orders with

the pulse number while the different devices exhibit significant differences in conductance values,

i.e. OxRAM cells exhibit a very strong device-to-device variability when ultra-low programming

currents are used.

Due to the small number of tested devices here (around 10), it is ambiguous to extract the

correct maximum range ∆G that can be achieved for the synaptic weight using one OxRAM

device. Therefore, we have defined three possible ranges ∆G = [100,300,1000]. Figure 3.22 shows

the number of programming pulses as a function of the pulse duration that is needed to achieve a

certain synaptic weight change ∆G. In order to achieve a certain ∆G of the OxRAM synapse, a

certain number of set pulses is required whereas the longer the set pulse the stronger the change

of the synaptic conductance and thus the less pulses are needed. Moreover, ∆G scales with the

number of pulses, i.e. more pulses cause a larger ∆G.

3.2.7 Retention for ultra-low programming currents

It was stated before that the reset current (IR) needed to switch an OxRAM device from LRS

to HRS is typically similar to the current (ICC) applied during the Set operation (HRS to LRS)

unless ICC < 20µA (see figure 3.4). For lower currents, IR drops significantly below ICC. The

retention, i.e. the capability of a memory device to remain in its programmed state over time, was

analysed for 15 devices which were programmed using a very low ICC = 6.5µA, shown in figure

3.23. Note that the measurements were taken at room temperature. A clear trend towards higher

resistance values can be observed already after approximately 104 seconds which confirms a

Figure 3.21: (a) Long Term Potentiation (LTP) and (b) Long Term Depression (LTD) of 10
TaOx/H f O2 devices (grey) obtained by application of 50 identical Set and Reset pulses with
ICC = 5 µA. Geometric mean over all devices is also shown (red).
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Figure 3.22: The pulse number required to increase the single OxRAM device conductance by
a certain ratio ∆G is shown as a function of the pulse duration for ∆G = 100, ∆G = 300 and
∆G = 1000. ICC = 5 µA.

Figure 3.23: Data retention of 15x 1nm Al2O3/3nm H f O2 devices programmed into LRS using
ICC = 6.5µA. The test was performed at room temperature. Blue and red lines represent the
average LRS or HRS levels. Grey lines show the single device behaviour and black the mean
value of all devices.

relatively low retention capability of OxRAM cells that are programmed using ultra low currents.

3.3 Synapse design

OxRAM and CBRAM technologies were described in sections 3.2. It was shown that both tech-

nologies exhibit a binary switching behaviour if predefined programming conditions and typical

programming currents are used for Set and Reset, i.e. these memory cells feature two distinct

states rather than an analogue range of (resistance) states. Moreover, these technologies normally

do not exhibit a cumulative behaviour, i.e. the incremental change of the resistance state upon

application of low-magnitude programming events. However, if the programming current (ICC)

is reduced below a certain value which was found to be between 10µA and 30µA, an analogue,

cumulative switching behaviour could be observed when a sequence of identical Set or Reset
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pulses was applied. The latter (analogue operation, non-filamentary) may be used directly to

implement one synapse with one resistive memory device. On the other hand, the former (binary

operation, filamentary) requires a dedicated circuit designs and/or programming strategies in

order to compensate the intrinsic device shortcomings for the implementation of sophisticated

synapse models. In the following, both solutions to this end are introduced and a biology inspired

learning rule using the synapse concept is explained.

3.3.1 Synapse based on filamentary RRAM

Filamentary switching OxRAM exhibits two critical obstacles for the implementation of synaptic

models inspired by biology. First, although the resistance of one device can be tuned throughout a

continuous range spanning several orders of magnitude, this tuning requires a careful design of

the programming conditions (VS,R , ICC) for each programming event which necessitates a rather

complex circuitry (increasing chip area). Moreover, tailoring the pulse conditions for each device

requires to access them sequentially one by one preventing parallel programming of several

devices and thus causing major drawbacks in terms of speed. Finally, using this approach makes

it necessary to know the current resistance in order to define the weight to be programmed and

set the corresponding programming conditions. This is a major concern for memory size and/or

parallelism. For this reason, two dedicated programming conditions shall be defined for Set and

Reset, respectively. This can simplify the circuit design of the driver circuit (for programming)

significantly, hence improving the integration density. The second problem evolves from the

application of those invariant programming conditions because this allows typically to switch

the RRAM cell in a binary fashion between two distinct states, the Low Resistive State (LRS)

and High Resistive State (HRS) by only one programming pulse. Further programming pulses

with the same voltage and current do not alter the device resistance as it was shown in figure

3.20. However, a synapse should feature multiple states and a cumulative behaviour, i.e. more

programming pulses result in a stronger synaptic weight change.

In order to overcome the RRAM specific drawbacks, a synapse based on n > 1 RRAM devices

can be used [171]. Several OxRAM devices (n) are combined in a parallel architecture, see figure

3.24 to build one synapse. This allows to achieve n+1 states of synaptic weight and therefore the

granularity (number of states) can be tailored according to the needs of any specific application.

The devices are programmed using the driver circuit which applies Set or Reset pulses with

ICC > 30 µA. This triggers the abrupt switching of single devices. In order to control the increase

and decrease ratio, the programming pulse voltage has to be adjusted according to figure 3.14 or

a pseudo random number generator (PRNG) can be used. Whereas the former allows to directly

affect the device switching probability, the latter applies pulses with switching probabilities

of 1 probabilistically to devices according to predefined Set and Reset probabilities, PSet and

PReset. Figure 3.25 demonstrates the functionality of the synapse concept featuring 20 devices

per synapse and using the external PRNG with PSet = 0.071 and PReset = 0.047. The individual
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Figure 3.24: Multi-cell synapse concept. Each equivalent synapse consists of a series of 1T1R
integrated RRAM devices, i.e. the corresponding synaptic weight is the sum of device conductances.
A driver circuit including a pseudo random number generator (PRNG) is used to enable gradual
tuning of the synaptic weight, thus overcoming the typical abrupt switching characteristic of
RRAM shown in figure 3.20.

Figure 3.25: Potentiation and Depression for 20 synapses each based on 20 OxRAM devices using
a pseudo random number generator (PRNG) for the application of Set and Reset programming
pulses with pSet and pReset. OxRAM devices are fitted using experimental data from figure 3.15
(a).

device resistances are achieved by using the experimental distributions of LRS and HRS of the

1T1R H f O2/TaOx structures operated by a programming current of ICC = 30 µA (shown in

figure 3.15 (a)). Upon the application of 100 identical Set or Reset pulses, the equivalent synaptic

weight (conductance) can be gradually increased or decreased, respectively.
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3.3.2 Synapse based on non-filamentary RRAM

The gradual resistance change of single OxRAM devices observed in the ultra-low current OxRAM

operation (using ICC = 5 µA) seems very promising for the implementation of LTP and LTD

with one device per synapse. Instead of a parallel circuit of several devices this may allow for

very compact low power synaptic networks. Moreover, the cumulative resistance change could

be exploited to significantly reduce the circuit complexity since no driver circuit (featuring the

pseudo-random number generator (PRNG) for probabilistic potentiation and depression) would

be needed. The conductance of a single device changes by 3−4 orders of magnitude, thereby

providing a very large dynamic range for the synaptic weight. However, the device-to-device

variability poses a problem because it is in the same order of magnitude as the dynamic range of

∆G for single devices. This means, that a strong (potentiated) synapse may have a weight that is

comparable or even lower than a weak (depressed) synapse or vice versa. This effect prevents the

gradual switching OxRAM based synapse from straightforward integration into a neuromorphic

network circuitry.

3.3.3 Probabilistic Spike-Timing-Dependent Plasticity for RRAM synapse

Spike-timing dependent plasticity (STDP) is a so-called learning rule which combines LTP and

LTD based on the correlation of pre- and post-synaptic activities. When a post-synaptic spike

occurs shortly after (before) a pre-synaptic spike, LTP (LTD) is performed on the synapse. The

synapse implementation based on multiple filamentary switching OxRAM devices is adopted

here. The relative weight change of a synapse according to biological Spike-Timing-Dependent

Plasticity (STDP, see section 1.1.3) depends strongly on the exact timing of pre- and post-synaptic

spikes to one another, i.e. if the two spikes occur within a narrow time frame, the weight change

is relatively high and vice versa. In order to achieve this behaviour in an OxRAM based synapse

(section 4.2.4), the pulse parameters for potentiation and depression would need to be modulated

according to each timing difference ∆t. This may cause a significant complication for the design

of the driver circuit for the OxRAM programming which shall be avoided by using a simplified

STDP rule for the OxRAM synapse. It was demonstrated that a simplified probabilistic approach

for the STDP approximation is sufficient [228] to induce gradual Long Term Potentiation (LTP)

and Depression (LTD). Here, it is only of importance whether the post-synaptic neuron spikes

before or after the pre-synaptic neuron and if the timing difference lies within a certain range, as

illustrated in figure 4.7. Within the LTP and LTD time regimes, the corresponding probabilities

pSet and pReset are constant.

The probabilistic STDP means that the synaptic weight changes when a post-synaptic spike

occurs. If the pre-synaptic neuron was activated recently (∆t < tLTP ), LTP is performed on the

synapse with a given Set probability pSet, otherwise (∆t > tLTP ), LTD is performed with a Reset
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Figure 3.26: Probabilistic learning rule used for online learning in our SNN inspired by spike
timing dependent plasticity (STDP). Set and Reset probabilities, pSet and pReset as well as the
LTP time window tLTP are indicated.

probability pReset. The change of the synapse resistance follows accordingly

∆ R =
PSet · dRSet for ∆ t < tLTP

PReset · dRReset for ∆ t ≥ tLTP

(3.1)

The probabilistic STDP can be achieved by using the intrinsic switching probability (tuning

Set and Reset voltages) or by using the extrinsic probability implemented with a PRNG.

3.3.4 From OxRAM variability to synaptic variability

A synapse is storing a specific weight which can either be potentiated (synaptic connection

strengthened) or depressed (synaptic connection weakened). In order to perform this tuning

precisely in an OxRAM based synapse, it is desired to be able to perform incremental well-defined

changes of the conductance. However, if the single OxRAM devices are affected by variability, each

potentiation or depression step induces uncertainty of the final weight to some extent as shown in

figure 3.27. The figures show the evolution of the synaptic weight for 100 potentiation events and

subsequently 100 depression events for single synapses (grey) and the average evolution of 20

synapses (red). Every synapse is based on 20 OxRAM devices in parallel whereas the Set/Reset

probabilities are tuned by means of a Pseudo Random Number Generator (PRNG). As shown,

a low variability (figure 3.27 (a)) allows to achieve a fine step-wise increase or decrease of the

synaptic weight, i.e. conductance, whereas a high variability (figure 3.27 (b)) results in a strongly

differing conductance change from step to step. Moreover, the high variability leads to a strong

variation of the weights among different synapses as marked by the grey lines.
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Figure 3.27: Representation of synaptic evolution for 100 events of potentiation and depression
each for synapses based on (a) OxRAM operated at ICC = 340µA and (b) OxRAM operated at
ICC = 30µA. The OxRAM was based on a 1nm Al2O3/3nm H f O2 dielectric. Each grey line
represents one synapse based on 20 OxRAM devices. The average synaptic weight evolution is
shown in red.

3.4 Summary

This chapter has covered the three main aspects of implementing artificial synapses with solid-

state electronic devices. First, the conditions that have to be fulfilled for a biology-like synaptic

behaviour were explained. These are mainly a simple, or two-terminal, structure with an input

and output terminal representing the dendrite and axon of two neurons. In addition, a synapse

should typically feature multiple states of conductance, a progressive programming behaviour

and it should be non-volatile. Second, the electrical characteristics of RRAM were studied in

detail and described with respect to their principal mechanisms, reliability and in the perspective

of exploiting this technology for the implementation of artificial hardware synapses. It was found

that OxRAM features two operation regimes depending on the programming current (ICC) that

is used for the Set operation. For ICC > 20µA, a filamentary switching was observed whereas

for ICC < 20µA, the resistance switching seems to be governed by a bulk process. An interesting

effect was observed on the CBRAM technology based on a doped oxide material which offered

a rather high resistance margin between LRS and HRS while operating at only ICC = 4.5µA.

Typically, those ultra-low currents do not allow to have a separation of LRS and HRS due to

large resistance variability of both states. Third, the design of an artificial hardware synapse

based on RRAM was explained and it was shown that the requirements to mimic a behaviour

similar to biology can be obtained by using a probabilistic learning rule that was inspired by

Spike-Timing-Dependent Plasticity.
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SPIKING NEURAL NETWORK FOR SPIKE SORTING

Ddespite enormous progress in technology, solutions for real-time processing of (human)

neural signals for applications such as brain-computer interfaces (BCI) are still not

available. In this chapter, an innovative approach to decode complex brain signals by

so-called Spike Sorting is introduced. The approach is based on a compact spiking neural network

(SNN) which is able to identify spike shapes in neural signals. The synaptic weights of the

SNN are trained in-situ by an on-line learning strategy inspired by biological Spike Timing

Dependent Plasticity (STDP). This concept offers promising advantages to conventional spike

sorting techniques for BCI applications because the SNN architecture is potentially suitable for

hardware implementation by using resistive random access memory (RRAM) technology for the

design of the synapses while relying on standard CMOS technology for the integration of neurons.

For the particular application of spike sorting, the excellent RRAM properties described in the

chapter 3 may enable real-time functionality, integration of large SNN and wireless implantable

devices for rehabilitation purposes.

This chapter is structured as follows. First, the motivation to design a spike sorting system

is reviewed briefly in section 4.1. Section 4.2 describes approach of the spike sorting system,

which is based on the two main components data encoding by frequency filtering and detec-

tion/classification by a Spiking Neural Network. Section 4.2.3 describes the architecture of the

Spiking Neural Network. Section 4.3 introduces the biological data used in this work. Section 4.4

presents the performance of the spike sorting application and finally, section 4.5 summarizes the

strengths and weaknesses of the presented approach.
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4.1 Motivation for spike sorting

Spike sorting is the process of separating contributions in the electrical signal according to its

single units, i.e. neurons (see chapter 1). Algorithms based on the conventional three steps of

spike detection, feature extraction and classification are able to provide powerful analysis tools,

however, they present several limitations, as they often require (i) user supervision (manual

tuning of the threshold parameters, choice of features to be extracted, choice of the number of

clusters). Most of the available spike sorting approaches are performed via (ii) off-line processing

which is not practical because it does not allow for real-time processing in closed-loop applications

(e.g. in BCI) or real-time data compression prior to wireless transmission. Moreover, the off-line

processing using conventional computers or powerful GPU’s is (iii) computationally expensive

posing a problem for the design of low-power portable BCI solutions. Therefore, new spike sorting

approaches are required to address the needs for future healthcare applications.

4.2 Spike Sorting system

To tackle the shortcomings of state-of-the-art spike sorting techniques, an extremely promising

approach may be brain-inspired computing by means of artificial neural networks (ANN) which

have demonstrated to be superior candidates for the detection and prediction of patterns occurring

in complex data [222], [223], [166]. Moreover, they offer several advantages over conventional

von-Neumann based computing paradigms such as: (i) Unsupervised operation of an ANN can be

achieved by using (feed-forward) learning rules, e.g. Spike-Timing-Dependent Plasticity (STDP).

(ii) On-line functionality is achieved by ensuring that the ANN operation cycle time meets the

requirements of the application. In the case of spike sorting, single spike events are in the order

of 1ms which means that the ANN response time should be 1ms or lower. Synapses based on

RRAM technology can be used for this purpose since their latency is typically in the range of

microseconds. (iii) Low-power consumption may be realized by an efficient network structure and

low-power building blocks (neurons and synapses). Therefore, CMOS based neurons and RRAM

based synapses are excellent candidates to facilitate ultra-low energy ANN’s.

4.2.1 General approach

Figure 4.1 shows the schematic view of our system designed to perform real-time spike sorting of

spiking cortical signals, i.e. to extract, learn and recognize different spike shapes. The heart of

the system is a Spiking Neural Network (SNN) with key features such as synaptic plasticity and

a bio-inspired learning rule similar to Spike-Timing-Dependent Plasticity (STDP). Extracellular

cortical signals are recorded by fine electrodes which are implanted in-vitro or in-vivo in neural

tissue. Before the SNN can be used to detect and classify spikes the recorded electric potentials,

the raw signal has to be pre-processed by some means into different signal components that
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Figure 4.1: Overall schematic of spike sorting approach based on data encoding by N band-pass
filters and a spiking neural network. The approach aims to extract the neural code from electrical
neural signals.

allow to analyse different features of the signal. Therefore, we chose the approach of separating

the signal according to its frequency components by using a set of band-pass filters (BPF)

which enable the real-time pre-processing of the continuous electrical signal. This approach is

described in detail in section 4.2.2. The SNN is then using the BPF signals to perform the actual

spike sorting task. The components of this system were tailored to the needs of Spike Sorting

and its synapses were implemented with OxRAM devices (see section 4.2.3). The spike sorting

functionality was tested by using our event-driven simulator ’Xnet’ [148].

4.2.2 Input data encoding

Spiking neural data has characteristic properties, namely:

• A priori unknown number of classes (i.e. spike waveforms)

• Characteristic spike times around 1-2ms

• Short inter-spike intervals in range of spike time are possible

• Non-stationary spike waveforms (i.e. characteristic spike shape of a given class might

change over time)

• Amplitudes of electrically measured spikes variable and dependent on technology used to

record neuronal activity

• Spiking signals typically exhibit frequency ranges between 300-3000Hz

Figure 4.2 shows a biological neural signal that was recorded with a micro-electrode located

next to a nerve fibre. Since this electrode was placed outside of neurons, the signal is referred to as

extra-cellular signal (ES). It shows the electrical potential evolution over time where two spikes

can be observed between 2−4.5 ms and 5.5−8 ms. These two spikes are accordingly labelled

as ’Spike A’ and ’Spike B’. In the right hand side of figure 4.2, the corresponding spectrogram is

shown which represents the energy variation of the frequency spectrum over time. Low energies

(blue) are observed in a wide frequency range in the absence of spikes (only background noise

due to Local Field Potentials) whereas high energies (red) can be observed over a wide range of

frequencies whenever a spike is present in the data. Furthermore, the two different spike shapes
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Figure 4.2: Signal encoding for spike sorting paradigm based on continuous time-frequency
decomposition of the analog extracellular signal (ES). Different spike shapes (here Spike A and B)
exhibit distinct patterns in the spectrogram. These ’finger prints’ are used to distinguish between
different spike shapes.

shown in this example differ in their appearance in the spectrogram, i.e. a larger spike produces

both higher frequencies and higher energies. This gives rise to the assumption that any given

spike waveform exhibits a characteristic representation in the time-frequency domain (if the

resolution in terms of time and frequency is sufficient). This may be used to recognize a specific

waveform among others and therefore a means of distinction between different waveforms. By

using those ’finger-print’ spectra of different waveforms, it may be possible to trace the activity of

single neurons.

In order to perform the spectral analysis of a recorded signal in the time-frequency domain,

the signal is filtered by a series of band-pass filters. The role of this filter bank is to distribute

the energy of the spikes over an optimized number of channels providing the crucial possibility

to observe even small differences in the spike shapes thanks to differences in their spectra.

Hence, each filter should feature (i) a high frequency resolution to analyse only a small frequency

range of the signal and (ii) a high temporal resolution and minimum response delay to allow the

distinction of consecutive spikes (within a few tens of milliseconds) and low-latency applications.

As time and frequency resolution are inversely related, a sufficient trade-off between frequency

and temporal resolution has to be found. To address this, a low filter order (≤ 3) is required to

have fast filter responses of less than a few tens of ms. The filter bandwidths (B) should be narrow

to achieve a reasonable frequency resolution, however, the temporal resolution degrades (longer

filter response) as the filter bandwidth is reduced. It is known that the typical frequency spectrum

of neural spikes is invariant and does not exceed 2000 Hz [82] [46] and that those spikes have

a characteristic duration of 1−2 ms. Bandwidths of around 60Hz and 2nd order Butterworth

filters offer a good compromise for this application. Here, we defined a minimum frequency of

100 Hz for the spectral analysis to exclude low frequent background signals (¿100 Hz). For this

reason, 32 filters with B≈60 Hz for each filter are used to cover the frequency range between

100 Hz and 2000 Hz. The center frequency ( f0) of filter n is shifted by ∆ f = 60Hz for filter
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n+1. Hence, the filter bank introduces a (partly redundant) encoding of the frequency intensity

since adjacent filters start to overlap at −3 dB filter gain which may even enhance the ability to

distinguish the spectral content of spikes whose waveforms are relatively similar to one another.

The filter characteristics for the described set of BPF is shown in figure 4.3. Note that increasing

the number of filters, i.e. reducing the frequency spacing between two BPF, may not be beneficial

because it results in excessive filter redundancy.

Figure 4.4 shows an example for the signal encoding approach based on the band-pass filters.

The signal used here is a short sequence of an in-vitro Crayfish recording which features two

different spike shapes, i.e. Spike A at 2−4.5 ms and Spike B at 5.5−8 ms (see also figures 4.2)

and 4.3). First, the signal is fed to all 32 filters which generate continuous filter response signals

(’Raw’), shown in figure 4.4 (a). As the water fall diagram shows, those filter responses fluctuate

between positive and negative values. However, for the SNN it is necessary to have non-negative

input signals in order to avoid the auto-cancellation of signals of opposite polarity. This will be

explained in more detail in section 4.2.3. For this reason, the filter signals are full-wave rectified

(FWR) which yields a signal representation as shown in figure 4.4 (b). These positive valued

signals can then be used as input signals for the first layer neurons of the SNN.

It is worth noting that the filter bank may be used for any spiking neural data given that

the frequency range of spikes does not exceed 2000 Hz and that the temporal duration of single

spike events is around 1 ms. This is important because a key challenge for spike sorting is that

one can not foresee the specific properties of the signal to be recorded, e.g. low-frequent drift,

signal-noise-ratio or the frequency of spike events. The spike sorting system is therefore tested

on other data sets as well and the results are presented in section 4.4.4.

Figure 4.3: Band-pass filter characteristics for 32 order 2 Butterworth filters equally distributed
between 100 Hz and 2000 Hz. The bandwidth for each filter is B = 60 Hz. This filter set is used
to pre-process biological spiking data.
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Figure 4.4: Band-pass filter output signals from 32 filters applied to a 10ms long signal (see
figure 4.2). (a) The raw continuous filter responses are shown as a function of the time which are
then full-wave rectified resulting in signals shown in (b).

4.2.3 Spiking neural network architecture

The Spiking Neural Network (SNN) uses the rectified BPF output signals (see section 4.2.2) to

detect spikes and by repetitive occurrences of characteristic spectra becomes selective to those,

which allows to perform spike sorting. Figure 4.5 shows schematically how the BPF and the

SNN are connected to each other. Since the spike sorting task is a dynamic classification task
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Figure 4.5: Functional schematic of spike sorting system based on a Spiking Neural Network.
The extracellular signal (ES) is fed through 32 frequency band-pass filters which are connected
one-to-one to the input layer of the SNN. Synapses are based on OxRAM devices. Output neurons
are interconnected by inhibitory synapses to feature the winner-take-all principle which allows
them to become selective to different input spike shapes.

in the real-time signal processing domain, spike based signal coding has been chosen instead

of formal coding (used in most artificial neural networks such as deep neural networks). Spike

coding allows to reduce the energy consumption due to the asynchronous, sparse coding nature

of information. Furthermore, it allows to implement temporal features such as the detection

of correlation of neuronal activities in time. Finally, SNNs are able to incorporate permanent

learning based on interference of spiking activities, e.g. by Spike-Timing-Dependent Plasticity.

The neurons of both input and output layer are described by the Leaky Integrate Fire (LIF)

model which is a simplified spiking neuron model with respect to the biologically precise Hodgkin-

Huxley model to facilitate computational efficiency [229]. It is described in detail in [230]. The LIF

is a popular spiking neuron model which considers the neuron as a parallel circuit of a resistor R

and capacitor C. The input current to the neuron I(t) is divided into the two components IR and

IC, respectively,

I(t)= IR + IC = u(t)
R

+C
du
dt

(4.1)

whereas R is the membrane resistance, C the membrane capacitance and u(t) the membrane

potential. By introducing a membrane leak time constant τm = RC, this leads to

du
dt

= 1
τm

[−u(t)+R I(t)] (4.2)
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A neuron emits an action potential (or spike) when u(t) reaches a pre-defined membrane in-

tegration threshold I thres. The membrane potential is reset to u(t) = 0 and the integration

is deactivated for a refractory period tre f rac. This results in the case-wise equation for the

time-dependent membrane potential

du
dt

=


1
τm

[−u(t)+R I(t)] for t < tre f rac

0, for t > tre f rac

(4.3)

If an input spike arrives to a neuron within tre f rac, u(t) is not increased by the synaptic current.

Otherwise, the synaptic current is integrated raising u(t). The parameters of the LIF input and

output neurons are given in table 4.1.

The input and output neuron layers of the SNN are fully connected (by 32x5) excitatory

synapses, i.e. every input neuron has a synaptic connection with every output neuron. These

synapses are emulated by 10 OxRAM devices per synapse, described in section 4.2.4. A biologically

inspired learning rule, STDP, is used to tune those synaptic weights in an unsupervised way.

The goal is that every spike shape will be learned and recognized by one of the output neurons

whereas non-selective neurons remain silent, i.e. the number of spiking output neurons indicates

the number of spike classes. Classification redundancy has to be avoided, i.e. for each spike

shape occurring in the data, only one neuron shall spike. For this reason, lateral inhibition is

implemented with recurrent inhibitory synapses across the output layer to prevent the neurons

from simultaneous spiking (i.e. winner-takes-all principle).

4.2.3.1 Input layer of SNN

As shown in figure 4.5, the number of input neurons corresponds to the number of filters, i.e.

32 neurons. When the 32 filtered full-wave rectified signals are presented to the input neurons,

the analogue continuous signals are converted into spikes according to the LIF neuron model

(equation 4.3). The corresponding LIF parameters were manually tuned using the two spike

waveforms of the in-vitro Crayfish dataset described in section 4.3 in such a way that the output

of the neuron’s activity represents the spectral magnitude of the signal throughout the tested

frequency range (100 Hz−2000 Hz), i.e. the stronger the energy in a specific frequency band

the more input spikes are generated. Thus, the input neurons create characteristic patterns

Table 4.1: Leaky Integrate Fire (LIF) neuron parameters of the 2-layer spiking neural network
used for spike sorting of extracellular spiking data.

Symbol Parameter Layer 1 Layer 2

I thres Integration threshold 0.1 (a.u.) 0.58 (a.u.)

Tleak Leak time constant 0.2 ms 5.1 ms

Tre f ractory Refractory period 4 ms 46.1 ms
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for different spike waveforms as figure 4.6 shows. Spike A generates a much higher activity

throughout all frequency channels with respect to Spike B. Moreover, the duration of the input

activity seems to represent the energy in the individual frequency bands since input spikes can

be observed up to 25 ms after Spike A compared to 20 ms for Spike B. There seem to be waves of

input activity, i.e. two input spike are roughly 5 ms apart from each other. Note that these delays

are most likely imposed by the refractory period of the input neurons.

4.2.3.2 Output layer of SNN

The number of output neurons determines the maximum number of spike classes that can be

classified by the SNN. A sufficiently high number of output neurons has to be chosen so that

every spike shape contained in the extracellular data can be assigned to one output neuron,

i.e. the number of output neurons has to be at least as high as the number of spike shapes in

the extracellular signal. However, this number is typically not known a priori. The dataset that

was used for the calibration (section 4.3) contains two spike classes which need to be classified.

Therefore, we used deliberately a higher number of output neurons, namely five, to verify that

the network is able to detect the number of classes independently.

The spikes of the input layer neurons are propagated along the excitatory synapses to the 5

SNN output layer neurons. Hence, in the event of a spike, a synapse performs a multiply-function

according to Ohms law, i.e. it converts the unitary spike signal (Vspike) into a current I that is a

function of the individual synaptic weight G.

I =Vspike×G (4.4)

Each output neuron receives the pulsed input currents from 32 synapses which lead to an increase

of the neurons membrane potential u(t) following equation 4.3. The firing event of an output

neuron means that the input currents were sufficient to reach the threshold for spike emission

Figure 4.6: Recorded extracellular (ES) signals (black) and representation of frequency bands by
input neurons (orange) for (a) Spike A and (b) Spike B.
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and the learning rule is activated (see section 4.2.5). For a well trained network, i.e. specialized

synaptic weights, an output spike further indicates that the spike inspected in the input signal

(Spike A or B in the example) belongs to the specific class corresponding to this output neuron.

The parameters (I thres, Tleak, Ire f ractory) of the output neurons were tuned manually and

then optimized by using a genetic algorithm to make the system capable to detect and sort

spikes. A genetic algorithm performs simulations of a system while each simulation varies

the parameters slightly. A number of different parameter sets (specimen) is simulated in one

generation, amongst which a number of winners is chosen to create a next generation which

parameters are again varied. This process is repeated for a number of generations. Here, we

randomly varied the parameters (by maximum 20 %) within one generation and evaluated the

classification rate. The number of specimen was 32 and the number of generations was 8. Based

on the simulation results of each generation, four winners were chosen for further parameter

variation. The level of variation was decreased as the classification rate saturated.

4.2.4 Synapse design

The synapse implementation based on multiple OxRAM devices is adopted in this work. This

concept features multiple states for the synaptic weight and allows to overcome the abrupt

Set switching limitation of single OxRAM devices inducing gradual/progressive Long Term

Potentiation (LTP) and Long Term Depression (LTD), see section 3.3. 1T1R OxRAM structures

have been fully characterized using a programming current ICC = 30 µA (described in detail

in section 3.2) and the experimental LRS and HRS distributions have been used to model the

OxRAM based SNN architecture presented in figure 4.5. Based on the electrical tests of OxRAM,

the H f O2/TaOx resistive layer was chosen here to implement the synapses since it has the

highest resistance values compared to the other tested materials and thus consumes the lowest

power in read mode. Ten OxRAM devices were used per synapse resulting in a total number of

1600 OxRAM devices required for the SNN. In this work, a pseudo random number generator

(PRNG) is used as part of a driver circuit for the application of the Set and Reset electrical pulses

with the corresponding probabilities (pSet and pReset).

The individual weights of the synapses are the key to recognition and distinction of different

input patterns. Those weights are achieved by the application of an on-line learning rule, described

in section 4.2.5. The output neurons are connected all-to-all with inhibitory synapses which are

not implemented with RRAM here but simply result in a reset of the internal potential of the

neurons of layer if another one emits a spike. Thus, the output layer features lateral inhibition to

prevent output neurons from simultaneous spiking (i.e. winner-takes-all) which would lead to

spiking of multiple neurons for the same input event and hence learning the same features. This

is a critical feature in order to allow spike sorting.
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4.2.5 Unsupervised learning by Spike-Timing-Dependent Plasticity

One of the key challenges for spike sorting algorithms is the real-time functionality for a priori

unknown data. This requires an online learning algorithm, i.e. the fast adaptation of the spike

sorting system to new data (new spike shapes in the ES, changing number of classes) and

specifically for SNN a synaptic latency that is lower than the duration of biological spikes

(approx. 1 ms). Spike-timing dependent plasticity (STDP) is used to meet the first requirement

whereas the latter is accomplished thanks to the fast switching synapses (< 1 µs), in our case the

OxRAM devices. Note that a fast switching time of the SNN synapses is required since the online

learning is permanently active which necessitates in-situ modifications of individual OxRAM

cell resistances. Without online learning, classification does not typically require fast switching

synapses.

As previously explained, our synapses are composed of multiple binary-state devices (figure

4.7 (a)) in order to achieve multi-level synaptic weights [168]. The relative weight change of

a synapse caused by biological STDP (chapter 1) depends strongly on the exact timing of pre-

and post-synaptic spikes to one another, i.e. if the two spikes occur within a narrow time frame,

the weight change is relatively high and vice versa. In order to achieve this behaviour in an

OxRAM based synapse (section 4.2.4), the pulse parameters for potentiation and depression

would need to be modulated according to each timing difference ∆t. This may cause a significant

complication for the design of the driver circuit for the OxRAM programming which shall be

avoided by using a simplified STDP rule for the OxRAM synapse. Here, it is only of importance

whether the post-synaptic neuron spikes before or after the pre-synaptic neuron and if the timing

difference lies within a certain range. The value of the relative change is equalized.

Figure 4.7 (a) illustrates the simplified probabilistic STDP [228] for online learning and figure

4.7 (b) shows the conductance behaviour of 20 synapses, each based on 20 OxRAM devices for the

application of 100 Long Term Potentiation (LTP) and 100 Long Term Depression (LTD) operations.

The synaptic weight changes when a post-synaptic spike occurs. If the pre-synaptic neuron was

activated recently (∆t < tLTP ), LTP is performed on the synapse with a given Set probability pSet,

otherwise (∆t > tLTP ), LTD is performed with a Reset probability pReset. The probabilities as

well as tLTP were optimized by means of a genetic algorithm together with the parameters of

the output neuron layer. Note that once all the parameters for the filters, SNN and probabilistic

STDP are set, the spike sorting system may in principal be used on any spiking dataset without

changing those parameters.

4.2.6 System level description

The operating principle of the developed spike sorting system is summarized in figure 4.8. The

neural activity is recorded and streamed to the band-pass filters connected to the SNN with the

sampling frequency fsampling. Therefore, the data value at time t is read and fed to the filters.

The filter outputs are depending on the preceding data values and the pass band frequency,
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Figure 4.7: (a) Probabilistic learning rule used for online learning in our SNN inspired by spike
timing dependent plasticity (STDP). Set and Reset probabilities, pSet and pReset as well as
the LTP time window tLTP are indicated. (b) Long Term Potentiation (LTP) and Long Term
Depression (LTD) for 20 synapses each based on 20 OxRAM devices using pSet and pReset.
OxRAM devices are fitted using experimental data from figure 3.19.

Figure 4.8: Schematic algorithm of the proposed spike sorting system.

respectively. The filter signals are rectified and used as input to the layer 1 of the SNN. By using

the band-pass filter approach to encode spiking data, the SNN receives strong input signals if a

spike is observed in the input data whereas rather low-frequency signals are not able to excite

the network sufficiently. Thus, no dedicated method to remove low frequent noise is required

and spike detection is inherently implemented. The potentials of the input neurons are updated

according to the integration at this time step and the neuronal parameters. In the next step,

it is checked whether neurons cross the pre-defined integration threshold. If this is not the

case, the neuron does not produce an output activity. The time t is iterated to the next sample,

restarting the loop. Otherwise, neurons crossing the threshold, emit a spike. This spike is sent to

80



4.3. SPIKING BIOLOGICAL DATA

all output neurons via the synapses. The neuron potentials of layer 2 are updated according to

the received spikes whereas the magnitudes are modulated by the synaptic strengths. Again, it is

checked whether neurons cross the pre-defined integration threshold. The neuron that crosses

the threshold first, is identified as the winner following the winner-take-all principle. This neuron

emits an output spike, inhibits the other output neurons from spiking and resets their membrane

potential to u(t)= 0. Based on the spiking times, the simplified STDP rule is applied for learning.

It is possible to implement the presented SNN in a co-integrated circuit using complementary

metal oxide semiconductor (CMOS) technology for the design of hardware neurons [231] as well

as the band-pass filters and Oxide based resistive RAM (OxRAM) for the synapses [171]. The

electrical conductance of OxRAM devices can be modified by means of voltage pulses which is

exploited to tune the synaptic weights, described in chapter 3. The synapse design is explained in

more detail in section 3.3. The validity of the proposed network and the OxRAM synapse model

extracted from electrical data will be demonstrated in section4.4 by means of simulations using

our special purpose event-driven simulator tool ’Xnet’.

4.3 Spiking biological data

In order to illustrate the validity of the proposed spike sorting methodology, real biological data

recorded from crayfish and rats were used. When real data are recorded in neural tissue, it is

difficult to retrieve the reference of the spiking activity, hereinafter called ground truth, because

it requires to record single neurons which is typically done by so-called intracellular electrodes.

An in-vitro preparation of a Crayfish nervous system was used for testing and calibrating the

spike sorting system. Extracellular and intracellular activity were recorded simultaneously [23]

[232]. Two electrodes were implanted in an in-vitro preparation, as illustrated in figure 4.9 (a).

One electrode was inserted into a motor neuron of the T5 ganglion and is therefore referred

to as the intracellular electrode. The other electrode was attached to a nerve fiber outside of

the neurons, hence called extracellular electrode, that recorded action potentials of several cells

simultaneously. In these data, the extracellular signal (ES) contains two different spike shapes,

labelled as Spike A and Spike B in figure 4.9 (b), corresponding to two different neurons. The

spikes simultaneously observed in the intracellular signal (IS) correlate with the activity of Spike

A in the ES. Therefore, the IS activity can be used as the ground truth to assess the spike sorting

capability of our system for the detection of Spike A in the ES data. The entire data set duration

comprises 681 seconds and is called CF1 subsequently.

4.4 Performance

The complete spike sorting system consisting of band-pass filters and SNN was simulated with

the ’Xnet’ (event-driven) simulator for the treatment of the Crayfish data (CF1) introduced in

section 4.3.
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Figure 4.9: (a) Illustration of the experiment used to obtain real biological data. The crayfish is
dissected and two electrodes are used in-vitro, one intracellular electrode inside a motor neuron
in the T5 ganglion and one extracellular positioned against a depressor nerve (’Dep’). (b) The
extracellular signal (ES, short sequence shown) contains two different spike shapes, labelled as
Spike A and Spike B. The intracellular signal (IS) contains spiking events matching only Spike A
of the ES.

4.4.1 Functionality

Figure 4.10 illustrates the unsupervised learning response of our SNN to the input signal (ES)

described in section 4.3. The intracellular signal (IS) is shown at the top showing the reference

signal used to quantify the recognition rate of spike A. Below, the extracellular signal (ES) is

shown with two snapshot sequences and the corresponding representation of the input activity

(orange, middle part of figure 4.10) and the output activity of the SNN (green, bottom-most

part of the figure). Initially (0 s−285 s), only Spike B is present in the extracellular signal. The

SNN output, i.e. the firing patterns of the five output neurons N1 −N5 are completely random.

Thanks to the introduced lateral inhibition, one output neuron, one output will become gradually

selective to Spike B. Then (285 s−545 s), also Spike A is observed in the input signal. In this

period, another output neuron starts to spike predominantly when the Spike A appears, while

the one that learned the previous pattern for Spike B continues to fire when Spike B appears. In

the following, the neurons corresponding to the Spike A and Spike B are referred to as N1 and

N2. However, it is important to note that it is unknown before the learning which neuron will

become selective to a given pattern. The remaining output neurons N3, N4 and N5 are rather

silent. The output activity after learning (bottom right of figure 4.10) shows how two output

neurons are selectively spiking when Spike A and Spike B occur in the data while no activity can

be observed from the other neurons. At the end of the test case (545 s−681 s) only Spike B is

present. Therefore, only N2 shall show a spiking activity whereas N1, N3, N4 and N5 should be

inactive.

The activities of all output neurons N1 to N5 are shown in figure 4.11 whereas the activity is

defined as the number of output spikes in time intervals of 10 s. As one can see, the N1 activity is

in good agreement with the intracellular reference, i.e. N1 detects Spike A. The activity of N2
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Figure 4.10: Schematic illustration of the learning phase for the SNN (see figure 4.5) applied on
the biological data (see figure 4.9). Initially, the SNN is untrained for new input spikes (in the
ES signal) and output neurons spike randomly. Due to online learning, different output neurons
become gradually selective to certain input spike patterns.

is found to be correlated to Spike B, however, no ground truth (intracellular signal) is available

for a reliable quantification of the recognition rate. N3, N4 and N5 show very small activity

meaning that they do not become selective to input spikes in the extracellular signal. These

results prove the qualitative functionality of the proposed spike sorting algorithm. Note that,

even if the frequency patterns of Spike A and Spike B are overlapping, two independent output

neurons are assigned for the two different spikes. The delay between an observed biological spike

and an output spike from the SNN is typically within 50ms.
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Figure 4.11: Activity of SNN output neurons during 681 s of continuous input signal. Activity is
plotted as the number of spikes in time intervals of 10 seconds. N1 activity matches well with the
intracellular reference (blue dots), i.e. N1 detects Spike A. N2 seems to be selective to Spike B,
however, no reference data is available for verification.

4.4.2 Reliability

In order to quantify the recognition rate of Spike A (figure 4.11), we correlated the activity of N1

with the intracellular signal (IS in figure 4.10). A Spike A event is considered to be recognised if

N1 spikes within 50 ms after the Spike A event. The recognition rate was calculated as the ratio

of recognized spikes to the total number of Spike A events (truth from IS data) in a given time

interval (fixed to ten seconds). As shown in figure 4.12, recognition rate starts at 0 because Spike

A only appears after 285s in the data. The network is associating one neuron quickly and reaches

a mean spike recognition rate of up to 85.5 % after 15 seconds (corresponding to approximately

50 Spike A events), calculated starting from the first occurrence of Spike A in the ES signal

at t = 285 s. Note that the recognition rate is fluctuating which means that the learning of the

network is not completely stable. This may be due to the fact that the STDP learning rule is

permanently active. However, this is crucial because otherwise the network would be prevented

from learning spike shapes that occur in the data after STDP was disabled.

4.4.3 Power consumption

Table 6.1 summarizes the statistics of the SNN for the application on the ES data used here.

The total duration of the signal is 681 s and the activity of all neuronal and synaptic events

was recorded. Note that the average number of set and reset events per OxRAM device is very

small, 17 and 37, respectively. This means that the SNN learning is fast and rather stable and
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Figure 4.12: Temporal evolution of recognition rate of Spike A by N1. A mean recognition rate of
86.4% (dashed line) is reached within 15 seconds starting from the first Spike A occurence.

OxRAM device degradation can be neglected. Furthermore, extrapolation of these statistics to an

application time of 10 years, accounts to 8x106 Set and 1.7x107 Reset events per OxRAM device.

These cycling requirements are satisfied by state-of-the-art OxRAM technologies [171].

We estimated the specific energy dissipation for a single synaptic event in our SNN by

considering the pre-defined operation conditions for the OxRAM devices according to:

Emode =Vmode · Imode · tmode (4.5)

where the index mode = [Set,Reset,Read] denotes the type of synaptic event, i.e. Set, Reset or

Read operation. Vmode, Imode and tmode are the respective values for the voltage, current and

time of the applied pulse. For Set and Reset, the pulse conditions reported in figure 3.19 (b) were

used. For the Read operation, VRead = 0.1V and tRead = 1µs whereas IRead is determined by the

device resistance. Based on the statistics reported in table 6.1 and the event specific energies, the

total energy dissipation and corresponding power consumption P = E/t of the synaptic part of the

Table 4.2: Spiking Neural Network (SNN) statistics.

Input signal duration 681 s

Network statistics

Number of synapses 160

Devices/synapse 10

Read events 16,235,500

Set events 27,467

Reset events 58,577

Number of spikes 329178
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SNN are calculated following to

E total =
∑

mode
Emode · Nmode (4.6)

whereas Nmode is the number of Set, Reset or Read events. The estimated energy consumptions

of the synaptic part of the SNN are reported in table 4.3. The event specific energies in the low

pJ range in combination with the relatively low number of switching events, result in extremely

low synaptic power consumption of 8.1 nW . Considering a state-of-the-art analog neuron design

in the 65nm technology node [231] with an energy per spike of 2 pJ may add 0.66 µJ (i.e. 5.6 %)

to the total energy dissipation. Hence, the power consumption remains at a very low competitive

level of 8.6 nW .

4.4.4 Versatility

We tested our spike sorting SNN with respect to its applicability on other neural spiking data.

Therefore we used another dataset recorded in-vitro from Crayfish and a dataset recorded from

anesthetized (in-vivo) rat hippocampus (publicly available online provided by the Buszaki lab

[24][88]). Both datasets feature simultaneous recording of extra- and intracellular signals and

are in the following referred to as CF2 and B1, respectively. As before in the case of CF1, we use

the intracellular recording as a ground truth for the quantification of the recognition rate of the

SNN output. CF2 is much more complex with respect to CF1 since it contains more different

spike shapes and a higher overall spiking frequency which results in overlapping spikes. B1

comprises a strongly increased background noise level with respect to CF1. Snapshots of both

datasets are shown in figure 4.13. The recognition rates for CF2 can be up to 74.2 % and 82.1 %

for B1 after learning. However, as the recognition rate is defined as the ratio of detected spikes

to true spikes in the data, it does not take into account false positive events, i.e. output spikes

in the absence of the corresponding input event. Therefore, table 4.4 reports the recognition

rate (RR), false negatives (FN), false positives (FP) and the corresponding FN and FP rates.

Moreover, F1 being a general reliability metric was calculated by F1= 2∗TP/(2∗TP +FN +FP)

Table 4.3: Spiking Neural Network (SNN) power metrics.

Energies per event

Set event (ESet) 75 pJ

Reset event (EReset) 45 pJ

Read event (ERead) 0.39 pJ

Total power estimation

Energy dissipation 11 µJ

Power consumption 8.1 nW
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Figure 4.13: Sequences of real biological spiking data used for verification of Spike Sorting system,
recorded in (a) in-vitro crayfish [23] and (b) in-vivo implanted rat hippocampus [24]. Intracellular
recordings were simultaneously obtained and provide the ground truth for valid quantification of
the spike recognition rate for the labeled spikes (blue arrows).

Table 4.4: Quantitative evaluation of spike sorting on different biological datasets.

RR (%) FN (#) FP (#) F1 FN (%) FP (%)

CF1 80.5 142 50 0.86 19.5 6.9

CF2 50 331 1817 0.24 50 274

B1 64.8 299 519 0.58 35.3 61.2

and is reported in table 4.4. Note that all metrics are calculated based on the entire datasets,

i.e. the learning period is included resulting in lower performance on average. It is clear, that

the spike sorting network works rather well for CF1 with an F1 around 0.85. However, F1 drops

significantly for both CF2 and B1 which is mainly a problem of the high number of FP. Thus, even

if the RR may be considered acceptable for this first proof of concept, the true reliability based on

F1 is much lower. These results show that the STDP learning rule allows some tolerance to other
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datasets but the proposed network has to be significantly improved and/or fine tuned to suit

other spiking data sets. This can be attributed to the data encoding approach by the band-pass

filters. Apparently, the filtering allows to reduce the low-frequency fluctuation of the signal and

thus improves the detection of spikes. On the other hand, CF2 contains many spikes with spike

shapes (and amplitudes) that are quite similar from one to another and the intervals between

two consecutive spikes are much shorter with respect to CF1 which was used to optimize the

network parameters. The former property of CF2 may lead to an increased number of FN because

of too long time constants for the refractory (tre f ractory) and inhibitory (Tinbitory) periods of the

neurons. The latter demonstrates that the data encoding is not precise enough to be able to

distinguish between relatively similar spike waveforms.

State-of-the-art spike sorting algorithms based on spike detection, feature extraction and

clustering (i.e. standard methodology) achieve recognition rates around 90 % on the dataset B1

[233][234] and therefore outperform the proposed approach in terms of reliability.

4.4.5 Qualitative comparison to standard spike sorting techniques

The alternative spike sorting approach based on a SNN has been qualitatively compared with

the standard methodologies (template matching, principal component analysis) in table 4.5. The

advantage of our approach is clearly the real-time functionality without the need for supervision

as well as the computational efficiency which results in very low power consumption. These

benefits may enable our approach to be suitable for rather simple hardware implementation for

long-time, portable and low-power implants whereas standard spike sorting techniques do not

meet these requirements. On the other hand, the spike sorting accuracy is considerably lower

with respect to standard techniques. This issue should be addressed by a more sophisticated

network (e.g. more neuron layers, better data encoding etc.).

Table 4.5: Qualitative comparison of Spike-Timing Depending Plasticity (STDP) based Spike
sorting (this work) with standard approaches (template matching, PCA).

Criterion STDP based (this work) Standard techniques

Real-time functionality + -
(permanent adaptation

to spikes shapes)

Unsupervised operation + -

Computational efficiency + -

Energy efficiency + -

Reliability - +

Suitability for (long-term) + -
hardware integration
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4.5 Summary

An alternative approach towards unsupervised spike sorting of brain activity signals, relevant

for the analysis of large-scale brain signals, was proposed in this chapter. Since the approach is

compatible for low-power applications and hardware integration, it bears a high potential for

embedded Spiking Neural Networks (SNN) used in spike sorting applications. It was shown that

these systems allow for fast adaptation to new input data and completely unsupervised operation,

independently from the number of spikes in the input signal, yielding a good reliability on rather

easy signals. However, as the network was tested on complex sets of real biological spiking data

without parameter tuning, the reliability of the spike sorting system could not be proven to be

sufficiently high. Spike sorting performances are considerably lower with respect to conventional

power-hungry spike sorting methodologies. In order to improve this critical issue, both the data

encoding algorithm (by band-pass filtering) and the classification approach (by using a SNN)

have to be drastically improved, i.e. complementary input information and/or more sophisticated

SNN architectures have to be developed. Nevertheless, it should be emphasized that in contrast

to standard spike sorting techniques, SNN based approaches offer several advantages, e.g. no

power-consuming CPU or GPU are needed and no parameters (e.g. threshold level for spike

detection) have to be optimized manually as a function of the input data. Hence, SNN’s offer a

powerful alternative to standard spike sorting methodologies. Moreover, we proposed OxRAM

technology for the hardware implementation of synapses with ultra-low power consumption and

fast operation times (< 1 µs). This enables the system for real-time application to neural data in

potential medical devices featuring high energy-efficiencies. Extended OxRAM cycling capabilities

(> 108 switching cycles) ensure that the SNN retains its learning capability throughout the

application lifetime and thus allows for long-term functional implants. We believe that compact

hardware implementations of SNN’s will enable spike sorting directly at the recording site within

the brain thus solving the bottleneck of data storage and power consumption. Finally, data

reduction rates of about 1000 (depending on the spiking frequency of the input data) open the

path to wireless data streaming of the spike sorted data to an external receiver.
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5
SYNAPTIC VARIABILITY IN SPIKING NEURAL NETWORKS

Neurological research has demonstrated that variability in neural systems exist both for

synapses and neurons whereas it is believed that synaptic variability dominates [37] and

it was shown that synaptic variability may be beneficial for reliable spike firing [235].

Moreover, it was found that variability improves the performance of extreme learning machines

[236]. An inherent property of RRAM technology is variability, both in terms of switching success

as well as for the reproducibility of exact resistance values. However, the specific effects of these

reliability issues of RRAM devices on Spiking Neural Network (SNN) are yet to be understood.

Therefore, the impact of RRAM variability on Spiking Neural Networks (SNN) using on-line

(unsupervised) learning, where the RRAM resistance status (synaptic weight) is tuned in-situ

using probabilistic Spike-Timing-Dependent-Plasticity (STDP) [186], was studied. Two Spiking

Neural Networks (SNN) using OxRAM based synapses were used for a systematic study of the

impact of synaptic variability on the application reliability.

Section 5.1 explains the requirements on the OxRAM programming conditions for synapses

used in SNN. Section 5.2 and 5.3 demonstrate the effects of synaptic variability on the perfor-

mance of classification and detection tasks. The results are summarized in section 5.4.

5.1 Artificial synapse implementation with RRAM technology

RRAM is a promising technology for next generation non-volatile memories replacing Flash

technology as described in chapter 3. Different implementation concepts have been explained in

literature and in this work.
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5.1.1 OxRAM operation for synapses

Neuromorphic hardware implementations impose a number of requirements on the electrical

properties of its individual components, e.g. the synapses. The brain-inspired computing approach

is inherently low-power with respect to the conventional von-Neumann architecture. In order to

harness and further improve this advantage in non-von-Neumann hardware implementations,

the energy used to switch a synapse from one synaptic weight to another (i.e. synaptic plasticity)

has to be minimized. Furthermore, the current through a synapse triggered by the propagation

of a pre-synaptic spike is proportional to its conductance and is integrated by the connected

post-synaptic neuron which receives many more input synapses adding up their currents. This

additive behaviour of a neuron leads to large input currents that have to be sustained. For this

reason and the fact that most of the power of neural networks is typically consumed in read mode,

the electrical resistance of a synapse shall be rather high in order to reduce power consumption

and post-synaptic currents.

When using RRAM based synapses, both the program and read energies can be reduced by

decreasing the ICC as shown in figure 5.1. The tested electrical devices are described in detail

in chapter 3. However, a drawback of using a very low ICC is the increased variability which

essentially prevents to predict the exact resistance value upon programming. The widening

distributions for LRS and HRS result furthermore in a reduced resistance memory window (MW),

defined as the separation gap between LRS and HRS, e.g. LRS+3σ and HRS−3σ, depicted in

figure 5.2. This is a critical problem for common memory applications where a clear separation

between LRS and HRS is necessary in order to determine the memory state reliably in a read

operation. In order to increase the MW, HRS can be slightly shifted up by using higher reset

voltages (VR), though this induces an enhanced degradation in the oxide due to the stronger

electrical fields. This leads to much higher device failure rates with respect to lower VR as

Figure 5.1: Estimation of maximum programming power of OxRAM (1nm Al2O3/3nm H f O2) as
a function of the current compliance.

92



5.2. EFFECTS OF SYNAPTIC VARIABILITY ON SNN IN CLASSIFICATION TASKS

Figure 5.2: Experimental LRS and HRS distributions as a function of the current compliance
(CC) for 1T1R OxRAM devices (1nm Al2O3/3nm H f O2). Set and reset voltages were 2.5V and
−1.2V The bold lines mark Median for both LRS and HRS, the shaded areas include 95% of the
samples, i.e. reflect the distribution at 2σ.

described in section 3.2.5. As demonstrated, more than 109 cycles can be achieved using an

optimized reset condition of VR =−1.2V .

Good endurance is a fundamental requirement for networks using STDP learning, especially

when the input data is not known a priori and therefore the network is in permanent learning

mode which can rapidly increase the number of set and reset events (cycle number) in order

to optimize the synaptic weights. Typical OxRAM device failures such as ’stuck-in-LRS’ are

detrimental and have to be avoided because those cells would generate very high synaptic

weights which can disturb the network (learning) because they produce a permanent strong input

current to other neurons.

5.2 Effects of synaptic variability on SNN in Classification
tasks

The spiking neural network that was previously developed for spike sorting, was used to study

the impact of synaptic variability on its performance, using the simple crayfish data. A detailed

description of the encoding and the network can be found in chapter 4.

Pulsed endurance measurements were performed on three OxRAM stacks (5nm H f O2,

1nm Al2O3/3nm H f O2, 5nm H f O2/4nm TaOx, Ti and TiN top and bottom electrodes) with

three different programming currents (30 µA, 85 µA, 135 µA). By applying pulse voltages

of 2.5V and −1.2V for Set and Reset, 10− 15 OxRAM devices were cycled up to 108 times,

thus accounting for both device-to-device and cycle-to-cycle variabilities. Independently of the

programming current and OxRAM material, a switching functionality for 108 cycles could be

achieved. The experimental data are explained in more detail in chapter 3. As shown in figure
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3.19 (a), the H f O2 cycled using a ICC = 135 µA exhibits two separated distributions for LRS and

HRS enabling a clear memory window (MW). When reducing the ICC to 30 µA, both LRS and

HRS distributions expand and overlap each other, hence the MW vanishes (as shown in figure

5.3 (c) for Al2O3/H f O2). For each ICC and oxide material, the experimental distributions of LRS

and HRS were used to extract the memory window (MW) as MW = MedianHRS/MedianLRS as

well as the variability σLRS,HRS =±1σ (see figures 5.3 (b) and (d)). Figures 5.4 (a) and (b) report

the MW and σLRS,HRS as functions of the programming current ICC, respectively. When ICC is

increased, the MW can be enhanced and the variability σLRS,HRS is drastically reduced at the

cost of a higher power consumption of the OxRAM device. While the biggest memory window

can be achieved with H f O2, the variability is the smallest for Al2O3/H f O2, in particular for

low ICC (see figure 5.4 (b)). Therefore, two potential conditions are chosen to study the impact of

both MW and variability on the performance of the Spiking Sorting application, namely H f O2

using ICC = 135 µA and Al2O3/H f O2 using ICC = 30 µA, hereafter called High Current OxRAM

(HCO) and Low Current OxRAM (LCO) devices, respectively.

The LRS and HRS distributions for the two selected synapse devices, LCO and HCO, were

normalized to equal mean values for LRS and HRS in order to study only the impact of the

variability on the network performance. A third condition was artificially created by using the

same mean values for LRS and HRS fixing both variabilities to σLRS,HRS = 0, i.e. a purely digital

switching without any cycle-to-cycle and device-to-device variability. The three conditions are

shown in figure 5.5 whereas C1 is the artificially created condition serving as a reference and C2

and C3 correspond to the experimental variabilities observed for the HCO and LCO.

5.2.1 Reliability

The number of devices-per-synapse (n) was varied from 1 to 100 for the three OxRAM conditions.

The recognition rate (RR) was quantified both for Spike A and Spike B as the ratio of detected

spikes to true spikes. The RR is presented in figure 5.6. Apparently, a very low n, for example

using only n = 1 devices per synapse does not allow the SNN to achieve a good RR for the two

spike classes. However, RR can be strongly improved up to around N = 10 while it increases only

slightly for N > 10. Interestingly, for N < 10, C1 achieves the best Recognition Rate with respect to

C2 and C3. This trend is inversed for N > 10. Since the variability of both LRS and HRS increases

from C1 to C2 to C3, it seems that for the implementation of synapses affected by variability,

two regimes of the network accuracy exist as a function of n which is separated by a critical

number of devices per synapse ncrit: n < ncrit, where synaptic variability degrades the network

performance and n > ncrit, where synaptic variability enhances the network performance.

In order to better understand the effect of variability in this application, the recognition

rates for the two spike classes (Spike A and B) are plotted separately. As it is shown in figure

5.6 (a), the RR corresponding to the class of Spike A increases with n up to approximately 80%,

independently from the OxRAM condition. On the other hand, figure 5.6 (b) shows that the RR for
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Figure 5.3: (a) H f O2 endurance test using a ICC = 135µA and (b) extracted σ for LRS and HRS.
(c) Al2O3/H f O2 endurance test using a ICC = 30µA and (d) extracted σ for LRS and HRS. The
extraction of the memory window (MW) and variabilities σLRS and σHRS is illustrated in (b) and
(d).

Spike B improves only up to around 75% for C1 and C2 while C3 is able to reach a significantly

higher RR of around 75%.

The contour plots in figure 5.7 represent the overall recognition rate as a function of LRS

and HRS variability depending on the number of devices per synapse n = [1,5,10,20,50,100]. For

1< n≤10 (5.7) (a) - (c), the overall RR is rather low and decreases if the variability of LRS and/or

HRS is increased. As n is increased, i.e. for 1< n≤10 (5.7) (d) - (f), the RR is globally increased as

mentioned before and moreover, the RR increases as the LRS variability increases. On the other

hand, the RR seems to decrease for an increased HRS variability.

Synapses implemented with binary RRAM devices, are usually dominated by the devices

which are in LRS because the LRS is considerably higher than HRS. Hence, the synaptic weight

depends mainly on the sum of conductances corresponding to LRS devices while the conductances

of HRS devices differ by an order of magnitude typically and therefore play a minor role. The

finding that variability introduced to the synaptic weight by single RRAM devices improves the

performance of Spiking Neural Networks seems counter-intuitive and is therefore studied in

more detail. In order to verify the results and shed more light on the effect of synaptic variability

on the learning and functionality of Spiking Neural Networks in more detail, another application

has been systematically studied under the impact of variability in section 5.3. This application

aims to extract visual patterns from encoded video data with a much higher number of neurons
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Figure 5.4: (a) Median-to-median memory window (MW) for the three tested OxRAM materials as
a function on the ICC. (b) Resistance variability σLRS,HRS of the three tested OxRAM materials
depending on the PC. Two device approaches are chosen as indicated in the graphs: Low Current
OxRAM (’LCO’, Al2O3/H f O2, PC = 30µA) and High Current OxRAM (’HCO’, H f O2, PC =
135µA).

Figure 5.5: LRS and HRS distributions of test conditions for SNN of Fig.10.

and synapses and moreover 6 different classes has to be identified by the SNN [15]. Thus, this

network allows to draw more general conclusions with respect to the very small SNN used for

Spike Sorting.

5.3 Effects of synaptic variability on SNN in Detection tasks

The Internet-of-Things era bears numerous opportunities for smart systems which offer some

autonomy, both in terms of functionality and energy consumption. In the application presented

here, cars passing on a motorway have to be detected without any user intervention. The number

and position of lanes thereby is not known a priori. This requires a means of autonomous lane

detection and distinction as well as an adaptation of the system to detect single cars passing on

these lanes. For this reason, a SNN was previously developed featuring Spike-Timing-Dependent

Plasticity (STDP) which provides online, unsupervised learning, see figure 6.18 for a schematic

illustration of the SNN based application. The concept was previously demonstrated in detail

by Bichler et al. [15] exploiting multi-level Phase-Change Memory [147] and binary Conductive
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Figure 5.6: Overall Recognition Rate of spike sorting SNN as a function of number of devices per
synapses and for different conditions C1−C3.

Figure 5.7: Recognition rate of SNN used for neural spike classification as a function of LRS and
HRS variability. Synaptic redundancy accounts to (a) 1, (b) 5, (c) 10, (d) 20, (e) 50 and (f) 100.
Note that these results were obtained for using the same set of parameters, i.e. neuron threshold
etc.

Bridge RRAM synapses [17].

A video of cars passing on a six-lane freeway (Pasadena, CA) is recorded by a Dynamic Vision

Sensor (DVS) with 128x128 pixels. The DVS is a retina-inspired sensor where each pixel features

two sub-pixels which detect a luminosity increase or decrease of a small section of the picture,

respectively. The camera featuring the DVS records data in the Address Event Representation

(AER) format [237]. The AER data is then presented to a two-layered FCNN consisting of 1.97M

synaptic connections (128∗128∗2∗60). The unsupervised learning thanks to STDP and the

winner-take-all (WTA) principle enable the output neurons to become sensitive to different

traffic lanes. In order to validate and quantify the SNN performance, the SNN output activity is

compared to the manually labelled reference. Figure 5.9 illustrates the extraction of the number
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Figure 5.8: Two-layer Spiking Neural Network used for unsupervised detection of cars in different
traffic lanes.

of True Positive (TP), False Negatives (FN) and False Positives (FP) from the reference activity

(blue) and the output neuron activity of the corresponding traffic lane (red). A TP means that a

car was accurately detected, while it was missed in the case of a FN. The FP means that a car

was detected even if no car was present at the specific traffic lane. This event is likely due to

background noise or other effects specific to this application, i.e. cars crossing lanes which may

lead to double detection.

Figure 5.9: The reference activity (blue) is compared to the activity of the corresponding output
neurons (red) to calculate the number of True Positives (TP), False Negatives (FN) and False
Positives (FP).
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To study the impact of the synaptic variations induced by the characteristic OxRAM vari-

ability of both LRS and HRS, the synapses were modelled assuming different OxRAM test

cases. Therefore, a number of various combinations of LRS and HRS distributions were defined,

summarized in table 5.1.

The SNN parameters, e.g. for the neurons and learning rule, were calibrated using a genetic

algorithm similar to the one described in chapter 4 using the OxRAM test condition C2. This

condition was experimentally obtained by cycling several H f O2 devices using a current compli-

ance of ICC = 200µA. The remaining conditions (C1, C3−C9) were simulated using the same

network parameters while changing only the parameters of the synapses related to the OxRAM

variability.

5.3.1 Reliability

The performance of the SNN simulations was quantified by extracting the number of False

Negatives (FN), False Positives (FP) as well as the F1 score, described in section 5.3. FN, FP and

F1 averaged over the six lanes are presented in figure 5.10 for the simulated OxRAM operations

conditions C1 to C9. The FN seems to be reduced significantly by the conditions C1, C4 and C7

while the FP are slightly increased. F1, taking into account both FN and FP, is indeed high for

all conditions but the highest F1 scores can be achieved by C1, C4 and C7. These conditions have

Table 5.1: LRS and HRS test conditions for OxRAM based synapses used to simulate Spiking
Neural Network for visual signal processing.

σLRS

−100 −2.14 −0.326

σHRS

−100

−2.14

−0.326
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the highest variability of the LRS in common.

In order to understand the differences in the performance depending on the OxRAM specific

variability, it is necessary to investigate the network performance in detail for the single classes

of events, i.e. the six single lanes. As shown in figure 5.11 (a), the conditions C1, C4 and C7

achieve a significantly lower number of False Negatives (FN) with respect to the other conditions

on lanes 1 and 6. Lanes 2 to 5 are approximately the same for all conditions in terms of the FN.

On the other hand, the number of False Positives (FP) is slightly higher for C1, C4 and C7 in

comparison to the other conditions, especially on lane 3 and 4, as shown in figure 5.11 (b). This

gives rise to the assumption that the increased LRS variability enhances the network to detect

cars on the outermost lanes (1 and 6) while a few more cars are ’invented’ throughout the central

lanes. To draw a proper conclusion, considering both FN and FP, the F1 score was calculated and

shown in figure 5.11 (c). It is clear that F1 is very similar for the lanes 2 to 5 whereas lane 1 and

6 are significantly increased leading to the overall higher F1 score in figure 5.11 (c).

In order to understand the influence of OxRAM variability in a synapse, the detection rate

was plotted as function of the LRS and HRS variabilities in the contour graph in figure 5.12.

Whereas the performance of the SNN seems to improve with an increased LRS variability, the

HRS variability appears to decrease it.

Typically, the car detection rate of the SNN is reduced for the traffic lanes 1 and 6 [15] [17],

since these are at the edge of the AER sensor, thus, cars appear smaller which results in less

input activity from the 2-dimensional AER sensor. Here, it seems that especially this shortcoming

can be compensated by introducing synaptic variability by means of LRS variability. This may

be explained as following. A car is detected by the SNN when a neuron of the first layer emits a

spike which happens whenever the integration threshold of a neuron is crossed. The threshold for

a spike emission was constant for all neurons of the same layer in our simulations and moreover,

the same threshold value was used for all OxRAM conditions C1−C9. Hence, the lower input

activity may prevent the neurons of the SNN associated with lane 1 and 6 to reach the threshold

for spiking, i.e. they fail to detect a passing car. The conditions C1, C4 and C7 feature the highest

Figure 5.10: (a) False Negatives (FN), (b) False Positives (FP) and (c) F1 score for the different
OxRAM conditions (see figure 5.10). All numbers are averaged over the six traffic lanes. Note
that FN and FP shall be as low as possible while F1 has to be maximized (i.e. converge to 1).
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Figure 5.11: (a) False Negatives (FN), (b) False Positives (FP) and (c) F1 score for the different
OxRAM conditions (see figure 5.10) for the six traffic lanes. Note that FN and FP shall be as low
as possible while F1 has to be maximized (i.e. converge to 1).

Figure 5.12: Recognition rate of car detection SNN (figure 5.8) as a function of LRS and HRS
variability of the OxRAM devices used for the implementation of the SNN synapses.

variability in LRS, this allows to achieve relatively high device conductances (very low resistances

at the distribution tails) with respect to the conditions of lower LRS variability. In our simulations,

the mean values for the LRS and HRS distributions were constant across different conditions,

hence, the higher the OxRAM device variability, the higher the final synaptic weights can be.

The impact of the variability effect is shown in figure 5.13 for the OxRAM conditions C4 and C5.

For those conditions, the neurons corresponding to lane 1 were identified and their integration

potential was plotted as function of time for the same sequence of data. As it was previously

explained, the number of non-detected cars (FN) is higher for C5 with respect to C4 on lane 1

and 6. The reason for this can be found in evaluating the integration trace over time. While the

threshold for spiking is reached every time when a car is passing for C4, this threshold is missed

two times for C5 (around 22s and 23s).

Since the EPSP induced in a post-synaptic neuron (increasing the integration) depends on

the individual synaptic weights which are typically dominated by the OxRAM cells of highest
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Figure 5.13: (top) The spike trains of the output neurons corresponding to lane 1 (red) of the
SNN shown in figure 5.8 are compared with the reference (blue) for the OxRAM conditions C4
and C5. (bottom) The integrated membrane potential for the two neurons is shown. Every time
a car passes (spike in the truth), the integration increases significantly and eventually reaches
the threshold. This is true for all events using C4 but 2 events are missed for C5. Note that the
increase of the integration is proportional to the input synaptic weights.

conductance, missing the threshold and thus not detecting a car can be certainly attributed to the

lower synaptic weights when C5 is used instead of C4. The distributions of synaptic weights after

8 learning passes (5500s) is plotted in figure 5.14 for all programming conditions. C4 features

apparently a wider distribution of synapses corresponding to the LRS, i.e. a few synapses exhibit

weights being almost an order of magnitude higher than C5. Those are the synapses that enable

the SNN to provide enough input current to the neurons to reach the threshold and to fire a spike.

Note that the two distributions for depressed and potentiated synapses are usually separated

except for the programming condition C1.

5.3.2 Threshold dependence

A possibility to overcome the problem of missing cars because of a low input activity may be to

reduce the threshold so that a neuron can more easily fire a spike. For this reason, the threshold

value was varied on a wide range and the simulation results were quantified. Figure 5.15 shows

the number of FN, FP and the F1 score for the condition C4 and C5 as a function of the threshold

of the LIF neurons in layer 1 of the SNN. Indeed, the number of FN can be reduced by using

a lower threshold for C5, thus compensating the lower synaptic weights. There are optimum
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Figure 5.14: Synaptic weight distribution after sufficient learning period for C4 and C5. The
majority of the OxRAM based synapses is depressed, i.e. in High Resistive State (HRS) while a
small fraction is potentiated, i.e. in Low Resistive State (LRS). The synapses in LRS are the ones
corresponding to relevant input information for a specific lane and allow to detect a passing car
while the HRS synapses detect events outside the former lane. C4 bears a much wider distribution
of LRS synapses with respect to a very sharp distribution for C5.

thresholds for both C4 and C5 in terms of the FN, while above this optimum, the number of

FN increases strongly since neurons can no longer reach the threshold and on the other hand,

below the threshold, noise starts to disturb the proper detection of cars. The FP increases also

significantly when the threshold is reduced since the increased excitability of the neurons tends

to lead to detection of noise rather than cars. Finally, F1 was computed and shown in figure 5.15

(c) which shows clearly that an optimum threshold exists for both conditions which maximizes

the performance. It is worth noting that the performance parameters FN, FP and F1 show an

asymmetric dependence on the threshold, i.e. using a lower threshold with respect to the optimum

value causes a much stronger degradation of the performance than using a higher threshold.

The absolute value of F1 is the same for different conditions which suggests that the synaptic

variability does not critically affect the SNN precision. However, it is clear that the parameters

of the SNN such as the threshold have to be precisely adjusted according to the synaptic device

characteristics.
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Figure 5.15: False Negative (FN), False Positives (FP) and F1 score as a function of the threshold
of the LIF neurons for C4 and C5.

5.3.3 Memory window dependence

Variations of the LRS and HRS variability, introduced previously, change the resistance margin,

also known as the memory window (MW). The MW characterizes the margin between the

resistance distributions (LRS and HRS) and is accordingly calculated by

MW = RHRS, −3σ

RLRS, +3σ
(5.1)

Moreover, it seems to be important for the proper functionality of a Spiking Neural Network that

potentiated synapses have a significantly higher weight than depressed synapses since the former

are supposed to provide relevant input signals to a neuron while the latter usually provide input

signals corresponding to uncorrelated or noisy events. For this reason, the impact of the MW

on the reliability of the SNN application was studied. Since the simulated conditions featuring

virtually no variability in one or both of the resistance states (σ=−100) are not possible to be

Figure 5.16: Schematic illustration on how to retrieve the MW from experimental distributions of
LRS and HRS. The MW described the gap between those two distributions.
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achieved by using OxRAM devices, only the conditions with significant variability are used in the

following, i.e. C1, C2, C4 and C5. The MW was varied by changing either the mean value of the

LRS or HRS distribution and the equivalent effect was verified by simulations, but not shown

here.

As it was pointed out in section 5.3.2, the optimum neuron threshold depends strongly on

the synaptic weights, thus on the programming conditions. If the MW is changed, the influence

of synapses in HRS changes which can be observed in figure 5.17. Here, the threshold has to

be increased for a shrinking MW. This is because lowering the MW results in HRS that are

comparable to LRS while for high MW, the HRS is orders of magnitudes lower than LRS.

Figure 5.18 shows the quantified results for the FN, FP and F1 of the four conditions as a

function of the MW. For high MW, the number of FN and FP are low resulting in a F1 score close

to 1, i.e. a high accuracy of the SNN to detect single cars on specific lanes. On the other hand,

both the number of FN and FP increase rapidly below a certain MW while this threshold memory

varies from condition to condition. For this reason, the minimum MW providing a sufficient

performance seems to depend on the LRS and HRS variabilities. It is interesting to note that

the lowest MW can be used with C1 which features the highest variabilities among the tested

conditions. This finding gives rise to the assumption that rather than the MW, the dynamic

range of the synaptic weight (LRS to HRS), in the following called synaptic window (SW), plays a

keyrole for the accuracy of a SNN.

This effect can be understood by considering the basic functionality of the neurons performing

the Multiply-Accumulate-Function (MAC)

I =∑
Ni ∗G i (5.2)

Figure 5.17: False Negative (FN), False Positives (FP) and F1 score as a function of the threshold
of the LIF neurons for C4 and C5.
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Figure 5.18: False Negative (FN), False Positives (FP) and F1 score as a function of the MW of
the LIF neurons for C1, C2, C4 and C5.

where I is the neuron integration, Ni is the number of activations and G i is the synaptic weight

for a specific synapse i. One may separate I into IP and ID which are the two contributions from

potentiated and depressed synapses (see figure 5.14), respectively, with

IP =∑
NP ∗GP and ID =∑

ND ∗GD (5.3)

where NP and ND are the number of activations of potentiated and depressed synapses and GP

and GD are the weights of the potentiated and depressed synapses. IP refers to the integration

that is caused by relevant input activity corresponding to the event to be detected/classified

whereas ID is the integrated potential caused by background signals. In order to achieve a good

F1, or in other words a high selectivity to relevant inputs over background noise, IP has to

dominate the ID , thus IP >> ID . Assume that in a short time interval all synapses transmit a

spike and thus contribute to IP or ID , depending whether they are in LRS or HRS. The ratio of

IP /ID depends both on the MW and the variability as shown in figure 5.19. In order to maximize

SW, one can either increase the MW or tune the variability of LRS and/or HRS.

Figure 5.19: Synaptic window (SW) as a function of the statistical RRAM device memory window
(MW) for different variabilities of low and high resistance states (LRS and HRS). Note that the
populations of RRAM devices in both LRS and HRS are assumed to follow Gaussian distributions.

106



5.3. EFFECTS OF SYNAPTIC VARIABILITY ON SNN IN DETECTION TASKS

5.3.4 Synaptic granularity

Synaptic granularity is the capability of a synapse to emulate a certain number of states, i.e.

synaptic weights. For example, if one binary device such as a RRAM cell is used to mimic a

synapse, the granularity is very high because the synapse can only have two distinct states.

The implementation of such a binary synapse may be sufficient for certain applications as

shown previously for the visual pattern extraction application, see section 5.8. This application

essentially detects events and classification is enabled inherently by the topology of the Spiking

Neural Network. However, for other types of applications, binary synapses are not sophisticated

enough and it may be necessary that the synapses are able to attain multiple different states to

ensure the functionality of a given artificial neural network. This is the case for neural networks

where the neural activity corresponding to different input event classes (e.g. different spike

waveforms) is propagated along common network paths, i.e. synapses and neurons. Classifying

different events based on those overlapping activity patterns results in a much higher demand

on the synapse features. The need for synapses which resemble a rather analogue weight

characteristic than a binary one was demonstrated for the Spiking Sorting application in section

5.2.

Synaptic redundancy, i.e. multiple binary switching devices, can be combined to build one

synapse as explained in more detail in chapter 3. Using n devices per synapse, n+1 values of

synaptic conductance can be achieved accordingly. Figure 5.20 represents the distribution of

synaptic weights for the car detection application after learning using the OxRAM programming

condition C5 for two different synaptic redundancies (n = [1,10]). The peaks in the synaptic

weight distribution are labelled according to the number of devices in Low Resistance State

(LRS). In case of implementing a synapse with n = 1 OxRAM devices, the distribution exhibits

only two peaks corresponding to the single device resistance in LRS or HRS, respectively. For

n = 10 devices per synapse, a number of peaks can be observed. The peak at lowest conductance

corresponds to synapses where all OxRAM devices are in HRS. For higher conductances, 10

more peaks can be observed which reflect the synaptic weights as a function of the number of

OxRAM synapses in LRS, i.e. n between 1 and 10. Apparently there is a rather large gap between

the peaks for n = 0 and n = 1 which means that the synaptic weight spectrum here does not

allow to achieve synaptic weights in this gap. Moreover, it is worth noting that the ratio between

minimum and maximum conductance is not enhanced for n = 10 with respect to n = 1. This

means that the dynamic range depends solely on the programming condition of individual RRAM

devices within the synapse structure.

5.3.5 Learning time

The previous sections have demonstrated that the overall accuracy of a Spiking Neural Network

does not degrade with the variability that is induced by single synapses if parameters such as the

threshold are optimized. An equivalent performance according to the F1 scores can be achieved,
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Figure 5.20: Synaptic weight distribution after sufficient learning period for synapses based on 1
C5 device (blue) and 10 C5 devices (red). The majority of the OxRAM based synapses is depressed,
i.e. in High Resistive State (HRS) while a small fraction is potentiated, i.e. in Low Resistive
State (LRS). The synapses in LRS are the ones corresponding to relevant input information for a
specific lane and allow to detect a passing car while the HRS synapses detect events outside the
former lane. Note that the absolute ratio between lowest and highest conductance synapses is
equivalent for synapses based on 1 and 10 devices, i.e. the dynamic range can not be enhanced by
increasing the number of devices per synapse. However, this approach can be used to achieve
intermediate synaptic levels instead of only binary weights.

however, the learning speeds seems to be slightly lower for high variabilities, i.e. the network

needs a longer time for the appropriate weight tuning that allows the optimum classification

performance. This effect is shown in figure 5.21. While the detection rate of C5 rises abruptly

to the maximum of, the learning curve for C4 starts slightly lower and its slope is weaker. The

extended learning time needed by a network that is affected by synaptic variability may be

Figure 5.21: Detection Rate (DR) as a function of the number of training epochs.
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due to neurons which initially learn a pattern. However, at a later stage during learning, the

network might be able to identify other neurons that have a more suitable (probabilistic) weights

distribution. Furthermore, the variability is likely to cause the network to change synaptic

weights more often due to the uncertainty of the resistance programming introduced by synaptic

variability. Note that due to the poor statistical evidence of this theory, depicted in the highly

noisy learning curves in figure 5.21, this theory should be verified by repeated neural network

simulations.

5.4 Summary

In this chapter, the impact of the synaptic variability on spiking neural networks was studied

for two applications, one related to object detection and the other one to classification. When a

synapse is implemented based on binary devices, whereas each of the two states is affected by

variability, it was found that synaptic variability can have different effects, dependent on whether

the variability is due to electrical device variability in low or high resistive state. First, it was

found that the reliability could be improved by enlarging the memory window. Second, it was

demonstrated that is necessary to carefully tune the network parameters such as the neuron

threshold for spike emission as a function of the electrical characteristic of the synapse devices.

This was shown to achieve a reliability that does not depend on the variability but only on the

relative dynamic range of the synapses. This dynamic range depends on the average weight of

synapses in potentiated state compared to the average weight of the ones in depressed state.

Since the average is an arithmetic value, variability in LRS can increase the dynamic range of a

synapse while HRS variability leads to a decrease, assuming that the mean values are constant.

The findings of the impact of variability on the reliability of Spiking Neural Networks shall be

used for the design of optimized operation conditions of RRAM (or other) technologies for the

application in artificial synapses.
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SHORT-TERM PLASTICITY

Various concepts to mimic stable, i.e. Long Term Plasticity (LTP), effects in artificial

neural networks (ANN) were proposed previously [141]. Experimental findings from

the neuroscience community have shown however that synaptic changes are not only

governed by LTP but also unstable, i.e. Short Term Plasticity (STP), effects can be observed. Those

unstable effects have a different biochemical origin and serve different purposes with respect

to the stable ones. In this chapter, it is demonstrated how OxRAM devices and their intrinsic

switching probability can be exploited to emulate both STP and LTP inspired by biology. A new

circuit concept is proposed to co-implement STP and LTP using non-volatile OxRAM devices

and some rules for the design of the STP synapse are described. It is showcased by two realistic

applications based on Fully Connected Neural Networks that LTP enables the networks to learn

patterns in the data without any supervision while STP ensures a highly reliable signal detection

even in presence of significant background noise in the input data.

This chapter is structured as follows. First, the features of a biological synapse are briefly

reviewed section 6.1. Then, the model for Short Term Plasticity based on experimental findings

by Tsodyks and Markram is described in section 6.2. Next, the approach to emulate STP using

non-volatile OxRAM technology is explained in detail in section 6.3, followed by the concept of a

compound synapse to merge STP with LTP in section 6.4. An example for the implementation of

this synapse concept using OxRAM arrays is introduced in section 6.5. The STP related perfor-

mance enhancement of Spiking Neural Networks exposed to highly noisy data is demonstrated

in section 6.6 and compromises regarding integration complexity and energy consumption are

discussed. Finally, the results of the previous sections are summarized concluding the relevance

of short term plasticity for spiking neural networks.
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6.1 Biological synapse review

Figure 6.1 shows an illustration of a biological synapse (i.e. the electro-chemical connection of

an axon of a pre-synaptic neuron and a dendrite of a post-synaptic neuron) restricting itself on

the essential features needed to understand the functionality of the synaptic features. The pre-

synaptic terminal contains different species of neurotransmitters, each of a certain concentration.

The post-synaptic terminal features a number of channels or receptors which are specific for

a certain kind of neurotransmitter. When a pre-synaptic neuron emits an action potential,

commonly known as spike, towards the post-synaptic neuron, a number of glutamate particles is

released from the pre-synaptic terminal transported through the synaptic cleft and channelled

into the post-synaptic terminal via the element specific channels, in this case the so-called AMPA

channels (see chapter 1 for more details). This process induces an impulse into the post-synaptic

terminal which results in a modulation of the internal cell voltage, termed as the Excitatory

Post-Synaptic Potential (EPSP). The EPSP essentially increases probability of a neuron to emit

a spike by approaching its internal voltage towards the threshold voltage. Both the number of

neurotransmitters (NT ) in the pre-synaptic terminal and the number of receptors (NR) in the

post-synaptic terminal determine the amplitude of the EPSP induced due to a spike from the

pre-synaptic neuron. As a rule of thumb, it is valid to assume the higher NT and/or NR the

stronger the influx and thus the stronger the EPSP in the post-synaptic cell body.

EPSP ∝ (NT , NR) (6.1)

NR determines what is usually referred to as the synaptic weight which can be understood

as the sensitivity of the post-synaptic neuron to inputs from the pre-synaptic neuron. This

synaptic weight is known to be subject to various kinds of plasticity (see chapter 1). Plasticity

describes the modification of the synaptic weight, or efficacy, as a function of the activity of

pre- and post-synaptic activations. One of the most well known types of synaptic plasticity is

Spike-Timing-Dependent Plasticity (STDP) which affects the number of receptor channels in

the post-synaptic terminal based on the relative timing of pre- and post-synaptic spikes, see

figure 6.1. Changes due to STDP are long-lasting and are therefore responsible for Long Term

Plasticity used in the process of learning and memory creation. NR is increased or decreased in

Long Term Potentiation or Long Term Depression, respectively. On the other hand, NT changes

in a rather dynamical manner based on the spiking activity of the pre-synaptic neuron. For

example, two consecutive spikes do not evoke the equal EPSP in a post-synaptic neuron if the

delay between those spikes is within a few milliseconds. This can be due to a lack of time to

recover the reservoir of neurotransmitters to a sufficient population. Due to this temporary

nature, this effect is corresponding to Short Term Plasticity.

For the time being, no implementation concepts that feature long and short term plasticity

independently from each other were demonstrated but STP concepts which have been proposed
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Figure 6.1: Schematic illustration of synaptic connection between a pre-synaptic axon and a
post-synaptic dendrite. Both the number of neurotransmitters in the pre-synaptic terminal and
the number of channels in the post-synaptic terminal determine the amplitude of the voltage in
the post-synaptic neuron induced by a spike of the pre-synaptic neuron. Note that the number of
neurotransmitters is changed dynamically and modifications decay in an exponential relaxation
where the channel number modifications are permanent. Therefore, those two effects are affiliated
with Short and Long Term Plasticity, respectively.

so far either rely on switched capacitors [238], conventional CMOS [239] or on the short to long

term plasticity conversion of emerging NVM such as RRAM [177].

6.2 Tsodyks-Markram model

Besides the well-known STDP [43] [2] (described in chapter 1), it was found in biological synapses

that the EPSP during a spike train beyond a certain frequency propagated along a synapse

decreases proportionally to the pre-synaptic spiking frequency ( fpre) as shown in figure 6.2 [25].

The EPSP decrease is due to the corresponding reduction of pre-synaptic neurotransmitters. In

fact, this particular effect is called Short Term Depression (STD) while the opposite effect of

Short Term Facilitation (STF) can be found as well in biology but is not described here.

Indeed, these synaptic modifications depend only on the pre-synaptic activity, i.e. the history

of the pre-synaptic spike events, in contrary to modifications by e.g. Spike Timing Dependent

Plasticity, where the synaptic weights change based on correlation of the pre- and post-synaptic

neuron activities and are stable over time. This is one of the main characteristic features of Short

Term Plasticity (STP) along with the attribute that the synaptic weight recovers quickly towards

its resting level in case of no pre-synaptic activity. A phenomenological model describing the
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Figure 6.2: (a) Functional observation of Excitatory Post-Synaptic Potential (EPSP) evoked in
post-synaptic neuron during a pre-synaptic spike. The amplitude of the EPSP reduces upon a
rising number of input spikes, e.g. R2< R1. Note that a stationary EPSP occurs for a spike train
of constant frequency. (b) Biological data (symbols) and a simplified rule (line) for the stationary
EPSP as a function of the pre-synaptic frequency. Figures reproduced from [25].

depression upon a pre-synaptic spike and subsequent transient relaxation has been developed by

Tsodyks and Markram [25]. The weight of a synapse of a pre-synaptic neuron i associated to STP

is expressed as yi which evolves over time t according to

d yi

dt
= 1− yi

τD
− fD · yi · δ(t− tpre) (6.2)

where 0< fD < 1 controls the degree of depression when a pre-synaptic spike occurs at time tpre

and τD is the recovery time constant for the transient decay of yi(t) towards its resting level, here

yi,max. Every time a spike was propagated along the synapse, its weight is depressed while the

absolute value of synaptic depression ∆ yi is a function of fD and the momentary weight yi(t) at

time t, hence

∆ yi = − fD · yi (6.3)

Figure 6.3 illustrates the STP weight characteristic for an arbitrary spike train assuming different

values of the parameters fD and τD . The spike train consists of 5 spikes with different inter-

spike-intervals (ISI) ranging from 10s to 90s. The plotted weights are normalized to the resting

state (equal to 1). For fast relaxation times, i.e. τD < ISI, yi(t) can recover quickly towards 1 so

that the weight during consecutive spike is not influenced. On the other hand, for τD > ISI, the

time is not sufficient for a full recovery of yi, i.e. the STP effect is additive for several consecutive

spikes and yi can become smaller than yi,max − fD .

6.3 Emulation of Short Term Plasticity using RRAM

It was previously demonstrated that H f O2 based OxRAM cells are capable to emulate Long

Term Plasticity (wi j) in [214] [141] and in chapters 3 and 4. The challenge addressed in this work
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Figure 6.3: Schematic illustration of Short Term Plasticity model according to equation 6.2.
Several traces are shown for the same spike train example using different STP parameters
τD = [0.3,1,3,10,100] and fD = [0.1,0.5,1.0].

is the joint hardware integration of several synaptic features such as Long Term Plasticity (LTP)

and Short Term Platsticity (STP). To this end, it is desirable to use compatible or even the same

technology, in our example OxRAM technology. While the non-volatility of the resistance state

can be directly exploited to feature the long-term remaining synaptic modifications and thus

implement LTP, synaptic changes due to STP are dynamic and decay over time, as explained in

section 6.2. This requires a volatile behaviour of the OxRAM based synapse to implement the

STP. However, OxRAM does not intrinsically comply to this behaviour, i.e. this shortcoming must

be overcome by a dedicated programming strategy.

In the following, it is demonstrated that synapses based on OxRAM technology are capable

to reproduce both STP (yi(t)) and LTP (wi j). In order to reproduce the characteristic decay of

the STP effect, the changed synaptic weight has to recover towards an initial state over time.

Moreover, this recovering phase occurs typically progressively and therefore it seems useful to
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rely on a synapse design featuring multiple levels. For this reason, a number of binary devices

are employed to represent one STP synapse, as described in detail in section 3.3. Figure 6.4

shows the principle hardware implementation of one STP synapse yi(t) between one pre-synaptic

neuron and several post-synaptic neurons based on multiple OxRAM cells. Note that it is possible

to mutualize the STP weights of all post-synaptic neurons connected to the same pre-synaptic

neuron by one single STP synapse since the latter depends only on the pre-synaptic spiking

frequency, i.e. the synaptic connections between all post-synaptic neurons and one specific pre-

synaptic neuron experience the same spike train. The pre-synaptic spikes are applied by the

driver circuit to the top electrodes of all n devices and the post-synaptic current enters the

post-synaptic neuron from the cell’s bottom electrodes.

Figure 6.5 describes the programming strategy of the STP synapse (figure 6.4). The weight

yi(t) is tuned using two invariant pulse conditions for Set and Reset, which can either increase or

decrease the STP synaptic weight (conductance). A Set programming pulse (blue line in graph) is

applied at a constant ’clock’ rate (1/∆T). Therefore, in case of no pre-synaptic spiking activity,

the synaptic weight tends to be at its resting level (yi(t)/yi,max = 1). When a spike occurs (black

line on top of figure), an abrupt decrease of the normalized synaptic weight (red line in graph)

is induced by applying a Reset programming pulse on the OxRAM based synapse. Due to the

series of Set programming pulses (blue line in graph) applied after every timing delay ∆T, the

characteristic STP relaxation is induced in the synapse resistance. This results in the gradual

recovery towards the high (conductance) resting level of the synaptic weight. Note that a series

of pre-synaptic spikes, as illustrated for a high spiking activity, can cause a strong depression

of yi(t) strongly so that yi << yi,max − fD , resembling the biological model of STP which is based

on experimental results. The model parameters fD and τD can be approximated by tuning the

absolute change of yi(t) triggered by a Reset or Set pulse. Typically a Reset pulse shall result in a

bigger absolute change compared to a Set pulse. The level of conductance increase or decrease

Figure 6.4: Schematic of proposed Short Term Plasticity synapse (yi(t)) using 10 H f O2 based
OxRAM cells. Top electrode: Ti PVD 10 nm, resistive switching layer: H f O2 ALD 5 nm, bottom
electrode: TiN PVD, 130 nm node.
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Figure 6.5: Programming strategy to reproduce Short Term Plasticity using the OxRAM based
synapse (figure 6.4). The synaptic weight is decreased at each pre-synaptic spike and periodically
increased (every ∆T) in absence of pre-synaptic spikes.

can be controlled by adjusting the Set and Reset pulse conditions which can be realized by

either tuning the programming probabilities in the driver circuit or using the intrinsic switching

probability of OxRAM devices. For a detailed description consult section 3.3. The Set probability

pSet in combination with the programming delay ∆T are used to fit τD while fD is controlled by

the Reset probability pReset.

Figure 6.6 demonstrates that the synaptic weight evolution yi(t) of the STP model can be

reproduced using a synapse based on n = 10 OxRAM devices (see figure 6.4) by applying the

programming strategy presented in figure 6.5. Figure 6.6 (a) shows the STP characteristic (green

line) for fD = 1 and τD = 1ms and the corresponding experimental approximation of the OxRAM

synapse. The programming conditions of the STP OxRAM synapse were pSet = 0.1 and pReset = 1.

Accordingly, figure 6.6 (b) shows the fitted STP for another set of STP parameters, fD = 0.5 and

τD = 10ms. In order to achieve a sufficient approximation, the OxRAM programming conditions

have to be changed to pSet = 0.05 and pReset = 0.5. From a qualitative point of view, this simple

programming strategy seems to enable a promising emulation of the STP model by a relatively

simple synapse of only 10 devices/synapse, i.e. 11 synaptic weight levels. Here, the parameters

pSet and pReset are adjusted by tuning the set and reset voltages, VSet and VReset, respectively

(explained below). The Set programming interval ∆T was fixed at τD /n. The results obtained

with the phenomenological model of equation 6.2 (green lines) are reported for verification.

Note that for a pre-synaptic spike train of constant spiking frequency fpre, the STP weight

yi(t) reaches a stationary value, in the following referred to as the effective weight yi( fpre).

The yi( fpre) is the weight that encodes the EPSP induced by a pre-synaptic spike. It expresses

the equilibrium between synaptic depression (pre-synaptic spike) and synaptic relaxation (pre-

synaptic inactivity). In other words, between two consecutive spikes, the synaptic weight can
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Figure 6.6: Short Term Plasticity synaptic weight evolution obtained using the OxRAM synapse
structure (n = 10) and programming scheme presented in figures 6.4 and 6.5 (black symbols) and
the Tsodyks and Markram model (green line). Different values for τD and fD can be experimen-
tally obtained by changing the set and reset probabilities, pSet and pReset. The programming
interval was set to ∆T = τD /n, hence (a) ∆T = 0.1ms and (b) ∆T = 1ms.

relax just as much as it is depressed in the event of a spike. The value of yi( fpre) depends

obviously on fpre and furthermore on fD and τD . The effective weight normalized to its resting

(i.e. maximum) level yi,max is shown in figure 6.7 as a function of the pre-synaptic spiking

frequency fpre (constant relaxation time τD = 1 ms). If the spikes along the synapse are driven

beyond a certain frequency, defined as the limiting frequency, thus fpre > f l im, the effective

weight decreases proportional to fpre. In this case, the time between two subsequent spikes

(1/ fpre) is too short for the synaptic weight to recover to yi,max. Otherwise, if fpre < f l im, the time

for synaptic relaxation is sufficient and therefore the STP related synaptic changes do not affect

the subsequent spiking activity. Moreover, it can be derived from the graph that yi( fpre) depends

also on fD , i.e the stronger fD the smaller yi( fpre). Figure 6.7 (b) shows yi( fpre) for different τD

and a constant fD = 0.5. While the characteristic S-shaped curve remains the same, yi( fpre) is
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shifted along fpre as a function of τD . This means that f l im depends solely on the value of τD .

These results are in qualitative agreement with the biological STP behavior reported in figure

6.2.

As mentioned above, the STP model parameters τD and fD can be converted into switching

probabilities PSet and PReset which are used in the driver circuit of the OxRAM based synapse

(figure 6.4). In order to emulate a certain τD , the two parameters PSet and ∆T can be tuned

correspondingly. It is clear that the longer ∆T, i.e. the less set pulses inducing the relaxation

effect, the higher PSet has to be used in order to ensure the correct transient behaviour. The level

of synaptic depression fD on the other hand is simply adjusted by tuning PReset, as shown in

figure 6.8 (b).

6.4 Compound synapse featuring Short and Long Term
Plasticity

It was previously demonstrated how OxRAM can be used to emulate STP (section 6.3) as well

as LTP (chapter 3). Another challenge is to merge those two functionalities into one synapse

thus featuring both dynamic and static changes. The underlying principle for the interaction

of STP and LTP is shown in figure 6.9. Whenever a pre-synaptic spike occurs, the short term

synaptic weight yi(t) is depressed followed by the relaxation towards its resting level. In case

of a post-synaptic spike shortly after a pre-synaptic spike, the long term synaptic weight wi j

is potentiated (LTP) or if the post-synaptic spike shortly before a pre-synaptic spike, wi j is

depressed (LTD). If there is no correlation between pre- and post-synaptic spikes, wi j remains

Figure 6.7: Stationary amplitude of yi(t) (Fig.4) reached during a train of spikes with a given
pre-synaptic frequency, fpre, for different (a) fD and (b) τD values. The limiting frequency f l im
decreases as the τD and is independent of fD .
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Figure 6.8: (a) R2 for correlation of Short Term Plasticity based on RRAM and model as a function
of ∆T/τD . Relationship between (b) τD and the set probability and (c) fD and the reset probability.
pSet and pReset are modulated by the OxRAM programming voltages (Fig.13).

Figure 6.9: Schematic illustration for association of Short Term Plasticity weight (yi(t)) with
Long Term Plasticity weight (wi j) to create total synaptic weight (g i j).

unchanged. The overall synaptic weight g i j follows a multiplicative rule according to

g i j = yi(t) · wi j (6.4)

which means that g i j is dominated by the smallest weight, either yi(t) or wi j. It may always be

assumed that 0< g i j < wi j.

Figure 6.10 shows the circuit proposed to (i) reproduce both the STP and LTP rules according

to their biological models and to (ii) associate the STP and LTP weights which are stored in two

separate OxRAM elements, yi(t) and wi j, respectively. The conductance multiplication of yi(t)

and wi j during the reading operation is performed by means of a buffer which is essentially a

120



6.5. SYNAPSE IMPLEMENTATION WITH OXRAM ARRAYS

Figure 6.10: Principal circuit proposed to reproduce both the Short Term Plasticity and Long
Term Plasticity rules using non volatile OxRAM cells. The conductance multiplication during the
read operation is performed by means of a buffer which modulates the read voltage for the Long
Term Plasticity synapse wi j.

current-to-voltage converter (or transimpedance amplifier) where the feedback resistor has the

value 1/yi,max. When a pre-synaptic neuron i emits a spike, the synapse receives an incoming

event which generates a voltage pulse (VIn) that propagates through the STP synapse (yi) and

causes a current (ISTP ) corresponding to its weight. The buffer modulates the read voltage

applied to wi j (Vread,LTP ) as a function of ISTP , i.e. as a function of the conductance value yi(t).

Vread,LTP = − VIn · yi(t) · 1
ymax

(6.5)

Consequently, Vread,LTP can be varied between a minimum and maximum voltage, corresponding

to yi,min and yi,max, respectively

yi(t) =
yi,max ⇒ Vread,LTP (t) = − VIn no STP impact

yi,min ⇒ Vread,LTP (t) = − VIn · yi,min
yi,max

highest STP impact
(6.6)

Finally, the higher Vread,LTP , the higher the resulting output current IOut which reflects the

overall weight of the synapse g i j.

IOut(t) = Vread,LTP · wi j (6.7)

6.5 Synapse implementation with OxRAM arrays

Figure 6.11 presents an array implementation of the compound synapse into a Fully Connected

Neural Network (FCNN) topology. Each layer’s (i) neurons drive the input signals for the next

layer’s ( j) neurons through the individual synaptic weights g i j (consisting of yi(t), the buffer and

wi j). Remember that the STP depends only on the pre-synaptic frequency and for this reason, the

total number of STP synapses including the corresponding buffers is equal to the number of input

neurons (Ni), i.e. each yi(t) synapse is shared by all its output neurons. On the other hand, the

total number of LTP synapses wi j is equal to the number of input neurons times the number of

output neurons (NixN j). Every yi(t) is implemented with the multiple OxRAM scheme described
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Figure 6.11: Integration concept for a Fully Connected Neural Network (FCNN) using 1T −1R
OxRAM arrays. Each layer‚Äôs neurons drive the next layer through weights yi(t) (Short Term
Plasticity) and wi j (Long Term Plasticity).

in section 6.3. The LTP weight (wi j) can be implemented by means of the same approach or even

one single OxRAM element per synapse, thus introducing binary long term synaptic weights.

We mimicked a FCNN on a 64 kbit Ti/H f O2-based OxRAM array manufactured in 130 nm

CMOS node, see figure 6.12. As indicated, the OxRAM element is located between the metalliza-

tion layers M4 and M5. The OxRAM devices are co-integrated in a so-called 1T1R structure,

i.e. every resistive memory element (′R′) is in series with a transistor (′T ′) which is used to both

access and control the current compliance of the OxRAM memory cell. A wide range of pulse

voltages and current compliances can be used for Set and Reset programming of the 1T1R devices

resulting in different resistive switching behaviour. Figure 6.13 presents the experimental results

for switching a 4− kbit OxRAM array between Low Resistive State (LRS) and High Resistive

Figure 6.12: Photograph of 64 kbit circuit demonstrator and SEM image of CMOS stack including
the OxRAM cell between M4 and M5.
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State (HRS) using two different values of current compliance, defined as strong (Iset = 400µA)

and weak (Iset = 40µA) programming conditions. The plots represent the statistical distributions

of LRS and HRS for one cycle of switching of all OxRAM cells. It is clear that in case of a strong

programming, both LRS and HRS are well separated and only the tails of the distributions

(beyond 2σ) start to deviate from the narrow distributions. This means that 95 % of the samples

(within ± 2 σ) feature a low resistance variability and therefore offer a clear resistance window

margin of more than one order of magnitude. On the other hand, for the weak programming cur-

rent, the LRS distribution varies substantially with respect to the one of the strong programming

which may be attributed to the filament geometry. The lower the programming current, the lower

the filament diameter, hence, the fluctuations in the exact filament structure can affect the final

LRS value strongly. This results in a rather wide LRS distribution spanning almost three orders

of magnitude and partly overlapping with the HRS. As a consequence, the weak condition does

no longer offer a resistance margin. The HRS distribution remains rather narrow because of the

sneak path current effect that occurs in resistive memory arrays. This effect limits the maximum

resistance that can be measured to about 5·106 Ω, which limits the distribution accordingly.

Figure 6.14 shows the resistance distributions after Set (HRStoLRS) and Reset (LRStoHRS)

pulsed programming for various pulse amplitude biases. As VSet is increased, the LRS distri-

bution shifts to lower resistances while the HRS distribution shifts towards high resistance as

VReset is increased. Both for Set and Reset, one can extract the percentage of switched cells as a

function of the applied bias voltage.

Therefore, one can consider that the higher the pulse amplitude, the higher the percentage

of cells switching to the respective state. For this reason, Set and Reset voltages can be used to

control the probability to switch between the memory states (figure 6.15). The Set probability

pSet of this OxRAM implementation can be tuned between 0 and 1 applying voltages between

Figure 6.13: 4− kbit resistance distributions for (a) strong (ISet = 400 µA) and (b) weak
(ISet = 40 µA) programming conditions. 5 MΩ is the resistance measurement limit.
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Figure 6.14: 4−kbit resistance distributions for different (a) set and (b) reset voltages for strong
programming condition (ISet = 400 µA) .

0.6 V and 1.7 V . For the Reset process, the switching probability pReset can be tuned between 0

and 1 applying voltages between 1.4 V and 2.2 V . Finally, pSet and pReset are used to calibrate

the STP parameters τD and fD (see section 6.1).

Both experimental OxRAM array operation conditions (strong, weak) introduced in figure

6.13 were tested for the implementation of the STP synapse in order to identify an optimized

condition. Therefore, the geometrical means and variabilities (2σ range) were extracted from

the statistical distributions of LRS and HRS in order to calibrate the RRAM model for the

synapse. The synapse was implemented with n = 10 OxRAM devices each. Using the calibrated

synapse model for the two conditions, several combinations of pSet and pReset were simulated

and compared to different set of τD and fD . Each simulation was performed 100 times since the

synapses exhibit fluctuations due to OxRAM device variability. As shown in figure 6.16 (a), the

Figure 6.15: (a) Set and (b) reset switching probabilities extracted from the 4− kbit array
resistance distributions of figure 6.14 and used to tune the Short Term Plasticity conditions, τD
and fD .
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synapses operated with the strong condition allow to achieve a good qualitative accordance with

the model while using the weak condition leads to a significantly different STP characteristic

(see figure 6.16 (b)). The discrepancy between experimental RRAM STP and modelled STP for

the two operation conditions can be mainly attributed to the difference in the LRS variability

between the two conditions. The high variability in LRS leads to a few OxRAM devices with

a very high conductance with respect to the mean value, thus, the average STP synapse (red)

exceeds the model STP weight (blue) by approximately a factor of 2. It is worth noting that a few

STP synapses can feature conductances which are considerably higher than the one according

to the model, i.e. 10x higher. This is very critical for the proposed concept of the co-integration

of STP and LTP in figure 6.10 because according to this concept, the read current of the STP

synapse, which scales directly with the conductance, is converted into a pulse voltage for the

LTP synapse during read mode. That means that a very high conductance would trigger a high

voltage pulse on the LTP synapse which can potentially cause read disturbs if the voltage lies in

the range of the Set programming voltage (see figure 6.15). A read disturb is the unintentional

switching of an OxRAM cell from LRS to HRS or vice versa while its current state is supposed to

be determined.

The quantitative accuracy of the OxRAM based STP approximation with the STP model was

evaluated by calculating the Pearson correlation coefficient r2 using simulated synaptic weights

of figure 6.16. Figure 6.17 reports the correlation as a function of ∆T. The optimum is reached

around ∆T = 0.1 · τD which is interesting to note because it gives rise to the assumption that ∆T

is related to the number of devices n used to implement one synapse, here n = 10. For this reason,

it can be concluded that generally ∆T/τD = n Obviously, the strong condition achieves a much

higher r2 than the weak condition. For this reason and to avoid read disturbs, the strong condition

is subsequently used for the implementation of the STP synapses while the weak condition is

assumed for the LTP synapses.

6.6 Short Term Plasticity in Spiking Neural Networks

The effect of synaptic Short Term Plasticity (STP) in Spiking Neural Networks (SNN) is demon-

strated on two independent applications. Both applications rely on dedicated two-layer Fully

Connected Neural Network (FCNN) topologies where each synaptic connection features separate

components to provide STP and LTP functionality, see figure 6.18. The SNN’s are modelled by

means of an in-house developed Neural Network simulator (’Xnet’ [148]) where all parameters

are matched to the specific problem and stochasticity of the OxRAM devices encountered in the

electrical characterization. Moreover, the performance in presence of significant background noise

in the input data is studied.
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Figure 6.16: Probabilistic STP synapses (grey) based on 10 OxRAM cells in parallel architecture
and mean value (red) for (a) ISet = 400µA and (b) ISet = 40µA. The ideal STP trace according to
the Tsodyks-Markram model is shown for comparison (blue).

6.6.1 Visual processing with highly noisy input data

This application based on a dedicated SNN was described in detail in chapter 5 and by Bichler

et al. [206]. An SNN is used to process temporally encoded video data, recorded directly from

an artificial silicon retina [237]. A video of cars passing on a freeway recorded in Address Event

Representation (AER) format is presented to a two-layered SNN. In each layer, every input is

connected to every output by a single RRAM synapse [157]. The quantification procedure, i.e.

extracting the number of True Positives (TP), False Positives (FP) and False Negatives (FN) is

performed analogue to chapter 5.

Figure 6.19 reports the number of FP and the DR obtained using the strong and weak

programming conditions for the OxRAM array (see figure 6.13). The synapses in these simulations

featured only Long Term Plasticity (LTP) to study the impact of the number of OxRAM cells per

synapse, i.e. the number of resistance levels that can be achieved for a synaptic weight. As one

can see, the detection performances do not improve significantly by increasing the number of cells
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Figure 6.17: Pearson correlation coefficient r2 for correlation of OxRAM based STP and STP-model
as a function ∆T/τD .

Figure 6.18: Two-layer Spiking Neural Network (SNN) used for car (N = 16384, M = 60) or
spike detection (N = 32, M = 5).

per synapse. Therefore, we adopt one OxRAM per LTP synapse in the following since this strategy

may as well simplify the integration circuitry. The weak programming condition (blue) achieves

a lower FN rate (> 3 %) but shows a slightly higher FP rate (< 2.5 %). The weak condition is

subsequently used for the LTP synapses because it allows to reduce the power consumption by

26 % with respect to the strong condition.

For the following study, the previous synapse implementation featuring only LTP (STDP) was

replaced by the novel synapse design featuring both STP and LTP (see section 6.4 for description).

Each synapse implicates two OxRAM based synaptic weights, one for STP and another one for

LTP. For this reason, 32k STP synapses (128∗128∗2) are required additionally to the 1.97M LTP

synapses to implement the SNN. By doing this, the False Positive Rate (FPR) could be reduced

without degrading the DR (black crosses in figures 6.19 (a) and (b)).

Furthermore, additional noise was artificially introduced in the SNN input signal by adding

random spiking activity in the (already noisy) AER data as illustrated in figure 6.20. This scenario

mimics natural phenomena which could affect this kind of application, e.g. light reflections, fog

or rain. As one can see, the contours of the cars become very blurry for increased noise levels

127



CHAPTER 6. SHORT-TERM PLASTICITY

Figure 6.19: Detection Rate (DR) (a) and False Positive Rate (FPR) (b) as a function of the number
of cells per Long Term Plasticity synapse. Only Long Term Plasticity is considered. Results have
been obtained on a bench of 20 simulations (no added noise).

because of the high background spiking activity. This significantly higher number of background

spikes may lead to disturbs in the learning of the SNN and hence degrade the reliable detection

of cars.

Simulation results based on the input data with 30% additional noise (i.e. 30% of the total

amount of spikes in the sequence are entirely random) are presented in figure 6.21. Without

STP (black dashed line), the DR decreases around 15% with respect to the reference case (0%

noise) and the FPR increases from a few percent to about 30%. The coloured plots show the

simulated performance for STP conditions varying τD and fD . Indeed, both DR and FPR are

strongly improved thanks to the introduction of the STP. Higher τD values decrease the limiting

frequency f l im, (figure 6.7) making the Short Term Plasticity more effective, thus lowering FPR.

However, for very long τD such as τD = 30ms, the DR degrades since the STP affects also the

detection of relevant data (i.e. true input spikes from passing cars). It seems to be useful to use

high fD (around 1) in combination with τD of around 10ms for this specific application.

Figure 6.20: Input representation of AER signal while recording cars passing on a freeway.
Random noise is added in the right-hand side presentation.
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Figure 6.21: Detection Rate (DR) and False Positive Rate (FPR) as a function of fD and for
different τD . 30 % of random noise is artificially introduced in the input data. Both Detection
Rate (DR) and False Positive Rate (FPR) can be increased by additional Short Term Plasticity
with respect to a network featuring only Long Term Plasticity.

Figure 6.22 compares the car detection SNN rates for FN and FP with and without STP as a

function of the noise level contained in the input data. Without STP, the DR reduces significantly

to approximately 73% and the FPR is heavily increased to about 79% (for 40% noise). On the

contrary, by using optimized STP parameters ( fD , τD , table in figure 6.22), it is possible to

enhance the DR by 10% while reducing the FPR by 60%. Essentially, these results mean that the

SNN featuring only LTP can no longer provide reliable car detection results in noisy environments

while adding STP to the SNN enables its functionality in such scenarios. This promising result

demonstrates that the STP technique is fundamental to maintaining functionality of the network

for elevated noise levels.

Figure 6.22: Detection Rate (DR) and False Positive Rate (FPR) as a funcion of the noise level
artificially introduced in the Adress Event Representation (AER) input data. The Short Term
Plasticity parameters for each noise level are reported in the right table. Short Term Plasticity
maintains the functionality of the Spiking Neural Network for high noise levels.
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6.6.2 Spike detection in noisy brain signals

In order to test the spike sorting system described extensively in chapter 4 towards its appli-

cability for noisy spiking data, different artificial data sets were used throughout which the

signal-noise-ratio (SNR) has been changed largely, as illustrated in figure 6.23. The data was

generated by an algorithm similar to the one described in [240]. The snapshot of the spiking

data of SNR = 80 shown in figure 6.23 allows easily to identify the spikes since their amplitude

exceeds many times over the one of the background noise. Therefore, even simple spike detection

based on applying a signal threshold to distinguish between a spike and noise would be sufficient.

However, in a realistic signal this is not the case because signals are typically much more noisy

and moreover non-stationary, i.e. showing an overall low-frequent drift over time. As for the

lowest SNR = 3, the spikes are widely hidden by the ’white’ noise and it is no longer possible to

identify discriminate a spike from noise ’by hand’. Hence. this prevents such simple methods in

order to detect spikes in practical applications.

The number of True Positives (TP), False Negatives (FN) and False Positives (FP) are extracted

according to figure 5.9. Since the datasets are artificial data sets, a ground truth of the spiking

activity is available which can be used for reliable quantification of the spike detection by the

spiking neural network. Based on these numbers, the detection rate (DR) and false positive rate

(FPR) are calculated according to

DR = NTP

Nspikes
(6.8)

where NTP is the number of TP and Nspikes is the number of spikes and analogue

FPR = NFP

Nspikes
(6.9)

where NFP is the number of FP.

If the SNR is high (80), the network achieves very good Detection Rates (DR) and False Positive

Rates (FPR) around 97 % and 1.6 %, even without STP (see figure 6.24). Using additionally STP

achieves very similar results of 96 % and 1.4 % for DR and FPR, accordingly. Here, it is worth

noting that introducing STP does not degrade the performance in terms of accuracy. However, for

a slightly increased noise level (SNR = 27), the FPR increases significantly to about 70%. The

DR remains at a high 80%, however, the spike detection is no longer reliable due to the very high

Figure 6.23: Snapshots of spiking data featuring different signal-noise-ratios (SNR).
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FPR. For this reason, the introduction of STP is mandatory since it allows to decrease the FPR

by 40 % while the DR decreases only 3 %.

The simulated performances of the spike detecting SNN for data with a SNR = 27 are shown

in figure 6.25 as a function of the STP parameters τD and fD . A small fD seems to be required

for this type of application (to avoid degradation of the DR) whereas long τD seem beneficial to

reduce the FPR.

Figure 6.26 summarizes the results for the DR and FPR as a function of the SNR. It shows

that the DR and FPR are always > 88 % and < 35 %, respectively, over a wide range of the SNR

as low as SNR = 3 thanks to STP. This allows to use the described system for the detection of

neural spikes (or other kinds of signals) superimposed by strong background noise while a SNN

without STP would be strongly disturbed by the noise and hence detect much more spikes than

actually existent in the data. For this reason, STP seems crucial to ensure the reliable detection

of biological spikes from non-relevant background noise.

6.6.3 Implications due to STP

One of the striking advantages of brain-inspired computing approaches (e.g. by Spiking Neural

Networks) over conventional von-Neumann architectures is the ultra-low power consumption.

This makes SNN especially useful for mobile applications which require parallel computing on

a low energy budget. Those applications are very likely to be subject to noisy signals due to

the environment which are constantly changing their properties. Thus, SNN’s need to be able

to adapt independently and in a dynamic manner to the signal, for example provided by STP.

Figure 6.24: Detection Rate (DR) and False Positive Rate (FPR) for the cases of ideal (SNR = 80)
and real (SNR < 27) biological data. Short Term Plasticity is mandatory to reduce the False
Positive Rate (FPR) for reliable spike detection in real data.
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Figure 6.25: (a) Detection Rate (DR) and (b) False Positive Rate (FPR) as a funcion of the degree
of depression, fD , for different recovery times τD . Short Term Plasticity allows to reduce the
False Positive Rate (FPR) significantly while maintaining a high DR. DR decreases for fD > 0.1
since the Short Term Plasticity disturbs detection of relevant data in this case.

However, the introduction of STP in the synapses of a SNN besides LTP implies a number of

obstacles which are briefly explained in the following.

Increased circuit complexity

Considering the concept presented in section 6.3 (based on OxRAM technology) for the imple-

mentation of synapses, one layer of LTP synapses has to be integrated and another one needs

to be added for the STP synapses. Furthermore, the buffer needs to be integrated to associate

LTP and STP. This adds a certain number of process steps (lithography, deposition, metallization)

to deposit the two layers of OxRAM devices as well as the buffer. It may be assumed that the

processing steps concerning the OxRAM deposition can be used for both LTP and STP fabrication,

thus reducing process complexity and saving cost.

Increased energy consumption

STP increases the number of synaptic programming steps since the STP weight is updated after

every pre-synaptic spike event. The statistics of the SNN applications for car and spike detection

were extracted from the Xnet simulations and are shown in table 6.1. As one can see, the number

of LTP programming events can be slightly reduced by around 30% (cars). This is because the STP

reduces the synaptic weights which results in reduced probabilities of the neuron to reach their

threshold and thus to perform and STDP operation. On the other hand, an enormous number of

STP switching events is observed due to the high input activity caused by noise. The number of

read events per synapse (STP and LTP component) does not depend on whether STP is used or
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Figure 6.26: Detection Rate (DR) and False Positive Rate (FPR) as a function of the Signal-Noise-
Ratio (SNR).

Table 6.1: Statistics of SNN based applications for unsupervised car or spike detection for the
highest noise levels: Cars: 40%, Spikes: SNR=2.7.

Car detection Spike detection
w/o STP w/ STP w/o STP w/ STP

Duration of video (s) 681 s 681 s 200 s 200 s

LTP synapses (#) 2 M 2 M 160 160

STP synapses (#) - 32 k - 32

Devices/LTP synapse (#) 1 1 50 50

Devices/STP synapse (#) - 10 - 10

LTP programming events (#) 56 x106 39 x106 470 x103

STP programming events (#) - 1.16 x1010 275 x106

Total Read events (#) 4.14 x109 4.14 x109 269 x106

not.

The statistics were used to extract the estimated energy consumptions of the SNN for the

application on the noisy datasets, reported in table 6.2. As expected, the significantly higher

number of switching events due to the STP synapses results in an increase of the energy

consumption by a factor of 175x. Despite the much higher energy consumption, it should be

clarified that without using STP, no more functionality is given for SNN applications when the

input data is affected by high noise levels.
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Table 6.2: Energy estimation of SNN based applications for unsupervised car or spike detection
for the highest noise levels: Cars: 40%, Spikes: SNR=2.7.

Car detection Spike detection
w/o STP w/ STP w/o STP w/ STP

Energy (J) 0.0063 1.1 0.036

Power (mW) 0.0093 1.7 0.18

6.7 Summary

In this chapter, the capability of OxRAM to implement synapses reproducing both Long Term

Plasticity (LTP) and Short Term Plasticity (STP) was studied. Therefore, a programming strategy

was developed in order to impose a bio-inspired STP behaviour on the intrinsically non-volatile

OxRAM devices. A synapse concept merging STP with LTP was proposed and demonstrated

by spiking neural network simulations for two applications. It was shown that STP enhances

the unsupervised learning of Spiking Neural Networks in case of highly noisy input data and

thus enables reliable signal detection. Thanks to the STP implementation, the demonstrated

applications exhibit very strong performances, while systems without STP would no longer

deliver valid results for signals hidden by ’white’ noise. The detection rate of the visual pattern

extraction could be increased by 20 % (∼ 83 %) whereas the false positive rate was decreased

by 60 % (∼ 20 %) for up to 40 % added random spikes in the input data. Furthermore, it was

shown that the STP allows to decrease the false positives by 40 % (< 35 %) while maintaining

a detection rate of 89 % for a neural detection application at an ultra low SNR = 3.7. It can be

concluded, that STP is a critical feature of SNN’s which are likely to be exposed to significant

noise in target applications. As shown, the performance is not degraded by STP in absence of

noise while it is strongly enhanced for high noise levels. Hence, combining LTP with STP results

seems a very promising approach towards significantly higher classification reliability. Moreover,

the STP adds some autonomy to the network since it behaves as a kind of gain control without

any supervision. This is extremely interesting for the implementation of versatile sensing and

classification applications into low-power analogue devices.
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CONCLUSIONS AND PERSPECTIVES

The scope of this thesis was to gain knowledge and assess the potentialities of applying

spiking neural networks to the decoding of neural signals in a spike sorting application.

Moreover, we argued that spiking neural network could be realized in low-power hardware

implementations in the near future. To this aim, the design of not only of the high level network

structure but also of the specific building blocks, namely the neurons and synapses, should be

customized.

In the framework of this thesis, we have focused solely on the design of synapses since they

typically outnumber the neurons and consume the major part of the total energy of spiking

neural networks. We first identified the general conditions that are known to be necessary in

order to fulfil a biology-like synaptic behavior, such as analogue weight range and progressive

behavior. In order to design our artificial synapses based on resistive memory technologies such

as OxRAM and CBRAM, we analyzed these technologies in depth with a focus on the properties

that are important to mimic synaptic behavior. It was shown that OxRAM can be either used

in a binary or analogue mode, depending on the programming current (ICC) used for the Set

operation. For ICC > 20µA, a filamentary switching was observed whereas for ICC < 20µA,the

resistance switching seemed to be governed by a bulk process. While the binary mode can be

used in the so-called compound synapse [168], the analogue operation regime will allow for the

use of a single OxRAM device, thus reducing the chip area, circuit level and power consumption

due to ultra-low operation currents and high resistances. In order to do so, the very large device-

to-device variability should be addressed in the future, to allow for a better understanding of

its origin and for the device optimization. Concerning CBRAM, we showed that doped oxide

material offers a rather high resistance margin (memory window) between LRS and HRS while

operating only at a very low programming current of ICC = 4.5µA. Typically, those ultra-low
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currents do not allow to have a separation of LRS and HRS due to large resistance variability

of both states. Hence, doping the oxide of CBRAM (and potentially even OxRAM) devices is a

very promising approach. Finally, the design of artificial hardware synapses exploiting binary

resistive memories as synapses coupled with a probabilistic learning rule (inspired by biological

Spike-Timing-Dependent Plasticity) was addressed. An original spike sorting approach based

on a compact spiking neural network (SNN) whose synapses are implemented with OxRAM

technologies was proposed. It was shown that this approach allows for sorting simple biological

spiking data without supervision, i.e. the network can identify, recognize and distinguish a small

number of different spike shapes in the input signal. This autonomy of the network was achieved

by using an on-line learning strategy inspired by biological Spike Timing Dependent Plasticity

(STDP) which results in the programming of the OxRAM based synaptic weights as a function

of the activity of single neurons. It was shown that this concept offers promising advantages

compared to conventional spike sorting techniques for brain-computer interfaces applications. In

fact, the SNN architecture is suitable for hardware implementation due to promising OxRAM

device features, such as low latency (< 1µs), high integration density (< 1µm2) as well as a low

energy consumption (< 75pJ). For the particular application of spike sorting, these properties

may enable real-time operation, opening the way for integration of large SNN and wireless

implantable devices for rehabilitation purposes, not yet possible with conventional spike sorting

techniques. However, it was also shown that this approach, using frequency filtering to encode

neural data, poses a very complex problem of classification since input patterns are overlapping,

i.e. the same group of input channels (band-pass filters and input neurons) is used to encode

several spiking waveforms. Hence, the spike sorting reliability was not efficient with noisy data

containing many different spike shapes. In order to address this critical issue, the data encoding

has to be drastically improved, for example by introducing additional input signals such as the

phase information instead of using only the amplitude of the filter signals. Also, the temporal

and frequency resolution of the filtering should be studied in more detail in order to optimize the

performance of the encoding. Moreover, the network topology has probably to be changed from

the simple fully-connected 2-layers network towards a convolutional architecture, in order to be

able to extract finer sections of the frequency spectra. Eventually, in this kind of applications,

the use of band-pass filters for the frequency analysis will be probably replaced by other signal

processing techniques such as wavelets, discrete Fourier transforms or others.

The impact of the synaptic variability on spiking neural networks was studied for two

applications, one related to object detection and the other one to classification. In both cases, the

synapses were implemented using binary (filamentary) OxRAM technology, i.e. a memristive

technology featuring two distinct resistance states, low and high resistance state, which are

typically separated from each other by some margin (memory window) and both affected by

variability. First, the reliability in terms of the detection/classification rate can be improved by

enlarging the memory window. Second, independently from the OxRAM device variability, the
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same reliability could be achieved assuming that the threshold integration parameter controlling

the emission of a neural spike is adapted to this variability. Third, it was found that synaptic

variability can have different effects, depending on whether the variability is due to the electrical

device variability in the low or in the high resistive state. We concluded that the reliability

depends on the relative dynamic range of the network of synapses, i.e. the ratio of the sum of

conductances in potentiated state and the ones in depressed state. Hence, it was shown that this

dynamic range can be expressed as the average weight of synapses in these two states, defined

as the synaptic window. Since the average weights of a synaptic conductance distribution is an

arithmetic metric, variability in LRS can increase the dynamic range of a synapse while HRS

variability leads to a decrease, assuming that the geometric values of LRS and HRS are constant.

Thus, it was proposed that resistance variability in LRS has a positive effect on the performance

of a spiking neural network while variability in the HRS has a negative impact. This result is

encouraging with respect to RRAM operations because higher variabilities are generally achieved

by using lower programming currents and therefore reduce the energy consumption of SNNs as a

side effect. These results may be used for the optimization of the operation conditions of RRAM

used to design artificial synapses and moreover, the overall understanding of variability effects

can be applied for the adaptation of other technologies.

Finally, the capability of OxRAM to implement synapses reproducing both Long Term Plas-

ticity (LTP) and Short Term Plasticity (STP) was studied. Therefore, a programming strategy

was developed in order to impose a bio-inspired STP behavior on the intrinsically non-volatile

OxRAM devices. A synapse concept merging STP with LTP was proposed and demonstrated

by spiking neural network simulations for two applications. It was shown that STP enhances

the unsupervised learning of Spiking Neural Networks in case of highly noisy input data and

thus enables reliable signal detection. Thanks to the STP implementation, the demonstrated

applications exhibit very strong performances, while systems without STP would no longer

deliver valid results for signals hidden by white noise. It was shown that this benefit is due to

the significant reduction of false positive errors that originate from the noisy input signals. It can

be concluded, that STP is a critical feature of SNNs since real-world applications based on SNNs

are likely to be exposed to significant (and changing) noise levels. As shown, the performance

is not degraded by STP in absence of noise while it is strongly enhanced for high noise levels.

Hence, combining LTP with STP seems a very promising approach towards significantly higher

robustness of the classification reliability. Moreover, the STP adds some autonomy to the network

since it behaves as a kind of gain control without any supervision. This is extremely interest-

ing for the implementation of versatile sensing and classification applications into low-power

analogue devices. It should be noted though that the STP increases the energy consumption of

SNN’s drastically and leads to higher numbers of programming and reading cycles which has to

be taken into account in the design of the artificial synapses.

Future work should cover mainly the following subjects:
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• Development of a specialized real-time signal processing approach for encoding spiking

biological data in the frequency domain allowing to extract specific features from the

frequency spectrum.

• Continue the study of variability effects of several network parameters in order to identify

systematically the aspects where variability of synaptic or neuronal properties leads to

improved or degraded SNN performance.

• Implementation of several types of synaptic (and neuronal) plasticity for certain network

functionalities such as noise resilience, flexibility to input data variations and to reduce the

requirements of SNN’s to precise parameter tuning.
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APPENDIX A: BAND-PASS FILTERING

A signal can be spectrally analysed in real-time by means of band-pass filters (BPF) which

pass signals with frequencies within a specific range (pass band) and attenuate signal

components of frequencies outside this range. The BPF generate continuous analog

output signals comparable to a Frequency Domain Spectrogram (also commonly known as

waterfall, i.e. the evolution of the Fourier spectrum over time). As shown in figure A.1, a BPF

is characterised by a low and high cut-off frequency, fL and fH , respectively, where the signal

attenuation amounts to −3 dB (−50 %) relatively to the peak (−0 dB). The range between fL

and fH is referred to as the bandwidth B. Equally distanced between fL and fH lies the so-called

center frequency f0. The filter characteristic in the pass-band (flatness) and the shape factor of

the slopes (i.e. frequency selectivity) are determined by the filter order (≥ 1). The higher the order,

the steeper the slopes of a BPF as illustrated in figure A.2. A high order enables an increased

Figure A.1: Band-pass filter characteristic.

139



APPENDIX A. APPENDIX A: BAND-PASS FILTERING

Figure A.2: Band-pass filter characteristics for Butterworth filters of order 1, 2, 4 and 8. The
horizontal dashed line indicates the cut-off level of −3 dB.

frequency resolution, however, reduces the temporal resolution. This time-frequency dilemma is

a common concern to real-time signal processing.
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