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Introduction en français

La rhéologie est le domaine de la physique qui étudie la façon dont la matière
s’écoule. La matière solide, la matière liquide, et quelque part entre les deux, les
milieux granulaires comme le sable. Le sable est-il un solide, ou un liquide ? C’est
déjà une question complexe. Mais dans de nombreuses situations, les grains sont
en plus mélangés à un fluide ; on appelle cela une suspension, et c’est encore plus
compliqué.

Certaines suspensions sont capables de s’écouler comme un liquide lorsqu’on
les agite doucement, et de soudainement se comporter comme un solide si on
les touille trop vite. Cette propriété est appelée le rhéoépaississement. L’exemple
le plus emblématique de suspension rhéoépaississante est le mélange d’amidon
de maïs et d’eau. Ce phénomène est une source intarissable d’amusement : si vous
remplissez une piscine d’un mélange d’amidon de maïs et d’eau, par exemple, vous
pouvez courir dessus ! Depuis les premières observations expérimentales dans les
années 1930, le rhéoépaississement fascine les physiciens et intéresse les indus-
triels. La plupart des premières études publiées sur le rhéoépaississement ten-
daient à le décrire comme un phénomène nuisible dont il fallait se débarrasser.
En effet, beaucoup de fluides industriels sont rhéoépaississants, ce qui peut causer
des dommages dans les pompes, mélangeurs et tuyaux utilisés pour les transporter.
Ces dernières années, au contraire, de nouveaux matériaux exploitant l’existence
d’un état liquide sous faible contrainte dans les suspensions rhéoépaississantes ont
vu le jour. Cela a donné lieu par exemple au développement d’armures souples ou
de bétons autoplaçants.

L’origine physique du rhéoépaississement est longtemps restée mystérieuse.
Plusieurs mécanismes ont été proposés, mais aucun ne parvenait à faire consen-
sus. Très récemment, en 2013–2014, un scénario cohérent décrivant l’origine mi-
croscopique du rhéoépaississement a émergé à partir de travaux numériques [1,2]
et théoriques [3] menées au Levich Institute et à l’Université de New York. Ces tra-
vaux décrivent le rhéoépaississement comme une transition frictionnelle, nécessi-
tant de prendre en compte à la fois les interactions colloïdales et le frottement à
l’échelle des contact entre grains.

Cette nouvelle vision du rhéopaississement constitue un changement de para-
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Introduction

digme, car elle place la physique du contact à l’échelle microscopique au cœur de
la rhéologie des suspensions, qu’on a longtemps crue dominée par les interactions
hydrodynamiques. Ma thèse s’inscrit dans ce nouveau point de vue. Son objec-
tif est de développer des outils expérimentaux originaux permettant de sonder
les propriétés frictionnelle de suspensions colloidales, et de faire le lien avec leur
rhéologie. Pour cela, je me suis inspirée de configurations issues de la physique
des milieux granulaires. Dans un premier temps, j’ai étudié les angles d’avalanche
et les propriétés de compaction et de dilatance de suspensions newtoniennes et
rhéoépaississantes, dans un écoulement de tambour tournant. Le résultat de ces
travaux (publiés dans [4]) a fourni une première preuve expérimentale directe
du scénario de transition frictionnelle. Dans un second temps, j’ai développé un
nouveau type de rhéomètre à pression imposée, adapté à l’étude de suspensions
colloïdales : le “Darcytron”.

Le manuscrit est organisé comme suit. Le premier chapitre dresse un état de
l’art de la rhéologie des suspensions denses et du phénomène de rhéoépaississe-
ment au moment où ma thèse a commencé. Les deux chapitres suivants constituent
le cœur du travail de thèse, et sont consacrés respectivement aux expériences en
tambours tournants et aux expériences sur le Darcytron. Enfin le dernier chapitre
résume le travail effectué et propose quelques perspectives. Les articles déjà pu-
bliés sur ce travail ( [4] publié dans le journal PNAS et [5] publié aux éditions
Techniques de l’Igénieur), ainsi que mon rapport de stage de M2 sur une expé-
rience différente (milieu granulaire 2D répulsif) mais directement en lien avec le
sujet de cette thèse, se trouvent en annexe.
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Introduction in English

With magic, you can turn a frog into a prince. With science, you can turn a frog
into a Ph.D and you still have the frog you started with.

Terry Pratchett, Ian Stewart and Jack Cohen, The Science of Discworld.

Rheology. It is the study of how matter flows. Solid matter, liquid matter, and,
at the frontier between them, granular matter like sand. Is sand a solid, or a liq-
uid? That is a good question. And then, because it wasn’t complicated enough,
physicists put granular matter in a liquid, called this a suspension, and decided to
study it.

Some suspensions can flow like a liquid when they are stirred gently, and sud-
denly behave like a solid if you stir them too fast. This property is called shear
thickening. The most iconic example of such a suspension is the mix of cornstarch
particles in water. Shear thickening can be the source of much fun: if you fill a
swimming pool with cornstarch in water, you can actually run across it, for exam-
ple. It has been fascinating physicists and interesting industries since it was first
observed in the 1930’s. Most of the initial studies about this phenomenon viewed
it as a nuisance and aimed to suppress it. Indeed, many industrial fluids exhibit
this rheological behaviour, which can cause important damage to pumps, mixers
or pipes used to transport them. However, recent years have seen the development
of new materials, which take advantage of the existence of a liquid-like regime at
low stress in shear-thickening suspensions. This was used for example for the pro-
duction of soft body armours, or for the formulation of self-compacting concretes.

The physical origin of shear thickening has long remained a mystery. Several
explanations were put forward, but no consensus could be reached. Quite recently,
in 2013–2014, a coherent scenario describing the microscopic origin of shear
thickening emerged from numerical [1, 2] and theoretical [3] works conducted
at the Levich Institute and at New York University. They described shear thick-
ening as a frictional transition, which requires taking into account both colloidal
interactions and solid friction at the grains’ scale.

This new explanation of shear-thickening is the basis for a completely different
vision of dense suspensions’ rheology. Indeed, it gives microscopic contact physics

3



Introduction

the central place, when for a long time it was believed that suspensions’ rheoloy
was dominated by hydrodynamic interactions. My PhD work took place in this
context of a new viewpoint being adopted by the community. The objective of this
thesis is to develop original experiments allowing to probe the frictional properties
of collodial suspensions, and to relate these properties to the suspension’s rheol-
ogy. To do this, I drew inspiration from granular media physics. First, I studied
steady avalanches, compaction, and dilatancy effects, in a Newtonian and a shear-
thickening suspension, using rotating drum flows. This study (published in [4])
provided a first experimental proof of the frictional transition scenario. In order to
fully explore the transition, I then developed a new, pressure-imposed rheometer,
suited to the study of colloidal suspensions: the ‘Darcytron’.

This manuscript is organised as follows. The first chapter presents the state of
the art on dense suspensions rheology and shear thickening at the begining of my
PhD. The two following chapters form the heart of my PhD work. They concern
respectively the rotating drum experiments, and the Darcytron ones. Finally, the
last chapter summarises our results, and proposes some ideas for future works.
The appendices contain the two papers concerning this work already published
( [4] published in PNAS, and [5] published in Techniques de l’Ingénieur ), along
with my Master’s Degree dissertation on a different but related experiment (2D
repulsive granular medium).

4



CHAPTER 1

State of the art

Everything starts somewhere, although some physicists disagree.

Terry Pratchett, Hogfather.

In this chapter, we present the state of the art on shear thickening in dense sus-
pensions at the time when this thesis work began. We first define shear thickening
and some of its applications, focusing more specifically on discontinuous shear
thickening observed at high solid concentrations. We then discuss the physical
origin of this phenomenon, giving a brief historical account of the different mech-
anisms proposed and a background on the rheology of dense suspensions. Finally,
we present the frictional transition model proposed in 2013–2014 to explain shear
thickening. The experimental validation of this model is the main objective of this
work.

This chapter is based on an invited review we wrote for Techniques de l’Ingé-
nieur (see [5] or Appendix C).

1.1 What is shear thickening?

1.1.1 Notions of rheology

When a fluid is stirred, it resists to the imposed movement in a way that depends
on its nature. For instance, it is easier to make water flow than honey. The physical
quantity that characterizes this resistance is the fluid’s viscosity η. To define it, let
us consider a simple shear flow, as represented on Figure 1.1. A fluid layer of
thickness h is contained between two plates, one of which is moving at speed U ,
which causes a flow to develop in the fluid. In the steady state, the fluid’s velocity
is horizontal and depends linearly on the height with respect to the bottom plate,
as shown by the blue arrows on Figure 1.1. We can then define the shear rate γ̇
as γ̇ = U/h. To maintain this flow, a shear stress τ (force per unit area) has to be
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Chapter 1. State of the art

applied tangentially by the moving plate on the fluid. The fluid’s viscosity is then
defined as η = τ/γ̇ (see [6] for a general textbook in fluid mechanics). Since τ =
ηγ̇, the higher the fluid’s viscosity, the more it will resist to an imposed flow. For
instance, honey has a viscosity of 10 Pa · s, whereas water’s viscosity is 0.001 Pa · s,
which is one of the lowest viscosities among fluids.

U

h

τ

γ̇

Figure 1.1 – Simple shear geometry: a fluid layer of thickness h is contained between
two plates, one of which is moving with speed U .

γ̇

τ

shear-thickening

shear-thinning

New
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ess
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(a) Shear stress versus shear rate

η

γ̇

shear-thickening

shear-thinning

Newtonian

yield stress fluid

(b) Viscosity versus shear rate.

Figure 1.2 – Typical Newtonian and non Newtonian rheologies for different types of
fluids.

For most fluids like gases and simple liquids, the viscosity doesn’t depend on
the shear rate γ̇ and the shear stress τ is thus proportional to γ̇. These fluids
are called Newtonian. But many natural and industrial fluids like polymer solu-
tions, gels, emulsions, or foams have a more complex behaviour. Their viscosity
might decrease with the shear rate. Such fluids are called shear-thinning fluids.
Conversely, their viscosity might increase with the shear rate: they are then called
shear-thickening fluids. Some fluids have a diverging viscosity at vanishing shear-
rate, which means they have a flow threshold, as is the case for example for mud or
toothpaste. These are called yield stress fluids. Figure 1.2 summarizes these differ-
ent rheological behaviours. The common feature of all these complex fluids is that
they possess a microstructure at an intermediate scale between that of the fluid
molecules and that of the flow. This microstructure is due for example to the pres-
ence of macromolecules, bubbles, particles, or droplets in the fluid. It is responsible
for their non-Newtonian rheological behaviours (see for example [6,7]).
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1.1. What is shear thickening?

1.1.2 Shear-thickening suspensions

As mentionned in the previous section, shear thickening in complex fluids is an
intriguing rheological behaviour in which the fluid’s viscosity increases with the
shear rate. In this thesis, we focus on the reversible shear thickening observed
in some dense suspensions of particles. This phenomenon is arguably one of the
most dramatic non-Newtonian behaviour in complex fluids (see [8,9] for a general
review). The archetypal example of such suspensions is the mixture of cornstarch
particles in water, see Figure 1.3. At low packing fractions φ, the viscosity of this
mixture is Newtonian, meaning that it does not depend on the imposed shear
rate (not shown in Fig. 1.3). The packing fraction φ = Vp/Vtot is defined as the
ratio between the volume occupied by the particle Vp and the total volume of
the suspension Vtot. For intermediate values of the packing fraction, a first regime
is observed where the suspension’s viscosity increases smoothly with the shear
rate. This behaviour is known as continuous shear thickening (see [9]). When the
packing fraction is high enough, the suspension’s viscosity exhibits a transition at
a critical shear rate γ̇c. This transition is characterized by a brutal increase of the
viscosity, which can span several orders of magnitudes. This behaviour, known as
discontinuous shear thickening (see [9]), is at the heart of this thesis. Finally, for
higher packing fractions, the suspension’s viscosity no longer reaches a defined
value but seems to diverge at a critical shear rate. The medium then behaves like
a solid. This last regime is sometimes called shear jamming (see [8,10]).

20 µm

(a) Cornstarch grains: image taken with a
Scanning Electron Microscope (SEM).

(b) Rheology of suspensions of cornstarch
in a density-matched aqueous suspending
fluid. From [11].

Figure 1.3 – Cornstarch suspensions: the archetypal example of shear thickening.

Historically, shear thickening in dense suspensions was first observed in coat-
ings such as paints and inks. It presented industrial issues in their production.
The first published studies were conducted with suspensions of vegetable origin,
like corn, rice or potato starch, see for example [12] published by Williamson and
Heckert in 1931. Freundlich and Röder studied suspensions of quartz or starch
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Chapter 1. State of the art

grains in water in 1938 in [13]. Their results are presented in Figure 1.4. They
moved a sphere in a suspension of quartz powder in water, and plotted its speed
as a function of the pulling force applied on it. They observed that the behaviour
of the suspension strongly depends on the packing fraction φ of the suspension. As
illustrated in Figure 1.4b, the measured suspension evolves from having a Newto-
nian behaviour at low packing fraction (φ = 41.6 %, linear relation between the
speed and the force) to having a shear-thickening one at higher packing fractions:
above a critical pulling force applied on the sphere, its speed saturates. In their pa-
per, Williamson and Heckert also showed that the nature of the suspending fluid
was important: while suspensions of cornstarch in water are shear-thickening as
stated above, the use of alcohol as the suspending fluid suppresses shear thicken-
ing (see [11–13]).

weight

speed

suspension of quartz
   powder in water

(a) Experimental set-up: a sphere moves
through a suspension of quartz powder in
water, pulled by a weight.

(b) Relation between the weight pulling
the sphere (horizontal axis) and its speed
(vertical axis). Note that the axes are in-
verted compared to the classical represen-
tation used in rheology. From [13].

Figure 1.4 – Pioneer experiments on shear-thickening suspensions conducted in 1938
by Freunlich and Röder in [13].

Since these first studies, shear thickening has been observed in numerous sus-
pensions of particles from varied materials (silica, calcium carbonate, titanium
oxyde, etc.), as illustrated in Figure 1.5. Most data in the literature deal with
Browian particles (see for example [14]), that is, particles with a typical size in-
ferior to a micron, subjected to thermal motion. But shear thickening can also be
osberved in suspensions of larger, non-Brownian particles (for instance in [8, 13,
15]). This led some researchers to think that perhaps all suspensions could exhibit
shear thickening. Barnes for example wrote in his seminal review [16] published
in 1989 that ‘given the right circumstances, all suspensions of solid particles will
show the phenomenon’ (see also [17]). However, shear thickening doesn’t seem to
be a common property of every dense suspension. From literature, the two well-
identified common features of shear thickening suspensions are:

• the fact that the particles are relatively small, with a diameter d typically
smaller than 50 µm,

8



1.1. What is shear thickening?

• the influence of the physical and chemical properties of the medium: pres-
ence of a surface treatment on the particles, nature of the suspending fluid,
etc.

φ = 0.52

φ = 0.48

φ = 0.36

φ = 0.20

(a) Viscosity of 450 nm silica beads suspen-
sions in a poly(ethylene glyco) and water
mix, as a function of the shear rate, for dif-
ferent values of the packing fraction φ.

(b) Viscosity of a calcium carbonate sus-
pension as a function of the shear rate, for
different values of the packing fraction φ.

Figure 1.5 – Examples of shear-thickening suspensions. From [9].

1.1.3 Applications of shear thickening

Shear thickening in dense suspensions is not just an intriguing phenomenon. Many
industrial fluids like ink, paint, fresh concrete, liquid chocolate, or ceramic pastes
exhibit this rheological behaviour. Understanding its microscopic origin therefore
has applications in industrial sectors ranging from glass manufacturing and civil
engineering to the food industry.

In many situations, shear thickening is a behaviour that industries wish to
avoid. A brutal increase in the viscosity of a transported fluid can damage pumps,
mixers, and pipes. The first studies about shear thickening were conducted to solve
a problem in the paper industry. While coating paper sheets with suspension films
at high speed, the suspension’s viscosity would sometimes increase so sharply that
it tore the paper, damaging the whole production line in the process (see [18]).

However, shear-thickening fluids are also characterized by a low viscosity state
at low shear rates, which can be of use when working with dense suspensions. This
is the case with casting processes using metallic or ceramic powders. The powder
is usually dispersed in a liquid to make it easier to work with. The particules
undergo surface treatment so that the suspension’s viscosity becomes low even
at high packing fractions. Another example comes from the chocolate industry.
Chocolate is a suspension of ground cocoa beans and sugar in a continuous fat
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phase made primarily of cocoa butter. The addition of lecithin allows for a very
liquid chocolate paste even when using less fat (and therefore working at high
packing fractions, see [19]).

One of the most important applications of shear thickening is found in the con-
crete industry. In order to obtain a robust dry concrete, it is necessary to use fresh
concrete with a high packing fraction. However, this hinders the flowability of the
suspension. Maintaining a good flowability even with a high packing fraction has
been an active research area since the sixties. Around this time, American highway
manufacturers found by chance that adding a small amount of polymers to fresh
concrete allowed them to obtain a material with better characteristics than normal
concrete (see [20]). Since then, the use of these polymers, called superplasticisers,
has allowed for a new generation of concrete (see Figure 1.6). Industrial research
is now focused on understanding the mechanisms by which these polymers reduce
the viscosity of fresh concrete suspensions, in order to optimize their formulation.

(a) Sketch illustrating the high flowability
of modern concrete.

(b) Picture of the light structures of the
Mucem museum in Marseille, enabled by
modern concrete.

(c) Intelligent speed bump: it solidifies when the car’s speed exceeds the speed limit.

Figure 1.6 – Applications of shear thickening in the concrete industry (Fig. 1.6a
and 1.6b) and to road safety (Fig. 1.6c).

Recently, shear thickening has inspired the conception of new suspensions, to
be used in soft body armours, sports equipments, or supple medical prosthetics.
Shear-thickening suspensions can indeed absorb a lot of energy when impacted,
while staying liquid the rest of the time (see [21]). Therefore, these soft equip-
ments wouldn’t hinder motion, while still protecting the body in the case of a bul-
let impact, a fall, or a sudden and sharp movement. Most of the recently patented
techniques for the manufacturing of soft body armours involve the ingress of a
shear-thickening fluid into a fibrous medium. For example, it is possible to ingress
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1.2. Physical origin of shear thickening

Kevlar R© with a suspension of silica micro particles in polyethylene glycol. This ma-
terial can absorb three times as much energy as a standard Kevlar R© vest (see [22]).
There are several brands nowadays, for example Armourgel R©, D3O R©, or ARTi-
LAGE, that sell clothes and joints protections using this kind of technique. The
SFT Technologies firm sells medical fabrics protecting the skin from needlestick
injuries. Finally, Badennova recently manufactured intelligent speed bumps, con-
sisting in a supple sleeve filled with a shear-thickening suspension. The shear thick-
ening transition is tuned to the speed limit, so that drivers who abide by it do not
damage their car. For a car moving above the speed limit, the speed bump behaves
as a solid one. This is illustrated in Figure 1.6c.

1.2 Physical origin of shear thickening

1.2.1 Rheology of ideal non-Brownian dense suspensions

As we have seen in the previous section, discontinuous shear thickening is ob-
served for suspensions of solid particles immersed in a liquid when particles are
small but not necessarily Brownian. Inertial effects and thermal motion thus do
not seem essential for explaining this phenomenon. The shape of the particle is
also not a key ingredient, as shear thickening has been observed both for spherical
and irregular particles (see Figure 1.5 for example). It is therefore interesting to
look into the expected rheology of an ideal or classical suspension made of non-
Brownian hard spheres immersed in a viscous Newtonian fluid. The rheology of
such non-Brownian suspensions has been the subject of many research since the
seminal work of Einstein [23] in 1905 on the viscosity of dilute suspensions, and
is still an active field of research (see [24] for a recent review). In this section,
we show that for a classical suspension, the form of the rheology is strongly con-
strained by dimensional analysis.

Volume-imposed rheology and dimensional analysis

Let us consider a classical suspension of monodisperse hard spheres of diameter d
in a Newtonian fluid of viscosity ηf , with packing fraction φ. The suspension is
placed between two plates and undergoes a viscous simple shear flow with shear
rate γ̇, see Figure 1.7. We consider size effects to be negligible, that is d � h,
where h is the distance between the plates.

ηf
d

U

h

τ

γ̇

Figure 1.7 – Classical suspension undergoing a simple shear flow in an imposed
volume geometry.
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In this setting, we thus have four control parameters which are d, ηf , φ, and γ̇,
depending on three dimensions: length, mass and time. Dimensional analysis then
tells us that the system is controlled by one dimensionless parameter, which is here
the packing fraction φ (see [25] for a good textbook reference on dimensional
analysis). Since ηf γ̇ is dimensionally the only stress scale in the system, we can
express the shear rate τ needed to shear the suspension as:

τ = ηf γ̇ · ηs(φ), (1.1)

where ηs is a function of the packing fraction φ called the dimensionless shear
viscosity. The suspension’s viscosity η = τ/γ̇ (see 1.1.1) is then:

η = ηfηs(φ). (1.2)

Dimensional analysis thus imposes that the viscosity of an ideal suspension de-
pends on the suspending fluid’s viscosity and on the suspension’s packing fraction,
but not on the shear rate. Therefore, the rheology of such a suspension is necessar-
ily Newtonian. The typical dependence of the dimensionless shear viscosity ηs with
the packing fraction φ is given in Figure 1.8. At very low packing fractions (typi-
cally φ < 0.05), one recovers the dilute regime predicted by Einstein: ηs = 1+2.5φ.
This increase in viscosity is purely hydrodynamic. It comes from the additional
dissipation induced by the presence of a non-deforming particle in the extensional
part of the shear flow (see [7]). For larger packing fractions, in the semi-dilute
regime (typically up to φ = 0.15), the hydrodynamic interactions between particles
come into play and the viscosity grows as φ2. Finally, for even larger packing frac-
tions, contacts and steric constraints between particles become predominant. As a
result, the viscosity rapidly increases, and diverges at the critical packing fraction
φc (see [7, 24]). Above this critical packing fraction, there can be no continuous
flow in the suspension, which behaves like a solid.

The divergence of viscosity close to the critical packing fraction can be de-
scribed by a power law:

ηs ∝ (φc − φ)−α as φ→ φc, (1.3)

with α ' 2 (Maron–Pierce model in Fig. 1.9, see [24]), but other empirical func-
tions have been proposed (see Fig. 1.9 and [24]). Importantly, the critical packing
fraction φc at which the suspension’s viscosity diverges is not a universal value. In
particular, it depends on the frictional interactions between particles via the mi-
croscopic friction coefficient µp. For frictionless spheres (µp = 0), φµp=0

c ' 64 % is
close to the random close packing that is obtained by repeated taping or vibrations
(see [2]). However, for frictional particles (µp 6= 0), the critical packing fraction is
smaller, typically within the range of 55 % to 60 % depending on µp. We will see
that this dependence of the critical packing fraction on the frictional properties of
the particle is essential for the understanding of the shear thickening transition.
Figure 1.9 gathers many experimental and numerical data on the dimensionless
shear viscosity of non-Brownian suspensions conducted over the last years, for dif-
ferent particles and microscopic friction coefficient. All data collapse pretty well
on a single curve when the packing fraction is normalised by the critical packing
fraction φc (see [24] and references therein).
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Figure 1.8 – Viscosity of a classical suspension as a function of the imposed packing
fraction (left) or the imposed the shear rate (right).

Figure 1.9 – Dimensionless shear viscosity as a function of the packing fraction for
classical suspensions. From [24].

Pressure-imposed rheology

Most experiments and numerical simulations studying dense suspensions used
rheometric configurations close to the simple shear flow sketched in Figure 1.7: a
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shear cell where the packing fraction is controlled and the total volume of the sus-
pension is fixed. However, the proliferation of contacts leading to the divergence
of the viscosity when φ → φc makes it difficult to investigate the behaviour of a
suspension close to its critical packing fraction φc. As a result, a completely differ-
ent approach, inspired by the rheology of dry granular flows (see [26]), has been
carried out more recently. The idea is to conduct rheological experiments in which
the pressure on the particles in controlled, while the volume of the suspension is
free to adjust.

Let us consider the same suspension as before, now sheared between a plate
and a mobile grid (see Figure 1.10). The suspending fluid is free to move through
the grid, but not the particles. In this geometry, we can impose the granular pres-
sure P on the grains by applying a force on the mobile grid.

ηf
d

U

h γ̇

P

Figure 1.10 – Classical suspension undergoing a simple shear flow in a pressure-
imposed geometry.

The volume, and therefore the packing fraction φ, is no longer imposed as the
fluid can pass back and forth through the grid. Following [27] (see also [24,28]),
we define the viscous number J by:

J =
ηf γ̇

P
. (1.4)

In this setting, J is the only dimensionless parameter controling the system (by the
same dimensional analysis arguments as before, see [25]). Dimensional analysis
then implies that the shear stress τ is proportional to the granular pressure P , and
that the packing fraction φ is a function of J:

{
τ = µ(J)P,

φ = φ(J).
(1.5)

The function µ is called the suspension’s macroscopic friction coefficient, by analogy
with the friction laws of Coulomb. The shapes of µ and φ as functions of J were
first determined using a pressure-imposed set-up developped at IUSTI, sketched
in Figure 1.11 (see [28]). They were further reproduced in discrete numerical
simulations (see [24] and references therein). They are given in Figure 1.12. The
important thing to note is that both functions remain finite in the quasi-static
regime, that is, when J → 0. We have φ → φc as J → 0, where φc is the crit-
ical packing fraction defined earlier, and µ converges to a given value µc called
the critical or quasi-static macroscopic friction coefficient of the suspension. As for
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1.2. Physical origin of shear thickening

the critical packing fraction, µc depends on the microscopic friction coefficient µp
between the particles. It varies from µc ' 0.1 for frictionless particles to µc = 0.3
to 0.4 for frictional particles (see Figure 1.13). Therefore, the macroscopic friction
coefficient of the suspension gives access to the microscopic friction coefficient
between the particles. We will use this important property in this thesis.

suspension

suspending fluid

grid

Ω

Figure 1.11 – Experimental set-up used in [28] to measure the rheology of a dense
suspension in a pressure-imposed geometry.

φc

µc

Figure 1.12 – Rheology of a classical suspension in a pressure-imposed. From [24].

Link between the volume-imposed and pressure-imposed approaches

At first glance, the frictional expression of the rheology in the pressure-imposed
configuration (Equation (1.5)) seems very different from the Newtonian rheol-
ogy predicted for the same suspension in a volume-imposed configuration (Equa-
tion (1.1)). However, there is no physical reason for the suspension to behave dif-
ferently in an imposed volume or in an imposed pressure configuration. We should
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(a) Theoretical model for a granular
medium of soft, frictional, noncohesive
spheres. Model constants from [29].

(b) Simulations of a 2D suspension of hard
spheres. From [30].

Figure 1.13 – Relation between the quasi-static macroscopic friction coeffient µc and
the microscopic friction coefficient µp between the grains. Numerical simulations with
different conditions. See [29] and [30].

therefore be able to relate Equation (1.1) to (1.5). Indeed, using J = ηf γ̇/P and
the fact that J 7→ φ(J) is a bijection, we can write:





τ =
µ(J(φ))

J(φ)
ηf γ̇,

P =
1

J(φ)
ηf γ̇,

(1.6)

where φ 7→ J(φ) is the inverse function of J 7→ φ(J). We recover the linear relation
between τ and γ̇ obtained at constant volume, with a dimensionless shear viscosity
given by ηs(φ) = µ(J(φ))/J(φ). Therefore, through the measure of µ(J) and φ(J),
one can compute ηs(φ). The advantage of this approach is that it allows for the
indirect measure of ηs close to its divergence, since both µ and φ have a finite
limit as φ→ φc. Using a pressure-imposed configuration is thus a very appropriate
method to study the scaling laws of the rheological behaviour of the suspension
close to its critical packing fraction.

Equation (1.6) gives the expression of the granular pressure in an imposed vol-
ume configuration. Physically, this pressure comes from the solid contact forces
exerted by the sheared particles onto the plates of the cell. Note that since the
suspension is incompressible, these forces which tend to push the plates outwards
are compensated by a pressure coming from the fluid phase, which tends to pull
the plates in (see [24] for a complete explanation). Measuring the granular pres-
sure of a suspension in a volume-imposed configuration is difficult, since it is not
easy to separate the fluid’s contribution from the particle’s contribution to the total
stress. Still, few attempts exist in the literature. In 2009, Deboeuf et al. conducted
experiments inspired by osmotic pressure measurements in [31]. The idea is to
use a Couette-like cell with a grid connecting a tube to the fixed outer cylinder,
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as illustrated in Figure 1.14a. The suspension is confined between the two cylin-
ders and the grid prevents the particles from going into the tube. At rest, the fluid
in the tube and the fluid in the cell reach the same height. When the suspension
is sheared (by rotating the inner cylinder), a granular pressure develops in the
system, and as explained above it creates a negative pressure in the fluid phase
contained in the cell. Another experiment was developped in 2013 by Dbouk et
al. [32]. The authors used a plate-plate geometry with a modified bottom plate,
as illustrated in Figure 1.14b. On one side of the plate, they put pressure sensors
which directly measure the total normal force Ptot applied on the plate by the
suspension. On the other side, they put pressure sensors behind grids which only
let the fluid pass through, so that they measure the pressure Pf in the fluid. The
granular pressure P is simply P = Ptot − Pf .

∆h

Ω

suspension

suspending fluid
grid

(a) Modified Couette cell used in [31] to
measure the granular pressure.

grid

suspension

suspending
fluid

Ω

pressure sensors

(b) Plate-plate geometry with a modified
bottom plate used in [32] to measure the
granular pressure.

Figure 1.14 – Measuring the granular pressure in an imposed volume configuration.
See [31,32].

The main message of this section is that whatever the approach used (volume-
imposed or pressure-imposed rheometry), dimensional analysis imposes that sus-
pensions of frictional non-Brownian hard spheres have a Newtonian rheology. At
constant volume, the viscosity of such suspensions should be independent of the
shear rate for all packing fractions, whatever the precise mechanism leading to
the increase of viscosity close to the critical packing fraction is. How can we then
explain that some suspensions exhibit shear thickening? In the following section,
we present a brief historical account of the mechanisms that have been proposed
to explain shear thickening, from its very first description in the 1930’s to the
begining of the 2010’s (see [9] for a more complete review)
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1.2.2 A brief history of shear thickening: from contacts to
hydrodynamics... to contacts

First descriptions: a granular point of view, already

The first proposed interpretations of shear thickening considered the contribution
of contacts between particles to be crucial. Freundlich and Röder identified the
shear-thickening behaviour they measured as dilatancy, a concept first introduced
by Reynolds in 1885 in [33]. Dilatancy is the tendency for compact granular me-
dia to transiently dilate when they are slowly sheared from rest. We define this
concept more precisely in Chapter 2, but for now what is important to note is
that it is an effect which relies on the existence of frictional contacts. Freundlich
and Röder proposed an explanation of shear thickening based on a change in the
microstructure of the suspension, as illustrated in Figure 1.15. In the Newtonian
regime (part a on the curve), they postulate that the grains are uniformly dis-
tributed, as sketched on the left of Figure 1.15. Upon reaching a certain value of
the shear rate, they expect that the particles will no longer be able to maintain this
microstructure but rather will start ‘pil[ing] up in front of the moving sphere’ (re-
call that their experimental set-up is a sphere moving through a shear-thickening
suspension, see Figure 1.4a in Section 1.1.2). They predict that this leads to the
formation of the microstrucure sketched on the right of Figure 1.15, which they
say ‘always causes a suspension of this kind to behave like a solid system’ as long
as the packing fraction is high enough. Williamson and Heckert also believed that
shear thickening is caused by the presence of contacts between the grains in the
suspension, though they distinguish shear thickening, which they call inverted
plasticity, from Reynold’s dilatancy (see [12]). Although this description remains
very qualitative, it is interesting to note that the early attempts to explain shear
thickening already put forward the role of contacts and the link with granular
media.

microstructure in bmicrostructure in a

Figure 1.15 – An explanation of shear thickening put forward by Freundlich and
Röder in [13]: a change in the microstructure of the suspension causes the grains to
form frictional contacts, which jams the system. From [13].
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The importance of being colloidal

As stated in Section 1.1.2, most data on shear thickening deals with Brownian sus-
pensions. In these systems, the particles have a typical size between 1 nm and 1 µm,
and are therefore strongly sensitive to van der Waals attraction (see [34]). To bal-
ance out this attraction and avoid aggregation, they often undergoe surface treat-
ment aiming to stabilise the suspension, by creating a repulsive barrier around
them. Some researchers from the colloidal suspensions community put forward
shear-induced aggregation as an explanation for shear thickening (see [35] for
example). The idea is that above a certain shear rate, the hydrodynamic forces
overcome the repulsive barrier and the particles are free to form aggregates. In
1972, Lee and Reder developed a model based on this idea (see [36]). It allowed
them to derive an expression of the critical shear rate above which a suspension
shear thickens, as a function of the particles’ size, the intensity of the repulsive
barrier, the packing fraction, and the suspending fluid’s viscosity. They experimen-
tally confirmed that ‘[t]he critical shear rate decreases with increasing particle
size, medium viscosity, and concentration, and increases with increasing colloidal
stability’ [9, 36], as predicted by their model. We will see that this critical shear
rate balancing hydrodynamic and short range repulsive forces is a key ingredient
of the modern explanation of shear thickening, although the mechanism is very
different from shear-induced aggregation.

Hydrodynamics take over

At the end of the eighties, Brady and Bossis developped a numerical simula-
tion method for Brownian suspensions, which they called Stokesian Dynamics
(see [37–39]). It describes a suspension as a collection of hard spheres immersed
in a Newtonian fluid and subjected to hydrodynamic forces (viscous drag, lubrica-
tion) as well as thermal motion, but with no contact forces between the particles
(either hard repulsion or friction). The justification was that, since lubrication
forces diverge at contact, they should prevent solid contact. Therefore, hydrody-
namics alone should be enough to describe the rheology. In this setting, the only
dimensionless control parameter besides the packing fraction φ is the Péclet num-
ber:

Pe =
3πηfd

3γ̇

4kBT
,

which compares the relative importance of shear and hydrodynamic forces to ther-
mal motion (kB is the Boltzmann constant, and T is the temperature of the sys-
tem). Figure 1.16a shows that for a given φ, the shear viscosity in the numerical
simulations depends on the Péclet number. We observe a first Newtonian plateau
at low Pe, followed by a shear-thinning regime around Pe = 1. There is a second
Newtonian plateau resulting from the competition between thermal motion and
hydrodynamics. Finally, we observe a small shear thickening above Pe = 103. This
increase in viscosity at high Péclet numbers was attributed by the authors to the
creation of dense clusters of particles, which they called hydroclusters. The idea
is that these clusters increase the suspension’s viscosity due to the divergence of
the lubrication forces. These hydroclusters have been observed experimentally by
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Cheng et al. (see [40] and Figure 1.16c). They also observe a mild shear thickening
for large enough packing fractions (see Figure 1.16b).

ηs

(a) Relative viscosity of a simulated mono-
layer of immersed Brownian hard spheres,
as a function of the Péclet number.
From [39].
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(b) Viscosity of a suspension of Brownian
silica spheres in a Newtonian liquid, as a
function of the Péclet number. From [40].

(c) Experimental observation of hydroclustering at high shear rate in a suspension of
Brownian silica spheres in a Newtonian liquid. From [40].

Figure 1.16 – Mild shear thickening behaviour and hydroclusters at high Péclet
numbers in Brownian suspensions.

Therefore, a purely hydrodynamic description of suspensions only predicts a
weak continuous shear thickening with a viscosity increase by a factor 2 or 3.
However, we have seen that, experimentally, it is possible to observe increases over
one or two decades (see for instance the examples presented in Section 1.1.2).
In addition, the interpretation of this mild shear thickening as stemming from
the formation of hydroclusters in the suspension only holds for suspensions of
Brownian particles. While it seems that hydroclusters do form at high shear rates
in such suspensions (see [40]), this interpretation cannot be generalised to non-
Brownian suspensions like cornstarch.

Inertial transition

During the 2000’s, together with the rise of studies on the rheology of dry granular
flows, the importance of contacts in dense suspension was increasingly recognised.
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In this context, a different explanation of shear thickening has been proposed, de-
scribing it as a transition between a viscous and an inertial flow regime [41, 42].
The idea is that at high packing fraction and shear rate, collisions between particles
become important. The suspension’s behaviour is thus closer to that of a dry gran-
ular material, an idea already put forward by Bagnold in the 1950’s (see [43]). Let
us consider a non-Brownian suspension of monodisperse hard spheres in a volume-
imposed simple shear configuration. We assume that the momentum transfer oc-
curs only through collisions between particles. In this case, the fluid’s viscosity is
no longer a relevant control parameter (see [24]), but we need to take into ac-
count the particles’ density ρp, and their diameter d. By dimensional analysis, we
obtain a Bagnold’s scaling (see [43]) for the shear stress τ :

τ = ρpd
2ηI(φ)γ̇2, (1.7)

where ηI is a dimensionless function of the packing fraction φ, which diverges
when φ → φc (see [24]). At fixed packing fraction, the suspension’s viscosity η =
τ/γ̇ thus depends linearly on the shear rate:

η = ρpd
2ηI(φ)γ̇.

This analysis shows that an inertial suspension shear thickens. Following [44], we
can assume that the crossover from a Newtonian behaviour at low shear rates
(viscous flow) to a shear-thickening behaviour at high shear rates (inertial flow)
occurs when the viscous stress (Eq. (1.1)) is equal to the inertial stress (Eq. (1.7)):

ηs(φ)γ̇ = ρpd
2ηI(φ)γ̇2.

This yields a critical shear stress γ̇c given by:

γ̇c =
ηf
ρpd2

ηs(φ)

ηI(φ)
. (1.8)

Some studies suggest that both functions ηs and ηI have the same divergence,
meaning that as φ → φc we can write γ̇c ∝ ηf/(ρpd

2) (see [45] for example).
In this case, the viscous to inertial transition doesn’t depend on the suspension’s
packing fraction. For cornstarch particles in water (d = 10 µm, ρp = 1500 kg ·m−3),
this criterion predicts a critical shear rate of γ̇c ∼ 104 s−1. This is orders of mag-
nitude larger than the critical shear rate γ̇c = 2 s−1 reported by Fall et al. in [46],
thus ruling out inertia as a mechanism for shear thickening. However, other theo-
retical studies (see [47]) suggest that the divergence of ηs is slower than that of ηI
, meaning that γ̇c → 0 as φ → φc. This would suggest that at high enough pack-
ing fraction, a suspension would always become inertial. Using 40 µm polystyrene
beads in water, Fall et al. indeed reported a decrease of γ̇c to 0 as φ→ φc (see Fig-
ure 1.17). However, their system is so far the only one for which the dimensionless
shear viscosity in the Newtonian regime diverges like ηs ∝ (φc − φ)−1 as φ → φc.
The question of whether the critical shear rate depends on the packing fraction or
not is thus not yet resolved (see [24]). This makes it difficult to completely rule
out any inertial effect in dense suspensions. However, let us stress that an inertial
flow regime only induces a linear increase of the suspension’s viscosity with the
shear rate. This is a priori not sufficient to explain the strong shear thickening
observed in suspensions of cornstarch in water for example.
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Figure 1.17 – Evolution of the critical shear rate at which the transition from the
viscous to the inertial regime occurs with the packing fraction of the suspension.
From [41].

Does shear thickening exist?

At the same period, some authors also questioned the actual existence of shear
thickening as an intrinsic rheological behaviour (see [8, 10, 15]). For instance,
Brown and Jaeger performed experiments in a plate-plate geometry over a wide
range of particles size from 5 µm to 1 mm in non density-matched liquids (see [8]).
Surprisingly, they report an apparent shear thickening behaviour even for very
large particles. The onset stress τmin at which shear thickening appears first de-
creases and then increases with particle size, as shown in Figure 1.18a (left). In
their interpretation, shear thickening appears at high packing fractions because
the dilation induced by shear is frustrated by a confining stress, coming either
from the surface tension at the liquid-air interface or from a solid boundary. For
shear thickening to be observed, they argue that this ‘confining stress must sig-
nificantly exceed all stresses that prevent shear between grains and dilation, such
as interparticle interactions or gravity’. The increase of dilation induced by an in-
crease of shear rate is clearly visible in Figure 1.18a (right). However, we have
seen in Section 1.2.1 that dilatancy under flow is observed for all suspensions
of hard spheres, even though their rheology is Newtonian by dimensional anal-
ysis. Indeed, this is simply the granular pressure term at constant volume, or he
decrease of φ with J at constant pressure. Therefore, dilatancy alone cannot ex-
plain discontinuous shear thickening. The fact that Brown and Jaeger observed
discontinuous shear thickening for large particles likely comes from experimental
artefacts, in their case resuspension effects due to the use of non density-matched
suspension.

More recently, Fall et al. proposed that shear thickening is in fact a macro-
scopic result of a local viscous to inertial transition enhancing particles migration
in the system (see [10]). The authors used a large gap Couette cell filled with a
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(a) Apparent shear thickening and dilation under shear observed by Brown and Jaeger
in [8].
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(b) Experimental observation of migration in a suspension of cornstarch in water. Adapted
from [10].

Figure 1.18 – Migration, sedimentation, and confinement effects, are three experi-
mental artefacts that can cause apparent shear thickening.

suspension of cornstarch in water, sketched in Figure 1.18b (left). For low values
of the rotating speed Ω, the particles are homogeneously distributed in the cell
(data point highlighted in orange). At higher rotating speeds, the particles mi-
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grate to the outer cylinder of the cell due to stress inhomogeneities (data points
highlighted in green). Surprisingly, when the authors plot the local relation be-
tween the shear stress, shear rate and packing fraction in the flowing region, they
always found a Newtonian or shear-thinning behaviour, although the macroscopic
response (torque versus rotation) is shear-thickening.

Following their observations, the authors conclude that shear thickening is not
an intrinsic rheology of the suspension, but comes from inhomogeneities in the
rheometer. However, in our opinion this does not explain the fact that only certain
dense suspensions shear thicken regardless of the measuring geometry.

1.3 The frictional transition model

The previous overview shows that, until the beginning of 2010’s, no clear expla-
nation for the physical origin of shear thickening had emerged. The hydroclus-
ters scenario based purely on hydrodynamics seemed valid to capture continuous
shear thickening for Brownian systems, but failed to describe discontinuous shear
thickening. For non-Brownian particles, the situation was even more obscure. A
growing number of studies showed that contact and frictional interactions play a
major role in the rheology of dense suspensions and in the shear thickening phe-
nomenon [15,28,41,42,48], but we have seen that dimensional analysis imposes
that an ideal non-Brownian suspension must be Newtonian, whatever the nature
(lubricated or frictional) of the contact. The situation changed in 2013–2014, with
a serie of numerical [1, 2] and theoretical [3] works describing shear thickening
as a frictional transition. This transition requires to take into account both the fric-
tional interactions between particles at contact, and the existence of a short-range
repulsive force between particles. In the following, we detail this model, which is
at the origin of my PhD work.

1.3.1 General principle

Let us consider, as before, a suspension of non-Brownian frictional hard spheres of
diameter d in a Newtonian fluid of viscosity ηf , with packing fraction φ, undergo-
ing a viscous flow with shear rate γ̇. We now add a new ingredient: the existence of
a short-range repulsive force Frep between the grains (see Figure 1.19a). In prac-
tice, this force could come from the existence of a surface charge on the particles,
or from polymer brushes grafted on them (see [49] for example). In this setting,
the competition bewteen the repulsive force and the hydrodynamic forces controls
the nature of the contact, as illustrated in Figure 1.19a. When the shear rate is low,
the hydrodynamic forces are small and the repulsive force is the dominant force
scale in the system. In this case, the particles cannot come into contact, and the
suspension behaves as if it was a suspension of frictionless spheres, that is parti-
cles whose microscopic friction coefficient is µp = 0. Conversely, at high shear rates
the repulsive force is overcome by the hydrodynamic forces. The grains then come
into contact, and the suspension behaves as a classical suspension of frictional
particles, with a microscopic friction coefficient µp 6= 0.
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low γ̇ high γ̇

Frep << ηf γ̇d2

no solid contact

low γ̇

Frep >> ηf γ̇d2

solid contact

high γ̇

(a) Change in the nature of the contacts between repulsive grains, depending on the shear
rate, which controls the relative importance of the hydrodynamic forces and the repulsive
force.

frictionless branchfrictional branch η

γ̇

Shear jamming
η

φ

increasing φ

φµp=0
cφµp>0

c

increasing γ̇  Discontinuous
shear thickening

Continuous
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(b) Shear thickening as a result of a frictional transition in the suspension. The suspension
can evolve on either the frictionless (light grey) or the frictional (green) rheological curve
(viscosity as a function of the packing fraction, on the right) depending on the nature of
the contacts between the particles. At a given packing fraction, increasing the shear rate
changes the frictional behaviour of the suspension and makes it go from one curve to the
other.

Figure 1.19 – The general principle of the frictional transition model.

This transition between a frictionless state at low shear rates and a frictional
state at high shear rates has a dramatic consequence of the rheology. Indeed, we
have seen that the viscosity of a non-Brownian suspension diverges at a critical
packing fraction φc that depends on the value of the microscopic friction coefficient µp
(see Fig. 1.9). Therefore, frictional non-Brownian suspensions with a repulsive
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force have two possible rheological branches, as illustrated in Figure 1.19b. If the
shear rate γ̇ is small enough, the suspension’s viscosity is given by the frictionless
branch: η = ηµp=0, which diverges at φµp=0

c = 64 %. Conversely, if γ̇ is large enough,
the suspension’s viscosity is given by the frictional branch: η = ηµp>0 > ηµp=0,
which diverges at φµp>0

c < φ
µp=0
c . Within this simple framework, it is possible to

qualitatively explain the different regimes observed in shear-thickening suspen-
sions. When φ < φ

µp>0
c , the transition between the two asymptotic rheologies is

continuous for low φ, and discontinuous for high φ. For φµp>0
c < φ < φ

µp=0
c , only

the frictionless state can flow continuously, and there is no frictional state accessi-
ble at large shear rates. The medium thus shear jams.

The existence of a repulsive force between the particles implies that there now
exists an additional dimensionless parameters besides the packing fraction φ, given
by:

Γ̇ =
ηf γ̇d

2

Frep
. (1.9)

Contrarily to the ideal suspension case seen before (see Eq. (1.2)), the suspension’s
viscosity now depends on the shear rate as well as the packing fraction, through:

η = ηfηs(φ, Γ̇). (1.10)

The dimensionless shear rate Γ̇ represents the ratio of the hydrodynamic forces
ηf γ̇d

2 to the repulsive force Frep. It controls the transition between the frictionless
and the frictional states (Fig. 1.19a).

1.3.2 Numerical simulations

The ideas behind the frictional transition model emerged from numerical simula-
tions done by Seto, Mari, Morris, and Denn [1,2]. Their approach is fundamentaly
different from that of Stokesian Dynamics [38]. Indeed, in [1,2] the authors intro-
duced solid contacts between the particles in their simulations, thus highlighting
the importance of friction in the rheological behaviour of dense suspensions. The
different forces acting on the particles in the simulations are the following.

• The drag force, which scales like the relative velocity between the particle
and the unperturbed shear flow.

• The lubrication forces between two particles, whose amplitude scales as the
relative velocity between them and as the inverse of their separation dis-
tance.

• A granular-like contact force, which describes the contact between two par-
ticles as a frictional one, following a Coulomb law. It is characterized by a
microscopic friction coefficient µp. This force also prevents the interpenetra-
tion of particles.

• A short-range repulsive force Frep, in the form of an electrostatic double-layer
force or in the form of a threshold force.
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(a) Relative viscosity of the suspension as a
function of the packing fraction, for differ-
ent values of the microscopic friction coeffi-
cient µp and the shear rate γ̇.
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(b) Relative viscosity of the suspension
as a function of the rescaled shear rate,
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(c) Evolution of the number of frictional contacts (red bars) with increasing shear rate.

Figure 1.20 – Simulations of a suspension of repulsive non-Brownian hard spheres
in a Newtonian fluid. Figures adapted from [2].

Figures 1.20a and 1.20b give the principal results of the numerical simula-
tions. First, we observe that the suspension’s rheology does exhibit two different
viscosity curves depending on the shear-rate (Fig. 1.20a). At very low shear rates,
the viscosity curve follows that of a frictionless suspension, whatever the value
of µp. At high shear rates, the viscosity curve diverges at a critical packing fraction
φ
µp>0
c < φ

µp=0
c . The simulations also reproduce the main phenomenology of shear-

thickening suspensions (Fig. 1.20b). At low packing fractions, the simulated sus-
pension exhibits continuous shear thickening, then with increasing packing frac-
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tions it undergoes discontinuous shear thickening. As expected, the discontinuous
transition is characterized by a strong increase of the number of frictional contacts,
which percolate across the system (see Figure 1.20c).

In the simulations, the discontinuous shear thickening transition occurs at a
critical shear stress τc or a critical shear rate γ̇c that are linked to the repulsive
force Frep by: 




τc = β
Frep

d2
,

γ̇c = β
Frep

ηµp=0(φ)d2
,

(1.11)

where β ' 0.04. These relations state that the critical shear stress for the apparition
of shear thickening scales as the inverse of the particles’ diameter squared. This
explains why shear thickening can only be observed with small enough particles
(see Section 1.1.2). For larger particles, the repulsive force, if it exists, would be
overcome by any other force and the suspension would only exist in its frictional
state.

Finally, these simulations were also conducted on Brownian suspensions, see [50].
The results show that thermal motion plays the same role as a repulsive force, by
preventing the formation of frictional contacts under shear when the shear rate is
small. Therefore, thermal motion together with friction induces a shear-thickening
behaviour in the suspension. The expression of the critical shear stress can be gen-
eralised to repulsive Brownian suspensions by:

τc ' β
Frep

d2
+ 40

kBT

d3
, (1.12)

where kB is the Boltzmann constant and T is the system’s temperature. Usually,
the Brownian part of the critical shear stress overcomes the repulsive part when
d < 0.1 µm.

1.3.3 A heuristic model

Soon after the numerical simulations of Seto et al., Wyart and Cates proposed
in 2014 a heuristic model that formalizes the frictional transition scenario [3].
The authors consider a non-Brownian suspension in which interparticle friction
is activated only when the granular pressure P overcome a repulsive pressure
Prep = Frep/d

2. The idea is to describe the crossover between the two rheological
branches (frictionless and frictional) accessible to the suspension as a function of
a dimensionless pressure Π = P/Prep. Both viscosity branches diverge at a critical
packing fraction which is φµp=0

c when all the contacts are frictionless, and φ
µp>0
c

when all the contacts are frictional. For intermediate cases, the authors propose
that the critical packing fraction at which the suspension’s viscosity diverges can
be written as a linear interpolation between the two limiting critical packing frac-
tions:

φc(f) = fφµp>0
c + (1− f)φµp=0

c , (1.13)

where f is the fraction of frictional contacts between two particles. They assumed
that f is an increasing function of the dimensionless pressure Π, going from 0
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when Π� 1 (the suspension behaves as if it was frictionless) to 1 when Π� 1 (the
suspensions recovers its frictional behaviour). In their paper, the authors chose the
following expression:

f(Π) = 1− exp(−Π), (1.14)

which is compatible with numerical simulations (see Figure 1.21 and [2]). Finally,
they close the model by writing the granular pressure P as:

P = c · ηf γ̇ · (φc(f)− φ)−2 , (1.15)

where c is a constant. Equation (1.15) simply expresses the divergence of the gran-
ular pressure close to the critical packing fraction (see Equation (1.6)).

f

τ/
2

3π

Frep

d2

Figure 1.21 – Fraction of frictional contacts as a function of the shear stress rescaled
by the repulsive stress, for different values of the packing fraction. From [2].

The rheological curves predicted by the model (using Equations (1.13), (1.14),
and (1.15)) are shown in Figure 1.22, which gives the dimensionless pressure Π
as function of the shear rate for different packing fractions. Note that similar plots
would be obtained if the more usual shear stress τ was used instead of Π. The
model recovers the main feature of shear-thickening suspensions. For low val-
ues of the packing fraction, the dimensionless pressure exhibits two Newtonian
plateaus connected by a portion of curve of higher slope. In this range of packing
fraction, the suspension thus undergoes continuous shear thickening. At a packing
fraction φDST = 55.4 %, the slope connecting the two Newtonian plateaus becomes
infinite (grey vertical line and dashed black curve). This marks the onset of discon-
tinuous shear thickening. In a range of packing fractions above φDST, the rheolog-
ical curves are S-shaped. There are two values of γ̇, called γ̇− and γ̇+, for which
the tangent to the curve is vertical. The system can then flow either with a high
viscosity (corresponding to values of Π in the upper Newtonian plateau) or with a
low viscosity (corresponding to values of Π in the lower Newtonian plateau), and
the chosen viscosity depends on its history (the green portion is forbidden). This
S-shape thus induces an hysteretic loop in the rheology (highlighted in yellow)
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Figure 1.22 – Evolution of the dimensionless pressure with the shear rate, for different
packing fractions. Adapted from [3].

and gives rise to a discontinuous shear thickening rheology for high enough pack-
ing fractions. Finally, above a second critical packing fraction given by φµp>0

c , there
is no longer a second Newtonian plateau: the system shear jams if the shear rate
is too high. This is illustrated by the phase diagram shown in Figure 1.23, which
summarises the model’s predictions.

1.3.4 First experimental support

The frictional transition mechanism proposed by Seto et al. in 2013 and Wyart
and Cates in 2014 thus provides a first consistent framework explaining the dis-
continuous shear thickening observed in dense suspensions. At the beginning of
my PhD, some studies had started to investigate this model experimentally.

The first experiments were conducted by Guy et al., who studied suspensions of
poly(methyl methacrylate) (PMMA) particles subjected to steric repulsion through
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no continuous
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   low
viscosity

hysteretic behaviour

Figure 1.23 – Theoretical phase diagram in the (γ̇, φ) plane. Adapted from [3] and [2].
CST stands for continuous shear thickening, and DST for discontinuous shear thick-
ening.

the presence of polymeric ‘hairs’ grafted on their surfaces [51]. They measured
the viscosity of the suspension as a function of the shear stress in a cone-plate
geometry, for different packing fractions φ and particles’ diameter d. The symbols
in Figure 1.24a correspond to these measurements. They then fitted their data
to the model of Wyart and Cates (solid lines in Fig. 1.24a), and extracted a low
viscosity and a high viscosity plateau from data highlighted in purple and orange
in Fig. 1.24a. Figure 1.24b shows that the low and high viscosity data measured
with this method indeed fall onto two different rheological curves, as predicted
by the frictional transition model. Moreover, the authors found that the critical
stress at which the discontinuous shear thickening occurs varies as τc ∝ d−2, as
predicted by Equation (1.11) for a constant repulsive force. We note however that
the data presented in Fig. 1.24a does not constitute a clear validation of the model.
First, the two plateaus used to build the viscosity curves appear only for certain
particle’s size, and sometimes consist of only very few data points. Second, for high
packing fractions (φ > 56 %), the flow is unsteady and data actually correspond to
temporal averages. Finally, to collapse the viscosities in Fig. 1.24b, the values of
the packing fraction for the d = 45 µm data had to be shifted ad hoc.

A second kind of experiments, based on shear reversal, have been perfomed by
Lin et al. in [52]. The principle is to apply a constant shear rate in one direction
and then change suddenly the direction of the flow (and thus the sign of the
shear rate). They conducted these experiments with shear-thickening suspensions
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d = 404 nm

filled blue squares

d = 45 µm

open red triangles

d = 3770 nm
d = 3.77 µm

filled red squares
open red squares

(a) Rheological measurements for grafted PMMA particles, with three different particles
diameters d. The highlighted plateaus give the corresponding data points in Fig. 1.24b.
Adapted from [51].

(b) Evolution of the relative viscosity with the packing fraction. Data extracted from
Fig. 1.24a (grafted PMMA particles with three different particles diameters d) and from
literature (see [51] and references therein). From [51].

Figure 1.24 – Experimental results from [51].

containing either stabilised silica particles (Fig. 1.25a) of diameter d = 2 µm or
stabilised PMMA particles (Fig. 1.25b) of diameter d = 1.4 µm. As we can see in
Figure 1.25, the viscosity first drops to a lower plateau upon reversing the shear
direction, and then increases after a transient strain to a higher plateau whose
value depends on the imposed shear rate. Following [54], the authors interpreted
these results by saying that the lower plateau corresponds to the sole contribution
of hydrodynamic forces whereas the second plateau also takes into account the
contribution of frictional contacts. Their results thus show that the amount of
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(a) Relative viscosity as a function of time
after shear reversal, suspension of silica par-
ticles.

(b) Relative viscosity as a function of time
after shear reversal, suspension of PMMA
particles.

Figure 1.25 – Influence of the fraction of frictional contacts on the relative viscosity
of shear-thickening suspensions. From [52].

Figure 1.26 – Relative viscosity and first normal difference as functions of the shear
stress for different packing fractions, in a suspension of silica beads. From [53].

frictional contacts in the system increases with the shear rate, which is consistent
with the frictional transition model.

A last experiment, conducted by Royer et al. in [53], investigated the first
normal stress difference N1 of shear-thickening suspensions of silica beads with
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diameter d = 1.54 µm. The authors state that its sign is a way to determine the
dominant force scale in the system: if N1 < 0, hydrodynamic forces control the
behaviour of the suspension, while if N1 > 0 frictional contact forces dominate
in the system. They show that for high enough values of the packing fraction φ,
the first normal stress difference is indeed positive above a certain onset stress σc,
as illustrated in Figure 1.26. This onset stress also decreases with increasing φ
(Fig. 1.26). It should however be noted that the relation between N1 and the
presence of contact is still debated in dense non-Brownian suspensions (see [24]),
making this experiment difficult to interpret.

These three studies all present interesting results consistent with the frictional
transition model, but neither directly measure the frictional properties of shear-
thickening suspensions, which is the key quantity of the mechanism. Therefore,
though they tend to confirm that shear thickening does stem from frictional con-
tacts developing in the suspension, they do not constitute a direct validation of the
frictional transition model.

1.4 General aim of this thesis

This overview shows that our understanding of shear thickening was at a turning
point when this PhD started in 2015. Long recognized as an important property of
dense suspensions, shear thickening received with the frictional transition model a
first consistent description [1–3]. In contrast with previous explanations of shear
thickening, like the hydrocluster scenario based purely on hydrodynamics, this
approach puts microscopic contact physics at the core of dense suspensions’ rheol-
ogy. The frictional transition model proposes that shear thickening is driven by the
activation of friction above an onset stress, needed to overcome repulsive forces
between particles. Once introduced in numerical simulations or formalized with a
heuristic model, this mechanism enables the recovery of the main features of shear
thickening in non-Brownian suspensions, including continuous shear thickening,
discontinuous shear thickening, and shear-jamming.

However, testing this scenario is experimentally challenging. We have seen that
standard rheological techniques, performed under fixed packing fraction, provide
information only about the suspension’s shear rate, shear stress, and viscosity.
Therefore, they cannot give access to the suspension’s friction coefficient µ, which
is the key quantity one needs to access to test the model. A promising way to ob-
tain this information is to adopt a granular point of view and perform experiments
at fixed granular pressure P . As we have seen, such an approach has been used
with success recently to investigate the rheology of dense suspensions close to
their critical packing fraction [24,28]. However, experimental devices used so far
were developed to study suspensions made of macroscopic particles and cannot
be used to study shear thickening suspensions, whose particles are too small.

The aim of this thesis is precisely to develop new pressure-imposed approaches
for shear-thickening suspensions, in order to understand the physical origin of this
phenomenon. In the first part of this manuscript (Chapter 2), we use a classical
configuration of dry granular media, rotating drum flows, in order to access the
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macroscopic frictional properties of suspensions. This study enables us to provide
a first direct support of the frictional transition scenario (paper published in [4]).
However, we will see that rotating drum flows cannot be used to change the ap-
plied granular pressure and thus fully explore the transition. In the second part
(Chapter 3), we thus propose a new rheological set-up, called the Darcytron, which
provides a way to perform pressure-imposed experiments on colloidal suspensions.
We first validate the concept behind this device on classical, non shear-thickening
suspensions, before describing the first results obtained with shear-thickening sus-
pensions. Finally, Chapter 4 presents our conclusions, with some prospects and
current work in progress.
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CHAPTER 2

Revealing the frictional transition using rotating drum flows

“Why don’t we just mix up absolutely everything and see what happens?”
“It’s got to be worth a try”

Dialogue between the Dean and Archchancellor Ridcully.
In Hogfather, by Terry Pratchett.

In this chapter, we use a configuration inspired by granular flows, rotating
drum flows, to provide the first evidence of the frictional transition in shear-
thickening suspensions. Our idea is to investigate flow properties that are macro-
scopic signatures of the microscopic friction between particles: the avalanche an-
gles, compaction and dilatancy effects. We first compare the quasi-static steady
avalanche angle, compaction, and dilatancy effects, in a standard Newtonian sus-
pension (large glass beads in a viscous liquid) and in a typical shear thickening sus-
pension (starch particles in water) flowing under gravity. This comparison reveals
that particles in shear-thickening suspensions are frictionless under low confining
pressure, as predicted by the frictional transition model. Then, to bridge micro-
scopic contact physics to the macroscopic rheology, we use a model suspension
(silica beads in aqueous ionic solutions) where the short-range repulsive force can
be tuned. We find that when the repulsive force is the dominant force scale, the
suspension has a frictionless state under low stress and a shear-thickening macro-
scopic rheology. By contrast, when the repulsive force is no longer dominant, the
frictionless state disappears and so does the macroscopic shear-thickening rheol-
ogy.

The results presented in this chapter led to the publication: Clavaud et al., Proc.
Nat. Acad. Sci. USA, vol 114, 5147–5152 (2017) (see [4] or Appendix B).
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2.1 The avalanche angle: a macroscopic signature of
microscopic friction

2.1.1 Background

The avalanche angle

Our daily experience tells us that sand piles form cones with a well-defined an-
gle θc, as illustrated in Figure 2.1. Below the pile angle, the medium is stable and
behaves like a solid. Above it, it flows like a liquid and an avalanche develops. This
is a classical property of granular matter, wether dry or fully immersed in a liquid;
think of sub-aqueous dunes for example (see [55] for a general textbook on gran-
ular matter). This well-defined avalanche angle comes from the fact that the onset
of the flow in a granular material is given by a friction criterion. Let us consider
the mechanical equilibrium under gravity of a granular layer of thickness h at the
free surface of the pile (highlighted in green in Fig. 2.1). We can write the shear
stress τ and the normal stress P that it is subjected to as:

{
τ = φ∆ρgh sin(θ),

P = φ∆ρgh cos(θ),
(2.1)

where φ is the packing fraction of the pile, ∆ρ = ρp − ρf is the density difference
between the particles and the surrounding fluid, and g is the gravity. We have seen
in Chapter 1 that the flow onset occurs when the ratio of the tangential to normal
stress is equal to the quasi-static macroscopic friction coefficient of the granular
material: τ/P = µc. This yields:

µc = tan(θc). (2.2)

Therefore, the avalanche angle θc is a direct measurement of the quasi-static
macroscopic friction coefficient µc of the granular medium.

θ

g

τ
P

Figure 2.1 – Sketch of a dry granular medium forming a pile with a well-defined
angle θ.

This macroscopic friction coefficient has two very different physical origins.
First, we have seen in Chapter 1 that µc depends on the microscopic friction co-
efficient µp between the particles. We recall in Figures 2.2a and 2.2b the relation
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and µp, in 3D discrete simulations of soft
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and µp, in 2D discrete simulations of
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Figure 2.2 – Influence of the microscopic friction coefficient µp and the particle shape
on the macroscopic friction µc.

between µc, the avalanche angle θc, and µp, obtained for spherical particles in
discrete numerical simulations in [29, 30]. For frictional grains (0.1 < µp < 1),
the macroscopic friction coefficient µc ' 0.4 has only a weak dependence on µp
and yields a typical avalanche angle θc ' 25◦. By contrast, when the microscopic
friction µp becomes very small (µp < 0.1), the macroscopic friction µc and the
avalanche angle θc sharply drop. Note that for frictionless spheres (µp = 0), nu-
merical simulations predict a very small yet non-zero value for the macroscopic
friction: µc ' 0.1, and for the avalanche angle: θc = 5.76◦ (see [57]). The sec-
ond origin of the macroscopic friction and avalanche angle is the geometry of
the particles. This explains why piles of irregular particles like sand particles or a
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mixture of spherical and cubic particles (see Fig. 2.2c) have an avalanche angle
higher than those made of purely spherical particles. This geometrical contribution
also explains the non-zero avalanche angle of piles made of frictionless spheres
(θc = 5.76◦, see [57]).

Rotating drum flows

The previous discussion shows that the avalanche angle gives direct access to the
frictional properties of the granular medium. Several methods can be used to mea-
sure this angle, as illustrated in Figure 2.3.

Figure 2.3 – Different methods for measuring the pile angle (here denoted by α),
from the historical paper of Carrigy [56].

One of the simplest way is to use a half-filled cylinder rotating along its axis
(see Figure 2.4a). Depending on the rotation speed ω of the cylinder, different flow
regimes are observed (see Figure 2.4b). For fast rotations, the grains are fluidised
and the flow is unsteady. When the rotation speed decreases, the system reaches
a steady state characterised by a steady avalanche flow at the surface of the pile,
on top of a region experiencing a rigid rotation with the drum. The free surface of
the flow adopts either a S-shape (high ω) or a constant slope θ (low ω) depending
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on the rotation speed (Fig. 2.4b and Fig. 2.4c, left). In the steady regime, mass
and momentum conservation together with a constitutive law for the granular
rheology allow one to predict the full flow field. Using this approach, Hung et
al. obtained non-trivial scaling laws for the evolution of the avalanche angle θ
with the rotation speed ω (Fig. 2.4c, right). The avalanche angle decreases with a
rescaled rotation speed that depends on both the granular medium properties and
the drum geometry (see [58]).
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(a) Rotating drum flow: sketch and notations.
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(b) Evolution of the air-grains interface with the rotating speed ω. Pictures from [59].
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(c) Evolution of the excess slope Ŝ (defined as the avalanche angle minus the quasi-static
avalanche angle) as function of the rescaled rotation speed ω̂. From [58].

Figure 2.4 – Rotating drum configuration.
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Finally, for very low rotation speeds ω, the flow properties no longer depend
on the rotation speed (see [60]). The velocity profile is localised close to the free
surface and the flow depth h is approximately h ∼ 10d (where d is the particles’
diameter), independently of the rotation speed (see Fig. 2.5a). In this quasi-static
regime, the steady avalanche angle θ also reaches a constant angle, that is inde-
pendent of the drum’s geometry for large enough drums (Fig. 2.5b, filled circles).
The quasi-static avalanche angle can thus be identified with the angle θc discussed
above defined by θc = arctan(µc). Note that the quasi-static avalanche angle usu-
ally differs from the angle needed to start the flow from a pile at rest (called the
starting angle, see the open circles in Figure 2.5b). This hysteretic behaviour is
typical of granular materials (see [55]).

yb

(a) Velocity profile in the quasi-static regime, for
several rotation speeds. Adapted from [60].

(b) Quasi-static avalanche angle
as function of the drum’s width.
Adapted from [55].

Figure 2.5 – Quasi-static regime.

Most experiments in rotating drums have been performed on dry granular
flows. However, experiments with submarine granular media, using non-buoyant
suspensions, also exist. Figure 2.6a compares the time evolution of the avalanche
angle in the quasi-static regime for macroscopic glass beads in air (top) or im-
mersed in water (bottom). Although the temporal fluctuations differ, the main
observation is that the mean avalanche angle is the same (approximately 25◦),
whether grains are flowing in air or under water. This confirms that in the quasi-
static regime, the macroscopic friction µc is set by the contact interactions between
particles and not by hydrodynamic interactions (see Chapter 1).

In the sequel, we will study rotating drum suspension flows for which inertia
is negligible, and the flow is quasi-static. By estimating the time that one particle
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2.1. The avalanche angle: a macroscopic signature of microscopic friction

in air

in water

(a) Avalanche angle as function of
time in the quasi-static regime, for
glass beads (d = 230± 30 µm) in air
(top) or in water (bottom). From [61].

(b) Transition between the viscous, free-fall, and
inertial regimes in the (St, r) plane, proposed by
Courrech du Pont et al. in [61].

Figure 2.6 – Dry versus submarine rotating drum flows.

takes to fall over one diameter d under gravity, Courrech du Pont et al. proposed
in [61] that the transition between the viscous and the inertial regime is controlled
by two dimensionless quantities, the Stokes number St and the square root of the
density ratio r (see Figure 2.6b), given by:

St =

√
ρp∆ρg sin(θ)d3

18
√

2ηf
, (2.3)

r =

√
ρp
ρf
. (2.4)

The Stokes number St is the ratio of the inertial falling time to the viscous falling
time. The viscous regime occurs when St� 1. In this case, the quasi-static regime
is defined by J � 1, where the viscous number J = ηf γ̇/P (see Chapter 1). In a
rotating drum, we have γ̇ ∼ ω(D/h)2, where D is the drum’s diameter, and the
pressure is imposed by gravity: P ∼ ∆ρgh, with h ' 10d. The quasi-static limit is
then defined by:

Jdrum =
ηfωD

2

∆ρg(10d)3
� 1. (2.5)
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Chapter 2. Revealing the frictional transition using rotating drum flows

Summary

This overview shows that the rotating drum configuration provides a unique way
to probe the frictional properties of dense suspensions, and thus investigate the
frictional transition model proposed for shear thickening.

For low rotation speeds, the avalanche angle θc is a direct measure of the quasi-
static macroscopic friction coefficient µc = tan θc of the suspension. This coefficient
is itself in bijection with the microscopic friction coefficient µp between the parti-
cles. As discussed in Chapter 1, the fact that we can access the frictional properties
of the suspension in the quasi-static regime is a characteristic feature of pressure-
imposed configurations like gravity driven flows.

Additionally, in the rotating drum configuration the slope of the avalanche is
set by the flowing layer of grains that is located near the free surface of the pile.
In the quasi-static regime, the thickness of the layer h is of the order of a few
particle diameters (h ' 10d). This means that the measure of the avalanche angle
gives access to the frictional state of the grains under very low confining pressure:
P ' 10φ∆ρgd. The rotating drum configuration is thus very well suited to probe
the existence of a frictionless state at low confining pressure in shear-thickening
suspensions.

In the sequel, we first study the avalanche properties of a classical frictional
suspension as a benchmark, before conducting experiments with shear-thickening
suspensions.

2.1.2 Experiments with a classical frictional suspension

Particles and fluid

We use large glass beads of diameter d = 487± 72 µm and density ρp = 2500 kg ·m−3

(see Fig. 2.7a). The particles are immersed in a mixture of UconTM oil in water, pre-
pared as follows: 157.7 g of pure water is mixed with 67.5 g of 75 H 9000 UconTM oil
in a clean, stirred beaker, at approximately 50 ◦C to accelerate mixing. Hereafter,
pure water means water demineralised by filtration through micropores and sub-
jected to ultra violet light in order to kill any remaining organism (done by an Elga
Purelab R© flex machine). The beaker is then put under a vacuum pump to elimi-
nate any gas bubble. The viscosity of the mixture, measured in a Couette geometry
(Anton–Paar Rheolab QC), is ηf = 57 mPa · s and its density is ρf = 1005 kg ·m−3.
With these values, one obtains a Stokes number St ' 4× 10−3 and r = 1.6 (with
θ = 25◦, see Equation (2.3)). Therefore, the suspension in the rotating drum is well
into the viscous regime (see Fig. 2.6b).

The rheological behaviour of such granular suspensions of macroscopic fric-
tional particles is well-studied and is expected to be Newtonian when the packing
fraction is fixed (see Chapter 1). We have checked this using a density-matched
fluid made of a mixture of 30 wt% water, 13 wt% glycerol, and 57 wt% sodium
polytungstate to avoid sedimentation. The neutrally buoyant suspension (with a
packing fraction φ = 50 %) is then sheared in a large gap plane–plane configura-
tion with rough plates (Fig. 2.7b). The viscosity is obtained from increasing and
decreasing ramps of shear rate after a preshear. No migration effects were no-
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(c) Newtonian rheology of a suspension of large
glass beads in a density-matched fluid. Data ob-
tained by Pauline Dame during her internship.

Figure 2.7 – Characterisation of the classical frictional suspension made of large
glass beads.

ticeable. Over the range of shear rates investigated, the rheological behaviour is
Newtonian as anticipated (Fig. 2.7c).

Experimental set-up and data analysis

We made our own rotating drum by cutting PMMA plates with a laser cutter and
assembling the obtained pieces together, as illustrated in Figure 2.8a. The drum’s
diameter is D = 52 mm and its depth is W = 10 mm. These dimensions, which give
W/D < 1 and W/d = 20, were set to ensure that only one avalanche develops in
the depth of the drum, and that we are not subjected to wall effects (see [61–63]).
It is made of a circular base plate on which we glued a concentric PMMA ring with
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D = 52 mm

D

P 80 sandpaper

PTFE covered screws

Top viewSide view

Base plate

Epoxy glue
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(a) Side and top view sketches of the rotating drum used for the large glass beads suspen-
sions.

Rotating stage

ω
Rotating drum

Light

Camera
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(b) Side-view sketch of the experimental set-up used to
measure the pile angle of the large glass beads suspensions
during their steady avalanches.
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(c) Photograph of the face
of the drum taken by the
camera.

Raw image Interface found by the program

(d) Data processing: defining the edge detection parameters.

Figure 2.8 – Experimental set-up and data analysis used for the steady avalanche
experiments.
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an epoxy adhesive. To avoid wall slip, the inner wall is coarsened by gluing P80
sandpaper on it with superglue. The ring is pierced with two filling holes that can
be sealed with polytetrafluoroethylene (PTFE) covered screws.

Any glassware, plastic sample bottle or plastic or stainless steel utensil used at
any point in preparing the experiments was cleaned with isopropyl alcohol and
then rinced with pure water prior to being used. Some plastic utensils couldn’t
be cleaned with isopropyl alcohol and were very thouroughly cleaned with pure
water. Special care was taken to clean the particles and the drum.

• The particles were immersed in pure water in a clean beaker and cleaned as
follows. They were subjected to ultra sounds for 15 min, then the supernatant
fluid was thrown away and replaced by pure water. This was repeated until
the supernatant fluid was clear, then 3 times more. They were then taken
with a clean stainless steel spoon and put into the sample bottle containing
the UconTM oil and water mix, taking care not to add too much water during
the transfer. Some water was necessarily added, so we measured the fluid’s
density and viscosity after the experiments.

• The rotating drum was rinced with pure water, then filled with pure water
and subjected to ultra sounds for 15 min. It was then emptied and this proce-
dure was repeated. Then it was emptied, rinced again with pure water, and
left to dry. It was finally filled with the suspension of large glass beads in the
UconTM and water mix with a clean plastic pipette, and sealed with the PTFE
covered screws. At the end of this procedure, the sediment formed by the
particles filled half the drum, the rest being filled by the suspending fluid.

Once filled, the drum was fixed to a PI M-06.PD rotating stage which has a min-
imum rotation speed of 10−3 ◦ · s−1 and a maximum rotating speed of 90 ◦ · s−1. We
controlled it with a PI Mercury C-863 DC motor controller. We took photographs of
the system along the axis of the drum, as shown in Figure 2.8b. The rotating stage
is hollowed in the middle, which allowed us to illuminate the drum from behind.
The pictures thus show the front face of the drum, as shown in Figure 2.8c, with
the sediment in black and the fluid in white. For each experiment, the framerate
depends on ω, but we tried to take at least one picture every 1◦.

Pictures were processed as follows to extract the pile slope angle θ as a function
of time. For each photograph, we used edge detection based on the luminosity
gradient to find the points belonging to the interface between the sediment and
the fluid above it (see Figure 2.8d). These points were then fitted with a line,
whose slope gives the pile angle θ for the corresponding photograph. By looping
on all photographs and using the value of the frame rate, we obtained the time
evolution of θ. This image analysis was done using custom made Python scripts
written by Antoine Bérut.

Results

To measure the steady avalanche angle, we use the following protocol.

1. The drum is rotated at 90 ◦ · s−1 for 3600◦ to resuspend the grains.
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Chapter 2. Revealing the frictional transition using rotating drum flows

2. The grains are left to settle during one minute.

3. The rotating speed of the drum is set to the target rotating speed ω and we
take pictures of the drum.

Note that for very low rotation speed and long-time experiments, the measure-
ments can be very sensitive to external vibration. In a first set of experiments,
the vibrations induced by the mechanical shutter of the camera resulted in a slow
creep of the avalanche angle. We thus disconnected the camera from the optical
table where the experimental set-up was lying.
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(d) At ω = 5 ◦ · s−1, a non negligible frac-
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Figure 2.9 – Steady avalanches for a frictional suspension of large glass beads (d =
487± 72 µm) in a non-buoyant viscous fluid (Ucontm and water, ηf = 57 mPa · s).

Figure 2.9a is an example of the steady state time evolution of θ for a low
rotating speed (ω = 10−3 ◦ · s−1). The slope angle θ oscillates around a mean
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steady avalanche angle θs whose value is independant of the rotating speed in
the range 10−3 ◦ · s−1 6 ω 6 10−1 ◦ · s−1 (see Figure 2.9b). The system is thus in its
quasi-static regime. This is compatible with the estimation of the viscous number
10−6 < Jdrum < 10−4 for these rotation speeds, drum’s geometry and suspension’s
properties (Equation (2.5)). With θc = 25.3± 0.3◦, the quasi-static macroscopic
friction coefficient of the suspension is µc = tan(θc) = 0.47, a typical value for a
frictional system. As expected, θs increases with ω when the system is no longer in
its quasi-static regime. Above ω = 1 ◦ · s−1, some particles never really settle, as we
can see in Figure 2.9c. The interface betwen the sediment and the fluid above is
no longer well-defined, and as a result neither is θs. Then above ω = 5 ◦ · s−1, the
system is nearly completely resuspended, as shown in Figure 2.9d.

In conclusion, using a rotating drum, we recover a classical frictional behaviour
for our suspension of large glass beads in a viscous fluid. This is consistent with
previous works (see [61] for example). In the sequel, we use the same technique
in order to investigate the frictional behaviour of shear-thickening suspensions.

2.1.3 Experiments with a shear-thickening suspension

Preliminary experiments using cornstarch

We have seen in Chapter 1 that the typical examples of shear-thickening suspen-
sions are suspensions of cornstarch in water, which exhibit discontinuous shear
thickening for packing fractions above φ ' 40 % (see [11]). We thus used such
suspensions for our first experiments.

We used cornstarch from the brand Maïzena R©. Figure 2.10a shows pictures of
the grains in Scanning Electron Microscopy (SEM). As we can see, they are poly-
disperse, with an angular shape and a seemingly rough surface. Their diameter d
is included between 5 µm and 25 µm (see [64]). We used filtered water as the sus-
pending fluid. Since the density of starch particles is about ρp = 1500 kg ·m−3, the
particles sediment and form a pile at the bottom of the drum. Figure 2.10b shows
typical cornstarch avalanche flows for a low rotation speed. By contrast with the
experiments with large glass beads, the free surface of the avalanche is neither
steady nor uniform. Aggregates seem to form in the bulk of the sediment, which
are then excavated and broken when they emerge at the free surface. There are
several possible explanations for the formation of these aggregates. First, the sys-
tem ages due to the hydrolysis of the particles and the presence of bacterias which
feed of the starch. Another possible explanation is that they result from a granu-
lar pressure on the grains high enough to create multiple contacts between them,
combined with a long static contact time in the bulk during the solid rotation. We
tried to decrease the granular pressure by reducing the size of the sediment (see
Figure 2.10c). For very small sediment’s depth (approximately 1.5 mm), the sur-
face flow is smooth, giving a pile angle of about θs ' 20◦. However, this value is
difficult to interpret. First, the sediment’s depth is of the same order of magnitude
as the drum’s width W . The flow is thus no longer localised at the free surface
but extends down to the rough boundary of the drum (see [60]). Second, we
have seen that the link between the microscopic friction µp and macroscopic fric-
tion µc is well documented for smooth spherical particles (see Section 2.1.1 and
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(b) Rotating drum filled with a suspension of cornstarch in water, showing the uncovering
and later fall of an aggregate.
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(c) Rotating drum with a very thin sediment of cornstarch immersed in water.

Figure 2.10 – Cornstarch particles: a famous shear-thickening suspension, not so
easy to work with.

Fig. 2.2b). However, for highly irregular and polydisperse particles like cornstarch
grains, this connection is less direct since the avalanche angle strongly increases
with the degree of angularity (Fig. 2.2c).

Potato starch: first evidence of a frictionless state

To avoid the difficulty associated with the irregular sharp-edge shape of cornstarch
grains, we turned to similar but smoother grains: potato starch. We also designed
a new drum in order to control the temperature of the system throughout the
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2.1. The avalanche angle: a macroscopic signature of microscopic friction

experiments and avoid ageing.
Potato starch is composed of polydisperse ovoid grains of average major axis

25± 15 µm (see Figure 2.11a) and density ρp = 1500 kg ·m−3. We characterized
the rheological behaviour of this system by suspending the particles with a density
matched fluid composed of a mixture of 45 wt% water and 55 wt% cesium chlo-
ride. The same plane-plane geometry as in Figure 2.7b was used. As shown in
Figure 2.11, the suspension exhibits a typical shear-thickening behaviour, with a
strong increase of the viscosity above a critical shear rate.
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(b) Shear-thickening rheology of a suspension of potato starch in a density-matched fluid.
The rheological set-up is the same as the one used in Figure 2.7b. Data obtained by Pauline
Dame during her internship.

Figure 2.11 – Characterisation of the potato starch grains.
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(c) Preparation and filling protocol of the drum for the potato starch suspensions.

Figure 2.12 – Experimental set-up and preparation protocol for the potato starch
suspensions.

The drum is made of PMMA. It has a diameter D = 12 mm and a width
W = 3 mm (see Figure 2.12a). These dimensions give W/D < 1 and W/d = 120,
ensuring the absence of wall effects. It is sealed by screwing its cover on a sili-
cone joint. The inner surface is roughened using a P80 sandpaper to avoid wall
slip. On top of the drum, a closed cell with a water circulation is built to keep
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2.1. The avalanche angle: a macroscopic signature of microscopic friction

the system’s temperature at 7 ◦C during the experiments (see Figure 2.12b). The
cell is connected to a Fisher Bioblock Scientific thermal bath with flexible tube, to
accommodate the rotation of the drum during experiments.

Before any experiment, the drum was cleaned as follows. The base plate with
the ring, the silicone seal and the cover plate were cleaned with tap water and
soap, then thouroughly rinsed, first with tap water to remove any soap, then with
pure water. They were then immersed in pure water in a clean beaker and sub-
jected to ultra sound for 15 min. The water was then thrown away, replaced by pure
water, and the drum was subjected to ultra sound again. The water was thrown
away again, and replaced by pure water if the drum had to be stored before being
filled. Before filling the drum, every part of it was dried with pressurised air and
placed on a paper towel, with the silicone seal directly put inside its furrow.

We made a new suspension every time we conducted a new experiment, so one
suspension was never used for more than 2 days. With this precaution and the use
of a 7 ◦C thermal bath, we avoided ageing during our experiments. The way we
made a new suspension is as follows (see Figure 2.12c). In a clean beaker, we put
approximately 1 g of potato starch and approximately 4 g of pure water. Just before
filling the drum, we suspended all the grains and collected the suspension with a
clean pipette. This allowed us to obtain a sediment filling only half the drum, the
rest of the drum being filled with pure water. We filled the drum with a pipette,
taking care to form a dome with the fluid so there would not be any air bubble
in the suspension once the drum was closed. We waited until the suspension was
sedimented on the bottom of the drum. Then we applied the cover plate, keeping
the side that was in contact with the paper towel outwards. Once applied, the
cover plate was pressed down and screwed rapidly, to avoid the formation of air
bubbles.

Once the drum was sealed, it was fixed to the same rotating stage as described
in Section 2.1.2. Steady avalanches are obtained using the following protocol.

1. The drum is rotated by 180◦ back and forth to suspend the grains.

2. The grains are left to settle during one minute.

3. The rotating speed of the drum is set to the target rotating speed ω and we
take pictures of the drum. The total amplitude of the rotation is reduced to
a maximum of 600◦ because of the presence of the tubes for the cold water
circulation.

Figure 2.13a shows a picture of the rotating drum filled with the potato starch
particles in water, in the steady avalanche regime, for a low rotation speed ω =
10−3 ◦ · s−1. The time evolution of the avalanche angle θ is presented in the same
figure. By contrast with cornstarch particles, the slope of the pile is very well de-
fined. It shows no temporal fluctuation during the rotation of the drum. In the
range of rotation speeds 10−3 ◦ · s−1 6 ω 6 10−1 ◦ · s−1, the steady avalanche
angle θs is constant, suggesting that the flow is in the quasi-static regime (Fig-
ure 2.9b). The main result is that the quasi-static avalanche angle is θc = 8.5± 0.3◦.
This is much smaller than any pile angles reported so far for a granular assembly.
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From this value, we can compute the macroscopic friction coefficient of the sus-
pension: µc = tan θc = 0.15. This value is slightly larger than the expected value for
frictionless spheres (µc = 0.105) (see [57] and Fig. 2.2). However, potato starch
particles are not perfect spheres, which geometrically increases the macroscopic
friction coefficient (see section 2.1.1). Therefore, our results indicate that the mi-
croscopic friction coefficient µp between the potato starch particles nearly vanishes
in the flow at the top of the pile.
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Figure 2.13 – Steady avalanches in the quasi-static regime with suspensions of potato
starch in pure water.

It is interesting to check that the hypotheses of a viscous and quasi-static regime
are valid for our measurements, since inertia or dynamic effects strongly impact
the flow of submarine granular media (see [55]). Here the Stokes number is St '
6× 10−3 and r = 1.5, which means that inertia is indeed negligible (see the phase
diagram in Fig. 2.6b). For the rotation speeds considered, the viscous number is
also very small: 3× 10−5 6 Jdrum 6 3× 10−3, confirming that we are in the quasi-
static regime. Finally, we can estimate the granular pressure in the flowing layer
using Equation (2.1). Assuming that the layer is about 10 particles high and that its
packing fraction is 64 %, we obtain P ∼ 1 Pa. The frictionless behaviour evidenced
here therefore characterises the microscopic contact properties of the potato starch
particles under very low granular pressure.

2.2 Compaction and dilatancy

The previous results, based on the measurement of the steady avalanche angle,
strongly suggest that real shear-thickening suspensions have a frictionless behav-
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ior at low confining stress. This is a first direct support of the frictional transition
scenario presented in the introduction. To confirm our results, we conducted ad-
ditional experiments using another macroscopic signature of microscopic friction:
compaction and dilatancy effects. In this section, we first discuss these notions in
granular media and their link with friction, before describing our experimental
results.

2.2.1 Background

Compaction and Reynolds’ dilatancy

A well-known property of frictional granular piles is that they can compact under
gravity. This is done daily in the kitchen when cooking rice or baking cakes: you
pour rice or flour into a measuring cup, and tap it on the side to compact the
grains and measure the needed amount. By doing this, you give energy to the
grains and as a result they increase their packing fraction. This tapping procedure
have been extensively used in controlled experiments to study the compaction of
granular media, as illustrated in Figure 2.14. The compaction depends on both the
number of taps and their amplitude, but seems to saturate for large numbers of
taps (highlighted in blue in Figure 2.14). The main result it that a pile of frictional
grains subjected to gravity is stable for a range of packing fractions φmin 6 φ 6 φmax

(see [55]). The minimal packing fraction is the random loose packing φRLP, whose
value is about φRLP = 55 % for frictional spheres (usually, such a low value can
only be achieved after slow sedimentation in a very viscous liquid). The maximum
packing fraction achievable by careful tapping is the random close packing φRCP =
64 % (see [55]).
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Figure 2.14 – Compaction of a dry granular medium. Adapted from [55] and [65].

The fact that granular piles have stable states for packing fractions both below
and above the critical flowing packing fraction φc has important consequences for
their transient behaviour under deformation. When slowly sheared at fixed pres-
sure, dense granular piles with initial packing fractions φ > φc cannot deform with-
out dilating. Therefore, in addition to a deformation in the direction of the shear,
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the medium also deforms transversally to this direction (see Figure 2.15a). This is
the famous Reynolds dilatancy effect, first reported by O. Reynolds in 1885 [33]
(see Figure 2.15b). It explains why compact wet sand dries out when you step
on it (Fig. 2.15c). Reynolds dilatancy has been studied in controlled geometries
like sheared boxes, for example by Wroth in [66], whose results are presented in
Figure 2.15d. As we can see, if the sediment is initially dense the packing fraction
decreases with the deformation γ until it reaches the critical packing fraction φc.
Conversely, if the sediment is initially loose, the packing fraction increases with γ,
until it reaches φc. We see that after a deformation of approximately 60 %, the sys-
tem has forgotten its initial state (loose or dense), and simply flows at its critical
packing fraction φc.

γ

Quasi-static shear Dilation

(a) Shearing densely packed grains leads to a transient dilation.

  Soft
balloon

(b) Reynold’s dilatancy experiment.
Adapted from [55].

(c) Sand drying around a foot, from [55].

(d) Transient dilatancy or compaction of a sheared granular medium. Data from [66] and
figure from [55].

Figure 2.15 – Reynolds dilatancy.
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Reynold’s dilatancy can have dramatic consequences on the starting avalanche
behaviour of a granular medium when the grains are immersed in a liquid. In this
case, the transient dilation or compaction towards φc must be accompanied by an
inward or outward liquid flow, and thus a positive or negative pore pressure Pf
between the grains. Since the granular rheology is frictional (τ = µP ), the addi-
tion of the pore pressure to the total granular pressure P transiently modifies the
strength of the medium. This coupling between dilatancy and pore pressure was
clearly demonstrated by Pailha et al. in [67]. The authors investigated the tran-
sient avalanching behaviour of a granular layer immersed in a viscous fluid and
suddenly tilted above the avalanche angle θc (see Fig. 2.16a). They also controlled
the initial packing fraction φi of the sediment by tapping the box that contains
the grains and fluid (see Fig. 2.16b). Figure 2.16c shows that for initially loose
sediments (φi < 58 %), the transient avalanche accelerates immediately after the
box is tilted, while for initially dense sediments (φi > 58 %) there is a delay ttrig be-
fore the avalanche starts to slowly accelerate. This difference in behaviour can be
explained through Reynolds dilatancy and pore pressure. For initially dense sedi-
ments, the medium must dilate in order to flow. The liquid must then be sucked
in, which induces a negative pore pressure that presses the grains against each
other, thereby enhancing friction. The avalanche is strongly delayed. Conversely,
for initially loose sediments, the medium must compact when it starts to flow.
This compaction induces an expulsion of the fluid from the sediment, and thus
a positive pore pressure, which fluidises the medium and explains the fast initial
acceleration.

Link between compaction, Reynolds dilatancy, and friction

The property of granular media to compact, and subsequently to dilate under
shear, is strongly related to the existence of frictional solid contacts between the
particles. It is the presence of solid friction between the grains that allows a gran-
ular pile to be mechanically stable over a wide range of packing fractions below
the maximal packing fraction φRCP = 64 %. We have seen in Chapter 1 that it is
also the microscopic friction coefficient µp that shifts the critical flowing packing
fraction φc to values smaller than 64 %. By contrast, for frictionless hard spheres
(that is, with µp = 0), the conditions of mechanical equilibrium and non-overlap
between grains impose only one possible coordination number for the pile (that
is, the average number of nearest neighbours is fixed, see [55]). This suggests that
perfectly frictionless beads packs at equilibrium only have access to one packing
fraction, and that this packing fraction is φµp=0

c ' φRCP = 64 %. This conclusion is
supported by the numerical simulations of Peyneau and Roux [57]. They showed
that the packing fraction of isotropic or continuously sheared granular packings
of frictionless hard spheres was always the same and close to 64 %, at least for
large systems. This seems to indicate that for frictionless beads, the only acces-
sible configuration is the random close packing, as illustrated in Figure 2.17. In
a granular suspension made of frictionless grains, there should therefore be no
possible compaction under gravity, and as a consequence no Reynolds dilatancy
effect. Studying compaction and dilatancy effects in a suspension is thus a very
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Chapter 2. Revealing the frictional transition using rotating drum flows

(a) Experimental set-up used by Pailha et al. in [67].

high viscosity,
h = 4.9 mm

low viscosity,
h = 6.1 mmφ

(b) Compaction of the sedi-
ment.

High viscosity, h = 4.9 mm, θ = 25◦

0 100 200 300 400 500
time (s)

(c) Surface avalanche speed us as a function of time after tilting, for different initial packing
fractions.

Figure 2.16 – Effect of dilatancy and pore pressure feedback on the transient
avalanche behaviour of granular suspensions. Figures from [67].

good way to probe its frictional behaviour.

2.2.2 Experiments

As in the previous section, we have compared the compaction and dilatancy prop-
erties of the classical frictional suspension of large glass beads in a viscous fluid
and the shear-thickening suspension of potato starch in water. To this end, we use
the same rotating drum set-up as before and establish a protocol inspired by the
study of Pailha et al. in [67]. We first compact the sediment and then tilt it to
an angle far above the critical avalanche angle θc to study the behaviour of the
starting avalanche. The experimental protocol is described in Figure 2.18b, and
below.

1. The grains are first suspended by continuously rotating the drum at 90 ◦ · s−1.

2. They are then left to settle on the bottom of the drum for' 1 min. At the end,
the free surface of the sediment is horizontal. We then take a photograph of
the drum’s front face.
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φ
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Figure 2.17 – Range of packing fractions for which mechanical equilibrium under
gravity is possible for a granular pile, as a function of the microscopic solid friction
coefficient µp.
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(b) Experimental protocol.

Figure 2.18 – Experimental set-up and protocol used to study compaction and dila-
tancy effects in our suspensions.

3. We compact the sediment by tapping Ntaps times on the drum with a rubber
mallet, as illustrated in Figure 2.18a. This is done in three steps:

(a) tap 10 times on the front face of the drum with the mallet (20 times for
the potato starch),

(b) let the system relax for 30 s,

(c) take a photograph of the drum’s front face.
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Chapter 2. Revealing the frictional transition using rotating drum flows

These three steps are repeated as many times as necessary to reach the de-
sired value of Ntaps.

4. The drum is then rapidly rotated (at 90 ◦ · s−1) at a fixed angle θa 10◦ above
the avalanche angle.

5. An avalanche then develops and its flowing dynamics is recorded by filming
the drum at 24 images per second.

Note that for the experiments with potato starch in water suspensions, we did
not use the water circulation. These experiments are quite fast, so ageing is not a
problem.

To compute the initial packing fraction of the sediment as a function of the
number of taps, all of the photographs were processed at the same time. First, im-
age correlation is used to correct for any drift between the different photographs.
Then, a circle centered on the drum is drawn on the first image, and any part
not contained into the circle is erased. A luminosity threshold is used to sepa-
rate the interior of the drum into the part containing only the suspending fluid,
of no interest here, and the part containing the sediment. The latter gives us the
sediment’s area A(Ntaps) after Ntaps taps. The corresponding sediment’s packing
fraction φ(Ntaps) is then computed using the following formula:

φ(Ntaps) = φ(0)
A(0)

A(Ntaps)
, (2.6)

where A(0) is the area of the sediment measured just after sedimentation (no tap)
and φ(0) is its packing fraction.

For the large glass beads, we obtained φ(0) in-situ by directly measuring the
mass of the particles inside the drum and by computing the volume of the sedi-
ment from: Vsed = WA(0). For the potato starch suspension, since the drum is too
small this technique was not precise enough. We therefore measured φ(0) inde-
pendently in a larger container (measurement conducted by Pauline Dame during
her internship).

The time evolution of the pile angle during the transient avalanches was ob-
tained with the same Python program as for the steady avalanches.

Figure 2.19 (top) compares the compaction behaviour of the large glass beads
suspension (Fig. 2.19a) and the potato starch suspension (Fig. 2.19b). The large
glass beads exhibit the typical behaviour of a pile of frictional particles. The pack-
ing fraction of the glass beads sediment, which right after sedimentation starts
from a loose state (φ(0) = 56.0± 0.3 %), progressively increases with the number
of taps to eventually reach a dense state (φ(120) = 61.0± 0.3 %). Conversely, it
was not possible to compact the sediment of potato starch in pure water no mat-
ter how many taps we gave on the drum. There is thus only one possible state
of compaction for these grains, which is a signature of a frictionless behaviour
as explained in Section 2.2.1. For the suspension of potato starch in pure water,
we measured φ(0) = 49.0± 0.8 %. This value may seem small, as the expected
value for the critical packing fraction of a suspension of frictionless monodisperse
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2.2. Compaction and dilatancy

spheres is φc = 64 %. However, as already pointed out, the potato starch parti-
cles are neither monodisperse nor spherical. Additionally, they have a tendency to
swell in water (see [68] for example), so the packing fraction measured from the
dry particles’ density can be quite different from the real one.
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(b) Shear-thickening suspension of potato
starch in pure water.
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(d) Shear-thickening suspension of potato
starch in pure water.

Figure 2.19 – Compaction (top) and transient avalanches (bottom) of a classical
suspension of frictional beads (Fig. 2.19a and 2.19c, glass beads of diameter d =
487± 72 µm in a Ucontm oil and water mix of viscosity ηf = 57 mPa · s) and of a
shear-thickening suspension (Fig. 2.19b and 2.19d, potato starch grains of average
size d = 25± 15 µm in pure water).

Figure 2.19 (bottom) shows that the transient avalanches behaviour is also
very different for the large beads and shear-thickening suspensions. For the large
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Chapter 2. Revealing the frictional transition using rotating drum flows

glass beads, the transient behaviour strongly depends on the initial preparation
(see Fig. 2.19c). For an initially loose packing (0 tap), the avalanche rapidly flows
until its angle relaxes to an angle much lower than θc (the quasi-static steady
avalanche angle measured earlier). Conversely, for an initially compact sediment
(120 taps), one observes a long delay during which the avalanche stays still. It
then slowly flows, relaxing to θc. Such a change in the avalanche dynamics with
the packing of the initial sediment is a clear signature of Reynolds dilatancy effects
and pore pressure coupling, as explained in Section 2.2.1. For φ < φc, the medium
compacts when the avalanche starts, which induces an expulsion of the fluid and
a positive pore pressure that fluidises the flow. Conversely, for φ > φc, the medium
must dilate in order to flow, which induces a suction of the fluid and a negative
pore pressure that strongly delays the avalanche. We found that the transition
between the fluidised and delayed behaviours occurs for a packing fraction φc '
58 %, which is consistent with previous work on similar particles (see Figure 2.16b
and [67]).

The transient avalanches of the potato starch suspension strongly contrast with
these results (see Fig. 2.19d). Since there is only one packing fraction accessible to
the system, we observe no dilatancy effects: all the avalanches relax without delay
towards the quasi-static steady avalanche angle θc = 8.5◦, whatever the initial
preparation. We still observe a slight difference in the dynamics depending on the
preparation, which we attribute to small rearrangements in the microstructure of
the sediment, possibly related to the ovoid shape of the particles. However, these
experiments again show that, under low confining pressure, potato starch particles
behave as if they were frictionless.

2.2.3 Discussion

In the previous experiments, we studied three macroscopic properties of dense sus-
pensions: steady avalanche angles, compaction behaviour, and dilatancy effects,
which give access to the microscopic solid friction between particles at very low
confining pressure (the weight of a few grains). By comparing a classical frictional
suspension of macroscopic particles and a typical shear-thickening suspension of
starch, we found three macroscopic signatures of a frictionless behavior in the
shear-thickening suspension: a very low quasi-static steady avalanche angle, the
absence of compaction, and no dilatancy effect. These results are consistent with
the frictional transition model, which proposes that shear-thickening suspensions
behave as frictionless suspensions at low granular pressure. We have seen in Chap-
ter 1 that the frictional transition model attributes the existence of this frictionless
state to the presence of a repulsive force between the grains. This suggests the
existence of a short-range repulsive force or a microscopic pressure-dependent
friction between the starch particles.

The nature of interaction forces between starch particles, and even the precise
structure of starch grains, are actually still poorly understood. Potato starch grains
seem to be formed by the growth of polymers, amylose and amylopectine, in con-
centric growth rings around a central point called the hilium, see [69, 70] and
Figures 2.20a and 2.20b. In [69], Lineback proposes a “hairy billiard ball” model,
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2.2. Compaction and dilatancy

(a) Polymers growing in concentric growth
rings and forming a starch grain. From [69].

(b) Internal structure of a potato starch
grain. From [70].

(c) Fraction of pulling events and interaction length between two cornstarch grains, as a
function of the ethanol to water ratio. From [71].

Figure 2.20 – Structure of a starch grain, and interaction forces between starch
surfaces.

saying that the growing polymers form a brush-like structure at the surface of a
grain. In [72], Park et al. observe cornstarch particles in Atomic Force Microscopy
(AFM) and say that their surface is decorated by 2 to 5 nm high fibers. The pres-
ence of polymer brushes at the grains’ surfaces could induce a steric repulsion
between the particles. However, there doesn’t seem to be a consensus as to the
exact structure of starch grains.
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Chapter 2. Revealing the frictional transition using rotating drum flows

Interactions between starch particles seem strongly dependent on the suspend-
ing fluid, as shown by Oyarte Gàlvez et al. in [71]. The authors studied the effect
of changing the suspending fluid from water to mixes of ethanol and water. They
showed that the rheology of suspensions of cornstarch in water and ethanol mixes
goes from shear-thickening in pure water to non shear-thickening in pure ethanol.
They relate this to AFM measurements in which they measure the interaction force
between a cornstarch grain glued to a steel surface and another cornstarch grain
attached to the AFM cantilever. By recording the force exerted on the cantilever
both while approaching and retracting it from the cornstarch grain glued on a
steel surface, they are able to compute an interaction length Lint between two
starch particles. They also observe sharp peaks in the retracting force curve, which
they claim are the signature of polymers at the surface of the grains, disentan-
gling from one another. As we can see in Figure 2.20c, the frequency of these
sharp peaks, denoted by PE (for ‘pulling events’), depends on the nature of the
suspending fluid, and is higher in water than in ethanol. The authors interpret
this as the fact that there are polymers at the surface of the grains, and that these
are completely insoluble in ethanol. The interaction length between two grains is
also shown to be fluid-dependent, and larger in water than in ethanol. This sug-
gests that there are indeed polymers at the surface of starch grains. In water, they
appear to be at least mildly soluble. They would therefore be unfolded, hence a
larger interaction length, and a possible steric repulsion explaining shear thick-
ening. In ethanol, they seem to be insoluble. They would thus be coiled, hence a
shorter interaction length, and no more steric repulsion, which would explain the
absence of a shear-thickening behaviour.

We tried to modify the interactions between potato starch grains, and possibly
their frictional behaviour, by studying a suspension of potato starch in a mix of
ethanol and water. For approximately 50 wt% of ethanol in the suspending fluid,
the suspension seems to no longer shear thicken, which is consistent with [71].
However, as we can see in Figure 2.21, the avalanches in a rotating drum exhibit
strong signs of adhesion with this system (see [73, 74]). It was thus not possible
to further investigate the frictional behaviour of these suspensions.

5 mm

θ

ω
 Sign of
adhesion

In pure water
 In a mix of pure
water and ethanol

5 mm

ω

Figure 2.21 – Comparison of the behaviour of a potato starch suspension in pure
water and in a water and ethanol mix, in a steadily rotating drum.
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2.3. Unveiling the frictional transition using a model suspension

In conclusion, though the proposed model of a ‘hairy billiard ball’ fits the ob-
served phenomonology of starch particles, there doesn’t seem to be a clear con-
sensus on their exact structure. In particular, we don’t have enough information
concerning the existence of a short-range repulsive force between potato starch
particles. Additionally, assuming that it does have a steric origin, trying to control
this force leads to experimental difficulties. Potato starch is thus not the ideal sys-
tem to fully investigate the frictional transition model. For this reason, we chose to
conduct additional experiments with a model suspension where interaction forces
can be controlled.

2.3 Unveiling the frictional transition using a model
suspension

2.3.1 Glass and silica surfaces in aqueous ionic solutions

Our objective was to find a non-Brownian suspension with easily controllable
short-range repulsive forces between the particles. Moreover, since our experi-
ments are based on gravity-driven flows (avalanches), the density of the particles
must be significally larger than the density of the liquid to form a well-defined pile
at the bottom of the drum. For these reasons, we chose to work with suspensions
of microbeads of glass or silica particles in aqueous ionic solutions.

At the surface of glass or pure silica, one finds silanol groups, that is, SiOH
groups, as illustrated in Figure 2.22a (see [75]). When in contact with water, these
silanol groups are hydroxyled into silicilic acid groups by the following chemical
reaction:

SiOH + H2O� SiO− + H3O+. (2.7)

This leads to the presence of a negative surface charge on glass or silica surfaces
immersed in aqueous solutions. In response to this negative surface charge, the
counter-ions (of opposite charge) present in the solution are attracted by the sur-
face. Some are transiently bound to the surface, while the others form a diffusive
atmosphere close to it, in thermal equilibrium. Away from the surface, some co-
ions (of the same charge as the surface charge) are found in the counter-ions
atmosphere. Then, at a certain distance λD from the surface, the concentrations of
both co- and counter-ions relax back to their bulk concentration. The distance λD is
called the Debye length. This spatial organisation of ions close to a charged surface,
which results from both electrostatic interactions and thermal motion, is called the
electrostatic double layer and is illustrated in Figure 2.22b (see [34] for a general
textbook on surface and interface interactions). It is responsible for the presence
of a repulsive force between the particles.

The interactions between silica surfaces in aqueous solutions have been stud-
ied experimentally using a Surface Force Apparatus or Atomic Force Microscopy,
for example by Vigil et al. in 1994 in [75] (see Figure 2.23a), or more recently
by Valmaco et al. in [76] in 2016 (see Figure 2.23b). In pure water or at low
ionic concentrations, the interaction force is repulsive as expected, and decreases
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H2O

O−

H3O
+

Si

OH

(a) Simplified surface chemistry of glass or silica in the presence of water. Inspired by [75].
Left: a silanol group at the surface of glass or pure silica. Right: hydroxylation of a silanol
group into a silicilic acid group.

λD

(b) Double layer in an electrolyte near a surface with a negative surface charge, with the
associated evolution of the co- and counter-ions concentrations. From [34].

Figure 2.22 – Charge repartition near a silica surface in an aqueous ionic solution.

roughly exponentially far away from the surface, as:

Frep(z) = F0 exp

(
− z

λD

)
, (2.8)

where z is the separation between the two surfaces, and F0 is the intensity of the
force at vanishing separation. For an ionic solution of monovalent ions (like NaCl
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in water) at ambient temperature, the Debye length is given by:

λD =
0.304√
[NaCl]

nm, (2.9)

with [NaCl] expressed in mol · L−1 (see [34]). Typically, λD varies from about 1 µm
in pure water to about 1 nm in [NaCl] = 10−1 mol · L−1 solutions. Glass or silica
beads in ionic solutions are thus a good model system to control the repulsive
force and study the frictional transition. Note that the chemical equilibrium of
Equation (2.7) is sensitive to the pH of the medium (see [77]), which affects the
surface charge of the particles and the value of the force F0 at contact. Therefore,
the repulsive force could also be controlled by the pH of the solution.

(a) Force between a silica plate and a silica
bead in water and various ionic solutions of
differents concentrations. From [75].

Experimental set-up

(b) Interparticle force between two silica
beads in aqueous KCl solutions of differents
concentrations. From [76].

Figure 2.23 – Interaction force between silica surfaces in aqueous ionic solutions.
The fits (solid lines) are the prediction of the DLVO theory (for Dejarguin, Landau,
Verwey, and Overbeek) that combines the electrostatic repulsion from the double-
layer and the attractive van der Waals interactions (see [34]). The DLVO theory
works well except very close to the surface (50Å), where more complex physical and
chemical ingredients are at play.
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2.3.2 Experiments

We first conducted preliminary experiments using highly polydisperse microscopic
glass beads available in the lab, with diameter d such that 1 µm 6 d 6 45 µm.
We used the same drum as for the potato starch experiments, without the cool-
ing device. Figure 2.24 presents the results we obtained when investigating the
steady avalanche behaviour of these microscopic glass beads in various suspend-
ing fluids: filtered water, water with added cooking salt, and a pH = 10 and a
pH = 7 buffer solutions. Interestingly, we observe that this system can behave as
a suspension of either frictional or a frictionless particles depending on the sus-
pending liquid. However, the avalanches often showed signs of adhesion with this
system, probably due to the high polydispersity of the suspension. Furthermore,
it was not possible to independently control the pH and the ionic concentration,
since the buffer solutions contain ions. Finally, the glass beads of our sample were
often non-spherical and their chemical composition is not well known. For these
reasons, we turned to a more controlled system made of pure silica microbeads.

filtered water, ω = 10−3 ◦/s

filtered water, ω = 10−3 ◦/s

filtered water, ω = 10−2 ◦/s

water and salt, ω = 10−2 ◦/s

pH = 7 buffer solution, ω = 10−2 ◦/s

pH = 10 buffer solution, ω = 10−2 ◦/s
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◦
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Figure 2.24 – Preliminary experiments with polydisperse microscopic glass beads in
different suspending fluids.

We used commercial non porous silica particles from Microparticles GmbH with
diameter d = 23.56± 1.06 µm and density ρp = 1.85 g3 · cm−1. They are sold in
plastic bottles containing 5 wt% of particles in pure water. As we can see in Fig-
ure 2.25, the particles are fairly spherical and monodisperse. For the suspending
fluid, we used either pure water or aqueous ionic solutions, prepared either by
dissolving Sigma-Aldrich R© NaCl powder into pure water using a volumetric flask,
or by diluting such a solution. For these suspensions, the gravitational Péclet num-
ber Peg = φ∆ρgd/kBT is Peg ∼ 105, so Brownian motion is negligible. The Stokes
number is St ' 6× 10−3 to 1× 10−2 (using θc = 6◦ to 25◦), meaning that the sus-
pension is in the viscous flowing regime. With this system, we conducted the same
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rotating drum experiments as described previously (Sections 2.1 and 2.2) to sys-
tematically investigate the steady avalanches, compaction, and dilatancy effects of
the suspension. These experiments were conducted with Pauline Dame (student
at Centrale Marseille), during her internship in the lab.

50 µm

Figure 2.25 – Picture of the silica beads taken with an optical microscope.

We first compare two extreme cases: one with silica beads immersed in pure
water, and the other with the beads immersed in a solution of water and NaCl with
a large concentration of salt ([NaCl] = 10−1 mol · L−1) to fully screen the Debye
layer. As illustrated in Figure 2.26 (green data), in the presence of a large concen-
tration of salt which screens the repulsive force, the suspension behaves as fric-
tional. The quasi-static steady avalanche angle is large: θc = 27.5± 0.5◦. The pack-
ing fraction of the sediment evolves from a loose packing right after sedimentation
to a dense packing after 60 taps. Finally, the dynamics of the transient avalanche
strongly depend on the initial packing, showing features related to the dilatancy
effects discussed earlier. Conversely, the silica beads in pure water behave as fric-
tionless particles (Figure 2.26, black data). The quasi-static steady avalanche angle
is θc = 6.0± 0.3◦. This value is remarkably close to the quasi-static macroscopic
friction angle obtained numerically for ideal frictionless spheres: θ = 5.76± 0.22◦

(see [57], and recall Section 2.1.1). Additionally, no compaction of the sediment
and no discernible effect of the initial packing on the transient avalanches are
observed. These results clearly demonstrate that the presence of a short-range re-
pulsive force can lead under low stress to a frictionless behaviour of the particles.

Note that with these suspensions, we only measured the relative evolution ∆φ
of the packing fraction (∆φ = φ(Ntaps) − φ(0)), and not its absolute value. We
have indeed noticed that φ(0) depends on the system size. This size effect can be
explained by the finite range of the repulsive force between the grains. A silica
particle in an aqueous solution may be thought of as a hard core of diameter d
surrounded by a soft shell of thickness λD. Therefore, the effective volume of the
particles varies between (4π/24)(d + 2λD)3 and (4π/24)d3, depending on the con-
fining pressure acting on the particles. Assuming λD � d, this yields an apparent
packing fraction which lies between φmax ·

(
1 + 2λD

d

)−3 ' φmax ·
(
1− 6λD

d

)
and φmax,

where φmax is the packing fraction at contact. If we take φmax = 0.64 (frictionless
case), λD ' 1 µm (pure water) and d ' 24 µm, this gives a variation of packing frac-
tion between 48 % and 64 % depending on the hydrostatic pressure on the grains.
This probably explains the fact that we were not able to obtain a robust value of

69



Chapter 2. Revealing the frictional transition using rotating drum flows

20 60
t (s)

θs

θ (
◦
)

30

20

10

0 ×103

ω = 10−2 ◦/s

[NaCl] = 10−1 mol/L

pure water

(a) Steady avalanches.

30

20

10

0

ω (
◦
/s)

10−3 10−2 10−1

θs (
◦
)

θc

θc

(b) Quasi-static regime.

0

0

2

4

6

8

∆φ (%)

Ntaps

40 8020 60

(c) Compaction.

θ (
◦
)

t (s)

θc

θc

Ntaps

Ntaps

80 taps

0 taps

0
0

20

40

40

80 120 160

(d) Transient avalanches.

Figure 2.26 – Steady avalanches, compaction, and transient avalanches results for
the silica beads, in pure water (black) and in an ionic solution with [NaCl] =
10−1 mol · L−1 (green).

φ(0) independently of the system’s size.

Finally, to understand how the frictionless state in pure water connects to the
frictional state at high salt concentrations, we systematically varied the salt con-
centration [NaCl] and measured the steady avalanche angle θs for a given rotation
speed ω = 10−2 ◦ · s−1 . Figure 2.27a shows that the suspension’s behaviour pro-
gressively changes from frictionless: θs ' 6◦ to frictional: θs ' 30◦ when the salt
concentration [NaCl] is increased. We are thus able to evidence a frictional transi-
tion with this model suspension.
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Figure 2.27 – Frictional transition in the suspension of silica microbeads (d =
23.56± 1.06 µm) in ionic solutions with increasing salt concentrations. The solid
black lines are a guide for the eye.

We expect this transition to occur when the confining pressure P exerted by the
weight of the granular layer is enough to overcome the repulsive electrostatic pres-
sure Prep and bring the particles into contact: P = Prep. To compute this, we model
our silica beads as spheres decorated by rough protrusions of typical size lr. We
also assume that the repulsive pressure can be written as Prep(z) = Frep(z)/(πd2/4),
where Frep(z) = F0 exp(−z/λD) is the electrostatic repulsive force (Equation (2.8))
and z is the distance between the particles’ surfaces. Finally, we assume that the
confining pressure P due to the particles’ weight is P = φ∆ρNdg cos(θs), where N
is the number of grains across the flowing depth. The transition then occurs when
P = Prep(2lr), that is:

lr
λD
∼ 1

2
ln

(
F0

d
· 4

πφ∆ρgNd2 cos(θs)

)
. (2.10)

In this formula, the Debye length λD is directly related to the salt concentra-
tion [NaCl] (Equation (2.9)). The force F0 can be estimated from previous mea-
surements using Surface Force Apparatus, giving F0/d ∼ 1 mN ·m−1 for silica sur-
faces in NaCl electrolytes (see [75] and Fig. 2.23a). This yields F0 ∼ 20 nN in our
case.

In order to check the validity of this prediction, it is necessary to determine the
roughness lr of the silica particles and the number N of particles in the depth of
the avalanche. We estimated the particles’ roughness using AFM measurements
(conducted by Alain Rungis from Centre Interdisciplinaire de Nanosciences de
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Chapter 2. Revealing the frictional transition using rotating drum flows

Marseille), and we analysed the data with the software Gwyddion. Figure 2.28a
shows an example of a raw AFM image of a silica bead, and the 3D surface re-
construction obtained after analyzing it. Figure 2.28b is an example of the height
distribution obtained with one bead. From this, we computed lr as the average
height of the peaks present on the beads surface. Using approximately 25 raw
images and 9 different beads, we obtained lr = 3.73± 0.80 nm. To estimate the
thickness of the avalanche, we measured the velocity profile for silica beads in
pure water at the wall of the rotating drum in the quasi-static regime, and found
N ' 40 (see Figure 2.29). Using these values for F0, lr, and N , the frictional tran-
sition predicted by Equation (2.10) occurs for lr/λD ' 1.2 (here we took θs ' 15◦

and φ = 0.6; this ratio depends only very weakly on these values).

x
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Raw image
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(a) Example of an AFM image obtained
with one silica bead.
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(b) Example of a size distribution of heights at
the surface of one silica bead.

Figure 2.28 – AFM measurement of the typical surface roughness of the silica beads.

Figure 2.27b shows the same data as Figure 2.27a, but now the avalanche an-
gle is plotted as a function of the ratio lr/λD. As we can see, the transition indeed
occurs for lr/λD ∼ 1, in fair agreement with our prediction. This result strongly
supports the idea that the frictionless state arises from the interparticle electro-
static repulsive force. When its range is smaller than the particle’s roughness, this
force becomes ineffective to prevent the grains from touching and the system is
frictional. From our model, it is interesting to estimate the repulsive pressure at
contact Prep, and compare it to the confining pressure P ' 5 Pa due to grav-
ity. For the frictionless case, we use [NaCl] = 10−4 mol · L−1 (grey data point in
Figures 2.27a and 2.27b). We obtain Prep = 40 Pa, consistent with the fact that
P < Prep. For the frictional case, we use [NaCl] = 10−1 mol · L−1 (green data point
in Figures 2.27a and 2.27b). We obtain Prep = 2.3× 10−2 Pa < P .
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Figure 2.29 – Velocity profiles for silica beads in pure water. Data obtained by
Pauline Dame during her internship.

2.3.3 Relation to the macroscopic rheology

The previous results show that by decreasing the repulsive force in a model sus-
pension, we are able to shift from a suspension having a frictionless state at low
confining pressure to a suspension that is always frictional. We still need to test
whether for this model suspension, the existence of a frictionless state under low
confining pressure leads to a shear-thickening rheology, and whether the elimina-
tion of this state (by screening the repulsive force) restores a Newtonian behaviour.

To this end, we performed rheological measurements on two suspensions of
silica particles immersed in water with salt concentrations [NaCl] = 10−4 mol · L−1

and [NaCl] = 10−1 mol · L−1 respectively, that is, before and after the frictional
transition observed on Figure 2.27a. It is not possible to match the density of the
suspending fluid to that of the particles as we previously did to avoid sedimen-
tation. Indeed, this process requires the addition of ions in the suspending fluid,
which in our case would change the nature of the system. To circumvent these
difficulties, the measures were thus conducted as follows (see Figure 2.30). In a
clean beaker, we first let the particles settle down in their suspending fluid and
adjust the liquid level at the sediment’s interface. The volume of the sediment Vsed

is measured and its packing fraction is assumed to be equal to a known value φsed.
We then add a given volume Vf of suspending fluid. We finally suspend the grains
in the fluid by rotating a home-made double-helix with tilted blades in the beaker,
at 5 rotations per second, during 10 seconds. This way, we create a homogeneous
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suspension of packing fraction:

φ = φsed
Vsed

Vsed + Vf
.

After this first preparation step, we impose a rotating speed Ω to the helix and
measure the time evolution of the torque Γ applied by the suspension on the helix
(measurements conducted using an Anton–Paar MCR 501 rheometer). After a short
transient regime the torque reaches a plateau value Γ. The signal eventually in-
creases, due to sedimentation. In practice, we start the measurements with a low
packing fraction, before increacing φ by letting the system settle after one mea-
surement and removing a given volume δVf of suspending fluid (see Figure 2.30).

Vsed

Γ
Ω

Rheometer

MeasurementResuspension

5 rev/s

Preparation

+Vf

New preparation

−δVf

Figure 2.30 – Experimental set-up and protocol for measuring the rheology of silica
suspensions in ionic solutions.
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(b) [NaCl] = 10−1 mol · L−1.

Figure 2.31 – Rheograms of suspensions of silica beads in ionic solutions. The solid
black line is simply a guide for the eye.

Figure 2.31 gives the rheograms that we obtained, in the case of silica beads
in [NaCl] = 10−4 mol · L−1 (Fig. 2.31a) or [NaCl] = 10−1 mol · L−1 (Fig. 2.31b). The
effective viscosity of the suspension is defined by:

ηeff = α
Γ

2πΩL3
(2.11)
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where Γ/L3 is an effective stress, 2πΩ is an effective shear rate, and the constant
α ' 0.483 is set to ensure that the effective viscosity matches the actual viscosity
for a Newtonian fluid (we used glycerol for our calibration).

The first result is that the suspension for which [NaCl] = 10−4 mol · L−1, which
has a frictionless state under low granular pressure, displays all the features of a
shear-thickening suspension (Fig. 2.31a). It exhibits continuous shear thickening
at moderate packing fractions (φ = 48 % and φ = 53.6 %), while larger packing
fractions lead to a dramatic increase of its viscosity (by about 4 orders of magni-
tude). By contrast, the same suspension, but now with [NaCl] = 10−1 mol · L−1, no
longer shear thickens (Fig. 2.31b). In this case, we have seen that the repulsive
force is screened and no frictionless state exists under low confining pressure. It
is important to note that, although our measurement technique does not give ac-
cess to the absolute values of the suspension’s viscosity and packing fraction, the
relative evolutions of both quantities at a given [NaCl] concentration are quantita-
tive. Our results therefore provide a quantitative link between the existence of a
repulsive force, the frictional behaviour of the suspension, and its rheology.

2.4 Conclusion of the chapter

In this chapter, we proposed a pressure-imposed approach, inspired from experi-
ments in granular flows, to directly probe the microscopic frictional properties of
non-Brownian shear-thickening suspensions. By systematically investigating steady
avalanches, compaction, and dilatancy effects in rotating drums experiments, we
provide direct proof that shear-thickening suspensions have a frictionless state
under low granular pressure. Unlike Newtonian suspensions of frictional parti-
cles [28, 63, 67, 78], shear-thickening suspensions under low stress flow with a
very small avalanche angle, do not compact and show no dilatancy effect. This
phenomenology clearly indicates the absence of friction between particles [57].
Moreover, by using a model suspension of negatively charged silica beads, we find
that lowering the range of the repulsive force below the particles’ roughness makes
the suspension transit from a frictionless to frictional state. The elimination of this
frictionless state under low granular pressure also suppresses the shear-thickening
behavior of the suspension. These experimental results, by linking microscopic
contact physics to the suspension’s macroscopic rheology, provide strong evidences
that the frictional transition scenario proposed in [1, 3] to explain shear thicken-
ing applies in real suspensions. For discontinuous shear thickening to occur, the
presence of short range repulsive forces able to prevent inter-particle friction at
low stress seems essential.

The experiments we discussed in this chapter use macroscopic signatures of
the microscopic friction between the grains. Soon after our publication, Comtet et
al. presented another experimental validation of the frictional transition model,
by directly measuring the microscopic friction coefficient µp between the grains
of a shear-thickening suspension using a modified AFM technique (see [79]). The
authors used a mechanical resonator shaped like a microscopic tuning fork with
one particle glued on its tip (see Fig. 2.32a). They probe another particle which is
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glued on a solid plate, the whole set-up being immersed in the suspending fluid
(see Fig. 2.32a). The resonator is set in motion by an external piezoelectric ex-
citation in both the tangential and normal directions to the bottom plate. The
presence of interactions between the particles induces changes in the tuning fork’s
resonance, which allow the authors to measure the tangential and normal forces
between two particles (denoted by FT and FN respectively), and therefore the mi-
croscopic friction coefficient µp = FT/FN . Using this set-up, they showed that the
evolution of FT with FN has two linear regimes (Figure 2.32b): a quasi-frictionless
regime with µp ' 0.02, and a frictional regime above a critical normal load Fc, with
µp ' 0.45. The authors also related this critical normal load at the particle scale
to the macroscopic critical shear stress τc at which the suspension shear thickens
(see [79]).

(a) Experimental set-up. (b) Tangential force as function of the normal load between
two polyvinyl chloride particles in an Hexamoll R© DINCH so-
lution.

Figure 2.32 – A microscopic evidence of the frictional transition in a shear-thickening
suspension. From [79].

By contrast with the microscopic measurements presented above, the rotating
drum configuration used in our study provides a simple, yet robust way to charac-
terize inter-particle friction of dense non-buoyant suspensions in the quasi-static
steady flow regime and in-situ. Nevertheless, this configuration also has some lim-
itations. When slowly rotating the drum, the thin flowing layer is on top of a pile
experiencing solid rotation. Particles thus remain in static contact for a long time.
For microparticles coated with polymers, which are often involved in shear thick-
ening, these lasting contacts may age and lead to cohesion between the grains. In
this case, the avalanche angle is no longer well-defined, nor is it constant when it
exists (see [73, 74] for example). In our experiments performed with silica parti-
cles, small adhesive forces may have affected our results, and could for instance
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explain the slightly large avalanche angles measured at high salt concentrations
(Fig. 2.26a and 2.27a). However, the transition from low to high avalanche angles
evidenced here must be dominated by frictional effects. Indeed, the avalanches
have a constant slope from the top to the bottom of the avalanche, unlike adhe-
sive powders. Moreover, adhesion alone without friction would not lead to the
dilatancy effects observed on Figure 2.26d.

In conculsion, we have been able to evidence the frictional transition predicted
by Seto, Mari et al. [1,2] and Wyart and Cates [3] by lowering the repulsive pres-
sure Prep while the granular pressure P remained fixed (see Fig. 2.27b). Indeed,
the rotating drum configuration gives access to the grains’ frictional properties
only for a fixed (and low) granular pressure, given by the weight of the flowing
avalanche at the surface of the sediment. With this configuration, it is not pos-
sible to vary the granular pressure exerted on the particles. To fully explore the
frictional transition model, this transition should also be addressed by varying P
while keeping Prep constant. We have seen in Chapter 1 that promising pressure-
imposed rheometers have been recently developed to study the rheology of dense
suspensions of macroscopic particles (see [28]). Extending such pressure-imposed
approaches to suspensions of shear-thickening and colloidal particles is the goal
of Chapter 3.
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CHAPTER 3

The Darcytron: a pressure-imposed rheometer for colloidal
suspensions

THAT WAS A PUNE OR PLAY ON WORDS, ALBERT. I DON’T KNOW IF YOU NOTICED.

DEATH.
In Hogfather, by Terry Pratchett.

In the previous chapter, we have shown that the presence of a repulsive force
between particles can induce a frictionless behaviour in a suspension when it is
subjected to a low granular pressure. Moreover, we also showed that the existence
of this frictionless state gives rise to a shear-thickening rheology. These results
strongly support the idea that a frictional transition is at the origin of shear thick-
ening. However, the frictional transition we highlighted so far is the one that oc-
curs when the range of the repulsive force between two particles is decreased. To
fully explore this transition, we now need to investigate the frictional behaviour
a shear-thickening suspensions when the granular pressure is varied. This repre-
sents an experimental challenge, since it requires the development of an original
rheometer able to perfom pressure-imposed measurements on shear-thickening
suspensions, which are composed of very small particles. A large part of the work
presented in this chapter was dedicated to the development of such a rheometer.
The idea is to adjust the granular pressure by imposing a Darcy flow through the
suspension, instead of mechanically pushing on the particles as was done for ex-
ample by Boyer et al. in [28] (see also Chapter 1). First, we present the general
concept of this new rheometer, which we named the Darcytron. We then validate
this concept by investigating the frictional behaviour of a classical suspension. Fi-
nally, we present preliminary results obtained with our model shear-thickening
suspension of silica particles in pure water.
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3.1 General concept

As explained in Chapter 1, the appropriate way to probe the frictional behaviour of
a suspension is to conduct pressure-imposed experiments. In a pressure-imposed
configuration, the suspension’s volume (and therefore its packing fraction) is not
fixed. The suspension is thus free to expand or compact depending on the val-
ues of the applied shear rate and imposed granular pressure. To the best of our
knowledge, the only pressure-imposed rheometer built so far is that of Boyer et
al. [28], which we briefly presented in Chapter 1 (see Figure 3.1). In this rheome-
ter, a porous grid both rotates to shear the suspension and translates vertically
to adjust the volume of the suspension, maintaining a constant level of stress on
the particles. This configuration is well-suited to the study of large particles (the
authors used particles with a minimum diameter of d = 580 µm). However, it is
not suited to the study of suspensions of very small particles such as cornstarch
grains (d ' 15 µm, see [64]). First, the gap lg between the rotating grid and the
side wall would inevitably let small particles leak out of the cell. Second, the very
small pore size required to retain the particles below the grid would induce very
long transients.

Ω

lg lg

+

Figure 3.1 – Pressure-imposed experimental set-up used by Boyer et al. in [28]. This
set-up is well-suited to the study of suspensions of large particles.

The Darcytron cell that we developed is based on a different concept which
circumvents these difficulties. It enables pressure-imposed measurements on non-
buoyant colloidal suspensions. A skecth of the Darcytron is presented in Figure 3.2.
The configuration is that of an annular shear flow. The particles settle at the bot-
tom of the cell, and the granular pressure is initially imposed by gravity alone.
We assume that we can simply write it as P (z) = φ∆ρgz, where φ is the packing
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fraction of the sediment, ∆ρ = ρp − ρf is the density difference between the parti-
cles and the suspending fluid, g is the gravity, and z is the vertical position in the
sediment, measured relatively to its free surface.

Ω

ereθ

ez

θ

r

Γ

∆H

2a

Ω

h

z

0

Flow

Rheometer

fixed grid

L

g

Darcy flow

Figure 3.2 – Sketch of the Darcytron cell: a vertical Darcy flow, created by the height
difference ∆H between the fluid in the cell and the fluid at the end of the bottom
tube, is used to impose the granular pressure in an annular shear flow configuration.

The key idea is to impose the granular pressure through a vertical Darcy flow.
The wall at the bottom of the sediment is thus made of a fixed grid whose pores
are smaller than the particles’ size. The flow is driven by the fluid’s hydrostatic
pressure ρfg∆H, where ∆H is the height difference between the fluid’s free sur-
face and the outlet of a tube connected to the bottom of the cell. Opening the tube
and letting the fluid flow through the system gives rise to an additional vertical
pressure gradient inside the sediment. The total pressure acting on the particles at
depth z is:

P (z) = φ∆ρgz + Cρfg
∆H

L
z, (3.1)

where L is the height of the sediment and C is a numerical constant accounting for
the fact that part of the pressure gradient arising from the Darcy flow is balanced
by a pressure loss in the grid. Therefore, everything happens as if the grains were
subjected to an effective gravity:

geff = g

(
1 + C

ρf
φ∆ρ

∆H

L

)
, (3.2)
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and the granular pressure simply writes as:

P (z) = φ∆ρgeffz. (3.3)

By varying the height ∆H of the water outlet, we can therefore tune the effective
gravity acting on the particles, and thus vary the granular pressure. The main
advantage with this set-up is that the grid at the bottom of the cell is fixed, and
glued to the side walls. Therefore, there can be no leakage at its edge, nor can
there be any transient associated with its motion.

Now that we have described how to vary the granular pressure, let us explain
how this configuration allows us to measure the macroscopic friction coefficient µ
of the suspension. The torque exerted by the grains on the inner cylinder (of ra-
dius a) is:

Γ = 2πa ·
(∫ h

0

σrθ(z) dz

)
· a, (3.4)

where h is the height of the inner cylinder that is immersed in the sediment and σrθ
is the tangential stress exerted by the particles in the sediment onto the inner cylin-
der. In the shear plane, the tangential stress σrθ on the inner cylinder is given by
σrθ = µσrr, where σrr is the orthoradial stress and µ is the suspension’s macro-
scopic friction coefficient. We assume that the orthoradial stress in the shear plane
is proportional to the vertical normal stress, which is the granular pressure, in
the same plane: σrr = K P , where K is a constant which accounts for the stress
anisotropy.

The torque is then given by:

Γ = µ ·Kπa2∆ρφ · geff · h2, (3.5)

which yields:

µ =
Γ

Kπa2∆ρφ · geff · h2
. (3.6)

Thus, we have access to the macroscopic friction coefficient of the suspension
through the measure Γ. However, in order to compute µ, we need to determine the
values of two numerical constants: C, which accounts for pressure drop through
the grid, and K, which accounts for the stress anisotropy. In their work on the
rheology of dense suspensions, Dbouk et al. found K = 2 (see [32]). However,
they studied suspensions with packing fractions ranging from 20 % to 48 %. In our
experiments, we will focus on the suspension’s behaviour in its quasi-static regime
(see Section 3.2.2), where φ→ φc. We therefore use K = 1 instead, as reported by
Depkens et al. on a granular system (see [80]). The value of C will be discussed
in Section 3.2.3.

Note that similar annular shear flow configurations (without the Darcy flow)
have been used as a standard geometry to study dry granular matter (see [60,81]).
In such a configuration, the flow in the quasi-static regime is localised near the in-
ner cylinder and spans about 10 particle’s diameter, as illustrated in Figure 3.3b.
During his PhD, Da Cruz verified that Γ ∝ h2 (see [81] and Figure 3.3c), as pre-
dicted by Equation (3.5). To vary the granular pressure, he also added a supple-
mentary mass on the grains’ free surface, and found that the torque increases
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Figure 3.3 – Annular shear flow configuration to study dry granular media.

linearly with this applied mass (see Figure 3.3d). These results validate our hy-
pothesis that the granular pressure increases linearly with the depth: P ∝ z.

We have described how the Darcytron allows to control the granular pressure
and measure the suspension’s friction coefficient. Note that this configuration is
not an ideal rheometer. Indeed, as in the rotating drum configuration, the stress
distribution is inhomogeneous, which can induce migration in the system. How-
ever, to access the microscopic frictional properties of a suspension, we only need
to probe the quasi-static regime. In this limit, the sediment is homogeneous as
φ → φc and thus there cannot be any migration. In the sequel, we will therefore
focus on the quasi-static limit and test the frictional transition model by measur-
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ing the quasi-static friction coefficient as a function of the granular pressure. In a
classical suspension of frictional beads, the macroscopic friction coefficient should
be independent of the imposed granular pressure, because the microscopic fric-
tion coefficient µp is constant. Conversely, for a shear-thickening suspension we
expect an increase of the friction coefficient with the applied pressure when the
suspension goes from a frictionless state to a frictional one.

3.2 Proof of concept with a classical suspension

As for the rotating drum experiments, we started by testing the Darcytron configu-
ration with a classical suspension of frictional grains. In Section 3.2.1, we describe
the experimental set-up and protocol we used. Section 3.2.3 is concerned with
the first trials we conducted, the experimental difficulties we faced, and the so-
lutions we found. Finally, we present the final results we obtained by conducting
systematic experiments in Section 3.2.4.

3.2.1 Experimental set-up and protocol

The experimental set-up is sketched in Figure 3.4a. The outer cell of the Darcytron
is made of PMMA plates glued and screwed together. It is approximately 12.5 cm
high and has an horizontal surface of approximately 10 cm × 11 cm. The inner
cylinder is a roughened metallic cylinder of diameter 2a = 12.40± 0.01 mm. It is
connected to an Anton–Paar MCR 501 rheometer. The grid used to prevent the
grains from flowing into the tube at the bottom of the cell is made of a filter cloth
placed between two metallic grids. The cloth has 220 µm pores, and the metallic
grids have 3 mm holes. These elements are maintained both together and in the
cell by being screwed onto four PMMA pieces themselves glued to the cell (repre-
sented in grey in Figure 3.4a). The outer edge of the grid is sealed with silicone
paste. The tube at the bottom of the cell, which allows us to control the height ∆H
of the water outlet, was chosen with a large diameter of 9.53 mm to minimise the
pressure drop within it. Its end is equipped with a valve (not sketched) which
allows to turn the Darcy flow on and off. In order to keep ∆H, and therefore
the granular pressure, constant during an experiment, it is necessary to refill the
cell with the suspending fluid. This operation is done by hand with a beaker, as
sketched in Figure 3.4a. Four differential pressure sensors are mounted on one of
the side walls to measure the fluid’s pressure within the cell. This is done follow-
ing the same technique as that used by Dbouk et al. in [32]. Four holes are drilled
in the side wall. They are aligned vertically and evenly spaced, each one being
set about 2 cm below the next (see Figure 3.4a). They are covered with a piece of
filter cloth (with 220 µm pores) in order to block the particles. The pressure sen-
sors connected to these holes thus measure the difference Pmes

i between the fluid’s
pressure P fluid

i at depth hi and the atmospheric pressure P atm of the ambient air:
Pmes
i = P fluid

i − P atm, which is directly the additional pressure induced in the fluid
by the Darcy flow. The signals from these differential pressure sensors are recorded
by a computer via a LabVIEW program developed by William Le Coz from IUSTI.
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Figure 3.4 – The Darcytron: experimental set-up and protocol.

Figure 3.5 is a screenshot of the program’s interface.
We used the same large glass beads as in Chapter 2 (diameter d = 487± 72 µm),

in UconTM and water mixes. Once the suspending fluid was prepared, the Dar-
cytron cell was slowly filled with it through the bottom tube. This way, we limited
the apparition of air bubbles under the grid. For these experiments, we needed a
large amount of clean beads, which was obtained using the following protocol.

1. First we immersed them in pure water, stirred the resulting mix with a clean
metallic spoon, subjected it to ultrasound for 15 min, and threw away the
supernatant fluid. We repeated this step a second time.

2. Then we put the beads in a 220 µm sieve and thouroughly cleaned them with
tap water and soap. At the end of this step we rinced the beads with tap
water until there was no more soap and put the beads in a clean beaker.

85



Chapter 3. The Darcytron: a pressure-imposed rheometer for colloidal suspensions

Figure 3.5 – Interface of the LabVIEW program used to record the fluid’s pressure
in the Darcytron.

3. We then repeated the first step twice.

4. Finally we put the beads in the 220 µm sieve and left them to dry in the
laboratory oven at approximately 50 ◦C.

Once the beads were dry, we sieved them through a 800 µm screen in order to
eliminate beads aggregates that might have sintered in the oven. We then filled the
cell with the beads by slowly sprinkling them on the fluid’s free surface and letting
them settle, to avoid the formation of air bubbles. At the end of this operation, the
sediment’s height was L = 8.4 cm.

The experimental protocol is detailed below and in Figure 3.4b.

1. With the tube’s valve closed, position the tube’s end to the desired value
of ∆H (1 m in Figure 3.4b).
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2. Stir the sediment with a clean metallic spoon, taking care not to incorporate
air in the fluid.

3. Once the Pmes signals reach a steady state, start recording them (this corre-
sponds to the initial time in Figure 3.4b).

4. Wait until the Pmes plateaus are sufficiently long to compute averaged values.

5. Open the valve to impose the Darcy flow.

6. When the Pmes signals have relaxed, start the rotation with the desired ro-
tating speed Ω and start recording the torque Γ.

7. Once Γ has reached a well-established plateau (of time average value Γ),
close the valve, and stop the rotation and the recording of Γ.

8. When the Pmes signals seem to have relaxed back to their initial value, stop
recording them.

Figure 3.4b shows that when the Darcy flow starts, a pressure gradient does de-
velop in the fluid. As explained above, this pressure gradient is what we use to
impose a granular pressure on the particles.

3.2.2 Definition of the average parameters

Since the shear rate γ̇ and the granular pressure P are not homogeneous in the
system, we define spatially averaged macroscopic rheological quantities.

The average shear rate γ̇ is:

γ̇ = 2πΩ
a

10d
. (3.7)

since flowing layer in such an annular shear flow configuration is approximately 10
particles thick in the quasi-static regime (see [60] and Figure 3.3b).

The average granular pressure P is:

P =
1

h

∫ h

0

P (z) dz. (3.8)

The corresponding effective viscous number Jeff is:

Jeff =
ηf γ̇

P
. (3.9)

3.2.3 Preliminary experiments

The suspending fluid used in the preliminary experiments was prepared by mix-
ing 961.12 g of pure water with 641.08 g of UconTM. After complete mixing, the
resulting fluid was degassed using a vacuum pump. Its initial viscosity was η0

f =
385± 5 mPa · s.
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Chapter 3. The Darcytron: a pressure-imposed rheometer for colloidal suspensions

For the preliminary experiments, unless otherwise stated we didn’t record Pmes.
The experimental protocol was composed of step 1 followed by steps 4 through 6.
Data was analysed by determining by eye, for each torque signal, the time at
which the plateau started and the time at which it ended, and computing the
mean value Γ of this plateau.

Evolution of the torque and validity of our hypotheses

Figure 3.6a presents the evolution of the torque for experiments conducted with
different values of ∆H, that is, for various intensities of the Darcy flow, and at
two different immersion height h of the inner cylinder. We find that Γ ∝ ∆H,
as expected. These results are very promising since they indicate that the granu-
lar pressure can indeed be controlled by a Darcy flow. This validates the general
concept of the Darcytron. Moreover, for the two immersion heights investigated,
when the torque is normalised by h2 the data collapses on the same curve (see
Figure 3.6b), suggesting that Γ ∝ h2 as expected.
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(a) Evolution of the torque with ∆H, for
two values of h.
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(b) Rescaling the torque by h2 (same data
as in Figure 3.6a).

Figure 3.6 – Proof of concept of the Darcytron: the granular pressure can be con-
trolled by imposing a vertical Darcy flow throughout the sediment. The solid lines
are least square fits.

Pressure loss in the grid

Following Equation (3.6), measuring the torque Γ gives access to the macroscopic
friction coefficient µ of the suspension. As explained in Section 3.1, in order to
compute µ we need to determine the value of the constant C which accounts for
the pressure loss in the grid. To do so, let us recall the expression of the pressure
field in the sediment (Eq. (3.1)):

P (z) = φ∆ρgz + Cρfg
∆H

L
z.

The term Cρfg
∆H
L
z is the pressure gradient imposed by the vertical Darcy flow

on the particles. One way to determine this pressure gradient, and thus the value
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3.2. Proof of concept with a classical suspension

of C, is to measure directly the real pressure gradient inside the sediment using
the differential pressure sensors. From the recorded signals of Pmes, we extract the
relative fluid pressure P̃ which we define as:

P̃ (z) = Pmes
∆H, Ω(z)− Pmes

∆H=0, Ω=0(z),

as illustrated in Figure 3.4b. By substracting the pressure when ∆H = 0 and Ω = 0,
we correct the measured pressure for its atmospheric and its hydrostatic parts; P̃ (hi)
thus corresponds to the pressure at height hi which arises in the fluid when the
Darcy flow is turned on. Figure 3.7 shows an example of the evolution of P̃ with z,
for a given experiment conducted with ∆H = 1 m. We see that P̃ decreases lin-
early with z, and can be well fitted by a line of slope p < 0. This fluid flow re-
sulting from opening the valve presses the grains downward, thus generating an
additional pressure of opposite side on the sediment. This additional pressure is
therfore given by Cρfg∆H/L = −p. This yields:

C =
−pL
ρfg∆H

. (3.10)

Varying ∆H with Ω = 0, we measured the slope p as in Figure 3.7 and ob-
tained C ' 0.7 using Eq.(3.10). This means that about 30 % of the pressure ρfg∆H
imposed by the Darcy flow is balanced by the presence of the grid, while 70 % of
this pressure is actually acting on the particles.

P̃ (Pa)
∆H = 1 m

p

P1

h1

h2

h3

h4

P4P3P2
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Figure 3.7 – Fluid’s pressure induced by the Darcy flow, directly measured with the
differential pressure sensors, for ∆H = 1 m.

To strenghthen our confidence in this measurement, we propose a complemen-
tary way to evaluate the value of the constant C. Darcy’s law combined with the
conservation of the fluid’s volumic flow rate across the sediment and the grid yield:

ks
ηf

∆P̃sed

L
=
kg
ηf

∆P̃grid

e
(3.11)
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Chapter 3. The Darcytron: a pressure-imposed rheometer for colloidal suspensions

where ks and kg are respectively the sediment’s and the grid’s permeability, L is the
sediment’s height, e is the grid’s thickness, and ∆P̃sed and ∆P̃grid are respectively
the pressure differences in the sediment and in the grid. We neglect the pressure
drop in both the fluid layer above the sediment and the tube at the bottom of the
cell. The continuity of the pressure field in the fluid then gives:

∆P̃sed + ∆P̃grid = ρfg∆H. (3.12)

Combining Equations (3.11) and (3.12) leads to:

∆P̃sed = ρfg∆H
1

1 + e
kg

ks
L

,

which yields:

P̃ (z) = ρfg
∆H

L

1

1 + e
kg

ks
L

· z. (3.13)

By identification with the second term in Equation (3.1), this gives:

C =
1

1 + e
kg

ks
L

. (3.14)

The sediment’s permeability, which depends on its packing fraction φ, can be esti-
mated using Carman–Kozeni’s formula (see [55]):

ks(φ) =
(1− φ)3 d2

Aφ2
,
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(b) Computing µ with C = 0.7 as measured.

Figure 3.8 – Effect of the pressure loss in the grid on the computation of the
suspension’s macroscopic friction coefficient. Measurements conducted with Ω =
0.1 rev · s−1.
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with A between 150 and 180, depending on the model. Assuming that φ = 58 %
and using A = 165, we get ks ' 3× 10−10 m2. To obtain the grid’s permeability,
we conducted a separate experiment, measuring the flow rate through the grid
whithout particles in the cell. We obtained kg/e ' 5.4× 10−9 m. Using these values
in Equation (3.14), we obtain C ' 0.6 (with L = 8.4 cm). This estimate is in good
agreement with the previous direct measurement.

The validity of this correction for the pressure loss in the grid can also be
appreciated directly through its effect on the computed values of µ. As can be seen
in Figure 3.8a, using C = 1 in Equation (3.6) for the computation of µ leads to
a clear differenciation between any data point at ∆H 6= 0 and the data points at
∆H = 0. Conversely, when using C = 0.7 as measured, thus correcting for the
pressure loss in the grid, the values of µ obtained for different ∆H all collapse.

It is interesting at this point to estimate the orders of magnitude of the two dif-
ferent contributions to the granular pressure involved in our system. The mean hy-
drostatic pressure arising from the weight of the grains in the sediment is φ∆ρgh/2,
which is approximately 300 Pa. The mean pressure imposed by the Darcy flow is
Cρfgh∆H/(2L) ∼ 2900 Pa (with ∆H = 1 m), about ten times larger than the gran-
ular hydrostatic pressure. In practice, this means that for measurements conducted
with ∆H larger than 0.1 m, the granular pressure is dominated by the effect of the
Darcy flow.

Identification of the quasi-static regime

As explained in Section 3.2.2, we want to measure µ as a function of P in the
quasi-static regime, that is as Jeff → 0. To identify this regime, we conducted a
large number of experiments, varying the height ∆H of the water outlet, the im-
mersed length of the inner cylinder h, and its rotating speed Ω. The results are pre-
sented in Figure 3.9b. We recover the general form of µ(J) as measured in other
configurations (see for instance [28]). As the effective viscous number decreases,
so does the suspension’s macroscopic friction coefficient. Below Jeff = 10−3, it
eventually reaches a plateau corresponding to its quasi-static value. In the inset of
Figure 3.9b, we zoomed in on the data to show that for Jeff < 10−4, the measure-
ments become less reproducible. We find that in general, measurements are more
robust when conducted at large ∆H, that is at large granular pressure. For a given
value of Jeff, this corresponds to experiments conducted at large rotating speed. It
thus seems that experiments conducted at very low rotating speeds, and therefore
over a long time, result in less reproducible data. For the systematic results pre-
sented in Section 3.2.4, we thus imposed Jeff ∈ [0.5× 10−3, 1.2× 10−3], in order to
be in the quasi-static regime and obtain reproducible results.

Evaporation

Note that as already stated, the suspending fluid used is a mixture of UconTM oil
and water. It is therefore sensitive to evaporation, which can, in the long run,
considerably affect its viscosity. To avoid this, in the following systematic experi-
ments the fluid was regularly renewed, and we also covered the set-up with a lid
equipped with a water trap.
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(b) Macroscopic friction coefficient µ as a function of the effective viscous number Jeff, for
all preliminary experiments.

Figure 3.9 – Identification of the quasi-static regime.

3.2.4 Systematic results

We have shown how to correct our measurements to account for the pressure
loss induced by the grid, identified the quasi-static regime and solved the prob-
lem of evaporation. We thus have a working prototype that we can use to perform
a systematic characterisation of the frictional behaviour of our classical frictional
suspension of large glass beads. Between the end of the preliminary experiments
and the experiments we present in this section, we emptied the Darcytron cell,
cleaned it thouroughly, and cleaned the beads again. On average, the suspending
fluid’s viscosity throughout the experiments was ηf = 450± 110 mPa · s. Experi-
ments were conducted at h = 71 mm, for various values of ∆H, that is, various
intensities of the Darcy flow. For each value of ∆H, we set the rotating speed so
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3.2. Proof of concept with a classical suspension

that Jeff ∈ [0.5× 10−3, 1.2× 10−3].
Unless otherwise specified, data analysis was completely automated. We wrote

Python programs that read the different data files, recovered the relevant data,
and computed all the relevant physical quantities. In particular, these programs
estimate the slope p of the fluid’s pressure P̃ measured with the differential pres-
sure sensors for each experiment, which in turn gives the value of C using Equa-
tion (3.10).

Figure 3.10 shows the evolutions of p and C with varying ∆H. As expected, we
find that the slope p of the imposed pressure gradient increases linearly with ∆H.
The value of C slightly varies from experiment to experiment, which could be
explained by the presence of more or less air bubbles in the system. Indeed, this
would change the relative permeabilities of the sediment and the grid.
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Figure 3.10 – Evolution of the slope p of the pressure gradient induced by the Darcy
flow and of the corresponding constant C as a function of ∆H.
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Figure 3.11 – Measured torque Γ as a function of the height ∆H of the water outlet.
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Figure 3.11 shows the evolution of the measured torque Γ when varying the
height ∆H of the water outlet. Again, as predicted by Equation (3.5), we find that
Γ ∝ ∆H.

From the measurements of C and Γ, we can compute the suspension’s macro-
scopic friction coefficient µ. Figure 3.12a shows its evolution as a function of the
effective viscous number Jeff, using C = Cmean to correct for the pressure loss in
the grid. As expected for this range of Jeff, the system is in the quasi-static regime
and µ is constant. The experiments conducted with ∆H = 0 slightly stand out from
the other data points. We obtain a better collapse using C = 0.55 instead of Cmean,
as illustrated in Figure 3.12b. It seems that the pressure gradient computed from
the differential pressure sensors slightly overestimates the one truly acting on the
particles. Indeed, we assumed that the pressure field induced by the Darcy flow is
uniform in the radial direction (see Section 3.1). A slight deviation from this could
explain why the pressure gradient felt by the particles at the center of the cell is
different from the one measured at the wall, where the sensors are located. In the
sequel, we will thus use C = 0.55, which gives a better collapse of our data.
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Figure 3.12 – Quasi-static macroscopic friction coefficient of a classical frictional
suspension of large glass beads (diameter d = 487± 72 µm) in a viscous Newtonian
fluid (viscosity ηf = 450± 110 mPa · s).

We can finally present the evolution of the quasi-static macroscopic friction co-
efficient µ when the granular pressure P is varied. As expected for this system of
macroscopic frictional particles, µ is independent of the applied granular pressure
(see Figure 3.13). The measured value of µ is µ = 0.49, in reasonable agreement
with the value obtained with the rotating drum experiments (µ = 0.47).

Overall, these results validate the concept of the Darcytron: by imposing a
Darcy flow of adjustable intensity, we are able to impose and control the pressure
acting on the particles, while measuring the friction coefficient of the suspension.
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3.2. Proof of concept with a classical suspension

The results on the classical frictional suspension, for which the friction coefficient
is constant, will also contitue a benchmark for our study of shear-thickening sus-
pensions, where we expect a frictional transition to occur. Before presenting this
study, we discuss below a discrepancy we observed in the vertical granular pres-
sure profile compared to the hydrostatic prediction.
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Figure 3.13 – Evolution of the macroscopic coefficient µ of a classical suspension of
large frictional glass beads (diameter d = 487± 72 µm) in a viscous Newtonian fluid
(viscosity ηf = 450± 110 mPa · s) with the average granular pressure P .

3.2.5 Discussion

In Section 3.2.3, using data measured at two different values of the immersed
length h of the inner cylinder, we stated that apparently Γ ∝ h2 as predicted
by Equation (3.5) (see Figure 3.6). We conducted additional experiments in or-
der to determine the exact relation between Γ and h, and check the validity of
the hypothesis leading to this scaling (which is that P ∝ z). Imposing ∆H = 0
(no Darcy flow) and Ω = 0.05 rev · s−1, we measured Γ as we decreased then in-
creased h. These experiments were analysed manually. Figure 3.14 shows our data
in both linear and logarithmic scales. As we can see in Figure 3.14b, the relation is
well-fitted by a power law Γ ∝ h1.53, which differs from the expected hydrostatic
behaviour Γ ∝ h2 (as reported for example by Da Cruz in [81], see Figure 3.3c).

In order to explain this discrepancy between the measured behaviour of Γ and
the predictions of the hydrostatic model, we assumed that there were recirculation
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Figure 3.14 – Evolution of the torque Γ with the immersed length h of the inner
cylinder, for ∆H = 0 (no Darcy flow). Solid line in Fig. 3.14b: least squares fit.
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Figure 3.15 – Evolution of the radial and orthoradial stresses with the rescaled depth,
for a suspension in a Couette cell. From [82].
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Figure 3.16 – Recirculation rolls in a suspension sheared in a Couette cell. From [83].

rolls in the cell as a result of the shear. This was in part inspired by the work of
Mehandia et al. [82] and Krishnaraj and Nott [83]. In [82], the authors show
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that the stress distributions for a suspension in a Couette cell are not the same
as that obtained for a fluid, neither do they follow isotropic plasticity predictions.
They argue that this comes from the existence of an anisotropic microstructure
‘which evolves slowly when gravity is perpendicular to the shear plane’. This is
illustrated in Figure 3.15, where the authors plot the evolution of the mean radial
and orthoradial stresses with the rescaled vertical position. In [83], the authors
use a similar Couette cell to evidence the development of a steady state secondary
flow consisting in recirculation rolls, as illustrated in Figure 3.16.

The measured scaling, which is close to Γ ∝ h3/2, suggests that instead of in-
creasing linearly with the depth, the granular pressure P is in fact proportional
to its square root: P ∝ √z. Dimensionally, this requires the introduction of the
square root of another length in order to construct a pressureA relevant character-
istic length to introduce in our model is the size Dgap of the gap between the inner
and the outer cylinder. Putting these elements together, we get a new expression
for the granular pressure:

P = φ∆ρg
√
Dgap ·

√
z, (3.15)

which yields:

Γ = µ · 4

3
πa2φ∆ρg

√
Dgap · h3/2. (3.16)
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Figure 3.17 – Effect of the Darcytron cell’s aspect ratio.

We conducted experiments in order to test the role of Dgap and the potential
influence of secondary rolls on the vertical pressure gradient. The radius of the cell
was reduced with a PMMA sleeve of horizontal surface 2.5 cm × 2.5 cm, centered
on the inner cylinder, and held in place by a PMMA sleeve holder, as sketched
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in Figure 3.17a. We then measured the evolution of Γ with h in this new config-
uration. The results from these experiments are shown in Figure 3.17. The data
seems to follow a power law, which this time can be well fitted by Γ ∝ h1.85. When
reducing the gap between the inner and the outer cylinders, the exponent thus
seems to approach that expected for a linear hydrostatic pressure situation, which
would yield Γ ∝ h2. Unfortunately, we lacked the time to further investigate this
dependency. Our preliminary data suggests that the cell’s aspect ratio affects the
vertical stress distribution within the sheared granular layer

Note that this dependency of the relation between Γ and h on the aspect ratio
of the cell does not undermine our approach. Indeed, our systematic experiments
were performed for a fixed value of h. Moreover, for ∆H > 0.1 m, the effect of the
hydrostatic pressure arising from the weight of the particles is negligible relative to
that imposed by the Darcy flow (see Section 3.2.3). Though the exact dependency
of Γ on h remains to be determined, assuming Γ ∝ h2 has only a minor effect on
our measurements.

3.3 First results with silica suspensions

The results presented in the sequel are preliminary results obtained with a sus-
pension of silica particles in pure water. We had little time to study this system,
which furthermore happened to behave in an unexpected way. Nonetheless, we
were able to gather these results in order to outline the expected frictional transi-
tion. We also present some experiments whose results we do not fully understand,
but whose interesting behaviour will be the object of future studies.

3.3.1 Experimental set-up and protocol

We use the same silica particles as in Chapter 2, with d = 23.56± 1.06 µm. They
were immersed in pure water to maximise the range of the repulsive force. The
Darcytron cell has exactely the same design as that used for the large glass beads,
but its dimensions were scaled down to 25 mm × 25 mm for its horizontal surface
and 60 mm for its height. We use the same inner cylinder. The gap between the
inner and outer cylinders is thus Dgap = 6.3 mm, which corresponds to approxi-
mately 265d. The tube at the bottom of the cell has an inner diameter of 3.22 mm.
The grid is made of a filter cloth with 10 µm pores placed between two metallic
grids with 3 mm holes. The same differential pressure sensors are placed at dif-
ferent heights to measure the fluid’s pressure at the wall. In order to impose a
constant value of ∆H, we used a burette dripping directly into the cell.

We first measured the grid’s permeability kg/e = 1.05× 10−9 m. Using the
Carman–Kozeni formula with A = 165 and φ = 60 %, we estimated the sediment’s
permeability to be ks = 6× 10−13 m2. These values, together with a sediment’s
height of L = 26 mm, yield C = 0.98. After cleaning the beads by subjecting
them to ultrasound three times, throwing the supernatant fluid and replacing it
by fresh pure water every time, we incorporated the beads into the cell until they
formed a sediment of height L = 26 mm. Through the measure of the flow rate for
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∆H = 9.8 cm, we obtained C = 0.99, in good agreement with the previous esti-
mate. This value of C very close to 1 means that in this new set-up, the pressure
loss in the grid is negligible. In the sequel, we will use C = 1.

The experimental protocol, described below, is essentially the same as for the
experiments with the large glass beads.

1. With the tube’s valve closed, position its end at the desired value of ∆H.

2. Stir the sediment using a plexiglass rod.

3. Start recording Pmes.

4. Wait at least 15 min to ensure that sedimentation is over.

5. Open the valve to impose the Darcy flow.

6. When the Pmes signals have relaxed, start the rotation with the desired ro-
tating speed Ω and start recording the torque Γ.

7. Once Γ has reached a well-established plateau, close the valve, and stop the
rotation and the recording of Γ.

8. When the Pmes signals seem to have relaxed back to their initial value, stop
recording them.

As explained in Chapter 2, silica particles immersed in pure water acquire a
negative surface charge, which gives rise to an electrostatic repulsive force be-
tween them. This force should prevent them from coming into solid contacts. In
this case, the particles should behave as if they were frictionless. Conversely, under
large granular pressure, the repulsive force should be overcome and the particles
should therefore recover a frictional behaviour.

In our setting, the granular pressure increases with the depth z within the
sediment as:

P (z) = φ∆ρgz + ρfg
∆H

L
z. (3.17)

There is therefore a critical depth zc at which the granular pressure is equal to
the repulsive pressure Prep. The latter can be evaluated from Equation (2.8) in
Chapter 2 as:

Prep =
4F0

d

πd
exp

(
−2lr
λD

)
. (3.18)

Using F0/d ' 1 mN ·m, lr = 3.73 nm, and λD ' 1 µm in pure water, yields Prep =
53 Pa. The system should behave as a sediment of frictionless grains above the crit-
ical depth zc, and recover a frictional behaviour below it. When no Darcy flow is
imposed, that is, when P (z) = φ∆ρgz, we obtain zc ' 10 mm using φ = 60 %. This
means that in order to probe the frictionless state, the immersion height h of the in-
ner cylinder into the sediment should be less that 10 mm. Note that for h ∼ 10 mm,
we can no longer neglect the contribution of friction on the bottom-end of the in-
ner cylinder as we implicitely did when working with the large glass beads. Indeed,
the aspect ratio of the immersed part of the cylinder is now h/2a ∼ 1. Therefore,
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we corrected the expression of the torque to account for this contribution. This
leads to:

Γ = µ · 2πa2φ∆ρg
h2

2

(
1 +

2

3

a

h

)
. (3.19)

In the sequel, the macroscopic friction coefficient will be computed using this ex-
pression.

3.3.2 First experiments: the frictional transition

We first present the most relevant results we obtained regarding the frictional
transition. They correspond to experiments conducted at a rotating speed Ω =
2× 10−5 rev · s−1 and a small immersion height h = 1.5 mm, with different val-
ues of ∆H in order to change the granular pressure. As shown in Figure 3.18a,
when ∆H = 0, which correponds to the lowest achievable granular pressure in
our Darcytron set-up, the suspension’s macroscopic friction coefficient is µ ' 0.1.
This value is very small, and corresponds to the expected macroscopic friction co-
efficient of a suspension of frictionless particles. Remarkably, we find that upon
increasing the granular pressure by increasing ∆H, µ also progressively increases.
This is precisely the behaviour predicted by the frictional transition model for such
a suspension where particles interact through both a short-range repulsive force
and frictional contacts. The friction coefficient reaches µ ' 0.32 for ∆H ' 1 m.
Note that the mean pressure is varied between 4 and 350 Pa, thus spanning values
both below and above Prep = 53 Pa. Unfortunately, we only conducted experiments
at 4 different values of the granular pressure. We are thus unable to say much
about the shape of the transition, or wether the macroscopic friction coefficient
saturates or not.

To support these results, obtained by varying the granular pressure P , we com-
pared them to those obtained in the rotating drum configuration, where we varied
the repulsive pressure Prep instead. To do so, the macroscopic friction coefficient
must be plotted as a function of Π = P/Prep. We have:

• 4 Pa 6 P 6 350 Pa and Prep = 53 Pa in the Darcytron,

• P ' 5 Pa and 10−9 Pa 6 Prep 6 53 Pa in the rotating drum.

As we can see in Figure 3.18b, the data collapses reasonably well, especially given
the fact that the Darcytron results are quite preliminary. Note that for the rotating
drum data, when [NaCl] = 1 mol · L−1, the expression used to compute Prep (Prep =
4F0/(πd

2) exp (−2lr/λD), recall Chapter 2) is no longer adapted since it only holds
for low salt concentrations. This data point was nonetheless left on the plot to
show the saturation of the friction coefficient.

The results presented above are encouraging. However, we still need to con-
duct systematic experiments to investigate the shape of the transition and observe
the saturation of µ at large Π. Additionally, several experiments exhibited an un-
expected oscillatory behaviour (described in Section 3.3.3), which needs to be
characterised.
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Figure 3.18 – Macroscopic friction coefficient µ of a suspension of silica beads (di-
ameter d = 23.56± 1.06 µm) in aqueous ionic solutions (viscosity ηf ' 1 mPa · s).

3.3.3 Unexpected oscillations

Our main issue when conducting experiments on the silica suspension in pure wa-
ter with the Darcytron was that we were only able to access the frictionless state by
setting the immersed height of the inner cylinder to a very low value: h = 1.5 mm.
This value is much smaller than the critical depth zc at which the suspension is ex-
pected to transit to a frictional state under its own weight. Experiments conducted
at larger h resulted in an unexpected phenomenon: as illustrated in Figure 3.19,
the torque spontaneously oscillates.

These oscillations are so regular that at first, we thought it might be a feed-
back issue coming from the rheometer’s PID controller. However, since the rotat-
ing speed of the inner cylinder remains constant (within 5 %), it is a priori not the
case. These intriguing oscillations emerge as an instability and several features
suggest that it arises from some physical phenomenon. Below is a list of the major
trends supporting this claim.

1. The oscillation period Tosc of the torque is of the order of 10 s, much smaller
than the rotation period of the inner cylinder which is typically between 500
and 5000 s. This excludes any misalignement effect of the cylinder.

2. The fluid’s pressure also oscillates, with the same period as the torque (see
Figure 3.19). The magnitude of the pressure oscillations, which is ∆P̃ ∼
10 Pa in Figure 3.19, is of the same order of magnitude as the average
hydrostatic pressure: φ∆ρgh/2 ' 12 Pa for h ' 5 mm as in Figure 3.19.
This suggests that periodic resuspension of the grains whithin the sheared
layer might occur. The amplitude of the expected torque oscillations arising
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Figure 3.19 – Evolution of the torque Γ (top) and of the fluid’s pressure measured
with the differential pressure sensors (bottom) for an immersion height h = 5 mm
and for ∆H = 0.

from these pressure oscillations can be written as ∆Γ = µ · 2πa2h∆P̃ . Us-
ing µ = 0.3, this gives ∆Γ ∼ 4 µN ·m, which is also of the same order of
magnitude as that of the measured torque oscillations: ∆Γ ∼ 6 µN ·m in Fig-
ure 3.19. These oscillations may thus arise from a beating effect involving
the fluid’s pressure and the resuspension of the granular layer.

3. We also observe that the oscillation’s period Tosc does not scale linearly
with Ω (see Figure 3.20b). This seems to indicate that another time scale
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Figure 3.20 – Evolution of the oscillation period Tosc of the torque with the rotating
spedd Ω and the immersed height h of the inner cylinder.

is also involved, which would be consistent with a beating effect. Indeed,
we observe that Tosc depends on the immersion height h (see Figure 3.20c).
To obtain a time scale depending on h, we assume that the rotation of the
cylinder dilates the sheared layer from 64 % to 58 %, and that there is a sed-
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imentation time scale associated with its re-compaction. This time scale can
be estimated as:

Tsed =
h

VSf(φ)

∆φ

φ
,

where ∆φ = 6 %, VS = (2/9)∆ρga2/ηf is the Stokes velocity for the silica par-
ticles in water, and f(φ) = (1− φ)5 is the hindrance function of Richardson–
Zaki (see [7]). We find Tsed ∼ 150 s. The time scale associated with Ω is the
one associated with the shear rate within the sheared granular layer:

Tshear =
1

γ̇
=

10d

2πaΩ
,

which yields Tshear ∼ 40 s. The oscillations could result from a combination
of these two time scales:

Tosc =
√
Tsed · Tshear ∝

√
h/Ω,

in agreement with the rescaling proposed in Figure 3.20d.

4. The amplitude of the oscillations vanishes as the immersion height h is de-
creased. This is why we conducted the experiments at h = 1.5 mm, where
the torque reaches a constant value in the steady state.

For now, it is still unclear how to explain the mechanism at the origin of these
oscillations. They seem to be related to a beating effect involving a periodic resus-
pension of the sheared granular layer. However, we need to further investigate this
intriguing instability. In particular, we intend to systematically probe the influence
of ∆H, Ω, and h on the amplitude and the period of both the torque’s and the
pressure’s oscillations.

3.4 Conclusion and discussion

In this chapter, we presented the development of an original pressure-imposed
rheometer, which we called the Darcytron. This rheometer was designed to test
the hypotheses of the frictional transition model. It was therefore required to allow
access to the quasi-static macroscopic friction coefficient of colloidal suspensions.
We used a classical annular shear flow configuration, whose originality is that
the granular pressure in the cell can be imposed through a vertical Darcy flow
of adjustable intensity. Moreover, since the sediment is held in place by a fixed
porous grid which is sealed to the side wall of the cell, this rheometer is suited to
the study of suspensions of particles as small as desired.

To validate the general concept of the Darcytron, we first built a large version
of the set-up to investigate the behaviour of a suspension of large frictional glass
beads in a Newtonian viscous fluid. We showed that the Darcy flow provides an
accurate way to control the granular pressure. We also checked that, as expected
for such a suspension, the quasi-static macroscopic friction coefficient of the sus-
pension is independent of the granular pressure.
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By measuring the torque for various immersion heights of the inner cylinder,
we also explored the vertical granular stress distribution caused by the particles’
weight. We found that it deviates from the expected linear hydrostatic trend. In-
stead, the granular pressure seems to increase as a power law of the depth, with
an exponent varying with the aspect ratio of the cell. This trend, which might arise
from recirculation rolls, needs to be studied more extensively. However, this can
only affect the absolute value of the measured macroscopic friction coefficient of
the suspension, and not its relative variations when the granular pressure is varied
through the Darcy flow.

In order to use the Darcytron configuration to investigate the frictional be-
haviour of a shear-thickening suspension of silica particles in pure water, we nee-
ded to build a similar but scaled down cell. Using this small cell, we proved that
the quasi-static macroscopic friction coefficient µ of a suspension of silica beads in
pure water increases when increasing the granular pressure, as predicted by the
frictional transition model. At the lowest granular pressure achievable, we mea-
sured µ ' 0.1, which corresponds to the expected macroscopic friction coefficient
for frictionless spheres. For the largest granular pressure that we could reach, it
increases to µ ' 0.32. We were also able to superimpose the data obtained from
both the Darcytron (varying the granular pressure P ) and the rotating drum (vary-
ing the repulsive pressure Prep) by plotting µ as a function of Π = P/Prep. This is a
strong experimental result in favour of the frictional transition model, which an-
ticipated that Π should be the relevant dimensionless parameter controlling this
transition.

We must however emphasise that it is too early for now to draw any definitive
conclusion from the results obtained with the small Darcytron cell. We still need
to conduct more systematic experiments. Additionally, some questions still remain
open. In particular, we do not understand why the frictionless state can only be ob-
served for such a small immersion height of the inner cylinder. Moreover, at larger
immersion heights we observed unexpected periodic oscillations, which sponta-
neously appear both on the torque and on the fluid’s pressure. At the moment, we
have no clear idea how to explain this instability.
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CHAPTER 4

Conclusion and future works

She wasn’t certain what the future held, but coffee would be involved if she had
any say in the matter.

Terry Pratchett, Moving Pictures.

4.1 Conclusion

The objective of this PhD was to investigate experimentally the frictional behaviour
of shear-thickening suspensions, in order to test the ideas put forward in the fric-
tional transition scenario recently proposed by Seto, Mari et al. [1, 2] and Wyart
and Cates [3]. Along with providing a consistent explanation for shear thicken-
ing, this model also questions the longstanding vision according to which sheared
suspensions are dominated by hydrodynamic forces. Instead, it suggests that the
key to understanding the macroscopic rheology of a dense suspension is to take
into account the combined effects of friction between particles and short-range in-
teraction forces. Testing this model is therefore important to understand not only
the microscopic origins of shear thickening, but also the role of contacts in dense
suspension.

The frictional transition model is difficult to investigate experimentally. Indeed,
experiments with shear-thickening suspensions require to have a good control over
the suspension’s physical and chemical properties (pH, ionic concentration, sam-
ple preparation, . . . ). Moreover, as we have seen (Chapter 1), standard rheological
techniques do not give access to the macroscopic friction coefficient µ of the sus-
pension, which is the quantity one needs to measure in order to test this model.
These techniques are also not suited to the study of very dense suspensions, since
their viscosity diverges close to jamming. Recently, a new rheological technique
at imposed pressure inspired by granular media physics was developed at IUSTI
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by Boyer et al. [28]. It allows access to µ, and more generally it allows to ex-
plore the rheology of dense suspensions close to their critical packing fraction.
However, this technique was developed for suspension of macroscopic particles. It
is not adapted to the study of shear-thickening suspensions, whose particles are
too small (see Chapter 3). The goal of this work was therefore to develop new
techniques for the measure of µ in shear-thickening suspensions.

We first used a classical rotating drum configuration, in which the granular
pressure is imposed by gravity, and therefore is not a control parameter (see Chap-
ter 2). In order to be able to vary the granular pressure, we developed an entirely
new rheometer, which we called the Darcytron, adapted to the study of the fric-
tional behaviour of colloidal suspensions (see Chapter 3).

4.1.1 Rotating drum experiments

We investigated three different suspensions: large glass beads in a viscous, New-
tonian fluid, which we used as a benchmark for suspensions of frictional particles;
potato starch in water, which is a typical shear-thickening suspension; and finally
suspensions of silica beads in aqueous ionic solutions, as an ideal experimental
system to test the frictional transition model. Our results are summarised in Fig-
ure 4.1.
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avalanche angle

Compaction

Dilatancy

Frictional behaviour
under low granular
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Figure 4.1 – Summary of the results obtained with rotating drums

The rotating drum configuration is a simple yet robust way to access the fric-
tional properties of a suspension through macroscopic signatures of microscopic
friction: the quasi-static steady avalanche angle, and compaction and dilatancy
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effects. These clearly indicate whether the suspension’s behaviour is frictional or
frictionless. To complete our study, we also characterised the rheological behaviour
of our suspensions, in order to link the macroscopic rheology with the frictional
properties.

Our rotating drum experiments are characterised by two main features. First,
the measurements were conducted in the quasi-static regime. Therefore, we only
probed the quasi-static frictional properties of the suspensions. Second, the gran-
ular pressure in a rotating drum is fixed by gravity. In our experiments, it was
approximately 1 Pa. Therefore, we probed the frictional properties of the suspen-
sion under very low stress.

The main conclusions of our work are the following.

1. A large quasi-static steady avalanche angle, the presence of compaction un-
der vibration, and dilatancy effects on transient avalanches, all indicate that
the particles in the suspension form frictional contacts. As expected we ob-
served these three characteristics for our benchmark suspension of large
glass beads. We also observed them in suspensions of silica beads in aque-
ous ionic solutions, when the salt concentration of the suspending fluid was
large enough.

2. Conversely, a low quasi-static steady avalanche angle, the absence of com-
paction under vibration, and the absence of dilatancy effects, all indicate that
the particles in the suspension behave as frictionless ones. We observed these
characteristics for the suspension of potato starch in pure water, which is a
typical example of shear-thickening suspensions. We also observed them in
suspensions of silica beads in aqueous ionic solutions, when the salt concen-
tration of the suspending fluid was small enough. To the best of our knowl-
edge, these results constitute the first experimental realisation of granular
materials flowing without interparticle friction. Our measurements of low
avalanche angle (6◦) and lack of Reynolds’ dilatancy are fully consistent with
previous predictions of numerical simulations of frictionless hard spheres,
conducted with or without fluid. This frictionless behaviour is also consistent
with the behaviour of other frictionless soft systems like dense emulsions or
foam (see [84]).

3. A suspension which has a frictionless state under low granular pressure,
such as potato starch in water and silica beads in ionic solutions of low salt
concentration, is shear-thickening. Conversely, frictional suspensions with-
out repulsion do not shear thicken. These behaviours were predicted by the
frictional transition model.

4. Short-range repulsive forces between the particles can induce a frictionless
state in a suspension under low stress, as evidenced with the suspensions of
silica particles. As already mentionned, this relates to a shear-thickening rhe-
ology. When the range of this repulsive force is lowered below the particles’
roughness, this frictionless state disappears, and so does the shear-thickening
behaviour.
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These experimental results revealed the relation between shear thickening and
the presence of short-range repulsive forces able to prevent inter-particle friction
at low stress. This provided strong experimental evidence that the frictional tran-
sition scenario applies in real suspensions.

However, as already stated, in a rotating drum the granular pressure is fixed.
This configuration thus cannot be used to fully explore the frictional transition.
This led us to develop a new pressure-imposed rheometer: the Darcytron.

4.1.2 Experiments with the Darcytron

This original rheometer is adapted to study the frictional properties of non-buoyant
shear-thickening suspensions, whose particles are small. The idea of the Darcytron
is to impose the granular pressure through the creation of a Darcy flow within the
sediment formed by the particles.

We validated the general concept on which the Darcytron is built using the
suspension of large glass beads in a Newtonian fluid mentionned in the previous
section as a benchmark. As expected, its friction coefficient does not depend on
the imposed granular pressure (see Figure 4.2a). Our main result with this exper-
imental set-up is that, for a suspension of silica beads in pure water, the friction
coefficient instead increases with the granular pressure (see Figure 4.2b). This be-
haviour stems from the presence of a repulsive force between the grains, which
prevents the formation of frictional contacts, as predicted by the frictional transi-
tion model.
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This new, pressure-imposed rheometer we developed allows to investigate the
rheology of very dense suspensions, where conventional rheometers fail to do so
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because of to the divergence of the viscosity with the packing fraction. Additionaly,
the Darcytron gives access to the suspension’s friction coefficient, a quantity which
is not accessible through conventional rheology. The technique used to impose the
granular pressure on the particles opens the way to pressure-imposed rheology
on colloidal and even Brownian suspensions. The potential applications of the
Darcytron thus extend beyond the scope of this PhD, in both fundamental physics
and industrial research.

Due to lack of time, we were not able to finalise our study of shear-thickening
suspensions with the Darcytron. In particular:

• more systematic experiments are needed to investigate the shape of the tran-
sition,

• we also need to change the repulsive force by varying the ionic concentra-
tion,

• it would be very interesting to change the particles’ roughness, as it also
affects Prep,

• finally, we have evidenced an unexpected instability in the system. Investi-
gating and modeling this instability constitutes an exciting challenge.

As discussed above, our work with the Darcytron has opened interesting pos-
sibilities for future research. In the sequel, we present two other major prospects
that have emerged from my PhD work.

4.2 Future works

4.2.1 The Capillarytron

The rotating drum configuration and the Darcytron allowed us to study the fric-
tional behaviour of shear-thickening suspensions by varying either the repulsive
pressure Prep between the grains or the granular pressure P . However, both set-
ups were limited to the study of non-buoyant suspensions, and more importantly
they were restricted to measurements in the quasi-static regime. It was therefore
natural to try to develop another technique which would enable the measurement
of the suspension’s macroscopic friction coefficient µ as a function of both the
dimensionless pressure Π = P/Prep and the viscous number J , thus completely
exploring the constitutive laws of shear-thickening as proposed by the frictional
transition model.

Along with the developement of the Darcytron, we thus worked on another
concept to measure the macroscopic friction coefficient of a suspension as a func-
tion of the applied granular pressure. This experimental set-up, sketched in Fig-
ure 4.3a, was inspired in part by Dbouk et al. [32] (see Chapter 1). It relies on cap-
illary effects to impose the pressure, hence its name: the Capillarytron. Contrarily
to the Darcytron, the Capillarytron is only adapted to suspensions of particles in
a density-matched fluid. The idea is to shear the suspension in a classical plane-
plane configuration with a porous bottom plate. Under this porous plate, there is
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Figure 4.3 – The Capillarytron: experimental-set-up and preliminary results.

a water reservoir connected to a smaller reservoir whose height h we can control.
At equilibrium, the fluid’s negative pressure arising from this height difference h
must be balanced by capillary forces induced by the deformation of the menisci at
the air/suspension interface. The top-plate is free to translate, and we control the
normal force

#—

F with the rheometer. This way, the suspension is free to adjust its
packing fraction given the imposed granular pressure. Finally, the set-up is sitting
on a scale which measures the force arising from both the granular pressure P and
the fluid’s pressure P f acting on the bottom plate. By measuring the torque ap-
plied on the top plate by the suspension, we can compute the macroscopic friction
coefficient µ.

During Alla Fahs’ internship, we validated the general concept behind the Cap-
illarytron by measuring the evolution of the macroscopic friction coefficient µ of
a Newtonian suspension of large frictional glass beads. As shown in Figure 4.3b,
using the Capillatytron we recover the standard form of J 7→ µ(J) (see [24]). We
now intend to use this rheometer to investigate the behaviour of shear-thickening
suspensions.

4.2.2 Hysteresis

In Chapter 2, we used a rotating drum to measure the steady avalanche angle of
suspensions of silica beads in aqueous ionic solutions, as a function of the suspend-
ing fluid’s salinity. These results are recalled in Figure 4.4a. The time evolution of
the avalanche angle (on the left) shows an intriguing feature which we have not
discussed so far. We see that when the particles are frictional, that is, at large ionic
concentrations, the avalanche angle is not constant in time but instead presents
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a hysteretic behaviour. Hysteresis is a classical property of granular media (see
Chapter 2), but it is generally believed to result from inertial effects. In [61],
Courrech du Pont et al. showed that the amplitude of this stick-slip vanishes as
the Stokes number St vanishes, see Figure 4.4b. What is surprising in our results
is that a large hysteresis persists even though the Stokes number is very low. For
instance, with [NaCl] = 10−1 mol · L−1 (in green in Figure 4.4), we obtain ∆θ ' 3◦

for St = 1.2× 10−2. This is at odds with the results reported by Courrech du Pont
et al., see Figure 4.4b.

Moreover, as we can see in Figure 4.4c, we find a strong correlation between
the frictional properties of the grains and the presence of hysteresis. Our data
suggests that hysteresis disappears when the particles become frictionless. This
seems to indicate that the Stokes number is not the only parameter controlling the
existence of a hysteretic behaviour in granular avalanches. Understanding what
mechanism is at play in the hysteresis observed at low Stokes number is now one
of the objectives of the post-doctoral research of Hugo Perrin, who is continuing
my work of those aspects.
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ANNEXE A

Rhéologie d’un milieu granulaire répulsif 2D : une expérience
modèle pour comprendre le rhéoépaississement
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Introduction

Le rhéo-épaississement est un phénomène physique spectaculaire qui apparâıt dans certaines suspensions de
particules. Il consiste en une augmentation brutale de la viscosité lorsque le taux de cisaillement imposé dépasse
une certaine valeur critique. Un des exemples les plus connus de fluides complexes présentant ce comportement
est le mélange d’amidon de mäıs (par exemple de la Mäızena) avec de l’eau. Prenez un récipient et mélangez
environ 50 % d’amidon de mäıs à 50 % d’eau (en volume). Si vous déplacez un objet très lentement dans la
suspension ainsi obtenue, celle-ci se comporte comme un fluide visqueux et coule autour de l’objet. Si maintenant
vous essayez de déplacer cet objet plus rapidement, le mélange résiste et présente un comportement “solide”.
C’est ce qui permet aux enfants sur la figure 1 de “courir sur l’eau”. Plusieurs applications moins ludiques de
ce phénomène ont été envisagées, comme la conception de prothèses souples en médecine, d’armures souples
pour remplacer les gilets pare-balles, ou d’amortisseurs plus performants. Cependant, le phénomène de rhéo-
épaississement est pour l’instant mal compris d’un point de vue fondamental. Cela limite le développement de
suspensions rhéo-épaississantes artificielles et de leurs applications.

Cette situation pourrait avoir changé récemment à la suite de travaux théoriques [22] et numériques [20, 17],
qui proposent un nouveau mécanisme pour expliquer le rhéo-épaississement. Les auteurs de ces travaux suggèrent
que ce phénomène pourrait provenir d’une transition frictionnelle induite par la présence de forces répulsives à
courte portée entre les grains. Ce scénario est prometteur car il fournit un cadre simple et cohérent pour décrire
le rhéo-épaississement mais il n’a pas encore été validé expérimentalement. Lors de mon stage, j’ai participé à
la conception d’un dispositif expérimental permettant de le tester et réalisé plusieurs expériences en ce sens.

Ce rapport s’organise comme suit. La section 1 présente l’état des connaissances sur le rhéo-épaississement et
l’idée principale des modèles de Seto, Mari et al. [20, 17] et Wyart et Cates [22]. La section 2 décrit le dispositif
expérimental que nous avons conçu, ainsi que sa mise en place. Les sections 3 et 4 présentent les expériences
réalisées, ainsi que les résultats et leurs interprétations. Enfin, la section 5 présente des perspectives qui seront
à la base de mon travail de thèse.

Figure 1 – Enfants courant sur une piscine remplie d’un mélange d’eau et d’amidon de mäıs. Source : http:
//www.tuxboard.com/seriez-vous-capable-de-marcher-sur-leau/, dernière consultation le 3 août 2015.

1 Rhéo-épaississement des suspensions : état de l’art

La première mention du phénomène de rhéo-épaississement date d’un article de 1938 par Freundlich et
Röder [15]. Les auteurs y évoquent la dilatance de suspensions d’amidon de mäıs, de riz ou de pomme de terre
dans de l’eau. Depuis, le phénomène a été étudié par de nombreux chercheurs, tant expérimentalement que
théoriquement. La figure 2 présente l’évolution de la viscosité d’une suspension rhéo-épaississante en fonction
du taux de cisaillement γ̇, à différentes fractions volumiques φ. La figure 2a (adaptée de [19]) correspond à
des mesures expérimentales et la figure 2b (adaptée de [17]) à une simulation numérique. Dans les deux cas
on constate une augmentation de la viscosité avec le taux de cisaillement, contrairement à ce qui se produit
dans les suspensions classiques de sphères dures macroscopiques (Boyer et al. [4]). À forte fraction volumique,
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(a) Courbes expérimentales donnant l’évolution de la
viscosité en fonction du taux de cisaillement dans une
suspension rhéo-épaississante, pour différentes frac-
tions volumiques (adaptée de [19]).

(b) Simulations numériques donnant l’évolution de la vis-
cosité en fonction du taux de cisaillement dans une sus-
pension rhéo-épaississante, pour différentes fractions volu-
miques (adaptée de [17]).

Figure 2 – Mesures expérimentales et simulations numériques donnant l’évolution de la viscosité en fonction
du taux de cisaillement dans une suspension rhéo-épaississante, pour différentes fractions volumiques (adaptées
de [19, 17]). On observe le même comportement qualitatif.

la viscosité devient discontinue et présente un saut à un taux de cisaillement critique γ̇c.

Les observations expérimentales suggèrent que le rhéo-épaississement est susceptible d’apparâıtre dans de
nombreuses suspensions. Le plus souvent, il est observé dans des suspensions composées de grains dont le
diamètre n’excède pas 40µm. La littérature est assez riche en ce qui concerne l’étude des suspensions brow-
niennes, c’est-à-dire dans lesquelles les grains sont sub-micrométriques, et donc sensibles à l’agitation ther-
mique [2, 16]. Cependant, le rhéo-épaississement a aussi été observé dans des suspensions non browniennes,
composées de grains plus gros [11, 7, 15]. Cela suggère que l’agitation thermique n’est pas nécessaire à l’appa-
rition de ce phénomène. Il est également important de noter que la rhéologie des suspensions, et en particulier
l’apparition du rhéo-épaississement, semble très sensible à la physico-chimie à la fois des grains et du fluide. Par
exemple, dans l’industrie du ciment, certains polymères dits superplastifiants semblent capables d’influencer
fortement la rhéologie des suspensions utilisées [12, 13].

Plusieurs explications et modèles théoriques ont été développés afin d’expliquer le rhéo-épaississement. Une
première interprétation est la formation d’hydro-clusters [5, 6, 21], c’est-à-dire de régions où la densité de
grains est localement très forte. Celle-ci s’appuie sur des résultats de simulations numériques basées sur la
dynamique stokésienne, qui est une méthode numérique utilisée pour décrire les suspensions. Dans ce cadre,
une suspension est constituée de grains rigides immergés dans un fluide newtonnien. Les forces en présence
sont les interactions hydrodynamiques et l’agitation thermique. Ces travaux expliquent l’apparition du rhéo-
épaississement à fort taux de cisaillement par la formation d’hydro-clusters, qui sont fortement dissipatifs à
cause des forces de lubrification. Cependant, ces résultats numériques ne prédisent qu’un rhéo-épaississement
continu et assez faible [6, 3, 18], alors que certaines suspensions, comme le mélange d’amidon de mäıs et
d’eau, présentent un rhéo-épaississement discontinu et de forte amplitude. De plus, le rhéo-épaississement que
les auteurs observent est probablement dû à l’introduction de l’agitation thermique, car la rhéologie d’une
suspension non brownienne idéale est nécessairement newtonienne [22]. Ces simulations n’expliquent donc pas
le rhéo-épaississement observé dans les systèmes non browniens.

Une seconde approche suggère que le rhéo-épaississement résulte d’une transition entre un comportement
visqueux de la suspension et un comportement inertiel. La loi d’échelle de Bagnold [1] prédit que, dans le régime
inertiel, la viscosité η d’une suspension non brownienne n’est plus constante mais augmente linéairement avec
le taux de cisaillement γ̇. Cependant, encore une fois ce modèle n’explique pas les augmentations très violentes
de viscosité observées expérimentalement. De plus, il ne décrit que le rhéo-épaississement apparaissant dans des
suspensions atteignant un comportement inertiel. Or, Fall et al. [11] ont observé du rhéo-épaississement dans
des suspensions à faible nombre de Stokes. Ceci semble indiquer que la présence d’effets inertiels n’est pas une
condition nécessaire à l’apparition de ce phénomène.
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Enfin, certains chercheurs en viennent à remettre en cause l’existence même du rhéo-épaississement comme
loi rhéologique intrinsèque. Leurs arguments reposent principalement sur la difficulté des mesures rhéologiques
et la quantité d’artefacts expérimentaux qui en découlent. Effectivement, le phénomène de migration des grains
ou les effets de confinement dus aux parois à fortes concentrations peuvent conduire à un rhéo-épaississement
apparent au niveau des mesures [7, 8, 10]. Cependant, il nous semble que, si ces articles nous alertent avec
justesse sur la nécessité de prendre des précautions lors de mesures de rhéologie, les artefacts expérimentaux ne
permettent pas d’expliquer le mécanisme à l’oeuvre lors de la traversée de la piscine (figure 1).

Un nouveau modèle

Récemment, Seto, Mari et al. [20, 17] et Wyart et Cates [22] ont proposé un mécanisme microscopique qui
échappe aux problèmes évoqués précédemment et fournit un cadre cohérent pour décrire le rhéo-épaississement.
L’idée principale est d’introduire une force répulsive à courte portée entre les grains. Cela introduit une échelle
de force supplémentaire qui permet d’avoir une rhéologie dépendant du taux de cisaillement.

À faible taux de cisaillement, la répulsion empêche les grains d’entrer en contact. Le milieu se comporte
alors comme une suspension visqueuse de grains non frottants. Lorsque le taux de cisaillement dépasse une
certaine valeur critique, la force répulsive est vaincue et les grains entrent en contact. Le frottement entre grains
rend alors le milieu très dissipatif. Dans ce scénario, on s’attend à ce que le taux de cisaillement critique γ̇c
corresponde à l’équilibre entre la force répulsive à courte portée, notée Fr, et la force hydrodynamique :

Fr = 3πηγ̇cd
2,

où η est la viscosité du fluide et d le diamètre des grains (voir figure 3a). Le point clé du modèle est la transition
entre un contact frottant et un contact non frottant.

Pour comprendre l’importance de cette transition, appuyons-nous sur la rhéologie des suspensions de sphères
dures. Dans ces suspensions, la viscosité augmente avec la fraction volumique φ jusqu’à une fraction volumique
critique φc où elle diverge, et au delà de laquelle le système est bloqué et ne peut plus couler. La fraction
volumique critique dépend du coefficient de frottement µ entre les grains. Dans le cas frottant on a φµ6=0

c ' 58 %,
et dans le cas non frottant φµ=0

c ' 64 % (voir figure 3b). Dans un modèle de suspension avec force répulsive à
courte portée, on a deux rhéologies possibles. À faible taux de cisaillement, la suspension se comporte comme
une suspension de grains non frottants et évolue sur la branche bleue de la figure 3b (faible viscosité). À fort
taux de cisaillement, des contacts frottants entre grains apparaissent et la suspension évolue alors sur la branche
rouge (forte viscosité). Il y a donc un saut de viscosité lorsqu’on passe du cas non frottant (branche bleue) au cas
frottant (branche rouge). Pour des fractions volumiques comprises entre φµ 6=0

c et φµ=0
c , le système peut couler à

faible taux de cisaillement mais se bloque à fort taux de cisaillement. En effet, il n’y a plus de branche visqueuse
frottante pour φ > φµ 6=0

c . Le diagramme de phase (φ, γ̇) de la figure 3c résume les différents régimes observés
dans le cadre de ce modèle.

Ce nouveau scénario offre donc un cadre simple et cohérent pour expliquer le rhéo-épaississement des suspen-
sions non browiennes. Cependant, il est difficile de le tester expérimentalement sur des suspensions réelles. En
effet, les interactions entre grains à courte portée (répulsion, friction, lubrification) sont difficiles à contrôler et
fortement couplées à la physico-chimie des grains et du fluide utilisé. De plus, les suspensions rhéo-épaississantes
sont composées de grains de taille micrométrique, ce qui rend difficile la visualisation directe du mouvement des
grains.

Objectifs du stage

L’objectif de mon stage était de mettre en place une expérience macroscopique modèle permettant d’étudier
le scénario décrit ci-dessus. L’idée était de se retreindre aux éléments essentiels : présence de frottement et
présence d’une force répulsive. L’hydrodynamique ne semblant pas jouer un rôle, nous avons développé une
expérience sans fluide. Pour cela, nous avons choisi d’étudier un milieu granulaire à deux dimensions, consitué
de grains répulsifs, grâce à l’introduction d’une force magnétique entre ceux-ci. L’objectif était d’étudier la
rhéologie de ce système modèle. Comment se comporte un tel milieu lorsqu’on le cisaille en y déplaçant un objet
en rotation ? Peut-on observer une transition de rhéo-épaississement dans ce système minimal, en l’absence de
tout fluide ?
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Fr

dγ̇, η

(a) Introduction des nota-
tions du problème.

(b) Rhéologie d’un milieu frottant et d’un milieu non
frottant (adapté de [17]).
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(c) Espace des phases accessible à une suspension rhéo-
épaississante (adapté de [17]).

Figure 3 – Transition de rhéo-épaississement d’une suspension de sphères dures frottantes et répulsives, prédite
par les simulation numériques de Seto et al. [20, 17]. Figure 3b : Viscosité effective en fonction de la fraction
volumique, dans les cas frottant (en rouge) et non frottant (en bleu). Adapté de [17]. Figure 3c : espace des
phases accessible à une suspension rhéo-épaississante visqueuse comportant une force de répulsion au contact
(portée nulle) entre les grains. Adapté de [17]. On observe différents régimes d’écoulement possibles. CST signifie
continuous shear-thickening (rhéo-épaississement continu). DST signifie discontinuous shear-thickening (rhéo-
épaississement discontinu). La zone rouge correspond à un écoulement frottant, la zone bleue à un écoulement
non frottant, et la zone de recouvrement bleu-rouge correspond à une zone d’hystérésis du milieu. Lorsque le
milieu suit la flèche tracée dans l’espace des phases figure 3c, il passe d’un état frottant à un état non frottant.
La transition entre ces deux types d’écoulement se produit au niveau du point, qui correspond à la flèche tracée
entre les deux courbes de rhéologie sur la figure 3b.

2 Expérience modèle : un milieu granulaire répulsif 2D

2.1 Dispositif expérimental

Le dispositif a été conçu pour contenir les ingrédients-clés du précédent modèle : des grains frottants inter-
agissant via des forces répulsives. Pour cela, nous avons conçu une expérience à deux dimensions contenant un
milieu formé de grains rugueux se repoussant entre eux, dans lequel on peut imposer un taux de cisaillement. En
réponse à ce taux de cisaillement, le milieu exerce un couple que nous voulons mesurer. Nous avons utilisé des
grains cylindriques, contenant des aimants pour introduire une force de répulsion. Ces grains sont en lévitation
sur une table à coussin d’air, afin que l’expérience soit à deux dimensions. Dans le milieu, un objet relié à
une table de rotation par une tige permet d’imposer un cisaillement. Sur cette tige, nous avons disposé un
couplemètre nous permettant de mesurer le couple exercé par le milieu sur l’objet en réponse au cisaillement.
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Grains et force répulsive

Les grains sont des cylindres creux en laiton dont la surface latérale est texturée pour les rendre rugueux.
Il est possible de jouer sur le frottement entre grains en utilisant des grains plus ou moins texturés. Le creux
permet d’ajouter les aimants dans les grains. Nous avons utilisé des grains de deux tailles différentes : des petits
grains de diamètre dpg = 1.0 cm, et des gros grains de diamètre dgg = 1.2 cm. C’est une méthode classique en
rhéologie des milieux granulaires pour éviter la cristallisation du milieu.

La force répulsive entre les grains est obtenue, comme indiqué précédemment, en introduisant des aimants
cylindriques dans les grains. Considérons les aimants comme deux dipôles magnétiques ayant le même moment
magnétique M (voir le schéma 4a). On peut calculer la force magnétique répulsive entre ces aimants. Elle s’écrit
Fmag = ∇(M · B), où B est le champ magnétique généré par l’aimant de gauche et Fmag la force subie par

l’aimant de droite. Comme les aimants sont parrallèles, on obtient Fmag = 3µ0M
2

4πd4 u, où µ0 est la perméabilité
magnétique du vide, d la distance entre les aimants et u le vecteur unitaire pointant de l’aimant de gauche vers
l’aimant de droite. La figure 4b présente la force magnétique entre deux aimants en fonction de la distance d
entre leurs centres (pour les aimants utilisés dans l’expérience). Comme attendu Fmag est proportionnelle à d−4.
L’ordre de grandeur de la force de répulsion magnétique entre deux grains au contact est FM ' 20 mN, ce qui
correspond à une “pression” magnétique (linéique) de répulsion PM ∼ FM

d , c’est-à-dire PM ' 20 mN.cm−1.

(a) Deux aimants de même moment
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Force magnétique entre deux aimants en fonction de la 
distance centre à centre : interaction répulsive
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Modèle pour |Fmag| lorsque d augmente

Modèle pour |Fmag| lorsque d diminue

Modèle : 
A = 1.2e+5
p = -4

Distance centre à centre entre les aimants d en mm
(b) Force magnétique entre deux aimants en fonction de la distance centre à centre. Points obtenus
en orientant les pôles des aimants de façon à ce que la force soit répulsive. Deux séries de points :
en orange, points obtenus en éloignant les aimants l’un de l’autre, en vert, points obtenus en
rapprochant les aimants.

Figure 4 – Schéma indiquant les notations du problème, et mesure de la force magnétique entre deux aimants
tels que ceux utilisés durant ce stage.

Afin que l’expérience reste à deux dimensions, il faut s’affranchir des frottements entre les grains et leur
support. Pour cela, nous avons utilisé une plaque d’oxyde d’alumine, qui est un matériau poreux (taille des
pores : 10µm, plaque carrée de 29 cm de côté), au travers de laquelle nous avons imposé un flux d’air sous une
pression de 0.6 bar. Cela crée un coussin d’air suffisant pour faire léviter les grains. La figure 5a résume la mise
en place du milieu granulaire. Celui-ci se compose d’environ 200 petits grains et 300 gros grains, ces valeurs
ayant été modifiées au cours des expériences afin de modifier la fraction volumique de grains.
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Rhéomètre

Pour étudier la rhéologie de ce milieu, il faut imposer un cisaillement au système et mesurer la contrainte
associée. Pour cela nous faisons tourner un objet dans le milieu grâce à une table de rotation (PI MS62 PD,
vitesse de rotation maximale 90 degrés par seconde). Afin de mesurer le couple, un couplemètre (TEI, couple
maximum 0.5 Nm, couple minimum 5.10−4 Nm) est monté sur la tige reliant la table de rotation à l’objet
tournant dans le milieu. L’acquisition du signal émis par le couplemètre se fait via le logiciel SignalExpress. La
figure 5b présente le dispositif expérimental.

N

S

N

S

N

S

Aimant

Grain 
en laiton

Flux d’air

Plaque 
poreuse

(a) Schéma du dispositif expérimental.

(b) Photographie du dispositif expérimental.

(c) Premier objet utilisé pour ci-
sailler le milieu.

(d) Objet utilisé pour cisailler
le milieu dans les mesures
présentées dans ce rapport.

Figure 5 – Schéma et photographie du dispositif expérimental, mise en place.

2.2 Mise en place et difficultés

La mise en place de ce dispositif expérimental a posé quelques difficultés qui nous ont amenées à l’améliorer.
Nous allons ici décrire ce processus de mise en place, qui a constitué une partie significative du stage.

Le premier problème rencontré a été celui de la stabilité des petits grains. Ceux-ci étant légers, ils ont
tendance à se retourner sur eux mêmes ou à sauter en s’expulsant du milieu sous l’effet des forces magnétiques.
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Afin de les en empêcher, nous avons recouvert le milieu d’une plaque de plexiglass (absente de la figure 5b).
Celle-ci ne touche pas les grains, pour ne pas introduire de frottement et conserver une expérience à deux
dimensions. Elle empêche cependant les petits grains de se retourner.

Le deuxième problème est celui du choix de l’objet tournant permettant d’imposer un taux de cisaillement.
Nous avions commencé par utiliser un cylindre (de diamètre 8 cm) sur lequel nous avions collé des grains,
comme on peut le voir sur la figure 5c. Cette géométrie correspondait à un rhéomètre de Couette cylindrique
à deux dimensions. Cependant, une telle géométrie induit de la migration dans le milieu. La zone proche
du cylindre cisaillant le milieu est alors déplétée et le couple exercé par le milieu est trop faible pour être
exploitable avec notre capteur. Afin de nous affranchir de ce problème, nous avons utilisé un cylindre beaucoup
plus petit (diamètre 3 cm) sur lequel nous avons fixé une barre de métal cylindrique (longueur 5 cm, diamètre
1 cm), comme on peut le voir sur la figure 5d. Cette géométrie est moins idéale car le cisaillement généré est
fortement inhomogène et non unidirectionnel, mais la tige permet de bien brasser le milieu et de générer un
couple mesurable avec notre dispositif. De plus, les mesures deviennent beaucoup moins sensibles aux effets de
migration.

3 Expériences à “volume” imposé

Dans un premier temps, nous avons effectué des expériences à volume (aire à deux dimensions) imposé.
Avant de détailler les expériences réalisées et les résultats obtenus, nous allons commencer par quelques rappels
de rhéologie à volume imposé dans le cas de milieux granulaires classiques (non répulsifs).

3.1 Rappels de rhéologie des milieux granulaires à volume imposé

Considérons un milieu granulaire sec confiné entre deux plaques distantes de H, auquel on impose un taux
de cisaillement γ̇ (figure 6). Les grains sont des sphères infiniment rigides, de diamètre d et de densité ρg. On a

une certaine fraction volumique φ de grains, où φ = Volume occupé par les grains
Volume total . On se place dans le cas où H � d,

c’est-à-dire qu’on néglige les effets de bords. Les paramètres de contrôle dont on dispose sont φ, γ̇, d et ρg,
soit quatre paramètres en tout. Par analyse dimensionnelle, on voit que le système est décrit par un nombre
sans dimension, puisqu’on a trois dimensions pour quatre paramètres. Or, on dispose déjà d’un nombre sans
dimension : la fraction volumique φ.

Figure 6 – Schéma introduisant les notations du problème.

On cherche à présent à exprimer la contrainte de cisaillement τ et la contrainte normale, c’est-à-dire la
pression P , en fonction des paramètres de contrôle. Dimensionnellement, on a τ = ρgd

2f1(φ)γ̇2, où f1 est une
fonction de φ qu’on ne connait pas a priori. De la même façon, on trouve que P = ρgd

2f2(φ)γ̇2, où f2 est
une autre fonction de φ. En réalité, on peut ajouter d’autres paramètres pour décrire le système, comme µ
le coefficient de frottement entre grains, ou e le coefficient de restitution élastique. Comme ce sont déjà des
nombres sans dimensions, on obtient simplement une dépendance de plus dans f1 et f2. Dans ce rapport, on ne
s’intéressera jamais à e, mais µ pourra avoir une influence. Au final, on obtient les lois de Bagnold 3.1 et 3.2 [1] :

(3.1) τ = ρgd
2f1(φ, µ)γ̇2, (3.2) P = ρgd

2f2(φ, µ)γ̇2.

La différence avec le cas des suspensions visqueuses est que ces quantités sont proportionnelles à γ̇2 et non
à γ̇. En revanche, comme pour les suspensions, les fonctions f1 et f2 divergent pour une certaine valeur φc de
la fraction volumique, qui dépend du coefficient de frottement entre grains µ. En présence de forces répulsives,
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on s’attend donc, comme dans les suspensions, à observer une transition (saut de contrainte) entre une branche
non frottante f1(φ, µ = 0) et une branche frottante f1(φ, µ 6= 0) (voir figure 3).

3.2 Méthodologie

Nous allons à présent nous pencher sur les expériences qui ont été réalisées, dans le cas où on contraint
le milieu à rester dans un certain volume. Tout d’abord, rappelons qu’il s’agit d’une expérience à deux di-
mensions. Par abus de langage, nous parlerons de mesures à volume imposé, mais c’est en réalité la surface
que nous imposons. Afin de contrôler celle-ci, un des côtés de la table à coussin d’air constituée par la plaque
poreuse a été équipé d’un rateau, monté sur une table de translation munie d’un vernier. Grâce à ce rateau,
la dimension L de la table peut être modifiée (voir figure 7). Cela permet d’imposer φ, qui est ici défini par
φ = Surface occupée par les grains

Surface totale . Nous appellerons φ la fraction volumique par abus de langage, étant entendu
qu’il s’agit ici en réalité d’une fraction surfacique. Il convient de noter que φ n’est pas homogène, et que la
fraction volumique qu’on impose est donc une fraction volumique moyenne.

Figure 7 – Schéma du dispositif expérimental à volume imposé.

Les paramètres que nous contrôlons ici sont φ, via le contrôle de L, et θ̇ la vitesse de rotation de l’objet, via
la table de rotation. Nous mesurons le couple Γ qu’exerce le milieu sur l’objet en rotation grâce au couplemètre.
À cause de la géométrie compliquée de notre objet, nous n’avons pas accès dans l’expérience à la contrainte
de cisaillement τ et au taux de cisaillement γ̇, qui sont fortement inhomogènes dans le milieu. Nous travaillons
donc avec des grandeurs macroscopiques (le couple Γ et la vitesse de rotation θ̇).

Chaque mesure a été réalisée en faisant une acquisition du signal émis par le couplemètre pendant cinq
tours. On moyenne ensuite sur les trois tours centraux, afin de s’affranchir d’un éventuel régime transitoire.
Pour chaque mesure, la fréquence d’échantillonage de l’acquisition a été réglée de façon à ce qu’il y ait 1000
points par tour, quelle que soit la vitesse de rotation de l’objet. Le signal venant du couplemètre présente un
offset dû à la carte d’acquisition, qui est systématiquement soustrait au signal. Le logiciel Matlab a été utilisé
pour traiter les données et extraire le couple moyenné sur trois tours. Le code utilisé pour traiter les données
constitue l’annexe A.

Nous avons utilisé un protocole légèrement différent pour les mesures faites à une vitesse de rotation imposée
de 0.09 degrés par secondes. Comme chaque point à cette vitesse aurait demandé une acquisition de plus de
cinq heures pour cinq tours, nous n’avons acquis le signal que sur un tour, et avons moyenné le signal entier,
soit 1000 points.

3.3 Résultats

La figure 8a présente la variation du couple moyen qui s’exerce sur l’objet en fonction de sa vitesse de rotation
pour différentes fractions volumiques, dans le cas avec aimants. Les courbes présentent toutes la même allure.
À très basse vitesse de rotation, il existe un couple seuil dans le milieu, dont la valeur dépend fortement de la
fraction volumique. Quand la vitesse de rotation augmente, on observe tout d’abord un plateau de couple, puis
une augmentation du couple à forte vitesse. Tant le couple seuil que le couple à vitesse maximale (90 degrés par
seconde) semblent diverger à une fraction volumique φ ' 78 %, comme le montre la figure 9a. On remarque, sur
la figure 8, que certains points acquis à forte vitesse pour les fortes fractions volumiques φ n’apparaissent pas.
Ceci est dû au phénomène de jamming, ou blocage : le milieu se fige et ne peut plus couler, ce qui nous empêche
d’effectuer la mesure. C’est un des problèmes des expériences menées à volume imposé, qui est dû à la divergence
des fonctions f1 et f2 apparaissant dans 3.1 et 3.2. Ces effets de blocages sont bien visible sur la figure 10, qui
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présente une acquisition dans le temps du signal du couplemètre pour une fraction volumique proche de φc.
On constate que celui-ci présente de fortes fluctuations, qui sont de l’ordre de la moyenne temporelle du signal.
Celles-ci sont la signature de blocages transitoires de l’écoulement, qui sont dus à la petite taille de notre
système.
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Figure 8 – Tracé du couple en fonction de la vitesse de rotation pour différentes fractions volumiques, avec
aimants (cas répulsif) et sans aimants (cas non répulsif).

Le constat le plus important sur la figure 8a est qu’on n’observe pas de transition de rhéo-épaississement
lorsqu’on augmente la vitesse de rotation, même aux plus hautes fractions volumiques que nous avons pu étudier.
Malgré la présence d’une force répulsive entre les grains, ce système ne se comporte pas, à volume imposé, comme
prédit par le modèle de transition frictionnelle dont nous avons parlé dans la section 1. Pour mieux comprendre
le rôle de la force répulsive, nous avons effectué les mêmes expériences en enlevant les aimants. Dans ce cas, on
devrait retrouver un milieu granulaire classique à deux dimensions, pour lequel la rhéologie est bien connue et
donnée par les lois de Bagnold 3.1 et 3.2.

La figure 8b présente la variation du couple qui s’exerce sur l’objet en fonction de sa vitesse de rotation,
pour différentes fractions volumiques, dans le cas sans aimants. De façon surprenante l’allure des courbes est
très similaire à celle obtenue avec les aimants. Il existe une contrainte seuil, puis une augmentation du couple
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Figure 9 – Tracé du couple seuil et du couple maximum en fonction de la fraction volumique pour différentes
vitesses de rotation, avec aimants (cas répulsif) et sans aimants (cas non répulsif).

avec la vitesse de rotation. Nous n’observons donc pas du tout le comportement prédit par Bagnold, pour lequel
il n’existe pas de contrainte seuil et les contraintes varient proportionnellement à γ̇2. La rhéologie qualitative
du milieu semble être la même dans le cas répulsif et dans le cas non répulsif, mis à part que les courbes sont
moins dispersées avec φ dans le cas non répulsif. Ce comportement provient sans doute d’effets de taille finie,
car la taille de notre système n’est pas très grande par rapport à la taille des grains. Ces effets induisent un
seuil parasite dans l’expérience à volume imposé, même sans force de répulsion entre les grains.

On constate enfin (figure 9) que les divergences du couple seuil et du couple à la vitesse maximale ont
lieu à la même fraction volumique φ ∼ 78 %. Là encore, ceci est très différent du comportement prédit par le
modèle avec force répulsive à courte portée. En effet, nous nous attendions à ce que le système avec aimants
présente deux divergences, selon la vitesse de rotation. À faible vitesse de rotation, la force répulsive empêche le
contact entre grains et les contraintes divergent pour φµ=0

c . À forte vitesse de rotation, la répulsion est vaincue,
le système devient frottant, et se bloque donc à φµ6=0

c < φµ=0
c . Ce n’est pas ce que l’on observe dans notre

expérience avec aimants, qui ne présente qu’une seule divergence.

Il est difficile d’aller plus loin dans l’interprétation de ces expériences à volume imposé car la taille finie de
notre système nous empêche d’étudier proprement la rhéologie lorsqu’on s’approche du blocage. Ce problème
est bien connu dans l’étude des milieux granulaires. Un moyen de s’en affranchir est de travailler à pression
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Rhéo-épaississement : milieu granulaire répulsif Cécile Clavaud

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

Indices des points

Si
gn

al
 é

m
is

 p
ar

 le
 c

ou
pl

em
èt

re
, e

n 
V

Signal émis par le couplemètre sur une acquisition ; 

Figure 10 – Signal émis par le couplemètre en fonction du temps. Acquisition de cinq tours (5000 points),
fraction volumique φ = 74 %, vitesse de rotation θ̇ = 19 degrés par seconde.

imposée plutôt qu’à volume imposé. Nous avons donc conçu un nouveau dispositif en ce sens.

4 Expériences à “pression” imposée

Nous avons vu qu’à volume imposé, l’approche du blocage est difficile. Lorsqu’on impose la pression au
lieu du volume, on laisse au milieu la possibilité de se dilater, ce qui lui permet de ne pas se bloquer sur les
bords à cause de l’apparition d’une microstructure locale ne présentant pas de possibilité d’écoulement. Dans
cette section, nous allons présenter les expériences que nous avons réalisées à pression imposée. Afin de mieux
comprendre le comportement de notre système, nous commençons cette section par quelques rappels de rhéologie
à pression imposée dans le cas de milieux granulaires classiques (non répulsifs).

4.1 Rappels de rhéologie des milieux granulaires à pression imposée

Considérons un milieu granulaire sec confiné entre deux plaques distantes de H, sur lesquelles on impose
une pression P , et dans lequel on impose un taux de cisaillement γ̇ (voir figure 11). Les grains sont de nouveau
des sphères infiniment rigides, de diamètre d � H et de densité ρg. Les paramètres de contrôle sont cette fois
P , γ̇, d et ρg, soit de nouveau quatre paramètres. Ici φ n’est pas un paramètre de contrôle, puisque le volume
total n’est pas fixé. La fraction volumique n’est donc pas imposée par l’expérimentateur, la distance entre les
plaques s’ajuste et φ varie avec H. L’analyse dimensionnelle nous dit qu’il existe de nouveau un nombre sans

dimension décrivant le système, mais ce n’est pas φ. On construit une grandeur adimensionnée I = γ̇d
√

ρg
P

appelée nombre inertiel. On cherche à exprimer τ et φ en fonction des paramètres de contrôle.

Figure 11 – Schéma introduisant les notations du problème.

Dimensionnellement, on obtient τ = f(I)P , et φ = φ(I) directement puisque φ est sans dimension. La
fonction f est a priori inconnue. Par analogie avec les lois d’Amontons-Coulomb, on l’interprète comme un
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coefficient de frottement macroscopique et on le note µ̃. Comme précédemment, on peut ajouter µ, le coefficient
de frottement entre grains, dans le problème. Attention, µ est un coefficient de frottement microscopique, a
priori différent de µ̃. On obtient au final les lois :

(4.1) τ = µ̃(I, µ)P, (4.2) φ = φ(I, µ).

Il convient de préciser que la rhéologie intrinsèque du milieu ne change pas selon qu’on travaille à volume
ou à pression imposée. Seule la méthode expérimentale utilisée pour sonder la rhéologie change. Il existe une
correspondance entre les équations 3.1 et 3.2 et les équations 4.1 et 4.2 (voir [14]).

L’intérêt de travailler à pression imposée est que, contrairement au cas à volume imposé, les fonction µ̃ et
φ ne divergent pas quand on s’approche de la transition de blocage, c’est à dire quand I tend vers zéro. La
figure 12, adaptée de [14], présente l’allure de µ̃(I) et de φ(I). On a

µ̃ −−−→
I→0

µ̃seuil et φ −−−→
I→0

φc.

On a déjà vu que φc dépendait du coefficient de frottement microscopique µ, c’est également le cas pour µ̃seuil.
Ainsi, quand on cisaille de façon quasi-statique un milieu granulaire à pression imposée, on accède directement
à la fraction volumique critique et au coefficient de frottement macroscopique du milieu, qui sont reliés au
frottement entre grains.

(a) Évolution de µ̃ avec I. Adapté de [14]. (b) Évolution de φ avec I. Adapté de [14]

Figure 12 – Évolution des fonctions µ̃ et φ avec le nombre inertiel I. Adapté de [14].

4.2 Méthodologie

Penchons-nous à présent sur les expériences réalisées. Nous allons commencer par décrire la méthologie
utilisée. Afin d’imposer la pression, nous avons conçu une arbalette, qui a remplacé le rateau utilisé pour imposer
le volume (voir section 3). Son principe est résumé sur les figures 13a et 13b.

Un nouveau rateau (pièce 3) se déplace horizontalement dans une glissière (pièce 2) pour accomoder les
fluctuations de volume du milieu. La taille de la pièce 2 limite l’amplitude de ce déplacement. La pièce 2 est
fixée sur une table de translation, dont la partie mobile est la pièce 1. Celle-ci est munie d’un vernier, afin qu’on
puisse modifier la position moyenne du rateau. Enfin, une tige en métal joue le rôle de ressort en s’opposant
plus ou moins aux mouvements du rateau par rapport à la glissière. En jouant sur la raideur de ce ressort, nous
pouvons donc contrôler la pression exercée par le rateau sur le milieu. Remarquons qu’il s’agit ici d’une pression
linéique, puisque l’expérience est à deux dimensions. On a Pimp =

Fimp

Lrateau
, où Pimp est la pression imposée par

l’arbalette au milieu, Fimp est la force imposée par l’arbalette via le ressort, et Lrateau est la longueur du rateau.
Nous avons muni le rateau d’un curseur (non représenté sur le schéma) qui se déplace au dessus d’une règle. Il
est ainsi possible de mesurer la déflection de la tige.

Afin de connâıtre la pression imposée dans le milieu grâce à ce dispositif, nous avons dû l’étalonner pour
chacune des tiges métalliques utilisées. Un exemple d’un tel étalonnage est donné sur la figure 13c. Cette figure
montre que la force exercée par la tige qui fait office de ressort dépend linéairement de sa déflection.

Les paramètres que nous contrôlons dans ces expériences sont Pimp, via l’arbalette, et θ̇ via la table de
rotation. Nous mesurons toujours le couple Γ qu’exerce le milieu grâce au couplemètre. Nous mesurons également
la position du curseur en prenant, en parallèle de l’acquisition du couple, une photo par seconde au niveau du
rateau de l’arbalette. Cette mesure est essentielle puisque c’est elle qui nous permet, a posteriori, de calculer la
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(a) Arbalette avec la tige non défléchie : pas de contrainte
imposée au milieu.

(b) Arbalette avec la tige défléchie : on impose une
contrainte sur le milieu.
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(c) Exemple d’une courbe de calibration de l’arbalette avec une tige de 1 mm de diamètre.

Figure 13 – Fonctionnement de l’arbalette et exemple de calibration.

pression que nous avons exercée sur le milieu. La mesure de la position du curseur nous permet également de
calculer la fraction volumique au cours du temps.

Les mesures ont été réalisées à vitesse faible pour être dans le régime quasi-statique que nous avons décrit
précédemment (I → 0). Pour le vérifier, nous avons effectué certaines expériences en changeant la vitesse de
rotation de l’objet (9 degrés par seconde et 19 degrés par seconde). Nous n’avons pas observé de changement
du couple ou de la fraction volumique avec la vitesse, suggérant que nous sommes bien dans le régime quasi-
statique. Les acquisitions ont été faites sur cinq tours. Le couple a été moyenné sur les trois tours centraux. Les
photos ont été mises en forme avec le logiciel ImageJ, puis traitées avec Matlab. On trouvera les codes ImageJ
et Matlab pour le traitement d’images en annexe (C et B). La déflection a été calculée en faisant la moyenne
sur toute l’acquisition, soit cinq tours. Des problèmes techniques nous ont empêchés, pour certains points, de
régler la fréquence d’échantillonnage à la bonne valeur afin d’avoir de nouveau 1000 points par tours. Pour
ces points, la fréquence d’échantillonnage est de 10 Hz. Nous n’avons pas observé de différence significative de
comportement entre ces points de mesure et ceux comportant bien 1000 points par tour.

4.3 Résultats

Nous avons commencé par étudier notre dispositif en utilisant les grains non aimantés, pour vérifier que nous
retrouvions le comportement classique d’un milieu granulaire cisaillé à pression imposée. Les symboles pleins
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Rhéo-épaississement : milieu granulaire répulsif Cécile Clavaud

verts des figures 14 et 15 présentent l’évolution du rapport entre le couple mesuré et la pression imposée : Γ
Pimp

d’une part, et la fraction volumique critique φc d’autre part, en fonction de la pression imposée au système.
Le rapport Γ

Pimp
peut s’interpréter comme un analogue du coefficient de frottement macroscopique du milieu

µ̃ = τ
Pimp

, et nous utiliserons ce vocabulaire par la suite.
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Figure 14 – Couple divisé par la pression imposée (analogue du coefficient de frottement macroscopique) en
fonction de la pression, avec aimants (cas répulsif) et sans aimants (cas non répulsif).
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Figure 15 – Fraction volumique en fonction de la pression, avec aimants (cas répulsif) et sans aimants (cas
non répulsif).

Nous constatons que le coefficient de frottement du milieu et la fraction volumique sont constants, indépen-
dants de la pression imposée. Ce comportement est normal dans le cas d’un milieu granulaire classique en régime
quasi-statique. Dans ce cas, nous avons vu que le coefficient de frottement µ̃ tend vers le coefficient de frottement
seuil µ̃seuil et que la fraction volumique tend vers la fraction volumique critique φc, qui sont des constantes du
milieu. La fraction volumique critique mesurée dans notre expérience est φc ' 78 %, similaire à celle estimée
lors de nos mesures à volume imposé. Elle est aussi en accord avec les fractions volumiques critiques obtenues
dans les simulations 2D de milieux granulaires frottants de da Cruz et al. [9]. Pour calculer un coefficient de
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frottement effectif dans notre cas, on peut construire une contrainte linéique τ à partir du couple mesuré en
utilisant la taille l de l’objet qui brasse le milieu : τ ∼ Γ

2πl2 . En prenant l = 6.5 cm, on trouve µ̃seuil ∼ τ
Pimp

∼ 0.5,

ce qui est un ordre de grandeur raisonnable dans le cas de grains très rugueux comme dans notre expérience.
Nous avons ensuite étudié la rhéologie à pression imposée du système avec grains aimantés (symboles pleins

oranges sur les figures 14 et 15). On constate cette fois une différence claire entre le cas non répulsif et le cas
répulsif. En présence de force répulsive, le coefficient de frottement macroscopique du milieu n’est plus constant,
mais dépend fortement de la pression imposée. À faible pression de confinement, on trouve Γ

Pimp
∼ 0.4, ce qui

correspond à un coefficient de frottement macroscopique très faible µ̃seuil ∼ 0.15. Le frottement macroscopique
du milieu augmente ensuite à peu près linéairement avec la pression de confinement pour retrouver ensuite la
valeur du milieu sans aimants à fortes pressions de confinement. On observe également que la fraction volumique
dépend de la pression. En présence d’une force magnétique, elle n’est plus constante. La fraction volumique
critique du milieu part d’une valeur assez basse à faible pression (φc ∼ 72 %) puis augmente continûment avec
la pression jusqu’à saturer à la même valeur que dans le cas non répulsif.

L’observation d’une augmentation du coefficient de frottement macroscopique avec la pression dans notre
système répulsif est la signature d’une transition frictionnelle dans le milieu. En effet, ce coefficient dépend
directement du coefficient de frottement microscopique entre les grains. Tant que la pression de confinement est
faible par rapport aux forces de répulsion magnétique, les grains ne sont pas en contact et le milieu se comporte
comme un milieu granulaire sans frottement. Quand la pression de confinement dépasse les forces de répulsions,
les grains entrent en contact et le frottement entre grains est mobilisé. Cela correspond à une augmentation forte
du coefficient de frottement macroscopique du milieu, comme attendu dans le scénario de rhéo-épaississement
décrit section 1.

L’évolution de la fraction volumique critique avec la pression est en revanche très différente de celle prédite
par le modèle théorique. En effet, lorsque les grains sont non frottants, c’est-à-dire aux faibles pressions, ce
scénario prédit que la fraction volumique critique φµ=0

c est plus élevée que celle pour des grains frottants φµ6=0
c ,

que l’on obtient à forte pression. Dans notre expérience, c’est l’inverse : la fraction volumique du milieu non
frottant est plus faible que celle du milieu frottant. Cette différence essentielle vient certainement du fait que
notre force répulsive magnétique est à longue portée. Avec les aimants que nous avons utilisés, son intensité reste
importante sur une distance de l’ordre du diamètre d’un grain. Ainsi, pour une faible pression de confinement,
il existe une fraction volumique d’équilibre plus faible que φµ6=0

c correspondant à l’équilibre entre la pression
extérieure et la force magnétique. Dans ce régime, les grains ne se touchent pas et le milieu est compressible
(ou élastique). Cette élasticité à longue portée ne permet pas de rapprocher les grains jusqu’au contact à force
nulle, comme dans les modèles de Seto et al et Wyatt et Cates. Nous verrons dans la discussion que cela à des
conséquences importantes sur la possibilité d’observer du rhéo-épaississement dans notre système.
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0.72
150100500

Temps en secondes

Légende :

Figure 16 – Variations temporelles de la fraction volumique, pour deux valeurs de φmoyen différentes.
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Figure 17 – Fluctuations relatives de la fraction volumique en fonction de la pression, avec (cas répulsif) et
sans (cas non répulsif) aimants.

La transition entre un régime “mou” sans frottement et un régime granulaire frottant que nous mettons en
évidence est également visible quand on s’intéresse aux fluctuations de densité du milieu à pression imposée. La
figure 16 présente les fluctuations temporelles de la fraction volumique du milieu dans le cas répulsif. Nous avons
superposé le cas d’une pression de confinement faible (en orange, régime “mou” non-frottant) et d’une pression
de confinement forte (en vert, régime granulaire frottant). On constate qu’à faible pression, les fluctuations sont
faibles, tandis qu’à forte pression elles sont élevées. Cette tendance est confirmée sur la figure 17, qui compare
les fluctuations de fraction volumique du système avec ou sans aimants, en fonction de la pression imposée.
Cette différence suggère une différence qualitative entre l’écoulement quasi-statique d’un milieu confiné mou et
l’écoulement d’un milieu granulaire rigide confiné. Dans le cas du milieu mou, il semble que les réarrangement
du milieu restent localisés dans l’espace. Dans le cas d’un milieu rigide au contraire, des châınes de force se
créent dans le milieu et s’ancrent sur les parois. Pour que l’écoulement se poursuive, il est nécessaire de les
casser. Les réarrangements sollicitent alors l’ensemble de la taille du système.

4.4 Discussion

Les expériences à pression imposée nous ont permis de clarifier le comportement rhéologique de notre
système. Nous mettons bien en évidence une transition frictionnelle entre un milieu “non frottant” à faible
pression de confinement et un milieu frottant à forte pression de confinement, comme dans les modèles récents
de rhéo-épaississement en présence de forces répulsives. En revanche, la portée relativement élevée de la force
magnétique entre deux grains dans notre expériences introduit une différence majeure avec ces modèles : il existe
une pression non nulle d’origine magnétique avant même que les grains n’entrent en contact. Cette “élasticité”
du milieu explique sans doute que nous n’ayons pas pu observer de rhéo-épaississement dans nos expériences
à volume imposé. Pour le comprendre, nous pouvons reprendre le diagramme de phase présenté dans l’état de
l’art section 1 pour des suspensions visqueuses avec une force de répulsion Fr de portée nulle (figure 18). Dans
ce diagramme, le paramètre sans dimension qui contrôle la transition de rhéo-épaississement est le rapport entre
la force de cisaillement, ηγ̇d2 et la force de répulsion Fr. Dans notre expérience, il y a deux différences avec cette
situation. Premièrement, nous ne sommes pas dans une suspension visqueuse puisqu’il n’y a pas de fluide entre les
grains. La force de cisaillement varie donc comme ργ̇2d3, où ρ est la densité surfacique de nos grains (puisqu’on
est à 2D). Deuxièmement, les forces magnétiques entre grains sont à longue portée. La barrière de force à
franchir pour mettre les grains au contact n’est donc pas FM = PMd, où PM est la pression magnétique lorsque
tous les grains se touchent, mais (PM − P0(φ))d, où P0(φ) est la pression magnétique à taux de cisaillement
nul pour φ < φµ6=0

c . La fonction P0(φ) est précisemment la réciproque de la fonction φc(P ) que l’on a mesurée
dans l’expérience à pression imposée avec les aimants, dans le régime quasi-statique (I → 0). Par conséquent,
la transition frictionnelle doit avoir lieu, dans notre expérience, lorsque ργ̇2d3 ∼ (PM − P0(φ))d, soit quand le
paramètre sans dimension ρd2γ̇2+P0(φ)/PM ∼ 1. La figure 18 présente le diagramme de phase modifié que l’on
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imagine dans le cas de notre système inertiel avec des forces répulsives à longue portée. On constate que même à
taux de cisaillement nul, le paramètre sans dimension qui décrit la transition frictionnelle n’est pas nul, mais vaut
P0(φ)/PM (courbe verte sur la figure 18). On ne peut pas explorer l’espace des phase en dessous de cette courbe
et la zone verte de la figure 18 nous est donc interdite. La présence d’une force à longue portée nous masque
donc une partie importante de l’espace des phases, celle qui correspond à la transition discontinue de rhéo-
épaississement et au blocage dans le cas de force à très courte portée. Cela explique sans doute que nous n’ayons
pas vu de transition brutale de rhéo-épaississement dans les expériences à volume imposée (indépendamment
des probèmes de tailles finie). De plus, la présence d’une pression P0(φ) non nulle pour φ < φµ 6=0

c introduit une
contrainte seuil dans le milieu, qui masque sans doute la zone de rhéo-épaississement continue a priori acessible
dans notre système.

Nous ne pouvons pas superposer de façon quantitative la fonction P0(φ)/PM obtenue dans nos expériences sur
l’espace des phases, car celui ci correspond à un système différent (force très courte portée). Nous constatons
de plus que dans nos expériences, la transition a lieu à une pression critique Pc, qui devrait correspondre à la
pression magnétique PM qui règne dans le milieu lorsque tous les grains sont au contact. Cependant, avec nos
données Pc ∼ 100 mN · cm−1, alors qu’en calculant l’ordre de grandeur de PM on trouve PM ∼ 20 mN.cm−1.
Pour l’instant, nous ne savons pas à quoi cette différence est due. Pour établir proprement l’espace des phases
dans notre système et conclure quand à la possibilité ou non d’observer une transition de rhéo-épaississement,
il faudrait poursuivre l’étude à pression imposée en variant également I.

ρd2γ̇2 + P0(φ)

PM

φµ=0
cφµ

cφL

CST DST

Bl
oc
ag

e
1

P0(φ)

PM

Figure 18 – Allure de l’espace des phases auquel nous nous attendons pour notre milieu répulsif. On a toujours
CST = rhéo-épaississement continu et DST = rhéo-épaississement discontinu (cf figure 3c).

5 Perspectives

Ce stage a constitué un premier pas vers une thèse étudiant l’origine microscopique du phénomène de rhéo-
épaississement dans le but de concevoir, à terme, des suspensions rhéo-épaississantes artificielles à la rhéologie
contrôlées. Nous proposons donc ici plusieurs pistes à explorer durant cette thèse.

5.1 Expérience modèle

Nous voudrions tout d’abord minimiser autant que possible les effets de bords. Pour cela, nous envisageons
un dispositif de plus grande taille dans lequel l’écoulement sera induit dans le milieu par une courroie montée
sur deux poulies (voir figure 19). L’avantage de cette configuration est qu’elle produit un écoulement homogène
(taux de cisaillement constant). Nous contrôlerons ainsi mieux les expériences. Ce dispositif sera également
équipé d’un système permettant d’imposer la pression. Notre but est de pouvoir explorer des écoulements pour
différentes valeurs de I et pas seulement pour I → 0.

De plus, comme nous l’avons vu, notre milieu granulaire répulsif ne peut pas atteindre des fractions volumique
très fortes lorsque la pression imposée est faible. Cela est dû à la portée de l’interaction dipôlaire magnétique qui
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constitue notre force répulsive. La zone de l’espace des phases
(
ρd2γ̇2+P0(φ)

PM
, φ
)

, figure 18 dans laquelle se situe la

transition frictionnelle est donc largement inaccessible à notre système. Pour l’atteindre, il faut impérativement
que la force répulsive entre grains soit de courte portée. Nous sommes donc en train de chercher une alternative
aux aimants utilisés ici afin de réduire la portée de la répulsion.

Figure 19 – Schéma de la future expérience modèle à 2D permettant d’imposer un taux de cisaillement ho-
mogène.

5.2 Suspensions réelles

L’idée du projet de thèse est de comprendre le phénomène de rhéo-épaississement dans le but de développer
des suspensions rhéo-épaississantes artificielles dont on pourrait contrôler la rhéologie. Pour ce faire, nous vou-
lions, en premier lieu, tester la validité expérimentale du modèle de transition frictionnelle. Avec l’expérience
modèle décrite dans le rapport, nous cherchons à confirmer que la présence de frottements et de répulsion suffit
à induire du rhéo-épaississement dans un milieu. Cependant, il est nécessaire de vérifier ensuite si ce mécanisme
simple est bien celui à l’oeuvre dans les suspensions rhéo-épaississantes courantes. Il est donc nécessaire d’étudier
leur rhéologie.

L’exemple typique des suspensions rhéo-épaississantes est le mélange d’amidon de mäıs et d’eau. Ce système
est difficile à étudier expérimentalement car il vieillit rapidement : dans l’eau, les grains d’amidons se détériorent
(à cause de la réaction d’hydrolyse) et pourrissent (sous l’action de divers microorganismes). Nous avons tenté
de mélanger l’amidon à d’autres solvants afin de ralentir le vieillissement, mais cela a parfois pour effet de tuer
le rhéo-épaississement, qui est sensible à la physico-chimie. Une alternative nous a été proposé par la société
Chryso, avec qui nous avons commencé un partenariat. Cette société produit des adjuvants chimiques pour la
fabrication des bétons modernes. Dans ces bétons, il est souvent introduit une faible quantité de polymères
dit superplastifiants qui ont pour effet de fortement diminuer la viscosité du mélange. Cette diminution de
la viscosité pourrait avoir un lien avec la transition de rhéo-épaississement : les polymères, en se greffant à
la surface des grains constituant le ciment, pourraient faire apparâıtre une force répulsive entre grains. Ceux-
ci, initialement frottants, deviendraient ainsi répulsifs, donc presque non frottants. Ce système devrait alors
pouvoir couler beaucoup plus facilement à faible taux de cisaillement, si on s’appuie sur le modèle de transition
frictionnelle présenté à la section 1. Nous avons conduit des expériences préliminaires avec des suspensions de
grains de calcite additionnées de polymères superplastifiants venant des entreprises Chryso et Sika. La rhéologie
de ces systèmes, qui est comparée à celle d’un mélange d’amidon de mäıs (ici de la marque Mäızena) et d’eau
dans la figure 20, montre qu’ils sont fortement rhéo-épaississant. Le grand avantage de la calcite par rapport à
l’amidon de mäıs est qu’elle est stable dans l’eau. Nous envisageons par la suite d’utiliser des suspensions de
calcite additionnées polymères pour étudier le rhéo-épaississement dans les suspensions réelles.

Dans la suite, nous avons pour projet de développer un rhéomètre original à pression imposée permettant de
sonder la transition frictionnelle dans des suspensions réelles. Le principe de fonctionnement est le suivant (voir
figure 21) : la hauteur d’eau H impose un gradient de pression dans le milieu. Ce gradient de pression induit un
écoulement de Darcy (figuré par les flêches bleues sur le schéma figure 21). À une profondeur z donnée, la pression

entre les grains vaut Pg = (ρg − ρf )φgz +
ρfgH
L , où : ρf est la densité du fluide, ρg est la densité des grains,

φ est la fraction volumique de grains dans la suspension et g est l’accélération de la pesanteur. Ainsi, on peut
imposer la pression en choisissant de travailler à une certaine profondeur. On impose également la contrainte
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Figure 20 – Rhéologie de trois suspensions rhéo-épaississantes différentes, échelle logarithmique. À gauche,
insertion : échelle linéaire.

de cisaillement τ grâce à la tête de rhéomètre qui tourne dans la suspension. Ainsi, on connâıt à la fois τ ,
qu’on mesure, et Pg, qu’on impose. Il est donc possible de remonter au coefficient de frottement macroscopique
µ̃ = τ

Pg
, et de connâıtre son évolution en fonction de Pg. Une fois le rhéomètre conçu, il nous faudra tester

son fonctionnement sur des milieux granulaires simples dont la rhéologie est connue. Une fois le fonctionnement
calibré, nous pourrons l’utiliser pour tester l’hypothèse de transition frictionnelle dans les suspensions d’amidon
de mäıs, ainsi que dans des suspensions de calcite additionnées de polymères superplastifiants. Nous espérons
ensuite comprendre suffisamment bien les mécanismes mis en oeuvre dans ces suspensions pour contrôler la
rhéologie en jouant sur la nature des polymères.

Figure 21 – Schéma illustrant le principe de fonctionnement du rhéomètre original à pression imposée que nous
développerons dans la suite du projet.

Conclusion

L’objectif de ce stage était de tester un modèle microscopique récent (Seto, Mari et al. [20, 17], Wyart et
Cates [22]) proposant d’expliquer le rhéo-épaississement par une transition frictionnelle. Pour cela, nous avons
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conçu une expérience modèle simple contenant les éléments clés de cette nouvelle théorie : des grains frottants
se repoussant entre eux. Avec cette expérience, nous voulions comprendre le comportement d’un tel système
sous cisaillement, et cherchions à observer une transition de rhéo-épaississement.

Nous avons tout d’abord étudié la rhéologie de notre milieu dans des expérience à volume imposé. Dans
cette configuration, les données ne nous permettent pas de conclure. On sait qu’il est difficile de s’approcher du
blocage d’un milieu granulaire lorsqu’on impose le volume. De plus, dans notre système, nous sommes dominés
par les effets de bords. Nous nous sommes donc tournés vers des expériences à pression imposée.

Dans ce cas, les résultats sont beaucoup plus satisfaisants. En effet, nous observons bien une transition du
coefficient de frottement macroscopique µ̃ autour d’une valeur critique Pc de la pression. Il convient toutefois
de nuancer ce succès par plusieurs observations. Tout d’abord, Pc ne semble pas correspondre à la pression
magnétique exercée dans le milieu, qui est pourtant notre échelle de pression a priori. De plus, si le comportement
de µ̃ est bien celui attendu, celui de φ nous montre que la transition que nous voulions observer est masquée
par les forces longue portée. Celles-ci introduisent une élasticité dans le milieu, et nous observons en réalité une
transition allant d’un milieu mou vers un milieu rigide.

Cependant, les résultats obtenus dans les expériences à pression imposée nous encouragent à poursuivre
dans cette voie. L’expérience modèle sera améliorée en tenant compte des difficultés rencontrées. Nous nous
tournerons également vers les suspensions rhéo-épaississantes réelles, et étudierons leur rhéologie afin, à terme,
d’être capable de la contrôler.
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A Code Matlab (couplemètre)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Traitement des données du couplemètre %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

clc;

% Offset du a la carte d’acquisition, a soustraire au signal

Coffset=0.2100;

% Recuperation du fichier de donnees

NomDossier=’Nom du dossier’;

NomFichier=strcat(’Nom du fichier’,’.txt’);

Fichier=strcat(NomDossier,NomFichier);

% Creation des variables couple et t (temps)

[x, couple]=textread(Fichier,’%f %f’);

t=x-x(1);

% Trace des donnees

plot(couple-Coffset,’r’);

hold on;

% Calcul de la moyenne du signal sur les trois tours du milieu

Cmean = mean(couple(1000:4000)-Coffset,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B Code Matlab (traitement des images)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Analyse des images traitees avec ImageJ %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;

close all;

clc;

% Echelle pour conversion pixel -> mm (40 mm = 1469 pixels)

Echelle = 40/1462;

% Position du vernier, en mm

PositionVernier=30;

% Epaisseur du curseur (calibration faite en lisant la position du bord

% droit, programme : acquiert la position du bord gauche)

EpaisseurCurseur=80*Echelle; % taille en pixel * echelle = epaisseur en mm

% Recuperation du fichier de donnees

NomDossier=’Nom du dossier’;

NomFichier=strcat(’Analyse’,’.tif’);

NomImage = strcat(NomDossier,NomFichier);
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% Boucle sur les images contenues dans le stack fait par ImageJ

for l=1:190

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Traitement de l’image l %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Chargement de l’image

Image = double(imread(NomImage,’tiff’,l));

% Compteur pour creer le vecteur position

c=1;

% Boucle sur toutes les lignes de l’image

for i=1:size(Image,1)

% On cherche le premier pixel non blanc (bord gauche du

% curseur) et on stocke sa position dans un vecteur

u=find(Image(i,:)>0);

Position(c)=u(1);

% Incrementation du compteur

c=c+1;

end

% Position moyenne du curseur pour l’image l (moyenne sur les lignes)

PositionCurseurImageL(l)=mean(Position,2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calcul de la pression imposee %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PositionCurseur=mean(PositionCurseurImageL,2)*Echelle+EpaisseurCurseur;

% moyenne sur les colonnes ; position en mm

Deflection = (60-PositionVernier)+(47-PositionCurseur);

Pmesuree = (132/29)*Deflection

% calcul a partir de la calibration, attention la calibration depend du diametre de la tige

Phydro = 5.4-0.057*PositionCurseur;

% calcul a partir de la calibration

Pimposee = Pmesuree-Phydro;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C Macro ImageJ

run("Image Sequence...", "open=[chemin+nom du fichier] sort");

//setTool("rectangle");
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makeRectangle(coordonnées des 4 sommets du rectangle);

run("Duplicate...", "title=titre duplicate range=1-taille du stack");

saveAs("Tiff", "Chemin\\\Regle.tif");

//setTool("rectangle");

makeRectangle(coordonnées des 4 sommets du rectangle);

run("Duplicate...", "title=Regle-1.tif duplicate range=1-taille du stack");
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APPENDIX B

Revealing the frictional transition in shear-thickening
suspensions

For compatibility reasons, it is not possible for me to include this article in the
online version of the manuscript. You can find it at https://doi.org/10.1073/
pnas.1703926114.
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ANNEXE C

Suspensions rhéoépaississantes : principes et applications

For compatibility reasons, it is not possible for me to include this article in the
online version of the manuscript. You can ask me for it at cecileclavaud at free.fr.
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