
HAL Id: tel-01971371
https://theses.hal.science/tel-01971371v4
Submitted on 15 Apr 2020 (v4), last revised 9 Sep 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian networks for static and temporal data fusion
Thibaud Rahier

To cite this version:
Thibaud Rahier. Bayesian networks for static and temporal data fusion. Statistics [math.ST]. Uni-
versité Grenoble Alpes, 2018. English. �NNT : 2018GREAM083�. �tel-01971371v4�

https://theses.hal.science/tel-01971371v4
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTE UNIVERSITE GRENOBLE ALPES

Spécialité : Mathématiques Appliquées

Arrêté ministériel : 25 mai 2016

Présentée par

Thibaud RAHIER

Thèse dirigée par Florence FORBES, DR, Inria
co-dirigée par Stéphane GIRARD, DR, Inria
co-encadrée par Sylvain MARIE, Ingénieur de Recherche,
 Schneider Electric

préparée au sein du Laboratoire Institut National de Recherche
en Informatique et en Automatique (Inria)
dans l'École Doctorale Mathématiques, Sciences et
technologies de l’information, Informatique

Réseaux Bayésiens pour fusion de données
statiques et temporelles

Bayesian networks for static and temporal
data fusion

Thèse soutenue publiquement le 11 décembre 2018,
devant le jury composé de :

Madame Florence FORBES
Directrice de Recherche, Inria, Directrice de thèse

Monsieur Simon DE GIVRY
Chargé de Recherche, INRA (MIAT), Rapporteur

Monsieur Cassio Polpo DE CAMPOS
Associate Professor, Universiteit Utrecht, Rapporteur

Monsieur Philippe LERAY
Professeur, Université de Nantes, Président du Jury

Monsieur Tomi SILANDER
Senior Scientist, Naver Labs Europe, Examinateur

Monsieur Stéphane LECOEUCHE
Professeur, Ecole Mines-Télécom, Examinateur

Monsieur Stéphane GIRARD
Directeur de Recherche, Inria, Co-directeur de thèse

Monsieur Sylvain MARIE
Ingénieur de Recherche, Schneider Electric, Co-encadrant de thèse

Acknowledgements

Ce travail de thèse n’aurait pas été possible sans de nombreuses personnes qui m’ont

conseillé, soutenu et inspiré au cours de ces trois dernières années. Ne pouvant nommer

tout le monde dans cette courte section, je commence donc par exprimer ma sincère

gratitude envers tous ceux qui se reconnaissent dans cette description.

Je remercie tout d’abord mes directeurs de thèse: Florence, Stéphane et Sylvain. Vous

m’avez aiguillé par vos conseils éclairés, et beaucoup appris par votre pédagogie et

vos compétences complémentaires. J’ai pu effectuer mes travaux avec une grande

liberté, tout en me sentant toujours soutenu et guidé, et je mesure la chance que

cela représente. Sylvain, je suis en particulier reconnaissant pour nos nombreux et

prolifiques échanges, et pour ta motivation sans égal. Je ne compte plus le nombre

de nos points “synchro rapide” qui ont fini par durer 2h30, et j’en assume une bonne

part de responsabilité !

Ma gratitude va ensuite a mes rapporteurs, Cassio Polpo de Campos et Simon de

Givry, ainsi qu’aux autres membres de mon jury, Philippe Leray, Tomi Silander et

Stéphane Lecoeuche. J’ai conscience de la chance que j’ai eu de profiter de votre

expertise, et je vous remercie pour vos nombreuses remarques, conseils, questions, et

plus généralement pour l’intérêt que vous avez demontré envers ce travail de recherche.

Merci également a l’équipe AAI de Schneider Electric: permanents, prestataires,

doctorants et stagiaires: je pense notamment à François, Daniel, Vincent, Véronique,

Henri, Peter, Benoît, Olivier, Alfredo, Laurent, Emmanuel, Patrick, Yvon, Catherine,

Sandrine, France, Dimitri, Matthieu, Amadou. Ma gratitude va en particulier a

Rodolphe, qui fut mon premier contact dans l’équipe et qui a rendu ce projet de

thèse possible, à Cao pour ses nombreux conseils à mes débuts, ainsi qu’à Didier et à

Claude, dont j’ai grandement apprecié la capacité a rester très accessibles malgré leur

haut niveau de responsabilité.

Enfin, Bartosz et Antoine, merci pour tous les excellents moments, festifs, sportifs et

intellectuels, que nous avons passé, chez Schneider et en dehors.

Je remercie aussi ceux qui ont constitué au cours des années l’inoubliable famille

MISTIS à Inria, Julyan, Théo, Aina, Mariia, Michal, Clément, Yaroslav, Meryem,

Karina, Pablo, Emeline, Yassine, Gildas, Nourou, Alessandro, Benoît, Fei, Marta,

Antoine, Hongliang, Meriem, Fatima, Jean-Baptiste, Pascal, Alexandre... Merci parti-

culièrement à Alexis qui m’a beaucoup apporté sur des questions de programmation

tout au long de ma thèse, ainsi qu’à Thomas, Jaime et Steven. Nos sorties, nos parties

de babyfoot et nos pauses café ont rythmé ma vie a Inria et vont me manquer.

A tous mes amis vivant loin, qui m’ont visité et soutenu, et pour certains se sont

même deplacés en pleine semaine pour assister a ma soutenance, merci ! Quentin,

Jean, Roro, Louis, Clément, Camille, Simon, Laure, Alice, Florent, MSk, Bastien,

Alexandre, Michaël, Olivier, Edouard, Romain, Vincent, Louis, Pilou. Un merci tout

particulier a Maxime et Aymeric, qui non contents de voyager pour l’occasion depuis

les Pays-Bas et la Suisse, m’ont également donné de précieux retours sur ce manuscrit.

Par ailleurs, je remercie grandement tous ceux rencontrés depuis mon arrivée à Greno-

ble, qui ont contribué à remplir ces trois années de beaucoup de sport, de bière et de

bonne humeur, ce que je crois indispensable au bon déroulement de tout travail de

recherche. Clément et Etienne pour les innombrables soirées fifa, mais aussi David,

Céline, François, Xavier, Anouk, Chloé, Poornima, Gaëlle, Marie pour tous les mo-

ments passées à discuter sur un balcon, en terrasse, dans un canapé ou autour d’un

feu de bois. Merci aussi à Nico pour avoir été une inspiration permanente sur le plan

sportif, à Flo pour les sorties VTT, à Johann pour m’avoir réparé le genou, à Simon

pour l’avoir rendu à nouveau fonctionnel et à Fabien pour les bastoche-chill et autres

afterworks-balcon.

Merci enfin à Brice. Par tout temps et en toute saison, du sommet de la dent de

Crolles au lac du Crozet, du Moucherotte au col de Porte, en passant par les centaines

d’allers-retours entre Grenoble et Montbonnot, on en a parcouru des bornes a discuter

recherche, socio, sport, philo, a se défier sans raison et a s’insulter gentilment. Ct vrt

1 bonn epok frer.

Je n’oublie pas Hugo, Benjamin, Raphael, Samuel, Paul, Antoine, Olivier, Kylian,

N’Golo, Blaise, Lucas, Steve, Alphonse, Presnel, Adil, Djibril, Benjamin, Thomas,

Corentin, Steven, Ousmane, Nabil et Florian. Initialement j’avais prévu de commencer

a écrire mon manuscrit en juin les gars... Mais merci.

J’ai une reconnaissance inestimable envers ma famille, mes parents Caroline et

Christophe, ma soeur Anaëlle, et mes grands-parents, Jean, Bernard, Renée et Monique.

Leur soutien depuis toujours a été indispensable pour me permettre d’arriver où je

suis aujourd’hui. Merci maman pour m’avoir appris a lire, merci papa pour m’avoir

appris à développer mon intuition mathématique. Ces deux compétences ne m’ont

jamais autant servi.

Enfin, ma Lulu, merci du fond du coeur pour avoir toujours été là, pour m’avoir

soutenu tout au long de cette aventure, quand c’était facile comme quand ça ne l’était

pas. Je ne serai pas celui que je suis sans toi tiss <3.

Abstract

La prédiction et l’inférence sur les données temporelles sont souvent effectuées en
utilisant uniquement des données provenant de séries temporelles. Nous sommes
convaincus que ces tâches pourraient tirer parti de l’utilisation des métadonnées
contextuelles associées aux séries temporelles, telles que la localisation, le type, etc. À
l’inverse, les tâches impliquant la prédiction et l’inférence sur les métadonnées pour-
raient bénéficier des informations contenues dans les séries temporelles. Cependant, il
n’existe pas de méthode standard pour modéliser conjointement les données de séries
temporelles et les métadonnées descriptives. De plus, les métadonnées contiennent
typiquement des informations hautement corrélées ou redondantes et peuvent contenir
des erreurs et des valeurs manquantes.

Nous examinons d’abord le problème de l’apprentissage de la structure graphique prob-
abiliste inhérente aux métadonnées sous la forme d’un réseau bayésien. Cela présente
deux avantages principaux: (i) une fois structuré en tant que modèle graphique, les
métadonnées sont plus faciles à utiliser pour améliorer les tâches sur des données
temporelles et (ii) le modèle appris permet des tâches d’inférence sur les métadonnées
seules, comme l’imputation de données manquantes. Cependant, l’apprentissage
de structure de réseau bayésien est défi mathématique conséquent, qui implique un
problème d’optimisation NP-Difficile. Nous présentons un algorithme d’apprentissage
de structure sur mesure, inspiré de nouveaux résultats théoriques, qui exploite les
dépendances (quasi)-déterministes généralement présentes dans les métadonnées de-
scriptives. Cet algorithme est testé sur de nombreux jeux de données de référence et
certains jeux de métadonnées industriels contenant des relations déterministes. Dans
les deux cas, il s’est avéré nettement plus rapide que les algorithmes de référence et
trouve même des structures plus performantes sur certains jeux de données. De plus,
les réseaux bayésiens appris sont systématiquement moins denses et donc plus lisibles.

Nous nous intéressons ensuite à la conception d’un modèle qui inclut à la fois des
(méta)données statiques et des données temporelles. En nous inspirant des modèles
graphiques probabilistes de référence pour les données temporelles (réseaux Bayésiens
dynamiques) et de l’approche décrite précédemment pour la modélisation des méta-
données, nous présentons une méthodologie générale pour modéliser conjointement les
métadonnées et les données temporelles sous la forme d’un réseau Bayésien statique-
dynamique hybride. Nous proposons deux algorithmes principaux associés à cette
représentation: (i) un algorithme d’apprentissage qui, tout en étant optimisé pour les
données industrielles, reste généralisable à toute tâche de fusion de données statiques
et dynamiques, et (ii) un algorithme d’inférence permettant à la fois de résoudre les
problèmes sur des données temporelles ou statiques seules et ceux nécessitant les deux
types de données.

Enfin, nous discutons certaines des notions introduites au cours de la thèse, notamment
des moyens de mesurer les performances de généralisation d’un réseau Bayésien à
l’aide d’un score inspiré de la procédure de validation croisée tirée de l’apprentissage
automatique supervisé. Nous proposons également diverses extensions des algorithmes
et résultats théoriques présentés dans les chapitres précédents, et formulons des
perspectives de recherche.

Abstract

Prediction and inference on temporal data is very frequently performed using time
series data alone. We believe that these tasks could benefit from leveraging the contex-
tual metadata associated to time series - such as location, type, etc. Conversely, tasks
involving prediction and inference on metadata could benefit from information held
within time series. However, there exists no standard way of jointly modeling both
time series data and descriptive metadata. Moreover, metadata frequently contains
highly correlated or redundant information, and may contain errors and missing values.

We first consider the problem of learning the inherent probabilistic graphical structure
of metadata as a Bayesian Network. This has two main benefits: (i) once structured
as a graphical model, metadata is easier to use in order to improve tasks on temporal
data and (ii) the learned model enables inference tasks on metadata alone, such as
missing data imputation. However, Bayesian network structure learning is a tremen-
dous mathematical challenge, that involves a NP-Hard optimization problem. We
present a tailor-made structure learning algorithm, inspired from novel theoretical
results, that exploits (quasi)-deterministic dependencies that are typically present
in descriptive metadata. This algorithm is tested on numerous benchmark datasets
and some industrial metadatasets containing deterministic relationships. In both
cases it proved to be significantly faster than state-of-the-art, and even found more
performant structures on industrial data. Moreover, learned Bayesian networks are
consistently sparser and therefore more readable.

We then focus on designing a model that includes both static (meta)data and dynamic
data. Taking inspiration from state-of-the-art probabilistic graphical models for tem-
poral data (Dynamic Bayesian Networks) and from our previously described approach
for metadata modeling, we present a general methodology to jointly model metadata
and temporal data as a hybrid static-dynamic Bayesian network. We propose two
main algorithms associated to this representation: (i) a learning algorithm, which
while being optimized for industrial data, still generalizes to any task of static and
dynamic data fusion, and (ii) an inference algorithm, enabling both usual tasks on
temporal or static data alone, and tasks using the two types of data.

Finally, we discuss some of the notions introduced during the thesis, including ways to
measure the generalization performance of a Bayesian network by a score inspired from
the cross-validation procedure from supervised machine learning. We also propose
various extensions to the algorithms and theoretical results presented in the previous
chapters, and formulate some research perspectives.

Contents

Introduction 4

1 Probabilistic framework 8

1 Temporal and static data: a probabilistic approach 9

1.1 Random variables and datasets . 9

1.2 Probability distributions and associated properties 11

2 Bayesian networks: overview . 14

2.1 Bayesian networks: representation . 15

2.2 Bayesian networks: inference . 24

3 Bayesian networks: learning . 27

3.1 Bayesian network parameter learning (known structure) 29

3.2 Bayesian network structure learning . 32

3.3 Dynamic Bayesian network structure learning 37

3.4 What is really wanted from Bayesian networks? 40

2 Screening strong pairwise relationships for fast Bayesian network structure

learning 43

1 Bayesian network structure learning using data from the IoT domain: a particular

problem . 44

1.1 Determinism . 44

1.2 High number of configurations for categorical variables 47

2 Bridging the gap between determinism and the MLL score 48

2.1 Notations and preliminary results . 48

2.2 Deterministic DAGs and the MLL score 50

3 Bayesian network structure learning with determinism screening 53

3.1 Redundancy: definition, properties and preprocessing algorithm 53

3.2 Choosing among deterministic trees . 56

3.3 Determinism screening: finding the optimal deterministic forest 60

3.4 Bayesian network structure learning with determinism screening: the

ds-BNSL algorithm . 61

i

4 Extension to generic data: strong pairwise relationships screening 62

4.1 Quasi-determinism . 63

4.2 Quasi-determinism screening algorithm . 63

4.3 Learning Bayesian networks using quasi-determinism screening 65

4.4 Complexity analysis . 66

5 Experiments . 67

5.1 Setting . 67

5.2 Running the ds-BNSL algorithm on an IoT dataset 68

5.3 Running the qds-BNSL on benchmark datasets 73

6 Concluding remarks . 86

6.1 Summary . 86

6.2 Some perspectives . 86

3 Bayesian networks for joint modeling of temporal and static data 88

1 Hybrid static-dynamic Bayesian networks for static and temporal data fusion:

overview . 89

1.1 Theoretical framework . 89

1.2 Hybrid static-dynamic Bayesian network 93

2 Inference and learning algorithms for hybrid static-dynamic Bayesian networks . 98

2.1 Inference . 98

2.2 Learning . 106

3 Hybrid static-dynamic Bayesian networks in practice 108

3.1 From real data to our formal setting . 108

3.2 Example: from the data available in practice to the HSDBN setting . . . 111

3.3 Including time information . 115

4 Experiments . 117

4.1 Data . 117

4.2 HSDBN learning . 119

4.3 Inference with HSDBN for metadata recovery 121

5 Concluding remarks and ideas for future work . 122

4 Discussion and perspectives 123

1 Evaluation of Bayesian networks with the VLL score 124

1.1 Introduction and notations . 124

1.2 Another approach on the maximum likelihood estimation problem 127

1.3 Validation log-likelihood score: a new perspective 129

1.4 Experiments: study of the VLL score on a simple example 131

1.5 Extending theoretical results to the VLL score: food for thought 143

ii

2 Algorithmic perspectives . 145

2.1 Decreasing the complexity of the ds-BNSL output using local search 145

2.2 Choosing ε for the qds-BNSL algorithm . 151

3 (Quasi-)determinism screening and the BIC score: prospective results 155

3.1 BIC score: generalization . 155

3.2 Determinism and generalized BIC score: open questions 156

Conclusion 158

Bibliography 160

Appendix A: Proofs 167

1 Proofs of results presented in Chapter 1 . 167

2 Proofs of results presented in Chapter 2 . 169

3 Proofs of results presented in Chapter 4 . 177

Appendix B: Additional information for figures 179

iii

List of Figures

1 Representation of the different types of data accessible in the context of IoT offers

in Schneider Electric, that can be separated into two main categories: static and

temporal . 5

1.1 Example of a Bayesian network structure . 19

1.2 Example of a dynamic Bayesian network structure, given that X = (X1, X2, X3)

satisfies Assumptions 1, 2 and 3 . 23

1.3 Example of a dynamic Bayesian network structure, given that X = (X1, X2, X3)

satisfies Assumptions 1, 2, 3, and 4 . 24

1.4 Main categories of inference algorithms for Bayesian networks (and some examples) 26

2.1 Example of Bayesian network structure G . 46

2.2 Representation of the tree Gdeep . 57

2.3 Representation of the tree Gshall . 57

2.4 Bayesian networks learned on the subsets D1, D2 and D3 of the HOMES dataset . . 71

2.5 Example of Bayesian networks learned on the msnbc dataset 80

2.6 Graphical representation of performance trade-offs for the msnbc dataset 83

2.7 Graphical representation of performance trade-offs for the book dataset 84

2.8 Graphical representation of performance trade-offs for the pump it up dataset . . 85

3.1 Example of a snowflake schema . 91

3.2 Example structure of a hybrid static dynamic Bayesian network in the setting of

example (?). Static nodes are colored in light gray and temporal nodes in white. 96

3.3 Example structure of a hybrid static dynamic Bayesian network corresponding to

example (?) considered at the time series scope. Static nodes are colored in light

gray and temporal nodes in white. 113

3.4 Example structure of a hybrid static dynamic Bayesian network in the setting of

example (?). Static nodes are colored in light gray, temporal nodes in white, and

the node corresponding to a time information (IsWeekEnd) in blue. 117

3.5 Deterministic forest learned on the HOMES metadataset, and descriptive dimensions

it brings to light . 118

iv

3.6 HSDBN structure learned on the 2013 HOMES dataset (with filtered metadata)

considering the timeseries scope: every time series, for each Zone (X1) × DataType

(X8) configuration, is observed independently . 119

3.7 HSDBN structure learned on the 2013 HOMES dataset (with filtered metadata)

considering the zone scope: time series of every type are observed simultaneously

in each Zone (X1) . 120

3.8 ZoneType and DataType recovery results, using Algorithm 9 (‘majority vote’) and

Algorithm 11 (‘derivation (v2)’) using our learned time series scope HSDBN . . . 121

3.9 ZoneType recovery results, using Algorithm 9 (‘majority vote’) and Algorithm 11

(‘derivation (v2)’) using our learned zone scope HSDBN 122

4.1 Example Bayesian network structure G∗ . 131

4.2 Bayesian network structures learned by the HillClimbing algorithm with different

λ parameters for the BIC score . 135

4.3 Bayesian network structures learned by the MaxMinHillClimbing algorithm with

different λ parameters for the BIC score . 136

4.4 Evolution of the MLL score for structures learned by MaxMinHillClimbing and

HillClimbing with the BIC(λ) for different values of λ 137

4.5 Evolution of the CVLL score (10 folds and 20 runs) with respect to the λ parameter

of the BIC(λ) score used as a target in the HillClimbing structure learning

algorithms . 138

4.6 Evolution of the CVLL score (10 folds and 20 runs) with respect to the λ parameter

of the BIC(λ) score used as a target in the MaxMinHillClimbing structure learning

algorithms . 139

4.7 MLL scores for several selected structures around G∗ 141

4.8 CVLL score (10 folds and 20 runs) for several selected structures that are a few

local operations away from the real structure G∗ 142

4.9 Deterministic forest F . 146

4.10 Graph GR . 147

4.11 Graph G∗ . 147

4.12 Graph G̃∗ . 148

4.13 Candidate graphical criterion for the choice of ε on three selected datasets 154

v

List of Tables

2.1 Presentation of the three datasets extracted from HOMES metadata. For i ∈ {1, 2, 3},
M and n are respectively the number of rows and columns of Di, and nr(ε = 0)

represents the number of roots of a deterministic forest w.r.t. Di. 69

2.2 Evaluation of the ds-BNSL algorithm and the baseline sota-BNSL algorithm on three

datasets extracted from the HOMES metadataset, using several criteria: algorithm

speed, graph’s number of arcs, as well as BDeu and CVLL scores 70

2.3 Datasets presentation . 74

2.4 BDeu score per sample. Every result that is less than 5% smaller than sota-BNSL’s

score is boldfaced. 75

2.5 CVLL score per sample. Every result that is less than 5% smaller than sota-BNSL’s

score is boldfaced. 76

2.6 Computation time (seconds). Every result that corresponds to a BDeu score less

than 5% smaller than sota-BNSL’s score is boldfaced. 77

2.7 Networks’ number of arcs. Every result that corresponds to a BDeu score less than

5% smaller than sota-BNSL’s score is boldfaced. 78

3.1 Metadataset DX in the case of example (?) . 92

3.2 Extract of the dataset DXY in the case of example (?) 93

3.3 Extract of the dataset DXYỸ in the case of example (?) 93

3.4 Example parameters for distributions Y3|X2 and Ỹ1|X1, Y1, Y3, consistent with the

structure presented in Figure 3.2 . 97

3.5 Metadata table DX obtained from a virtual IoT system consistent with example (?).112

3.6 Extract of the time series observations table DX1Y corresponding to a virtual IoT

system consistent with example (?) . 113

3.7 MetadatasetDX corresponding to the single time series scope in the case of example

(?) . 114

3.8 Extract of the time series dataset DXY corresponding to the single time series

scope in the case of example (?) . 115

3.9 Example of a set of parameters ΘY
3 = {(µx2 , σx2)}x2∈V al(X2), defining the distribu-

tion Y3|X2 = x2,W = w ∼ N (µx2,w, σ
2
x2,w) . 118

vi

4.1 Conditional Probability Tables defining parameters Θ∗, associated with the struc-

ture G∗ . 132

2 Dataset D1: legend for Figure 2.4 in Section 5.2.2 of Chapter 2 180

3 Dataset D2: legend for Figure 2.4 in Section 5.2.2 of Chapter 2 181

4 Dataset D3: legend for Figure 2.4 in Section 5.2.2 of Chapter 2 182

vii

List of Algorithms

1 LikelihoodWeighting: Inference algorithm . 28

2 HillClimbing: Bayesian network structure learning algorithm 36

3 IdentifyRedundancy: Choose a representative for each group of redundant variables 55

4 BestParent: Best single parent selection . 60

5 DeterScreen: Determinism screening . 61

6 ds-BNSL: Bayesian network structure learning with determinism screening 61

7 QuasiDeterScreen: Quasi-determinism screening 64

8 qds-BNSL: Bayesian network structure learning with quasi deterministic screening 65

9 NaiveMetadataRecovery . 104

10 SoundMetadataRecovery.v1 . 104

11 SoundMetadataRecovery.v2 . 105

12 HybridStaticDynamicBNSL . 108

13 LoweringArcs . 149

14 LoweringArcsGeneral . 151

viii

Nomenclature

Sets

R Set of real numbers

N Set of nonnegative integers

Z Set of integers

J1, nK Set of integers 1, . . . , n

Sn Set of all permutations of J1, nK

F(U, V) Set of functions defined on set U and having values in V

FP (U) Set of probability distributions defined on set U

2V Power set (set of all subsets) of set V

∈ ‘in’ symbol

× Cartesian product symbol

\ Set difference symbol

Random variables and probability distributions

X Random variable, Static random variable

V al(X) Set of values of the random variable X

X Tuple of n random variables

D Dataset containing M rows and n columns

PX, P (X) Probability distribution of X

PΘ Distribution parametrized by Θ

pX Distribution function of a categorical variable X

fX Density function of a continuous variable X

pΘ Distribution function parametrized by Θ

fΘ Density function parametrized by Θ

i.i.d ‘independent and identically distributed’ abbreviation

P⊗M Distribution of M i.i.d variables with distribution P

t1, . . . , tl Sequence of successive time stamps

X(t) Tuple of temporal random variables considered at time t

{X(ti)}1≤i≤l Time series associated with stochastic process X

H(X) Shannon entropy of a random variable X

1

H(p) Shannon entropy of a distribution p

H(p || q) Cross-entropy of distribution q with respect to p

DKL(p || q) Kullback-Leibler divergence from distribution q to p

LD(Θ) Likelihood of parameter set Θ given dataset D

lD(Θ) Log-likelihood of parameter set Θ given set D

Graphs and Bayesian networks

V Set of nodes of a graph

I, J, E,Q Subsets of V

A Set of arcs of a graph

G = (V,A) Directed acyclic graph (DAG)

R(G) Roots of DAG G

πG(i) Parents set of node i in DAG G

AnscG(i) Ancestors of node i in DAG G

DescG(i) Descendants of node i in DAG G

Θ Set of parameters defining a global distribution of X

B = (G,Θ) Bayesian network with structure G encoding distribution PΘ

P(G) Number of free parameters associated with the structure G

Θi Set of parameters defining the local distribution of Xi given XπG(i)

ϑG Set of parameter sets Θ such that (G,Θ) is a Bayesian network

β Set of coefficients

xβT Scalar product of vectors x and β

HSDBN specific notations

X Tuple of static variables

Y(tj) Tuple of temporal variables considered at time tj
Ỹ(tj) Tuple of temporal variables corresponding to Y(tj+1)

DX, DXY Datasets containing observations of X, (X,Y) respectively

Other notations

I. Indicator function

∪,t Union symbol, disjoint union symbol

∃ ‘there exist’ symbol

∀ ‘for all’ symbol

⊂ ‘is a subset of’ symbol

iff ‘if and only if’ abbreviation

w.r.t. ‘with respect to’ abbreviation

2

αx Quantity depending on the value x of X

{αx}x Set of all αx for x in V al(X)∑
x
αx Sum of all αx for x in V al(X)

A Matrix

AT Transpose of matrix A
A•,i Column i of matrix A
Ai,• Row i of matrix A

3

Introduction

PhD context

This PhD was pursued under a CIFRE1 agreement between the Inria laboratory and Schneider

Electric’s Analytics and Artificial Intelligence (AAI) team.

With the increase of the amount of data and sensors that collect data, Schneider Electric has

taken a growing interest in machine learning in the last decades, with many successful applications

ranging from energy optimization in buildings to fault detection or asset maintenance.

Temporal and static data

Data is a collection of values, that vary (i) in their nature: they can be categorical, numerical,

integers, (ii) in their dimension: they can be simple values, vectors, matrices (images), or higher

dimension objects, and more importantly (iii) in their temporality: they can be associated to

time stamps and represent information that varies through time, in which case they are tem-

poral data (Mamoulis et al., 2009), or be considered as constant in time in which case they

are considered as static data. Note that the same data can be represented in several ways

depending on the considered temporal scale: for example, a video clip can either be considered as

a temporal sequence of 2−dimensional objects (images), or as a static 3−dimensional object (the

third dimension being time).

In this thesis, we focus on fusion of simple static categorical data and temporal numerical data,

which are both typically accessible in a real-world industrial setting. Indeed, data is increasingly

collected and generated by software systems whether in social networks (Nguyen et al., 2012),

smart buildings (La Tosa et al., 2011; Najmeddine et al., 2012), smart grid (Etherden et al., 2017;

Pflaum et al., 2017), industry 4.0 (Desdouits et al., 2016), smart cities, or the IoT in general

(Koo et al., 2016; Diaz et al., 2012), and include both:

• temporal data, which corresponds to observations of quantities (temperature, energy, amount

of carbon dioxide, ...) that evolve in time and are associated with time stamps,
1Conventions Industrielles de Formation par la REcherche

4

INTRODUCTION

• static data, which corresponds to what is called metadata: a set of descriptive attributes

associated with these time series (information concerning the measuring device’s location

or owner, the measured quantity, ...)

In the context of Schneider Electric, as summarized in Figure 1, there are several types of

accessible data that can all be split according to their temporality.

Figure 1 – Representation of the different types of data accessible in the context of IoT
offers in Schneider Electric, that can be separated into two main categories: static and
temporal

Joint modeling of static and temporal data

Prediction and inference on temporal data is very frequently performed using this type of data

alone (Fu, 2011). We believe that these tasks could benefit from leveraging the contextual

metadata and that conversely, tasks involving prediction and inference on metadata could benefit

from information held within associated temporal data.

Our objective is to design a compact and interpretable model that incorporates both static and

temporal data ; to the best of our knowledge there is no standard way to do so.

Jointly modeling temporal data and static metadata would enable:

• to discover new insights in databases, for example the fact that machines from a given

manufacturer are more likely to have failures,

• to unlock new applicative capabilities, such as automatically recovering description associated

with sensor data,

• to automate and improve tasks that are done today without a joint model of temporal data

and static data.

5

INTRODUCTION

Bayesian networks: a very flexible class of models

In the wide range of accessible Machine Learning models, we are particularly interested in

generative models, i.e. models representing the global distribution of the observed variables,

and not only a conditional distribution focusing on a given target variable like discriminative

models. Generative models enable a wide range of queries without needing to be relearned,

naturally handle missing data and diversity in the types of variables. Moreover they are generally

interpretable and therefore more suited to be used in an industrial context, in which non-technical

experts need to be convinced.

For this reason we focus on Bayesian networks, which are probabilistic graphical models that

compactly represent the joint distribution of a set of variables. They have two main purposes:

• They enable knowledge discovery, through their structure. This is what we call inter-

pretability. For example, they can help to discover interesting conditional independence

relations, to identify groups containing variables that are closely related to each other, and

understand how variables influence each other.

• They enable density estimation thanks to their parameters. They can be interrogated

using inference to estimate the value of variables given information concerning other

variables as evidence.

Outline of the thesis

1. In Chapter 1, we first present the PhD subject from a probabilistic point of view: we

introduce notations and essential preliminary properties. We then propose an overview of

Bayesian networks: what they are, how they can be interrogated to perform inference, and

how they can be learned from data.

We then present our contributions in the three following chapters of this thesis.

2. In Chapter 2, we consider the problem of learning the inherent probabilistic graphical

structure of metadata as a Bayesian Network, motivated by the fact that:

• once structured as a graphical model, metadata is easier to use in order to improve

tasks on temporal data,

• the learned model enables inference tasks on metadata alone, such as missing data

imputation.

However, Bayesian network structure learning is a tremendous mathematical challenge, that

involves a NP-Hard optimization problem. We present a tailor-made structure learning

algorithm, inspired from novel theoretical results, that exploits (quasi)-deterministic relations

6

INTRODUCTION

that are typically present in descriptive metadata. This algorithm is then tested on industrial

metadatasets and several benchmark datasets. In both cases it proved to be significantly

faster than state-of-the-art, with only a limited impact on performance. Moreover, learned

Bayesian networks are consistently sparser and therefore more interpretable.

3. Then, inChapter 3, we focus on designing a model that includes both static (meta)data and

temporal data. Taking inspiration from state-of-the-art probabilistic graphical models for

temporal data (Dynamic Bayesian Networks) and from our previously described approach

for metadata modeling, we present a general methodology to jointly model metadata

and temporal data as a hybrid static-dynamic Bayesian network. We propose two main

algorithms associated with this representation:

• inference algorithms, targeted towards recovering metadata values from a sequence of

temporal data observations,

• a learning (structure and parameters) algorithm which, while being optimized for

industrial data, still generalizes to any task of static and temporal data fusion.

4. Finally, Chapter 4 is dedicated to a discussion concerning the theoretical and algorithmic

results presented in the previous chapters, as well as the presentation of several perspectives.

7

Chapter 1

Probabilistic framework

Contents
1 Temporal and static data: a probabilistic approach 9

1.1 Random variables and datasets . 9
1.2 Probability distributions and associated properties 11

2 Bayesian networks: overview . 14
2.1 Bayesian networks: representation . 15
2.2 Bayesian networks: inference . 24

3 Bayesian networks: learning . 27
3.1 Bayesian network parameter learning (known structure) 29
3.2 Bayesian network structure learning . 32
3.3 Dynamic Bayesian network structure learning 37
3.4 What is really wanted from Bayesian networks? 40

8

CHAPTER 1. PROBABILISTIC FRAMEWORK

In this chapter, we first present preliminary probabilistic notions and properties, enabling to

view temporal and static data as realizations of random variables (Section 1). We then provide

an overview of Bayesian networks, directed graphical models that are promising regarding our

goal of temporal and static data fusion (Section 2), and expand in particular on Bayesian network

learning from observational data (Section 3).

1 Temporal and static data: a probabilistic approach

In this section, we give respective definitions of static and temporal data, and explain their

fundamental differences. We then explain what is meant by ‘joint modeling’ of temporal and

static data, along with motivations behind this goal.

1.1 Random variables and datasets

1.1.1 Temporal and static random variables

Let (Ω,A, P) be a probability space. A random variable X is a function

X : Ω→ V al(X)

where V al(X) = X(Ω) is the image of X.

The set V al(X) can be discrete (finite or infinite) or continuous. For example, a random

variable X is said to be:

• categorical if V al(X) is finite and unordered,

• continuous if V al(X) is an interval, or a collection of intervals of R.

For a given tuple of random variables X = (X1, . . . , Xn), we call a data point associated

with X a single realization x = (x1, . . . , xn) of X, where for i ∈ J1, nK, xi belongs to V al(Xi), the

set of possible values of the variable Xi. A collection of data points is referred to as a dataset.

Let x be a given datapoint associated with a tuple of variables X. This data point falls into

one of the following two categories.

1. It may be associated with a time stamp t. In that case, we consider that X evolves in

time, and that x is a realization of the tuple of temporal random variables X(t) (and

is denoted by x(t)).

2. Such a time stamp may also be unknown, not relevant, or not accessible. In that case we

consider that the random variable X is constant throughout time, and call it a tuple of

static random variables.

9

CHAPTER 1. PROBABILISTIC FRAMEWORK

A collection of several data points from the first category is an example of temporal data,

where we observe the evolution of variables through time, whereas a collection of data points

from the second category is an example of static data, where the information we possess is

considered to be constant in time.

These notions are highly dependent on the considered time scale. In this thesis, we consider data

as static as long as the characteristic duration needed for its associated variables to change is of a

higher order of magnitude than the duration of the experiments during which temporal data is

collected, i.e. the range of the observation time window.

Example In the context of data coming from connected systems in buildings, we typically have

records of temporal data over the span of a few years, whereas descriptive metadata (number of

rooms, number of floors, areas of the rooms, number of windows, exposition, ..) usually do not

change as long as the building stands, and is therefore considered as static.

1.1.2 Static dataset

A static dataset is a set containing realizations of static random variables. Such datasets are

used in an important amount of classical machine learning problems, such as most of those

used in online prediction competitions on websites such as kaggle.com, drivendata.org or

challengedata.ens.fr.

A static dataset (or simply dataset) associated with a given tuple of variablesX = (X1, . . . , Xn)

is denoted by D.

If D is a dataset containing M ∈ N observations of X = (X1, . . . , Xn), then for m ∈ J1, . . . ,MK,

x(m) = (x
(m)
1 , . . . , x

(m)
n) is the mth observation of X recorded in D. In short,

D = {x(m)}1≤m≤M .

1.1.3 Temporal dataset and time series

Time series Borrowing the definition from Nagarajan et al. (2013), a given sequence of time

stamps {ti}i∈I where I ⊂ Z, a time series is a sequence of successive (tuple of) temporal random

variables {X(ti)}i∈I where for every i ∈ I, X(ti) corresponds to X = (X1, . . . , Xn) at time ti.

If n = 1, the time series is said to be univariate, whereas if n ≥ 2, it is called multivariate.

A temporal dataset D is a set containing a time series realization, i.e.:

D = {x(ti)}i∈I ,

10

CHAPTER 1. PROBABILISTIC FRAMEWORK

where for each i, x(ti) belongs to the space of accessible values of X(ti).

Usually we consider that all the X(ti)s have the same value space, since they correspond to the

same variables at different points in time, i.e. ∀i, j ∈ I, V al(X(ti)) = V al(X(tj)), even though

the probability distribution of X(ti) depends on the value of i.

In the rest of this thesis, the term time series will be used to refer to the sequence of random

variables, and time series dataset or temporal dataset to an associated observation set.

1.2 Probability distributions and associated properties

In this section, we present definitions and key preliminary properties that will be used to work

with Bayesian networks. We focus on simple random variables, since the extension to tuples is

straightforward for all these notions.

1.2.1 Probability distributions

Preliminary: function spaces For any sets U , V , we define F(U, V) as the set of all possible

functions defined on U and having values in V . In particular, if U is finite, FP (U) denotes the

set of all functions that define a probability distribution on U i.e.

FP (U) =

{
p ∈ F(U, [0, 1]) |

∑
u∈U

p(u) = 1

}
.

Categorical random variables Let X be a categorical variable. Its probability distribution

is denoted by PX and is entirely defined by its associated function pX ∈ FP (V al(X)) where:1:

∀x ∈ V al(X), PX(X = x) = pX(x).

Such a distribution can be defined by a parameter Θ = {θx, x ∈ V al(X)}, where

∀x ∈ V al(X), θx ∈ [0, 1] ,∑
x∈V al(X)

θx = 1.

For a given Θ, and for all x ∈ V al(X), we define:

PΘ(X = x) = pΘ(x) = θx.

the distribution of X parametrized by Θ.
1The subscript X may be dropped in practice for clarity, both for PX and pX .

11

CHAPTER 1. PROBABILISTIC FRAMEWORK

Continuous random variables: general Let X be a continuous variable. Its distribution

is denoted by PX and is entirely defined by its cumulative distribution function FX : R→ [0, 1]

where:

∀x ∈ R, FX(x) = PX(X ≤ x).

The distribution of a continuous random variable may also be defined by2 its density func-

tion fX : R→ R+ such that for all x ∈ R,

FX(x) =

∫ x

0
fX(t)dt.

In this thesis, we focus on the Gaussian distribution for continuous random variables.

Gaussian random variable For µ, σ ∈ R+ and Θ = {µ, σ}, we define the function fΘ : R→
R+ such that, for all x ∈ R,

fΘ(x) =
1√
2πσ

exp
(

(x− µ)2

2σ2

)
.

The function fΘ defines the density function of a Gaussian random variable with mean µ

and variance σ2.

For a continuous variable X with density function fΘ, we write

X ∼ N (µ, σ2).

1.2.2 Conditional probability and associated properties

For simplicity, we focus on categorical variables in this subsection. All properties can be general-

ized to continuous variables, replacing the probability values by values of the density function.

Let X = (X1, X2) a tuple of 2 categorical variables with distribution P .

For all x1 ∈ V al(X1) and x2 ∈ V al(X2), P (X1 = x1|X2 = x2) is called the conditional

probability of X1 = x1 given that X2 = x2, and provided that P (X2 = x2) > 0, is defined as

P (X1 = x1|X2 = x2) =
P (X1 = x1, X2 = x2)

P (X2 = x2)
.

The product rule is a simple consequence of this definition, and states that, for all x1 ∈
V al(X1) and x2 ∈ V al(X2)

P (X1 = x1, X2 = x2) = P (X1 = x1|X2 = x2)P (X2 = x2).

The Bayes theorem enables to link the conditional distribution X2|X1 and X1|X2, and

states that for all x1 ∈ V al(X1) and x2 ∈ V al(X2)

P (X2 = x2|X1 = x1) =
P (X1 = x1|X2 = x2)P (X2 = x2)

P (X1 = x1)
.

2If such a function exists, which we assume is always the case for the continuous variables in this thesis.

12

CHAPTER 1. PROBABILISTIC FRAMEWORK

The chain rule for a tuple of n categorical variables X = (X1, . . . , Xn) is an immediate

generalization of the product rule. For all x = (x1, . . . , xn) ∈ V al(X),

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1|X2 = x2, . . . , Xn = xn)

× P (X2 = x2|X3 = x3, . . . Xn = xn)

× . . .

× P (Xn = xn).

Independence X1 and X2 are said independent, denoted by X1 ⊥P X2, if for all x1 ∈
V al(X1) and x2 ∈ V al(X2),

P (X1 = x1, X2 = x2) = P (X1 = x1)P (X2 = x2).

Provided that P (X2 = x2) > 0, this is equivalent to P (X1 = x1|X2 = x2) = P (X1 = x1).

Intuitively, information concerning the value of X2 has no influence on our belief of the value of

X1.

Notation simplification For simplification purposes, we may use the notations P (X1), P (X1|X2),

P (X1, X2) to refer to the distribution of X1, the conditional distribution of X1 given X2 or the

joint distribution of X1 and X2 respectively.

The definitions stated in this section may be rewritten much more simply using these notations,

for example Bayes theorem is simply expressed as:

P (X2|X1) =
P (X1|X2)P (X2)

P (X1)
,

where it is assumed that the equation holds for all value x1 and x2 of variables X1 and X2.

1.2.3 Maximum log-likelihood for categorical variables

We now introduce the concept of likelihood, and propose a straightforward way to derive the

maximum likelihood estimation of the parameters associated with the probability distribution of

a categorical random variable.

Preliminary result This result is a consequence of the Jensen’s inequality for the − log

function. A proof is available in Appendix A.1.

Lemma 1 Let U be a finite set and p, q ∈ FP (U), we have:∑
u∈U

p(u) log(q(u)) ≤
∑
u∈U

p(u) log(p(u)). (1.1)

13

CHAPTER 1. PROBABILISTIC FRAMEWORK

Definitions Let X be a categorical random variable, which distribution is parametrized by Θ.

Let D = {x(m)}1≤m≤M be a dataset that contains M i.i.d. realizations of X.

We define the count function CD as:

CD :

∣∣∣∣∣ V al(X) −→ {0, 1, . . . ,M}
x 7−→

∑M
m=1 I{x(m)=x}.

For x ∈ V al(X), CD(x) is the number of times x is observed in the dataset D.

The likelihood of Θ given data D is defined as the probability to observe D given that the

distribution of X is parametrized by Θ, i.e.:

LD(Θ) = P⊗MΘ (D).

where P⊗MΘ denotes the distribution of M i.i.d. variables with distribution PΘ.

We denote by Θ̂D the maximum likelihood estimator (MLE) of Θ relative to D, defined as:

Θ̂D ∈ argmax
Θ∈FP (V al(X))

LD(Θ).

Under these notations, the following result is well known (an associated proof is available in

Appendix A.1.).

Proposition 1 Likelihood maximization for a simple categorical variable For X, Θ and

D defined as previously, the maximum likelihood estimator of Θ is defined by Θ̂D = {θ̂Dx , x ∈
V al(X)}, where for all x ∈ V al(X):

θ̂Dx =
CD(x)

M
. (1.2)

Remark This result generalizes naturally to a tuple of variables X = (X1, . . . , Xn). In that

case, we have Θ̂D = {θ̂Dx , x ∈ V al(X)} where for any x = (x1, . . . , xn) ∈ V al(X):

θ̂Dx =
CD(x)

M
.

Note that the count function CD is naturally extended to V al(X).

2 Bayesian networks: overview

In this section, we provide an overview of Bayesian networks: fundamental definitions and

properties, model representation, as well as a presentation of how they can be used for inference

tasks. For more exhaustive information, the reader may refer to the very complete books by

Koller and Friedman (2009) or Murphy (2012).

14

CHAPTER 1. PROBABILISTIC FRAMEWORK

2.1 Bayesian networks: representation

2.1.1 Notions of Graph theory

A more exhaustive overview of graphs may be found in Section 1.1 of the book by Nagarajan

et al. (2013).

A graph G is defined by a tuple (V,E) where

• V is a set of vertices or nodes, that we will always consider finite in this thesis

• E ⊂ V 2 is a set of distinct edges.

Each element (x, y) ∈ E can be an ordered tuple, in which case it is called a directed edge or

arc, or an unordered tuple, in which case it is called an undirected edge. A directed (resp.

undirected) graph is a graph that contains only directed (resp. undirected) edges. In order to

prevent any confusion, we choose to denote the set of arcs of a directed graph by A instead of E .

The simplest graph structure for a given set of nodes V is the empty graph: Gempty = (V, ∅).
The maximally complex structure, in which each node is connected to every other node, is called

a complete graph. As considered in Nagarajan et al. (2013), graphs representing real-world

phenomenon fall in between these two extremes. In the rest of this thesis, a graph G = (V,E)

will be considered as sparse if the number of edges is of the same order of magnitude as the

number of nodes (sometimes denoted by |E| = O(|V |)), and dense otherwise.

In a graph G = (V,E), we call a path a sequence v1, . . . , vp for p ∈ N∗ such that:

1. v1, . . . , vp ∈ V ,

2. ∀i ∈ {1, . . . , p− 1}, (vi, vi+1) ∈ E

If a path v1, . . . , vp also verifies v1 = vp, it is called a cycle.

If a path is composed of only directed edges (or arcs), we say it is a directed path. We defined

analogously a directed cycle.

A directed acyclic graph (DAG) is a directed graph that does not contain any directed cycle.

The structure of a DAG G = (V,A) induces a partial ordering ≺ of the nodes, which satisfies:

∀vi, vj ∈ V, vi ≺ vj ⇒ (vj , vi) /∈ A.

For a DAG G = (V,A), and V = {vi}1≤i≤n, we say that an ordering σ ∈ Sn is a topological

ordering relative to G if and only if:

∀i, j ∈ J1, nK, σ(i) < σ(j)⇒ (vj , vi) /∈ A.

15

CHAPTER 1. PROBABILISTIC FRAMEWORK

we will indistinctly say that σ is consistent with G.

For a DAG G = (V,A), we define the following parent function:

πG :

∣∣∣∣ V −→ 2V

v 7−→ {w ∈ V | (w, v) ∈ A}.

the exponent G will be dropped for clarity in the rest of this thesis when the referred graph is

obvious from context.

The set of ancestors of a node v in G is defined as all the nodes from which there is a directed

path to v in G, or more formally using the parent function:

AncG(v) = {y ∈ V | ∃k ≥ 1 s.t. y ∈ (πG)k({v})},

where (πG)k denotes k successive applications of the parent function, which is canonically extended

to sets of nodes.

We can define in a symmetrical way children (ChG) and descendants (DescG) of a node in a

DAG.

The set of roots of a DAG G is the set of nodes v ∈ V for which πG(v) = ∅. By definition of a

DAG, G has at least one root and we note:

R(G) = {v ∈ V | πG(v) = ∅}.

A DAG T is called a tree if all of its nodes but one have exactly one parent. For a tree T , we

have |R(T)| = 1.

More generally, we call a forest a DAG which connected components are trees, i.e. a DAG for

which each node has at most one parent.

2.1.2 Bayesian networks: definitions

In this thesis, we will focus on static Bayesian networks modeling only categorical variables,

and dynamic Bayesian networks modeling only continuous variables, as this corresponds to

the most common respective contexts for the studies of these models, and it is consistent with

the real-world data on which this PhD research was based.

In this subsection, however, we still give the main insights on how to use Bayesian networks to

model categorical, continuous and mixed variables, as this will be needed for the definition of

the model proposed in Chapter 3. Moreover, all modeling details explained in the case of static

Bayesian networks (notably concerning the network parameters) can naturally be applied in the

context of dynamic Bayesian networks as well, thus preventing the hassle of re-explaining basic

definitions in the next subsection.

16

CHAPTER 1. PROBABILISTIC FRAMEWORK

Setting Let X = (X1, . . . , Xn) be a tuple of categorical random variables. The distribution of

X is denoted by, for all x = (x1, . . . , xn) ∈ V al(X),

pX(x) = PX(X1 = x1, . . . , Xn = xn).

For I ⊂ J1, nK, we define XI = (Xi)i∈I , and the previous notations are naturally extended. For

example:3

∀I, J ⊂ J1, nK, ∀(xI ,xJ) ∈ V al(XI ×XJ),

pxI |xJ (xI |xJ) = PXI |XJ
(XI = xI |XJ = xJ).

Analogous notations are used for continuous variables, where density function f replaces

probability function p in all of the equations.

Moreover, we suppose D is a dataset containing M i.i.d. realizations of X. All quantities

empirically computed from D are written with a .D exponent.

For instance, pD refers to the empirical distribution with respect to D, defined as:

∀x ∈ V al(X), pD(x) =
CD(x)

M
.

Finally, DI refers to the restriction of D to the observations of XI .

A Bayesian network (BN), first introduced by Pearl (1988), is an object

B = (G,Θ)

where:

• G = (V,A) is a DAG with V the set of nodes and A the set of arcs.

We suppose V = J1, nK where each node i ∈ V is associated with the random variable Xi

• Θ = {Θi}i∈V is a set of parameters. Each Θi defines the local conditional distribution

Xi | XπG(i) of the random variable Xi given the random variables associated to the parent

nodes of i, XπG(i).

In the following, we will use the shortcut parents of Xi to refer to XπG(i) when not

ambiguous.
3The subscripts XI and XJ will be discarded if no confusion is induced.

17

CHAPTER 1. PROBABILISTIC FRAMEWORK

Types of variables and modeling choices In the case of mixed Bayesian networks modeling

both categorical and continuous variables, categorical variables are generally constrained to have

only categorical parent variables, whereas continuous variables can have both categorical and

continuous parent variables ((Scutari, 2010; Cobb et al., 2007; Bøttcher et al., 2003; Koller and

Friedman, 2009)). Inspired from the modeling choices made in these works, we now detail the

three following situations regarding the nature of variables Xi and XπG(i) for a given i ∈ V .

• If Xi and XπG(i) are categorical variables,

Θi = {θxi|xπG(i)
}xi,xπG(i)

,

where for i ∈ V, xi ∈ V al(Xi) and xπG(i) ∈ V al(XπG(i)),

θxi|xπG(i)
= p(xi|xπG(i)).

• If Xi and XπG(i) are continuous variables, we choose to model them as conditional Gaussian

variables. In this case4,

Xi | XπG(i) = xπG(i) ∼ N (xπG(i)β
T
i , σ

2
i),

and the set of parameters is defined by:

Θi = {βi, σi},

with5 βi ∈ R(|πG(i)|+1) and σi ∈ R+.

Formally, for i ∈ V, xi ∈ V al(Xi) and xπG(i) ∈ V al(XπG(i)), we have:

p(xi|xπG(i)) =
1√

2πσ2
i

exp

(
−

(xi − xπG(i)β
T
i)2

2σ2
i

)
. (1.3)

In other words, Xi | XπG(i) = xπG(i) is modeled as a Gaussian variable, with mean

µi = xπG(i)β
T
i depending linearly on the values xπG(i) of XπG(i), and with variance σ2

i .

• if Xi is a continuous variable, and XπG(i) is a mix of continuous and categorical variables,

we define πcat(i) and πcon(i) such that πG(i) = πcat(i) t πcon(i), corresponding respectively

to categorical and continuous parent variables of Xi in G.

In this case, we choose to model the distribution Xi | XπG(i) as:

Xi | XπG(i) = xπG(i) ∼ N (xπcon(i)β
T
xπcat(i)

.σ2
xπcat(i)

).

The associated parameters are defined by:

Θi = {βxπcat(i)
, σxπcat(i)}xπcat(i) .

4In all this thesis, we use the convention xπG(i)β
T
i to denote the scalar product of vectors xπG(i) and βi.

5βTi has |πG(i)|+ 1 coefficients because it contains an intercept, which is dropped in the expression xπG(i)β
T
i

for better readability. This convention does not change any of the derivations, and remains all along this thesis.

18

CHAPTER 1. PROBABILISTIC FRAMEWORK

In other words, the distribution Xi | XπG(i) = xπG(i) is modeled as a Gaussian variable, with

mean µi(xπG(i)) which is a linear combination of values of the continuous parent variables

xπcon(i), with one set of coefficients per configuration of the categorical parent variables.

For fixed values of the continuous parent variables Xπcon(i), Xi is modeled as a mixture of

Gaussian variables, with as many components as there are different configurations of its

categorical parent variables Xπcat(i).

We define ϑG as the parameter space with respect to G: the set of all possible parameters

Θ such that (G,Θ) is a Bayesian network.

For example, in the case where all variables in X are categorical, ϑG is defined as:

ϑG =
{
{Θi}1≤i≤n | ∀i,Θi = {θxi|xπG(i)

}xi,xπG(i)

}
where each set of parameters Θi is ‘legal’, i.e.

∑
xi∈V al(Xi)

θxi|xπG(i)
= 1, with xπG(i) belonging to

V al(XπG(i)).

Example: a simple categorical Bayesian network Let us consider a simple Bayesian

network B = (G,Θ), modeling two categorical variables X1 and X2.

X1

X2

Figure 1.1 – Example of a Bayesian network structure

• The structure G = ({1, 2}, {(1, 2)}) is displayed in Figure 1.1.

• The parameters Θ = {Θ1,Θ2} are defined by:

– Θ1 = {θx1}x1∈V al(X1), define the distribution of X1,

– Θ2 = {θx2|x1
}(x1,x2)∈V al(X1)×V al(X2) which define the distribution of X2 | X1 (since

πG(2) = {1})

2.1.3 Bayesian networks and independence

Maps and d-separation Bayesian networks encode a set of conditional independence relations,

that correspond to the notion of d-separation in a DAG, properly formalized by Verma and

Pearl (1988), that we now present.

19

CHAPTER 1. PROBABILISTIC FRAMEWORK

Definition 1 Let G = (V,A) be a DAG, and I, J, C ⊂ V three disjoint subsets of nodes in G.

I and J are said to be d-separated by C, denoted I ⊥G J |C if along every (undirected) path

between a node in I and a node in J , there is a node v, with adjacent nodes in the path v1 and v2,

satisfying one of the following conditions:

1. (v1, v, v2) form a V-structure (i.e. (v1, v) and (v, v2) belong to A), and none of v or its

descendants are in C,

2. v is in C and v1, v, v2 do not form a V-structure.

Bayesian networks provide a convenient way to represent probabilistic independence (⊥P)
through d-separation (⊥G) induced by the absence of arcs in G. The correspondence between

these two notions was formally defined by Pearl (1988) through the notion of I-map and perfect

map:

Definition 2 Let G = (V,A) be a DAG, and X a tuple of random variables each of which is

represented by a node in V . For all disjoint subsets I, J, C ⊂ V ,

• G is an independence map or I-map of PX if

I ⊥G J | C ⇒ I ⊥P J | C.

• G is a perfect map of PX if

I ⊥G J | C ⇔ I ⊥P J | C.

In the case where there exists a perfect map G of PX, not only does PX factorize in G, but we

know that every conditional independence that exists in PX is encoded in G. In that case we also

say that PX is faithful to G.

Probability factorization If B = (G,Θ) is a BN representing the distribution of X, then G

is an I-map of PX. By a simple application of the chain rule, we get the following factorization of

the distribution of X:

P (X) =

n∏
i=1

P (Xi|XπG(i)) (1.4)

which holds both for continuous and categorical variables.

For instance, if X1, . . . , Xn are all categorical, for all x = (x1, . . . , xn) ∈ V al(X) we have:

pX(x) =
n∏
i=1

pXi|XπG(i)
(xi|xπG(i)),

20

CHAPTER 1. PROBABILISTIC FRAMEWORK

and if X1, . . . , Xn are all continuous, for all x = (x1, . . . , xn) ∈ V al(X), we have:

fX(x) =
n∏
i=1

fXi|XπG(i)
(xi|xπG(i)).

6

Such a factorization notably implies that each variable is independent of its non-descendants

variables (in G) given its parents variables (in G).

Markov-equivalence classes Two Bayesian networks B1 and B2 are saidMarkov-equivalent

when their structures both encode the exact same set of conditional independence relations. The

notion of Markov-equivalence being symmetric, reflexive and transitive, each set of Markov-

equivalent structures forms an Markov equivalence class, and Chickering (1995) shows that

the only arcs needed to define a Markov equivalence class are those belonging to at least one

V-structure. Equivalence classes are usually represented by completed partially directed acyclic

graphs (CPDAGs).

2.1.4 Modeling temporal variables with Bayesian networks

In the same way that we focus on static Bayesian networks modeling only categorical variables,

we will focus on dynamic Bayesian networks modeling only continuous variables.

Dynamic Bayesian networks (DBN), first introduced by Dean and Kanazawa (1989), ex-

tend the Bayesian network formalism to model dependence relations between temporal variables.

Unlike static Bayesian networks that work with multiple i.i.d. samples of the variables of interest,

each variable modeled with a DBN is represented by several nodes across time stamps, thus

enabling the apparition of loops and feedback, which cannot be modeled with static Bayesian

networks because of the acyclicity constraint.

We consider a Bayesian network B = (G,Θ) modeling the n × T variables correspond-

ing to a multivariate time series (or stochastic process) {(X1(t), . . . , Xn(t))}1≤t≤T , that has
values in Rn×T . The DAG structure G associated with B has a set of nodes V = {vit}1≤i≤n, 1≤t≤T .

A lot of work has been done when it comes to using probabilistic networks to model temporal

processes, a vast amount of which is described by Murphy and Russell (2002). In the next

paragraph, we summarize a set of (strong) assumptions that are commonly made when using

dynamic Bayesian networks, inspired from Nagarajan et al. (2013).

These assumptions imply important structural constraints regarding G, which enable the creation

of a specific dynamic Bayesian network formalism, and of associated learning and inference
6We sometimes use the notation fXi(xi|XπG(i) = xπG(i)) instead of fXi|XπG(i)

(xi|xπG(i)) for better readability
when the subscripts are too complex, such as in Chapter 3.

21

CHAPTER 1. PROBABILISTIC FRAMEWORK

algorithms. We will suppose these assumptions to hold for the stochastic processes encountered

in this work.

Assumption 1 The stochastic process X is first order Markovian: for any i, j ∈ J1, nK and

1 ≤ t′ < t < T ,

Xi(t+ 1) ⊥P Xj(t
′) | X(t).

In intuitive terms, this assumption means that the variables at time t+ 1 depend only on their

immediate past (at time t).

Assumption 2 For any i, j ∈ J1, nK and t ∈ {1, . . . , T − 1},

Xi(t+ 1) ⊥P Xj(t+ 1) | X(t).

This assumption is quite strong: it supposes that time stamps are close enough so that a variable

at time t+ 1 is sufficiently explained by the immediate past X(t), with no need for information

about variables at time t+ 1.

Assumption 3 The matrix (Xi(t))1≤i≤n, 1≤t≤T is full row rank.

This comes down to assuming that none of the univariate time series {Xi(1), . . . , Xi(T)} for
i ∈ J1, nK can be written as a linear combination of the other time series {{Xj(1), . . . , Xj(T})}j 6=i.

One last assumption is generally added to enable an easier model representation and estimation:

Assumption 4 The stochastic process X is homogeneous over time.

In brief, this supposes that the dependences in between two successive time stamps stay the

same during the whole experiment: the structure and associated parameters of the subgraph

containing only the variables (X(t),X(t+ 1)) is the same for all t ∈ {1, . . . , T − 1}.
This assumption is very important when it comes to learning the model parameters: without

homogeneity, we would have to learn a different set of parameters (in the form of a n× n matrix

since we are dealing with continuous variables) for the connections between X(t) and X(t+ 1)

for each t. This would require a significant number of repeated observations for all variables at

each time stamp, which is rarely available in practice.

22

CHAPTER 1. PROBABILISTIC FRAMEWORK

Structural constraints The three first assumptions imply constraints relative to the graphical

structure of the dynamic Bayesian network describing the system (Nagarajan et al., 2013):

• There can be no arcs in between nodes corresponding to variables observed at the same

time stamp,

• There can be no arcs in between nodes corresponding to variables observed at nonsuccessive

time stamps,

• There can be no arcs ‘going back in time’.

Moreover, the fourth assumption enables a last very strong structural constraint:

• All arcs in the dynamic Bayesian network are invariant over time, therefore, the network is

entirely defined by its structure in between two consecutive time stamps.

Example of a dynamic Bayesian network Suppose we observe X = (X1, X2, X3) on

regularly spaced time stamps {1, 2, . . . , T}, and that X verifies Assumptions 1, 2 and 3.

Figure 1.2 displays a Bayesian network representing the dependence relations between the set of

variables {(X1(t), X2(t), X3(t))}1≤t≤T .

X1(1)

X2(1)

X3(1)

X1(2)

X2(2)

X3(2)

. . .

. . .

. . .

X1(t)

X2(t)

X3(t)

. . .

. . .

. . .

X1(T)

X2(T)

X3(T)

Figure 1.2 – Example of a dynamic Bayesian network structure, given that X =
(X1, X2, X3) satisfies Assumptions 1, 2 and 3

If X also verifies Assumption 4, then the arcs are invariant in time, and the entire network can

be represented as a 2-time-slice Bayesian network (2TBN), as represented in Figure 1.3.

23

CHAPTER 1. PROBABILISTIC FRAMEWORK

X1(t)

X2(t)

X3(t)

X1(t + 1)

X2(t + 1)

X3(t + 1)

Figure 1.3 – Example of a dynamic Bayesian network structure, given that X =
(X1, X2, X3) satisfies Assumptions 1, 2, 3, and 4

2.2 Bayesian networks: inference

In the context of Bayesian networks, questions about the data that go beyond its mere description

were introduced by Pearl (1988) as queries. The process of using techniques to answer these

questions is called inference, and was first known as belief updating. Recent works such as

Koller and Friedman (2009) use this terminology as well.

Inference can be used to make predictions on the state of variables from (partial) observations,

but also for what-ifs scenarios, where we interrogate the model using virtual observations as

evidence.

2.2.1 Reasoning under uncertainty: overview

Posterior estimation Let B = (G,Θ) be a Bayesian network modeling the distribution of

X = (X1, . . . , Xn), as described in Section 2.1.2, and suppose we have a piece of evidence E. In

general, we are interested in studying the effect of E on the distribution of X, using the knowledge

encoded in B. Formally, inference is the process of computing the posterior distribution:

PΘ(X | E).

Different types of evidence Evidence refers to partial observation or knowledge about a

subset XE of the variables (with E ⊂ J1, nK). There are two main types of evidence:

• Hard evidence: an instantiation of XE . There exists xevE ∈ V al(XE) such that the evidence

E is defined as:

E = {XE = xevE }.

24

CHAPTER 1. PROBABILISTIC FRAMEWORK

• Soft evidence: a distribution of XE (independent of the way P (XE) is modeled by B).
Since the structure is fixed in an inference problem, such evidence is specified by a new set

of parameters {ΘE
e }e∈E ∈ E defining a distribution of the variables XE . Soft evidence can

for example be used to represent unreliable information concerning a subset of the variables.

Different types of queries Typical queries are concerned with a subset of the variables

Q ⊂ J1, nK. In general, we either want to estimate:

• The conditional probability XQ given E, i.e.

PΘ(XQ | E).

Conditional probability queries (CPQs) have many applications, ranging from hypothesis

testing to assessing the odds of a given outcome in different cases of evidence.

• The maximum a posteriori: the most probable state of XQ given E, i.e.

x∗Q = argmax
xQ∈V al(XQ)

PΘ(XQ = xQ | E).

MAP queries are often used to impute missing data (using observed data as evidence).

Note that these types of inference can be naturally extended to continuous variables, replacing

the probability distribution PΘ by the density fΘ.

2.2.2 Inference algorithms

As seen in the previous subsections, answering queries comes down to estimating posterior

probabilities (or their modes). There exist many algorithms for inference, that fall into several

categories, summarized in Figure 1.4.

Exact inference Exact inference relies on the use of Bayes theorem and on formal computations

to obtain the exact value of the target distribution. Its first general formalization in the context

of Bayesian networks is due to Cooper (1990), who also demonstrates its NP-Hardness.

Associated algorithms include: variable elimination (Zhang and Poole, 1994; Dechter, 1999),

as well as message passing (Kim and Pearl, 1983) and junction trees (Pearl, 1988), a

transformation of the original graph in which the nodes are clustered to narrow the network

structure down to a tree, thus guaranteeing speed and convergence of message passing algorithms.

Exact inference algorithms are generally used when the Bayesian network structure is reasonably

small (typically less than 50 variables), even if they scale to much bigger structures in special

cases.

25

CHAPTER 1. PROBABILISTIC FRAMEWORK

INFERENCE

Exact
Var Elimination
Junction tree

(message passing)

Approximate

Stochastic
MCMC (Gibbs,MH)
Likelihood-weighting

Deterministic

Belief propagation Variational
Mean field

Figure 1.4 – Main categories of inference algorithms for Bayesian networks (and some
examples)

Approximate inference As we can see in Figure 1.4, approximate inference can be either

stochastic or deterministic. These algorithms are more adapted to cases where the number of

variables gets greater than 50, as they naturally scale better and are easier to parallelize.

• Deterministic approximate inference algorithms include variational methods, that view

inference as an optimization problem that can be solved thanks to approximations on the

target distribution. The idea was brought to the field of directed graphical models by Saul

et al. (1996), and an interesting overview has subsequently been made by Jordan et al.

(1999).

Moreover, usual belief propagation algorithms do not necessarily converge for a general BN

structure, and are also used to perform approximate inference.

• Stochastic approximate inference algorithms use Monte Carlo simulations from the global

joint distribution to estimate the target conditional probability distribution PΘ(XQ | E), or

its mode. In the field of computer science, these samples are often referred to as particles,

and the associated algorithms as particle filters. The most commonly known are: logic

sampling (Henrion, 1988) and its improvement likelihood-weighting (Fung and Chang,

1990; Shachter and Peot, 1990). Extensive research has been made on sampling methods,

especially on Markov chain Monte Carlo, from the original idea by Metropolis et al. (1953)

up to today.

Focus: Likelihood-weighting algorithm In this thesis, we will only face hard evidence and

inference will be performed with the likelihood-weighting algorithm (Algorithm 1). It naturally

handles evidence E with small or null P (E), and is therefore able to answer queries that concern

both continuous and categorical variables. In consequence, it can be used for inference on both

26

CHAPTER 1. PROBABILISTIC FRAMEWORK

dynamic and static Bayesian networks, which is a sought-after feature in the context of our

research, especially for the models that we introduce in Chapter 3.

We consider that we are given hard evidence XE = xevE . Moreover, we define Ē = J1, nK \ E.

The idea of the Likelihood-weighting algorithm is to constrain every generated sample x(k) to

satisfy the (hard) evidence E, (to set x(k)
E = xevE), then to weight each sample x(k) by the posterior

probability of evidence E given the values x(k)

Ē
, i.e.

w(k) = PΘ(XE = x
(k)
E |XĒ = x

(k)

Ē
).

Intuitively, we first sample from a Bayesian network in which the nodes E corresponding to the

hard evidence E are fixed, and then we adjust for the fact that we did not sample from the

original Bayesian network by weighting each sample.

This naturally circumvents the problem of very ‘rare’ evidence, known to cause more naive

inference algorithms (such as logic sampling) to demand an astonishing number of samples to

return significant results.

The inputs of Algorithm 1 are:

• B = (G,Θ): Bayesian network defined on the variables X = (X1, . . . , Xn),

• E ⊂ J1, nK: indices of the (hard) evidence variables,

• Q: a given query concerning query variables XQ with Q ⊂ J1, nK. For simplicity, we focus on

a query concerning the probability of a single configuration xQ of XQ, i.e. Q = {XQ = xQ}.

• xevE : given configuration of the (hard) evidence variables: E = {XE = xevE },

PΘ(Q | XE = xevE),

• N : number of particles.

This algorithm is programmed into the bnlearn R package from Scutari (2010), on which the

code developed in the context of this thesis is partly based, and has proved to be extremely fast

and efficient on the inference tasks that were faced. It is used as a baseline inference algorithm in

Section 2 of Chapter 3, where we design new algorithms to perform inference with a new type of

Bayesian network, modeling both static and temporal data.

3 Bayesian networks: learning

In the previous section, we have defined Bayesian networks, we have listed some of their interesting

properties, and we have seen how they could be used to perform inference. In practice however,

one is rarely provided with a Bayesian network when studying a subject, as even experts of the

27

CHAPTER 1. PROBABILISTIC FRAMEWORK

Algorithm 1 LikelihoodWeighting: Inference algorithm
Input: B = (G,Θ), E, xevE , Q, N

1: Identify an ordering σ consistent with G, i.e. Xσ(1) ≺ Xσ(2) ≺ · · · ≺ Xσ(n).
2: Set wE = 0 and wE,Q = 0
3: for k = 1 to N do
4: for i = 1 to n do
5: if σ(i) ∈ E then
6: x

(k)
σ(i) ← xevσ(i)

7: else
8: Generate x(k)

σ(i) from the distribution of Xσ(i) | Xπ(σ(i)) using values x(k)
σ(j) for j < i

(that are defined either by evidence E or that were previously generated).
9: Compute the weight w(k) of the kth sample:

w(k) = PΘ(XE = xevE |XĒ = x
(k)

Ē
) =

∏
e∈E

PΘ(Xe = xeve |Xπ(e) = x
(k)
π(e))

10: wE ← wE + w(k)

11: if x(k) satisfies Q then
12: wE,Q ← wE,Q + w(k)

13: P̂Θ(Q | XE = xevE)← wE,Q

wE

Output: P̂Θ(Q | XE = xevE)

associated domain are often not able to draw a precise network structure from their knowledge

of the field. It is therefore of great interest to learn Bayesian networks from observational data.

This is all the more motivated by the fact that our society is increasingly data-centered, and that

it is therefore more and more common to have access to important amounts of observations of

the variables that we want to model.

After explaining how to solve the parameter learning problem for a Bayesian network with a

known structure, we focus on one of the most commonly studied task in the field of Bayesian

network learning: Bayesian network structure learning from observational categorical data. Several

contributions presented in this thesis concern this task, and notably how it can be accelerated

in the specific case of IoT metadata and the generalization of this idea to any categorical data

(Chapter 2).

We focus on the complete data case: we consider the task of learning Bayesian networks

from datasets that do not contain any missing value, make the assumption that there are no

latent variables.

28

CHAPTER 1. PROBABILISTIC FRAMEWORK

3.1 Bayesian network parameter learning (known structure)

3.1.1 Maximum likelihood estimation

Setting We consider a Bayesian network B = (G,Θ) associated with a tuple of random variables

X = (X1, . . . , Xn), for which we know the DAG structure G but ignore the value of the parameters

Θ ∈ ϑG.

Moreover, we suppose we possess a complete dataset D containing M i.i.d. observations of X.

In this context, parameter learning, also known as parameter estimation can be done in

a very straightforward way using maximum likelihood estimation. A very good review of this

approach in the context of Bayesian networks has been made by Heckerman (1998).

Log-Likelihood: definition and decomposition We recall the likelihood of the set of

parameters Θ ∈ ϑG according to the data D is defined as the prob

LD(Θ) = P⊗MΘ (D).

In practice, we generally consider the log-likelihood:

lD(Θ) = log(LD(Θ)).

Using the fact that the observations contained in D are independent and identically distributed

we can write:

lD(Θ) = log(LD(Θ))

= log

(
M∏
m=1

PΘ(X = x(m))

)

=

M∑
m=1

log
(
PΘ(X = x(m))

)
Injecting the decomposition of the joint probability PΘ(X) implied by the Bayesian network

structure G yields:

lD(Θ) =

M∑
m=1

log

(
n∏
i=1

PΘ(Xi = x
(m)
i |Xπ(i) = x

(m)
π(i))

)

=
M∑
m=1

n∑
i=1

log
(
PΘi

(
Xi = x

(m)
i |Xπ(i) = x

(m)
π(i)

))
=

n∑
i=1

M∑
m=1

log
(
PΘi

(
Xi = x

(m)
i |Xπ(i) = x

(m)
π(i)

))
︸ ︷︷ ︸

liD(Θi)

.

29

CHAPTER 1. PROBABILISTIC FRAMEWORK

Finally, we have:

lD(Θ) =

n∑
i=1

liD(Θi), (1.5)

where Θi is the set of parameters defining the local distribution Xi | XπG(i), and liD(Θi) the

associated local log-likelihood.

This rewriting of the likelihood is called the global decomposition of the likelihood function,

and states that the global log-likelihood decomposes in a sum of local log-likelihoods concerning

the local conditional distributions Xi | Xπ(i).

Moreover, for i ∈ J1, nK, we define

Gi = ({i} ∪ πG(i), {(j, i), j ∈ π(i)}), (1.6)

as the local subgraph of G ‘centered’ on node i.

Log-likelihood: maximization As in Equation (1), in the setting described in the previ-

ous paragraph, the maximum likelihood estimation of the network parameters Θ (MLE, see

Section 1.2.3) is defined as follows:

Θ̂D ∈ argmax
Θ∈ϑG

lD(Θ). (1.7)

Proposition 2 stated below was proposed in those terms by Koller and Friedman (2009),

relying mainly on ground works by Spiegelhalter and Lauritzen (1990). It states that the

global decomposition of the likelihood function given in Equation (1.5) implies an analogous

decomposition of the likelihood maximization problem.

Proposition 2 Let Θ̂i be the parameters that maximize the local log-likelihood liD(Θi), i.e.

∀i ∈ J1, nK, Θ̂i ∈ argmax
Θi∈ϑGi

liD(Θi), (1.8)

then Θ̂D = {Θ̂i}1≤i≤n satisfies Equation (1.7), i.e. Θ̂D is the MLE of the global parameters of

the considered Bayesian network

We can therefore maximize the global log-likelihood function lD(Θ) by maximizing each local

log-likelihood function liD(Θi) independently, enabling to get an efficient solution to the global

MLE problem. This is one of the important advantages of modeling a complex joint distribution

as a Bayesian network.

30

CHAPTER 1. PROBABILISTIC FRAMEWORK

3.1.2 Derivation in different cases

Let i be fixed in J1, nK. We consider the associated subproblem, described in Equation (1.8). In

this subsection, we explain how this task is performed, distinguishing between different possible

types for the variable Xi and its parent variables Xπ(i), as discussed in Section 2.1.2:

• Xi can be categorical (case 1), in which case all of its parents are considered to be categorical

as well,

• Xi can be continuous (case 2), in which case variables Xπ(i) can be

– all continuous,

– a mix of categorical and continuous variables.

Case 1 - Xi and Xπ(i) are all categorical In that case, the local log-likelihood liD(Θi) can

be rewritten as follows:

liD(Θi) =
M∑
m=1

log
(
PΘi(Xi = x

(m)
i |Xπ(i) = x

(m)
π(i))

)
=

M∑
m=1

log
(
θ
x

(m)
i |x(m)

π(i)

)
/

=
∑
xi

∑
xπ(i)

CD(xi,xπ(i))log
(
θxi|xπ(i)

)
.

We remind that CD(.) is the function that counts the number of occurrences of given values in

the dataset D, as defined in Section 1.2.3.

Thanks to Proposition 1, we can easily derive the closed form of Θ̂D
i = {θ̂Dxi|xπ(i)

}xi,xπ(i)
. For

all xi ∈ V al(Xi) and xπ(i) ∈ V al(Xπ(i)),

θ̂Dxi|xπ(i)
=
CD(xi,xπ(i))

CD(xπ(i))
.

Note that this corresponds of the empirical probability w.r.t. D, i.e. for all xi ∈ V al(Xi) and

xπ(i) ∈ V al(Xπ(i)),

θ̂Dxi|xπ(i)
= pD(Xi = xi|Xπ(i) = xπ(i)).

Case 2 - Xi is continuous When the random variable Xi is continuous, each local distribution

Xi | Xπ(i) = xπ(i) is modeled as a Gaussian variable, as described in Section 2.1.2.

• In the case where all variables Xπ(i) are continuous as well, which is generally the setting of

Dynamic Bayesian networks, we have seen that the mean µ(xπ(i)) is modeled as a linear

31

CHAPTER 1. PROBABILISTIC FRAMEWORK

function of the values xπ(i), and the variance σ2
i is supposed independent of xπ(i). In that

case, the problem comes down to estimating βi ∈ R(|π(i)|+1) and σi ∈ R+ where:

Xi | Xπ(i) = xπ(i) ∼ N (xπ(i)β
T
i , σ

2
i),

which is equivalent to solving the linear regression problem Xi = Xπ(i)β
T
i + εi where

εi ∼ N (0, σ2
i). This problem is simply solvable using standard linear regression formalism.

• In the case where Xπ(i) contains also categorical variables, the mean of Xi | Xπ(i) = xπ(i)

is also modeled as a linear regression of its continuous parent values xπcon(i), but we have a

different coefficient βi of this linear regression for each configuration xπcat(i) of the categorical

parents Xπcat(i) of Xi.

The parameter of each linear regression is estimated the same way as in the fully continuous

case, with the only subtlety that observations in the data must first be binned according to

the different configurations xπcat(i) of Xπcat(i).

3.2 Bayesian network structure learning

There has been extensive work on tackling the ambitious problem of Bayesian network structure

learning from observational data. Algorithms are generally considered to fall under two main

categories: constraint based and score and search based.

3.2.1 Constraint based algorithms

Constraint-based structure learning algorithms rely on testing for conditional independence rela-

tions that hold in the data in order to reconstruct a Bayesian network encoding these independence

relations. The PC algorithm by Spirtes et al. (2000) was the first practical application of this

idea, followed by several optimized approaches as the fast incremental association (Fast-IAMB)

algorithm from Yaramakala and Margaritis (2005).

As shown in Section 1 of Chapter 2, constraint-based algorithms are not adapted to the

specificities of the data that was used during this research work, namely the presence of very

strong pairwise relationships and the fact that some variables have very large sets of configurations.

We therefore choose to focus on score and search based structure learning algorithms.

3.2.2 Score and search based algorithms

Background Score and search based structure learning relies on the definition of a network

score, then on the search for the best-scoring structure among all possible DAGs. The number

of possible DAG structures with n nodes is super-exponential in n, which makes this problem

extremely challenging: it has been proven to be NP-Hard by Chickering (1996).

32

CHAPTER 1. PROBABILISTIC FRAMEWORK

Many score and search based algorithms used in practice rely on heuristics, as the original

approach from Cooper and Herskovits (1992) which supposed a prior ordering of the variables to

perform parent set selection, or Bouckaert (1995) who proposed to search through the structure

space using greedy hill climbing. Since then, various methods have been proposed: some based

on the search for an optimal ordering as in Teyssier and Koller (2005) or Chen et al. (2008),

others on the restriction of the structure space by conditional independence testing (sometimes

called hybrid algorithms), such as the sparse candidate algorithm proposed by Friedman et al.

(1999) or the Max-Min Hill Climbing algorithm introduced by Tsamardinos et al. (2006), others

on optimizing the search task in accordance to a given score such as Scanagatta et al. (2015)...

More recently, several works have focused on optimizing the structure search through theoretical

properties arising from the use of given scores or classes of scores, such as de Campos and Ji

(2011), or more recently de Campos et al. (2018).

Notations and formalism Suppose we have a scoring function s : DAGV → R, where DAGV
is the set of all possible DAG structures with node set V . Score-based Bayesian network structure

learning comes down to solving the following combinatorial optimization problem:

G∗ ∈ argmax
G∈DAGV

s(G). (1.9)

We suppose the set V contains n nodes. One can quickly show that:

• 2
n(n−1)

2 is the number of different DAG structures with n nodes that are consistent with a

given total ordering,

• 2n(n−1) is the total number of directed graphs with no cycle of length one.

This yields:

2
n(n−1)

2 ≤ |DAGV | ≤ 2n(n−1).

There are therefore 2O(n2) possible DAG structures containing n nodes: the size of DAGV is said

to be super-exponential in |V |. This gives insight on why Equation (1.9) cannot be consistently

solved when n gets typically bigger than 50, even for the most recent algorithms such as those

presented by Silander and Myllymäki (2006), Cussens (2011) or Yuan et al. (2013).

Scoring function for Bayesian networks Most scoring functions used in practice are based

on the likelihood function introduced previously. The most straightforward being the Max

log-likelihood score.

Let lD(Θ) = log(pΘ(D)) be the log-likelihood of the set of parameters Θ given the dataset D.

33

CHAPTER 1. PROBABILISTIC FRAMEWORK

For a given DAG structure G ∈ DAGV , we define the Max log-likelihood (MLL) score of G

with respect to the dataset D as:

sMLL
D (G) = max

Θ∈ϑG
lD(Θ). (1.10)

The MLL score is very straightforward: it is simply the value of the log-likelihood of the parameters

that would be learned (with the MLE approach) given this structure, i.e. sMLL
D (G) = lD(Θ̂D).

However, it favors denser structures: if G1 = (V,A1) and G2 = (V,A2) are two graph structures

such that A1 ⊂ A2, we can show that: sMLL
D (G1) ≤ sMLL

D (G2) (Proposition 3 in Chapter 2). In

other words, adding useless arcs to a structure can never decrease the MLL score.

There are two main (non-exclusive) approaches to solve this issue:

• constrain the structure space, for example by bounding the maximum number of parents

per node in the final structure,

• use a score that induces a goodness-of-fit versus complexity tradeoff, such as BIC (Schwarz

et al., 1978) or BDe (Heckerman et al., 1995).

We define the Bayesian information criterion (BIC) score score of G ∈ DAGV as follows:

(it can vary from a −2 factor, we chose to follow the definition of Koller and Friedman (2009)

consistent with the implementation by Scutari (2010)):

sBICD (G) = sMLL
D (G)− log(M)

2
P(G)

where M is the number of observations in D, and P(G) is the dimension (i.e. number of free

parameters) of a Bayesian network with structure G. For example, if the variable X1, . . . , Xn are

all categorical (the other cases are detailed in Section 3.3.2), we have:

P(G) =

n∑
i=1

(|V al(Xi)| − 1) |V al(XπG(i))|,

where by convention |V al(X∅)| = 1.

The Bayesian Dirichlet equivalent (BDe) score of G ∈ DAGV is defined as the log of the

marginal likelihood, integrated against a Dirichlet prior7. Formally, assuming a uniform prior

over all network structures, we have

sBDeD (G) = log

∫
Θ∈ϑG

p(D|Θ, G)︸ ︷︷ ︸
Likelihood

p(Θ|G)︸ ︷︷ ︸
Dirichlet prior

dΘ

 . (1.11)

7The Dirichlet prior is chosen in practice mainly because it is conjugate prior for the multinomial distribution:
this means that if the prior distribution of the multinomial distribution’s parameters is Dirichlet, then the posterior
distribution is also Dirichlet. This enables easier interpretation of the prior, and straightforward computations.

34

CHAPTER 1. PROBABILISTIC FRAMEWORK

In practice, we often use the BDeu score, introduced by Buntine (1991), which is a particular

case of BDe with a uninformative Dirichlet prior: all parameters of the Dirichlet prior corresponding

to configurations of Xi ∪Xπ(i) for a given i are equal.

In that case, all Dirichlet parameters are proportional to a parameter α, which is called the

equivalent sample size (ESS). For a given ESS α > 0, we define:

∀i ∈ J1, nK, αi =
α

|V al(Xi)| × |V al(Xπ(i))|
,

and the BDeu score is expressed in closed-form as:

sBDeD (G) =
n∑
i=1

∑
xπ(i)

(
log

(
Γ(αi|V al(Xi)|)

Γ(CD(xπ(i)) + αi|V al(Xi)|)

)
+
∑
xi

log

(
Γ(CD(xi,xπ(i)) + αi)

Γ(αi)

))

where Γ is the Gamma function:

∀x ∈ R \ {0}, Γ(x) =

∫ +∞

0
tx−1e−tdt.

The BDe score is known to be a good indicator of the model’s generalization performance, i.e.

the extent to which the model captures the real underlying distribution. The marginalization

of the likelihood (seen in Equation (1.11)) is indeed known to implicitly penalize the number of

parameters of the associated model (Rasmussen and Ghahramani, 2001).

In Chapter 2, we will use the BDe score, rather than its asymptotic BIC counterpart (Rusakov

and Geiger, 2005), to evaluate Bayesian networks’ performance, as it is done in several recent

papers such as Vandel et al. (2012) or Nie et al. (2016).

Decomposability and Equivalence All the scores we have mentioned are equivalent and

decomposable.

• An equivalent score assigns the same value to all structures of a given Markov equivalence

class.

• A decomposable score is expressed as the sum of local scores (one local score per variable

Xi).

The Hill-Climbing algorithm We use an improved version of the hill climbing algorithm,

originally presented by Bouckaert (1995) as a baseline for Bayesian network structure learning.

Here are the inputs of the HillClimbing algorithm, presented in Algorithm 2.

• D: a dataset containing M observations of X = (X1, . . . , Xn),

• sD : DAGn → R a structure scoring function (depending on the dataset D),

• G: an initial DAG structure with node set V = J1, nK.

35

CHAPTER 1. PROBABILISTIC FRAMEWORK

Algorithm 2 HillClimbing: Bayesian network structure learning algorithm
Input: D, sD, G

1: maxScore ← sD(G)
2: maxScoreIncreases ← TRUE
3: while maxScoreIncreases do
4: maxScoreIncreases ← FALSE
5: for all arc addition, deletion or reversal resulting in an acyclic network do
6: G′ ← new network
7: newScore ← sD(G′)
8: if newScore > maxScore then
9: G← G′

10: maxScore ← newScore
11: maxScoreIncreases ← TRUE

Output: G

Improvements over the hill-climbing algorithm The hill-climbing algorithm stops when

it lands in a local maximum. To avoid cases where this local maximum is far from the global

maximum, we use two approaches described notably by Scutari (2010): tabu list and random

restarts.

• A tabu list of length tabuLength allows the search to decrease the score for tabuLength

steps, while forbidding the local search to go back on its steps during that time. This

enables the algorithm to escape local maxima that are close to better maxima.

• A random restart simply consists in running Algorithm 2 from a (new) random initial

DAG G. Doing this several times and choosing the best-scoring output structure is a way

to avoid bad local maxima.

Algorithm 2 uses three elementary local operators (line 5): arc deletion, addition and reversal.

There however has been research on new local move operators, such as ‘swapping’ proposed by

Vandel, Mangin, and De Givry (2012), which combines addition and deletion in order to escape

local optima more efficiently.

3.2.3 Going beyond this classification of structure learning algorithms

Among the literature tackling the problem of Bayesian network structure learning, the distinction

between constraint-based methods and score and search based methods is almost always clearly

stated. However, some works study how these two approaches are in fact linked: for example,

Cowell (2001) argues that for complete data and a given node ordering, the division between

constraint-based and score and search based methods is largely a myth and de Campos (2006)

proposes a scoring function for Bayesian network structure learning that is quantitatively linked

to the empirical mutual information criterion used in independence tests.

36

CHAPTER 1. PROBABILISTIC FRAMEWORK

3.3 Dynamic Bayesian network structure learning

3.3.1 Problem specificity

Structural constraints When learning the structure of Dynamic Bayesian networks, we are

faced with a particular problem, since we have a set of constraints on the network structure, as

summarized in Section 2.1.4.

Structural constraints in general are straightforward to include in most structure learning

algorithms (especially iterative heuristics). In practice, it just implies to check if learned arcs

satisfy the constraint or not. If not, we simply discard said arc and continue to run the considered

algorithm. More generally, any information on the structure that is not coming from the data

(knowledge on the problem, intuition...) can be naturally taken into account in structure learning

algorithms.

Continuous variables In addition to these structural constraints, dynamic Bayesian networks

in this thesis will always be used to model time series corresponding to continuous variables

(which is the most common case in the literature as well). In this context, there are two main

approaches to learn the structure of a given DBN:

• either we can adapt the structure learning algorithms presented in the case of categorical

variables to continuous variables,

• or we can use algorithms that are specific to the learning of probabilistic structures with

continuous variables.

3.3.2 Adapting structure learning algorithms to continuous variables

Constraint-based algorithms Adapting constraint based algorithms to continuous variables

comes down to testing for independence with continuous variables. This can be done in several

standardized ways, such as Pál et al. (2010).

Score-based algorithms Adapting score-based algorithms to continuous variables narrows

down to adapt the structure scores to continuous variables. In this thesis, we will focus on the

BIC score, which is the most straightforward score to adapt to continuous variables and to mixed

categorical and continuous variables. These scores are respectively referred to as the Gaussian

BIC score and the Categorical-Gaussian BIC score.

Suppose we have a Bayesian network B = (G,Θ) associated with the tuple X = (X1, . . . , Xn),

for which we possess a complete dataset D containing M i.i.d. obervations.

37

CHAPTER 1. PROBABILISTIC FRAMEWORK

The BIC score is decomposable, and can therefore be written as the sum of the local BIC scores:

sBICD (G) =

n∑
i=1

sBIC(Gi),

where Gi is the local subgraph defined in Equation (1.6).

The local BIC score of Xi | Xπ(i) is called Gaussian BIC score (bic-g) if Xi and Xπ(i) are

continuous8 variables, and Categorical-Gaussian BIC score (bic-cg) if Xi is continuous and

Xπ(i) a mix of categorical and continuous variables (corresponding to nodes πcon(i) and πcat(i)

respectively). The generic expression of the local BIC score of Xi | Xπ(i) is:

sBIC(Gi) = liD(Θi)−
log(M)

2
P(Gi) (1.12)

where liD(Θi) is the local maximum log-likelihood, and P(Gi) is the number of parameters needed

to define the conditional distribution Xi | Xπ(i).

Each term of Equation (1.12) depends on the types of variables Xi and Xπ(i). As previously,

three different situations might arise.

• Xi and Xπ(i) are categorical. In that case, as we already have seen in Section 3.2.2, Θi is

the set of parameters {θxi|xπ(i)
} for all xi ∈ V al(Xi) and xπ(i) ∈ V al(Xπ(i)), corresponding

to values of the local probabilities PΘi(Xi = xi|Xπ(i) = xπ(i)). We can write:

liD(Θ̂D
i) =

∑
xi,xπ(i)

CD(xi,xπ(i))log(θ̂Dxi|xπ(i)
)

=
∑

xi,xπ(i)

CD(xi,xπ(i))log

(
CD(xi,xπ(i))

CD(xπ(i))

)
P(Gi) = |V al(Xπ(i))|(|V al(Xi)| − 1).

• Xi and Xπ(i) are continuous. In that case, Θi = (βi, σi) were βi is a vector of size

|π(i)| × 1 and σi is a scalar. These parameters define the conditional Gaussian distribution

Xi | Xπ(i) = xπ(i) through the following relation:

Xi | Xπ(i) = xπ(i) ∼ N (xπ(i)β
T
i , σ

2
i).

Let fΘi(Xi|Xπ(i)) be the density function of this conditional distribution, given in Equa-

tion (1.3). The terms of Equation (1.12) are defined as:

liD(Θ̂D
i) =

M∑
m=1

log(fΘ̂Di
(x

(m)
i |Xπ(i) = x

(m)
π(i)))

P(Gi) = |π(i)|+ 1.
8We remind that all continuous variables are modeled as conditional Gaussian in the context of this thesis.

38

CHAPTER 1. PROBABILISTIC FRAMEWORK

• Xi is continuous and Xπ(i) a mix of continuous and categorical. This is a more

general version of the previous one. Let πcon(i) and πcat(i) be the nodes associated with

the continuous parent variables and the categorical parent variables of i respectively. In

that case, Θi is defined as the set of θxπcat(i) = (βxπcat(i)
, σxπcat(i)) for all configurations

xπcat(i) of Xπcat(i). These parameters define the conditional Gaussian distribution through

the following relation:

Xi | Xπ(i) = xπ(i) ∼ N (xπcon(i)βxπcat(i)
, σ2

xπcat(i)
).

Let fΘi(Xi|Xπ(i)) be the density function of this conditional distribution, given in Equa-

tion (1.3). The terms of Equation (1.12) are defined as:

liD(Θ̂D
i) =

M∑
m=1

log(fΘ̂Di
(x

(m)
i |Xπ(i) = x

(m)
π(i)))

P(Gi) = (|πcon(i)|+ 1)|πcat(i)|.

3.3.3 Specific algorithms for DBN structure learning

In all the experiments conducted in the context of this thesis, we followed a score and search based

approach, and therefore mainly used the BIC-cg score presented in the previous subsection, as

it naturally enables mixed-type variables handling and is efficiently computable.

However, there exist algorithms that are specific to Bayesian network structure learning with

continuous variables. Notably, the partial ordering implied by the structural constraints of

dynamic Bayesian networks enables independent search of each variables’ parent set, without

risking to introduce cycles. For each of the nodes corresponding to variables in the ‘t+ 1’ time

stamp, we are looking for the best set of predictors among the variables in the ‘t’ time stamp,

i.e. in this specific context, Bayesian network structure learning can be seen as a set of variable

selection problems.

Formally: thanks to the homogeneity assumption (Assumption 4 in Section 2.1.4), repeated

time measurements can be used to perform learning, and notably for linear regression. Suppose

we observe repeated measurements of variables X = (X1, . . . , Xn) on time stamps T = {tj , j ∈
J ⊂ Z}, and that ∀j ∈ J, tj+1− tj = δ is constant, then the dynamic Bayesian network modeling

the evolution of X is defined by the following relation:

∀i ∈ J1, nK, Xi(tj) ∼ N (X(tj−1)βTi , σ
2
i),

where the βis are n× 1 vectors and the σ’s are scalars.

The parameters of the DBN are B = {βi}1≤i≤n and σ = {σi}1≤i≤n, and the structure of the

network is given by the nonzeros coefficients of the βi’s. The structure of the DBN is entirely

39

CHAPTER 1. PROBABILISTIC FRAMEWORK

defined by the nonzero elements of matrix B.

One of the popular approach to tackle variable selection with continuous variables is the

LASSO method introduced by Tibshirani (1996), which consists in penalizing the usual mean

square loss
∑M

m=1

(
x

(m)
i − x

(m)
π(i)βi

)2
by λ||βi||L1 , i.e. the L1 norm of the βi’s , multiplied by a

coefficient λ. Minimizing this penalized loss induces sparsity in the estimated parameter vectors

β̂i, which is a way to naturally perform variable selection (finding the best λ coefficient is generally

done by cross-validation).

3.4 What is really wanted from Bayesian networks?

3.4.1 Causal interpretation: dream

The fact that Bayesian networks are defined by directed acyclic graphical structures raises many

false hopes in terms of causal inference. While Bayesian networks are indeed very compact

and easy-to-read representations of joint distributions, one must be cautious when it comes to

interpreting arrows as causal relationships.

We have seen in Section 2.1.3 that Bayesian networks are only identifiable up to their Markov

equivalence class (i.e. the set of all Bayesian networks encoding the same set of conditional

independence relations), and one can easily see that Bayesian network belonging to the same

Markov class can have very different arc orientations.

A simple example is given by a Bayesian network modeling the joint distribution of three variables

X, Y and Z: in that case, the structures X → Y → Z and Z → Y → X encode the same

conditional independence {Z ⊥ X|Y }, and are therefore in the same equivalence class. However,

they contain arcs reversed from each other.

From an intuitive point of view, it could be argued that a Bayesian network should represent

the causal structure of the data it is describing. To answer this request, Pearl et al. (2009)

introduces causal Bayesian networks. However, strong assumptions are needed for these

models to be learnable from the data:

• Each variable Xi must be conditionally independent of its non-effect given its direct causes,

• There must exist a network structure which is faithful to the dependence structure of X.

These assumptions notably imply that there is no latent variable in the data, i.e. no unobserved

variable influencing the variables of the network.

In this precise case, such a causal network may be learned from the data, and causal inference

may be done. Checking if these assumptions are satisfied is not often doable in practice, and we

40

CHAPTER 1. PROBABILISTIC FRAMEWORK

therefore do not go further into the theory and use of causal networks. We therefore stick to the

less intuitive but more sound interpretation of absence of arcs as conditional independence: each

node is independent of its non-descendants given its parents.

Note that in the case of the dynamic Bayesian network described previously, interpreting

arcs as causal could be acceptable because of the strength of the assumptions concerning the

underlying stochastic process.

3.4.2 Generalization performance and readability: reality

We have seen that learning causal relationships is not a reasonable goal, moreover, most algo-

rithms only learn approximately optimal structures (either in terms of score or verified conditional

independence), and finally, models are only identifiable up to their Markov equivalence class. The

question can then be asked: what do we really want from Bayesian networks ?

Going beyond the purely statistical goal of model identification, a reasonable goal with BNs

is the two sided ‘performance’:

• Qualitative performance (interpretability / readability). Bayesian networks that are

readable are more convincing to non-experts, and can provide insights in a way standard

discriminative models cannot.

• Quantitative performance (generalization accuracy). Bayesian networks that have a

good generalization performance are more accurate when answering queries of any kind,

and can therefore perform multiple applicative tasks: prediction, missing data imputation,

diagnosis, ...

The validation log-likelihood (VLL) score One possible way to measure how well a gener-

ative model captures the underlying distribution of the data is to use the validation log-likelihood

(VLL) score. This procedure is notably used for hidden Markov models hyperparameters selection

(Celeux and Durand, 2008), but it is rarely considered in the context of Bayesian networks in

general.

We place ourselves in the following context: we have M observations of the categorical variables

X = (X1, . . . , Xn) in a dataset D. We suppose we have a training set T and a validation set V

such that D = T t V .

The VLL score of a DAG G trained on T and validated on V is defined as:

sV LLT,V (G) = lV (Θ̂T). (1.13)

In other words, it is the log-likelihood of the parameters learned by MLE on the training set

T , evaluated on dataset V . This score captures the generalization capability of structure G, as

41

CHAPTER 1. PROBABILISTIC FRAMEWORK

long as this structure was learned independently from the validation V : in practice, G comes

either from prior knowledge concerning the variables X, or from a structure learning algorithm

that was run on dataset T only.

If T and V are randomly chosen from D, we use the notation sV LLD (G) to refer to the VLL score

of G, which is in that case a random variable.

This quantity may be estimated by averaging the VLL score for different random partitions (T, V)

of D, for example by following the cross-validation procedure, which is a very common approach

in supervised learning (Friedman et al., 2001).

If D is split in K random sets D1, . . . , DK , and defining, for k ∈ J1,KK,

Tk =
⋃

l∈J1,KK\{k}

Dl

Vk = Dk.

The K-fold Cross-validation log likelihood (CVLL) score of a given structure learning

algorithm algo-BNSL is defined as9:

sCV LLD (algo-BNSL) =
1

K

K∑
k=1

sV LLTk,Vk
(algo-BNSL(Tk)). (1.14)

The CVLL score is used to evaluate algorithms rather than structures, since there is no guarantee

algo-BNSL learns the same structure on the different training sets {Tk}1≤k≤K .

In Chapter 2, we use both the BDe score and the VLL score (averaged over several random

partitions (T, V) of D) to assess the performance of structure learning algorithms.

In Section 1 of Chapter 4, we study the VLL score more in depth, notably exploring how it avoids

overfitting in a natural way, and how well it really assesses the generalization ability of a structure

learning algorithm.

9sCV LLD (algo-BNSL) is a random quantity as well.

42

Chapter 2

Screening strong pairwise relationships
for fast Bayesian network structure
learning

Contents
1 Bayesian network structure learning using data from the IoT do-

main: a particular problem . 44
1.1 Determinism . 44
1.2 High number of configurations for categorical variables 47

2 Bridging the gap between determinism and the MLL score 48
2.1 Notations and preliminary results . 48
2.2 Deterministic DAGs and the MLL score 50

3 Bayesian network structure learning with determinism screening . 53
3.1 Redundancy: definition, properties and preprocessing algorithm 53
3.2 Choosing among deterministic trees . 56
3.3 Determinism screening: finding the optimal deterministic forest 60
3.4 Bayesian network structure learning with determinism screening: the

ds-BNSL algorithm . 61
4 Extension to generic data: strong pairwise relationships screening . 62

4.1 Quasi-determinism . 63
4.2 Quasi-determinism screening algorithm 63
4.3 Learning Bayesian networks using quasi-determinism screening 65
4.4 Complexity analysis . 66

5 Experiments . 67
5.1 Setting . 67
5.2 Running the ds-BNSL algorithm on an IoT dataset 68
5.3 Running the qds-BNSL on benchmark datasets 73

6 Concluding remarks . 86
6.1 Summary . 86
6.2 Some perspectives . 86

43

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

In this chapter, we are interested in finding to what extent determinism, that we define using

information-theoretic notions, can be exploited in order to improve Bayesian network structure

learning. We focus on structure learning for Bayesian networks that only model categorical

variables.

We first define determinism, and explain how Bayesian network structure learning is impacted by

its presence in data (Section 1). We then propose several results bridging the gap between the

notion of determinism and score&search based structure learning of Bayesian networks (Section 2).

These theoretical results are then used to design an algorithm enabling a new approach to Bayesian

network structure learning in the presence of determinism (Section 3). This idea is subsequently

extended to any kind of data via the notion of quasi-determinism (Section 4). Finally, we present

some experiments showing how these algorithms perform in practice, both on reference benchmark

datasets and on real-world data from the IoT domain (Section 5). We conclude by discussing

these results and stating some perspectives (Section 6).

1 Bayesian network structure learning using data from the IoT
domain: a particular problem

In this section, we present two major issues that arise when learning Bayesian networks on internet

of things (IoT) descriptive categorical data: the presence of determinism and the fact that some

of the variables have a high number of accessible configurations.

First, we formally define the notion of determinism, and show how it relates to functional

dependence. We then describe the problems that generally arise when learning Bayesian networks

using data that contain determinism, and how past works address this problem. In the second

part, we briefly explain how categorical variables with a high number of values are difficult to

take into account when learning Bayesian networks with standard methods.

1.1 Determinism

1.1.1 Introduction

Determinism can be found in several types of data, for example in the fields of cancer risk

identification (de Morais et al., 2008) or nuclear safety (Mabrouk et al., 2014). Moreover, data is

increasingly collected and generated by software systems which in their vast majority rely on

relational data models or lately on semantic data models (El Kaed et al., 2016) which cause

deterministic relationships between variables to be more and more common in datasets.

1.1.2 Definitions

Determinism is a degenerate case of probabilistic dependency, that is also called functional.

Formally, if X is a tuple of random variables and Y a simple random variable, and P a probability

44

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

distribution over (X, Y), the relationship X→ Y is said to be functional or deterministic iff

there exists a function f : V al(X)→ V al(Y) such that ∀(x, y) ∈ V al(X)× V al(Y),

P (Y = y|X = x) = I{y=f(x)}.

i.e. iff for any realization (x, y) of (X, Y), we have that y = f(x).

Remark In the particular case where X and Y are continuous, and f is linear, this definition

coincides with the notion of co-linearity.

In this chapter, we focus on the problem of Bayesian network structure learning from categorical

data only (without any prior knowledge). In that context, we can only observe empirical

determinism, that is, with respect to a dataset D.

Definition 3 Determinism w.r.t. D

Given a dataset D containing observations of XJ and Xi , the relationship XJ → Xi is

deterministic with respect to D, iff HD(Xi|XJ) = 0, where

HD(Xi|XJ) = −
∑
xi,xJ

pD(xi,xJ) log(pD(xi|xJ))

is the empirical conditional Shannon entropy of Xi given XJ with respect to D.

We remind that pD(xi|xJ) = PDXi|XJ
(Xi = xi|XJ = xJ) is the empirical conditional probability

of observing Xi = xi given that XJ = xJ , i.e.

pD(xi|xJ) =
CD(xi,xJ)

CD(xJ)
.

It is straightforward to show that:

HD(Xi|XJ) = 0

⇔ ∀xJ ∈ V al(XJ), ∃!xi ∈ V al(Xi) s.t. p
D(xi|xJ) = 1.

Definition 3 is therefore the empirical version of the definition of a functional relationship that

we presented: for each possible value xJ of XJ , there exists a value xi of Xi such that every time

we have an observation x(m) in D for which x
(m)
J = xJ , we also have x(m)

i = xi.

In the rest of this work, determinism will always implicitly mean empirical determinism

with respect to a given dataset D. Moreover, we will assume that the sets of variable val-

ues {V al(Xi)}1≤n contain only values of the Xi variables that are observed in D.

45

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

1.1.3 Bayesian network structure learning in presence of determinism

Several research works tackle the problem of Bayesian Network structure learning in presence

of deterministic relationships (Scheines et al., 1996; Luo, 2006; Mabrouk et al., 2014; de Morais

et al., 2008), but to our knowledge, they focus on constraint-based approaches.

We remind that constraint-based structure learning relies on the identification of conditional

independence statements from the data (by running some independence tests) in order to induce

DAG structure underlying the joint distribution of the variables. This task assumes that all

probabilistic independence relations (⊥P) can be represented by a DAG structure G thanks

to the notion of d-separation (⊥G). However, this implication only holds when the underlying

distribution of the data P is DAG-faithful, as explained in Chapter 1.

As shown by Luo (2006), the presence of determinism may introduce independence relations

that do not correspond to d-separations in the true inherent DAG structure of the data: the

faithfulness of the distribution is therefore lost. The following simple example illustrates this

phenomenon.

Example of faithfulness failure due to determinism Consider a tuple of categorical ran-

dom variablesX = (X1, X2, X3, X4), and an associated DAG structureG = ({1, 2, 3, 4}, {(1, 3), (2, 3), (3, 4)})
represented in Figure 2.1. Let B = (G, θ) be a Bayesian network modeling the distribution of X,

with θ ∈ ΘG a set of parameters defining the local conditional distributions Xi|XπG(i).

X3

X1 X2

X4

Figure 2.1 – Example of Bayesian network structure G

Let P be the distribution encoded by the Bayesian network B, and suppose that the relationship

X{1,2} → X3 is deterministic, i.e.

H(X3|X{1,2}) = 0.

Under these assumptions, we can show that P is not DAG-faithful: indeed,

• We have P (X3|X{1,2}, X4) = P (X3|X{1,2}) since X{1,2} → X3 is deterministic.

• This implies that X3 ⊥P X4 | X{1,2} holds.

• However, X3 ⊥G X4 | X{1,2} does not hold since G contains the arc X3 → X4.

46

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

By definition (Section 2.1.3 of Chapter 1), P is therefore not faithful to G, although G is the

true structure underlying P . The distribution P is therefore not DAG-faithful.

More generally, one can show that such a failure of faithfulness consistently happens as soon

as a variable that is deterministic given its parent variables has a child variable in the DAG

structure underlying the distribution.

The different works that tackle the problem of constraint-based Bayesian network structure

learning in presence of deterministic relationships, such as Scheines et al. (1996), de Morais

et al. (2008) or Luo (2006), try to circumvent the problem of unfaithfulness, by designing specific

algorithms that take special care of deterministic relationships. Mabrouk et al. (2014) argues

that, although these methods are efficient, most of them have important shortcomings, such as

learning too many or too few arcs.

In this thesis, we choose to take a step back from the statistical problem of model identification

which is central in constraint-based methods, and look into the way deterministic relationships

(in an empirical sense) influence score and search based Bayesian network structure learning.

1.2 High number of configurations for categorical variables

1.2.1 Description

An important part of descriptive metadata we deal with comes from real-world IoT systems.

Some variables in these datasets contain almost unique information for each observation (entry)1.

These variables have almost as many different values as there are rows in the associated table. As

an illustration, out of 47 descriptive attributes and 1000 rows in the HOMES metadataset (La Tosa

et al., 2011) that we use for the experiments in Section 5.1, 6 attributes have more than 500 values.

This phenomenon is also observed outside of the context of IoT data. For example, data from

the Pump It Up 2 challenge, that is used in experiments of Section 5.2, contains variables with a

high number of values: the dataset has 54k rows, and some of the low-level descriptive variables

have more than 10k values.

1.2.2 Memory issues

The number of parameters associated with a Bayesian network modeling one or more of such ‘big’

variables can be very high.

For example, the conditional probability table (CPT) describing the distribution of a variable
1An extreme example is the described element id variable, which has as many values as there are rows.
2https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/

47

https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

with 10 values which has three parent variables with 500 values each contains more than 1011

parameters. If each parameter was to be stored in a single byte, this CPT would take up more

than 100Go of memory space.

This raises issues when searching locally for the best structure in the context of score and

search based Bayesian network structure learning, or when running independence tests in the

context of constraint based structure learning. Such CPTs must be stored to compute scores or

tests statistics, thus massively slowing down the associated structure learning algorithm. This

problem is frequently encountered when running benchmark structure learning algorithms (Hill

Climbing, MMHC,...) on datasets containing variables with a high number of configurations, and

was the initial motivation behind the theoretical and algorithmic contributions presented in the

rest of this chapter.

2 Bridging the gap between determinism and the MLL score

In this section, we first remind known results concerning the rewriting of the max log-likelihood

(MLL) score for Bayesian networks. We then show several results that lead to Proposition 3,

stating that particular cases of tree-structured DAGs can be solutions of the structure learning

optimization problem with regards to the MLL score. We finally generalize this result in Proposi-

tion 4, and explain the intuition behind the use of this theoretical property to simplify in practice

the Bayesian network structure learning task.

In all this section, we consider that X = (X1, . . . , Xn) is a tuple of categorical random

variables indexed by V = J1, nK, and that D is a complete dataset containing M observations of

X.

The proofs of lemmas and propositions can be found in Appendix A.2.

2.1 Notations and preliminary results

2.1.1 An important lemma

We first recall a lemma that relates the MLL score, presented in Chapter 1, to the notion

of empirical conditional entropy. This result is well known and notably stated by Koller and

Friedman (2009).

Lemma 2 For G ∈ DAGV associated with variables X1, . . . , Xn observed in a dataset D,

sMLL
D (G) = −M

n∑
i=1

HD(Xi|XπG(i))

where by convention HD(Xi|X∅) = HD(Xi).

48

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

2.1.2 The MLL score and complete DAGs

The following lemma formalizes the idea that the MLL score leads to overfitting, by showing it

cannot decrease when an arc is added to a DAG structure.

Lemma 3 Let G = (V,A) be a DAG, and G′ = (V,A ∪ {(i0, i1)}) a DAG with one more arc

(i0, i1) /∈ A. Then, the MLL score difference of these structure is:

sMLL
D (G′)− sMLL

D (G) = M
(
ID(Xi0 , Xi1 | XπG(i1))

)
.

where ID is the empirical mutual information, defined as, for all I, J, C ⊂ V

ID(XI ,XJ |XC) =
∑

xI ,xJ ,xC

pD(xI ,xJ ,xC)log
(

pD(xI ,xJ |xC)

pD(xI |xC)pD(xJ |xC)

)
,

which has the property of being nonnegative.

Remark For G and G′ satisfying the hypothesis of Lemma 3, we have that sMLL
D (G′) ≥

sMLL
D (G). In other words, adding an edge to a DAG can only increase its MLL score.

We are now going to show how this implies that a ‘complete’ DAG (in the sense that no edge

can be added to it without breaking its acyclicity property) maximizes the MLL score among all

possible network structures.

In the following definition and lemma, we formally define complete DAGs and show that all

complete DAGs have the same MLL score.

Definition 4 Complete DAG

For σ ∈ Sn (set of permutations of J1, nK), the σ-complete DAG is defined as Gσcomp = (V,Aσcomp)

where

Aσcomp = {(σ(i), σ(j)) | i < j, (i, j) ∈ V 2}.

In other words: Gσcomp contains all the arcs that are consistent with the ordering σ. It is indeed

complete because adding any arc would break its acyclicity property.

Lemma 4 For any σ ∈ Sn,

sMLL
D (Gσcomp) = −MHD(X1, . . . , Xn).

49

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Remark The MLL score of a complete DAG, does not depend on the ordering σ this DAG is

consistent with.

Lemmas 3 and 4 straightforwardly give us the following result:

Lemma 5 ∀G ∈ DAGV , the MLL score of G has the following upper bound:

sMLL
D (G) ≤ −MHD(X1, . . . , Xn). (2.1)

Moreover, the following condition on G is sufficient for this upper bound to be reached:(
∃σ ∈ Sn | G = Gσcomp

)
⇒
(
sMLL
D (G) = −MHD(X1, . . . , Xn)

)
. (2.2)

Remark The fact that complete DAGs maximize the MLL score is a consequence of overfitting:

the most complex models have the best scores.

A natural question that now comes to mind is: are there other graphs (possibly sparse) that

also maximize this score ? If such a graph is found, while also satisfying a complexity constraint

(either on the number of parameters, or on the number of edges, number of parents per node,

etc), it could be very interesting from a fit-complexity tradeoff standpoint.

In the next subsection we will see examples of such graphs, in the specific case where data

contains pairwise determinism.

2.2 Deterministic DAGs and the MLL score

We still consider the setting of a dataset D, containing observations of X = (X1, . . . , Xn).

We now define the notion of deterministic DAG with respect to D.

Definition 5 Deterministic DAG w.r.t. D

G ∈ DAGV is said to be deterministic with respect to D iff

∀i ∈ V s.t. πG(i) 6= ∅, XπG(i) → Xi is deterministic w.r.t. D.

In other words, G is deterministic if every node which has at least one parent in G corresponds

to a variable that is entirely determined by its parent variables.

2.2.1 Deterministic trees

The proposition that follows is a natural consequence of the results proven in the previous

subsection.

Proposition 3 If T is a deterministic tree with respect to D, then T maximizes the MLL score

among all DAG structures, i.e.

sMLL
D (T) = max

G∈DAGV
sMLL
D (G).

50

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Remark A deterministic tree T implies only pairwise deterministic relationships, since by

definition every node except the root has a single parent in T .

We have seen that complete DAGs also maximize the MLL score. The main interest of Propo-

sition 3 resides in the fact that, under the (strong) assumption that a deterministic tree T exists,

it is a sparse solution to the combinatorial optimization problem introduced in Equation (1.9),

with n− 1 arcs (instead of n(n−1)
2 for a complete DAG).

Proposition 3 is all the more interesting as the tree T is ‘deep’. The existence of such a deep

deterministic tree can seem like a very constraining condition. It does however happen naturally

in some cases, such as when data is stored in a relational database. In this specific context, we

are confident that we can find networks that are sparse, interpretable and which maximize the

MLL score.

2.2.2 Deterministic forests

The deterministic tree assumption of Proposition 3 is very restrictive. In this section, we propose

an extension of this result to deterministic forests.

First, we show the following straightforward lemma, which states that a deterministic forest

can be written as a disjoint union of deterministic trees.

Lemma 6 Deterministic forest w.r.t. D

If F is a deterministic forest with respect to D, then ∃ T1, . . . , Tp, p disjoint deterministic trees

w.r.t. DVT1
, . . . , DVTp

respectively, such that
p⋃

k=1

VTk = V and

F =

p⋃
k=1

Tk.

Note: the ‘∪’ notation is extended to the canonical union for graphs, i.e. for two graphs G = (V,A)

and G′ = (V ′, A′),

G ∪G′ = (V ∪ V ′, A ∪A′).

We now present the main theoretical contribution of this section, which extends Proposition 3

to deterministic forests. For a given forest F , we remind that the set of F ’s roots is denoted by

R(F) = {i ∈ V | πF (i) = ∅}.

Proposition 4 Suppose F is a deterministic forest w.r.t. D. Let G∗R(F) be a solution of the struc-

ture learning optimization problem introduced in Equation (1.9) with the MLL score w.r.t. DR(F)

(the subset of D containing observations of XR(F)) i.e.

sMLL
DR(F)

(G∗R(F)) = max
G∈DAGR(F)

sMLL
DR(F)

(G).

51

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Then, G∗ = F ∪G∗R(F) is a solution of the problem given in Equation (1.9) w.r.t. D, i.e.

sMLL
D (G∗) = max

G∈DAGV
sMLL
D (G).

Idea of proof The proof is detailed in Appendix A.2. Its main idea relies on the fact that, if F

is a deterministic forest w.r.t. D, all the information associated with X is contained in XR(F), i.e.

HD(X) = HD(XR(F)).

Remarks Proposition 4 shows that the optimization problem for all nodes can be narrowed

down to the optimization problem for roots of a deterministic forest only, if the criteria to be

optimized is the MLL score.

This is a general result in the sense that, as opposed to Proposition 3, the assumptions of

Proposition 4 are always verified. If there is no pairwise determinism in the dataset D, then

F∅ = (V, ∅) is the only deterministic forest w.r.t. D, and solving problem given in Equation (1.9)

for G∗R(F∅)
is the same as solving it for G∗.

Of course, Proposition 4 is all the more interesting that the number of roots of the deterministic

forest F , |R(F)|, is small compared to n. This enables us to focus on a smaller and easier

structure learning problem while still having the guarantee to learn an optimal Bayesian network

with regards to the MLL score.

Extreme example with a complete DAG G∗R(F) For example, suppose that we reg-

ularize the structure learning problem by restricting the structure space DAGV to {G ∈
DAGV | max

1≤i≤n
|πG(i)| ≤ P} for P << n. If we are able to find F a deterministic forest

w.r.t. D such that |R(F)| ≤ P , then the graph G∗ = F ∪GcompR(F), with G
comp
R(F) any complete DAG

on the roots, satisfies the constraints while maximizing the MLL score (from Proposition 4).

2.2.3 Extension to any deterministic DAG

The proof of Proposition 4 (Appendix A.2.) suggests that this property still holds when F is any

kind of deterministic DAG (and not necessarily a forest). However,

1. Finding a deterministic DAG on a set of n random variables is a very complex problem

since we need to test every combination of parents for every variable, which suggests an

exponential complexity. This is not very interesting since our goal is to simplify the structure

learning problem.

2. The density of a deterministic DAG is not known a priori, whereas we have absolute control

over the number of parents per variables in the case of trees and forests.

52

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

3 Bayesian network structure learning with determinism screen-
ing

In this section, we detail the design of the ds-BNSL algorithm (Rahier et al., 2018a) that speeds

up Bayesian network structure leaning in presence of pairwise deterministic relationships. For

this purpose, we first define the notion of redundancy for categorical random variables and prove

associated properties, that are necessary to guarantee that all of our proposed algorithms are

well defined.

The proof of lemmas and propositions can be found in Appendix A.2.

3.1 Redundancy: definition, properties and preprocessing algorithm

3.1.1 Redundant variables

We define redundant variables, and introduce a set of associated properties.

Definition 6 Redundant variables

For a given n−tuple of variables X and an associated dataset D, we define the relationship

denoted by ↔
D

as follows: for i, j ∈ J1, nK,

Xi ↔
D
Xj ⇔ HD(Xi|Xj) = 0 and HD(Xj |Xi) = 0.

We will say that Xi and Xj are redundant with respect to D.

The following Lemma states that if two variables are redundant, they have the same empirical

entropy.

Lemma 7 In the setting of Definition 6,

Xi ↔
D
Xj ⇒ HD(Xi) = HD(Xj).

It is now straightforward to show that being redundant w.r.t. to a dataset D is an equivalence

relationship, i.e. a symmetric, reflexive and transitive binary relationship.

Proposition 5 The relationship ↔
D

is an equivalence relationship on the set {X1, . . . , Xn}.

We recall that an equivalence relationship defines a partition of the associated set, formed by

the relationship equivalence classes.

3.1.2 Deterministic directed graphs, redundancy and cycles

We introduce the following intuitive lemma:

Lemma 8 If Xi and Xj are categorical variables such that HD(Xi|Xj) = 0, then

|V al(Xi)| ≤ |V al(Xj)| (2.3)

with equality in Equation (2.3) if and only if Xi ↔
D
Xj.

53

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

The next result states that only redundant variables can cause the introduction of a cycle in

a deterministic DG with at most one parent per node.

Proposition 6 Let X a tuple of random variables indexed by V , and observed in a dataset D.

Let G = (V,A) a directed graph such that:

∀i ∈ V, |πG(i)| ≤ 1

∀i ∈ V s.t. πG(i) 6= ∅, HD(Xi|XπG(i)) = 0.

Then, if there exists a cycle in G, i.e.,

∃i1, . . . ip ∈ V, s.t. (i1, i2), (i2, i3), . . . , (ip−1, ip), (ip, i1) ∈ A,

the associated variables are all redundant (in the same equivalence class with respect to the

relationship ↔
D
).

This proposition leads to the following result:

Proposition 7 In the setting of Proposition 6, if there is no redundant variables in X, then any

directed graph G such that:

∀i ∈ V, |πG(i)| ≤ 1

∀i ∈ V s.t. πG(i) 6= ∅, HD(Xi|XπG(i)) = 0

is a forest.

3.1.3 Handling redundancy: the IdentifyRedundancy algorithm

In practice, the risk of having redundant variables exists, especially in the context of IoT data.

There are two main options to solve this issue, both of which imply a procedure in O(Mn2)

complexity:

1. Discard every redundant variable (keep only one representative by equivalence class

for the equivalence relation ↔
D
). This should be considered if our priority is to have no

redundant information in the final graph.

2. Establish a rule to graphically represent each class of redundant variables, in order

to make sure no cycle is introduced. This approach enables all original variables of interest

to be represented in the graph, even if some of them are redundant (e.g. two variables

represent the same concept, but in different units, or different languages). It is the safest

approach if we have no information concerning the variables that will be interesting later

on.

54

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

We propose to follow the second approach with the IdentifyRedundancy algorithm, presented

as Algorithm 3 below. The idea is to choose one representative by redundancy class, and make it

the parent of all the other elements of its class in the final graph. This enables to keep all the

original variables in the final graph, while making sure no cycle is introduced, as we only consider

the chosen representatives as potential parents for the other variables.

Note that a very similar algorithm could be used for the first approach (discarding redundant

variables).

This algorithm takes as only input the empirical conditional entropy matrix w.r.t. D, which

we denote by HD, i.e.

HD =
(
HD(Xi|Xj)

)
1≤i,j≤n .

It returns an adjacency matrix A corresponding to the graphical representation of redundant

data.

Algorithm 3 IdentifyRedundancy: Choose a representative for each group of redundant vari-
ables

Input: HD

1: A←
(
IHDij=0

)
1≤i,j≤n

2: I ← J1, nK #list of indexes to go through
3: while I 6= ∅ do
4: i← I [1]
5: Si ← which (Ai• × A•i == 1)
6: if |Si| > 1 then #there is at least one redundant variable with i
7: for k ∈ Si \ {i} do
8: Aki ← 0 #no other node from the class can be parent of i
9: for l ∈ Si \ {k, i} do
10: Alk ← 0 #nodes 6= i from the class Si cannot be connected
11: I ← I \ Si

Output: A

Going through IdentifyRedundancy

• The matrix A, that is dynamically modified in the algorithm, represents a potential adjacency

matrix. Each 1 in A represents an arc that can potentially be part of a deterministic forest.

We start with A←
(
IHDij=0

)
1≤i,j≤n

, meaning that any empirically deterministic relationship

can potentially be represented by an arc, then we select arcs in between variables that are

equivalent with regards to the relation ↔
D
.

• We identify groups of variables that are redundant w.r.t. D. There are no principled way

to choose the structure representation of these variables from data only. By convention, we

choose the variable with the lowest index as the representative of the redundancy class: its

55

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

associated node is the parent of all the nodes associated with the other variables in the class.

This is consistent with Proposition 3 since every child node is empirically deterministic

given its parent node.

• Since ↔
D

is an equivalence relationship, its equivalence classes form a partition of V . Let

i1, . . . , ip ∈ V such that {Si1 , . . . Sip} forms a partition of V . The complexity of this

algorithm is O(M
p∑

k=1

|Sik |2), which is obviously O(Mn2).

• Line 7, we make sure that no node k in Si can be a potential parent of its chosen representative

i. Every node in Si is in the same equivalence class as k for the relation ↔
D
, but i being the

smallest of the indexes, it is chosen as the parent of the other variables in our convention.

3.2 Choosing among deterministic trees

It is possible that several different deterministic trees coexist, as we will see in the next detailed

example. In this case, we follow the rule of the fit-complexity tradeoff and choose to select the tree

with the lowest number of parameters (which is a complexity criterion) among all deterministic

trees (which all maximize the MLL score, which is a fit criterion).

3.2.1 Example of deterministic tree selection

Setting We consider X = (X1, . . . , X5), where the Xis are categorical, with respective value

sets V al(X1), . . . , V al(X5), with the following cardinalities: |V al(X1)| = 100, |V al(X2)| = 20,

|V al(X3)| = 5, |V al(X4)| = 10, |V al(X5)| = 10.

We suppose that we possess a dataset D containing M observations of X, in which the following

equations hold:

HD(X2|X1) = 0,

HD(X4|X2) = 0,

HD(X5|X2) = 0,

HD(X3|X1) = 0.

Note that this notably implies HD(X4|X1) = 0 and HD(X5|X1) = 0.

In this setting, there exists several deterministic trees with respect to D.

Deep deterministic tree Let Gdeep = ({1, 2, 3, 4, 5}, {(1, 2), (1, 3), (2, 4), (2, 5)}), represented
in Figure 2.2.3

Shallow deterministic tree Let Gshall = ({1, 2, 3, 4, 5}, {(1, 2), (1, 3), (1, 4), (1, 5)}), repre-
sented in Figure 2.3.

3For readability reasons, we label the nodes in the structure by the names of the variables they represent.

56

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

X1

X2 X3

X4 X5

Figure 2.2 – Representation of the tree Gdeep

X1

X3 X4X2 X5

Figure 2.3 – Representation of the tree Gshall

Selecting the less complex tree Considering the number of accessible values of variables

X1, . . . , X5, we have:

P(Gdeep) = 100× 19 + 100× 4 + 20× 9 + 20× 9

= 2660,

P(Gshall) = 100× (19 + 4 + 9 + 9)

= 4100.

Therefore, Gdeep is much simpler than Gshall, in terms of number of parameters.

Intuitive link between complexity, quantity of information, and depth Considering

that the arcs of the trees represent pairwise deterministic relationships, the deep structure Gdeep
intuitively contains more information than the shallow structure Gshall. Indeed, the fact that

HD(X4|X2) = 0 is not visible in Gshall, whereas every deterministic relation encoded in Gshall
is also visible in Gdeep. Of course, in this particular case, we do not interpret DAG structures

as representing conditional independence relations like we usually do with Bayesian networks.

Indeed, we are facing (empirical) deterministic relationships, which make the faithfulness property

fail, and interpretation in terms of conditional independence loose its value. The interpretation

we are looking for in this deterministic setting is rather ‘which variable is enough to know which

other one’. Deterministic trees such as Gdeep and Gshall encode this information, in addition to

also maximizing the MLL score.

57

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

3.2.2 Choosing the less complex deterministic tree: formalization and discussion

For a given tuple of variables X indexed by V = J1, nK and observed in a dataset D, we define

DTV ⊂ DAGV as the set of deterministic trees with respect to D.

We denote by TV = {G ∈ DAGV | ∃r ∈ V s.t. ∀i ∈ V \ {r}, |πG(i)| = 1} the set of trees with

nodes V . We can write:

DTV = {G = (V,A) ∈ TV | ∀(i, j) ∈ A, HD(Xj |Xi) = 0}. (2.4)

Moreover, thanks to Proposition 3 we have:

DTV ⊂ argmax
G∈DAGV

sMLL
D (G).

In other words, the set of deterministic trees is a subset of the set of structures which maximize

the MLL score (a subset containing only sparse structures).

Choosing the less complex deterministic tree can be formalized as the following optimization

problem:

T ∗ ∈ argmin
G∈DTV

P(G), (2.5)

where we remind that P(G) is the number of free parameters of a Bayesian network with structure

G.

It should be noted that this is also equivalent to

T ∗ ∈ argmax
G∈DTV

sBICD (G).

As a general principle in ML, we want to optimize the complexity-fit tradeoff. Usually,

this is done by optimizing an hyper parameter λ in a score defined by (fit− λ× complexity),

such as the BIC score presented in Chapter 1. In the very particular case where there exists a

deterministic tree however, we choose to look for the model that minimizes the total number of

parameters (complexity) among a set of models that already maximize the MLL score (fit): the

deterministic trees.

Link between complexity and depth for deterministic trees Choosing the deterministic

tree with the smallest number of parameters is all the more motivated in this case, by the fact

that the number of parameters of a deterministic tree is linked to its depth, and therefore to the

model’s interpretability, as we have seen in the previous example.

This correlation can be proven in the following illustrative setting: assume a collection of random

variables X1, . . . Xk, Xk+1, such that HD(Xi|Xi−1) = 0 and H(Xi−1|Xi) > 0 for all i ∈ {2, . . . , k+

58

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

1}. This notably implies that Xk+1 has all the variables X1, . . . Xk as potential deterministic

parents4 Thanks to Lemma 8, we know that these hypotheses imply that (|V al(Xi)|)1≤i≤k+1

is decreasing. Therefore, choosing Xk as Xk+1’s parent guarantees to minimize the number of

parameters. By immediate induction, we see that the deterministic tree defined by:

T = ({1, . . . , k + 1}, {(i, i+ 1)}1≤i≤k),

has a minimal number of parameters among all deterministic trees modeling variables {X1, . . . Xk+1}.
It also obviously has maximal depth.

3.2.3 Choosing single parents independently in deterministic graphs: a sound ap-
proach if no redundant variables are present

Decomposability of the parameter-minimizing problem We recall that, for i ∈ V , Gi
denotes the local subgraph of G centered on i, defined in Equation (1.6) in Chapter 1. For any

DAG G, the total number of parameters P(G) decomposes as the sum of the local number of

parameters P(Gi), i.e.

P(G) =
n∑
i=1

P(Gi). (2.6)

Independently choosing the simplest deterministic parent variable for each variable is not guar-

anteed to return a DAG: there is a risk of introducing cycles. However, assuming there are

no redundant variables in D (and that we are only selecting at most one parent per variable),

Proposition 7 tells us that a deterministic directed graph w.r.t. D is necessarily acyclic. In that

case, one may choose πG(i) independently for each i ∈ V , as long as HD(Xi|XπG(i)) = 0, without

risking to introduce a cycle in G. Therefore, minimizing P(G) among a set of (single-parented)

deterministic DAGs narrows down to minimizing independently each term P(Gi) appearing in

the right hand side of Equation (2.6).

3.2.4 Finding the best local deterministic tree in practice: the BestParent algorithm

We recall that the number of parameters of a local distribution Xi | XπG(i) is given by:

P(Gi) = (|V al(Xi)− 1|)× |V al(XπG(i))|.

Therefore, if a given variable Xi has many potential (single) deterministic parent variables,

minimizing the number of parameters of the local distribution Xi|XπG(i) narrows down to choosing

the parent πG(i) of i such that XπG(i) has the smallest number of values |V al(XπG(i))| among all

potential deterministic parent variables.

This leads to the Algorithm 4, which takes as input:
4This is a common setting in practice when considering variables that all correspond to the same descriptive

dimension (location, data type, etc), as there tends to be a inherent hierarchy among those variables in terms of
information granularity.

59

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

• i ∈ V : node for which we want to select the best parent,

• πpot(i) ⊂ V \ {i}: set of potential parents for i we want to select from,

• D: dataset with columns indexed by V ,

and returns π(i), a proposed parent for variable i.

Algorithm 4 BestParent: Best single parent selection
Input: i, πpot(i), D

1: π(i)← argmin
j∈πpot(i)

|V al(Xj)| [1]

Output: π(i)

Remarks on BestParent

• The ‘[1]’ means that if argmin
j∈πpot(i)

|V al(Xj)| contains more than one node, we choose the one

with the lowest index by convention. In that case, there is no way to statistically discriminate

variables belonging to {Xk, k ∈ argmin
j∈πpot(i)

|V al(Xj)|} with regards to their relation with the

considered variable Xi. They all guarantee an optimal local MLL score, with a minimal

number of parameters.

• BestParent is at worst O(n), since we only need to go through the set πpot(i) once to find

the less complex parent5, and we obviously have |πpot(i)| ≤ n.

3.3 Determinism screening: finding the optimal deterministic forest

3.3.1 Minimizing P(F) over all deterministic forests F

As explained in Section 3.2.3, Proposition 7 guarantees that under the non-redundancy assumption,

searching for the less complex single-parented deterministic DAG (i.e. deterministic forest) comes

down to solving independent local parent search problems for each node i ∈ V . In practice, for

each i ∈ V , we choose the deterministic parent πG(i) which minimizes |V al(XπG(i))|, and the

resulting graph is guranteed to be a deterministic forest.

3.3.2 Presenting the DeterScreen algorithm

Since we are able to identify and handle redundancies efficiently using IdentifyRedundancy, we

can now propose the following DeterScreen algorithm, that finds the less complex determinis-

tic forest w.r.t. to a dataset D. Proposition 7 guarantees that the returned graph is indeed a forest.

5We consider that the information regarding the number of accessible values for each random variable Xi, i ∈ V
is accessible in constant time from D, as this information is stored jointly with the data in most high-level
programming languages (as it is the case with dataframes in R).

60

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

This algorithm takes as only input D, a dataset containing M observations of X, and returns a

deterministic forest F .

Algorithm 5 DeterScreen: Determinism screening
Input: D

1: HD ←
(
HD(Xi|Xj)

)
1≤i,j≤n

2: AD ← IdentifyRedundancy(HD)
3: for i = 1 to n do #choose the best parent from the set of potential parents
4: πpot(i)← {j ∈ V \ {i} | ADij = 0}
5: π∗(i)← BestParent(i, πpot(i), D)

6: F ← (V, {(π∗(i), i) | i ∈ V s.t. π∗(i) 6= ∅})
Output: F

Complexity overview DeterScreen has a quadratic worst-case complexity:

• computing HD is doable in O(Mn2) operations,

• BestParent (O(n)) is called at most n times,

• IdentifyRedundancy has O(Mn2) complexity.

3.4 Bayesian network structure learning with determinism screening: the
ds-BNSL algorithm

We now propose the Bayesian network structure learning with determinism screening (ds-BNSL)

algorithm (Algorithm 6). This algorithm exploits determinism screening and the intuition given

by Proposition 4 to narrow the structure learning methods down to a subset of the original

variables (the roots of the deterministic forest found by the DeterScreen algorithm).

This algorithm takes as input:

• D: a dataset containing M observations of X,

• sota-BNSL: a standard Bayesian network structure learning algorithm (typically close to

state-of-the-art), taking a dataset as input, and returning a Bayesian network structure.

Algorithm 6 ds-BNSL: Bayesian network structure learning with determinism screening
Input: D, sota-BNSL

1: F ← DeterScreen(D)
2: Identify R(F) = {i ∈ V | πF (i) = ∅}, the set of F ’s roots.
3: G∗R(F) ← sota-BNSL(DR(F))
4: G∗ ← F ∪G∗R(F)

Output: G∗

61

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Complexity: ds-BNSL is theoretically faster than sota-BNSL in presence of determin-

ism This algorithm can be interpreted as a pre-processing of a standard Bayesian network

structure learning algorithm, which enables faster learning of the final structure in the presence

of deterministic relationships. Indeed,

• Line 1 has O(Mn2) complexity,

• Line 2 has O(n) complexity,

• Line 4 has O(n) complexity.

Line 3 potentially has a far greater complexity, since it corresponds to the application of a

standard Bayesian network structure learning algorithm, which are known to be time intensive.

However, this algorithm is only applied to a subset of the original dataset. We therefore have

every reason to believe that this algorithm could significantly accelerate the structure learning

task as long as |R(F)| < n.

We will conduct a more detailed complexity analysis in the next section.

Performance: MLL score is not the final goal, but ds-BNSL is still promising To

have the guarantee that this algorithm learns the optimal structure with regards to the MLL

score, we would need the algorithm sota-BNSL to learn an optimal structure regarding this score

(Proposition 4). However, we have seen that maximizing the MLL score is not a good goal in

general since it overfits. We only accept it as an objective when we are learning trees, which

are sparse structures. The structure learning algorithm sota-BNSL should in practice be chosen

among standard structure learning algorithms that have been proven to model data accurately.

The guarantees concerning the final score of the learned structure (as those presented in Propo-

sitions 3 and 4) do not hold anymore, but the underlying idea stays the same: in the presence

of deterministic relationships, even though the MLL score is not our goal, we propose to first

identify the best deterministic forest F , then to narrow down the structure learning task to a

subset of the original variables: the roots of F .

We will show in the next section how this idea can be extended to any kind of data (that do

not necessarily contain deterministic relationships).

4 Extension to generic data: strong pairwise relationships screen-
ing

In this section, we propose an extension of the notion of determinism to the one of quasi-

determinism, from which we derive the QuasiDeterScreen algorithm (Rahier et al., 2018b),

62

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

that screens not only pairwise deterministic relationships but more generally pairs of strongly

related variables.

We then present qds-BNSL, which generalizes ds-BNSL, study its complexity, and show that it

is very promising in terms of computational performance compared to standard Bayesian Network

structure learning algorithms on generic (a priori) non-deterministic data.

In all this section, we consider that X = {X1, . . . , Xn} is a tuple of categorical random

variables indexed by V = J1, nK, and that D is a complete dataset containing M observations of

X.

The proof of all lemmas and propositions can be found in Appendix A.2.

4.1 Quasi-determinism

In many datasets, one does not observe true empirical determinism, although there are still very

strong relationships between some of the variables. We therefore propose to relax the notion of

determinism to quasi-determinism, where quasi is meant with respect to an hyperparameter ε:

we talk about ε−quasi-determinism.

There are several ways to measure how close a relationship is from deterministic. Huhtala

et al. (1999) consider the minimum number of observations that must be dropped from the data

for the relationship to be empirically deterministic. Since we are in a score-maximization context,

we will rather use ε as a threshold on the empirical conditional entropy. The following definition

is the natural extension of Definition 3.

Definition 7 ε−quasi-determinism (ε−qd)

Given a dataset D containing observations of variables Xi and Xj, the relationship Xi → Xj is

ε−quasi-deterministic (ε−qd) w.r.t. D iff HD(Xj |Xi) ≤ ε.

It has been seen in Proposition 4 that a deterministic forest is a (sparse) subgraph of an

optimal DAG with respect to the MLL score. Such a forest is therefore very promising with

regards to the fit-complexity tradeoff (typically evaluated by scores such as BDe or BIC).

Combining this intuition with the ε−qd criteria presented in Definition 7, we now propose

the quasi-determinism screening approach to Bayesian network structure learning.

4.2 Quasi-determinism screening algorithm

Algorithm 7 (QuasiDeterScreen) details how to find the simplest ε−qd forest Fε from a dataset

D and a threshold ε. As the case of deterministic forests, simplest refers to the complexity in

terms of number of parameters of Fε: P(Fε).

This algorithm takes as input:

63

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

• D: a dataset containing M observations of X,

• ε: a threshold for quasi-determinism.

Algorithm 7 QuasiDeterScreen: Quasi-determinism screening
Input: D , ε

1: HD ←
(
HD(Xi|Xj)

)
1≤i,j≤n

2: AD,ε ←
(
I{HD≤ε}

)
3: for i = 1 to n do #check for cycles in ε−qd relations
4: Si ← which

(
AD,εi• × AD,ε•i == 1

)
5: if |Si| > 1 then
6: for j ∈ Si \ {i} do
7: if HD

ji ≤ HD
ij then #remove the arc corresponding to the smallest conditional entropy

8: AD,εij ← 0
9: else
10: AD,εji ← 0

11: for i = 1 to n do #choose the simplest among all potential parents
12: πεpot(i)← which

(
AD,εi• == 1

)
13: πε∗pot(i)← BestParent(i, πεpot(i), D)

14: Fε ← (VFε , AFε) where VFε = J1, nK and AFε = {(πε∗pot(i), i) | i ∈ J1, nK s.t. πε∗pot(i) 6= ∅}
Output: Fε

Specificities of QuasiDeterScreen compared to DeterScreen We cannot proceed the same

way as in IdentifyRedundancy because of the fact that the relation ↔
ε,D

, defined as

Xi ↔
ε,D

Xj ⇔ max
(
HD(Xi|Xj), H

D(Xj |Xi)
)
≤ ε

is not transitive a priori, and hence is not an equivalence relationship.

We cannot form a partition of V with redundancy classes like we did in the previous section, and

are therefore forced to have a routine a bit more complex (from lines 3 to 10) that goes through

every node in V and considers Si for each one of them.

This routine uses a test (on line 7): HD
ij ≤ HD

ji which evaluates if Xi is better explained by Xj

than Xj is explained by Xi. It then keeps only the arc corresponding to the relationship judged

the most significant.

The overall complexity of this routine is still O(Mn2), even though we actually are forced to

go through more elements that it was the case when using IdentifyRedundancy. However, we

are loosing some interesting theoretical guarantees, as the fact that the ε−quasi-deterministic

forest that is returned by QuasiDeterScreen is not necessarily the one which maximizes the BIC

score among all the ε−quasi-deterministic forests.

64

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

4.3 Learning Bayesian networks using quasi-determinism screening

We now present Algorithm 8 (qds-BNSL), which uses quasi-determinism screening to accelerate

Bayesian network structure learning. This algorithm takes as input:

• D: a dataset containing M observations of X,

• ε: a threshold for quasi-determinism,

• sota-BNSL: a standard Bayesian network structure learning algorithm (typically close to

state-of-the-art), taking a dataset as input, and returning a Bayesian network structure.

Algorithm 8 qds-BNSL: Bayesian network structure learning with quasi deterministic screening
Input: D, ε, sota-BNSL

1: Fε ← QuasiDeterScreen(D, ε)
2: Identify R(Fε) = {i ∈ J1, nK | πFε(i) = ∅}, the set of Fε’s roots.
3: G∗R(Fε)

← sota-BNSL(DR(Fε))
4: G∗ε ← Fε ∪G∗R(Fε)

Output: G∗ε

The extension of the definition of determinism to quasi-determinism (Definition 7) prevents

us to have guarantees as those presented in Proposition 4. However, under some conditions on

sota-BNSL, we are able to get explicit bounds for the MLL score of a graph G∗ε returned by

qds-BNSL, as stated in the following proposition.

Proposition 8 Let ε, D and sota-BNSL be valid inputs to Algorithm 8, and G∗ε the associated

output.

Then, if sota-BNSL is exact (i.e. always returns an optimal solution) with respect to the MLL

score, we have the following lower bound for sMLL
D (G∗ε):

sMLL
D (G∗ε) ≥

(
max

G∈DAGV
sMLL
D (G)

)
−Mnε.

In practice, this bound is not very tight, and this result therefore has small applicative

potential. However, it shows that:

sMLL
D (G∗ε) −→

ε→0
max

G∈DAGV
sMLL
D (G).

In other words, ε 7→ sMLL
D (G∗ε) is continuous in 0, and Proposition 8 generalizes Proposition 4.

Let us now proceed to an analysis of the complexity of the quasi-determinism screening

approach.

65

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

4.4 Complexity analysis

Complexity of sota-BNSL The number of possible DAG structures being super exponential

in the number of nodes, state-of-the-art algorithms do not entirely explore the structure space

but use smart caching and pruning methods to have a good performance & computation time

trade-off.

Let sota-BNSL be a state-of-the-art Bayesian network structure learning algorithm and Csota(n)

be its complexity.

Csota(n) should typically be thought of as exponential, or at least high degree polynomial, in n.

Complexity of QuasiDeterScreen We have the following decomposition of the complexity of

Algorithm 8:

1. Lines 1-2: O(Mn2). Computation of HD: we need counts for every couple (Xi, Xj) for

i < j (each time going through all rows of D), which results in M n(n−1)
2 operations.

2. lines 3-10: O(n2). Going through all elements of HD once.

3. lines 11-13: O(n2). Going through all elements of HD once.

Therefore, overall Cqds(n) = O(Mn2).

Complexity of qds-BNSL For a given dataset D,

∀ε ≥ 0, nr(ε) = |R(QuasiDeterScreen(D, ε))|.

The function nr(·), associates to ε ≥ 0 the number of roots of the forest Fε returned by

QuasiDeterScreen ran with inputs D and ε. The complexity of qds-BNSL then decomposes as:

1. Line 1: O(Mn2). Execution of QuasiDeterScreen.

2. Lines 2-4: Csota(nr(ε)). Execution of sota-BNSL on the reduced dataset DR(Fε) containing

observations of nr(ε) variables.

This yields CqdsBNSL(n) = O(Mn2) + Csota(nr(ε)).

We are interested in how much CqdsBNSL(n) differs from Csota(n), which depends mainly on:

• how nr(ε) compares to n,

• how Csota(n) varies with respect to n.

66

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

It is hard to obtain a closed-form of the difference Csota −CqdsBNSL, since it is not clear how

to estimate the complexity of state-of-the-art learning algorithms. However, we know that all

Bayesian network structure learning algorithms are very time-intensive: Csota(n) is known to be

typically exponential in n for the best exact structure learning algorithms, as those presented by

Silander and Myllymäki (2006) or Cussens (2011), and it is expected to be significantly larger

than O(Mn2) for high-performing heuristics. We therefore expect an important decrease in

computational time for qds-BNSL compared to sota-BNSL, as long as nr(ε) is sufficiently smaller

than n. If moreover this is true for small6 ε, we anticipate a small performance loss.

5 Experiments

In this section, we present some experiments conducted both using data extracted from an IoT

system backed by a relational database, and benchmark datasets used in the Bayesian network

structure learning literature, which contain no empirical determinism.

5.1 Setting

5.1.1 Programming details

Bayesian network manipulation, and standard routines for learning and inference were pro-

grammed into wrappers functions relying on the R package bnlearn from Scutari (2010), which

is a very good reference among open-source packages dealing with Bayesian networks structure

learning.

The remaining of the code, including all of the algorithms presented in this chapter, was

mostly written in R.

Challenges that were faced include:

• writing the CVLL score evaluation function without storing large objects into memory,

• optimization of entropy computation using large sparse matrices.

5.1.2 Choice of sota-BNSL

We need to pick a Bayesian network structure learning algorithm both to obtain a baseline

performance, and to use after the screening phase of algorithms ds-BNSL and qds-BNSL. After

carefully evaluating several algorithms implemented in the bnlearn package, we chose to use

Greedy Hill Climbing with random restarts and a tabu list, as it consistently outperformed other

built-in algorithms both in time and score, in addition to being also used as a benchmark algorithm

in the literature, notably by Teyssier and Koller (2005). In this section, we refer to this algorithm

as sota-BNSL.
6We will explain in Chapter 4 what we mean by ‘small’ in this case.

67

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

5.1.3 Algorithms evaluation

The algorithms are evaluated using 3 axes:

• Performance:

– BDeu score presented in Chapter 1 with equivalent sample size (ESS) equal to 5,

inspired from Teyssier and Koller (2005)

– CVLL score presented in Chapter 1 with 10 folds.

• Readability: Number of arcs of the learned Bayesian network.

The BDeu score naturally penalizes overly complex models (in terms of number of parame-

ters), it is however interesting to look at the number of arcs, as it is a straightforward way

to evaluate how complex a Bayesian network structure appears to a human expert, which is

therefore linked to how interpretable this structure is.

• Computing time: trun (all algorithms were run on independent cores of the same machine,

with an Intel CPU E5-2650 v2 2.60GHz with 8 cores and 64Go of RAM).

It is essential to remark that sota-BNSL is used both to obtain a baseline performance and

inside qds-BNSL. In both cases, it is run with the same settings until convergence. The

comparison of computing times is therefore fair.

5.2 Running the ds-BNSL algorithm on an IoT dataset

In Section 2, we proved results bridging the gap between score and search Bayesian network

structure learning and the notion of empirical determinism. Then, in Section 3, we designed an

algorithm exploiting determinism in data to accelerate the Bayesian network structure learning

task. As it has been said, this algorithm is all the more interesting in practice as there actually are

deterministic relationships between variables observed in the data. In this subsection, we present

experiments we conducted on real datasets that natively contain such deterministic relationships,

extracted from Schneider Electric’s IoT systems.

5.2.1 Data

The experiments of this subsection have been conducted on descriptive metadata from the HOMES

programme7. The full HOMES metadataset contains 1000 rows and 47 columns, several of which

are keys resulting from the storage in a relational database. Notably, the DATA_KEY variable has

a different value for every row in the dataset, and therefore has no real statistical significance.

In our experiments, we choose to use three datasets extracted from the HOMES metdataset:
7http://www2.schneider-electric.com/documents/press-releases/fr/shared/2011/11/20111123_dp_

HOMES_FR.pdf

68

http://www2.schneider-electric.com/documents/press-releases/fr/shared/2011/11/20111123_dp_HOMES_FR.pdf
http://www2.schneider-electric.com/documents/press-releases/fr/shared/2011/11/20111123_dp_HOMES_FR.pdf

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

1. The full dataset D1, containing all 47 variables, including DATA_KEY. This case does not

make a lot of statistical sense, but represents well what we would be facing if we wanted to

learn a Bayesian network structure on unknown metadata without doing any preprocessing.

2. The sub-dataset D2 containing 43 variables: all but the 4 variables with more than 750

values (table keys).

3. The sub-dataset D3 containing 41 variables: all but the 6 variables with more than 500

values.

It has to be noted that in D1, there actually exists a deterministic tree, as in the hypothesis of

Proposition 3 (we therefore know that this tree maximizes the MLL score). In D2 and D3, more

and more deterministic relationships are dropped as we remove the variables that have the most

accessible values. However, there still remains many deterministic relationships inherent to the

data and the way it is stored.

Table 2.1 summarizes the sizes and number of deterministic trees in the best deterministic forest8

for each of those three datasets.

Table 2.1 – Presentation of the three datasets extracted from HOMES metadata. For
i ∈ {1, 2, 3}, M and n are respectively the number of rows and columns of Di, and
nr(ε = 0) represents the number of roots of a deterministic forest w.r.t. Di.

name n M nr(ε = 0)

D1 47 1000 1
D2 43 1000 5
D3 41 1000 6

5.2.2 Results presentation and remarks

Tables 2.2 display the different algorithm evaluation criteria for sota-BNSL and ds-BNSL: computa-

tion time, BDe score, CVLL score and number of arcs. The CVLL score is not computable for the

full metadataset D1: the variable DATA_KEY systematically has all its values in the validation sets

that are not observed in the corresponding training sets, and the convention for the computation

of the CVLL score in that case is to discard all validation sets observations containing unobserved

values of at least one of the variables (see Chapter 4 for further details).

Note that in the case of sota-BNSL for D1, the algorithm was unable to reach a local maximum

of the BDe score before running out of memory and being forced to stop while computing the

local score (as explained in Section 1.2). This explains why the graph learned on dataset D1 is

significantly sparser than the graphs learned with sota-BNSL on D2 and D3.

8Found with exhaustive search using the DeterScreen algorithm

69

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

dataset sota-BNSL ds-BNSL
D1 −68.76 −92.74
D2 −25.56 −42.18
D3 −18.20 −25.15

(a) BDeu score per sample of the learned
structures

dataset sota-BNSL ds-BNSL
D1 NaN NaN
D2 −8.72 −8.62
D3 −8.03 −7.56

(b) CVLL score per sample of the learned
structures

dataset sota-BNSL ds-BNSL
D1 92, 406 3
D2 13, 794 121
D3 4, 346 3

(c) Algorithm computation time (sec-
onds) of the algorithms

dataset sota-BNSL ds-BNSL
D1 309 46
D2 70 41
D3 102 42

(d) Number of arcs of the learned struc-
tures

Table 2.2 – Evaluation of the ds-BNSL algorithm and the baseline sota-BNSL algorithm
on three datasets extracted from the HOMES metadataset, using several criteria: algorithm
speed, graph’s number of arcs, as well as BDeu and CVLL scores

Figure 2.4 displays a visual comparison of the structures learned with ds-BNSL algorithm and

the baseline sota-BNSL on D1, D2 and D3. The legend associated with the variables is available

in in Appendix B.

9As explained previously, the sota-BNSL was unable to reach a local maximum of the BDe score before running
out of memory and being forced to stop, hence the very sparse returned structure in this case.

10As explained previously, the sota-BNSL was unable to reach a local maximum of the BDe score before running
out of memory and being forced to stop, hence the very sparse returned structure in this case.

70

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

X1

X10 X11

X12

X13

X14 X15

X16

X17

X18

X19 X2

X20

X21 X22

X23

X24

X25

X26

X27 X28

X29

X3

X30

X31

X32 X33

X34

X35 X36

X37

X38 X39

X4

X40

X41

X42

X43

X44

X45

X46 X47

X5

X6 X7X8

X9

(a) BN learned with sota-BNSL10 on D1

X1

X10X11

X12

X13X14 X15

X16 X17

X18

X19

X2

X20 X21

X22

X23

X24

X25

X26 X27

X28 X29X3

X30

X31

X32 X33X34

X35

X36

X37 X38

X39

X4

X40

X41X42 X43

X44

X45

X46 X47

X5 X6

X7

X8

X9

(b) BN learned with ds-BNSL on D1

X1

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X2

X20

X21

X22

X23

X24X25

X26

X27

X28

X29

X3

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X4

X40

X41

X42

X43

X5

X6

X7

X8

X9

(c) BN learned with sota-BNSL on D2

X1

X10 X11

X12 X13

X14

X15

X16

X17

X18

X19

X2X20

X21

X22

X23

X24 X25

X26

X27X28

X29

X3

X30

X31

X32 X33 X34

X35 X36

X37

X38 X39

X4

X40

X41

X42 X43X5X6

X7

X8 X9

(d) BN learned with ds-BNSL on D2

X1

X10

X11

X12

X13

X14

X15

X16

X17

X18

X19

X2

X20

X21

X22

X23

X24

X25

X26

X27

X28

X29

X3

X30

X31

X32

X33

X34

X35

X36

X37

X38

X39

X4

X40

X41X5

X6

X7

X8

X9

(e) BN learned with sota-BNSL on D3

X1X10

X11 X12

X13

X14

X15 X16

X17

X18

X19

X2

X20

X21 X22 X23

X24

X25

X26

X27

X28

X29

X3

X30X31 X32

X33 X34

X35

X36 X37

X38 X39

X4

X40 X41

X5

X6

X7 X8

X9

(f) BN learned with ds-BNSL on D3

Figure 2.4 – Bayesian networks learned on the subsets D1, D2 and D3 of the HOMES
dataset

71

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

5.2.3 Results interpretation

Score First, we remark that in this extreme case where some of the variables have a very

important number of accessible values with regards to the number of observations (even in D3,

some variables have more than M
5 accessible values), BDeu and CVLL are not always entirely

consistent, despite the fact that the BDe score is generally used as a proxy for generalization

performance. As we will see in the next section, these two scores have a much closer behaviour

when tackling datasets with an important number of observations compared to the variables’

number of values.

Here, the BDeu score is consistently better for graph structures reached with our selected baseline

algorithm sota-BNSL compared to graphs learned with ds-BNSL. This can be explained by the

fact that arcs that are pre-screened by the DeterScreen procedure, and that appear in graphs

returned by ds-BNSL, tend to be highly penalized by the BDe score because of the number of

parameters they add to the model: this is a result of the number of values of variables that are

typically deterministic parents.

This suggests limitations of the BDe score: it seems to be a bad proxy for generalization

performance in presence of deterministic relations implying variables with a high number of values.

Further experiments should therefore be made to refine this statement.

Number of arcs The graphs learned with ds-BNSL are generally sparser that those learned with

sota-BNSL.11 This is not surprising, as this was one of the motivations behind the deterministic

screening idea: the graphs learned with ds-BNSL are the union of a deterministic forest, which is

very sparse (less than an arc per node) and a graph learned with sota-BNSL and the BDe score,

which can be expected to have on average the same density of arcs per nodes than the graphs

leaned with sota-BNSL on the entire dataset (which is closer to two arcs per node).

Computation time Computation time is what makes the potential of the screening algorithm

when facing IoT data the most obvious, and was the main motivation behind the idea of the

DeterScreen algorithm. The O(Mn2) screening phase is, as expected, very fast compared to the

baseline sota-BNSL algorithm, especially since variables that have a lot of values make the scores

harder to compute.

In practice, when facing a new dataset containing unknown variables, ds-BNSL is therefore

extremely interesting to try first, considering how little time it costs compared to directly running

a standard heuristic. Moreover, the DeterScreen routine of ds-BNSL, which only has a quadratic

time complexity, is a very efficient way to discover a possible deterministic structure between the

variables (for example resulting from a relational or semantic database extraction), which could

bring a lot of interesting insights in terms of preprocessing. For example: which variables in fact
11This is not the case for D1, but is obviously due to the premature end of sota-BNSL.

72

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

correspond to keys of sub-tables ? Do we want to keep these variables in the final structure ?

Which variables are redundant ? Is there a variable that has so many accessible values that it

actually is an empirical deterministic parent to all the other variables ?

Visual perception The structure of the graph learned with ds-BNSL is obviously a lot more

readable, as it naturally makes the structure underlying the variables appear. Even on dataset

D3, where most of the main key variables are missing, there still are natural ‘clusters’ that are

formed.

An expert that is very familiar with the dataset and the relations between the variables is expected

to typically give as input (i.e. knowledge elicitation) a graph were the subtables (and more

generally every ‘most simple’ pairwise deterministic relationship) appears. In a sense, we could

consider that the DeterScreen algorithm is a way to automatize the expert knowledge elicitation

phase, by automatically detecting pairwise empirical deterministic relationships. In that sense,

even if Propositions 3 and Proposition 4 presented previously in this chapter give theoretical

insight to the ds-BNSL algorithm, one might consider that the goal behind determinism screening

is not only score maximization, but also automatic knowledge elicitation. The deterministic forest

(that contains only deterministic relationship) is then used as a starting point for a standard

structure learning heuristic sota-BNSL, with the constraint that only the roots are considered for

this second phase (theoretically sound with the MLL score and enabling a huge computational

time gain).

5.3 Running the qds-BNSL on benchmark datasets

In this subsection we picked the largest of the benchmark datasets traditionally used by the

Bayesian network structure learning community, none of which contain exact empirical deter-

minism. We also considered a dataset from an online prediction challenge from the DrivenData

website12, which contains some variables with a high number of values and a few empirical deter-

ministic relationships, although nothing comparable to the datasets used in the last subsection

that contain determinism ‘by design’.

5.3.1 Data

Table 2.3 summarizes the data used in our experiments. We considered the largest open-source

categorical datasets among those presented13 by Davis and Domingos (2010) and available on the

UCI repository (Dheeru and Karra Taniskidou, 2017): 20 Newsgroup, Adult, Book, Covertype,

KDDCup 2000, MSNBC, MSWeb, Plants, Reuters-52 and USCensus. Moreover, as it was done

by Scanagatta et al. (2016), we chose the largest Bayesian networks available in the literature14,
12https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/
13http://alchemy.cs.washington.edu/papers/davis10a/
14http://www.bnlearn.com/bnrepository/

73

https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/
http://alchemy.cs.washington.edu/papers/davis10a/
http://www.bnlearn.com/bnrepository/

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

for each of which we simulated 10000 observations: Andes, Hailfinder, Hepar 2, Link, Munin 1-4,

PathFinder and Win95pts.

Table 2.3 – Datasets presentation

name short name n M

20 newsgroups 20ng 930 11293
adult adult 125 36631
book book 500 8700
covertype covertype 84 30000
kddcup 2000 kddcup 64 180092
msnbc msnbc 17 291326
msweb msweb 294 29441
plants plants 69 17412
pump it up challenge pumpitup 28 54000
reuters 52 r52 941 6532
uscensus uscensus 68 2458285

andes andes 223 10000
hailfinder hailfinder 56 10000
hepar 2 hepar2 70 10000
link link 724 10000
munin 1 munin1 186 10000
munin 2 munin2 1003 10000
munin 3 munin3 1041 10000
munin 4 munin4 1038 10000
pathfinder pathfinder 109 10000
windows 95 pts win95pts 76 10000

5.3.2 Choice of ε for qds-BNSL

An approach to choosing ε in the case of the qds-BNSL algorithm is to pick values for nr(ε),

and manually find the corresponding values for ε. For a given dataset and x ∈ [0, 1], we define

εx = n−1
r (bxnc). In other words, εx is the value of ε for which the number of roots of the qd

forest Fε represents a proportion x of the total number of variables.

The computation of εx is not problematic: once HD is computed and stored, evaluating nr(ε)

is done in constant time, and finding one of nr(·)’s quantiles is doable in O(log(n)) operations

(dichotomy), which is negligible compared to the overall complexity of the screening.

5.3.3 Results (1/2). Independent consideration of performance, readability and
computation time

We present the obtained results for our selected baseline algorithm sota-BNSL, and 3 versions of

qds-BNSL. For each dataset, we selected ε ∈ {ε0.9, ε0.75, ε0.5}), corresponding to a restriction of

sota-BNSL to 90%, 75% and 50% of the original variables respectively.

74

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

The results are shown in Tables 2.4, 2.5, 2.6 and 2.7, one per evaluation criterion. In each table,

the actual value of the criterion is displayed for sota-BNSL (sota), and the relative difference is

displayed for the three versions of qds-BNSL we consider (qdsε0.9 , qdsε0.75 and qdsε0.5).

Table 2.4 – BDeu score per sample. Every result that is less than 5% smaller than
sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(%) (%) (%)

20ng -142.71 -0.66 -2.13 -4.78
adult -12.86 -0.16 -0.05 -4.01
book -34.81 -0.80 -1.69 -4.64
covertype -13.60 -0.21 -1.23 -11.7
kddcup -2.38 -0.31 -1.04 -3.83
msnbc -6.19 -0.14 -2.62 -4.64
msweb -9.77 +0.03 -0.07 -0.99
plants -13.03 -2.57 -7.56 -20.92
pumpitup -14.32 -0.25 -0.25 -1.86
r52 -95.48 -0.76 -1.96 -6.11
uscensus -23.20 -0.27 -1.75 -10.39

andes -93.23 -0.49 -6.22 -16.57
hailfinder -49.63 -0.06 -2.71 -10.21
hepar2 -32.60 -0.28 -1.36 -3.22
link -215.68 +0.10 +1.10 -16.99
munin1 -41.15 -0.09 -0.16 -9.95
munin2 -171.82 -0.02 -0.02 -1.83
munin3 -165.09 0.00 0.00 -1.10
munin4 -186.11 -0.02 -0.02 -3.86
pathfinder -26.65 -0.66 -0.70 -4.88
win95pts -9.22 +0.06 -1.08 -9.15

75

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Table 2.5 – CVLL score per sample. Every result that is less than 5% smaller than
sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(%) (%) (%)

20ng -139.93 -0.78 -2.48 -4.92
adult -12.73 -0.42 -0.50 -4.68
book -34.27 -0.88 -1.70 -4.79
covertype -13.54 -0.16 -1.25 -12.40
kddcup -2.37 -0.30 -1.03 -3.61
mnsbc -6.10 -0.16 -3.54 -4.18
msweb -8.31 -0.02 -0.11 -1.22
plants -13.09 -2.20 -7.320 -20.85
pumpitup -14.31 -0.20 -0.20 -1.12
r52 -87.58 -1.26 -2.92 -7.40
uscensus -21.77 -0.41 -1.60 -8.73

andes -92.87 -0.53 -6.30 -17.01
hailfinder -49.86 -0.07 -2.72 -10.39
hepar2 -32.64 -0.31 -1.62 -3.64
link -216.90 +2.00 +1.64 -10.71
munin1 -37.72 -0.03 -0.06 -11.74
munin2 -162.89 -0.02 -0.02 -2.22
munin3 -162.59 +0.00 +0.00 -1.29
munin4 -170.50 +0.03 -0.06 -4.34
pathfinder -21.48 +0.51 -0.07 -4.56
win95pts -9.48 +0.00 -1.53 -9.64

76

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Table 2.6 – Computation time (seconds). Every result that corresponds to a BDeu score
less than 5% smaller than sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(seconds) (%) (%) (%)

20ng 21, 495 -1.62 -42.66 -72.94
adult 1, 02 -6.61 -22.03 -61.20
book 7, 600 -23.61 -40.33 -71.30
covertype 565 -6.80 ‘ -33.22 -71.13
kddcup 2, 167 -11.49 -32.85 -73.59
msnbc 252 -20.66 -60.61 -85.65
msweb 4, 701 -6.29 -9.86 -55.08
plants 455 -46.93 -61.93 -84.07
pumpitup 6673 -41.25 -41.25 -81.82
r52 18, 630 -13.58 -38.47 -76.71
uscensus 21, 782 -0.44 -31.54 -77.68

andes 898 -2.23 -27.42 -69.91
hailfinder 46 -5.31 -17.46 -54.71
hepar2 76 -4.05 -42.56 -70.00
link 7, 240 -12.03 -10.58 -61.30
munin1 497 -7.42 -17.23 -59.14
munin2 7, 093 -20.46 -21.66 -43.68
munin3 11, 558 -36.91 -29.20 -54.19
munin4 8, 550 -7.87 -13.08 -39.06
pathfinder 231 -14.01 -35.38 -69.48
win95pts 132 -6.05 -31.41 -69.07

77

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Table 2.7 – Networks’ number of arcs. Every result that corresponds to a BDeu score
less than 5% smaller than sota-BNSL’s score is boldfaced.

dataset sota qdsε0.9 qdsε0.75 qdsε0.5
(%) (%) (%)

20ng 3136 -4.50 -14.89 -31.89
adult 371 3.23 7.01 -13.75
book 2196 -10.66 -19.17 -40.30
covertype 337 -0.89 -11.28 -37.69
kddcup 285 -5.26 -18.95 -38.95
msnbc 102 -7.84 -33.33 -63.73
msweb 1, 264 -2.53 -3.56 -34.97
plants 320 -6.25 -18.44 -42.50
pumpitup 46 -10.87 -10.87 -15.22
r52 2713 -3.65 -9.14 -25.14
uscensus 220 -10.45 -20.45 -37.73

andes 336 -0.89 -7.14 -22.92
hailfinder 64 -1.56 +6.25 -15.62
hepar2 92 -3.26 -21.74 -30.43
link 1, 146 -1.83 -0.44 -22.43
munin1 208 0.00 +0.96 -9.62
munin2 879 0.00 0.00 -13.31
munin3 898 0.00 0.00 -7.80
munin4 903 0.00 0.00 -8.53
pathfinder 161 -4.35 -8.70 -24.22
win95pts 115 0.00 -0.87 -12.17

78

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

Score It appears in Table 2.4 that the decrease in BDeu score is smaller than 5% for all the

considered datasets when 90% of the variables remain after the pre-screening (qdsε0.9), and for

most of them when 75% of the variables remain (qdsε0.75
). This is also observed with ε0.5 for

datasets that contain a lot of very strong pairwise relationships as kddcup, msweb, or munin2-4.

Moreover, we remark that for these datasets, the CVLL and BDe scores behave globally the same

way. This backs up the fact that BDe was taken as a ‘proxy’ for generalization capability, and

was chosen as the objective in the structure learning search for sota-BNSL. Other experiments

(not displayed here) show that the BIC score does not lead to the same type of results at all

(especially for small data), despite being asymptotically equivalent to BDe.

Computing time Table 2.6 shows a significant decrease in computational time for qds-BNSL,

which is all the more important that ε is large. In the best cases, we have both a very small

decrease in BDeu score, and an important decrease in computational time. For example, the

algorithm qds-BNSL with ε = ε0.5 is 55% faster for msweb, and 54% for munin3, while implying

only around 1% decrease in score compared to sota-BNSL. If we allow a 5% score decrease,

qds-BNSL can be more than 70% faster than sota-BNSL (20ng, book, msnbc, kddcup, hepar2,

pathfinder).

These results confirm the complexity analysis of the previous section, in which we supposed that

the screening phase had a very small computational cost compared to the standard structure

learning phase.

Complexity As showed by Table 2.7, Bayesian networks learned with qds-BNSL are consistently

less complex than those learned with sota-BNSL. Several graphs learned with qdsε0.5 are more

than 30% sparser while still scoring less than 5% below the baseline: 20ng, book, kddcup, msnbc,

msweb and hepar2.

Figure 2.5 displays two Bayesian networks learned on the ‘msnbc’ dataset.

Comparison of computation time, BDeu (normalized), CVLL (normalized), and number of arcs
for the displayed Bayesian networks

Figure 2.5 (a) (sota) Figure 2.5 (b) (qdsε0.5)
trun (sec) 252 36
BDe score −6.2 −6.5
CVLL score −6.1 −6.4
Nb arcs 102 37

They provide an interesting example of the sparsity induced by qds-BNSL. After the qdε0.5-

screening phase, half of the variables (corresponding to the nodes in white) are considered to be

79

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15V16

V17

(a) BN returned by sota-BNSL

V1

V10 V11

V12

V13

V14

V15 V16 V17

V2

V3

V4

V5

V6

V7

V8 V9

(b) BN returned by qds-BNSL(ε0.5)

Figure 2.5 – Example of Bayesian networks learned on the msnbc dataset

sufficiently explained by variable V1. They are therefore not taken into account by sota-BNSL,

which is run only on the variables corresponding to the nodes in gray.

In the case of msnbc, this restriction of the learning problem implies only a small decrease in the

final graph’s generalization performance (as reflected by the BDeu scores), while being 7 times

faster to compute and enabling a significantly better readability.

Interpretability In this processed version of the msnbc dataset (Davis and Domingos, 2010),

each variable contains a binary information regarding the visit of a given page from the msnbc.com

website15. The Bayesian network displayed in Figure 2.5(b) shows in a compact way the influence

between the different variables. For instance, we see that visits of the website’s pages corresponding

to nodes in white (e.g. ‘weather’ (V8), ‘health’ (V9) or ‘business’ (V11)) are importantly influenced

by whether the user has also visited the frontpage (V1). For example, learned parameters show

that a user who did not visit the website’s frontpage or not (V1) is about 10 times more likely

to have visited the website’s ‘summary’ page (V13) than a user who did visit the frontpage.

Such information is much harder to read from the graph learned with sota-BNSL displayed in

Figure 2.5(a), even though its score is a bit higher. Moreover, the low difference in BDe score shows

that the generalization performance of the graph is reasonably affected by this simplification.

5.3.4 Results (2/2). Joint consideration of readability / performance and perfor-
mance / computation time on selected datasets

We have seen in the previous subsection that the quasi-determinism screening approach consis-

tently learns faster, and sparser structures, at the cost of a little generalization performance loss.

Sparser structures are however sometimes more interesting. In the industry notably, interpretable
15more details: http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.

html

80

msnbc.com
http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.html
http://archive.ics.uci.edu/ml/machine-learning-databases/msnbc-mld/msnbc.data.html

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

models are more convincing, and we often prefer models that are understandable by domain

experts to purely performing models, that are more and more common in the deep learning era.

Depending on the final objective, we could therefore accept to sacrifice a bit of performance (in

terms of BDe/CVLL score) for sparsity. The same remark goes for computation time, that may

be more important than performance in some contexts.

One may then wonder, which method would learn the best performing structure for a given

maximum number of arcs, or for a given computation time. In an attempt to tackle this question,

we used three methods for learning sparser structures faster, two of which are standard methods,

the last one being qds-BNSL.

1. Bounding the maximum number of parents per node in the final graph. As we saw earlier

in this Chapter, this is a standard method to regularize the structure learning task, and

can be used jointly with a score such as MLL to avoid learning overly complex structures.

For each of our selected datasets, we ran the sota-BNSL algorithm with a restriction on the

maximum number of parents per node, ranging from 1 to n− 1 (no restriction).

2. Reducing the ESS in the baseline hill-climbing algorithm. As thoroughly studied by Silander

et al. (2007), the number of arcs of the learned Bayesian network structure is generally

highly sensitive with respect to the ESS of the BDe score used in the structure learning

optimization problem. We therefore picked a list of ESS ranging from 10−16 to 5, and ran

our baseline structure learning algorithm sota-BNSL using each ESS on that list.

3. Bounding our definition of quasi determinism through the ε hyperparameter in the qds-BNSL

algorithm.

We are interested in looking how qds-BNSL performs if we consider it as an algorithm whose

primary goal is to learn sparser structures faster. Figures 2.6, 2.7 and 2.8 present the results

on 3 selected datasets (representative of the spectrum of efficiency of qds-BNSL), by displaying

the characteristics of the structures learned with the 3 different structure learning algorithms on

Performance × Readability and Computation Time × Performance axis.

These figures suggest that the performance / computation time trade-off is always in

the advantage of the qds-BNSL algorithm. In other terms, given a fixed BDe score, qds-BNSL

is quicker to learn a graph with such a score than sota-BNSL.

As for the readability / performance trade-off, i.e. looking at which algorithm learns

the best scoring graph with a given number of arcs, qds-BNSL has better results on two out

of three datasets: pumpitup and msnbc, as seen in Figures 2.8 and 2.6. We see in Figure 2.7

that in the case of the book dataset, the sparsity induced by decreasing the ESS of the target BDe

81

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

score affects less the CVLL score. This dataset was chosen on purpose as it shows a case where

the qds-BNSL is not at ‘its best’. This highlights the fact that the potential of the qds-BNSL

algorithm and the optimal way to choose ε when running it, are very data-dependent properties.

As we will talk about later (Chapter 4), this remark motivates one of the most important research

perspective to this work.

82

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

6.35

6.30

6.25

6.20

6.15

6.10

6.05

70 80 90 100
NbArcs

VL
LS
co
re

SparsityInductionMethod

EquivalentSampleSizeDecreasing

NbParentsRestriction

QuasiDeterminismScreening

better
generalization
perf.

better readability worse readability

worse
generalization
perf.

(a) performance/readability tradeoff - msnbc dataset

0

500

1000

6.4 6.3 6.2 6.1
VLLScore

Co
m
pT

im
e

SparsityInductionMethod

EquivalentSampleSizeDecreasing

NbParentsRestriction

QuasiDeterminismScreening

faster

slower

better generalization perf.worse generalization perf.

(b) performance/computation time tradeoff - msnbc dataset

Figure 2.6 – Graphical representation of performance trade-offs for the msnbc dataset

83

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

36.0

35.5

35.0

34.5

1500 1800 2100
NbArcs

VL
LS
co
re

SparsityInductionMethod

EquivalentSampleSizeDecreasing

NbParentsRestriction

QuasiDeterminismScreening

better
generalization
perf.

better readability worse readability

worse
generalization
perf.

(a) performance/readability tradeoff - book dataset

2000

4000

6000

36.5 36.0 35.5 35.0 34.5
VLLScore

Co
m
pT

im
e SparsityInductionMethod

EquivalentSampleSizeDecreasing

NbParentsRestriction

QuasiDeterminismScreening

faster

slower

better generalization perf.worse generalization perf.

(b) performance/computation Time tradeoff - book dataset

Figure 2.7 – Graphical representation of performance trade-offs for the book dataset

84

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

24

22

20

18

16

25 30 35 40 45
NbArcs

VL
LS
co
re

SparsityInductionMethod

EquivalentSampleSizeDecreasing

NbParentsRestriction

QuasiDeterminismScreening

better
generalization
perf.

worse readability better readability

worse
generalization
perf.

(a) performance/readability tradeoff - pumpitup dataset

40

80

120

21 20 19 18 17 16
VLLScore

Co
m
pT

im
e SparsityInductionMethod

EquivalentSampleSizeDecreasing

NbParentsRestriction

QuasiDeterminismScreening

faster

slower

better generalization perf.worse generalization perf.

(b) performance/computation Time tradeoff - pumpitup dataset

Figure 2.8 – Graphical representation of performance trade-offs for the pump it up
dataset

85

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

6 Concluding remarks

6.1 Summary

We have seen that, both in theory and in practice, the (quasi-)determinism screening approach

enables a significant decrease in computational time and complexity for a small decrease in graph

score.

Deterministic screening is consistent w.r.t. the MLL score, and datasets that contain an

important number of deterministic relationships by design are learned better and faster with the

ds-BNSL algorithm compared to a standard baseline sota-BNSL.

When we are facing standard data however, theoretical guarantees do not hold, and the

learned Bayesian Network qds-BNSL are often a bit less performing than those learned with

sota-BNSL. However, they often have very interesting performance-vs-readability, i.e. they

are more performing than graphs with the same arc density learned with regularized versions of

sota-BNSL, as well as consistent computation time-vs-performance tradeoffs, i.e. they are

faster to compute for a given performance score than with sota-BNSL.

However these properties highly depend on the dataset. These tradeoffs are all the more advanta-

geous as there actually are strong pairwise relationships in the data, that can be detected during

the screening phase, thus enabling a decrease in the number of variables to be considered by the

baseline structure learning algorithm during the second phase of qds-BNSL.

Optimal cases for this algorithm take place when nr(ε) is significantly smaller than n for ε

reasonably small compared to the variables entropies. In practice this is reasonably frequent (e.g

20 newsgroup, msnbc, munin2-4, webkb among others).

Note that in any case, the speed of the qds-BNSL algorithm, and the fact that it is good

at highlighting very strong pairwise relationships, makes it a very interesting tool for dataset

exploration during a pre-processing phase, even in cases where it is not used to learn the final

model.

6.2 Some perspectives

As we saw in the previous result section, the (quasi-)determinism screening approach is indubitably

better in some cases, the most obvious of which being in presence of determinism. However,

its impact is not as great in other cases, even if it consistently decreases computation time and

increases the structures’ sparsity.

Our main research perspective is to be able to anticipate how good the tradeoff may be

before running any algorithm all the way through, saving us from running qds-BNSL on datasets

86

CHAPTER 2. SCREENING STRONG PAIRWISE RELATIONSHIPS FOR FAST BAYESIAN
NETWORK STRUCTURE LEARNING

in which there are absolutely no strong pairwise relationships, and enabling us to choose an

optimal value of ε on datasets on which qds-BNSL has potential, i.e. the value of ε that introduces

the most sparsity and time gain for the smallest graph performance loss.

The bound presented in Proposition 4 concerns the MLL score and is far from tight in practice.

However, if we could find a tight bound on the BDeu score of the graphs generated by qds-BNSL,

it would be much easier to estimate the most promising value of ε for a given dataset.

In Chapter 4, we will present ideas and some preliminary results, both concerning guarantees

for scores other than the MLL score, and concerning ways to choose the value of the ε in the

qds-BNSL algorithm.

Besides, we still have potential to improve our current implementation of the qds-BNSL

algorithm, by parallelizing the computation of HD, and implementing it in C instead of R.

Finally, we have some insights on ways to generalize our quasi-determinism screening idea.

The proof of Proposition 4 suggests that the result still holds when F is any kind of deterministic

DAG (and not only a forest). We could therefore use techniques that detect determinism in a

broader sense than only pairwise, to make the screening more efficient. For this purpose we

could take inspiration from papers of the knowledge discovery in databases (KDD) community,

as Huhtala et al. (1999), or more recently Papenbrock et al. (2015) who evaluate functional

dependence discovery methods.

We also could use alternative definitions for quasi-determinism: instead of considering the

information-theoretic quantity HD(X|Y) to describe the strength of the relationship Y → X,

one could choose HD(X|Y)
HD(X)

, which represents the proportion of X’s entropy that is explained

by Y . This would allow us to express ε as a percentage (with a uniform scale across datasets).

Moreover, HD(X|Y)
HD(X)

≤ ε can be rewritten as ID(X,Y)
H(X) ≥ 1 − ε, which gives another insight to

quasi-determinism screening: for a given variable X, this comes down to finding a variable Y such

that ID(X,Y) is high. This is connected to the idea of Chow and Liu (1968), and later Cheng

et al. (1997), for whom pairwise empirical mutual information is central. This alternate definition

of ε−quasi-determinism does not change the algorithms and complexity considerations described

in Section 4. Lastly, we could consider other definitions of entropy as the ones presented by Rényi

et al. (1961).

87

Chapter 3

Bayesian networks for joint modeling of
temporal and static data

Contents
1 Hybrid static-dynamic Bayesian networks for static and temporal

data fusion: overview . 89
1.1 Theoretical framework . 89
1.2 Hybrid static-dynamic Bayesian network 93

2 Inference and learning algorithms for hybrid static-dynamic Bayesian
networks . 98

2.1 Inference . 98
2.2 Learning . 106

3 Hybrid static-dynamic Bayesian networks in practice 108
3.1 From real data to our formal setting . 108
3.2 Example: from the data available in practice to the HSDBN setting . . 111
3.3 Including time information . 115

4 Experiments . 117
4.1 Data . 117
4.2 HSDBN learning . 119
4.3 Inference with HSDBN for metadata recovery 121

5 Concluding remarks and ideas for future work 122

88

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

In this chapter, we first present a model to address the objective of static and temporal

data fusion announced in the Introduction. We refer to this model as the hybrid static-dynamic

Bayesian network (Section 1). Associated algorithms for using such a model for inference tasks,

as well as learning it from data are then detailed (Section 2). In Section 3, we explain how the

theoretical framework described in Section 1 can be obtained from the data that is available in

practice from an evolving system, such as Schneider Electric’s connected products.

1 Hybrid static-dynamic Bayesian networks for static and tem-
poral data fusion: overview

We consider a setting of static and temporal data, in which the static data correspond to metadata

describing each time series which are observed in the temporal data. Once this formal setting is

introduced, we present the hybrid static-dynamic Bayesian network, which jointly models static

and temporal variables. Throughout the section, we use an example to illustrate both the setting

and the model.

1.1 Theoretical framework

1.1.1 Static and temporal variables

We suppose X = (X1, . . . , Xn) is a tuple of categorical static variables (descriptive metadata),

and Y = (Y1, . . . Yk) is a k−tuple of continuous variables such that ∀x ∈ V al(X), Y|X = x cor-

responds to a (multivariate) time series observed on a set of successive time stamps (independent

from x) {t1, . . . , tl}, where l ∈ N \ {0}. We assume that the time step is constant: ∃∆t > 0 such

that ∀j ∈ J1, l − 1K, tj+1 − tj = ∆t.

For x ∈ V al(X), we use the notation:

Yx = (Yx,1, . . . , Yx,k) (3.1)

to denote the temporal variable with distribution P (Y|X = x). The associated multivariate time

series is:

{Yx(tj)}1≤j≤l.

Moreover, we make the following assumptions:

Assumption (A) For each x ∈ V al(X), Yx satisfies Assumptions 1 to 4 mentioned in Sec-

tion 2.1.4 of Chapter 1. In other words, each time series {Yx(tj)}1≤j≤l can be modeled with a

2-time-step Bayesian network (2TBN) presented in Section 2.3.1 of Chapter 1.

89

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

Assumption (B) The structure of the DBN modeling {Yx(tj)}1≤j≤l does not depend on

x ∈ V al(X).

The second hypothesis may seem restrictive, but we believe it to be reasonable in practice, as

we illustrate through examples later on.

Lastly, Ỹ denotes the ∆t−shifted version of variable Y, i.e. ∀j ∈ J1, l−1K, and ∀x ∈ V al(X),

Ỹx(tj) = Yx(tj + ∆t)

= Yx(tj+1).

1.1.2 Datasets

We suppose that DX is a dataset containing M observations of X, and satisfying the metadataset

assumption, i.e.:

Metadataset assumption The rows of DX are distinct, i.e. ∀m1,m2 ∈ J1,MK,

x(m1) = x(m2) ⇒ m1 = m2.

This is indeed typically verified in metadatasets, since every row of such a set identifies entirely

a time series, thus preventing the existence of identical rows.

Note that if DX satisfies the metadataset assumption, and if F is a deterministic forest

w.r.t. DX, then the observations of variables XR(F) are sufficient to entirely identify the rows of

DX, i.e. ∀m1,m2 ∈ J1,MK,

x
(m1)
R(F) = x

(m2)
R(F) ⇒ m1 = m2.

In practice, there often are a small number of variables XR(F), corresponding to the different

descriptive dimensions of metadata: measuring device, measured quantity, location, asso-

ciated asset, etc. Note that these correspond to the non-temporal branches of the underlying

star / snowflake schema1.

Figure 3.1 displays an example of metadata organized as dimensions according to a snowflake

schema.

We suppose that we observe onemultivariate time series {Yx(tj)}1≤j≤l per value x ∈ V al(X)2.

We will denote by DXY the dataset containing observations of Yx(t) and its associated metadata

x, for all time stamps t ∈ {t1, . . . , tl} and all accessible metadata configurations x ∈ V al(X).
1In the business intelligence domain, the star and snowflakes schemas (Ralph, 1996) are used to efficiently

query temporal data based on static metadata.
2Here V al(X) contains every value of X that is observed in the metadata table DX. We should expect

|V al(X)| = M to be significantly smaller than
n∏
i=1

|V al(Xi)|, because of redundancy and determinism.

90

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

Figure 3.1 – Example of a snowflake schema

DXY therefore contains l × |V al(X)| rows and n + k columns (not counting the time stamp).

Each row corresponds to a given configuration x of X and a given time step tj for j ∈ J1, lK,

and is formed of the n+k observations of variablesX andY(tj): {x1, . . . , xn, yx,1(tj), . . . , yx,k(tj)}.

Finally, DXYỸ denotes the dataset derived from DXY, in which we also add the observations

of the shifted time series Ỹx for all x ∈ V al(X).

DXYỸ has (l − 1) × |V al(X)| rows and n + 2k columns (not counting the time stamp). Each

row corresponds to a given time step tj for j ∈ J1, l − 1K and a given configuration x of

X, and is formed of the n + 2k observations of variables X, Y(tj) and Ỹ(tj) = Y(tj+1):

{x1, . . . , xn, yx,1(tj), . . . , yx,k(tj), yx,1(tj+1), . . . , yx,k(tj+1)}.

This setting is naturally derived, through a pre-processing phase, from the data that is

accessible in practice from an IoT system, as we explain in Section 3. We now present a simple

example to illustrate the notations we introduced.

1.1.3 Example (?): presentation of variables and associated datasets

We introduce an example that will be used throughout this Chapter. The joint modeling of

temporal and static data implies technical notations, that are not easy to grasp outside of a

concrete case.

In example (?), we consider a small part of an office building, containing six zones (given by

variable X1) spread upon 3 rooms (given by variable X2).

Table 3.1 represents the associated metadataset DX.

This dataset satisfies the metadataset assumption. In this case, the Zone variable X1 actually

contains all the information: there exists only one row per given value of X1.

V al(X) = { (Perch1, OpenSpace), (Perch2, OpenSpace), (Perch3, OpenSpace), (MeetingRoomEast,

91

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

X1 X2

(Zone) (Room)
Perch1 OpenSpace
Perch2 OpenSpace
Perch3 OpenSpace

MeetRoomEast MeetingRoom
MeetRoomWest MeetingRoom

Box Box

Table 3.1 – Metadataset DX in the case of example (?)

MeetingRoom), (MeetingRoomWest, MeetingRoom), (Box, Box) } contains 6 elements: one per

row of DX. Finally, we remark that the relationship X1 ⇒ X2 is deterministic.

We suppose that we observe a multivariate temporal variable Y = (Y1, Y2, Y3), corresponding

to the three following quantities:

• Y1: level of CO2 (ppm),

• Y2: temperature (degree Celsius),

• Y3: number of people.

We suppose that each temporal variable is observed at a collection of time stamps {t1, . . . , tl},
which is the same for all x ∈ V al(X). Furthermore, we suppose that ∀j ∈ J1, lK, tj+1 − tj is

constant (typically equal to 15min).

For each x ∈ V al(X), {Yx(tj)}1≤j≤l is the (multivariate) time series corresponding to the

observation of these three quantities in the area of the building identified by x.

Table 3.2 represents an extract of the associated dataset DXY.

Finally, Table 3.3 represents an extract of DXYỸ.

Note that assumption (B) proposed in Section 1.1.1 makes sense in the setting of example

(?). Indeed, the structure of the DBN modeling {Yx(tj)}1≤j≤l can be intuitively expected not

to depend on x ∈ V al(X), i.e. the (in)dependencies in between the physical quantities through

time should realistically not depend on the zone or the room (e.g. a high number of people has

a positive impact on CO2 and temperature, whatever the considered area). However, we can

expect the quantitative information underlying these relations (encoded by the parameters of the

network) may vary, e.g. the temperature increase rate when people are present in a room should

depend in the size of said room.

92

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

X1 X2 Y1 Y2 Y3

(zone) (room) (CO2 level) (temperature) (nb people)

t1 Perch1 OpenSpace 3.2 21.3 2

t2 Perch1 OpenSpace 3.3 21.1 3

.

tl−1 Perch1 OpenSpace 4.9 19.4 1

tl Perch1 OpenSpace 4.7 19.8 2

.

t1 MeetRoomEast MeetingRoom 3.0 20.7 0

t2 MeetRoomEast MeetingRoom 2.3 21.0 8

.

tl−1 MeetRoomEast MeetingRoom 5.1 19.9 10

tl MeetRoomEast MeetingRoom 5.5 20.2 11

.

Table 3.2 – Extract of the dataset DXY in the case of example (?)

X1 X2 Y1 Y2 Y3 Ỹ1 Ỹ2 Ỹ3

(zone) (room) (CO2 level) (temperature) (nb people) (CO2 level) (temperature) (nb people)

t1 Perch1 OpenSpace 3.2 21.3 2.0 3.3 21.1 3.0

. .

tl−1 Perch1 OpenSpace 4.9 19.4 1.0 4.7 19.8 2.0

. .

t1 MeetRoomEast MeetingRoom 3.0 20.7 0 2.3 21.0 8

. .

tl−1 MeetRoomEast MeetingRoom 5.1 19.9 10 5.5 20.2 11

. .

Table 3.3 – Extract of the dataset DXYỸ in the case of example (?)

1.2 Hybrid static-dynamic Bayesian network

1.2.1 Model description

In this subsection, we propose the hybrid static-dynamic Bayesian network (HSDBN) model,

using ideas both from static Bayesian networks and dynamic Bayesian networks, in order to

jointly model temporal and static data. As explained in the introduction, we believe that this will

notably enable to automate existing tasks that currently need expert knowledge input because of

the fact that static (metadata) is not included as such in the model.

Notations We denote by V X = {vX1 , . . . , vXn } the set of nodes associated with the (categorical)

static variables X = (X1, . . . , Xn).

We denote by V Y = {vY1 , . . . , vYk } and V Ỹ = {vỸ1 , . . . , vỸk } the sets of nodes, respectively associ-

ated with the (continuous) temporal variables Y and Ỹ.

93

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

We do not refer to nodes of the graph G by integers as in Chapter 2, since there now are

different categories of variables.

Model overview We choose to model the static and temporal variables with a particular case

of Bayesian network, that we call hybrid dynamic-static.

This Bayesian network formally models (X,Y, Ỹ), that we consider to be simultaneously observ-

able variables (as in DXYỸ), and is defined as:

B = (G,Θ)

where:

• G = (V,A) is a DAG with:

– V = V X ∪ V Y ∪ V Ỹ,

– A ⊂ V 2 satisfying the following structural constraints: for any (v1, v2) ∈ A, we must

have:

∗ v1 /∈ V Ỹ,

∗ v1 ∈ V Y ⇒ v2 ∈ V Ỹ

• Θ = {ΘX
i }1≤i≤n ∪ {ΘY

i }1≤i≤k ∪ {ΘỸ
i }1≤i≤k with each parameter Θ.

i defining the local

distribution of its associated variable given its parent variables in G.

Parent functions in structure G The parent function πG(.) presented in Section 2.1.1 of

Chapter 1 needs to be adapted to the new node notation.

We note that the structural constraints on G imply that:

• only nodes in V Ỹ can have parents in V Y,

• all of the nodes in V can have parents in V X.

Therefore, we define the new parent functions πGY and πGX, that return the parent indexes

among variables V Y and V X respectively: for G = (V,A) a HSDBN structure in accordance with

the previously defined notations,

πGY :

∣∣∣∣∣ V Ỹ −→ 2J1,kK

v 7−→ {j ∈ J1, kK | (vYj , v) ∈ A},

and

πGX :

∣∣∣∣ V −→ 2J1,nK

v 7−→ {i ∈ J1, nK | (vXi , v) ∈ A}.

In short, πGY can be used for arcs Y → Ỹ, and πGX for arcs X→ X, X→ Y and X→ Ỹ.

94

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

HSDBN structure: link with previous assumptions

• Assumptions (A1-A2-A3) (Assumptions 1,2,3 stated in Section 2.1.4 of Chapter 1) imply

that it is legitimate to consider Y only on short intervals of two successive time stamps, to

model its evolution through time. It also guarantees that valid arcs concerning nodes in

V Y ∪ V Ỹ can only go from nodes in V Y to nodes in V Ỹ, hence our structural constraints

do not prevent valid arcs to appear.

• Assumption (A4) (Assumptions 4 stated in Section 2.1.4 of Chapter 1) states that the

structure representing the dependencies between Y observed at two successive time stamps

does not depend on the time stamp. Assumption (B) moreover implies that this structure

should not depend on the configuration x of X neither. This justifies that we have a single

DBN structure representing the evolution of Yx through time for all x: the value x of X

does not affect the structure in between nodes in V Y and V Ỹ, it does however affect the

corresponding parameters.

HSDBN parameters interpretation The constraints on the model structure imply that:

• Nodes in V X correspond to categorical variables (that are all static). They can only have

nodes in V X as parents. The corresponding parameters are simply conditional probability

tables as explained in Chapter 1.

• Nodes in V Y correspond to continuous variables. They can only have nodes in V X as

parents. The distribution of a variable Yi for i ∈ J1, kK, is therefore modeled as a mixture of

Gaussian distributions, with as many components as there are configurations of its parent

variables XπGX(vYi).

• Nodes in V Ỹ correspond to continuous variables. They can have both nodes in V Y and

nodes in V X as parents. The distribution of a variable Ỹi for i ∈ J1, kK, is therefore given by

a mixture of Gaussian distributions, with as many components as there are configurations

of its categorical parent variables X
πGX(vỸi)

.

For each configuration x
πGX(vỸi)

of X
πGX(vỸi)

, the mean of the corresponding Gaussian distri-

bution depends linearly on the values of its continuous parent variables Y
πGY(vỸi)

, and the

standard deviation is fixed (depends only on the configuration x
πGX(vỸi)

).

In simpler terms, this means that the ‘dynamic’ part of the model contains by design a

different set of parameters for each time series {Yx(tj)}1≤j≤l for x ∈ V al(X), depending

on the parents among V X of nodes V Ỹ. In the most extreme case, we have a different set

of parameter for every x ∈ V al(X) (but the same DBN structure).

95

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

1.2.2 Example (?) continued: hybrid static-dynamic Bayesian network

We consider the setting described in Section 1.1.3. The graph displayed in Figure 3.2 is an

example of HSDBN jointly modeling the static variables X and the temporal variables Y.

X1

(zone)

X2

(room)

Y1

Y2

Y3

Y1

Y2

Y3

t t + 15min

Figure 3.2 – Example structure of a hybrid static dynamic Bayesian network in the
setting of example (?). Static nodes are colored in light gray and temporal nodes in
white.

Here are some insights on the interpretation of this structure:

• The parents of Y1 (at t+ 15min) are: Y1, Y3 (at t) and X2.

The evolution of the level of CO2 (Y1) is therefore modeled as depending on the number of

people in the room (Y3) and the level of CO2 (Y1) at the previous time stamp (15 minutes

before). This dependency is modeled as linear, and the corresponding set of coefficients

is different for every room (X2), which seems intuitive: the evolution of the level of CO2

relative to the number of people should depend highly on the considered room.

• The evolution of the temperature (Y2) can be interpreted in a similar way.

• The only parent of Y3 (at t+ 15min) is Y3 (at t).

The evolution of the number of people in the room (Y3) is therefore modeled as depending

on the number of people in the corresponding room at the previous time stamp only3, and
3Y3 represents the number of people, and is therefore not a continuous variable by design. In practice however,

the values of Y3 are often averages over a given time bin (15min here) and are therefore not consistently integers.
We make the choice to model this variable as a conditional Gaussian, like the other temporal variables.

96

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

does not depend on the localization (zone or room).

However Y3 (at t) has X1 as a parent.

The number of people in a given zone a priori (without any information concerning the

number of people in the past) is therefore modeled as different for every zone (X1).

Table 3.4 presents an extract of possible parameters associated with the structure presented

in Figure 3.2.

x2 µx2 σx2

Perch1 1.2 0.4
Perch2 2.5 1.0
Perch3 1.1 0.4

MeetRoomEast 2.7 1.4
MeetRoomWest 1.1 0.6

Box 0.6 0.3

(a) ΘY
3 = {(µx2

, σx2
)}x2∈V al(X2),

giving the parameters of the distribu-
tion Y3|X2 = x2 ∼ N (µx2 , σ

2
x2

)

x1 βx1
σx1

OpenSpace (0.4, 0.9, 0.1) 0.3
Box (3.1, 0.8, 0.7) 0.6

MeetingRoom (−0.1, 0.9, 0.3) 0.5

(b) ΘỸ
2 = {(βx1

, σx1
)}x1∈V al(X1), giving

the parameters of the distribution Ỹ2|{X1 =
x1, Y2 = y2, Y3 = y3} ∼ N (µx1

(y2, y3), σ2
x1

),
where µx1

(y2, y3) = (1, y2, y3)βT
x1

Table 3.4 – Example parameters for distributions Y3|X2 and Ỹ1|X1, Y1, Y3, consistent
with the structure presented in Figure 3.2

These parameters can be interpreted in a straightforward way:

For example, the number of people in a given area (Y3) (without knowledge on past values) is

modeled as a Gaussian variable with a mean that depends only on the considered zone (X2).

This makes sense as all the zones in the open space may not contain the same number of seats,

and people may tend to seat more on one side of the meeting room than the other (especially

when there are few of them).

We also observe that the number of people (Y3) has a positive influence on the future tempera-

ture (Ỹ2), and that this effect is more important in a small room (i.e. Box) than in the open space.

Translating the conditional distribution in intuitive terms, we can write the following relations:

In any zone of the open space,

Temperature(t+ 15min) = 0.4 + 0.9× Temperature(t) + 0.1× NumberPeople(t) + ε,

where ε ∼ N (0, 0.32).

In the box,

Temperature(t+ 15min) = 3.1 + 0.8× Temperature(t) + 0.7× NumberPeople(t) + ε,

97

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

where ε ∼ N (0, 0.62).

In the Perch3 zone, we have the following model of the number of people a priori at a given time

t, i.e. in the absence of information on the past,

NumberPeople(t) = 1.1 + ε

where ε ∼ N (0, 0.42).

Intuitively, we see some additional information could be brought to this model. For example,

categorical time information such as the day of the week, or the time of day could be quite helpful

to model the number of people with greater accuracy. This will be discussed in Section 3.3.

2 Inference and learning algorithms for hybrid static-dynamic
Bayesian networks

In this section we propose (i) an inference algorithm adapted to HSDBN models to perform

metadata recovery from a sequence of temporal observations, and (ii) a learning algorithm for

HSDBN models, relying both on the ds-BNSL algorithm presented in Chapter 2 and on standard

structure learning methods.

2.1 Inference

Many queries that are not studied in this section can be straightforwardly answered using standard

inference algorithms for Bayesian networks, without any adaptation to our hybrid static and

dynamic context required.

In this section, we will focus on a specific inference task that implies an adaptation to the hybrid

static and dynamic context, and that represents one of the most current setting we face in reality:

metadata recovery from a sequence of temporal observations.

Here, we suppose we are in the setting described in Section 1.1: we consider conjointly a tuple

of n static descriptive variables X and a tuple of k temporal variables Y. Moreover, we suppose

B = (G,Θ) is a hybrid static-dynamic Bayesian network modeling jointly the distributions of X

and Y, as described in Section 1.2.

2.1.1 Metadata recovery from a sequence of temporal observations

We suppose that we observe a sequence

{yx(t1), . . . ,yx(td)}

98

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

of d ∈ N∗ successive realizations of a temporal variable Yx corresponding to an unknown (fixed)

configuration x ∈ V al(X), on time stamps (t1, . . . , td)
4.

Metadata recovery from a sequence of temporal observations formally comes down to the estimation

of the distribution P (X|E), where:

E = {Y(t1) = y(1), . . . ,Y(td) = y(d)}, (3.2)

and under the assumption that y(1), . . . ,y(d) ∈ V al(Y) are successive realizations of a single time

series Yx, corresponding to a fixed value x of X.

In the context of metadata recovery, we sometimes are not interested in the estimation of the

whole distribution P (X|E), but only in its mode x̂MAP defined as:

x̂MAP ∈ argmax
x∈V al(X)

P (X = x|E). (3.3)

This may be compared to the general problem of model identification, where x plays the

role of a fixed underlying model (the parameters of which are encoded into B), representing the

evolution of the temporal variable Y: for a given configuration x of X, we have a given model

describing the evolution of Y through time, defined by the HSDBN parameters that encode the

conditional distribution Yx(tj+1)|Yx(tj).

In the context of metadata recovery, we are observing a sequence of realizations of Y which we

know were all generated with the same model, i.e. which we know are associated to the same

time series Yx, and we wish to recover the corresponding value x.

2.1.2 Inference approaches

Naive approach We first consider a naive approach, that enables optimal usage of efficient

pre-programmed MAP inference algorithms. This naive algorithm is split in two steps

• We consider independently the d− 1 following MAP inference sub-problems:

xMAP (1) ∈ argmax
x

P (X = x|Y(t1) = y(1),Y(t2) = y(2))

. . .

xMAP (p) ∈ argmax
x

P (X = x|Y(tp) = y(p),Y(tp+1) = y(p+1))

. . .

xMAP (d−1) ∈ argmax
x

P (X = x|Y(td−1) = y(d−1),Y(td) = y(d)).

4These time stamps are considered equally spaced, with the same time step ∆t used in the dynamic part of the
model B.

99

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

This comes down to focusing on the time series observations, two successive time stamps

at a time. In each of those problems the observation (x,y(p),y(p+1)) can be viewed as a

realization of variables (X,Y, Ỹ), which are modeled by the HSDBN.

As a consequence, each of these problems can be rewritten as, for p ∈ J1, d− 1K,

xMAP (p) ∈ argmax
x

P (X = x|Y = y(p), Ỹ = y(p+1)). (3.4)

These MAP inference sub-problems can then be solved straightforwardly with a standard

inference algorithm, such as LikelihoodWeighting, presented as Algorithm 1 in Chapter 1,

using the HSDBN parameters Θ.

This generates d− 1 MAP estimates of x: {x̂MAP (1), . . . , x̂MAP (d−1)}.

• We then choose to aggregate these results by considering the global MAP estimate.

We make the assumption that x̂MAP has great chance of being the most represented configu-

ration among {x̂MAP (1), . . . , x̂MAP (d−1)}: we approximate x̂MAP defined in Equation (3.3)

by:

x̂MAP (Naive) = argmax
x∈V al(X)

d∑
p=1

Ix=xMAP (p) , (3.5)

where x̂MAP (1), . . . , x̂MAP (d−1) are the solutions of the optimization problems defined by

Equation (3.4).

This approach has an important computational advantage in practice: it enables the usage of

already packaged and optimized MAP inference algorithms.

However, it does not take advantage of the fact that the value of x is the same for all the

observations {y(1), . . . ,y(d)}, and the aggregation of the MAP inference sub-problems is not

mathematically sound.

Sound approach - version 1 We want to take advantage of the fact that the observations

belong to a unique time series Yx associated with a single configuration of metadata x ∈ V al(X).

For any p ∈ J2, d − 1K and j ∈ J1, p − 1K, we know that Y(tp−j) ⊥ Y(tp+1)|{X,Y(tp)}. This

enables us to decompose the target distribution P (X|Y(t1), . . . ,Y(td)) as follows:5

P (X|Y(t1), . . . ,Y(td)) ∝ P (X)P (Y(t1), . . . ,Y(td)|X)

= P (X)P (Y(td)|Y(t1), . . . ,Y(td−1),X)︸ ︷︷ ︸
P (Y(td)|Y(td−1),X)

P (Y(t1), . . . ,Y(td−1)|X).

5As explained in Section 1.2, the notation P is used as a general reference to random variables distribution.
It is to be understood as either a configuration probability for categorical variables, or as a density function for
continuous variables.

100

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

By immediate induction we then get:

P (X|Y(t1), . . . ,Y(td)) ∝ P (X)

d∏
p=1

P (Y(tp)|Y(tp−1),X), (3.6)

with the convention that Y(t0) = ∅.

We can therefore decompose the problem of estimating P (X|Y(t1), . . . ,Y(td)), into sub-

problems: for every p ∈ J1, d− 1K, we want to estimate

P (Y(tp+1)|Y(tp),X) =
k∏
i=1

P (Yi(tp+1)|Y(tp),X).

For p ∈ J1, d− 1K, i ∈ J1, kK and x ∈ V al(X), the distribution P (Yi(tp+1)|Y(tp),X) is given by

the following conditional density function, that can be rewritten using variables X, Y and Ỹ

modeled by B:

fYi(tp+1)

(
y

(p+1)
i |Y(tp) = y(p),X = x

)
= fỸi

(
y

(p+1)
i |Y = y(p),X = x

)
= fỸi

(
y

(p+1)
i |Y = y(p),X = x

)
.

The conditional independence relations implied by the structure G enable to rewrite the conditional

densities of the Ỹis as follows:6

fỸi(y
(p+1)
i |Y = y(p),X = x) = fỸi

(
y

(p+1)
i |Y

πY(vỸi)
= y

(p)

πY(vỸi)
,X

πX(vỸi)
= x

πX(vỸi)

)
.

These distributions can be written using the parameters Θ of B. We remind that, for i ∈ J1, kK,

the parameters corresponding to the variable Ỹi are given by ΘỸ
i where:

ΘỸ
i =

{
(βx

πX(vỸ
i

)
, σx

πX(vỸ
i

)
)

}
x
πX(vỸ

i
)
∈V al

(
X
πX(vỸ

i
)

) .
Indeed, we have:

fỸi(y
(p+1)
i |Y

πY(vỸi)
= y

(p)

πY(vỸi)
,X

πX(vỸi)
= x

πX(vỸi)
)

=
1√

2πσx
πX(vỸ

i
)

exp

−
(
y

(p+1)
i − y

(p)

πY(vỸi)
βTx

πX(vỸ
i

)

)2

2σ2
x
πX(vỸ

i
)

 .

Combining all these results7, we obtain the closed-form expression of a quantity which is propor-

tional to our target distribution P (X|E): for x ∈ V al(X), and reminding that E = {Y(t1) =

6This equation expresses a simpler idea than the previous one, despite being much less readable.
7We remind that P (X = x) can be written simply using as a discrete parameter table

ΘX
i =

{
θxi|xπX (vXi)

}
xi,xπX (vXi)

.

101

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

y(1), . . . ,Y(td) = y(d)},

P (X = x|E) ∝
n∏
i=1

θxi|xπX (vXi)

d∏
p=1

k∏
i=1

1√
2πσx

πX(vỸ
i

)

exp

−
(
y

(p+1)
i − y

(p)

πY(vỸi)
βTx

πX(vỸ
i

)

)2

2σ2
x
πX(vỸ

i
)

 .

(3.7)

In practice, we compute the logarithm of this quantity, i.e.

log(P (X = x|E)) = K +
n∑
i=1

log
(
θxi|xπX (vXi)

)

−
d∑
p=1

k∑
i=1

log
(
σx

πX(vỸ
i

)

)
+

(
y

(p+1)
i − y

(p)

πY(vỸi)
βTx

πX(vỸ
i

)

)2

2σ2
x
πX(vỸ

i
)

 .

(3.8)

where K is a constant that is independent of x.

We consider that computing P (X = x|E) for each x in V al(X) does not raise any compu-

tational problem, since the number of accessible values of X = (X1, . . . , Xn) is assumed to be

reasonable in practice.

Sound approach - version 2 The previously proposed approach requires to quickly access

the HSDBN parameters to compute expression in Equation (3.7). Some efficiency issues were

faced programming this inference. We therefore explored another possibility: a simple rewriting

trick using Bayes formula enables to link the distribution P (X|E) decomposed in Equation (3.6)

into several inference sub-problems also targeting the conditional distribution of the metadata

variables X, given evidence from successive realizations of Y only. Indeed:

P (X|Y(t1), . . . ,Y(td)) ∝ P (X)

d∏
p=1

P (Y(tp)|Y(tp−1),X)

= P (X)

d∏
p=1

P (Y(tp),Y(tp−1)|X)

P (Y(tp−1)|X)

= P (X)

d∏
p=1

P (X|Y(tp),Y(tp−1))

P (X|Y(tp−1))
P (Y(tp)|Y(tp−1))︸ ︷︷ ︸

indep of X

∝ P (X)

d∏
p=1

P (X|Y(tp),Y(tp−1))

P (X|Y(tp−1))

In this second version of the sound approach, we need to estimate, for p ∈ J1, dK,

P (X|Y(tp),Y(tp−1))

P (X|Y(tp−1))
. (3.9)

102

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

This can be rewritten using the variables modeled by the HSDBN B = (G,Θ). For p ∈ J1, dK and

x ∈ V al(X),

P (X = x|Y(tp) = y(p),Y(tp−1) = y(p−1))

P (X = x|Y(tp−1) = y(p−1))
=
P (X = x|Y = y(p−1), Ỹ = y(p))

P (X = x|Y = y(p−1))
.

Like in the first version of the sound approach to metadata recovery, we have derived a quantity

which is proportional to our target distribution P (X|E), and which only involves the variablesX, Y

and Ỹ modeled by B: for x ∈ V al(X), and reminding that E = {Y(t1) = y(1), . . . ,Y(td) = y(d)},

P (X = x|E) ∝ P (X = x)

d∏
p=1

P (X = x|Y = y(p−1), Ỹ = y(p))

P (X = x|Y = y(p−1))
. (3.10)

Like in the first approach, we compute the log of this quantity in practice, i.e.

log(P (X = x|E)) = K ′ + log(P (X = x))

+

d∑
p=1

[
log
(
P (X = x|Y = y(p−1), Ỹ = y(p)))− log(P (X = x|Y = y(p−1))

)]
,

(3.11)

where K ′ is a constant independent of x.

Using these results, the target distribution P (X|E) can be evaluated by estimating p times

the distributions P (X|Y, Ỹ) and P (X|Y), which can be done using the Bayesian network B and

a standard inference algorithm such as LikelihoodWeighting.

2.1.3 Inference algorithms presentation

Using the derivations made in the last subsection, we will now present the following inference

algorithms:

1. The NaiveMetadataRecovery algorithm, which takes on the idea of the naive approach to

perform MAP inference, relying on Equation (3.5).

2. The SoundMetadataRecovery.v1 algorithm, which uses Equation (3.8) to perform inference

through direct computations using the parameters of the HSDBN.

3. The SoundMetadataRecovery.v2 algorithm, which uses Equation (3.11) to perform infer-

ence by aggregation of the results of inference sub-problems using observations at successive

time stamps.

The inputs of these three inference algorithms are among:

• B = (G,Θ) a hybrid static-dynamic BN modeling X = (X1, . . . , Xn) (static variables) and

Y = (Y1, . . . , Yk) (dynamic variables observed on {t1, . . . , tp}),

103

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

• y(1), . . . ,y(d): a sequence of successive realizations of Y, that correspond to a given value x

of X,

• sota-MAPInference: a standard MAP inference algorithm, taking as input BN: a Bayesian

network, evidence: information concerning part of the variables modeled by the BN, and

target: a tuple of categorical variables, and returning the estimated MAP configuration

for target given evidence.

• sota-Inference: a standard inference algorithm, taking as input BN: a Bayesian network,

evidence: information concerning part of the variables modeled by the BN, and target:

a tuple of categorical variables, and returning a set of estimated probabilities for all

configurations of target given evidence.

Algorithm 9 NaiveMetadataRecovery

Input: B = (G,Θ), y(1), . . . ,y(d), sota-MAPInference
1: for p = 1 to d− 1 do
2: Ep ← {Y = y(p), Ỹ = y(p+1)}
3: x̂MAP (p) ← sota-MAPInference(BN = B, evidence = Ep, target = X)

4: x̂MAP (Naive) ← argmax
x

d∑
p=1

I{x=x̂MAP (p)}

Output: x̂MAP (Naive)

Algorithm 10 SoundMetadataRecovery.v1

Input: B = (G,Θ), y(1), . . . ,y(d)

1: {logPx} ← {0}x
2: for x ∈ V al(X) do #for configurations x of X, compute P (X = x|E)

3: for i = 1 to n do
4: logPx ← logPx + log(θxi|xπX (vXi))

5: for p = 1 to d− 1 do
6: for i = 1 to k do

7: logPx ← logPx + log
(
σx

πX(vỸ
i

)

)
+

 (y
(p+1)
i −y(p)

πY(vỸ
i

)
βTx

πX(vỸ
i

)

)2

2σx
πX(vỸ

i
)

8: {wx}x ← {exp(logPx)}x
9: Z ←

∑
x
wx

10: {p̂x}x ← {wx
Z }x #normalize the wx so they sum to 1

Output: {p̂x}x

104

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

Algorithm 11 SoundMetadataRecovery.v2

Input: B = (G,Θ), y(1), . . . ,y(d), sota-Inference
1: {logPx}x ← {0}x
2: for i = 1 to n do
3: {logPx}x ← {logPx + log(θxi|xπX (vXi))}x
4: for p = 1 to d− 1 do#for all time stamps tp, compute P (X|Y(tp),Y(tp−1))

and P (X|Y(tp−1))

5: E
(1)
p ← {Y = y(p), Ỹ = y(p+1)}

6: E
(2)
p ← {Y = yp}

7:
8: {p(1)

x }x ← sota-Inference(BN = B, evidence = E
(1)
p , target = X)

9: {p(2)
x }x ← sota-Inference(BN = B, evidence = E

(2)
p , target = X)

10: {logPx}x ← {logPx + log(p
(1)
x)− log(p

(2)
x)}x

11: {wx}x ← {exp(logPx)}x
12: Z ←

∑
x
wx

13: {p̂x}x ← {wx
Z }x #normalize the wx so they sum to 1

Output: {p̂x}x

The subscript x, on lines 1, 8, 9 and 10 of Algorithm 10, and lines 1, 3 and to 13 of Algo-

rithm 11, denotes a vector of objects that are indexed by x, for all x ∈ V al(X)).

In practice, SoundMetadataRecovery.v2 is more efficient than SoundMetadataRecovery.v1.

We have identified a few insights on why this is observed:

• First, Algorithm 11 implies only manipulations of vectors of length |V al(X)|, which is

efficient in practice: the operations on lines 8 − 10 can be vectorized.8 In Algorithm 10

however, the for loop on line 6 cannot be transformed in a vector operation efficiently.

• Moreover, typical particle-based sota-Inference algorithms, such as LikelihoodWeighting,

despite being described as a way to evaluate the probability of a given configuration xQ of

query variables XQ in Chapter 1, are very well suited to the simultaneous evaluation of

the entire distribution {p̂x}x as depicted, as it is done on lines 8− 9 of Algorithm 11. This

enables to estimate {p̂x}x without explicitly having a for loop going through every value of

X as it is the case in Algorithm 10.

• Lastly, LikelihoodWeighting is already efficiently programmed and packaged, whereas the

computation of the closed form expression given by Equation (3.8) in Algorithm 10 is slower

than expected.
8we remind that the number of accessible values of X is equal to the number of rows of a typical metadata

table DX (which is far smaller than
n∏
i=1

|V al(Xi)| in practice since the redundancy and determinism imply that

the majority of the configurations x ∈ V al(X1)× · · · × V al(Xn) are not accessible).

105

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

2.1.4 Generalization: partial recovery of metadata, partially observed metadata

In practice, there may be two main alterations to the setting of metadata recovery we proposed

in the previous subsections.

1. We may know part of the metadata associated with the observed time series, i.e. there

exist E ⊂ J1, nK and xevE ∈ V al(XE) such that {XE = xevE } belongs to the evidence.

2. We may want to recover only part of the metadata, i.e. we are only interested in the

distribution of XQ, where Q ⊂ J1, nK, given evidence.

The general problem of metadata recovery comes down to the estimation of the distribution:

P (XQ|E,XE = xevE) (3.12)

where E = {Y(t1) = y(1), . . . ,Y(td) = y(d)}, as presented in Equation (3.2).

The problem of estimating the distribution given by Equation (3.12) can be narrowed down

to the problem we tackled in the previous subsection.

Let E,Q ⊂ J1, nK, J = J1, nK \ (Q ∪ E) and xevE ∈ V al(XE). We can write, ∀xQ ∈ V al(XQ):

P (XQ = xQ|E,XE = xevE) =
P (XQ = xQ,XE = xevE |E)

P (XE = xevE)|E)

∝ P (XQ = xQ,XE = xevE |E)

=
∑

xJ∈V al(XJ)

P (XJ = xJ ,XQ = xQ,XE = xevE |E)

=
∑

xJ∈V al(XJ)

P (XJ∪Q∪E︸ ︷︷ ︸
reorg. of X

= (xJ ,xQ,x
ev
E)|E).

Computing each of the terms of the last sum boils down to the estimation of the probability of

observing the value x of X, given evidence on temporal variables only.

In practice, partial query with evidence on X comes down to filtering and summing rows of {p̂x}x,
output of Algorithm 10 and 11.

Now that we are able to use a HSDBN model B to perform inference, we are interested in

learning it from data. In the next subsection, we propose a learning algorithm, using ds-BNSL

algorithm and a state-of-the-art structure learning algorithm sota-BNSL.

2.2 Learning

2.2.1 Extra constraints for standard structure learning algorithms

By default, a baseline algorithm such as the one we refer to as sota-BNSL in Section 3 and 4 of

Chapter 2 takes as input a dataset, and returns a Bayesian network structure. However, there

106

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

exist optional inputs that can be simply integrated into the algorithm, and that are used to define

constraints on the final structure.

For the definition of our proposed HSDBN structure learning algorithm, we need to specify two

of such optional inputs:9

• whitelist: list of arcs, which are required to be in the final structure.

• blacklist: list of arcs, which are forbidden in the final structure. For simplification

purposes, this argument is given by a list of tuples (I, J) where I and J are sets of nodes:

(I, J) ∈ blacklist implies that all arcs (i, j) where i ∈ I and j ∈ J are forbidden.

The inclusion of both these inputs into a greedy local-search Bayesian network structure learning

algorithm such as HillClimbing is straightforward: one just has to initiate the heuristic with

the structure containing only the arcs present in whitelist, and perform standard greedy hill

climbing with a slightly reduced set of possible local operators: arcs from whitelist cannot be

removed, and arcs from blacklist cannot be added.

2.2.2 HSDBN structure Learning algorithm

We propose an HSDBN structure learning algorithm which follows 2 steps:

1. the structure of the Bayesian network modeling only the metadata variables X is learned

by running ds-BNSL, defined in Algorithm 6 in Chapter 2, with DX as an input,

2. a standard Bayesian network structure learning algorithm sota-BNSL, that handles mixed

continuous and categorical data, is run on DXYỸ with the following two constraints:

• the constraints imposed by the definition of a HSDBN in Section 1.2 must be verified,

• no supplementary arc can be learned in between nodes {vXi }, i.e. the only arcs linking

two nodes representing metadata variables are the ones that have been learned by

ds-BNSL during the algorithm’s first step.

These two constraints can be encoded into the whitelist and blacklist arguments. If GX =

(V X, AX) is the graph that was learned during the algorithm’s first step, we set:

• whitelist = AX,

• blacklist = {(V X, V X), (V Ỹ, V Y), (V Y, V X), (V Ỹ, V X), (V Y, V Y), (V Ỹ, V Ỹ)}.

We now present the hybrid static-dynamic BN structure learning algorithm described in the

previous subsection. Using the notations introduced in Section 1, this algorithm takes as input

• DX: a dataset containing M observations of X,
9The name of these arguments is borrowed from the bnlearn package.

107

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

• DXYỸ: a dataset containing observations of X, as well as the observations of Y on two

successive time stamps,

• sota-BNSL: a standard static Bayesian network structure learning algorithm (typically close

to state-of-the-art), taking for input data: a dataset containing observations of the variables

which we want to model, optional whitelist and blacklist arguments, and returning a

BN structure.

Algorithm 12 HybridStaticDynamicBNSL

Input: DX, DXYỸ, sota-BNSL
1: GX = (V X, AX)← ds-BNSL(DX, sota-BNSL)

bl← {(V X, V X), (V Ỹ, V Y), (V Y, V X), (V Ỹ, V X), (V Y, V Y), (V Ỹ, V Ỹ)}
2: G← sota-BNSL(DXYỸ, whitelist = AX, blacklist = bl})

Output: G

2.2.3 Parameter learning

The hybrid static-dynamic Bayesian network model we proposed is a Bayesian network modeling

variables X,Y and Ỹ, observed in the dataset DXYỸ.

Since we are in the case of complete data, parameter learning may be done in a straightforward

way using maximum likelihood estimation, as presented in Chapter 1, for networks modeling

both categorical and continuous variables.

3 Hybrid static-dynamic Bayesian networks in practice: not ev-
erything can be learned

In this section, we describe the data that are available in practice from an IoT system, and we

explain what choices have to be made in order to obtain the setting described in Section 1.1,

which is essential for being able to learn a hybrid static-dynamic Bayesian network.

3.1 From real data to our formal setting

3.1.1 Description of observed datasets

We consider that the data coming from an IoT system can be represented as two tables, closely

related to the datasets DX and DXY presented in Section 1.1.2.

Metadata table The metadata table corresponding to an IoT system is typically backed by

relational or semantic databases, and contains observations of n categorical variables including an

id variable, which is the time series unique identifier variable. Such a variable has a unique

value for every row of the table and entirely defines a given time series, for this reason we also

108

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

call it key.

Using the previously introduced notations this table is defined by a dataset DX, containing M

distinct observations of a tuple of categorical variables X = (X1, . . . , Xn). For simplicity, we

consider that X1 is the time series identification variable, i.e. it satisfies, for 1 ≤ m,m′ ≤M ,

x
(m)
1 = x

(m′)
1 ⇒ m = m′.

DX therefore obviously satisfies the metadataset assumption introduced in Section 1.1.2.

Time series observations table The time series observations table contains values of time

series measured in the associated system. This table contains three columns corresponding to: the

time stamp, the time series identifier, and the measured value of the corresponding (univariate)

time series at that given time stamp.

Consistently, with the previously defined notations, this table is denoted by DX1Y .

3.1.2 Synchronization and choice of time step

Time series synchronization: bin size A priori, all temporal variables are not observed

simultaneously: the sequence of time stamps {tx1
1 , . . . , t

x1
lx1
} and its length depend on the considered

variable Yx1 , identified by the value x1 of the key metadata variable X1. We may however

synchronize the associated time series observations by choosing a binsize value δt, a starting

time stamp t1, and a number of bins L such that every temporal variable is observed at least

once in each time window]t1 + (p− 1)δt, t1 + pδt] for p ∈ J1, LK. The observation of every given

temporal variable in each time window are then averaged, resulting in M time series measured

on the same sets of time stamps:

{{Yx1(t1 + pδt)}0≤p≤L}x1∈V al(X1) .

Note that many other aggregation methods exist and are equally applicable, in all that follows,

we will consider that we always have synchronized time series observations.

Time series Markovian modeling: time step Assuming all temporal variables observations

in DX1Y are synchronized, we may now choose a value for the time step ∆T (≥ δt), in order

to define the sequence of time stamps {tp = t1 + (p − 1)∆t}1≤p≤l that are used for modeling

purposes.

The measured values of every given temporal variables in each time window [tp, tp+1] is then

averaged, in order to obtain synchronized time series observations on the sequence of time stamps

t1, . . . tl, in accordance with the setting presented in Section 1.

In practice, this value is chosen according to the typical time of variation of the measured

109

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

quantities. We should also make sure that the selected value of ∆t is consistent with the

Markovian assumption (assumption A-1).

3.1.3 Balancing static and temporal data

From univariate to multivariate time series In real-world metadatasets, considering all

the available metadata variables implies that the time series corresponding to a given metadata

configuration is univariate, i.e. k = 1 in Equation (3.1). However, we are often interested in

modeling multivariate time series that represent the dependencies in the evolution of quantities

that we believe to be linked (as it is the case in example (?), for the temperature and the CO2

level in a given location).

For this purpose, we need to make the choice of an observation scope, corresponding to the

temporal variables we wish to observe simultaneously as a multivariate variable Y = (Y1, . . . , Yk)

introduced in Section 1.1.1.

Orthogonal dimensions in metadata In practice, this can only be done if the metadata

table DX is a Cartesian product of datasets containing the values of disjoint subsets of variables,

that we call orthogonal dimensions.

Formally, for a tuple of categorical variables X = (X1, . . . , Xn) observed in a dataset DX satisfying

the metadataset assumption10 introduced in Section 1.1.2, this supposes the existence of a partition

I1, . . . , Iq of J1, nK, with q ≥ 211, such that:

V al(X) =
q

×
j=1

V al
(
XIj

)
. (3.13)

The XIj s for j ∈ J1, qK are the orthogonal dimensions of the metadata.

For instance, a tuple XIj for a given j ∈ J1, qK may contain all the variables describing:

• the type of the measured quantity (temperature, number of people, ...),

• the equipment the measured quantity relates to (heat pump, air handling unit, ...),

• the location of the measured quantity (office, openspace, ...),

• the measuring device.
10This implies that DX contains exactly V al(X).
11This notably implies that the dataset does not contain an identifier variable that has a different value in every

row. As we will see in the example, such a variable is generally discarded to perform the modeling.

110

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

Choosing the scope: removing a dimension Assuming that I1, . . . , Iq satisfying equa-

tion 3.13 exist, the choice of the observation scope narrows down to the choice a dimension

to remove from the metadataset X. This dimension describes the temporal variables that are

observed simultaneously as a multivariate temporal variable Y.

Formally, we suppose Ī = Iq is the set of indexes corresponding to the variables we wish to

remove from the metadata, and I =
q−1⋃
j=1

Ij is the set of indexes corresponding to the remaining

metadata variables. The different configurations of XĪ describe the simultaneously observed

temporal variables: instead of a single temporal variable Y observed for each configuration of

the metadata X, there are now k = |V al(XĪ)| temporal variables observed in parallel for each

configuration of the remaning metadata variables XI .

Our new setting is therefore made of:

• a new tuple of metadata variables: XI , with |V al(XĪ)| =
V al(X)

k

• the corresponding collection of (multivariate) temporal variables {YxI}xI∈V al(XI). Denoting

by {x1
Ī
, . . . ,xk

Ī
} the k distinct elements of V al(XĪ), then for all xI ∈ V al(XI),

YxI = (Y
(x

(1)

Ī
,xI)

, . . . , Y
(x

(k)

Ī
,xI)

),

which correspond to the variables Yx,1, . . . , Yx,k introduced in Equation (3.1).

In the next subsection, we use the example (?) to explain this idea more clearly.

3.2 Example: from the data available in practice to the HSDBN setting

3.2.1 Available data in the case of example (?)

We present an example of a metadata table and an associated time series observations table that

are available from a virtual IoT system corresponding to example (?) presented in Section 1.1.3.

We still consider a small part of a building, containing six zones (given by variable X2) spread

upon 3 rooms (given by variable X3), in each of which we observe quantities with three different

data types (given by variable X4).

Table 3.5 represents the associated metadata table DX.

Discarding the identifier variable Like we explained in the previous subsection, we discard

the DataKey variable X1 from the metadataset, as it does not present any statistical interest.

Denoting by X′ = X{2,3,4}, we notice that the dataset DX′ satisfies the metadataset assumption,

that is, the rows of the dataset still constitute a valid time series identifier. Indeed, the Zone

variable X2 and DataType variable X4 uniquely define the rows of DX.

111

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

X1 X2 X3 X4

(DataKey) (Zone) (Room) (DataType)
1 Perch1 OpenSpace Temperature
2 Perch2 OpenSpace Temperature
3 Perch3 OpenSpace Temperature
4 MeetRoomEast MeetingRoom Temperature
5 MeetRoomWest MeetingRoom Temperature
6 Box Box Temperature
7 Perch1 OpenSpace CO2 level
8 Perch2 OpenSpace CO2 level
9 Perch3 OpenSpace CO2 level
10 MeetRoomEast MeetingRoom CO2 level
11 MeetRoomWest MeetingRoom CO2 level
12 Box Box CO2 level
13 Perch1 OpenSpace NumberPeople
14 Perch2 OpenSpace NumberPeople
15 Perch3 OpenSpace NumberPeople
16 MeetRoomEast MeetingRoom NumberPeople
17 MeetRoomWest MeetingRoom NumberPeople
18 Box Box NumberPeople

Table 3.5 – Metadata table DX obtained from a virtual IoT system consistent with
example (?).

Identifying orthogonal dimensions in metadata Let I1 = {2, 3} and I2 = {4}. Considering
the values observed in the dataset DX′ (corresponding to the three last columns of Table 3.5,

also displayed in Table 3.7) only, we have:

V al(X{2,3,4}) = V al (XI1)× V al (XI2) . (3.14)

This shows that XI1 (Zone and Room) and XI2 (DataType) represent two orthogonal dimen-

sions as introduced in Equation (3.13): location and data type respectively.

We now present an example of a time series observations table DX1Y , displayed in Table 3.6.

For simplicity, we assume we already did the synchronization (binning) as well as the time step

choice, such that all time series are now synchronized on time stamps t1, . . . , tl, equally spaced

by a given value ∆t (typically 15min).

As explained in Section 3.1.3, we can now choose the scope of our model, enabling the simulta-

neous modeling of several temporal variables as a multivariate time series. In the next subsections,

we propose two different scopes, and the associated datasets DX and DXY corresponding to the

HSDBN setting presented in Section 1.1.

3.2.2 Balancing static and temporal data: single time series scope

The most simple scope we can choose is the single time series scope:

112

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

X1 Y
(DataKey) (Value)

t1 1 2.0
t2 1 3.0
.
tl−1 1 1.0
tl 1 2.0
.
t1 5 0.0
t2 5 8.0
.
tl−1 5 10.0
tl 5 11.0
.
t1 18 0.0
t2 18 8.0
.
tl−1 18 10.0
tl 18 11.0

Table 3.6 – Extract of the time series observations table DX1Y corresponding to a
virtual IoT system consistent with example (?)

• The metadata variables in X uniquely define a single time series. This corresponds to

considering the table DX presented in Table 3.7.

• For x ∈ V al(X), Yx is a single temporal variable, associated with a univariate time series

{Yx(tj)}1≤j≤l. The corresponding table DXY is displayed in Table 3.8.

Figure 3.3 displays an example structure of a HSDBN learned on dataset DXY .

X2

X3 X4

Y Y

t t + 15min

Figure 3.3 – Example structure of a hybrid static dynamic Bayesian network corresponding
to example (?) considered at the time series scope. Static nodes are colored in light gray
and temporal nodes in white.

113

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

X2 X3 X4

(Zone) (Room) (DataType)
Perch1 OpenSpace Temperature
Perch2 OpenSpace Temperature
Perch3 OpenSpace Temperature

MeetRoomEast MeetingRoom Temperature
MeetRoomWest MeetingRoom Temperature

Box Box Temperature
Perch1 OpenSpace CO2 level
Perch2 OpenSpace CO2 level
Perch3 OpenSpace CO2 level

MeetRoomEast MeetingRoom CO2 level
MeetRoomWest MeetingRoom CO2 level

Box Box CO2 level
Perch1 OpenSpace NumberPeople
Perch2 OpenSpace NumberPeople
Perch3 OpenSpace NumberPeople

MeetRoomEast MeetingRoom NumberPeople
MeetRoomWest MeetingRoom NumberPeople

Box Box NumberPeople

Table 3.7 – Metadataset DX corresponding to the single time series scope in the case
of example (?)

3.2.3 Balancing static and temporal data: data type scope

Choosing the DataType scope corresponds to the the example presented in Section 1.1.3. In this

case, we choose to observe simultaneously temporal variables corresponding to all configurations

of variable DataType (CO2 level, temperature and number of people) and a fixed value of the

remaining variables Zone and Room. For this purpose, we remove the variable X4 (DataType)

from the metadata variables.

We have this option in the case of example (?) thanks to the fact that Equation (3.14) holds,

guaranteeing that every data type (CO2 level, temperature and number of people) is observed in

every zone.

The datasets DX and DXY corresponding to this choice of scope are presented in Table 3.1

and Table 3.2 in Section 3.1.3. An example of associated HSDBN structure is displayed in

Figure 3.2 in Section 1.1.2.

Another possible choice of scope Choosing the Zone scope implies that we observe simulta-

neously temporal variables corresponding to all the configurations of variable Zone and to a fixed

value of variable DataType. We would therefore observe simultaneously values corresponding to a

given data type (CO2 level, temperature and number of people) across all zones. This seems to

114

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

X2 X3 X4 Y
(Zone) (Room) (DataType) (Value)

t1 Perch1 OpenSpace Temperature 2.0
t2 Perch1 OpenSpace Temperature 3.0
.
tl−1 Perch1 OpenSpace Temperature 1.0
tl Perch1 OpenSpace Temperature 2.0
.
t1 MeetRoomWest MeetingRoom Temperature 0.0
t2 MeetRoomWest MeetingRoom Temperature 8.0
.
tl−1 MeetRoomWest MeetingRoom Temperature 10.0
tl MeetRoomWest MeetingRoom Temperature 11.0
.
t1 Box Box NumberPeople 0.0
t2 Box Box NumberPeople 8.0
.
tl−1 Box Box NumberPeople 10.0
tl Box Box NumberPeople 11.0

Table 3.8 – Extract of the time series dataset DXY corresponding to the single time
series scope in the case of example (?)

make less sense physically, as it is more difficult to imagine how physical quantities in different

areas can influence each other.

3.3 Including time information

3.3.1 Time information variables

The assumptions in terms of conditional independence inherent to the proposed structure of a

HSDBN are reasonable in practice. However, some other variables than the metadata variables

X and the immediate past of variables Y have an important impact on Y, and need only min-

imal prior knowledge to be included in the model: these are the time information variables,

which describe the current time stamp t ∈ {t1, . . . tl}. It is also often knwon as the time dimension.

Examples of such variables are:

• DayOfWeek: categorical variable with 7 configurations: {Monday, Tuesday, . . . , Sunday}
giving the current day of the week.

• Hour: categorical variable with 24 configurations: {0, 1, . . . , 23} giving the current hour.

• Month: categorical variable with 12 configurations: {January, February, . . . , December}.

According to our available knowledge concerning the problem, these variables can be regrouped

into simpler variables of interest. For example:

• The configurations of variable DayOfWeek can be grouped to form the variable IsWeekEnd,

with configurations {yes, no}, respectively corresponding to the following groups {Monday,

. . . , Friday}, {Saturday, Sunday}.

115

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

• The configurations of variable Hour can be grouped to form the variable PeriodOfTheDay,

with configurations {Morning, LunchTime, Afternoon, Evening, Night}, respectively corre-

sponding to the following groups: {7, 8,9,10,11}, {12, 13},
{14, 15, 16, 17, 18}, {19, 20, 21} and {22, 23, 1, 2, 3, 4, 5, 6, 7}.

Such variables can be extracted from the time stamp alone, as long as (i) we possess a

referential time for which we know the value of these variables and (ii) the rules of evolution of

these variables through time is known.

In this thesis, we only consider categorical time information variables, as their inclusion into a

HSDBN is convenient and often leads to interpretable models. In practice, such variables should

be extracted from the time stamp in the dataset DXYỸ, and considered in every algorithm as

belonging to X. Even though they are not technically metadata, and should be separated for

more readability when displaying the structure, the accumulated experience from experiments

suggests that the structural constraints concerning the nodes associated with these variables

should be the same as the ones for VX.

As a rule of thumb: the variables we generally decide to extract are: DayOfWeek, Week, DayOfYear,

Year, DayOfMonth, Month and Hour. Each of those variables may be reduced to more simple ones,

as the IsWeekEnd or PeriodOfTheDay, depending on our prior knowledge and on the application.

In Chapter 4, we will discuss a method to automatically reduce categorical variables into variables

with less configurations.

3.3.2 Example

We consider the setting of the example presented in Section 1.1.3. The graph displayed in

Figure 3.4 is an example of HSDBN jointly modeling the static variables X and the temporal

variables Y. In this updated example of HSDBN, we include the time information variable

IsWeekEnd, denoted by W .12

Compared to the structure presented in Figure 3.2, the only difference is that the variable Y3

now has two parent variables: W (IsWeekEnd) and X2 (Zone).

This implies a new local conditional distribution for Y3, which will now be modeled as a

mixture of Gaussian variables with one component per configuration of (W,X2), i.e. twice more

than it was presented in Figure 3.2. Table 3.9 presents an example of a set of parameters defining

the distribution Y3|X2,W .

In this example table, we see that variable W has a significant importance on the distribution

of Y3, which of course is intuitive. This illustrates how time information variables can be useful
12Note that in this context, many other time information variables could probably have an important added

value, notably Hour and Month, but we only include IsWeekend in the example for the sake of illustration.

116

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

X2W

X1

Y1

Y2

Y3

Y1

Y2

Y3

t t + 15min

Figure 3.4 – Example structure of a hybrid static dynamic Bayesian network in the
setting of example (?). Static nodes are colored in light gray, temporal nodes in white,
and the node corresponding to a time information (IsWeekEnd) in blue.

in a model describing a temporal process. This is all the more true for HSDBN models, which

inherit the flexibility of Bayesian networks in terms of continuous and categorical data joint

modeling capabilities.

4 Experiments

In this short section, we presents preliminary experiments on a real case where we observe both

static (meta)data and temporal data. We focus on showing how one may use the presented

approach presented in this chapter to learn a HSDBN model and use it to perform inference.

4.1 Data

4.1.1 Presentation

For the purpose of this example, we choose to consider the 2013 data from the HOMES programme.

This data is composed of:

• a static metadataset, described in Section 5 of Chapter 2, containing variables describing

timeseries location, type, etc,

• a temporal dataset containing obsevations of each of the temporal variables through the

year 2013.

117

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

x2 w µx2 σx2

Perch1 no 2.1 0.4
Perch2 no 3.0 0.6
Perch3 no 1.7 0.4

MeetRoomEast no 4.1 1.9
MeetRoomWest no 1.5 0.7

Box no 0.8 0.4

Perch1 yes 0.2 0.2
Perch2 yes 1.0 0.8
Perch3 yes 0.1 0.1

MeetRoomEast yes 0.1 0.1
MeetRoomWest yes 0.5 0.2

Box yes 0.0 0.1

Table 3.9 – Example of a set of parameters ΘY
3 = {(µx2 , σx2)}x2∈V al(X2), defining the

distribution Y3|X2 = x2,W = w ∼ N (µx2,w, σ
2
x2,w)

Figure 3.5 – Deterministic forest learned on the HOMES metadataset, and descriptive
dimensions it brings to light

4.1.2 Filtering

Figure 3.5 displays the deterministic forest learned by running DeterScreen on the metadataset.

This forest ennables to bring to light descriptive dimensions, that are also represented in the

figure.

For illustration purposes, we only consider two descriptive dimensions for the experiments

conducted in this chapter: Data Type and Data Location (with Zone as the root variable

instead of SubZone).

118

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

Figure 3.6 – HSDBN structure learned on the 2013 HOMES dataset (with filtered
metadata) considering the timeseries scope: every time series, for each Zone (X1) ×
DataType (X8) configuration, is observed independently

4.2 HSDBN learning

4.2.1 Time series scope

We first consider the time series scope, i.e. we consider only one temporal variable at a time, each

of which being described by all of the available metadata variables. In other words, we perform a

univariate time series modeling, for each Zone (X1) × DataType (X8) configuration.

In this context, we may use our HSDBN structure learning algorithm (Algorithm 12): Figure 3.6

displays the learned HSDBN structure.

This HSDBN structure shows that the evolution of a given time series is mainly influenced

by its type (what is the measured quantity) and its location (in which zone is this quantity

measured).

4.2.2 Zone scope

We now consider the zone scope, i.e. we regroup all timeseries observed in the same zone in a

multivariate timeseries which is only descibed by location metadata variables. This corresponds

to a multivariate time series (all DataType configurations) modeling, for each Zone configuration.

For this purpose, we must make sure the corresponding descriptive dimensions (Data Type and

Data Location) are orthogonal (see Section 3 of this chapter). Therefore, we discard time series

corresponding to a Zone in which time series of all DataTypes are not measured. For example,

the Zone ‘outside’ does not contain time series of certain DataTypes (such as ‘occupation’ and

‘luminosity’), all time series measured ‘outside’ are therefore discarded.

119

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

Figure 3.7 – HSDBN structure learned on the 2013 HOMES dataset (with filtered meta-
data) considering the zone scope: time series of every type are observed simultaneously
in each Zone (X1)

We may now use Algorithm 12 to learn a zone scope HSDBN: Figure 3.7 displays the learned

HSDBN structure.

Here are the main variables of interest for this structure’s interpretation:

X1: Zone Code

X2: Zone Type Code

Y1: CO2 level

Y2: Energy grad

Y3: Humidity

Y4: Luminosity

Y5: Occupation

Y6: Temperature

This HSDBN structure is less general than the previous one (since some of the time series

where not considered for its learning). However, it is more interpretable: we see how time series

of different types in a given zone influence each other through time, and are not narrowing down

to information given by static variables as the HSDBN displayed in Figure 3.6.

For example,

120

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

• Temperature at time t+ 15 is solely explained by Temperature at time t, Hour, Month, and

Zone,

• Humidity at time t + 15 is explained by Humidity at time t, DayOfWeek, Hour and Room

(and not Zone, which supposes that the humidity’s evolution is characteristic of a given

room rather than a given zone, unlike the temperature),

• ...

4.3 Inference with HSDBN for metadata recovery

In this section, we provide results of inference algorithms presented in Section 2 of this chapter,

performed using HSDBNs presented in Figures 3.6 and 3.7 for selected inference tasks, namely

predicting ZoneType and/or DataType from sequences of observations of temporal variables.

The purpose of these results is mainly to show that the presented algorithms run and perform

reasonably well in practice. More experiments could be conducted in order to compare them

thoroughfully to other inference approches that are not using the HSDBN formalism.

Figure 3.8 presents prediction accuracy of variables ZoneType and DataType from the time

series scope HSDBN presented in Figure 3.6, for two of our proposed inference algorithms:

Algorithm 9 (‘majority vote’) and Algorithm 11 (‘derivation (v2)’) and different length of

temporal sequences (namely 1, 2, 4 and 8 days).

This table shows that, for both target variables, our proposed inference methods are sig-

nificantly better than random guessing (while having important progress margin). This can

intuitively be explained by the fact that time series are observed independently, and that we are

therefore not taking into account interactions between different quantities through time.

Figure 3.9 presents prediction accuracy of variable ZoneType from the zone scope HSDBN

displayed in Figure 3.7, for two of our proposed inference algorithms: Algorithm 9 (majority vote)

and Algorithm 11 (derivation v2) and different length of temporal sequence (namely 1, 2, 4 and 8

days).

Figure 3.8 – ZoneType and DataType recovery results, using Algorithm 9 (‘majority
vote’) and Algorithm 11 (‘derivation (v2)’) using our learned time series scope HSDBN

121

CHAPTER 3. BAYESIAN NETWORKS FOR JOINT MODELING OF TEMPORAL AND STATIC
DATA

Figure 3.9 – ZoneType recovery results, using Algorithm 9 (‘majority vote’) and Algo-
rithm 11 (‘derivation (v2)’) using our learned zone scope HSDBN

This table shows that, the zone scope HSDBN is excellent at recovering the value of the

ZoneType variable, using our inference algorithms. The prediction is nearly perfect whatever the

length of the temporal sequence.

These promising results can intuitively be explained: the behaviour of a multivariate time series

(corresponding to the simultenous evolution of 6 different quantities) is indeed expected to be

very specific to the zone in which they are measured. For example, the impact of occupation of a

room on its carbone dioxyde level or temperature is intuitively very dependant on the size or

type of room that is considered.

5 Concluding remarks and ideas for future work

The formalism and associated algorithms introduced in this chapter enable us to use hybrid

static-dynamic Bayesian networks to model temporal and static data from the real-world.

Thanks to the proven efficiency of the ds-BNSL algorithm presented in Chapter 2, the HSDBN

structure learning algorithm HybridStaticDynamicBNSL presented in Section 2.2 runs in a rea-

sonable computing time, and some very promising preliminary results have been obtained on

datasets from the HOMES programme. These results demonstrate the potential of HSDBN models,

both in terms of interpretability and ability to answer queries, in particular metadata recovery

from temporal observations using Algorithms 9, 10 and 11 presented in Section 2.1).

Future experiments could aim at properly comparing the two inference algorithms in diverse

contexts, as well as providing results on other cross-field applications such as forecasting or critical

event dependency analysis.

122

Chapter 4

Discussion and perspectives

Contents
1 Evaluation of Bayesian networks with the VLL score 124

1.1 Introduction and notations . 124
1.2 Another approach on the maximum likelihood estimation problem . . . 127
1.3 Validation log-likelihood score: a new perspective 129
1.4 Experiments: study of the VLL score on a simple example 131
1.5 Extending theoretical results to the VLL score: food for thought 143

2 Algorithmic perspectives . 145
2.1 Decreasing the complexity of the ds-BNSL output using local search . . 145
2.2 Choosing ε for the qds-BNSL algorithm 151

3 (Quasi-)determinism screening and the BIC score: prospective results155
3.1 BIC score: generalization . 155
3.2 Determinism and generalized BIC score: open questions 156

123

CHAPTER 4. DISCUSSION AND PERSPECTIVES

In this chapter, we first discuss the evaluation of the generalization performance of Bayesian

networks with the validation log-likelihood score, and give insights on how this score prevents

overfitting (Section 1). We then propose a post-processing algorithm performing local operations

on the graphs returned by (q)ds-BNSL to decrease the models complexity, and we give the idea

of a criterion to guide the choice of the hyperparameter ε for the QuasiDeterScreen (Section 2).

Finally, we present questions that remain to be answered concerning extensions of propositions

presented in Chapter 2 to the BIC score, as well as links that can be drawn with the original

Chow&Liu algorithm (Section 3).

1 Evaluation of Bayesian networks with the VLL score

In the experiments conducted in Section 5 of Chapter 2, we use two different ways to evaluate the

performance of Bayesian networks: the BDe and (C)VLL scores. As opposed to the former, the

VLL score is barely mentioned in the Bayesian network literature. In this section, we adopt an

information theoretic point of view on parameter learning, and use this approach to shed light on

the VLL score, and give insights on how it prevents overfitting. These insights are then illustrated

by a simple example, and we conclude by presenting pending questions and prospective results.

The proofs of all proposed Lemmas and Propositions are available in Appendix A.3.

1.1 Introduction and notations

1.1.1 Notions of information theory

Cross-entropy and Kullback-Leibler divergence Suppose X is a categorical random vari-

able, and let p, q ∈ FP (V al(X)) be two functions that define possible distributions for X,

• The cross-entropy of p with respect to q (asymmetrical expression) is defined as:

H(p||q) = −
∑

x∈V al(X)

p(x) log(q(x))

We denote H(p||p) = H(p), the entropy of distribution p.1

• The Kullback-Leibler divergence from q to p (Kullback and Leibler, 1951) is defined as:

DKL(p||q) =
∑

x∈V al(X)

p(x) log

(
p(x)

q(x)

)
.

Note that we have the relation:

DKL(p||q) = H(p)−H(p||q). (4.1)
1We use the notation H to denote the entropy and cross entropy of distribution(s) (for fixed variable(s)), and

H to denote the entropy of random variable(s) (with a fixed distribution(s)).
Therefore if p ∈ FP (V al(X)) is the distribution of X, we have that H(p) = H(X).

124

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Note that Jensen’s inequality gives:

∀q ∈ FP (V al(X)), H(p||q) ≤ H(q),

which proves that the Kullback-Leibler divergence is nonnegative.

Both the cross entropyH(.||.) and the Kullback-Leibler divergence are in some ways measures

of (asymmetric) dissimilarity from one distribution to another.

1.1.2 Setting: random variables, datasets and distributions

In the rest of this section, we suppose that D is a dataset containing M observations of the tuple

of categorical variables X = (X1, . . . , Xn). This dataset is randomly split in a training set T

and a validation set V (fixed from now on), such that T t V = D.

MT , MV , CT (.), CV (.) respectively denote the number of rows of T and V , and the associated

count functions.

For any p ∈ FP (V al(X)), we extend the notation p(.) to any subset of variables in X, as

explained in Chapter 1.

Moreover, we denote by p∗ ∈ FP (V al(X)) the (true) underlying distribution of X.

Finally, for a given graphical structure G ∈ DAGJ1,nK and

Θ =
{
{θxi|xπG(i)

}xi,xπG(i)

}
i
∈ ϑG ,

we denote by pΘ the distribution of X parametrized by Θ, such that for all i ∈ J1, nK and

(xi,xπ(i)) ∈ V al(Xi)× V al(XπG(i)),

pΘ(xi|xπG(i)) = θxi|xπ(i)
,

and such that pΘ factorizes in G, i.e. ∀(x1, . . . , xn) ∈ V al(X),

pΘ(x1, . . . , xn) =
n∏
i=1

pΘ(xi|xπ(i))

=
n∏
i=1

θxi|xπ(i)
.

1.1.3 Why be interested in the VLL score ?

As presented before, inspired notably by Koller and Friedman (2009), Bayesian networks are used

for two main reasons:

• knowledge discovery (that is also referred to as interpretability or qualitative performance),

125

CHAPTER 4. DISCUSSION AND PERSPECTIVES

• density estimation (that is also referred to as quantitative performance).

As far as density estimation is concerned, what we are seeking is good generalization capability:

how well the distribution encoded in the Bayesian network fits unseen data ? Intuitively, this

information should be measured by the VLL score (presented in Section 3.4.2 of Chapter 1),

which is inspired from the train-validation procedure that is very common in supervised learning

(see for example Friedman et al. (2001)).

In this section, we are interested in studying how well the VLL score, is effectively measuring

the generalization performance of Bayesian networks, and notably how it naturally penalizes

overly complex graphs.

1.1.4 Overfitting and Bayesian networks

By definition, we are expecting the VLL score of a Bayesian network to capture its generalization

performance. This notably implies that it prevents overfitting: the score should decrease when

the BN structure becomes overly complex, instead of consistently increasing with complexity like

the MLL score.

For that purpose, let us first grasp intuitively why the MLL score leads to overfitting in the case

of Bayesian network structure learning.

Spurious arc in a Bayesian network We consider a tuple of categorical variables X =

(X1, . . . , Xn), observed in a dataset D split into a training set T and a validation set V . We

consider G = (J1, nK, A) ∈ DAGJ1,nK, and suppose there exist k, l ∈ J1, . . . , nK two distinct integers

such that (k, l) /∈ A and G′ = (J1, nK, A t (k, l)) is still a DAG. In other words, G′ is obtained by

adding the arc (k, l) to the DAG G.

Finally, we suppose that G is a perfect map for the distribution P of X. The arc (k, l) present in

the graphG′ is therefore spurious: it should not be learned by an ideal structure learning algorithm.

The fact that G is a perfect map for the distribution P (X) implies that Xl is independent

(⊥P) of its non descendants given its parents (in G). Since k cannot be a descendent of l in G

(otherwise G′ would contain a cycle), we notably have:

Xl ⊥P Xk|XπG(l), (4.2)

which implies:

I(Xl, Xk|XπG(l)) = 0,

where I denotes the mutual information.

126

CHAPTER 4. DISCUSSION AND PERSPECTIVES

MLL score and spurious arcs From Lemma 3 stated in Chapter 1, we know that adding the

(spurious) arc (k, l) to the structure G increases its MLL score by ID(Xl, Xk|XπG(l)).

However, ID(Xl, Xk|XπG(l)) is the estimator of I(Xl, Xk|XπG(l)) based on the empirical distribu-

tion pD, and has very little chance of being exactly 0, despite the fact that I(Xl, Xk|XπG(l)) = 0

holds: a MLL score-based approach would not reject this arc.

More generally, this explains why MLL score-based approaches add arcs which do not have a

statistically sound contribution. As mentioned in Chapter 1, this problem is mostly tackled by

penalization of the likelihood, whether it is explicit (BIC, AIC), or implicit (BD scores).

Remark Note that this motivates the use of independence tests, where given a type 1 error

rate α, we compute a threshold tα > 0 from the asymptotic distribution of ID(Xl, Xk|XπG(l))

such that the hypothesis defined by Equation (4.2) is not rejected iff ID(Xl, Xk|XπG(l)) ≤ tα.

However, purely score-based approach do not imply such tests, even though some work was done

towards including independence test information into Bayesian network scores (de Campos, 2006).

In the next subsection, we first give an information theoretic approach on the maximum

likelihood estimation problem, enabling to get a better grasp on the notions of cross entropy and

Kullback-Leibler divergence.

1.2 Another approach on the maximum likelihood estimation problem

We now rewrite the general maximum likelihood estimation (MLE) approach presented in

Chapter 1 as a cross-entropy maximization problem, allowing the notions of cross entropy and

Kullback-Leibler divergence to be seen in a familiar context. This is well known and the reader

can for example refer to Murphy (2012) for further detail.

1.2.1 Minimizing the KL divergence from the real distribution p∗

We suppose we have a fixed DAG structure G. The problem of learning the associated parameters

Θ, such that (G,Θ) is a Bayesian network, is classically solved with the MLE approach presented

in Section 3.1 of Chapter 1.

It can also be tackled as an optimization problem: we wish to approach as close as possible

p∗, the real distribution of X, with a distribution that factorizes in G.

Using the KL-divergence as a measure of dissimilarity from a distribution to another, our problem

narrows down to minimizing the KL-divergence from pΘ to p∗, for all Θ ∈ ϑG. The distribution

we are looking for is therefore defined by pΘ̂KL , where Θ̂KL satisfies:

Θ̂KL ∈ argmin
Θ∈ϑG

DKL(p∗||pΘ). (4.3)

127

CHAPTER 4. DISCUSSION AND PERSPECTIVES

1.2.2 Approximating the true distribution p∗ using the empirical distribution pD

In practice, we do not know the underlying distribution p∗ that we wish to approach. A natural

option is to approximate it with the empirical distribution pD, defined as:

∀I ⊂ J1, nK and xI ∈ V al(XI), p
D(xI) =

CD(xI)

M
.

Problem stated in Equation (4.3) is therefore simplified as the following proxy optimization

problem:

Θ̂KL,D ∈ argmin
Θ∈ϑG

DKL(pD||pΘ). (4.4)

Using Equation (4.1) and the fact that H(pD) does not depend on Θ, we remark that Θ̂KL,D

defined in Equation (4.4) also satisfies:

Θ̂KL,D ∈ argmin
Θ∈ϑG

H(pD||pΘ). (4.5)

1.2.3 Linking these optimization problems to log-likelihood maximization

We first show the following lemma, which is a preliminary result enabling to decompose the

distributions in expressions given in Equation (4.4) or Equation (4.5).

Lemma 9 Let G ∈ DAGJ1,nK be a Bayesian network structure modeling X. Then for any given

set of parameters Θ ∈ ϑG, we have:

H(p∗||pΘ) =
n∑
i=1

∑
xi,xπ(i)

p∗(xi,xπ(i)) log(pΘ(xi|xπ(i))). (4.6)

Remark In intuitive terms, this result states that the second distribution in the cross entropy

formula ‘imposes’ its decomposition to the first distribution.

Lemma 9 enables us to show the following proposition, that formally links the optimization

problem given in Equation (4.4) to the usual MLE problem presented in Equation (1.7).

Proposition 9 Under the previously defined notations,

argmin
Θ∈ϑG

DKL(pD||pΘ) = argmax
Θ∈ϑG

lD(Θ).

This gives another lighting on using MLE for learning parameters corresponding to a fixed

Bayesian network structure G: it is equivalent to finding the parameter Θ ∈ ϑG such that the

Kullback-Leibler divergence from pD (natural approximation of the real distribution p∗) to pΘ is

minimal.

128

CHAPTER 4. DISCUSSION AND PERSPECTIVES

This result is stated in a somewhat similar manner in Koller and Friedman (2009) and Murphy

(2012).

Now that the gap between notions such as cross entropy or KL-divergence and the log-likelihood is

bridged, we are interested in using this setting to shed light on the VLL score from an information

theoretic perspective.

1.3 Validation log-likelihood score: a new perspective

In this subsection, we show how the validation log-likelihood score can be expressed using infor-

mation theoretic tools. We then explain how this point of view enables interesting insights in

terms of how the VLL score evaluates Bayesian networks quantitative performance.

We still consider a structure G ∈ DAGJ1,nK, corresponding to a Bayesian network modeling

X = (X1, . . . , Xn), as well as a dataset D (randomly split in T ∪ V) containing M observations

of X.

1.3.1 Rewriting the validation log-likelihood score using cross entropy

In Lemma 10, we show how the VLL score, presented in Equation (1.13), can be rewritten using

the notion of cross entropy.

We remind that in the present setting, Θ̂D defined in Equation (1.7) denotes the maximum

likelihood estimate of the parameter (set) Θ ∈ ϑG given D (which we now know also minimizes

the KL-divergence from pΘ to pD).

Θ̂D defines all the local conditional distributions Xi|Xπ(i) for i ∈ J1, nK, i.e.

Θ̂D = {θ̂Dxi|xπG(i)
| (xi,xπG(i)) ∈ V al(Xi)× V al(XπG(i)), 1 ≤ i ≤ n}.

Lemma 10 If Θ̂T and Θ̂V are the maximum likelihood estimates of Θ ∈ ϑG with respect to

datasets T and V respectively, the VLL score of G w.r.t. T, V defined in Equation (1.13) has the

following expression:

sV LLT,V (G) = −MVH(pΘ̂V ||pΘ̂T). (4.7)

Note that the MLL score, defined by sMLL
D (G) = lD(Θ̂D), can be rewritten in a very similar

way:

sMLL
D (G) = −MH(pΘ̂D ||pΘ̂D) = −MH(pΘ̂D). (4.8)

This result is interesting and gives some interesting information, but we rather choose to use

it to prove an even more insightful property, stated in Proposition 10.

129

CHAPTER 4. DISCUSSION AND PERSPECTIVES

We denote by s̄ the per-sample normalized version of a score s. For instance, for G ∈ DAGJ1,nK,

we have:

s̄MLL
D (G) =

sMLL
D (G)

M
,

s̄V LLT,V (G) =
sV LLT,V (G)

MV
.

We now state the main proposition of this section, which extends Lemma 10.

Proposition 10 If Θ̂T and Θ̂V are the maximum likelihood estimates of Θ ∈ ϑG with respect

to datasets T and V respectively, the per-sample normalized VLL score of G w.r.t. T, V has the

following expression:

s̄V LLT,V (G) = s̄MLL
V (G)−DKL(pΘ̂V ||pΘ̂T). (4.9)

Equation (4.9) is particularly interesting because it links the VLL score for Bayesian networks

to a concept that is common in the supervized learning context: the bias-variance tradeoff.

• The term s̄MLL
V (G) can be interpreted as the bias term: it measures how well the structure

fits the data. This term alone would lead to learn complete graphs, since we showed it can

only grow with the number of arcs of the structure G.

• The term DKL(pΘ̂V ||pΘ̂T) represents the variance of the model that is learned (implied by

G), and grows with the complexity of the structure: it captures how robustly the parameters

were learned on T , by comparing them to the parameters learned on an unseen dataset (V)

generated by the same underlying distribution.

The more complex the learned structure is, the less robustly the parameters are learned,

and the bigger DKL(pΘ̂V ||pΘ̂T) gets.

An spurious will most certainly have a positive contribution to the term s̄MLL
V (G), as explained

in Section 1.1.4. However, we can expect it to have a negative overall contribution to the VLL

score, since the parameters learned relative to this arc only capture noise, which should result in

an important contribution to the DKL(pΘ̂V ||pΘ̂T) term.

Remark: caution when using the VLL score Using the VLL score to evaluate a structure

must be done with caution: this is only justified for a structure that has been proposed / learned

independently of V ! An expert that gets inspiration from the entire dataset D to propose a

structure, then uses the VLL score to evaluate it makes an important mistake.

In practice, the VLL score should be used either to score a graph that was proposed independently

from the data, or to evaluate a structure learning algorithm (that we run only on dataset T), but

not the associated structure.

130

CHAPTER 4. DISCUSSION AND PERSPECTIVES

1.4 Experiments: study of the VLL score on a simple example

In this subsection, we present an example illustrating how the VLL score effectively prevents

overfitting, and enables to find optimal fit-complexity tradeoff.

1.4.1 Description of the example

We consider a set of gardens that possess automatic sprinklers, and suppose we have a number of

i.i.d observations of 5 categorical variables describing such gardens:

• Season (D): Winter or Summer

• Weather (W): Sunny or Rainy

• Sprinkler (S): On or Off

• Grass (G): Wet or Dry

• HouseColor (H): White, Brown, Black or Yellow

We suppose the graph G∗, displayed in Figure 4.1, is a perfect map for the distribution P of those

5 variables.

Grass

HouseColorSeason

Sprinkler

Weather

Figure 4.1 – Example Bayesian network structure G∗

131

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Therefore, P (H,D,W, S,G) decomposes as follows:

P (H,D,W, S,G) = P (H)P (D)P (W |D)P (S|W)P (G|W,S). (4.10)

The parameters Θ∗ presented in Table 4.1 define the Bayesian network B∗ = (G∗,Θ∗), which

rightfully models the distribution P of (H,D,W, S,G).

h ∈ V al(H) white brown black yellow
θh 0.2 0.5 0.2 0.1

(a) HouseColor

d ∈ V al(D) winter summer
θd 0.5 0.5

(b) Date

w ∈ V al(W) sunny rainy
θw|D=winter 0.2 0.8

θw|D=summer 0.7 0.3

(c) Weather|Season

s ∈ V al(S) on off
θs|W=sunny 0.7 0.3

θs|W=rainy 0.2 0.8

(d) Sprinkler|Weather

g ∈ V al(G) wet dry
θg|S=on,W=sunny 0.5 0.5

θg|S=on,W=rainy 0.9 0.1

θg|S=off,W=sunny 0.1 0.9

θg|S=off,W=rainy 0.7 0.3

(e) Grass|{Sprinkler, Weather}

Table 4.1 – Conditional Probability Tables defining parameters Θ∗, associated with the
structure G∗

1.4.2 Experiment description

Now that we have defined the graph structure G∗ and the associated parameters Θ∗, we are able

to generate data from the Bayesian network B∗ = (G∗,Θ∗).

Here is the protocol we use in order to test the VLL score as a model selection criteria.

• We generate M = 500 observations of the 5 considered variables.2

• We consider several different structures:

1. We manually select graphs that are close to G∗ (in terms of elementary operations

on graphs3), both by discarding arcs and adding arcs to G∗.
2The fact that VLL score measures cross entropy from pΘ̂T to pΘ̂T suggests that the spurious arcs that will be

the most penalized are those for which parameters are not learned robustly. In the limit of big data, it is less of a
problem to learn a spurious arc since even parameters corresponding to spurious arcs are robustly learned, (even if
they encode the fact that the corresponding arc is not necessary). Therefore, even if the arc is not interpretable in
a qualitative sense, learning it does not cause any issue in terms of density estimation (although it slows down
inference). In the spirit of the example, we choose a reasonably small number of observations in order to allow
overfitting to happen.

3Arc addition, removal and reversal.

132

CHAPTER 4. DISCUSSION AND PERSPECTIVES

2. We learn graphs by running two standard structure learning algorithms.

• Finally compute the MLL score (training performance) and the VLL score (general-

ization performance) for all of the structures we manually selected and learned. We are

expecting an increasing curve with respect to structure complexity in the first case, and an

increasing then decreasing curve in the second case, thus clearly expressing the tradeoff.

1.4.3 Results: learned graphs

The learned graphs are learned using two standard structure learning algorithms:

• HillClimbing, presented in Algorithm 2 in Section 3.2.2 of Chapter 1 (with 10 random

restarts and a length 10 tabu list).

• MaxMinHillClimbing, which is an hybrid structure learning algorithm proposed by Tsamardi-

nos et al. (2006), which contains two phases:

– a constraint-based phase where the structure space is restricted to a graph skeleton

containing allowed edges, (using mutual information independence tests and first order

error threshold α = 0.05),

– a score&search phase using HillClimbing (with the same settings) to go through the

restricted structure space.

Both of these algorithms are used with the BIC(λ) score (defined in Section 1) as a target4, for

λ ∈ {0, 0.1, 0.25, 1, 10, 30}5.
This enables us to test the VLL score on graphs structures that are realistically returned by

structure learning algorithms. Moreover, this gives us an insight about which algorithms / score

combination is the closest to finding the rightful BN.

Figure 4.2 and Figure 4.3 display a representative extract of the structures learned by these

algorithms.

We remark that none of these algorithms recover the exact structure G∗. However, the graph

that is learned by HillClimbing with BIC(λ = 1), and by MaxMinHillClimbing with BIC(λ)

for λ ∈ {0, 0.1, 1} (respectively displayed in Figure 4.2 (c) and Figure 4.3(a),(b),(c)) is however

very close (one arc reversal) to G∗, and has the exact same complexity (in terms of number of

parameters). We expect this graph to have the best VLL score, since it is the ‘closest’ to G∗

4These results were produced before we were familiar with the works by Silander et al. (2007) which explain
how sparsity can be induced by decreasing the ESS of the BDe score used as a target in a score&search algorithm.

5We recall that BIC(λ = 0) corresponds to the MLL score, and BIC(λ = 1) to the usual BIC score. Testing
different values of λ for the BIC score can be interpreted as artificially changing the size of the dataset D to
simulate different structure learning settings with the same variables.

133

CHAPTER 4. DISCUSSION AND PERSPECTIVES

intuitively.

Figure 4.4 displays the evolution of the MLL scores for the different learned graphs.

We see in Figure 4.4 that the MLL score increases with the structure’s complexity (when λ

decreases), and reaches its maximum for the graphs learned by the MLL score (the complete

graph for the HillClimbing algorithm): this is overfitting.

In the case of the MaxMinHillClimbing algorithm, the structure space that is searched in the

score&search phase is constrained by the first phase of the algorithm (called MaxMinParentChildren),which

explains why the learned structures do not evolve when λ < 10: the densest graph in the allowed

structure space is already reached. We however notice that spurious arcs add less to the MLL

score than real arcs (plateau effect).

Figure 4.5 and 4.6 displays the evolution of the CVLL score (mean of the VLL score with

10 folds, computed 20 times with different random seeds) with respect to the parameter λ of

the BIC(λ) score used as a target for the HillClimbing and MaxMinHillClimbing algorithms.

Figures 4.5(b) and 4.6(b) are zoomed versions of Figures 4.5(a) and 4.5(a) respectively.

In Figure 4.5 and 4.6, we see that the CVLL score does a good job capturing the performance

of structures: even though the difference is not very significant for structures that are very close to

G∗ (e.g. HillClimbing with λ ∈ {0.25, 1, 10} or MaxMinHillClimbing with λ < 10), it becomes

much greater when arcs that imply unnecessary complexity are added (as it is the case for graphs

learned by HillClimbing with λ ∈ {0, 0.1}), or when important arcs are removed (graph learned

by MaxMinHillClimbing with λ = 30).

134

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Grass

HouseColor

Season

Sprinkler

Weather

(a) Bayesian network structure learned by
HillClimbing and MLL (BIC(λ = 0)) as a
target score

Grass

HouseColor

Season

Sprinkler

Weather

(b) Bayesian network structure learned by
HillClimbing and BIC(λ = 0.1) as a target
score

Grass

HouseColorSeason

Sprinkler

Weather

(c) Bayesian network structure learned by
HillClimbing and BIC(λ = 1) as a target
score

Grass

HouseColorSeason

Sprinkler

Weather

(d) Bayesian network structure learned by
HillClimbing and BIC(λ = 30) as a target
score

Figure 4.2 – Bayesian network structures learned by the HillClimbing algorithm with
different λ parameters for the BIC score

135

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Grass

HouseColorSeason

Sprinkler

Weather

(a) Bayesian network structure learned by
MaxMinHillClimbing and MLL (BIC(λ =
0)) as a target score

Grass

HouseColorSeason

Sprinkler

Weather

(b) Bayesian network structure learned by
MaxMinHillClimbing and BIC(λ = 0.1) as
a target score

Grass

HouseColorSeason

Sprinkler

Weather

(c) Bayesian network structure learned by
MaxMinHillClimbing and BIC(λ = 1) as a
target score

Grass

HouseColorSeason

Sprinkler

Weather

(d) Bayesian network structure learned by
MaxMinHillClimbing and BIC(λ = 30) as
a target score

Figure 4.3 – Bayesian network structures learned by the MaxMinHillClimbing algorithm
with different λ parameters for the BIC score

136

CHAPTER 4. DISCUSSION AND PERSPECTIVES

−7320

−7280

−7240

−7200

BIC_30 BIC_10 BIC_1 BIC_0.25 BIC_0.1 Likelihood
AlgorithmScore

M
ax

Li
ke

lih
oo

dS
co

re

Algorithm Name
HillClimbing
MinMaxHillClimbing

Figure 4.4 – Evolution of the MLL score for structures learned by MaxMinHillClimbing
and HillClimbing with the BIC(λ) for different values of λ

137

CHAPTER 4. DISCUSSION AND PERSPECTIVES

−732

−730

−728

−726

−724

−722

HC_Likelihood HC_BIC_0.1 HC_BIC_0.25 HC_BIC_1 HC_BIC_10 HC_BIC_30
AlgorithmAndScore

C
V

Lo
gL

ik
el

ih
oo

dS
co

re AlgorithmAndScore
HC_Likelihood

HC_BIC_0.1

HC_BIC_0.25

HC_BIC_1

HC_BIC_10

HC_BIC_30

(a) HillClimbing structure learning algorithm

−725

−724

−723

HC_Likelihood HC_BIC_0.1 HC_BIC_0.25 HC_BIC_1 HC_BIC_10
AlgorithmAndScore

C
V

Lo
gL

ik
el

ih
oo

dS
co

re AlgorithmAndScore
HC_Likelihood

HC_BIC_0.1

HC_BIC_0.25

HC_BIC_1

HC_BIC_10

(b) HillClimbing structure learning algorithm (zoom)

Figure 4.5 – Evolution of the CVLL score (10 folds and 20 runs) with respect to the λ
parameter of the BIC(λ) score used as a target in the HillClimbing structure learning
algorithms

138

CHAPTER 4. DISCUSSION AND PERSPECTIVES

−732.5

−730.0

−727.5

−725.0

−722.5

MMHC_Likelihood MMHC_BIC_0.1 MMHC_BIC_0.25 MMHC_BIC_1 MMHC_BIC_10 MMHC_BIC_30
AlgorithmAndScore

C
V

Lo
gL

ik
el

ih
oo

dS
co

re AlgorithmAndScore
MMHC_Likelihood

MMHC_BIC_0.1

MMHC_BIC_0.25

MMHC_BIC_1

MMHC_BIC_10

MMHC_BIC_30

(a) MaxMinHillClimbing structure learning algorithm

−723.6

−723.4

−723.2

−723.0

−722.8

MMHC_Likelihood MMHC_BIC_0.1 MMHC_BIC_0.25 MMHC_BIC_1 MMHC_BIC_10
AlgorithmAndScore

C
V

Lo
gL

ik
el

ih
oo

dS
co

re AlgorithmAndScore
MMHC_Likelihood

MMHC_BIC_0.1

MMHC_BIC_0.25

MMHC_BIC_1

MMHC_BIC_10

(b) MaxMinHillClimbing structure learning algorithm (zoom)

Figure 4.6 – Evolution of the CVLL score (10 folds and 20 runs) with respect to the λ
parameter of the BIC(λ) score used as a target in the MaxMinHillClimbing structure
learning algorithms

139

CHAPTER 4. DISCUSSION AND PERSPECTIVES

1.4.4 Results: manually selected graphs

Here is a list of the abbreviations used in the figures and the corresponding operations made on
G∗.

• -2wgdw : 2 removed arcs (Weather, Grass) and (Season, Weather),

• -2wssg : 2 removed arcs (Weather, Sprinkler) and (Sprinkler, Grass),

• -1dw : 1 removed arc (Season, Weather),

• -1ws: 1 removed arc (Weather, Sprinkler),

• real : no operation,

• +1ds: 1 added arc (Season, Sprinkler),

• +1hd : 1 added arc (HouseColor, Season),

• +1dg : 1 added arc (Season, Grass),

• +1hg : 1 added arc (HouseColor, Grass),

• +2dwsg : 2 added arcs (Season, Sprinkler) and (Season, Grass),

• +2dwhd : 2 added arcs (Season, Sprinkler) and (HouseColor, Season),

• +2hshw : 2 added arcs (HouseColor, Sprinkler) and (HouseColor, Weather),

• +2hshg : 2 added arcs (HouseColor, Sprinkler) and (HouseColor, Grass),

• dense: complete graph (respecting the ordering HouseColor, Season, Weather, Sprinkler, Grass).

Figure 4.7 display the evolution of the MLL scores for the different manually selected graphs.

In Figure 4.7, we see that the MLL score increases when we add spurious arcs to G∗. However,

as it is observed for learned graphs, the difference in MLL score is much less important than

when we remove real arcs.

Indeed, even if the MLL score continues to increase when the graph becomes more complex than

G∗, we reach a plateau where this increase is very slow.

Figure 4.8 displays the CVLL score (mean of the VLL score with 10 folds, computed 20 times

with different random seeds) for the manually selected structures.

In Figure 4.8, we see that the CVLL score is consistently better for the real structure G∗

than for the other structures, however close in terms of elementary graphical operations. The

differences are less important for graphs that contain spurious arcs compared to graphs that have

missing arcs, although the differences are always consistent on the 20 runs that were made (as we

see in the zoomed Figure 4.8(b)).

140

CHAPTER 4. DISCUSSION AND PERSPECTIVES

−7700

−7600

−7500

−7400

−7300

−7200

−2_wgdw −2_wssg −1_dw −1_ws Real +1_ds +1_hd +1_dg +2_dwhd +2_dwsg +2_hshw +1_hg +2_hshg DenseGraph
DifferenceFromRealGraph

M
ax

Li
ke
lih
oo
dS

co
re

Figure 4.7 – MLL scores for several selected structures around G∗

141

CHAPTER 4. DISCUSSION AND PERSPECTIVES

−770

−760

−750

−740

−730

−2_wgdw −2_wssg −1_ws −1_dw Real +1_ds +1_hd +1_dg +2_dwhd +2_dwsg +2_hshw +1_hg +2_hshg DenseGraph
DifferenceFromRealGraph

C
V
Lo
gL
ik
el
ih
oo
dS

co
re

DifferenceFromRealGraph
−2_wgdw

−2_wssg

−1_ws

−1_dw

Real

+1_ds

+1_hd

+1_dg

+2_dwhd

+2_dwsg

+2_hshw

+1_hg

+2_hshg

DenseGraph

(a) CVLL score for several selected structures that are a few local operations away from the real
structure G∗

−725.0

−724.5

−724.0

−723.5

−723.0

Real +1_ds +1_hd +1_dg +2_dwhd +2_dwsg +2_hshw +1_hg +2_hshg DenseGraph
DifferenceFromRealGraph

C
V

Lo
gL

ik
el

ih
oo

dS
co

re

DifferenceFromRealGraph
Real

+1_ds

+1_hd

+1_dg

+2_dwhd

+2_dwsg

+2_hshw

+1_hg

+2_hshg

DenseGraph

(b) CVLL score for several selected structures that are a few local operations away from the real
structure G∗ (zoom)

Figure 4.8 – CVLL score (10 folds and 20 runs) for several selected structures that are
a few local operations away from the real structure G∗

142

CHAPTER 4. DISCUSSION AND PERSPECTIVES

1.4.5 Results summary

These results, although empirical, are very promising in terms of how well the VLL score captures

the real underlying distribution, and notably how it effectively penalizes spurious arcs (thanks

to the fact that parameters corresponding to those arcs are not robustly learned from data as

suggested by Equation (4.9)).

Compared to widely used scores such as BIC and BDe, VLL has the advantage of being similar

in construction to the MLL score. We believe that this could enable us to show a proposition

analogous to Proposition 4 of Chapter 2, with respect to the VLL score. In the next subsection,

we develop this idea, and present some questions that remain to be answered for such a result to

be proven.

1.5 Extending theoretical results to the VLL score: food for thought

We are convinced that the VLL score indeed captures very interesting information (with regards

to rightful structure recovery and to generalization performance). Considering that its expression

has a similar structure to the one the MLL score, we would like to know if the result that we

proved for the MLL score in Proposition 4, and that originally motivated the design of the

ds-BNSL and qds-BNSL algorithms, still holds with respect to the VLL score.

We are confident that such a result could exist, even though it should imply stronger

assumptions than in Proposition 4. This is notably motivated by the experiments conducted in

Chapter 2, which reveal that structures learned by the (q)ds-BNSL algorithms often had very

good VLL scores (even better than sota-BNSL in the case of ds-BNSL).

1.5.1 Graal result

We consider the same setting as in Chapter 2: we observe X = (X1, . . . , Xn) M times in a dataset

D. F is a deterministic forest w.r.t. D.

The result we would like to prove is analogous to Proposition 4 with the VLL score instead of

MLL.

Conjecture idea Under a set of assumptions to be defined, if GR maximizes the VLL score

w.r.t. DR(F), then

G∗ = F ∪GR

maximizes the VLL score w.r.t. D.

143

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Remark The VLL score sV LLT,V in practice depends on the subsets T, V of D, and we should

therefore be cautious with the notion of ‘VLL maximization’. As mentioned in Section 3.4.2 of

Chapter 1, if T and V are randomly sampled, the VLL score w.r.t. to D is denoted sV LLD and

is a random variable. We could therefore consider the maximization property to be meant in

expectancy, or holding under a (controlled) probability.

1.5.2 Elements of response

A key intermediate result in the proof of Proposition 4 is the fact that, for any GR ∈ DAGR(F),

sMLL
D (GR ∪ F) = sMLL

DR(F)(GR).

If F is a deterministic forest with respect to D, a simple computation shows that for any

GR ∈ DAGR(F),

sV LLT,V (GR ∪ F) = sV LLTR(F),VR(F)
(GR).

However this is not entirely satisfactory: the fact that F is a deterministic forest with respect to

D implies that the entire dataset D has already been considered for building the DAG GR ∪ F ,
which invalidates the evaluation of this graph by sV LLT,V , as mentioned in the last subsection.

For a sound evaluation, F should be computed using the training set only: it would therefore be

a deterministic forest w.r.t. T , which however does not imply a priori that it is deterministic with

respect to D (although the converse is true). To guarantee this property, we would need a strong

assumption such as:

Assumption idea Empirical determinism is rare enough so that if T is a subset of D that is

sufficiently representative of D (e.g. contains at least 50% of randomly sampled observations),

relationships that are not deterministic w.r.t. D are not deterministic with respect to T neither.

This assumption is reasonable in practice: in the experiments conducted on the metadatasets

we used throughout this thesis, we have observed that the training sets T did not contain any

spurious empirical deterministic relationships compared to D.

A simple property of the dataset D that should help our assumption to be satisfied is that the

minimum of the set of positive empirical conditional entropies values, i.e.

V alHD = {HD(Xi|Xj), 1 ≤ i, j ≤ n} \ {0},

is above a certain threshold.

Formally, we are looking for a number a > 0 (as big as possible) such that:

min
(
{HD(Xi|Xj), 1 ≤ i, j ≤ n} \ {0}

)
> a.

144

CHAPTER 4. DISCUSSION AND PERSPECTIVES

We expect GR ∪ F (as defined in the conjecture) to maximize the VLL score w.r.t. D with a

probability that is related to a. Ideally, there even might be a condition on a that guarantees

that the result always hold.

2 Algorithmic perspectives

2.1 Decreasing the complexity of the ds-BNSL output using local search

2.1.1 Idea

Let us consider X = (X1, . . . , Xn) a tuple of n categorical random variables, D a dataset contain-

ing M observations of X, and F = DeterScreen(D) the deterministic forest w.r.t. D returned by

the DeterScreen algorithm presented in Chapter 2. We remind that R(F) ⊂ J1, nK is the set of

root nodes of F .

In Proposition 4, we show that if GR is a DAG that maximizes the MLL score w.r.t. to

DR(F), the DAG F ∪ GR maximizes the MLL score w.r.t. D. This result led to the design of

the ds-BNSL algorithm, which enables a substantial computational time gain for the Bayesian

network structure learning task in presence of deterministic relationships, thanks to the fact that

only a subset of the variables have to be considered by the (costly) structure learning algorithm

sota-BNSL: the variables corresponding to the roots of F , R(F).

One may however wonder if the variables that are set aside by the screening phase, i.e. XJ1,nK\R(F),

could still be parents of other variables in the final graph (root variables only, since variables that

already have a deterministic parent cannot benefit from another parent).

We recall that in practice we are rather looking to find a tradeoff between fit and complexity.

With the DeterScreen algorithm (Algorithm 5 presented in Section 3 of Chapter 3) for instance,

we are approaching this objective by minimizing the model complexity among structures which

maximize the MLL score. Indeed, we propose a way to find the deterministic trees with a minimal

number of parameters by choosing the less complex parents individually for each variables, using

BestParent (Algorithm 4). This guarantees that the overall tree has minimal complexity among

all deterministic trees (which all maximize the MLL score).

We wish to apply the same idea to the graph formed from the fusion of F and GR. Indeed, in

some cases, there exist local operations that can be applied to F ∪GR, that decrease the total

number of parameters of the structure while still guaranteeing the MLL-maximizing property.

We call these arc lowering operations: they correspond to the simultaneous removal of an arc

(r1, r2) with r1, r2 ∈ R(F) and the addition of an arc (v, r2) with v ∈ DescF (r1).6

6DescG(v) is the set of all the descendants of v in the DAG G.

145

CHAPTER 4. DISCUSSION AND PERSPECTIVES

To illustrate this, we now present a simple example.

2.1.2 Example of an arc lowering operation decreasing the number of parameters
without loosing the MLL-maximization property

Presentation of the variables and associated assumptions We consider variables X =

{X11, X12, X13, X14, X15, X21, X22, X23}, observed in a dataset D such that:

HD(X12|X11) = 0,

HD(X13|X11) = 0,

HD(X14|X12) = 0,

HD(X15|X12) = 0,

HD(X22|X21) = 0,

HD(X22|X23) = 0.

We suppose that no other deterministic dependencies hold7 (notably there are no redundant

variables in D).

Deterministic trees T1 and T2 We denote by vij the node corresponding to variable Xij

in an associated graphical structure. The deterministic forest F (w.r.t. D) returned by the

DeterScreen algorithm can be written F = T1 ∪ T2, where T1 and T2 are two deterministic trees

with respect to D defined as:

T1 = ({v11, v12, v13, v14, v15}, {(v11, v12), (v11, v13), (v12, v14), (v12, v15)}),

T2 = ({v21, v22, v23}, {(v21, v22), (v21, v23)}).

and is displayed in Figure 4.9.

X11

X12 X13

X14 X15

X21

X22 X23

Figure 4.9 – Deterministic forest F

7except for the ones that are directly implied by those previously presented, such as HD(X14|X11) = 0.

146

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Example: graph GR In Figure 4.10, we display GR, an example of a DAG learned on the

variables XR(F) = (X11, X21). Note that this graph is complete, and therefore maximizes the

MLL score w.r.t. DR(F) in this particular case.

X11 X21

Figure 4.10 – Graph GR

Example: graph G∗ as in Proposition 4 Figure 4.11 represents the graph G∗ = GR ∪ F .
Assuming sota-BNSL returns GR displayed in Figure 4.10, the graph G∗ is returned by the

ds-BNSL algorithm.

X11

X12 X13

X14 X15

X21

X22 X23

Figure 4.11 – Graph G∗

Proposition 4, associated with the fact that GR is a complete graph, shows that G∗ maximizes

the MLL score among all DAG structures encoding a distribution of X.

Example: graph G̃∗ that still maximizes the MLL score Now suppose we have an

additional relationship that holds in D:

HD(X21|X13) = HD(X21|X11). (4.11)

This equation expresses the fact that the variable X13 is as useful as X11 in terms of information

brought concerning variable X21, despite encoding a smaller amount of information than X11

(Lemma 2.3 in Chapter 2 gives that HDX11 > HD(X13)). This case is reasonably common in

practice on data that contain a lot of determinism (such as IoT datasets).

For example, X11 could represent a building room, whereas X13 represents the room orientation

(N,S,W,E): most of the time, the nodes lower in the trees encode more general and ‘pure’ concepts

than the roots.

147

CHAPTER 4. DISCUSSION AND PERSPECTIVES

We define the DAG G̃∗, displayed in Figure 4.12, as the graph G∗ for which the arc (v11, v21)

is removed and replaced by the arc (v11, v21), i.e. the arc (v11, v21) is lowered to (v11, v21).

X11

X12 X13

X14 X15

X21

X22 X23

Figure 4.12 – Graph G̃∗

A straightforward computation shows that:

sMLL
D (G̃∗) = sMLL

D (G∗)−M

HD(X21|X13)︸ ︷︷ ︸
added arc

−HD(X21|X11)︸ ︷︷ ︸
removed arc

= sMLL

D (G∗).

The DAG G̃∗ therefore also maximizes the MLL score.

Moreover, G̃∗ has a smaller number of parameters than G∗:

P(G̃∗)− P(G∗) = |V al(X21)|(|V al(X11)| − 1)− |V al(X21)|(|V al(X13)| − 1)

= |V al(X21)| (|V al(X11)| − |V al(X13)|)︸ ︷︷ ︸
>0 from Lemma 8

> 0.

Therefore, G̃∗ is strictly simpler than G∗, but has the same quantitative performance.

In the following section, we propose an algorithm that automatizes the arc lowering search idea.

We then show how such an algorithm can be generalized to graphs formed from quasi-deterministic

forests such as those returned by the QuasiDeterScreen algorithm.

2.1.3 Automation of this idea: the LoweringArcs algorithm

Similarly as in the case of a single deterministic tree, we can potentially find several graphs

maximizing the MLL score by performing local search with the graph returned by the ds-BNSL

algorithm as a starting point (as in the example).

148

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Let us consider the general case, where D contains M observations of X = (X1, . . . , Xn). Let

G∗ be a graph that maximizes the MLL score, and LocalMaxMLL(G∗) a set of DAGs that also

maximize the MLL score and that can be found by searching for arcs to lower in the graph G∗.

By definition of the ‘lowering’ operation,

LocalMaxMLL(G∗) ⊂ argmax
G∈DAGJ1,nK

sMLL
D (G).

In an analogous approach as the one presented in equation 2.5 in Chapter 2, we are interested

in finding a solution G̃∗ with minimal lower of parameters in LocalMaxMLL, i.e.

G̃∗ ∈ argmin
G∈LocalMaxMLL(G∗)

P(G).

Note that this is equivalent in that case to:

G̃∗ ∈ argmax
G∈LocalMaxMLL(G∗)

sBICD (G). (4.12)

This problem can be solved in a quadratic worst case complexity (with respect to the number

of variables), as long as the local search is done one variable at a time.8 For this purpose, we

propose the LoweringArcs algorithm, presented in Algorithm 13, which takes for input:

• a deterministic forest F = (J1, nK, AF),

• a DAG structure GR = (R(F), AR),

• a dataset D containing observations of the modeled variables X.

Algorithm 13 LoweringArcs

Input: F = (J1, nK, AF), GR = (R(F), AR), D
1: GnewR ← GR
2: for r ∈ R(F) do
3: for πr ∈ πGR(r) do #for each root arc, try to lower it
4: πoth(r)← πGR(r) \ πr
5: πbetter(r)← {v ∈ DescF (πr)|HD(Xr|Xv,Xπoth(r)) = HD(Xr|XπGR (r))}
6: if πbetter(r) 6= ∅ then
7: π∗r ← argmin

v∈πbetter(r)
|V al(Xv)|

8: GnewR ← (R(F), AR \ {(πr, r)} ∪ {(π∗r , r)})
9: Gnew ← F ∪GnewR

Output: Gnew

where DescF on line 5 refers to the function that returns the set of descendants in F . In the

case of a root node πr ∈ R(F), the set DescF (πr) corresponds to the set of all the nodes in the

corresponding deterministic tree (except for its root πr).
8Meaning that, for roots that have several parents in GR, we only try to lower the arcs leading to this root

one by one, without considering possible interactions in between the parents. This explores a smaller local space
around G∗ than if we searched into parent sets, but proved in practice to be sufficient to detect interesting arc
lowering possibilities, while being computationally efficient (O(Mn2)).

149

CHAPTER 4. DISCUSSION AND PERSPECTIVES

2.1.4 Generalization to the case of qds-BNSL

In the more general case of the qds-BNSL algorithm several points do not hold anymore, and

notably:

• we do not have any score-maximizing guarantees for the structure returned by the qds-BNSL

algorithm,

• we do not have the guarantee that a non-root variable is simpler (in terms of number of

values) than its corresponding root variable.

Therefore, we cannot be sure to simplify the overall structure while not decreasing the MLL score

simply by looking at empirical conditional entropies as we do in Algorithm 13. However, we can

give ourselves a criterion that takes into account both fit and complexity of structures (such as

the BIC score, as suggested by Equation (4.12)), and design a slightly modified algorithm, that

uses this criterion for searching over potential arc lowering operations.

We propose the LoweringArcsGeneral algorithm, presented in Algorithm 14, which takes for

input:

• a deterministic forest F = (J1, nK, AF),

• a DAG structure GR = (R(F), AR) ∈ DAGR(F),

• a dataset D containing observations of the modeled variables X,

• a criterion cD, taking for input (in this order):

– a node v ∈ V

– a set of potential parents for v π(v) ∈ 2V .

This algorithm has the same structure as Algorithm 13, except for the cD input, which changes

the potential better parent selection (lines 5−7). In Algorithm 13, this is done first by identifying

variables with the same conditional entropy, then by choosing the simplest, while it is now

performed by directly evaluating the criterion cD for every descendant of the considered root

variable.

Note that using the criterion defined as:

cD(v, π(v)) = sBICDv∪π(v)
((v ∪ π(v), {(u, v)|u ∈ π(v)}))

in Algorithm 14 is equivalent to Algorithm 13 (assuming the input forest F is deterministic), as

stated in Equation (4.12).

150

CHAPTER 4. DISCUSSION AND PERSPECTIVES

Algorithm 14 LoweringArcsGeneral

Input: F = (J1, nK, AF), GR = (R(F), AR), D, cD
1: GnewR ← GR
2: for r ∈ R(F) do
3: for πr ∈ πGR(r) do
4: πoth(r)← πGR(r) \ πr
5: πbetter(r)← {v ∈ DescF (πr)|cD(r, πoth(r) ∪ {v}) > cD(r, πGR(r))}
6: if πbetter(r) 6= ∅ then
7: π∗r ← argmax

v∈πbetter(r)
cD(r, πoth(r) ∪ {v})

8: GnewR ← (R(F), AR \ {(πr, r)} ∪ {(π∗r , r)})
9: Gnew ← F ∪GnewR

Output: Gnew

2.1.5 Complexity considerations

The number of operations made in Algorithms 13-14 is given by:

C(LoweringArcsGeneral) ≤
∑

r∈R(F)︸ ︷︷ ︸
line 2

∑
r′∈R(F)︸ ︷︷ ︸

line 3

|DescF (r′)|︸ ︷︷ ︸
line 5

≤ |R(F)|︸ ︷︷ ︸
≤n

×n.

Which proves that these algorithms complexity is O(Mn2), which is consistent with the screening

algorithms DeterScreen and QuasiDeterScreen respectively presented as Algorithm 5 and

Algorithm 7 in Chapter 2.

2.2 Choosing ε for the qds-BNSL algorithm

2.2.1 Ad-hoc approach and limitations

In the experiments presented in Section 5 of Chapter 2, we recall that ε used in the qds-BNSL

algorithm was chosen with an ad-hoc approach: we pick values for nr(ε), the number of variables

we want to set aside with QuasiDeterScreen, and we manually find the corresponding values for

ε.

Formally, for a given dataset D and x ∈ [0, 1], we define εx = n−1
r (bxnc): εx is the value of ε for

which the number of roots of the quasi deterministic forest Fε represents a proportion x of the

total number of variables.

The computation of εx is not problematic: once HD is computed and stored, evaluating nr(ε) is

done in constant time, and finding one of nr(·)’s quantiles is doable in O(log(n)) operations (di-

chotomy), which is negligible compared to the overall complexity of the screening phase (O(Mn2)).

However this approach has limitations: as the results presented in Section 5 of Chapter 2

show, the impact of removing a given proportion of the variable using screening depends highly on

151

CHAPTER 4. DISCUSSION AND PERSPECTIVES

the dataset. As shown in Table 2.4, for some datasets, the final graph performance is almost not

impacted (less than 2%) when setting aside half of the variables (munin3, pump it up), whereas

for some other datasets, we have up to 10− 15% percent of BDe and CVLL score loss (covertype,

andes, plants).

In this subsection, we propose a way to graphically anticipate the potential of the

quasi-determinism screening approach for a given dataset, and to choose ε in cases where

qds-BNSL is promising. For this purpose, we only use values that can be computed in constant

time from the empirical conditional entropy matrix

HD = (HD(Xi|Xj))1≤i,j≤n.

2.2.2 Graphical estimation of algorithm’s potential

We consider a dataset D containing M observations of variables X = (X1, . . . , Xn), and an

associated empirical conditional entropy matrix HD = (HD(Xi|Xj))1≤i,j≤n.

In Section 6 of Chapter 2, we suggest that qds-BNSL appears in its best light in a scenario for

which the quasi-determinism screening phase enables the elimination of an important proportion

of the variables (to secure an important time gain), for ε reasonably small (to guarantee a

controlled performance loss).

The natural question that comes to mind is: what does small mean with respect to the value of

ε ? Intuitively, we want ε to be small compared to the values of the variables entropies.

Indeed, for a given i ∈ J1, nK, the information given by the fact that

∃j ∈ J1, nK \ {i} such that HD(Xi|Xj) ≤ ε (4.13)

is all the more interesting that ε is small compared to HD(Xi).

Indeed, if ε ≈ HD(Xi), Equation (4.13) holds for any variable Xj which is slightly correlated

to Xi. On the contrary, if ε << HD(Xi), Equation (4.13) implies that Xj brings a lot of

information with regards to the value of the variable Xi.

For this reason, several approaches such as the one from Chow and Liu (1968) or the more

recent one from Cheng et al. (1997) consider the empirical mutual information, i.e. ID(Xi, Xj) =

HD(Xi)−HD(Xi|Xj) as a criterion for structure learning. However,

• this quantity is symmetric in (Xi, Xj), which is not sought-after in the context of our

screening algorithm, since we wish to find ‘representative’ variables (roots of the forest)

that contain most of the information associated with a subgroups of other variables,

• results that involve empirical conditional entropy, such as Proposition 3, Proposition 4 or

Proposition 8 cannot be simply extended, to our knowledge, to mutual information.

152

CHAPTER 4. DISCUSSION AND PERSPECTIVES

We therefore choose to compare, for a given value ε, the proportion of the variables that are

not set aside by the QuasiDeterScreen algorithm (i.e. variables corresponding to the roots of

Fε = QuasiDeterScreen(D, ε)) to the proportion of variables which have an entropy bigger than

ε.

Formally, we display the simultaneous evolution of the two following dataset-dependent quantities

with respect to ε, that both have values in [0, 1]:

• RemainingVariablesD, is the proportion of root variables left by QuasiDeterScreen. For

any ε ≥ 0,

RemainingVariablesD(ε) =
nr(ε)

n
=
|R(Fε)|

n
.

• EntropyRepartitionD is the proportion of variables with entropy bigger than ε. For any

ε ≥ 0,

EntropyRepartitionD(ε) =
1

n

n∑
i=1

I{HD(Xi)≥ε}.

For a given dataset D, we expect these two quantities to be all the more far apart (although

they both go towards 0 when ε grows) that the impact of running the qds-BNSL algorithm on D

is promising. Intuitively, an interesting choice for ε is a value for which EntropyRepartitionD(ε)

is the biggest possible, and RemainingVariablesD(ε) is the smallest possible.

A rule of thumb for the choice of ε is to pick a value ε0 for which the difference

EntropyRepartitionD(ε0)− RemainingVariablesD(ε0)

is the most important: for ε = ε0 we eliminate a lot of variables (and therefore win a lot of time),

but the variables we eliminate are promising in terms of how well they are explained by theirs

parents in Fε0 (and we are therefore confident on how well this forest will perform overall). The

best case is reached when a lot of variables are eliminated for a very small epsilon, i.e. when

there are a lot of real pairwise determinism in the data (which is the case for piu and even more

for the dataset extracted from HOMES metadata).

Figure 4.13 displays such plots for 3 datasets out of those that are studied in Section 5 of

Chapter 2, and on which the qds-BNSL algorithm has different levels of performance:

• book dataset (Figure 4.13(a)), for which the algorithm qds-BNSL seems to be moderately

adapted from the results displayed in Section 5 of Chapter 2,

• msnbc (Figure 4.13(b)), for which the algorithm qds-BNSL seems to be well adapted,

• pumpitup (Figure 4.13(c)), for which the algorithm qds-BNSL seems to be very well adapted.

153

CHAPTER 4. DISCUSSION AND PERSPECTIVES

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3
Epsilon

P
ro

po
rti

on Legend
RemainingVariables
EntropiesRepartion

(a) Candidate criterion for choice of ε - book dataset

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6
Epsilon

P
ro

po
rti

on Legend
RemainingVariables
EntropiesRepartion

(b) Candidate criterion for choice of ε - msnbc dataset

0.00

0.25

0.50

0.75

1.00

0 2 4 6
Epsilon

P
ro

po
rti

on Legend
RemainingVariables
EntropiesRepartion

(c) Candidate criterion for choice of ε - pumpitup dataset

Figure 4.13 – Candidate graphical criterion for the choice of ε on three selected datasets

154

CHAPTER 4. DISCUSSION AND PERSPECTIVES

This intuition is confirmed by the three displayed graphs in Figure 4.13: the more these

graphs have potential with regards to the qds-BNSL algorithm, the more the two quantities are

far apart.

In the case of the pump it up dataset, we see that ε0.5 is very small compared to the values of the

entropies (ε0.5 ≈ 0.05), which suggests that we could have chosen ε bigger than ε0.5 and possibly

obtain even better results.

Although the link between the quantity EntropyRepartitionD(ε)−RemainingVariablesD(ε)

and the efficiency of the qds-BNSL algorithm should be studied more in depth (for example by

building a more complex criterion), this appears as an interesting first approach (and has quadratic

complexity).

3 (Quasi-)determinism screening and the BIC score: prospective
results

For now, although we have made an emphasis on minimizing the number of parameters of the

learned models, the results we have proven mostly concern the MLL score. We are now seeking

to prove similar results for scores that naturaly imply a fit/complexity tradeoff. In Section 1.4 we

mention possible extensions of results to the VLL score. In this section we focus on the BIC score,

that has an expression very close to that of the MLL score: we present some ideas of potential

results, and pending questions.

3.1 BIC score: generalization

We suppose we have a dataset D containing M observation of X = (X1, . . . , Xn), and that

V = J1, nK. We remind that the BIC score for Bayesian networks is expressed as a penalization

of the MLL score relatively to the number of parameters of the model:

∀G ∈ DAGV , sBICD (G) = sMLL
DAGV

(G)− log(M)

2
P(G).

where P(G) is the number of parameters of the Bayesian network with structure G.

For any λ ≥ 0 we define the BIC(λ) score that generalizes the BIC score as follows:

∀G ∈ DAGV , sBIC(λ)
D (G) = sMLL

D (G)− λ log(M)

2
P(G).

In this context, λ acts as a regularization hyperparameter. We notably have:

• When λ −→ 0, then for any G ∈ DAGV , s
BIC(λ)
D (G) −→ sMLL

D (G), and the BIC(λ)

score becomes equivalent to the MLL score which leads to complete DAGs as mentioned

previously.

155

CHAPTER 4. DISCUSSION AND PERSPECTIVES

• For λ = 1, the BIC(λ) score is the usual BIC score for Bayesian network structures.

• For λ = 2
log(M) , the BIC(λ) score is the AIC score for Bayesian network structures.

• When λ −→ +∞, the BIC(λ) score increasingly favors empty DAG structures.

3.2 Determinism and generalized BIC score: open questions

For λ > 0, maximizing sBIC(λ) among all structures G ∈ DAGV is a NP-Hard problem. When in

presence of deterministic relations in the data, we would like to be able to use them to speed up

the structure learning task with provably no impact on the overall score, like we proved possible

when using the MLL score as a target (i.e. BIC(λ = 0)).

We have identified some open questions that seem interesting in going forward down the path

leading to some guarantees concerning (quasi-)determinism screening in the context of the BIC

score. As with the MLL score, we are first interested in what happens in the particular case where

a deterministic tree exists, hoping that we will then be able to generalize to deterministic forests.

Suppose that a deterministic tree T exists w.r.t. D. Proposition 3 states that T maximizes

the BIC(λ = 0) score: the MLL score. Since the number of structures is finite, the set

SD = {λ∗ > 0 | ∀λ ≤ λ∗, T ∈ argmax
G∈DAGV

s
BIC(λ)
D (G)}

is nonempty (and obviously upper-bounded).

Therefore, we may define λDmax = maxSD. By definition, λDmax > 0 and

∀λ ≤ λDmax, T ∈ argmax
G∈DAGV

s
BIC(λ)
D (G). (4.14)

Open questions

• Can λDmax be found in reasonable computation time (without running a structure learning

algorithm) ?

• Can λDmax be lower-bounded thanks to quantities such as HD(Xi) and/or HD(Xi|Xj) for

i, j ∈ V ?

Answering these questions is very interesting for two main reasons:

• Intuitively, deterministic trees are interesting because they maximize the MLL score (quan-

titative performance) while still satisfying sparsity assumptions (qualitative performance, or

interpretability). The value of λDmax would enable to quantify the qualitative performance

of T : the higher λDmax, the best the tradeoff realized by T .

Notably, if λDmax ≥ 1, then T maximizes the BIC (i.e. BIC(λ = 1)) score on DAGV !

156

CHAPTER 4. DISCUSSION AND PERSPECTIVES

• Estimating λDmax would make it easier to find a more general result in the case of deterministic

forests: if all the trees of a deterministic forest F maximize not only the MLL score but

also the BIC(λDmax) score, it would be legitimate to use the BIC(λDmax) score as a target

for running sota-BNSL on the root variables in order to find GR9, which we are confident

could enable to have guarantees relative to a version BIC score for the graph GR ∪ F .

9Indeed, the sota-BNSL algorithms we use in practice inside ds-BNSL and qds-BNSL do not have the MLL as a
target score as would suggest Proposition 4, since we know this leads to a complete DAG. Proving such results
would enable us to know which target score to legitimately use for sota-BNSL that is run on the root variables.

157

Conclusion

Summary of contributions

This thesis addresses the goal of static and temporal data fusion in the context of IoT data. Such

data seems to constitute an always increasing proportion of the available data today.10.

Using the Bayesian network formalism described in Chapter 1, we presented several contributions

building towards the goal of static and temporal data fusion.

In Chapter 2, we first explained how static data available from IoT systems may generate

issues in the context of Bayesian network structure learning, principally caused by the presence

of redundancy and determinism. We then proposed the ds-BNSL Bayesian network structure

learning algorithm solving these issues, and extended it to a more general qds-BNSL algorithm

that is not restricted to data containing strict determinism.

In Chapter 3, we then presented hybrid static-dynamic Bayesian networks (HSDBN), that

jointly models static and temporal data. We proposed an algorithm to learn such networks from

static metadata and temporal data that are available in practice from IoT systems, leveraging

the (q)ds-BNSL algorithms introduced in Chapter 2. We also designed an inference algorithm

tackling the problem of metadata recovery from a sequence of observations of temporal data

alone.

Finally, in Chapter 4, we discussed the pertinence of the VLL score to evaluate Bayesian

networks, and proposed some short-term algorithmic and theoretical perspectives, as well as leads

for their further exploration.

Perspectives

Short term perspectives

Next steps primarily involve (i) obtaining results for the algorithms proposed in Chapter 3 on very

large real-world IoT datasets, enabling to show the potential of HSDBNs in terms of applicability,
10https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8\

-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016

158

https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8\ -billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8\ -billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016

CONCLUSION

and (ii) optimizing our code. For instance, parallelizing and programming the computationally

intensive routines in a lower programming language (such as C), should give an even better edge

to our proposed algorithms relatively to the already optimized sota-BNSL baseline we compare

to.

Several perspectives mentioned in Chapter 4 also appear reasonably accessible. We are

confident that results concerning guarantees of the ds-BNSL algorithm with respect to the VLL

score or the (generalized) BIC score can be obtained (under some assumptions on the data), and

we plan to run experiments on selected examples to get better insight on this question. Moreover,

we are currently developing a algorithm based on the lowering arcs idea presented in Section 2.1.

Longer term perspectives

As mentioned in Section 6 of Chapter 2, we also have some perspectives concerning the qds-BNSL

algorithm, such as extending the screening phase to relationships that involve more than two

variables, or exploiting an alternative definition of determinism (for example using a normalized

entropy criterion), as well as finding a principle way to set the ε hyperparameter.

We also believe that interesting theoretical links may be drawn to mutual-information based

approaches such as the one from Chow and Liu (1968). Notably, it appears clearly that under

the assumption of existence of a deterministic tree made in Proposition 3 in Chapter 2, the tree

search algorithm by Chow and Liu returns one of the existing deterministic trees, as does ds-BNSL.

Studying the theoretical similarities in the more general case of a (quasi-)deterministic forest is a

promising perspective.

Moreover, we are looking forward to extending our algorithms and models to more complex

(higher dimensional) data. For example, a HSDBN could be used to model a video, by using

state-of-the-art methods to extract high level features from successive frames (Sharif Razavian

et al., 2014; Zeiler and Fergus, 2014), and considering these features as temporal variables.

Lastly, we could extend HSDBNs to handle multiple time scales, getting inspiration from works

on multi-scale dynamic Bayesian networks (Chen and Wang, 2010). This could be particularly

useful to model several scales of seasonality (day, week, year), as well as capturing in a less binary

way the full spectrum of data temporality, from immutable to highly volatile.

159

Bibliography

Susanne G Bøttcher, Claus Dethlefsen, et al. deal: A package for learning Bayesian networks.

Department of Mathematical Sciences, Aalborg University, 2003.

RR Bouckaert. Bayesian belief networks: from inference to construction. PhD thesis, Faculteit

Wiskunde en Informatica, Utrecht University, 1995.

Wray Buntine. Theory refinement on Bayesian networks. In Uncertainty Proceedings 1991, pages

52–60. Elsevier, 1991.

Gilles Celeux and Jean-Baptiste Durand. Selecting hidden markov model state number with

cross-validated likelihood. Computational Statistics, 23(4):541–564, 2008.

Feng Chen and Wei Wang. Activity recognition through multi-scale dynamic bayesian network.

In Virtual Systems and Multimedia (VSMM), 2010 16th International Conference on, pages

34–41. IEEE, 2010.

Xue-Wen Chen, Gopalakrishna Anantha, and Xiaotong Lin. Improving Bayesian network structure

learning with mutual information-based node ordering in the K2 algorithm. IEEE Transactions

on Knowledge and Data Engineering, 20(5):628–640, 2008.

Jie Cheng, David A Bell, and Weiru Liu. Learning belief networks from data: An information

theory based approach. In Proceedings of the sixth international conference on Information

and knowledge management, pages 325–331. ACM, 1997.

David Maxwell Chickering. A transformational characterization of equivalent Bayesian network

structures. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, R©
Montreal, QU, pages 87–98, August 1995.

David Maxwell Chickering. Learning Bayesian networks is NP-complete. Learning from data:

Artificial intelligence and statistics V, 112:121–130, 1996.

C Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.

IEEE transactions on Information Theory, 14(3):462–467, 1968.

160

BIBLIOGRAPHY

Barry R Cobb, Rafael Rumí, and Antonio Salmerón. Bayesian network models with discrete and

continuous variables. In Advances in probabilistic graphical models, pages 81–102. Springer,

2007.

Gregory F. Cooper. The computational complexity of probabilistic inference using Bayesian belief

networks. Artif. Intell., 42(2-3):393–405, March 1990. ISSN 0004-3702.

Gregory F Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic

networks from data. Machine Learning, 9(4):309–347, 1992.

Robert G. Cowell. Conditions under which conditional independence and scoring methods lead to

identical selection of Bayesian network models. In Proceedings of the Seventeenth Conference

on Uncertainty in Artificial Intelligence, UAI’01, pages 91–97, San Francisco, CA, USA, 2001.

Morgan Kaufmann Publishers Inc. ISBN 1-55860-800-1.

James Cussens. Bayesian network learning with cutting planes. In Proceedings of the Twenty-

Seventh Conference on Uncertainty in Artificial Intelligence, UAI’11, pages 153–160, Arlington,

Virginia, United States, 2011. AUAI Press. ISBN 978-0-9749039-7-2.

Jesse Davis and Pedro Domingos. Bottom-up learning of Markov network structure. In Proceedings

of the 27th International Conference on Machine Learning (ICML-10), pages 271–278, 2010.

Cassio P de Campos, Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon. Entropy-based

pruning for learning Bayesian networks using bic. Artificial Intelligence, 260:42–50, 2018.

Cassio P de de Campos and Qiang Ji. Efficient structure learning of Bayesian networks using

constraints. Journal of Machine Learning Research, 12(Mar):663–689, 2011.

Luis M de Campos. A scoring function for learning Bayesian networks based on mutual information

and conditional independence tests. Journal of Machine Learning Research, 7(Oct):2149–2187,

2006.

Sergio Rodrigues de Morais, Alexandre Aussem, and Marilys Corbex. Handling almost-

deterministic relationships in constraint-based Bayesian network discovery: Application to

cancer risk factor identification. In European Symposium on Artificial Neural Networks,

ESANN’08, 2008.

Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation.

Comput. Intell., 5(3):142–150, December 1989. ISSN 0824-7935. doi: 10.1111/j.1467-8640.1989.

tb00324.x.

Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,

113(1-2):41–85, 1999.

161

BIBLIOGRAPHY

Chloé Desdouits, Jean-Louis Bergerand, Pierre-Alexis Berseneff, Claude Le Pape, and Dimitri

Yanculovici. Energy study of a manufacturing plant. ECEEE Industrial Efficiency Summer

Study. Berlin, Germany, 2016.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL http:

//archive.ics.uci.edu/ml.

Martin Diaz, Gonzalo Juan, Oikawa Lucas, and Alberto Ryuga. Big data on the internet of

things: An example for the e-health. In Innovative Mobile and Internet Services in Ubiquitous

Computing (IMIS), 2012 Sixth International Conference on, pages 898–900. IEEE, 2012.

Charbel El Kaed, Brett Leida, and Tony Gray. Building management insights driven by a

multi-system semantic representation approach. In Internet of Things (WF-IoT), 2016 IEEE

3rd World Forum on, pages 520–525. IEEE, 2016.

Nicholas Etherden, Anders Kim Johansson, Ulf Ysberg, Kjetil Kvamme, David Pampliega, and

Craig Dryden. Enhanced lv supervision by combining data from meters, secondary substation

measurements and medium voltage supervisory control and data acquisition. CIRED-Open

Access Proceedings Journal, 2017(1):1089–1093, 2017.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,

volume 1. Springer series in statistics New York, NY, USA:, 2001.

Nir Friedman, Iftach Nachman, and Dana Peér. Learning Bayesian network structure from

massive datasets: the ‘sparse candidate ‘algorithm. In Proceedings of the Fifteenth conference

on Uncertainty in artificial intelligence, pages 206–215. Morgan Kaufmann Publishers Inc.,

1999.

Tak-chung Fu. A review on time series data mining. Engineering Applications of Artificial

Intelligence, 24(1):164–181, 2011.

Robert Fung and Kuo-Chu Chang. Weighing and integrating evidence for stochastic simulation in

Bayesian networks. In Machine Intelligence and Pattern Recognition, volume 10, pages 209–219.

Elsevier, 1990.

David Heckerman. A tutorial on learning with Bayesian networks. In Learning in graphical

models, pages 301–354. Springer, 1998.

David Heckerman, Dan Geiger, and David M Chickering. Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

Max Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In

Machine Intelligence and Pattern Recognition, volume 5, pages 149–163. Elsevier, 1988.

162

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY

Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient algorithm

for discovering functional and approximate dependencies. The computer journal, 42(2):100–111,

1999.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction

to variational methods for graphical models. Machine learning, 37(2):183–233, 1999.

JinHyung Kim and Judea Pearl. A computational model for causal and diagnostic reasoning in

inference systems. In International Joint Conference on Artificial Intelligence, pages 0–0, 1983.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT

press, 2009.

Dan D Koo, John J Lee, Aleksei Sebastiani, and Jonghoon Kim. An internet-of-things (iot) system

development and implementation for bathroom safety enhancement. Procedia Engineering, 145:

396–403, 2016.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86, 1951.

Vincenzo La Tosa, Sylvain Marié, Franck Bernier, and Daniel Piette. Pervasive energy measure-

ments for buildings monitoring. In Proceedings of the second Workshop on eeBuildings Data

Models, 2011.

Wei Luo. Learning Bayesian networks in semi-deterministic systems. In Canadian Conference on

AI, pages 230–241. Springer, 2006.

Ahmed Mabrouk, Christophe Gonzales, Karine Jabet-Chevalier, and Eric Chojnacki. An efficient

Bayesian network structure learning algorithm in the presence of deterministic relations. In

Proceedings of the Twenty-first European Conference on Artificial Intelligence, pages 567–572.

IOS Press, 2014.

Nikos Mamoulis, Ling Liu, and M. Tamer Özsu. Temporal Data Mining, pages 2948–2952. Springer

US, Boston, MA, 2009.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and

Edward Teller. Equation of state calculations by fast computing machines. The journal of

chemical physics, 21(6):1087–1092, 1953.

Kevin Patrick Murphy and Stuart Russell. Dynamic bayesian networks: representation, inference

and learning. 2002.

K.P. Murphy. Machine Learning: A Probabilistic Perspective. Adaptive computation and machine

learning. MIT Press, 2012.

163

BIBLIOGRAPHY

Radhakrishnan Nagarajan, Marco Scutari, and Sophie Lèbre. Bayesian networks in r. Springer,

122:125–127, 2013.

Hala Najmeddine, Frédéric Suard, Arnaud Jay, Philippe Marechal, and Marié Sylvain. Mesures

de similarité pour l’aide à l’analyse des données énergétiques de bâtiments. In RFIA 2012

(Reconnaissance des Formes et Intelligence Artificielle), pages 978–2, 2012.

Le T Nguyen, Pang Wu, William Chan, Wei Peng, and Ying Zhang. Predicting collective

sentiment dynamics from time-series social media. In Proceedings of the first international

workshop on issues of sentiment discovery and opinion mining, page 6. ACM, 2012.

Siqi Nie, Cassio Polpo de Campos, and Qiang Ji. Learning Bayesian networks with bounded

tree-width via guided search. In AAAI, pages 3294–3300, 2016.

Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation of rényi entropy and mutual

information based on generalized nearest-neighbor graphs. In Advances in Neural Information

Processing Systems, pages 1849–1857, 2010.

Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph, Martin

Schönberg, Jakob Zwiener, and Felix Naumann. Functional dependency discovery: An experi-

mental evaluation of seven algorithms. Proceedings of the VLDB Endowment, 8(10):1082–1093,

2015.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988. ISBN 0-934613-73-7.

Judea Pearl et al. Causal inference in statistics: An overview. Statistics surveys, 3:96–146, 2009.

Peter Pflaum, Mazen Alamir, and Mohamed Yacine Lamoudi. Probabilistic energy management

strategy for ev charging stations using randomized algorithms. IEEE Transactions on Control

Systems Technology, 2017.

Thibaud Rahier, Sylvain Marié, Stéphane Girard, and Florence Forbes. Fast bayesian network

structure learning using quasi-determinism screening. 2018a.

Thibaud Rahier, Sylvain Marié, Stéphane Girard, and Florence Forbes. Screening strong pairwise

relationships for fast bayesian network structure learning. 2018b.

Kimball Ralph. The data warehouse toolkit: Practical techniques for building dimensional data

warehouses, 1996.

Carl Edward Rasmussen and Zoubin Ghahramani. Occam’s razor. In Advances in neural

information processing systems, pages 294–300, 2001.

164

BIBLIOGRAPHY

Alfréd Rényi et al. On measures of entropy and information. In Proceedings of the Fourth Berkeley

Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory

of Statistics. The Regents of the University of California, 1961.

Dmitry Rusakov and Dan Geiger. Asymptotic model selection for naive Bayesian networks.

Journal of Machine Learning Research, 6(Jan):1–35, 2005.

Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief

networks. Journal of artificial intelligence research, 4:61–76, 1996.

Mauro Scanagatta, Cassio P de Campos, Giorgio Corani, and Marco Zaffalon. Learning Bayesian

networks with thousands of variables. In Advances in Neural Information Processing Systems,

pages 1864–1872, 2015.

Mauro Scanagatta, Giorgio Corani, Cassio P de Campos, and Marco Zaffalon. Learning treewidth-

bounded Bayesian networks with thousands of variables. In Advances in Neural Information

Processing Systems, pages 1462–1470, 2016.

Richard Scheines, Peter Spirtes, Clark Glymour, Christopher Meek, and Thomas Richardson.

Tetrad 3: Tools for causal modeling–user’s manual. CMU Philosophy, 1996.

Gideon Schwarz et al. Estimating the dimension of a model. The Annals of Statistics, 6(2):

461–464, 1978.

Marco Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statistical

Software, 35(3):1–22, 2010. doi: 10.18637/jss.v035.i03.

Ross D Shachter and Mark A Peot. Simulation approaches to general probabilistic inference on

belief networks. In Machine Intelligence and Pattern Recognition, volume 10, pages 221–231.

Elsevier, 1990.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features

off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pages 806–813, 2014.

Tomi Silander and Petri Myllymäki. A simple approach for finding the globally optimal Bayesian

network structure. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial

Intelligence, UAI’06, pages 445–452. AUAI Press, 2006. ISBN 0-9749039-2-2.

Tomi Silander, Petri Kontkanen, and Petri Myllymäki. On sensitivity of the map Bayesian

network structure to the equivalent sample size parameter. In Proceedings of the Twenty-Third

Conference on Uncertainty in Artificial Intelligence, pages 360–367. AUAI Press, 2007.

165

APPENDIX A. PROOFS

David J Spiegelhalter and Steffen L Lauritzen. Sequential updating of conditional probabilities

on directed graphical structures. Networks, 20(5):579–605, 1990.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT

press, 2000.

Marc Teyssier and Daphne Koller. Ordering-based search: a simple and effective algorithm for

learning Bayesian networks. In Proceedings of the Twenty-First Conference on Uncertainty in

Artificial Intelligence, pages 584–590. AUAI Press, 2005.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society (Series B), 58:267–288, 1996.

Ioannis Tsamardinos, Laura E Brown, and Constantin F Aliferis. The max-min hill-climbing

Bayesian network structure learning algorithm. Machine Learning, 65(1):31–78, 2006.

Jimmy Vandel, Brigitte Mangin, and Simon De Givry. New local move operators for Bayesian

network structure learning. Proceedings of PGM-12, Granada, Spain, 2012.

Thomas Verma and Judea Pearl. Causal networks: semantics and expressiveness. In UAI, pages

69–78. North-Holland, 1988.

Sandeep Yaramakala and Dimitris Margaritis. Speculative Markov blanket discovery for optimal

feature selection. In Fifth IEEE international conference on Data Mining, pages 4–pp. IEEE,

2005.

Changhe Yuan, Brandon Malone, et al. Learning optimal Bayesian networks: A shortest path

perspective. Journal of Artificial Intelligence Research, 2013.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In

European conference on computer vision, pages 818–833. Springer, 2014.

Nevin L Zhang and David Poole. A simple approach to Bayesian network computations. In Proc.

of the Tenth Canadian Conference on Artificial Intelligence, 1994.

166

Proofs

1 Proofs of results presented in Chapter 1

Proof of Lemma 1 The log function being concave, −log is convex. For any p, q ∈ FP (U),

Jensen’s inequality gives:

∑
u∈U

p(u)(−log)

(
q(u)

p(u)

)
≥ (−log)

(∑
u∈U

p(u)
q(u)

p(u)

)

= −log

(∑
u∈U

q(u)

)
= 0.

Therefore ∀p, q ∈ FP (U) ∑
u∈U

p(u)log
(
q(u)

p(u)

)
≤ 0

which directly gives: ∑
u∈U

p(u)log(q(u)) ≤
∑
u∈U

p(u)log(p(u)).

�

Proof of Proposition 1 By definition, for any parameter Θ and thanks to the fact that

the observations in D are considered i.i.d, the likelihood is expressed as:

LD(Θ) =
M∏
m=1

PΘ(X = x(m))

167

APPENDIX A. PROOFS

To simplify the maximization problem, we consider the log-likelihood lD(Θ), that can be rewritten

as follows:

lD(Θ) = log(LD(Θ))

= log

(
M∏
m=1

PΘ(X = x(m))

)

=

M∑
m=1

log(pΘ(x(m)))

=

M∑
m=1

∑
x∈V al(X)

log(PΘ(X = x)︸ ︷︷ ︸
θx

)Ix(m)=x

=
∑

x∈V al(X)

M∑
m=1

log(θx)Ix(m)=x

=
∑

x∈V al(X)

log(θx)

(
M∑
m=1

Ix(m)=x

)
︸ ︷︷ ︸

=CD(x)

=
∑

x∈V al(X)

CD(x)log(θx).

For all x ∈ V al(X), we define Θ̃ = {θ̃x}x where for all x ∈ V al(X),

θ̃x =
CD(x)

M
.

We immediately check that Θ̃ ∈ FP (V al(X)):

∑
x∈V al(X)

θ̃x =
1

M

∑
x∈V al(X)

M∑
m=1

Ix(m)=x

=
1

M

M∑
m=1

∑
x∈V al(X)

Ix(m)=x︸ ︷︷ ︸
=1

= 1.

Using Lemma 1, and since Θ and Θ̃ are in FP (V al(X)), for all Θ ∈ FP (V al(X)) we have:

lD(Θ) = M
∑

x∈V al(X)

θ̃xlog(θx)

≤
(J)

M
∑

x∈V al(X)

θ̃xlog(θ̃x)

= lD(Θ̃).

Thus, by definition,

Θ̃ ∈ argmax
Θ∈FP (V al(X))

lD(Θ)

168

APPENDIX A. PROOFS

Let us consider a parameter Θ1 that maximize lD(Θ).

The inequality (J) in the previous derivation corresponds to Jensen’s inequality (used in the

proof of Lemma 1).

The parameter Θ1 and Θ̃ correspond to an equality case for (J) (since lD(Θ̃) = lD(Θ1)). For a

given strictly convex function, the equality case in Jensen’s inequality happens iff all the points

are the same, i.e. there exists a ∈]0,+∞] such that:

∀x ∈ V al(X),
θ1
x

θ̃x
= a.

Since both {θ1
x}x and {θ̃x}x sum to 1, then a = 1 and Θ1 = Θ̃: the maximum of lD(Θ) is therefore

reached for a unique value of Θ.

This finally gives (by definition):

Θ̂D = Θ̃ =

{(
CD(x)

M

)}
x∈V al(X)

�

2 Proofs of results presented in Chapter 2

Proof of Lemma 2 First let us rewrite the MLL score in terms of data counts. We denote

x
(m)
i the mth observation of variable Xi in the dataset D. For a given G ∈ DAGV and θ ∈ ΘG,

lD(Θ) =

M∑
m=1

log(pθ(x
(m)
1 . . . , x(m)

n)︸ ︷︷ ︸∏n
i=1 θx(m)

i
|x(m)
π(i)

)

=
M∑
m=1

n∑
i=1

log(θ
x

(m)
i |x(m)

π(i)

)

=

n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θxi|xπ(i)
)

where CD(·) is the count function associated with D:

∀I ⊂ V ,

CD(xI) =

M∑
m=1

I
x

(m)
I =xI

= MpD(xI).

Moreover, the maximum likelihood estimator θ for categorical variables is given by the local

empirical frequencies (extension of Proposition 1) i.e.

θxi|xπ(i)
= pD(xi|xπ(i)) =

CD(xi,xπ(i))

CD(xπ(i))
.

169

APPENDIX A. PROOFS

Therefore we get:

sMLL
D (G) = max

θ∈ΘG
lD(Θ)

= lD(Θ)

=
n∑
i=1

∑
xi,xπ(i)

CD(xi,xπ(i)) log(θxi|xπ(i)
)

=

n∑
i=1

∑
xi,xπ(i)

MpD(xi,xπ(i)) log(pD(xi|xπ(i)))

= −M
n∑
i=1

HD(Xi|Xπ(i)).

�

Proof of Proposition 3 Let T be as in the hypothesis of Proposition 3, we can prove that

the bound for the MLL score among DAGs proven in Lemma 5 is reached for T , which gives the

result.

Without any loss of generality, let us suppose that T ’s root is 1. Then,

sMLL
D (T) = −M

n∑
i=1

HD(Xi|Xπ(i))

= −M

HD(X1) +
n∑
i=2

HD(Xi|Xπ(i))︸ ︷︷ ︸
=0

≥ −M HD(X1, . . . , Xn)

= max
G∈DAGV

sMLL
D (G).

�

Proof of Proposition 4 Let F =
p⋃

k=1

Tk and G∗R(F) be as in the Proposition’s hypotheses.

Without loss of generality, we consider i to be the root of the tree Ti. Therefore, R(F) = J1, pK.

Let us also define the following root function that associates to each node the root of the tree it

belongs to:

r :

∣∣∣∣ V −→ R(F)
i 7−→ k s.t. Xi ∈ VTk .

Let G∗R(F) ∈ DAGR(F) such that:

G∗R(F) ∈ argmax
G∈DAGR(F)

sMLL
D (G)

and G∗ = F ∪G∗R(F) i.e.

• VG∗ = V

170

APPENDIX A. PROOFS

• AG∗ =
(⋃p

k=1ATk
)
∪AG∗R(F)

We will show as in the proof of Proposition 3 that

sMLL
DAGV

(G∗) ≥ max
G∈DAGV

sMLL
DAGV

(G)

which implies that G∗ ∈ argmax
G∈DAGV

sMLL
DAGV

(G).

We write:

sLDAGV (G∗) = −M
n∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(a)

−M
n∑

i=p+1

HD(Xi|XπG∗ (i))︸ ︷︷ ︸
(b)

We then compute separately the terms (a) and (b):

• Computation of (a)

The first term corresponds to the score of the graph G∗R(F) as an element of DAGR(F).

Indeed, by construction of G∗,

∀i ∈ R(F), πG
∗
(i) = π

G∗R(F)(i).

Moreover, G∗R(F) maximizes the MLL score on DAGR(F). We can now write:

(a) = −M
p∑
i=1

HD(Xi|XπG∗ (i))

= −M
p∑
i=1

HD(Xi|X
π
G∗R(F) (i)

)

= sMLL
D (G∗R(F))

= max
G∈DAGR(F)

sMLL
DR(F)

(G)

= −MHD(X1, . . . , Xp).

• Computation of (b)

By construction of G∗,

∀i ∈ V \ R(F), πG
∗
(i) = πTr(i)(i).

Moreover since the Tk’s are deterministic trees, it follows that

∀i ∈ V \ R(F), HD(Xi|Xπ
Tr(i) (i)

) = 0.

171

APPENDIX A. PROOFS

Therefore we can write

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)

= 0.

Collecting the above results yields

sLDAGV (G∗) = (a)

= −MHD(X1, . . . , Xp)

≥ −MHD(X1, . . . , Xn)

= max
G∈DAGV

sMLL
D (G).

�

Remarks after proof of Proposition 4

• The last inequality we wrote in the proof is of course an equality:

HD(X1, . . . , Xp) = HD(X1, . . . , Xn)

More generally, for G ∈ DAGV a deterministic DAG, and X a tuple of variables indexed

by V ,

HD(X) = HD(XR(G)). (15)

In other words, the joint entropy of all the nodes in the graph is equal to the entropy of the

root nodes only.

Here is another way to prove it:

For any random variables X,Y we have: HD(X|Y) ≤ HD(X), which notably implies that:

HD(X,Y) ≤ HD(X) +HD(Y).

Moreover, we define the function ‘root in G’, RG as follows:

∀i ∈ V −R(G), RG(i) = R(G) ∩ AnscG(i)

We can then write:

HD(XV \R(G) | XR(G)) ≤
∑

i∈V \R(G)

HD(Xi | XR(G))︸ ︷︷ ︸
≤HD(Xi|XRG(i))

≤
∑

i∈V \R(G)

HD(Xi|XRG(i))︸ ︷︷ ︸
=0

= 0

172

APPENDIX A. PROOFS

which gives HD(XV \R(G) | XR(G)) = 0.

Injecting this in the following equation:

HD(X) = HD(XR(G)) +HD(XV \R(G) | XR(G))

proves that Equation (15) holds.

Proof of Proposition 8 The structure of the proof is the same as the one from Proposition 2.

The only difference lies in the computation of term (b):

(b) = −M
n∑

i=p+1

HD(Xi|XπG∗ (i))

= −M
n∑

i=p+1

HD(Xi|Xπ
Tr(i) (i)

)︸ ︷︷ ︸
≤ε

≥ −M(n− p)ε

≥ −Mnε.

plugging this in the separated expression of the MLL score of G∗ in terms (a) and (b) yields the

wanted result. �

Proof of Lemma 3 Let G and G′ satisfy the conditions of the lemma:

sMLL
D (G′)− sMLL

D (G) = −M
n∑
i=1

HD(Xi|XπG′ (i))−H
D(Xi|XπG(i))

= −M

∑
i 6=i1

HD(Xi|XπG′ (i)︸ ︷︷ ︸
X
πG(i)

)−HD(Xi|XπG(i))

︸ ︷︷ ︸
=0

−M

HD(Xi1 | XπG′ (i1)︸ ︷︷ ︸
X
πG(i1)

∪{Xi0}

)−HD(Xi1 |XπG(i1))

= −M

(
HD(Xi1 |XπG(i1), Xi0)−HD(Xi1 |XπG(i1))

)
= MÎ(Xi1 , Xi0 |XπG(i1))

�

Proof of Lemma 4 Let σ ∈ Sn.
For any i ∈ {1, . . . , n}, by definition:

XπGσ (i1) = {Xj , σ
−1(j) < σ−1(i)}

173

APPENDIX A. PROOFS

Thanks to Lemma 2 we can write:

sMLL
D (Gσ) = −M

n∑
i=1

HD(Xi|XπGσ (i1))

= −M
n∑
i=1

HD(Xi|Xj s.t. σ
−1(j) < σ−1(i))

We use the index switch k = σ−1(i), that gives us:

sMLL
D (Gσ) = −M

n∑
k=1

HD(Xσ(k)|Xσ(l) st l < k)

= −M
(
HD(Xσ(1)) +HD(Xσ(2)|Xσ(1)) +HD(Xσ(3)|Xσ(1), Xσ(2)) + . . .

+HD(Xσ(n)|Xσ(1), . . . , Xσ(n−1))
)

For any two random variables X,Y , the Bayes relation for entropies (still true for empirical

entropies) gives that H(X,Y) = H(X) +H(Y |X).

Using this relation, an immediate induction gives us:

sMLL
D (Gσ) = −MHD(Xσ(1), . . . , Xσ(n))

= −MHD(X1, . . . , Xn)

�

Proof of Lemma 5 We have seen in Chapter 1 that, for any G ∈ DAGV , there exists an

ordering σG ∈ Sn such that G is consistent with σG. For such a σG, we have that AG ⊂ AGσGcomp ,
i.e. GσGcomp can be obtained by adding arcs to G.

Moreover, Lemma 3 implies that adding an arc to a DAG G will not decrease its MLL score.

In other words, if we add arcs to G until it becomes ‘complete’, we will not decrease its MLL

score.

Finally, Lemma 4 implies that sMLL
D (Gσ) does not depend on σ for σ ∈ Sn, and that

∀σ ∈ Sn, sMLL
D (Gσ) = −MHD(X1, . . . , Xn)

Combining this, we obtain that for any G in DAGV , if σG ∈ Sn is an ordering such that G is

consistent with σG, we have:

sMLL
D (G) ≤ sMLL

D (GσG)

= −MHD(X1, . . . , Xn)

This notably gives that

max
G∈DAGV

sMLL
D (G) = −MHD(X1, . . . , Xn)

�

174

APPENDIX A. PROOFS

Proof of Lemma 6 By definition, a forest F = (V,A) is the union of disjoint trees {Tk} (in
the sense of the graphical union). Since F is deterministic, every node i ∈ V that has at least

one parent, i.e. that is not one of the tree roots, corresponds to a variable Xi such that

HD(Xi|XπF (i)) = 0.

Since piF (i) belongs to the same tree as i, we get that for any given tree Tk, all the variables

that correspond to a node that is not the roots of the tree is entirely determined by its parents

in the tree: Tk is a deterministic DAG, and therefore a deterministic tree. �

Proof of Lemma 7 The proof is very straightforward. We just have to write two different

ways the empirical mutual information of Xi and Xj , and use the fact that it is symmetric.

Let us suppose that Xi ↔
D
Xj , we can write:

ID(Xi;Xj) = HD(Xi)−HD(Xi|Xj)︸ ︷︷ ︸
=0

= HD(Xi)

ID(Xj ;Xi) = HD(Xj)−HD(Xj |Xi)︸ ︷︷ ︸
=0

= HD(Xj).

Moreover, ID(Xj ;Xi) = ID(Xi;Xj), therefore we indeed have that HD(Xi) = HD(Xj).

�

Proof of Lemma 8 If HD(Xi|Xj) = 0, we have seen that there exists a function

f : V al(Xj)→ V al(Xi)

such that for all xi ∈ V al(Xj) and xj ∈ V al(Xi),

pD(xi|xj) = Ixi=f(xj).

This function f is surjective: for xi ∈ V al(Xi), we know xi appears at least once in D

(otherwise we would not have considered it to be in V al(Xi), as explained in Section 1.1.2 of

Chapter 2).

Let m be a row on which xi appears in D. Since the dataset is complete, we know that

xi = f(x
(m)
j).

This indeed proves that f is surjective, which directly yields:

|V al(Xi)| ≤ |V al(Xj)|.

175

APPENDIX A. PROOFS

Moreover, if |V al(Xi)| = |V al(Xj)|, then f is bijective and admits an inverse function f−1, which

is defined in V al(Xi) and has values in V al(Xj).

Using the fact that pD(xj |xi) =
pD(xi|xj)pD(xj)

p(xi)
, we immediately get that for all xj ∈ V al(Xi) and

xi ∈ V al(Xj),

pD(xj |xi) = Ixj=f−1(x1).

The relationship Xi → Xj is therefore empirically functional, which gives that HD(Xj |Xi) = 0.

Therefore, Xi ↔
D
Xj . The other implication is trivial. �

Proof of Proposition 5 We show that ↔
D

is an equivalence relationship on {X1, . . . , Xn}.
Indeed, the binary relation ↔

D
is:

1. reflexive: ∀i, we obviously have HD(Xi|Xi) = 0,

2. symmetric: ∀i, j, Xi and Xj play symmetric roles in Definition 6,

3. transitive: Suppose that for i, j, k ∈ {1, . . . , n}, we have Xi ↔
D
Xj and Xj ↔

D
Xk. Then

HD(Xi, Xj , Xk) = HD(Xi, Xk|Xj) +HD(Xj)

= HD(Xi|Xj , Xk)︸ ︷︷ ︸
≤HD(Xi|Xj)=0

+HD(Xk|Xj)︸ ︷︷ ︸
=0

+HD(Xj)

= HD(Xj)

HD(Xi, Xj , Xk) = HD(Xi, Xj |Xk) +HD(Xk)︸ ︷︷ ︸
=HD(Xj)

= HD(Xj |Xi, Xk)︸ ︷︷ ︸
≤HD(Xj |Xi)=0

+HD(Xi|Xk) +HD(Xj)

= HD(Xi|Xk) +HD(Xj)

HD(Xi, Xj , Xk) = HD(Xk, Xj |Xi) +HD(Xi)︸ ︷︷ ︸
=HD(Xj)

= HD(Xj |Xk, Xi)︸ ︷︷ ︸
≤HD(Xj |Xk)=0

+HD(Xk|Xi) +HD(Xj)

= HD(Xk|Xi) +HD(Xj)

Using these three relations, we get HD(Xi|Xk) = HD(Xk|Xi) = 0, i.e. Xi ↔
D
Xk,

Proof of Proposition 7 By definition, such a graph G is directed, and every node has at most

one parent. Moreover, the fact that there is no redundant variable w.r.t. D proves that there

cannot be any cycle in G (reciprocal of Proposition 6). Therefore G is acyclic.

This indeed proves that G is a forest, by definition. �

176

APPENDIX A. PROOFS

3 Proofs of results presented in Chapter 4

Proof of Lemma 9 This proof is simply a technical rewriting. The lemma is not that useful

per se, just as an intermediate result for Proposition 9.

We remind that for Θ ∈ ϑG, pΘ factorizes in G, i.e. for all (x1, . . . , xn) ∈ V al(X), we have

p(x1, . . . , Xn) =
n∏
i=1

p(xi|xπG(i)).

We may then write:

H(p∗||pΘ) =
∑

(x1,...,xn)∈V al(X1)×···×V al(Xn)

p∗(x1, . . . , xn) log(pΘ(x1, . . . , xn))

=
∑

(x1,...,xn)∈V al(X1)×···×V al(Xn)

p∗(x1, . . . , xn)

n∑
i=1

log(pΘ(xi|xπ(i)))

=
∑

(x1,...,xn)∈V al(X1)×···×V al(Xn)

n∑
i=1

p∗(x1, . . . , xn) log(pΘ(xi|xπ(i)))

=
n∑
i=1

∑
(x1,...,xn)∈V al(X1)×···×V al(Xn)

p∗(x1, . . . , xn) log(pΘ(xi|xπ(i)))

=

n∑
i=1

∑
(xi,xπ(i))∈V al(Xi)×V al(Xπ(i))

∑
xj∈V al(X)j | Xj /∈{Xi,Xπ(i)}

p∗(x1, . . . , xn)

︸ ︷︷ ︸
p∗(xi,xπ(i))

log(pΘ(xi|xπ(i)))

=

n∑
i=1

∑
(x,xπ(i))∈V al(Xi)×V al(Xπ(i))

p∗(x,xπ(i)) log(pΘ(x|xπ(i)))

�

Proof of Proposition 9 For any Θ defining a distribution of X,

H(pD||pΘ) =

n∑
i=1

∑
x,u∈V al(Xi)×V al(Xπ(i))

pD(x,xπ(i)) log(pΘ(x|xπ(i)))

=

n∑
i=1

∑
x,u∈V al(Xi)×V al(Xπ(i))

CD(x,xπ(i))

M
log(pΘ(x|xπ(i)))

=
1

M

n∑
i=1

∑
x,u∈V al(Xi)×V al(Xπ(i))

CD(x,xπ(i)) log(pΘ(x|xπ(i)))

= − 1

M
lD(pΘ).

Therefore, using the fact that for two distributions p, q, we have the relation:

DKL(p||q) = H(p)−H(p||q),

177

APPENDIX A. PROOFS

we immediatly get that:

argmin
Θ∈ϑG

DKL(pD||pΘ) = argmax
θ∈ϑG

lD(Θ)

�

Proof of Lemma 10 The validation likelihood (with a training set T and a validation set V),

presented in Section 3.4.2, is defined by:

sV LLT,V (G) = lV (Θ̂T) (16)

Now, thanks to the definition given in Equation (16), the validation-likelihood score for a structure

G can be written as:

sV LLT,V (G) = −
n∑
i=1

∑
(x,xπ(i))∈V al(Xi)×V al(Xπ(i))

CV (x,xπ(i)) log
(
θ̂Tx|xπ(i)

)

= −MV

n∑
i=1

∑
(x,xπ(i))∈V al(Xi)×V al(Xπ(i))

CV (x,xπ(i))

MV
log
(
θ̂Tx|xπ(i)

)

= −MV

n∑
i=1

∑
(x,xπ(i))∈V al(Xi)×V al(Xπ(i))

θ̂Vx,xπ(i)
log
(
θ̂Tx|xπ(i)

)

Where Θ̂V is simply the distribution that would have been learned by training the model on the

validation set V .

Lemma 9 gives that, given a categorical random variable X and for any p, q ∈ FP (V al(X)) such

that q factorizes in G, we can write:

H(p||q) =

n∑
i=1

∑
(xi,xπ(i))∈V al(Xi)×V al(Xπ(i))

p(xi,xπ(i)) log
(
q(xi|xπ(i))

)
.

Applying this to p = pΘ̂V and q = pΘ̂T , and reminding that for Θ ∈ ϑG, we have the notation

θxi|xπ(i)
= pΘ(xi|xπ(i)),

we get:
n∑
i=1

∑
(x,xπ(i))∈V al(Xi)×V al(Xπ(i))

θ̂Vx,xπ(i)
log
(
θ̂Tx|xπ(i)

)
= H(pΘ̂V ||pΘ̂T)

Therefore, we can finally write

sV LLT,V (G) = −MVH(pV
Θ̂
||pT

Θ̂
)

�

Proof of Proposition 10 The proof simply consists on rewriting Equation (4.7) using Equa-

tion (4.1). �

178

Additional information for figures

179

APPENDIX B. ADDITIONAL INFORMATION FOR FIGURES

Table 2 – Dataset D1: legend for Figure 2.4 in Section 5.2.2 of Chapter 2

Var. Ref. Variable Name Nb. Levels
X1 DATA_binarystate_name 2
X2 DATA_binarystate_state0 2
X3 DATA_binarystate_state1 2
X4 DATA_data_id 922
X5 DATA_data_name 628
X6 DATA_data_offset_applied 2
X7 DATA_data_scalefactor_applied 3
X8 DATA_datatype_code 18
X9 DATA_datatype_name 18
X10 DATA_datatype_name_fr 18
X11 DATA_factsgroup_name 6
X12 DATA_KEY 1000
X13 DATA_metafactsgroup_name 4
X14 DATA_unit_name 11
X15 DATA_unit_name_fr 11
X16 DATA_unit_symbol 11
X17 DATASOURCE_datacollector_factsgroup_name 6
X18 DATASOURCE_datacollector_factsgroup_name_dds 6
X19 DATASOURCE_datacollector_metafactsgroup_name 4
X20 DATASOURCE_datacollector_name 736
X21 DATASOURCE_datacollector_nb_datadescriptions_handled 5
X22 DATASOURCE_datacollector_samplingperiod_minutes 3
X23 DATASOURCE_datacollector_shortname 762
X24 DATASOURCE_dataprovider_name 3
X25 DATASOURCE_KEY 762
X26 DATASOURCE_sensor_name 345
X27 DATASOURCE_sensor_shortname 327
X28 DATASOURCE_sensormodel_comment 4
X29 DATASOURCE_sensormodel_manufacturer 7
X30 DATASOURCE_sensormodel_name 15
X31 DATASOURCE_sensormodel_shortname 15
X32 SPACE_dataprovider_site 10
X33 SPACE_dataprovider_zonecode 109
X34 SPACE_KEY 151
X35 SPACE_site_name 10
X36 SPACE_site_surface_shab 8
X37 SPACE_site_surface_shon 5
X38 SPACE_sitetype_code 5
X39 SPACE_sitetype_name 5
X40 SPACE_sitetype_name_fr 5
X41 SPACE_zone_code 75
X42 SPACE_zone_name_en 109
X43 SPACE_zone_name_fr 106
X44 SPACE_zone_surface 38
X45 SPACE_zonetype_code 25
X46 SPACE_zonetype_name 25
X47 SPACE_zonetype_name_fr 25

180

APPENDIX B. ADDITIONAL INFORMATION FOR FIGURES

Table 3 – Dataset D2: legend for Figure 2.4 in Section 5.2.2 of Chapter 2

Var. Reference Variable Name Nb. Levels
X1 DATA_binarystate_name 2
X2 DATA_binarystate_state0 2
X3 DATA_binarystate_state1 2
X4 DATA_data_name 628
X5 DATA_data_offset_applied 2
X6 DATA_data_scalefactor_applied 3
X7 DATA_datatype_code 18
X8 DATA_datatype_name 18
X9 DATA_datatype_name_fr 18
X10 DATA_factsgroup_name 6
X11 DATA_metafactsgroup_name 4
X12 DATA_unit_name 11
X13 DATA_unit_name_fr 11
X14 DATA_unit_symbol 11
X15 DATASOURCE_datacollector_factsgroup_name 6
X16 DATASOURCE_datacollector_factsgroup_name_dds 6
X17 DATASOURCE_datacollector_metafactsgroup_name 4
X18 DATASOURCE_datacollector_name 736
X19 DATASOURCE_datacollector_nb_datadescriptions_handled 5
X20 DATASOURCE_datacollector_samplingperiod_minutes 3
X21 DATASOURCE_dataprovider_name 3
X22 DATASOURCE_sensor_name 345
X23 DATASOURCE_sensor_shortname 327
X24 DATASOURCE_sensormodel_comment 4
X25 DATASOURCE_sensormodel_manufacturer 7
X26 DATASOURCE_sensormodel_name 15
X27 DATASOURCE_sensormodel_shortname 15
X28 SPACE_dataprovider_site 10
X29 SPACE_dataprovider_zonecode 109
X30 SPACE_KEY 151
X31 SPACE_site_name 10
X32 SPACE_site_surface_shab 8
X33 SPACE_site_surface_shon 5
X34 SPACE_sitetype_code 5
X35 SPACE_sitetype_name 5
X36 SPACE_sitetype_name_fr 5
X37 SPACE_zone_code 75
X38 SPACE_zone_name_en 109
X39 SPACE_zone_name_fr 106
X40 SPACE_zone_surface 38
X41 SPACE_zonetype_code 25
X42 SPACE_zonetype_name 25
X43 SPACE_zonetype_name_fr 25

181

APPENDIX B. ADDITIONAL INFORMATION FOR FIGURES

Table 4 – Dataset D3: legend for Figure 2.4 in Section 5.2.2 of Chapter 2

Var. Reference Variable Name Nb. Levels
X1 DATA_binarystate_name 2
X2 DATA_binarystate_state0 2
X3 DATA_binarystate_state1 2
X4 DATA_data_offset_applied 2
X5 DATA_data_scalefactor_applied 3
X6 DATA_datatype_code 18
X7 DATA_datatype_name 18
X8 DATA_datatype_name_fr 18
X9 DATA_factsgroup_name 6
X10 DATA_metafactsgroup_name 4
X11 DATA_unit_name 11
X12 DATA_unit_name_fr 11
X13 DATA_unit_symbol 11
X14 DATASOURCE_datacollector_factsgroup_name 6
X15 DATASOURCE_datacollector_factsgroup_name_dds 6
X16 DATASOURCE_datacollector_metafactsgroup_name 4
X17 DATASOURCE_datacollector_nb_datadescriptions_handled 5
X18 DATASOURCE_datacollector_samplingperiod_minutes 3
X19 DATASOURCE_dataprovider_name 3
X20 DATASOURCE_sensor_name 345
X21 DATASOURCE_sensor_shortname 327
X22 DATASOURCE_sensormodel_comment 4
X23 DATASOURCE_sensormodel_manufacturer 7
X24 DATASOURCE_sensormodel_name 15
X25 DATASOURCE_sensormodel_shortname 15
X26 SPACE_dataprovider_site 10
X27 SPACE_dataprovider_zonecode 109
X28 SPACE_KEY 151
X29 SPACE_site_name 10
X30 SPACE_site_surface_shab 8
X31 SPACE_site_surface_shon 5
X32 SPACE_sitetype_code 5
X33 SPACE_sitetype_name 5
X34 SPACE_sitetype_name_fr 5
X35 SPACE_zone_code 75
X36 SPACE_zone_name_en 109
X37 SPACE_zone_name_fr 106
X38 SPACE_zone_surface 38
X39 SPACE_zonetype_code 25
X40 SPACE_zonetype_name 25
X41 SPACE_zonetype_name_fr 25

182

	Introduction
	Probabilistic framework
	Temporal and static data: a probabilistic approach
	Random variables and datasets
	Probability distributions and associated properties

	Bayesian networks: overview
	Bayesian networks: representation
	Bayesian networks: inference

	Bayesian networks: learning
	Bayesian network parameter learning (known structure)
	Bayesian network structure learning
	Dynamic Bayesian network structure learning
	What is really wanted from Bayesian networks?

	Screening strong pairwise relationships for fast Bayesian network structure learning
	Bayesian network structure learning using data from the IoT domain: a particular problem
	Determinism
	High number of configurations for categorical variables

	Bridging the gap between determinism and the MLL score
	Notations and preliminary results
	Deterministic DAGs and the MLL score

	Bayesian network structure learning with determinism screening
	Redundancy: definition, properties and preprocessing algorithm
	Choosing among deterministic trees
	Determinism screening: finding the optimal deterministic forest
	Bayesian network structure learning with determinism screening: the ds-BNSL algorithm

	Extension to generic data: strong pairwise relationships screening
	Quasi-determinism
	Quasi-determinism screening algorithm
	Learning Bayesian networks using quasi-determinism screening
	Complexity analysis

	Experiments
	Setting
	Running the ds-BNSL algorithm on an IoT dataset
	Running the qds-BNSL on benchmark datasets

	Concluding remarks
	Summary
	Some perspectives

	Bayesian networks for joint modeling of temporal and static data
	Hybrid static-dynamic Bayesian networks for static and temporal data fusion: overview
	Theoretical framework
	Hybrid static-dynamic Bayesian network

	Inference and learning algorithms for hybrid static-dynamic Bayesian networks
	Inference
	Learning

	Hybrid static-dynamic Bayesian networks in practice
	From real data to our formal setting
	Example: from the data available in practice to the HSDBN setting
	Including time information

	Experiments
	Data
	HSDBN learning
	Inference with HSDBN for metadata recovery

	Concluding remarks and ideas for future work

	Discussion and perspectives
	Evaluation of Bayesian networks with the VLL score
	Introduction and notations
	Another approach on the maximum likelihood estimation problem
	Validation log-likelihood score: a new perspective
	Experiments: study of the VLL score on a simple example
	Extending theoretical results to the VLL score: food for thought

	Algorithmic perspectives
	Decreasing the complexity of the ds-BNSL output using local search
	Choosing for the qds-BNSL algorithm

	(Quasi-)determinism screening and the BIC score: prospective results
	BIC score: generalization
	Determinism and generalized BIC score: open questions

	Conclusion
	Bibliography
	Appendix A: Proofs
	Proofs of results presented in Chapter 1
	Proofs of results presented in Chapter 2
	Proofs of results presented in Chapter 4

	Appendix B: Additional information for figures

