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Foreword

Ce travail doctoral a été réalisé dans le cadre d'une convention CIFRE de PANRT (2014-
00757) du 02/12/2014 au 01/06/2018 et a été hébergé par iAdvize, le Laboratoire Angevin
de Recherche en Mathématiques et 1’équipe-projet Modal du centre de recherche Lille -
Nord Europe d’Inria.

Plan du manuscrit

Ce manuscript est composé de quatre chapitres dont chacun peut étre lu indépendamment.

Le Chapitre 1 de ce manuscrit vise deux objectifs : introduire le cadre de 'apprentissage
en ligne et synthétiser les principaux résultats de cette these. Nous introduisons la pré-
diction avec avis d’experts et présentons le concept de borne de regret, qui est une quan-
tité essentielle dans 'apprentissage en ligne. Nous nous intéressons ensuite a la régres-
sion séquentielle ou en ligne pour aboutir a la présentation du clustering en ligne et de
I’apprentissage de courbes principales en ligne, qui sont les deux domaines des princi-
pales contributions de ce manuscrit. La plupart des résultats obtenus sont basés sur des
algorithmes stochastiques en ligne construits a l'aide d’arguments quasi-bayésiens: un
panorama des principales méthodes est détaillé. Le Chapitre 1 se referme avec un ré-
sumé des principales contributions de la thése pour les problemes de clustering en ligne
et I'apprentissage séquentiel de courbes principales.

Le Chapitre 2 se concentre sur le probleme de clustering en ligne. Nous présentons un nou-
vel algorithme adaptatif de clustering en ligne s’appuyant sur I’approche quasi-bayésienne
avec une estimation dynamique (i.e., dépendant du temps) du nombre de clusters. En
reposant sur deux types de lois a priori; nous prouvons que cet algorithme a une borne de
regret de 'ordre vVT'InT. De plus, nous montrons que cet algorithm est optimal au sens
qu’il atteint des bornes de regret minimax. Nous proposons aussi une implémentation
par RJIMCMUC : le paquet R correspondant est appelé PACBO et est disponible en ligne
sur le CRAN ! Enfin, nous comparons notre méthode avec d’autre méthodes classiques
de clustering et présentons des expériences numériques qui illustrent le potentiel de notre
algorithme. Les résultats contenus dans ce chapitre sont publiés dans Electronic Journal
of Statistics, 2018, Vol. 12, No. 2, 3071-3113.

Le Chapitre 3 propose un nouvel algorithme d’apprentissage séquentiel de courbes prin-
cipales, reposant sur une approche maximum a posteriori (MAP) pour le quasi-posterior
de Gibbs. Cet algorithme permet ainsi de résumer I'information contenue dans un nuage
de points, en proposant des courbes qui passent au milieu des points. Nous prouvons que
le regret de cet algorithme et celui de sa version adaptative est sous-linéaire en 1’horizon
temporel T, et nous proposons une implémentation par algorithme glouton local qui ne
prend qu'une partie des données pour mettre a jour la courbe. Cette implémentation

1. https://cran.rproject.org/web/packages/PACBO /index.html.
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est donc adaptée a 'apprentissage en ligne dans lequel la vitesse a exécution peut étre
prioritaire sur la précision.

Le Chapitre 4 a une visée plus pratique, et présente les travaux effectués chez iAdvize.
Il contient deux parties : la premiere partie se concentre sur l'application de certaines
méthodes classiques de traitement automatique des langues (tf-idf) et d’apprentissage,
parmi lesquelles la classification naive bayésienne et les support vector machines pour
améliorer les produits déployés par iAdvize. La deuxiéme partie est liée a la création
d’un agent conversationnel (chatbot) en mettant en pratique certaines méthodes de pointe
dans 'apprentissage profond, comme le traitement du langage naturel (NLP) et le modele
Seq2Seq.
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1.1 Online learning

In the most basic version of online learning, the predictor (or forecaster) gets access one
after another to a sequence z1,zg,... of elements. At each time t=1,2,..., before the tth
symbol of the sequence is revealed, the forecaster gives his guess of value z; on the basis
of the previous ¢ —1 observations and of possibly other available side information.
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The first significant difference between online learning and classical batch learning in
statistics relies on the assumptions of the sequence of elements. In the latter one, these
elements, which are often called observations, are assumed to be independent and iden-
tically distributed realizations of a stationary stochastic process. Under this assumption,
statistical properties can be estimated from all available observations and prediction can
be derived from these estimates. The performance of the prediction is assessed by the
risk that is defined as the expected value of a certain loss function measuring the discrep-
ancy between true observation and predicted value. However, in online setting, we do
not impose such assumption on the sequence of elements and they can be deterministic,
stochastic or even play an adversary role against forecaster’s prediction.

Since no probabilistic model is assumed on the sequence, the notion of risk cannot be
defined. Instead, we consider a cumulative loss during many rounds of predictions to
measure the performance of a forecaster, where the loss at each round is measured by
the discrepancy between forecaster’s prediction and true value. To get a baseline or an
oracle with which the cumulative loss can be compared, we introduce a class of reference
forecasters, often called experts in online setting. These experts also make their predic-
tions at each round before the revealing of next outcome. With an additional access to
experts’ predictions (or advice), the goal of a forecaster is to make predictions such that
his cumulative loss is as close as possible to that of the best reference forecaster. The
difference between a forecaster’s cumulative loss and that of best reference forecaster is
called regret, as it measures the extent of forecaster’s regret, in hindsight, of not having
followed the advice of this expert. Intuitively, given a set of reference forecasters and a
loss function, we seek for a forecaster whose regret is bounded by a term that is as small
as possible or even negative in the best cases. This term is called regret bound.

The abstract notion of reference forecasters as well as the available side information can
have different interpretation, depending on the specific settings that one considers. In
what follows, we shall detail the notion of experts and side information in three settings:
prediction with expert advice, online regression and online learning in an unsupervised
setting. Investigations and methods in the first two settings have shed light on the con-
tribution of this manuscript which is focused on the unsupervised case.

1.1.1 Prediction with expert advice

In the framework of prediction with expert advice, the sequence z1,zg,... are supposed to
be from an outcome space Z and a forecaster makes sequentially his prediction 21, 2o,...
from a decision space 2 that is assumed to be a convex subset vector space. This decision
space 2 may vary from Z. In addition, the notion of experts is a set {f;; €2 :i€&},t =
1,2,... of experts’ predictions, where f; ; is the prediction of expert e at time ¢ and & is
a set of experts. These experts could be some statistical models with different values of
parameters, different statistical estimators trained on a different set or some stochastic
decisions given by several black boxes. At each time #=1,2,..., before the next outcome
z;, the forecaster yields prediction 2; on the basis of experts’ current and past predictions
fis€e2:ie&,s<tt at t. In other words, 2; is a function of {f;; € D :i € &,s < t}.
Prediction made by the forecaster (resp. experts) is assessed by €(2;,2;) (resp. (£ +,2¢))
where ¢ is a loss function ¢: 9 x Z — R;. We now list some examples of ¢ with different
9 and Z:

— square loss: #(y,z)=(y—z)? where 2 = Z =[0,1].
— logarithm loss: #(y,z) = —l=13Iny — 1=y In(1 —y) where 2 =[0,1],Z = {0, 1}.
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— linear loss: #(y,z) = Zﬁ.v:lyjzj where N e N*, 9 = X is the simplex {y € RN,Z?’:lyJ- =
1,y;20,j=1,...,N} and Z =[0,11V.

The forecaster aims to have a cumulative loss as small as possible with respect to the best
expert. In other term, it corresponds to minimizing the difference (i.e., the regret) of a
forecaster’s cumulative loss and that of the best expert

T T
Z [(ZAt,Zt) —min{ Z ¢ (fi,t,Zt) } .
=1 €€ =1

This quantity can be interpreted as the regret of the forecaster of not following the advice
of the best expert. In this setting, one wants to find a forecaster with regret sublinear in
T (since linear in T is trivial: e.g., € is bounded by a constant) and that this sublinearity
is uniformly over any sequence z; € Z,t=1,...,T and any f;; € 9,i€é,t=1,...,T, i.e., a
forecaster satisfying the following

T T
sup {Zé(ét,zt)—min{Zf(fi,t,zt)}} <R7(&), (1.1)
Zth t=1 €€ t=1

f; 1€9,ieé,t=1,..,T

where Rp(&) is called regret bound satisfying limyp_ R TT(g) =0.

If & is finite with cardinality N, and loss ¢ is bounded and convex in its first argument, a
classical and fundamental example of forecaster which satisfies (1.1) is the Exponentially
Weighted Average forecaster (EWA forecaster) whose prediction is

N
2r=) wifi;. (1.2)
i=1

EWA forecaster (1.2) is a convex combination of experts advice, with w; 1 =1/N for all
i €&, and with

w exp (_ﬂzé;ll e(fi,s,zs))

it = _ )
Zj'v:l €xp (_/1 Zzzll tﬂ(fj,sa Zs))

for all t =2, and A >0 is known as the inverse temperature parameter. The quantity w; ;

is the weight associated with expert i € &. Experts with better performance (i.e., smaller
cumulative loss Zz;ll 0(f; 5,25)) in the past £ —1 rounds will have higher weight at time ¢.

(1.3)

Theorem 1.1 (Theorem 2.2 of Cesa-Bianchi and Lugosi, 2006). If ¢ is bounded in [0,1]
and convex in its first arqgument, EWA forecaster with A >0 satisfies uniformly over any
sequence z; € Z and f; ; €D that

T r InN AT
IRAE; <min) ((f;;,z)+— +—.
Z (2¢,21) I?i%lg{lt=1 (£ ¢,2¢) n 3

The right hand side is minimized (with respect to 1) at A =v8InN/T and yields a regret
bound Rp(&)=v(T/2)InN.

The proof is given in Chapter 2 of Cesa-Bianchi and Lugosi (2006). In addition, the
order VT of Rp(&) with respect to the time horizon T is optimal in the sense that there
does not exist any other forecaster which can achieve a faster convergence rate in T'. For
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similar and more detailed results, we refer the reader to Littlestone and Warmuth (1994),
Cesa-Bianchi et al. (1997) and Cesa-Bianchi and Lugosi (2006).

The convexity assumption of both decision space 2 and loss function ¢ is important
in Theorem 1.1 to achieve a regret sublinear in T' since the former guarantees that the
linear combination Z; belongs to 2 and the latter is required in the proof. However,
this assumption cannot always be satisfied in some cases. For example, in the binary
classification problem where 2 = Z ={0,1} and #(y,2) = Tjy#, if one considers only two
experts who always give constant prediction f;; =0 and fa; =1 respectively during all
rounds, then no matter what predictions given by the forecaster, there always exists a
sequence z; (say 1-2;), t=1,2,...,T such that Zthlé(ét,zt) =T. However, since the best
expert predicts correctly at least half of the rounds, the regret of the forecaster is at least

T .
bR 1.€.,

T T T

Z l(24,24) — min Z 0K 1,20) = —.
i=1 i=12;5 2

Hence, in this setting, a regret sublinear in 7' is impossible. Other cases violating the

convexity assumption include the online clustering problem and sequential principal curves

that will be introduced in Chapter 2 and Chapter 3. It is clear that the loss functions

defined in (2.1) and (3.2) are not convex in their first argument.

Randomized forecasting

One way to conquer the non-convexity is via randomized forecasting: at each time ¢, the
forecaster firstly chooses a distribution p; from the decision space 2 which is now assumed
to be a set of probability distributions over &, then a randomized index I; is generated from
p: and the forecaster yields his prediction as 2; = f7, ;. The distribution p; may depend
not only on the past outcome z1,29,...,2;—1 but also on its past predictions I1,...,1;1.
The blackbox is only allowed to access to p; but I; before yielding z;. Hence, even though
the blackbox could know in advance a “rough outline” p; of forecaster’s strategy, this
advantage would be cancelled out by the randomized prediction of forecaster, leading to
an achievable regret sublinear in 7. In this randomized prediction setting, the loss of
forecaster can be defined as the expected value ¢ of loss with respect to py, i.e.,

C(pe,2e) = [€(f1,1,2¢) ] =fg€(fi,t,2t)dpt(i),

where E; denotes the conditional expectation of ¢ (flt,t,zt) given Iy,...,I;_1 since p; may
depend on them. Due to the linearity of expectation, one makes the loss function ¢ convex
in its first argument. In addition, by taking again the example of binary classification
discussed above, the merit of randomized forecasting can be shown clearly: if the forecaster
simply chooses a trivial uniform distribution on {0,1} at each time ¢, then whatever the
outcome sequence is, the expected loss of forecaster can be reduced to % In other words,
without any deep consideration on the choice of p;, the cumulative loss of forecaster has
already been cut to half via randomized forecasting with a simple uniform distribution.

The randomized forecasting in the prediction with expert advice has been extensively and
thoroughly studied in the chapter 4 of Cesa-Bianchi and Lugosi (2006). It has also been
analysed under different restrictions on the available information to which the forecaster
can be access. They include: the label-efficient prediction where the forecaster can only
inquiry the outcomes z; within limited times; the bandit games where the forecaster can
only access to the loss of his own decisions while not knowing that of any other experts;
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the sleeping experts where only a subset of experts is available and this availability can
varies with time.

In the next section, we shall introduce another popular setting in online learning, namely,
online regression. It allows the forecaster to access to other side information, not merely
expert’s advice.

1.1.2 Online regression

In the framework of online regression, the sequence z; is a pair of observations z; = (x¢, y;) €
X xY t=1, where Z cR? d =1 and & cR. At each ¢, prediction §, of forecaster is
on the basis of not only past information zs,s < ¢ but also side information x;, i.e.,
Pe (X x W) xZ — . The experts set is now a set of prediction functions {fy,0 € ©}
with parameter 0, where fy : & — % . Given a loss function 4(-,-) on & x % the goal is
to build a forecaster whose performance is uniformly nearly as good as the best one in
{fp,0 € B}, i.e., uniformly over all (x1,y1),...,(x7,y7) € X x ¥

T T
Y @,y < inf{Zf(fe(xt),yt)-FRT(d,Q)}, (1.4)
t=1 0€0 | ;=1

where Rp(d,0) is a remainder term (for simplicity, we omit the possible dependence of
Rr(d,0) on Z,% and fy). At first glance, regret bound of form (1.4) is different from the
following counterpart of (1.1) in online regression setting:

T T
Zf(yt,yt)—inf{zf(fe(xt),yt)} <R7(d,0). (1.5)
t=1 0e® t=1

However, (1.4) and (1.5) are equivalent in the sense that (1.5) can be deduced from (1.4)
by taking Rr(d,®) = supycgR7(d,0) and that (1.4) holds by taking Rr(d,0) = Rr(d,®)
for any 6 € ©®. Regret bounds of both forms will be used in the sequel. Online regression
has been addressed by numerous contributions to the literature. In particular, Azoury
and Warmuth (2001) and Vovk (2001) each provide an algorithm close to the ridge re-
gression with a regret bound of order @(d1InT). Other contributions have investigated
the Gradient-Descent algorithm (Cesa-Bianchi et al., 1996; Kivinen and Warmuth, 1997)
and the Exponentiated Gradient Forecasters (Kivinen and Warmuth, 1997; Cesa-Bianchi,
1999). However, most of these results require some constraint on the loss function such as
the convexity of the loss function on its first argument or the exp-concavity of the square
loss function.

Audibert (2009) generalizes the regret bound in online regression by considering loss
functions with less regularities, especially loosing the convexity constraint. He presents a
sequential randomized algorithm (SegRand, section 4.2 of Audibert, 2009) which considers
the decision space 2 as set of probability distributions on the prediction function set
{fp,0 € O} (also denoted by O for simplicity if no confusion is made). At the beginning (i.e.,
t=1), SeqRand chooses a prior distribution 7 on ® and the first randomized prediction
function is draw according to 7. Then it iteratively updates the prior to (Gibbs) posterior
distributions p¢,¢ = 1,...,T that concentrate simultaneously on functions having both
small cumulative loss and low variance with respect to the previously drawn prediction
function. In addition, Gerchinovitz (2011) considers online regression in the so-called high
dimension setting (d > T) with quadratic loss function £(y1,y2) = (y1 — y2)?, and with
particular prediction functions fp=6-¢ = Z“f:l@ ip; where ¢ = (¢1,...,¢q) is a dictionary
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of base predictors ¢;: % — % and 0 €0 = R?. Under the sparsity hypothesis that there
exists a 0* with s < d non-zero coordinates whose cumulative loss Z;;F:l ?(fgx,y;) is small,
one can obtain the following sparsity regret bound:

T T
Zf(f’t,yt)z < inf {Zf(fe,yt)+(||9||o+ Dgra (||9||1,||<P||oo)},
t=1 0eR? | ;=1
where [|0]|p is the number of non-zero coordinates of 6, ||0||1 = z‘?:l|9j| and ||@lleo =

SUPyeq Max; -1, ql9;x)l; g7,4 is a function growing logarithmically with d and T. Pre-
dictions y; achieving this regret bound are

9o = f [0 p(x)15dpi(0),

where [x]p = max{-B,min{B,x}} truncates x at B >sup,—; _rly:| and
-1 5
dp:(0) x exp (—/1 Z (ys - [G-cp(xs)]B) )dn(@), t=1 (1.6)
s=1

is a posterior distribution with a prior 7 on R? in favor of generating sparse 6 (see
Gerchinovitz, 2011 for more details). One can see that the posterior p; concentrates on
“expert” 0 having smaller cumulative loss. Prediction j; is the mean of a truncated linear
combination 6-¢ with respect to p;. Moreover, Gerchinovitz (2011) also investigates
online regression with ¢; regularization on @, i.e., with ® ={6,[|0|l; < U} in (1.4) where
U > 0 and obtains a regret bound sublinear in 7.

Results in Audibert (2009) and Gerchinovitz (2011) rely on the notion of Kullback-Leibler
divergence and Pac-Bayes. These two notions, which will be introduced in the next
section, are also indispensable to our study in unsupervised setting.

1.1.3 A quasi-Bayesian online analysis

Given a measurable space ® (embedded with its Borel o-algebra), we let 22(©) denote
the set of probability distributions on ©, and for some reference measure v, we let 22,(0©)
be the set of probability distributions absolutely continuous with respect to v. For any
probability distributions p,m € 22(0), the Kullback-Leibler divergence £ (p,n) is defined
as

Joln (g—]’;) dp when p € 22,(0),

+00 otherwise.

Ju’(p,n)={

Note that for any bounded measurable function A: ® — R and any probability distribution
p € 2(0) such that £ (p,m) < +oo,

-1 —h)dr = inf hdp + & . 1.
nf@exp( )drn pelgg(@){f@ p+ (p,n)} (1.7)

This result, which may be found in Csiszar (1975) and Catoni (2004, Equation 5.2.1), is

critical to prove Theorem 1.2 and Theorem 1.3. Further, the infimum is achieved at the
so-called Gibbs quasi-posterior g, defined by

A

exp(—h)
p= fexp(—h)dndn' (1.8)

Gibbs distribution dp concentrates on prediction functions 8 that are close to minimizing
the function A if prior m is uniform over ©.
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The use of Gibbs quasi-posterior is especially advocated by the PAC-Bayesian theory
which originates in the machine learning community in the late 1990s, in the seminal
works of Shawe-Taylor and Williamson (1997) and McAllester (1999b,a) (see also Seeger,
2002, 2003). In the statistical learning community, the PAC-Bayesian approach has been
extensively developed by Catoni (2004, 2007), Audibert (2004b) and Alquier (2006), and
later on adapted to the high dimensional setting Dalalyan and Tsybakov (2007, 2008),
Alquier and Lounici (2011), Alquier and Biau (2013), Guedj and Alquier (2013), Guedj
and Robbiano (2018) and Alquier and Guedj (2017).

In a parallel effort, the online learning community has contributed to the PAC-Bayesian
theory in the online regression setting (Kivinen and Warmuth, 1999). Audibert (2009)
and Gerchinovitz (2011) have been the first attempts to merge both lines of research. One
can find that both weights w;; of (1.3) in prediction with expert advice and the posterior
p: of (1.6) in online regression are closely related to (1.8). More precisely, setting @ =&,
the set of N experts, prior n(i) = 1I/N uniform on O, and h := h;(i) = Zé;i ((f; 5,25) at
round ¢ in (1.8) makes p = (w1,way,...,wnN,) a simplex distribution on &, and it is more
obvious for p; in (1.6).

The above duality formula can help us to refine, for instance, the regret bound of Theo-
rem 1.1, as indicated by the Theorem 1.2 below.

Theorem 1.2. If the loss function € :9 x Z — Ry is bounded in [0,1] and convex in its
first argument, then for all T e N* and A >0, the EWA forecaster satisfies uniformly over

all fi,t €D and 2t € Z
K P,7 A
( b )}

Zf(ztyzt)< lnf {szzg(fz t;zt) 8 )

where Xy is the set of all simplex distribution on finite set &; m =(1/N,1/N,...,1/N)e XN
is the initial weight vector for EWA forecaster, and p =(p1,p2,...,PN) € XN

The above result is a simpler version of Theorem 4.6 of Audibert (2009) by taking convex
and bounded loss function. Its proof, which can be found in proposition 2.2 of Gerchinovitz
(2011), relies on the duality formula (1.7) and Hoeffding’s lemma.

In comparison with Theorem 1.1, regret bound in Theorem 1.2 is refined in the sense that
the former can be deduced from the latter by choosing p as Dirac mass 67+ at I*, where
I'* = argmin;ce ZtT:lé(fi’t,zt). Moreover, if the best expert is not unique, let 98 be the set
containing s > 1 best experts. Setting p as an uniform on 28 leads to £ (p,7) =1In(N/s), a
smaller value than In(N) in Theorem 1.1. Hence, one can have a smaller regret bound by
duality formula under some circumstances.

The Gibbs quasi-posterior as well as the Kullback-Leibler divergence are also important
tools for online clustering and sequential principal curves (Chapter 2 and Chapter 3),
the two main contributions of this manuscript. They will be summarized respectively in
section 1.3.1 and 1.3.6. Before proceeding to these two sections, we first introduce Markov
Chain Monte Carlo that are important tools for obtaining randomized samples from quasi-
posterior since explicit form of Gibbs quasi-posterior is often impossible (Alquier and Biau,
2013, Guedj and Alquier, 2013 and Chapter 2 of this manuscript).

1.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for generating
a sequence of random samples from a probability distribution for which direct sampling
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is generally difficult. These samples can play a role of randomized predictions or can be
used to approximate the mean of estimators. The working principle of MCMC method is
quite straightforward to describe. Given a target distribution p (on ©) from which one
wants to generate samples, we build a Markov kernel K with stationary distribution p
and then generate a Markov chain 0™ n=0,1,..., (abbreviated as (6(”)) in the sequel)
using this kernel so that the limiting distribution of (8™) is p. The MCMC method
is quite useful in many fields such as machine learning, Bayesian inference etc. One of
the most well-known examples of MCMC method is Metropolis-Hastings algorithm which
was firstly introduced by Metropolis et al. (1953) and later generalized by Hasting (1970)
and Peskun (1973) to statistical simulation. In the sequel, we first specify the definition
of Metropolis-Hastings algorithm and then introduce the Reversible Jump MCMC which
will help us to generate ¢; from the posterior in Algorithm 1.2 and Algorithm 2.2.

1.2.1 Metropolis-Hastings algorithm

In this section, the distribution of interest is referred to as the target distribution p.
The (very limited) assumption underlying the Metropolis-Hastings algorithm, besides the
availability of p, is that one can directly simulate samples from a transition density q,
often called proposal or instrumental distribution, whose functional form is known. The
Metropolis-Hastings(MH) algorithm associated with target distribution p and proposal
distribution ¢ produces a Markov chain (6(”)) in the following way:

Algorithm 1.1 Metropolis-Hastings algorithm

1: Given: 6
2: For n=0,1,...
3: generate ' ~ g (-|0™)
4: take
0N a (610’
(n+1) 0 with probability a= p(( ))q( / |()) a1d
o p(0™) g (0'16™) (1.9)
0™ otherwise.
5. End for

where the initial value 8@ is chosen arbitrarily in ® such that p (6) > 0, q is a dependent

proposal on the current state 0™ and a A b = min{a, b}.

The MH algorithm compares the importance ratio % of the candidate state 8’ with

(n)

% for a “reverse” move from state 6’ to current state 6.
The Metropolis chain moves to candidate state if it has higher importance ratio (or
importance weight) than the current state; otherwise, it moves there with the probability
defined by the relative magnitudes a of importance ratios, which is called the acceptance

rate of MH algorithm.

the corresponding ratio

Under certain conditions (Theorem 2.1 of Mengersen and Tweedie, 1996), the Markov
chain (6™) generated by MH algorithm is ergodic and has limiting distribution p. The
ergodicity guarantees that the marginal distribution of 8™ converges finally to the target
function p with regardless of the initial value for 9.
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The rate of convergence of MH algorithm depends on the choice of proposal. The support
of the proposal distribution should be compatible with target distribution (i.e., ¢(8) > 0 if
p(0)>0). In other words, the proposal should have an ability to explore the entire support
of target distribution. If the support of proposal were quite small or if the proposal were
not disperse enough(i.e., having a much lighter tail) compared to the target, then the
candidate state 8’ would be very close to the current state 8, leading to a comparatively
high acceptance rate. Hence the chain (H(n)) will move frequently but “locally” around
the state space. On the other hand, a too disperse proposal that generates large move is
more likely to have a very low value of p(0’), hence would suffer from a low acceptance
rate even though it is enable to explore freely the whole support of target. Therefore, the
choice of proposal distribution is crucial to the performance of MH algorithm.

The dependent proposal q(~|9(”)) in MH algorithm can be replaced by an independent
one ¢(-), leading the acceptance rate a in (1.9) reduce to

p(6™)q (0"

1.2.2 Reversible Jump MCMC

In the previous section, we introduced the general setting of Metropolis-Hastings Markov
Chain Monte Carlo. However, MH algorithm can only cope with generating samples from
posterior that is defined on a parameter space of fixed dimensions. In this section, we
present the Reversible Jump Markov Chain Monte Carlo (RJMCMC), an extension of
MCMC, that applied to varying-dimension problem and creates a novel method capable
of reversible jumping between subspaces of differing dimensions. This method, first pro-
posed by Green (1995), serves as a tool for us to cope with online clustering discussed in
Chapter 2.

More precisely, in Bayesian model selection or online clustering, the parameter space
© =U}_ 0y, can be a union of finite (or countable) sub-spaces ©y, of different dimensions,
where % is a model indicator and ©, € R% the parameter space associated to model k.
We suppose that p is a certain distribution defined on ©, and that direct sampling from
it is impossible. For example, p can be the posterior distribution in Bayesian analysis.
Denote by (0,k) the current state of Markov chain (0™,k™),n = 1,..., where 0 € ©,.
The proposal 8’ can be constructed by a two-step transition: choosing firstly a proposal
indicator &’ from a model transition probability pzz such that Z[k’,zlpkkf =1; then 0’ is
formed as

0' = g1 1 (0,0),

where g1z is a deterministic mapping of 8 and v, and v is a realization of a random
vector V who has a density gpz/(-10) on R’

The mapping g1z is one of the two components of gz whose definition is given below:

0',0") = grr(0,v) = (g1,2(0,0), 82 11(0,0)),

where gz must be an one-to-one and differentiable function from R% xR to R x ROk,
The requirement of gz indicates that djp +dpp = dpr + dpp, an equality known as the
dimension matching condition. It is a prerequisite for the detailed balance condition which
requires the equilibrium probability of moving from 6 to 8’ and vice versa. It guarantees
the convergence of RIMCMC.
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The proposal 0" is then accepted with probability

0", k') praqus (0"
a(e’el):{p( )Pkakk(v)
000v

P (0,R)Prr qrr (V)

i (agkk’(a, v))

1,

where det denotes the Jacobian determinant and |-| the absolute value. The acceptance
probability here is different from that defined in (1.9) with an additional Jacobian deter-
minant which compensates for the variation of dimensions between 6’ and 6.

1.3 Contributions

The theoretical work of this manuscript is presented in two chapters. In Chapter 2, we
generalize the quasi-Bayesian methodology to the online clustering problem. We introduce
a new and adaptive online clustering algorithm relying on a quasi-Bayesian approach, with
a dynamic (i.e., time-dependent) estimation of the (unknown and changing) number of
clusters. We prove that our approach is supported by minimax regret bound. We also
provide an RJIMCMC-flavored implementation (called PACBO!) for which we give a
convergence guarantee. In Chapter 3, we extend our work to sequential principal learning
problem. We propose an adaptive algorithm that can sequentially summarize the data by
polygonal line. The algorithm is different but inspired by the quasi-Bayesian methodology
whose performance is supported by sublinear regret bounds. An implementation based
on local greed search that combines both the notion of sleeping experts and bandit games
is also given in this chapter.

The principal contributions of Chapter 2 are detailed in sections 1.3.1 to 1.3.4 while that
of Chapter 3 are detailed in sections 1.3.6 to 1.3.8.

1.3.1 Online clustering framework

In the framework of online clustering, the sequence of observations is denoted as x; for
t=1,..., where x; € Z cR? (to keep the consistency of notation with Chapter 2, we use x;
in the sequel). Each x; is a point in R, Our goal is to predict a partition of the observed
points into K; cells, for any ¢ =1,...,T. The motivation for considering online clustering
can be summarized from two perspectives: firstly, to our best knowledge, clustering in
online setting has not been largely considered, for example, Guha et al. (2003), Barbakh
and Fyfe (2008) and Liberty et al. (2016) study the so-called data streaming clustering
problem. It amounts to cluster online data to a fixed number of groups in a single pass, or
a small number of passes, while using little memory. Choromanska and Monteleoni (2012)
considers online clustering by aggregating finite number of batch clustering algorithms and
the regret is measured by the difference between the cumulative loss of their algorithm and
that of the best batch one. This is different from our setting since we shall compare the
performance of our algorithm with that of the best partition in the hindsight. Secondly,
in practice, if the data x; contains information about customer’s commercial behavior, the
clusters of customers, combined with other information such as customer’s transaction or
the problems they met, can help commerce company to make suitable criterion to target
customers. Since the criterion need to reflect instantaneously the change of interest of
customers on site, offline clustering might not well suit this need. To this aim, the
output of our algorithm at time ¢ is a vector &; =(é;,1,¢¢2,...,¢:k,) of K; centers in RAK:

1. https://cran.r-project.org/web/packages/PACBO /index.html
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depending on the past information (xs)1.;—1) (We use notation (xs)4:5,@ < b in the sequel to
represent sequence Xq,Xq+1,---,%p) and (€s)1.¢-1)- A partition is then created by assigning
any point in R? to its closest center. If several centers satisfy it, we make a convention
that this point is assigned to the center with smallest index. Hence, each vector of centers
corresponds to a Voronoi partition of R®. When x; is newly revealed, the quality of
prediction €; is evaluated by the instantaneous loss computed as

R . R 2
l(€s,x;)= min |C;p—x
tyrt ].SkSKt| t,k t|29

where |-|g is the £9-norm in R?. This quantity, often used in k-means algorithm, measures
the squared distance of point x; to its closest center in €;. However, since €; is build based
on the past observations (xg)1.4—1, the loss €(¢;,x;) can be regarded as a measurement which
emphasis more on the prediction ability of our algorithm. Our goal is to predict almost
as good as the best constant partition e, in the hindsight, within € = Uzledk, where €
is the partition space allowing for at most p >0 cells, i.e., to satisfy uniformly over all
()17 eZT, a regret bound of the form,

T
E|) €(&:,x)

=1 kE{l,,p} cE[de t=1

T
< inf {inf Z[(c,xt)+RT’k(c)}, (1.10)

where R 1(c) should be as small as possible and in particular sublinear in T' (for simplicity,
we omit here the dependence of Ry x(e) on d,p and max;=1__7l|x¢l2). Since €(&;,x;) is not
convex in its first argument in R * and it is impossible to combine constant partitions
with different number of cells, we resort to the randomized prediction, therefore the
expectation in (1.10) is taken with respect to randomized predictors €;.

1.3.2 Regret bounds for clustering

To simplify the analysis, we assume that the sequence (x;)1.7 is bounded in a ¢o-ball
Bi(R) ={x¢€ R?, |x|o <R}, centered in 0 € R? with radius R > 0. At the beginning, we
assume that both R and T is known a priori. The first version of our algorithm is given in
Algorithm 1.2. It is a derivative of algorithm SeqRand but adapted to the unsupervised
setting. More precisely,

Algorithm 1.2 The quasi-Bayesian online clustering algorithm (cf. Algorithm 2.1 in
Chapter 2)

1: Input parameters: p>0,1€ 2(¥¢), A>0 and Sp=0

2: Initialization: Draw €; ~ 7 = g1

3: For te[1,T]

4: Get the data x;

5: Draw €41 ~ pr+1(e) where dps+1(e) oc exp (— AS¢(e))dn(e), and

A . 2

Si(e)=8;_1(e)+ l(c,x;) + E(é(c,xt) — 0(&4,x1))".

6: End for

where 22(7) is the set of all probability distributions on %4 and 7 is a prior. The quantity
S:(e) is computed recursively by adding at each time ¢ both the loss ¢(e,x;) and a quadratic
term measuring the loss difference between partition ¢ and prediction €;. When no data
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is available, we give our first partition by sampling from a prior 7 and at each time
t+1,t=0,1,...,T -1, the partition €;41 is sampled from a posterior distribution p;4+1
which concentrates on partition having both small cumulative loss and low variance. In
addition, one can notice that the randomness of €;;+1 originates from not only the way it
is sampled but also the dependence of p;+1 on random variables €;,¢;-1,...,€1.

By adapting the lemma of Audibert (2009) to unsupervised setting, with a uniform prior
7 on ¥, defined as
ne)= ) q(R)m ()L feepary, (1.11)
ke[1,p]
where g a discrete probability distribution with parameter n = 0 on the set [1,p] :=
{1,...,p}, i.e.,
exp(—nk)

R)= —————,
7 Y2 exp(-ni)

(1.12)
and 7, is the product of £ independent uniform distributions on ¢-balls Bgz(2R) in R?
(we refer to (2.6) to see its concrete form). We prove that Algorithm 1.2 satisfies the
following bound.

Theorem 1.3. For any deterministic sequence (x¢)1.7 € R2T and any p =1, consider n
defined by (1.11) with n =0 and R Zmax;=1,__rlxile. IfA=(d +2)/(2TR?), the procedure
described in Algorithm 1.2 satisfies

r dk 8R2AT
Z E(p1,9,....00 (€4, %) < inf { inf Z l(c,x;)+ — 5 ( ) + Qk
t=1

kellpl |ec€(k,R) /o A d+2 A
(ln p d 81/1TR4)
+ =t —],
A 21 2

where the expectation on the left hand side is taken with respect to the joint distribution,
denoted by (p1,P2,-.-,0¢), of (€1,€s,...,&); €(k,R)=1{c=(c))jz12. 1 ER¥ ¢c; #cj i #
J, such that|cj|2 <R,Vj} is a subset of R¥™ which defines the range of k centers within
ce6(k,R).

Notice that infceg(k,}g)zz;lﬁ(c,xt), the cumulative loss of the best partition with exactly
k cells, is a non-increasing function of the number % of cells while the penalty is linearly
increasing with k2. Small values for A (or equivalently, large values for R) lead to small
values for k. The additional term induced by the complexity of € = uUp=1, dek is Inp.
A suitable calibration of A yields a sublinear remainder term in the following corollary.

Corollary 1.1. (c¢f. Corollary 2.2) Under the previous notation with A = (d+2)VInT/2VTR?),
the procedure described in Algorithm 1.2 satisfies

T
Z E(py,09,....00¢(€s, %) < inf { inf Z l(e,x1)+cqrpkyTlogT }

t=1 kell,p] | ceb6(k,R) ;7
+(cpa,r+car)VTlogT, (1.13)

where cq Ry, Cpdr and cqr are constants (see Corollary 2.2 for their explicit form,).

We see that the expected cumulative loss is close to that of the best partition in batch
setting up to a reminder term of the order of VT InT. Moreover, the right hand side of
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the above inequality also indicates that our procedure seeks to partitions which does not
simply have a good performance on the quantization error but also on its number of cells.
In addition, If we assume that the sequence xi,...,x7 is generated from a distribution
with 2* € [1,p] clusters whose centers belong to €(k*,R), then Corollary 1.1 can yield
the following

T

Z [E(ﬁl,ﬁg,...,ﬁt)é(ét,xt) inf Z E(c xt) = Jk vTInT

=~ ce6(k*,R) (=
where o is a constant depending on d, R, n and Inp. The first term on the left is the
expected cumulative loss of our algorithm and the second one is the oracle cumulative
loss. The above inequality indicates that the regret of our randomized procedure, defined
as the difference between expected cumulative loss and oracle cumulative loss, is of the
order VTInT. However, whenever * > p, the term 2vT1InT in (1.13) emerges and the
bound in Corollary 1.1 is deteriorated (we refer to Corollary 2.2 for more details).

1.3.3 Adaptive regret bounds for clustering

The parameter A in Corollary 1.1 depends both on time horizon T' and on bound R
of f9-norm of sequence (x¢)1.7. These two quantities are usually unknown a priori. It
prompts us to make A adaptive to both T" and R. In what follows, we begin with the case
when only R is known and then proceed to the case when both of them are unknown.
When R is known, we propose an adaptive generalization of Algorithm 1.2 whose steps
are detailed in Algorithm 2.2. The difference with respect to Algorithm 1.2 is that a
sequence of temperature parameters Ao = A; = 1,A; = (d +2)VIn#/(2ViR?),t = 2,...,T is
initialized and substitute for A in each iteration.

The price to pay for not knowing the time horizon T' (which is a much more realistic
assumption for online learning) is a multiplicative factor 2 in front of the term ¢4 g in the
upper bound (cf. Corollary 2.3). However, this does not degrade the rate of convergence

vVTInT.

When both R and T remain unknown, we use the doubling trick (Section 2.3, Cesa-Bianchi
and Lugosi, 2006 and Cesa-Bianchi et al., 2007) in Alg-R of Chapter 2, to show how can
we make our procedure to be a fully adaptive one. The key idea of doubling trick relies on
dividing time steps into several epochs (¢,—1+ 1,¢,-1+2,...,¢,),r =0,1,...,t_1 = 0) whose
length increases exponentially. For time round ¢ within epoch r, i.e., telt,—1+1,¢t,_1 +

i), weset A=A, = (5\72}%2” Int where Ry=1and R; = maxszl,m,t2“"5’2("“5'2)] ,t=1and

-1
[x] represents the least integer greater than or equal to x € R.

Corollary 1.2. (¢f. Corollary 2.3) The regret of algorithm Alg-R satisfies,

kellpl | cc6(k,R) o

Z Epy,po,....p0f(€s,2:) < inf { inf Z l(c,xp) + —cdR nkV/TlogT }

28

112
+ %5 (epar+2car) VTlogT +—=R?,

where R =max;—1 7 1x¢l2.

Note that an additional multlphcator and an additional term 112R2 is what we need to
pay for making our algorithm also adaptlve to unknown R. Our algorithm is fully adaptive
to both the upper bound R for the range of sequence (x;)1.7 and the time horizon T'.
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In the next section, we investigate the lower bound of minimax regret which is a new
notion that will be defined. We then prove that this lower bound is asymptotically of the
same order as that of regret bounds discussed above.

1.3.4 Minimax regret for online clustering

We obtain in Corollary 1.1 that the regret bound is of the order vVTInT. In this section,
we first define notion of minimax regret in online clustering setting and then prove a lower
bound on it. This lower bound shares the same order in T as regret bound indicating
that our algorithm is optimal in the minimax sense.

Recall that we supposed the sequence (x4)1.7 is bounded in a = Bg(R) = {x € R?, |x|o < R},
and denote by € = u de the partition space. We consider first following definition.

Definition 1.1. We call minimax regret on sequence (x¢)1.7 with loss function € the
quantity

T
inf sup {Z[E(pl, PNUCEDE cigr(llfR)le(c,xt)}, (1.14)
> t:

P (xe)1.7 1

where the infimum is taken over all forecaster s strateqy P = (pt)lT and the supremum
is taken over all sequence (xi)1.7 € XT. More precisely, the strateqy P is a sequence
01,02,..., of functions p;: X1 — P(€), where we recall that P(€) is the set of all
probability distribution over €. FEach ps in the expectation denotes however the probability
distribution which is the value of forecasting strateqy applied on the available data, i.e.,

Pt = 0e(x1,%2,...,%:-1). In the following, we abuse the notations p; if no confusion arises.
In addition, notation (p1,Pp2,...,0t) in the above expectation denotes the joint distribution
of (€1,...,6). This definition of minimax regret in online clustering is an analogue of
minimaz defined in prediction with expert advice (section 2.3 of Cesa-Bianchi and Lugosi,
2006) and online regression (section 2.10 of Gerchinovitz, 2011).

However, value of (1.14) can be arbitrarily small or even negative since the infimum is
taken over any probability distribution on ¥ and there is no restriction on the number
of cells of each partition ¢;. The lower bound does not match the regret bound of Corol-
lary 1.1. To handle this, we need to introduce a penalized term which accounts for the
number of cells of each partition to the loss function ¢. In the sequel, denote by |c| the
number of cells (or centers) in any partition ¢ € €. We proceed to the minimax regret
with penalized loss function € pep,.

Definition 1.2. We call minimax regret on sequence (x¢)1.7 with penalized loss function
Cpen the quantity

Y/T(k)—lnf sup {Z[E(m, 50 [€pen (€4,%)] — <1€I(lfR Z[(c xt)} (1.15)

P (xp)r 1 ce )=

lnT

where €pen(e,x) = l(c,x)+/7=|c| for any c€€ and x e X
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Lower bound on the minimax regret

In the next theorem we show that the lower bound of (1.15) is asymptotically of the order
EVTInT and that the regret bound of Algorithm 1.2 (similar for its adaptive version)
with the penalized loss function £, is of the same order as the lower bound. It indicates
that the regret bound of Algorithm 1.2 cannot be improved asymptotically with respect
to its order in 7T'. In other words, our algorithm is asymptotically optimal.

Theorem 1.4. (c¢f. Theorem 2.2) Let ke N*, R >0 such that

m‘ , (1.16)

where |x] represents the largest integer that is smaller than x. If T is sufficient large, then
the procedure described in Algorithm 1.2 with penalized loss €pen satisfies the following

2 k-1
k\/TlnT(l—i[]_'i'z—kz

RTi

2<k< T
6logT4

)SY/T(k)Sconst.Xk\/TlnT. (1.17)

The proof of left hand side of (1.17) depends on a probabilistic method: we lower bound
the supremum of the regret over all individual sequences (x;)1.7 by the expected regret on
a suitably chosen i.i.d random sequence (X;)1.7. The distribution of (X;)1.7 is a discrete
distribution inspired from the work of Bartlett et al. (1998). The proof of right hand side
of (1.17) is similar to that of Theorem 1.3. We see that the lower bound is asymptotically
of the order of VTInT indicating that our procedure is asymptotically optimal in the
minimax sense.

1.3.5 Implementation for online clustering

The randomized predictions &;,¢=1,...,T in both Algorithm 1.2 and Algorithm 2.2 are
drawn from the quasi-posterior defined on a complex space of varying dimensions € =
Uizlﬂ%dk. Hence at each ¢, the partition €; can be of different dimension. For its ability to
cope with transdimensional moves, we resort to the RIMCMC introduced in section 1.2.2,
coupled with ideas from the Guedj and Alquier (2013) and Subspace Carlin and Chib
algorithm proposed by Dellaportas et al. (2002) and Petralias and Dellaportas (2013).
More precisely, we set specifically the parameter space ® equaling to the partition space
¢, and p to Gibbs quasi posterior p; in online clustering. Let us denote by ¢™ the
current state of partition at n-th iteration of RIMCMC. One should notice that ¢™ in
fact depends on ¢ since the target is p; at time ¢. However since the schema in the
RJIJMCMC for target p; is the same for t =1,2,...,T, we omit this dependence of ¢ on ¢
for writing convenience. Denote by 2™ the number of cells. We can generate a proposal
¢’ by following the steps introduced in section 1.2.2 with specific transition probability
Prmy, density qmyp and ghmy . Firstly, we choose the transition probability pymy as

if k(n)€{2’_”’p} and E'e {k(n)—l,k(n),k(n)-l-l},

it BW=1 and R €e{1,2},

pk(n)k/ =1 (118)

if ®W=p and k'ei{p-1,p},

O NIHN|HW|H

otherwise.
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This transition pymy will only propose new number &’ of cells within the neighborhood
of current £™. This choice of pymy that favors local transition of number of cells can
lead to a comparatively higher acceptance probability in RIMCMC since otherwise, the
ratio between py(e’) and p,(c™) would be small due to the large variation of number of
cells between ¢’ € R%*' and ¢™ e R¥*™ . T hen, an auxiliary vector v is sampled from a
rescaled Student distribution pg/(-) on R whose density is detailed in (2.14) of Chapter 2.
Finally, we set the one-to-one and differentiable function as g,umy : (€™,v)— (v,e™). The
proposal €’ is then accepted with probability a defined in Algorithm 2.3 of Chapter 2 where
a detailed implementation is given.

Numerical experiments

We show here a simple example illustrating the performance of our implementation in
batch setting. For more numerical experiments in both batch setting and online setting,
one can refer to Chapter 2. The observations in batch setting are sampled from four

bivariate Gaussian distributions with identity covariance matrix, whose mean vectors are
respectively (0,0),(4,1),(0,7),(5,2). Each observation is uniformly drawn from one of the
four groups and the number of observations is n =200. Figure 1.1 illustrates respectively
the convergence of RIMCMC in both the number of clusters and position of centers. The
left plot includes number £ of clusters along the 200 iterations (solid black line) and true
number of clusters (dashed red line); The right plot presents the values (i.e., 0,-1,7,2
solid red line) of second coordinate of mean vectors of four Gaussian distributions and
that of second coordinate of all centers in ¢™ along iterations. It is noticed that the chain
converges to the true values slightly after 100 iterations.

(a) Number of clusters. (b) Coordinate of centers.

Figure 1.1 — Typical RIMCMC output. (a) k(1n1)vv number of clusters along the 200 iter-

ations (a solid black line). The true number 4 of clusters in this example (a dashed red
line). (b) values of second coordinate of all centers in c(ln])v along the 200 iterations (a
dashed black line). The true values of second coordinate of mean vectors of 4 Gaussian

distributions.

In addition, instead of choosing arbitrarily an initial value ¢/¥ € €, one can choose ¢!® =
¢;-1 i.e., setting initial value for RIMCMC at round # (corresponding to sampling from
p:) to the value of randomized partition €;_1 at round ¢—1. In practice, this warm start
helps to accelerate the convergence of the chain. In Chapter 2, we compare the running
times of our algorithm with several competitors in the online setting. It is found that
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our method, equipped with a warm start, has a better performance in running time (cf.
Table 2.2 in Chapter 2).

1.3.6 Sequential principal curves framework

In Chapter 3, we proceed to another setting: sequential principal curves which can be
seen as a generalization of online clustering since we seeks to “summarize” online data
by a continuous curve rather than several discrete centers. This is useful especially when
the sequence of data shows a certain curve pattern. We introduce first the definition of
principal curve in classical statistical setting and then consider sequential principal curves
(i.e., principal curves in online setting). Our task is to construct an algorithm proposing
sequential principal curves at each ¢ such that its regret bound is sublinear in T

Principal curves can be regarded as a nonlinear generalization of first principal component.
Different from clustering that several centers are used to summarize the data, the goal of
principal curves is to summarize the data by a curve that passes “in the middle of data”,
as illustrated by Figure 1.2.

Figure 1.2 — An example of principal curve.

The original definition of principal curve in classical statistical setting dates back to Hastie
and Stuetzle (1989). It is defined as a parameterized curve which does not intersect
itself, has finite length inside any bounded subset of R? and is self-consistent (we refer
the reader to Hastie and Stuetzle, 1989 for more details). However, the existence of
principal curve is guaranteed only for a very limited number of distributions. Kégl (1999)
proposed a new concept of principal curves which ensures the existence for a large class of
distributions. Before giving how principal curve is defined in Kégl (1999), let us first give
give some notation: denote by X a random vector in R? and by £(s) = (f1(s), ..., fa(s)) € R?
a parameterized curve in R?, where s€ I and I cR is a closed interval. Denoted by i,
a class of continuous curves whose length is smaller than L > 0. For fe€ &, the expected
squared distance A(f) of f is defined by

A =E[AE,X)]=E

inf ||f(s)—X||§] ,
sel

where || - IIS is the ¢9 norm in R%. To maintain consistency with notations in previous
investigations of principal curves, we use A(f,X) (rather than ¢(f,X)) to denote the loss
(distance) between f and X.

The new definition of principal curves £* by Kégl (1999) are defined as curves minimizing
the expected squared distance over &, namely,

f* € arginf A(f).
fe 7,
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It is proved that if E|| X |I§ < oo, f* always exists but may be not unique. It is seen that the
existence of principal curve under Kégl’s definition is guaranteed for class of distributions
on which very loosen constraint is imposed.

To approximate unknown f* (since the distribution of X is unknown in practice), Kégl
(1999) uses classes of polygonal lines with limited length. He proves that the segment
of optimal polygonal line approximating £* is proportional to n'3 (the number of obser-
vations). Biau and Fischer (2012) also use classes of polygonal lines to estimate £* and
extend the results of Kégl by choosing an optimal segments from a model selection point
of view.

In Chapter 3, we adopt the notions of classes of polygonal lines defined in Biau and Fischer
(2012). More precisely, let B(e,R) stands for the £a-ball centered in ¢ € R¢ with radius
R >0. Let 25 be a grid over B(0,VdR), i.e., 25 = B(0,VdR)nTs where I'; is a lattice
in R? with spacing § >0. Let L >0 and define for each % € [1,p] the collection .1, of
polygonal lines f with £ segments whose vertices are in Z5 and whose length is smaller
than L. Figure 1.3b presents an example of polygonal line with 5 segments and with
vertices on 25 (blue points, § =1) in R2, where the black solid circle represents B(0,10).
In addition, denote by %, = Uizlgk,L all polygonal lines whose vertices are in 25 and
whose length is at most L. Finally, let £ (f) denote the number of segments of fe .%,.

(a) partition step (b) local greedy search step

Figure 1.3 — (a) a Voronoi-like partition given a polygonal line (black solid line); (b) a
local greedy search region (blue points inside pink dashed circle), where the pink dashed
circle is a £9 ball with center A(x) and with radius @ (A;(x)); x is an observation in R?
and its 7 (x) is vg and vy, represented by asterisks.

Similar to online clustering, our goal is now to learn a time-dependent curve f; € &, which
passes through the “middle” of available observations (xs)1.:-1) and whose performance is
almost as good as the best “expert” curve in hindsight in &,, i.e.,

T T

E[AE < inf inf A(f R

t—;[ [ (t’xt)] kfil[[I},p]] f1€%p {t;l (7xt)+ T(f)} )
H )=k

where Rp(f) as small as possible, in particular sublinear in T'.
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1.3.7 Regret bounds for principal curves

Algorithms achieving the above goal can be obtained similarly as Algorithm 1.2 in online
clustering by considering the Gibbs quasi-posterior p;+1 now defined on %,:

pr+1(f) x exp(—=AS (D) n(f),

where n(f) is a prior on &, and

A N
S = S;_1(F) + A(f,x,) + 5(A(f,x»—A(f,:,xt))Z.

If an RIMCMC implementation is considered again for sampling randomized predictor
from ps4+1, it may take much longer time in this setting than in online clustering setting
since calculation of distance of a point to a polygonal line is more complicated: not only
distances of a point to all vertices of polygonal but also that to all line segments should
be computed. Therefore, in what follows, we shall rather consider a different procedure
linked to the mode of Gibbs quasi-posterior. At first, a simple calculation tells us that
the mode of quasi-posterior g;+1 equals to
t t
{ Y A xs)+ % Y (A x) - AGy,x) + ln’;(ﬂ }

s=1 s=1

argglin (1.19)

P

which contains a cumulative loss Zé:l A(f, xs) of prediction f in the first £ rounds, a term
%Zzzl (A(f,QCt)—A(i"t,xt))z controlling the variance of prediction f to past predictions fs,s <
t and a term Inn(f) which can be regarded as a penalty function of the complexity of £
if m is well chosen. If we regard each fe %, as an expert giving constant advice, then
(1.19) means to find a best expert. This mode hence has a flavor of following the best
expert or the perturbed leader in the setting of prediction with experts (see Hutter and
Poland, 2005 and Cesa-Bianchi and Lugosi, 2006, Chapters 3 and 4). Hence it makes us
to consider the following different procedure: at each t, the forecaster f; is given by

f = arginf{ E (h(f) - Zf)} ,

fe 7,

. t—-1 h

b, —arginf] Y Ax)+ 2D 2Ly (1.20)
feF, |s=1 n n

where h(f) is a positive penalty function of f€ &,, z¢ are i.i.d samples of distribution
n(z) = e ?li,>0; and 1 >0 is a parameter controlling the variance of algorithm. In this
procedure, we measure the complexity of f directly by a penalty function h. It is seen in
(1.20) that at each time, our prediction of polygonal line is the one minimizing the sum
of cumulative loss, a penalty term and a perturbed value. This penalty terms enables our
algorithm to avoid overfitting since otherwise it would always choose the most complicated
polygonal line. Moreover, the perturbed value z¢ enables us to choose at each time a
perturbed best “expert” (rather than the strict best one). It can help us to avoid a trivial
regret bound of the order T, as indicated in chapter 4, Cesa-Bianchi and Lugosi (2006).

Theorem 1.5. (¢f. Theorem 3.1) The procedure satisfies, for any sequence (x¢)1.7 €
B(0,VdR) with R >0

T _
E, [AG x| <1+ cole— DmSppn+ 0TI 1y ohd)|
n T] ) 777
t=1 n fe 7,
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where co = d(2R +6)2 and

St py= inf inf {ZA(fxt)+ ;ﬂ}

kellpl | feFp |37
K (H)=k

The expectation of cumulative loss of polygonal lines f,...,f7 is upper-bounded by the
smallest penalized cumulative loss over all & € {1,...,p} up to a multiplicative factor
(1+cole—1)n) and an additional term ((1+ cole—1)n)/n) (1 +1Ind gz, e_h(f)). The mul-
tiplicative factor before St , can be made arbitrarily close to 1 by choosing an n small

enough. In Chapter 3, we detail the choice of penalty function A which is advocated in
Barron et al. (1999), Birgé and Massart (2007) and Biau and Fischer (2012), and under

this choice of penalty function, (1 +InYfez, e_h(ﬂ) can be non-positive.

Theorem 1.6. (¢f. Corollary 3.1) Under the assumptions of Theorem 1.5, let n =

. 1 cip+coLl+cs . . .
mln{d(2R+5)2, oo Dinfres, ZthlA(f,xt)}’ then, with a penalty function h advocated by Biau

and Fischer (2012), we have

T
E[AG, < inf f A(, \/ 1
t:ZI [ ( t,xt)] k€1[[l},p]] fler}@ {Z £,x;)++/cole— )erL}
+4/cole=1)rp , 1 +2ecolcip +coL +c3),

where co = d(2R +6)?; r7kL = infgeg, ZthlA(f,xt)(qk +coL +c3); ¢1,c9,c3 are constants
depending on R,d,8 (we refer to Lemma 3.3 for their explicit form).

The regret of our procedure is at most of the order of VT since rrnL < colcik +coL +
c3)T for all £ =1,2,...,p. However we see that the optimal value for n depends on
inffe 7, ZleA(f,xt) which is obviously unknown a priori in practice. To make the above
procedure more practical, we provide an adaptive refinement of it.

1.3.8 Adaptive regret bounds for principal curves

Noticing that A(f,x,) is uniformly bounded by ¢g is x; € B(0,VdR) and fe Z,. Hence one
has

inf Z A(f, x;) < coT.

feffpt 1
Replacing inffe g, ZZ;I A(f,x;) by its upper bound ¢oT makes 1 depend on the time horizon

T (ie,n = nr). It hence allows us to choose an adaptive 7, similarly as the adaptive
choice of A; in online clustering. More precisely, an adaptive version of (1.20) is

fi = arginf{ l(h(f) - Zf)} )

fez, 7o

R t—1 h

b—arginfl Y A+ 2D 2L 4og
fez, |s=1 Me-1 M1

and we have a regret bound for it as follows:
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Theorem 1.7. (c¢f. Theorem 3.2) Under the assumptions of Theorem 1.6, if

1 . 1 y/cip+col+cs 121
0= =mim4§ —, ’ =41,
7 co e co coVie—1)t

then the above adaptive procedure satisfies

T T
;E (A}, x,)] < kelﬁi;]] flef(g; {t:ZIA(f,xt) +cov/(e—1DT(cik +caL + 03)}

K )=k

+ 200\/(e— 1T (c1ip +coL +c3)+3colcip +coL + c3).

The expected cumulative loss of polygonal lines fi, ..., fr is upper-bounded by the minimal
cumulative loss over all & € {1,...,p}, up to an additive term which is sublinear in T". The
actual magnitude of this remainder term is VET. When L is fixed, the number & of
segments is a measure of complexity of the retained polygonal line. This bound therefore
yields the same magnitude as (3.1) in Biau and Fischer (2012).

1.3.9 Implementation for sequential principal curves

To find £, at each time ¢, one needs to traverse all f in &, whose cardinality is O(R/5)?P.
A greedy search of f hence would be quite time-consuming and is hardly applicable in
practice especially when d and p are large. Since the speed of an algorithm may have
higher priority over its precision in practice, we instead resort to a strategy which can be
described as follow: given a polygonal line f; € %, ..L With k; segments, the new polygonal

line ft+1 is chosen, with a proportion € € (0,1), inside a neighborhood @/(ft) c UZijgk’L of

1, - In other words, when x; is available, the number k.1 of segments of f,.1 varies with
k; within at most 1 unit. Moreover, we can reduce the combinatories of ftﬂ to polygonal
lines whose vertices only differ with that of f; in a neighborhood of new observation x;.
The neighborhood consideration can therefore on the one hand simplify the computation
complexity and, on the other hand, control the variance of our sequential predictions
which is appeared in the second term of (1.19). In addition, the consideration of updating
principal curves in a neighbourhood with a proportion € <1 enables our algorithm to still
have the chance to explore the complement of neighbourhood.

More precisely, our procedure starts with a partition step which aims to identifying
the “relevant” neighborhood of an observation x € R% with respect to a given polygonal
line, and the proceeds with the definition of the neighborhood of an action f. We then
provide the full implementation and give a regret bound for it.

Partition For any polygonal line f with 2 segments, we denote by V = (vy,...,vz+1) its
vertices and by s;,i =1,...,k the line segments connecting v; and v;+1. In the sequel, we

use f(V) to represent the polygonal line formed by connecting consecutive vertices in V if
no confusion arises. Let V;,i=1,...,k+1 and S;,i =1,...,k be the Voronoi partitions of
R? with respect to f, i.e., regions consisting of all points closer to vertex v; or segment
s;. Figure 1.3a shows an example of Voronoi partition with respect to f with 3 segments.

Neighbourhood For any x € R?, we define the neighbourhood A (x) with respect to
f as the union of all Voronoi partitions whose closure intersects with two vertices con-
necting the projection f(sg(x)) of x to f. For example, for the point x in Figure 1.3a,
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its neighbourhood A'(x) is the union of S9,V3,S3 and V4. In addition, let A(x) =
{xs € N (x),s=1,...,t.} be the set of observations x1.; belonging to A4 (x) and A;(x) be
its average. Let (M) = sup, yeu 11— yll2 denote the diameter of set M c R%. We finally
define the local grid 25 ;(x) of x € R? at time ¢ as

D54(x) = B(N(x), D (Ny(x)) N Ls.

We can finally proceed to the definition of the neighbourhood % (f;) of f,. Assume f;

has ks +1 vertices V = (v1:4,-1,i,:j,-1,Vj:k,+1), Where vertices of (ii) belong to 25 (x;)
@) @) (€222) R

while those of (i) and (i) do not. The neighbourhood % (f;) consists of f sharing vertices

(1),(iii) with f;, but can be equipped with different vertices (i7) in 25 (x;), i.e.,

Ut;) = {f(V), V= (Ulzit—l,vlzm,l’jt:kt+1)},
where v1., € 25 :(x;) and m is given by

Jt—1i:—1 reduce segments by 1 unit,
m=x j;—i; same number of segments,

Jt—1i:+1 increase segments by 1 unit.

Moreover, if we regard each f as an expert, the consideration of updating f;,1 in the
neighborhood (f;) is equivalent to assuming that not all experts are available all the
times and that the set of available experts can vary at each time. This is a model known
as “sleeping expert” (or actions) in prior work (Freund et al., 1997, Auer et al., 2003,
Blum and Mansour, 2007, Kleinberg et al., 2008). In this setting, let us denote by o an
ordering of |%,| actions, and < an available subset of the actions at round ¢. We let
o(«;) denote the highest ranked action in <. In addition, for any action fe€ %, we define
the reward re¢; of f at round ¢,¢=1 by

res = co— A, x).

It is clear that r¢; € (0,co). The convention from losses to gains is done in order to facilitate
the subsequent performance analysis. The reward of an ordering ¢ is the cumulative
rewards of the selected action at each time, i.e.,

T
Z T'o(oty),t>
t=1

and the reward of the best ordering is max, Zthl oty (E[max, Zle To(aty),t] When of; is
stochastic).

Our locally greedy algorithm that incorporates sleeping experts can be described as fol-
lows: when ¢ =1, we obtain f; as the first principal component based on a small dataset
(x¢)¢=1,....t9, We set in addition estimation gy =rgq for all f€ &,; For t =2,...,T, the avail-
able set from which the action f; will be chosen is o = %(i’t_l)ﬂ{ltzo} +%pN1,=1y, where I;
is a Bernoulli variable with parameter 0 <e < 1. And

f, = 06" (),

where ' is a descending ordering of all fe€ &, according to their perturbed cumulative
estimated reward till ¢ - 1: Zi;ll Fes— ﬁh(f) + nt_l_12f,f € &, where ¢ are estimations of
reward regs whose exact values are given in Algorithm 3.3 in Chapter 3. Then we have
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Theorem 1.8. (¢f. Theorem 3.3) Assume that p >6 and T is sufficiently large with a
proper choice of parameters, then the above locally greedy algorithm satisfies

T
2 E[A(fx041)] < inf

t=1 D

T

> A(fx04s,)

t=1

+@(T%).

We refer to Theorem 3.3 for explicit form of constants. Note that since we use a small set
of data (x;)1., to obtain f1, the loss of each polygonal line at time ¢ is taken with respect

to x¢44, rather than x;. In addition, the algorithm achieves a regret of the order T i that
is sublinear in T but is slower than v/T. This is the price to pay for considering local
update of principal curve and for the use of estimation of rewards in the algorithm.

Numerical experiments

We show in this part the potential of our algorithm on a toy example where the data
set is constructed as follows: observations {xt eR%t=1,..., 100} are generated uniformly

along a curve y = 0.05 x (x —5)3, x €[0,10].

. . Cl.: ...: . * ‘l: ...;
‘: E :?o ‘: ..f :7’
oo’ ’ :‘l
or o
o % .
(a) t=65 (b) t =67

Figure 1.4 — A principal curve f;,1 (green) sequentially learned in consecutive time ¢ =
66,67 where the black dots represent data x1.; and the red one is the new observation

X¢+1-

Figure 1.4 illustrates respectively two sequential principal curves f;,1 (green line) in con-
secutive time ¢ = 66,67, where the black dots are observations x1.; and the red dot is the
new observation x;y1. We see that only vertex in the neighborhood of new observation is
changed whereas other vertices of principal curve remain the same. For examples on real
seismic data and daily commute data, we refer the reader to Section 3.5.

1.4 1iAdvize context and results

1.4.1 Introduction of iAdvize

Nowadays, although the number of website visitors is huge, only a few (about 2%) of them
would finally complete a transaction. In other words, the conversion rate is rather low
for many commercial websites. iAdvize is a company that is committed to helping the
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clients to increase their conversion rate. More precisely , it is a conversational platform
that integrates different channels (e.g., chat, call, social media etc) for the purpose of
connecting visitors and consultants with expertise. This connection, which comes into
being mostly via conversation, is quite useful for increasing the conversion rate since
consultants can accompany their customers to solve difficulties that may impede the final
transaction. For example, visitors may quit the website if they meet problems of payment
at the final stage of purchase; visitors, although having an intention to buy a cellphone,
may not complete their purchase since they hesitate between several cellphone marks
and cannot make a decision due to the lack of expertise. With the help of experienced
consultants, this kind of impeding is likely to be avoided.

iAdvize identifies those visitors that may need help by analyzing their behavior on the
websites such as their browsing time on a particular page, the amount of money in their
chart, the categories of goods that visitors are seeking etc. Once the behavior of a certain
visitor is consistent with several prefixed criteria, then this visitor would be targeted
and a channel enabling the visitor to connect to a consultant would be proposed. The
online clustering algorithm introduced above is dedicated to ameliorate and develop the
setting of criteria. It clusters firstly visitors into groups such that those with similar
behavior are in the same group. Then behavior information within and across groups will
be extracted and summarized to help the elaboration of criteria. In addition to online
clustering algorithm which will be detailed in Chapter 2, we present in the sequel two
other tasks that have been done within iAdvize.

1.4.2 Sentiment analysis for text messages

The first one is the sentiment analysis of social messages such as tweets and facebook
comments. Social text messages can often reflect visitors’ attitude (positive or negative)
towards a certain subject. Knowing such attitude especially the negative one is important
to our clients since consultants can interfere and give proper advises to visitors as soon as
possible, hence help our clients to decrease the unsatisfactory rate of visitors and improve
their services. In Chapter 4, we detail necessary procedures and techniques to fulfil the
task of sentiment analysis. The pipeline includes pre-processing of text messages, vector
representation of sentence and the use of classical supervised learning methods to predict
the sentiment of social messages. Pre-processing of raw text messages is preliminary and
important in sentiment analysis since raw messages, especially tweets and Facebook com-
ments, often contain a lot of noisy such as misspelling and abbreviation of words (e.g.,
bojour or bjr), special strings (i.e., urls, email, telephone, tag characters) and conjuga-
tion of verbs or nouns depending on the tenses, subjects etc. These noisy might have a
great impact on the prediction accuracy. Pre-processing aims therefore to reducing those
noisy contained in the raw texts via normalization methods such as regular expression,
replacement of special strings by particular tokens, lemmatisation and stemming. In ad-
dition, pre-processed text messages are needed to be transferred to numerical vectors such
that classification methods can work. Typical procedures which seeks to fulfil this task
include bag-of-words and tf-idf (i.e., term frequency—inverse document frequency). The
first one tries to represent a text (such as a sentence or a document) as the bag (multiset)
of its words, disregarding grammar and even word order but keeping multiplicity while
the second intends to reflect how important a word is to a document in a collection or
corpus. The tf-idf value increases proportionally to the number of times a word appears
in the document and is offset by the frequency of the word in the corpus, which helps
to adjust for the fact that some words appear more frequently in general. In Chapter 4,
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we use tf-idf as well as classical classification methods to compose a pipeline that can
attain an accuracy of over 66% in identifying the sentiment of French tweets and that it
outperforms a sentiment classifier already existing in pattern library of python.

1.4.3 Neural networks and chatbot

The second work is related to the creation of conversational agent (also known as chatbot).
Conversational agent is a system that can interact with customers by providing natural
conversations indistinguishable from human. It is founded that, on certain scenarios such
as delivery or payment, a large amount of conversations between visitors and consultants
have very similar structure: it begins with similar exchanges such as greetings, then may
proceed to the demanding the mode or reference of delivery, asking for additional question
concerning the date or the fees of delivery and finally ends with salutation. In order to free
the consultants such that they can have more time concentrating on more complicated and
specific questions such as asking for details or description of certain product, a chatbot
that is able to give automatically responses to simple and repeated questions is therefore
preferred. In Chapter 4, we give firstly a general introduction to chatbots, ranging from
their capability of handling different tasks to the underlying chatbot models. We also
present neural networks from the most basic prototype to the state-of-the-art derivatives
such as Long Short-Term Memory (LSTM) and Sequence to Sequence (seq2seq) model.
These models are designed for treading sequential data. The very first and typical applica-
tion of these models is to solve translation task between languages. It has also shown that
they achieve a great potential in building a chatbot (Vinyal and Le, 2015). Therefore, we
apply these model to build a chatbot in the delivery and payment scenario. However, the
sequence to sequence based chatbot is often generative, in other words, given a question,
the response is automatically generated word by word. It can lead to a possible problem
that the final generated response may not be in correspondent with linguistic convention.
To solve this, we design a score that can help us to choose the most consistent response
from a prefixed set of responses, given a question. Its performance is shown at the end of
Chapter 4.






A Quasi-Bayesian Perspective to
Online Clustering

We consider the problem of online clustering on arbitrary bounded deterministic se-
quences. We introduce a new and adaptive online clustering algorithm relying on a
quasi-Bayesian approach, with a dynamic estimation of unknown number of clusters.
We prove both regret bounds for the algorithm and lower bound in the minimax sense.
We also give an RIMCMC-flavored implementation called PACBO for which the con-
vergence is guaranteed. We also illustrate the performance of the algorithm in both batch
and online setting.

NOTA: This chapter is the full version (with extended proofs) of the paper Li et al. (2018),
published in Electronic Journal of Statistics.
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2.1 Introduction

The purpose of the present work is to generalize the framework of online learning in-
troduced in Chapter 1 to the clustering problem, which has attracted attention from
the machine learning and streaming communities. As an example, Guha et al. (2003),
Barbakh and Fyfe (2008) and Liberty et al. (2016) study the so-called data streaming
clustering problem. It amounts to cluster online data to a fixed number of groups in a
single pass, or a small number of passes, while using little memory. From a machine
learning perspective, Choromanska and Monteleoni (2012) aggregate online clustering al-
gorithms, with a fixed number K of centers. The present chapter investigates a more
general setting since we aim to perform online clustering with an unfixed and changing
number K; of centers. To the best of our knowledge, this is the first attempt of the sort
in the literature. Let us stress that our approach only requires an upper bound p to Ky,
which can be either a constant or an increasing function of the time horizon T.

Our main contribution is to generalize algorithms suited for supervised learning to the
unsupervised setting. Our online clustering algorithm is adaptive in the sense that it
does not require the knowledge of the time horizon T to be used and studied. The regret
bounds that we obtain have a remainder term of magnitude /T logT and we prove that
they are asymptotically minimax optimal.

The chapter is organised as follows. Section 2.2 introduces our notation and our online
clustering procedure. Section 2.3 contains our mathematical claims, consisting in regret
bounds for our online clustering algorithm. Remainder terms which are sublinear in T" are
obtained for a model selection-flavored prior. We also prove that these remainder terms
are minimax optimal. We then discuss in Section 2.4 the practical implementation of
our method, which relies on an adaptation of the RIMCMC algorithm to our setting. In
particular, we prove its convergence towards the target quasi-posterior. The performance
of the resulting algorithm, called PACBO, is evaluated on synthetic data. For the sake
of clarity, proofs are postponed to Section 2.5. Finally, Section 2.6 contains an extension
of our work to the case of a rescaled Student prior (inspired by Dalalyan and Tsybakov
2012a) along with additional numerical experiments.

2.2 A quasi-Bayesian perspective to online clustering

Let (x¢)1.7 be a sequence of data, where x; € R%. Our goal is to learn a time-dependent
parameter K; and a partition of the observed points into K; cells, for any ¢ =1,...,T. To
this aim, the output of our algorithm at time ¢ is a vector €; = (¢ 1,6s2,...,¢tk,) of K;
centers in R4t depending on the past information (xs)1.¢-1) and (€s)1.;-1). A partition is
then created by assigning any point in R? to its closest center. When x; is newly revealed,
the instantaneous loss is computed as

0(&;,x;)= min |&;p —xs|2 2.1
ty At 1=k<K, t,k t12, ( )

where |-|g is the £9-norm in R®. Note that ¢ can be interpreted as follows: given a set of
observations x1,x9,...,x;—1, the partition €; aims to separating the space R? into K, cells
and it allows us to classify future data into one of these cells. Moreover, it measures the
error of our prediction at each time since ¢; only depends on the information before the
arrival of x;. In what follows, we investigate regret bounds for cumulative loss Zthl 0(C4,x¢)
(or its expected version if #(€;,x;) are random). This cumulative loss gives us a global
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measurement of the ability (i.e., the quality) of our algorithm in prediction. It can be seen
as an analogue of the principle of studying the risk of an estimator in batch setting since an
online algorithm can be converted to a batch one by considering a strategy which draws its
prediction uniformly from sequential predictions or predicts as the average of sequential
predictions (Littlestone, 1989, Helmbold and Warmuth, 1995, Dekel and Singer, 2006,
Audibert, 2009, Gerchinovitz, 2011). Its risk then equals to the cumulative loss divided
by the number of all sequential predictions. Given a measurable space ® (embedded
with its Borel o-algebra), we let 22(0) denote the set of probability distributions on @,
and for some reference measure v, we let 2,(0) be the set of probability distributions
absolutely continuous with respect to v. For any probability distributions p,nm € 22(0©),
the Kullback-Leibler divergence £ (p, ) is defined as

Jolog (g—ﬁ) dp when p € 22,(0),

+00 otherwise.

Jf(p,n)={

Note that for any bounded measurable function A: ® — R and any probability distribution
p € 2(O) such that £ (p,m) < +oo,

—logf exp(—h)dr = inf {f hdp+lf(p,n)}. (2.2)
® pe2(0) |Jo

This result, which may be found in Csiszar (1975) and Catoni (2004, Equation 5.2.1), is
critical to our scheme of proofs. Further, the infimum is achieved at the so-called Gibbs
quasi-posterior g, defined by

. exp(—h)

P= Jexp(—h)dr &

We now introduce the notation to our online clustering setting. Let € = UZZIde for
some integer p = 1. We denote by q a discrete probability distribution on the set [1, p] :=

{1,...,p}. For any % € [1,p], let m; denote a probability distribution on R%. For any
vector of cluster centers ¢ € ¢, we define n(c) as
n(e) = Z q(k)ﬂ{ce[de}le(C). (2.3)

kel1,p]

Note that (2.3) may be seen as a distribution over the set of Voronoi partitions of R?:
any ¢ € € corresponds to a Voronoi partition of R? with at most p cells. In the sequel, we
denote by e € € either a vector of centers or its associated Voronoi partition (or partition
for writing convenience) of R? if no confusion arises, and we denote by 7 € (%) a prior
over €. Let 1 >0 be some (inverse temperature) parameter. At each time ¢, we observe
x¢ and a random partition ¢;4+1 € € is sampled from the Gibbs quasi-posterior

dps+1(e) x exp (— ASi(e))dn(e). (2.4)

This quasi-posterior distribution will allow us to sample partitions with respect to the
prior 7 defined in (2.3) and bent to fit past observations through the following cumulative
loss

A
Su(e) = S-1(e) + flex) + 5 (£(e,x0) - 0@s,x0))7,

where the latter one is a variance term. It is essential to make the online variance
inequality hold true for general loss ¢ with quasi-posterior distribution, i.e., no constraint
such as the convexity or boundedness is imposed on ¢ (as discussed in Audibert, 2009,
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Section 4.2). Sy(e) consists in the cumulative loss of € in the first ¢ rounds and a term
that controls the variance of the next prediction. Note that since (x;)1.7 is deterministic,
no likelihood is attached to our approach, hence the terms “quasi-posterior” for p;+1 and
“quasi-Bayesian” for our global method. The resulting estimate is a realization of P41
with a random number K; of cells. This scheme is described in Algorithm 2.1. Note
that this algorithm is an instantiation of Audibert’s online SeqRand algorithm (Audibert,
2009, Section 4) to the special case of the loss defined in (2.1). However SeqRand does
not account for adaptive rates A = A, as discussed in the next section.

Algorithm 2.1 The quasi-Bayesian online clustering algorithm

1: Input parameters: p>0,71€ 2(¢), A>0 and Sp=0

2: Initialization: Draw ¢; ~m = g1

3: For te[1,T]

4 Get the data x;

5 Draw €41 ~ pr+1(e) where dps+1(e) oc exp (- AS(e))dn(e), and

A
Si(e)=S;_1(e)+ l(e,x) + 5(4(c,xt>—e(ét,xt>)2.

6: End for

The randomness of partitions €;4+1,f = 1,2,...,T comes from two sources: the first one
is from the way €;+1 is sampled and the second one originates from p;y+; which de-
pends on all past randomized partitions &;,€;_1,...,€1, i.c., Ps+1(-) = Pr+1(1€s,€-1,...,€1).
When ¢€;,&;1,...,61 are fixed (i.e., conditionally on &;¢€;_1,...,€1), the quasi-posterior
P¢+1(-) is deterministic. In what follows, for any partition A : ¢ —— R, the notation
Ep..i [A(€:41)] is used to represent the conditional expectation of A(€;11) (with respect
t0 Pre1) ON &4,@5_1,...,81, i.c., Ep,, [M@1)] 2 Ep,,, [A(@1411€y,...,81)]. Moreover, the no-
tation E¢p, py,....p0.1)[R(€£+1)] denotes the expectation of h(€;4+1) with respect to the joint
distribution of €1,...,€;41, for example, E(s, p,)[h(€2)] = J h(eg)dpa(ézlé1)dpi(€1). In addi-
tion, let E¢~y stands for the expectation with respect to the distribution v of ¢ (abbreviated
as E, where no confusion is possible).

2.3 Minimax regret bounds

We start with the following pivotal result.

Proposition 2.1. For any sequence (x;)1.7 € RET, for any prior distribution m € 2(€)
and any A >0, the procedure described in Algorithm 2.1 satisfies

T T Ji/(p ﬂ)
Esy po....5,) 0 (€ < inf <Ee-~ 14 +—""
tzzl (01,02,--,0¢) (€¢,x4) peg}l(%){ c~p ,; (e,x¢) 1
A r N 2
+§[E(ﬁ1,...,ﬁT)[Ec~p Z[ﬁ(c,xt) - €(ct,xt)] .
t=1

Proposition 2.1 is a straightforward consequence of Audibert (2009, Theorem 4.6) who
gave an upper bound for the expectation of the cumulative loss of randomized prediction
functions in the regressing setting. We applied to the loss function defined in (2.1), the
partitions €, and any prior m € 22(%6).
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2.3.1 Preliminary regret bounds

In the following, we instantiate the regret bound introduced in Proposition 2.1. Distribu-
tion q in (2.3) is chosen as the following discrete distribution on the set [1,p]

exp(—nk)

k)= ———,
7 Zleexp(—ni)

n=0. (2.5)
When n >0, the larger the number of cells &, the smaller the probability mass. Further,
mp in (2.3) is chosen as a product of k2 independent uniform distributions on £g-balls in
RY:
k
r(¢+1) 1
dnk(c,R) = ( 2 ] ) (2R)dk H ﬂ{Bd(2R)}(c]) dC (26)

T 2

where R >0, I' is the Gamma function and
Bd(r):{xele, lezsr} (2.7)

is an ¢o-ball in R?, centered in 0 € R? with radius r > 0. Finally, for any % € [1, p] and any
R >0, let

€(k,R) = {c:(cj)j:L2 ,,,,, r €R c; # ¢ i # j,such that|c;|, sR,vJ'}.

Corollary 2.1. For any sequence (x¢)1.7 € R?T and any p =1, consider m defined by (2.3),
(2.5) and (2.6) with n=0 and R = max,—1,_rlxil2. If A =(d+2)/(2TR?), the procedure
described in Algorithm 2.1 satisfies

r dk 8R2AT
Z[E(mpz ,,,,, pnl(€s,x) < 1nf{ inf Zf(cxt)+ log( )+Qk

kell,p] | ce6(k,R) {o1 d+2 A
1 4
(ogp+i+81/1TR )’
A 22 2

Note that infce%(k,R)Zf:lf(c,xt) is a non-increasing function of the number & of cells
while the penalty is linearly increasing with k. Small values for A (or equivalently, large
values for R) lead to small values for k. The additional term induced by the complexity of
,,,,, P R is logp. A reasonable choice of A would be such that d/Alog(ATR?/d +2)
and ATR* are of the same order in T. The calibration A = (d +2)\/log T/2VTR?) yields
a sublinear remainder term in the following corollary.

Corollary 2.2. Under the previous notation with A = (d+2)y/1og T/(2VTR?), R = max;—1
and T > 2, the procedure described in Algorithm 2.1 satisfies

.....

T ) 2
ZIE(PIPQ pt)ﬂ(ct,xt)< inf { inf Zf(c X))+ (dd++n2)R k\/TlogT}

kell,p] | ce€(k,R) -

2R210gp dR? 81(d +2)R*
+( J12 Ta:at 1 )\/TlogT. (2.8)
Remark 1. If we assume T and R are constants, the reason that A is chosen to be of order
of magnitude of d here, rather than of Vd, is to guarantee that it satisfies the condition
A =(d+2(2TR?) in Corollary 2.1. However, if T is sufficiently large, e.g., T =(d +2)%/d,
then the choice A = +/dlogT/2VTR?) will satisfy the condition and will make the right
hand side of the above inequality grow linearly in V'd while keeping the order of magnitude
forT and R.

T 1x¢l2
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If we denote by Rr(e) the regret of our algorithm withe respect to ¢ € € in the first T
rounds, 7.€.,

T T
Rr(e)=Y 0@,x)- Y tle,xy),
t=1 t=1

.....

and Corollary 2.2 indicates that for any c€ €,

E[R7(c)] < ¢y q.r(lc| +1logp)\/TlogT,

where |e| denotes the number of centers of e and ¢, 4 g is a constant depending on ,d,R.
The above inequality shows that the expected regret of our algorithm with respect to e is
bounded by a quantity equaling to the sum of the number |e| of centers and logp times
VTlogT, up to a constant ¢, g r. Hence the supremum supec¢ E[RT(€)] of the regret of

our algorithm is at most ¢; q r(p +logp)\/TlogT.

In addition, let us assume that the sequence xi,...,x7 is generated from a distribution
with 2* € [1, p] clusters. We then define the expected cumulative loss (ECL) and oracle
cumulative loss (OCL) as

.....

T
OCL= inf Zﬂ(c,xt).
ce6(k*,R) {3

Then Corollary 2.2 yields

ECL-OCL= sup E[Rr(e)l<Jk*\/TlogT, (2.9)
ce6(k*,R)

where o/ is a constant depending on d, R and logp. In (2.9) the regret of our randomized
procedure, defined as the difference between ECL and OCL is sublinear in T'. However,
whenever £* > p, we can deduce from Corollary 2.2 that

T T
sup E[R7(e)]< inf inf l(c,x;)— inf l(c,x;)
cecg(klf,R) T kel1,p] ce%(k,R)t:ZI ‘ <:e<g(k*,1e)tzz1 o

2
+%k\/T10gT}+

R22logp+d) 81(d +2)R?
( 749 + 1 )\/TlogT,

where infcecg(k*’R)Z;F:l[(c,x,}) is the oracle cumulative loss (i.e., OCL) with £* clusters.

If there exists a k € [1, p] such that infcecg(k,R)Zz;lﬁ(c,xt) is close to OCL, then our ECL

is also close to OCL up to a term of order ky/TlogT. However, if no such % exists, then

2
the term %k v/ TlogT starts to dominate, hence the quality of bound is deteriorated.

Finally, note that the dependency in % inside the braces on the right-hand side of (2.8)
may be improved by choosing A = (d +2)y/plog T/(2vTR?) in Corollary 2.2. This allows
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to achieve the optimal rate v instead of k, since k/ NI vk for any k€ [1, p]. However,
this makes the last term in Corollary 2.2 of order of v/pTlogT. Note that the effort to
make the regret bound grow in vk, rather than VP for k € [1,p] may be achieved by
using a similar strategy to the one of Wintenberger (2017), which introduces a recursive
aggregation procedure with distinct learning rates for each expert in a finite set. Those
learning rates are computed with a second order refinement of losses (or a linearized
version when the loss is convex in its second argument) for each expert, at each time
round. The regret of his strategy with respect to best aggregation of M finite experts is
of the order of logM+v/TloglogT. However, the context for this procedure is not the same
as ours, as we resort to the Gibbs quasi-posterior which is defined on €, a continuous set.
In addition, we focus on a single temperature parameter A for the sake of computational
complexity since the second order refinement requires the computation of the expectation
of loss with respect to each expert in a finite set while, in our case, the “expert set” (i.e.,
%) is continuous, leading to the tedious computation of second order refinement.

2.3.2 Adaptive regret bounds

The time horizon T is usually unknown, prompting us to choose a time-dependent in-
verse temperature parameter A = A;. We thus propose a generalization of Algorithm 2.1,
described in Algorithm 2.2.

Algorithm 2.2 The adaptive quasi-Bayesian online clustering algorithm

1: Input parameters: p > 0,7 € P(€), (A:)o.r >0 and Sy =0
2: Initialization: Draw €; ~m = g1
3: For te[1,T]
4: Get the data x;
5: Draw €41 ~ pr+1(e) where dpss1(e) oc exp (- A;S¢(e))dn(e), and
As—
S4(€) = 81-1(0) + £le,x0) + = ({le,x0) ~ (&, x) ",
6: End for

This adaptive algorithm is supported by the following more involved regret bound.

Theorem 2.1. For any sequence (x¢)1.7 € RAT any prior distribution m on €, if (At)o.T 1S a
non-increasing sequence of positive numbers, then the procedure described in Algorithm 2.2
satisfies

r r K (p,TT)
E5: 5o 5)0(Cr,x:) < Inf < Eeo {(e, 2"
t:Z1 (p1.52,-p) € (€t X1) peg,}z(%){ c~p t:ZI (c,x) Ar
r At—l ~ 2
+Epy,....omEe~p 21—2 [4(e,x)— O(€s,x4)] .
t=

The technique used in the proof of Theorem 2.1 is standard (Cesa-Bianchi and Lugosi,
2006, Gyorfi and Ottucsak, 2007 and Gerchinovitz, 2011), where we apply Jensen’s in-
equality to control a telescopic formula.

If A is chosen in Proposition 2.1 as A = Ap, the only difference between Proposition 2.1
and Theorem 2.1 lies on the last term of the regret bound. This term will be larger in the
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adaptive setting than in the simpler non-adaptive setting since (A;)o.7 is non-increasing.
In other words, here is the price to pay for the adaptivity of our algorithm. However, a
suitable choice of A; allows, again, for a refined result.

Corollary 2.3. For any deterministic sequence (x;)1.7 € R2T, if ¢ and mp in (2.3) are
taken respectively as in (2.5) and (2.6) with n =0 and R 2 max,—1,__rlxle, if 1 =(d+
2)\/logt/(2VtR?) for any t € [2,T] and Ao = A1 =1, then for T =5 the procedure described
in Algorithm 2.2 satisfies

kell,p] ce%(k,R)tzl

2R%logp dR? 81(d+2)R?
+( d+2 d+2 2 )W'

T T 2d R2
S Epy g £@0,x0) < inf{ inf Zé(c,xt)+%k\/TlogT
t=1

Therefore, the price to pay for not knowing the time horizon T' (which is a much more
realistic assumption for online learning) is a multiplicative factor 2 in front of the term

M\/T logT. This does not degrade the rate of convergence /T logT.

In the next corollary, we use the doubling trick (Section 2.3, Cesa-Bianchi and Lugosi,
2006 and Cesa-Bianchi et al., 2007) to show how can we overcome the difficulty when a
priori bound R on the #9-norm of sequence (x;)1.7 is unknown.

Let us first denote by Rg=1, and for ¢ =1

R; = max 9 Moga(lxsly)]
s=1,...,t ’

where [x] represents the least integer greater than or equal to x € R. It is clear that
(R¢)=1 is non-decreasing and satisfies maxg—1, ;lxsle < Ry < 2maxg—q tlasle, t=1,2,...,.
We call epoch r, r=0,1,..., the sequence (¢,_1+1,¢,_1+2,...,¢,) of time steps where the
last step ¢, is the time step ¢t = ¢, when R; > R;, , take places for the first time (we set
conventionally ¢£_; =0). Within each epoch r =0, i.e., for t€[¢,_1+1,...,t,], let

_(d+2)y/logt

r,t — zﬂR?r_l

.....

Let Alg-R be a prediction algorithm that runs Algorithm 2.2 in each epoch r with

parameter A,;, then we have the following result
Corollary 2.4. For any deterministic sequence (x;)1.7 € R2T, if ¢ and mp in (2.3) are
taken respectively as in (2.5) and (2.6) with n1=0, the regret of algorithm Alg-R satisfies

T T 56(d +n)R2
S Epy g 0@0,x0) < inf{ inf Z((c,xt)+ik\/TlogT
t=1

ke[l,p] |ce€(k,R) (=1 3(d +2)
28 (2R?logp dR? 81(d +2)R? 112,
+— + + VTlogT +—R
3( d+2 d+2 2 ) oL T

where R =max=1,__ 1 |xl2.

Note that the price to pay for making our algorithm adaptive to unknown bound R is a
multiplicator % and an additional term 1—§2R2 in the regret bound.
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2.3.3 Minimax regret

This section is devoted to the study of the minimax optimality of our approach. The regret
bound in Corollary 2.3 has a rate /T log T, which is not a surprising result. Indeed, many
online learning problems give rise to similar bounds depending also on the properties of
the loss function. However, in the online clustering setting, it is legitimate to wonder
whether the upper bound is tight, and more generally if there exists other algorithms
which provide smaller regrets. The sequel answers both questions in a minimax sense.

Let us first denote by |e| the number of cells for a partition ¢ € €. We also introduce the
following assumption.

Assumption #(s): Let R >0 and T e N*. For a given s € [1,p], we assume that the
number of cells ‘c},R‘ for partition c}yR defined by the following

T
¢jp= argmin {Zé(c,xtﬂlcl\/TlogT}.

P —
ceUl_ €k.R) |t=1

* —
cT,R‘ =S8S.

Since (x¢)1.7 are uniformly bounded by R, c’T",,R always exists (Pollard, 1981). Note that
several partitions may achieve the minimum. In that case, we adopt the convention that
c}iyR is any such partition with the smallest number of cells. Assumption #(s) means
that (x;)1.7 could be well summarized by s cells since the minimum is reached for the
partition c;’R. We introduce the set

equals to s, i.e.,

wWsR = {(xt) such that A(s) holds} cRr4T,

For Algorithm 2.2, we have from Corollary 2.3 that

T T
sup { Z Ep1,p9,...,00¢(€s,%:)— inf Z Z(c,xt)} <cyxsy/TlogT,

(xewsr (=1 cEC(s,R) 1

where ¢; is a constant depending on R,d,p (recall that they are respectively the bound
on the £9-norm of sequence (x;)1.7, the dimension of data point and the maximum number
of cells allowed for clustering).

Then for any se N*, R >0, our goal is to obtain a lower bound of the form

T T
inf sup { Z E(o1,60,....00 ¢ (€4, %) —  inf Z E(c,xt)} =coxsy/TlogT,
€

P (xewsp (=1 ceC(s,R) =1

where cg is some constant satisfying ce < ¢1. The first infimum is taken over all forecaster’s

strategy pa (p¢)1.7 and the supremum is taken over all sequence (x;)1.7 € & T More
precisely, the strategy of forecaster is a sequence p1,ps,..., of functions p, : K1 —
2, where 2 is the set of all probability distribution over partition space ¥. Notations
(01,02,...,0¢) in the above expectation denote therefore probability distributions which
are values of forecasting strategy applied on available data, i.e., p; = p¢(x1,%2,...,%¢-1),t =
1,...,T. Here, we made abuse of notations by dropping these dependencies for writing
convenience. This formulation of minimax regret in online clustering can be regarded as
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a counterpart of minimax defined in prediction with expert advice (section 2.3 of Cesa-
Bianchi and Lugosi, 2006) and online regression (section 2.10 of Gerchinovitz, 2011). In
fact, one may consider each Voronoi partition ¢ as a constant expert. Next, we obtain

T T
inf sup Ep1.69....00¢ €, x:)— inf l(c,x;)
p (xt)ea)s’R {,; P1,02;--+,0¢ C€C€(S,R)tzzl

T T
> inf E,r { Y Eipypo,p (€, X)— inf ) [(c,Xt)} Nxpew, ) (2:10)
P =1 ce(s:R) 1= ’

where X;, t =1,...,T are i.i.d with distribution y defined on R and pT stands for the
joint distribution of (X7i,...,X7). Unfortunately, in (2.10), since the infimum is taken over
any distribution (p;), the number of cells of each partition €;,¢=1,2,...,T could be all
larger than s if s < p. Hence, the left hand side of (2.10) could be arbitrarily small or
even negative and the lower bound does not match the upper bound of Corollary 2.3. To
handle this, we need to introduce a penalized term which accounts for the number of cells
of each partition to the loss function ¢. The upcoming theorem provides minimax results
for an augmented value 77(s) defined as

T
Vr(s)=inf sup {Z[E(m,...,m) (f(ét,xt)+

P (xp)ewgp (t=1

V1ogT & |) _
VT

In (2.11), we add a term which penalizes the number of cells of each partition. To capture
the behavior (or asymptotic behavior) of 77(s), we derive an upper bound for the penalized
loss in (2.11). This is done in the following theorem which combines both upper and lower
bound for the regret, hence proving that it is minimax optimal.

Theorem 2.2. Let seN*, R >0 such that

T
inf Y e(c,xt)}. (2.11)

ce6(s.R) [

RTi
6log T'i

2<s<

m‘ , (2.12)

where |x] represents the largest integer that is smaller than x. If T satisfies T% >

8R24,/logT, then
2
sy\/TlogT (1 -—

T
The lower bound on #7(s)/T is asymptotically of the order of y/logT/v'T. Note that
Bartlett et al. (1998) obtained a minimax lower bound in batch setting with less satisfying
rate of 1/v/T, however holding with no restriction on the number of cells retained in the
partition whereas our claim has to comply with (2.12). This is the price to pay for our
additional y/logT factor. Note however that this price is mild as s can tend to +oo
whenever T or R does, casting our procedure onto the online setting where the time
horizon is not assumed finite and the number of clusters evolves along time.

s—1
14—
252

)SVT(S)Sconst. xsy/TlogT. (2.13)

As a conclusion to the theoretical part of the manuscript, let us summarize our results.
Regret bounds for Algorithm 2.1 are produced for our specific choice of prior 7 (Corol-
lary 2.1) and with an involved choice of A (Corollary 2.2). For the adaptive version
Algorithm 2.2, the pivotal result is Theorem 2.1, which is instantiated for our prior in
Corollary 2.3. Finally, the lower bound is stated in Theorem 2.2, proving that our regret
bounds are minimax whenever the number of cells retained in the partition satisfies (2.12).
We now move to the implementation of our approach.
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2.4 The PACBO algorithm

Since direct sampling from the Gibbs quasi-posterior is usually not possible, we focus on
a stochastic approximation in this section, called PACBO (available in the companion
eponym R package from Li, 2016). Both implementation and convergence (towards the
Gibbs quasi-posterior) of this scheme are discussed. This section also includes a short
numerical experiment on synthetic data to illustrate the potential of PACBO compared
to other popular clustering methods.

2.4.1 Structure and links with RIMCMC

In Algorithm 2.1 and Algorithm 2.2, it is required to sample at each ¢ from the Gibbs
quasi-posterior p;. Since p; is defined on the massive and complex-structured space €
(let us recall that € is a union of heterogeneous spaces), direct sampling from p; is
not an option and is much rather an algorithmic challenge. Our approach consists in
approximating g; through MCMC under the constraint of favouring local moves of the
Markov chain. To do it, we shall use resort to Reversible Jump MCMC (Green, 1995),
adapted with ideas from the Subspace Carlin and Chib algorithm proposed by Dellaportas
et al. (2002) and Petralias and Dellaportas (2013). Since sampling from g, is similar for
any t=1,...,T, the time index ¢ is now omitted for the sake of brevity.

Let (8™, e¢™)g<p<n, N = 1 be the states of the Markov Chain of interest of length N, where
E™ e [1,p] and ¢ e RI"™ At each RIMCMC iteration, only local moves are possible
from the current state (8™, e™) to a proposal state (k',¢’), in the sense that the proposal
state should only differ from the current state by at most one covariate. Hence, ¢™ € RaE™
and ¢ € R%*' may be in different spaces (B’ #£™). Two auxiliary vectors v, € R and
ve € R% with dq,dg =1 are needed to compensate for this dimensional difference, i.e.,

satisfying the dimension matching condition introduced by Green (1995)
de™ +dy =dE +ds,

such that the pairs (vi,e™) and (vg,¢’) are of analogous dimension. This condition is a
preliminary to the detailed balance condition that ensures that the Gibbs quasi-posterior
0¢ is the invariant distribution of the Markov chain. The structure of PACBO is presented
in Figure 2.1.

Let pp(-,cpr,7xr) denote the product of &’ rescaled Student distribution on R’

_34d

) leimewlz)
pk,(c,ck/,rk/): H CTk’ 1+6—2 de, (214)
Jj=1 T

where C;kl, denotes a normalizing constant. The rescaled Student distribution is a special
version of d-multivariate Student distribution (as presented in Kotz and Nadarajah, 2004)
by taking the degree of freedom v =38 and Z = 27%,1 d, where 1z >0 is a scale parameter
and Ig is the d-dimensional identity matrix, and ¢ j,j = 1,...,k" are mean vectors in
R? (we refer to Section 2.6 for detailed definition of rescaled Student distribution). Let
us now detail the proposal mechanism. First, a local move from 2™ to &' is proposed
by choosing &' € [E™ —1,£™ + 1] with probability g(2™,-). Next, choosing di = dF/,
do =dk™, we sample vy from py in (2.14). Finally, the pair (ve,c’) is obtained by

(ve,c') = g(vl,c(”)),
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pAL) c™
q(k(”) )/
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g (v1,e™)
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P p(nt+l) — p(n) ctD = () P

Figure 2.1 — General structure of PACBO.

where g : (x,y) € RIE x RAE™ (y,x) € R « RIF' g a one-to-one, first order derivative
mapping. The resulting RIMCMC acceptance probability is

since the determinant of the Jacobian matrix of g is 1. The resulting PACBO algorithm
is described in Algorithm 2.3.

A (n)
o (k™.e™). (k',¢)| = min{1, P (g k', E™)pjm (v2) | 0g (v1, ™)
P™)q(E™, ENpp(vy) | du10e™

—mind1 ﬁt(c,)q(k,,k(n))pk(n)(c(n),Ck(n),Tk(n))
T pie™)q(R™ R ppi(€ cpr, TRr)

2.4.2 Convergence of PACBO towards the Gibbs quasi-posterior

We prove that Algorithm 2.3 builds a Markov chain whose invariant distribution is pre-
cisely the Gibbs quasi-posterior as N goes to +oo. To do so, we need to prove that

the chain is gs-irreducible, aperiodic and Harris recurrent, see Robert and Casella (2004,
Theorem 6.51) and Roberts and Rosenthal (2006, Theorem 20).

Recall that at each RIMCMC iteration in Algorithm 2.3, the chain is said to propose a
“between model move” if &' # k™ and a “within model move” if &' = k™ and ¢’ # ¢™.
The following result gives a sufficient condition for the chain to be Harris recurrent.

Lemma 2.1. Let D be the event that no “within-model move” is ever accepted and & be
the support of p;. Then the chain generated by Algorithm 2.3 satisfies

p [DI (k“”,c“”) - (k,c)] -0,

for any k € [1, pl and ce R¥* &,
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Algorithm 2.3 PACBO

. Initialization: (1;)1.7

: For te[1,T]

. Initialization: (2 c¢©) e [1,p] x RAE. Typically 2@ is set to 2™ from iteration
t—1 (k=1 at iteration £ =1).

4: For ne€[1,N —1]

5: Sample k'€ [[max(l,k(”) — 1), min(p, 2™ + 1)] from g(B™, ) = %

6: Let ¢/ — standard k’-means output trained on (xs)1.(s-1)-

7: Let v/ =1//pt.

3

9

w N =

Sample vy ~ ppr(-,cpr, Tpr).
i Let (vg,¢) = gv1,e™),
10: Accept the move (", ¢™) = (E’,¢’) with probability

p(cNq(k', B ™) 00 (V2, i, Tm) | g (v1,e™)
" pele™)q(k™, ko (01, chr,Th) | Ov10¢™

_ min { 1 pr(eNgk' B ™) ppm (™, cpm, Tm) }

a (k(”),c(”)),(k’,c’))] :min{l

|

p1(e™)q(R™ k") pp(c,cpr,Th)

11: Else ((®+D ¢+D) = (2™ ¢y,
12: End for

13: Let &, =™,

14: End for

Lemma 2.1 states that the chain must eventually accept a “within-model move”. It remains
true for other choices of g(2™,-) in Algorithm 2.3, provided that the stationarity of p; is
preserved.

Theorem 2.3. Let & denote the support of p;. Then for any ¢¥ € &, the chain (c(”))LN
generated by Algorithm 2.3 is pg-irreducible, aperiodic and Harris recurrent.

Theorem 2.3 legitimates our approximation PACBO to perform online clustering, since
it asymptotically mimics the behavior of the computationally unavailable p;. To the best
of our knowledge, this kind of guarantee is original in the PAC-Bayesian literature.

Finally, let us stress that obtaining an explicit rate of convergence is beyond the scope of
the present work. Controlling the error between approximation algorithm and the target
is difficult though several work (Kalai and Vempala, 2002, Pérez, 2015) have addressed
it. For our RJIMCMC, even though we have proved that it converges to a stationary
distribution which is the target, it is an open question to know until which iteration the
chain becomes stationary. However, in most cases the chain converges rather quickly
in practice, as illustrated by Figure 2.2. Moreover, this algorithm has been put into
production at iAdvize and it works well on real data of several clients in helping them to
well-target online visitors. At time ¢, we advocate for setting 2© as 8™ from round ¢—1,
as a warm start.

2.4.3 Numerical study

This section is devoted to the illustration of the potential of our quasi-Bayesian approach
on synthetic data. Let us stress that all experiments are reproducible, thanks to the
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PACBO R package (Li, 2016). We do not claim to be exhaustive here but rather show
the (good) behavior of our implementation on a toy example.

Calibration of parameters and mixing properties

We set R to be the maximum #9-norm of the observations. Note that a too small value
will yield acceptance ratios to be close to zero and will degrade the mixing of the chain.
When calibrating A, recall that large values will enforce the quasi-posterior to account
more for past data, whereas small values make the quasi-posterior alike the prior. In order
to find an optimal value for it in batch setting, we consider A = ¢ x (d +2)\/log T/(2VTR?)
with different equidistant values in the range (0,R2) for coefficient ¢, and we choose
A =0.6 x(d +2)\/1og T/(2V'T) for its global performance on different models below on
minimizing the distances between test set and estimated centers. We keep this parameter
also in online setting. We illustrate in Figure 2.2 the mixing behavior of PACBO. The
convergence occurs quickly, and the default length of the RIMCMC runs is set to 500 in
the PACBO package: this was a ceiling value in all our simulations.

(a) Number of clusters. (b) Acceptance probability.

Figure 2.2 — Typical RJIMCMC output in PACBO. (a) plot of number of clusters £
(black solid line) at each n-th (n =1,...,N) iteration of RIMCMC and the red dashed line
indicates the true number of clusters of a Gaussian mixture model (Model 2) (b) trace
plot of acceptance ratio a™ along the 200 iterations, showing that the RIMCMC does
not get stuck to “only reject” or “only accept” patterns.

Batch clustering setting

A large variety of methods have been proposed in the literature for selecting the number
k of clusters in batch clustering (see Milligan and Cooper, 1985; Gordon, 1999, for a
survey). These methods may be of local or global nature. For local methods, at each step,
each cluster is either merged with another one, split in two or remains. Global methods
evaluate the empirical distortion of any clustering as a function of the number & of cells
over the whole dataset, and select the minimizer of this distortion. The rule of Hartigan
(1975) is a well-known representative of local methods. Popular global methods include
the works of Calinski and Harabasz (1974), Krzanowski and Lai (1988) and Kaufman and
Rousseeuw (1990), where functions based on the empirical distortion or on the average
of within-cluster dispersion of each point are constructed and the optimal number of
clusters is the maximizer of these functions. In addition, the Gap Statistic (Tibshirani
et al., 2001) compares the change in within-cluster dispersion with the one expected
under an appropriate reference null distribution. More recently, CAPUSHE (CAlibrating
Penalty Using Slope Heuristics) introduced by Fischer (2011) and Baudry et al. (2012)
addresses the problem from the penalized model selection perspective, in the form of
two methods: DDSE (Data-Driven Slope Estimation) and Djump (Dimension jump).
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R packages implementing those methods are used with their default parameters in our
simulations.

In this section, we compare PACBO to the aforecited methods in a batch setting with
n =200 observations simulated from the following 4 models.

Model 1 (1 group in dimension 5). Observations are sampled from a uniform distribution
on the unit hypercube in R°.

Model 2 (4 Gaussian groups in dimension 2). Observations are sampled from 4 bivariate
Gaussian distributions with identity covariance matriz, whose mean vectors are respectively
(0,0),(-2,-1),(0,4),(3,1). FEach observation is uniformly drawn from one of the four
groups.

Model 3 (7 Gaussian groups in dimension 50). Observations are sampled from 7 multi-
variate Gaussian distributions in R with identity covariance matriz, whose mean vectors
are chosen randomly according to an uniform distribution on [-10,101%°. Each observa-
tion is uniformly drawn from one of the seven groups.

Model 4 (3 lognormal groups in dimension 3). Observations are sampled from 8 multi-
variate lognormal distributions in R® with identity covariance matriz, whose mean vectors
are respectively (1,1,1),(6,5,7),(10,9,11). Fach observation is uniformly drawn from one
of the three groups.

Figure 2.3 and Figure 2.4 present the percentage of the estimated number of cells 2 on 50
realizations of the 4 aforementioned models, for 8 methods including PACBO. In each
graph, the red dot indicates the real number of groups. The methods used for selecting
k are presented on the top of each panel, where DDSE (Data-Driven Slope Estimation)
and Djump (Dimension jump) are the two methods introduced in CAPUSHE (Baudry et
al., 2012). The maximum number of cells is set to 20.

For Model 1 PACBO outperforms all competitors, since it selects the correct number of
cells in almost 70% of our simulations, when all other methods barely find it (Figure 2.3a).
For Model 2 Calinski, Hartigan, Silhouette and Gap underestimate the number of cells by
identifying 3 groups. Djump finds the true value & =4 less than 10%. PACBO identifies
4 groups in 60% of our runs (Figure 2.3b).

For Model 3 PACBO is one of the two best methods, together with Gap (Figure 2.4a).
For Model 4 where 3 groups of observations are generated from a heavy-tailed distribution,
we consider a variant of PACBO with the £1-norm in R?, i.e., we replace the loss in (2.1)
by €(€;,x¢) = minq<p<k, |é 1 — x¢|1. Figure 2.4b shows that most methods perform poorly,
to the notable exception of this PACBO(¢y).

Online clustering setting

In the last part, we have compared, in the batch setting, our method with 7 other methods
on different datasets. However let us stress here that none of the aforementioned methods
is specifically designed for online clustering. Indeed, to the best of our knowledge PACBO
is the sole procedure that explicitly takes advantage of the sequential nature of data. For
that reason, we present below the behavior and a comparison of running times between
PACBO and the aforementioned methods, on the following synthetic online clustering
toy example.
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Calinski Hartigan Lai Silhouette DDSE Djump Gap PACBO
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(a) Model 1.
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(b) Model 2.

Figure 2.3 — Histograms of the estimated number of cells on 50 realizations. The red mark
indicates the true number of cells.
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(b) Model 4.

Figure 2.4 — Histograms of the estimated number of cells on 50 realizations. The red mark
indicates the true number of cells.
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Model 5 (10 mixed groups in dimension 2). Observations (x:)¢=1,. r=200 are simulated
in the following way: define firstly for each t € [1,T] a pair (c14,c24) € R2, where c14 =
—gn+%” (L%J —1) and cg; = 5sin(c1,). Then fort € [1,100], x; is sampled from a uniform
distribution on the unit cube in R?, centered at (cx,t,Cy). Forte[101,200], x; is generated

by a bivariate Gaussian distribution, centered at (cxs,cy.¢) with identity covariance matriz.

In this online setting, the true number &} of groups will augment of 1 unit every 20 time
steps to eventually reach 10 (and the maximal number of clusters is set to 20 for all meth-
ods). Figure 2.5a shows ECL for PACBO and OCL along with 95% confidence intervals
computed on 100 realizations with T'= 200 observations, with A; = 0.6 x (d +2)+/log t/(2v/t)
and R =15 (so that all observations are in the fg-ball Ba(R). The experiment is replicated
100 times, yielding 100 estimates of the expectation (ECL). The confidence intervals are
drawn from the empirical 95% quantile. Jumps in the ECL occur when new clusters of
data are observed. Since PACBO outputs a partition based only on the past observa-
tions, the instantaneous loss is larger whenever a new cluster appears. However PACBO
quickly identifies the new cluster. This is also supported by Figure 2.5b which represents
the true and estimated numbers of clusters.

In addition we also count the number of correct estimations of the true number &} of
clusters. Table 2.1 contains its mean (and standard deviation, on 100 repetitions) for
PACBO and its seven competitors. PACBO has the largest mean by a significant
margin and identifies the correct number of clusters of about 120 observations out of 200.

Calinski Hartigan Lai Silhouette DDSE Djump Gap PACBO
34.02 (824) 63.72 (481) 52.23 (4.64) 72.44 (4.39) 22.73 (4.17) 38.38 (6.21) 56.73 (14.38) 119.95 (7.08)

Table 2.1 — Mean and standard deviation of correct estimations of the true number of
clusters.

Next, we compare the running times of PACBO and its competitors, in the online setting.
At each time t =1,...,200, we measure the running time of each method. Table 2.2
presents the mean (and standard deviation) on 100 repetitions of the total running times.
The superiority of PACBO is a straightforward consequence of the fact that it adapts
to the sequential nature of data, whereas all other methods conduct a batch clustering at
each time step.

Calinski Hartigan Lai Silhouette DDSE Djump Gap PACBO
46.86 (5.66) 39.27 (2.75) 52.07 (3.53) 118.44 (1.98) 33.85 (6.82) 33.85 (6.82) 207.55 (2.72) 28.13 (4.06)

Table 2.2 — Mean (and standard deviation) of total running time (in seconds).

For the sake of completeness, Appendix 2.6 contains an instance of the performance of all
methods to estimate the true number of clusters.

2.5 Proofs

This section contains the proofs to all original results claimed in Section 2.3 and Sec-
tion 2.4.
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(a) ECL (yellow line) and OCL (blue line) as function of ¢, with 95% confidence intervals (dashed
line).

2
|

(b) Estimated number of cells (red dots) by PACBO as a function of ¢. Black lines represent
the true number of cells.

Figure 2.5 — Performance of PACBO.

2.5.1 Proof of Corollary 2.1

Let us first introduce some notation. For any % € [1,p] and R >0, let

€(k,R)=4c=(ci)ic12. 1R ci#c: i+#j such that|c;|, <R,VYjt,
J7J=1,4,. J J 12

E(k,R) = {6 =)o, 0 €R*: 0 <& < RV}

We denote by pr(e,c,¢) the density consisting in the product of 2 independent uniform
distributions on #9-balls in R?, namely,

E(T(E+1)(1
dpr(e,c,&) = H{ 2 (5_
J

d
d ) H{Bd(cj,{j)}(Cj)}dC,
j=1 2
where c€ €(k,R), ¢{ € Z(k,R) and Bg(cj,&;) is an £2-ball in R? centered in ¢j with radius
¢j. In the following, we shall shorten pg(e,¢,&) to pr when no confusion can arise. The
proof relies on choosing a specific p in Proposition 2.1. For any k € [1, p], ¢ € €(k,R) and
(€ E(k,R), let p = ppliccpary- Then p is a well-defined distribution on € and belongs to



48 CHAPTER 2. A QUASI-BAYESIAN ONLINE CLUSTERING

2, (€). Proposition 2.1 yields

H(p,T)

T
E l(Cs,x;) < inf inf Ec- [f(e,x)]+
Z (01,02,...,06) ¢ \Ct, Xt kellpl  pe@y(€) c pt:zi t

P=PkL{cepdr)

A

+2[E(p1 ..... pT)lEc~pZ[£(c x¢) — 0(€4,x4)] } (2.15)

=1 J=12,...k
T
st;ljnlligk[Empk[(cJ Xt,Cj—%¢)]
T
<) min E Pk['cj ¢jly+2¢ci—cj 05 —ap) +|cj—xy ]
i—1J=1L sk

(2.16)

where the third equality is due to the fact that the expectation of ¢; under p is cj,
Jj=1,2,...,k. Let us now compute the second term on the right-hand side of (2.15).

K (p, ) —f log—)p(c)dc

n(e)
B pr(c) nr(e)
_f[de (log—nk(c)+log 2(©) pr(c)de

1
—J/(Pk,ﬂk)ﬂogm

=:A+B,

where

f‘rfl._‘

2
(s

Since the function x— (1 —e~™)/x is non-increasing for x >0 and 1> 0, we have

d

k

)d pr(e)de=d Z log(ﬁ) .
) j=1 J

o]

de

:c|"‘

“N(1—e NP
B zlog(%enk)
—e

<log (pe”(k_l))
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=n(k—-1)+logp. (2.17)

When =0, ¢ is a uniform distribution on [1, p], and the above inequality holds as well.
Then, # (p,m)/A in (2.15) may be upper bounded as follows:

J,’(p ) gk (ZR) nk—-1) logp
Ag T (2.18)

Finally,

A 2 2
14(c,xt) — 0(&,x)| = nlun le; —x¢l5 — rfnnK ICsj—x¢l5
J

..........

2
(2R+ nllax lxtlo| =:C1.

.....

Then, the third term of the right-hand side in (2.15) is controlled as

A r AT
PG pT)[Ee~ka[€(c %) — 0(&,x)1 <—C (2.19)
=1

Combining inequalities (2.16), (2.18) and (2.19) gives, for any ¢ € Z(k,R),

dT
Z[E(mpz ..... pnl(€sx)< inf  inf {Zﬂ(c xt)+d 5 max é?
)

kellpleceé¢kR) | =~ 7 d+2j=1,., k
/IT 1
+2 21 ( + 1 (k D+ 5C+ %8P
3 A
Under the assumption that A > (d +2)/(2TR?), the global minimizer of the function
Td k 2R
(C15-580)— 55 max, g‘ +— Zlog( ) (2.20)
d+2j=1,., ¢

does not necessarily belong to Z(k,R). A possible choice of ({;)1.x € Z(k,R) is given by

d+2
* _ X = ... = * = _
=4 “=\aar
Then (2.20) amounts to
d dk 8R2)LT)
— + —1log .
20 27 d+2

Hence,

dk 8R?AT\ 7
Z[E(p1 . pt)f(ct,xt)<k€1ﬁf;)]]c€%r(1kfm{Zf(c xt)+—lo ((d+2)k)+1k}

1
+( ogp+ d ATcz)
A 21
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2.5.2 Proof of Theorem 2.1

The proof builds upon the online variance inequality described in Audibert (2009), i.e
for any A >0, any p € 2,(€) and any x € R?,

1 _ A )—d(c 2
Ecr~pll(c, )] = T Eu-logEe-p e Adenicen-re )| (2.21)

By (2.21), we have

Z [E(p1 02 pt)[(ctaxt) = Z [E(p1 ..... [ 1)[Ept [[(ctaxt) | € Ci,.. ét—l]

.....

1 Y, M1 (g~ 08020021, A A
SZI[Eml ..... mn[—mﬁépmlogh% (e7Herttlems Tt e~ UEr) ])Icl,...,ct_l
t= -

[ T 1 e~ M-18:0) g5 c)

<Ep,,...om) Z— logf TS5 (
o1 A1 J e~ M-15-110d(e)
(I 1 v,

=Epy,..., ———1log

(p1,.-,0T) tzzi A1 W1

[ T

_[E(pl ,,,,, or) Z HIOth 1—K10th] (222)

where V; = E¢—y [e_”l“lsf(c)] and W; = Ecy [e‘AtSt(c)]. Applying Jensen’s inequality, for
any 1<t<T,
1

1
—logV; = ——logk,-
A1 og Ve = A1 0gLc~7n

A1
( e—atst(c)) At

A1

1 —AtSt(c) Tt
>m10g(ﬂfc~n )
1
= —logW,
1, 0g Wy.
Therefore, since Wy =1,
T
—logW;_1 — ——1logV, <——1 Wr, 2.23
;Atlogtlﬂt_logt 1 08 Wr (2.23)

and by (2.22), (2.23) and the duality formula (2.2), we have

|

T

1
/1 —logEc~xn

[ ¢~ ATST(©)

1
S - A/_].OgIECNT[ e

T
= inf E i((cx) +[E E i/lt_l([(cx)_g(é x))2
pez )| P& t c~pL(g1,....07) L , Xy £ X
A
N (p,n)},
Ar

which achieves the proof.
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2.5.3 Proof of Corollary 2.3

The proof is similar to the proof of Corollary 2.1, the only difference lies in the fact that
(2.19) is replaced with

(d + 2)02 V1og(t—1)
[E(p1 ..... pT)IEc ~0p Z [[(c xt) — g(ct,xt)] (1 + t:Zz ﬁ)
(d+2)02 \/10g2 Viegd Tzl rt | /logx
1+ + Z f dx
\/§ \/§ t=4 Jt-1 \/3_6
(d + 2)02

\/T ogT,
»\I;th Sftt_l '\lfa_chdx when t >4

2R?

where the second inequality above is due to the fact that

and the last inequality is deduced from the following with change of variable y = /logx,
i.e.,

fT—l \/@d f\/log(T—l) 9 ﬁ
x =
3

2y“ezd
\/E v/log3 Y Y
log(T-1) 2
< v/log(T - 1)[ 2ye 2 dy
log3

=2/log(T- D (VT -1-3).

2.5.4 Proof of Corollary 2.4

Let us denote by M the index of the last epoch and let #3y =T. We assume M =1 (other-
wise, the corollary follows directly from Corollary 2.3 applied with an upper bound R of
¢9-norm of sequence (x4)1.7). If Ry, <Ry, ,, then we have Rr = Ry, = Ry, ,, hence one al-

ways has Ry,, = Ry,, ;. In addition, since M = 1, we also have R;,, <2max;—1,__rlx:lo =2R.
Let us introduce for each epoch r,r =0,1,...,M the following notation
EO= T £l @ns,

t=t,_1+1

and for ke [1,p] , ce €(k,R)
t—1
L7, e)= Y. lle,xy).
t=t,_1+1

Within each epoch r=0,1,...,M, since

max lxslo < Ry, |, (2.24)

t=tr_1+1,t,—1+2,...,t,—1

then applying Corollary 2.3 to each epoch r can give us that, for each & € [1, p],

E"V- inf LY%%,e)=(Cd,mk+C(p,d)R;_ /(¢ —Dlog(t, - 1), (2.25)

C€<€(k ’Rtr—l

where C(d,n) = 2((;’3:2’7) and C(p,d) = 21<;gfz+d 81((é+2)-
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In addition, since all observations x;,t = t,—1+1,,...,¢,—1 in the epoch r are bounded
in a convex ball By (R, ,), centered in 0 € R? with radius Ry, , as indicated by (2.24),
we have for each ¢’ € €(k,R)\ € (k,R;, ,) (set of element in € (k,R) not in € (k,R;, ,)),
k=1,2,...,p that

inf  L7,e)<LT(k,c). (2.26)
ce6(k,R;,_,)

By (2.25) and (2.26), we can have that for any & € [1,p] and ¢ € €(k,R), the following
inequality holds,

EV-LO(k,e) < (C(d,mk+C(p,d))RZ_ \/(t, — Dlog(t, - 1).

Therefore, for any ¢ € €(k,R), one has

T T M M
Z[E(ﬁl ..... ﬁt)e(étyxt)_ZK(C,xt): Z (E(")_L(r)(k,C))+ Z ([E(ﬁl ..... ﬁtr)g (étr,xtr)—f(c,xtr))
t=1 t=1 r=0 r=0

M M
<Y [Cd,pk+C(p,d)| R} _\/(t,— Dlog(t,—1)+4) R}
r=0 r=0

M M
< ZO [C(d,pk +C(p,d)|R?_\/TlogT +4 ;)Rfr.

Since Ry, 22°"R;, for 0sr<s<M -1, then for ssM -1,

S S 4
Y R} <) 4R} <_R}.
r=0 r=0 3

Hence,
M 4 7
2 2 2 2
Y. R; <R + gRtM_l < gRtM’
r=0
M 4 28
4 R? <4 (—R?M_1 +Rt2M+) <R},
r=0 3 3
Therefore,

2 112
< 38 [C(d,mk+C(p,d)|R%/TlogT + ?32,

where R = max;—19, 7lx:l2 and the second inequality is due to the fact that R;, <2R.
Taking the infimum of ngzlf(c,xt) over the set €(k,R), k€ [1,p] leads to

I . , I 28 9 112 _,
tzzi[E(pl o)l (€4,20) < ce(lg?}gR);é(c,xt)+ 0 [C(d,mk+C(p,d)|R*\/TlogT + - B

.....

Finally, taking the infimum of the right hand side of the above inequality with respect to
k terminates the proof.
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2.5.5 Proof of Theorem 2.2

The proof for the upper bound is straightforward: by replacing the loss function ¢(e,x) by
the penalized loss £4(e,x) = ¢(c,x)+ale| with a = \/logT/v/T in the proof of Theorem 2.1,
we obtain

K (p, )
Ar

€27 (€)

T
Z éa(c)xt) +
t=1

Z [Epl ..... Ot (ét7xt) < inf {[Ec~p
0

T A,
+Epy... 5 Ee~p Ztlea(c,x»—ea(ét,xt)]Z

t=1

3

We now proceed to the proof of the lower bound. The trick is to replace the supremum
over the (x;) in 7p(s) by an expectation.

and choosing A = +/logT/V'T and p = Ti yields the desired upper bound.

We first introduce the event Qg g = {(Xl,...,XT) € RAT : guch that
is defined as in Assumption #(s). Then, we have

cTR‘ } where cTR

Vd1egT
VT(s)Zglf[EHT{Z[E(pI ,,,,, pt)(e(ct,Xm \/; |ét|) inf Zz(c Xt)} (Qs.r),
t

ceb(s,R) t

where ,uT € 2(R47) is the joint distribution of i.i.d. sample (X1,...,X7). Now, we have
to choose u in order to maximize the right-hand side of the above inequality. This is the
purpose of the following lemmas.

Lemma 2.2. Let se N*,s < p. Let pe PR?) o distribution concentrated on 2s fized
points F, = {zj,zi +w,i = 1,...,s} such that w = (2A,0,...,0) € R? with A >0 and that
21,...,2s € Bg(R). Suppose that for any i # j, d(z;,2z;) = 2AA for some A >0. Define u as
the uniform distribution over #,. Then, if A > V2+1, we have

arg min E,l(c,X)={z;+w/2, i=1,...,s}=:¢)..
gce%(ls,R) M( )=l ' s) #os

The proof of Lemma 2.2 is similar to Bartlett et al. (1998, Section III.A, step 3). The
next lemma controls the probability of the event Ic; rl#s with a proper choice of A% and
A in the definition of u.

Lemma 2.3. Let seN*, 2<s<p, and u is defined in Lemma 2.2. Then, if we choose
A=v2s+1 and
2(s—1)sy/logT \/logT
(A-12VT VT

then for any € >0 and T > 8s> log%, we have

P
Proof. For any k € [1,p], let e}, k firstly denote the optimal partition in €(k,R) that
minimizes the penalized empirical loss on (X1,...,X7), i.e.,

V1egT
c;,k:arg min {TZ/(c X:)+ el %8 } (2.27)

ce€(k,R) VT

*
cT,R‘ ;és) <e.
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Note that the optimal partition c;,s defined in Lemma 2.2 is also the partition mini-

mizing the expected penalized loss, i.e., cﬁ,s = argminge«(s,R) {[Euﬁ(c,X) + || ”\I/O;T} since

le| Y VIBT ¢ all ce €(s,R). Next

logT
7 equals to the same value s T

P(

2s

cialo)= 5. Pleial =1

3 o lernon) 5
<P %t;f(cz,w&% loiT)
ol 10?1’)_0, (2.28)

where the first inequality is induced by the definition of €7 p; the third inequality is due
to the fact that we have almost surely

T T T
Y l(epo Xi)= Y tler X =Y ek, 1. X, fork>s, (2.29)

Note that the first inequality of (2.29) is due to the definition of e, since it minimizes
the cumulative loss within all €(s,R), as indicated by the definition in (2.27) with & =s.
Note that since all e € €(s,R), values for |e| would be the same. The second inequality
is due to the fact that the number of 2 —1 of centers in e}, ; is not smaller than the
number s of centers in c;’s. ’

Moreover, the first equality in the last line of (2.28) is by Lemma 2.2 where we recall
that czj,s ={z1+w/2,z9 +w/2,...,zs + w/2} is the best partition under the uniform distri-
bution g and its minimum squared distance to each X; is A? (i.e., [(c;’s,Xt) = A2) since
X, t=1,2,...,T locate either on z; or z; +w. Finally, the second equality in this line is
due to the constraint (i.e., A2 < /logT/V'T in Lemma 2.3) imposed on the distance A
between z; and z; +w, i =1,2,...,s when we construct them in Lemma 2.2. The equation
(2.28) can be interpreted as follows: when the distance (i.e., 2A) between z; and its twin
z; +w is sufficiently small, then the increasing of the penalty term |e|y/TlogT in the
assumption #(s) by adding the number of centers in clustering will surpass the reducing

of Zz;lf(c,xt), hence it is impossible that c;’R will have number of centers bigger than s.

In order to control the probability IP(Ic’:; gl <), let us first consider the Voronoi partition
of R? induced by the set of points {z;,z; +w,i = 1,...,s} and for each i define V; as the
union of the Voronoi cells belonging to z; and z; + w. Let N; denotes the number of
X, t=1,...,T falling in V;. Hence (Ny,...,N;) follows a multinomial distribution with
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parameter (T,q1,92,...,9s), Where g1 =q2=---=qs;=1/s. Then

d

* —

k=1
E 1 (s —k)\/logT
< I]:D — f c* 7Xt _ [ c* ,Xt L BTRNVIOEL
k=1 (thzi (T,k ) T; (T,s ) \/T
Yp(ly 1 (s —k)y/TogT
< I]:D — [ c* 7Xt _ [ c* ,Xt < BTRIVI0ES
k=1 (thzi (T’k ) Tl; (“’S ) T
1 —k)\/IogT
S<S-1>P(— min N;-(A- 17202 - p2 < S - RV 18T vog)
Ti:l ..... S \/T
TA2 +(s—1)\/TlogT
<(s=1)sP|N; < (s-1)y/TlogT .
(A —1)2A2

The third inequality is due to the fact that Z;:’;lﬁ (c;,k,Xt) >min;—; s N;(A—1)2A2 for
k < s, and the last inequality holds since the marginal distributions of the N;s (i =1,...,s)
are the same binomial distribution with parameter (7',1/s). Finally, we can bound the
last term by Hoeffding’s inequality, i.e., for any ¢ >0

.....

22
PN —-EWV1) < —t)SzeXp(—?).

Hoeffding’s inequality implies that if s > 2,A = v/2s+1, T > 8s2 log# and A2 > 26" DyloeT

(A-12VT
then
TA2+(s—1)\/TlogT)< €
_2.
S

PNy <
( ' (A—1)2A2

O

Next, we proceed to the proof of Theorem 2.2. First of all, since (Xq,...,X7) are i.i.d,
following the distribution p and by the definition of Qg g, we can write

. a ) logT .
inf E,r4 Y Bip, o | £@0 X0+ —o—ledl | §1(Qur)
(Pt) t=1 T

logT
T

(f(ét,XtH étl) 1(Qs,r)

T
=inf E,,..,p7) Z E,r
(pr) t=1

T
>E,r { Y 0@, X))+ v/TlogT|él } 1(Qsr)
t=1
y { [(c;,R,Xt)+s\/ TlogT} 1(Qsr)

T
>k, r t:zi
>E,r {téz(c;ﬁ,xt)} (1-1(QC%)) +svTlogTP (04 £)
>E,r {téz(c;ﬂ,xt)} - TA%P(QSp ) +5v/TlogT (P(Qs ) ~ P05

>T _inf Eul(c,X)- TAZP (Qg{R) +5\/TlogT (u» (Qsr)-P (QgR)) ,
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where € in the first inequality is given by
¢ = argmink,z |(£(c, X,)+ el Iog T/VT ) Ay p)|
ce€

Note that ¢ does not depend on ¢ since X;,t =1,...,T are i.i.d and u is a symmetric
uniform distribution (definition in Lemma 2.2). The second inequality is due to Jensen’s
inequality and the fourth inequality relies on the fact that with the definition of c;’R and
w1, we have almost surely that

T

T
Y 0(ep.Xi) <Y ¢(e s Xi)+5V/TlogT = TA? +5/TlogT,
t=1

t=1

where A > 0 is related with the choice of p in Lemma 2.2 and its value is constrained
according to Lemma 2.3. Then we obtain for any € >0

T VlegT
inf E Eco, . 50 0(@:,X,) + &/ 1(Qsp)=T inf Eul(c,X)—TeA?
inf ,ﬂ{; (1,p (€2, X1) 77 €l ¢ 1(Qs.r) oeiBf o Eu (c,X)-Te

+sv/TlogT(1-2¢). (2.30)

Moreover, by Jensen’s inequality

T
E inf (e, X)) 1 Qs <T inf E,l(c,X). 2.31
ut ce%r(ls,R)t:Zi (e, X¢) ( ’R) ce<1€I(ls,R) # (e, X) ( )
Combining (2.30) and (2.31), we obtain
TA?
Vs = sy/TTogT | 1-2¢ |1+ VT2 _|]. (2.32)
2s4/logT

Furthermore, by taking e = 1/T and choosing the minimum value of A? allowed in Lemma 2.3,

(2.32) yields

Finally, we need to ensure that s pairs of points {z;,z; + w} can be packed in Bgy(R)
such that the distance between any two of the z;s is at least 2A. A sufficient condition
(Kolmogorov and Tikhomirov, 1961) is

s—1
252

2
VT(s)zs\/TlogT(l—— 1+

T

(R —2A)d
s=< .
2AA

If A<R/6 (which is satisfied if T is large enough), the above inequality holds if
R d
Sy
3AA

As A=+v2s+1 and A% < /logT/V'T, we get the desired result.
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2.5.6 Proof of Lemma 2.1

Let D, denote the event that no “within-model move” is ever accepted in the first n
moves. Then Dy = DVithiny pbetween ' whepe pWithin gtands for the event that a “within-

model move” is proposed but rejected in one step and Dg’etween that a “between-model
move” is proposed in one step. Then we have

P|D1|(2?,c?) = (k,c)] =P [k' #kl(k,c)] + P [k’ = k,but rejected|(k,c)]
2 1

=— 4+ —

3 3

)

1- f a[(k,c),(k,c)| pr(c,cp,71)de’
RAk

where

a[(k,e),(k,¢")] = min {1 pilc )Pk(c,ck,rk)}

" pe(e)pr(e’,cr, Th)
=min{1,A;(c'|(k,e))}.

Under the assumption of k' = &, we have that ¢/,c € R%  therefore the restriction of p; to
R?* is well defined. Moreover, by the definition of 7, in (2.6), the support of the restriction
of p; to R is R¥* n& = (B4(2R))*. Hence the function (¢/,¢) — ks (c'|(k,¢)) is strictly
positive and continuous on the compact set (Bz(2R ))k X (Bd(2R))k. As a consequence, the
minimum of ht(c’ I(k,c)) on (Bd(2R))k X (Bd(ZR))k is achieved and we denote it by my,
i.e.,
my = inf  h(c/I(k,e))>0.
¢’ ,ce(By(2R))*

In addition, due to the continuity and positivity of pp on R% it is clear that for any
ke[l,pl

2n :f Ok (c’,ck,rk)dc’>0.
(Ba(2R))*

Therefore, for any &,
k,e),(k,c' ' de¢’ = inf
fde a((k,e),(k,c)] pr (¢, ck,72) de k(_zl[[ripﬂ(mkzk)
=:m” >0.
Hence, uniformly on & € [1, p] and ¢ € R¥* N &, we have,

P[D1l(k,e)] < g + %(1 -m*)| <1.

To conclude,

2 1 "
PIDI(k,e)]= lim PID,|(k, )< lim |<+2(1-m*)| =0,

2.5.7 Proof of Theorem 2.3

For any ¢ € &, there exists some & € [1,p] such that ¢ € (Bg(2R))* c &. For any k' €
[k—1,k+1] and for any A € & (de,) such that p;(A) >0, the transition kernel H of the
chain is given by

H(c,c' € A) = f l{vleA}a [(k,c), (k',vl)] q(k,k,)pkl(vl, Ckl,Tkl)dvl + r(c)6c (A), (2.33)
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where ppi(-, ¢, Tpr) is the rescaled Student distribution in (2.14) and

rie= ), q(k,k’)f(l—a[(k,c),(k’,vl)])Pk/(vhckwk/)dvl
k'e[k-1,k+1]

is the probability of rejection when starting at state e, and () is a Dirac measure in
c. One can easily note that H(e,¢' € A) in (2.33) is strictly positive, indicating that the
chain, when starting from e, has a positive chance to move. Therefore, for any A € B(%€)
such that p4(A) >0, we can prove with the Chapman-Kolmogorov equation that there

exists some m € N* such that
H™(e,A)>0,

where H™(e,A) = me_l(y,A)H(c,dy) is the m-step transition kernel. In other words,
the chain is gs-irreducible. Finally, a sufficient condition for the chain to be aperiodic is
that Algorithm 2.3 allows transitions such as {(£®*D,e*V) = (£ ™)}, i.e.,

pe(eNg(', B ™) (€™, cpim, Tpm)
Pi(e™)q(R™ kN op(e!, e, Th)

P« < 1) >0.  (2.34)

™ M), (k’,c')] < 1) - nm(

Since for any ¢’ € A c B (de’) N&° such that P(¢'€ A) = [, pr(c/,cpr, Tr)de’ > 0, we have
p:(e')=0, (2.34) holds. Therefore,

( p:(g ', E™) (€™, ¢inr, T i) .

~ 1|=P(c’€eA)>0.
p(e™)q(R™ kN ppi(e’,cpr, Thr)

The chain is therefore aperiodic. Finally, the Harris recurrence of the chain is a con-
sequence of Lemma 2.1 (based on Roberts and Rosenthal, 2006, Theorem 20). As a
conclusion, the chain converges to the target distribution p;.

2.6 Appendix

For the sake of completeness, this appendix presents additional regret bounds for a dif-
ferent heavy-tailed prior. Doing so, we stress that the quasi-Bayesian approach is flexible
in the sense that it allows for regret bounds for a large variety of priors.

A d-multivariate Student distribution (as presented in Kotz and Nadarajah, 2004) is
defined as the ratio between a Gaussian vector and the square root of an independent y2
with v degrees of freedom and has the density

_uid
2

(g o NTs-1(e
(5% [1+(x W ETH(x u)] ’

VORI v

where u,Z,v are parameters. Here, we consider a different distribution: a rescaled Student
distribution with v =38 and X = 27214, where 7 >0 is a scale parameter and I is the d-
dimensional identity matrix. This distribution has the density
a+3
59

T(3)3%7%(212)%

, (2.35)

where Ag; stands for the renormalizing constant. In this setting, the parameters for
our rescaled Student distribution are the mean vector p and the scale parameter 7 > 0.
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This rescaled Student distribution is a generalization of the prior introduced by Dalalyan
and Tsybakov (2012a) where a product of univariate Student is considered and serves to
enforce sparsity (since it is heavy-tailed).

Let us consider mp, as a product of £ independent truncated rescaled Student distributions
in R?, namely, for any ¢ € R* c ¢,

3

Y3 ~ IC.|2 T2

drx(e,70,2R) =[] {Cﬂ%,m (1+£) Il{cJ2<2R}}dC, (2.36)
J=1 0

where 79 >0 and R > 0 are respectively the scale and truncation parameters, and Cag r,
is the normalizing constant accounting for the truncation. When R = +o0, (e, 79,2R)
amounts to a distribution without truncation. In the following, we shorten (e, 70,2R)
to m whenever no confusion is possible.

Denote by v the rescaled Student distribution in R?, with mean vector 0 € R? and scale
parameter 1. Fix k2 € [1,p], R >0 and ¢ € €(k,R), and recall that Z(k,R) denotes the
hypercube in R* defined by

.....

For any k€ [1,pl, ce R* c ¢, ce €(k,R), £ € Z(k,R), 0 <12 <+v3R%(6Vd) and R >0,
we define the probability distribution p on R% by

72

J=1

i -1 lej—cjla o
pr(e,c,1,8) = H ij,r ]_+6— ﬂ{ch'—CJ‘I2Sfj} , (2.37)

where Cg; ; are normalizing constants defined as Cs¢,; =P (|vlg < &/ V21)/Agr, where Ag ;

.....

denote the rescaled Student distribution without truncation. In the sequel, we shall
shorten pr(e,¢,7,¢) to pp whenever no confusion is possible.

Lemma 2.4. Assume that q and mp in (2.3) are defined respectively as in (2.5) and
(2.36), and that py, is defined as (2.37) for each k € [1,pl. For the probability distribution

p(e,c,7,8) = 1igeparyprle,c,7,8) defined on €, if R 2max,—1 . 1l|xl2, then
k[3+d Y d.
J{(p,n)sj;[ 5 log(1+@ —Elogfj —klogcey

Y* leils
+(3+d)klog(1+l+ =1

——— | +kdlogTg +1logp +n(k —1).
To \/Ekro ) g7T0 gp+1

Proof. By the definition of the Kullback-Leibler divergence, we have

1
H(p,m) =K (pp,np) +log—— =: A +B, (2.38)
q(k)
where
k 2 2 _%
Corqy [T 6T +lIcj—cjl5
A:f log — | —= r(c)de

Rk Jl:[1 ng,r 72 6T%+|Cj|§ P
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Coryo 3+d k (ﬂ 672+ |c;j12

k
=>lo (e)de
Jg' 8 Ce¢r dez’ T%6T2+|0J-—cj|§)pk

k [FD |V|2S 3 d 2 6-[ + e ;
- Zlog—( “ff,") +hdlog 2+ 2 f Z (T il
=1 P (Iv)|2 < ﬁ) To 67°+|c; - J|2

=:A1+Ay +A3. (239)

2
|

) pr(c)de

By the definition of the rescaled Student distribution v,

3+d

r 3+d 2\" 2
(|v|2 < j_—) :f : 3( 2 )i (1+ |‘;’3|2) dv
21/ Jivhb=7L T(3)(3n)%

2 _% 3+d

5 50
AL

67 T(3)3m)z Jvl=f

V2r
AR
= g1 (1+GT’2 &,

2]

. Hence, the term Aj in (2.39)
r(3)r(¢+1)e

where I'(:) is the Gamma function and cqg =

[\VISH

verifies

k
Aq=FklogP (IVlz < 2R ) - Z logP (lV)|2 = 6_)
To/  j=1 Var

ilogﬂj’(lvl j_—)

k 3+d &\ d
; ( +é —Elogff +kdlogT —klogey. (2.40)
In addition, we have
675 +1c;l3 _ 1, 2lejle 2V6rle; —cjlo lcj13 5
612+lci—cjl2 T 2v6r612+|c;— ;3 612+|c; ¢l T
_q, ez |c,-|§+r0 (1 Iejl2 10)2
VBr 672 NG

where we used the Cauchy—Schwarz inequality. Due to the above inequality, the term Ag
n (2.39) satisfies

A3<(3+d)leog(1+i+ 612 )pk(c)dc
V6T
T Z_1|Cj|2

<(3 dkfl — 4
=3+d) og( +—t N )pk(c c

— 3 +d)klog|1 Ly Lotz (2.41)
= + +— . .

8 \/_kTo

Combining (2.38), (2.39), (2.40), (2.41) with (2.17) completes the proof. O



2.6. APPENDIX 61

Corollary 2.5. For any sequence (x¢)1.7 € RAT forany A >0, if ¢ and mp in (2.3) are taken
respectively as in (2.5) and (2.36) with parameter n=0, 79 >0 and R = max;—1__r|x¢l2,
Algorithm 2.1 satisfies, for any 0< 12 < (V3R2)/(6Vd),

r kd
77
E f f —1 —+ =
Z (102,90 £ (€1, %) < ktilﬁ p]]ce‘lgr(lk R){Z fems Og cqrT /1k
3+d)k Yjqlejlz) 1 AT 51
PC R PO = it Iy ey o eyl O 5+ %8P
5 F(%) 1/d
where Cl = (2R +maxg=1..T |xt|2) and Cd = (W)
Proof. By Proposition 2.1,
Z[E (@é,x)< inf  inf {E i[[(cx)]+m
(01,02,---,0¢) try Xt kellpl  pedy(€) c~p = s X 1
p=Pk 1 cpdr,
A
+§[E(p1 ..... pr)Ee~p Z[ﬂ(c X)) — f(ct,xt)]
(2.42)
As in (2.16), the first term on the right-hand side of (2.42) may be upper bounded.
T
Y Ee-pllle,x)] < Z fim,x)+T max, &. (2.43)
t=1 =1 7L
For the second term in the right-hand side of (2.42), by Lemma 2.4,
k 2
H 3+d)k Yiqlelz) 1 & 3+d i\ d
(p.m) B+d) log|1+—+=C 12 —Z 1+—L |- =1logé?
A A T V6kTg Az 612 2 J
kd k 1
+Tlogro—xlogcd+%(k—l)+ Oi (2.44)

Likewise to (2.19), the third term on the right-hand side of (2.42) is upper bounded by

A I . o AT
§[E(ﬁ1 ,,,,, ﬁT)[ECNPk Z[f(c,xt) —0(Cs,x)]° < 701 (245)
t=1

Combining inequalities (2.43), (2.44) and (2.45) yields for ¢ € Z(k,R) and 0 < 72 < V3R?/(6Vd)
that

d B+d)k T Z 1|C]|2
2, “j=117J1=
Z Eipup.np{ @00 < inf ceéﬂfm{ Y (e x)+ &+ ————log |1+ — MV
&\ d kd k
2, J 2
+TJIIia)f f ZIO ( —2)—ﬁglog€j+TIOgTO—ZIOng‘l'(k—l)
/1T logp

C2

A
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Let &= ¢2/61° for any j=1,...,k, then 0 <&; < R%/67% since ¢ = (¢;)j=1,..k € E(k,R). This
yields

62
T{I}axkfj+—21 (1+6—2)——Zlog€

d 1 kd
= 672T n}axkfj Zlog 1+6J Zlog(1+gt )——log(612)
J

""" ZA/
d &1 kd
672T — — —log(67?
<67 mi%kfj 2/125] 2112193' o 108(677)
3k d &1
<|672T+— ; ———1 6 2.46
<( T +2/1)]£Iia.'.)fk£'] 2/11216]- 51 0g(672). (2.46)

The minimum of the right-hand side of (2.46) is reached for

. . kd R? 3R?
=== ————— <, if0<12s\/_ )
1272TA+3k ~ 672 6vd

Therefore for a fixed &, ce €(k,R) and 0 < 2 < ‘(/5—\/11 ,

j=1,..., ‘L'

. G\ o4&,
feé%fR {T max{ +—Zl ( )—ﬁj;logéj}

1 kd
< 1\/kd(1212m+3k)— ﬁlogGTz.

Hence

Yk lcile
Z[E(plp2 ,,,,, sol(@s,x) < inf inf {Zz( X))+ (3+d)k (1+1+L)

kell,p] cc€(k,R) V6kTg
kd T0 n AT o logp
+=VEkd(1212TA+3k)+ —1 +=(k-1 —C .
7 Vhddiz "X e T2 )} 7
which concludes the proof. O

Tuning parameters A, T and 1 can be chosen to obtain a sublinear regret bound for the
cumulative loss of Algorithm 2.1.

Corollary 2.6. For any sequence (x;)1.7 € R, under the assumptions of Corollary 2.5,

z'fTzmax{Z,Tg\/g/(ﬁch?i/d)}, =(d +2)/log /(2\/_R2) 12 =12/(6Tc%?) and n=0,
Algorithm 2.1 satisfies

3 (6+2d)R* VT 1 Zh el
Es 0(Cs,x) < f f l(c k log|1+ +
T P R e

2 oWT 2R?1 1 2)R?
AR e, VTR \/3k2d+kd12(0d) 1d ( R logp | Sl@+ 2R )\/TlogT,
d+2 Vv (d+2)logT d+2 4

r(3d) )l/d

where cq = (—r(%)r(%ﬂ)
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If we compare the regret bound in this result with the one in Corollary 2.2, we see that
both last terms outside braces have the same order of /TlogT. Inside the braces, due
to the different prior (2.36) which is considered here, an additional term

VT log 1 1 Z?:1|Cj|2

+ +
V1egT ch% V6ETg

appears. If the scale parameter 7¢ in the prior (2.36) is small, say 19 < 1/T, the logarith-
mic term will be of the order of logT, hence this additional term is of order /TlogT.
Moreover, the smaller the value of 1¢, the larger the coefficient before &, indicating that
a smaller number of clusters & is preferred, which is consistent with the sparsity-inducing
prior assumption since the sparsity is decided by 7y.

k

In the adaptive setting (Algorithm 2.2), applying Theorem 2.1 to the specific ¢ and mp,
in (2.5) and (2.36) leads to the following result.

Corollary 2.7. For any deterministic sequence (x:)1.7 € RET | under the assumptions of

Corollary 2.5, set T = max{2,r%\/g/[\/§chfi/d)}, A= (d+2)y/logt/(2VtR?%) andn =0 and
Ao =1. Then Algorithm 2.2 satisfies

T
Z[E(pl 02,01 pt)f(ct,xt)< inf inf {Zf(C, x¢) +

kell,pl ce€(k,R)

k(d+n)R2 2VTR
+—— " \/TlogT + ———
d+2 g (d+2)logT

6+2d)R%, VT 1 Xhilel
k log|1+ -+
d+2  /logT cqTz:  V6k1g

2 2
\/3k2d + kd13(ca)" W} (zii°§p+81(d;2m )\/TlogT,

Vd
r(3sd) )

where ¢cqg = (—r(%)r(%ﬂ)

Proof. The proof is similar to the proof of Corollary 2.5, the only difference lies in the
fact that (2.45) is replaced by

[E(p1 ..... pT)[Ec~pk Z [tﬂ(c xXt) — [(Ct,xt)] =< Cz\/ TlogT.

]

For the sake of completeness, we present in Figure 2.6 the performance of PACBO and
its seven competitors for estimating the true number k& of clusters along time. We
acknowledge that no theoretical guarantee is derived for the estimation of &) yet the
practical behavior is remarkable.
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Figure 2.6 — True (black) and estimated (red) number of clusters as functions of ¢.



Sequential Learning of Principal
Curves

We consider the learning of principal curves sequentially for arbitrary bounded determin-
istic sequences. The sequential principal curve seeks to represent a sequence of data by
a continuous polygonal curve instead of several cluster centers that has been studied in
Chapter 2. To this aim, we introduce a new and adaptive algorithm to learn sequentially
principal curves. Inspired by the quasi-Bayesian idea, this algorithm relies on the mode
of Gibbs-posterior, with a dynamic estimation of unknown number of segments of prin-
cipal curves. We prove the regret bounds for the algorithm and give an implementation
which is based on the local greedy search to find the optimal curve. We also illustrate its
performance on both toy and real dataset.

Contents
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3.1 Introduction

Numerous methods have been proposed in the statistics and machine learning literature
to sum up information and represent data by condensed and simpler to understand quan-
tities. Among those methods, Principal Component Analysis (PCA) aims at identifying
the maximal variance axes of data. This serves as a way to represent data in a more
compact fashion and hopefully reveal as well as possible their variability. PCA has been
introduced by Pearson (1901) and Spearman (1904) and further developed by Hotelling

65
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(1933). This is one of the most widely used procedures in multivariate exploratory anal-
ysis targeting dimension reduction or features extraction. Nonetheless, PCA is a linear
procedure and the need for more sophisticated nonlinear techniques has led to the notion
of principal curve. Principal curves may be seen as a nonlinear generalization of the first
principal component. The goal is to obtain a curve which passes “in the middle” of data,
as illustrated by Figure 3.1. This notion has been at the heart of numerous applications
in many different domains, such as physics (Friedsam and Oren, 1989; Brunsdon, 2007),
character and speech recognition (Reinhard and Niranjan, 1999; Kégl and Krzyzak, 2002),
mapping and geology (Banfield and Raftery, 1992; Stanford and Raftery, 2000; Brunsdon,
2007), to name but a few.

Figure 3.1 — An example of principal curve.

3.1.1 Earlier works on principal curves

The original definition of principal curve dates back to Hastie and Stuetzle (1989). A prin-
cipal curve is a smooth (C*) parameterized curve f(s) = (f1(s),...,fq(s)) in R? which does
not intersect itself, has finite length inside any bounded subset of R? and is self-consistent.
This last requirement means that f(s) = E[X|sg(X) = s], where X € R? is a random vec-
tor and the so-called projection index sg(x) is the largest real number s minimizing the
squared Euclidean distance between f(s) and x, defined by

se(x) = sup {s : s £(s)13 = inf |~ £D)I3} .

Self-consistency means that each point of f is the average (under the distribution of X)
of all data points projected on f, as illustrated by Figure 3.2. However, an unfortunate

Figure 3.2 — A principal curve and projections of data onto it.

consequence of this definition of principal curve is that its existence is not guaranteed
in general for a particular distribution, let alone for an online sequence for which no
probabilistic assumption is made. Kégl (1999) proposed a new concept of principal curves
which ensures the existence for a large class of distributions. Principal curves f* are
defined as the curves minimizing the expected squared distance over a class &, of curves
whose length is smaller than L > 0, namely,

f* € arginf A(),
fe 7,
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where
AM) = E[A®,X)] = E |inf 1£(s) - X|3].

If E| X II§ < oo, f* always exists but may not be unique. In practical situation where only
i.i.d copies X7,...,X, of X are observed, Kégl (1999) considers classes Z, 1, of all polygonal
lines with & segments and length not exceeding L, and chooses an estimator i’k,n of f* as
the one within %} ;, which minimizes the empirical counterpart

1 n
ni=1

of A(f). It is proved in Kégl et al. (2000) that if X is almost surely bounded and % is
proportional to n'/3, then

A(fen) - A(E) =0 (012,

As the task of finding a polygonal line with & segments and with length at most L
that minimizes A, (f) is computationally costly, Kégl et al. (2000) proposes the Polygonal
Line algorithm. This iterative algorithm proceeds by fitting a polygonal line with &
segments and considerably speeds up the exploration of vertices of polygonal line by
resorting to gradient descent. The two steps (projection and optimization), contained
in this algorithm, are similar to what is done in the k-means algorithm. However, the
Polygonal Line algorithm is not supported by theoretical bounds and leads to variable
performance depending on the distribution of the observations.

As the number £ of segments plays a crucial role (a too small & leads to a rough summary
of data while a too large % yields overfitting, see Figure 3.3), Biau and Fischer (2012) aim
to fill the gap by selecting an optimal & from both theoretical and practical perspectives.

¢ W > : .': d - .*-:-L?."‘. - o
SO T gt
(R e i P
a too small k. n appropriate k. ¢ too large k.
A 1% b) A iate & A 1 k

Figure 3.3 — Principal curves with different number & of segments.

Their approach relies strongly on the theory of model selection by penalization introduced
by Barron et al. (1999) and further developed by Birgé and Massart (2007). By considering
countable classes {Z, ¢}z,¢ of polygonal lines with & segments, total length ¢ < L and whose
vertices are on a lattice, the optimal (&, #) is obtained as the minimizer of the criterion

crit(k, €)= A, (fk’g) + pen(k, ¢),

where

[k ¢ 1 We ¢
k’g — —+ —+ _+52 -
pen( ) Co C1 Cz\/_ 9
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is a penalty function where 6 stands for the diameter of observations, wg , denotes the
weight attached to class %, and constants co,c1,c2 depend on 6, the maximum length
L and the dimension of observations. Biau and Fischer (2012) then prove that

- . n 62X In
E| A, ) — A(f*)] < lkl,ltf {[E (A, 0)— A + pen(k,[)} - W\/;, (3.1)

where X is a numerical constant. The access risk of the final polygonal line i",; ; is close to
the minimal access risk achievable over Z , up to a remainder term decaying as 1/y/n.

3.1.2 Motivation

The big data paradigm—where collecting, storing and analyzing massive amounts of large
and complex data becomes the new standard—commands to revisit some of the classi-
cal statistical and machine learning techniques. The tremendous improvements of data
acquisition infrastructures generates new continuous streams of data, rather than batch
datasets. This has drawn a large interest to sequential learning. Extending the notion
of principal curves to the sequential settings opens immediate practical application pos-
sibilities. As an example, path planning for passengers’ location may help taxi companies
to better optimize their fleet. Online algorithms that could yield instantaneous path
summarization would be adapted to the sequential nature of geolocalized data. Existing
theoretical works and practical implementations of principal curves are designed for the
batch setting (Kégl, 1999; Kégl et al., 2000; Kégl and Krzyzak, 2002; Sandilya and Kulka-
rni, 2002; Biau and Fischer, 2012) and their adaptation to the sequential setting is not a
smooth process. As an example, consider the algorithm in Biau and Fischer (2012). It is
assumed that vertices of principal curves are located on a lattice, and its computational
complexity is of order @(nNP) where n is the number of observations, N the number of
points on the lattice and p the maximum number of vertices. When p is large, running
this algorithm at each epoch yields a monumental computational cost. In general, if data
is not identically distributed or even adversary, algorithms that originally worked well in
the batch setting may not be ideal when cast onto the online setting (see Cesa-Bianchi
and Lugosi, 2006, chapter 4). To the best of our knowledge, very little effort has been
put so far into extending principal curves algorithms to the sequential context (to the
notable exception of Laparra and Malo, 2016, in a fairly different setting and with no
theoretical results). The present chapter aims at filling this gap: our goal is to propose an
online perspective to principal curves by automatically and sequentially learning the best
principal curve summarizing a data stream. Sequential learning takes advantage of the
latest collected (set of) observations and therefore suffers a much smaller computational
cost.

Sequential learning operates as follows: a blackbox reveals at each time ¢ some determin-
istic value x¢,#=1,2,..., and a forecaster attempts to predict sequentially the next value
based on past observations (and possibly other available information). The performance
of the forecaster is no longer evaluated by its generalization error (as in the batch setting)
but rather by a regret bound which quantifies the cumulative loss of a forecaster in the
first T' rounds with respect to some reference minimal loss. In sequential learning, the
velocity of algorithms may be favored over statistical precision. An immediate use of
aforecited techniques (Kégl et al., 2000; Sandilya and Kulkarni, 2002; Biau and Fischer,
2012) at each time round ¢ (treating data collected until ¢ as a batch dataset) would result
in a monumental algorithmic cost. Rather, we propose a novel algorithm which adapts
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to the sequential nature of data, i.e., which takes advantage of previous computations.
We refer the reader to the monograph Cesa-Bianchi and Lugosi (2006) for a thorough
introduction to sequential learning.

The contributions of this chapter are twofold. We first propose a sequential principal
curves algorithm, for which we derive regret bounds. We then move towards an imple-
mentation, illustrated on a toy dataset and a real-life dataset (seismic data). The sketch
of our algorithm procedure is as follows. At each time round ¢, the number of segments
of k4 is chosen automatically and the number of segments k;41 in the next round is ob-
tained by only using information about k; and a small amount of past observations. The
core of our procedure relies on computing a quantity which is linked to the mode of the
so-called Gibbs quasi-posterior which is inspired by quasi-Bayesian learning. The use
of quasi-Bayesian estimators is especially advocated by the PAC-Bayesian theory which
originates in the machine learning community in the late 1990s, in the seminal works
of Shawe-Taylor and Williamson (1997) and McAllester (1999b,a). In this manuscript,
Chapter 2 also discusses the use of PAC-Bayesian tools for sequential learning.

The rest of the chapter proceeds as follows. Section 3.2 presents our notation and our
online principal curve algorithm, for which we provide regret bounds with sublinear re-
mainder terms in Section 3.3. A practical implementation is proposed in Section 3.4 and
we illustrate its performance on a toy dataset and seismic data in Section 3.5. Finally,
we collect in Section 3.6 proofs to original results claimed in this chapter.

3.2 Notation

A parameterized curve in R? is a continuous function f:I — R? where I = [a,b] is a
closed interval of the real line. The length of f is given by

M
L) = lim sup Y lIf(si) —fsi—Dla p,
M—oo |g=go<si<<sy=b j=1
where sg,s1,...,S) are any possible divisions of interval I.

Let x1,x9,...,x7 € B(0,VdR) c R% be a sequence of data, where B(e,R) stands for the
l9-ball centered in ¢ € R? with radius R > 0. Let 24 be a grid over B(0,vdR), i.e.,
95 = B(0,VdR)NTs where T's is a lattice in R% with spacing § > 0. Let L >0 and define
for each & € [1, p] the collection % 1, of polygonal lines f with & segments whose vertices
are in 25 and such that Z(f) < L. Denote by F, = Uizlgk,L all polygonal lines with at
most p number of segments , whose vertices are in 25 and whose length is at most L.
Finally, let £ (f) denote the number of segments of f€ &,. An example of lattice and grid
is illustrated by Figure 3.4.

Our goal is to learn a time-dependent polygonal line which passes through the “middle” of
data and gives a summary of all available observations x1,...,x;-1 (denoted by (xs)1.-1)
hereafter) before time ¢. Our output at time ¢ is a polygonal line f; € &, depending
on past information (xs)1.¢-1) and past predictions (%s)l:(t—l)- When x; is revealed, the
instantaneous at time ¢ is computed as

A(frx) = inf I1f(s) — .13, (3.2)
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Figure 3.4 — An example of a lattice I's in R? with § = 1 (spacing between blue points)
and B(0,10) (black circle). The red polygonal line is composed with vertices in Qg =
B (0, 10)N 1“5.

Similar to the loss #(¢s,x;) defined in Chapter 2, the loss A(f't,xt) here measures the
distance between x; and a predicted principal curve which is constructed on all the
past information. In what follows, we investigate regret bounds for the cumulative loss
ZthlA(i’t,xt), an analogue of the risk in batch setting, that measures the quality of our
algorithm in predicting principal curves in online setting. In addition, due to the online
to batch conversion (Littlestone, 1989, Helmbold and Warmuth, 1995, Dekel and Singer,
2006, Audibert, 2009, Gerchinovitz, 2011), we can construct an algorithm, on the basis
of (f1,%s,...,fr), which is able to yield an estimator of principal curves in batch setting..
Given a measurable space ® (embedded with its Borel o-algebra), we let 22(©) denote
the set of probability distributions on ©, and for some reference measure 7, we let 2,(©)
be the set of probability distributions absolutely continuous with respect to 7.

For any % € [1,p], let np denote a probability distribution on %1, We define the prior
won Fp= Uzzlgk,L as

7= ) wrm®liges, ), f£€Fp,
kell,p]

where w1,...,wp =0 and Ypepr ppwr = 1.

A quasi-Bayesian procedure would now consider the Gibbs quasi-posterior (note that this
is not a proper posterior in all generality, hence the term “quasi”)

Pr+1(-) x exp(=AS; ()7 (-),

where 1
SiB)= 8110 + Alfx0) + 2 (MK, x,) - Ay, x)?,

as advocated both in Chapter 2 and Audibert (2009) who then consider realisations from
this quasi-posterior. In the present chapter, we shall rather consider a quantity linked
to the mode of this quasi-posterior. Indeed, the mode of the quasi-posterior p;4+1 can be
written as

[ A . 9 Inn(f)
argg}}n{s;A(f,stEZ(A(f,xs)—A(fs,xs)) + N },

P s=1
. J/ O\ / S——

FIS (;Lr) (ii1)
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where (7) is a cumulative loss of polygonal line f in the first ¢ rounds, (i) is a term
controlling the variance of the prediction f to past predictions f,s < ¢, and (1i7) can be
regarded as a penalty function on the complexity of fif & is well chosen. This mode hence
has a similar flavor to follow the best expert or follow the perturbed leader in the setting
of prediction with experts (see Hutter and Poland, 2005 or Cesa-Bianchi and Lugosi, 2006,
Chapters 3 and 4) if we consider each fe€ &, as an expert which always delivers constant
advice. These remarks yield Algorithm 3.1.

Algorithm 3.1 An algorithm to sequentially learn principal curves

1: Input parameters: p >0,1n>0,7(2) = e *1;50y and penalty function A : %, — R}
2: Initialization: For each fe %,, draw i.i.d z¢~ 7 and set Agg = %(h(f) —zf)
3: For t=1,...,T
4: Obtain

A -1

f; = arginf{ Z At } ,

fe ), s=0

5: Get data x; and compute Ags = A(f,x5), s=1.
6: End for

At the beginning, f; is preferred as the perturbed polygonal line having the smallest
penalty h(f) (the least complexity) over all possible polygonal lines. The cumulative loss
Y!25 Ags defined here hence incorporates both the cumulative loss (like the term (7)) and
the complexity of £ (like the term (4)). This first algorithm does not take into account
the variance of predictions. However, it can be done if we constraint the choice of f; only
on a neighbourhood of f;_; rather than &, at each time ¢. This consideration will be
illustrated later on in Algorithm 3.3.

3.3 Regret bounds for sequential learning of principal
curves

We now present our main theoretical results.

Theorem 3.1. For any sequence (x)1.7 € B(0,vVdR), R =0 and any penalty function
h:Z, =Ry, let n(z) =e*N50. Let 0<n< then the procedure described in

1
d(2R+6)%’
Algorithm 3.1 satisfies

r X 1+cole—1
Y E[AG,x)] <A +cole—Dm)Stp,+ BRG] (1 +In ) e—h<ﬂ) ,
t=1 n feZ,

where co =d (2R +6)? and

s inf { inf {3 Adxo+ "D
= 1m n —
T,h,n k€|11,p]] fegp = s Xt T]

H(D)=k

The expectation of the cumulative loss of polygonal lines fi,...,fr is upper-bounded by
the smallest penalised cumulative loss over all & € {1,..., p} up to a multiplicative term
(1+ co(e — 1)) which can be made arbitrarily close to 1 by choosing a small enough 7.

However, this will lead to both a large A(f)/n in St , and a large %(1+1n2f€ Z, e_h(f)).
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In addition, another important issue is the choice of the penalty function A. For each
fe Fp, h(f) should be large enough to ensure a small ¥ e, e "® while not too large to
avoid overpenalization and a larger value for St ;. We therefore set

h(®) = In(pe) + In|(f € F,, & (6) = k) (3.3)

for each £ with & segments (where |M| denotes the cardinality of a set M) since it leads

to
1 1

yetns y oy ems y LoD
fe 7, keu,pﬂjgegpk kellpl P€ €

In Lemma 3.3, we give an explicit form of the penalty function: A(f) =c1 £ (f)+ coL + c3,

where ¢1 = ln(8Vd)+3d% —d, cg= 1n72_+3, c3 = dln(w)ﬂn(QVd) and V; denotes the

volume of unit ball in R?. This penalty function satisfies (3.3), hence (1 +InY ez, e_h(f)) <
0. We therefore obtain the following corollary.

Corollary 3.1. Under the assumptions of Theorem 3.1, let h(f) = c1. £ (£) +coL + c3 and

]_ c1p+ col +c3
7 =min
cole —1)infe g, Zt 1 A(f, x¢)
Then

T T
E[Ad,;,x,)] < inf inf A, x;)+1/cole—Dr
tzZI [ t t] kellpl | £7, {; t 0 T.k,L
+\/co(e—1)rT’p,L+2eco(clp+02L+03),

K )=k
where rrp 1, = infge gz, Zz;l A, x¢)(c1k +coL +c3),k=1,2,...,p.

Proof. Note that firstly that with such choice of A(f), one has 1+In} ez, e " <0 and
supgh(f) < c1p +coL +c3, then from Theorem 3.1, we have

Z E[A&;,%x)] < STy +ncole—1) nf Z A(f,x¢) + cole — 1)(c1p + caL + c3).
t=1 pPt=1

cip+caLl+cg i 12 h c1p+caL+cs
oo Dinfaes, T, M) = we substitute 7 in (3.12) wit coleDinfees, 5T, ATy and

obtain the following 1nequahty

T
Z E [A(ft,xt)] < 1nf inf { Z A(f,x) +\/cole - l)rT,k,L}
lp]] fegp =1
K (H)=Fk
+1/cole=D)rr p 1 +cole—1)c1p +coL+c3). (3.4)

cip+caLl+cs 1 - _1)s T <
If \/Co(e—l)inffggp T A > 2o e, (e 1)1nff€gzp 2 -1 Alf,xs) < colc1p + coL + c3), we can

prove similarly that

T T
E[Ad:, < inf inf A(f, +cole+1 +coL +c3). 3.5
; [ (tJCt)] k(—:l[[l,p]] fleffp {; ( xt)} col Ncip +co c3) ( )
AGE

Combining (3.4) and (3.5) terminates the proof of Corollary 3.1. O
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Note that since & < p, the regret bound on the right hand side of inequality in Corollary 3.1
can be simplified as (similarly for Theorem 3.2)

T
keiﬁ’f;)]] fg% { Y A(f,xt)} +2y/cole=Drp p 1, +2eco(c1p + coL + c3).
A

t=1

However, we keep & in this corollary and in the next theorem only for implementation
purpose since the number k& of segments is important in implementation for updating
sequentially principal curve from a neighborhood of the previous one.

Note that Corollary 3.1 is not usable in practice since the optimal value for n depends
on infgeg, ZZ;IA(f,xt) which is obviously unknown. We therefore provide an adaptive
refinement of Algorithm 3.1 in the following Algorithm 3.2. Note that n¢ should have been

Algorithm 3.2 An adaptive algorithm to sequentially learn principal curves

1: Input parameters: p>0, L >0, n, h and ng = %
2: Initialization: For each fe %,, draw z¢~m, Ago = T]_lo(h(f) —2f)
3: For t=1,...,T
4: Obtain
A t-1
f, =arginf { ) Ags¢. (3.6)
fegp s=0
) 1 cip+coL+cs
5: Compute n; = mln{ 0’ eovie Dl }
6: Get data x; and compute Ag; = A(f,x,) + (n_lt - nt_lq) (h(£) — 2¢)
7: End for

.. . L .
of the similar form as n;, i.e., no = mln{cl0 %} Since (e—1)<c1p +coL +c3

which is clear if one checks the value of ¢; in Lemma 3.3, 19 equals to %

Theorem 3.2. For any sequence (x¢)1.7 € B(0,vVdR),R =0, let h(f) = c1.Z (£) + coL + c3
where c1, cg, c3 are constants depending on R,d,8. Let n(z) =e *T>0 and

1 {1 \/Clp+62L+C3}
’ 77t mln ’

t=1,

170:0_0 co coVie—1)t
where co=d(2R +68)?. Then the procedure described in Algorithm 3.2 satisfies

T T
Z E [A(f't,xt)] < i i[[rif inf { Z A, x:)+ co \/(e - 1T (c1k +coL + 03)}
t=1 €

7p]] € D t=1
H ()=

+ 2c0\/(e— DT (c1p +coL +c3)+3colcip +coL +c3).

The message of this regret bound is that the expected cumulative loss of polygonal lines
f1,...,fr is upper-bounded by the minimal cumulative loss over all % € {1,...,p}, up to
an addltlve term which is sublinear in T'. The actual magnitude of this remamder term

kRT. When L is fixed, the number k& of segments is a measure of complexity of
the retained polygonal line. This bound therefore yields the same magnitude than (3.1)
which is the most refined bound in the literature so far (Biau and Fischer, 2012, where
the optimal values for £ and L are obtained in a model selection fashion).
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3.4 Implementation

The argument of the infimum in Algorithm 3.2 is taken over &, = Uzzlgk,L which has
a cardinality of order |2s|P, where |2s| is the number of vertices of grid 2s. This
exponential cardinality makes any greedy search largely time-consuming. We instead turn
to the following strategy: given a polygonal line f; € F, L With k; segments, we consider,
with a certain proportion, the availability of f;.1 within a neighbourhood % (£;) (see the
formal definition below) of f,. This consideration is suited for principal curve setting
since if observation x; is close to f;, one can expect that the polygonal line which well fits
observations xg,s =1,...,¢ lies in a neighbourhood of f,. In other words, if each polygonal
line f is regarded as an action, we no longer assume that all actions are available at all
times, and allow the set of available actions to vary at each time. This is a model known as
“sleeping experts (or actions)” in prior work (Freund et al., 1997, Auer et al., 2003, Blum
and Mansour, 2007, Kleinberg et al., 2008). In this setting, defining the regret with respect
to the best action in the whole set of actions in hindsight remains to be difficult since that
action might sometimes be unavailable in certain rounds. Hence it is natural to define the
regret with respect to the best ranking of all actions in the hindsight according to their
losses or rewards, and at each round one chooses among the available actions by selecting
the one which ranks the highest in this ordering. Kleinberg et al. (2008) introduced
this notion of regret and studied both the full-information (best action) and partial-
information (multi-armed bandit) settings with stochastic and adversarial rewards and
adversarial action availability. They pointed out that the EXP4 algorithm (Auer et al.,
2003) attains the optimal regret in adversarial rewards case but runs in time exponential
in the number of all actions. Kanade et al. (2009) considered full and partial information
with stochastic action availability and proposed an algorithm that runs in polygonal time.
In what follows, we shall realise our implementation by resorting to “sleeping experts”
i.e., a special available set of actions that adapts to the setting of principal curves.

Let o denote an ordering of |%,| actions, and <« an available subset of the actions at
round ¢. We let a(s#;) denote the highest ranked action in <. In addition, for any action
fe &, we define the reward r¢; of f at round ¢,£=>1 by

res = co— Af, x4).

It is clear that r¢; € (0,c9). The convention from losses to gains is done in order to facilitate
the subsequent performance analysis. The reward of an ordering ¢ is the cumulative
reward of the selected action at each time

T
Z rU(.sz{t),t’
t=1

and the reward of the best ordering is max, X1 7o) s (E[maxy X1 7o) ] When o is
stochastic).

Before giving a formal definition of the neighbourhood (f;), we first introduce our im-
plementation procedure that starts with a partition step which aims at identifying the
“relevant” neighbourhood of an observation x € R? with respect to a given polygonal line,
and then proceeds with the definition of neighbourhood of an action f, and finally we
give details of implementation and show its regret bound.

Partition For any polygonal line f with 2 segments, we denote by V = (vy,...,0z41) its
vertices and by s;,i =1,...,k the line segments connecting v; and v;+1. In the sequel, we
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use f(V) to represent the polygonal line formed by connecting consecutive vertices in V
if no confusion is possible. In addition, for x € Rd, let A(x,v;)=|lx— villg be the squared
distance between x and v;, and let A(x,s;) be the squared distance between x and line
segment s;, i.e.,

||x—Ui||§ if s5,(x)=v; ,
Ax,s;) =4 llx—vis1ll3 if s5,(x) =v;41,
2
—_:12 = N _Vit+170; :
llx —villg ((x v;) ||vi+1—vi||2) otherwise,

where sg,(x) is the projection index of x to line segment s;. In this step, R? can be
partitioned into at most (2k + 1) disjoint sets V;,i =1,...,k+1 and S;,i =1,...,k defined
as

V; = {x e R : A(x,v;) = A(f,x),x ¢U§:iVS} J

Si={xe R A, 5) = A0, x ¢ UL L S UV,

where Vi, i =1,...,k+1 is the set of all x € R whose closest vertex of f is v;, and S;,
i=1,...,k is the set of all x € R? whose closest segment of f is s;. Figure 3.5a gives an
example of Voronoi partition with respect to a polygonal line with 3 segments. In the
sequel, we use Vj.j,i < j (resp. S;.; and v;.j) to abbreviate the sequence of partitions
Vi,...,Vj (T@Sp. Si,...,Sj and vi,...,vj).

f(sx))

(a) partition step (b) local greedy search step

Figure 3.5 — (a) a Voronoi-like partition given a polygonal line (black solid line); (b) a
local greedy search region (blue points inside pink dashed circle), where the pink dashed
circle is a €9 ball with center A;(x) and with radius @ (A;(x)); x is an observation in R2
and its 7 (x) is vs and vy, represented by asterisks.

For any x € R?, let us denote by 7 (x) the set of vertices of f connecting to the projection
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f(s¢(x)) of x onto f and denote by A (x) the neighbourhood x with respect to f, i.e.,

U1:2
U1:3
V(x) = 4 Uiii+1
Ui-1:+1
Uk-1:k+1
Uk:k+1

ifxEVlLJSl,
ifxEVz,

ifxeS;,i=2,...,k—
ifxeV;,i=3,...,k

ifxEVk,
if x€eSpUVeiq,

M

>

>

L, N (x) =+
=
1

Vi2US12
Vi3US13
Viit1USi-1:41
Vic1i+1USi-2:41
Vi-1£41USk-2:
Viek+1USk-1:k

if xeViuUSy,
ifxEVQ,
ifxeS;,i=2,...
ifxeV;,i=3,...
if xeVy,

ifxeSp UV,

Note that the definition of #(x) and A (x) holds whenever f has k& = 4 segments.
1<k <4, V(x) (resp. N (x)) is identical for any x. Next, let

be the set of observations x1.; belonging to A (x).

Ni(x) = {xs,,

:1,...,t,xs€JV(x)}
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’k_ly
ak_la
If

We finally let A7(x) stand for the

average of all observations in A;(x) and 2(M) = sup, yen l1x—yll2 denotes the diameter of

set M e R%,

In order to avoid a bad initialization of f;, intuitively, we begin our prediction of principal
curve after having at least ¢g (¢o is very small) observations, and we choose the principal
curve f; as the first component line segment whose vertices are the two farthest projections
The reward in this setting is therefore r¢; =

of data x1., on the first component line.
Co— A(f,xt0+t) for t = 1,2,. vy

and f; is based on x1,x9,...,%¢+—1. Given f;, t =1 with k;

segments, we obtain firstly the Voronoi-like partition Vi.z,+1 and Sy.,, then identify the

adjacent vertices set ¥ (thO) =

{Uit5jt} and set Ay, (thO) for observation x4, .

Neighbourhood For each ¢, let us first define the local grid 25 ;(x) around x € R? as

254(x) = B(N;(x), D (Ny(x)) N s,

where B(x,r) is a f9-ball i in | Rd centered in x with radius r> 0. Then for ke {k;—1,ks, ks +

1}, we define a candidate v (equivalently a candidate f(V)) with &+ 1 vertices as

V = (U1:,-1, V1ims Uy 1eky41) »

where m=k+1—k;+j;—i; and v, are m distinct vertices belonging to s 144, (X1+2,)

around x;44,. In other words, a candidate V is built by keeping all the vertices of f,
that do not belong to 7 (x44¢,) and by updating the remaining m vertices drawn from

Qﬁ,t+to (xt+t0). When £ = kt -1

(resp. kg, ky+1), it means that the candidate V has one

less vertices (resp. same, one more) than f,. We define the neighbourhood U &) of £, by

w,) = {f(V),

V such that vigm € Ds sty (Xe4s,) for kelky—1,ks ks + 1}}. (3.7)

The cardinality | (£;)| is upper bounded by |3?p|1§’ since all elements in |% (£;)| differ

with f; up to at most three vertices.

availability that may vary at each time in Algorithm 3.3.

The Algorithm 3.3 has an exploration phase (when I; =

Finally, we give our implementation with action

1) and an exploitation phase (I; =

0). In the exploration phase, it is allowed to observe rewards of all possible actions and
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Algorithm 3.3 A locally greedy algorithm to sequentially learn principal curves

1: Input parameters: p >0, R>0, L>0,€¢>0, a >0, 1> >0 and any penalty
function A .
Initialization: Given (x;)1.,, obtain f; as the first principal component
For t=1, we set 7¢1 =r¢1 for all fe %,
For t=2,...,T
Draw I; ~Bernoulli(e) and z¢ ~ 7 for all fe %,.

Let 6! = sort (f ZZ if £ — {lh(ﬂ+m%lzf), i.e., descending sorting all fe &,

according to their perturbed cumulative reward till - 1.
7: If I; =1, set o = F, and f; = 6%(o;) and observe Th

Fee=ree for feF,.
9: IfI;=0, set o = 62/(?,5_1), f, = 6'(o#,) and observe Tt

10:
't . N n _
fft:{P(%Fﬂth) if fe?‘(ft—lmcond(t) and f;=f,
’ a otherwise,
where A denotes all the randomness before time ¢ and cond(t) =
{fegp:lp(ft:fle;ft)>ﬁ}. .
11: End for

to choose an optimal perturbed action from the set %, of all actions. In the exploitation
phase, only rewards of a part of actions can be accessed to and rewards of others are
estimated by a constant, and we update our action from the neighbourhood % (f't_l) of
the previous action f;_;. This local update (or search) can hence reduce computation
complexity. In addition, this local search will be enough to account for the case when
x; locates in % (ft_l). However, when x; is far from x;_1, the algorithm is less likely to
perform well since we assume implicitly that the sequence of data is stationary to the
extent that a “real principal curve” exists. Otherwise, learning principal curve would be
of less interest, think for example when the data is uniformly distributed on a hypercube.
The parameter f needs to be carefully calibrated since on the one hand, B should not
be too big to make sure that the condition cond(¢) is non-empty, otherwise, all rewards
are estimated by the same constant and thus leading to the same descending ordering of
tuples for both (X!} f¢s,fe Fp) and (Zs 1 Pes,f€ Fp). Therefore, we may face the risk of
having f,.1 still in the neighbourhood of f, even if we are in the exploration phase at time
t+1; on the other hand, very small B could result in large bias for estimation m
of res. In addition, the exploitation phase is similar but different to the label efficient
prediction (Cesa-Bianchi et al., 2005, Remark 1.1) since we allow an action at time ¢
to be different from the previous one. Moreover, Neu and Barték (2013) has proposed
Geometric Resampling method to estimate the conditional probability P (f't = f|.7) since
this quantity often does not have an explicit form. However, due to the simple exponential
distribution of z¢ chosen in our case, an explicit form of P (f, = f|.%;) is straightforward.

Theorem 3.3. Assume that p > 6, szax{ZIgplz,%} and let

_1 1 Co A 2¢0
ﬁ:|gp| 2T+, a=— 0027,

ﬁ’
1_3 1
e=1-|F,|2 P T71.

o 3 3 veip+coLl +cg
n=n2=..,=Nr= Tt - Déo )
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Then the procedure described in Algorithm 3.3 satisfies the regret bound

T 3
Z f thO +@(TZ)

T
Z[E[A ft,xt+t0 S i

Proof. With the given value of parameters, the assumption of Lemma 3.4, Lemma 3.5
and Lemma 3.6 are satisfied; Combining their inequalities lead to the following

T
—2aBf(1-e) Y |% (£:-1)|
t=1

Eelr |-

max{ Y roett— —h (U(&ft))}

- co(e— nT —cole - 1)(01p +coL +c3)

—(1—I9p|ﬁ)J2T

d 1
mgx{ D Toledt~ Ehw(dt))}

t=1

2
FO +a%(1- B)+(co +2a)

ln(ﬁ) |Zy| BeoT

oF —(1-0)|Fp|7 eoT

—&2(e—1)nT - éole—1)(c1p +caL +c3)

—(1—|9’p|ﬂ)J2T

d 1
mgIX{ D Totett— Eh(awt))}
t=1

c2
EO +a?(1- B)+(co +2a)

ln(ﬁ) %, | peoT

~F -0(|7, |2 T%),

where the second inequality is due to the fact that the cardinality |521 (ft_1)| is upper

3
bounded by |gp|1’ for £=1. One can notice that this is a rather loosen upper bound
for |% (ft_1)| and this value could be much smaller in practice. In addition, using the
definition of r¢; that res = co — A(f,x¢4¢,) terminates the proof of Theorem 3.3. O

1
One can see that the regret is upper bounded by a term of order (|3?p|2 T%), sublinear in

T. In addition, note that the quantity 20[,3(1—6‘)23;1 |% (ft_1)| and the last one appearing
on the right hand side of the first inequality of the proof is in fact a measurement of bias of
estimations in T rounds (we refer to Lemma 3.4 and Lemma 3.6) as f¢; in Algorithm 3.3 is
a biased estimation of r¢; when I; =0 (i.e., when local update happens) but an unbiased
one when I; =1. Hence when € =1, these two bias-related quantities would disappear and
the upper bound reduces to the one in Theorem 3.2. When € < 1, even if our goal is to
reduce the computational complexity, we still need to make e sufficiently big to ensure
that the bias, or more precisely the regret bound would not be of order of T'. The choice
€ in Theorem 3.3 is therefore a compromise between the computational efficiency and

regret bound, and this leads to a regret bound of order of |§/7p|% Ti. In addition, our
algorithm achieves an order that is smaller (from the point of view of both the number
|Zp| of all actions and the total rounds T') than Kanade et al. (2009) since at each
time, the availability of actions for our algorithm can be either the whole action set or
a neighbourhood of the previous action while Kanade et al. (2009) considers at each
time only partial and independent stochastic available set of actions generated from a
predefined distribution.
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3.5 Numerical experiments

We illustrate the performance of Algorithm 3.3 on synthetic and real-life data. Our
implementation (hereafter denoted by slpc is conducted with the R language and thus
our most natural competitor is the R package princurve (which is the algorithm from
Hastie and Stuetzle, 1989). Throughout this section, values for parameters are: p =
20, R =max;—1,_. 1 llxllo/Vd : We set a comparatively large value for maximum length L,
i.e., L =0.01pvVdR. This value is proportional to the length of the longest p segments
polygonal line in B(0,vVdR). The coefficient 0.01 is favored for its practical performance
on both synthetic and read data. The spacing § of the lattice is adjusted with respect to
data scale.

Synthetic data We generate a data set {xt eR%t = 1,...,100} uniformly along the
curve y =0.05 x (x—5)3, x€[0,10], i.e.,

x; = (x(@),y)T +e;,

where values for x(¢) are equidistant in [0,10] and €; are i.i.d uniformly distributed on the
cube [-0.5,0.5]° c R2.

Table 3.1 shows the regret for the ground truth (sum of squared distances of all points
to the true curve), princurve (sum of squared distances between ¢+ 1th observation
and fitted princurve trained on all past ¢ observations) and slpc (ZtT:_Ol ARy i1,%011)).
slpc greatly outperforms princurve on this example, as illustrated by Figure 3.6 and
Figure 3.7. Moreover, Figure 3.7 presents the predicted principal curve f;.1 for both
princurve (red) and slpc (green). The output of princurve yields a curve which does
not pass in “the middle of data” but rather bends towards the curvature of the data
cloud: slpc does not suffer from this behavior. To better illustrate the way slpc works
between two epochs, Figure 3.7 focuses on the impact of collecting a new data point on
the principal curve. We see that only a local vertex is impacted, whereas the rest of the
principal curve remains unaltered. This cutdown in algorithmic complexity is one the key
assets of slpc.

ground truth princurve slpc
0.945 (0) 25.387 (0)  9.893 (0.246)

Table 3.1 — Regret (cumulative loss) on synthetic data (average over 10 trials, with stan-
dard deviation in brackets). Note: princurve is deterministic.

Seismic data Seismic data spanning long periods of time are essential for a thorough
understanding of earthquakes. The “Centennial Earthquake Catalog” (Engdahl and Vil-
lasenior, 2002) aims at providing a realistic picture of the seismicity distribution on Earth.
It consists in a global catalog of locations and magnitudes of instrumentally recorded
earthquakes from 1900 to 1999. Figure 3.8 is taken from the USGS website ! and gives
the global earthquakes locations on the period 1900-1999. The seismic data (latitude,
longitude, magnitude of earthquakes, etc.) used in this chapter may be downloaded from
this website. We focus on a particularly representative seismic active zone (a lithospheric

1. https://earthquake.usgs.gov/data/centennial/
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(a) =175, princurve. (b) =100, princurve.

>
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(c) t="175, slpc.
(d) t=100, slpc.

Figure 3.6 — Synthetic data - Black dots represent data xi., red point is the new obser-
vation x4+1. princurve (solid red) and slpc (solid green).

4 *
¥ o
\‘ <
. *
.f. $*
'.', ’ ..'
e -‘.'
(a) At time ¢ =97. (b) At time ¢ =98.

Figure 3.7 — Zooming in: how a new data point changes the principal curve.

border close to Australia) whose longitude is between E130° to E150° and latitude be-
tween S10° to N20°, with T = 218 seismic recordings. As shown in Figure 3.9, slpc
recovers nicely the tectonic plate boundary. Lastly, since no ground truth is available for
real data, we use instead a slightly different version of R? coefficient to assess the per-
formance: residuals are replaced by the squared distance between data points and their
projections onto the principal curve. The average of R? coefficient over 10 trials in this
example is 0.990.

Daily commute data The identification of segments of personal daily commuting tra-
jectories can help taxi or bus companies to optimize their fleets and increase frequencies
on segments with high commuting activity. Sequential principal curves appear to be an
ideal tool to address this learning problem: we test our algorithm on trajectory data
from the University of Illinois at Chicago?. The data is obtained from the GPS reading
systems carried by two of the lab members during their daily commute for 6 months in
the Cook county and the Dupage county of Illinois. Figure 3.10 presents the learning
curves yielded by princurve and slpc on geolocalization data for the first person, on

2. https://www.cs.uic.edu/~boxu/mp2p/gps_ data.html
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Centennial Earthquake Catalog (1900-1999)
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Figure 3.8 — Seismic data from https://earthquake.usgs.gov/data/centennial/

May 30 in the data set. A particularly remarkable asset of slpc is that abrupt curvature
in the data sequence is perfectly captured, whereas princurve does not enjoy the same
flexibility. Again, we use the R? coefficient to assess the performance (where residuals
are replaced by the squared distance between data points and their projections onto the
principal curve). The average over 10 trials is 0.998.

3.6 Proofs

This section contains the proof of Theorem 3.2 (note that Theorem 3.1 is a straightforward
consequence, with n; =7, ¢ =0,...,T) and necessary lemmas for Theorem 3.3. Let us first
define for each ¢=1,...,T the following forecaster sequence (£});.p

. L 1 1 t
f; = arginf Z A(f, x5)+ —h(f) — ——=z¢ p = arginf Z Aggp, t=1,
tez, |s=1 M¢-1 M¢-1 tez, |s=1

where Af’s =AM, x;) + (ns—{l - 7]3%2) (h(f) — z¢) and by convention 1/n_; =0. Note that ff is

an “illegal” forecaster since it peeks into the future by observing additional A(f,x;). In
addition, denote by

T
5= arginf{ YA x) + ! h(f)} (3.8)
feF, |i=1 nr-1
the polygonal line in &%, which minimizes the cumulative loss in the first T rounds plus
a penalty term. f;ﬁ is deterministic while f'f is a random quantity since it depends on zg,
drawn from 7, for f€ %,. If several f attain the infimum of (3.8), we choose £}, as the one
having the smallest complexity. We now enunciate the first (out of three) intermediary

technical result.
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(a) princurve, ¢ =100 (b) princurve, ¢t =125
s ) , :
. NN
h '-.’jl:'
(c) slpc, t =100 (d) slpc, ¢t =125

Figure 3.9 — Seismic data. Black dots represent seismic recordings x1.;, red dot is the new
recording x;41.

Lemma 3.1. For T =1 and any sequence x1,...,xr in B(0,VdR),
T T
Y Ape =D DApeys n-almost surely. (3.9)
t=1 7 =1 T

Note that this lemma is classical in the follow the perturbed leader setting (chapter 4 of
Cesa-Bianchi and Lugosi, 2006). For the completeness of this section, we would still give
its proof in the following.

Proof. Proof by induction on T. Clearly (3.9) holds for T'=1. Assume that (3.9) holds
for T-1, i.e.,

T-1 T-1
Aft*’t < Z Af;_l’t.
t=1 t=1
Then
T B T-1 B B
> Aft* t = Ai't* ¢t Af; T
t=1 t=1
T-1 B 5
< Af;"—l .t Af; T
t=1
T-1

IA

- T

’; Ai’;,t + Af';,,T = ,;Af;,t’

where the first inequality is due to the assumption that (3.9) holds for T'—1; the second
inequality is by the definition of £, which minimizes Zg:ll Ags with respect to fe &F,. [

By (3.9), if we rewrite Af; , and Ai’; ;» we have m-almost surely that

+ i (i - i) (r@)-2¢:)

T . T . 1 R 1
Y AGS x) < | Y AdT,x) + ——h(E) - ——2
t=1 t=1\Mt-2  Nt-1

=1 nr-1 nr-1 T
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(a) t=10, princurve (b) ¢ =127, princurve

.
coese®®

“
(c) t=10, slpc (d) t=127, slpc

Figure 3.10 — Daily commute data - Black dots represent collected locations x1., red point
is the new observation x;41. princurve (solid red) and slpc (solid green).

o)+ 2 (- ()

Nt-2  MNt-1

T 1
< (Z A(EF, %) + ——h(£}
t=1 nr-1

77T—1

T
_1nf{ZA(fxt)+nT—h(f)} 1 zf*"'Z(i—i)(h(f*) -)

I (=1 nr-1 7 3 \Me-2 M1

where the second inequality is due to the definition of f* and f7. Hence

E iA(f'* xt) (L_L) (_h(f*)_FZA )
t=1 t’ Ne-1 M2 ! &

< inf {Z AL, xy) + —h(f)} - L[E[zf*] + Z E
g nr nr-1

P t=1

sup (—h(f) + z¢)

, (1 1
< inf {Z Af, x;) + —h(f)} + Z (— - —) E
feg — nr-1 h

=1\Mt-1  7¢-2 fe7,
1
= inf + E | sup (-h(f)+2z5) |,
te7p nr-1 |fez,
where the second inequality is due to [E[zf*] >0 and (m — 17%2) =0 for t=1,...,T since

1 is non-increasing in ¢ in Theorem 3.2. In addition, for y =0, one has

P(-h)+ze>y)= e -y
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Hence, for any y =0

P (sup (=h() +2z¢) > y) < Z P(ze=h(®)+y)= Z e MPey = e,
feF, fe7, fe 7,

where u =¥ fez, e " Therefore, we have

E|sup(-h(f)+z¢e)—Ilnu| <E

feF),

max (0, sup (-hA(f)+z¢—1In u))
feF),

< foolP (max (0, sup (—h(f) +zf—1nu)) > y) dy
0

fe,

[e.@]
Sf P(sup(—h(f’)+2f)>y+lnu)dy
0 feF,

oo
Sf ue N gy — 1,
0

We thus obtain

T

> AR, x)

t=1

E

T 1 1
< inf A x;) + ——h(E) b + 1+In ¥} e 7P|, 3.10
fe7p {t; " } nr-1 ( fezgzp (310

Next, we control the regret of Algorithm 3.2.

Lemma 3.2. Assume that zg is sampled from exponential distribution in R, i.e., n(z) =
e “l>0p. Assume that sup;y  pN-1 < m. Then for any sequence x1,%x2,...,XT €

B(0,VdR),
T
Y E[A(f,x:)] =D (L+me—1cole— D)E[A (£, x)] - (3.11)
t=1 =1

where co = d(2R +6)2.

Proof. Before proceeding to the proof, let us first give some notation that would be useful
for proof convenience. For fe &,, denote by

t-1 1
Al =Y Afx)+ —h(), t=1.
s=1 Ne-1

In particular, we made a convention here and in what follows that ZgzlA(f,xs) =0. For
some fixed fo € &, and a vector X = (xg)ge 7, € (Rj)'g pl (recall that |&,| is the cardinality
of Zp), define for t=1

. i1 1 . ¢ 1
AT =mind Y A€ x) + — (@B -xp) p, AT =mind Y A x) + ——(RO —xg) .
I Ifr;flf?{sﬂ (£, xs) 77t—1( 6§ xf)} xt TN Z (£, xs) 77t—1( () — xp)

Now let us give the proof which is similar to that of Hutter and Poland (2005). For
fe #,,meR, one has
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—7t-1€0 if m < Af
p Af e t—1 >
(ze> i1 (A7 1 m+c°)) = { e M-1(A]_j-mtco) it Af <m<Af  +c,
P (2¢>ne-1 (AL | —m))

1 1fAt_1+c()Sm.

P(2f>nt_1(Af_1—m+co))
P(Zf>7]t_1(Afil—m))

It is easy to see that > e 1:-1¢0 holds uniformly for all m € R. Hence

for % € (R*)Z»!, we have

P (£ =folzg = xe, £ £ o) =P Z Ao, ) + ——(h(Fo) — 28,) < A

Ne-1

*\zp = e, £ £ fo)

=P (Zfo > Me-1 (Afo—l _At_-f(ix)

z¢ = xg,  # fo)
=P (zfo > 11 (Af(il _At_—f(i%))

R
<l 1c°P(2f > Ni- 1(A * o5 -AL x))

:entfwop(zfo >77t—1(A 1+A(f0,xt) A Ox) zg=xp,f# fo)
s=1 Ne-1

= ellt-1C0p (fz‘ = f0|zf = xf,f?f fo) ,

where the third equality is due to the independence between zg,f € F,; the second in-

T<eco+ A *. Therefore,

equality relies on the fact that A(fy,x;)+A, "3 " 1 <

P (f't = fo) = f P (f't = fO‘Zf =x¢, £ # fo) T (x_f) dxf
< @140 f Pt = fo‘zf =, £ fo | 7w (27F) die~F = e 10P (B = 1),

where x~f is the vector obtained by removing the coordinate x¢ from %. The above inequal-
ity leads to E[A(f;,x)] = Zfoegp A(fy, x4)P (ft = fo) < e 19E[A(f}, x)]. Finally, summing on
t and using the elementary inequality e* <1+ (e—1)x if x € (0,1) concludes the proof. [

Lemma 3.3. For k€ [1,pl, we control the cardinality of set {f€ F,, £ () =k} as

In2 g)Lerln(\/E(z(fM))

+1In(2V,
5va n(2Vy)

In|{fe ,, 4 (D = k}| < (n(8Va) +3d° - d k +(

A
=cik +col +c3,

d

( ETY where I' denotes

where Vy denotes the volume of the unit ball in R® and its value is

the gamma function.

Proof. First, by the last inequality on page 54 and the one at the third line of page 55 of
Kégl (1999), one can have that

T L [T
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Note that the diameter in Kégl (1999) of the range of (x;)1.7 equals to 2v/dR in our case
since (x;)1.7 are bounded in B(0,vVdR). Hence

In|{fe 5, & (£) = k}| < (% +3k + 1)ln2+(k +1)InVy +kd1n(kL—6 +3\/E) +dln(—\/g(2R +5))

0

< (%+3k+1)ln2+(k+l)and +kd(]f—6+3\/g—1)+dln(@)

3 In2 d
< (ln(SVd)+3d2 —d)k+ (ﬁJr 5)L+az1n(

Vd(2R +6)

5 ) +1n(2Vy),

where we apply the inequality Inx <x—1,x > 0 to the term ln(,f—(S +3\/3) on the right

hand side of the first inequality above. This can bring out L from the logarithmic to form
a bound of the shape c1k + caoL + c3 for the penalty function A. 0

We now have all the ingredients to prove Theorem 3.1 and Theorem 3.2.
First, combining (3.10) and (3.11) yields that

T T
Y E[A;,xp)] < inf { 3 A xp) + ih(ﬂ} +
t=1 €7 =1 -1

(1 +In )" e—h(f’)

nr nr-1 fe7,
T A
+cole—1) ) ne1E[AUS, x)]
t=1

. . L h(f) 1 )
< inf inf Z Af, x;) + + 1+In Z e
kell,p] fes, =1 nr-1 nr-1 fe 7,
K )=k

T
+cole— 1Y 1 E[A®S,x1)]
t=1

1 T .
=SThyrt—— (1 +1n Z e_h(f)) +cole—1) Z n¢—1E [A(f:,xt)] ,
Nr-1 fe 7, t=1

where

S inf inf iA(f )+ hd)
= n n
T,hn7-1 kel[[l,p]] flegp P > Xt P—
K (£)=Fk

Assume that n;=n, t=0,...,T, then

T A 1 T .
S E[AG,x)] <STppy+ = (1 +In ) e_h(f)) +cole—1)n Y E[AES,x,)]
t=1 Y feF, t=1

1+cole—1)
=< ST,h,n +cole— 1)77ST,h,n + 0—77 (

1+In ) e_h(f)), (3.12)
f(—:éfp

where the second inequality is obtained by (3.10). We terminate the proof of Theorem 3.1.

Finally, we give the proof of Theorem 3.2. Assume that

1 1 \/clp+ch+03}

=— and =min<{ —,
0= 1 {co cove— 1t

t=1,...,T.
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Since [E[A(f‘;‘,xt)] <cg for any ¢t =1,...,T, we have

r A (£ 1
E[Ad,,x,)] < inf { inf AF,x;) + b+ ——[1+1n Y P |+ c2(e-1)
; (A %)) = inf Jiegpk{tzl ' nT_l} nr- 1( f;% tzlm !

. r h(f) 9 r
< inf A« mf Z AL, x;) + }+co(e—1)Znt_1.
t=1 t=1

kell,p] nr-1
Z(f)k
If T<1+92telbes 894 0o (ie., 1y = th
—— e, M =1N2="=1r-1= ), then

T T
t:Zi[E[A(ft,xt)] Skel[[l}gﬂ< fn}gf {Z

T
Skei[ﬁ,f;a]]< fie%{, {ZA(f,xt)}r+co(01p+ch+03)+co(e—1+clp+02L+03)

+3colcip +coL +c3), (3.13)

T
< inf { inf {ZA(f,xt)}

kell,p] fes, =1
H )=k

where the last inequality is obvious since e—1<cip+coL+c3. If T>1+M,, then

v/ ci1p+caL+cs
= and

Nr-1= " Je=na-D

T
c%(e -1) Z M¢-1=cole—1)
t=1

( Z 1+ i \/c1p+02L+03)
t<1+M,1 €0 t>1+M, 1, covie—1)t

veip+ceL +cs
<c (e 1)
0 t:Zl covV(e—1t

<2cov/(e—1)T(c1p +coL +c3).

Hence, we have

ZE[A(ft,xt)] < 1rif;3 ﬂ flEnf {ZA(f x¢)+co/(e— l)T(01k+c2L+C3)}
t=1
F )=k

+2co/(e=1)T(c1p+caL+c3). (3.14)
Combining (3.13) and (3.14) concludes the proof of Theorem 3.2.

Lemma 3.4. Under the Algorithm 3.3, if1=2€>0,1>p>0, a > % and |% (£,-1)| =
for all t =2, where |% (£,-1)| is the cardinality of % (£;-1), then we have

T T T
Y E[ri ] 2 Y ot —20-eap Y |2 (f1)].
=1 t=1 t=1

Proof. First notice that o =% (f;-1) if I; =0, and that for ¢ > 2

E [, 7012 = 0] =E [ ssccane| #6010 = 0]
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- Y meloten=tla)s Y rep(otem-t])

feol;ncond(t) feolincond(t)°
> Y ot Y aP(o'h)=f|7)
feot;ncond(t) feolincond(t)¢
-(1-p) Z res— Z (a—rf,t)P(ét(dt)zf‘th)
feot;ncond(t) feotincond(t)°
=E |Pott| 7L =0 —(A=B) Y reg— Y (a-rg)P (at (o)) = f(fft)
feolincond(t) feolsncond(t)©

=E |Fot(a | Ht 1t =0 — (1= P)co |t — afloty]

>E fﬁt(dt),t t]ft,It:O _zaﬁLdtl,

where cond(t) denotes the complement of set cond(t); the first inequality above is due
to the assumption that for all fe of; N cond(t), we have P(&t(dt) = f)iﬁt) >p. Fort=1,

the above inequality is trivial since 7 S (o)1 = 0 by its definition. Hence, for ¢ =1, one
has

E[ri, | 7] = € [ 1otz | 70 T = 1] + (= O [ ot e| 701 = 0]
z[E[ffht‘th] —2aB(1-e)|st|. (3.15)

Summing on both side of inequality (3.15) over ¢ terminates the proof of Lemma 3.4. [

Lemma 3.5. Let ¢g=L+a. If0<ni=ng=---=nr= <Ai, then we have
B ni=nmn nr=n<g,

E

g

T 1 T
mgx{ Y Potetyt— Eh 6 (D)) ¢ | =D E[fstae] < é2(e—1NT +éole—1)(c1p +caL +c3).
t=1 =1
Proof. By the definition of #¢; in Algorithm 3.3, for any fe€ %, and ¢ = 1, we have
uniformly

ret

Pt < max W

Co o
AT 0= max{—,a} =< Co,

B

where in the second inequality we use that r¢; < cg for all fand ¢, and that P (ft = f) th) =>p

when fe %(ft_l) Ncond(t). The rest of the proof is similar to that of Lemma 3.1 and
Lemma 3.2. In fact, if we define by A, x;) = éo —Fgs, then one can easily observe the
following relation when I; =1 (similar relation in the case that I; = 0)

. S
=61 (Fp) = argmax{ Y Pes+=(zp— h(f))}
f&gp s=1 17

t—1 . 1
= argmin A, xs)+—(h(B)—z¢) ¢ .
f€gp s=1 77

Then applying Lemma 3.1 and Lemma 3.2 on this newly defined sequence A (f;,x;),t =
1,...T leads to the result of Lemma 3.5.
Il
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The proof of upcoming Lemma 3.6 requires the following submartingale inequality: let
Yo,... Y7 be a sequence of random variable adapted to random events A, ..., such
that for 1<t <T, the following three conditions hold

E[Y;|H,1<0, Var(Y;|H;) <a? Y;—E[Y;|H,]<b.

Then for any A >0,

T /12
P Y, >Yo+A|<exp|-—2or |
tzzl > tot eXp( 2T(a2+b2))

The proof can be found in Theorem 7.3 of Chung and Lu (2006).

Lemma 3.6. Assume that 0< < ﬁ,a > %0 and n>0, then we have
p

T 1
E mgx{ Z To(aty),t — Eh((f(ﬂt))} -k

t=1

T 1
max{ Y Fotat — —h(awt))H
o t=1 n

c? 1
<(1-|%p|B) \l 2T FO +a2(1-P)+(co+2a)? |In 5) +|Fp| BeoT.
Proof. First, we have almost surely that
T 1 T 1 T
max Z ro(ty),t — —-h (O' (dt)) —max Z f&(dt),t —-h (6’ (dt)) < max Z (I‘f,t - f'f’t) .
7 |t=1 Ui G |t=1 n teFp 131

Denote by Yz =rg;— ;. Since

X rec+(1-e)a(1-P(F =) if feu®_1)ncond(t),
E [rf,t‘%t] = i
ergs+(1-e)a otherwise,

and a > co = rg; uniformly for any f and ¢, then we have uniformly that E[Y;|.#;] <0,
hence satisfying the first condition.

For the second condition, if fe % (f;-1) N cond(t), then

Var(Y,|.7#,) = |73 |76, | - (E [Fe,l.76,])°
2

r
<er? +(1-e)| —2 L a(1-P(E =172
<erd, +( e>[ﬂm(ft:w+a( (& = 0.7)
—[res+A-e)a(1-P (& =f.7))]°
r%t 2 Cg 2
<—+a°1-B)=<—+a“(1-p).
p T P=praisp

Similarly, for f¢ % (f't_l) Ncond(t), one can have Var(Y;|#,) < a?.

Moreover, for the third condition, since
E [Yf,tlzift] = —205,

then
Yf’t —-E [Yf’tlﬁt] =ret 2a < cp+2a.



90 CHAPTER 3. SEQUENTIAL LEARNING OF PRINCIPAL CURVES

2
Setting A = \/2T %’ +a2(1-p)+(co+2a)?|In (%) leads to
T
P(Z Yi; > /1) <B.
t=1

Hence the following inequality holds with probability 1 - ‘gp‘ﬁ

2
%+a2(1—[3)+(co+2a)2

of

Finally, noticing that maxge Z, Zthl (rf,t - f'f7t) < ¢oT almost surely, we terminate the proof
of Lemma 3.6.

feg'"p t=1

T
max Z (rf,t - f'f,t) < J 2T

O]



Text mining, neural networks and
chatbot

This chapter of manuscript summarizes the work that has been done within iAdvize. It
mainly concerns with text mining and Natural Language Processing (NLP) and can be
divided into two parts. The first part is about the sentiment analysis (positive and nega-
tive) of French tweets which is essentially a binary classification problem. We introduce
at first several important procedures in NLP that are premise for classification methods.
Then we show that our tool for identifying the sentiment of tweets outperforms an ex-
isting sentiment classifier in pattern library of python. The second part concerns with
the creation of a conversational agent (known as chatbot) which, given a question, can
choose the best response from a set of prefixed responses. We begin with an introduction
of deep learning and neural networks including its basic prototype and learning methods.
Then we proceed to the recurrent neural network (RNN) and several derivatives such as
Long Short Term Memory (LSTM) and Sequence to Sequence (seq2seq) which is the-
state-of-art model for building such a chatbot. Finally, we give an example showing the
performance of this chatbot.

Contents
4.1 Text mining . . . . . . o i i i it e e e e e 92
4.1.1 Introduction . . ... ... . ... 92
4.1.2  Sentiment analysis . . ... ... .. ... .. . 0 .. 94
4.2 Neural networks and Deep learning . . . ... ........... 96
4.2.1 Introduction . .. ... ... ... ... ... 96
4.2.2  Architecture of neural networks . . . ... ... ... ... ... 96
4.2.3 Gradient based learning . . . . .. ... ... ... ... 98
4.3 Recurrent Neural Network . . . . ... ... ... .......... 100
4.3.1 Introduction . . ... ... ... ... ... 100
4.3.2 Long short-term memory . . ... ... ... ... ... . ..... 103
4.3.3 Sequence to sequence model . . . . ... o oo 104
4.3.4 A seq2seq-based chatbot . . . . ... ... ... ... ... .. 105




92 CHAPTER 4. TEXT MINING, NEURAL NETWORKS AND CHATBOT
4.1 Text mining

4.1.1 Introduction

Text mining, also referred to as text data mining, roughly equivalent to text analytics,
is the process of deriving high-quality information from text. High-quality information
is typically derived through the devising of patterns and trends through means such as
statistical pattern learning. Text mining usually involves the process of structuring the
input text (usually parsing, along with the addition of some derived linguistic features
and the removal of others, and subsequent insertion into a database), deriving patterns
within the structured data, and finally evaluation and interpretation of the output. “High
quality” in text mining usually refers to some combination of relevance, novelty, and
interestingness. Typical text mining tasks include text categorization, text clustering,
concept /entity extraction, sentiment analysis, information retrieval and lexical analysis to
study word frequency distributions. It also includes data mining techniques such as link
and association analysis, visualization, and predictive analytics. The overarching goal
is, essentially, to turn text into data for analysis, via application of Natural Language
Processing (NLP) and analytical methods.

Text mining fosters strong connections with Natural Language Processing (NLP), data
mining and machine learning. It seeks to extract useful information from unstructured
textual data through the identification and exploration of interesting patterns (i.e., sen-
timent, trends etc hidden in messages). By the exploration of these patterns, messages
of certain sentiment, or taking about the same trend, can be sent to proper consultants
having the competence to answer them. In addition, administrators or consultants can
detect in real time a sudden increase of volume of certain trend.

Pre-processing of textual messages

Textual messages appeared on the internet are often not as formal as that in the book and
article. They may contain noises such as poor grammar, spelling and mechanics, abbre-
viations and Emoji (e.g., your the best!, thx, bjr); They could convey a familiarity that
is likely to be jarring or offensive in many situations (e.g., thanks hon!). Pre-processing
of textual messages is therefore crucial in text mining since it can help to reduce noises of
messages and form a clean textual structure of messages. For example, pre-processing can
change abbreviations (thx, bjr) to complete forms (thanks, bonjour); it can also normalize
poor spellings in French such as “general” or “géneral” to correct spelling “général”. To
our knowledge, although there is no standard procedures for pre-processing of texts since
they vary with different text mining tasks, regular expression and tokenization proves to
be two important global procedures used in many cases. Regular expression (i.e., regex)
is a sequence of characters that defines a search pattern. Taking the regex a. as an exam-
ple, a is a literal character which matches just letter “a” and . is a meta character which
matches every character except a newline. As a consequence, this regex would match for
example “a” or “ax” or “a0”. Regex is therefore important in pre-processing since any
irregular pattern inside messages can be found and replaced by a regular pattern.

Another important procedure, known as tokenization, is the process of breaking a stream
of text into words, phrases, symbols, or other meaningful elements called tokens. The
tokens then become the most elementary inputs for further processing such as parsing or
word representation. A message such as “The weather is good !” would be tokenized into a
list of single words and an exclamation: [The,weather,is,good,!] if the space were chosen
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as the token delimiter. According to different text mining tasks, other pre-processing
techniques may include removal of stop words, stemming etc (see Vijayarani, 2015 for
more details).

Word representation

In text mining, word representation aims at mapping words from vocabulary to vectors of
real numbers such that they can be used later to fulfill tasks such as sentiment analysis,
subject classification etc. The most intuitive and simplest way to represent a word from
vocabulary is known as the one-hot representation which maps each word of vocabulary
by a vector of length equaling to the size of vocabulary. All the components of this
vector are 0 except for one component whose value is 1. For example, the words “The”
and “weather” are represented respectively by one-hot vectors with different location of
component 1.

The:(0,0,0,1,0,0,...,0),
weather:(0,0,...,0,1,0,...,0).

One-hot representation can be easily extended to sentence level: a sentence is represented
by a vector whose i—th component is a boolean expressing the occurrence or absence of
the i—th word from the vocabulary. One-hot representation is useful in practice for its
simple implement and it can fulfill some text mining tasks such as sentiment analysis with
the help of machine learning algorithms (e.g., Support Vector Machine (SVM), Random
Forrest (RF) etc). However, it still has at least two disadvantages: the first one is that
the vector length of a word or sentence increases with the vocabulary size and most of
the components of this vector are 0, i.e., the vector is sparse; the second one is that it
cannot express relevant information of words on the semantic level. For example, the
word “Paris” and “Beijing” are semantically similar in the following sentences: “Paris is
the capital of France” and “Beijing is the capital of China”. If they are represented by
one-hot vector, we cannot identify this similarity of two words.

Distributed representation, proposed firstly by Harris (1954), aims at quantifying and
categorizing semantic similarities between linguistic items based on their distributional
properties in large samples of language data. The basic idea underlying it is that words
used and occurred in the same contexts tend to have similar meanings. Later, this idea was
extended by Firth (1957) that “a word is characterized by the company it keeps”. More
precisely, distributed representation maps words to vectors of comparatively lower dimen-
sions. The components of vectors are no longer integers but real values. For example, the
word “weather” may be represented by a vector of form (0.792,0.177,0.107,0.109,0.542,...).
This way of word representation enables us to project words to a dense vector space such
that words with similar semantic meaning are closer in distance. The distributional
representation of words is on the basis of statistical language model which characterize
sequences of words by probability distributions. More precisely, given a sequence S of m
words x1,%92,...,%n,, the statistical language model estimates the probability P(x1,...,x,)
over the whole sequence S to measure its confidence in accordance with grammar and
semantic rules of natural language. To calculate this probability, one has the chain rule:

Px1,....xm) =Pmlxm-1,...,%1) X P(Xm-1lxm—-2,...,21) x - -+ x P(x2|x1) x P(x1),

where P(x;lx;—1,%;-9,...,x1) is the conditional probability of i—th word given all past
words. The probability P(x;lx;-1,...,x41) can be modeled by n-gram model: it can be
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approximated by P(x;j|x;—1,%i—2,...,Xi—n+1), the probability of the i—th word conditioned
on a shorten historical context of previous n—1 words (assume that n <i). The n-gram
conditional probability can then be calculated from frequency counts

count{x;, X;-1,...,Xi-n+1}

Plx;lx;-1,%-2,...,%Xi—n+1) =
count{x;-1,...,%j—n+1}

on the basis of a large corpus of data. If a certain n-gram is not seen before (i.e.,
frequency count is 0), smoothing methods such as add-one estimate can be used to avoid
zero probability. Still, n-gram model cannot capture long range dependencies. Simply
choosing a big n for the purpose of covering long range dependencies would deteriorate
the quality of estimation since many zero frequency counts were likely to appear.

Neural language model, however, can take into account long range dependencies. It uses
Neural Networks to model the word as well as its relation with context. It represents words
as non-linear combinations of weights in a neural net. The dimensions of weights are often
prefixed to a smaller number (50 to 200 in practice) with respect to the vocabulary size.
Hence, neural language model avoids the sparsity of vector representation that happens
with the augmentation of vocabulary size. To our knowledge, neural language model is
firstly investigated by Bengio et al. (2003). Later, Mikolov et al. (2013) propose two-
layer neural networks (word2vec) to reconstruct linguistic contexts of words. In general,
word2vecl model is trained and learns to predict the probability of a word x; in vocabulary
given a linguistic context C, i.e., P(x;|C). This context C might be a fixed-size window of %
previous words (i.e., C = (x;-1,%i-g2,...,%i_p)) or of both k& previous and future words (i.e.,
C = (Xi—psXi—kt1r---»Xi-1,%Xi+1,Xi+1,---,Xi+k ). Lhis one is known as continuous bag-of-words
in word2vec. Another one, known as skip-gram, inverses the previous problem by learning
to predict the probability of a context given a word. After training high dimensional word
vectors on a large amount of data, the resulting vectors can be used to answer very subtle
semantic relationships between words, such as a city and the country it belongs to, i.e.,
France is to Paris as China is to Beijing. The word2vec has been subsequently explained
and analysed recently (Goldberg and Levy, 2014, Rong, 2014). Under the same idea, Le
and Mikolov (2014) extends the neural representation to sentence level (i.e., seq2vec).
In what follows, both one-hot representation and seq2vec will be used in the sentiment
analysis to be discussed in the next section.

4.1.2 Sentiment analysis

Sentiment analysis is to determine the overall contextual polarity (positive or negative)
of a message. It is widely applied to reviews or comments on the internet for a variety
of applications, ranging from marketing to custom services. As iAdvize has integrated
social media messages such as tweets, facebook comments and feedback etc), knowing the
sentiment hidden behind them is important since it reflects customer’s altitude towards
some topics or products. The goal for us is therefore to create a tool that is able to
evaluate the sentiment of messages and identify those with negative emotion such that
consultants are able to provide instant and proper services to customers. Otherwise, our
clients may suffer from the lose of customers.

From the machine learning point of view, sentiment analysis is a supervised learning task,
i.e., to be able to estimate the sentiment label of a message, one needs a set of samples
containing not only content of messages but also polarity labels. We use web crawling
technique as well as Twitter API to obtain a set of samples (x;,y;),i =1,2,...,n, where x;
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denotes a message and y; sentiment label (positive or negative). We show below several
examples of samples:

— (“appartement extrémement bruyant en raison d’une voie de circulation fréquentée.

Impossible de dormir. quasi...”, “neg”)

— (“Je ne recommanderai ...”, “neg”)

— (“Bon accueil, personnel a l’ecoute. Tout a fait satisfa...”, “pos”)

— (“ C’est la premiere fois que je commandais sur votre site. J’ai apprécié la livraison
en ce...”, “pos”)

We pre-process raw messages by removing stop words in French such as “au”, “avec”,
“du” and replacing particular sequence of characters (url, number etc) with special to-
kens (“URL”, “digital _number” etc). Notice that the stop words as well as particular
sequences contain little polarity information. In addition, since messages as tweets may
malize them. These steps of pre-processing reduces both the noise of messages and the
vocabulary size. Sentiment analysis is essentially a binary classification, many machine
learning classifiers such as Bernoulli Naive Bayesian (BNB), Support Vector Machine
(SVM) and Random Forest (RF) can serve to this task. Further, the observations are
divided into two parts: a training part for training the classifiers and a test part for mea-
suring the prediction accuracy of classifiers. The proportion of training and test is 80%
and 20% and the accuracy is computed as Z;.lil Ui3;#y,//n2, where ng is the size of test
set. Optimal values for hyperparameters such as Laplace smoothing parameter for BNB
(resp. penalty parameter and kernel for SVM; number of trees, maximum depth of tree
and criterion for measuring the quality of a split for RF) are chosen as follows: we set
firstly a parameter grid and then use a module called RandomizedSearchCV in sklearn
library with 2-Fold cross validation to obtain the optimal combination of hyperparameters
values. The following Table 4.1 compares the accuracy of three classifiers (SVM, NB and
RF) and an existing module called pattern in python, based on two word representations
(one-hot representation on sentence level and seq2vec). Note that BNB classifier is not
compatible with continuous input vectors obtained by seq2vec since it only allows input
vectors whose components are of value 0 or 1.

one-hot seq2vec pattern
RF = 0.641 RF = 0.567 0.603
Prediction accuracy | SVM = 0.578 | SVM = 0.558
BNB = 0.664

Table 4.1 — Prediction accuracy of sentiment analysis for French tweets.

It is noticed that both RF and BNB classifier with one-hot representation outperform the
pattern classifier in sentiment analysis for French tweets. The reasons might be that our
training sample is more tweet-orientated and the classifiers we use are more robust than
the one used in pattern. In addition, since sentiment of messages depends largely (except
for irony) on the occurrence of positive or negative words appearing in the messages, one-
hot representation on the sentence level proves to be a direct and an efficient consequence
of this characteristic.
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4.2 Neural networks and Deep learning

With the development of large scale computing ability, deep learning based on neural
networks has shown its potential and powerful capability in past decade in many fields such
as speech and pattern recognition, Natural language processing and automatic driving.
In what follows, we only focus on deep learning in NLP field and, more concretely, in
building a conversational agent (i.e., chatbot) which is able to respond automatically
to human messages. The purpose of building such a chatbot is to aid the consultants
of our clients since it is founded that a large amount of messages disposed by them
are either repeated or semantic-similar. We begin this section with the introduction of
neural network including its basic architecture and learning methods. Then we proceed
to recurrent neural network (RNN) which takes into account the order of input sequences.
We first describe its prototype and then present several particular models such as Long
Short-Term Memory (LSTM) and Sequence to Sequence (seq2seq) which are tailored for
chatbot building.

4.2.1 Introduction

Neural networks (NNs) are computing systems inspired by the biological neural networks
that constitute animal brains. Such systems learn (progressively improve performance)
to do tasks by considering examples, generally without task-specific programming. For
example, in image recognition, they might learn to identify images that contain cats by
analyzing example images that have been manually labeled as “cat” or “no cat” and
using the analytic results to identify cats in other images. They have found most use
in applications difficult to express in a traditional computer algorithm using rule-based
programming.

Investigations of neural network can be dated back to McCulloch and Pitts (1943) who
created a computational model for neural networks based on mathematics and algorithms
called threshold logic. Later Rosenblatt (1958) proposed an artificial neuron called a
perceptron which is initially used in binary classification. Today, it’s more common to
use other models of artificial neurons, in this section, and in much modern work on neural
networks, the main neuron model used is the one called the sigmoid neuron.

4.2.2 Architecture of neural networks

The most basic components of neural network are sigmoid neuron units. A sigmoid neuron
unit has input x = (x1,x2,...,%4) € IRd, weight w = (w1, we,...,wgq) € R? for each inputs and
a bias b € R. The output of it is o(wx+b), where

1
O'(Z)—m, zeR (41)
is the sigmoid function and wx denotes the inner product between vector w and x. The
sigmoid neuron unit first applies a linear transformation of input and then projects this
transformation to an image space (0,1). It can be regarded as an extension of perceptron
which outputs only 0 or 1. In neural network, sigmoid function ¢ is just one possible
candidate for neuron unit, we list here other commonly used candidates

1— e—2z

l14+e22

rectifier : Relu(z) = max(0, 2), Hypobolic tangent : tanh(z) = zeR. (4.2)
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Neural network consists of three parts: an input layer, several hidden layers and an output
layer. Figure 4.1 illustrates the architecture of a simple neural network two hidden layers.
Note that a neural network can be made more complicated by embedding a larger number
of hidden layers as well as more neuron units within each hidden layer. For illustration
purpose, we only consider a simple neural network here. At input layer, each circle
represents a component x; of input x, i = 1,2,...,d while, at hidden layers, each circle
represents a neuron unit. The first hidden layer neurons take inputs from input layer and
output values that will be treated as inputs for neurons within the next hidden layer. The
output of second hidden layer again will be used as input for output layer neurons. In
classification setting, the output of output layer would be a probability distribution over
labels. For instance, in handwriting digits identification (Figure 4.2) where one prefers to
predict a number digit from image pixels inputs by neural networks, the output would be
a probability distribution indicating the probability of each digital label 0,1,2,...,9, and
the predicted digit is the one with highest probability.

hidden layers

output layer

input layer

Figure 4.1 — Architecture of Neural network, source !
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1. http://www.shivambansal.com/blog/neural_network_1/
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More formally, suppose that the first hidden layer contains m (m € N*) neuron units
and the second hidden layer I (I € N*) neuron units. In addition, we dispose n pairs of
observations (Xs,¥s),s = 1,...,n where x5 € R? is an input for neural network and y;s is the
label of x5 belonging to a set of labels {1,2,...,k}, 2 € N*. For each xg, output zg € R™ of
first hidden layer is

z; =0 (Wr1xs+br1),

where Wy € R™*4 is an input weight parameter and by ; € R™ is a bias parameter associ-
ated with first hidden layer. Similarly, output hs € R! of second hidden layer is

h; =0 (Wi2zs+br2),

where Wy g € RI*™ ig a weight parameter and by o € R’ is a bias parameter associated with
second hidden layer. Finally, the output layer first applies a sigmoid function ¢ and a
linear transformation on hg to get a intermediate vector og, and then transfers it to a
probability distribution §(og) over labels via the softmax function 9§, i.e.,

Og = U(Wohs +bo)
5(Os)j:2:1L j=1,...,k,

..... pe’si’
where W, € R**! is an output weight parameter, b, € R* is an output bias parameter and
6(0,) is a softmax function operating on a k-dimensional vector os = (0s,1,...,05%). The
prediction ys of ys is

9s = argmax (6(05);) . (4.3)

j=1,2,..k

Here the prediction y, of ys is therefore the most probable digit given x;. One should
notice that definition for ¥; is not unique in the context of neural network, sometimes it
can also be defined as a probability distribution over all labels.

4.2.3 Gradient based learning

Given the observations (Xs,¥s),s = 1,...,n and a designed neural network, the network
needs to learn from observations the optimal values of parameters such that predictions
are approximating true labels. To quantify the quality of neural network, one needs a
cost function

C) =

S|

Z (Js,ys),

s=1,...,n

where 6 denotes the collection of all weights and all biases in the network (we suppose 6
belongs to a parameter space © hereafter) and ¢ is a loss function whose definition can
be the same as that in Section 1.1.1. For example, if §5 is defined as (4.3), then ¢ can
be the squared loss; if Js = (J1,...,3%,s), @ simplex probability distribution over all values
{1,2,...,k} of label, where y; ¢ €[0,1] corresponds to the probability of label j given the
input xg, then ¢ can be the perplexity of a probability model defined by

k
é(ysays): _Z IL{ys=J'}1n.5>j,s- (44>

J=1

Our goal is to find an optimal value of & minimizing the cost function C(f). Gradient
descent is a first-order iterative optimization algorithm for finding the minimum of C(6)
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whose steps can be described as follows:
0" =™ —y,vC(0™) n=12,.., (4.5)

where 8% is an initial value for iterations, y, >0 is known as the learning rate and VC(8)
is the gradient of C(0). To find a local minimum of a function using gradient descent, one
takes steps proportional to the negative of gradient (or of the approximate gradient) at
current value 8. The sequence 8%, n = 1,..., satisfies the following lemma:

Lemma 4.1. (Goodfellow et al., 2016) If C(0) is differentiable on © and y, >0 is small
enough for all n, then C (6©*D) < C (™).

Proof. By Taylor’s expansion,

C (9(n+1)) -C (B(n)) —Yn HVC (H(n)) E + O(Yn),

o(yn)
where lim,, o T

= 0. For y, small enough, one has o(y,) < y,||VC 6(”))” which
terminates the proof. O

To obtain the gradient VC (for simplicity, we omit the parameter & when no confusion
will arise), it is required to calculate VZ(3s,ys) for each s =1,...,n and average them.
This leads to a challenge in applying directly gradient descent rule (4.5) in practice since
the number n of inputs can be very large and learning thus occurs slowly. To conquer it,
stochastic gradient descent to be presented in the next section is often used to speed up
the learning.

Stochastic gradient descent

The idea of stochastic gradient descent is to estimate the gradient VC by computing
VZl(ys,ys) for only a small sample of randomly chosen training inputs. By averaging over
this small sample it turns out that we can quickly get a good estimate of the true gradi-
ent VC and this helps to speed up gradient descent, and thus learning. More precisely,
stochastic gradient descent works by randomly choosing a number of samples from train-
ing inputs. Let us denote them by {(xs,ys),s € 4}, and refer to them as as mini-batch.
Provided that the cardinality |.#]| of .4 is large enough but comparatively small with
respect to n, then we expect that

=VC.

Z V[(j/s,ys i Vg(ys,ys
seM 4|

s=1

The convergence of stochastic gradient descent has been analyzed using the theories of
convex minimization and stochastic approximation. Generally, when the learning rates
Yn decrease with an appropriate rate, and are subject to relatively mild assumptions,
stochastic gradient descent converges almost surely to a global minimum when the ob-
jective function is convex or pseudo-convex, and otherwise converges almost surely to a
local minimum (see Bottou, 1998 and Kiwiel, 2001 for more details).

The classical neural network does not take into account the order and sequential character
of inputs which can be very important in NLP tasks. For instance, the order of words in
a sentence decides the meaning of it. In the next section, we introduce recurrent neural
network which is created to cope with sequential inputs.
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(a) A RNN cell
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(b) Unfold of RNNs into full networks

4.3 Recurrent Neural Network

4.3.1 Introduction

Recurrent Neural Networks (RNNs) are popular models that make use of sequential infor-
mation of inputs and outputs. They have shown great promise in many NLP tasks such
as machine translation, speech recognition and conversational agent. They are called re-
current since they perform the same task for each element of sequence, with the output
being depended on the previous computations. Another way to think about RNNs is that
they have a “memory” which stores information about what has been calculated so far.
More precisely, Figure 4.3a and Figure 4.3b give respectively the structure of a RNN cell
and the unrolling of RNN into a full network.

In these two figures, x; denotes an input (e.g, the t—th word of a sentence) at time ¢
and J; the output (i.e., prediction of y;) of RNN; Wy, Wg and W, are respectively weight
parameters associated to different layers of RNN; h; is a hidden state which is calculated
based on the previous hidden state h;_; and the current input x;. Concretely, one has

h, = o (Wyx, + Wehe_1 +bp) 2 a(sy),
9 = softmax (W,h; +b,) 2 softmax(z,), (4.6)

where by, and by, are bias parameters. We give two intermediate notation s; and z; simply
for the convenience of computing gradients in next section. Moreover, we denote by ¢;
the loss €(34,y;) for simplicity and C(0) =Y ¢; with 6 = (Wr,Wgr,W,,bs,b,).

Unlike the classical deep neural network which uses different parameters at different layers,
RNN shares the same parameters 6 across all steps. This reflects the fact that we are
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performing the same task at each step, just with different inputs. This greatly reduces the
total number of parameters we need to learn. In addition, the prediction J; is a function
depending not only on current input x; but also on all past inputs xs,s = 1,...,¢ -1
in RNN. Moreover, lengths of inputs and outputs inside RNNs can be controlled with
different tasks, as illustrated in Figure 4.4.

0§ o0 Don
100 000 Qo000 OOF
1 UO0 0DOOD ooc

Figure 4.4 — Different RNN models, source >

The first plot can be applied to image captioning which takes an image as input and
outputs a sentence of words; the second one to sentence analysis which takes a sentence
of words as inputs and outputs a sentiment of this sentence; the third one to machine
translation (resp. conversational agent) which takes a sentence in certain source language
(resp. question) and outputs a translated one (resp. response); The fourth one to video
classification where one wishes to label each frame of a video.

Backpropagation Trough Time and vanishing gradients

To learn good values of parameters by Stochastic Gradient Descent, one needs to calculate
the gradients of loss C(6) with respect to parameters 0 = (WI,WR,Wy,bh,by). Since C(0)
is the sum of loss ¢; at each time, we consider in the sequel only gradient of ¢; with
respect to 6. First, the gradient 0¢,/0W7 is straight forward. Since

0l (Vt 0y; 02z
oW;(i,)) 09, 0z;; OW1(i, j)

(ﬁt,i - yt,i) ht,j,

where z;;, ¥;; and y;; are respectively i-th component of z;,y; and y;; Wi(i,j) is the
(i,7)—th entry of matrix W;. We have therefore

0/
aWt =@ —y)®hy,

where ® is the outer product of two vectors.

However, the computation of gradient 0¢;/0Wg is rather complicated since Wg is attached
to all hidden states hg,s =1,...,¢. Backpropagation Trough Time (BPTT) is the key algo-
rithm that makes the computation of gradients more tractable. More precisely, noticing

by the chain rule that
T
(2] o
Osr) 0WRG,))

2. http://karpathy.github.io/2015/05/21/rnn-effectiveness/

o _y
WrG,)) =



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

102 CHAPTER 4. TEXT MINING, NEURAL NETWORKS AND CHATBOT

t T 0
a Z Tr(((s;:)) —Sk. ; ),
k=0 aWR(l’J)
where Tr(M) denotes the trace of any matrix M and M7 its transpose, and 62‘) =004/0sp,.

The gradient 0¢;/0Wg(i, j) is the sum of gradients at each time step since Wg is used in all
previous steps. In other words, we need to backpropagate gradients from k& =¢ to & =0.
Moreover, since

@) _ % _ ahk aSk+]_ agt
k ask ask ahk 6Sk+1

= diag(1—hj, o hp) W46

= (WEel) Jo(1-hyohy) (4.7)

and

oh; 0z, 0¢
() t 0Z; 0¢y . T«
=t 7! _diac(1—-h;,oh)W -
t ds; 0h, 0z, 1ag ( t©hy) y (Ft =)

= (Wl Gi-y0)o@-hiohy, (48)

where © denotes the element-wise product. It indicates that 65:),13 =0,...,t can be com-
puted recursively, 7.e., the BPTT algorithm

60 = (Wl Ge-yn)o1-h,ohy),
(4.9)

(@) T ()
60 = (Whsl) Jo(1-hyohy),

and then the gradient 0¢;/0Wg can be easily computed as follows

59 eh,_
OWR k k k-1,

0/l; ¢
=0

where h_; =0 and the second equality is due to aV[?RS (kl 5

However, the classical RNN presented above has difficulties learning long-range depen-
dencies (interactions between words that are several steps apart) since it suffers from
vanishing gradient problem (Hochreiter, 1991, 1998). By (4.7), one has

k+1

-1
5\ = diag(1-h; ohy)WEs\ = (lldiag(l ~h;oh;)WT |5
J:

If the norm of matrix (1-h;eh;) is uniformly upper-bounded by a constant ¢; <1, i.e.,
[1-hjoh;| <c; for all j=1,¢, and that the norm [Wg| of Wg is upper-bounded by a
constant re < 1, then 055@””2 <(cieo)t* Hégt) “2 It indicates that the gradient are reducing
at an exponential speed and eventually vanishing after several time steps. In other words,

gradient contributions from “far way ” steps become zero and hence information stored
in those states has no contribution to the current learning.

A popular solution to vanishing gradient problem is the Long Short-Term Memory (LSTM)
model that will be introduced in the next section.
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4.3.2 Long short-term memory

LSTM was first proposed by Hochreiter and Schmidhuber (1997) and then improved by
Gers et al. (2000). It is one of the most widely used models in NLP today. Later, Chung
et al. (2014) proposes the GRU model, a simplified version of LSTM. Both of these two
models are explicitly designed to deal with vanishing gradient problem and efficiently
learn long-range dependencies. To understand LSTM, we first illustrate by Figure 4.5 its
structure where each rectangular represents a cell at time step ¢, x; (blue circle) the input
and h; (purple circle) the hidden state.

{ { f
P h 4

=P &, >

Ganbd
A ¢ 9 A
(o] [tanh] [0]

—> >

4 J N\

Figure 4.5 — LSTM model, source ?

It is seen that there are two black lines passing all along between cells of LSTM where the
bottom line denotes the transferring of hidden state h; between adjacent cells (as same
as the what is indicated by purple circle) and the top line denotes the cell state ¢;, a
new time-varying quantity that does not exist in the classical RNN. The cell state is an
internal memory of cell unit that can be updated by combining previous memory with
new input. In addition, LSTM differs with classical RNN in the way of computing the
hidden state. To understand how hidden states and cell states are computed, we detail
below all necessary quantities in LSTM:

£, =0 (W}hy 1+ Wix, +y),

is =0 (W'h, 1+ Wik, + by,

g = tanh (Wph, 1+ Wix, +by),
c,=fioc;1+i0g;,

0 =0 (W1 + Wik, +b,),

h; = o; x tanh(cy),

where ¢ is the sigmoid function in (4.1) applying component-wise on each element of
vectors; tanh is defined in (4.2), and Ws, bs are LSTM parameters that are independent
of ¢.

The quantities f;, i; and o; are respectively known as forget gate, input gate and output
gate. Note that they share the exact same equations, but with different parameter matri-
ces. Since all of them are squashed by sigmoid function o, the value of each component

3. http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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of f;, i; and o; are between 0 and 1. The forget gate decides the ratio of previous cell
state ¢;—1 to be kept in the current cell state ¢;; the input gate controls the ratio of
new candidate values g; to be added to the current cell state; the output gate defines
the extend of internal state to be exposed to the external network. Those gates all have
the same dimensions as the hidden states and cell states. Although Figure 4.5 shows an
example of LSTM with only one hidden layer, one can consider more complicated LSTM
by stacking more hidden layers. In this case, the hidden states of previous hidden layer
will play a role of inputs for the next hidden layer.

4.3.3 Sequence to sequence model

Sequence to sequence learning with Neural networks (it is called seq2seq model henceforth)
is first proposed by Sutskever et al. (2014) and extended by Bahdanau et al. (2015) by
adding an attention mechanism. It is a model aims at matching two related sequences of
different lengths. For example, these two sequences can be a sentence with its translation,
an question and a reasonable answer. Seq2seq model uses multi-layered LSTM (or GRU)
as cells to map the input sequence to a vector of a fixed dimensionality, and then another
deep LSTM (or GRU) to decode the target sequence from this vector. Originally used in
French to English translation, it has later been applied to the creation of conversational
agent (i.e., chatbot) and automated reply of Email (see Vinyal and Le, 2015, Kannan and
Kurach, 2016 for more details).

More precisely, Figure 4.6 illustrates the diagram of seq2seq model in its application to
conversational agent. It comprises an encoder and a decoder, both of which are composed

ENCODER Reply

Yes, what's up? <END>

| L] |

IHI[1E

Are you free tomorrow?

(thought vector )
S )
i —
1

\ J
Y

Incoming Email DECODER

Figure 4.6 — Seq2seq model with encoder and decoder, source 4

of LSTM cells. In encoder step, a LSTM takes words of input sentence (e.g., a question)
as inputs and outputs nothing at each time step. Moreover, the hidden states as well as
the cell states are updated along cells and the final cell state (the “thought vector” in
Figure 4.6) that have incorporated information of the whole input sentence will be treated
as an initial state for the decoder. In decoder step, it begins by receiving a special token
“start” and yields a word in vocabulary that has the highest probability, then this word
output will be regarded as an input for the next LSTM cell and yields the most probable
word. This procedure continues until a special token “end” is yield by the network. The
seq2seq model is sometimes referred as a generative model since the final response is
generated word by word by the trained model.

4. http://suriyadeepan.github.io/2016-12-31-practical-seq2seq/
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In the next section, we will create a chatbot based on the seq2seq model.

4.3.4 A seq2seq-based chatbot

iAdvize company is a conversational platform that integrates different channels (e.g.,
chat, call, social media etc) for the purpose of connecting customers and consultants
with expertise. The connection, which comes into being mostly via conversation, is quite
useful for the augmentation of conversion rate on commercial websites since consultants
can help their customers solve difficulties that may impede purchase. It is found that a
large amount of messages given by customers, especially at the beginning of conversations,
are of similar meaning or even repeated sentences. The creation of chatbot, hence, aims
at helping consultant by reducing their time on responding to those repeated and simple
messages such that they would have more time on treating complicated messages that
may have higher value.

A Conversational agent (i.e., chatbot) can interact with customers by having natural
conversations indistinguishable from human. The types of chatbot can be very rich de-
pending on different tasks that a chatbot to achieve, different models on which it is
created etc. For example, from domain perspective, the chatbot can be generally divided
into two categories: closed-domain and open-domain. The formal one tries to achieve a
very specific goal such as only responding to questions concerning a certain scenario (e.g.,
delivery or payment); The latter one aims at handling conversations with open subject.
From model perspective, chatbots based on retrieval model will choose a response from
a prefixed set of responses given a question. Such kind of chatbot will not give responses
with grammar mistakes but may work badly on unseen cases for which no pre-defined
responses exist; chatbots based on generative model (i.e., seq2seq model) can generate
response from scratch. It has an ability to “remember” past information and to cope with
new cases but may suffer from grammar mistakes and the training of such model requires
a huge amount of training samples.

As the seq2seq model has great potential in chatbot creation, as shown in Vinyal and
Le (2015), we will create our chatbot by this model. However, instead of generating a
response by seq2seq model, we prefer to choose a response from a prefixed set of responses
since responses with no grammar mistakes are of top priority in practice. To this aim,
we first define a score to measure the consistency of a response given a message. Let us
denote by x = (x1,x9,...,%,) a message with n words and by y = (y1,...,¥m) a response
with m words. The set of prefixed responses is denoted by %'. We define the score of y
given x by the negative log probability of y given x, i.e.,

1 m

score(y[x) = ~InPy(ylx) = —— > InPg (3121, ,%n, ¥1,72,-+,35-1).
J=1

where the probability Py is based on a seq2seq model. Note that a response with higher

consistency to a message will have smaller score.

Dataset and pre-processing steps

The raw dataset used for training seq2seq model contains 30694 pairs of question and
response extracted from a log of conversations on the delivery subject between customers
and consultants. Before training the model, several pre-processing steps are needed to
clean up the raw dataset. Generally, each message is tokenized to a sequence of single
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words and characters and the most 10000 frequent tokens are chosen as our vocabulary.
Tokens not belonging to the vocabulary are replaced by special token “UNK?”. In addition,
we make use of bucketing, which is a method to efficiently handle sentences of different
lengths. Let us first clarify the problem. For pairs of observations, we will have question
sentences of different lengths L1 on input, and response sentences of different lengths Lo
on output. Since the question sentence is passed as encoder inputs in encoder, and the
response sentence comes as decoder inputs (prefixed by another special token “BOS”,
meaning begin of sentence), we should in principle create a seq2seq model for every pair
(L1,Lg +1) of lengths of a question and response. This would result in an enormous
computation graph consisting of many very similar sub-graphs. On the other hand, we
could just pad every sentence with a special token “PAD”. Then we would need only one
seq2seq model, for the padded lengths. But for shorter sentence our model would be
inefficient, encoding and decoding many “PAD” tokens that are useless. As a compromise
between constructing a computation graph for every pair of lengths and padding to a single
length, we use a number of buckets and pad each sentence to the length of the bucket
above it. We use default buckets, a list of 4 tuples [(5,10),(10,15),(20,25),(40,50)]. It
means that if the input is a question with 3 tokens, and the corresponding output is a
response with 6 tokens, then they will be put in the first bucket and padded to length 5
for encoder inputs, and length 10 for decoder inputs. If the question is with 8 tokens and
the corresponding response has 18 tokens, then they will not fit into the (10,15) bucket,
but into (20,25) bucket, i.e., the question will be padded to 20, and the corresponding
response to 25. We limit maximum length for question and response to 40 and 50 since
more than 95% pairs of observations have lengths below these limits.

Training the model and results

The seq2seq model is trained with following parameter values: the embedding size for each
token is set to be 256; the batch size for Stochastic Gradient descent 128; the number of
hidden layers 2; the learning rate 0.5. Since running seq2seq model is time consuming,
we have considered only batch size and learning rate as hyperparameters to adjust (for
others, we have used their default values). We set candidate value 128 and 256 for batch
size and 0.01, 0.1, 0.5 for learning rate. In addition, since we did not find a suitable @ &A
benchmark dataset for French that enables us to compute the F1 score, values for the
hyperparameters are therefore decided by checking the coherence of answers generated
by the model given some questions. The full code which is implemented in python with
Tensorflow library is on Github:°. We test our trained model on several test questions
and Table 4.2 shows for each question the top 3 responses with lowest scores (i.e., three
most consistent responses) within a set of 12 prefixed responses of 6 categories listed in
Table 4.3, where the category of each response is indicated in the parenthesis. It is seen
that the first response well corresponds to the first message and its score is lower than
that of two other responses which seem to be inconsistent. However, they are both of
“délais livraison” category which still have connection with the information expressed by
the first message; For the second message whose meaning is quite clear and completely
independent with other categories, the first two responses correspond well to the message
and their score are comparatively much lower than that of the third response; For the
third and fourth message, only the top response is in accordance with the message. The
remaining two responses that have higher scores prove to be improper responses.

5. https://github.com/iadvize/data-delivery-chatbot-service
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Question Responses (score)

“il faut choisir le mode livraison chronopost pour le recevoir samedi.” (15.5)
“ce produit n’est pas livrable en point relais.” (17.1)
“le delais de livraison ¢’est d’autour de 10 jours pour des articles en stock.” (17.2)

“quel mode de livraison m’assure de 'avoir rapidement”

“a vous également & bientot.” (11.9)

“bonne journée!” “bonne journée.” (13.6)

“bonjour, quelle est I'etape qui vous pose probleme?” (18.6)
“bonjour, je n’arrive pas a créer un compte.” “il faut choisir le mode livraison chronopost pour le recevoir samedi.” (21.1)

“a vous également & bientdt.” (22.1)

“auriez vous la référence de cette table?” (14.2)
“ce produit n’est pas livrable en point relais.” (15.7)
“le delais de livraison c’est d’autour de 10 jours pour des articles en stock.” (15.7)

1
2,
3,
L
2,
3, “auriez vous la référence de cette table?” (21.3)
1,
2,
3,
L
“je souhaite commander une table.” 2,
3,

Table 4.2 — Test of chabot on delivery scenario

Responses

1, “bonjour quels types d’articles souhaitez vous commander?” (mode livrai-
son)

2, “il faut choisir le mode livraison chronopost pour le recevoir samedi.” (mode
livraison)

3, “tout dépend si le ou les modele(s) que vous choisissez sont en stock et
livrable sous 2 jours.” (délais livraison)

4, “le delais de livraison c’est d’autour de 10 jours pour des articles en stock.”
(délais livraison)

5, “un message d’erreur s’affiche t-il?” (créer un compte)

6, “bonjour, quelle est 'etape qui vous pose probléme ?” (créer un compte)
7, “auriez vous la référence de cette table.” (commander une table)

8, “cette table est en stock sur notre site. si vous la commandez via le web, la
livraison se fera & votre domicile.” (commander une table)

9, “je suis désolée mais votre commande n’entre pas dans le cadre de la livraison
en point relais.” (point relais) 10, “ce produit n’est pas livrable en point relais.”
(point relains)

11,“bonne journée.” (au revoir)

12, “a vous également a bientot.” (au revoir)

Table 4.3 — A prefixed set of responses
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angers

Mots clés : Apprentissage en ligne, Clustering en ligne, Quasi-bayésian, Borne de regret minimax,
Reversible Jump Markov Chain Monte Carlo, Courbe principale séquentielle.

Résumé : Cette these travaille principalement
sur trois sujets. Le premier concentre sur le
clustering en ligne dans lequel nous présentons
un nouvel algorithme stochastique adaptatif
pour regrouper des ensembles de données en
ligne. Cet algorithme repose sur l'approche
quasi-bayésienne, avec une estimation
dynamique (i.e., dépendant du temps) du
nombre de clusters. Nous prouvons que cet
algorithme atteint une borne de regret de 'ordre
JTinT et que cette borne est asymptotiquement
minimax sous la contrainte sur le nombre de
clusters. Nous proposons aussi une
implémentation par RIMCMC. Le deuxi¢me
sujet est li¢ a I'apprentissage séquentiel des
courbes principales qui cherche a résumer une
séquence des données par une courbe continue.

Pour ce faire, nous présentons une procédure
basée sur une approche maximum a posteriori
pour le quasi-posteriori de Gibbs. Nous
montrons que la borne de regret de cet
algorithme et celui de sa version adaptative est
sous-linéaire en 1'horizon temporel 7. En outre,
nous proposons une implémentation par un
algorithme glouton local qui intégre des
¢léments de sleeping experts et de bandit a
plusieurs bras. Le troisiéme concerne les
travaux qui visent a accomplir des taches
pratiques au sein d'iAdvize, l'entreprise qui
soutient cette thése. Il inclut 1'analyse des
sentiments pour les messages textuels et
l'implémentation de chatbot dans lesquels la
premieére est réalisé par les méthodes classiques
dans la fouille de textes et les statistiques et la
seconde repose sur le traitement du langage
naturel et les réseaux de neurones artificiels.

Title : Online stochastic algorithms
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Abstract : This thesis works mainly on three
subjects. The first one is online clustering in
which we introduce a new and adaptive
stochastic algorithm to cluster online dataset. It
relies on a quasi-Bayesian approach, with a
dynamic (i.e., time-dependent) estimation of the
(unknown and changing) number of clusters. We
prove that this algorithm has a regret bound of
the order of 7T and is asymptotically
minimax under the constraint on the number of
clusters. A RIMCMC-flavored implementation
is also proposed. The second subject is related to
the sequential learning of principal curves which
seeks to represent a sequence of data by a
continuous polygonal curve.

To this aim, we introduce a procedure based on
the MAP of Gibbs-posterior that can give
polygonal lines whose number of segments can
be chosen automatically. We also show that our
procedure is supported by regret bounds with
sublinear remainder terms. In addition, a greedy
local search implementation that incorporates
both sleeping experts and multi-armed bandit
ingredients is presented. The third one concerns
about the work which aims to fulfilling
practical tasks within iAdvize, the company
which supports this thesis. It includes sentiment
analysis for textual messages by using methods
in both text mining and statistics, and
implementation of chatbot based on nature
language processing and neural networks.
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