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Abstract

Defense Against Software Exploits

In the beginning of the third millennium, we are witnessing a new age. This new

age is characterized by the shift from an industrial economy to an economy based

on information technology. It is the Information Age. Today, we rely on soft-

ware in practically every aspect of our life. Information technology is used by all

economic actors: manufactures, governments, banks, universities, hospitals, retail

stores, etc. A single software vulnerability can lead to devastating consequences

and irreparable damage. The situation is worsened by the software becoming

larger and more complex making the task of avoiding software flaws more and

more difficult task. Automated tools finding those vulnerabilities rapidly before it

is late, are becoming a basic need for software industry community.

This thesis is investigating security vulnerabilities occurring in C language appli-

cations. We searched the sources of these vulnerabilities with a focus on C library

functions calling. We dressed a list of property checks to detect code portions lead-

ing to security vulnerabilities. Those properties give for a library function call the

conditions making this call a source of a security vulnerability. When these condi-

tions are met, the corresponding call must be reported as vulnerable. These checks

were implemented in Carto-C tool and experimented on the Juliet test base and

on real life application sources. We also investigated the detection of exploitable

vulnerability at binary code level. We started by defining what exploitable vulner-

ability behavioral patterns are. The focus was on the most exploited vulnerability

classes such as stack buffer overflow, heap buffer overflow and use-after-free. Af-

ter, a new method on how to search for these patterns by exploring application

execution traces is proposed. During the exploration, necessary information is ex-

tracted and used to find the patterns of the searched vulnerabilities. This method

was implemented in our tool Vyper and experimented successfully on Juliet test

base and real life application binaries.



Résumé

Défense contre les attaques de logiciels

Dans ce début du troisième millénium, nous sommes témoins d’un nouvel âge. Ce

nouvel âge est caractérisé par la transition d’une économie industrielle vers une

économie basée sur la technologie de l’information. C’est l’âge de l’information.

Aujourd’hui le logiciel est présent dans pratiquement tous les aspects de notre vie.

Une seule vulnérabilité logicielle peut conduire à des conséquences dévastatrices.

La détection de ces vulnérabilités est une tâche qui devient de plus en plus dure

surtout avec les logiciels devenant plus grands et plus complexes.

Dans cette thèse, nous nous sommes intéressés aux vulnérabilités de sécurité im-

pactant les applications développées en langage C et particulièrement les vulnéra-

bilités provenant de l’usage des fonctions de ce langage. Nous avons proposé

une liste de vérifications pour la détection des portions de code causant des

vulnérabilités de sécurité. Ces vérifications sont sous la forme de conditions ren-

dant l’appel d’une fonction vulnérable. Des implémentations dans l’outil Carto-C

et des expérimentations sur la base de test Juliet et les sources d’applications

réelles ont été réalisées. Nous nous sommes également intéressés à la détection de

vulnérabilités exploitables au niveau du code binaire. Nous avons défini en quoi

consiste le motif comportemental d’une vulnérabilité. Nous avons proposé une

méthode permettant de rechercher ces motifs dans les traces d’exécutions d’une

application. Le calcul de ces traces d’exécution est effectué en utilisant l’exécution

concolique. Cette méthode est basée sur l’annotation de zones mémoires sensibles

et la détection d’accès dangereux à ces zones. L’implémentation de cette méthode

a été réalisée dans l’outil Vyper et des expérimentations sur la base de test Juliet

et les codes binaires d’applications réelles ont été menées avec succès.
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Introduction

“Write something down, and you may have just made a mistake.”

David Brumley.

In a more and more digitalized world, it has become necessary to ensure the

security of computer and information systems. The concept of security in computer

systems is built on Confidentiality, Integrity and Availability aka CIA criteria [1].

The security of an information system is a global property that must hold at every

level of the system. In other words, security is seen as a chain that is as weak as its

weakest ring [2]. A strategy that can be used to provide a security of a system is

Defense in depth at every system level. This means that each system’s component

must not rely on other components security but has to ensure its own security.

Software free from vulnerabilities and flaws is one of the building blocks of defense

in depth tactics. Software vulnerabilities and flaws can be very expensive. A

software flaw may lead spacecrafts to explode [3], make nuclear centrifuges spin

out of control [4], or force a car manufacturer to recall thousands of faulty cars [5].

Worse, security-critical bugs tend to be hard to detect, harder to protect against,

and up to one hundred times more expensive after the software is deployed [6].

The situation becomes worse with program’s size and complexity growing very

fast [7]. Senior code reviewers can no longer analyze applications with millions

of code lines to find these nasty flaws in a reasonable time. This situation makes

it urgent to have automated detection systems to be able to find vulnerabilities

the earliest in software development cycle. For this reason, the solutions and tools

1
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automatically finding vulnerabilities are gaining interest by different IT actors

(researchers, engineers, developers, etc). Code analysis and more especially the

static code analysis is a possible solution to this problematic situation. In this

thesis, we explored this technique, proposed new solutions, implemented and tested

new static analysis tools with a focus on security vulnerabilities.

Thesis contributions

Static analysis for security is the main subject of this thesis. Three topics were

dealt with along this research work:

• Security vulnerability detection in C language applications

In this contribution it is described a method and a tool based on abstract

interpretation extended with security vulnerability property checks. The

coverage of security vulnerabilities represents a key difference with existing

tools such as (Polyspace [8, 9], Frama-C [10, 11] and Astrée [12]). The second

novelty is that the proposed vulnerability checks are obtained by analyzing

the language specification and its standard libraries documentation. This

makes our work different and complementary to tools such as Fortify [13]

and Coverity [14]. So, we focus on a set of vulnerabilities derived from

the usage of C language library functions. We define properties that can be

checked to locate these vulnerabilities. For each defined property, we provide

the related attack scenario to show its effect on security. These properties

were implemented and evaluated in Carto-C tool.

• Exploitable vulnerability detection on binary code

This contribution describes how to detect exploitable vulnerabilities at bi-

nary code level with almost no false positive. The given solution makes use of

concolic execution [15] in order to explore execution paths to compute reach-

able program states. On these computed states different behavioral patterns

of vulnerable code can be recognized and reported. The proposed solution
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also permits to a software analyst to easily confirm the reported vulnera-

bility by providing him the input sample that can trigger it. Our solution

can also be used to automatically sort true and false positive vulnerabilities

obtained from other software analysis tools. This contribution is very related

to the first and can be seen as a logical continuation. In the first contribu-

tion, we searched for large classes of vulnerability without questioning their

exploitability. But, in real life situations, exploitable vulnerabilities must

be treated and patched before non-exploitable ones to reduce the chances of

successful attacks. This pushed to be more interested in exploitable vulner-

abilities. The choice of analyzing binary code is motivated by the fact that

at this low level all details are available to accurately qualify an exploitable

vulnerability.

• Tools implementation and evaluation

In this contribution, we present developments and experimentations done

along this dissertation. We provide details on the Carto-C and Vyper tool

implementations. The correctness of the proposed solutions are demon-

strated via experimental evaluation using the publicly available Juliet test

base [16]. The use of Juliet test base provides a reference benchmark for

comparison with other existing tools. On the other hand, the developed

tools were tested on real life applications showing their effectiveness and

their limitations.

Thesis outline

The chapter 1 introduces the cyber security landscape. It defines precisely what

is meant by security vulnerability. It shows how and where static analysis can

be placed among dozens of inter-related cyber security domains. In chapter 2

it is given examples showing C language complexity and their effect on security.

Different C language library functions are studied from a security point of view.
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This chapter shows the necessity of tools checking for dangerous security flaws in

application written in C language. In chapter 3, we give details on existing static

analysis tools and techniques. It is dealt with main static analysis tool components:

front-end, middle-end and back-end. The chapter 4 covers the first contribution

on how to use source code static analysis tool to detect security vulnerabilities

on C language applications using abstract interpretation extended with security

property checks. In chapter 5, we describe the solution we propose for exploitable

vulnerability detection on binary application code using concolic execution to rec-

ognize the pattern of searched vulnerabilities. The chapter 6 describes all what

has been implemented and experimented. We conclude and discuss what have

been done in the chapter 7. Chapters’ dependency is described in the figure 1.

Ch. 1

Introduction

Ch. 2

Ch. 3 Ch. 4

Ch. 5 Ch. 6

Conclusion Ch. A Ch. B

Chapter A is to be read before B

Figure 1: Chapter dependencies



Chapter 1

Overview of cyber security

domains

“Security is a process, not a product.”

Bruce Schneier.

The growing number of interconnected computer systems, and the increasing re-

liance upon them by individuals, businesses, industrial entities and governments

means that there are an increasing number of systems at risk. According to

Ponemon Institute’s 2016 Cost of Data Breach Study [17], the average total cost of

losing sensitive corporate or personal information is approximately $4 billion per

year. Per stolen record, businesses and associations can spend anywhere between

$145 and $158.

1.1 Cyber security: a growing large field

Cyber security aims the protection of computer systems from the theft and dam-

age to their hardware, software or information they hold. This domain is of a great

importance for every IT actor ranging from simple home users to big government

5
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agencies. As shown in the figure 1.1 [18], this domain is very large and is getting

larger and larger. Cyber security covers technical fields such as security operations,

security architecture or risk assessment, regulatory domains such as governance or

standard compliance and human related fields such as career development or user

education. We focus on the risk assessment domain and more specially on vul-

nerability scan and source code scan sub-domains. The vulnerability scan is run

generally using scanning tools [19] like Nessus, Qualys, etc. These tools will report

already known vulnerabilities. These known vulnerabilities are published and doc-

umented on different on-line databases such as the Common Vulnerabilities and

Exposures (CVE), which is maintained by the MITRE [20] with funding from the

national cyber security division of the USA government. The task of vulnerability

scanning needs to be run continuously to insure that the information system is

at least immune against known vulnerabilities. On the other side, software code

scanning either in white box with access to the source code or in black box with

an access to only software binaries can be used to discover vulnerabilities gener-

ally new (called zero days by the security community). This is done using static

analysis tools described in the chapter 3 or when applicable using manual audit-

ing. The result of source scanning is a set of alerts or warnings explaining where

the vulnerability is located. The use of Common Weakness Enumeration CWE

[21] taxonomy gives software auditors ease to use different tools or techniques and

keeping the same vocabulary to describe the same things.
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Figure 1.2: Risk assessment cyber security domain

1.2 Security vulnerabilities: public enemy of cy-

ber security

The security of a system is a global property and no aspect can be neglected with-

out exposing the whole system to a risk. It is often seen as a chain that is as

weak as its weakest ring [2]. Having good quality software with robust security

contributes a lot to the security of the whole system. Different domains in cyber

security deal with software quality. The risk assessment branch as shown in the

figure 1.2 deals with many cyber security related topics. Under the vulnerability

scan sub-branch [22], security engineers are scanning their systems periodically or

continuously to locate non-patched already known vulnerability or discover new

zero-day vulnerabilities. This happens generally after that the software is deployed

within the information system. The sub-branch source code scan means scanning

the software source (white-box) or binaries (black-box) to discover security vul-

nerabilities early in the SDLC (Software Development Life Cycle) [23] and helps

the developing team to patch it before the software is deployed. This will help to

reduce the maintenance cost and avoid damage caused by an adversary (internal

or external) successful exploit.

Security Vulnerability :

What’s a security vulnerability? [24] Most people think this would be an easy

question to answer, but in fact it turns out not to be. A security vulnerability is
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a weakness in a system that could allow an attacker to compromise the integrity,

availability, or confidentiality of that system. Security vulnerabilities involve inad-

vertent weaknesses; by-design weaknesses may sometimes occur in a product, but

these are not security vulnerabilities. For example, the choice to implement a 40-

bit cipher in a product would not constitute a security vulnerability, even though

the protection it provides would be inadequate for some purposes. In contrast, an

implementation error that inadvertently caused a 256-bit cipher to discard half the

bits in the key would be a security vulnerability. Integrity refers to the trustwor-

thiness of a resource. An attacker that exploits a weakness in a system to modify it

silently and without authorization is compromising the integrity of that product.

Availability refers to the possibility to access a resource. An attacker that exploits

a weakness in a system, denying appropriate user access to it, is compromising the

availability of that product. Confidentiality refers to limiting access to informa-

tion on a resource to authorized people. An attacker that exploits a weakness in

a system to access non-public information is compromising the confidentiality of

that product. As we notice, integrity, availability, and confidentiality are the three

main goals for security. If one or more of these three elements lacks, there is a secu-

rity vulnerability. A single security vulnerability can compromise one or all these

elements at the same time. For instance, an information disclosure vulnerability

would compromise the confidentiality of a product, while a remote code execution

vulnerability would compromise its integrity, availability, and confidentiality.

Exploitable vulnerability :

Exploitable vulnerability is the intersection of three elements: a security vulner-

ability, attacker access to the flaw, and attacker capability to exploit the flaw.

To exploit a vulnerability, an attacker must have at least one applicable tool or

technique that can reach a system weakness [25].
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1.3 Causes of security vulnerabilities

Unfortunately, there is no single source of security vulnerabilities. Vulnerabilities

occur at every stage of the SDLC (Software Development Life Cycle). At the

development stage, these vulnerabilities may occur at every location in the code

even in code located at a branch that is executed once in a decade. Worse, the

most devastating vulnerabilities are those occurring in software security organs

under very specific condition. A vulnerability can stay dormant for decades until

it detonates and burns everything that was on its path. For example the Heart

bleed [26] that affected the widely used cryptographic library OpenSSL stayed in

the code for at least a decade before being publicly acknowledged and patched.

The following paragraph summarizes the most important security vulnerability

sources and causes:

• Insecure design:

A lot of software designers do not think the security at the beginning. This a

natural human bias where the designer wants to have a working software and

forget about its security. The other cause of this behavior is that security is

contrasted with the usability i.e. the more your software is secure, the less

it is easily usable and vice versa. Designers taking this trade-off generally

sacrifices the security against the usability. For example, the major Internet

protocols were designed with very little security in mind and aimed usability

[27].

• Inherently insecure languages :

Developing software using some languages makes it more probable to com-

mit a mistake leading to a vulnerability. This is caused by the language’s

specification complexity and/or ambiguity. C language is an example of a

language where it is easy to commit an error [28] leading to a security vul-

nerability. Programming language choice is sometimes a good starting point

to eliminate some kinds of vulnerabilities. The chapter 2 gives a clear view

on how a programming language can let the developer commit fatal errors.
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• Errors and failures :

A copy-paste error [29], typing 0 instead of 1, syntactic error in variable

names and all other mistakes that a human can possibly commit may be

sources of a security vulnerability. Of course, not all mistakes will lead to

vulnerabilities. These mistakes may lead to bugs that are the parent class of

security vulnerabilities.

• Poor testing :

Every software need to be tested and validated before being deployed [30]. A

poor testing methodology can miss trivial security holes. Exploiting security

breaches on sloppily tested software may be very easy and practically with

no cost for an adversary. On the other hand, well-tested software may make

the cost of a successful attack so high pushing the attacker to abandon that

well-tested point and search for other attacking points.

• Deliberate:

In this case, the security vulnerability is seen as a hidden software feature

inserted by malicious insider [31]. This kind of vulnerabilities can be very

difficult to eradicate especially if the insider is highly skilled and determined.

1.4 High level security measures

To eradicate security vulnerability in software different actions and decisions must

be taken. These actions and decisions concern every stage of SDLC and every part

of the organization developing or using that software. In the following, we present

some measures that may contribute to improve a software security [30]:

• Good design practice:

Think the security at the beginning of the design. Organizations must have

guidelines related to security that must be applied for every software design.

• Language choice:

When it is possible, developers should use programming languages known to
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cause the least impact on security. For example, in some cases, Java language

can be a good candidate to build secure software. Functional languages such

as Ocaml can also be used to produce secure software.

• Coding standard and rules :

When it is not possible to choose a secure language. It is still possible to

produce a secure code using insecure language. This is achieved by having

coding rules such as CERT-C coding rules [32] or the MISRA C [33]. These

rules forbid the usage of known deprecated or dangerous code constructions

and enforce the developer to follow good development practices (variable

naming, code commenting, code structure, etc.).

• Software testing :

Testing is important to ensure that the software implementation complies

with the design [30]. This can be done while developing i.e. unit testing or

at the end of the development, i.e. integration testing. Software testing may

be accomplished manually or assisted with various tools and frameworks.

This technique can be very useful to find obvious security vulnerabilities but

it is inefficient when dealing with complex and large software.

• Software analysis :

In this technique, the software codes or binaries are analyzed without being

executed, this is the static analysis or by being executed and monitored this

is the dynamic analysis. These techniques have shown good results specially

when dealing with security vulnerabilities. More details on the static analysis

technique will be given in the chapter 3.

Summary

The security of computers and systems is a complex domain. This domain is

vast and has different branches. One of these branches is the software security.

The software insecurity comes from different causes. All of these causes must
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be dealt with using the appropriate means. One of the means used to improve

the software security is static analysis. Static analysis is a technique to analyze

software and find security vulnerabilities within it without actually executing it

[34]. In the following chapter, we present how this technique work and how it can

be implemented and evaluated.



Chapter 2

Source of vulnerabilities in C

language

Introduction

“Better be ignorant of a matter than half know it.”

Publilius Syrus.

Developers using the C language can write functioning and correctly behaving

applications by knowing only part of C language specifications and semantics. By

diving into this language specification we are able to show its complexity. This

complexity can be a source of dangerous coding habits that can lead to disasters

specially when related to critical systems (industrial, banking, health care, etc.).

In this chapter we will present an analysis of some of these dangers, how it causes

harm and briefly how it can be detected and prevented. We will focus on safety

and security issues. Safety issues concerns availability and resilience, i.e. there is

no safety issues when the program does not crash or misbehave of its own. The

security issues concerns resistance to an attacker pushing a program to behave in

a manner he wants.

14
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2.1 C language definition

A programming language generally consist of instructions for a computer. The

earliest known programmable machine was the automatic flute player described in

the 9th century by the brothers Musa in Baghdad, during the Islamic Golden Age

[35]. From the early 1800s, programs were used to direct the behavior of machines

such as Jacquard looms and player pianos [36]. Thousands of different program-

ming languages have been created, mainly in the computer field, and many more

still are being created every year. Many programming languages require compu-

tation to be specified in an imperative form (i.e., as a sequence of operations to

perform) while other languages use other forms of program specification such as

the declarative form (i.e. the desired result is specified, not how to achieve it).

C language is a general-purpose, imperative computer programming language,

supporting structured programming, lexical variable scope and recursion, while a

static type system prevents many unintended operations. C was originally devel-

oped by Dennis Ritchie between 1969 and 1973 at Bell Labs [37], and used to re-

implement the Unix operating system. It has since become one of the most widely

used programming languages of all time [38]. C compilers from various vendors

are available for the majority of existing computer architectures and operating

systems. C has been standardized by the ANSI (American National Standards

Institute) since 1989 (see ANSI C [39]) and subsequently by the International

Organization for Standardization (ISO). C is an imperative procedural language.

It was designed to be compiled using a relatively straightforward compiler, to

provide low-level access to memory, to provide language constructs that map effi-

ciently to machine instructions, and to require minimal run-time support. Despite

its low-level capabilities, the language was designed to encourage cross-platform

programming. A standards-compliant and portably written C program can be

compiled for a very wide variety of computer platforms and operating systems

with few changes to its source code. The language has become available on a very

wide range of platforms, from embedded micro controllers to supercomputers.
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The specification of the C language is complex and developers know rarely the

deep semantics of the code they are writing. This makes them more exposed to

commit mistakes with a devastating effect on application’s security.

C compilers are available for large number of different OS (Operating Systems)

and platforms [40]. The C language has different variants called by the developer

community flavors :

• ANSI C: this is the basic and central C language specification. It is available

in the standard ISO/IEC 9899:TC2 (named C99) [39].

• POSIX C: this is an extension of the ANSI C, it is documented in IEEE

Standard 1003.1 [41], this C flavor is widely implemented in Unix Operating

Systems.

• GNU C: also called LINUX C. This is another extension implemented by

the GNU C library [42] widely used in Linux systems [43].

• WINDOWS C: it is implemented by Visual Studio (Microsoft C/C++

compiler) and documented on the Microsoft MSDN platform [44].

To show the complexity of some C language constructs we will describe in the fol-

lowing three families of functions: formatted I/O functions, command and program

execution functions and memory manipulation functions.

2.2 Formatted output functions in C language

A formatted input/output function is a special kind of functions that takes a vari-

able number of arguments, one special argument is called format string. In the

case of output function the format is used to convert primitive data types in a

human readable string representation and writes it to the output argument (file

stream, console output, buffer). When used with input functions the format will

guide how the input stream must be parsed and written to the given arguments.

This study will focus on giving an in depth study of the specification of these
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functions in C language.

All the information that will be given in this section is extracted from the spec-

ification available in the ANSI C standard ISO/IEC 9899:TC2 (named C99)[39]

under the paragraph (7.19.6 Formatted input/output functions). The figure

2.1 lists the formatted output functions signature declarations.

1 // HEADER : <stdio.h>
2 int fprintf(FILE * restrict stream, const char * restrict format,

...);
3 int printf(const char * restrict format, ...);
4 int snprintf(char * restrict s,
5 size_t n, const char * restrict format, ...);
6 int sprintf(char * restrict s, const char * restrict format, ...)

;
7 int vfprintf(FILE * restrict stream,
8 const char * restrict format, va_list arg);
9 int vprintf(const char * restrict format, va_list arg);

10 int vsnprintf(char * restrict s, size_t n,
11 const char * restrict format, va_list arg);
12 int vsprintf(char * restrict s, const char *
13 restrict format, va_list arg);
14

15 // HEADER <wchar.h>
16 int fwprintf(FILE * restrict stream,const wchar_t * restrict

format, ...);
17 int swprintf(wchar_t * restrict s, size_t n,
18 const wchar_t * restrict format, ...);
19 int vswprintf(wchar_t * restrict s,
20 size_t n,const wchar_t * restrict format, va_list arg);
21 int vwprintf(const wchar_t * restrict format,va_list arg);
22 int wprintf(const wchar_t * restrict format, ...);
23 int vfwprintf(FILE * restrict stream,
24 const wchar_t * restrict format, va_list arg);
25

26

Figure 2.1: List of output formatted functions.

According to the specification of these functions the most interesting points are:

• All of these functions have a format argument of type const char * or const

wchar t *.

• The difference between fprintf and printf is that the former writes to a FILE

descriptor and the latter writes to the standard output ”STDOUT”.
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• ”vprintf” and other functions prefixed with ”v” take as an argument a va list

and not a variable number of arguments. va list is a special primitive type

defined in the ANSI C to carry an arguments list of variable size.

• ”sprintf”, ”snprintf”, ”vsnprintf”, ”vsprintf”, ”swprintf”, ”vswprintf” write

their outputs to the buffer pointed by the given the first parameter of type

”char * ”.

• ”wprintf” and other ”w” prefixed functions present in wchar.h have exactly

the same semantics except that they take wchar t (wide character)1 format

string as parameter and their output is also wchar t stream.

In the following we discuss the structure of the output format string, the usage

problems with this family of functions and we give information on how to check

and report issues.

2.2.1 Output format string structure

The format argument has a very precise syntax and semantics. Literally it is

specified as the following: “The format is composed of zero or more directives:

ordinary multi-byte characters (not %), which are copied unchanged to the output

stream; and conversion specifications, each of which results in fetching zero or

more subsequent arguments, converting them, if applicable.” [39].

The conversion specification (most important part) is described in detail in the

standard [39]. Each conversion specification is introduced by the character %.

After the %, we have the following parts (ordered as introduced in the figure 2.2):

• flag (optional): acceptable characters are [‘+’,‘0’,‘#’,‘-’,‘ ’]. If misused they

can lead to ”undefined behavior” as it will be explained in the next para-

graph.

1wide character is special C primitive type that is used to represent characters from non-ASCII
alphabets that need more than 1 byte (2 bytes or 4 bytes)
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format = ((TXT)(CS)*)+

• TXT: ordinary multi-byte characters (possibly empty).

• CS: Conversion specification, where the first character is a ‘%’

CS = %[flag][width][precision][length modifier]conversion specifier

all parts between brackets are optional only the last part “conversion specifier”
is required

Figure 2.2: Output function format argument structure

• width (optional): If the converted value has fewer characters than the field

width, it is padded with spaces (to the field width). Width could be a valid

decimal or ‘*’ , if width == ‘*’ then an argument of type int is consumed

from the argument list.

• precision (optional): that gives the minimum number of digits to appear

for the ’d’, ’i’, ’o’, ’u’, ’x’, and ’X’ conversions. Precision could be a valid

decimal preceded by ’.’ or ’.*’ , if precision == ’.*’ then an argument of type

int is consumed from the argument list.

• length modifier (optional): that specifies the size of the argument, the

possible values are : [‘h’,“hh”,‘l’,“ll”,‘j’,‘z’,‘t’,‘L’]. These are useful to specify

the length of type. For example: ”%hd” must be used with “signed short”

and “%Lf” with a “double” and not a float.

• conversion specifier (required) : a character that specifies the type of

conversion to be applied, the possible values are : [‘d’, ‘i’, ‘o’, ‘u’, ‘x’, ‘X’,

‘f’, ‘F’, ‘e’, ‘E’, ‘g’, ‘G’, ‘a’, ‘A’, ‘c’, ‘s’, ‘p’, ‘n’]. the standard specifies for

each conversion specification the precise expected type. The table 2.1 gives

a simplified type matching for each conversion specifier.

The following are examples of valid and bad output formats:
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Conversion specifier Expected type

‘d’,‘i’,‘o’,‘u’,‘x’,‘X’ (un)signed int.

‘f’,‘F’,‘e’,‘E’,‘g’,‘G’,‘a’,‘A’ float (double, when prefixed with ‘L’ .)

‘c’ a single character.

‘s’ a pointer to a null-terminated string of ’char’.

‘p’ a “* void”

‘n’ “* int”,The argument shall be a valid integer pointer

Table 2.1: Format conversion type matching.

• valid formats:

1 "you have %d points"

2 "%s %s!"

3 "Total: %10d"

4 "%.10d"

5 "rate : %.3f%%" // note that %% means the ASCII symbol ’%’

6 "%\#30.30lld"

• bad formats:

1 "%ll34d" // the correct order is not respected.

2 "%10.10k" // unknown conversion specifier ’k’.

We give in the next section the usage problems of this kind of functions.

2.2.2 Output functions usage problems

Formatted output functions must be used with care because many errors may

arise. The problems caused by a misused call to printf family functions can be

classified into two categories:

• Safety problems

These are all the problems caused by the reliance on undefined behaviors
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described in the ANSI C standard [45]. In the case of formatted output the

standard gives explicitly cases that lead to undefined behaviors:

– Format string value:

∗ the format must parse correctly according to the format detailed

above.

∗ the flag ‘#’ is only to use with these conversion modifiers : [oxXaAe-

EfFgG ] (not with [diucspn]).

∗ the precision field is only to use with these conversion modifiers :

[diouxXaAeEfFs ] (not with : [gGcpn]).

∗ the flag ‘0’ is only to use with these conversion modifiers : [diouxXaAe-

EfFgG ] (not with : [scpn])

∗ if the length modifier is in [h,hh,ll,z,t,j ] then conversion modifier

cannot be in [aAeEfFgGscp]

∗ if the length modifier is ‘l ’ then conversion modifier cannot be in

[p]

∗ if the length modifier is ‘L’ then conversion modifier cannot be in

[diuoXxncps ]

– Argument type mismatch :

As we see above, each conversion specifier expects a special C primitive

type, any mismatch leads to an undefined behavior of the application.

– Sprintf buffer related problems:

The functions “sprintf”, “vsprintf”, “snprintf”, “wsprintf” write their

output to a fixed length array, leading to an out-of-bounds write in the

case where the output size is greater than the given buffer size.

• Security problems

At the difference with safety issues, the application is supposed to be a tar-

get of an external malicious user aiming to exploit an exposed flaw to breach

its Confidentiality, Integrity, or Availability. There will be a security issue

when an external user is able to control completely or partially a format

string value as stated in the “CWE-134: Uncontrolled Format String” [46].



Source of vulnerabilities in C language 22

We will introduce later some additional concepts such as attack surface,

attack vectors, input vectors, variable dependency, etc. to have a deep un-

derstanding of user inputs and their effect on the security of an application.

2.2.3 Checking and reporting issues

From the description of safety security issues one could dress a list of checks to

be performed. For the reporting, each check will be attributed the most corre-

sponding CWE (Common Weakness Enumeration) identifier [21]. CWE naming

will help an application auditor to understand the emitted warnings with more

precision. The table 2.2 contains examples of checks to be performed on output

formatted function calls. A detailed checking and reporting of this type of vulner-

abilities is detailed in the chapter 4.

Problem Check CWE

Format
string
value

check that no undefined be-
havior could be triggered
and the format parses cor-
rectly.

CWE-758: Reliance on
Undefined, Unspecified, or
Implementation-Defined
Behavior.

Argument
type mis-
match

check that the given ar-
gument at the given order
matches the given format.

CWE-686: Function Call
With Incorrect Argument
Type, CWE-685: Function
Call With Incorrect Num-
ber of Arguments, CWE-
683: Function Call With In-
correct Order of Arguments.

Buffer
overflow

Check that the format and
the given arguments do not
generate an output with a
size greater than the size of
the given buffer.

CWE-787: Out-of-bounds
Write.

Table 2.2: Format output functions checking.
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1 //HEADER <stdio.h>
2 int fscanf(FILE * restrict stream,const char * restrict format,

...);
3 int scanf(const char * restrict format, ...);
4 int sscanf(const char * restrict s,const char * restrict format,

...);
5 int vfscanf(FILE * restrict stream,
6 const char * restrict format, va_list g);
7 int vscanf(const char * restrict format, va_list arg);
8 int vsscanf(const char * restrict s,const char * restrict format,

va_list arg);
9

10 //HEADER : <wchar.h>
11 int fwscanf(FILE * restrict stream,
12 const wchar_t * restrict format, ...);
13 int swscanf(const wchar_t * restrict s,
14 const wchar_t * restrict format, ...);
15 int vfwscanf(FILE * restrict stream,
16 const wchar_t * restrict format, va_list arg);
17 int vswscanf(const wchar_t * restrict s,
18 const wchar_t * restrict format, va_list arg)
19 int vwscanf(const wchar_t * restrict format,va_list arg);
20 int wscanf(const wchar_t * restrict format, ...);
21

Figure 2.3: List of input formatted functions.

2.3 Input formatted functions in C language

The other category of formatted functions is input functions. These category

of functions reads data from input streams and parses it according to the given

format. The figure 2.3 lists the input formatted functions declarations of the ANSI

C.

According to the specification of these functions the most interesting points are:

• All of these functions have a “format” argument, this is the main cause that

they could cause a format string vulnerability.

• The difference between fscanf and scanf is that the former reads from a

FILE descriptor and the latter reads from the standard input “STDIN”.
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• “vscanf” and other functions prefixed with “v” take as an argument a va list

and not a variable number of arguments. va list is a special type defined in

the C99 standard.

• “sscanf” reads from a “char *” (the fist parameter), and writes values read

to its arguments according to the given format.

• “wscanf” and other “w” prefixed functions present in the wchar.h have ex-

actly the same semantics expect that it takes wchar t (wide character) format

string as parameter.

In the following we discuss the structure of the input format string, the usage

problems with this family of functions and we give information on how to check

and report these issues.

2.3.1 Input functions format string structure

The format argument has a very precise syntax and semantics. Literally it is

specified as the following: “The format is composed of zero or more directives:

one or more white-space characters, an ordinary multi-byte character (neither %

nor a white-space character), or a conversion specification. Each conversion spec-

ification is introduced by the character %. After the %, the following appear in

sequence” [39]. The roles and semantics of input format elements as detailed in

the figure 2.4 are:

• assignment-suppressing (optional): ‘*’ is the only accepted character.

This allows to skip an input of the type specified by the conversion specifier.

This has an effect on argument type matching and could lead to an undefined

behavior as explained in the next paragraph.

• width (optional): decimal integer greater than zero that specifies the max-

imum field width (not the same as the width field used with printf format

where the value can be ’*’).
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format = ((TXT)(CS)*)+

• TXT: ordinary multi-byte characters (possibly empty).

• CS: Conversion specification, where the fist character is a ’%’

CS = %[assignment-suppressing][width][length modifier]conversion specifier

all parts between brackets are optional only the last part ”conversion specifier”
is required

Figure 2.4: Input function format argument structure

Conversion specifier expected type

‘d’,‘i’,‘o’,‘u’,‘x’,‘X’ a pointer to (un)signed int.

‘f’,‘F’,‘e’,‘E’,‘g’,‘G’,‘a’,
‘A’

a pointer to float (double, when prefixed with ‘L’ length
modifiers.)

‘c’ a pointer to single character.

‘s’ a pointer to string of ’char’, this may be dangerous and
could lead to buffer overflow.

‘p’ a pointer to “* void”

‘n’ a pointer to “int”. No input is consumed. The corre-
sponding argument shall be a pointer to signed integer

[[a-z]] a pointer to string of ’char’.

Table 2.3: Input format conversion type matching

• length modifier (optional): that specifies the size of the receiving object.

Possible values are : [’h’, ’hh’, ’l’, ’ll’, ’j’, ’z’, ’t’, ’L’]. Exactly the same

possible values and semantic compared to printf format.

• conversion specifier (required): specifies the type of conversion to be ap-

plied. Possible values are : [’d’, ’i’, ’o’, ’u’, ’x’, ’X’, ’f’, ’F’, ’e’, ’E’, ’g’, ’G’,

’a’, ’A’, ’c’, ’s’, ’p’, ’n’] and a set of acceptable characters enclosed between

“[]” (e.g. : [0123456789]).

The table 2.3 presents a simplified type matching for each conversion specifier.

The following are examples of valid and bad formats:
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• valid formats:

1 "%d %s"

2 "%s %s!"

3 "Total: %10d"

4 "%10d"

5 "rate : %.3f%%" // note that %% means the ASCII symbol ’%’

6 "%\#30lld"

7 "%[0123456789]"

• bad formats:

1 "%ll34d" // the correct order is not respected.

2 "%10t" // unknown conversion specifier ’t’.

2.3.2 Input formatted functions usage problems

The problems caused by a misused call to input family functions are classified into

two categories:

• Safety problems

These are all the problems caused by the reliance on undefined behaviors [45]

described in the ANSI C standard. In the case of formatted input functions

the standard gives explicitly cases that lead to undefined behaviors:

– Format string value:

∗ the format must parse correctly according to the format detailed

above.

∗ if the length modifier is in [‘h’,“hh”,“ll”,‘z’,‘t’,‘j’ ] then conversion

modifier cannot be in [‘a’,‘A’,‘e’,‘E’,‘f ’,‘F’,‘g’,‘G’,‘s’,‘c’,‘p’ ]

∗ if the length modifier is ‘l’ then conversion modifier cannot be in

[‘p’ ]
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∗ if the length modifier is ‘L’ then conversion modifier cannot be in

[‘d’,‘i’,‘u’,‘o’,‘X’,‘x’,‘n’,‘c’,‘p’,‘s’ ]

∗ If the conversion specification includes an assignment-suppressing

character or a field width and the conversion specifier is ‘n’.

– Argument type mismatch:

As we see above each conversion specifier expects a special C primitive

type, any mismatch leads to an undefined behavior of the application.

– ”sscanf” buffer related problems:

The functions ”sscanf”, ”vsscanf”, ”swscanf”, ”vswscanf” read their

input from a fixed length array. Leading to an out-of-bounds read in

the case where the input buffer size is smaller than the size expected

by the given format.

– General input function buffer problems:

Due to the fact that an input function is reading data from user input

and writing it to fixed size variables, the risk of out-of-bounds write is

very high with all input functions family. For example:

1 char buf[128];

2 scanf("%s",buf); // this call to scanf can lead to

stack overflow.

3

• Security problems

Security issues will arise if an external user has a complete or partial control

of a format string value. Even that the input family functions are not stated

in the “CWE-134: Uncontrolled Format String” [46], but due to their speci-

fication a user who controls the format value will be surely able to interfere

with the security (Confidentiality, Integrity, Availability) aspects of the tar-

geted application. Same remark as for output family security issues: to go

deeper some new concepts are needed, they will be detailed later.
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Problem Check CWE

scanf
buffer
overflow

Check that the size of re-
ceived data is not greater
than the the size of the cor-
responding argument.

CWE-787: Out-of-bounds
Write

sscanf
buffer
problems

Check the the size of buffer
that these function read
from is greater than the one
expected by the given for-
mat.

CWE-125: Out-of-bounds
Read

Table 2.4: Format input functions checking.

2.3.3 Checking and reporting issues

Some checks that must be performed are the same as for the output family. The

first checks are on the value of format string that it parses correctly and does not

lead to undefined behaviors. Also we have the check on type mismatch that must

be performed. Additionally the table 2.4 lists the new checks to be performed. A

detailed checking and reporting of this type of vulnerabilities is presented in the

chapter 4.

2.4 POSIX formatted functions

2.4.1 Format string structure difference

The format string structure in POSIX is the same as in ANSI C (C99) and it adds

the following extensions:

• the “%n$” new format structure:

The POSIX adds the following: “the conversion specifier character ’%’ can

be replaced by the sequence ’%n$’, where n is a decimal integer in the range

[1,NL ARGMAX], giving the position of the argument in the argument list.

This feature provides for the definition of format strings that select arguments
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in an order appropriate to specific languages ... The format can contain ei-

ther numbered argument conversion specifications (that is, ’%n$’ and ’*m$’),

or unnumbered argument conversion specifications (that is, % and * ), but

not both”[47]. The value of fields ”width” and ”precision” in the format

structure can be ’*m$’ in place of just ’*’ and so will take the value of the

mth argument at runtime.

• These new conversion specifiers are introduced:

– ‘C’ : Equivalent to “lc” (the length modifier ‘l’ concatenated with the

conversion specifier ‘c’)

– ‘S’ : Equivalent to “ls” (the length modifier ‘l’ concatenated with the

conversion specifier ‘s’)

• Examples:

– valid formats:

1 "%d %s" // valid in POSIX because it is a valid

C99 format

2 "%2$d %1$d " // valid POSIX format using the new %n$

notation ,

3 // it will print the 2nd argument

4 //in the 1st place and the 1st at the 2nd

place.

5 "%S %S" // valid format using the new conversion

specifier ’S’.

– bad formats:

1 "%d %1$s" // mixed %n$ and % are not permitted.

2 "%k " // invalid C99 format , is also invalid in

POSIX.
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2.4.2 List of additional functions

The POSIX extension adds the following functions:

1 //HEADER <syslog.h>

2 void syslog(int priority, const char *message, ... /* arguments

*/);

This function is used to write information into the OS logs. the argument message

of type ’const char *’ contains the format string used when writing data (the

remaining arguments). Format sting passed to the function has the same POSIX

structure defined above, except that the additional conversion specification %m

shall be recognized; it shall convert no arguments, shall cause the output of the

error message string associated with the value of errno on entry to syslog() [48].

2.4.3 Safety and security issues

POSIX formatted I/O functions are an extension of the ANSI C formatted func-

tions. All safety and security issues mentioned above are present. Due to the

extension of format structure we have also the following safety issues:

• New undefined behavior with the new “%n$’ notation: The format can con-

tain either numbered argument conversion specifications (“%n$” or “*m$”),

or unnumbered argument conversion specifications (% or *), but not both.

• Argument type matching: The argument matching must be adapted in case

where the “%n$” notation is used.

2.4.4 Checking and reporting issues

To check and report POSIX formatted I/O functions safety and security issues,

we perform the same checks as in the ANSI C case, with little modification to

include the new safety issues found.
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2.5 GNU/Linux formatted functions

2.5.1 Format string structure difference

The Linux format string implements POSIX format structure. We can notice no

visible difference on the MAN (MANual) page [49] (Linux manual pages describing

standard library functions) of printf or scanf functions families.

2.5.2 List of additional functions

The Linux extension is bigger. It adds many new useful functions widely used in

different GNU/Linux applications. The listing in figure 2.5 contains some of these

added functions.

1 //HEADER :<err.h>
2 void err(int __status, const char *__format, ...);
3 void error(int, int, const char *, ...);
4 void errx(int __status, const char *__format, ...);
5 void warn(const char *__format, ...);
6 void warnx(const char *__format, ...);
7

8 //HEADER : <stdio.h>
9 int asprintf(char ** restrict ptr, const char * restrict format, ...)

;
10 int dprintf(int fd, const char *format, ...);
11 int vdprintf(int fd, const char *format, va_list ap);
12

13 //HEADER : <linux/printk.h>
14 int printk(const char *fmt, ...);
15

16

Figure 2.5: List of Linux format functions

All these functions has the same role as the printf function. All have a format

string parameter. Some special cases:

• asprintf : has the same role as ANSI C sprintf, but it allocates dynamically

its output buffer.
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• dprintf : have the same role as printf but write their output to a file de-

scriptor fd.

2.5.3 Safety and security issues

Linux formatted I/O functions does not modify the syntax of semantics of format

argument compared the the POSIX specifications. Because of that this family of

functions has the same issues as POSIX functions.

2.5.4 Checking and reporting issues

The checks that can be performed on GNU/Linux formatted output functions are

the same as for POSIX C functions. This is due to the fact that the GNU/Linux

extension does not add a lot to the specification and it adds only some new func-

tions.

2.6 Windows formatted function

The following information is based on the online MSDN (MicroSoft Developer

Network) documentation [50].

2.6.1 Format string structure difference

Microsoft Visual Studio C compiler does not implement entirely the ANSI C.

Formatted I/O functions specification has the following difference in comparison

with ANSI C specification:

• For the “length modifier” part we have these possible values: [‘h’,‘l’, “ll”,

‘w’, ‘I’, “I32”, “I64”].
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• The “width” and “precision” arguments have no difference with the ANSI

C specification.

• For “conversion specifier” we have the one new value: ‘Z’ that must be

matched with the type “ANSI STRING”2

• The ‘n’ conversion specifier is disabled by default for security reason.

• for scanf family we have the same format structure as in ANSI C scanf

family except that the length modifier has this list of possible values: [‘h’,‘l’,

“ll”, “I64”, ‘L’] and the ‘a’, ‘A’] are not possible values for the conversion

specifier.

2.6.2 List of additional functions

The Windows extension adds many new functions widely used. The listing in

figure 2.6 contains some of these added functions.

2ANSI STRING is C structure defined in ”Ntdef.h” used only in driver debugging functions
that use a format specification.
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1 //HEADER : <stdio.h>

2 int _printf_l(const char *format, locale_t locale [,argument]... );

3 int _wprintf_l(const wchar_t *format, locale_t locale [, argument]...

);

4 int _scanf_l(const char *format, locale_t locale [, argument]... );

5 int _wscanf_l(const wchar_t *format, locale_t locale [, argument]...

);

6 int _sprintf_l(char *buffer, const char *format, locale_t locale [,

argument] ... );

7 int _swprintf_l(wchar_t *buffer, size_t count, const wchar_t *format,

locale_t locale [, argument] ... );

8 int __swprintf_l(wchar_t *buffer, const wchar_t *format, locale_t

locale [, argument] ... );

9 int _sscanf_l(const char *buffer, const char *format,locale_t locale

[, argument ] ... );

10 int _swscanf_l(const wchar_t *buffer, const wchar_t *format, locale_t

locale [, argument ] ... );

11 int _vsprintf_l(char *buffer, const char *format, locale_t locale,

va_list argptr );

12 int _vswprintf_l(wchar_t *buffer, size_t count, const wchar_t *format

, locale_t locale, va_list argptr );

13 int __vswprintf_l(wchar_t *buffer, const wchar_t *format, locale_t

locale, va_list argptr );

14 int _vfprintf_l(FILE *stream, const char *format, locale_t locale,

va_list argptr );

15 int _vfwprintf_l(FILE *stream, const wchar_t *format, locale_t locale

, va_list argptr );

16 int _fprintf_l(FILE *stream, const char *format, locale_t locale [,

argument ]...);

17 int _fwprintf_l(FILE *stream, const wchar_t *format, locale_t locale

[, argument ]...);

18 int _fscanf_l(FILE *stream, const char *format, locale_t locale [,

argument ]... );

19 int _fwscanf_l(FILE *stream, const wchar_t *format, locale_t locale

[, argument ]... );

20 int _vprintf_l(const char *format, locale_t locale, va_list argptr );

21

Figure 2.6: List of Windows I/O formatted functions.
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2.6.3 Safety and security issues

The analysis of the specification [50] of formatted functions leads to the conclusion

that all safety and security issues stated for ANSI C remain correct due to close

similarity of the two specifications. The specification of Windows C language

standard library is available online [44]. This library is available on all Microsoft

Windows system and supported by the Visual studio IDE (Integrated Development

Environment).

2.6.4 Checking and reporting issues

Methods and techniques to check and report issues of using Windows formatted

functions are the same as checks for ANSI C formatted functions. There will be

some difference on how to perform it operationally due to the newly added func-

tions.

2.7 Command and program execution functions

This section provides a security and safety overview of functions doing command

execution within a program. This feature exists in almost all major programming

language. This study will focus on C language. Functions implementing this fea-

ture allow to launch a command given as string argument by using the system

default shell. It is also considered that functions that launch another program are

also a sort of command execution feature.

Command execution is implemented in the C language in its different flavors. This

paragraph focuses on the three most used C flavors: ANSI C (C99)[39], POSIX

C[41] and GNU C[42].
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According to the standard C language specification [39], we have only one function

that could lead to command injection vulnerability:

1 #include <stdlib.h>

2 int system(const char *string);

In the paragraph about these functions in C99 [39] we have: “If string is a null

pointer, the ”system” function determines whether the host environment has a

command processor. If string is not a null pointer, the system function passes the

string pointed to by string to that command processor to be executed in a manner

which the implementation shall document; this might then cause the program call-

ing system to behave in a non-conforming manner or to terminate”.

For example:

1 #include <stdlib.h>

2 int main(){

3 int r = system("ls -a"); //will print the content of the working

directory.

4 }

In addition to the function “system” function, POSIX and LINUX extensions

define the following new functions:

1 //POSIX

2 int execl(const char *path, const char *arg, ...);

3 int execlp(const char *file, const char *arg, ...);

4 int execle(const char *path, const char *arg,..., char * const envp

[]);

5 int execv(const char *path, char *const argv[]);

6 int execvp(const char *file, char *const argv[]);

7 int execvpe(const char *file, char *const argv[],char *const envp[]);

8 int fexecve(int fd, char *const argv[], char *const envp[]);

9 FILE *popen(const char *, const char *);

10 int posix_spawn(pid_t *restrict, const char *restrict,

11 const posix_spawn_file_actions_t *,

12 const posix_spawnattr_t *restrict,

13 char *const [restrict], char *const [restrict]);
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14 int posix_spawnp(pid_t *restrict, const char *restrict,

15 const posix_spawn_file_actions_t *,

16 const posix_spawnattr_t *restrict,

17 char *const [restrict], char *const [restrict]);

18

19 //LINUX

20 int execvpe(const char *file, char *const argv[],

21 char *const envp[]);

The listed execl* functions load and launch a program that replaces the current

process image with a new process image. The specification of these functions gives

conventions on how these functions should be called. For example, to correctly

call execl, the first argument after path should be the same as the program name

and the last should be null.

2.7.1 Safety and security issues

From the specification summarized above, the following safety and security issues

arise:

• Safety problems

There is no undefined behavior that can be caused by a call to ”system”,

but the standard states that the behavior of this function is implementation-

defined. This must be taken in consideration when dealing with special C99

implementation. For the execl* functions, the calling conventions should be

respected or the application could have an undefined behavior.

• Security problems

Any call to ”system” is potentially dangerous and developers are advised not

to use it. For example, the code listing in figure 2.7 make a call to ”system”

in an insecure way. This vulnerability will be later detailed in the chapter

4. Example of vulnerable command execution function calls are:
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– An external user has a complete or a partial control of the command

argument: this vulnerability is known as CWE-78: Improper Neutral-

ization of Special Elements used in an OS Command ”OS Command

Injection”[51].

– The command value is constant, but the attacker can interfere with

the command by changing the context of the application (file system,

environment variables, etc.).

1 ...

2 system("./myprogram"); // this call launches another program

3 // found in the same working directory.

4 // An attacker can erase this file and

5 // replace it his own program.

Figure 2.7: Vulnerable program launching example

2.8 Memory manipulation functions

It is considered a memory manipulation function any function that deals with a set

of unstructured data. So, functions taking as an argument or returning a pointer

to an unstructured memory region (char *, void *, int *, etc.) are considered.

For example all of malloc, calloc, memcpy, strcpy, memmove are functions that

manipulate memory, it will be showed later that in Libc [42] (C99 [39], Posix [41],

Linux [43]) there are many non-trivial functions that manipulate memory. The

figures 2.8 and 2.9 list respectively memory manipulation functions for C99/POSIX

and LINUX of the C language standard library.
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1 malloc, free, calloc, realloc, fscanf, fgets, sscanf, scanf, gets,

2 fread, sprintf, snprintf, memcpy, memmove, strcpy, strncpy,

3 strcat, strncat, memset, mbstowc, wcstombs, strxfrm, strftime,

4 fwscanf, vfscanf, vfwscanf, fgetws, swscanf, vsscanf, vswscanf,

5 wscanf, vscanf, vwscanf, vsprtinf, swprintf, vswprintf, vsnprintf,

6 wmemcpy, wmemmove, wcscat, wcsncat, wmemset, wcscpy, wcsncpy,

7 wcsxfrm.

Figure 2.8: Memory related functions of C99 and POSIX

1 aio_read, confstr, fgetws, fmemopen, open_memstream,

2 open_wmemstream, strfmon, strfmon_l, getline, getdelim,

3 iconv, memccpy, mmap, munmap, posix_memalign, valloc,

4 aligned_alloc, memalign, pvalloc, pread, readv, preadv,

5 readlink, realinkat, recv, recvfrom, recvmsg, strdup,

6 strndup, strdupa, strndupa, wcpcpy, alloca, asprintf,

7 vasprintf, bcopy, memfrob, bzero, mempcpy, wmempcpy,

8 mtrace, sctp_recvmsg, stpcpy.

Figure 2.9: Memory related functions of Linux

2.8.1 Safety and security issues

It considered as a safety issue, any function call leading to undefined [45], unspec-

ified or implementation-defined behaviors. This is relatively easy to extract, as,

generally this is clearly said in the function description. To give more meaning

to the found issues one CWE [21] identifier (or more) is attributed for each found

vulnerability source. In table 2.5 we give an example of safety issues found in

analyzed functions.

A security issue is harder to define precisely. It is considered all function param-

eters where a direct control from an external agent leads to a safety issue, or a

behavior not expected by the developer/designer of the application.
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Description Affected functions CWEs

Referencing a freed
object with a call
to ”free” or realloc
causes an undefined
behavior

free, realloc, munmap Double Free - (415),
Use After Free -
(416), CWE-758:
Reliance on Unde-
fined, Unspecified,
or Implementation-
Defined Behavior

Table 2.5: Memory manipulation safety issue example

Description Affected functions CWEs

An external user con-
trol the amount of al-
located storage (via
the ”size” parameter
in function that allo-
cates memory).

malloc, calloc, real-
loc, posix memalign,
aligned alloc, valloc,
memalign, pvalloc,
open memstream,
getline, getdelim,
mmap, strdup,
strndup, strdupa,
strndupa, alloca,
asprintf, vasprintf

CWE789 Uncon-
trolled Mem Alloc

Table 2.6: Memory manipulation security issue example

By analyzing carefully the functions description, different security issues are found.

Each security problem is attributed a CWE [21] matching it at best.

The table 2.6 gives examples of found security issues.

The full list of safety and security issues is detailed in the chapter 4. Methods to

check and report such issues are also described there.

Summary

The analysis and study of the C language specification and semantics highlighted

some security and safety issues in this language. It is shown how it can be dif-

ficult to know and remember all good usage rules of standard library functions.

Automation of checking and reporting will greatly help developer by doing the

hardest part of the task. The next chapter will introduce one category of these
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used automatic processes: static analysis. And in the chapters 4 and 5 more de-

tails will be given on how to design, implement and evaluate tools implementing

this technique.



Chapter 3

Static analysis tools

The complexity of programming languages and the growing cost of software vulner-

abilities are major concerns of IT (Information Technology) users. These concerns

are addressed in different ways using several strategies, methods and techniques.

One of these prominent techniques is the code analysis and more precisely static

analysis.

Static analysis is a technique used to analyze application code without actually

executing it. It helps to find mechanical errors such as buffer overruns, unvali-

dated input, null dereference, uninitialized data access, code constructs leading

to runtime errors, etc. These errors are hard to detect with testing or manual

code inspection because they are “non-local” and involve for example uncommon

execution paths or they are non deterministic such as race condition errors [52].

The OWASP (Open Web Application Security Project) [53] defines: ”Static Code

Analysis (also known as Source Code Analysis) is usually performed as part of a

Code Review (also known as white-box testing) and is carried out at the Implemen-

tation phase of a Security Development Life Cycle. Static Code Analysis commonly

refers to the running of Static Code Analysis tools that attempt to highlight possible

vulnerabilities within ’static’ (non-running) source code by using techniques such

as Taint Analysis and Data Flow Analysis” [34].

42
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Front-end Middle-end Back-end

app code, options

internal representation internal result

report log

Static analysis tool

Figure 3.1: Static analysis tool architecture

A static analysis tool is a software that performs static analysis and returns a

result report. Generally a static analysis tool is structured into three components:

front-end, middle-end and the back-end as depicted in the figure 3.1. The front-

end parses the application source code and produces an internal representation

that will be fed to the next component. The middle-end will do the necessary

computation and stores the obtained results that will be reported by the back-end

part. This structure is similar to the structure of compilers. This similarity is due

to the fact that a compiler is a special case of static analysis tool. A compiler first

parses and checks the syntax of the given program and emits warnings if wrong

constructions are encountered. After, it builds an internal representation that is

translated into native machine code and outputs it in the form of an executable

file. Some modern compilers even check for some basic security issues playing the

role of security static analysis tool.

3.1 Front-end: parsing and translating

The front-end of a static analyzer is a kind of source code translator that will take

an input language and outputs it in another language. The problem of source-to-

source translation is widely explored and it is subject of many ongoing researches

conducted either by academic and industrial entities. Source translator can be

used to manipulate application code to produce a more efficient one as described
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in a use case of LLVM (Low Level Virtual Machine) [54]. It can be simply used

to produce the AST (Abstract Syntax Tree) which is a representation adapted for

doing computations on code structure as in Cil (C intermediate Language) [55]

or GCC (GNU Compiler Collection) [56]. In this chapter we will describe and

classify the existing solutions for code translation.

The tools, frameworks and projects that exist can be classified into two categories:

• Proprietary:

This means that, to use such tool a license must be purchased, and perhaps

the license clauses forbid its modification and/or redistribution. For example

we have: the widely used EDG (Edison Design Group) framework of C++

and Java language [57] or the DMS Software Re-engineering Toolkit [58].

The table 3.2 lists an extensive list of tools classified as proprietary.

• Open source:

For this category the code source is open (publicly available). Even that

the sources are accessible, reuse it and/or redistribute it could be protected

by a specific license (GPL [59], APACHE License [60], LGPL [61], etc.).

Cil framework [55] or LLVM suite [62] are examples of open source tools.

The table 3.1 lists tools available on-line at the time of writing. We give in

this table for each listed tool, its name, its source language, its destination

language and a brief description.

In the table 3.1 some of the listed tools are not described as source code translator,

but translates a given source code to a supposed more efficient language. For

example we have: HPHPc (PHP to C++) [63] which is developed by Facebook

Inc to make their servers running faster. LLVM [62] can also be used to produce

a more efficient code. The idea of translating interpreted code into native code is

very present such as py2c [64] (from Python to C) or Toba [65] (from Java to C).
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Tool/Framework

name

Source language Target language Brief description

CIL C C intermediate

language

CIL (C Intermediate Language) is a high-

level representation along with a set of tools

that permit easy analysis and source-to-

source transformation of C programs

LLVM Ada, C, C++, Fortran,

Java, Objective-C, or

Objective-C++)

C, C++ Yes, you can use LLVM to convert code from

any language LLVM supports to C. Note that

the generated C code will be very low level

(all loops are lowered to gotos, etc) and not

very pretty (comments are stripped, original

source formatting is totally lost, variables

are renamed, expressions are regrouped), so

this may not be what you’re looking for.

HipHop for PHP

(HPHPc)

PHP C++ HipHop for PHP is a source code transformer

for PHP script code. It automatically trans-

forms your PHP source code into highly opti-

mized C++ and then uses g++ to compile it.

HipHop executes the source code in a seman-

tically equivalent manner and sacrifices some

rarely used features — such as eval() — in

exchange for improved performance. HipHop

includes a code transformer, a reimplementa-

tion of PHP’s runtime system, and a rewrite

of many common PHP Extensions to take ad-

vantage of these performance optimizations.

py2c Python C/C++ py2c is a Python to C/C++ translator (con-

verter). Py2c translates Python to pure

human-readable C/C++ like what you and

me would write which does not have any

Python API calls. The generated code can

be run without Python installed and does

not embed Python.

Gcc plug-ins C, C++, Java , ADA, GO C, C++ Compiler plugins (or loadable modules)

make it possible for a developer to add new

features to the compiler without having to

modify the compiler itself.

J2C ( eclipse

plug-ins).

Java C++ J2C will convert Java code into hopefully

C++ code. It works on source level trans-

lating Java source code constructs into their

rough equivalents in C++. The output will

be reasonably valid C++ code that looks a

lot like its Java counterpart and hopefully

works mostly the same.

Toba Java C Toba translates Java class files into C source

code. This allows the construction of di-

rectly executable programs that avoid the

overhead of interpretation. Toba deals with

stand-alone applications, not applets.

p2c Pascal C p2c converts the computer language Pascal

to C which you can then compile with cc or

gcc.

Cython Python C This allows the compiler to generate very ef-

ficient C code from Cython code. The C code

is generated once and then compiles with all

major C/C++ compilers in CPython 2.6, 2.7

Continued on next page
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Table 3.1 – Continued from previous page

Tool/Framework

name

Source language Target language Brief description

php2cpp PHP C++ For good reason, PHP is a very popular lan-

guage for publishing web sites with dynamic

content. Its strong similarity to C makes the

syntax easy to learn for many. The built-in

equivalents of many standard C library file,

date, string, and time functions make it easy

to develop quite complex applications.

Perlcc Perl. C The C back-end takes Perl source and gener-

ates C source code corresponding to the in-

ternal structures that Perl uses to run your

program. When the generated C source is

compiled and run, it cuts out the time which

Perl would have taken to load and parse

your program into its internal semi-compiled

form.

JCGO Java C JCGO, a Java source to C code (java-to-

c) translator, is the software product orig-

inally developed by Ivan Maidanski. With

JCGO you can compile your Java application

to machine native code (a binary executable

file) making it run faster, consume less sys-

tem resources, harder to decompile and eas-

ier to deploy. Even more, with JCGO you

could also make your Java applications run

on a wider range of operating systems, com-

puter systems, embedded devices and pro-

grammable controllers.

Jcvm Java C JC is a Java virtual machine implementation

that converts class files into C source files us-

ing the Soot Java byte-code analysis frame-

work.

Stance java front

end

Java Ocaml structure The STANCE Java front-end is a front-end

(scanner, parser, type checker, and normal-

izer) for the Java programming language be-

ing developed by Gijs Vanspauwen and Bart

Jacobs at the DistriNet Research Group at

the Department of Computer Science of KU

Leuven - University of Leuven

NestedVM GCC supported languages java bytecode NestedVM provides binary translation for

Java Bytecode. This is done by having GCC

compile to a MIPS binary which is then

translated to a Java class file. Hence any

application written in C, C++, Fortran, or

any other language supported by GCC can

be run in 100% pure Java with no source

changes.

Analysing the in-

terpreter with the

script as input

Perl, Python, Php,

Javascript . . .

C Analyze the source code of the interpreter

with the script as input could give impor-

tant results, mainly if the source code of the

interpreter is available in C or C++.

Table 3.1: List of open source code translators.

The tools listed in the table 3.2 are front-ends (DMS [58], EDG [57]) that can be

used to develop other tools. These tools cover a wide variety of languages, OS and

architectures. They are generally well maintained and documented. This high
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qualities make them expensive and generally not adapted for innovative research

conducted with small human and financial resources.

Tool/Framework

name

Source language Target language Brief description

DMS Software

Re-engineering

Toolkit

C, C++, Java, Cobol, Perl

, PHP...

NA Semantic Designs offers predefined language

front ends (domains) to enable the construc-

tion of custom compilers, analysis tools, or

source transformation tools, based on first-

class infrastructure (DMS) for implementing

those custom tools.

Comeau C++ C Proprietary tool

JFE Java Cil, C There is, however, an alternative that can

reduce development cost and time. The JFE

includes a component “CIL Generation” that

translates the Java intermediate language

(JIL) to the C intermediate language (CIL)

used by EDG’s C++/C front end. The CIL

can then be fed into a code generator (the

CIL is a lower-level description than the JIL

and thus is easier to generate code for) or,

using the C-generating back end provided

with the JFE, output as C source code. This

code can then be compiled to object code us-

ing any C compiler.

C++ Front End C++ C Also included: a C-generating back end,

which can be used to generate C code for

C++ programs

Adatoccpp-

translator

Ada C Adatoccpptranslator is a converter software

which allows C/C++ source files to be gen-

erated from Ada83 and Ada95 source files.

To run correctly, input files must be compil-

able and executable. They only can contain

a package specification or a package body or

a separate unit.

Table 3.2: List of proprietary code translators.

In some cases it can be interesting to develop a front-end from scratch as this is

done with compilers. A list of compiler builders is provided in the table 3.3. In this

table, the tools Bison [66] or BNFC [67] are good examples of parser generators.

They can be used to build parsers for an arbitrary programming language by only

giving them the language’s grammar specification as input.

Front-end can also be used to parse low level code such as binary executable, byte-

code or assembly code. An example of frameworks parsing these formats is the

angr framework [68].
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Tool/Framework

name

Source language Target language Brief description

BNFC C, C++, C#, Haskell,

Java, Ocaml, XML

C, C++, C#,

Haskell, Java,

Ocaml, XML

The BNF Converter is a compiler con-

struction tool generating a compiler front-

end from a Labeled BNF grammar. It is

currently able to generate C, C++, C#,

Haskell, Java, and OCaml, as well as XML

representations.

ROSE NA NA Developed at Lawrence Livermore National

Laboratory (LLNL), ROSE is an open source

compiler infrastructure to build source-to-

source program transformation and analy-

sis tools for large-scale C(C89 and C98),

C++(C++98 and C++11), UPC, Fortran

(77/95/2003), OpenMP, Java, Python and

PHP applications.

newspeak C, ADA Newspeak Newspeak is a simplified programming lan-

guage, well-suited for the purpose of static

analysis. C2newspeak compiles C programs

into Newspeak. Ada2newspeak compiles

Ada programs into Newspeak.

Antlr NA NA ANTLR (ANother Tool for Language Recog-

nition) is a powerful parser generator for

reading, processing, executing, or translat-

ing structured text or binary files. It is

widely used to build languages, tools, and

frameworks. From a grammar, ANTLR gen-

erates a parser that can build and walk parse

trees.

Elkhound NA NA Elkhound is a parser generator, similar to

Bison. The parsers it generates use the

Generalized LR (GLR) parsing algorithm.

GLR works with any context-free grammar,

whereas LR parsers (such as Bison) require

grammars to be LALR.

Bison NA NA Bison is a general-purpose parser genera-

tor that converts an annotated context-free

grammar into a deterministic LR or gener-

alized LR (GLR) parser employing LALR(1)

parser tables. As an experimental feature,

Bison can also generate IELR(1) or canoni-

cal LR(1) parser tables. Once you are pro-

ficient with Bison, you can use it to develop

a wide range of language parsers, from those

used in simple desk calculators to complex

programming languages.

JavaCC NA NA Java Compiler Compiler (JavaCC) is the

most popular parser generator for use with

Java tm applications. A parser generator is a

tool that reads a grammar specification and

converts it to a Java program

Marpa NA NA Marpa is a parsing algorithm. It is new, but

very much based on the prior work of Jay

Earley, Joop Leo, John Aycock and R. Nigel

Horspool. Marpa is intended to replace, and

to go well beyond,recursive descent and the

yacc family of parsers.

Table 3.3: List of compiler builders.
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3.2 Middle-end : computation and detection

The middle-end part of static analysis tool is the part that does the useful compu-

tations of the analysis. These computations make use of different techniques and

algorithms. In this section we will introduce the major existing techniques.

Early static analyzers used simple syntactic pattern matching to locate potentially

vulnerable code patterns such as the Linux utility grep or FlawFinder. FlawFinder

[69] is fundamentally a naive program; it does not even know about the data types

of function parameters, and it certainly does not do control flow or data flow anal-

ysis. Nevertheless, Flawfinder can be a very useful aid in finding and removing

security vulnerabilities. These simple tools have a high rate of false positive and

cannot detect complex vulnerability involving the semantics of the code.

Improved tools such as Lint [70], Cppcheck [71] or even some modern compilers

search for more complex vulnerabilities such as: variables being used before being

set, division by zero, conditions that are constant, and calculations whose result is

likely to be outside the range of values representable in the type used. Data and

control flow analysis [72] combined with heuristic algorithms is the main technique

used in these tools. These tools can be more precise than naive tools but can miss

complex semantics related vulnerable code.

More advanced static analyzers use abstract interpretation [73] to prove the ab-

sence of RunTime Errors (RTEs) [74]. We cite as examples: Polyspace [8, 9],

Frama-C [10, 11] and Astrée [12]. The idea behind this technique is to compute a

superset of the values of every variable of every reachable program point for every

possible input.

Another technique used is symbolic analysis which is a static analysis method for

reasoning about program values that may not be constant. It aims to derive a
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precise mathematical characterization of the computations and can be seen as a

compiler that translates a program into a different language whereas this language

consists of symbolic expressions and symbolic recurrences. C language static anal-

ysis tool CBMC [75] is an example of a tool using such techniques.

Another analysis technique is the concolic execution. It is a software analysis tech-

nique that performs symbolic execution, a technique that treats program variables

as symbolic variables, along a concrete execution (testing on particular inputs). It

was introduced by Godefroid et al. [15] where it was used to assist random testing

to cover a maximum numbers of execution paths. This method is also used by

KLEE [76] for their unassisted high coverage testing. In their tool AEG (Auto-

matic Exploit Generation), Avgerinos et al. [77] were interested in automatically

generating an exploit by combining source code analysis to find the exploitable

vulnerability and binary analysis to produce the exploit. A lot of tools and tech-

niques have been developed by using the concolic execution. Shoshitaishvili et al.

[78] describe almost all state of art of these techniques and especially those related

to binary code analysis. They implemented the techniques proposed in the open

source framework angr [68].

The table 3.4 summarizes the major differences between the presented techniques

of static analysis middle-end part.

Technique Speed Scalability False posi-
tive

True nega-
tive

Syntactic analysis High High High High

Data flow analysis Medium Medium Medium Medium

Abstract interpreta-
tion

Low Medium Medium No

Symbolic execution Low Low No Low

Concolic execution Low Low No Low

Table 3.4: Static analysis techniques comparison



Static analysis tools 51

3.3 Back-end: results collection and reporting

The back-end role is first to collect the results. Then, the results are formatted in

the format specified by the tool user. Finally the output results are given in the

requested form (text files, web pages, Excel sheet, databases, etc.).

Reporting taxonomy is important and makes it easier for user to understand the

reported vulnerability. Different efforts have been made by the IT communities

(industrial, academic, governmental) to build homogeneous security vulnerability

taxonomy. Notable examples are the CWE (Common Weakness Enumeration) [21]

which is an extensive hierarchical collection of security vulnerability definitions.

The CVE (Common Vulnerability Exposures) [20] is another widely used security

vulnerabilities directory that lists real vulnerabilities discovered in software used

worldwide. The CVSS (Common Vulnerability Scoring System) [79] is an open

industrial standard for assessing the severity of computer system security vulner-

abilities. This scoring standard can be used to sort reported vulnerabilities from

the most critical to the least. This helps static analysis tool user to establish the

correct priority in dealing with the different reported vulnerabilities.

This taxonomy will be extensively used along all our contributions given in chap-

ters 4, 5 and 6.

3.4 List of tools

The table 3.5 lists some static analysis tool. This list is compiled from the SA-

MATE (Software Assurance Metrics and Tool Evaluation) static analysis tool list

[80]. For each tool, we give the input language it accepts, the used technique and

a comment on what it searches for.

Industrial grade static analyzers such as (Fortify SCA [13] or Coverity [14]) use a

mix of the cited techniques and rely mainly on a knowledge base of already seen

security vulnerability patterns. This knowledge base is updated regularly to keep
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Tool name Input language Technique Comment

Astrée C Abstract interpretation checks for undefined code constructs and
run-time errors, e.g. out-of-bounds array in-
dexing or arithmetic overflow.

Clang Static Ana-
lyzer

C, Objective-C Data flow analysis Reports dead stores, memory leaks, null
pointer dereference, and more. Uses source
annotations.

CodeSonar C, C++ Multiple techniques analyzes and validates the code or binary to
identify serious vulnerabilities or bugs that
cause system failures, poor reliability, sys-
tem breaches, or unsafe conditions.

Csur C Abstract interpretation
and other heuristics

cryptographic protocol-related vulnerabili-
ties

UNO C Symbolic execution checks for uninitialized variables, null-
pointers, out-of-bounds array indexing and
user-defined properties

Table 3.5: Static analysis tools list

up with newly discovered patterns. These tools are effective but needs a large

development and maintenance efforts and can miss dangerous vulnerability not

yet included in their bases.

Currently many new tools are being developed and this makes choosing the right

tool a difficult task. National Security Agency’s (NSA) and Center for Assured

Software (CAS) developed and published Juliet [16], a test base specifically de-

signed for assessing the capabilities of static analysis tools. This base contains

examples covering more than 100 CWEs [21]. To help an application auditor to

choose the right technique a good insight on existing static source analyzers is

given in [81]. Other researchers are trying to simplify tool choice by a security

oriented test base [82] or directly giving evaluations of some well known tools [83].

3.5 Major problems of static analysis

The domain of static analysis has many open problems. The major ones are:

• False positive:

When a static analysis tool emits a false positive this means that it detected

a vulnerability when in fact there is none. When the rate of false positive is

high the developer stops paying attention to the tool’s output even though

it may contains real vulnerabilities. So this problem is one of the common
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problems that occur when using static analysis tools. For example when

using Polyspace [8] among the detected flaws we observe a class called orange

warnings. The orange warnings are potential flaws and need to be checked

manually to confirm their status. This type of warnings is caused by the

approximations done at the computation stage.

• False negative:

A tool searching for some class of vulnerabilities may miss a vulnerability it

must find and does not report it. This can be caused by a tool limitation or

a . This undetected true vulnerability is labeled as False negative.

• Scalability :

The scalability problem is related to the fact that some tools have difficulties

to run on large and/or complex software. This can be caused by the combi-

natorial explosion [84] of possible reachable states, resource exhaustion, an

implementation bug or a tool limitation [85].

• Input language:

The front-end parts of static analysis tool is sometimes the bottleneck of

code analysis process. Front-end limitations can make the tool unable to

analyze a given application code. This is the case when an application is

using a feature of programming language not supported by the analyzer or

that is using libraries not available for the analysis tool.

• Result interpretation:

Tools have different result format with a varying file type and vocabulary.

The report format influences the manner a tool user can use it and correctly

interpret the reported vulnerabilities.

These problems will be discussed in the chapters 4, 5 and 6 where we present our

contributions.
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Summary

Static analysis is an interesting method that can be used to detect security vul-

nerabilities. Static analysis tools are composed of three components: front-end,

middle-end and back-end. Developing static analysis tool can be done by re-using

existing components after a variable amount of tuning and adaptation. In the

next chapters we will propose novel static analysis methods and implement them

using existing frameworks and tools.



Chapter 4

Security vulnerabilities in C

language applications

Security of computer systems is important in the modern cyber space. Security of

businesses, persons and even governments is facing a growing threat from a wide

variety of attackers. Eliminating vulnerabilities from application’s code is neces-

sary to prevent attacks. The first step towards eliminating security vulnerabilities

is their detection, which can be an arduous task in large size programs. Static

analysis of the code helps to automate this process, by guiding the programmer

towards the potential vulnerabilities before they are discovered by an attacker.

We investigate in this research vulnerabilities that arise in C code through the

calling of standard library functions. We define criteria to detect dangerous use

of these functions, and show that the evaluation of a static analyzer implementing

the proposed detection model yields a low False Positive rate.

The work presented in this chapter is published in the Security and Privacy Wiley

Magazine [86].

55
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Introduction

Many efforts have been made in the past years to prevent security errors from

appearing in the released source code. The choice of the implementation language

has a great impact on the security of the developed application as shown in lan-

guage security studies such as: JavaSec [87] for Java [88] and LaFoSec [89] for

functional languages such as OCaml [90]. Low level flexible languages such as C

language are still widely used even though the security defects inherent to this

language are well known.

Vulnerabilities can be prevented during software implementation by avoiding dan-

gerous language constructs or using only a secure subset of the programming

language. Many coding rules such as CERT C coding rules [32] have been defined

to guide the developer in avoiding security defects.

In this chapter, we present security vulnerability property checks that will be used

to enhance a static analysis tool. The covering of security issues represents a key

difference with existing static analysis tools such as (Polyspace [8, 9], Frama-C

[10, 11] and Astrée [12]). These tools all rely on abstract interpretation [73] to

check for safety issues1. The second novelty is that the proposed vulnerability

checks are constructed by analyzing the language specification and libraries doc-

umentation. This makes our work different and complementary to tools such as

Fortify [13] and Coverity [14] that are built based on developer mistakes or bad

habits seen in real life code. Thus, we focus on a set of vulnerabilities derived

from the usage of C language library functions. We define properties that can be

checked to locate these vulnerabilities. For each defined property, we provide the

related attack scenario to show its effect on security. We also provide details on

fulfilled implementation and conducted experimental evaluation using the avail-

able Software Assurance Metrics and Tool Evaluation (SAMATE) test base Juliet

[16]. The use of such public test base provides a reference benchmark for compari-

son of our tool with others. First the tool is evaluated based on the number of test

1Safety issues concerns availability and resilience, i.e. there is no safety issues when the
program does not crash or misbehave of its own. The security issues concerns resistance to an
attacker pushing a program to behave in a manner he wants.
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cases where the analysis finishes without errors. After, we measure the number of

true positives (vulnerabilities correctly located) and the number of false positives

(non-vulnerable code detected as vulnerable). At the end we have a precise eval-

uation and comparison of the developed tool based on quantitative attributes and

not only qualitative ones.

4.1 Static analysis for security

On the source code, static analysis can be and is being used [91] to detect vulner-

abilities. Early static analyzers used simple syntactic rules to locate potentially

vulnerable code patterns (e.g. FlawFinder [69], Linux utility grep with special

regular expression). These simple tools have a high rate of false positive and can

not detect complex vulnerability involving the semantics of the code. Other more

advanced static analyzers use abstract interpretation [73] to prove the absence of

runtime errors RTEs [74] (Polyspace [8, 9], Frama-C [10, 11], Astrée [12]). These

tools are more fitted to detect safety issues and do not deal with security issues.

Modern static analyzers such as (Fortify SCA [13], Coverity [14]) use a mix of

different strategies that rely mainly on knowledge base of already seen security

vulnerability patterns. This knowledge base is updated regularly to keep up with

newly discovered patterns. These tools are effective but needs a large development

and maintenance effort and can miss dangerous vulnerability not yet included in

their bases. Currently many new tools are being developed and this makes choos-

ing the right tool a difficult task. Authors in [81] gives a good insight on existing

static source analyzers. Other researchers are trying to help developers to choose

the right tool by giving them a security oriented test base [82] that can be used to

qualify and test a tool. Other researchers are directly giving evaluations of some

well known tools [83].
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Based on related work listed above, a solution is proposed, implemented and tested

to detect automatically security vulnerabilities in C applications using static anal-

ysis techniques. In the following sections, we define the scope i.e. which part of

the C language is covered and what vulnerabilities we are tackling.

4.2 Covered C language parts

The C language is among the most widely used programming languages half cen-

tury after its introduction [92]. This language is composed of a central part defined

by the ANSI C standard [39]. This standard describes the syntax and semantics

of all the standard constructs and gives a full description of the standard library

(headers files, constant values, data types, function headers and function descrip-

tions, etc.). Compilers supporting the C language (open source or proprietary)

must implement the standard part but may also implement different extensions

on both the language and the standard library parts. The C language to some

extent is therefore the composition of the standard part and a large number of ex-

tensions specialized for different systems. This makes a complete and exhaustive

study of all extensions a heavy and sometimes impossible task as in the case of

discontinued commercial compilers [93]. In our research, we study a target lan-

guage composed of ANSI C and two widely used extensions: POSIX C [41] and

GNU extensions [42].

The ANSI C part has a medium size and can be studied in whole. On POSIX C

[41] and GNU extensions [42] we studied a list of the widely used functions. This

list is obtained by statistical means on existing software code. We have studied the

usage of the library functions in 24 open source projects written in the C language

depicted in table 4.1. In all of these projects, we have identified 48062 calls to the

4461 target library functions and made a statistical analysis.

The figure 4.1 is a graph showing in the x-axis the number of functions from the

target libraries that are called and in the y-axis the percentage of calls to them

and the cumulative percentage of calls to them. As a result, functions never called
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Application Type

bash-1.14.7 command line tool

bind-9.10.2-P3 DNS server

curl-7.40.0 web library

dovecot-1.2.0 mail server

emacs-24.5 text editor

exim-4.77 mail server

grep-2.21 word searching tool

grub-2.00 bootloader

gzip-1.2.4 compression library

httpd-2.4.12 web server

lighttpd1.x-lighttpd-
1.4.x

web server

nginx-1.6.3 web server

openssh-7.1p1 ssh server and client

open-ssl-1.0.1f crypto library

ossh-1.5.12 ssh server and client

postfix-2.7.16 mail server

sudo-1.8.7 Linux utility

thttpd-2.25b web server

tnftp-20141031 tftp server

vsft-pd-2.3.5 secure ftp server

wget-1.16.3 web utlitiy

wu-ftpd-2.6.0 ftp server

yardradius1.0.21 Radius server

zlib-1.0.4 compression library

Table 4.1: Open source applications used to compute C library functions
usage.

are omitted from the figure. As depicted by the figure 4.1, the usage of functions

from the targeted library shows a long-tail pattern, meaning that a few functions

gather most of the usage while many functions are hardly used. Among the 4461

functions from the target libraries, only 751 functions were called at least once

and 3710 target functions were never called. The dashed curve shows that the

116 most called functions account for 90% of the calls, and the 447 most called

account for 99% of the calls.
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Figure 4.1: Usage rates of C language library functions in 24 open source
projects.

The figure 4.2 depicts the top 30 most used functions. This figure shows that the

nine first functions represent 50% of the calls.
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Figure 4.2: The top 30 most called C library functions in open source projects.

4.3 Covered security vulnerabilities

A security vulnerability can be defined in different ways. The IETF (Internet

Engineering Task Force) RFC-2828 [94] defines it as: “A flaw or weakness in
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a system’s design, implementation, or operation and management that could be

exploited to violate the system’s security policy”. The CVE Mitre Website [20] lists

exploitable vulnerabilities found on real applications and the CWE Mitre Website

[21] describes a large set of classes of vulnerabilities. Among these vulnerabilities,

the CWE/SANS Top 25 ranks the 25 Most Dangerous Software Errors.

We focus on three target vulnerabilities:

• Format string vulnerabilities (CWE-134: Uncontrolled Format String, Top

25 rank 23);

• Command execution vulnerabilities (CWE-78: Improper Neutralization of

Special Elements used in an OS Command (“OS Command Injection”), Top

25 rank 2);

• Buffer and memory vulnerabilities (CWE-120: Buffer Copy without Check-

ing Size of Input (’Classic Buffer Overflow’), Top 25 rank 3).

The “Format string vulnerabilities” and “Command execution vulnerabilities” can

be directly associated to two CWEs, namely, CWE-134 and CWE-78 whereas

“Buffer and memory vulnerabilities” can be associated with several CWEs amongst

which CWE-120 is the most general. Note that in the Top 25 CWE-120 and CWE-

78 are ranked 2 and 3, respectively, whereas CWE-134 is only ranked 23.

The choice of these target vulnerabilities is motivated, either by their presence in

the Top 25 Most Dangerous Software Errors, which shows their extremely dan-

gerous impact on the system security if they are exploited by an external attacker

and the relative ease of their exploit, or by their wide usage in the studied open

source projects of the target associated functions demonstrated below.

Table 4.2 lists the functions from the top 30 most used C library functions as-

sociated either with the three target vulnerabilities or none of them and gives

the percentage of functions from the top 30 related to the vulnerabilities. This

table shows that among the Top 30 functions used in open source projects, more

than 46%, i.e. 14 functions may lead to format string vulnerabilities or buffer and
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memory vulnerabilities. This means that our targets are representative of actually

used functions because they cover the first half of the functions used in open source

software. The functions leading to “command execution vulnerabilities” are not

represented in the Top30 but are ranked 208 in our statistical study of the most

used functions in the Open Source Projects.

Vulnerability Related Top30 functions Percentage

Format string vulnera-
bilities

fprintf, printf, sprintf, snprintf. 13%

Command execution
vulnerabilities

None 0%

Buffer and memory er-
rors

strlen, memset, memcpy, malloc,
strcpy, memmove, atoi, strdup,
calloc, strchr

33%

Others

fclose, assert, va end, va start,
signal, error, perror, getenv,
fflush, open, abort, strerror, free,
exit, close, va arg

53%

Table 4.2: Mapping of the Top30 used functions to the target vulnerabilities.

As a conclusion, the chosen target vulnerabilities are representative of highly

ranked vulnerabilities (rank 2 or 3) or vulnerabilities originating from the widely

used functions. Target vulnerable functions are defined as the subset of the tar-

get functions that may lead to the three target vulnerabilities. All the target

vulnerable functions belong to the Top 250 most used functions in open source

projects.

For simplicity reasons, only a subset of the target vulnerable functions is considered

(presented in table 4.3) to give demonstrative examples for the chosen property

examples.

Exploiting a vulnerability usually requires interaction from the attacker via the

application entry vectors. A data set is therefore controllable by an external entity

if it is initialized via an application input vector. We call tainted variables all
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Target vulnerability Target vulnerable functions

Format string vulnerabilities
fprintf, fscanf, printf, scanf, sprintf,
sscanf.

Command execution vulnerabilities
system, execl, execle, execlp, execv,
execve, execvp, popen

Buffer and memory errors

calloc, malloc, realloc, fscanf,gets,
scanf, sprintf, sscanf, strcat, strcpy,
strncat, strncmp, strncpy, memchr,
memcmp, memcpy, memmove, mem-
set, scanf, gets, fwscan, sscanf.

Table 4.3: List of target vulnerable functions

variables present in the source code whose values are derived from controllable

data.

4.4 Properties for security vulnerability detec-

tion and reporting

As stated in section 4.2, we focus on three categories of security vulnerabilities:

format string, command execution, and buffer errors. For each vulnerability, we

give an overview of the vulnerability, and present several properties that charac-

terize ill-used of these functions leading to the vulnerability. If the property holds

true, there is a vulnerability in the source code. For each property, we present a

general description, an example of attack scenario applicable when this property

holds, and a C code sample that shows one or more violations of the property.

4.4.1 Format string vulnerabilities

This vulnerability is caused by a misuse of a formatted input/output function

described in chapter 2. Formatted functions take a variable number of arguments:

a “format string” and values to be formatted. The “format string” is a mix of

text that will be included as is in the formatted data and format specifiers that
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start with the character ‘%’. Each specifier is replaced with the corresponding

formated argument. For “output” functions, the format string is used to convert

pure data in a human readable string representation that is written to the output

stream (file, console, buffer). When used with input functions, the format guides

the reading from the input stream to fill the given arguments. The formatting

operation has a precise syntax and semantics defined in the language specification

(or description). We present three properties that characterize ill-used format

functions as follows:

FORMAT WRONG CALL:

• Property description: The format argument has an incorrect syntax,

or the other arguments have not the right types and count according

to the given format argument.

• Attack scenario: If the source code contains a wrong format call, the

attacker has only to drive the software execution to execute the flawed

call, to produce a Denial of Service (DoS [95]) due to an application

crash.

• C code sample:

1 #include<stdio.h>

2 int main(){

3 int a;

4 char *s;

5 a = 0;

6 s = "hello"

7 printf("%b",a); // wrong format: unknown format specifier

%b

8 printf("%d",s); // wrong format: wrong argument

9 // type ’char *’ expected ’int’

10 printf("%d %d",a); // wrong format: wrong argument count

11 }
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In the piece of code above, the first call to printf causes a runtime error

because the format specifier %b does not exist. The second call is wrong

because the format specifier %d cannot be used with an argument of

type char *. For the third call the number of the format specifiers (2)

is higher than the count of given arguments (1).

FORMAT TAINTED ARGUMENT:

• Property description: The format argument used to format input/out-

put data is “controllable by an external entity”.

• Attack scenario: There are numerous malicious formats the attacker

can give to a vulnerable application. Depending on the way the wrong

format is forged, the attacker can achieve different goals [96]. For ex-

ample, if the attacker controls the format of an output function and

concatenates %s to the actual format and whatever arguments passed,

the attacker can leak arbitrary information. An arbitrary amount of

stack data is printed on the output stream. If the attacker concate-

nates %s%n to an actual format, he can even achieve arbitrary code

execution and completely control the application execution flow.

• C code sample:

1 #include<stdio.h>

2 int main(){

3 char str[60];

4 fgets(str,59,stdin); // input func: fgets, stream: stdin.

5 printf(str); // vuln : ’str’ is controlled by

6 // an external agent

7 }

In the piece of code above, the format argument str passed to the printf

function call is read on the standard input via the fgets call. Therefore,
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the property FORMAT TAINTED ARGUMENT holds on the printf

call and a vulnerability must be reported.

FORMAT BUFFER OVERFLOW:

• Property description: A formatting function that writes data into

or reads data from a buffer whose size of written (read) data is “con-

trollable by an external entity” or the size of the formatted output may

be bigger than the buffer size.

• Attack scenario:

– If the format is not “controllable by an external entity” and the

size of output is bigger than the buffer size, a buffer overflow arises

leading to at least an application crash, and possibly an information

leak or arbitrary code execution.

– If the format is “controllable by an external entity” a buffer over-

flow will arise leading to an application crash then a DoS or an

information leak or arbitrary code execution if other elements in

the code can be controlled.

• C code sample:

1 #include<stdio.h>

2 int main(){

3 char str[10];

4 sprintf(str,"%s","AAAAAAAAAAAAA"); // buffer overflow !

5 // sizeof(str) < sizeof (output) : 10 < 14.

6 }

In the code above, the call to sprintf with the constant format %s

causes a buffer overflow because the size of the output 14 is greater

than the size of the receiving buffer str 10.
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Property id Related functions CWE,CVE(s)

FORMAT WRONG
CALL

fprintf, fscanf, printf,
scanf, sprintf

CWE-628: Function
Call with Incorrectly
Specified Arguments

FORMAT
TAINTED
ARGUMENT

fprintf, fscanf, printf,
scanf, sprintf

CWE-134: Use of
Externally-Controlled
Format String CVE-
2015-8617 (PHP
7.x)

FORMAT BUFFER
OVERFLOW

scanf, sprintf, sscanf,
wscanf

CWE-119: Im-
proper Restriction
of Operations within
the Bounds of a
Memory Buffer CVE-
2014-1545 (Mozilla
Netscape)

Table 4.4: Format string properties.

The table 4.4 lists the target functions for each example of format property, and

references CWE [21] or CVE [20] stemming from this property.

In this research, we choose to make the more precise CWE association but this is

not always possible. Note that if the second property can be associated to a precise

CWE-134, the two others can only be associated to CWE-628 that applies to any

function call and CWE-119 that applies to a large number of buffer overflows.

Format string exploitation technical details

The generic class of a format string vulnerability is a “channeling problem”. This

type of vulnerability can appear if two different types of information channels are

merged into one, and special escape characters or sequences are used to distinguish

which channel is currently active. Most of the times one channel is a data channel,

which is not parsed actively but just copied, while the other channel is a controlling

channel [96].
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This attack is publicly known since mid 2000, it was considered as a software bug.

But in reality, its impact on security is worse than the well known buffer overflow

issues.

A successfully exploited format string vulnerability could lead to the following

problems (here the format string is entirely controlled by the attacker)

• Crash of the program: By utilizing format strings we can easily trigger

some invalid pointer access by just supplying a format string like:

1 printf ("%s%s%s%s%s%s%s%s%s%s%s%s");

Here for each %s a pointer is popped from the stack and dereferenced, this

could potentially lead to an illegal memory access causing the program to

abort.

• Viewing the stack: We can show some parts of the stack memory by using

a format string like this:

1 printf ("%08x.%08x.%08x.%08x.%08x\n");

Here, each %08x conversion specification will retrieve a 4-bytes value from

the stack and print it on 8 hexadecimal positions.

• Viewing memory at any location: the example:

1 printf ("\x10\x01\x48\x08_%08x.%08x.%08x.%08x.%08x|%s|");

Will dump memory from 0x08480110 until a NULL byte is reached. By in-

creasing the memory address dynamically we can map out the entire process

space. This because each %08x will consume a 4-byte value from the stack

and the last %s will use the given address 0x08480110 as the start of string

to print.

• Overwriting of arbitrary memory: is the most dangerous attack pattern,

it uses basically the same principle of “viewing memory at any location” uses
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the “%n” conversion specifier to write into memory an arbitrary value. This

situation is described in the ’CWE-123: Write-what-where Condition’, and

can lead to an arbitrary code execution compromising the Confidentiality,

Integrity, and Availability of the whole application or even the system.

• Classic buffer overflow: this special situation concerns the use of sprintf

or even snprintf with wrongly computed size parameter, for example:

1 {

2 char buf[64];

3 sprintf (buf,’connected user:%s’,username);

4 //username is an attacker controlled value.

5 }

4.4.2 Command execution vulnerabilities

This vulnerability may come from a misuse of a command or program execution

function. An execution function takes as arguments a command and arguments

if necessary and applies the command to all the arguments. Execution functions

launch a command, given as a string argument, by using the system command

interpreter. Although this feature is necessary to allow interactions of the pro-

gram with the rest of the software environment, it can weaken the security of the

application.

COMMAND WRONG CALL:

• Property description: The program and command execution func-

tion specification is not fulfilled or argument types and count are not

correct.

• Attack scenario:

The attacker must drive the execution to the flawed execution function

call to achieve a DoS [95] due to an application crash.
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• C code sample:

1 #include<unistd.h>

2 int main(){

3 execl("/bin/sh","/bin/sh","-c","ls -a",NULL);// correct

call.

4 execl("/bin/sh","/bin/sh","-c","ls -a"); // wrong

call.

5 execl("/bin/sh","-c","ls -a",NULL); // wrong

call.

6 }

In the piece of code above, the first execl call is correct because it fulfills

the call conventions. The second call is wrong because there is no NULL

argument at the end of the argument list. The third call is incorrect

because the second function parameter is not set to the program name

as stated in the function’s specification.

COMMAND TAINTED ARGUMENT:

• Property description: The arguments of the execution function call

(command string, program name or program arguments) are controlled

by an external entity.

• Attack scenario: If an attacker controls one or more command exe-

cution function actual arguments, the attacker will be able to launch

an arbitrary execution. This compromises not only the security of the

application itself, but the entire system is at risk. For example the

attacker can download and execute a malware on the target system via

the command below:

1 wget http://malicious.server/malw.sh; \

2 chmod +x malw.sh; ./malw.sh
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• C code sample:

1 #include<stdio.h> // for fgets

2 #include<stdlib.h> // for system

3 int main(){

4 char str[60];

5 fgets(str, 59, stdin); // input: reading ‘str’ from stdin

.

6 system(str); // arbitrary command execution via ‘str’.

7 }

In the example above, the variable str is initialized via the input func-

tion fgets passed as a command argument to the execution function

system. The attacker can execute any command if he controls the stan-

dard input channel stdin.

COMMAND TAINTED ENV:

• Property description: Execution functions implicitly use environ-

ment variables for binding the command passed as argument and the

executable file on the system. If the environment is altered by the at-

tacker, the executed commands may be different from the expected

ones.

• Attack scenario: If the attacker has access to the environment of the

application, he will be able to launch arbitrary commands and programs

and put at risk the entire system.

• C code sample:

1 #include<unistd.h> // for execlp

2 int main(){

3 execlp ("grep","grep","-h", NULL);
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4 // "grep" is searched in "\$PATH", if "\$PATH" has

been

5 // changed. The "grep" executed is not the real one.

6 }

In the example above, the execlp function searches for the program

“grep” into the $PATH environment variable directories. If the attacker

changes the value of the $PATH variable, he will be able to force the

application to launch a program of his choice and so will be able to

launch an arbitrary program.

Table 4.5 lists for each property, the target functions for which the property applies

and some CWE and CVE references stemming from these properties.

Property id Related functions Related CWE, CVE

COMMAND WRONG

CALL

system, execl, execle,

execlp, execv, execve,

execvp, popen

CWE-628: Function

Call with Incorrectly

Specified Arguments

COMMAND

TAINTED

ARGUMENT

system, execl, execle,

execlp, execv, execve,

execvp, popen

CWE-78: Improper

Neutralization of Spe-

cial Elements used in

an OS Command (’OS

Command Injection’),

CVE-2015-3306

(Proftpd)

COMMAND

TAINTED ENV

system, execlp, execvp CWE-114: Process

Control, CVE-1999-

0080 (wu-ftp)

Table 4.5: Command execution properties.
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4.4.3 Buffer and memory vulnerabilities

This section focuses on buffer errors related to C library functions calls. For

example the out of bound array accesses or pointer dereferencing errors are out

of the scope of this section because they are not related to function calls. We

consider the general CWE-120: Buffer Copy without Checking Size of Input as

the envelop, but many CWE belong to this class: CWE-119: Improper Restriction

of Operations within the Bounds of a Memory Buffer or CWE-121: Stack-based

Buffer Overflow.

A memory manipulation library function uses a set of unstructured data from a

buffer as input or output argument. Functions taking as argument a pointer to an

unstructured memory chunk (char *, void *, int *, . . . ) are in the scope.

For example, all of malloc, calloc, memcpy, strcpy, memmove are functions

that manipulate the memory. We present properties that detect ill-use of memory

manipulation functions.

MEMORY TAINTED SIZE ALLOCATION:

• Property description: The size argument that contains the amount

of allocated memory in memory allocation functions call is controlled

by an external entity.

• Attack scenario: If the memory allocation argument is controlled by

an external entity, an attacker can force the application to allocate huge

chunks of memory causing a resource exhaustion leading to a DoS. The

attacker can also give small values that will cause buffer overflows when

the allocated buffers are read or written.

• C code sample:

1 #include<stdio.h>

2 #include<stdlib.h>

3 int main(){

4 unsigned size;
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5 scanf("%d",&size); // input func : scanf, input stream:

stdin.

6 void * buf = malloc(size);

7 // vuln : allocation size in

controlled

8 // by an external attacker.

9 }

The malloc function is called on the size argument that is initialized

via an input operation scanf. This makes the amount of the allocated

memory completely controllable by an external attacker.

MEMORY TAINTED NULL TERMINATED STRING:

• Property description: A string parameter that should be a null ter-

minated is not or it is controlled by an external entity that can make

it non null terminated.

• Attack scenario: If the attacker controls a string parameter in a string

manipulation function, and drives the execution to this flawed call, he

can achieve a DoS [95] due to an application crash.

• C code sample:

1 #include<string.h>

2 int main(){

3 char s[10];

4 strcpy(s,"AAAAAAAAAA"); //s string is not null terminated

now.

5 }

The strcpy call copies the string ”AAAAAAAAAA” into buffer s. But

the size of the source string is set to 10 and no space is left to put the
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terminating null character. The string s is now malformed and any

further use can be a source of vulnerability.

MEMORY TAINTED SIZE ARGUMENT:

• Property description: The size argument used in a memory manip-

ulation function is controlled by an external entity.

• Attack scenario: When the attacker controls the size of the buffer,

he can force a buffer overflow and achieve arbitrary code execution,

information leak or application crash.

• C code sample:

1 #include<string.h>

2 #include<stdio.h>

3 int main(){

4 unsigned size;

5 char a[10];

6 char b[10];

7 scanf("%d",&size); // input func : scanf, input stream:

stdin.

8 memcpy(a,b,size); // TAINTED_SIZE_ARGUMENT = true.

9 }

The size argument of the memcpy call is read from input via scanf. So

the copy operation is under the control of the attacker.

MEMORY UNBOUNDED INPUT:
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• Property description: Data is read from an external source via an

input function, and written to a fixed size buffer without a verification

of the data size.

• Attack scenario: The attacker is able to trigger a buffer overflow

by giving large input chunks to the application. Once a buffer overflow

occurs he can exploit it to achieve arbitrary code execution, information

leak or application crash.

• C code sample:

1 #include<stdio.h>

2 int main(){

3 char str[10];

4 gets(str); // unbounded input causing an overflow.

5 }

The gets call reads data on standard input (stdin) until a terminating

newline is read. An attacker can cause an overflow by giving on the

standard input channel a string bigger than the allocated buffer (10).

Table 4.6 lists for each property, the target functions and references CWE [21] and

CVE [20] stemming from these properties.

4.5 Test and evaluation of Carto-C

An implementation of the properties qualifying security vulnerability was devel-

oped in the SafeRiver tool Carto-C [97] based on Frama-C [10]. The implementa-

tion consisted of adding the newly found properties to enhance the tool capabilities

to cover more security vulnerabilities. The tool has been tested on the Juliet test

base and also on real applications. More details on the implementation are given

in the chapter 6, section 6.1.
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Property id Related functions Related CWE,
CVE(s)

MEMORY
TAINTED SIZE
ALLOCATION

calloc, malloc, realloc CWE-789: Un-
controlled Memory
Allocation

MEMORY
TAINTED
NULL TERMI-
NATED STRING

fscanf, gets, scanf,
sprintf, sscanf, str-
cat, strcpy, strncat,
strncmp, strncpy

CWE-170: Improper
Null Termination
CVE-2015-3200
(lighttpd).

MEMORY
TAINTED SIZE
ARGUMENT

memchr, memcmp,
memcpy, memmove,
memset, strncat

CWE-119: Improper
Restriction of Op-
erations within the
Bounds of a Memory
Buffer
CVE-2014-0160,
(heartbleed)
OpenSSL.

MEMORY UN-
BOUNDED INPUT

scanf, gets, fscanf,
fwscan, sscanf

CWE-119: Improper
Restriction of Op-
erations within the
Bounds of a Memory
Buffer.
CVE-2003-0595, Wi-
Tango Application
Server

Table 4.6: Buffer and memory properties.

Testing efficiency and accuracy of a static analysis tool is a challenging task as

stated by the SAMATE SATE IV report [98]. Our tool has been tested using

synthetic test cases and using real application code.

4.5.1 Test with synthetic test cases

The tool has been tested using the synthetic code samples base Juliet from NIST

[16] developed for the NSA CAS [99] and the NIST SAMATE SATE (Static Anal-

ysis Tool Exposition) [100] projects. This test suite contains more than 40000

code samples targeting more than 100 CWEs. Each Juliet sample contains a code

snippet triggering the vulnerability called a flaw test case, and another code where

the vulnerability has been patched called the fix test case. Each test case have
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different data and control flow variations. The simplest case of control flow is

called a baseline test case.

Based on the implemented properties we tested the tool on all test cases in the

C Juliet test suite for the CWEs related to the target vulnerabilities. Table 4.7

gives for each property (column 1), the related CWE Id (column 2), states if the

CWE is tested in the Juliet test suite (column 3) and if the property is tested by

the CWE test cases.

Property CWE Present Tested

FORMAT WRONG CALL 628 No No

FORMAT TAINTED ARGU-
MENT

134 Yes Yes

FORMAT BUFFER OVER-
FLOW

119 No No

COMMAND WRONG CALL 628 No No

COMMAND TAINTED AR-
GUMENT

78 Yes Yes

COMMAND TAINTED ENV 114 Yes No

MEMORY TAINTED SIZE
ALLOCATION

789 Yes Yes

MEMORY TAINTED NULL
TERMINATED STRING

170 No No

MEMORY TAINTED SIZE
ARGUMENT

119 No No

MEMORY UNBOUNDED IN-
PUT

119 No No

Table 4.7: Mapping of vulnerability properties on Juliet test cases

Table 4.7 shows that four property related CWEs are present in the Juliet test

suite (CWE-134, CWE-78, CWE-114 and CWE-789) and that only three of them

truly test the target properties (CWE-134, CWE-78 and CWE-789). The CWE-

114 can not be tested because it contains only Windows C code examples. As a

result, the Juliet test suite allows for the verification of only three properties.

Table 4.8 gives for each property tested in the Juliet test suite and for each type of

test case flaw and fix, the number of test cases (column #), the percentage of test

cases truly analyzed (column %P) the percentage of flaw test cases for which the
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tool detects the expected vulnerability (column %TP) and the percentage of fix

test cases for which the tool does not detect the vulnerability as expected (column

%TN). The false positive (fix case detected as vulnerable) ratio is not directly

mentioned in the table and is equal to: 100−%TN .

Tested property CWE Flaw Fix

# %P %TP # %P %TN

FORMAT
TAINTED
ARGUMENT

134 2000 58% 93% 5460 59% 100%

COMMAND
TAINTED
ARGUMENT

78 1560 95% 90% 2160 100% 100%

MEMORY
TAINTED
SIZE ALLO-
CATION

789 380 95% 100% 1100 90% 49%

#: number of analyzed test cases; %P: ratio of test cases passing compilation step;
%TP: ratio of flaws that passes compilation and identified as vulnerable among all
flawed test cases; %TN: ratio of fixes that passes compilation and not identified as

vulnerable among all fixed test cases.

Table 4.8: Result on part of Juliet using Carto-C.

Table 4.8 shows that the subset of the Juliet suite that tests the target properties

contains 12660 test cases. The percentage of test cases for which the tool truly

performs the analysis is between 90% and 100% for CWE-78 and CWE-789 and

58% for CWE-134. This difference comes from the fact that the CWE-134 makes

use of wide character functions not yet supported by Carto-C.

The percentage of test cases for which the tool gives the correct answer is between

90% and 100% except for Fix test cases of CWE-789 for which the tool produces

a vulnerability while it should not (False Positive). We have analyzed the corre-

sponding test cases and it appears that the fix in these test cases is a tainted value

sanitization added in the code. This sanitization transforms the tainted data into

non-tainted, but the current version of the tool is unable to recognize this behavior.
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Figure 4.3: Result of Carto-C on Juliet baseline flaw test cases (After new
properties added)

In the figure 4.3 it is depicted the result of running Carto-C on the entire Juliet

baseline test cases. The term conform in this figure means that the vulnerability

present in the flaw test case was correctly identified and reported with the right

corresponding CWE identifier. We see a good coverage of safety related vulnera-

bilities (computed by Frama-C [10], collected and reported by Carto-C) such as:

190, 191, 457, 369, 121, 126, 127, 122, 195 and 194. To be able to measure the

added value of this contribution, in the figure 4.4 it is presented the result of

running ancient version of Carto-C on the same subset of Juliet base before any

development. The major improvements are:

• The front-end is better and it is able to parse more test cases.

• The developed security property checks allows to correctly detect more se-

curity related vulnerabilities such as the CWE: 78, 134, 789.
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Figure 4.4: Result of old Carto-C version on Juliet baseline flaw test cases
(Before adding new properties)

• Carto-C is able to report more safety vulnerability thanks to the development

of functions to collect and return the alerts emitted by the Frama-C kernel.

The figure 4.5 depicts the result of running Carto-C on the entire Juliet test

base. We see that in the two cases (running on baseline or on all) the results are

practically the same. This shows the ability of Carto-C to detect vulnerabilities

on complex programs with the same accuracy as it does for simple ones.

4.5.2 Test on real applications

We have tested Carto-C on real open source applications such as:

• tar 1.13.19 : a widely used GNU/Linux utility, with a code size of 56 kloc

(kilo lines of code). The analysis passed the compilation step after adding

different header files missing in the C library implementation. The analysis
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Figure 4.5: Result of Carto-C on all Juliet flaw test cases

does not finish because of the complexity of the application and the presence

of unsupported constructs (recursive functions).

• libpng 1.2.40 : a widely used multi-media library of a medium size (28 kloc).

The analysis of all of the entry points of this library reported different er-

rors that must be investigated manually to check if they are a true or false

positive.

• drivers/net/wireless/broadcom/brcm80211 : a Broadcom wireless driver of

Linux kernel 4.x This type of application makes use of the Linux kernel

driver libraries. The compilation step failed because, for instance, the tool

does not support Linux kernel libraries.

On the open source applications, two classes of difficulties where encountered:

• Real source code makes extensive use of GNU C and POSIX C libraries not

yet supported by Carto-C.
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• The Frama-C framework does not scale very well on real life programs and

does not support yet constructs often used in real applications such as re-

cursive calls or while loops with complex stop conditions.

An ongoing developing work consists of extending the Carto-C supported libraries

and analyzing the scaling problems.

4.6 Discussion and conclusions

In this work, we showed through experiments that many of dangerous security

vulnerabilities are caused by the misuse of functions from the C libraries. This

misuse can correspond to calling a library function in a wrong way, or exposing

the call to library functions to data controlled from external sources. We have

shown that detecting such errors with an automated tool is possible. On synthetic

test cases we had a limited false negative rate (7%) and a low rate of false positive

(between 10% and 51% in the worst case). Finally we have made an inventory

of library functions and header files to implement to be able to analyze more

Juliet tests [16] not yet supported and also real applications. These results were

promising and resulted in the development of new functionalities in the Carto-C

vulnerability knowledge base and also new test cases in the Carto-C test base.

Future work includes elaborating properties for new vulnerabilities and more com-

plex properties to cover larger sets of vulnerabilities. We will also work on giv-

ing the tool user a better understanding of the reason of the property violations

through execution traces. Another research axis, is to tackle the security issues

stemming from sequences of function calls such as the famous malloc/free problems

causing a use-after-free or double-free vulnerabilities.



Chapter 5

Vulnerability detection by

behavioral pattern recognition

In this chapter we present our method for exploitable vulnerabilities detection in

binary code with almost no false positives. It is based on the concolic (a mix of

concrete and symbolic) execution of software binary code and the annotation of

sensitive memory zones of the program traces. Three major families of vulnera-

bilities are considered (taint related, stack overflow and heap overflow). Based on

the angr framework as a supporting software the tool Vyper was developed to

demonstrate the viability of the method. Several test cases using custom code,

Juliet test base [16] and widely used software libraries were performed showing a

high detection potential for exploitable vulnerabilities with a very low rate of false

positives.

Introduction

Building robust and secure software free from vulnerabilities is becoming a major

concern of the IT community. Programming errors committed at the development

stage are the main source of vulnerabilities and security holes. Different strategies

are used to build more secure software such as the use of strict coding rules like

84
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the CERT-C [32] or the choice of a less insecure programming languages. The

automatic testing or fuzzing [101] can also be used to uncover security vulnerabil-

ities. For the software industry, static analysis tools such as Coverity [14], Fortify

[13] or Polyspace [8] are being adopted by developers to detect these programming

errors and prevent them from happening on deployed applications. The source

code static analysis has many drawbacks. We cite the problem of false positives

where the analysis tool detects vulnerabilities, which in fact are not existing or

are existing but not exploitable. Software security analysts will have a harsh task

to sort true and false positives especially for large and complex software, and they

may miss severe true exploitable vulnerabilities. To improve the security of an

application using a static analysis tool all reported vulnerabilities must be dealt

with using clear priority criteria. The exploitability can be a good criteria for

establishing a priority to deal with reported vulnerabilities.

To resolve this problematic situation we propose a method that describes how to

detect exploitable vulnerabilities with almost no false positive. The given solution

helps software analyst to easily confirm a reported vulnerability by providing him

an input sample that can trigger it. The proposed solution can also be used

to automatically sort true and false positive vulnerabilities obtained from other

software analysis tools.

The proposed method is a 3-stages process that first, computes program traces

by a concolic [15] (a mix of concrete and symbolic) execution of the software

binary code. Next, for each state of the computed trace(s) an annotation of

sensitive memory zones is computed. Finally, for each state, a predicate based

on this annotation and the result of the symbolic execution allows to verify if

a vulnerability can be triggered in the corresponding state (giving the necessary

input as well). The use of binary code instead of source code is motivated by

the fact that it contains all the necessary details [78] to accurately find exploitable

vulnerabilities. The other benefits of analyzing binary code is to be able to analyze

the real code that will be executed. The real code is sometimes different than the

source code because of compiler added optimizations or details related to the

hardware such as process memory alignment and padding. Such approach best
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responds to the objective of generating no false positive. We concentrated on three

classes of vulnerabilities: taint related, stack overflow and heap overflow and we

gave corresponding descriptions of the annotation and detection functions.

5.1 Concolic execution and binary code analysis

Concolic execution is a software analysis technique that performs symbolic exe-

cution, a classical technique that treats program variables as symbolic variables,

along a concrete execution (testing on particular inputs). It was introduced by

Godefroid et al. [15] where it was used to assist random testing to cover a maxi-

mum numbers of execution paths. This method is also used by KLEE [76] for their

unassisted high coverage testing. In their tool AEG (Automatic Exploit Genera-

tion) Avgerinos et al. [77] were interested in automatically generating an exploit

by combining source analysis to find the exploitable vulnerability and binary anal-

ysis to produce the exploit. Mayhem [102] is also a tool that automatically find a

vulnerability and generate an exploit based only on binary analysis. In our work,

we focus more on modeling and detecting different classes of exploitable vulner-

abilities, and less on generating a completely working exploit. This marks the

difference that exits between our approach and the other cited above. Different

tools and methods were developed since the introduction of concolic execution.

Shoshitaishvili et al. [78] describe almost all major state of art techniques used in

binary analysis based on concolic execution and other techniques that they imple-

mented in the open source angr framework [68].

To demonstrate the viability of our approach we developed a real testable tool

Vyper (VulnerabilitY detection based on dynamic behavioral PattErn Recogni-

tion) that uses angr framework. The tool can be used in search mode to search

for vulnerabilities. In what we call refine mode the tool is used to check if a given

vulnerability is exploitable or not and to produce the input that allows to con-

firm it. We tested Vyper on several custom test cases, Juliet test suites [16] and
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some widely used open source libraries (openssl, libpng and libtiff). The results

are very promising: in the first two cases most exploitable vulnerabilities were

detected with almost no false positive (2% at most), while in the last case sev-

eral previously unknown vulnerabilities were detected. We recall that the problem

of analyzing program behavior is undecidable such as the case with the halting

problem. Although, we can develop methods and tools that do interesting com-

putations by taking trade-offs. The proposed method aims to minimize the false

positive rate at the price of not being able to detect some vulnerabilities at all

(false negatives) and a longer analysis time.

We define what is meant by exploitable vulnerabilities in section 5.2. We give the

formalization of the proposed solution in section 5.3. Where in section 5.4 we show

how this formal model can be applied on examples of exploitable vulnerabilities.

The section 5.5 details the implementation and evaluation of Vyper. We conclude

and discuss the future work in section 5.6.

5.2 Exploitable vulnerabilities

We consider exploitable vulnerabilities, i.e. vulnerabilities that allow an attacker

to execute an arbitrary code on the target. Executing an arbitrary code means

that an external application user is able only via input vectors (command line

arguments, environment variables, file system and network sockets) to hijack the

application control flow and execute code fed as input to the application. Arbitrary

code execution is still actively exploited in the wild because of efficient application

protection mechanisms such as the ASLR (Address Space Layout Randomization)

[103], DEP (Data Execution Protection) [104] or stack canaries can be bypassed.

Generally these protections are bypassed by exploiting an information leak vul-

nerability along with the one leading to the code execution exploit. Other vul-

nerabilities such as application crashing or interference with application logic will

not be covered. This kind of vulnerability compromises the three security aspects
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(confidentiality, integrity, availability) of a successfully attacked system. For this

reason it is generally attributed the higher CVSS [79] scores especially when it can

be exploited remotely by non-authenticated users. We focused our study on the

most commonly exploited and documented vulnerabilities within the white and

gray hat hacker communities such as Metasploit [105], Exploit-DB[106], or the

pen-testing Linux distribution Kali [107]. We considered the following classes of

vulnerabilities:

1. Taint related vulnerabilities :

Format string, or command injection vulnerabilities, that are caused by

calling some dangerous functions (printf, syslog, system, execlp) with a

tainted attacker supplied argument. These vulnerabilities are exploitable

if the tainted argument has not been sanitized at all or has been incorrectly

sanitized. Exploiting a command injection vulnerability is trivial when an

attacker controls all or parts of the executed command. Format string vulner-

abilities are bit more complex to exploit. Worse, the format string exploiting

techniques where unknown until 2000s. In the section 4.4.1 it is given how

a vulnerable call to a format string function can be exploited. To detect

these vulnerabilities one can monitor all calls to these dangerous functions

and report a vulnerability when the given arguments are not sanitized (can

contains prohibited characters) and are derived from the application input.

2. Stack overflow :

A stack overflow occurs when data is written or read at a location that is

beyond the stack buffer maximum size. A stack overflow will be exploitable

if the return value stored on the stack is erased with an attacker supplied

value allowing him to hijack the control flow into a desired location. Note

that not all stack overflows are exploitable, for example if we erase only few

stack memory locations and we do not reach the stored return address [108],

the caused stack overflow is not exploitable. To detect this vulnerability we

monitor all stored return values and report a vulnerability if one of these

addresses is erased with an attacker supplied value derived from application
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0xFFFFFFFF

0x00000000

Stored return address

int c; //  4 bytes

char buf[10]; 
//10 bytes + padding 

Tainted Data

Program stack

// Local variables:

Figure 5.1: Exploitable stack overflow

28 bytes of tainted data written to the buffer erasing the return address.

input. The Figure 5.1 depicts a case of an exploitable stack overflow on an

x86 64 machine running on Unix based OS.

3. Heap overflow :

When a heap buffer is allocated, the dynamic memory allocator adds differ-

ent control data before and after the buffer. Exploitable heap buffer overflow

occurs when a heap is written beyond its size with a user supplied value

(value derived form the input). Because the erased control data will con-

fuse the memory allocator, this can potentially allow the attacker to execute

arbitrary code. This vulnerability can be detected by keeping track of all

sensitive heap memory addresses (allocated buffer start, allocated buffer end,

freed buffer start) and a vulnerability is signaled when these memory places

are accessed beyond the allocated size. Exploiting a heap buffer overflow is

less easy than stack overflow. It needs a deep knowledge of heap meta-data

and heap allocator algorithms. In practice, heap overflow exploits are proba-

bilistic and use some techniques such as heap spraying [109] and heap layout
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0xFF FF FF FF

0x00 00 00 00

Heap memory

Stack memory

metadata buf1

buf1

metadata buf2

buf2

Tainted (symbolic data)

Program memory space

Figure 5.2: Exploitable heap overflow

Overflowing buf1 will erase “meta data buf2” and allow an arbitrary code
execution

information leak to make the exploits more reliable. The Figure 5.2 depicts

a case of an exploitable heap overflow where tainted data is written to buf1

and the write operation overflows and erases the meta-data of the following

buffer buf2 leading to an exploitable heap overflow situation.

4. Use-after-free:

A use-after-free vulnerability occurs when a freed heap buffer is accessed and

can be exploited in the same manner as a heap overflow can be.

5. Double free:

Double freeing a heap buffer can also allow an attacker to obtain a control

hijack and execute an arbitrary code by confusing the memory allocator

routines.

From the examples above we observe a general pattern shown in the Figure 5.3: a

vulnerability is exploitable into a control hijack, if some sensitive memory zones

(function argument, stored return address, heap buffer start and end) are accessed

(read, write) in some special situations (with data derived from input or with data

not correctly sanitized). By searching for this pattern in analyzed applications we
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0xFFFFFFFF

0x00000000

Sensitive data
 

Program Memory space

: Tainted Data

Sensitive data

Sensitive data

Exploitable vulnerability

Non-exploitable vulnerability

Non-exploitable vulnerability

Figure 5.3: Exploitable vulnerability pattern.

Sensitive memory erased with tainted data.

will be able to locate exploitable vulnerabilities. The detection of these exploitable

vulnerabilities is done in 3 steps:

• Program traces construction: computed using concolic execution, that guar-

antees the propagation of initial symbolic inputs along the generated traces

with path formulas expressed within these inputs. We have constructed

all traces of a maximum fixed length to guarantee the termination of this

computation phase.

• Sensitive memory annotation: a sensitive memory zones set is constructed

in this step. This set will be used by the next phase.

• Vulnerability detection: in this step we will check if the operation we are

executing and the reached program state causes a sensitive memory zone to

be written with data coming from input vectors (symbolic data) and report

the corresponding vulnerability information. When possible the input data

that will trigger the vulnerability is also reported.
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5.3 Formalization of exploitable vulnerability de-

tection

Below, we present a formalization of the detection and reporting of exploitable

vulnerabilities based on their general behavioral pattern.

To detect an exploitable vulnerability in a given program, a method based on

the annotation of program traces states’ space is proposed. As in model check-

ing method, reachable program states are constructed and the execution traces

are kept. After that, for each trace, each state is annotated by a list of sensi-

tive memory zones, based on the executed instructions. Finally, for each state,

vulnerabilities are reported based on checks and constraints resolution done on

the program states, execution traces and the constructed annotation containing

sensitive memory zones.

We notice that for our goal we do not need to distinguish between memory loca-

tions and registers, so we can assume that the starting addresses of the memory

correspond to the registers.

We will abstract the real computer program and the concrete machine model by

random-access machine (RAM) model [110] enriched with additional instructions.

In order to be closer to the reality we consider two restrictions on the RAM model:

first we assume that the number of registers (the memory) is finite and of size M ;

second we consider that each register (memory cell) can hold a bounded integer

value – at most 2n. Hence, the memory can be defined as a vector of size M :

Memory ∈ INT (n)M , where INT (n) = {0, . . . , 2n − 1} be the set of numbers

that can be represented with at most n bits in the binary notation.

Next, we augment the RAM model with additional instructions. An instruction is

defined by the operation and the list of its arguments that are indexes of memory

locations on which the operation is executed. We remark, that we consider instruc-

tions using constant values as new types of instructions. So, let OP be the set

of all possible operation codes, then an instruction is a tuple I = (op, a1, . . . , ak),
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where op ∈ OP and k depends on op: k = nb operands(op). The set of all in-

structions will be denoted as INS ⊆ OP × NK , where K is the maximal number

of arguments for any instruction.

A program P = I1, . . . , In is an ordered list of instructions: P ∈ INS∗.

A state of the machine is given by the contents of the memory and by the current

instruction index: Sk = (ik,Mk), ik ∈ N, Mk ⊆ INT (n)M . An execution of an

instruction Iik allows to pass from state Sk to Sk+1: Sk
Iik=⇒ Sk+1.

A trace (an execution) of length n is the sequence

π : S0

Ii0=⇒ S1

Ii1=⇒ . . .
Iin−1
===⇒ Sn.

We annotate each state Si of trace π. We denote by Aπi the corresponding an-

notation. An annotation is a list of triples (memLocation, size, attribute), where

memLocation, size are respectively the address and the size of the annotated mem-

ory. The attribute value is used to keep the type of the corresponding memory

zone (RETURN ADDRESS,HEAP METADATA,

CALL ARGUMENT, etc.). Hence Aπi ∈ (N× N× attribute)∗. We will omit the

superscript π if π can be deduced from the context.

For each state Si of π we consider the detected vulnerabilities information denoted

V π
i , which is a list of couples (codeLocation, V ULN INFO), where V ULN INFO

is a structure that contains the name of the vulnerability, the corresponding

CWE [21] identifier and the context (call stack, input values, etc). Hence, V π
i ∈

(N×VULN INFO)∗. As above, we will omit the superscript π if it can be deduced

from the context. These definitions will be used in the following to show how the

computation will be done.

We use a concolic execution of the program. One of the major advantages of

such method is that it keeps track of the input data called symbolic data. Thus,

it is possible to distinguish if a value of a memory location is computed using
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external data. As we could see above, the input data plays a major role to make

a vulnerability exploitable.

Another important point is that we limit the execution traces to a certain length

(L). The idea behind this limitation is that we would like to detect vulnerabilities

in a reasonable time, implying that the execution of the program will be stopped

after some number of steps. The drawback of this approach is that the vulner-

abilities requiring a higher number of steps for the detection will not be found.

From the other point of view, the tool we use for the concolic execution already

has similar limitations.

Hence, we will consider execution traces of length at most L and we will denote

the corresponding set by πL. We would like to remark that below we will consider

that πL is already computed (by making all corresponding runs). However, in

the implementation we have chosen another approach where at each step we keep

track of all traces and we evolve them in parallel. While this leads to the same

final result, conceptually, it is easier to suppose that the set of traces is already

computed.

For every program trace π : S0 =⇒ . . . Sn of length n we will populate the list Ai,

0 ≤ i ≤ n as follows:

A0 = ∅

Ak+1 = Annotate(Sk, Ak, Iik), 1 ≤ k ≤ n.

The function Annotate will allow to store the access to sensitive memory zones

and this information will be further used for the detection of different kind of

vulnerabilities. Based on the general behavioral pattern of a vulnerability some

special memory locations have an important role, for example the return addresses

stored in the stack frame or the buffer meta-data stored on the heap. When these

memory locations are written, corresponding states need to be annotated for a

future search for a vulnerability.
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Next, we compute all Vk, 0 ≤ k ≤ n as follows:

V0 = ∅

Vk+1 = Detect(Sk, Ak, Iik , Vk), 1 ≤ k ≤ n.

The function Detect checks for different vulnerabilities. The check is based on the

annotated list for each state. Given the behavioral pattern of a vulnerability and

the previous annotations on the execution path the Detect function will check if

the conditions to have an exploitable vulnerability are met. In the positive case,

it stores the information about the found vulnerability in Vk+1. For example if

a memory location is annotated as being a stored return address in a function

stack frame and it is written with tainted (symbolic) data, then we signal this as

exploitable stack overflow.

The introduced model allows to describe a general detection framework based on

the annotation of used memory locations. In the next section we describe how this

framework can be applied for the classes of vulnerabilities we are interested by.

5.4 Formal model application on exploitable vul-

nerabilities

For practical reasons we will group program instructions into functional groups

(i.e. memory access, subroutine call), as for many instructions the Annotate and

Detect functions are almost identical. These groups are closely related to the

functioning of angr framework [68] and especially to event based breakpoints that

can be fired, e.g. on a memory/register access or a function call. The used part

of [68] will be detailed in section 6.2.3. However, it should be clear that it makes

no particular difficulty to unroll the corresponding definitions and give them for

concrete instructions.
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So, below we present the functions Detect and Annotate used for the detection of

the five types of vulnerabilities.

• Taint vulnerabilities (printf, system):

– Function Annotate:

It is the identity function so the annotation list Ai will be always empty.

We have no need to annotate any memory locations for this type of

vulnerabilities. The sensitive memory to check is the given argument

when calling these dangerous functions.

– Function Detect:

If the current operation is a call to taint related function, and the format

argument is pointing a symbolic area then report a vulnerability.

• Stack overflow:

– Function Annotate:

If the current operation is a function call, then add the triplet (stack pointer,

reg size, STACK) to the list Ai. If it is a ret operation subtract the

corresponding stack pointer element from the set Ai.

– Function Detect:

If the current operation is a memory write, and the destination argu-

ment is within Ai and marked as STACK and the source is symbolic

then report an exploitable stack overflow vulnerability.

• Heap overflow:

– Function Annotate:

If the current operation is a call to a memory allocation function then

add the triplet (malloc ret value,mallo arg,HEAP ) to Ai

– Function Detect:

If the current operation is a memory write, and the data is written be-

yond the size of a buffer annotated as a HEAP element and the source
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buffer is symbolic then report an exploitable heap overflow vulnerabil-

ity.

• Double free:

– Function Annotate:

When free is called, the passed argument is annotated as being already

freed buffer.

– Function Detect:

When free is called, we check if the passed argument is in our sensitive

memory zones and marked as freed. In the positive case we report an

exploitable vulnerability.

• Use after free:

– Function Annotate:

The same as for detecting double free.

– Function Detect:

When a heap buffer is accessed we check if it is in the set of sensitive

memory zones marked as already freed. If so, we report an exploitable

vulnerability.

These are only examples of the application of the proposed vulnerability detection

method. Other vulnerabilities (Information leak, DoS, Authorization bypass, etc)

can be covered by figuring out what Annotate, Detect functions are needed.

5.5 Test and evaluation of Vyper

The detection of exploitable vulnerabilities presented above is implemented and

evaluated in the Vyper tool. Vyper is a tool that allows to analyze a binary file

and report any exploitable vulnerability it finds. It is implemented using the angr

[68] framework. The tool has been tested on the Juliet [16] test base and gave

satisfying results. It has also been tested on some real applications with good



Vulnerability detection by behavioral pattern recognition 98

results. The whole details of Vyper implementation are given in the chapter 6,

section 6.2.

To evaluate our implementation of the proposed method we used three types of

test cases:

• Testing on custom test cases: During the development, we built a small

test base that was used to test the detection of some simple cases of vul-

nerable code. This base was also used for debugging and non-regression

purposes.

• Testing on synthetic test cases: This testing was done using publicly

available Juliet test base [16] that contains thousands of test cases especially

written to test static analysis software.

• Testing on real applications: We used some well known applications and

libraries that are available in open-source to test our tool on real life code.

5.5.1 Testing on custom test cases

The table 5.1 below summarizes the different test objectives. All tests were run in

detection mode and all of the introduced vulnerabilities were detected and reported

correctly. For example, one of these custom tests makes several calls to printf

function. All calls except one use valid constant format specifiers. The remaining

call uses a tainted format string and is only called if the input from argv has a

special value. The vulnerable call was correctly detected and the needed input

value was precisely reported. The source codes of these tests are given in the

annex C.

5.5.2 Testing on Juliet test base

Juliet [16] is a collection of test cases written in C language. It contains exam-

ples for 118 different CWEs [21]. A test case contains at least a vulnerable code
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Table 5.1: Results on custom tests using Vyper.

Vulnerability CWE-ID Comment

Tainted format 134 The code contains a vulner-
able call to printf condi-
tioned with input values.

Tainted format with concrete value 134 The code contains a vul-
nerable call to printf con-
ditioned with input value.
When the input value is
constrained with a concrete
value, no vulnerability is de-
tected.

Stack overflow 121 The code contains 2 stack
overflows: one with a loop
and an index the other with
a call to strcpy.

Double free 415 The test calls 2 times “free”
in 2 different functions on
the same buffer pointer

Use-after-free 416 The test code tries to access
a memory location of a freed
buffer. The test is reported
as a heap overflow.

Heap overflow 122 A program that allocates
heap memory and causes a
write overflow with tainted
data.

(flaw) and the same code with the vulnerability fixed (fix). Flawed or fixed code

can be activated using compiler macros. For each CWE, test cases are created

using the simplest form of the flaw as well as other cases testing the same flaw

with added control or data flow complexity. For example CWE134 Uncontrolled -

Format String char connect socket snprintf 01.c test case will test the CWE-134

with tainted data source from “connect socket” and a sink vulnerable function

“snprintf”. The suffix ”01.c” means that this test is the simplest case of this flaw.

So, the CWE134 Uncontrolled Format String char connect socket snprintf 11.c is

a test case testing the same vulnerability but with more complex control or data

flow, i.e. the use of intermediate variables or function calls that cross multiple

files.
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Table 5.2: Result of Vyper on parts of Juliet test suite.

Type CWE Time # %TP in Flaw %TN in Fix

taint related 134 1h 100 100% 100%

taint related 78 36min 80 73% 100%

stack overflow 121 2h 232 0% 99%

heap overflow 122 1h 136 14% 98%

double free 415 4m 12 100% 100%

time: total analysis time; #: the number of analyzed test cases;
%TP in Flaw: the ratio of flaws correctly identified as vulnerable among all
flawed test cases;
%TN in Fix: the ratio of fixes correctly not identified as vulnerable among all
fixed test cases.

For our testing we have developed scripts that will compile test cases into binary

code, launch Vyper with all checkers activated. These scripts also collect, nor-

malize and synthesize the analysis results. The results are summarized in table

5.2. We can notice that we generally have a very satisfying rate of false positives

(FP = 100 − TN): from 0 to 2%, which is in correspondence with our objective

to build a method with a very low false positive rate. Also, we remark that for

the CWE-121 (stack overflow) we detected 0% of exploitable vulnerabilities. This

is due to the fact that the flawed code does not allow to completely erase the

return address that is necessary for an arbitrary code execution. In other words

the CWE 121 test cases present in the Juliet test base are not exploitable to gain

arbitrary code execution. For the CWE 122, the low rate of detected vulnerability

is caused by the fact that some heap overflows occur when reading heap buffers.

The read access overflow is not considered exploitable in our definition because

no heap meta-data can be erased with a read access. We equally tested several

commercial and proprietary tools on the same test cases and we found that they

have a relatively higher mean value of false positive (FP). Hence, our tool performs

better on the corresponding vulnerability classes. One explanation of such perfor-

mance is that tested commercial tools are not tuned for exploitable vulnerabilities

and also they usually rely on techniques inherently generating a high rate of false

positive alerts.
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5.5.3 Testing on real applications

Testing our tool on real applications is an important step to show its effectiveness.

Thousands of applications are now available in open-source. However, the intrinsic

limitations of the angr framework allow us to perform the tests only on small or

medium size applications. Another problem when dealing with open source code

is how to state if the found vulnerability is correct or not automatically. We tested

Vyper on a variety of open source software:

• Udhcp server : udhcp-0.9.8 is a program running on a variety of devices

(routers, modems, set-top boxes, IP cameras, etc.). We inserted into the

source code a vulnerable printf call (call to printf with a tainted format) at

the code line: udhcp-0.9.8/dhcpd.c:102. Vyper was able to correctly detect

this vulnerability in about 3 minutes. This result shows the effectiveness of

the tool for vulnerability detection on this type of (embedded) programs.

• Widely used libraries : We tested Vyper on OpenSSL-1.1.0f (libssl.so), libpng-

1.5.20 and tiff-3.8.1. To test these libraries we launched the tool directly on

the “.so” file and changed the entry point to each of the exported functions.

We fixed the timeout to 300 seconds to be able to analyze a maximum num-

ber of functions in a reasonable time. The results are shown in table 5.3.

In this table we see that, by fixing the analysis time to only 5 minutes per

function we were able to analyze the majority of these library functions (only

33 time-outed among 786 function for OpenSSL). The detected vulnerabil-

ities are not confirmed to be true positives. Analyzing a library function

by function may lead to false positive independently from the performance

of the analysis method. This is because some functions are never called di-

rectly in a normal use case of the library. This experimentation allows at

least to confirm that for the functions where the analysis terminated and no

vulnerability were detected that they are free from exploitable vulnerabili-

ties. For the cases where vulnerabilities were detected we know that if a real

exploitable vulnerability exists it will be among the found ones specially if

the analysis did not timeout.
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Table 5.3: Detection of vulnerabilities in widely used libraries using Vyper.

Library name Source
size

Binary
size

# of
func-
tions

Time-
outed
func-
tions

Entry function Detected CWE
id

OpenSSL-1.1.0f 246 kloc 1.2 MB 786 33

SSL add dir cert subjects to
stack

CWE-122

SSL check private key CWE-121

SSL CTX set ct validation
callback

CWE-121

SSL CTX use PrivateKey
ASN1

CWE-121

libpng-1.5.20 33 kloc 452 kB 235 50

png destroy struct CWE-415

png do unpack CWE-122

png free default CWE-415

png info init 3 CWE-415

png push process row CWE-121

png safecat CWE-121

tiff-3.8.1 44 kloc 1.1 MB 215 13

TIFFCreateDirectory CWE-415

TIFFCreateDirectory CWE-122

TIFFGetConfiguredCODECs CWE-122

TIFFInitCCITTFax3 CWE-122

TIFFReadEXIFDirectory CWE-415

TIFFReadEXIFDirectory CWE-121

5.5.4 Testing refinement mode

To demonstrate the usability of Vyper refine mode, we analyzed the example in

figure 5.4 using Carto-C. Carto-C detected a stack overflow vulnerabilities on the

lines 23 and 30. By analyzing the the compiled application binary in refine mode

to search for exploitable vulnerabilities and by giving as input the already found

vulnerabilities locations. Vyper reported that the first is not exploitable and the

second is. This experimentation shows the effectiveness of the refine mode to sort

vulnerabilities into exploitable and non-exploitable ones and helping an application

auditor to tackle the found vulnerabilities in the right order in order to augment

the analyzed application security.

5.5.5 Other Vyper use cases

The capacity of Vyper to analyze binary code gives it the ability to accomplish

different tasks such as:
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1 #include<string.h>
2 int i;
3

4

5 void function1(char *str) {
6

7 char buffer[16];
8

9

10 for( i = 0; i < 16; i++)
11 buffer[i] = str[i]; // Non-vunerable call
12

13 }
14

15

16

17 void function2(char *str) {
18

19 char buffer[16];
20

21

22 for( i = 0; i < 24; i++)
23 buffer[i] = str[i]; // Non exploitable stack overflow

vulnerability detected by Carto-C, and marked as non exploitable
by Vyper.

24

25 }
26 void function3(char *str) {
27

28 char buffer[16];
29

30 strcpy(buffer,str); // Exploitable stack overflow vulnerability
detected by Carto-C, and confirmed as exploitable by Vyper.

31 }
32

33 int main(int argc,char** argv) {
34

35 function1(argv[1]);
36 function2(argv[1]);
37 function3(argv[1]);
38 }

Figure 5.4: Code used to test refinement mode

• Helps understanding and reverse engineering binary application such as de-

vice drivers and other important operating system components. For example

we have done an experimentation on the USB driver for Windows XP SP3

and got a detailed control flow graph representation.

• Tracks newly introduced vulnerability in application from version to version
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by run it in refine mode with the undesired vulnerabilities located in the

newly added code lines. If any vulnerability is detected we know the newly

added code is the responsible.

• Binary code complexity measuring by computing some metrics on the com-

puted control flow graph.

5.6 Discussion and future work

We have shown the effectiveness of using state-of-art binary-code analysis frame-

works to detect exploitable vulnerabilities. The method we propose tries to rec-

ognize the common patterns present in application behavior allowing successful

exploits. These patterns are searched using concolic execution engine provided by

the angr framework. The implemented tool Vyper performs well on synthetic

test cases as well as on real life applications.

One of the major drawbacks of the developed method is its low speed with respect

to other methods. Moreover, at the time of the writing it does not scale very well

for large applications.

The refine mode of Vyper can be very useful to check newly introduced vulner-

abilities when application code is modified by aiming the new added lines of code

and specifying the vulnerability we do not want to have.

Hence, in the future we will try to enhance the refine mode and try to demonstrate

its use to detect newly added vulnerabilities in large software. We will also try

to make the tool faster and more scalable for large programs. Another direction

that we plan to explore is the addition of more vulnerability patterns, in particular

those related to race conditions and parallel executions.



Chapter 6

Tools implementation details

In this chapter it is presented all the developments done along this thesis. The

first tool Carto-C [97] was extended with the new security vulnerability checks

for C language applications presented in the chapter 4 and tested with the Juliet

test base [16] and on real application. Vyper, the second tool we developed to

detect exploitable vulnerabilities using the method described in chapter 5 is also

presented.

6.1 Carto-C

6.1.1 Presentation of Carto-C

Carto-C is a tool for establishing the cartography of a C source code by computing

the attack surface (input and output streams). The figure 6.1 shows a use case of

the Carto-C tool. It is also able to find some safety and security vulnerabilities

such as:

• Finding potential run-time errors with static analysis, thanks to its under-

lying Frama-C stem.

105
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Figure 6.1: Carto-C use case

• Finding input and output points in the code, even those the designer/de-

veloper is not aware of. This includes files, standard input and output,

environment variables, the network, the localization, the current time, etc.

• Finding critical points that depend on these input or that have an influence

on the output. This allows e.g. finding whether a password can potentially

be output on the standard error output.

• Finding vulnerabilities linked with formatting and execution functions. These

vulnerabilities correspond to the common weaknesses enumeration items

CWE 134 and CWE 78

6.1.2 Presentation of Frama-C

Frama-C stands for Framework for Modular Analysis of C programs. Frama-C is a

collection of inter-operable static program analyzers for C programs. Frama-C has

been developed by Commissariat à Énergie Atomique et aux Énergies Alternatives

(CEA-List) and INRIA.
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Frama-C relies on CIL (C Intermediate Language) [55] to generate an abstract syn-

tax tree. Several plugins can manipulate this abstract syntax tree. The frequently

used plugins are:

• Value analysis : computes a value or a set of possible values for each variable

in a program. This plugin uses abstract interpretation [73] techniques and

many other plugins make use of its results.

• Jessie: verifies properties in a deductive manner. Jessie relies on the Why or

Why3 back-end to enable proof obligations to be sent to automatic theorem

provers like Z3, Simplify, Alt-Ergo or interactive theorem provers like Coq

or Why. Using Jessie, an implementation of bubble-sort or a toy e-voting

system can be proved to satisfy their respective specifications. It uses a

separation memory model inspired by separation logic.

• WP (Weakest Precondition): similar to Jessie, verifies properties in a de-

ductive manner. Unlike Jessie, it focuses on parameterization with regards

to the memory model. WP is designed to cooperate with other Frama-C

plugins such as the value analysis plug-in, unlike Jessie that compiles the C

program directly into the Why language. WP can optionally use the Why3

platform to invoke many other automated and interactive provers.

• Impact analysis : highlights the impacts of a modification in the C source

code.

• Slicing : enables slicing of a program. It enables generation of a smaller new

C program that preserves some given properties.

• Spare code: removes useless code from a C program.

Carto-C makes use of the value analysis plugin to locate safety vulnerabilities in

the analyzed program. The computation done by this plugin is also used to find

security vulnerabilities by checking for dependence between data coming from the

attack surface and dangerous sinks (dangerous function calls).
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6.1.3 Implementation details

The development work related to this thesis was to extend Carto-C to cover vul-

nerabilities we described in chapter 4. Since Frama-C (internal engine of Carto-C)

only supports a subset of the standard C library, the unsupported target library

functions (GNU C, POSIX C. . . ) have been added: the header files have been

implemented or completed with missing functions and the ACSL (Annotated C

Specification Language) specifications [111] of these functions have been developed.

The properties checking security vulnerabilities were added to Carto-C knowledge

base that was specially designed to be easily extended without heavy changes on

core components. Hundreds of entries were added to this base for every library

function that we identified in our properties. Small testing suites were developed

and tested continuously to ensure that the added entries produced the desired

result at least on basic test cases.

A security property check entry in Carto-C knowledge base is composed of three

parts as shown in the example depicted in figure 6.2. The property type is re-

lated to vulnerability class and it acts as a switch that will choose what detection

algorithm will be triggered. The function name is the concerned function and

the argument list is list of argument indexes related to the security check. The

Carto-C knowledge base contains also the list of input functions with information

on the streams these functions read the data from and in what argument the input

data is stored. Data initialized with such an input function will be considered as

a tainted external data. This listing of input vectors allows Carto-C to compute

the application attack surface and report it in a comprehensible manner.

In numbers, the developments added to Carto-C consisted of:

• 300 header files of ANSI C, POSIX or LINUX were added.

• 500 ACSL specifications of C library functions were added or modified.

• 200 lines Ocaml code to check for format string correctness.

• 300 input functions added in the Carto-C knowledge base.
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"printf" decl_printf_format 1; 

"memcpy" decl_mem 2,  1,   [3]; 

property: tainted format format argument index

property : tainted buffer size
source buf index

destination buf index

size arg(s) index

Figure 6.2: Carto-C security properties examples

• 200 output functions added in the Carto-C knowledge base.

• More than 120 security check properties concerning: format string, com-

mand execution and memory manipulation functions were added to Carto-C

knowledge base.

• 40 custom test cases were written for the purpose of unit testing all the

added developments.

• Practically all of the 700 most used functions obtained using statistical means

on open-source projects were studied. Related security checks were added

to Carto-C.

6.2 Vyper

As stated before we built a tool called Vyper that implements the analysis method

described in chapter 5. Its implementation needs a good concolic execution engine.

Implementing a concolic engine from scratch is hard task, which is not in our

research scope. For this reason Vyper uses the angr framework [68] for program

loading and states exploration. This allows to accelerate the development and

helps us to focus more on vulnerability detection tasks. Another important point
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is that angr is actively developed and continuously improved, so our tool will

benefit from further improvements of the angr framework.

6.2.1 A brief description of angr framework

angr is an open-source framework available to the security community. It is a

binary analysis framework that implements a number of analysis techniques that

have been proposed in the past. This allows researchers to use them without

wasting their effort reinventing the wheels. We cite some of the techniques im-

plemented and documented in angr framework: binary loader for different OSes

and architectures, control flow graph (CFG) computation, data flow graph (DFG)

computation, value-set analysis (VSA), concolic execution using execution path

explorers and code inspection. Code Inspection provides a powerful debugging

interface, allowing breakpoints to be set on complex conditions, exact expression

makeup, and symbolic conditions. This interface can also be used to change the

behavior of the concolic execution engine by firing callback functions when a spe-

cial breakpoint is hit.

6.2.2 Vyper specification

Vyper can be specified as follows:

• Input: the binary program, the entry point function, analysis mode (op-

tional, default: detection), vulnerability class (optional, default: all), envi-

ronment model file (optional).

• Output: Vulnerability report containing for each reported vulnerability: vul-

nerability CWE identifier, location information, input values, call stack.

• Requirements:

– Load the binary file and initialize the initial state as specified with a

special environment model file if any.
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– Activate the requested checkers by setting the corresponding break-

points that are used for the annotation and detection purposes.

– Launch and control the concolic execution.

– If an annotation breakpoint is hit, trigger callback function that will

store the annotation information.

– If a detection breakpoint is hit, trigger callback function that will check

if the executed code is vulnerable, and store vulnerability information

if a vulnerability is present.

– If the symbolic execution is stopped (after a timeout) or finished, collect

all the reported vulnerabilities and output it in the requested format.

6.2.3 Vyper implementation details

Vyper is an application developed in Python. The choice of this language is moti-

vated by the fact that angr is shipped as a python module. So, it was easier to use

the same language. Vyper is composed of different vulnerability checkers. Each

vulnerability checker is implemented in separate functions and can be activated

via command line arguments. This modularity allows Vyper to be easily extended

to cover more vulnerabilities. Functions to pretty print the control graph flow of

the analyzed application for debugging purposes are also implemented. Due to

some missing C library functions stubs in the framework, about 15 functions were

added to the existing angr implementation of C library functions. These functions

were implemented or modified to make the results more precise. We note that the

missing functions stubs were not a blocking issue such as with Carto-C or more

generally with static source analysis tools. During the development of Vyper dif-

ferent bugs of angr were discovered. One discovered bug concerning a special type

of breakpoint was reported to the developer community, and our proposed work

around was accepted [112]. The figure 6.3 shows the general algorithm followed

by Vyper. In the following paragraphs we will explain the internals of each box.
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Load the 
program
     (1)

Generate
the CFG
     (2)

initial state
       (3)
 

Initialize checkers
           (4)
 

Start symbolic 
execution

(5)
 

Report 
vulnerabilities

(6) 

Reach vulnerable 
function 

(8)
 

Program binary

Checkers parameters

Refine mode
       (7)
 

Env parameters

Figure 6.3: Vyper general algorithm

1. Load the program. The binary of the analyzed program which is given

as an argument is loaded by calling the angr.Project class. The option

auto load libs is set to false. This will disable loading system libraries. All

called system functions must be stubbed to have a correct analysis.

2. Generate the CFG (Control Flow Graph). CFG is generated based on the

previously loaded program. We make use of CFGFast class of angr.

3. Prepare program initial state. Before launching the analysis we initialize

analyzed program state by giving the following information:

• Analyzed program parameters (argvs) and environment variables: they

can be concrete values, symbolic values or a mix of both. All this

information is specified in a file describing the environment given as an

argument to Vyper, or set to default values if no file is given.
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• Standard input, files, network sockets: to be initialized as specified

by the user in the file describing the environment given as input to

Vyper, or set to default symbolic values. The angr framework gives the

possibility to use a concrete file system and directly interact with real

files.

• The program entry point: if we analyze a whole program and not only a

part, this argument must not be set, letting angr guessing automatically

the entry point directly from the binary headers.

4. Initialize checkers.

Initializing checkers is done by inserting breakpoints that, when hit, will

trigger the convenient check routine, thus detecting the vulnerability and

collecting necessary reporting information. For example, to detect a tainted

argument we will insert a breakpoint that fires when a call to a vulnera-

ble function (printf, fprintf, etc.) is performed. This breakpoint will call

check tainted arg that will report a format string vulnerability. Checkers are

all deactivated by default and activated only via the corresponding Vyper

argument. This structure allows Vyper to be easily extended by new vul-

nerabilities checks by adding a breakpoint that will launch checks on program

state and report the vulnerability if these checks pass. Since the checks can

be activated or deactivated, the analysis can be faster if we are interested

only in special category of vulnerabilities checked by Vyper.

5. Start concolic execution. In this step, the concolic execution is launched and

continued until all the CFG is covered. This is done via the PathGroup class

of angr framework.

6. Report vulnerabilities. When vulnerabilities are detected they are not di-

rectly reported (only a small notification is emitted in the execution log).

The found vulnerabilities and their related data (location, call stack, input

values, etc.) are stored in memory and reported in the requested format (txt,

xml, html, etc.) at the end of the analysis. The location of the reported vul-

nerability can be a precise location related to the analyzed application source
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when debug information is present in the binary file1. When this is not the

case the reported location is an address in the binary code.

7. Refine mode.

Vyper can be used in check mode to find exploitable vulnerabilities or in

refine mode to refine vulnerability reports obtained by some other tools in

order to eliminate false positives. The corresponding reports are fed as input

along with the program to analyze. This feature can allow an application

auditor to specify vulnerabilities that should not occur at some code location,

e.g. searching for exploitable stack overflows in authentication related code

can be very useful to grant the security of the whole application.

8. Reach vulnerable function

This part is executed when Vyper is running in refine mode. Using the

PathGroup class of angr framework, the analyzed program is explored with-

out any checker activated until the execution reaches the vulnerable function

where the necessary checkers will be activated.

6.3 Synthesis

The implementation and evaluation of the static analysis methods proposed in

chapters 4 and 5 show their effectiveness and their added value to the static anal-

ysis and application security fields. Carto-C was extended to cover new vulner-

abilities and this extension was confirmed by experimental results. Vyper also

was able to correctly locate exploitable vulnerabilities on application binary code

of several custom tests, Juliet test cases and widely used applications and libraries.

The two tools developed along this thesis show the effectiveness of static analysis

framework use. The use of Frama-C [10] and angr [68] frameworks helps to op-

timize the development effort. These frameworks deal with the tasks of loading

1Debug information is present in executable files compiled with the flag -g using GCC
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programs, building internal representation and even doing some basic computa-

tions. Thus, the main development was directed on the proposed static analysis

method and did not deal a lot with low level technical details.

The experimentation and developments done along this research were performed

on a medium size machine with an x86 64 Intel(R) Core(TM)2 processor, 8 GB

RAM and standard Gentoo distribution. Ocaml is needed to compile Carto-C and

Python 2.7 is needed to run Vyper. The angr framework is installed with the pip

installer.



Chapter 7

Conclusion

“Perfection is achieved, not when there is nothing more to add, but when there is

nothing left to take away.”

Antoine de Saint-Exupéry

To improve the security of an information system we were interested in detecting

security vulnerabilities and especially those affecting C language applications. We

showed through experiments that many of dangerous security vulnerabilities are

caused by the misuse of functions of the C libraries. This misuse can correspond to

calling a library function in wrong way, or exposing the call to library functions to

data controlled from external sources. We have shown that detecting such errors

with an automated tool is possible by implementing checks for the proposed secu-

rity properties. On synthetic test cases results were satisfying with with a limited

false negative ratio (maximum 7%) and a small ratio of false positives (between

10% and 51% in the worst case). This contribution helped the development of new

functionalities in the Carto-C [97] vulnerability knowledge base. The experimen-

tation on real application sources showed Carto-C ability to analyze real life code

and highlighted its limitations. These limitations are inherited from Frama-C [10]

or related to features not implemented yet in Carto-C.
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We continued the started work but on binary code and searching for exploitable

vulnerabilities. We have shown the effectiveness of using state-of-art [68] binary-

code analysis framework to detect exploitable vulnerabilities. The method we

propose tries to recognize the common patterns present in application behavior

allowing successful exploits. These patterns are searched using concolic execution

engine provided by the angr framework. The implemented tool Vyper performs

well on synthetic test cases as well as on real life applications.

7.1 Lessons learned

The full list of lessons learned is long to enumerate. We tried to focus on the most

important lessons, which we present below.

• Analyze a language specification

Reading and analyzing the C99 [39] specification in order to locate security

vulnerabilities was a rich experience. This task allowed to develop the critic

sense needed by a security researcher. In fact, the process of discovering in-

consistencies and flaws in requirement specification is widely used by critical

software designers. The functional hazard analysis [113] is an example of a

such process. In this thesis we shown the effectiveness of a such process on a

programming language specification in order to locate security flaws causes.

• x86 64 binary programs details and structure

The development of Vyper tool was very constructive and allowed to dive in

x86 64 assembly code, program memory layout and compiler behaviors and

their effects on the generated binary code. The understanding of vulnerable

code samples permitted to deduce their general patterns from local observa-

tions. While developing Vyper, x86 64 architecture documentation was used

several times to tune the code we develop to this architecture. Documents

on ARM and MIPS architectures were read to see the differences and future

developments are planned.



Conclusion 118

• Unit testing to minimize regression

Unit testing the tools developed was very useful to locate bugs as early as

possible. It permitted to confirm that new development are doing what they

should do and not interfering with past developments. For each developed

tool, Carto-C and Vyper, a test benchmark was developed and extended

regularly. This benchmark served as an oracle to confirm the correctness of

newly developed functionalities and non-regression for old ones.

• Importance to have good framework documentation

The use of Frama-C and angr frameworks permitted to produce working

tools rapidly. The documentation of these frameworks was necessary to

efficiently use them. The documentation explaining the frameworks code

and showing clearly their interfaces (inputs, outputs) was helpful to be able

to reuse these frameworks functions and classes in order to develop the new

static analysis methods described in chapters 4 and 5.

7.2 Open questions and major problems

The domain of static analysis to detect security vulnerabilities has a lot of gaps

to fill and areas to explore such as:

• How to specify precisely what a tool detect, and how this may enhance the

security of an application.

• Methods and techniques to deal with the problem of “False positive”.

• The problem of analysis speed and how it can scale for huge and complex

modern applications.

• How to report the detected vulnerability in an unambiguous way.

• How to be able to analyze a specific language (the front end problems).
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7.3 Future work

A lot of ideas for future work and possible improvements come into mind after a

good understanding of static analysis problematics. At the time of this writing

the most important ideas for future work are:

• Finalization and deployment of developed tools: it is figured out that

we will continue the tunning of the developed tools in order to be deployed in

commercial projects. Tool input channels must be rebuilt to facilitate tool

launching via command line or via a GUI (Graphic User Interface). The

tool output also need some development effort. The returned vulnerability

report format and content must have an easy integration with application

development environment.

• Deliberately inserted vulnerability detection: we will try to apply the

general methodology developed in the chapter 5 to discover other challenging

hard to detect security vulnerabilities. We have special interest in detecting

back-doors or deliberately inserted vulnerabilities. In the cyber security tax-

onomy this is called the Insider threat. This threat is very challenging and it

is gaining a growing share in the threats which corporations must deal with.

Ninety percent of organizations feel vulnerable to insider attacks [114]. To

detect such vulnerability we may use tricks used by insiders [115] to build

general back-door behavioral patterns and search for these patterns among

the computed application behavior traces.

• Static analysis for malware detection: the manipulation of binary code

in the second contribution leads to imagine how static analysis can be used

to recognize malware by statically fingerprinting its behavior and matching

it with known malware behavior signature. So, this technique uses the old

technique of malware signature matching. Not on files content and hashes,

but on the behavioral signature. This technique may easily detect new mal-

ware variants if they keep using of the same behavioral tactics. To go further,

the malware behavior patterns knowledge base can be filled automatically
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by running a behavior extraction engine on large base of known malware

codes such as this repository [116] that contains hundreds of real life mal-

ware samples.

• Detection of security vulnerability on ARM and MIPS architec-

tures: Vyper can be extended to cover different architectures. The main

components of Vyper will remain the same. The implementation details may

be extended to cover the differences between newly added architectures. The

result will be a tool with ability to detect exploitable vulnerabilities on many

architectures. We are interested in ARM architecture which is used by bil-

lions of smart phones and IoT (Internet of Things) connected devices. The

MIPS architecture running on a wide variety of appliances such as: modems,

routers, set-top boxes or even network firewalls is also a prominent architec-

ture to study.
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Résumé en Français

Introduction

Dans un monde de plus en plus numérisé, la sécurité des systèmes informatiques de-

vient primordiale. La sécurité d’un système informatique repose sur trois critères

: la confidentialité, l’intégrité et la disponibilité. La sécurité est une propriété

globale du système qui doit être assurée sur différents niveaux. C’est comme une

châıne qui est autant faible que son maillon le plus faible. Une des stratégies qui

peut être utilisée pour garantir la sécurité d’un système est la défense en pro-

fondeur. Ceci veut dire que chaque composant du système essaie de garantir sa

propre sécurité. Des logiciels qui ne contiennent pas de failles de sécurité sont

nécessaires pour avoir un système sécurisé. Mais malheureusement il n’est pas

simple d’avoir un logiciel sans faille. La taille et la complexité des logiciels mod-

ernes rendent la recherche et la correction de faille de sécurité dans un logiciel une

tâche très fastidieuse. Cette situation nécessite d’avoir des outils et des techniques

permettant la détection et la prévention de vulnérabilités dangereuses le plus tôt

dans le cycle de développement logiciel. L’analyse du code et plus spécialement

l’analyse statique est une des réponses à cette problématique. Dans cette thèse

nous explorons cette technique. Nous proposons de nouvelles méthodes et nous
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développons et évaluons de nouveaux outils d’analyse statique.

L’analyse statique pour la sécurité est le sujet central de cette thèse. Trois

différents sujets ont été abordés :

• La détection de vulnérabilités de sécurité dans les applications

développées en langage C. Dans cette contribution nous utilisons l’inter-

prétation abstraite étendue avec des propriétés vérifiant les vulnérabilités de

sécurité. Cette extension couvrant les vulnérabilités de sécurité présente un

apport comparée aux outils existants tels que Polyspace [8] ou Astrée [12].

Le deuxième apport est que ces propriétés ont été construite à partir de la

spécification du langage C et non pas à partir de motifs de vulnérabilités

déjà connues comme c’est le cas avec Fortify [13] ou Coverity [14]. Cette

méthode a été implémentée dans l’outil Carto-C et évaluée sur des cas de

tests synthétiques (base Juliet [16]) et des applications réelles.

• La détection de vulnérabilité exploitable sur le code binaire. Dans

cette contribution, nous présentons une méthode pour la détection de vulnéra-

bilité exploitable avec le minimum de faux positifs. La solution proposée

utilise l’exécution concolique pour explorer les chemins d’exécution de l’appli-

cation analysée et calculer les états atteignables. Sur ces états est effectuée

une recherche de motifs de vulnérabilités exploitables. Une fois une vulné-

rabilité détectée, les données d’entrée qui permettent de la déclencher sont

retournées pour simplifier sa vérification manuelle. Cette méthode peut être

aussi utilisée pour trier automatiquement les vulnérabilités détectées par un

autre outil d’analyse. Cette méthode a été implémentée et évaluée dans

l’outil Vyper.

• Implémentations et évaluations d’outils d’analyse statique. Dans

cette partie nous présentons tous les développements et expérimentations qui

ont été effectués durant cette thèse. Les détails de conception et d’implé-

mentation de Carto-C et de Vyper sont dévoilés. La validité de ces implé-

mentations est testée en utilisant la base de tests orientée sécurité Juliet.
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L’efficacité des outils développés est évaluée en analysant des logiciels réels

très utilisés par les utilisateurs des technologies d’information.

Organisation de la thèse

Dans le chapitre 1, les domaines de la cyber sécurité sont introduits, en mon-

trant la place de l’analyse statique parmi ces domaines. Dans le chapitre 2

des exemples montrant la complexité du langage C et leurs effets sur la

sécurité des application écrites dans ce langage sont présentés. Le chapitre 3

est consacré aux techniques et outils d’analyses statiques existants. Dans le

chapitre 4, nous détaillons notre contribution sur la détection de vulnérabilité

de sécurité dans les applications développées en C. Dans le chapitre 5, nous

présentons la solution proposée pour la détection de vulnérabilités exploita-

bles au niveau du code binaire. Les outils développés et les expérimentations

menées sont présentés dans le chapitre 6. Une conclusion ainsi que les per-

spectives sont dressées dans le chapitre 7.

Introduction à la cyber sécurité

�La sécurité est un processus, ce n’est pas un produit. �

Bruce Schneier.

Le nombre croissant de systèmes informatiques interconnectés et la forte dépendance

envers ces systèmes font surgir de nouveaux risques sur l’activité économique, poli-

tique, sociale et même sécuritaire. La cyber sécurité est le domaine qui s’occupe de

la protection de ces systèmes. Cette protection est à la fois au niveau physique, au

niveau logiciel et au niveau des données traitées ou stockées. Ceci rend ce domaine

d’une grande importance pour tous les acteurs des technologies d’information.

La cyber sécurité englobe des domaines techniques tels que : les opérations et

l’architecture de sécurité, des domaines réglementaires tels que la gouvernance et
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la conformité au standards et aux normes, et des domaines relevant de l’humain

tels que le développement de carrière et la formation d’utilisateurs. Sous le do-

maine de l’évaluation de risques, il existe des sous-domaines tel que le scan des

vulnérabilités qui s’intéresse à la recherche de vulnérabilités connues en utilisant

des outils spécialisés [19] tels que Nmap, Nessus, Qualys, etc. À l’inverse, le scan

du logiciel a pour but de rechercher les nouvelles vulnérabilités en boite blanche

(avec accès au code source) ou en boite noire (sans accès au source). Le scan du

code source peut intervenir très tôt dans le cycle de développement logiciel garan-

tissant ainsi un logiciel déployé sécurisé. Les techniques et outils qui peuvent être

utilisés pour détecter les vulnérabilités sont décrits en détail dans le chapitre 3.

Une vulnérabilité est une faille dans un système permettant à un attaquant de

compromettre une ou plusieurs propriétés basiques de sécurité (Confidentialité,

Intégrité et Disponibilité). Une vulnérabilité exploitable est l’intersection de trois

éléments : (1) une vulnérabilité de sécurité, (2) un attaquant qui puisse accéder et

(3) la capacité à l’exploiter. Ainsi, l’attaquant doit avoir au moins une technique

ou un outil qui puisse atteindre la faiblesse d’un système.

Les causes et les sources des vulnérabilités sont diverses et variées et affectent

toutes les phases du cycle du développement d’un logiciel. Les plus importantes

sont :

• La négligence des aspects de sécurité pendant la conception d’un logiciel.

• L’utilisation des langages de programmation intrinsèquement dangereux et

source de vulnérabilités tel que le langage C/C++ et l’assembleur.

• Les erreurs d’origines humaines telles que les erreurs de frappes ou la confu-

sion des noms de variables par exemple.

• Tests unitaires et tests d’intégration insuffisants et non orientés vers les as-

pects de sécurité.

• L’insertion de vulnérabilité de manière intentionnelle par un acteur malveil-

lant. Ce type est communément appelé porte dérobée ou back-door.
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Pour éradiquer les vulnérabilités logicielles, plusieurs actions et décisions peuvent

être prises par la communauté du logiciel. Ces actions et décisions peuvent être

d’ordre organisationnel, humain ou technique. Parmi ces actions, nous pouvons

citer :

• L’inclusion des aspects de sécurité dès les premières étapes de conception

d’un logiciel.

• Le choix adéquat d’un langage de programmation sécurisé quand c’est pos-

sible.

• L’utilisation de règles de codage tels que le CERT-C [32] qui rendent l’usage

du langage C moins risqué.

• Tests unitaires et d’intégration rigoureux couvrant les aspects de sécurité

conduits manuellement ou assistés avec des outils.

• L’analyse du code source sans exécution (l’analyse statique) ou avec une

exécution contrôlée (analyse dynamique). C’est cette technique, et plus

spécialement l’analyse statique qui a été utilisée durant cette thèse.

Les sources de vulnérabilités dans le langage C

Les développeurs en langage C peuvent produire un code correct et fonctionnel

en connaissant juste une partie de la spécification de ce langage. Les détails de

la sémantique de ce langage permettent de découvrir sa complexité et comment

commettre facilement une erreur qui aura de grands effets sur la sécurité.

Le langage C est un langage de programmation impérative à usage général. Ce lan-

gage a été standardisé en 1989 par ANSI (American National Standards Institute)

devenu le ANSI C. Il a été aussi normalisé par ISO (International Organization

for Standardization) appelé ISO C ou le C99. Le langage C a plusieurs extensions

appelées par les développeurs flavors ou dialectes à savoir : ANSI C, Posix C,

Gnu C et Windows C. Pour montrer la complexité de la sémantique du langage



Appendix A. Résumé en Français 126

C, nous nous sommes intéressés à trois catégories de fonctions fournies par sa

bibliothèque standard. Ces catégories sont : les fonctions d’E/S formatées, les

fonctions d’exécution de commandes et les fonctions de manipulation de mémoire.

Les fonctions d’E/S formatées sont un type spécial de fonctions permettant d’afficher

ou de lire des données dans un format lisible par les humains. Les informations

utilisées sont extraites du standard ANSI ISO/IEC 9899:TC2 (nommé aussi C99)

[39]. L’argument du format a une syntaxe et sémantique très précise.

Certaines mauvaises utilisations de fonctions de format conduisent à un comporte-

ment indéfini [45] de l’application. Les problèmes de sécurité sont liés à un ar-

gument de format avec un contenu contrôlé de l’extérieur de l’application par un

potentiel attaquant. La même procédure d’analyse aussi conduite sur Posix, Gnu

et Windows du langage C révèle des différences et des sources de vulnérabilités à

prendre en considération.

Nous avons effectué une étude sur les fonctions du langage C permettant l’exécution

de commandes systèmes. Cette fonctionnalité existe dans la majorité des langages

de programmation. Cette fonction consiste à exécuter une commande via l’invite

de commande par défaut du système. Les fonctions de lancement de programmes

sont aussi considérées dans cette catégorie. Différentes fonctions d’exécution de

commandes sont implémentées dans les différents dialectes du C. ANSI C (C99)

[39], POSIX C [41], GNU C [42]. À partir de la spécification de ces fonctions, les

problèmes suivants peuvent se poser :

• Le comportement de la fonction system est défini par l’implémentation et

peut être source d’instabilité pour le code appelant cette dernière.

• Un appel à la fonction system est intrinsèquement dangereux.

• Un appel à une fonction d’exécution de commande avec un argument provenant

des données d’entrées peut conduire à une exécution arbitraire de commande

sur la machine cible.

• Même quand la commande n’est pas contrôlée par l’attaquant, il peut tou-

jours interférer avec l’application attaquée en modifiant son environnement.
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Nous nous sommes également intéressés aux fonction de manipulation de mémoire.

Les fonctions qui prennent comme argument un pointeur vers des zones mémoires

du type (char *, void *, int *, etc.) sont concernées. Par exemple : malloc, cal-

loc, memcpy, strcpy, memmove sont des fonctions de manipulation de mémoire.

Le langage C et ces différents dialectes : C99 [39], Posix [41], Linux [43] con-

tiennent des dizaines de fonctions de manipulation de mémoire. Les problèmes

de sûreté sont directement extraits de la description des fonctions étudiées. Ce

sont les situations qui conduisent à des comportements indéfinis, non-spécifiés ou

définis par l’implémentation. Les problèmes de sécurité ne sont pas directement

décrits dans les spécifications et doivent être déduits en utilisant une analyse cri-

tique sur comment en tirer profit d’un point de vue attaquant des erreurs possible

d’utilisation des ces fonctions. Plus de détails sur la qualification et la détection

de ces vulnérabilités seront donnés dans le chapitre 4.

Synthèse

L’analyse du langage C et de ces différents dialectes fait apparâıtre plusieurs

sources de vulnérabilités de sécurité. Se rappeler de toutes les règles de bonne

utilisation et les mettre en pratique est une tâche difficile. La vérification automa-

tique de ces règles peut largement améliorer la sécurité d’une application écrite en

C. L’une des techniques d’analyse automatique de code est l’analyse statique qui

est introduite dans le chapitre 3. Sont présentées dans les chapitres 4, 5 et 6 la

conception, l’implémentation et l’évaluation d’outils d’analyse statique.

Les outils d’analyse statique

La problématique de détection de vulnérabilité logicielle peut être abordée en

utilisant plusieurs stratégies, techniques et outils. L’une des techniques utilisées

est l’analyse du code et plus précisément l’analyse statique.
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L’analyse statique est une technique qui consiste à analyser un code sans l’exécuter.

Elle peut être utilisée pour trouver des erreurs de programmation tels que les

dépassement de tampons, l’utilisation de données non initialisées, le débordement

d’entier, etc. Suivant la méthode et les algorithmes utilisés elle peut permettre de

détecter des vulnérabilités qui ne sont pas simples à trouver avec la revue manuelle

de code.

L’outil d’analyse statique est un outil prenant en entrée un code source et retour-

nant en sortie un rapport d’analyse. Généralement un outil d’analyse statique est

composé de trois parties : le front-end, le middle-end et le back-end. Le front-end

permet de lire les codes source donnés en entrée et produit une représentation

interne qui est passée au middle-end, là où tous les calculs sont effectués. Le

back-end reprend les calculs effectués par le middle-end et génère un rapport de

résultats à retourner à l’utilisateur. Cette structure est très similaire à la structure

d’un compilateur, car un compilateur est un cas spécial d’outil d’analyse statique.

Différentes techniques et algorithmes sont utilisés par les outils d’analyse statique.

Les premiers outils d’analyse statique utilisent une simple recherche de motifs

syntaxiques afin de retrouver des motifs connus sources de vulnérabilités. Par

exemple l’outil Flawfinder [69] qui est un outil näıf cherchant certaines châınes de

caractères dans le code à analyser sans se soucier de sa structure ou sa sémantique.

Malgré sa simplicité, il est capable de trouver certaines vulnérabilités mais avec

un très grand taux de fausses alertes appelées faux positifs.

Des outils améliorés tels que Lint [70] ou CppChek [71] génèrent une représentation

abstraite du code analysé. Sur cette représentation, différents algorithmes et

heuristiques d’analyse du flot de contrôle et de flot de données permettent de

détecter des vulnérabilités avec un taux de faux positifs inférieur à la méthode

précédente. Cette méthode a aussi ses limites et ne peut pas détecter des vulnérabilités

non-triviales dans un code complexe.

Une des techniques modernes d’analyse est l’interprétation abstraite qui crée une

nouvelle sémantique du code analysé. Cette nouvelle sémantique associe à chaque

variable du programme son intervalle de valeurs possibles. Cette technique sert
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pour prouver l’absence de certaines catégories d’erreurs. Elle est intéressante pour

les problématiques de sûreté de programmes effectuant une tâche critique.

L’exécution symbolique qui consiste à transformer le programme en une formule

logique en fonction des variables d’entrée est une autre technique moderne. La

résolution de cette formule permet de statuer sur les prédicats de sécurité recherchés.

L’outil CBMC [75] utilise cette technique sur des programmes en langage C.

Une autre technique est l’exécution concolique (concrète + symbolique) qui ef-

fectue une exécution symbolique en même temps avec une exécution concrète

quand cela est possible [15].

Des outils d’analyse statique utilisés par l’industrie du logiciel tels que Fortify [13]

ou Coverity [14] utilisent plusieurs techniques parmi celles citées précédemment

combinées avec des algorithmes heuristiques pour atteindre les meilleures perfor-

mances sur les codes analysés.

Le choix d’outil d’analyse statique peut s’avérer parfois compliqué. Pour cela

le CAS (Center for Assured Software) de la NSA (National Security Agency) a

développé une base de tests Juliet [16] spécialement conçue pour évaluer les ca-

pacités d’outils d’analyse statique. Plusieurs recherches ont été aussi effectuées

pour évaluer et comparer des outils d’analyse statique [83] ou présentant des

méthodologies d’évaluation [81].

Contribution 1. La détection de vulnérabilités de

sécurité dans les applications développées en C

La sécurité des systèmes informatiques revêt une importance considérable dans

un monde toujours plus dépendant du numérique. Les données des citoyens, en-

treprises, et même des gouvernements sont sous la menace croissante d’attaques

de plus en plus sophistiquées. L’éradication des vulnérabilités dans le code source
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est une brique de base de la sécurité des systèmes informatiques. La première

étape de cette élimination est la détection de ces vulnérabilités, avant qu’elles ne

puissent être découvertes par un adversaire malveillant. Cette détection est toute-

fois une tâche ardue, plus particulièrement dans des programmes de grande taille.

Elle peut être automatisée avec l’aide de l’analyse statique du code source.

L’analyse statique et la détection de vulnérabilité de sécurité

De nombreuses solutions ont été proposées pour détecter ou empêcher des erreurs

de programmation qui entrâınent les vulnérabilités. Tout d’abord, le choix du

langage de développement a un très grand impact sur la sécurité de l’application

implémentée. Ceci a été montré dans les études de sécurité des langages telles

que: JavaSec [87] pour Java [88] et LaFoSec [89] pour les langages fonctionnels

(OCaml) [90]. Un langage flexible permettant des opérations de bas niveau comme

le langage C reste largement utilisé malgré les problèmes de sécurité bien connus

intrinsèques à ce langage. Pendant le développement d’une application, des règles

de codage comme le CERT C coding rules [32] peuvent être utilisées pour aider

le développeur à éviter certaines failles de sécurité. Sur le code source, l’analyse

statique peut être utilisée pour détecter les vulnérabilités. Cette analyse peut être

basée sur l’interprétation abstraite [73] qui permet de prouver l’absence d’erreurs

d’exécution (runtime errors) [74] qui sont les prémisses de nombreuses failles

de sécurité (Polyspace [8, 9], Frama-C [10, 11] ou Astrée [12]) ou sur d’autres

techniques qui permettent de détecter des faiblesses (Fortify [13] ou Coverity

[14]). Nous nous sommes intéressés aux vulnérabilités du code C provenant de

l’utilisation des fonctions de la bibliothèque C. Nous avons défini des propriétés

permettant la détection d’appels incorrects ou potentiellement dangereux à de

telles fonctions. Ces propriétés se basent sur une analyse de la spécification de

ces fonctions. L’outil Carto-C de détection des vulnérabilités qui intègre ces pro-

priétés a été testé sur une base de tests de référence pour évaluer l’efficacité de

notre approche.
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Propriétés de détection des vulnérabilités

Cette contribution est focalisée sur trois vulnérabilités : les problèmes de châıne de

format, exécution de commande, et problèmes de manipulation de tampons. Pour

chaque vulnérabilité, une description générale ainsi que la liste des propriétés qui

caractérisent les utilisations des fonctions causant la vulnérabilité sont données.

Quand cette propriété est vraie, le code analysé contient une vulnérabilité. Chaque

propriété à vérifier est nommée, décrite succinctement, associée à un scénario

d’attaque applicable quand la propriété est vraie et à un exemple de code C illus-

trant la présence de la vulnérabilité.

Une donnée est dite contrôlée par une entité extérieure si elle est initialisée via

les vecteurs d’entrée de l’application. De même, une variable est dite “tainted”

si sa valeur est potentiellement calculée à partir de données contrôlées par une

entité extérieure.

Discussion et conclusion

Dans cette étude, nous avons montré que certaines vulnérabilités sont causées par

la mauvaise utilisation des fonctions de la bibliothèque C. Cette mauvaise utilisa-

tion consiste à les appeler incorrectement, ou les exposer à des données contrôlées

via l’extérieur de l’application. Nous avons démontré que la détection, sur une

base de tests synthétiques, de telles vulnérabilités est possible avec un outil au-

tomatisé avec très peu de faux négatifs (maximum 7%) et peu de faux positifs

(entre 10% et 51% dans le pire cas). Nous avons aussi identifié l’absence de cas

de tests pour certaines de nos propriétés dans la base de tests de référence et nous

avons développé des cas de tests nécessaires. Nous avons aussi fait l’inventaire des

fonctions et fichiers d’entêtes manquants pour pouvoir analyser les cas de tests de

la base de référence qui ne sont pas encore analysés et aussi pour pouvoir analyser

des applications réelles. Les résultats obtenus sont prometteurs et vont nous aider

à rajouter de nouvelles fonctionnalités dans l’outil Carto-C, des fichiers de la bib-

liothèque C et de nouveaux cas de tests. Parmi les futurs travaux, nous souhaitons
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définir de nouvelles propriétés pour détecter de nouvelles vulnérabilités mais aussi

donner à l’utilisateur une meilleure explication de la vulnérabilité trouvée (la trace

d’exécution par exemple). Un autre axe de recherche est d’étudier les vulnérabilités

causées par des séquences d’appels de fonctions comme la fameuse séquence mal-

loc/free qui est la cause de plusieurs vulnérabilités tel que : use-afte-free [117] ou

double-free [118].

Contribution 2. La détection de vulnérabilités ex-

ploitables au niveau du code binaire

Dans cette contribution nous présentons notre méthode pour la détection de

vulnérabilités exploitables avec un taux très faible de faux positif. Cette solution

utilise l’exécution concolique pour rechercher le motif des comportements de codes

vulnérables. Nous avons étudié trois catégories de vulnérabilités : celles liées à des

données “tainted”, le débordement de pile et le débordement du tas. La méthode

proposée a été implémentée en utilisant le framework angr [68]. L’outil développé

a été testé sur les cas de tests de la base Juliet et sur les binaires d’application

réelles permettant une détection de vulnérabilités exploitables avec un taux de

faux positifs assez bas.

L’exécution concolique et l’analyse du code binaire

L’exécution concolique décrite précédemment dans le chapitre 3 a été introduite

par Godefroid et al. [15] pour assister le test aléatoire à atteindre une couverture

maximale. Elle a été aussi utilisée par les développeurs de KLEE [76] qui est un

outil pour la génération automatique de cas de tests. L’outil AEG (Automatic

Exploit Generation) de Avgerinos et al. [77] utilisent aussi l’exécution concol-

ique pour la génération automatique d’attaques contre des vulnérabilités trouvées
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dans les codes sources. Shoshitaishvili et al. [78] dans leur recensement des tech-

niques d’analyse du code binaire présentent un panorama des techniques sur la

détection de vulnérabilités exploitables [78] et la majorité de ces techniques sont

implémentées dans le framework open-source angr [68].

Vulnérabilités exploitables

Dans le cadre de cette contribution nous avons considéré comme une vulnérabilité

exploitable, toute vulnérabilité qui permet à un attaquant d’exécuter du code

arbitraire. Une exécution de code arbitraire signifie qu’un attaquant peut via

les vecteurs d’entrée d’une application (arguments de lignes de commandes, vari-

able d’environnement, système de fichiers ou communications réseaux) prendre le

contrôle du flot d’exécution et le réorienter vers du code machine qu’il a lui même

fourni via ces vecteurs d’entrées. La capacité d’un attaquant à avoir le contenu

de la mémoire à une adresse arbitraire via les vecteurs de sortie va lui permettre

d’outrepasser des mécanismes de protection d’application tels que ASLR (Ad-

dress Space Layout Randomization) [103] ou DEP (Data Execution Protection)

[104]. Les attaques causant uniquement le crash de l’application attaquée ou celles

qui interfèrent avec la logique de haut niveau implémentée dans l’application ne

sont pas considérées dans le cadre de cette contribution. Nous nous sommes fo-

calisés sur les vulnérabilités les plus exploitées et largement documentées par les

différentes communautés de pirates à chapeaux blancs ou gris comme Metasploit

[105], Exploit-DB [106], ou la distribution Pentesting de Linux Kali [107]. Les

vulnérabilité suivantes sont considérées :

1. Les vulnérabilités liées à des données “tainted”.

Les vulnérabilités de format et d’exécution de commandes sont causées par

les appels de fonction avec des arguments “tainted”. Ces vulnérabilités seront

exploitables si l’argument en question n’a pas été “sanitisé” ou a été “mal-

sanitisé”. Pour détecter ces vulnérabilités, il suffit de surveiller le contenu

de l’argument sensible et reporter une vulnérabilité si sa valeur au moment

d’un appel est “tainted”.
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2. Débordement de pile.

Le débordement de pile apparâıt quand un accès hors borne sur un tableau

alloué sur la pile est effectué. Un accès hors borne est exploitable quand il

permet de modifier l’adresse de retour stockée sur la pile avec une valeur

“tainted” fournie via les entrées. Pour détecter ces vulnérabilités, on peut

annoter l’emplacement de l’adresse de retour et reporter une vulnérabilité si

cet emplacement est écrit avec une valeur “tainted”.

3. Débordement de tas.

Quand une application alloue de la mémoire dynamique. Le système d’allocation

garde à coté du tampon alloué des métadonnées qui permettent une ges-

tion optimisée de l’espace mémoire. Quand un débordement sur ce type de

mémoire corrompt ces métadonnées, un attaquant peut prendre le contrôle

du système d’allocation de mémoire et l’utiliser pour exécuter un code arbi-

traire. Pour détecter ce type de vulnérabilité on peut annoter ces métadonnées

et rapporter une vulnérabilité quand ces données sont écrasées par des données

“tainted”.

À partir des exemples précédents, est dressé un motif général de vulnérabilité

exploitable. Ce motif est le fait que certaines zones mémoires sensibles sont rem-

placées par des données “tainted”. Ces zones mémoires ne sont pas fixées au départ

de l’application mais leur apparition dépendent du comportement de l’application.

La détection de ce motif peut s’effectuer en trois étapes :

• Le calcul des traces d’exécution du programme analysé via l’exécution con-

colique.

• L’annotation de zones mémoires sensibles pour chaque trace d’exécution.

• La vérification pour que chaque opération exécutée de l’application, les

données sensibles annotées ne sont pas corrompues via des données ’tainted’.

À chaque fois que cette propriété est fausse, une vulnérabilité est rapportée.
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Le type de cette vulnérabilité dépend du type de la mémoire sensible cor-

rompue (arguments de fonctions dangereuses, adresse de retour, métadonnées

du tas).

Implémentation et expérimentation

Notre méthode a été implémentée dans notre outil Vyper (VulnerabilitY detection

based on dynamic behavioral PattErn Recognition). Vyper est un outil qui permet

d’analyser le code binaire afin de détecter certaines catégories de vulnérabilités

exploitables. Il est implémenté en utilisant le framework angr [68]. Les détails de

la conception, l’implémentation et l’expérimentation de Vyper sont donnés dans

le chapitre 6.

Conclusion et discussion

Cette contribution a montré l’efficacité de l’utilisation des techniques d’analyse du

code binaire pour détecter des vulnérabilités exploitables. La méthode proposée

cherche les motifs de vulnérabilités exploitables dans le comportement du pro-

gramme analysé. Cette méthode a été implémentée en utilisant le framework angr

et testée avec succès sur les cas de test de la base Juliet [16] et des applications

réelles.

L’une des limitations de la méthode développée est sa lenteur comparée aux autres

méthodes d’analyse. Aussi dans l’état actuel de l’implémentation, Vyper ne peut

pas analyser efficacement des codes binaires de grande taille (plus de 5 Mo) ou des

codes complexes.
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Contribution 3. Implémentation et expérimentation

d’outils

Implémentation et expérimentation de Carto-C

Carto-C est un outil développé par Saferiver [119] basé sur Frama-C [10]. Il est

destiné à détecter différentes vulnérabilités de sécurité ou de sûreté. Carto-C per-

met d’identifier les appels de fonctions de la bibliothèque pouvant être à l’origine

d’une des vulnérabilités étudiées. Cette identification est basée sur les propriétés

proposées dans le chapitre 4.

Tester l’efficacité et la précision d’un outil d’analyse statique est toujours une

tâche ardue, comme l’indique le rapport du projet SAMATE SATE IV [98]. Notre

implémentation a été testée à la fois sur des cas de tests synthétiques de référence,

et sur des exemples réels.

Cas de tests synthétiques. Notre outil a été testé sur la base de cas de tests

Juliet [16], initialement créée pour le projet CAS [99] de la NSA et utilisée depuis

par le projet SAMATE SATE [100] du NIST. Cette base de tests contient plus de

40000 exemples de code C, couvrant plus de 100 CWEs. De plus, chaque exemple

de code apparâıt en deux versions : l’une faisant apparâıtre la vulnérabilité (flaw,

erronée), l’autre dans laquelle la vulnérabilité n’apparâıt pas (fix, réparée).

Les tests utilisés pour Carto-C sont un sous-ensemble de la base Juliet couvrant

les CWEs traitées dans notre thèse.

Cas de test réels. Des tests sur des applications open-source ont été effectués,

telles que : tar 1.13.19, libpng 1.2.40 et drivers/net/wireless/broadcom/brcm80211.

Les difficultés rencontrées dans le test d’applications open-source ont été de deux

natures. Tout d’abord, ces programmes utilisent beaucoup les bibliothèques GNU C
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et POSIX C, qui ne sont pas encore supportées par Carto-C. Par ailleurs, Frama-C

ne fonctionne pas toujours sur les programmes de grande taille et n’implémente

pas certaines structures de programmation souvent utilisées dans le code source,

telle que la récursivité. Nos développements futurs portent donc sur l’extension

de Carto-C à ces bibliothèques ainsi que sur les problèmes de passage à l’échelle.

Implémentation et expérimentation de Vyper

Nous avons développé l’outil Vyper en utilisant le framework angr. Nous nous

sommes servis de la fonctionnalité d’exécution concolique offerte par ce framework.

Ceci a permis de se focaliser sur la partie analyse et ne pas se préoccuper de tous

les détails d’un moteur d’exécution concolique.

angr est un framework disponible en open-source pour l’analyse du code binaire. Il

implémente la majorité des techniques d’analyse connues par ailleurs. Ceci permet

de réutiliser ces techniques sans avoir à les re-développer à nouveau. Parmi les

techniques proposées : un loader de code binaire pour différentes architecture, le

calcul du graphe du flot de contrôle (CFG) , le calcul du graphe du flot de données

(DFG), l’analyse de l’ensemble de valeur (VSA), l’exécution concolique en utilisant

les explorateurs de chemins et aussi les “break-points” conditionnels.

L’outil est développé en Python. Le code est structuré en différentes fonctions. Par

exemple, pour chaque classe de vulnérabilités nous avons au moins une fonction

qui fait l’annotation et une qui fait la détection. Ces fonctions sont activées en

utilisant des break-points conditionnels déclenchés pendant l’exécution concolique

qui est lancée et contrôlée à partir de la fonction principale. C’est cette fonction

aussi qui parse les arguments d’entrée, prépare l’état initiale et collecte les résultats

d’analyse.

Les spécifications de Vyper sont :
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• Entrée : le code binaire du programme, la fonction de début d’analyse, le

mode d’analyse (optionel, par defaut : détection), classe de vulnérabilité

recherchée (optionel, par défaut : tout).

• Sortie : rapport de vulnérabilités trouvées.

• Exigences :

– Charger le code binaire et initialiser l’état de départ d’analyse.

– Activer les vérifications et annotations nécessaires suivant les classes de

vulnérabilités demandées.

– Lancer, suivre et contrôler l’exécution concolique.

– Si une opération d’annotation est déclenchée, appeler la routine corre-

spondante et stocker les informations annotées.

– Si une opération de vérification est déclenchée, appeler la routine cor-

respondante et récupérer les informations liée à la vulnérabilité s’il y en

une.

– Quand l’exécution concolique se termine ou dépasse le temps maximal

d’exécution, collecter et rapporter les vulnérabilités dans le format de-

mandé.

Pour évaluer Vyper nous avons utilisé trois types de tests :

• Tests spécifiques pour les vulnérabilités recherchées.

• Test en utilisant la base Juliet [16].

• Tests avec des applications réelles.

Tests spécifiques Durant le développement de Vyper nous avons développées

quelques cas de tests contenant des vulnérabilités exploitables. Ces tests ont

permis de raffiner notre développement et de garantir la non-régression entre les

différentes version de Vyper.
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Tests sur Juliet Juliet [16] est une collection de codes écrits en C/C++ pour

tester les capacités d’outils d’analyse statique. Elle contient des tests pour 118

CWEs. Chaque test contient le code vulnérable “flaw” et le même code corrigé

(sans vulnérabilité) “fix” activable via des macros. Aussi les cas de tests sont

parfois repris en complexifiant les flots de contrôle et/ou les flots de données pour

évaluer la capacité des outils à analyser la sémantique du code analysé.

Pour nos tests, nous avons écrit des scripts spéciaux pour lancer en automatique

les tests dans les deux modes “flaw” et “fix”, normaliser les résultats d’analyse et

synthétisé les résultats sous une forme statistique. Cette procédure de test a été

relancée avec d’autres outils d’analyse statique et a permis d’observer la différence

concernant ces outils d’analyse et Vyper.

Test sur les applications réelles Pour évaluer l’outil Vyper et connâıtre ses

limitations, nous l’avons testé sur le binaire d’applications réelles :

• Udhcp server : udhcp-0.9.8 est un mini-utilitaire qui s’exécute sur une

variété d’appareils (routeurs, modems, décodeur TV, cameras IP, etc). Nous

avons inséré un appel vulnérable à la fonction printf à l’endroit udhcp-

0.9.8/dhcpd.c:102. Vyper a pu localiser la vulnérabilité avec précision en

trois minutes d’analyse. Cette expérimentation confirme l’efficacité de Vyper

à tester des logiciels destinés à tourner sur des appareils embarqués.

• Bibliothèques logicielles largement utilisées : Vyper a été testé sur: OpenSSL-

1.1.0f (libssl.so), libpng-1.5.20 et tiff-3.8.1. Le test consiste à lancer l’outil

sur le binaire de la bibliothèque analysée pour chaque fonction exportée et

en fixant le temps d’exécution à chaque lancement à 5 minutes.

Cette expérimentation confirme également l’efficacité de Vyper.
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Conclusion

Dans la première contribution de cette thèse, nous avons confirmé que certaines

vulnérabilités sont causées par la mauvaise utilisation des fonctions de la bib-

liothèque C. Cette mauvaise utilisation consiste à les utiliser incorrectement par

rapport à leurs spécifications, ou les exposer à des données contrôlées via l’extérieur

de l’application. Nous avons démontré que la détection sur une base de tests

synthétiques de telles vulnérabilités est possible avec un outil automatisé avec peu

de faux négatifs (maximum 7%) et peu de faux positifs (entre 10% et 51% dans le

pire cas). Cette contribution a permis d’étendre l’outil Carto-C pour couvrir plus

de vulnérabilités de sécurité. Elle a aussi servi pour connâıtre les limitations de

l’outil développé tels que les problèmes de scalabilité et les problèmes de front-end.

La contribution décrite dans le chapitre 5 montre l’efficacité de l’utilisation de tech-

niques d’analyse du code binaire afin de repérer les vulnérabilités exploitables. La

solution proposée était de construire les traces du programme analysé et rechercher

les motifs de vulnérabilités exploitables. Cette méthode a été implémentée dans

l’outil Vyper qui a réalisé de bonnes performances sur les cas de tests synthétiques

et codes binaires d’applications réelles.
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Demo of Carto-C and Vyper on

Juliet test base

• Vyper launch command.

1 #!/bin/sh

2 "juliet/launch-vyper.py" "-tool" "vyper.py" "-out" "juliet/

cwe134_4/tests/OnPurpose/Juliet/Juliet_baseline/testcases/

CWE134_Uncontrolled_Format_String/s01/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/BAD/std_results" "-main" "main" "-src" "juliet/cwe134_4/

tests/OnPurpose/Juliet/Juliet_baseline/testcases/

CWE134_Uncontrolled_Format_String/s01/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src" "-I" "juliet/cwe134_4/tests/OnPurpose/Juliet/

Juliet_baseline/testcases/CWE134_Uncontrolled_Format_String/

s01/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src" "-I" "juliet/src/OnPurpose/Juliet/testcasesupport" "-D"

"INCLUDEMAIN" "-D" "OMITGOOD" "-compil" "gcc" "-OS" "Linux"

"-proc" "x86"

• Carto-C launch command.

1 #!/bin/sh

141
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2 "Carto-C/toolsScripts/launch-carto-c.py" "-tool" "/home/boudjema

/install/Carto-C/bin/Carto-C" "-out" "test/res_Carto_C2/tests

/OnPurpose/Juliet/Juliet_baseline/testcases/

CWE134_Uncontrolled_Format_String/s01/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/BAD/std_results" "-main" "main" "-src" "test/res_Carto_C2/

tests/OnPurpose/Juliet/Juliet_baseline/testcases/

CWE134_Uncontrolled_Format_String/s01/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src" "-I" "test/res_Carto_C2/tests/OnPurpose/Juliet/

Juliet_baseline/testcases/CWE134_Uncontrolled_Format_String/

s01/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src" "-I" "extract_juliet/src/OnPurpose/Juliet/

testcasesupport" "-defaultlibc" "/home/boudjema/labossec" "-

defaultpreprocessor" "gcc" "-D" "INCLUDEMAIN" "-D" "OMITGOOD"

"-compil" "gcc" "-OS" "Linux" "-proc" "x86"

• Juliet test source code: Juliet/testcases/CWE134 Uncontrolled Format String/s01

/CWE134 Uncontrolled Format String char connect socket fprintf 01.c.

1 /* TEMPLATE GENERATED TESTCASE FILE

2 Filename:

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c

3 Label Definition File: CWE134_Uncontrolled_Format_String.label.

xml

4 Template File: sources-sinks-01.tmpl.c

5 */

6 /*

7 * @description

8 * CWE: 134 Uncontrolled Format String

9 * BadSource: connect_socket Read data using a connect socket (

client side)

10 * GoodSource: Copy a fixed string into data

11 * Sinks: fprintf

12 * GoodSink: fprintf with "%s" as the second argument and

data as the third
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13 * BadSink : fprintf with data as the second argument

14 * Flow Variant: 01 Baseline

15 *

16 * */

17

18 #include "std_testcase.h"

19

20 #ifndef _WIN32

21 #include <wchar.h>

22 #endif

23

24 #ifdef _WIN32

25 #include <winsock2.h>

26 #include <windows.h>

27 #include <direct.h>

28 #pragma comment(lib, "ws2_32") /* include ws2_32.lib when

linking */

29 #define CLOSE_SOCKET closesocket

30 #else /* NOT _WIN32 */

31 #include <sys/types.h>

32 #include <sys/socket.h>

33 #include <netinet/in.h>

34 #include <arpa/inet.h>

35 #include <unistd.h>

36 #define INVALID_SOCKET -1

37 #define SOCKET_ERROR -1

38 #define CLOSE_SOCKET close

39 #define SOCKET int

40 #endif

41

42 #define TCP_PORT 27015

43 #define IP_ADDRESS "127.0.0.1"

44

45 #ifndef OMITBAD

46

47 void

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

()
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48 {

49 char * data;

50 char dataBuffer[100] = "";

51 data = dataBuffer;

52 {

53 #ifdef _WIN32

54 WSADATA wsaData;

55 int wsaDataInit = 0;

56 #endif

57 int recvResult;

58 struct sockaddr_in service;

59 char *replace;

60 SOCKET connectSocket = INVALID_SOCKET;

61 size_t dataLen = strlen(data);

62 do

63 {

64 #ifdef _WIN32

65 if (WSAStartup(MAKEWORD(2,2), &wsaData) != NO_ERROR)

66 {

67 break;

68 }

69 wsaDataInit = 1;

70 #endif

71 /* POTENTIAL FLAW: Read data using a connect socket

*/

72 connectSocket = socket(AF_INET, SOCK_STREAM,

IPPROTO_TCP);

73 if (connectSocket == INVALID_SOCKET)

74 {

75 break;

76 }

77 memset(&service, 0, sizeof(service));

78 service.sin_family = AF_INET;

79 service.sin_addr.s_addr = inet_addr(IP_ADDRESS);

80 service.sin_port = htons(TCP_PORT);

81 if (connect(connectSocket, (struct sockaddr*)&

service, sizeof(service)) == SOCKET_ERROR)

82 {
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83 break;

84 }

85 /* Abort on error or the connection was closed, make

sure to recv one

86 * less char than is in the recv_buf in order to

append a terminator */

87 /* Abort on error or the connection was closed */

88 recvResult = recv(connectSocket, (char *)(data +

dataLen), sizeof(char) * (100 - dataLen - 1), 0);

89 if (recvResult == SOCKET_ERROR || recvResult == 0)

90 {

91 break;

92 }

93 /* Append null terminator */

94 data[dataLen + recvResult / sizeof(char)] = ’\0’;

95 /* Eliminate CRLF */

96 replace = strchr(data, ’\r’);

97 if (replace)

98 {

99 *replace = ’\0’;

100 }

101 replace = strchr(data, ’\n’);

102 if (replace)

103 {

104 *replace = ’\0’;

105 }

106 }

107 while (0);

108 if (connectSocket != INVALID_SOCKET)

109 {

110 CLOSE_SOCKET(connectSocket);

111 }

112 #ifdef _WIN32

113 if (wsaDataInit)

114 {

115 WSACleanup();

116 }

117 #endif
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118 }

119 /* POTENTIAL FLAW: Do not specify the format allowing a

possible format string vulnerability */

120 fprintf(stdout, data);

121 }

122

123 #endif /* OMITBAD */

124

125 #ifndef OMITGOOD

126

127 /* goodG2B uses the GoodSource with the BadSink */

128 static void goodG2B()

129 {

130 char * data;

131 char dataBuffer[100] = "";

132 data = dataBuffer;

133 /* FIX: Use a fixed string that does not contain a format

specifier */

134 strcpy(data, "fixedstringtest");

135 /* POTENTIAL FLAW: Do not specify the format allowing a

possible format string vulnerability */

136 fprintf(stdout, data);

137 }

138

139 /* goodB2G uses the BadSource with the GoodSink */

140 static void goodB2G()

141 {

142 char * data;

143 char dataBuffer[100] = "";

144 data = dataBuffer;

145 {

146 #ifdef _WIN32

147 WSADATA wsaData;

148 int wsaDataInit = 0;

149 #endif

150 int recvResult;

151 struct sockaddr_in service;

152 char *replace;
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153 SOCKET connectSocket = INVALID_SOCKET;

154 size_t dataLen = strlen(data);

155 do

156 {

157 #ifdef _WIN32

158 if (WSAStartup(MAKEWORD(2,2), &wsaData) != NO_ERROR)

159 {

160 break;

161 }

162 wsaDataInit = 1;

163 #endif

164 /* POTENTIAL FLAW: Read data using a connect socket

*/

165 connectSocket = socket(AF_INET, SOCK_STREAM,

IPPROTO_TCP);

166 if (connectSocket == INVALID_SOCKET)

167 {

168 break;

169 }

170 memset(&service, 0, sizeof(service));

171 service.sin_family = AF_INET;

172 service.sin_addr.s_addr = inet_addr(IP_ADDRESS);

173 service.sin_port = htons(TCP_PORT);

174 if (connect(connectSocket, (struct sockaddr*)&

service, sizeof(service)) == SOCKET_ERROR)

175 {

176 break;

177 }

178 /* Abort on error or the connection was closed, make

sure to recv one

179 * less char than is in the recv_buf in order to

append a terminator */

180 /* Abort on error or the connection was closed */

181 recvResult = recv(connectSocket, (char *)(data +

dataLen), sizeof(char) * (100 - dataLen - 1), 0);

182 if (recvResult == SOCKET_ERROR || recvResult == 0)

183 {

184 break;
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185 }

186 /* Append null terminator */

187 data[dataLen + recvResult / sizeof(char)] = ’\0’;

188 /* Eliminate CRLF */

189 replace = strchr(data, ’\r’);

190 if (replace)

191 {

192 *replace = ’\0’;

193 }

194 replace = strchr(data, ’\n’);

195 if (replace)

196 {

197 *replace = ’\0’;

198 }

199 }

200 while (0);

201 if (connectSocket != INVALID_SOCKET)

202 {

203 CLOSE_SOCKET(connectSocket);

204 }

205 #ifdef _WIN32

206 if (wsaDataInit)

207 {

208 WSACleanup();

209 }

210 #endif

211 }

212 /* FIX: Specify the format disallowing a format string

vulnerability */

213 fprintf(stdout, "%s\n", data);

214 }

215

216 void

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_good

()

217 {

218 goodG2B();

219 goodB2G();
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220 }

221

222 #endif /* OMITGOOD */

223

224 /* Below is the main(). It is only used when building this

testcase on

225 its own for testing or for building a binary to use in

testing binary

226 analysis tools. It is not used when compiling all the

testcases as one

227 application, which is how source code analysis tools are

tested. */

228

229 #ifdef INCLUDEMAIN

230

231 int main(int argc, char * argv[])

232 {

233 /* seed randomness */

234 srand( (unsigned)time(NULL) );

235 #ifndef OMITGOOD

236 printLine("Calling good()...");

237

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_good

();

238 printLine("Finished good()");

239 #endif /* OMITGOOD */

240 #ifndef OMITBAD

241 printLine("Calling bad()...");

242

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

();

243 printLine("Finished bad()");

244 #endif /* OMITBAD */

245 return 0;

246 }

247

248 #endif
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• Vyper result.

1 format vuln found at: /home/boudjema/angr/poc/juliet/cwe134_4/

tests/OnPurpose/Juliet/Juliet_baseline/testcases/

CWE134_Uncontrolled_Format_String/s01/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c:120

2

3

4 Backtrace:

5 Func 0x400a10, sp=0x7fffffffffefec0, ret=0x400d7a

6 Func 0x400b8d, sp=0x7fffffffffeff70, ret=0x400dc4

7 Func 0x400d90, sp=0x7fffffffffeff90, ret=-0x1/n

• Carto-C result.

1 -- Compute exported from Carto-C version 1.3.4-20161011T135925

2 Loc File,Loc Line,Caller,CWE ID, CWE Description,Type,Status,

Message

3 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,110,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,CloseFun,KO,Call

to close

4 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,120,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,FormatFun,KO,Call

to fprintf
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5 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,120,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,685,Function Call With Incorrect Number of Arguments,Format

Match (number of arguments),OK,unknown match

6 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,120,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,686,Function Call With Incorrect Argument Type,Format Match

(type of arguments),OK,unknown match

7 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,120,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,134,Uncontrolled Format String,Control,KO,See ’controls.csv’

file

8 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,120,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,OutputFun,KO,Call

to fprintf

9 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,234,main,676,Use of Potentially Dangerous Function,

InputFun,KO,Call to time
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10 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,50,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,UnknownFun,KO,Call

to Frama_C_bzero

11 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,72,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,InputFun,KO,Call

to socket

12 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,72,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,OutputFun,KO,Call

to socket

13 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,77,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,MemFun,KO,Call to

memset

14 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,81,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,OpenFun,KO,Call to

connect
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15 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,88,

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01_bad

,676,Use of Potentially Dangerous Function,InputFun,KO,Call

to recv

16 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/io.c,13,printLine,676,Use of Potentially Dangerous

Function,FormatFun,KO,Call to printf

17 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/io.c,13,printLine,685,Function Call With Incorrect

Number of Arguments,Format Match (number of arguments),OK,

Format ’%s\n’ match

18 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/io.c,13,printLine,686,Function Call With Incorrect

Argument Type,Format Match (type of arguments),OK, Format ’%s

\n’ match

19 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/io.c,13,printLine,676,Use of Potentially Dangerous

Function,OutputFun,KO,Call to printf

20 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,234,NA,9999,Unknown message,RTE,KO,Completely invalid

destination for assigns clause *timer. Ignoring.

21 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,61,NA,9999,Unknown message,RTE,KO,cannot evaluate ACSL

term; unsupported ACSL construct: logic functions or

predicates

22 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,94,NA,787,Out-of-bounds Write,RTE,KO,out of bounds write.

assert \valid(data+(unsigned int)(dataLen+(unsigned int)((

unsigned int)recvResult/sizeof(char))));
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23 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,96,NA,9999,Unknown message,RTE,KO,cannot evaluate ACSL

term; unsupported ACSL construct: \base_addr function

24 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,96,NA,9999,Unknown message,RTE,KO,cannot evaluate ACSL

term; unsupported ACSL construct: logic functions or

predicates

25 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,99,NA,787,Out-of-bounds Write,RTE,KO,out of bounds write.

assert \valid(replace);

26 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,101,NA,9999,Unknown message,RTE,KO,cannot evaluate ACSL

term; unsupported ACSL construct: \base_addr function

27 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,101,NA,9999,Unknown message,RTE,KO,cannot evaluate ACSL

term; unsupported ACSL construct: logic functions or

predicates

28 CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

/src/

CWE134_Uncontrolled_Format_String__char_connect_socket_fprintf_01

.c,104,NA,787,Out-of-bounds Write,RTE,KO,out of bounds write.

assert \valid(replace);
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Demo of Vyper on custom tests

• Tainted related format string vulnerability.

1

2 #include<stdio.h>

3 #include<string.h>

4 #define SIZE 10

5

6

7

8 int f(int a){

9 if (a==0) return 1; else return a * f(a-1);

10

11 }

12

13 int wrong_call(char * fmt){

14 printf(fmt); //exploitable vulnerability when input i == 10

15 // The input was correctly reported.

16 }

17

18

19

20

21

22

23

155
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24 int main( int argc , char** argv){

25 char fmt[SIZE];

26 char fmt2[SIZE];

27 char fmt3 [SIZE];

28 int i;

29 fmt2[0] = 0;

30 fmt3[0] = ’0’;

31 fmt3[1] = 0 ;

32

33 fgets(fmt,SIZE-1,stdin);

34 printf ("give i:");

35 scanf("%d",&i);

36 scanf("%s",fmt);

37

38 if (f(i)==3628800)

39 wrong_call(argv[1]);

40 else

41 printf ("good");

42

43

44 return 0;

45 }

• Use of concrete argument values.

1 int wrong_call(char * fmt){

2 printf(fmt); //Exploitable vulnerability detected

3 // when argv is given the concrete value "good" in the

input spec file

4 // no vulnerabitlity is detected.

5

6

7 }

8

9

10 int main( int argc , char** argv){

11

12 if (!strcmp(argv[1],"bad"))
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13 wrong_call(argv[1]);

14 else

15 printf ("good");

16

17

18 return 0;

19 }

• Stack overflow.

1

2 #include<string.h>

3 int i;

4

5 void function(char *str) {

6

7 char buffer[16];

8

9

10 for( i = 0; i < 16; i++)

11 buffer[i] = str[i];

12

13 }

14 void function1(char *str) {

15

16 char buffer[16];

17

18 strcpy(buffer,str);

19 }

20

21 int main(int argc,char** argv) {

22

23

24

25

26 if (strlen(argv[1])<50)

27 {

28 function(argv[1]); // Non-vunerable call
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29 function1(argv[1]); // Exploitable vulnerability

30 }

31 return 0;

32 }

• Double free.

1 #include<stdio.h>

2 #include<string.h>

3 #include<stdlib.h>

4 #define SIZE 100

5

6

7

8 int handle(char *buf){

9

10 if (buf[0] == 1)

11 free(buf); // Double free vulnerability detected.

12 else

13 return buf[0];

14 }

15 int dumb_func(int a){

16

17 char *fmt;

18 char *fmt2;

19 fmt = malloc(SIZE);

20 fmt2 = malloc(SIZE);

21 memset(fmt,1,SIZE);

22 memcpy(fmt2,fmt,SIZE);

23 free(fmt);

24 handle(fmt);

25 return fmt[SIZE-1];

26

27 }

28

29 int main( int argc , char** argv){

30 char num[10];

31 int i ;
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32 scanf("%d",&i);

33 dumb_func(i);

34 }

• Use after free.

1 #include<stdio.h>

2 #include<string.h>

3 #include<stdlib.h>

4 #define SIZE 100

5

6

7

8 int handle(char *buf){

9

10 if (buf[0] == 1)

11 buf[0] = 2; // Use after free vulnerability detected.

12 else

13 return buf[0];

14 }

15 int dumb_func(int a){

16

17 char *fmt;

18 char *fmt2;

19 fmt = malloc(SIZE);

20 fmt2 = malloc(SIZE);

21 memset(fmt,1,SIZE);

22 memcpy(fmt2,fmt,SIZE);

23 free(fmt);

24 handle(fmt);

25 return fmt[SIZE-1];

26

27 }

28

29 int main( int argc , char** argv){

30 char num[10];

31 int i ;

32 scanf("%d",&i);
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33 dumb_func(i);

34 }

• Heap overflow.

1

2 #include<stdio.h>

3 #include<string.h>

4 #define SIZE 10

5

6

7 int dumb_func(char* fmt){

8

9 char *fmt2;

10 fmt2 = malloc(SIZE);

11 memcpy(fmt2,fmt, 2* SIZE); // Exploitabe heap oveflow

vulnerability

12 return fmt[SIZE-1];

13

14 }

15

16 int main( int argc , char** argv){

17 char num[10];

18 int i ;

19 i = atoi();

20

21 dumb_func(argv[1]);

22 }
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