
HAL Id: tel-01972349
https://theses.hal.science/tel-01972349v2

Submitted on 9 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to optimal and reactive vision-based
trajectory generation for a quadrotor UAV

Bryan Penin

To cite this version:
Bryan Penin. Contributions to optimal and reactive vision-based trajectory generation for a quadro-
tor UAV. Robotics [cs.RO]. Université de Rennes, 2018. English. �NNT : 2018REN1S101�. �tel-
01972349v2�

https://theses.hal.science/tel-01972349v2
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Automatique, Productique et Robotique
– Signal, Image, Vision – Télécommunications

Par

Bryan Penin

Contributions à la génération de trajectoires optimales et réactives
basées vision pour un quadrirotor

Thèse présentée et soutenue à Rennes, le 11/12/18
Unité de recherche : Inria Rennes
Thèse N° :

Rapporteurs avant soutenance :

Antonio Franchi Chargé de recherche CNRS, LAAS, Toulouse
Tarek Hamel Professeur, I3S, Université de Nice-Sophia-Antipolis

Composition du Jury :

Président : Prénom Nom Fonction et établissement d’exercice

Examinateurs : Pierre-Brice Wieber Chargé de Recherche Inria, Inria Grenoble
Isabelle Fantoni Directrice de Recherche CNRS, LS2N Nantes

Dir. de thèse : François Chaumette Directeur de recherche Inria, Inria/IRISA Rennes
Co-dir. de thèse : Paolo Robuffo Giordano Directeur de recherche CNRS, IRISA/Inria Rennes

Invitée
Marie-Véronique Serfaty Responsable scientifique, DGA/MRIS, Paris

To my grandfather

i

In theory, there is no difference between theory and practice.

But, in practice, there is.

— Jan L.A. van de Snepscheut, 1953 - 1994, computer scientist

i

Synthèse en français

De la même façon que la recherche en robotique mobile à favorisé les robots à roues

pour l’étude fondamentale du mouvement, parmi tous les robots aériens les quadri-

rotors sont considérés comme les plateformes les plus flexibles et versatiles pour la

recherche en robotique aérienne ces 15 dernières années. Ces systèmes sont capables

de réaliser des mouvements agiles et du vol stable dans l’espace tridimensionnel, ce

qui offre les capacités idéales pour de nombreuses applications incluant en autres : la

surveillance, la recherche et de sauvetage, la reconnaissance, le transport et l’inspec-

tion d’environnements complexes. Cependant les quadrirotors sont sujet à beaucoup

plus d’incertitude que les robots mobiles terrestres (e.g., les incertitudes de modé-

lisation, d’actionnement et de détection) et sont plus nettement plus sensibles aux

perturbations extérieurs (e.g., les rafales de vent, l’interaction physique avec l’envi-

ronnement et les autres systèmes). Ces défis ont en réalité encourager l’investigation

sur des problèmes plus complexes liés à la planification et à la localisation en espace

tridimensionnel, au contrôle, et à la détection. Il est bien connus que les quadri-

rotors possèdent une efficacité de vol bien plus limitée que les systèmes à voilure

fixe. Désormais ces plateformes à coût modéré fournissent une autonomie de vol et

une charge utile satisfaisante à de nombreuses applications en intérieur et en exté-

rieur. De plus, les quadrirotors sont de plus en plus sérieusement considérés pour

des applications commerciales (e.g., la livraison de colis, la publicité, les prises de

vue aériennes), des applications de secours (e.g., livraison de premiers secours, lutte

contre les incendies, l’analyse de zones de désastre). De plus, les quadrirotors sont

le plus souvent équipés de capteurs de vision ce qui les propulsent au premier plan

de l’inspection et la détection en milieu complexes et encombrés.

Dotés de grandes capacités en terme d’agilité, les quadrirotors ont également

fortement motivé la recherche en robotique aérienne à exploiter la dynamique de

tels systèmes. La difficulté majeure réside dans le fait que ces systèmes sont sous-

actionnés (il n’y a que quatres moteurs pour contrôler les six degrés de liberté). Le

iii

(a) Un quadrirotor pouvant rapidement
livrer un kit de premier secours.

(b) Un quadrirotor utilisé par les ONGs
Anglaises durant le tremblement de
terre d’Avril 2015.

(c) Le quadrirotor US-1 développé par Impossible
Aerospace pour des missions de lutte contre les in-
cendies.

Figure 1 – Exemple d’applications pratiques réalisables par des quadrirotors

plus souvent, le contrôle est simplifié en limitant les vols à des conditions de near-

hovering. De nombreux travaux ont récemment proposé des méthodes de contrôle

et de planification de trajectoire plus réactives— permettant de grandes vitesses et

accelérations instantannées. Une grande majorité à recours à des techniques d’opti-

misation appliquées par exemple à la navigation haute vitesse à travers des obsacles.

Objectifs et contributions de la thèse

La vision représente un des plus importants signaux en robotique. Une unique ca-

méra monoculaire peut fournir des riches informations visuelles à une fréquence rai-

sonnable pouvant être utilisées pour le contrôle, l’estimation d’état ou la navigation

dans des environnements inconnus par exemple. Il est cependant nécessaire de res-

pecter des contraintes visuelles spécifiques telles que la visibilité de mesures images

et les occultations durant le mouvement afin de garder certaines cibles visuelles

dans le champ de vision. Les quadrirotors sont dotés de capacités de mouvement

très réactives du fait de leur structure compacte et de la configuration des moteurs.

De plus, la vision par une caméra embarquée (fixe) va subir des rotations dues au

sous-actionnement du système. Dans cette thèse nous voulons bénéficier de l’agi-

iv

Figure 2 – Un quadrirotor traversant des anneaux à haute vitesse nécessitant de fortes
variations angulaires, de [1].

lité du quadrirotor pour réaliser plusieurs tâches de navigation basées vision. Nous

supposons que l’estimation d’état repose uniquement sur la fusion capteurs d’une

centrale inertielle (IMU) et d’une caméra monoculaire qui fournit des estimations

de pose précises.

Les contraintes visuelles sont donc critiques et difficiles dans un tel contexte.

Dans cette thèse nous exploitons l’optimisation numérique pour générer des tra-

jectoires faisables satisfaisant un certain nombre de contraintes d’état, d’entrées et

visuelles nonlinéaires. A l’aide la platitude différentielle et de la paramétrisation par

des B- splines nous proposons une stratégie de re-planification performante inspirée

de la commande prédictive (MPC) pour générer des trajectoires lisses et réactives.

Enfin, nous présentons un algorithme de planification en temps minimum qui sup-

porte des pertes de visibilité intermittentes afin de naviguer dans des environnements

encombrés plus vastes. Cette contribution porte l’incertitude de l’estimation d’état

au niveau de la planification pour produire des trajectoires robustes et sûres. Les

développements théoriques discutés dans cette thèse et corroborés par des simu-

lations et expériences en utilisant un quadrirotor. Les résultats reportés montrent

l’efficacité des techniques proposées.

Pour résumer, les travaux présentés dans cette thèse abordent les défis suivants :

1) l’exploitation du potentiel des quadrirotors en terme d’agilité pour réaliser des

maneuvres agiles ; 2) l’incorporation de contraintes visuelles dans la planification

afin de maintenir la visibilité de cibles visuelles ; 3) la re-planification efficace de

trajectoires réactives sous de mulitples contraintes nonlinéaires ; 4) l’incorporation

de l’incertitude de l’estimation d’état à l’étape de planification.

v

En réponses à ces objectifs nous proposons les méthodes listées ci-dessous qui

ont méné à plusieurs publications dans des conférences internationales.

• La planification en-ligne de trajectoires en temps-minimum sous contraintes

de visibilité.

Penin, Bryan and Spica, Riccardo and Giordano, Paolo Robuffo and Chau-

mette, François. “Vision-Based Minimum-Time Trajectory Generation for a

Quadrotor UAV” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,

2017.

• Une stratégie de planification pour le suivi réactif d’une cible visuelle tout en

évitant les occultations et les collisions.

Penin, Bryan and Giordano, Paolo Robuffo and Chaumette, François, “Vision-

based reactive planning for aggressive target tracking while avoiding collisions

and occlusions” IEEE Robotics and Automation Letters, 2018.

• Un nouvel algorithme générant des trajectoires en temps-minimum en pré-

sence de mesures visuelles intermittentes pour un unicycle et un quadrirotor.

Penin, Bryan and Giordano, Paolo Robuffo and Chaumette, François,

“Minimum-Time Trajectory Planning Under Intermittent Measurements”

IEEE Robotics and Automation Letters, 2019.

Structure de la thèse

Cette thèse est divisée en trois parties principales. la première contient une intro-

duction aux éléments liés au contrôle et à la planification pour les quadrirotors.

Ensuite, les principaux outils utilisés dans nos travaux sont présentés suivis par un

état de l’art dans les sujets abordés. La seconde partie met en lumière nos contri-

butions dans les algorithmes de planification basés vision. Enfin la troisième partie

contient les conclusions de la thèse et les futures axes de recherche possibles. Enfin,

nous apportons des informations complémentaires sur quelques sections techniques.

Contenu de la Partie I

Cette partie contient les preliminaires sur les différents outils utilisés dans cette

vi

thèse ainsi qu’un état de l’art sur les thèmes abordés.

Le Chapitre 2 apporte une introduction sur les quadrirotors et les principales

techniques de contrôle, de planification et d’estimation d’état. La notion de plati-

tude differentielle est également présentée, qui constitue une propriété fondamentale

dans la planification de trajectoire. Enfin nous mettons en avant les difficultés ren-

contrées dans le contrôle basé vision.

Le Chapitre 3 apporte les techniques standard pour résoudre une problème de

contrôle optimal.

Le Chapitre 4 présente la Commande Prédictive et des résultats préliminaires liés

à des cas d’applications simples sur la génération de trajectoire avec un quadrirotor

sont donnés.

Le Chapitre 5 apporte un large état de l’art sur les principales thématiques abor-

dées dans cette thèse, à savoir, la planification en ligne, le contrôle basé vision et la

génération de trajectoires optimales.

Contenu de la Partie II

Cette partie contient les contributions de l’auteur [2, 3, 4].

Le Chapitre 6 présente notre contribution sur la planification basée vision en

temps-minimum en présence de contraintes de visibilité.

Le Chapitre 7 introduit nos strategies de planification optimale pour répondre

à l’évitement d’occultations et de collisions tout en suivant une cible mobile. Une

formulation “assouplie” est proposée afin de permettre une re-planification en ligne.

Le Chapitre 8 présente notre algorithm de recherche dans un graphe que nous

avons développé dans le but de trouver des trajectoires robustes en temps-minimum

en présence de mesures visuelles intermittentes.

Contenu de la Partie III

Le Chapitre 9 apporte les conclusions de cette thèse et résume les principales

contributions données. De plus, quelques enjeux ouverts sont listés et nous discu-

tons des directions futures qui mériteraient d’être étudiées.

vii

L’Annexe A donne la transformation complète de la platitude différentielle et de

son inverse pour le quadrirotor.

L’Annexe B fournit des informations complémentaires sur les courbes B-spline et

de plus amples détails sur les algorithmes de manipulation utilisés dans cette thèse.

L’Annexe C inclut une introduction aux techniques numériques pour l’évaluation

des dérivées et particulièrement la différenciation utilisant la partie imaginaire.

viii

Contents

Synthèse en français iii

Objectifs et contributions de la thèse . iv

Structure de la thèse . vi

Chapter 1 Introduction 1

1.1 Quadrotors in robotics . 1

1.2 Challenges . 5

1.3 Thesis contributions . 7

1.4 Thesis structure . 8

Part I Preliminaries and related works 11

Chapter 2 Planning and control of a quadrotor UAV 13

2.1 Introduction . 13

2.2 Quadrotor model . 14

2.3 General control and trajectory generation techniques for a quadrotor 17

2.3.1 Quadrotor control . 18

2.3.2 Trajectory generation for a quadrotor 19

2.3.3 Smoothness . 20

2.4 State estimation . 23

2.5 Differential flatness . 24

2.5.1 Definition and properties . 24

2.5.2 Existence . 26

2.5.3 Differential flatness in control and trajectory planning 27

2.6 Vision-based control . 28

2.7 Issues related to vision-based control 28

ix

Chapter 3 Optimization and numerical resolution 31

3.1 Introduction to optimization . 31

3.2 Minimum-time trajectory generation problem 32

3.3 Pontryagin’s minimum principle . 33

3.4 Numerical solutions of optimal control problems using nonlinear pro-

gramming . 34

3.4.1 Indirect and direct methods for nonlinear programming . . . 35

3.4.2 Nonlinear solvers . 36

3.5 Differential flatness and B-spline curves for nonlinear programming . 38

3.5.1 Parametrization of the flat outputs 38

3.6 Summary . 43

Chapter 4 Model predictive control: toward trajectory re-planning 45

4.1 Introduction and context . 45

4.2 Principle . 46

4.3 Receding horizon formulation: the linear case 48

4.4 An application of MPC to quadrotor control 51

4.4.1 A relaxed formulation based on differential flatness 52

4.4.2 Results and delay compensation 53

4.5 Summary . 55

Chapter 5 Aggressive trajectory generation and vision-based plan-

ning for a quadrotor: related works 57

5.1 Optimization-based methods . 57

5.2 Graph-search approaches . 60

5.3 The minimum-time problem . 61

5.4 Vision-based control for the underactuated quadrotor 62

5.4.1 Visibility constraints and occlusion avoidance 63

5.5 Perception and uncertainty-aware planning 67

5.6 Summary . 69

Part II Contributions 71

Chapter 6 Aggressive vision-based trajectory generation 73

6.1 Introduction . 73

6.2 Reactive target tracking: a minimum-time optimal problem 73

6.2.1 Problem definition . 75

6.3 Numerical resolution . 76

6.4 Recursive online control . 77

6.4.1 Trajectory re-planning strategy 78

x

6.4.2 B-spline splitting . 80

6.4.3 Adapting previous trajectories to new initial conditions . . . 81

6.5 Simulation setup and results . 82

6.5.1 The NLOPT algorithm . 82

6.5.2 Simulation results . 83

6.6 Vision-based target tracking . 86

6.6.1 Multi-objective cost function 87

6.6.2 Visibility constraints . 88

6.7 Simulation and experimental results 89

Chapter 7 On collisions and occlusions avoidance 93

7.1 Contributions . 93

7.2 Constraints formulation . 94

7.3 Optimization problem definition . 96

7.4 A reactive re-planning framework with a down-looking camera . . . 97

7.5 Simulation results . 99

7.6 Summary . 102

Chapter 8 Toward visual constraints relaxation: planning under

intermittent measurements 103

8.1 Introduction . 103

8.2 Contributions . 106

8.3 Preliminaries . 107

8.3.1 Differential flatness for the unicycle 107

8.4 Problem formulation . 108

8.4.1 Motion primitives . 109

8.4.2 State estimation uncertainty 110

8.5 Building the graph . 111

8.5.1 Uncertainty-aware bi-directional A* algorithm 111

8.6 Connecting the graphs . 116

8.6.1 Solving the constrained BVP 117

8.6.2 A linear quadratic program based on B-splines 117

8.7 Extension to the quadrotor UAV . 120

8.8 Simulation and experimental results 121

8.9 Summary and future directions . 125

Part III Conclusion and future directions 129

Chapter 9 Conclusion and future directions 131

9.1 Summary and contributions . 131

xi

9.2 Open issues and future perspectives 133

9.3 Final thoughts . 134

Appendix A The proof of differential flatness for the quadrotor 137

A.1 Flat transformation . 137

A.1.1 Inverse flat transformation . 141

Appendix B Parametrization using B-splines 145

B.1 B-spline curve properties . 145

B.2 Manipulation algorithms . 146

B.2.1 The curve subdivision algorithm 147

Appendix C Gradient evaluation 151

C.1 On derivatives evaluation . 151

C.2 Gradient approximation techniques 151

C.2.1 Finite difference method . 152

C.2.2 Complex-step differentiation 153

C.2.3 Automatic differentiation . 155

C.2.4 Implementations . 155

C.2.5 Table of complex functions 155

C.3 Comparison results . 156

Bibliography

xii

Chapter 1

Introduction

Contents

Objectifs et contributions de la thèse iv

Structure de la thèse . vi

1.1 Quadrotors in robotics

In the same way research in robotic vehicle mobility favoured wheeled robots to de-

rive fundamental results, among all Unmanned Aerial Vehicles (UAVs) quadrotors

have been considered as the most flexible and versatile platforms worldwide for un-

dertaking aerial research over the last 15 years. These vehicles are capable of agile

motion and stable hovering in 3D space that offer ideal capabilities for many differ-

ent applications including but not limited to: surveillance, search-and-rescue, recon-

naissance, transport and inspection in complex environments. However, quadrotors

are subject to much more uncertainty than ground vehicles (e.g., modelling, actua-

tion and sensing uncertainty) and are more sensitive to external disturbances (e.g.,

wind gust, physical interaction with the environment or other robots). These chal-

lenges have actually enhanced the investigation on more complex research problems

related to three-dimensional planning, control, localization and sensing. Although

quadrotors are known to suffer from a much lower flight efficiency than fixed-wing

aircraft, these low-cost platforms provide now sufficient flight endurance and pay-

load for a number of indoor and outdoor applications and are now more and more

seriously considered for commercial applications (e.g., package delivery, advertising,

aerial photography) or emergency assistance (e.g., first-aid kit delivery Fig. 1.1a,

fire fighting Fig. 1.1c, disaster analysis Fig. 1.1b). Moreover, quadrotors are mostly

equipped with vision sensors that bring them to the forefront of inspection and

surveillance in complex and unstructured environments. Note that with the recent

development of new lithium-lion batteries providing up to 2 hours of flight with

1

1. Introduction

a single charge, Impossible Aerospace Fig. 1.1c now opens a door to new exciting

aerial applications.

(a) Quadrotors could be deployed to
rapidly deliver first aid kits.

(b) A quadrotor used by British NGOs
during the Nepal earthquake in April
2015.

(c) Prelaunch units of the new quadrotor US-1 de-
veloped by Impossible Aerospace have been sold
to firefighters, police departments, and search and
rescue teams across the United States. The sys-
tem could carry thermal cameras or multispectral
sensors for search-and-rescue applications.

Figure 1.1 – Example of practical applications completed by a quadrotor UAV

Endowed with a special actuation configuration that allows extremely high mo-

tion capabilities, quadrotors are inherently prone to high speed and agile flights.

Since several years, the research community has been developing new control and

planning methods in the field of three-dimensional dynamic motion for systems with

fast control loops such as quadrotors. Today, quadrotors have reached a very satis-

fying level of autonomy and reliability for fundamental research applications. Yet,

the active research in aerial robotics is pushing the limits of planning, control and

sensing to address more complex and agile tasks.

Moreover, computation improvements have also motivated the revision of al-

ready existing control and planning techniques (especially optimization-based meth-

ods) to the concept of aerial robots that can plan their motion online and quickly

respond to changes in dynamic environments. Starting from this idea, many re-

searchers have focused their effort on apprehending flight characteristics and proper-

2

1.1. Quadrotors in robotics

ties of motion itself (optimality, representation and especially the notion of smooth-

ness1) and their implications in control and planning for completing complex and

reactive tasks such as aggressive grasping [5] or interception manoeuvres [6]. Several

testbeds such as [7, 8, 9] have originated from these fundamental studies to demon-

strate the feasibility of new motions that are close to the actuation limits (and

singularities) such as flips [10], aerobatics [11], swing manoeuvres [12] or juggling

[13].

Figure 1.2 – A classic quadrotor platform (from MikroKopter 2) used for our experiments.

Originally composed of four propellers (see Fig. 1.2), quadrotors have been sub-

ject to numerous advanced mechanical design extensions depending on the aerial

task to be performed. One can acknowledge overactuated variable-pitch quadrotors

[14, 15] or aerial systems with tilting rotors (see e.g., [16]). Finally, there exists sys-

tems that can change their configuration: for a hexarotor in [17] or for a complex

multi-body UAV in [18] (Fig. 1.3a). In a similar spirit [19] augments a quadrotor

with a hooking system to enhance its motion capabilities and [20] with anchoring

modules to extend its flight autonomy for instance Fig. 1.3b.

These platforms are mostly designed to facilitate physical interaction and naviga-

tion in cluttered environment. Yet, complex actuation leads to larger uncertainties

and the complex control algorithms involved make them not mature enough for

undertaking aggressive motions in 3D we are interested in.

In the course of this thesis, several fundamental works have arisen from the re-

search community to demonstrate that quadrotors are capable of performing com-

plex tasks while exploiting their full potential especially in terms of agility. Along

these works, state estimation and sensing algorithms have been improved to cope

with high speed motions. The sensory channel has not changed much but has surely

improved due to continuing progress in technology. Quadrotors can now be equipped

with complex vision sensors such as a lidar or a kinect. For instance [21] equipped

a quadrotor with a nodding Hokuyo lidar, a second lidar serving as an altimeter

and a high-resolution stereo camera to perform autonomous flights at impressive

speeds up to 18m/s. Among all vision sensors, cameras are still the most preferred

1The exact meaning of this term will be clear later

3

1. Introduction

(a) The multilink DRAGON system
can change its shape for passing in
narrow holes or carrying objects, from
[18].

(b) The SpiderMAV uses an air-compressed
module to shoot hooks attached with wires to
stabilize itself, from [20].

Figure 1.3 – Complex augmented aerial systems capable of extending their flight capabilities

ones and possess a long history in robotic control. New kind of cameras are even

developed especially for these applications such as the event-based cameras [22].

Since quadrotors have fewer independent control actuators than degrees of free-

dom (four motors for controlling six degrees of freedom) they belong to the large

class of underactuated mechanical systems. Controlling such systems is challenging

to the nonlinear control community especially in terms of stability and robustness.

Developing controllers for these systems is clearly motivated by the mechanical gain

procured by their simple mechanical structure. A extensive study of the control of

underactuated systems can be found in e.g., [23].

Even though nonlinear controllers have been developed for quadrotors, stable

and robust control is still challenging when the system has to undertake aggressive

manoeuvres. This is due to the fact that the robot attitude is not negligible and

aerodynamics become significant and are difficult to model and to incorporate in

control. In this context, proofs of convergence and stability are much more laborious

to establish. Nowadays, optimization-based planning methods appear to be more

and more flexible and adapted for computing trajectories at the edge of the system

motion capabilities for satisfying multiple (and possibly conflicting) goals while

being subject to numerous (and possibly nonlinear) constraints.

Pioneered by [1] (Fig. 1.4a) in 2011 very recent works show how optimization

techniques are able to produce aggressive flight modes based on the generation

of feasible and smooth trajectories [24] demonstrated that quadrotors can even

undertake agile motions in a complete autonomous way using vision as principal

feedback Fig. 1.4b. All the papers cited in this section were published in 2016 at

the earliest and shown in Fig. 1.4 and Fig. 1.5. This shows the current interest that

4

1.2. Challenges

has sparked in the field of agile manoeuvres.

(a) Smooth and fast flights between
hoops, from [1].

(b) Autonomous agile passage through a
window using visual feedback, from [24].

Figure 1.4 – Aggressive trajectories performed at the GRASP Lab from the University of
Pennsylvania (left) and at the Robotics & Perception Group - UZH ETH Zurich (right).

Figure 1.5 – Aggressive perching manoeuvres (left figure from [5]) and agile swing manoeu-
vres with a suspended load (right figure from [25])

1.2 Challenges

Quadrotors are under-actuated systems since they have four control inputs to control

their six degrees of freedom. Such a simple configuration is desirable for performing

agile motions but at the cost of shifting the difficulty to the control and the planning

schemes. Literature flourishes with contributions on these topics. Most of the works

consider applications requiring near-hovering flights and low speed motions that

allow the use of much simpler control schemes. As the state-of-the-art in Chapt. 5

will show, recent works have been dedicated to pushing the quadrotors flight limits

in order to perform agile manoeuvres in more complex scenarios. Now, although

sensors are growing in accuracy and processors are becoming more powerful, reliable

5

1. Introduction

Figure 1.6 – Effect of underactuation for visual control of a quadrotor: the red target is
repelled from the field of view as the quadrotor moves towards it.

estimation of the robot state is still challenging knowing it is crucial in this context.

To the latter purpose but also for designing control schemes, the use of cameras

has been very popular in robotics since they can provide rich information by the

observation of some visual features present in the scene. However, when attached to

a quadrotor the underactuation may severely affect the visual perception since the

camera will undergo possibly large rotations. For these reasons, aggressive control of

quadrotors should account for the capacity of the visual feedback to provide reliable

information.

Figure 1.6 represents a quadrotor with a down-facing camera that needs to move

in the right direction while using the red dot on the ground as visual feedback for

a visual-based control scheme (such as visual servoing [26]). Since the commanded

velocities are defined in the image plane, in order to move in the desired direction,

the robot must necessarily rotate clockwise so as to correctly orient the thrust force

generated by the propellers. While doing so, the field of view of the camera will also

move and the robot might lose visibility of the target. Guaranteeing visibility of the

visual features is of paramount importance since loosing visual tracking leads to an

increasingly poor state estimation (that would just be driven by the odometry, i.e.,

the onboard IMU) and, thus, possibly, to a controller/task failure.

Furthermore, when performing agile flights close to the physical limits of a

quadrotor, motors might saturate, which leads to an inability to control the four

independent degrees of freedom. A proper choice of the dynamic constraints and

considerations on some motion properties such as smoothness are the common in-

gredients for planning feasible trajectories that can be accurately tracked by the

real system.

Failure of the task can also be caused by the magnitude of modelling errors

and disturbances that are boosted at high speeds. Robustness is of paramount

importance in that case and can be achieved by efficiently adapting the trajectory

on-line according to changes of the environments or to the tracker response. A

6

1.3. Thesis contributions

second reasoning (among others) is to model or identify the unknown variables and

aspects in order to be directly incorporated in control. These techniques will help

absorbing the uncertainties acting inside or on the system.

This thesis tackles the following challenges:

• The exploitation of the potential of a quadrotor in terms of agility to perform

agile manoeuvres.

• The incorporation of a collection of vision-based constraints in planning for

maintaining visibility.

• The efficient re-planning of reactive trajectories subject to multiple constraints.

• The incorporation of the state estimation uncertainty at the planning stage.

1.3 Thesis contributions

More precisely, this thesis focuses on developing real-time trajectory generation al-

gorithms for undertaking aggressive motions while satisfying a collection of complex

constraints with a particular care for visual perception. We rely on already existing

trajectory controllers running at a high frequency for accurately tracking the opti-

mal trajectories. Nevertheless, the design of such trajectories incorporates motion

aspects that are beneficial for the tracker performance. These strategies use a Reced-

ing Horizon Control (RHC) approach for modifying online the reference trajectory

in order to account for noise, disturbances and any other non-modelled effect. We

are mostly interested in visual perception, therefore the presented planning strate-

gies targets visual constraints for maintaining visibility and avoiding occlusions by

obstacles present in the environment. Indeed, quadrotors can estimate their state

by collecting visual measurements from targets that have to remain visible dur-

ing motion. The presented planning methods rely on efficiently solving nonlinear

optimal control programs and are applied to the tracking of a moving target and

navigation. This thesis also presents a contribution in uncertainty-aware planning

under intermittent measurements collected from vision. The goal is to relax the vis-

ibility constraints that can be very restrictive for navigating in large environments.

The contributions are listed below:

• An on-line re-planning algorithm for generating minimum-time trajectories

under visibility constraints.

• A reactive re-planning strategy for aggressive target tracking while avoiding

occlusions and collisions.

7

1. Introduction

• A novel graph-search planner for finding robust minimum-time trajectories in

the presence of intermittent visual measurements for a unicycle and a quadro-

tor.

Our work led to the following contributions:

• Penin, Bryan and Spica, Riccardo and Giordano, Paolo Robuffo and Chaumette,

François. “Vision-Based Minimum-Time Trajectory Generation for a Quadro-

tor UAV” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2017.

• Penin, Bryan and Giordano, Paolo Robuffo and Chaumette, François, “Vision-

based reactive planning for aggressive target tracking while avoiding collisions

and occlusions” IEEE Robotics and Automation Letters, 2018.

• Penin, Bryan and Giordano, Paolo Robuffo and Chaumette, François, “Minimum-

Time Trajectory Planning Under Intermittent Measurements” IEEE Robotics

and Automation Letters, 2019. Submitted to RAL/ICRA’19.

1.4 Thesis structure

This thesis is divided into three main parts. The first part (Part I) contains an

introduction to the ingredients for control and planning for quadrotors. Then, the

main tools used in our works are presented along with a state of the art in the related

topics. The second part (Part II) highlights our contributions about optimization-

based planning algorithms. The results illustrated in this part correspond to the

following publications of the candidate [2, 3] and [4]. The third part (Part III) con-

tains the thesis conclusions and future directions. Finally, we report complementary

information corroborating a few technical sections.

Outline of Part I

This part contains preliminaries on the different tools and techniques involved in

this thesis and a state-of-the-art on the related topics.

Chapter 2 gives an introduction to the quadrotor system and an overview of classic

control, planning and state estimation techniques. It also introduces the notion of

differential flatness which is a fundamental property in trajectory planning. Finally,

we bring to light the issues related to vision-based control.

Chapter 3 provides standard techniques for solving an optimal control problem.

8

1.4. Thesis structure

Chapter 4 introduces Model Predictive Control and preliminary results of simple

applications to trajectory generation with a quadrotor are presented.

Chapter 5 gives an extensive state of the art for the topics of online planning,

vision-based control and optimal aggressive trajectory generation.

Outline of Part II

This part contains the author contributions

Chapter 6 provides our contributions on minimum-time vision-based planning in

the presence of visibility constraints.

Chapter 7 presents our planning frameworks for addressing collisions and occlu-

sions avoidance while tracking a moving target. A relaxed formulation is given for

allowing reactive re-planning.

Chapter 8 introduces the uncertainty-aware graph-search algorithm that we de-

veloped for finding robust minimum-time trajectories in presence of intermittent

visual measurements.

Outline of Part III

Chapter 9 reports the conclusions of the thesis and the main contributions brought

to the state of the art are summarized. Moreover, some open issues are listed and

we discuss future directions which would be worth exploring.

Appendix A gives the complete flat transformation and its inverse for the quadro-

tor.

Appendix B provides complementary information on the B-spline curves and de-

tails on the relevant manipulation algorithms used in this thesis.

Appendix C includes an introduction to numerical techniques for evaluating deriva-

tives and especially complex-step differentiation. Practical results are given for

comparing finite difference with complex-step difference.

9

Part I

Preliminaries and related works

11

Chapter 2

Planning and control of a

quadrotor UAV

Contents

1.1 Quadrotors in robotics . 1

1.2 Challenges . 5

1.3 Thesis contributions . 7

1.4 Thesis structure . 8

2.1 Introduction

Our focus in this chapter is on the modelling of the quadrotor dynamics and on the

role of controllers and trajectory generation.

Because of the nonlinear dynamic behaviour, the control and guidance of quadro-

tors remain subjects of active research, especially in applications covering search-

and-rescue, surveillance, inspection, etc. For these applications, high stability, high

precision hovering ability, high bandwidth, and high manoeuvrability are important.

Quadrotors have been widely adopted as experimental platforms for research in

flying robotics. Reasons for the popularity of these vehicles include the ability to

hover, mechanical simplicity and robustness, and their exceptional manoeuvrability

due to typically high thrust-to-weight ratios explained by the relatively large off-

center mounting of the propellers. Such a configuration offers very low rotational

inertia, thus allowing large translational accelerations and extraordinarily fast ro-

tational accelerations (when free of other body parts or payloads). These motion

capabilities authorize complex and agile manoeuvres that have been demonstrated

in [27, 28, 29, 24] for instance.

13

2. Planning and control of a quadrotor UAV

Figure 2.1 – Quadrotor model

Moreover, having four propellers of small diameter reduces the damage in case

of collision with an obstacle due to their low kinetic energy. This makes it safer to

navigate in narrow and cluttered environments. Some works even studied recovery

flight modes for quadrotors in case of complete loss of one to three propellers [30].

2.2 Quadrotor model

Now let us derive the general equations of motion for the quadrotor. With refer-

ence to Fig. 2.1, let us define a world frame W “ te1, e2, e3u (being ei the i-th

column of the identity matrix) and a body frame B “ txB,yB, zBu with fixed origin

OB attached to the center of mass (COM) and axis zB parallel to the propeller

rotational axes. The configuration manifold is the special Euclidean group SE(3),

which is the semi-direct product of R
3 and the special orthogonal group SO(3)

“
�

R P R
3ˆ3 | RTR “ I, detR “ 1

(

. Let us also assume, without loss of general-

ity, that the robot COM corresponds to the barycentre of the propellers.

The robot state is

χ “

¨

˚

˚

˚

˚

˝

rB
WRB

vB

BωBW

˛

‹

‹

‹

‹

‚

P SEp3q ˆ R
6 (2.1)

where rB P R
3 is the position of the robot COM in W, WRB P SO(3) is the rotation

matrix from W to B, vB the COM linear velocity expressed in W and BωBW the

angular velocity expressed in B.

In some cases, for more clarity, we will also use the roll, pitch and yaw (RPY)

angles to represent the orientation of the robot. The rotation matrix corresponding

to a given RPY configuration is given by:

WRBpφ, θ,ψq “ RzpψqRypθqRxpφq

“

¨

˚

˝

cψcθ cψsθsφ ´ sψcφ cψsθcφ ` sψsφ

sψcθ sψsθsφ ` cψcφ sψsθcφ ´ cψsφ

´sθ cθsφ cθcφ

˛

‹

‚

(2.2a)

(2.2b)

14

2.2. Quadrotor model

It is also immediate to verify that the inverse transformation is given by:

θ “ Arctan2

ˆ

´r31 ˘

b

r232 ` r233

˙

φ “ Arctan2 pr32, r33q
ψ “ Arctan2 pr21, r11q

(2.3a)

(2.3b)

(2.3c)

where rij indicates the component on the i-th row and j-th column of WRB. The

transformation has a singularity of representation for cospθq “ 0.

As known, the derivative of the rotation matrix is given by:

W 9RB “ WRB
B
ΩBW (2.4)

where B
ΩBW is the skew-symmetric matrix built with the components of BωBW .

More specifically, assuming that

BωBW “

¨

˚

˝

ωx

ωy

ωz

˛

‹

‚
(2.5)

we have

B
ΩBW “

¨

˚

˝

0 ´ωz ωy

ωz 0 ´ωy

´ωy ωx 0

˛

‹

‚
(2.6)

The map that relates BωBW to the corresponding skew-symmetric matrix B
ΩBW is

often called hat-map. Its inverse typically takes the name of vee-map. The angular

velocity of the robot is also related to the vector of roll, pitch and yaw angles

derivatives, indeed

BωBW “ RxpφqT

¨

˚

˝

9φ

0

0

˛

‹

‚
` RxpφqTRypθqT

¨

˚

˝

0

9θ

0

˛

‹

‚
` RxpφqTRypθqTRzpψqT

¨

˚

˝

0

0

9ψ

˛

‹

‚

(2.7)

then

BωBW “ Tpθ,φq

¨

˚

˝

9φ

9θ

9ψ

˛

‹

‚
(2.8)

where

Tpθ,φq “

¨

˚

˝

1 0 ´ sinpθq
0 cospφq cospθq sinpφq
0 ´ sinpφq cospθq cospφq

˛

‹

‚
(2.9)

15

2. Planning and control of a quadrotor UAV

Since

detpTpθ,φqq “ cospθq (2.10)

the above relation is invertible out of the singularities of representation and its

inverse is
¨

˚

˝

9φ

9θ

9ψ

˛

‹

‚
“

¨

˚

˝

1 sinpφq tanpθq cospφq tanpθq
0 cospφq ´ sinpφq
0 sinpφq{ cospθq cospφq{ cospθq

˛

‹

‚

BωBW (2.11)

As it is well known, each of the four propellers produces a force of modulus fi

along zB and a torque of modulus τi about zB. Both can be modelled in first

approximation as proportional to the square of the motor rotational speed ωi

fi “ kωi
2

τi “ bωi
2

(2.12a)

(2.12b)

where k and b are the thrust and drag factors respectively. They are both positive

and their value depends on the shape of the propellers.

We also introduce the following input transformation:
¨

˚

˚

˚

˚

˝

u1

u2

u3

u4

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

k k k k

0 kl 0 ´kl

´kl 0 kl 0

b ´b b ´b

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

ω1
2

ω2
2

ω3
2

ω4
2

˛

‹

‹

‹

‹

‚

“ Aũ (2.13)

where l is the distance between the rotor axes of rotation and the geometric center of

the quadrotor. The matrix A has always maximum rank, then the transformation

is also invertible. The transformed input vector comprises the total thrust force u1

along zB and the torques u2, u3, u4 around xB, yB and zB respectively.

Having said that, the forces acting on the system are the gravity force directed

along zB “ e3 and the total thrust force generated by the propellers and directed

along zB. We also assume that the robot center of mass is coincident with its

geometric center, where the total thrust is applied. With these assumptions, the

translational dynamics of the system is given by the following Newton’s equation:

m:rB “ ´mge3 ` u1zB (2.14)

where m is the robot mass and g P R
3 the (constant) gravity acceleration in the

world frame. The angular acceleration is governed by the Euler’s equation. Since

the gravity force is applied to the robot center of mass, the only torque acting on

the system is the one generated by the propellers, hence

JB
9ωBW ` BωBW ˆ JBωBW “

¨

˚

˝

u2

u3

u4

˛

‹

‚
(2.15)

16

2.3. General control and trajectory generation techniques for a quadrotor

where J P R
3ˆ3 is the inertia tensor. If the robot is assumed to have a perfect

cylindrical symmetry with respect to the axis zB, the inertia matrix is also diagonal

and two of its eigenvalues, namely Jxx and Jyy, are equal. This makes it possible, if

desired, to neglect the gyroscopic term BωBW ˆ JBωBW without introducing large

modelling errors (see for example [27]).

Finally, we define the quadrotor dynamics with simplified notation as

9r “ v

9v “ g ´ f

m
zB

9R “ Rrωsˆ

9ω “ J´1prJωsˆω ` τ q

(2.16a)

(2.16b)

(2.16c)

(2.16d)

where r¨sˆ the usual skew-symmetric operator, R “ WRB and pf, τ q P R
4 are the

total thrust and torques applied by the propellers, which can be expressed as a set of

control inputs u in terms of the individual propeller thrusts u “ pf1, f2, f3, f4q P R
4

with the linear expression (2.13).

Most of agile control methods have proved that high performance flights can be

performed with the present quadrotor model [27, 31, 28]. Nowadays, efforts seem to

be less and less allocated to the development of more accurate dynamical modelling

(the above equations of motion are approximate, see e.g., [32] for a more precise

modelling). It seems these issues have reached an adequate level of maturity and

do not need further major improvements, at least concerning standard applications.

Incorporating the motor dynamics would add a fifth order to the dynamics without

significantly improving the performance. Modelling simplifications are even more

and more considered (especially on the inputs constraints) in order to face with more

complex and higher-level tasks applications [6, 33, 34]. Since one seeks to exploit the

quadrotor’s agility, it would be reasonable to consider aerodynamic effects, which

become consistent when small aerial vehicles reach high velocities. However, these

effects are rather complex to model and to incorporate into the control. For these

reasons we choose to neglect any aerodynamic effect, entrusting the control action

for their compensation. A philosophy largely exploited in control in robotics (more

details are given in the following section).

2.3 General control and trajectory generation

techniques for a quadrotor

Although quadrotors have a low mechanical complexity their control is still chal-

lenging. The major difficulty lies in the system underactuation, i.e., the coupling

17

2. Planning and control of a quadrotor UAV

between the translational and rotational motions (2.16b). Since the number of inde-

pendent inputs is less than its degrees of freedom some trajectories are not reachable

making it difficult to find feasible trajectories and then design reasonable tracking

control laws.

2.3.1 Quadrotor control

The most common nonlinear control techniques used to control quadrotor are back-

stepping [35], integral backstepping [36], sliding-mode control [37], feedback lin-

earization [38] and combination of these methods [39]. Because of the highly non-

linear dynamics most of the works in the area use controllers that are derived from

linearisation of the model around hover conditions [40]. Stability can be guaranteed

for reasonably small roll and pitch angles [41]. These simplifications lead to neglect-

ing the underactuation and alleviate the equations of motion to derive stability and

convergence proofs.

Besides these common control schemes, several other control methods from the

optimal control theory have been proposed in the literature for quadrotor control

such as Linear Quadratic Regulator control (LQR) [42], Model Predictive Control

(MPC) [43].

At a lower level, a common architecture for underactuated control consists in a

two-loop design [44, 45], where the outer loop is the position control and the inner

loop provides attitude (roll, pitch and yaw) control, as illustrated in Fig. 2.2. The

outer loop typically implements a PD control law on position and velocity with

feed-forward terms to compensate for gravity and accelerations from a reference

trajectory. A desired acceleration is computed and mapped to the desired collective

thrust and a desired attitude of the simplified quadrotor model. The inner loop

controls the attitude together with the altitude on the assumption that the attitude

dynamics of a quadrotor are much faster than its position and velocity dynamics.

Such a control strategy provides almost asymptotical stability. In practice a two

cascaded control loop is often used instead of a single one for controlling the attitude,

e.g., in [46, 47]. The reason is that it is more practical to separate the onboard

processing on two independent units. One handles the state estimation and high-

level control on the body rates while the second processing unit runs a low-level

controller on the attitude.

Nevertheless, there are no stability and convergence guarantees when the atti-

tude of the vehicle deviates substantially from hover conditions. These properties

can be stated in the design of only a few controllers used for tracking these trajec-

tories. [48] designs a nonlinear geometric controller in SO(3) which is almost global

exponential stability for the load attitude tracking, and almost global exponential

18

2.3. General control and trajectory generation techniques for a quadrotor

Figure 2.2 – Classic two loop controller. A task provides the desired position pd and yaw
angle ψd. The position controller generates the required pitch and roll angles to the attitude
controller which applies the computed input thrust and torques to the system.

attractivity of the load position tracking. In [1] the system is underactuated; how-

ever, it is possible to design controllers that guarantee convergence from almost

any point on SE(3). An other appropriate controller for aggressive manoeuvres is

the one proposed by [49] that developed a nonlinear tracking controller on SE(3)

and shown to have exponentially stable dynamics and almost globally exponential

attractiveness of the complete dynamics (under some conditions and precise knowl-

edge of the inertial parameters). This controller has been used for the simulations

and the experiments presented in this thesis.

Control techniques can offer reasonably fast motions [28, 50] but generally lead to

severe sub-optimalities when the system is subject to multiple nonlinear constraints.

In this case, it appears to be more attractive to produce trajectories that fulfil a set

of boundary conditions and dynamic constraints, specific properties, and optimal

criterion and then fed to an accurate trajectory tracker. Some work in this area

has addressed complex and agile tasks such as aerobatic manoeuvres [27, 1] and

ball catching [33]. Similar problems have been addressed using MPC [51, 52]. With

these approaches, guarantees of convergence are only available when the linearised

model is fully controllable [52] or if a control Lyapunov function can be synthesized

[53]. As such it appears to be difficult to directly apply such techniques to the

trajectory generation of a quadrotor. Learning algorithms have been successful in

learning models [54], agile motions [10] or stabilization policies [55] using data from

simulated and real world. Although very promising, these approaches do not appear

to lend themselves (yet) to more general motion planning or trajectory generation,

such as in environments with obstacles for instance.

2.3.2 Trajectory generation for a quadrotor

Once trajectory tracker algorithms are designed, the problem shifts to the higher

level of task definition often assimilated into trajectory planning which is devoted

to generate the reference inputs for the trajectory tracker.

19

2. Planning and control of a quadrotor UAV

In applications seeking agile manoeuvres, it is necessary to develop flight plans

that leverage the dynamics of the system instead of simply viewing the dynamics

as a constraint on the system. It is necessary to relax small angle assumptions and

allow for significant excursions from the hover state. A recent focus has been the

planning and following of trajectories that exploit the dynamical capabilities of these

vehicles. Results include algorithms that plan trajectories from classes of motion

primitives [6, 33], while others solve an optimal control problem for approximate or

full vehicle dynamics (e.g. for minimum snap [1] or minimum time [56]).

Robust trajectory tracking is crucial especially for high speeds and accelera-

tions. In [57] the authors chose to consider a more accurate dynamical model in the

controller by incorporating the motor dynamics and aerodynamic drag effects. In-

deed, identifying the model parameters and external disturbances will improve the

controller performance. Similarly [58, 59] developed a controller compensating for

aerodynamic effects and especially the drag. [58] was able to exhibit lower position

errors even at flight speeds up to 18m/s in [21].

It is also important to account for the tracking precision and energy consumption

when designing aggressive and complex trajectories. Otherwise the tasks may not

be effectively completed due to instabilities or motor saturations.

A popular approach in robotics and first applied to manipulators is to pro-

duce smooth motions; i.e. trajectories with good continuity features; in particular,

continuous velocity, accelerations and jerks in the interests of avoiding mechanical

resonance (e.g., for manipulators) and reducing stresses to the actuators and to the

mechanical structure. Smooth trajectories will help performing aggressive and fast

trajectories for a quadrotor while aiding the controller action. Finally, smoothness

is desirable for maintaining the quality of onboard sensor measurements. Since vi-

sion is part of the planning scheme, smooth motions may help reducing motion blur

in the image plane to facilitate visual tracking.

2.3.3 Smoothness

In this section we discuss the smoothness of motion in robotic applications. First of

all, a movement is perceived to be smooth, when it happens in a continual fashion

without any interruptions. It is closely related to effort minimization which is a

major objective, especially in manufacturing for cost and ecological reasons, but it

is also desirable for robots carrying limited energy source (e.g., robots for spatial

and submarine exploration). Among others, these conclusions motivated the use of

smooth trajectories to connect two states and was applied to robotics [60, 61] a few

years later with robotic arms to name a few.

The resolution problem of optimal trajectory satisfying a smooth performance

20

2.3. General control and trajectory generation techniques for a quadrotor

index is considered as an optimal control problem. So one of the keys in trajectory

generation is the selection of an appropriate cost function.

As often research takes inspiration from direct observations from the nature. In

[62] the authors observed that for reaching trajectories human appears to minimize

the integral of the square of the norm of the jerk which is the time derivative of

acceleration, hence, the third time derivative of position.

...
r “ d3r

dt3
(2.17)

For a particular trajectory xptq that starts at t0 and ends at time tf , one can

measure smoothness by calculating the jerk cost:
ż tf

t“t0

}...xptq}2dt P R (2.18)

The derivative to minimize has motivated a large number of research especially in

the neuroscience domain. These studies reveal some observations:

‚ the minimum jerk criterion does not produce acceleration jumps at the start

and end points, while the minimum acceleration criterion does.

‚ it is related to the control effort minimization

‚ the jerk can be minimized independently on each axis [62]

Later [63] pushed the study to higher derivatives (snap: the fourth derivative

of position, crackle: the fifth derivative of position, pop: the sixth derivative of

position). They found that as the order of the derivative increased, the solution

to the functional xptq approached a step function. It is indeed legitimate to ask

ourselves: What derivative to minimize ?

‚ Acceleration is the simplest, but most naive to define as the goal, since it

will imply the less possible thrust, thus constraining excessively the aggres-

siveness of the trajectory. Smooth trajectories are desirable, but with some

aggressiveness to explore the time optimal possible trajectory

‚ Jerk is a better representative of the aggressiveness of the true system inputs

[33] and, like the acceleration, has a direct link with thrust. Moreover [6]

affirms that maintaining constraints on the acceleration and jerk leads to a

continuous thrust during the manoeuvre, which is then supported by [64] when

affirming that constraints on jerk are necessary for a smooth trajectory.

‚ Snap trajectories have also been proven effective to generate quadrotor tra-

jectories [65], due to the linkage in the motors commands and body rate

derivatives.

21

2. Planning and control of a quadrotor UAV

Trajectories that quadrotors can follow quickly and accurately should be at

least continuous up to the third derivative of position (or C3). This is because, for

quadrotors, discontinuities in lateral acceleration require instantaneous changes in

attitude and discontinuities in lateral jerk require instantaneous changes in angular

velocity.

In the past 10 years this approach has been extended to quadrotors. Jerk is

minimized in [66, 6, 67] where feasible trajectories are generated based on the de-

coupling of the rotational degrees of freedom. Analytic solutions for minimum jerk

trajectories between collision-free points have been formulated in [68] using the Pon-

tryagin’s minimum principle (see e.g., [69]). In [1] the authors separated the optimal

problem into four independent optimization problems and minimize the integral of

the squared snap and the yaw acceleration since the inputs u2 and u3 are function

of the fourth derivative of the positions and u4 is function of the yaw angle second

derivative.

[70] chose to optimize over the integral of the squared norm of the accelera-

tion instead of snap, minimizing the energy that the considered helicopter needs.

Compared to snap, acceleration directly translates into permanent additional thrust

that all the motors have to provide, while snap just causes particular motors to spin

up/down quickly. In[71] the jerk is minimized for a quadrotor and is more generally

a choice for robot manipulators [63].

Minimizing the snap is present in many optimization frameworks in the literature

(pioneered by [1], see also [72, 73]). Indeed, an even more important goal than

finding minimum-time trajectories might be trajectory smoothness, especially for

quadrotors. It plays a role in producing safer trajectories which will facilitate the

trajectory controller action [74]. Although the first quantity acts on the optimal

inputs, it mainly produces smooth trajectories for a quadrotor (by helping to reduce

the angular acceleration) while using the actuation capability since the solution

yields a trajectory with a larger peak speed relative to average speed (see [63] for

more details).

Finally, in [65, 1] a optimal trajectory is computed to pass though a number

of position keyframes in a continuous way instead of following straight lines which

have an infinite curvature at the keyframes that would force the quadrotor to stop

at each connection.

To summarize, there seems to be no good general answer on which method is

to be favoured between acceleration, jerk or snap and this might depend on the

application. The next section introduces the property of differential flatness. We

show that the inputs are a function of fourth-order derivative of position. For this

reason and as it is done in [1] we choose to minimize the snap.

22

2.4. State estimation

2.4 State estimation

The challenge is now to get a reliable knowledge of the robot’s state since the perfor-

mance of the controller depends on the quality of the state estimate. Many robotic

applications rely on external centralized localization systems such as Vicon or global

positioning system (GPS) or full SLAM systems [75, 76]. However, GPS signals are

only available outdoor and are not sufficiently reliable and precise enough for some

specific tasks (e.g., involving interaction with the environment or navigation among

obstacles). One may often need accurate knowledge of the state and a solution is

to exploit local observations of the environment.

To obtain a reliable response from a quadrotor for experimental purposes some

preliminary tasks are required: the calibration of the Inertial Measurement Unit

(IMU), an identification of offsets, biases, motor curves, etc. Once all of this is

completed (see e.g., [77] for further details on the procedure) state estimation algo-

rithms are implemented. Their role is to provide a reliable estimate of the system

state based on the outputs of a channel of proprioceptive sensors (e.g., accelerome-

ter, gyroscope,...) and exteroceptive sensors (e.g., altimeter, cameras, lidar,...).

State estimation algorithms are generally based on multi-sensor fusion to com-

bine the sensory measurements and properties of different sensors (e.g., acquisition

rate, robustness to some noise, weight,...). In aerial robotics the attitude and an-

gular velocity are the most important as they are primary variable in attitude

control of the vehicle. A very popular choice is to combine an IMU composed of

an accelerometer and a gyroscope with a camera to merge high rate acceleration

and angular velocity measurements (from the IMU) with lower rate visual cues.

These visual measurements can be used for, e.g., position, orientation and velocity

estimation from the environment or for visual odometry [78]. Sensor-fusion algo-

rithms have been successfully applied in many works to provide full autonomy of

the robotic platforms, e.g., [79, 80]. Fully autonomous high-speed navigation has

only been achieved in the last few years (e.g., [21, 81]). These recent developments

were largely supported by the improvements of sensors in terms of measurement

accuracy, compactness and acquisition rate. Most of the approaches use Extended

Kalman filters (EKF) for its robustness and simplicity. However, no guarantees of

convergence and stability are given. These questions are addressed in [82] by the

design of an observer endowed with exponential stability and convergence guaran-

tees. The observer fuses optical flow with inertial measurements to estimate the

attitude, the linear velocity and the depth of a camera observing a planar target.

23

2. Planning and control of a quadrotor UAV

2.5 Differential flatness

Planning trajectories in high dimensional space is challenging especially with an

underactuated system. In this section we show how control and planning problems

can be simplified without any additional approximations by using the fact that the

quadrotor dynamics are flat. This property makes the trajectories design easier and

guarantees the trajectories are feasible, i.e., trajectories that satisfy the equations

of motion.

2.5.1 Definition and properties

Differential flatness was primarily introduced by Fliess [83] in a differential algebraic

context aimed at nonlinear system [83]. Then Martin, Murray, Rouchon, Lévine and

Van Nieuwstadt [84, 85] made further study about this theory and its implications

in trajectory generation. They discovered the existence of a set of flat outputs

with nonlinear dynamic characteristics that allow exact linearisation of particular

nonlinear systems. In a nutshell, for a differentially flat system, all states and inputs

can be expressed as algebraic functions of a set of outputs and their derivatives.

More specifically, a nonlinear system:

9x “ fpx, uq, x P R
n, u P R

m (2.19)

is termed flat if we can find outputs σ P R
m of the form

γ “ ξpx, u, 9u, . . . , urq ξ : Rn ˆ pRmqr`1 Ñ R
m (2.20)

such that

x “ φxpγ, 9γ, . . . , γlq φ : pRmqr Ñ R
n

u “ φupγ, 9γ, . . . , γlq ψ : pRmqr`1 Ñ R
m

(2.21a)

(2.21b)

where ξ, φx and φu are smooth functions and γ is called the flat outputs. This

means that the new system’s description is given by the m algebraic variables γi, i “
1, . . . ,m. So for a differentially flat system, if given a desired trajectory γd, we can

obtain all expected states, inputs and outputs:

xd “ φxpγd, 9γd, . . . , γ
l
dq

ud “ φupγd, 9γd, . . . , γ
l
dq

(2.22a)

(2.22b)

Note that ξ is bijective.

In [86] the authors presented a catalogue of flat systems in 1995 including non-

holonomic mobile robots, the Planar Vertical Take-Off and Landing (PVTOL) air-

craft, the inverted pendulum and the ducted fan. They also provided insights on

24

2.5. Differential flatness

determining if a system is differentially flat by considering its mechanical struc-

ture. Since then, new flat systems have emerged, for instance, the ballbot robot

under small angles assumptions [87] and especially the quadrotor in [1] and later

revised and extended with the consideration of rotor drag effects in [57]. Several

“protocentric aerial manipulators” (systems where the first joint of the manipulator

coincides with the quadrotor center of mass) were proven to be flat [88] as well as

a quadrotor tethered by cables/bars [89]. It is known from [1] that the quadrotor

dynamics (2.16) are flat with flat outputs γ “ pr,ψqT P R
4 [1], where ψ is the

yaw angle from the usual roll/pitch/yaw decomposition of the rotation matrix R.

Indeed, under the assumption f ą 0, one can find an invertible algebraic mapping

of the form:

χ “ φχpr,v, 9v, :v,ψ, 9ψq
pf, 9f, :f, τ q “ φup 9v, :v,

...
v,ψ, 9ψ, :ψq

(2.23a)

(2.23b)

We report the complete proof of the flat transformation and its inverse transfor-

mation for the quadrotor dynamics in Appendix A. For simplicity of notation, we

indicate with σ “ pr,v, 9v, :v,
...
v,ψ, 9ψ, :ψq the vector of all quantities appearing on the

right side of (2.23), and with σχ “ pr,v, 9v, :v,ψ, 9ψq only those involved in (2.23a).

The implications of flatness for all these systems is that the trajectory generation

problem can be reduced to simple algebra, in theory, and computationally attractive

algorithms in practice. For instance, in the case of the quadrotor the state space

of dimension 12 can be reduced to a 4-dimensional space in which the integration

of equation (2.19) (often costly and numerically challenging step) is not necessary.

Traditional approaches to trajectory generation, such as optimal control, cannot be

easily applied in many cases (see [86] for examples). Since the flat output functions

are completely free, the only constraints that must be satisfied are the initial and

final conditions on the endpoints, their tangents, and higher order derivatives. Any

other constraints on the system, such as bounds on the inputs, can be transformed

into the at output space and (typically) become limits on the curvature or higher

order derivative properties of the curve. Moreover, any curve that satisfies the

boundary conditions in the flat output space is a trajectory of the original system.

Referring to Fig. 2.3, the problem of finding curves that take the system from

xp0q, up0q to xpT q, upT q is reduced to finding any sufficiently smooth curve that

satisfies γkp0q and γkpT q up to some finite number l. There is no need to solve a

two-point boundary value problem (BVP) if the system is differentially flat. Once

all the boundary conditions and trajectory constraints are mapped into the flat

output space, (optimal) trajectories can be planned in the flat output space and

then lifted back to the original state and input space with (2.22). The idea is that

this methodology alleviates adjoining the system dynamics in the optimal control

25

2. Planning and control of a quadrotor UAV

Figure 2.3 – Trajectories in the state space can be mapped in the static flat space (i.e.,
without dynamics) of lower dimension. Any smooth enough curve in the flat space will be
feasible in the state space.

problem formulation. Consequently, the number of variables in the optimal control

problem is reduced to expedite real-time computation. Therefore, by converting

the input constraints on the quadrotor to constraints on the curvature and higher

derivatives of the position and the yaw angle, it is possible to design efficient tech-

niques for the generation of feasible trajectories.

2.5.2 Existence

Differentially flat systems encompass all linear, controllable systems and many non-

linear systems as well. Although there is no general methods to judge whether the

system 9x “ fpx, uq, x P R
n, u P R

m is differentially flat and it is difficulty to find

the flat outputs for most known differentially flat systems, some researchers still

found and proved the existence of flat outputs of some systems (like the one cited

in the previous section). While Fliess [83, 90] and Charlet [91] provided necessary

conditions and sufficient conditions separately for a class of systems, Chetverikov

is the first to show necessary and sufficient conditions [92]. Yet, one frequently has

to resort to trial and error to construct the flat outputs. Flat outputs of a system

are not unique [86], it is therefore preferable to select the flat outputs leading to

simple computations for the mappings φx and φu. Their choice can also be moti-

vated by the design of the control laws or the planning formulation into a reduced

or more relevant space. In [93] the flat outputs are chosen as a set of image features

to simplify the planning in the image space for a grasping task performed by a

quadrotor.

26

2.5. Differential flatness

In addition, a particular parametrization may also depend on the complexity of

deriving the constraints from the outputs. However, it is generally recommended

to use a parametrization that eliminates all equality constraints. Indeed, equality

constraints are the most difficult to handle in nonlinear programming.

2.5.3 Differential flatness in control and trajectory planning

At this point, differential flatness plays a strictly practical role and quickly gained

popularity for deriving control schemes and solving various optimal control problems

as the state of the art in Chapt. 5 will show. Indeed, a transformation of the

system into a linear equivalent description is obtained and then it is straightforward

to design a controller based on linear control theory, e.g., [94] with disturbance

rejection and [28] with the use of a LQR for controlling a hexacopter Fig. 2.4.

Furthermore, classic polynomial control laws can be applied on the flat outputs and

their derivatives and compared with the actual flat state measurements. Such a

method has been efficiently validated in [35]. Such control laws can be adopted for

tracking any trajectory ydptq “ pγdptq, 9γdptq, . . . ,γplq
d ptqq directly in the space of the

Brunovsky states by considering the new control inputs ω “ γpl`1q. Then, the real

world inputs u are obtained via dynamic feedback and applied to the real system.

Figure 2.4 – System architecture for LQR control of a hexacopter. A function (f̂´1) converts
the inputs u to the actual commands ν fed to the real system (commanded in acceleration
with w) from [28].

This strategy was adopted in e.g., [95] to design a visual-based controller for

a UGV and [96] for controlling a tethered aerial robot. Asymptotical convergence

can be achieved with an appropriate choice of the gains that can be determined by

pole-placement techniques to ensure good tracking and some robustness to model

uncertainties as well. However, in general, after a given order
¯
l ď l one may loose

the capacity to observe the higher-order derivatives of the flat outputs. Typically,

one resort to designing observers as also shown in [96, 35].

A similar strategy is found in optimization-based control: the optimal control

outputs are computed in the flat space which are then lifted back to the space of

27

2. Planning and control of a quadrotor UAV

the real control inputs, see e.g., [97].

As already discussed in Sect. 2.3 from a control perspective, most early research

on quadrotor dynamics focused on near-hover operation. Now, in the context of

fast motion, differential flatness has been considered as a strong system property

that can be used for generating dynamically feasible trajectories for underactuated

robotic systems leading to significant progress both in trajectory generation and

control of quadrotor systems in the recent years (e.g., [1, 98, 99, 28] to name a few).

In [100] a comparison is proposed between differential flatness and dynamic

feedback linearisation in motion planning. Indeed, the two properties are equivalent

in the sense that any feedback linearisable system is also differentially flat and vice

versa as it is demonstrated in [90]. Moreover, the feedback linearising outputs and

the flat outputs of a system coincide.

2.6 Vision-based control

To be reactive to changes in the environment, the use of on-board cameras has

become a fundamental necessity. Indeed, moderately invasive and low power, they

come with numerous computer vision algorithms for tracking objects, mapping,

detecting obstacles but also for giving various measurements to non-linear observers

(e.g., through active vision, state estimation).

For these reasons, incorporating visual cues in the loop has become a popular

approach in robotic control for many years for designing robust and reactive control

laws to complete positioning [101], grasping tasks [93] or navigation among obstacles

[102] to name a few. However, vision is not without its challenges. Computation

is intense and can result in low sample rate. Vision-based control techniques may

be deceived by ambiguities between certain camera motions and scale since there

exists a problem with scale recovery when using a single camera. Finally, they

can suffer from delays between the image frame capture, transmission and process-

ing. However, processors continue to improve and many vision-based autonomous

applications are flourishing [24, 103, 104, 105].

2.7 Issues related to vision-based control

A historical technique is visual servoing [26]. Visual servoing is the fusion of results

from many elemental areas including high-speed image processing, kinematics, dy-

namics, control theory, and real-time computing. This popular control scheme uses

visual cues for directly controlling the robot’s motion and referred as Image-Based

Visual Servoing (IBVS). This strategy was originally developed in the context of in-

dustrial robots (see e.g., [106] for a survey on the topic), which are usually equipped

28

2.7. Issues related to vision-based control

with low-level high-gain control loops that allow neglecting the dynamics of the

platform and, e.g., controlling it at the velocity level. Unfortunately, such simplifi-

cation cannot be extended to quadrotors away from near-hovering conditions. Since

quadrotors show non-negligible dynamics the visual control problem becomes sig-

nificantly more complex. This is due to the inherent under-actuation that generates

rotations of the camera which may conflict with the main servoing task (as detailed

in the Introduction). Intuitively, in order to overcome this problem, the robot can

either limit its rotational motion (thus reducing the acceleration and increasing the

time needed to reach the desired position) or compensate the rotation by also mov-

ing upwards for increasing the size of the scene projected within the camera field of

view.

Standard visual servoing approaches for underactuated systems, such as quadro-

tors, oftentimes do not explicitly ensure that the relevant image features stay in the

camera’s field of view, especially while the system is performing agile manoeuvres.

Preserving visibility is a substantial concern when vision is in the loop since

losing track of features may lead to a failure of the task. The original formulation

of visual servoing does not prevent critical configurations related to:

• field of view limits, i.e., the target may become invisible as the camera moves;

• occlusions, i.e., the image features may be occluded due to obstacles or body

parts;

• singularities, i.e., specific features configurations can lead to an ill-conditioning

of the interaction matrix (e.g., the cylinder singularity for three points);

• local minima, i.e., the control law may lead to a convergence to unexpected

configurations. Local minima may appear with the use of redundant measure-

ments that is the usual approach to avoid singularities;

Finally, one can complete the above list with issues related to aggressive motion

planning:

• physical constraints such as feasibility constraints;

• camera underactuation, i.e., when a camera is attached to an underactuated

robot such as a quadrotor the image features are more subject to being repelled

from the camera center as the quadrotor perform translational motions.

• motion blur, i.e., the aggressiveness of the camera motion (especially with

high angular accelerations) may lead to poor quality of the image frames that

can jeopardize the vision algorithms.

29

2. Planning and control of a quadrotor UAV

• collision with obstacles or self-collision;

Note that two mechanical solutions could of course help reducing the effect of

underactuation: 1) a pan-tilt camera could be mounted instead of a fixed camera

[107]. Apart from the additional payload and extra consumption, sensing is still

limited and one cannot guarantee that all visual features will remain visible. 2) fully

actuated quadrotors with tilting propellers [15, 14] have been recently developed to

gain full access to the 6 DOFs (see, e.g. [108, 109] for visual controllers). Therefore,

a fixed camera would be less subject to rotation motions but still, if aggressive

motions are performed rotations are possible.

In this thesis we provide optimization-based solutions ensuring visibility of visual

features. Moreover, in Sect. 7.6 and Chapt. 8 we present solutions for relaxing the

visibility constraints in complex environments.

30

Chapter 3

Optimization and numerical

resolution

Contents

2.1 Introduction . 13

2.2 Quadrotor model . 14

2.3 General control and trajectory generation techniques for a quadro-

tor . 17

2.3.1 Quadrotor control . 18

2.3.2 Trajectory generation for a quadrotor 19

2.3.3 Smoothness . 20

2.4 State estimation . 23

2.5 Differential flatness . 24

2.5.1 Definition and properties 24

2.5.2 Existence . 26

2.5.3 Differential flatness in control and trajectory planning . 27

2.6 Vision-based control . 28

2.7 Issues related to vision-based control 28

3.1 Introduction to optimization

In many occasions, the trajectory generation problem cannot be solved analytically.

An exception is formed by linear systems. For general systems we can only solve

the generation problem by repeatedly integrating the system equations and trying

to minimize some errors between the computed trajectory and the desired trajec-

tory. The resolution of more and more complex problems may not be possible by

analytic resolution techniques. Moreover, we believe they may be too difficult and

31

3. Optimization and numerical resolution

not generic enough. In this section we introduce optimization and especially direct

optimization which we believe represents a more appropriate approach for the res-

olution of complex problems. The idea is to compute a finite sequence of optimal

controls and states over a time horizon as a numerical approximation of the system

dynamics. Optimization is a well-understood field and is able to exhibit valid in-

puts and trajectories adapted to changes in the task, the environment and system

dynamics.

3.2 Minimum-time trajectory generation problem

A very specific trajectory generation problem in robotics is the generation of time-

optimal trajectories between two states. The problem of connecting a given initial

state χ0 at time t and a chosen final state χf at a time t ` T can be formulated as

that of constructing a feasible trajectory

χptq˚ : rt, t ` T s Ñ X (3.1)

for the state of the quadrotor where X denotes the state space, and T defines the

trajectory duration. Now, an infinite number of trajectories can connect these two

states. Since one seeks the generation of agile manoeuvres, we are particularly

interested in minimizing the completion time T . Using an optimal formulation

we define Problem 1 where Jpχp.q,up.qq P R defines the cost function or objective

function that we want to minimize. Given the dynamic model (3.2d) at a generic

time t, we seek for a solution to the following optimization problem.

Problem 1 Find χpsq,upsq, T, s P rt, t ` T s, such that:

min
χpsq,upsq,T

Jpχpsq,upsqq “ T

s.t. χptq “ χt,

χpt ` T q “ χ˚,

9χ “ hpχ,uq,
upsq P U ,@s P rt, t ` T s

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

where χt is the current robot state, χ˚ is the desired one, and (3.2d) was introduced

to represent (2.16) in a compact form.

Note that Problem 1 is quite general. In particular, it does not impose any

constraint on the initial and final states which, e.g., do not have to be hovering

states (i.e. with R “ I, v ” 0, and ω ” 0).

32

3.3. Pontryagin’s minimum principle

We also want to find a feasible trajectory for the quadrotor. This is encoded

with (3.2d) that imposes the trajectory to respect the nonlinear dynamics equations

(2.16).

The robot is finally subject to (nonlinear) inputs constraints (3.2e) due to the

physical limits of its actuators. These constraints act on the minimum and maxi-

mum values of the system inputs. Vector u contains then the propellers individual

thrust (u “ pf1, f2, f3, f4q P R
4). Note that, since the propellers can not change

their direction of rotation during the motion, we have to assume fi ą 0.

The set of admissible control inputs is the box U “ rfm, fM s4 with 0 ă fm ă fM

where fm and fM are determined by the physical characteristics of the motor, the

available power, propeller, etc. One can prove that Problem 1 is solvable [1, 110],

i.e., there always exist a parameter T such that (3.2e) are satisfied (with a reasonable

choice of fm and fM).

3.3 Pontryagin’s minimum principle

The problem of generating optimal trajectories for a quadrotor UAV has been ad-

dressed with analytic resolution [67, 56] using Pontryagin’s minimum principle. This

optimal control theory principle has been formulated by Lev Semenovich Pontrya-

gin and his students in 1956 and defines a necessary, but not sufficient, condition

for optimality of a system trajectory. The problem is a generalization of the Euler-

Lagrange equations that also includes problems with constraints on the control

inputs and applies to a large class of control problems.

Let us assume that we want to find a trajectory for the state and the input

χptq˚ : rt, t ` T s Ñ X

uptq˚ : rt, t ` T s Ñ U

(3.3a)

(3.3b)

that minimizes the cost function

J “ Φpχpt ` T q˚q `
ż t`T

t

F pχptq˚,uptq˚q dt (3.4)

subject to

9χ “ fpχptq,uptqq, χptq˚ “ χ0, χpt ` T q˚ “ χf (3.5)

Neglecting the time dependencies, we define the Hamiltonian of the system as

Hpχ,u,pq “ F pχ,uq ` pTf pχ,uq (3.6)

where p is also called the costate vector and plays a similar role to the Lagrange

multipliers.

33

3. Optimization and numerical resolution

The Pontryagin’s principle states that if uptq˚ is an optimal trajectory for the

input and χptq˚ is the corresponding optimal trajectory for the state, then the

following conditions hold

9χptq˚ “ f pχptq˚,uptq˚q
9χptq˚ “ χ0

9χpt ` T q˚ “ χf

9pptq “ ´∇χH pχptq˚,uptq˚,pptqq

(3.7a)

(3.7b)

(3.7c)

(3.7d)

and for all t P rt, t ` T s

9uptq˚ “ argmin
uPU

Hpχptq˚,u,pptqq (3.8)

Moreover if the total time tf is not fixed by the problem, the following condition

also holds true

Hpχptq˚,uptq˚,pptqq ” 0 (3.9)

For a detailed explanation of the Pontryagin’s principle, refer to e.g. [69]. It has

hence been shown that the solution to the minimum-time problem is generally a

bang-bang control policy [111], that is, a control policy in which the control signal

switches between two or several extreme values. Pontryagin’s minimum principle

is exploited in [6, 67, 112] and [9] to generate minimum-time trajectories for a

quadrotor. For instance [6] generates minimum-time interception trajectories for

aggressively catching a ball in mid-air: bang-singular trajectories where the goal is

to reach a given position at a given time, while minimizing the time required to stop

after the intercept. These methods are computationally fast, with solution times

on the order of microseconds which is compatible for closed-loop control.

However, these strategies are not able to account for geometric constraints and

are independent of the yaw angle in order to decouple the quadrotor axes. In this

thesis, we consider more complex constraints such as visibility constraints that are

not compatible to Pontryagin’s minimum principle as far as we know.

In the next section we show how an optimal control problem (OCP) can be

turned into a nonlinear program (NLP) that is suited for numerical resolution.

3.4 Numerical solutions of optimal control problems

using nonlinear programming

Nonlinear optimization describes the class of optimization problems when the objec-

tive or constraint functions are not linear and not known to be convex as well. These

problems are considered as much more complex and difficult to solve and there is

34

3.4. Numerical solutions of optimal control problems using nonlinear
programming

no effective method of solving them. However, there exist different approaches to

their resolution that involve some compromises.

The problem of finding a local minimizer x P R
n for a nonlinear function F pxq

subject to a set of nonlinear constraints c ě 0, where cpxq P R
n, is a nonlinear

constrained optimization problem. All the problems of interest to be solved in this

thesis can be generalized into the form

Problem 2

min
x

F pxq

s.t. cpxq ě 0

(3.10a)

(3.10b)

Optimization problems of the form of Problem 2 can be a very difficult problem

to solve. Algorithms to solve this problem may take many iterations and function

evaluations. Moreover, global optimization of Problem 2 is a difficult problem and

an open area of research. In this thesis, we will concentrate on using the well

understood numerical techniques that will find local minimum.

Nearly all techniques for nonlinear programming are iterative, producing a se-

quence of subproblems related in some way to the original problem. Newton meth-

ods have rapid local convergence rates, but fail to converge from all starting points.

Gradient descent methods converge from nearly any starting point but have poor

local convergence properties. Line-search methods are one means of ensuring global

convergence while attempting to maintain fast local convergence. Line-search meth-

ods limit the size of the step taken from the current point to the next iterate. Such

methods generate a sequence of iterates of the form

xk`1 “ xk ` αp (3.11)

where p is the search direction obtained from the subproblem, and α is a positive

scalar step-length that has to be chosen carefully. However, determining a minimizer

along p is an iterative process and frequently time consuming. Typically, x is

determined by a finite process that ensures a reduction in F pxq. See [113] for an

overview of line-search methods.

Two very different approaches may be considered to solve Problem 2, the indirect

one and the direct one.

3.4.1 Indirect and direct methods for nonlinear programming

Most early numerical methods of solution to constrained optimal trajectory gener-

ation problems relied on either indirect or direct methods of solution. The indirect

method relies on finding a solution to the Pontryagin’s maximum principle presented

35

3. Optimization and numerical resolution

earlier. Indirect methods turn the problem into an integration problem consisting of

ordinary differential equation (ODE) or differential-algebraic equation (DAE). The

resulting problem is a differential equation which is unfortunately often too complex

to be integrated as is. When it is possible, this approach provides a complete (and

often comparatively cheap) solution to the problem. However, this type of approach

is usually applied on a specific system and/or task so the differential equation can

be simplified enough to be integrated.

The direct method obtains solutions by direct minimization of the objective

function, subject to the constraints of the optimal control problem. In the direct

approach, the optimal control problem is transformed into a NLP. In a first ap-

proach, this can be done with the so-called direct single– and particularly– multiple

shooting methods. The key strategy is to divide the time vector, state and con-

trol trajectories into a finite grid. Therefore, the direct approach directly solves

a discretized approximation of the nominal problem using numerical optimization

techniques. This allows turning an optimization problem of an infinite dimension

(the search space is infinite dimensional) to a finite one in order to be efficiently

solved by selecting outputs from a finite dimensional space. This results in finding a

numerical solution to a two-point boundary value problem (BVP), if no closed form

solution can be found. Examples along this line can be found in [114, 115]. These

methods normally cannot meet the performance requirement for on-line calculation,

especially when the system manoeuvring time is short. In addition, the optimal tra-

jectories represented by the discrete collocation points are not continuous or smooth

curves.

Is is known from e.g., [116] that direct methods are generally less precise but

more robust to the initial solution guess than indirect methods. However, it appears

that the computational requirements of direct methods are at least that of indirect

methods. The collocation method of [117] and adjoint method [118] take part of

the most relevant transcription methods to the trajectory generation problem.

3.4.2 Nonlinear solvers

Now that we showed how OCPs are discretized to obtain a structured NLP in non-

convex form one has to select a nonlinear solver. Sequential Quadratic Program-

ming (SQP) and Interior Point Methods (IPM) are popular gradient-based classes

of methods considered to be effective and reliable for locally solving (3.10b). These

methods are guided by the first- and second- order derivatives, i.e., the gradients

and the Hessian matrix. Interior point refers to the fact that the slack variables

are required to remain strictly positive throughout the optimization (more can be

found in [119]). SQP ([120, 121]) is the technique we will use to solve the nonlinear

36

3.4. Numerical solutions of optimal control problems using nonlinear
programming

programming problems presented in this thesis. The fundamental approach SQP is

to solve a NLP by solving a sequence of quadratic programs (QP) that are easy to

solve. More precisely, at each iteration of a SQP, one solves a QP subproblem that

models Problem 2 locally at the current iterate. The solution to the QP is used as

a search direction by a line-search algorithm to determine the next iterate.

SQP is known for its rapid convergence (a few SQP iterations) when iterating

from an initial point (or initial guess) that is close to a (local) minimum but may

show erratic behaviour when the initial point is far. Moreover, SQP is not a feasible

method; that is, neither the initial guess nor any of the subsequent iterations need to

be feasible (a feasible point that satisfies the constraints). This is a major advantage

since finding a feasible point when there are nonlinear constraints may be nearly as

hard as solving the NLP itself. However, converging to a minimum would generally

require more iterations than starting from a feasible point.

SQP solvers differ in the way the Hessian is approximated, the line-search is

done, the QP subproblems are solved or the constraints are relaxed. SQP has

been shown a powerful tool and because of its superlinear convergence rate and its

ability to deal with nonlinear constraints. It is currently considered as one of the

most powerful algorithm to solve numerous formulations of NLP.

Note that the gradients have to be supplied and their accuracy is crucial for

local convergence. In principle the gradients can almost always be computed using

very little additional computational effort. In practice, and especially with highly

nonlinear programs analytic formulation of the Jacobians can be very complex,

subject to errors and finally hard to code. We will see in Appendix C that there

exist efficient numerical methods for accurately evaluating these functions.

The Hessian is even more complex and approximation methods exist such as

the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) [122]. This method builds

an approximation of the Hessian based on successive gradient evaluations that are

stored over for a given horizon. This method has proven to have a good performance

even for non-smooth optimizations. Thus, the Hessian matrix will help accelerating

local optimization.

Both SQP and IPM methods iterate from an initial guess for the optimization

variables. This initial guess is therefore critical and has huge impact of the objective

value of the local solution obtained. Using local optimization methods, one often

has to resort to experimenting with the algorithm choice, parameters and initial

guess. The methodology is not rigorously defined.

In the next section we show how Problem 1 can be turned into a NLP using dif-

ferential flatness and parametrization with B-spline curves. The described method

is the one we use in this thesis.

37

3. Optimization and numerical resolution

3.5 Differential flatness and B-spline curves for

nonlinear programming

Referring to Sect. 2.5.1, we show how an optimal control problem can be reposed to

allow direct optimization to occur within the output space (of the flat outputs) as

opposed to the control space. First of all, we map the problem to the space of the

flat outputs and their derivatives that we indicate with σ “ pr,v, 9v, :v,
...
v,ψ, 9ψ, :ψq.

Thanks to differential flatness, one can move the planning problem from the input

space to the flat output space (i.e., the problem becomes a static problem): any

sufficiently smooth trajectory of the flat outputs is, in fact, guaranteed to be an

admissible trajectory for the original system dynamics. This property is extremely

interesting for our purposes because it allows avoiding to deal with the non-linear

differential equality constraint (3.2d), which would require the numerical integration

of the system dynamics during the numerical optimization phase. A prediction of

the state at any time in rt0, tf s can, instead, be computed algebraically from the

planned flat-output trajectory. For these reasons differential flatness has been widely

used for trajectory planning in the past [123, 1, 110].

Mapping Problem 2 into the flat space gives the equivalent following problem

Problem 3

min
σp.q

Lpσq

s.t. gpσq ě 0

(3.12a)

(3.12b)

Now, in solving Problem 3, we face two challenges: (i) instead of a finite set of

variables, the optimization variable is a function σp.q and (ii) the constraints must

be enforced at all time instances. Therefore, the problem is infinite dimensional

with an infinite number of constraints. To cope with the infinite dimensionality

σp.q is usually approximated with fixed parametric curves defined by a finite set of

variables, a technique known as parametrization.

3.5.1 Parametrization of the flat outputs

There are many curves defined by a finite number of variables that can be used

to approximate the outputs σp.q (Fourier series, Legendre polynomials, Laguerre

polynomials, Chebyshev polynomials, Taylor series, etc.). Now, a requirement is to

accurately represent a basis of a trajectory with a reasonable number of decision

variables that will constitute the degrees of freedom of the solver. A second impor-

tant requirement of the curve is the ability to set a level of continuity Ck, without

adding additional constraints. Specifying the level of continuity is necessary, since

38

3.5. Differential flatness and B-spline curves for nonlinear programming

the states and inputs are a function of the outputs and their derivatives. A high de-

gree single polynomial would be necessary to satisfy complex constraints but solving

for the coefficients of high degree curves can be an inefficient and ill-conditioned op-

eration. Finally, when a high number of basis functions is desired in order to satisfy

multiple conditions still leaving some room for optimization, polynomial functions

are not a good choice. Indeed to increase the number of parameters in a polynomial

we need to increase its degree. Local support is also a desirable property of the basis

functions. Local support means that the curves only influence the curve locally to

the current point of interest which is also favourable for numerically stable computer

implementation.

A solution that meets the main requirements are Bézier polynomials or B-splines

[124]. An exhaustive introduction on B-spline is given in Appendix B including

the many interesting properties and manipulation algorithms these curves possess.

These functions are obtained as a composition of a certain number of polynomials,

each of whom is defined in a limited sub-domain of the overall function domain. The

advantage of this solution is that we can increase the number of curve coefficients by

increasing the number of polynomial components, while maintaining a low degree of

the single polynomials. In particular a spline is said to be of degree p if it is composed

by polynomials of degree p. A B-spline curve is constructed from Bézier curves

joined together with a prescribed level of continuity between them. The points at

which the curves are joined are called the breakpoints and are constructed so that

they join with some level of continuity. The breakpoints are a strictly increasing

sequence of real numbers. A non-decreasing sequence of real numbers containing

K ` 1 breakpoints U “ pu0, ..., uKq is called the knot vector. A breakpoint may

appear multiple times in the interior of a knot vector and be referred as a breakpoint

of multiplicity m. A recurrence relation is used to define the B-spline basis functions

Bi,j of the B-spline curves:

spuq “
n

ÿ

i“1

Bi,ppuqP i n ě k ´ 1 (3.13)

where P i are the control points and the Bi,p are piecewise polynomial functions of

degree p (and order k “ p ` 1) forming a basis for the vector space of all piecewise

polynomial functions of the desired degree and continuity. Given the knot vector

U and the degree p, the B-spline basis functions are defined by:

Bi,0puq “
#

1 if ui ď u ď ui`1

0 otherwise

Bi,ppuq “ u´ui

ui`p´ui
Bi,p´1puq ` ui`p`1´u

ui`p`1´ui`1
Bi`1,p´1puq

(3.14)

Now, in the case of the quadrotor, given a vector of control points P “ pr1, . . . , rnr ,ψ1, . . . ,ψnψ
q P

R
3nr`nψ , and two (fixed) normalized knot vectors U p P r0, 1sKp ,Uψ P r0, 1sKψ , the

39

3. Optimization and numerical resolution

flat output trajectories can be represented as:

$

’

’

’

’

&

’

’

’

’

%

rpsq “
nr
ÿ

i“1

Bi,kr

ˆ

s ´ t

T

˙

ri

ψpsq “
nψ
ÿ

i“1

Bi,kψ

ˆ

s ´ t

T

˙

ψi

,@s P rt, t ` T s, (3.15)

where Bi,k is the i-th B-spline basis function of order k, which can be computed

recursively as described in [83].

Given (2.23), in order to ensure state continuity and input boundedness, one

has to guarantee Lipschitz continuity of :v and 9ψ (and continuity of lower order

derivatives). This condition can be met by using open-uniform distributions of

K “ n ` k knots (i.e. ui “ 0, for i “ 1, . . . , k, ui “ 1, for i “ n, . . . ,K, and

uk, . . . , un equally spaced in r0, 1s) and by taking k “ kr “ 4 for r and k “ kψ “ 2

for ψ.

Problem 1 can, finally, be restated as a NLP as follows.

Problem 4 Find P , T , such that:

min
P ,T

T

s.t.
@

P ,Bdr
kr

ptq,Bdψ
kψ

ptq
D

“ σχt ,

@

P ,Bdr
kr

pt ` T q,Bdψ
kψ

pt ` T q
D

“ σχ˚

u
´

P ,Bdr
kr

psq,Bdψ
kψ

psq
¯

P U , @s P rt, t ` T s

(3.16a)

(3.16b)

(3.16c)

(3.16d)

where Bd
kpsq P R

n is d-th order derivative B-spline basis of order k evaluated at

s P rt, t ` T s. The above formulation is adopted in our works to numerically solve

optimal control problems with different costs and constraints.

Although, the system nonlinear dynamics equality constraints (2.16) become

transparent due to the flatness transformation, their nonlinearities are in fact trans-

ferred to the other constraints, here, the real inputs constraints (3.16d). Indeed, the

inputs obtained with u “ φupr, 9r, :r, rp3q, rp4q,ψ, 9ψ, :ψq are more complex to evaluate

than in their original formulation (2.13).

As already said, to guarantee the continuity of the state, the position must

be continuous up to the third order of derivation while the yaw angle must be

continuous up to the first order. To keep the degree of the spline as low as possible

we use two different splines: one for the position vector and an other (scalar) one

for the yaw angle. The parameter s can be directly equal to the time and we will

40

3.5. Differential flatness and B-spline curves for nonlinear programming

choose the knot vector so that all the internal nodes have multiplicity 1. For a 4-th

order clamped B-spline with n control points, the knot vector is

U “
ˆ

0, 0, 0, 0, 0,
1

pn ´ kq , . . . ,
n ´ k ´ 1

pn ´ kq , 1, 1, 1, 1, 1

˙

(3.17)

The number n of control points obviously depends on the number of conditions

that we want to impose to the spline and on the redundancy we want to keep for

further optimization. For each of the two connecting trajectories we must satisfy

boundary conditions determined by the initial and final states. Also in this case

the continuity of the state is guaranteed by the continuity of the position up to the

third order of derivation and of the yaw angle up to the first order of derivation.

This results in a total amount of 8 conditions on the position spline and 4 conditions

on the yaw spline. Therefore, in order to satisfy these conditions, we need at least

eight control points for the position (nr “ 8) and four control points for the yaw

(nψ “ 4). If we choose these values we end up with two square linear systems in

the control points that can be conveniently written in a matrix form

ArBP rB “ BrB ,

Aψpψ “ bψ

(3.18a)

(3.18b)

where the system variables are

P rB “

¨

˚

˚

˚

˚

˝

pT
rB,1

pT
rB,2
...

pT
rB,8

˛

‹

‹

‹

‹

‚

, pψ “

¨

˚

˚

˚

˚

˝

pψ,1

pψ,2
...

pψ,4

˛

‹

‹

‹

‹

‚

(3.19)

The coefficients matrices ArB and Aψ contain the values of the B-spline basis func-

tions and their derivatives at the initial and final times:

ArB “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B1,1pt0q B2,1pt0q . . . B8,1pt0q
B

p1q
1,2pt0q B

p1q
2,2pt0q . . . B

p1q
8,2pt0q

B
p2q
1,3pt0q B

p2q
2,3pt0q . . . B

p2q
8,3pt0q

B
p3q
1,4pt0q B

p3q
2,4pt0q . . . B

p3q
8,4pt0q

B1,1ptf q B2,1ptf q . . . B8,1ptf q
B

p1q
1,2ptf q B

p1q
2,2ptf q . . . B

p1q
8,2ptf q

B
p2q
1,3ptf q B

p2q
2,3ptf q . . . B

p2q
8,3ptf q

B
p3q
1,4ptf q B

p3q
2,4ptf q . . . B

p3q
8,4ptf q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(3.20)

and

Aψ “

¨

˚

˚

˚

˚

˝

B1,1pt0q B2,1pt0q B3,1pt0q B4,1pt0q
B

p1q
1,2pt0q B

p1q
2,2pt0q B

p1q
3,2pt0q B

p1q
4,2pt0q

B1,1ptf q B2,1ptf q B3,1ptf q B4,1ptf q
B

p1q
1,2ptf q B

p1q
2,2ptf q B

p1q
3,2ptf q B

p1q
4,2ptf q

˛

‹

‹

‹

‹

‚

(3.21)

41

3. Optimization and numerical resolution

Finally the known terms are determined by transforming the boundary conditions

χ0 and χf into the equivalent conditions on the flat outputs and their derivatives

BrB “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

rB
T
0

vB
T
0

:rB
T
0

9aB
T
0

rB
T
f

vB
T
f

:rB
T
f

9aB
T
f

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, bψ “

¨

˚

˚

˚

˚

˝

ψ0

9ψ0

ψf

9ψf

˛

‹

‹

‹

‹

‚

(3.22)

The system has a unique solution, provided that t0 ‰ tf and that the knots are

properly chosen.

Any coefficient vector that satisfies the linear constraints (3.18) automatically

satisfies the initial and final state constraints. For simplifications one can fix these

conditions to reduce the number of decision variables. Regarding the B-spline knot

vector, this means that the initial and final elements are fixed.

At this point, any general-purpose optimization strategy can be used to find a

numerical solution to Problem 4. Unfortunately, due to the non trivial non-linearity

of (3.16d), Problem 4 cannot be proven to be convex. The optimization will thus,

in general, return a local minimum. Figure 3.1 shows a solution trajectory and the

inputs profiles obtained from the resolution of Problem 4 with an initial hovering

state at position r “ p0, 0, 1q and a final hovering state r “ p2.5, 2.5, 1q. Note that

satisfaction of the inputs constraints cannot be guaranteed (although it is the case

in this example). The reason is that the inputs are discretized and the inputs can be

very sharp (see Fig. 3.1c). The discretization time-step might be chosen in response

to the sharpness of the inputs.

To sum up, there are three steps to trajectory generation based on the differential

flatness theory; i) The first is to choose flat outputs, so the system can be mapped

to a lower dimensional output space. Meanwhile, the cost function, the boundary

and constraints can also be mapped to the output space; ii) The second is to choose

a suitable basis function to parametrize flat outputs; iii) After parametrizing the

selected outputs, we need to solve a set of coefficients.

In this thesis, we use nonlinear programming to solve for the coefficients of the

B-splines to minimize the cost function subject to bound conditions and trajec-

tory constraints in flat output space. Then, we obtain the flat output trajectories

satisfying the constraints expressed by the computed coefficients.

Note that by suitably parametrizing trajectories with basis functions in the flat

space and by considering linear inequalities in the flat space to model constraints on

42

3.6. Summary

(a) Acceleration profiles that are typical in
bang-bang control.

(b) Trajectory (blue line) and total thrust direction
(red arrows). The green line represents the convex
hull of the spline control points (green dots).

(c) Motors thrust within bounds fm “ 0.1N and fM “

5N .

Figure 3.1 – Results from the resolution of the minimum-time Problem 4 using the SQP
method of the fmincon function in Matlab. The minimum-time trajectory has a duration
of T˚ “ 2.02s and is found after 13 SQP iterations

states and inputs u it is possible to turn this optimization problem into a quadratic

program that can be solved in real-time for planning. This simplification will be

discussed further in Sect. 4.5 and applied in Chapt. 8.

3.6 Summary

In this chapter, we presented a brief overview of the classical numerical methods

for solving constrained optimal control problems. To sum up, constrained optimal

control problems do not contain a closed form solution, approximation techniques

can be employed for a numerical solution. The advantage of indirect methods is that

very accurate solutions can be obtained. The main disadvantage of indirect methods

is their lack of robustness to a poor initial guess. In this thesis we mainly focus in

the parametrization of trajectories with B-splines whose control points constitute

the decision variables of the nonlinear programs we will define. Several properties

of such curves will be exploited in the design of the planning problems.

Now that we presented a way of solving nonlinear problems we focus on the

43

3. Optimization and numerical resolution

on-line generation of optimal trajectories.

44

Chapter 4

Model predictive control: toward

trajectory re-planning

Contents

3.1 Introduction to optimization . 31

3.2 Minimum-time trajectory generation problem 32

3.3 Pontryagin’s minimum principle 33

3.4 Numerical solutions of optimal control problems using nonlinear

programming . 34

3.4.1 Indirect and direct methods for nonlinear programming 35

3.4.2 Nonlinear solvers . 36

3.5 Differential flatness and B-spline curves for nonlinear programming 38

3.5.1 Parametrization of the flat outputs 38

3.6 Summary . 43

4.1 Introduction and context

One can observe that the research community in aerial robotics is exploring more

and more complex objectives such as tracking a fast moving target, avoiding dy-

namic obstacles, passing through several way-points and so on. More details are

given in the state of the art in Chapt. 5. Designing a controller to perform these

tasks would be challenging and could possibly lead to severe sub-optimality. With

optimization-based controllers, it is easy to include different (and possibly conflict-

ing) objectives and constraints. Now, due to increasing performance of computers,

nonlinear programming tends to be more and more tractable and able to substitute

popular controllers. Having robots planning their own trajectories becomes more

45

4. Model predictive control: toward trajectory re-planning

and more practicable. However, in order to be efficient the important goal of opti-

mal trajectory generation is to construct, in real time, a solution that optimizes the

system objective while satisfying system dynamics, as well as state and actuation

constraints.

Moreover, as briefly discussed in Sect. 2.2, since the system’s model is imperfect,

model and parametric uncertainty (e.g., inertial parameters) may lead to substantial

deviation from the reference trajectory. Classic solutions include adaptive control

[125] for estimating the nominal parameters online. However, trajectories that “ex-

cite” enough the estimation may be hard to find and may even conflict with the main

task especially if we are interested in minimum-time control. A second approach is

to design robust control laws typically implementing feed-forward terms for instance

[57]. Finally, another strategy consists in directly designing specific trajectories that

are robust to these modelling errors or nominal parameters uncertainty [126]. MPC

tackles these issues in a slightly different approach: the reference trajectory and/or

command inputs are adapted in real-time via optimization techniques as a feedback

to cope with disturbances and modelling errors. MPC acts more as a high-level

controller in this approach. Note that MPC techniques can incorporate uncertainty

in the control process and are referred as Robust MPC and Stochastic MPC.

Several randomized trajectory generation techniques (such as RRT ˚ and A˚),

originally applied to the mission level (see e.g., [127, 128, 129]), have been recently

reported in complex scenarios [130] and real-time applications for dynamic systems

[131, 130]. We will introduce and discuss more about search-based methods fur-

ther in this thesis since they also play a decisive role in complex motion planning

nowadays.

In this section, we shed light on reactive replanning methods and especially

Model Predictive Control (MPC) also known as Receding Horizon Control (RHC).

By reactive we mean able to generate solutions on-line fast enough to respond

efficiently to sudden changes in the environment (obstacles, target, ...) or new

situations.

4.2 Principle

In Model Predictive Control, an open-loop trajectory is found by solving a finite-

horizon constrained optimal control problem starting from the current state. The

optimal controls of this trajectory are then applied to the system for a certain

fraction of the horizon length, after which the process is repeated (see Fig. 4.1).

Note that the essence of MPC is to optimize over the predictions of a process

behaviour. Therefore, the process model is essential.

46

4.2. Principle

MPC is a family of algorithms which give the possibility to:

• explicitly include in the problem formulation constraints on state, input, out-

put variables, and logic relations;

• consider hundreds of control and controlled variables;

• transform the control problem into an optimization one, where different, and

sometimes conflicting, goals can be stated;

• use very detailed physical (nonlinear, DAE, ...) models with continuous and

integer variables.

• close an optimal control loop

Figure 4.1 – At time k the future sequence of control variables is computed based on the
prediction of the future states. Then the first value of the optimal control sequence is
applied to the system (circled in red). At time k ` 1 the optimization is repeated with the
same prediction horizon.

To implement the receding horizon control strategy, a constrained (and often

nonlinear) optimization control problem must be solved on-line. Due to the com-

plexity of solving a nonlinear programming problem in real-time, the computational

delay cannot be ignored. This is particularly important in aerial and aerospace ap-

plications, where the dynamics is high and the internal control loops are very short.

Originally applied in the process control industry where dynamics are relatively

slow, the application of receding horizon control to aerial vehicles has been pro-

posed and analysed by several researchers [132, 34]. Most popular applications

include system stabilization, evasive manoeuvres, obstacle avoidance and target

tracking.

The receding horizon strategy offers many benefits in this environment, such as

the inherent ability to deal with constraints in the state and control. Examples of

47

4. Model predictive control: toward trajectory re-planning

such constraints commonly encountered include dynamic terrain obstacles, dynamic

or pop-up threats, saturations on the actuators, impair of the capacity of a vehicle.

However, a few requirements are needed, we must guarantee the convergence of

the algorithm at each computation, and guarantee the fastness of the convergence.

Indeed, the faster the algorithm is, the less the previous solution is out-dated so the

more the algorithm will be able to improve it instead of just adapt it to the new

situation.

Moreover, these approaches serve little practical purpose until stable and effi-

cient computational techniques are developed to provide real-time solutions to the

underlying constrained nonlinear optimal control problems. Closed-loop stability

has been well defined in [133] but gets much more difficult to prove when the prob-

lem is nonlinear.

In this thesis we take inspiration from the replanning scheme of receding horizon

control for iteratively solving nonlinear programs. This general idea has been widely

employed in research with several planning strategies in order to face the heavy

computation loads and to meet real-time [67, 33, 34].

4.3 Receding horizon formulation: the linear case

Let us define a general linear optimal control problem by considering the following

system

xpk ` 1q “ Axpkq ` Bupkq
ypkq “ Cxpkq

(4.1a)

(4.1b)

where x P R
n is the state vector of dimension n, u P R

m is the input vector of

dimension m and y P R
p is the output vector of dimension p. At time k we want to

compute the sequence of future control variables

up.q “ rupkq, upk ` 1q, ...upk ` N ´ 1qsT (4.1c)

minimizing the objective

Jpxp.q, up.q, kq “
N´1
ÿ

i“0

p}xpk ` iq}2Q ` }upk ` iq}2Rq ` }xpk ` Nq}2S (4.2)

where Q “ QT
ě 0, R “ RT

ě 0, S “ ST
ě 0 play the role of weighting matrices

and N denotes the prediction horizon. Finally, }xpk ` Nq}2S is the terminal cost.

The optimal solution to this problem is given by the state-feedback control law

u0pk ` iq “ ´Kpiqxpk ` iq, i “ 0, 1, ..., N ´ 1 (4.3)

48

4.3. Receding horizon formulation: the linear case

where u0p.q is the sequence of optimal inputs and the gain Kpiq is given by the

expression

Kpiq “ pR ` BTP pi ` 1qBq´1BTP pi ` 1qA (4.4)

and P piq is the solution of the difference Riccati equation

P piq “ Q ` ATP pi ` 1qA ´ ATP pi ` 1qBpR ` BTP pi ` 1qBq´1BTP pi ` 1qA
(4.5)

with terminal condition

P pNq “ S (4.6)

The weighting matrix S plays a role in closed loop stability, a typical choice is

a quadratic Lyapunov function especially for the generalization to nonlinear and

constrained systems, see [134] for instance. Finally, recalling the Lagrange equation

xpk ` iq “ Aixpkq `
i´1
ÿ

j“0

Ai´j´1Bupk ` jq, i ą 0 (4.7)

and defining

Xpkq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

xpk ` 1q
xpk ` 2q

...

xpk ` N ´ 1q
xpk ` Nq

˛

‹

‹

‹

‹

‹

‹

‹

‚

, A “

¨

˚

˚

˚

˚

˚

˚

˚

˝

A

A2

...

AN´1

AN

˛

‹

‹

‹

‹

‹

‹

‹

‚

, Upkq “

¨

˚

˚

˚

˚

˚

˚

˚

˝

upkq
upk ` 1q

...

upk ` N ´ 2q
upk ` N ´ 1q

˛

‹

‹

‹

‹

‹

‹

‹

‚

(4.8)

B “

¨

˚

˚

˚

˚

˚

˚

˝

B 0 0 ¨ ¨ ¨ 0 0

AB B 0 ¨ ¨ ¨ 0 0

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
AN´2B AN´3B AN´4B ¨ ¨ ¨ B 0

AN´1B AN´2B AN´3B ¨ ¨ ¨ AB B

˛

‹

‹

‹

‹

‹

‹

‚

(4.9)

then the future state variables are given by

Xpkq “ Axpkq ` BUpkq (4.10)

The optimal cost can be found as

J̄pxpkq, up.q, kq “ XT pkqdiagpQqXpkq ` UT pkqdiagpRqUpkq (4.11)

where the term xT pkqdiagpQqxpkq can be ignored since it does not depend on Upkq.

49

4. Model predictive control: toward trajectory re-planning

Linear constraints on the state, inputs and outputs can easily be handled with

this framework. Let us define the following constraints the problem is subject to

xpk ` 1q “ Axpkq ` Bupkq

¯
u ď upk ` iq ď ū i “ 0, 1,, N ´ 1

¯
x ď xpk ` iq ď x̄ i “ 0, 1,, N ´ 1

¯
y ď ypk ` iq ď ȳ i “ 0, 1,, N ´ 1

(4.12a)

(4.12b)

(4.12c)

(4.12d)

This problem (quadratic cost function, linear constraints) can be easily solved by

means of a QP method with very reasonable computational time (which obviously

depends on the problem size).

However, for constrained (and obviously nonlinear) systems the control law is

implicitly defined, i.e., its value can be numerically computed through the solution

of the optimization problem, but its analytic expression is unknown. However, the

principle is the same, only the first element (in general) of the input sequence of the

open-loop solution is applied to the system which defines a time-invariant control

law for the closed-loop of the form u0pkq “ χRHpkq. For the linear case we have

u0pkq “ ´Kp0qxpkq (4.13)

with

Kp0q “ pR ` BTP p1qBq´1BTP p1qA (4.14)

obtained by iterating the Riccati equation backwards from

P pNq “ S (4.15)

Now, one can address the case of nonlinear systems which constitutes a much wider

class than linear systems. Considering the applications, one can resort to local

linearization of the system dynamics and constraints which is a classical technique

in chemical industry. Note that this technique was successfully applied to the control

of robot manipulators [135] to achieve fast motions.

When applied to nonlinear systems, the algorithm may demand tremendous

computational power, and can exhibit poor convergent stability if not implemented

properly. For instance, if one chooses a large prediction horizon the solver may not

be able to compute a solution fast enough. If too short, the resulting solution may

lead to instabilities and even to a failure of the task since the problem may not

have enough degrees of freedom to converge to a solution. These difficulties have

largely prevented its application to stability critical nonlinear systems with fast

dynamics. Increasingly powerful and affordable computing facilities combined with

better understanding of receding horizon control’s stability properties have revived

interests in this area. See e.g., [133, 136] for a good review of recent work in this

field.

50

4.4. An application of MPC to quadrotor control

4.4 An application of MPC to quadrotor control

In this section we present some simulation and experimental results to illustrate the

role of a MPC scheme applied to trajectory tracking with a quadrotor in presence

of obstacles1.

Since MPC relies on a model equations we choose to use the Brunosvky equiv-

alent linear form (A.32) in the flat space. Without loss of generality we do not

plan over the yaw angle that we assume it is kept constant. Let us define a classic

objective function

Jprp.q,up.qq “
N´1
ÿ

i“0

p}ri ´ r˚

i }2Q ` }ui}2Rq ` }rN ´ r˚

N}2S (4.16)

where ri “ pxi, yi, ziqT and u “ pxp4q
i , y

p4q
i , z

p4q
i qT are the predicted trajectory and

inputs respectively, r˚

i denotes the i-th reference point. We choose the Gerono

lemniscate as the desired reference path defined at time t by

xptq “ r cospαtq sinpαtq,
yptq “ r cospαtq,
zptq “ z0

(4.17a)

(4.17b)

(4.17c)

Therefore, r˚

i is defined as a moving point on the reference path and we penalize

the deviation of the quadrotor from this reference point over the prediction horizon

N . In order to evaluate the MPC response to obstacle avoidance, we add two planes

along the X and Y-axis located in xwall1 and ywall2 and a spherical obstacle of radius

robs at position robs that overlap with the reference path (see Fig. 4.2). We model

the quadrotor as a sphere of radius l centered in r. The geometric constraints are

defined as

}r ´ robs} ě robs ` l,

x ď xwall1 ` l,

y ď ywall2 ` l

(4.18a)

(4.18b)

(4.18c)

As already discussed, thanks to differential flatness any smooth trajectory in the

space of flat outputs can be followed provided that derivatives are correctly bounded.

Nevertheless, this powerful property can be difficult to apprehend and implement

for real systems involving highly nonlinear dynamics. The following section details

alternatives to the definition of the dynamic constraints for the quadrotor.

1This work is the fruit of a common work conducted with Gerardo Rodriguez who completed
his Master Thesis at Inria Rennes

51

4. Model predictive control: toward trajectory re-planning

Figure 4.2 – Simulated environment. The blue line represents the lemniscate path to track.
The quadrotor has to avoid collisions with a sphere and two walls while keeping a minimal
distance with the reference path.

4.4.1 A relaxed formulation based on differential flatness

In some cases, changing the planning space to the flat space may not grant obvious

physical meaning and makes the equations, and particularly the expression of the

real system inputs much more complex than their original formulation.

Now, a very debated question is how to define these constraints on the dynamics.

Basically, it is inherent to questions of formulation complexity, conservatism and

planning strategy. Namely, it would be better of course to consider the real physical

limitations of the motors as constraints to guarantee that the trajectories are feasible

by the real system but considering the application it may be more attractive to use

less complex constraints (linear if possible) on different level of the dynamics.

[137] addresses the generation of smooth trajectories in the kinodynamic state

space with inequality constraints on the absolute value of the derivatives of the flat

outputs defined as follows

|v| ă vmax

| 9v| ă amax

|:v| ă jmax

|
...
v| ă smax

(4.19a)

(4.19b)

(4.19c)

(4.19d)

(4.19e)

Some works have focused on estimating the feasible set in flat output space by

polytopic approximations (e.g., [138]), however this set is generally a non-convex

function of nonlinear inequalities and is a hard optimization problem unto itself.

In this preliminary work we consider the abovementioned constraints (4.19) to

achieve the desired replanning rate and closed-loop stability. Indeed, using con-

straints directly on the motors thrust with constraint (3.2e) were found too complex

for the solver.

52

4.4. An application of MPC to quadrotor control

Similar choices were made in [6] using constraints on the acceleration and the

jerk. Constraints on the total thrust are evaluated afterwards and the problem is

rescaled until they are satisfied. The conservative nature of the jerk bounds means

that only a fraction of the allowable body rates is typically used. If these exceed

limitations, it was shown that a feasible trajectory can always be found by reducing

the allowable jerk values.

4.4.2 Results and delay compensation

The MPC scheme was carried out using the ACADO toolkit [139] which implements

a multiple-shooting algorithm. ACADO solves multiple shooting problems thanks

to a SQP algorithm, together with state-of-the-art techniques to condense, relax,

integrate and differentiate the problem. The quadrotor dynamics were simulated

using V-Rep2 at 150Hz. The generated trajectories of the flat outputs were sent

to TeleKyb [140] at a rate of 30Hz which then computed the actual control inputs

using the geometric controller developed in [141].

A major issue in the implementation of receding horizon control is handling the

computational delay associated with the real-time optimization. We present here a

simple method for designing an initial guess and take delay into consideration for

the replanning. We select a section of the optimal states sequence which is sent

to the controller. Since the control loop runs faster than the solver, we choose to

interpolate cubic splines between the optimal states to smooth the controller action.

Finally, to compensate for the delay (assumed constant at 1/30ms) we predict the

initial state for the next OCP by projecting the previous solution in the future (i.e.,

30ms ahead of the current time).

We opted for the following bounds: vmax “ 1.5m{s, amax “ 4m.s´2, jmax “
15m.s´3, smax “ 100m.s´4. The robot is able to plan trajectories that avoid the

obstacles with a prediction horizon N “ 50. The considered optimal control problem

is solved within around 30 ms. The robot profiles during simulation are shown in

Fig. 4.3.

To illustrate the reactivity of MPC we conducted a second simulation where

a human operator is sending velocity commands (up to 1.5m/s) to the quadrotor

via a joystick. We encode collision avoidance constraints so that safe and high-

speed navigation among obstacles is handled by the MPC action, see Fig. 4.4. We

impose the following bounds: vmax “ 1.5m{s, amax “ 10m.s´2, jmax “ 30m.s´3,

smax “ 150m.s´4.

2http://www.coppeliarobotics.com/

53

4. Model predictive control: toward trajectory re-planning

Figure 4.3 – The upper left figure shows the robot path (in red) and the reference path (in
green). The obstacles are represented with the black volumes. The other figures show the
derivatives of the flat outputs x, y, z.

Figure 4.4 – The upper left figure shows the robot path in a cluttered environment. The
robot is able to avoid the static obstacles even though the operator is sending high velocity
commands with the joystick. The other figures show that the dynamic constraints are
respected thanks to the MPC action. Note that the quadrotor reaches linear velocities up
to 1.5m/s

54

4.5. Summary

4.5 Summary

The results presented in this chapter demonstrate the potential of real-time receding

horizon control for constrained systems with fast dynamics. Real-time RHC control

represents a revolutionary alternative to the traditional linear or nonlinear controller

design with many benefits.

First, in most cases, a global system model and objective function are easier

to obtain than a traditional linear or nonlinear controller that works globally. For

a complex nonlinear system, classical controller design techniques may show weak

stability proofs and may not exhibit flexible actions to the different possible situa-

tions and environment changes. In comparison, given an accurate nonlinear model

and adequately defined objective function, real-time RHC could provide a global

optimal control that is elegant and flexible. For example, RHC can be easily re-

configured by changing the model or any parameter (see [142] for an illustration of

RHC strategies applied to complex systems).

Second, real-time RHC can provide optimal control solutions, even for systems

with complex constraints such as actuator saturation, operational limits, terrain

avoidance, etc. In contrast, it is extremely difficult to design a classic controller for

constrained systems.

Third, with accurate modelling and precise objective definition, system perfor-

mance could be far more superior than classic linear or nonlinear controller, partic-

ularly for very aggressive manoeuvring that pushes the constraint boundaries.

Fourth, in many cases, real-time RHC eliminates the necessity of both inner

loops and outer loops that is common in classic tracking and stability control de-

sign. Instead, trajectory generation and robust control are performed in a single

integrated design with potentially better performance and higher bandwidth. In

this chapter we used ACADO which is specifically designed for implementing MPC

problems. Yet, handling more complex and nonlinear constraints on the motors

thrust did not lead to satisfactory results, especially for real-time control. In our

thesis we opted for a different on-the-shelf nonlinear solver to generate feasible and

reactive trajectories in the presence of multiple nonlinear constraints for accom-

plishing several vision-based tasks.

Now that we have presented the main ingredients and concepts used in this

thesis, we introduce the most relevant contributions identified in the literature that

are related to our work.

55

Chapter 5

Aggressive trajectory generation

and vision-based planning for a

quadrotor: related works

Contents

4.1 Introduction and context . 45

4.2 Principle . 46

4.3 Receding horizon formulation: the linear case 48

4.4 An application of MPC to quadrotor control 51

4.4.1 A relaxed formulation based on differential flatness . . . 52

4.4.2 Results and delay compensation 53

4.5 Summary . 55

5.1 Optimization-based methods

Many dynamic manoeuvres have been performed in the recent years using opti-

mization methods. They include fast translations [27], ball catching [33] and flights

through narrow gaps [24] for instance. In [24] a quadrotor flies through a window

using vision as feedback in a complete autonomous way using only onboard sens-

ing and computing. High angular rates were achieved in real experiments. The

aggressiveness of motions is mainly limited by the quality of the visual feedback

(especially due to motion blur).

Due to the growing computation power of computers it becomes more and more

practicable to generate trajectories online. Yet, to meet this challenging demand,

several works have been developing mathematical tools to efficiently generate feasi-

ble trajectories close to the actuation limits by relying on more or less conservative

57

5. Aggressive trajectory generation and vision-based planning for a

quadrotor: related works

approaches. We can refer to the following leading strategies listed below. All of

these methods rely on a particular optimal criterion.

‚ Using a class of lightweight motion primitives: Several approaches merge

optimal trajectories and reactive re-planning by generating computationally

lightweight motion primitives as an implicit feedback control law. These sim-

ple curves (polynomials, splines, lines) constitute more or less rich trajectories

that are easy to manipulate and evaluate at a lower level. [6, 33] use the Pon-

tryagin’s minimum principle to generate candidate time-optimal trajectories

between two states that are sent to the controller after checking that the con-

straints are satisfied. In [33] a two-dimensional quadrotor model is considered,

the axes are decoupled and conservative feasibility tests are developed on the

total thrust and the angular rates to validate the generated trajectories that

are shown in Fig. 5.1. Nevertheless, position constraints are not considered.

To make such an algorithm successful, the classic paradigm in control schemes

is addressed, namely the trade-off between trajectory quality (i.e., in terms of

feasibility, optimality, constraints satisfaction, ...) and planning rate (which

needs to be high for such an agile system).

Figure 5.1 – Sampled motion primitives for a catching manoeuvre. The presented algorithm
is able to generate about 6700 feasible motion primitives per second, from [33].

‚ using graph-search methods: the approach relies on exploring the state space

with probabilistic methods such as RRT, RRT* or A* algorithms. A path is

built as a succession of straight paths [143] or curves [144] or motion prim-

itives (as shown in Fig. 5.2) forming a set of vertices connected by edges

with a certain level of continuity [145, 131]. Generally, various (and complex)

constraints can be considered. Constraints can be checked at each extended

vertex using simple tests. If constraints are satisfied the vertex is added to

the graph.

‚ using Mixed-Integer Programming: this method involves problems in which

some of the variables are integers. The algorithm is usually employed for

58

5.1. Optimization-based methods

Figure 5.2 – Example of motion primitives from an initial state for an acceleration-controller
system (left) and a jerk-controller system (right). The black arrow indicates the correpsond-
ing control inputs, from [145].

finding collision-free paths passing through a set of keyframes by minimizing

some criterion. This planning method is capable of handling a large set of

constraints but usually only enforces collision avoidance with obstacles or

body parts and plans a single trajectory with integer constraints (see e.g., [29]

Fig. 5.3 or [146] for a single quadrotor, [147] for multiple agents and [148]

for multi-body system). The environment is often partitioned into convex

sub-regions in the configuration space, constraints are linear and differential

flatness is used for tractability reasons but the solver generally takes seconds

to hundreds of seconds to determine a proper solution.

Figure 5.3 – Agile path tracking with a micro quadrotor in a heavily cluttered environment
of strings and poles. The algorithm takes about 10 minutes to return a solution, from [29].

‚ using direct optimization: this method (that we presented in Chapt. 3) is

capable of dealing with generic problems with various constraints. Nonlin-

ear problems can be solved numerically using SQP for instance to generate

online optimal solutions if properly posed. Re-planning strategies have been

demonstrated by successively solving OCP, such as MPC [34].

‚ using a combination of the aforementioned techniques: in many occasions, a

collision-free path is built and a second step involves an optimization program

that computes a path of higher resolution taking the system dynamics into

59

5. Aggressive trajectory generation and vision-based planning for a

quadrotor: related works

account. Examples along this line are numerous, e.g., [146] combines mixed-

integer programming and direct optimization, [31] combines graph-search and

direct optimization to perform high-speed flights for a quadrotor, and [149]

combines a variant of the three methods.

5.2 Graph-search approaches

These approaches that we briefly introduced earlier in Sect. 5.1 are widely exploited

in the literature. Also very generic and computationally more and more attractive,

they have been successfully applied to solve many motion planning problems for

UAVs. Searching algorithms such as RRT* or A* are known for suffering from

the curse of dimensionality–the ability to properly scale to high-dimensional space.

Nowadays, several techniques have been proposed to overcome these limitations.

Many authors separate the problem into two steps: an optimal path is found through

graph-search without considering dynamic constraints. Then, an optimal dynamic

trajectory is generated by optimizing over a collection of waypoints. This second

step plays the role of enforcing dynamic feasibility and constraints by adapting

the trajectory speed [41], jerk [67] or time [1] such that input constraints are not

violated. This process is generally done recursively or using a scaling algorithm

[33, 150] until dynamic constraints become active. These approaches are usually

sufficiently fast to provide a feedback loop by re-planning the reference trajectory

at every controller update. In [73] the authors combine RRT* with polynomial

trajectory generation to compute dynamically feasible trajectories for a quadrotor

using a two-step approach (see Fig. 5.4). A variant of RRT for flat systems is

detailed in [151] to produce smooth dynamically feasible motion plans in real-time

and for online navigation in dynamic environments with a quadrotor in [131]. Both

works exploit differential flatness to build a look-up table of pre-computed feasible

motion primitives.

However, several classes of problems cannot be treated using this approach. For

instance the robot orientation cannot be properly considered at the geometric stage

in general. The sole counter example is [145] where constraints on the quadrotor

attitude are considered at the planning stage (see Fig. 5.5).

Finally, such techniques become more and more adapted to real-time planning

and successfully applied to navigation in unknown environments, see e.g., [152, 149,

153].

60

5.3. The minimum-time problem

Figure 5.4 – A path is built from a straight-line RRT* (middle figure) and then refined to
obtain a minimum-snap trajectory that is feasible for the real system (right figure). The
approach is much faster than a RRT* with a polynomial steer function (left figure), from
[73]).

Figure 5.5 – A minimum-jerk trajectory is found for ensuring safe navigation among ob-
stacles. The collision avoidance relies on the robot occupancy modelled as an ellipsoid (in
pink) which is more accurate than a spherical model (in red), from [130]).

5.3 The minimum-time problem

Naturally, the generation of aggressive trajectories often resorts to the minimization

of time. Having the flying time T as a decision variable is very complicated. It is

a free parameter (i.e., it is not directly subject to any constraints) but it strongly

acts on the dynamic constraints and the shape of the trajectory (see Fig. 5.6).

Figure 5.6 – Shape of a trajectory passing through waypoints with different flying times,
from [73].

61

5. Aggressive trajectory generation and vision-based planning for a

quadrotor: related works

If trajectories are parametrized with polynomials, T appears in each derivative

as a nonlinear decision variable resulting in re-evaluation of the basis at each solver

iteration. Moreover, as T converges to zero numerical stability can be compromised.

[154] overcame with this numerical issue by minimizing instead the settling time

N P N, namely the number of discrete-sampling intervals required to reach the

goal. This method greatly alleviates the numerical resolution and is able to sup-

press high frequency chattering due to measurement noise especially occurring in

the vicinity of the origin. In [135] a similar penalization is considered but in a hier-

archical optimization framework to approach minimum-time trajectories for robot

manipulators.

In a similar philosophy, many works rely on scaling approaches [67] to perform

motion close to the actuation limits. Bang-bang strategies [56] are designed for

quadrotors. [137] relies on a closed-form solution to compute arcs in the kinody-

namic state space that tend to minimize the flying time. Here, the intuition is to

minimize the time spent to reach the full speed during a flying phase resulting in

bang-similar-bang. In the end it is shown that this implies to maximize time spent

at maximum snap during jerk variations and to minimize the durations of snap

variations.

[155] reformulates the minimum-time problem by expressing the quadrotor dy-

namics in a new set of “transverse” coordinates with respect to the reference path.

However real-time could not be achieved.

In our works (e.g., [2, 4]), due to the underactuation a quadrotor equipped with

a camera may have to increase its height in order to enlarge its field of view for

converging faster towards a visual target while keeping it in the image plane. In this

context, rescaling strategies might not be able to reproduce such a behaviour and

will lead to severe sub-optimal solutions since it only acts on the single temporal

parameter. The same observations can be made when addressing collision avoidance.

5.4 Vision-based control for the underactuated

quadrotor

As already discussed, most vision-based approaches assume first-order or fully-

actuated systems. Classic methods cannot be directly applied to quadrotors due to

their complex dynamics and inherent underactuation that conflicts with the main

servoing task.

In the next section we present how the issues related to vision with underactu-

ated systems are addressed in the literature.

62

5.4. Vision-based control for the underactuated quadrotor

5.4.1 Visibility constraints and occlusion avoidance

A common approach in IBVS is to decouple the rotational kinematics of the vehi-

cle from the image features. The image feature error is projected in a “rotation-

compensated” camera frame or “virtual plane” (see Fig. 5.7) which is horizontal

and has the same position and yaw angle of the real camera’s image plane. Thus,

by re-projecting the image points using attitude measurements the camera rota-

tion is decoupled from the translation motion. This virtual plane also facilitates

the estimation of depth of image points. This strategy has been applied in several

works, e.g., in [93, 156, 157, 158, 103] for the design of globally stable dynamic

IBVS schemes. Although these works develop controllers that guarantee the image

error in the rotation-compensated frame will converge to zero, the quadrotor un-

deractuation is not explicitly taken into account by the control design. Therefore,

it is still possible for the image features to completely leave the camera field of view

if the system has significant rotation, resulting in tracking failure for high speed

manoeuvres.

[159] presents several IBVS control techniques which decouple the image space

from the task space by using spherical image moments as features [160]. Since the

image error becomes a function of position only, large rotations could still occur,

making the system vulnerable to failure as previously described.

Although, dynamic visual servoing schemes have been developed for second order

or under-actuated systems (e.g., [159], [157], [161] or [162] for quadrotors), the

underlying assumptions fail for high-speed manoeuvres and in any case, do not take

into account possible loss of visibility or occlusions. Yet, the effort was allocated to

proving stability of the closed-loop dynamics and providing robustness analysis.

In [163, 164] a dynamic IBVS controller based on a backstepping method is

proposed using first-order spherical image moments as visual features. Both papers

provide interesting passivity properties and rigorous proofs of closed-loop stability,

but the proposed interaction matrices remain ill-conditioned as the image feature

is insensitive to change in altitude. Hence, performance suffers from a low rate of

convergence in altitude. Following these works [165] later eliminates the need of

height estimation and the use of an external sensor for measuring the translational

velocity. Guarantees of convergence are given for landing on a moving target. How-

ever, features are assumed to remain visible at all times and such a controller may

not be applied to higher-speed translational motions.

[166] introduced a controller that takes into account the quadrotor underactu-

ation and uses a virtual spring force to prevent the robot from rotating too much.

However, a small change in roll or pitch may cause a large change in the proposed

interaction matrix. This clearly reduces the quadrotor reactivity and, in any case,

63

5. Aggressive trajectory generation and vision-based planning for a

quadrotor: related works

Figure 5.7 – Virtual image plane always parallel to the ground, from [157].

does not strictly guarantee the satisfaction of visibility constraints.

Some authors focused on feature estimation for recovering the visual-based task

rather than avoiding occlusions [167] or visibility losses [168]. In [169] the authors

propose a vision-based algorithm to autonomously track a moving object. The

tracking algorithm is robust to occlusions but does not avoid them and assumes the

target stays in the field of view.

Potential fields are classically used for designing control laws for repelling visual

cues from the projected obstacles in the image [170],[171] but this technique may

strongly conflict with the nominal servoing task and increase the chance of falling

into local minima. Gradient Projection Methods (GPM) use the system redundancy

to mitigate the completion of two tasks [172],[173]. The secondary task gradient is

projected on the null-space of the main task and uses the remaining redundancy to

complete the avoidance task [172]. However, if all DOF are used one cannot apply

this approach. Obviously, the redundancy formalism does not appear reasonable

when dealing with underactuated robots such as quadrotors. Using the same redun-

dancy formalism spirit a 6-DOF robot is controlled in [173] while simultaneously

avoiding occlusions and joint limits. A relaxed control law is proposed which uses

all DOF to simply prevent the main task error from increasing while performing a

secondary task.

Another approach is to use activation functions in the control law to enable

smooth transitions between safe and forbidden regions in the image plane [174].

The control acts on features that are out of some confidence area in order to release

some degrees of freedom to manage others tasks. However, this technique raises

stability issues.

64

5.4. Vision-based control for the underactuated quadrotor

After an examination of the relevant literature we can conclude that vision-

based control laws for underactuated systems, such as quadrotors, oftentimes do

not explicitly ensure that the relevant image features stay in the field of view of

the camera and hardly deal with occlusions. In any case, they can be applied to

perform agile manoeuvres. Note that visual servoing controllers for fully actuated

second-order systems have been proposed in the literature (see, e.g. [108, 109].

In the context of vision-based optimization, using visual features as flat out-

puts has been considered. [175] extended their peer work [176] by encapsulating an

image-based flatness formulation inside a MPC scheme by using the target image

coordinates of a mobile robot as flat outputs. Now, visibility constraints appear in

the flat space and thus are more simple to satisfy. However, this work only considers

a fixed overhead camera. Further improvements were made more recently in [158]

by finding flat outputs in the image plane considering a fixed camera attached to

a 2D quadrotor to perform visual-based agile grasping in the XZ plane Fig. 5.8.

The authors presented a trajectory generation method which guarantees dynamic

feasibility and enables incorporating visual constraints as linear constraints. How-

ever, the existence of differential flatness is only possible with some model conser-

vatism/approximations. Indeed, the mapping was done in a virtual image plane

which is it not affected by the pitch angle. Therefore, the visibility constraints are

not specified in the real image plane and may be too restraining for large rotations.

Figure 5.8 – Aggressive catching manoeuvres at 3m/s in the sagittal plane using a monocular
camera. The catching strategy is inspired from the natural behaviour of the bald eagle
snatching its prey, from [158].

The generation of motion primitives candidates presented in [33] has been ap-

plied to autonomous landing on a visual target in [168]. The target visibility is

not guaranteed but a Kalman filter is used to estimate the target position in case

of partial visibility losses. Nevertheless, this technique might not be suitable to

complex 3D motions when the trajectory is shaped by visibility constraints for in-

stance. Indeed, in many occasions the quadrotor may have to accelerate upwards

in order to compensate for the camera rotation that inherently repels the image

features from the image plane center. An other relevant degree of freedom used for

65

5. Aggressive trajectory generation and vision-based planning for a

quadrotor: related works

keeping visibility of point features is to also combine rotations along zB to exploit

the “shape” of the field of view (if one considers a square field of view). This is

something that we observed in our works [2, 3] but rarely seen in the literature.

Recently, self-collision and simple occlusion avoidance tasks for a humanoid were

incorporated in a quadratic optimization problem in [177]. Visibility of the feature is

handled by using an avoidance task as in [174]. A more precise occlusion avoidance

formulation is proposed in [178] but uses a larger set of visual constraints. In [179]

the authors explored a randomized kinodynamic hybrid path planning approach

applied to a manipulator for finding a feasible path. It satisfies a great deal of

constraints both in the image and in the joint space but takes a few minutes to

return a solution (see Fig. 5.9).

Figure 5.9 – A visual servoing task is performed with a manipulator while avoiding occlusions
and loss of the visibility features, from [179].

More and more works incorporate perception objectives within an optimization

program to keep some visual features in the field of view of the camera in order to

improve the quality of the vision-based state estimation [180] (see Fig. 5.10a) or for

keeping a visual feedback of a moving target [104] as shown in Fig. 5.10b.

Finally, MPC has taken down many of these issues through numerical optimiza-

tion. [99] implemented a dense hybrid optimal visual servoing scheme to steer the

underactued quadrotor towards a goal pose encoded as a desired goal set of image

features. It uses a Perspective-n-Point (PnP) algorithm to estimate the goal state

then an optimal trajectory minimizes the reprojection error of the features along

the trajectory and the deviation of the path from the goal state. Although a large

set of image features are considered there is no guaranty that enough features re-

main in the field of view since it is not encoded as a hard constraint. [181] uses

barrier functions in a MPC framework to keep a quadrotor in the field of view

of a mobile platform with a upward-looking camera in the presence of external

disturbances. In [72] smooth collision-free trajectories are generated for multiple

quadrotors by predicting the agents motion using pose observations. A stochastic

MPC was implemented in [105] for autonomous aerial grasping. The MPC action

66

5.5. Perception and uncertainty-aware planning

(a) A quadrotor is equipped with a front-looking
camera and is asked to fly at 3m/s around a re-
gion of interest while keeping it visible in the field
of view of its camera, from [180].

(b) A quadrotor tracking a moving target with
a downward-looking camera. The quadrotor is
able to increase its height in order to compen-
sate for the camera rotation as the quadrotor
moves forward, from [104].

Figure 5.10 – Examples of optimal navigation merging aggressive motion and perception
objectives.

is able to respect visibility constraints but the achieved trajectories are close to

near-hovering. Field of view and inputs constraints were considered in a fully au-

tonomous aggressive target tracking receding horizon framework relying on onboard

sensors with a downward camera attached to the quadrotor used for estimating the

target position [104] which constitutes one of the most relevant works. The real

robot velocity hits 5 m/s and was able to compensate for the camera rotation by

accelerating upwards (see Fig. 5.10b). The authors algorithm generates smooth

trajectories by minimizing the relative velocity error and the jerk first and then

penalizing the relative position error after some proximity threshold is reached. We

believe such a strategy contributes in improving motion stability but may however

abate the motion aggressiveness.

In the aforementioned works, only a few consider hard visibility constraints for

a fully actuated robot for aggressive motion, i.e., [104]. A second relevant work

considers tracking a moving target with a quadrotor while avoiding obstacles in

an unknown environment by generating on-line smooth and dynamically feasible

trajectories provided that the target stays in the field of view [182].

5.5 Perception and uncertainty-aware planning

Since vision plays a major role in state estimation, many works have merged visual

objectives with stochastic problems.

In [183] the authors resort to an RRT* algorithm to find optimal and online

paths that minimize the pose uncertainty by driving a quadrotor equipped with

a downward-looking camera toward regions of rich texture (see Fig. 5.11). The

approach relies on photometric information of the ground in the context of visual

67

5. Aggressive trajectory generation and vision-based planning for a

quadrotor: related works

odometry. This work is one of the first to incorporate perception goals in path

planning with a quadrotor. However, the planning takes place in a 2.5D set-up

(motion in the horizontal plane and at a given fixed height) and is not designed for

generating dynamic motions.

Figure 5.11 – The two figures on the left show paths obtained without taking the state
uncertainty into account (represented by the orange ellipsoids). With the presented method
the planner is able to find paths with minimal uncertainty (the blue ellipsoids are much
smaller), from [183].

A comment we can make on trajectory smoothness (already mentioned in the

Introduction of this thesis) is that smoothness may also play a decisive role in

vision-based trajectory since a jerky camera motion with high angular acceleration

especially will make the projection of a 3D point onto the image suffer from motion

blur, making it very complicated, if not impossible, to extract meaningful informa-

tion. This issue has been recently raised in [180] in the context of robust visual

perception with a fast moving autonomous quadrotor. The authors adopt a MPC

framework to optimize over perception objectives for providing robust and reliable

visual feedback during motion. The authors choose to maximize the visibility of

a collection of points of interest by penalizing the deviation of their projections

from the image center and the velocity of their projections in the image plane (see

Fig. 5.10a). Here, a forward-looking camera is attached. The quadrotor is able to

exploit the height of the room to compensate for the pitch while moving to manage

the visibility of points of interest. Moreover, the planning naturally mostly acts

on the system’s heading since rotating around zB directly affects the visibility and

at a lower energy cost than for accelerating upwards (since the total thrust is also

penalized).

Recently, the Robotics & Perception Group at ETH developed a new dynamic

vision sensor or event-based camera [22] which is way less sensitive to motion blur

and change of illumination and has a lower-latency compared to classic CCD cam-

68

5.6. Summary

eras. A second solution exploited in [21] is to control the exposure time of cameras

to limit motion blur. Thus, motion blur issues can be managed both by hardware

and control solutions.

In [184] the authors consider a nonholonomic robot that has to reach a goal

area of a given size delimiting the admissible position uncertainty (Fig. 5.12). The

authors implemented a RRT variant where uncertain states are modelled as boxes.

Figure 5.12 – A robust path is found for a unicycle. Notice that the problem may not be
feasible if the final constraint is too tight or if the level of uncertainties is too large (upper
pictures), from [184].

Other recent works have considered underactuated robots and sensor limitations

in the context of active exploration [185, 186]. However, in these works the robot

dynamics are simplified and the input constraints (i.e. the propeller speed) are not

strictly imposed. An active sensing strategy considering the full quadrotor dynamics

was proposed in [187], but without considering strict input constraints. Moreover,

these works focus on environment coverage and a correct robot localization and none

of them attempts to maintain visibility with respect to a specific set of features,

which could, instead, be useful for target tracking applications.

5.6 Summary

In contrast to the presented works, our contributions merge vision-based and motor

thrust constraints for the full dynamics of the quadrotor within fast and efficient

69

5. Aggressive trajectory generation and vision-based planning for a

quadrotor: related works

receding horizon frameworks that are capable of generating smooth and feasible

optimal trajectories at the camera rate (30Hz) even though the problem is highly

nonlinear. The re-planning strategies have been tested in various simulation tests

and also with a real quadrotor by relying on an external motion capture Vicon

system.

We have seen that a few works are tackling the issue of minimizing the uncer-

tainty along a specific trajectory. However, depending on the environment topol-

ogy and the visual features present in the scene, such a trajectory may return a

solution that takes large detours before reaching the goal. Indeed, assuming an

optimal solution exists providing continuous visual sensing (e.g., the system passes

by every visual landmarks present on the scene), the resulting trajectory would be

sub-optimal in terms of completion time and energy. We address this issue in our

work presented in Chapt. 8.

70

Part II

Contributions

71

Chapter 6

Aggressive vision-based trajectory

generation

Contents

5.1 Optimization-based methods . 57

5.2 Graph-search approaches . 60

5.3 The minimum-time problem . 61

5.4 Vision-based control for the underactuated quadrotor 62

5.4.1 Visibility constraints and occlusion avoidance 63

5.5 Perception and uncertainty-aware planning 67

5.6 Summary . 69

6.1 Introduction

In this section we derive several optimal frameworks to perform reactive tracking

of a moving target while ensuring visibility constraints. We demonstrate that the

defined optimal problems are suited for a re-planning strategy inspired from MPC.

To do so, we present our hot-start algorithm and the different techniques used for

aiding the SQP solver converge to a local minimum within the given time allocation.

6.2 Reactive target tracking: a minimum-time optimal

problem

Referring again to Fig. 6.1 let us assume the robot to be equipped with an on-board

camera whose pose w.r.t. B is known from a preliminary calibration. Without loss

of generality we assume that the camera is down-facing with optical center in OB

73

6. Aggressive vision-based trajectory generation

Figure 6.1 – Quadrotor model

and optical axis parallel to zB. An image processing algorithm (whose design is

beyond the scope of this work) provides a measure of the perspective projection of

a collection of N fixed 3-D points w.r.t. the frame B given as follows

βi “ RT pri ´ rq
zB

TRT pri ´ rq
“

»

—

–

xi

yi

1

fi

ffi

fl
P P

2, i “ 1, . . . , N (6.1)

where ri P R
3 is the known position of the features in the inertial frame and P

2

is the space of 3-D homogeneous vectors. We assume that the number of points

and their configuration is such that the complete pose pr,Rq of the robot can be

reconstructed using visual information only. In particular, we consider N “ 4 points

on the ground plane since this is sufficient for our 3D case (one could also consider

more complex features such as image moments [160]).

We also want to consider the field of view constraints so the object does not

leave the image. The simplest way to solve this problem is to prescribe a maximum

attitude angle (e.g., arccospe3 ¨ Re3q ď βmax). A trajectory could then be planned

simultaneously using the maximum attitude constraint and the reduced field of view

to constrain the relative positions. However, this approach is more conservative than

desired, especially when aggressive maneuvers are necessary. Certainly, we do not

want to restrict the maximum attitude. Instead, we directly incorporate the field

of view as constraints in the optimization by defining the (square) image domain as

Ω “ tβ P P
2 s.t. maxpβTxB,β

TyBq ď tanpαqu (6.2)

where α is the camera field of view: the measurement (6.1) is available iff βi P
Ω. Later in Sect. 6.6 the visibility constraints will be defined on the unit sphere

considering the spherical projection of the image features.

The sensory equipment is completed by an inertial measurement unit (IMU)

providing a measure of the robot angular velocities ω and specific force RT p 9v ´
gq at a much higher frequency than the camera frame rate. We assume that a

state estimator, such as the ones described in [188, 77], uses the visual and inertial

74

6.2. Reactive target tracking: a minimum-time optimal problem

measurements to provide an estimation of the current robot state at the IMU rate.

Note, however, that between two image frames, the robot pose estimation can only

be updated by dead-reckoning of the IMU data. Due to noise and IMU biases,

this “inter-frame” estimation is expected to be of much lower accuracy than the one

obtained after visual measurements.

6.2.1 Problem definition

Thanks to the flatness property it is possible to move the trajectory planning prob-

lem from the control space to the output space. Since the flat transformation is

invertible, as it has been shown in Appendix A, we can transform the conditions

on the initial and final states in equivalent conditions on the flat outputs and their

derivatives that we indicate with

σi “ pri,vi, 9vi, :vi,ψi, 9ψiq
σf “ prf ,vf , 9vf , :vf ,ψf , 9ψf q

(6.3a)

(6.3b)

Given the dynamic model (2.16), the input transformation (2.13), and the mea-

surement equation (6.1), at a generic time t, we seek for a solution to the following

optimization problem.

Problem 5 Find T,χpsq,upsq, s P rt, t ` T s, such that:

min
χpsq,upsq,T

T

s.t. χptq “ χt

χpt ` T q “ χ˚

9χ “ hpχ,uq
upsq P U ,@s P rt, t ` T s
βipsq P Ω,@s P rt, t ` T s, i “ 1, . . . , N

(6.4a)

(6.4b)

(6.4c)

(6.4d)

(6.4e)

(6.4f)

where χt is the current robot state, χ˚ is the desired one, and (6.4d) was introduced

to represent (2.16) in a compact form.

As shown in Sect. 3.2 Problem 5 does not impose any constraint on the initial

and final states, however, if both χt and χ˚ are hovering states, βiptq P Ω,βipt`T q P
Ω,@i “ 1, . . . N , and the hovering input u “ pmg{4,mg{4,mg{4,mg{4q P U is not

an isolated point in U , then a solution to Problem 5 always exists. Indeed, in this

case, it is always possible to find a sufficiently large T such that the robot moves

in near-hovering conditions, along a feasible and almost straight trajectory from

the initial pose to the desired one [1, 110]. Now, due to the absence of rotational

motions, the linear trajectory in 3-D space is also mapped to linear trajectories of

75

6. Aggressive vision-based trajectory generation

the image features from βiptq to βipt ` T q. Thanks to the convexity of the image

domain Ω, this guarantees that the feature visibility will be maintained.

Problem 5 contains non-linear algebraic and differential constraints and, to the

best of our knowledge, does not admit an explicit analytic solution. As it is often

the case in these situations, we then attempt to find a sub-optimal solution using a

numeric resolution strategy as discussed in the next section.

6.3 Numerical resolution

In its original form, Problem 5 is not suited for a direct numerical resolution. First of

all, the system dynamic equation (6.4d) represents a non-linear differential equality

constraint, which is particularly hard to deal with in a numerical resolution scheme.

In addition to this, the search space of the problem (the control input time law

uptq) is infinite dimensional. As explained in Sect. 3.5 in order to overcome these

problems, we exploit differential flatness for eliminating constraint (6.4d) and we

use B-spline parametrization to obtain a finite representation of the search space.

Figure 6.2 – Consider two pairs of dots on the ground horizontal plane (XY view in the
upper right corner). It would be possible to cope with the field of view constraints by
planning a near hovering trajectory (e.g. path in red), but in this work we aim at finding
a trajectory similar to the path in yellow which is much more dynamic (and with a shorter
completion time).

As mentioned in the above section, the robot can move from any state to any

other, provided that the limits on the propeller rotational speeds are not too strict.

As a consequence, whatever are the initial and final states there always exist a feasi-

ble trajectories. Nevertheless with the introduction of the B-spline parametrization,

we have reduced the search space so that it may not contain these feasible transfer

trajectories. Moreover, even when our search space contains some feasible solutions,

76

6.4. Recursive online control

it may not contain the optimal one in the sense that we might still find a better

solution if we enlarged the search space.

Problem 5 can be restated as a NLP as follows.

Problem 6 find P , T , such that:

min
P ,T

T

s.t. σχptq “ σχt ,

σχpt ` T q “ σχ˚ ,

βipsq P Ω,@s P rt, t ` T s, i “ 1, . . . , N,

upsq P U , @s P rt, t ` T s,

(6.5a)

(6.5b)

(6.5c)

(6.5d)

(6.5e)

where σχt “ φ´1
χ pχtq and σχ˚ “ φ´1

χ pχ˚q.

At this point, any general-purpose optimization strategy can be used to find a

numerical solution to Problem 6. Unfortunately, due to the non trivial non-linearity

of (6.5d–6.5e), Problem 6 cannot be proven to be convex. The optimization will

thus, in general, return a local minimum.

6.4 Recursive online control

Once Problem 6 is solved, the resulting flat output trajectory could be used in (2.23)

for computing the control inputs u to be fed to the system. In practice, however,

different sources of disturbance (e.g. noise, miscalibrations, neglected dynamics, and

so on) will make the robot to quickly diverge from the planned trajectory when using

such an open-loop control strategy. In order to cope with these uncertainties and

disturbances, we then incorporate a feedback action in the considered optimization

schemes.

The reasons are multiple: i) since the B-spline order is minimal the snap is

piecewise continuous and the inputs can be very sharp (see Fig. 6.3). If one sends

such values to the controller we can observe a deviation from the original trajectory.

Now, if one increases the B-spline order we can see that the system model integration

on smoother inputs result in a more accurate resulting trajectory. ii) having an extra

feedback action from the controller provides more robustness to uncertainties and

a higher stability.

As already introduced in Sect. 4.2 we take inspiration from Model Predictive

Control [189] to perform an on-line re-planning of an optimal trajectory by solving

Problem 6 each time a new visual measurement is available. By doing so, we expect

77

6. Aggressive vision-based trajectory generation

Figure 6.3 – Example of (bounded) motors thrust profiles considering a parametrization of
the flat outputs with a 4-th order B-spline basis.

to improve the system performance while, more importantly, ensuring the satisfac-

tion of the visibility constraint (6.5d). Finally, instead of feeding the optimal inputs

sequence directly to the system we send the optimal trajectory to the trajectory

controller [49] as in [141, 1] at the solver rate.

On the one hand, this allow to reject, to some extent, the disturbances acting on

the system. On the other hand, however, the optimality of the resulting trajectory

can be compromised and, more importantly, the visibility constraints (6.5d) can be

violated.

6.4.1 Trajectory re-planning strategy

A major issue in the implementation of receding horizon control is handling the

computational delay associated with the real-time optimization. We present here

our method for designing an initial guess and take delay into consideration for the

re-planning.

The re-planning strategy is best explained by a visual example, shown in Fig. 6.4.

Let us assume that, in a previous planning step, at time t “ tk´1, the resolution

of Problem 6 generated a trajectory σk´1, represented in red in the figure. The

system is now at time t “ tk and a new visual measurement becomes available to

be used in the innovation step1 of the state observer to produce an estimation of

the current system state χ̂t. This estimation will, in general, be different from the

expected system state Φχpσk´1ptqq due to the non-idealities mentioned above. A

new optimal trajectory should, hence, be planned by solving Problem 6 and using

the current state estimate to compute the initial condition σχt .

Unfortunately, the resolution of Problem 9 requires a non-negligible time to

complete. This time will, in general, vary, depending on the quality of the initial

1Note that we trigger the planning at camera rate and not at the estimation rate. This is
motivated by computational limitations and by the fact that, as already mentioned, the inter-
frame estimation obtained by dead reckoning is expected to have a much lower accuracy.

78

6.4. Recursive online control

Figure 6.4 – Single instance of the re-planning process. The red line represents the trajectory
computed in a previous planning iteration. The robot is following this trajectory when, at
time tk, a visual measurement and a new state estimation become available (green dot).
The red trajectory is split and clamped to this measurement, resulting in the green line.
The first part of this latter is immediately used as reference for the controller. The second
part (the dashed green line) is fed as initial guess to the solver of Problem 6, and also used
to predict the state in which the system will be at time tk ` δtp, when the optimization will
be over. Finally, the blue line is the new optimal trajectory resulting from the numerical
resolution of Problem 6. The process is repeated again at tk`1, when a new measurement
is available.

guess for the optimization variables, on the number of necessary iterations and

on the available computational resources. Here, for simplicity, we assume that

the processing will be concluded after, at most, a constant maximum duration δtp,

possibly by introducing a watchdog timer and accepting an intermediate sub-optimal

solution.

For computing the system control inputs while the optimization is running, we

simply “adapt” the previous trajectory to the new initial conditions by using a fast

procedure that does not involve the resolution of Problem 6. First of all, we split

the trajectory σk´1 at time tk, as described in Sect. 6.4.2, to extract only its second

part σ`
k´1

(the dashed red curve in Fig. 6.4). Then, we look for a new trajectory

σ´
k (represented in green in Fig. 6.4) that is “as close as possible” to σ`

k´1
, but

starts from Φ
´1
χ pχ̂tq. Details about this step are provided in Sect. 6.4.3. Note that

this “temporary” trajectory σ´
k is sub-optimal and its calculation does not take

into account any of the actuation and visibility constraints (6.5d–6.5e), which, as a

consequence, could be violated. However, we accept this risk in order to be able to

provide an immediate update of the reference trajectory to the new state estimation

while a better solution is being computed by appropriately resolving Problem 9 as

follows.

79

6. Aggressive vision-based trajectory generation

During the optimization process, the system will, most probably, move away

from the current state χt. As a consequence, if χptq were used as initial condition

in (6.4b) (or, equivalently, (6.5b)), the newly planned trajectory would not start

from the actual state of the robot at time t ` δtp. We mitigate this problem by

using the trajectory σ´
k also to predict (by a simple B-spline evaluation) the value

of the flat outputs corresponding to the state χ̂topt in which the system will be when

the optimization will be over. This value is used as initial condition in Problem 6.

Finally, since we use recursive optimization methods to find a solution to Prob-

lem 6, we also need to provide an initial guess for the optimal trajectory. This initial

guess is computed by splitting the trajectory σ´
k at time t ` δtp (green dashed line

in Fig. 6.4) as described in Sect. 6.4.2 and taking the second part (green dashed line

in Fig. 6.4) of the trajectory.

The optimization can finally run and a new optimal trajectory (the blue one

in Fig. 6.4) will be generated. Such trajectory will be used to control the system

starting from time t ` δtp until a new measurement becomes available at time

t “ tk`1. At the arrival of a new measurement the above procedure is repeated.

This strategy allows to re-plan online an optimal trajectory each time a new vi-

sual measurement is available. Each one of the generated trajectories could be used

directly in (2.23b) to calculate the robot inputs. As already mentioned, however,

an alternative possibility is, instead, to use them as references for a fast trajectory

tracker. This second possibility is appealing because it allows to fully exploit the

sensing capabilities of the robot: between two visual measurements, in fact, an es-

timation of the quadrotor state can be obtained, at a much higher frequency, by

using the IMU for dead reckoning. A fast trajectory tracker can, thus, use this

information to reduce the effect of non-idealities between two planning steps.

Note that, as the quadrotor approaches the desired state, the planning distance

and time horizon tend to zero, potentially introducing numerical issues in the res-

olution of Problem 6. To overcome this problem, when the system is close to the

desired goal, we deactivate the re-planning and directly feed the trajectory tracker

with the desired state χ˚.

6.4.2 B-spline splitting

An advantage of using B-spline trajectories for motion planning is that there exist

lightweight and easy algorithms to perform different manipulations on their shape.

One such manipulation, that we perform multiple times in the recursive algorithm

described in Sect. 6.4.1, is the splitting. Details about how to split a B-spline curve

at a point and how to calculate the knots and control points of the resulting parts

can be found in many sources, such as [190].

80

6.4. Recursive online control

An undesirable effect of the splitting operation is that it also modifies the knot

sequence and possibly (depending on the position of the split) even eliminates some

knots. In order to maintain a constant number of uniformly distributed knots (and

thus a constant number of control points acting “evenly” on the whole spline length),

after the split, we perform a sequence of knot insertion and knot removal operations

(see [190]) meant to redistribute the knots of the new trajectory evenly.

De Boor’s algorithm is a generalization of de Casteljau’s algorithm. It provides

a fast and numerically stable way for finding a point on a B-spline curve given a u

in the domain. The core of the algorithm lies in the knot multiplicity rule: if a knot

u is inserted m times to a B-spline/NURBS curve, the last generated new control

point is the point on the curve that corresponds to u. Meaning that we only need

to insert u enough number of times so that u becomes a knot of multiplicity m. If u

is already a knot of multiplicity s, then inserting it m´ s times would be sufficient.

Indeed, after inserting u m times, the triangular computation scheme yields one

point. Because the given B-spline/NURBS curve must pass by this new point, it

is the point on the curve corresponding to u. Note that this argument holds even

if u is inserted as an existing knot. The depicted procedure is more formalized in

Appendix B.2.1. This technique is also applied to evaluate the spline at u. We

simply need to insert u m times and the last point is ppuq
Since the given B-spline curve is subdivided at its knots, each curve segment

has no internal knots. Moreover, the subdivision process makes the internal knots

to have multiplicity m` 1, and the curve segment is “clamped” at the first and last

control points of each curve segment.

In the process of subdividing a B-spline curve, a large number of control points

will be introduced. Therefore, manipulating a B-spline curve is easier than manip-

ulating its component Bézier curves. Moreover, the B-spline curve of degree p is

Cp´m continuous at a knot point, where m is the multiplicity of the corresponding

knot. When we manipulate a B-spline curve by moving control points, this continu-

ity is always maintained. However, if a B-spline curve is subdivided into a sequence

of Bézier curves, maintaining the continuity at the joining control points would be

a challenging task. Consequently, handling a B-spline curve is much easier than

handling a sequence of Bézier curves.

6.4.3 Adapting previous trajectories to new initial conditions

In this section we describe how to efficiently “adapt” a previously computed B-spline

trajectory (e.g. the trajectory σ`
k´1

represented by a red dashed line in Fig. 6.4) to

a new estimation of the current robot state (green dot in Fig. 6.4). To perform this

operation we exploit two important properties of B-splines:

81

6. Aggressive vision-based trajectory generation

• The local support property stands that the shape of the curve in a knot span

psk, sk`1q is only determined by a subset of k of the B-spline control points.

• The convex hull property guarantees, instead, that in each knot span, the

spline curve is locally contained in the convex hull of the same subset of control

points. In practice this allows to conclude that changing the first control points

(those determining the initial state of the system) will not affect the shape of

the spline towards its end (in particular the final system state will not change)

and that two splines with similar control points (according to some norm) are

also geometrically close to each other.

Given a spline σ`
k´1

, with control points P , the control points P ´ of the new

spline σ´
k can then be computed by solving the following linear quadratic optimiza-

tion.

Problem 7 Find a vector of control points P ´ such that

min
P´

1

2

nr
ÿ

j“1

›

›

›
rj ´ r´

j

›

›

›

2

` 1

2

nψ
ÿ

j“1

›

›

›
ψj ´ ψ´

j

›

›

›

2

s.t. σχptq “ σχt ,

(6.6)

(6.7)

Note that Problem 7 does not take into account the actuation and visibility con-

straints in (6.5d–7.9h). While we cannot formally guarantee that these constraints

will not be violated, we want to stress that the resulting trajectory is only used

for a short amount of time, namely the time needed for the numerical resolution of

Problem 6. Introducing a saturation of the control commands one still guarantees

the satisfaction of (7.9h) at the cost of introducing a deviation of the robot from its

nominal trajectory. Finally, by introducing some security margins in the definition

of Ω, one could also reduce the probability of losing feature track in practice.

6.5 Simulation setup and results

In this section we report the results obtained by using our planning method in a

physically realistic simulation environment. In this thesis we used the on-the-shelf

optimization library NLOPT [191] that we present below.

6.5.1 The NLOPT algorithm

NLOPT is a free/open-source library for nonlinear optimization and implements a

number of optimization algorithms routines in including: It also provides stopping

routines to stop iterating once some termination criterion is satisfied, e.g., maximal

82

6.5. Simulation setup and results

number of iterations or function-value ftol, step tolerance xtol and especially the

maximal running time (which is not the case of ACADO) to control the minimal

variations in local searches and to stop when sufficient precision is reached. This

feature is desirable for our re-planning strategy.

More precisely, we use the SQP C++ routine implemented in NLOPT as the

SLSQP (Sequential Least-Squares Quadratic Programming) algorithm from [192].

It optimizes successive second-order (quadratic/least-squares) approximations of

the objective function, with first-order (affine) approximations of the constraints.

The approximations of the objective function are done via the Broyden-Fletcher-

Goldfarb-Shanno method (BFGS) to build an approximation of the Hessian matrix.

6.5.2 Simulation results

The quadrotor dynamics were simulated using V-Rep2 with a time step of 6ms. The

planning strategy described in Sects. 6.3 and 6.4 was implemented in C++ and the

SQP method of NLOPT was used to numerically resolve Problem 6. The generated

trajectories were sent to TeleKyb which then computed the actual control inputs

using controller [77, 141].

We simulated visual measurements at a rate of 15Hz for four targets positioned

in p˘0.2,˘0.1q. In our implementation, each planning operation (resolution of Prob-

lem 6) takes about 30ms during which the system uses an adaptation of a previously

planned trajectory, obtained by resolving Problem 7. Thus, a new trajectory is sent

to the controller at the rate of 30Hz.

The simulated camera had a field of view of 90 degrees (α “ π{4) and each

propeller could generate thrusts between 0.1N and 7N. For realism purposes, we

introduced a Gaussian noise into the state measurements (up to 2% absolute error)

and into the motors thrust sent by the controller (up to 5% absolute error). We also

purposely used different inertial parameters for the re-planning algorithm and for

the actually simulated quadrotor in V-Rep in order to introduce presence of (typical)

modelling errors between planned trajectory and actual execution. In particular,

we used the following values:

mass Inertia matrix (diagonal)

Planning 1.0 (0.01562 0.01562 0.03125)

Simulation 1.08 (0.016 0.0145 0.027)

Table 1. Inertial parameters used for the re-planning and in V-Rep

Figure 6.5 shows some snapshots of the simulation. The robot started from

an initial hovering state at r “ p´1.1, 1.1, 2q and ψ “ 1.6 rad and was required
2http://www.coppeliarobotics.com/

83

6. Aggressive vision-based trajectory generation

Figure 6.5 – Successive snapshots taken from V-Rep at different time instants. The straight
line represents the vertical axis of the camera, the blue line is the planned trajectory and
the red line is the actual system trajectory. The camera view is shown in the upper right
corner.

Figure 6.6 – Image feature trajectories planned at different planning steps. Four dashed
segments represent the boundaries of the image domain. The image features are initially in
the upper right corner.

84

6.5. Simulation setup and results

Figure 6.7 – Actual image feature coordinates measured during the re-planning. The hori-
zontal dashed lines represent limits of the image domain.

Figure 6.8 – Motor thrusts evolution for the four propellers with horizontal dashed lines
representing the actuation domain U “ r0.1, 7s.

Figure 6.9 – Linear velocity (upper figure) and pitch and roll angles (bottom figure) during
motion.

85

6. Aggressive vision-based trajectory generation

to reach another hovering state with r˚ “ p0, 0, 0.6q and ψ˚ “ 0. The solid red

line in Fig. 6.5 shows the resulting quadrotor trajectory in space while the blue

line represents the currently planned trajectory. Figure 6.6 shows the predicted

evolution (given the currently planned trajectories) of the four points in the image

plane at equally spaced time instants. The actual evolution of the four image point

coordinates is shown in Fig. 6.7 whereas Fig. 6.8 shows the thrust generated by each

propeller. The dashed lines in Figs. 6.6 to 6.8 represent the constraints.

The robot was able to accomplish the task in a total time of approximately 2.3 s

over which the trajectory planning algorithm was triggered 34 times.

During motion, the quadrotor reached a translational speed up to 1.0m{s along

the X axis, and rotations up to 20 deg as illustrated in Fig. 6.9. From Fig. 6.7

one can see that the features moved very close to the limits of the field of view.

Finally Fig. 6.8 shows that also the motor thrusts hit the actuation limits. These

results clearly show that the performed trajectory was rather aggressive and that

the actuation and sensing capabilities of the robot were exploited. Therefore, we

showed that in the presence of modelling uncertainties and noise, the feedback

introduced by updating the reference trajectory was able to reject some of these

disturbances while satisfying the several constraints. We encourage the reader to

watch the video3 attached to the concerned contribution [2]: there, we show how

an “open-loop” execution of the initially planned trajectory quickly fails to meet

the visibility constraints because of the (purposely introduced) actuation noise and

model uncertainties. On the other hand, as discussed, the online re-planning allows

gaining a sufficient level of robustness against these non-idealities. As it is common,

a high planning rate is privileged against optimality to some extent.

The rest of this chapter presents our second contribution [3] that addresses more

complex vision-based tasks.

6.6 Vision-based target tracking

In this section, we first address the case of tracking a moving 3D target with a

front-looking camera and ensuring final visibility of the target at the (unique) image

center. We assume that the relative pose of the target can be estimated using vision

only as done in [104] with some preliminary knowledge of the target model (e.g., the

target radius in case of a sphere). We are also interested in allowing the quadrotor

undertaking aggressive manoeuvres for reaching the target in near minimum-time

conditions. The final goal is to reach a hovering state such that the target appears

at the image center while keeping a safety distance from the target (see Fig. 6.10).

3https://www.youtube.com/watch?v=mZrS2wutZCI

86

6.6. Vision-based target tracking

Figure 6.10 – The quadrotor has to follow the target in red while keeping a safety dis-
tance represented by the light blue sphere. The terminal constraint in the image space is
represented by the green circle. The blue circle represents the field of view inside which
the feature trajectory must lie. Here, the optimal trajectory in blue steers the quadrotor
towards a final position (white dot) and the resulting image feature trajectory is the one in
white

6.6.1 Multi-objective cost function

For achieving the aforementioned behaviour we adopt multi-objective programming

and minimize the following weighted cost function at running time t with weights

wi ą 0 P R.

J “ w1

ż t`T

t

}...vptq}2dt ` w2

ż t`T

t

›

›

›

:ψptq
›

›

›

2

dt

` w3

ż t`T

t

}dptq ´ Rs}2dt ` w4

ż t`T

t

}vptq}2dt
(6.8)

The latter is divided into four parts: the first and the second terms minimize

the norm of the snap and the norm of the yaw acceleration respectively. They are

used for encouraging smoothness while still exploiting the quadrotor aggressiveness

[1]. The third term minimizes the error between the Euclidean distance dptq of

the target to the camera and a value Rs defined as a safety distance: the radius

square of the sphere centred on the target at position q (see Fig. 6.10). Naturally,

to achieve more aggressive trajectories, one can enforce this cost. The fourth term

penalizes the path length. It is an approximation of the sum of the path segments
řk“N´1

k“0
}rpk ` 1q ´ rpkq}2 which appears to be equivalent to penalizing the linear

velocity over the time horizon. Indeed, for a circular symmetric target the quadrotor

may fly around the target indefinitely without changing the image feature position,

an effect arising from the residual available degrees of freedom and that one can

prevent by adding this fourth term.

In the previous section (Sect. 6.2) we minimized the completion time T to gener-

ate aggressive trajectories [2] . Here, we are dealing with more complex constraints

and we will show that we can still exploit the quadrotor’s agility. Moreover, we

avoid the penalization of such a complex parameter and the re-evaluation of the

87

6. Aggressive vision-based trajectory generation

B-spline bases at each solver iteration. The completion time T is then a fixed pa-

rameter and should be chosen as a rough upper bound of the time required to reach

the final pose vicinity. If T is too small, the trajectories might be infeasible. If too

high, the system may be less reactive.

Finally, by suitably weighing these costs we are able to trigger the expected

behaviour and prevent the objectives from conflicting with each other.

6.6.2 Visibility constraints

In this section we propose an alternative to (6.5d) for the formulation of constraints

on the image features. Let us define the spherical projection of a target point in 3D

w.r.t. the frame B as the bearing vector

β “ RT pr ´ rq
}RT pr ´ rq}

“ m

}m} P S (6.9)

where r P R
3 is the position of the feature in the world frame and S is the surface

of the unit sphere and m “ pu, v, 1q is the image measurement from which β is

computed.

Defining ec as the camera optical axis in the frame B, namely, xB (or yB) for a

front-looking camera and ´zB for a down-looking camera, the visibility constraint

is written as

βT ptqec ě cospα{2q,@s P rt, t ` T s (6.10)

where α is the angle of view of the camera and β is given by (6.1). Fig. 6.11 shows

that (6.10) is equivalent as constraining the feature bearing angle β but whose

numerical evaluation is more complex. In contrast to the previous formulation

(6.5d) a single constraint is defined using (6.10). However, the field of view of the

camera is modelled as a cone (see Fig. 6.10) which is a less realistic representation

than a pyramid-shaped field of view.

Now, instead of imposing equality constraints on the final position in order to

guarantee visual convergence of the target to the camera center, we rather define a

terminal constraint such that the feature bearing angle has to belong to a (smaller)

angular area at the camera centre (see Fig. 6.10) with

βT ptqec ě cospγ{2q,@s P rt ` Tv, t ` T s, 0 ď Tv ď T (6.11)

where γ is the angle defining the circular region of convergence in the image. The

time Tv is a parameter that defines at what time the feature shall enter the vicinity

region. It can be tuned to affect the convergence rate towards this region. Namely,

a value closer to 0 will demand a longer activation of the constraint. Tv will also

vary depending on the camera orientation due to the quadrotor dynamics.

88

6.7. Simulation and experimental results

Figure 6.11 – The visual constraints (6.10) is equivalent as ensuring that the angular position
β of an image point P is lower than the field of view angle α{2

With the above definitions, one can encapsulate visibility constraints and visual

convergence for any camera orientation. The approach considered in [99] penalizes

the motion aggressiveness since it minimizes the deviation of the image features

from the center of the camera in the image plane. Therefore it does not fully

exploit the image space while, in our case, the target is free to move away from the

camera center in order to allow large rotations of the camera and therefore large

accelerations of the quadrotor.

Following the same strategy as in Sect. 6.2, we exploit differential flatness and

parametrize the flat outputs with B-splines with control points P . We define the

following problem with the cost function (6.8)

Problem 8 Find P such that:

min
P

J

s.t. σχptq “ σχt ,

σpiqpt ` T q “ σχ˚ , i “ 1, . . . , 3,

upsq P U , @s P rt, t ` T s,
βT ptqec ě cospα{2q,@s P rt, t ` T s,
βT ptqec ě cospγ{2q,@s P rt ` Tv, t ` T s

(6.12a)

(6.12b)

(6.12c)

(6.12d)

(6.12e)

(6.12f)

6.7 Simulation and experimental results

The video4 attached to this work [3] shows the reactive target tracking considering

the scenario depicted in Fig. 6.10 to validate the proposed replanning strategy with

the visibility constraints detailed in Sect. 6.6.2. Figure 6.12 shows successive snap-

shots of the simulated environment. We show in Fig. 6.13 that the computed inputs

and images features trajectories are maintained within their allowed domains. We

exploit again the replanning strategy described in Sect. 6.4.1 and the SQP opti-

mization routine from NLOPT to compute the optimal solutions.

4https://www.youtube.com/watch?v=mvvF1I72HM8

89

6. Aggressive vision-based trajectory generation

Figure 6.12 – Successive snapshots taken from V-Rep at different time instants. The blue
line is the planned trajectory and the red line is the actual system trajectory. The camera
view is shown in the upper right corner where the red circle represents the field of view
limits and the blue circle represents the vicinity constraint (6.11).

(a) Optimal motor thruts profiles constrained be-
tween 0.1N and 5N.

(b) Images features trajectories in the
image plane with a field of view of 90˝.

Figure 6.13 – A representative set of the computed inputs Fig. 6.13a and image features
Fig. 6.13b trajectories from the resolution of Problem 8.

90

6.7. Simulation and experimental results

We also conducted the same re-planning strategy with a real quadrotor. We

used a MK-Quadro equipped with a front-looking camera with a field of view of

45˝. The setup included an on-board ODROID-XU4 Linux computer running ROS

and the TeleKyb framework for interfacing the replanning algorithm which ran on a

standard desktop PC (Quadcore Intel i7 CPU@2.6 GHz). A Vicon motion capture

system was employed for giving state measurements of the quadrotor and position

measurements of the tracked target. We used AprilTags as a generic target attached

on top of another MK-Quadro controlled remotely (Fig. 6.14). The video shows the

general behaviour of the system.

Figure 6.14 – The center of the box (yellow dot) attached on a second quadrotor and covered
by four ApriTags had to remain inside the field of view of the camera (red circle) during
the entire flight and appear inside the blue circle in the end of the computed trajectories

91

Chapter 7

On collisions and occlusions

avoidance

In this chapter we address vision-based navigation in the presence of obstacles for

target tracking applications. Since we consider the visibility constraint on the

tracked target it is crucial to also avoid the occlusions generated by the obsta-

cles themselves with the target. To do so, we design a new constraint formulation

in the image space by drawing the analogy with volumetric constraints used for

collision avoidance. In order to improve the convergence towards a local minimum

we use complex-step differentiation (CS) to efficiently approximate the gradients of

the nonlinear terms in the cost function and of the nonlinear constraints.

7.1 Contributions

In Sect. 6.2 we presented preliminaries for online minimum-time trajectory re-

planning under field of view constraints. In this chapter we show that reactive

manoeuvres can still be achieved without minimizing time and in the presence of

more complex constraints. Besides, we improve the accuracy and the numerical

stability of the gradients evaluation by using complex-step differentiation which

aids the SQP convergence. Our method differs from most relevant works (e.g.,

[178, 179, 177]) under three main aspects:

‚ efficient and reactive online re-planning strategy considering an underactuated

robot

‚ soft occlusion avoidance formulation in the image space

‚ visual constraints independent of the camera/UAV configuration

93

7. On collisions and occlusions avoidance

7.2 Constraints formulation

In this section, we describe the vision-based optimization scheme for avoiding col-

lisions with static spherical obstacles of radius Rocc and the occlusions they might

generate with the tracked target, see Fig. 7.1. Collision-free trajectories with N

static spherical obstacles of inflated radius Rcol ą Rocc at position robs are gener-

ated using volumetric constraints such as

}r ´ robsi}2 ą Rcol
2
i , i “ 1, . . . , N (7.1)

Figure 7.1 – An optimal trajectory for a quadrotor equipped with a camera is generated
for reaching a minimum distance with a target (blue sphere) while avoiding collisions with
spherical obstacles (inflated dark spheres) and occlusions of the target from the obstacles
(red spheres).

The occlusion constraint can be modelled analogously to (7.1), but in the image

plane, as follows

}β ´ βobsi}2 ą a21, i “ 1, . . . , N (7.2)

where β and βobs are the spherical projections (see (6.9)) of the target and the

obstacle center respectively, and a1 is the length of the semi-minor axis of the

projected ellipse of the spherical obstacle of radius Rocc in the image plane, see

Fig. 7.2. Assuming knowledge of the size of an obstacle in 3D with coordinates

robs “ pXo, Yo, Zoq in the image plane one has [193]

a21 “ R2
occ

4pZ2
o ´ R2

occq
(7.3)

With this constraint one seeks to prevent the target from colliding the projected

ellipses of the obstacles (see Fig. 7.1) in the image space by keeping a minimum dis-

tance a1 that grows as the depth Zo of the obstacle in the camera frame decreases.

94

7.2. Constraints formulation

Figure 7.2 – The projection of a sphere on the image plane of a camera at position r is an
ellipse of semi-minor axis a1.

As the quadrotor moves towards the target the occlusion constraints from the ob-

stacles passing behind the camera are of course discarded.

However, when dealing with occlusion avoidance with a quadrotor there exist

configurations where strict avoidance is not feasible. Indeed, when the target goes

exactly below an obstacle (for a down-looking camera, see Fig. 7.3) the quadrotor

may not have sufficient actuation capability or sufficient space for avoiding any

occlusions. These situations may occur for any camera orientation. Therefore, in

order to avoid such critical situations and always provide a feasible solution, we

introduce a slack variable λ within the occlusion constraint to authorize partial

occlusion if necessary. We set

a21 “ pRocc ´ λq2
4pZ2

o ´ pRocc ´ λq2q , s.t 0 ď λ ď Rocc (7.4)

The λ term plays the role of relaxing a hard constraint when the solver encoun-

ters not feasible situations. At the most critical configurations when the target is

below an obstacle (Fig. 7.3), the collision constraint can be reduced or even can-

celled by having λ reach the value Rocc which is the actual radius of the obstacle

(lower than Rcol). With equation (7.4) we observed very reactive responses from

the system in case of occlusions. This may be due to the fact that small changes of

λ induce a strong action on the occlusion constraint (7.2). Besides, by imposing a

straightforward upper bound (Rocc) for λ, its action will take effect only in case of

violations of constraint (7.2).

It would make sense of course to use the ellipse semi-major axis defined as:

a22 “ R2
occpX2

o ` Y 2
o ` Z2

o ´ R2
occq

4pR2
occ ´ Z2

o q2 (7.5)

This formulation would give more conservative occlusion avoidance constraints.

However, in practice one has X2
o ` Y 2

o ! Z2
o especially if one considers the lim-

ited camera field of view. This is why we consider the semi-minor axis (7.3) which

also has the advantage of being less complex.

95

7. On collisions and occlusions avoidance

Figure 7.3 – In case of strong and sudden occlusions when the target is below an obstacle,
the red trajectory cannot be a viable solution since it may violate actuation and/or spatial
constraints. We instead allow minimal constraint violations to keep the solver efficient.
The blue trajectory is then a relaxed solution where λ hits its limit value Rocc (obstacle
radius). The orange trajectory represents the case of a less relaxed occlusion constraint
where λ eventually reaches a smaller value and is zero when there are no occlusions (green
trajectory)

Of course, the occlusion constraint and the slack variable λ introduce conser-

vatism to some extent. However, the main objective of λ is to improve stability and

continuity of the solution in case of critical configurations.

7.3 Optimization problem definition

Finally, the current optimization problem related to the scenario shown in Fig. 7.1

can be stated as the following static NLP considering the cost function (6.8)

Problem 9 Find P ,λ such that:

min
P ,λ

J ` w5}λ}2

s.t. σχptq “ σχt ,

σpiqpt ` T q “ σχ˚ , i “ 1, . . . , 3,

upsq P U , @s P rt, t ` T s,
βT ptqec ě cospα{2q,@s P rt, t ` T s,
βT ptqec ě cospγ{2q,@s P rt ` Tv, t ` T s
}rpsq ´ robs}2 ą R2

col,@s P rt, t ` T s,
}βpsq ´ βobs}2 ą a21,@s P rt, t ` T s,
0 ď λ ď Rocc

(7.6a)

(7.6b)

(7.6c)

(7.6d)

(7.6e)

(7.6f)

(7.6g)

(7.6h)

(7.6i)

where σχt “ φ´1
χ pχtq and σχ˚ “ φ´1

χ pχ˚q. For a final hovering state χ˚ one has of

course σpiqpt ` T q “ 0, i “ 1, . . . , 3. We choose not to explicitly constrain the final

96

7.4. A reactive re-planning framework with a down-looking camera

Cartesian position which is considered as a free parameter to be determined by the

optimization algorithm. We seek feasible trajectories with constraint (7.6d) but,

due to unknown target motion, the quadrotor might not have sufficient actuation

to always satisfy the visibility constraint (7.6e).

The costs and constraints gradients in the flat space are computed analytically.

However, we think it is more efficient to estimate (numerically) the gradients of the

visual and inputs constraints instead of deriving their complex and heavy analytic

formulation. To do so, we use complex-step differentiation [194]. It can be shown

that the first-order derivative of a function f P R can be approximated as

Bf
Bx “ �pfpx ` ihqq

h
` Oph2q, h P R (7.7)

where i is the complex number such that i2 “ ´1 and �pzq denotes the imagi-

nary part of a complex number z. This technique is attractive to determine first

derivatives since it only requires a single evaluation of the function and avoids the

problem of subtractive cancellation of classic finite approximation (round-off errors).

Therefore, it is known to have superior accuracy (close the analytic accuracy) and

numerical stability as analysed in [195]. It is also less intrusive in terms of program

transformation than automatic differentiation which can sometimes require large

and deep source overloads. On the other hand, complex differentiation requires

some mathematical adaptations to be used with complex values (the square root or

the absolute value functions for instance) which increases the computational cost.

The choice between these two methods then hinges on a trade-off between ease of

implementation and execution efficiency and is further discussed in [196]. More

details and comparison results are given in Appendix C.

7.4 A reactive re-planning framework with a

down-looking camera

In this section, we express the re-planning strategy for tracking a mobile target on

the ground (as shown in Fig. 7.3). We choose to consider a down-looking camera

with a (more realistic) pyramid-shaped field of view as in our work [2] in order to

also show that the planning strategy is able to exploit the corners of the field of

view. The perspective projection of the target is again considered

β “ RT pr ´ rq
zB

TRT pr ´ rq
“

»

—

–

u

v

1

fi

ffi

fl
P P

2 (7.8)

where P
2 is the space of 3-D homogeneous vectors.

97

7. On collisions and occlusions avoidance

In this case, we adopt the penalization of the position error between the quadro-

tor and the target in the XY plane denoted as exy P R
2. Moreover, we let the final

height zT free but bounded for limiting the motion along e3. This lighter formula-

tion will basically compute trajectories for steering the quadrotor to a final hovering

position such that the target appears at the camera center.

We define the following optimal problem

Problem 10 Find P ,λ such that:

min
P ,λ

J2 “ w1

ż T

t

}...vptq}2dt ` w2

ż T

t

} :ψptq}2dt

` w3

ż T

t

}exyptq}2dt ` w4zT ` w5}λ}2

s.t. σχptq “ σχt ,

σpiqpt ` T q “ 0, i “ 1, . . . , 3,

rxypt ` T q “ r˚

xy,

ψpt ` T q “ ψ˚, (arbitrary value)

βpsq P Ω,@s P rt, t ` T s,
upsq P U , @s P rt, t ` T s,
}rpsq ´ robs}2 ą R2

col,@s P rt, t ` T s,
}βpsq ´ βobs}2 ą a21,@s P rt, t ` T s,
0 ď λ ď Rocc,

Zmin ď zT ď Zmax

(7.9a)

(7.9b)

(7.9c)

(7.9d)

(7.9e)

(7.9f)

(7.9g)

(7.9h)

(7.9i)

(7.9j)

(7.9k)

(7.9l)

where r˚

xy is the target position in the XY plane at time t and the (square) image

domain Ω “ tβ P P
2 s.t. maxp|βTxB|, |β

TyB|q ď tanpαqu.
It should be noted that the gradient of the occlusion avoidance constraint (7.9g)

gives three possible descent directions for the decision variables for satisfying this

constraint. More precisely, the SQP algorithm can: i) increase the distance between

βpsq and βobs, ii) reduce the quantity a1 by increasing the distance Zo, iii) relax

the constraint by increasing λ. In order to restrain the second direction that steers

the solution towards the local minima of infinite height (a1 Ñ 0) we put an upper

limit on the quadrotor final height zT with an additional constraint (7.9l). We

also minimize zT (linear in P) to prevent the camera from staying at the maximum

height Zmax. We also consider a minimum height Zmin for preventing the quadrotor

from flying below the obstacles since our main focus is to show its ability to avoid

occlusions. This is indeed a behaviour the quadrotor may exhibit. This formulation

98

7.5. Simulation results

allows efficient re-planning at the rate of 30Hz. Simulation results are given in the

next sections.

We also give more insight on the different system behaviours triggered by dif-

ferent tuning of the weights in the cost function (7.9b).

7.5 Simulation results

The presented approach was validated in a physically realistic environment. The

inertial parameters of the quadrotor were slightly biased on purpose to introduce

model uncertainties. The quadrotor dynamics were simulated using V-Rep at

150Hz. We exploit again the re-planning strategy described in Sect. 6.4.1 and

the SQP optimization routine from NLOPT to compute the optimal solutions. The

generated trajectories of the flat outputs were sent to TeleKyb which then computed

the actual control inputs using controller [141].

The tracked target shown in Fig. 7.3 is manually commanded in velocity satu-

rated at 1.0 m/s. We considered three spherical obstacles of radius Rocc “ 0.15m

and of inflated radius Rcol “ 0.4m (see Fig. 7.6). The video1 attached to this

work [3] shows the pertinence of having occlusion constraints in vision-based navi-

gation since obstacles may occlude the target in many occasions if not considered

at the planning stage. Finally, we show the efficiency of our re-planning frame-

work in avoiding immediate and sudden occlusions. When critical situations are

encountered the slack variable is able to keep a stable flight by allowing very brief

occlusions.

Table 7.1 shows some performance indexes from the on-line resolution of Prob-

lem 10 for a flight duration of about 90 seconds. One has respectively: the number

of computed trajectories, the duration Tmax for the stopping criterion, the plan-

ning horizon T , the range of SQP iterations and the mean iteration, the step and

constraint tolerance and finally the percentage of total optimization instances that

failed to return a solution within Tmax. When it occurs the previous solution is

returned.

loops Tmax T iterrange SQPiter tol ratio

2734 33ms 3.5s r6, 63s 31 10´4 6%

Table 7.1 – Settings and performance of the solver for a 90 seconds flight

In the proposed formulations, the weights in the cost function are free parameters

and need to be tuned empirically in order to generate the expected behaviour. Since

the optimal problem is complex and highly nonlinear, any set of weights can generate

1https://www.youtube.com/watch?v=mvvF1I72HM8

99

7. On collisions and occlusions avoidance

a different response. However, from our experience the tuning triggers consistent

responses and does not necessitate a particularly fine analysis. Generally, a higher

w1 will produce smoother trajectories and less aggressive motion. A higher w3 will

increase the convergence rate towards the target and a lower w5 will tend to produce

more relaxed occlusion constraints. Table 7.2 shows the numerical parameters used

for the simulation. Moreover, we have used five different sets of weights (Table 7.3)

an discuss their consistent effect on the generated trajectories shown in Fig. 7.6.

T w1 w2 w3 w4 w5

3.5s 1e´5 5e´3 1e1 5 5e3

Table 7.2 – Considered parameters for the simulation

Figure 7.4 – Evolution of λ for the simulation. The peaks reveal the presence of sudden
occlusions. The flat section (from around instance 1100 to instance 1700) respresents a
flight period when the target is far from the obstacles. Therefore, λ is very close to 0. Here
λ did not hit the upper limit Rocc “ 0.15m.

Figure 7.5 – Evolution of zT for the simulation. The final height was bounded between 1.9m
and 3.5m. Again, zT reaches its minimum value when no collisions and occlusions occur.

The hot-start method presented in our work [2] definitely helps the solver as

showed in Table 7.4. Using the exact same conditions we compared the performance

of the solver with:

‚ our hot-start algorithm (M1) in Sect. 6.4.1

100

7.5. Simulation results

Trajectory w1 w2 w3 w4 w5

orange 1e´5 5e´3 5e1 5 5e3

blue 1e´4 5e´3 1e1 1e´1 5e3

green 1e´3 5e´3 1e1 1e1 1e3

yellow 1e´5 5e´3 1e1 1 5e4

pink 1e´3 5e´3 1e1 5 1e4

Table 7.3 – Values of the weights used for generating the trajectories shown in Fig. 7.6

Figure 7.6 – Different solution trajectories returned with different sets of weights (in Ta-
ble 7.3) in our simulation environment. The camera view is shown in the upper right corner
with the image trajectories and a view from above the target is shown below. The orange
trajectory uses the chosen values (in Table 7.2) with a higher w3. One can observe a faster
convergence towards the image center (with an overshoot). The blue one has a higher w1

resulting in a smoother trajectory than the orange one. The green one is even smoother
and is more compliant to occlusions (less jerky) since w5 is lower. The yellow trajectory
is very sharp (low w1) because the occlusion constraints are more respected (high w5) and
the final height is less penalized (low w4). The pink solution gives a different and smoother
path (high w1) that benefits less from the constraints relaxation (since w5 is high).

‚ using the previous solution (M2)

‚ using the initial solution (a straight line from the initial to the final flat state)

(M3)

method mean number of SQP iterations failure ratio

M1 25 2.8%

M2 33 20%

M3 43 84%

Table 7.4 – Convergence comparison between three different initial guess strategies. Failure
ratio represents the percentage of total solutions that fail to converge within the current
rate (1/30 ms).

Methods M2 and M3 clearly fail to meet the solver performance achieved using

method M1. Moreover, M3 even quickly led to a failure of the task. The ratio can

101

7. On collisions and occlusions avoidance

quickly escalate. Indeed if the solver fails in returning a solution within 1/30 ms, its

last (infeasible) iterate will still be used as initial guess to the next solver instance,

probably generating an increasing depreciation of the initial guess.

7.6 Summary

In this work, we adapted our previous approach [2] on vision-based optimal trajec-

tory generation to a wider context by considering reactive target tracking and both

occlusions and collisions avoidance for either a front or a down looking camera (or

any other camera/UAV configuration).

The quadrotor trajectories are mainly driven by vision while seeking aggressive

but smooth trajectories that respect actuation and sensor limits for any camera

orientations. Then, starting from a good initial guess the solver is able to return

an optimal solution about 94% of the time within 1/30ms allowing an online re-

planning strategy capable of absorbing noise, disturbances and any non-modelled

effect for long duration flights. The same strategy was applied during an experiment

using a real quadrotor for the case of a front-looking camera.

In contrast to the literature, we proposed a method that explicitly handles visi-

bility constraints and occlusion avoidance within a fast online re-planning strategy.

Besised, the occlusion constraint is expressed as a single constraint per object in

contrast to [178]. Finally, we coped with the issue that the discontinuity of occlusion

constraints can generate by introducing a minimal relaxation in Sect. 7.2.

The optimization problem in the current contribution differs in several points

from the minimum-time Problem 6, especially in terms of costs and constraints.

Although the re-planning strategy is the same, we emphasize the general online

re-planning efficiency with different optimal problems. Moreover, the complex-step

differentiation method plays a non negligible role in the framework. Indeed, optimal-

ity and stability of the re-planning framework has been improved by accelerating the

gradient evaluation and improving its accuracy and numerical stability compared

to our previous work [2].

To be successful, our path-planning approach requires a complete knowledge of

the environment and robot model. These requirements can be limiting in many real

applications. The need for such exact knowledge could be relaxed by accounting

for modelling and calibration uncertainties at planning stage. Finally, future work

includes validating the method with real (and maybe dynamic) obstacles and the use

of vision only for estimating the target relative position. In this case the relaxation

term will play an even more decisive role.

102

Chapter 8

Toward visual constraints

relaxation: planning under

intermittent measurements

Contents

7.1 Contributions . 93

7.2 Constraints formulation . 94

7.3 Optimization problem definition 96

7.4 A reactive re-planning framework with a down-looking camera . 97

7.5 Simulation results . 99

7.6 Summary . 102

8.1 Introduction

The role of navigation in robotics is to find a path moving a robot from its cur-

rent state to a goal state. Practical experiments on path following show us that

paths cannot always be followed, because nothing is as perfect in reality as as-

sumed during the planning (e.g., dead reckoning is not perfect in the real world).

So there is a strong need to take into account the uncertainties during the planning

phase. Indeed, model, sensors and environment uncertainties are inherent to many

robotic applications and may lead to a failure of the task or impair the possibility

to accurately follow a path if disregarded at the planning stage. For these reasons

uncertainty-aware planning, also called belief-space planning, has received consider-

able attention in recent years. The concept of robust path planning can be tracked

back to the mid 1990s. A class of control techniques that operate over the belief

space, known as partially-observable Markov decision processes (POMDPs) [197]

103

8. Toward visual constraints relaxation: planning under

intermittent measurements

has been derived to address the above problem. Another class of works exploits

local optimal control policies assuming a linear quadratic Gaussian (LQG) control

strategy. However, these approaches suffer from the “curse of dimensionality”, in

particular POMDPs are notorious for their computational complexity that may pro-

hibit their application for navigation in complex or uncertain environments in high

dimensional state spaces. In [198] a more scalable LQG variant is proposed and ap-

plied to environments with discontinuous sensing regions. An approximate solution

to POMDPs is given in [199] but with the use of considerable pre-processing. To

deal with more complex objectives, deterministic planners such as RRT* and A*

have become very popular since they benefit from asymptotic optimality and can

explore the whole configuration space efficiently. In [200] a graph-search based on

A* is proposed by discretizing the environment into cells for finding a safe route for

a unicycle vehicle. Active visual perception with a quadrotor has been addressed

in [183] for determining the path with minimal state uncertainty considering pho-

tometric information, and in [201] for maximizing visual coverage of a scene in

presence of obstacles, localization and sensing uncertainty. Recently, [202] proposed

an approximate POMDP control policy based on an initial guess trajectory returned

by a RRT planner in a discretized environment.

Figure 8.1 – Simulation environment for our framework. An optimal collision-free trajectory
for the unicycle case connects the initial state (green dot) and a final state (yellow dot) in
presence of obstacles (blue boxes). The pose uncertainty is represented by the blue ellipsoids
whose size is reduced as soon as a landmark (red bars) is close enough to the robot and
enters the field of view of the simulated camera attached to the robot. We assume the
landmarks are not occluded by the obstacles. The propagated edges of the two graphs are
rendered as the red curves.

In this work, we aim at planning a trajectory from an initial to a final state

in presence of obstacles and input constraints for non-trivial robotic systems (like

a quadrotor). We assume that the state is not available (especially the position)

but on-board sensors (including a camera) are used to reconstruct the state with

some estimation algorithm fusing position measurements in the world frame recon-

104

8.1. Introduction

structed from vision. Note that these measurements can be intermittent because of

limited field of view, maximum range and so on. We want that the path guarantees

some desired level of uncertainty in the reconstructed state despite the fact that

measurements are not always available. More precisely, the goal state has to be

reached with a bounded position uncertainty to guarantee some confidence level on

the robot’s location. Therefore, the system has to collect sufficient information from

visual landmarks sparsely placed in the environment to satisfy this final constraint

(see Fig. 8.1 for the unicycle case). Basically, the shape of the trajectory will vary

depending on the level of uncertainty, i.e., process and measurement noises (e.g.,

see [203] with a unicycle) but also on the given initial and final states which is, to

the best of our knowledge, not the case in the literature.

Literature in perception-aware planning has generally focused on maximizing

observability [183, 204, 205] (or minimizing the state uncertainty) based on some

criteria e.g., the trace or the smallest eigenvalue of the covariance matrix. This

strategy definitely helps in finding a path that tries to collect as much as information

as possible for preventing the state uncertainty to increase too much. However, the

path itself may be severely suboptimal in terms of length and duration (e.g., [206]

for optimal self-calibration of UAVs). Indeed, the path length is generally not

constrained and can be excessively long, especially if the robot needs to pass by all

the regions/beacons with richest information.

Figure 8.2 – A minimum snap (red) passing through waypoints and a trajectory (green)
yielding well-observable states. This trajectory is much longer and much more complex,
from [206].

In this work, we propose a minimum-time planning algorithm for dynamic sys-

tems returning feasible and robust trajectories that do not guarantee minimal state

uncertainty along the trajectory but a bounded state uncertainty with given bounds

at the goal, which we consider is a more practical application.

105

8. Toward visual constraints relaxation: planning under

intermittent measurements

8.2 Contributions

This work focuses on finding robust paths for a robotic system by taking into ac-

count the state uncertainty and the probability of collision. We are interested in

dealing with intermittent exteroceptive measurements (e.g., collected from vision).

We assume these cues provide reliable measurements that will update a state es-

timation algorithm wherever they are available. The planner has to manage two

tasks: reaching the goal in a minimum time and collecting sufficient measurements

to reach the goal state with a given confidence level. We present a robust perception-

aware bi-directional A* planner for differentially flat systems such as the unicycle

and the quadrotor UAV and use a derivative-free Kalman filter to approximate the

belief dynamics in the flat space. We also propose an efficient way of ensuring con-

tinuity and feasibility between the graphs by exploiting the convex-hull property of

B-spline curves.

In a previous chapter (Sect. 7.6) we considered hard visibility constraints that

may become too restrictive for minimum-time planning. In this chapter, we pro-

pose to relax these constraints by allowing intermittent visual cues losses to perform

faster trajectories in larger and more complex environments. We implement a bi-

directional A* algorithm that grows two graphs, one from the initial state and one

from the final state (see Fig. 8.4). A solution trajectory is built by connecting the

two graphs. This work blends the following features within graph-search algorithm:

(i) incorporation of model and sensor uncertainty in collision avoidance and per-

ception, (ii) generation of minimum-time and feasible trajectories for flat dynamic

systems, (iii) incorporation of discontinuous visual measurements that are function

of the robot’s attitude, (iv) efficient graph connection using the convex hull property

of B-spline curves.

Our work is mostly based on the recent work of [145] and [130] that propose an

efficient A* planner in the flat space of a quadrotor which is applied to aggressive

and precise collision avoidance that is function of the robot attitude in cluttered

environments. In contrast to [130] we include perception constraints and state

uncertainty and directly minimize the time. To the best of our knowledge, this is

the first time minimum-time trajectories are generated in a graph-search planner

while accounting for uncertainty in the visual perception which is affected by the

system’s attitude. We apply this method first to a unicycle for illustrating the

approach, and then also to the case of a quadrotor for demonstrating the feasibility

on a much more complex system while performing aggressive motions.

The rest of this chapter is organized as follows. Sect. 8.3 introduces differential

flatness for the unicycle. Sect. 8.4 presents the uncertainty-aware planner formulated

as a graph-search problem. How the graph is built is described in Sect. 8.5. The

106

8.3. Preliminaries

graphs rewiring is detailed in Sect. 8.6. In Sect. 8.7 our method is extended to

the quadrotor case. Simulation and experimental results are given in Sect. 8.8 for

both robotic systems. Finally we draw some conclusions and future directions in

Sect. 8.9.

8.3 Preliminaries

8.3.1 Differential flatness for the unicycle

As already said in Sect. 2.5 differentially flat systems are systems whose states and

inputs can be expressed as algebraic functions of flat outputs derivatives up to some

suitable order [207]. Differential flatness is often used for planning purposes since

it reduces the problem size. We will exploit differential flatness for the unicycle in

this section and for the quadrotor in Sect. 8.7. As usual, the kinematic model of a

unicycle is
$

’

&

’

%

9x “ v cospθq
9y “ v sinpθq
9θ “ ω

(8.1a)

(8.1b)

(8.1c)

where v and ω are the forward and angular velocities inputs of the robot respectively

while px, yq are the coordinates of the center of the rear axle and θ is the robot

orientation in the world frame. It can be shown that the unicycle is flat with flat

outputs [208]:

η “ px, yq (8.2)

Namely, the system can be fully linearised and described by a double integrator

Figure 8.3 – Unicyle and landmark notation.

with state s “ pη, 9ηq P R
4

:x “ u1, :y “ u2 (8.3)

where u1 and u2 are the new control inputs. The real system inputs and angular

position can be obtained from the flat outputs and their derivatives as follows

v “
a

9x2 ` 9y2, ω “ 9x:y ´ 9y:x

9x2 ` 9y2
, θ “ Arctan2

ˆ

9x

9y

˙

(8.4)

107

8. Toward visual constraints relaxation: planning under

intermittent measurements

We will see in the next section why it is interesting to propagate the above dynamic

model (8.3) instead of (8.1a) to extend the two A* graphs.

8.4 Problem formulation

We aim at solving an optimal control problem connecting an initial state s0 and a

final state sT in a minimum time T . Let X free “ r̄v, v̄sˆr
¯
ω, ω̄s denote the admissible

input space. Let us define the following optimal control problem.

Problem 11 Find the input up.q and time T such that:

min
up.q,T

T

s.t. sp0q “ s0,

spT q “ sT ,

maxteigpP ηpT qqu ď λ̄,

pvpτq,ωpτqq P X free @τ P r0, T s

(8.5a)

(8.5b)

(8.5c)

(8.5d)

(8.5e)

where eigpP ηpT qq P R
2 contains the eigenvalues of the position covariance matrix

at the goal state sT . The desired bound on the position uncertainty is defined by

λ̄ ą 0. For nonlinear systems such as a unicycle (and a quadrotor), the Extended

Kalman Filter (EKF) is often used for approximating the belief dynamics. The EKF

is based on a linearization of the system dynamics which results in cumulative errors

due to the local linearization assumption. In this work, we stick to the flat space

in order to perform a derivative-free Kalman filter without the need for derivatives

and Jacobians calculations. Moreover, the state estimation accuracy of a derivative-

free Kalman filter can be improved w.r.t. a standard EKF, especially for nonlinear

systems [209]. Finally, we impose input constraints with (8.5e). Considering the

linear equivalent system one defines the process model. When a landmark is visible

we have

9s “ As ` Bu ` ζ,

y “ Cs ` ν

(8.6a)

(8.6b)

where ζ P R
4 is the process noise and ν P R

2 is the measurement noise. Assum-

ing the velocity is estimated through filtering of position measurements, the above

matrices are given by

A “

¨

˚

˚

˚

˚

˝

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

˛

‹

‹

‹

‹

‚

, B “

¨

˚

˚

˚

˚

˝

0 0

0 0

1 0

0 1

˛

‹

‹

‹

‹

‚

, C “
˜

1 0 0 0

0 1 0 0

¸

(8.7)

108

8.4. Problem formulation

In the next sections we show how Problem 11 can be transformed from an infinite

dimensional optimal control problem to a finite dimensional graph-search problem.

We choose to extend two graphs to increase the chance and the rate of convergence to

a solution, especially in complex and cluttered environments. Moreover, it generally

propagates fewer vertices than with a single graph [210].

8.4.1 Motion primitives

As in [145] we use polynomials to parametrize the flat state components and generate

motion primitives to explore the flat space in a discrete way. More precisely, by

applying a number of sampled constant acceleration inputs (see (8.3)) along each

axis uk P UM :“ r´umax, . . . , umaxs2 for a duration τ ą 0 one can iteratively build

a graph GpV,Eq rooted in state s0, where V is the set of discrete states denoted as

vertices s in the graph representation that are connected with a motion primitive

referred as an edge in the set E (e.g., see Fig. 8.1). A motion primitive represents

the state sptq starting at a state s0 on t P r0, τ s with a curve defined as

sptq “ Mpum, s0, tq :“
«

um
t2

2
` 9η0t ` η0

umt ` 9η0

ff

(8.8)

These trajectories reflect the system dynamics thanks to differential flatness and

provide the minimum acceleration between the states s0 and spτq [33]. The free

flat space will be explored with a propagation of these motion primitives further

detailed in Sect. 8.5.1. Naturally, changing the input bounds and duration τ will

affect the free space coverage.

Problem 11 can be reformulated as Problem 12 in the graph representation

where we seek the trajectory connecting the initial and goal states with the optimal

control sequence u˚

k and the minimal number N˚ of motion primitives.

Problem 12 Find the sequence uk and N such that:

min
uk,N

N

s.t. s0 “ sinit,

sN “ sgoal,

maxteigpP η
N qu ď λ̄,

zpuk, si, tq P X free @i P v0, Nw

(8.9a)

(8.9b)

(8.9c)

(8.9d)

(8.9e)

where P
η
N is the covariance matrix on the position at the goal vertex, function z :

puk, si, tq ÞÑ rvptq,ωptqsT computes the system inputs on discretized states sampled

between sptq and spt ` τq along a primitive curve. The resulting trajectory will

109

8. Toward visual constraints relaxation: planning under

intermittent measurements

have a total time N˚τ . Finally, collisions are avoided by considering the robot’s

shape as representative of the position uncertainty ellipse (or ellipsoid in 3D) whose

estimation is detailed in the next section. Motion primitives that violate the collision

and inputs constraints are not added to the graph.

The advantage of graph-search planners in contrast to optimization-based meth-

ods (and especially gradient-based) is that complex constraints are not directly part

of the optimization problem but are checked at each vertex expansion. Moreover,

optimization-based methods may not be adapted to problems involving discontin-

uous constraints gradients as for (8.9d) that is the solution of a stochastic process

with intermittent Kalman updates and possibly large periods without any sensing

information. Evaluating such a gradient for gradient-descent solvers would be chal-

lenging and computationally intense since it is also completely re-evaluated at each

iteration. In the next section we show how state uncertainty is included in visual

perception and in collision avoidance to guarantee perception of visual measure-

ments and safe navigation to a given level of confidence.

8.4.2 State estimation uncertainty

Let σ be the major axis of the uncertainty ellipse P η at a given state. Then, for

a 99% confidence level one has σ99% “
?
9.21

?
λ where λ is the largest eigenvalue

of P η. This confidence ellipse defines the region that contains 99% of all samples

that can be drawn from the Gaussian distribution. We take a circle (a sphere in

3D) with radius σ99% as representative of the robot occupancy. It will vary with

the pose uncertainty and will be incorporated in the planner for ensuring robust

collision-free paths.

Now, let us include the position uncertainty in the visual measurements. A

visual landmark at known position ηL “ pxL, yLq is visible when its bearing angle

φ is smaller than the field of view angle 2α and lies in a given range rc from the

camera (see Fig. 8.3). One has

φ “ Arctan2

ˆ

y ´ yL

x ´ xL

˙

´ θ,

rc “ }η ´ ηL}

(8.10a)

(8.10b)

The uncertainty ∆φ P R related to the bearing angle φ can be obtained as a function

of the state uncertainty and is given by

∆φ “
ˆ Bφ

Bη
Bφ
B 9η

˙T
˜

Pη 0

0 P 9η

¸

ˆ Bφ
Bη

Bφ
B 9η

˙

(8.11)

where Pη and P 9η denote the position covariance matrix and the linear velocity co-

variance matrix respectively. They are evaluated with the Kalman filter along each

110

8.5. Building the graph

valid discretized motion primitive. Applying the same process for the range condi-

tion (with lower and upper bounds
¯
rc and r̄c), one can ensure a (theoretical) 99%

confidence on the perception if the following upper bound conditions are satisfied

at a given state

|φ| `
?
9.21∆φ ă α

¯
rc ă rc `

?
9.21∆rc ă r̄c

(8.12a)

(8.12b)

The update step of the Kalman filter is therefore applied with the simulated mea-

surements whenever conditions (8.12) are met along the propagated motion primi-

tives.

8.5 Building the graph

In this section we show how to exploit some vertices to efficiently explore the free

space with the design of a heuristic function in order to build the graph. Tradition-

ally, distance-based heuristics are used but they are not very relevant for dynamic or

nonholonomic systems that cannot change their velocity, acceleration or orientation

instantaneously. That is why a heuristic function more appropriate for second- or

higher-order systems has been proposed in [145], by taking dynamics and smooth-

ness into account. As well know, A* algorithms rely on two functions: the heuristic

function hps, sgoalq that encodes an (optimistic) approximation of the cost-to-go

from vertex s to the goal sgoal and the function gpsq which represents the cost of

vertex s. Without a heuristic, A* is equivalent to a Dijkstra search, but encoding

some theoretic information into the heuristic function can greatly reduce the num-

ber of expansions in favouring exploration toward promising directions/areas. We

use the heuristic function proposed in [145] that originates from the resolution of

Pontryagin’s minimum principle and invite the reader to refer to the latter paper for

more information. This function now encodes the “effort” required to connect two

states given the considered control input (velocity, acceleration or jerk) and is used

to select vertices leading to the exploration toward regions with minimal energy

in order to encourage smooth trajectories. The cost of an edge itself is gpsq “ τ

because we want to minimize the time. We propose a bi-directional A* algorithm

that builds two graphs G1 and G2. G1 starts at the initial state s0 and G2 starts

at the final state sT . Both graphs will be propagated and connected to return full

trajectories from s0 to sT . The planner is detailed in the following section.

8.5.1 Uncertainty-aware bi-directional A* algorithm

Designing an efficient space exploration is tedious when complex tasks are involved

and should not rely on a too strong a priori. Namely, in our case, the search should

111

8. Toward visual constraints relaxation: planning under

intermittent measurements

not be biased towards the goal since it may not allow sufficient collection of visual

information from the landmarks to satisfy (8.9d). When multiple goals are present

one may bias the search towards these goals, here, the landmarks (see e.g., the

perception heuristic of [211]). However, ensuring convergence to the final goal is

not straightforward, especially for dynamic systems with perception goals that are

function of the attitude (which is not the case in [211]). In the end, we choose not

to rely on any exploration a priori to be able to deal with any environment and

landmark configurations (provided a solution exists). We rely instead on random-

based exploration by smoothly propagating vertices toward states sampled randomly

in the free space. Algorithm 1 runs for a given number of iterations I and is detailed

below. Note that the uncertainty is only propagated on graph G1 with the Kalman

filter since graph G2 is grown backwards (i.e., from the final goal sgoal towards the

initial state sinit). With reference to Fig. 8.5, the algorithm procedures are detailed

below:

Sample: returns an independent and uniformly distributed random sample ver-

tex srand in the free space.

NearVertices: given a sample vertex srand, a graph G “ pV,Eq and a ball

region Br of a given radius ρ, the set of near vertices is defined as Nearps,G, ρq “
ts P V : dps, srandq ď ρu where d is the Euclidean distance and ρ “ γplogpKq{Kq1{q

is the radius for expansion with K is the number of vertices and q is the space

dimension. The ball radius helps capturing vertices when the graph is hollow and

shrinks with the number of vertices to reduce the computation time. We use a

constant radius γc for finding connections candidates (see procedure ConnectG).

GetSortedList : given a list of vertices V and a goal sgoal, this function returns

a list Ls of the sorted vertices s P V in increasing heuristic cost hps, sgoalq.
ChooseBestParent : the vertex with lowest h cost from a list of vertices is chosen

for expansion. We seek to find the parent vertex that will expand vertices towards

the given goal with the lowest energy (highest smoothness).

BestVertices: when no near vertices are found in Br, this function finds the

vertex s in graph G1 with lowest cost hps, sT q and analogously for G2 with hps, s0q.
ExtendVertex : propagates the valid motion primitives from a given parent ver-

tex. This function includes the belief state propagation with the Kalman filter and

collision and feasibility tests.

InsertVertices: valid vertices/edges are added to the graph and marked as chil-

dren from their parent vertex.

InsertVertex : this function inserts a single vertex/edge pair.

ConnectG : this procedure is triggered whenever vertices from both graphs are

found in the procedure NearVertices within a second ball region of constant radius

112

8.5. Building the graph

Algorithm 1 Bi-A*

1: gps1bestq Ð 8, gps2bestq Ð 8
2: for i Ð 1 to I do

3: srand Ð Samplepq
4: pX1

near, X
2
nearq Ð NearV erticespsrand,G1,G2, ρq

5: pX1
c , X

2
c q Ð NearV erticespsrand,G1,G2, γcq

6: if X1
c ‰ and X2

c ‰ then

7: ps1new, s2newq Ð ConnectGpX1
c , X

2
c q

8: pP η
N , collq Ð BackPropps2new, Ps1new

,G2q
9: if maxteigpP η

N qu ď λ̄ and !coll

10: if gps1newq ` gps2newq ă gps1bestq ` gps2bestq
11: s1best “ s1new, s

2
best “ s2new

12: end if

13: if X1
near ‰ then

14: Ls Ð GetSortedListpX1
nearq

15: s˚

1 Ð ChooseBestParentpLs, sT q
16: Lc

1 Ð ExtendV ertexps˚

1q
17: G1 Ð InsertV erticespLc

1q
18: end if

19: if X2
near ‰ then

20: Ls Ð GetSortedListpX2
nearq

21: s˚

2 Ð ChooseBestParentpLs, s0q
22: Lc

2 Ð ExtendV ertexps˚

2q
23: G2 Ð InsertV erticespLc

2q
24: end if

25: if X1
near “ and X2

near “ then

26: ps˚

1 , s
˚

2q Ð BestV erticespG1,G2q
27: Lc

1 Ð ExtendV ertexps˚

1q
28: G1 Ð InsertV erticespLc

1q
29: Lc

2 Ð ExtendV ertexps˚

2q
30: G2 Ð InsertV erticespLc

2q
31: end if

32: end forreturn s1best, s
2
best

113

8. Toward visual constraints relaxation: planning under

intermittent measurements

γc centered on srand. Indeed, we seek pairs of vertices in a vicinity region to per-

form connection tests (see Algorithm 2) using the function solveQP presented in

Sect. 8.6. Note that γc can for instance be chosen as the “spatial resolution” of

motion primitives or larger to find more connection candidates.

BackProp: given a vertex s0 with a covariance matrix P 0 from graph G1, once

a connection is found we back-propagate the state uncertainty through G2 by con-

sidering the sampled states between s0 and the goal sgoal (see Fig. 8.5).

Algorithm 1 aims at finding the most direct trajectory towards the goal, espe-

cially in case of low process noise and tries to mimic a couple of nice properties of

classic graph-search planners, namely: i) expansion towards unexplored regions; ii)

probabilistic completeness due to a uniform random walk ; iii) asymptotic optimality.

(a) I “ 100, G1: 271 vertices. G2: 187 vertices (b) I “ 100, G1: 2427 vertices. G2: 2302
vertices

(c) I “ 100, G1: 5774 vertices. G2: 4081 ver-
tices

Figure 8.4 – Planner performance in exploring a 2D environment. When the graphs are
hollow and no near vertices are found, both graphs propagate vertices toward each other
(Fig. 8.4a). This helps finding a direct path that may be the optimal solution in case of
low process noise. G2 extends fewer vertices in this environment because of the obstacles
that are slightly cutting down its expansion. One can see that the free space is explored in
a reasonable uniform way.

Algorithm 2 performs connection trials on the vertices in X1
c , X

2
c if their heuris-

tic cost is lower than a given value h̄. This value can be chosen off-line to skip

114

8.5. Building the graph

Algorithm 2 ConnectG

Input: X1
c , X

2
c

1: success “ false

2: for s1 in X1
c do

3: for s2 in X2
c do

4: if hps1, s2q ă h̄ then

5: success Ð solveQP ps1, s2q
6: if success “ true then

7: return ps1, s2q
8: end if

9: end if

10: end for

11: end for

12: return 0

Figure 8.5 – Inside a ball of radius ρ centered at srand (black dot), picture 1 shows how the
vertex with lowest h cost is chosen for expansion (in cyan). The black arrows represent the
vertex velocity vector. If vertices from graph G1 (in green) and from graph G2 (in yellow)
are found inside a ball region of fixed radius γc, connections trials are performed except for
connections with a high h cost (orange lines). Note that we consider the opposite velocity
(and acceleration) vectors for vertices coming from graph G2. If a candidate connection if
found (blue line) the uncertainty is propagated along G2 starting from s0 (picture 3). If no
collisions are found between the obstacles (blue box) and the uncertain robot’s occupancy
(turquoise circles) and if the final constraint (8.9d) is satisfied on P

η

N , a solution trajectory
is reconstructed from the initial vertex s0 (green dot) to the goal vertex sT (yellow dot)
and its total cost is evaluated.

115

8. Toward visual constraints relaxation: planning under

intermittent measurements

connections that may require “too much” energy (see Fig. 8.6). Usually, graph-

Figure 8.6 – Computation of the heuristic cost hps1, s2q between multiple vertices s1 and
a goal vertex s2 at the origin. The arrows represent the vertices linear velocity. As we can
see the vertex with the lowest cost is the one whose velocity vector is the most “aligned”
with the goal velocity vector. Vertices that are closer to the goal have a higher cost.

search planners for dynamic systems involve two steps. First, an optimal path is

found ignoring the system dynamics. Then a refining step is performed by optimiz-

ing over a selection of state keyframes along the path. The resulting trajectory is

smoothed and more adapted to dynamic systems (see e.g., [145], [31]). However,

the shape of this trajectory may strongly differ from the original path (e.g., in [31]).

In our context, visual perception cannot be guaranteed with such a technique and

it does not take into account the uncertainty in collision avoidance. A key role of

the bi-directional planner used in this work is that if a connection is made, the

initial and final states are exactly connected, which is generally not the case in the

graph-search planners literature. For instance, [145] stops the search when a vertex

becomes close enough to the goal state sT , a condition that may not be met if not

properly tuned. In this work we aim instead at finding the optimal trajectory that

will be directly tracked by the real system without additional refining steps.

Next section details how the connection between the two graphs is performed in

an optimal and efficient way.

8.6 Connecting the graphs

Connecting the two graphs is a critical step. One has to ensure state continuity

between two candidate vertices. This problem is known as the Boundary Value

Problem (BVP). Moreover, one wants to ensure feasibility as well and connections

have to be evaluated quickly since the process may be called many times. We

propose an optimal formulation to the BVP that can be solved as a single convex

quadratic program. We exploit the convex-hull property of B-splines in order to

116

8.6. Connecting the graphs

impose constraints directly on the curve control points to alleviate the solver.

8.6.1 Solving the constrained BVP

The original problem we want to solve is the following

Problem 13 Find η, 9η, :η such that:

min
η, 9η,:η

ż T

0

}:ηpτq}2dτ

s.t. sp0q “ s0,

spT q “ sT ,

¯
v ď vpτq ď v̄, @τ P r0, T s
|ωpτq| ď ω̄ @τ P r0, T s

(8.13a)

(8.13b)

(8.13c)

(8.13d)

(8.13e)

We penalize the input norm to obtain a smooth connection trajectory. Now, we

parameterize the flat state s as B-splines to turn the infinite dimensional problem

to a finite one with a limited number of coefficients that can be solved numerically.

A trajectory s is parameterized as

sptq “
i“n
ÿ

i“0

Bi,ppτqP , @τ P r0, T s (8.14)

where Bi is a polynomial basis of degree p (of order k “ p ` 1) and P P R
n`1

represents the set of coefficients.

Now, Problem 13 involves nonlinear constraints (8.13d) and (8.13e) and would

require a nonlinear solver. We choose to simplify this problem by replacing these

constraints with bounds on the linear velocity 9η and acceleration :η with

r 9ηpτq, :ηpτqsT P X free @τ P r0, T s (8.15)

with X free :“ r´v̄, v̄s2 ˆ r´ā, ās2 the hypercube space of the admissible velocities

and accelerations.

8.6.2 A linear quadratic program based on B-splines

The reason we use B-splines is for their convex hull property that will allow us to

write linear inequality constraints directly function of the B-spline control points.

A similar approach has been used in [212] for manipulators.

These techniques are attractive and mostly adopted because of the convex hull

property of the B-spline parametrization, which states that a spline is always con-

tained in the convex hull of its B-spline coefficients [124]. This way, spline con-

straints can be relaxed to constraints on the B-spline coefficients and we are ensured

117

8. Toward visual constraints relaxation: planning under

intermittent measurements

that the B-spline curve will satisfy the same constraints. Replacing semi-infinite sets

of constraints by finite, yet conservative sets is called a B-spline relaxation. B-spline

relaxations can only be applied on splines, meaning that all constraints must be writ-

ten as derivatives, antiderivatives, or polynomials of splines. Therefore, a nonlinear

change of variables needs to be adopted to transform all constraints into bounds on

spline functions [213] The major advantage is that B-spline relaxations avoid time

gridding of the constraints, while they guarantee constraint satisfaction at all times.

The disadvantage is that B-spline relaxations also introduce some conservatism.

This conservatism can be reduced by choosing a higher dimensional basis, at the

cost of introducing extra constraints [212]. This conservatism stems from the dis-

tance between the control polygon and the spline itself. Knot insertion is generally

the preferred technique, since, in this way, the conservatism reduces quadratically

with the number of constraints, while this decrease is only linear when using degree

elevation [214]. In addition, knot insertion allows refining the control polygon only

locally, whereas degree elevation always affects the entire control polygon. Since

using a higher dimensional basis translates into more constraints, it is necessary to

make a trade-off between conservatism and computational complexity (number of

constraints).

For nonlinear systems, one can resort to convex approximations of the feasible

set [215, 138]. Inevitably, this method introduces conservatism in the problem.

Moreover, some feasible sets do not admit such a polytopic approximation, e.g.

obstacle avoidance constraints.

Constraints (8.15) can be mapped in the space of the control points. Let us

differentiate the B-spline of degree p defined on the clamped knot vector of size

n ` k ` 1 such that ui ď ui`1, i “ 0, . . . , n ´ k

U “ p0, . . . , 0
loomoon

p`1

, up`1, . . . , uk´p´1, 1, . . . , 1
loomoon

p`1

q (8.16)

The first derivative can be expressed as a function of the control points P with

s
1puq “ p

i“n´1
ÿ

i“0

Bi`1,p´1ptq P i`1 ´ P i

T pui`p`1 ´ ui`1q (8.17)

Let us define the vector of new coefficients

Qi “ p
P i`1 ´ P i

T pui`p`1 ´ ui`1q , @i P v0, n ´ 1w (8.18)

The new knot vector is obtained by dropping the first and last knots from U , i.e.,

U
1 “ p0, ..., 0

loomoon

p

, up`1, ..., um´p´1, 1, ..., 1
loomoon

p

q (8.19)

118

8.6. Connecting the graphs

For the second derivative one has

s
2puq “

i“n´2
ÿ

i“0

Bi`2,p´2ptqRi (8.20)

where Ri are the control points of the second derivative. One has

Ri “ pp ´ 1q Qi`1 ´ Qi

T pui`p`1 ´ ui`2q , @i P v0, n ´ 2w (8.21)

Now we can express Q and R as functions of P with

Q “ AQP , R “ ARQ “ ARAQP (8.22)

where matrix AQ P R
nˆpn`1q and AR P R

pn´1qˆn. Now, one can easily set semi-

infinite bounds on the derivatives coefficients Q and R that are linear in P . All

the constraints can be rewritten as functions of the control points P . This strategy

avoids discretizing the flat outputs and the constraints that would may lead to a

great number of constraints. We want to solve the following problem on each axis

Problem 14 Find P such that:

min
P

P T pBT
r BrqP

s.t.
@

P ,Bi
pp0q

D

“ ηi
0, @i P v0, r ´ 1w

@

P ,Bi
ppT q

D

“ ηi
T , @i P v0, r ´ 1w

´ Q̄ ď Qi ď Q̄, @i P v0, n ´ 1w
´ R̄ ď Ri ď R̄ @i P v0, n ´ 2w

(8.23a)

(8.23b)

(8.23c)

(8.23d)

(8.23e)

where Bd
ppsq P R

n is d-th order derivative B-spline basis of degree p evaluated

at s P rt, t ` T s. In this case Br P R
Hˆn represents the r-th order derivative

basis discretized in H samples between t and t ` T . Finally, as we minimize the

acceleration we choose r “ 2.

The problem can be written in the compact form of a quadratic program with

Problem 15 Find P such that:

min
P

1

2
P THP ` fTP

s.t. AP ď b,

AeqP “ beq

lb ď P ď ub

(8.24a)

(8.24b)

(8.24c)

(8.24d)

119

8. Toward visual constraints relaxation: planning under

intermittent measurements

where H P R
nˆn denotes a positive (semi-)definite Hessian matrix, f P R

n is the

gradient vector (null here), A P R
mˆn is the constraint matrix and Aeq P R

rˆn is

the equality constraint matrix. The upper and lower bounds on the constraints are

defined by the vectors b P R
m and beq P R

r and bounds on the decision variables

can be set with lb P R
n and ub P R

n but will be null in our case. Here we will not

impose bounds on P , i.e, (8.24d) is not considered.

Problem 14 will be solved using qpOASES [216] that implements an online active

set strategy. Note that the connection time T is fixed and we found that choosing

T “ τ generates a reasonable amount of successful connections.

8.7 Extension to the quadrotor UAV

As seen in Sect. 2.5, thanks to differential flatness the quadrotor’s dynamics can be

decoupled into four linear subsystems of the form

xp4q “ ν1, y
p4q “ ν2, z

p4q “ ν3, ψ
p2q “ ν4 (8.25)

where ν “ pν1, ν2, ν3, ν4q defines the new control inputs in the flat space. For the

sake of simplicity, we do not plan over the yaw angle ψ that is assumed to be

constant at zero. Moreover, we consider the quadrotor as three triple-integrators

controlled in jerk along axes X,Y and Z, and we consider linear constraints on the

first and second derivatives. With the above simplifications we seek to alleviate

the planner whose complexity grows exponentially with the state dimension. The

derivative-free Kalman filter in the flat space drastically reduces the computation

load for the state estimation compared to an EKF with the real nonlinear quadrotor

dynamics. We aim at solving Problem 12 with the same planning framework for

the new state vector s “ px, y, z, 9x, 9y, 9z, :x, :y, :zq and input u “ pxp3q, yp3q, zp3qq with

X free :“ r´v̄, v̄s3 ˆ r´ā, ās3 ˆ r´j̄, j̄s3 where j̄ denotes the jerk bound. We consider

Figure 8.7 – The quadrotor in the vertical planes X-Z and Y-Z with ψ “ 0. Having
uncertainties on the state affects the perception. To evaluate if a landmark (red blob) is
visible under the state uncertainty we check that condition (8.28) is satisfied on both planes.
These conditions allow an exact and fast evaluation of the visibility and only rely on the
flat state.

120

8.8. Simulation and experimental results

that the quadrotor is equipped with a fixed downward-looking camera capable of

providing reliable position measurements when fixed landmarks on the ground enter

the limited field of view. Again, the uncertainty on the state s is incorporated in

the planning. With reference to Fig. 8.7, to check that a landmark at position

rL “ pxL, yL, zLq is visible along an edge, we impose conditions on angles β1 and

β2 on both planes X-Z and Y-Z given by

βi “ arccos

ˆ prLeiq.li
}prLeiq.li}

˙

, i “ 1, 2 (8.26)

where li are given by

l1 “
˜

cosα ´ sinα

sinα cosα

¸

t1, l2 “
˜

cosα sinα

´ sinα cosα

¸

t2 (8.27)

With g as the (constant) gravity acceleration in the world frame one has ti “
paei ` gq{}aei ` g}, i “ 1, 2. The bearing uncertainty ∆β P R can be computed as

∆β “
ˆBβ

Bη
Bβ
B:η

˙T
˜

Pη 0

0 P:η

¸

ˆBβ
Bη

Bβ
B:η

˙

(8.28)

where P:η is the acceleration covariance matrix. We consider a landmark is guaran-

teed to be visible when

βi `
?
9.21∆β ă 2α, i “ 1, 2 (8.29)

Problem 14 is now extended with constraints on the jerk that is minimized (i.e.,

r “ 3). The latter constraints are written as

´S̄ ď Si ď S̄ @i P v0, n ´ 3w (8.30)

where the vector S P R
n´3 is given by

Si “ pp ´ 2q Ri`1 ´ Ri

T pui`p`1 ´ ui`3q , @i P v0, n ´ 3w (8.31)

with

S “ ASR “ ASARAQP (8.32)

where matrix AS P R
pn´2qˆpn´1q.

8.8 Simulation and experimental results

In this section we show some results for different scenarios for both the unicycle and

the quadrotor. Problem 14 is solved within 0.5 ms for the unicycle after 30 solver

iterations on average and within 5 ms for the quadrotor with around 90 iterations.

121

8. Toward visual constraints relaxation: planning under

intermittent measurements

We were able to find solutions under 150 ms for the unicycle and after a 5 to 10

seconds in general for the quadrotor. In Fig. 8.8 two solution trajectories are shown

for the unicycle. We can see that the robot finds a way to collect visual cues from

the landmarks to reach the goal with a bounded uncertainty with different landmark

and obstacles configurations for given initial and final states.

Figure 8.8 – Example trajectories for the unicycle with τ “ 0.3s and umax “ 3m.s´2 in a
12x8m operating region. The figure on the left shows an optimal trajectory that moves past
the landmarks to sufficiently reduce the uncertainty. On the right figure different initial
and final states are chosen.

Figure 8.9 shows an optimal trajectory for the 3D quadrotor and Fig. 8.10 shows

the constrained derivatives along the connection considering a B-spline of order 4.

With the given degree we can see that the curves (e.g., the jerks) are not penalized

by conservatism. Finally, Fig. 8.13 shows the tracking performance for a simulated

quadrotor in V-Rep1 using controller [141]. We can see that the third-integrator

model approximation is reasonable.

Figure 8.9 – An optimal trajectory for the 3D quadrotor with τ “ 0.35s and umax “ 10m.s´3

in a 12x8x5m operating region. The initial and final states are chosen such that no landmark
is visible (red blobs on the ground) so the quadrotor starts with some uncertainty and is able
to reach the goal with a bounded uncertainty by observing the landmarks during its motion.
Note that we do not consider occlusions due to the obstacles and the motion primitives are
not shown.

1http://www.coppeliarobotics.com/

122

8.8. Simulation and experimental results

Figure 8.10 – Velocity, acceleration and jerk constraints along the connection trajectory
with bounds v̄ “ 2m.s´1, ā “ 4m.s´2 and j̄ “ 10m.s´3. The small squares represent the
B-spline control points.

We show in Fig. 8.11 an example of a full optimal trajectory which is “patched”

by the optimal three-dimensional B-spline curve connecting the two trajectories

rooted in the initial and the final state. The full position, velocity and acceleration

profiles are shown in Fig. 8.12.

Figure 8.11 – Full trajectory found by the planner. The red arrows represent the total
thrust direction and the green circles represent the B-spline coefficients used for connecting
the two trajectories.

For the experiment illustrated in this section we used a MK-Quadro equipped

with a front-looking camera with a field of view of 45˝. Note that we validated

the AprilTags tracking off-board on the image sequences recorded during the flights

using ViSP [217]. The setup includes an on-board ODROID-XU4 Linux computer

running ROS and the TeleKyb framework for controlling the quadrotor. An optimal

trajectory computed off-line using a jerk input umax “ 4m.s´3 is tracked by the

system (see Fig. 8.14) in presence of two obstacles (blue boxes) and four landmarks.

123

8. Toward visual constraints relaxation: planning under

intermittent measurements

(a) Full position profiles of Fig. 8.11. (b) Full velocity profiles of Fig. 8.11.

(c) Full acceleration profiles of Fig. 8.11.

Figure 8.12 – Connection of the position, velocity and acceleration profiles

Figure 8.13 – Plots of the attitude tracking. The dashed lines are the command values while
the solid lines show the actual robot attitude in V-Rep.

The related video2 shows 6 different solution trajectories (see Fig. 8.15) tracked

by the quadrotor. Apart from environment differences, several solutions may be

found with very different characteristics and shape. This is explained by the

random-based search of the algorithm and by the non-convex nature of the op-

timal program driving the solutions to local minima. The fifth trajectory Fig. 8.15c

shows an interesting behaviour, the quadrotor flies above the two obstacles by in-

creasing its height. This way, the field of view is extended and sufficient visual

measurements can be collected. Thus, the presented algorithm is able to generate

this behaviour that we depicted in the previous work [2]. Finally, we chose very low

2https://youtu.be/a3akkwzyEfw

124

8.9. Summary and future directions

Figure 8.14 – Snapshots of the quadrotor during the experiment. The quadrotor is tracked
with a Vicon system and follows an optimal trajectory (in green) along which landmarks
(the AprilTags in orange) are visible on some portions. The lower right figure shows an
Apriltag tracked using ViSP when the quadrotor is at the configuration circled in red. The
evolution of the uncertainty is shown below after running the Kalman filter on the recorded
data and using the AprilTags detection. The landmark at the goal is not taken into account
in the planning and is used to check that the quadrotor arrives at the goal state within the
expected confidence region.

values for the process and the measurement noise. The computed trajectory (the

sixth one) actually resembles to a minimum-time trajectory in the sense that the

quadrotor flies directly toward the goal state at a constant height without “passing”

by the visual landmarks. One can conclude that the proposed algorithm is able to

generate consistent solutions regarding the noise magnitude.

8.9 Summary and future directions

In this chapter we proposed to incorporate perception constraints in a graph-search

planner for planning minimum-time and feasible trajectories for flat dynamic sys-

tems. We believe that the optimization frameworks presented in the previous works

which rely on gradient-descent methods may not be adapted to the considered goals

in this section. They provided limited state space exploration and were not able

to generalize to the large environments considered in this work. The optimization

framework allows exact connection between a given initial and final states while en-

125

8. Toward visual constraints relaxation: planning under

intermittent measurements

(a) An optimal trajectory starting with
a negligible uncertainty and connecting
the goal with a limited uncertainty.

(b) An optimal trajectory starting with a signif-
icant uncertainty. A path is found to reduce the
uncertainty by collecting visual measurements
from three targets.

(c) An optimal trajectory exploiting the
height of the room to increase the field of
view of the camera.

Figure 8.15 – Three examples of the six solution trajectories found with our method (all
starting from the green dot).

suring collision avoidance and bounded final uncertainty at the goal by accounting

for the state uncertainty at the planning stage. We considered visual measurements

that are a function of the attitude and proposed an efficient optimal graph rewiring

by exploiting the convex-hull property of B-splines. Of course, other exteroceptive

sensors could be considered such as laser range finders or sonar arrays along with

more accurate measurement noise models. One could as well incorporate uncertain-

ties related to wheels skid and odometry bias in the unicycle case. The planner

success rate depends on the motion primitives parameters, the ball regions radius

and the maximal number of iterations. It could be possible to re-plan optimal

trajectories during motion and even consider dynamic obstacles for the unicycle

case. We assumed the position of the landmarks is known but it would be possible

to incorporate their position uncertainty in the planner. Finally, we believe the

126

8.9. Summary and future directions

triple-integrator approximation of the quadrotor dynamics could become closer to

a fourth-integrator model by having an additional noise in the current model. This

would give a more adequate representation of the real quadrotor dynamics which

would result in a more feasible trajectory.

127

Part III

Conclusion and future

directions

129

Chapter 9

Conclusion and future directions

In this last chapter, we wish to review the main theoretical and experimental results

achieved in the thesis and point out some issues that are still left open. Regard-

ing the latter, we also intend to indicate possible directions to follow for further

investigation and research.

9.1 Summary and contributions

The goal of this thesis was mainly to explore the generation of reactive trajectories

for a quadrotor subject to visibility constraints and inputs constraints. The consid-

ered system consists in a regular quadrotor equipped with a fixed camera (either

down- or front-looking). Since we focused on exploiting the potential of a quadro-

tor in terms of agility to perform aggressive motions, the effect of underactuation

could not be ignored, especially because visual perception is very sensitive to the

inherent rotation motions. Moreover, we assumed visual feedback played crucial

roles either for state estimation or for tracking a moving target. Thus, a collec-

tion of visual constraints were formulated in this thesis such as visibility constraints

(Sect. 6.7) followed by occlusion avoidance constraints (Sect. 7.6) encapsulated in

an optimization framework.

In Sect. 6.7 we proposed re-planning strategies inspired from Model Predictive

Control to generate minimum-time and feasible trajectories while keeping a set of

visual features in the field of view of the camera. We proposed a hot-start algo-

rithm for building initial guess trajectories by exploiting properties of B-splines

curves. We were able to efficiently re-plan optimal trajectories at a rate of 30Hz.

This preliminary work led to the resolution of more complex problems in Sect. 7.6

for tackling collisions and occlusions avoidance in real-time. We proposed a multi-

objective nonlinear program, first for tracking a free moving target in 3D space with

a front-looking camera then for avoiding occlusions generated by spherical obsta-

131

9. Conclusion and future directions

cles in the environment considering a down-looking camera. We dealt with sudden

occlusions and critical camera/target configurations that would lead to a failure of

the solver in principle by adding a slack variable to the nonlinear program that

acts as a damper to relax the occlusions avoidance constraints. Such a parameter

helped improving the continuity of the solution and therefore the stability of mo-

tion. We showed that tuning the optimization programs do not require fine analysis

(although it may be interesting to show a sensitivity analysis) and that we are able

to manage conflicting goals to exhibit the desired behaviours. Finally, we succeeded

in computing optimal trajectories in real-time by improving the evaluation of the

gradients necessary for the SQP solver with the use of complex-step differentiation.

With this method we are able to obtain a lightweight evaluation of the complex

gradients with a near analytic precision. We showed that the hot-start algorithm

definitely contributed in the success of the re-planning framework.

In Chapt. 8 we addressed the problem of planning under intermittent visual

measurements provided by visual landmarks scattered in the environment. The

objective was to relax the vision-based constraints developed in the previous con-

tributions which may highly restrict the robot motions to limited operating spaces.

We proposed a graph-search algorithm that takes state and measurement uncer-

tainties into account to find robust and collision-free trajectories that satisfy a con-

fidence level at the goal state. In contrast to several works we searched for robust

minimum-time paths ensuring some confidence level instead of paths with minimal

uncertainty. This strategy may make more sense depending on the configuration

of the obstacles and the landmarks in the environment. Indeed, if the system and

the sensors are well known, the uncertainty is low, thus one may navigate almost

directly to the goal and arrive with a limited state uncertainty. On the other hand,

if the system is subject to large uncertainties in a complex environment, one also

seeks the most direct path connecting the goal state by collecting a sufficient (and

ideally a minimal) amount of visual measurements. The proposed algorithm grows

two graphs based on a A* variant which are connected smoothly to build a full

feasible trajectory for the considered flat dynamic systems. The motivation was to

improve the rate of convergence and to plan a trajectory that connects the initial

and final states exactly, which is not often the case in the literature. To the best

of our knowledge, this is the first time minimum-time trajectories are generated

in a graph-search planner while accounting for uncertainty in the visual percep-

tion which is affected by the robot attitude. We demonstrated the utility of the

algorithm by considering a unicycle and a 3D quadrotor.

In this thesis we extensively used properties of the differential flatness both for

trajectory planning and state estimation. We used a derivative-free Kalman filter

for the latter in Chapt. 8. This technique contributed in improving the fastness

132

9.2. Open issues and future perspectives

of the algorithm although is it not suited for real-time planning (at least for the

quadrotor case). Differential flatness played a significant role in simplifying tra-

jectory generation to meet real-time planning and for the propagation of feasible

motion primitives in Chapt. 8.

Properties of the B-spline curves were also largely exploited in the presented

contributions. In Sect. 6.7 we took advantage of the properties of compact form and

smoothness along with powerful manipulation algorithms to instantly build initial

guess trajectories. Then, such a parametrization allowed the use of a reasonable

number of control points to satisfy the considered constraints. Finally, in Chapt. 8

we exploited the convex hull property to develop a quadratic program for smoothly

connecting the two graphs with B-spline curves while satisfying linear inequality

constraints.

9.2 Open issues and future perspectives

However, even if our approaches presented several promising results it also high-

lighted some limitations both theoretical and practical.

One limitation of our work is that we relied on an external motion-capture Vicon

system providing accurate state estimates at a high frequency. In our works, we

assumed that navigation relies on a state estimation algorithm which is updated

with the visual measurements extracted from computer vision. The design of the

image processing algorithms was beyond the scope of this thesis. Although, it would

be relatively easy to implement them using ViSP.

In order to fully prove the presented works, we believe experimental results

should be conducted by relying on onboard sensors (a single camera and an inertial

measurement unit) and computers for detecting, localizing, and tracking moving

objects. As pointed out in Chapt. 8, motion blur may impair computer vision

algorithms. One possible solution could be to reduce the system aggressiveness or

to directly incorporate motion blur as an additional noise affecting the perception.

Another approach could be the minimization of motion blur at the planning state

(e.g., by minimizing the features velocity in the image plane or by penalizing the

angular rates of the quadrotor). As explained in the experimental sections, we

equipped our robot with an ODROID-XU4. However, we think that the new, and

more powerful, NVIDIA JETSON TX2 module could be a more reasonable solution

for a complete onboard implementation of the vision, planning and state estimation

modules.

Although [158] warned that finding images features as flat outputs might be

impossible if one considers the full dynamics of the 3D quadrotor we tried to de-

133

9. Conclusion and future directions

rive a differential flat mapping between the state space and the image space but

the equations become very complex (so would be the constraints on the inputs)

if one considers the rotation matrix. Furthermore, it would require knowledge of

high-order derivatives that are not directly measurable. Maybe partial differential

flatness (as in e.g., [218]) might bring a weaker but elegant mapping of the dynamics

in the image plane.

Now, further improvements and extensions could be considered in Sect. 7.6. We

only dealt with spherical obstacles, but more complex shapes could be considered.

One possibility could be to find the (minimal) enclosing sphere (i.e., the smallest

sphere containing the object). For elongated objects such as bars, one could cover

the object main axis with a finite number of spheres as it is done sometimes for

collision avoidance with robot manipulators (a technique known as “sphere swept

models” see e.g., [219]). However, dealing with dynamic obstacles seems quite chal-

lenging. To do so, vision would play a major role in estimating the object’s position.

Thus, as always, there is a trade-off between conservatism/accuracy and ease of

computation.

Finally, more accurate noise models could replace the current ones in Chapt. 8

without adding an excessive burden to the computing. Thus, conservatism could

be reduced and more precise trajectories could be found.

9.3 Final thoughts

Aerial navigation has received considerable attention over the last 15 years. Very

powerful and efficient forms of optimal planning methods have emerged to tackle

more complex scenarios and environments involving obstacles or additional moving

parts that traditional controllers were not able to address. In 2011, [1] demonstrated

the ability of optimization techniques to design feasible and high-speed flight plans

for quadrotors for passing through obstacles with substantial pitch and roll angles.

The presented strategy inspired many works to study aggressive motions, feasibility

and re-planning strategies. Six years later, [24] was able to reproduce such scenarios

in a fully autonomous fashion by re-planning optimal trajectories using vision as

principal feedback. This work merges planning and vision and proved that active

vision is definitely a key to the future of aerial navigation especially associated

with agile manoeuvres. Moreover, since deep-learning has handily surpassed every

existing computer vision techniques for tracking, detecting and localizing, it has

been very seriously considered in robot control and planning. Now, deep-learning

constitutes the state-of-the-art approach across computer vision, audio, and natural

language processing and is largely adopted and studied by the research community.

Therefore deep-learning is gaining in maturity exponentially and is even about to

134

9.3. Final thoughts

replace the action of many existing complex controllers. The reason is not especially

because of the recent theoretical improvements made in the field by mainly because

of the impressive fastness of today’s computers. Indeed, Moore’s law stating that

the number of transistors in an integrated circuit doubles about every two years is

coming to an end (mainly because of heat exchange and electronic disturbances due

to proximity of circuits). However, the power of computers keeps growing due to

parallelization of processors and the use of graphics processing units (GPU). Now,

robots are even able to efficiently develop robust and complex flight plans by learning

from their “mistakes” (even from crashes [220]). Besides, learning can be accelerated

by using simulation data. If properly done, it can save a considerable amount of

time and of course avoid tedious experimental setups and replacements of spare

parts. However, such techniques are expensive since they require a considerable

computational power which is not always affordable. Although the strength of deep-

learning is its ability to generalize and adapt to new situations, a few aspects remain

unclear. We are not yet able to prove its robustness, stability and convergence,

central criteria that might refrain its adoption in industry especially at the control

level. Moreover, huge data sets are needed and may be difficult to obtain depending

on the targeted task. Besides, it is known that slightly altering the input data (e.g.,

changing a few pixels in the input image) of a well -trained neural network can lead

to absurd outputs. Interpretability in deep learning referring to understanding why

a system makes a certain decision is a hot topic and an open problem.

For these reasons, more interpretable techniques such as model-based and an-

alytic control techniques which rely on a long history of research developments

will still play a major role in the future. Note that the hidden process of pat-

terns generation in deep-learning has already been modelled to replicate some of

its properties to some extent. For instance, a visual servoing task is proposed in

[221] that eliminates the need for detecting and tracking image features by using

photometric Gaussian mixtures. This strategy subsamples the images and extracts

photometric data at increasing levels of precision until convergence. This technique

mimics deep-learning and is able to drastically improve the convergence domain of

a classical visual servoing task and to reduce the computation expense. Finally, new

computers and sensors are being developed and will give the possibility to address

even more complex scenarios. Even-based cameras seem to constitute promising

elements of the future sensory channel of aerial robots and any system involving

fast camera motions.

To conclude, this thesis tackled and revealed challenging problems that are cur-

rently addressed actively by the research community. A key aspect to the success

of future autonomous and complex navigation seems to lie in coupling of trajec-

tory planning and the considered tasks especially including vision-based perception

135

9. Conclusion and future directions

objectives. Algorithms requiring extensive computation loads can now be easily

deployed on on-board computers to generate safe and robust motions on-line for

reactively responding to changes in the environments.

136

Appendix A

The proof of differential flatness

for the quadrotor

In this appendix we give the differential flatness transformation and its inverse for

the quadrotor.

A.1 Flat transformation

Defining

t :“ :rB ` ge3 (A.1)

and considering u1 is always positive, from (2.14) we obtain the direction of the

robot vertical axis

zB “ t

}t} (A.2)

and also the total thrust

u1 “ m}t} (A.3)

Given the yaw angle ψ “ σ4 we can define the vector:

yB :“ Rzpψqe2 “ p´ sinpψq cospψq 0qT (A.4)

and from (2.2) it is easy to verity that:

yB ˆ zB “ cospϕqxB (A.5)

Provided that cospϕq ą 0, we are the able to compute xB as

xB “ yC ˆ zB

}yC ˆ zB} :“ x̃B

}x̃B} (A.6)

The last axis of the frame B is simply given by

yB “ zB ˆ xB (A.7)

137

A. The proof of differential flatness for the quadrotor

and the rotation matrix describing the full 3D orientation of the robot is

WRB “ pxB yB zBqT (A.8)

Now we take the first derivative of (2.14)

m 9aB “ 9u1 “ zB ` ωBW ˆ u1zB (A.9)

Projecting the equation along zB we obtain

9u1 “ mzT
B 9aB (A.10)

We can now substitute 9u1 and u1 back in (A.9) getting

ωBW ˆ zB “ 1

}t}r 9aB ´ pzT
B 9aBqzBs

“ 1

}t}pI ´ zBz
T
Bq 9aB :“ h

(A.11a)

(A.11b)

We assumed in (2.5) that ωBW has components ωx,ωy and ωz in the body frame,

i.e.

ωBW “ ωxxB ` ωyyB ` ωzzB (A.12)

then

h “ pωxxB ` ωyyB ` ωzzBq ˆ zB “ ´ωxyB ` ωyxB (A.13)

and hence

ωx “ hTyB

ωy “ hTxB

(A.14a)

(A.14b)

The third component ωz is found by considering that from (2.4)

ωz “ yT
B 9xB (A.15)

and

9xB “ pI ´ xBx
T
Bq 9̃xB

›

›

›
9̃xB

›

›

›

(A.16)

Then, since yT
B
xB “ 0, we can conclude that

ωz “ yT
B

9̃xB
›

›

›
9̃xB

›

›

›

“ 9̃xB
›

›

›
9̃xB

›

›

›

p´xC ˆ 9ψzB ` yC ˆ hq

“ 1
›

›

›
9̃xB

›

›

›

rxT
C pyB ˆ 9ψzBq ´ yT

C pyB ˆ hqs

“ 1
›

›

›
9̃xB

›

›

›

pxT
CxB

9ψ ` yT
C zBωyq

(A.17a)

(A.17b)

(A.17c)

138

A.1. Flat transformation

Once the values of ωx,ωy and ωz are known we are able to compute ωBW as:

ωBW “ WRB

¨

˚

˝

ωx

ωy

ωz

˛

‹

‚
(A.18)

To calculate the angular acceleration B
9ωBW we operate in the same way. By deriving

(A.9) with respect to time we obtain:

m:aB “ :u1zB ` 2ωBW ˆ 9u1zB ` 9ωBW ˆ u1zB ` ωBW ˆ pωBW ˆ u1zBq (A.19)

Projecting this equation along zB we have:

mzB
T

:aB “ :u1 ` zB
T rωBW ˆ pωBW ˆ u1zBqs (A.20)

from which we can isolate :u1:

:u1 “ mzB
T r:aB ´ ωBW ˆ pωBW ˆ u1

m
zBqs (A.21)

Substituting :u1 in (A.19) and putting

δ :“ :aB ´ ωBW ˆ pωBW ˆ u1

m
zBq “ :aB ´ ωBW ˆ }t}h (A.22)

we obtain

9ωBW ˆ zB “ 1

u1
rmδ ´ mpzB

TδqzB ´ 2ωBW ˆ 9u1zBs

“ 1

}t}rpI ´ zBzB
T qδ ´ 2pzB

T
9aBqhs :“ l

(A.23a)

(A.23b)

Now assuming that B
9ωBW “ pm n oqT , and hence

9ωBW “ mxB ` nyB ` ozB (A.24)

It is easy to verify that

m “ ´lTyB

n “ lTxB

(A.25a)

(A.25b)

The third component o is found by taking the derivative of (A.19)

o “ 1

}x̃B}pyT
CxB

9ψ2 ` xT
C 9xB

9ψ ` xT
CxB

:ψ ´ xT
C zBωy

9ψ ` yT
Chωz ` yT

C zBnq

´ x̃T
B

9̃xB

}x̃B}3
pxT

CxB
9ψ ` yT

C zBqq

“ 1

}x̃B}pxT
C 9xB

9ψ ` xT
CxB

:ψ ´ xT
C zBωy

9ψ ` yT
Chωz ` yT

C zBn ´ xT
B 9̃xBωzq

(A.26a)

(A.26b)

(A.26c)

139

A. The proof of differential flatness for the quadrotor

Since

yT
Ch “ ´ωBW

T pyC ˆ zBq “ ´ωBW
T x̃B “ ´}x̃B}ωx

x̃T
B 9̃xB “ xT

C pxB ˆ zB
9ψq ´ yT

C pxB ˆ hq “ yT
C zBωx ´ xT

C yB
9ψ

(A.27a)

(A.27b)

we have

o “ 1

}x̃B}rxT
C 9xB

9ψ ` xT
CxB

:ψ ` xT
C yBωz

9ψ ´ xT
C zBωy

9ψ ` yT
C zBpn ´ ωxωzqs ´ ωxωy

(A.28)

Moreover from (2.4) we obtain

xT
B 9xB “ 0

yT
B 9xB “ ωz

zT
B 9xB “ ´ωy

(A.29a)

(A.29b)

(A.29c)

then

xT
C 9xB “ xT

C pyBωz ´ zBωyq (A.30)

and we conclude that

o “ 1

}x̃B}r2pxT
C 9xBωz ´ xT

C zBωyq 9ψ ` xT
CxB

:ψ ` yT
C zBpn ´ ωxωzqs ´ ωxωy (A.31)

Finally, from Sect. 2.2 we compute the remaining inputs pu2, u3, u4q
As already said, the strength of differential flatness is to transform the system

such that the equations of motion for the flat output variables become trivial. Us-

ing the flat output and its derivatives, the system of (2.16) can be written in the

Brunovsky linear canonical form:

d4x

dt
“ v1

d4y

dt
“ v2

d4z

dt
“ v3

d2ψ

dt
“ v4

(A.32a)

(A.32b)

(A.32c)

(A.32d)

One can define a new system 9zptq “ Azptq ` Bvptq with new control inputs v with

v “ pv1, v2, v3, v4qT . With

A “

»

—

—

—

—

–

A1 04ˆ4 04ˆ4 04ˆ2

04ˆ4 A1 04ˆ4 04ˆ2

04ˆ4 04ˆ4 A1 04ˆ2

02ˆ4 02ˆ4 02ˆ4 A2

fi

ffi

ffi

ffi

ffi

fl

(A.33)

140

A.1. Flat transformation

B “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

03ˆ4

B1

03ˆ4

B2

03ˆ4

B3

01ˆ4

B4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(A.34)

A1 “

»

—

–

0 1 0 0

0 0 1 0

0 0 0 1

fi

ffi

fl
; A2 “

«

0 1

0 0

ff

(A.35)

B1 “
”

1 0 0 0
ı

B2 “
”

0 1 0 0
ı

B3 “
”

0 0 1 0
ı

B4 “
”

0 0 0 1
ı

(A.36a)

(A.36b)

(A.36c)

(A.36d)

(A.36e)

A.1.1 Inverse flat transformation

Now, we deal with the inverse problem of the one studied in Appendix A.1: given

the state of the robot in terms of rB, 9rB, WRB and BωBW and possibly the input

vector u, we want to compute the value of the flat outputs and their derivatives.

The position vector and its derivative are simply contained in the state and can

immediately be extracted from it. Using the equations reported at the beginning of

Sect. 2.2 we can compute the roll, pitch and yaw angles and their derivatives from

the state components WRB and BωBW . The linear acceleration is given by (2.14)

:rB “ u1

m
zB ´ ge3 (A.37)

If the thrust is fixed then :rB is univoquelly defined, otherwise any value satisfying

the equation

pI ´ zBz
T
Bq:rB “ ´gpI ´ zBz

T
Bqe3 (A.38)

is valid. In general we can split :rB into its components orthogonal and parallel to

the local axis zB

:rB “ ´gpI ´ zBz
T
Bqe3 ` pu1 ´ gzT

Be3qzB (A.39)

141

A. The proof of differential flatness for the quadrotor

and it is clear that the latter component can be chosen at will (inside an admissible

interval) since it is controlled by the total thrust input u1. Once we know :rB, we

define

f “ :rB ` ge3 (A.40)

and we compute the component of 9aB orthogonal to zB from (A.11) solving

pI ´ zBz
T
Bq 9aB “ }f}WRB

B
ωBW ˆ zB (A.41)

The minimum norm solution is

9aB “ }f}WRB

B
ωBW ˆ zB (A.42)

If 9u1 is fixed, then we must add to 9aB a component along the zB axis such that

(A.10) is satisfied, i.e.,

9aB “ }f}WRB

B
ωBW ˆ zB ` 9u1

m
zB (A.43)

Assuming that the torque inputs u2, u3 and u4 are known we can compute the

angular acceleration in the body frame from Sect. 2.2

B
9ωBW “ Jr

¨

˚

˝

u2

u3

u4

˛

‹

‚
´B ωBW ˆ JBωBW s (A.44)

and using (A.31) we compute :ψ as

:ψ “ po ` pqq}x̃B} ´ r2pxT
C
yBr ´ xT

C
zBqq 9ψ ` yT

C
zBpn ´ prqs

xT
C
xB

(A.45)

where n and o are the last two components of B
9ωBW . We also compute the compo-

nent of δ orthogonal to zB by solving the system

pI ´ zBz
T
Bqδ “ r}f} 9ωBW ` 2pzT

B 9aBqωBW s ˆ zB (A.46)

derived from (A.23). Again the minimum norm is:

δ “ r}f} 9ωBW ` 2pzT
B 9aBqωBW s ˆ zB (A.47)

If 9u1 is not fixed and we chose 9aB according to (A.42), then the above equations

simplify to

pI ´ zBz
T
Bqδ “ 9ωBW ˆ }f}zB (A.48)

and

δ “ 9ωBW ˆ }f}zB (A.49)

142

A.1. Flat transformation

It is easy to demonstrate that if :u1 is also given, then in order to satisfy (A.21) we

have to add to δ a component along zB, i.e.,

δ “ r}f} 9ωBW ` 2pzT
B 9aBqωBW s ˆ zB ` :u1

m
zB (A.50)

Finally, inverting (A.22), we obtain

:aB “ δ ` ωBW ˆ pωBW ˆ }f}zBq (A.51)

143

Appendix B

Parametrization using B-splines

An overview of B-splines, from which much of the following is derived, can be found

in De Boor [124].

B.1 B-spline curve properties

In this section we provide a complete list of B-spline properties. Several of them

are exploited in this thesis to derive algorithms to serve planning and optimization

purposes.

‚ Bi,ppuq is a piecewise polynomial of degree p;

‚ Bi,ppuq has a minimum local support, i.e. it is equal to zero outside the interval

rui, ui`p`1s.;

‚ Non negativity: the basis functions are positive;

‚ Geometry invariance: the B-spline basis function defines a partition of the

unity, i.e.
n

ÿ

i“0

Bi,ppsq “ 1 @u P ru0, uKs (B.1)

which assures the B-spline is invariant under affine transformations (transla-

tion, rotation or scaling) of its control points;

‚ Local support: the function Bi,k is zero outside rui, ui`ks. This means that the

change of a control point P i only modifies the spline in the interval rui, ui`k`1s

‚ the B-spline can be scaled or translated in time by scaling or translating the

knot vector. The derivatives will scale or translate accordingly, in particular

if Û “ λU then ûpiqptq “ upiqptq
λi ;

145

B. Parametrization using B-splines

‚ convex hull : because the basis functions are positive and sum up to one, a

spline is always contained in the convex hull of its control polygon which is

the convex hull of the spline control points. This polygon corresponds to the

piecewise linear interpolation of the spline coefficients.

‚ the B-spline is of class C
8 in the interior of every knot span and it is of class

C
p´m in a knot of multiplicity m;

‚ the number of knots K ` 1 is related to the number of control points n and

to the order of the curve k by K “ n ` k

‚ the derivative of a B-spline is also a B-spline of lower degree. Indeed

spiqptq “
n´1
ÿ

i“1

Bi,pptqP u0 ď t ď uK (B.2)

and it is possible to efficiently compute the r-th order derivative of the basis

functions in terms of the basis functions of degree p ´ i defined on the same

knot vector U

B
prq
i,p puq “ p!

pp ´ rq!
r

ÿ

l“0

ar,lBi`1,k´rpuq (B.3)

where the coefficients ar,l are defined in a recursive way

a0,0 “ 1

ar,0 “ ar´1,0

ui`p´r`1 ´ ui

ar,i “ ar´1,l ´ ar´1,l´1

ui`p´r`l`1 ´ ui`l

, for l “ 1, ..., r ´ 1

ar,r “ ´ar´1,l´1

ui`p`1 ´ ui`1

(B.4a)

(B.4b)

(B.4c)

(B.4d)

Thanks to all these properties, B-splines have been widely used in different

applications such as computer graphics, data interpolation and trajectory planning,

e.g., [99], [222]. For an exhaustive description of the B-splines and their properties

see [223].

Figure B.1 shows basis functions of a B-spline curve. If the initial and final knots

have multiplicity k then the B-spline curve is clamped– the first and last control

points coincide with the endpoints of the curve, i.e. spu0q “ P 0 and spuKq “ P n.

B.2 Manipulation algorithms

B-spline curves benefit from very powerful algorithms such as evaluation, knot in-

sertion, knot removal and subdivision. A brief description of these algorithms are

given in this section.

146

B.2. Manipulation algorithms

Figure B.1 – Basis functions of an degree four (order five) B-spline with 11 control points.
The knot vector contains 16 knots.

‚ evaluation algorithm: A B-spline curve can be evaluated at a parametric

point u using the De Boor algorithm given in De Boor and explained in

Appendix B.2.1.

‚ knot insertion algorithm: A knot can be inserted into a B-spline without

changing the geometry of the curve. The new curve is identical to the old one,

with a new basis.

The algorithm is known as Boehm’s algorithm. Inserting knots is generally

used for refining the curve at a specific region and corresponds to an order

elevation. As a result, the modified curve will get closer to its convex hull. If

a knot is inserted at u as many times as the order of the original B-spline, the

curve and the convex hull will coincide at u.

‚ knot removal algorithm: Knots can be removed for data reduction and curve

approximation.

‚ subdivision algorithm: A B-spline curve can be subdivided into multiple B-

splines without changing the shape of the original curve. A subdivision at a

specific parameter u can be performed either by applying the de Boor algo-

rithm at u or by inserting a knot p times at u, where p is the B-spline curve

degree. Such a process uses the De Boor algorithm and is detailed in the next

section.

B.2.1 The curve subdivision algorithm

This section details the procedure for subdividing a B-spline curve of degree p with

control points P “ pP0, P1, . . . , Pnq related to the knot vector U in two B-spline

147

B. Parametrization using B-splines

curves without modifying the shape of the original curve. This algorithm is the core

of the hot-start algorithm presented in Sect. 6.4.2.

First, the function findspan finds the knot span ruk, uk`1q containing u (see

[224] p.80 for details on the algorithm). From the convex hull property (see the

previous section), spuq lies in the convex hull defined by the control points Pk “
pPk´p, Pk´p`1, . . . , Pkq. Now, we show the procedure for subdividing a B-spline

curve in two at the point u. Thus, the output of the algorithm consists in two

B-spline curves, one has the left curve defined by the pair tP L,ULu and the right

curve defined by the pair tPR,URu (see Fig. B.2). The algorithm is referred as the

De Boor algorithm and necessitates operations only on the subset Pk of the control

points P . The algorithm performs the insertion of the knot u p times. The shape of

the curve is unchanged but the two curve halfs become independent. Indeed, curves

of degree p corresponding to a knot vector with a knot u of multiplicity p have their

local support contained in either r0, us or ru, 1s. In Fig. B.3 we show how the control

points of the two curves are determined using the De Boor algorithm. In the end

one has P L “ pP0, P1,1, P2,2, . . . , Pp,pq with knot vector UL “ pr0, uq , u
loomoon

p

q and

PR “ pPp,p, Pp´1,p, . . . , P1,p, Ppq with knot vector UR “ p u
loomoon

p

, pu, 1sq.

Figure B.2 – Running the De Boor algorithm at the parametric point u. At the final knot
insertion, the last control point P3,3 “ u resulting in two independent left and right curves.

For our hot-start algorithm, we are interested in the right section since it corre-

sponds to the future trajectory that will be adapted and used as initial guess for the

next solver instance. Once the original curve (i.e., the previous solution) is split, we

need to add the potential missing knots until the length of UL matches the length

of U . Indeed,the length of UL varies with the position of u in the knot span. Such

an operation is done with the knot insertion algorithm detailed in [224] p.161. To

do so, control points are also added. Then, UL is rescaled between r0, 1s to finally

match the original uniform knot vector U . In the end, we have a new vector of

control points P̂ L of same length as P defining the new B-spline curve with the

pair
!

P̂ L,U
)

of degree p.

148

B.2. Manipulation algorithms

Figure B.3 – Data flow diagram for the De Boor algorithm. The enveloppe contains the
control points of the two independent curves.

149

Appendix C

Gradient evaluation

C.1 On derivatives evaluation

Since we rely on gradient descent optimization algorithm, the quality of the gradient

evaluation is central for driving the optimal solution towards a local minimum.

Moreover, we are concerned with its accuracy and computational burden.

Differentiation results are well-known for certain classes of functions (quadratic

functions for instance), but can be tricky for others. Although, analytic differenti-

ation can be computed for complex constraints or terms in the cost function, their

formulation generally inflates and may be tedious and subject to errors. Moreover,

when one needs to code them it may take a huge amount of space and memory.

Therefore, numerical solutions may become more attractive. In this section, we

discuss and compare the most popular numerical differentiation techniques: finite

difference, automatic differentiation, complex-step differentiation. Here, the main

concerns are the accuracy, the numerical stability and the computation load.

C.2 Gradient approximation techniques

The technique of differentiation was introduced independently by Isaac Newton

(1642´1727) and Gottfried Leibniz (1646´1716). Formally, the slope of the tangent

line at a point x is the limit of the ratio of the change in the function to the change

in the independent variable, as that change approaches 0, i.e.:

f
1pxq “ lim

∆xÑ0

fpx ` ∆xq ´ fpxq
∆x

(C.1)

The quotient in (C.1) is referred to as the Newton quotient or the difference quotient.

Another way of expressing the derivative of a function derives from its expansion

in a Taylor series, introduced by Brook Taylor in 1715. The Taylor series expresses

any analytic real or complex function at a real or complex number a by an infinite

151

C. Gradient evaluation

sum over its derivative terms:

fpxq “ fpaq ` f
1paq
1!

px ´ aq ` f
2paq
2!

px ´ aq2 ` ... “
8
ÿ

n“0

f pnqpaq
n!

px ´ aqn (C.2)

Hence, for an analytic function, differentiation is equivalent to evaluating terms of

a Taylor series.

C.2.1 Finite difference method

One method that is very commonly used is finite differencing. Although it is not

known for being particularly accurate or computationally efficient, the biggest ad-

vantage of this method lies in the fact that it is extremely easy to implement.

Taking a “ x`∆x in equation (C.2) and reordering we can obtain an expression

for the first order derivative similar to (C.1):

f
1pxq “ fpx ` ∆xq ´ fpxq

∆x
` Op∆xq (C.3)

An expression like (C.3) is called a Finite Difference (FD) approximation, in this

case the first-order forward approximation for the first derivative, where the dif-

ferential step is taken in the positive direction. The symbol O expresses the error

related to truncating the Taylor series in the second order derivative. Fourth-order

accuracy can be achieved, of course at the price of increasing computational cost.

Whatever the order of accuracy, all FD approximations involve a truncation error

depending on the step size ∆x. FD approximations are still the most classic, simple

and intuitive approaches to approximate derivatives of a function, and are widely

used in numerical schemes. However they suffer from numerical issues related to the

“step-size dilemma”, that is, the desire to choose a small step size to minimize trun-

cation error while avoiding the use of a step so small that errors due to subtractive

cancellation become dominant [120].

Working with arbitrarily small steps ∆x is not feasible on a computer. FD

schemes, as the name suggests, involve some difference operator in the numerator,

and this difference itself is an intrinsic problem. For a given step size ∆x, and

particularly for small steps, the differences of the values of our function at successive

evaluation points may become small, leading to a loss of significant digits as one

approaches machine precision, and eventually a value zero for the numerator and

the derivative when the computer fails to recognize the difference between the two

numbers. This problem is known as subtractive cancellation or term cancellation.

Since in numerical simulations we often have little hints on the actual shape of the

functions involved, subtractive cancellation is not straightforward to control, which

forces us into a conservative choice of step size at the expense of larger truncation

152

C.2. Gradient approximation techniques

errors. On the other hand, large values of ∆x may create instabilities and affect the

data quality. In the next section we introduce a less intuitive technique when ∆x is

a complex number that provides better numerical accuracy and stability than FD.

C.2.2 Complex-step differentiation

Most naturally, derivatives of real functions are evaluated using real numbers, but

the less intuitive idea of using an imaginary number in real functions differentiation

has been shown capable of overcoming the term cancellation inherent to the ordinary

FD method, as well as reducing the associated approximation error. The use of

complex variables in numerical differentiation was introduced by [225], describing

a method for computing the derivatives of any analytic function. After falling

into oblivion for 20 years, this theory reappeared in the scientific literature when

Squire and Trapp [194] formally presented the Complex Step Method (CS) to obtain

a very simple expression for estimating the first and second derivatives of a real

function using a purely imaginary number i (i2 “ ´1). This estimate is suitable

for use in modern numerical computing and has been shown to be very accurate,

extremely robust and surprisingly easy to implement, while retaining a reasonable

computational cost. Further research on the subject has been carried out by [226]

for sensitivity analysis.

The CS method can be very easily derived from the Taylor series expansion of

fpx ` i∆xq, i.e.,

fpx ` i∆xq “ fpxq ` i∆xf
1pxq ` pi∆xq2

2!
f

2pxq ` pi∆xq3
3!

f
3pxq ` . . .

“
8
ÿ

n“0

pi∆xqn
n!

f pnqpxq

(C.4a)

(C.4b)

Taking the imaginary part on both sides and reordering we obtain the CS expression

for the first derivative found by [194]

f
1pxq “ �pfpx ` i∆xqq

∆x
` Op∆x2q (C.5)

Note that, �pfpxqq “ 0 because x is set to be a real number. Compared to (C.1) this

solution is not a function of differences, which ultimately provides better accuracy

than a standard finite difference. The second order term in the Taylor series expan-

sion of fpx ` i∆xq appears with a factor of i2, meaning that it is a real quantity.

Compared with (C.3) the truncation error is now of order ∆x2, thus smaller.

An expression for the second order derivative can be found by taking the real part

of (C.4) and reordering,

f
2pxq “ 2pfpxq ´ �pfpx ` i∆xqqq

∆x2
` Op∆x2q (C.6)

153

C. Gradient evaluation

Using the Taylor series expansion of fpx ´ i∆xq, it can be verified that

Repfpx ` i∆xqq “ �pfpx ´ i∆xqq (C.7)

Therefore, (C.6) can be written as

f
2pxq “ 2pfpxq ´ �pfpx ´ i∆xqqq

∆x2
` Op∆x2q (C.8)

Equation (C.5) and (C.6) are the most basic equations that can be found using

(C.4). The numerical advantages of the CS method are noticeable: Equation (C.5)

actually shows a single term in the numerator rather than a difference, and hereby

circumvents the instability related to term cancellation inherent to all classic, real

valued FD approximations besides being more accurate. Equation (C.6) and (C.8)

allows to compute an approximation to the second derivative in a single step that

cannot be achieved by any FD approximation.

Generalizations to high order derivatives made by [227] and [228] were done by

converting the Taylor series into a Fourier series (Taylor expansion of fpx`∆xeiθq,
i.e.,

fpx ` ∆xeiθq “ fpxq ` ∆xeiθf
1pxq ` ∆x2

2!
e2iθf

2pxq ` ∆x3

3!
e3iθf

3pxq ` . . .

“
8
ÿ

n“0

p∆xqn
n!

eniθf pnqpxq

(C.9a)

(C.9b)

In the expression (C.9) the imaginary step does not vanish with even powers of the

Taylor series which allows to compute high order derivatives by combining different

∆x steps values and using the real or imaginary part without the limitations of

the ordinary CS method. The main limitation of this formulation is that the real

and imaginary steps are set to be orthogonal (eiθ “ cos θ ` i sin θ) depending on

a parameter θ. In other words we cannot choose the relation between real and

imaginary step sizes which brings many advantages as discussed below.

For first derivatives the complex-step approach does not suffer subtraction can-

cellation errors as in standard numerical finite-difference approaches. Therefore,

since an arbitrarily small step-size can be chosen, the complex-step method can

achieve near analytical accuracy. However, implementation of the complex-step

approach for second derivatives does suffer from round-off errors. Therefore, an

arbitrarily small step-size cannot be chosen. Moreover, one of the limitations of the

CS method is that only the first-order derivative is accessible using the imaginary

part of the function, while second derivatives are proportional to i2 and have to be

evaluated by taking the real part of the function.

The advantages of the complex-step approximation approach over a standard

finite difference include: 1) the Jacobian approximation is not subject to subtrac-

tive cancellations inherent in roundoff errors, 2) it can be used on discontinuous

154

C.2. Gradient approximation techniques

functions, and 3) it is easy to implement in a black-box manner, thereby making it

applicable to general nonlinear functions.

C.2.3 Automatic differentiation

In terms of implementation, the continuous approach can only be derived by hand,

while the discrete approach to differentiation can be implemented automatically

if the program that solves the discretized governing equations is provided. This

method is known as algorithmic differentiation, computational differentiation or

automatic differentiation. It is a well-known method based on the systematic appli-

cation of the chain rule of differentiation to computer programs [229]. This approach

is as accurate as other analytic methods, and it is considerably easier to implement.

C.2.4 Implementations

The implementation of any of the derivative calculation methods, for practical pur-

poses, should be as automated as possible. Changing the source code manually is

not only an extremely tedious task, but is also likely to result in the introduction

of coding errors in the program. There are two main possibilities for implementing

algorithmic differentiation: by source code transformation or by using derived data

types and operator overloading. To implement algorithmic differentiation by source

transformation, the whole code must be processed with a parser and all the deriva-

tive calculations are introduced as extra lines of code. The resulting extended code

is greatly enlarged and it becomes practically unreadable. This fact constitutes an

implementation disadvantage as it becomes impractical to debug this new extended

code.

However, for CS several mathematical functions need to be rewritten in their

complex form before implementing the gradient evaluation. In the next section we

provide a few functions that we needed in our optimal control problems.

C.2.5 Table of complex functions

For CS we need to keep both the real and the complex part of every functions

involved in the constraints evaluation. Therefore, some functions need to be used

in their complex form, see table C.1.

Of course the computation is increased and from practical aspects, the code

length is inevitably larger after implementing the aforementioned transformation

but only the parts involved in the constraints evaluation are concerned, which is

not the case of AD that requires a full overload of the code. In the next section, we

compare the performance of FD versus CS using Matlab and show how using CS

affects the solver performance.

155

C. Gradient evaluation

Function Complex form
?
z

?
2

2
p
b

a

x2 ` y2 ` x ` isgnpyq
b

a

x2 ` y2 ´ xq
cospzq cospxq coshpyq ´ i sinpxq sinhpyq
sinpzq sinpxq coshpyq ` i cospxq sinhpyq
z2 x2 ´ y2 ` 2ixy

z1 ¨ z2 z1 ¨ z2 “ px1x2 ` y1y2q ` ipx1y2 ´ y1x2q

Table C.1 – Complex formulation of a few classic functions with z “ x ` iy

C.3 Comparison results

Considering the collision avoidance constraint of a single obstacle

´}r ´ robs}2 ` Rcol
2

ă 0 (C.10)

Its gradient is

∇col “ ´2rpr ´ robsq (C.11)

and can be seen in Fig. C.1

Figure C.1 – Analytic evaluation of the collision avoidance constraints gradient.

Figure C.2 shows that the relative error between the analytic gradient of (C.10)

and its approximate with FD and CS is of the order of Matlab floating-point relative

accuracy (2.2204e-16). Whereas the error with FD is larger to a factor of 1e10.

Moreover, the precision of CS seemed not to be affected by different step values,

which is not the case for FD.

Table C.2 shows the average time taken to approximate the nonlinear constraints

gradient by FD and CS. Interestingly, CS seems to be about twice as fast as FD.

This result shows the advantage of having a single evaluation of the considered

function with CS instead of two for FD.

Now, from the above result, we can assume CS provides results very close to

the analytic form. In Fig. C.3 we compare the absolute error between FD and CS

156

C.3. Comparison results

Figure C.2 – Relative error with CS and h “ 1e ´ 10.

Method Computation time

FD 1.62e´2 s

CS 0.84e´2 s

Table C.2 – Average computation time of the constraints gradient with FD and CS (with
Matlab)

157

C.3. Comparison results

approximate of a single element of the occlusion constraints with respect to different

step values h. As we can see, the error increases when h is too small (h ă 1e´12)

Figure C.3 – Absolute error with respect of step h.

and too large (h ą 1e´1) which is due to the typical term cancellation effect related

to FD. Finally, the graph shows that a large range of values can give pretty good

approximates.

Bibliography

[1] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and con-

trol for quadrotors,” in 2011 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2011, pp. 2520–2525.

[2] B. Penin, R. Spica, P. Robuffo Giordano, and F. Chaumette, “Vision-based

minimum-time trajectory generation for a quadrotor uav,” in IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, IROS’17, 2017.

[3] B. Penin, P. Robuffo Giordano, and F. Chaumette, “Vision-based reactive plan-

ning for aggressive target tracking while avoiding collisions and occlusions,”

IEEE Robotics and Automation Letters, 2018.

[4] ——, “Minimum-time trajectory generation under intermittent measurements.”

IEEE, 2019. Submitted to RAL/ICRA’19.

[5] J. Thomas, M. Pope, G. Loianno, E. W. Hawkes, M. A. Estrada, H. Jiang,

M. R. Cutkosky, and V. Kumar, “Aggressive flight with quadrotors for perching

on inclined surfaces,” Journal of Mechanisms and Robotics, vol. 8, no. 5, p.

051007, 2016.

[6] M. Hehn and R. D’Andrea, “Real-time trajectory generation for interception

maneuvers with quadrocopters,” in 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 4979–4984.

[7] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro-

uav testbed,” IEEE Robot. Automat. Mag., vol. 17, no. 3, pp. 56–65, 2010.

[8] A. Chamseddine, T. Li, Y. Zhang, C. A. Rabbath, and D. Theilliol, “Flatness-

based trajectory planning for a quadrotor unmanned aerial vehicle test-bed con-

sidering actuator and system constraints,” in 2012 American Control Conference

(ACC). IEEE, 2012, pp. 920–925.

Bibliography

[9] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea, “Quadrocopter performance

benchmarking using optimal control,” in 2011 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS). IEEE, 2011, pp. 5179–5186.

[10] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning

strategy for high-speed quadrocopter multi-flips,” in 2010 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2010, pp. 1642–1648.

[11] D. Brescianini, M. Hehn, and R. D’Andrea, “Quadrocopter pole acrobatics,”

in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS). IEEE, 2013, pp. 3472–3479.

[12] S. Tang, V. Wüest, and V. Kumar, “Aggressive flight with suspended payloads

using vision-based control,” IEEE Robotics and Automation Letters, vol. 3, no. 2,

pp. 1152–1159, 2018.

[13] R. Ritz, M. W. Müller, M. Hehn, and R. D’Andrea, “Cooperative quadrocopter

ball throwing and catching,” in 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 4972–4978.

[14] M. Cutler and J. P. How, “Analysis and control of a variable-pitch quadrotor

for agile flight,” Journal of Dynamic Systems, Measurement, and Control, vol.

137, no. 10, p. 101002, 2015.

[15] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “A novel overactuated quadrotor

unmanned aerial vehicle: Modeling, control, and experimental validation,” IEEE

Transactions on Control Systems Technology, vol. 23, no. 2, pp. 540–556, 2015.

[16] F. Kendoul, I. Fantoni, and R. Lozano, “Modeling and control of a small au-

tonomous aircraft having two tilting rotors,” IEEE Transactions on Robotics,

vol. 22, no. 6, pp. 1297–1302, 2006.

[17] M. Ryll, D. Bicego, and A. Franchi, “Modeling and control of fast-hex: a fully-

actuated by synchronized-tilting hexarotor,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2016.

[18] M. Zhao, T. Anzai, F. Shi, X. Chen, K. Okada, and M. Inaba, “Design, mod-

eling, and control of an aerial robot dragon: A dual-rotor-embedded multilink

robot with the ability of multi-degree-of-freedom aerial transformation,” IEEE

Robotics and Automation Letters, vol. 3, no. 2, pp. 1176–1183, 2018.

[19] Q. Delamare, P. R. Giordano, and A. Franchi, “Toward aerial physical locomo-

tion: The contact-fly-contact problem,” IEEE Robotics and Automation Letters,

vol. 3, no. 3, pp. 1514–1521, 2018.

Bibliography

[20] K. Zhang, P. Chermprayong, T. Alhinai, R. Siddall, and M. Kovac, “Spidermav:

Perching and stabilizing micro aerial vehicles with bio-inspired tensile anchoring

systems,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2017, pp. 6849–6854.

[21] K. Mohta, K. Sun, S. Liu, M. Watterson, B. Pfrommer, J. Svacha, Y. Mul-

gaonkar, C. J. Taylor, and V. Kumar, “Experiments in fast, autonomous, gps-

denied quadrotor flight,” arXiv preprint arXiv:1806.07053, 2018.

[22] B. Kueng, E. Mueggler, G. Gallego, and D. Scaramuzza, “Low-latency visual

odometry using event-based feature tracks,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 16–23.

[23] I. Fantoni and R. Lozano, Non-linear control for underactuated mechanical

systems. Springer Science & Business Media, 2002.

[24] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggressive quadro-

tor flight through narrow gaps with onboard sensing and computing using active

vision,” in 2017 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2017, pp. 5774–5781.

[25] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scaramuzza, “Fast

trajectory optimization for agile quadrotor maneuvers with a cable-suspended

payload,” in Robotics: Science and Systems, 2017, pp. 1–10.

[26] F. Chaumette and S. Hutchinson, “Visual servo control. I. Basic approaches,”

2006 IEEE Robotics & Automation Mag., vol. 13, no. 4, pp. 82–90, December

2006.

[27] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control

for precise aggressive maneuvers with quadrotors,” The International Journal of

Robotics Research, vol. 31, no. 5, pp. 664–674, 2012.

[28] J. Ferrin, R. Leishman, R. Beard, and T. McLain, “Differential flatness based

control of a rotorcraft for aggressive maneuvers,” in 2011 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). Ieee, 2011, pp.

2688–2693.

[29] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggressive quadro-

tor flight through cluttered environments using mixed integer programming,”

in 2016 IEEE International Conference on Robotics and Automation (ICRA).

IEEE, 2016, pp. 1469–1475.

Bibliography

[30] M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter

despite the complete loss of one, two, or three propellers,” in 2014 IEEE In-

ternational Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.

45–52.

[31] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive

quadrotor flight in dense indoor environments,” in Robotics Research. Springer,

2016, pp. 649–666.

[32] S. Bouabdallah and R. Y. Siegwart, “Full control of a quadrotor,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2007: IROS 2007;

Oct. 29, 2007-Nov. 2, 2007, San Diego, CA. Ieee, 2007, pp. 153–158.

[33] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient mo-

tion primitive for quadrocopter trajectory generation,” IEEE Transactions on

Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[34] M. W. Mueller and R. D’Andrea, “A model predictive controller for quadro-

copter state interception,” in 2013 European Control Conference (ECC). IEEE,

2013, pp. 1383–1389.

[35] A. Mokhtari, N. K. M’Sirdi, K. Meghriche, and A. Belaidi, “Feedback lineariza-

tion and linear observer for a quadrotor unmanned aerial vehicle,” Advanced

Robotics, vol. 20, no. 1, pp. 71–91, 2006.

[36] W. Jasim and D. Gu, “Integral backstepping controller for quadrotor path

tracking,” in 2015 International Conference on Advanced Robotics (ICAR).

IEEE, 2015, pp. 593–598.

[37] G. Perozzi, D. Efimov, J.-M. Biannic, L. Planckaert, and P. Coton, “On sliding

mode control design for uav using realistic aerodynamic coefficients,” in 2017

IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017,

pp. 5403–5408.

[38] S. A. Al-Hiddabi, “Quadrotor control using feedback linearization with dy-

namic extension,” in 2009 6th International Symposium on Mechatronics and

its Applications (ISMA). IEEE, 2009, pp. 1–3.

[39] Z. Jia, J. Yu, Y. Mei, Y. Chen, Y. Shen, and X. Ai, “Integral backstepping

sliding mode control for quadrotor helicopter under external uncertain distur-

bances,” Aerospace Science and Technology, vol. 68, pp. 299–307, 2017.

[40] J. P. How, B. Behihke, A. Frank, D. Dale, and J. Vian, “Real-time indoor

autonomous vehicle test environment,” IEEE control systems, vol. 28, no. 2, pp.

51–64, 2008.

Bibliography

[41] G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter trajectory

tracking control,” in AIAA Guidance, Navigation and Control Conference and

Exhibit, 2008, p. 7410.

[42] E. Reyes-Valeria, R. Enriquez-Caldera, S. Camacho-Lara, and J. Guichard,

“Lqr control for a quadrotor using unit quaternions: Modeling and simulation,”

in 2013 International Conference on Electronics, Communications and Comput-

ing (CONIELECOMP). IEEE, 2013, pp. 172–178.

[43] G. Ganga and M. M. Dharmana, “Mpc controller for trajectory tracking con-

trol of quadcopter,” in 2017 International Conference on Circuit, Power and

Computing Technologies (ICCPCT). IEEE, 2017, pp. 1–6.

[44] H. Voos, “Nonlinear control of a quadrotor micro-uav using feedback-

linearization,” in 2009 IEEE International Conference on Mechatronics. IEEE,

2009, pp. 1–6.

[45] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques

applied to an indoor micro quadrotor,” in None, no. LSA-CONF-2005-003, 2005.

[46] S. Kumar and R. Gill, “Path following for quadrotors,” in 2017 IEEE Con-

ference on Control Technology and Applications (CCTA). IEEE, 2017, pp.

2075–2081.

[47] D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter attitude

control,” Department of Mechanical and Process Engineering, ETHZ, Tech. Rep,

2013.

[48] K. Sreenath and V. Kumar, “Dynamics, control and planning for cooperative

manipulation of payloads suspended by cables from multiple quadrotor robots,”

rn, vol. 1, no. r2, p. r3, 2013.

[49] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric tracking control of a

quadrotor uav on se (3),” in 2010 49th IEEE Conference on Decision and Control

(CDC). IEEE, 2010, pp. 5420–5425.

[50] P. Foehn and D. Scaramuzza, “Onboard State Dependent LQR for Agile

Quadrotors,” in 2018 IEEE International Conference on Robotics and Automa-

tion (ICRA). IEEE, 2018, pp. 6566–6572.

[51] H. J. Kim, D. H. Shim, and S. Sastry, “Nonlinear model predictive tracking

control for rotorcraft-based unmanned aerial vehicles,” in Proceedings of the

2002 American Control Conference, vol. 5. IEEE, 2002, pp. 3576–3581.

Bibliography

[52] J. Yu, A. Jadbabaie, J. Primbs, and Y. Huang, “Comparison of nonlinear con-

trol design techniques on a model of the caltech ducted fan,” Automatica, vol. 37,

no. 12, pp. 1971–1978, 2001.

[53] A. Jadbabaie and J. Hauser, “On the stability of receding horizon control with a

general terminal cost,” IEEE Transactions on Automatic Control, vol. 50, no. 5,

pp. 674–678, 2005.

[54] P. Abbeel, Apprenticeship learning and reinforcement learning with application

to robotic control. Stanford University, 2008.

[55] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with

reinforcement learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4,

pp. 2096–2103, 2017.

[56] M. Hehn, R. Ritz, and R. D’Andrea, “Performance benchmarking of quadrotor

systems using time-optimal control,” Autonomous Robots, vol. 33, no. 1-2, pp.

69–88, 2012.

[57] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor

dynamics subject to rotor drag for accurate tracking of high-speed trajectories,”

IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626, 2018.

[58] J. Svacha, K. Mohta, and V. Kumar, “Improving quadrotor trajectory tracking

by compensating for aerodynamic effects,” in 2017 International Conference on

Unmanned Aircraft Systems (ICUAS). IEEE, 2017, pp. 860–866.

[59] J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel, “Nonlinear feedback control

of quadrotors exploiting first-order drag effects,” IFAC-PapersOnLine, vol. 50,

no. 1, pp. 8189–8195, 2017.

[60] M. Leahy and G. Saridis, “Compensation of unmodeled puma manipulator

dynamics,” in Proceedings. 1987 IEEE International Conference on Robotics

and Automation, vol. 4. IEEE, 1987, pp. 151–156.

[61] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of robot

manipulators,” IEEE transactions on industrial electronics, vol. 47, no. 1, pp.

140–149, 2000.

[62] T. Flash and N. Hogan, “The coordination of arm movements: an experimen-

tally confirmed mathematical model,” Journal of neuroscience, vol. 5, no. 7, pp.

1688–1703, 1985.

Bibliography

[63] M. J. Richardson and T. Flash, “Comparing smooth arm movements with the

two-thirds power law and the related segmented-control hypothesis,” Journal of

neuroscience, vol. 22, no. 18, pp. 8201–8211, 2002.

[64] K. Bipin, V. Duggal, and K. M. Krishna, “Autonomous navigation of generic

quadrocopter with minimum time trajectory planning and control,” in 2014

IEEE International Conference on Vehicular Electronics and Safety (ICVES).

IEEE, 2014, pp. 66–71.

[65] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for quadrotor

flight,” in Proc. of the 2013 IEEE International Conference on Robotics and

Automation (ICRA)., Karlsruhe, Germany, 2013.

[66] J. Yu, Z. Cai, and Y. Wang, “Minimum jerk trajectory generation of a quadrotor

based on the differential flatness,” in 2014 IEEE Chinese Guidance, Navigation

and Control Conference (CGNCC). IEEE, 2014, pp. 832–837.

[67] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and control,”

IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1485–1491, 2011.

[68] K. J. Kyriakopoulos and G. N. Saridis, “Minimum jerk path generation,” in

Proceedings 1988 IEEE International Conference on Robotics and Automation.

IEEE, 1988, pp. 364–369.

[69] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dynamic

programming and optimal control. Athena scientific Belmont, MA, 2005, vol. 1.

[70] M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Inversion based di-

rect position control and trajectory following for micro aerial vehicles,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2013, pp. 2933–2939.

[71] J. Yu, Z. Cai, and Y. Wang, “Minimum jerk trajectory generation of a quadrotor

based on the differential flatness,” in 2014 IEEE Chinese Guidance, Navigation

and Control Conference (CGNCC). IEEE, 2014, pp. 832–837.

[72] F. Gao and S. Shen, “Quadrotor trajectory generation in dynamic environments

using semi-definite relaxation on nonconvex qcqp,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 6354–6361.

[73] A. Bry, C. Richter, A. Bachrach, and N. Roy, “Aggressive flight of fixed-wing

and quadrotor aircraft in dense indoor environments,” The International Journal

of Robotics Research, vol. 34, no. 7, pp. 969–1002, 2015.

Bibliography

[74] D. Constantinescu and E. A. Croft, “Smooth and time-optimal trajectory plan-

ning for industrial manipulators along specified paths,” Journal of Robotic Sys-

tems, vol. 17, no. 5, pp. 233–249, 2000.

[75] A. Howard, L. E. Parker, and G. S. Sukhatme, “Experiments with a large

heterogeneous mobile robot team: Exploration, mapping, deployment and de-

tection,” The International Journal of Robotics Research, vol. 25, no. 5-6, pp.

431–447, 2006.

[76] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of multi-

robot coordination,” International Journal of Advanced Robotic Systems, vol. 10,

no. 12, p. 399, 2013.

[77] R. Spica, P. Robuffo Giordano, M. Ryll, H. Bülthoff, and A. Franchi, “An Open-

Source Hardware/Software Architecture for Quadrotor UAVs,” in 2nd Workshop

on Research, Education and Development of Unmanned Aerial System, Com-

piègne, France, Nov. 2013.

[78] D. Scaramuzza and F. Fraundorfer, “Visual odometry [tutorial],” IEEE robotics

& automation magazine, vol. 18, no. 4, pp. 80–92, 2011.

[79] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-slam–based navigation

for autonomous micro helicopters in gps-denied environments,” Journal of Field

Robotics, vol. 28, no. 6, pp. 854–874, 2011.

[80] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocu-

lar visual odometry,” in 2014 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2014, pp. 15–22.

[81] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Vision-based state esti-

mation and trajectory control towards high-speed flight with a quadrotor.” in

Robotics: Science and Systems, vol. 1. Citeseer, 2013.

[82] M.-D. Hua, N. Manerikar, T. Hamel, and C. Samson, “Attitude, linear veloc-

ity and depth estimation of a camera observing a planar target using continu-

ous homography and inertial data,” in 2018 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2018, pp. 1429–1435.

[83] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-

linear systems: introductory theory and examples,” International journal of

control, vol. 61, no. 6, pp. 1327–1361, 1995.

[84] P. Martin, R. M. Murray, and P. Rouchon, “Flat systems, equivalence and

trajectory generation,” 2003.

Bibliography

[85] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory generation

for differentially flat systems,” International Journal of Robust and Nonlinear

Control: IFAC-Affiliated Journal, vol. 8, no. 11, pp. 995–1020, 1998.

[86] R. M. Murray, M. Rathinam, and W. Sluis, “Differential flatness of mechan-

ical control systems: A catalog of prototype systems,” in ASME international

Mechanical Engineering Congress and Exposition. Citeseer, 1995.

[87] M. Shomin and R. Hollis, “Differentially flat trajectory generation for a dynam-

ically stable mobile robot,” in 2013 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2013, pp. 4467–4472.

[88] B. Yüksel, G. Buondonno, and A. Franchi, “Differential flatness and con-

trol of protocentric aerial manipulators with any number of arms and mixed

rigid-/elastic-joints,” in 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2016, pp. 561–566.

[89] M. Tognon and A. Franchi, “Dynamics, control, and estimation for aerial robots

tethered by cables or bars,” IEEE Transactions on Robotics, vol. 33, no. 4, pp.

834–845, 2017.

[90] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “A lie-backlund approach to

equivalence and flatness of nonlinear systems,” IEEE Transactions on automatic

control, vol. 44, no. 5, pp. 922–937, 1999.

[91] B. Charlet, J. Lévine, and R. Marino, “On dynamic feedback linearization,”

Systems & Control Letters, vol. 13, no. 2, pp. 143–151, 1989.

[92] V. Chetverikov, “New flatness conditions for control systems,” IFAC Proceed-

ings Volumes, vol. 34, no. 6, pp. 191–196, 2001.

[93] J. Thomas, G. Loianno, J. Polin, K. Sreenath, and V. Kumar, “Toward Au-

tonomous Avian-Inspired Grasping for Micro Aerial Vechicles,” Bioinspiration

& Biomimetics, vol. 9, no. 2, p. 025010, 2014.

[94] S. Formentin and M. Lovera, “Flatness-based control of a quadrotor helicopter

via feedforward linearization,” in 2011 50th IEEE Conference on Decision and

Control and European Control Conference (CDC-ECC). IEEE, 2011, pp. 6171–

6176.

[95] R. Rao, V. Kumar, and C. Taylor, “Visual Servoing of a UGV from a UAV

using Differential Flatness,” in 2003 IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, vol. 1. IEEE, 2003, pp. 743–748.

Bibliography

[96] M. Tognon, S. S. Dash, and A. Franchi, “Observer-based control of position

and tension for an aerial robot tethered to a moving platform,” IEEE Robotics

and Automation Letters, vol. 1, no. 2, pp. 732–737, 2016.

[97] G. Allibert, E. Courtial, and F. Chaumette, “Predictive Control for Con-

strained Image-Based Visual Servoing,” IEEE Trans. on Robotics, vol. 26, no. 5,

pp. 933–939, 2010.

[98] J. De Doná, F. Suryawan, M. Seron, and J. Lévine, “A flatness-based iterative

method for reference trajectory generation in constrained nmpc,” in Nonlinear

Model Predictive Control. Springer, 2009, pp. 325–333.

[99] M. Sheckells, G. Garimella, and M. Kobilarov, “Optimal Visual Servoing for

Differentially Flat Underactuated Systems,” in 2016 IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, 2016.

[100] A. De Luca and G. Oriolo, “Trajectory planning and control for planar robots

with passive last joint,” The International Journal of Robotics Research, vol. 21,

no. 5-6, pp. 575–590, 2002.

[101] N. Guenard and T. Hamel, “A Practical Visual Servo Control for an Un-

manned Aerial Vehicle,” IEEE Trans. on Robotics, vol. 24, no. 2, pp. 331–340,

2008.

[102] M. Odelga, P. Stegagno, and H. H. Bülthoff, “Obstacle detection, tracking

and avoidance for a teleoperated uav,” in 2016 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2016, pp. 2984–2990.

[103] D. Lee, T. Ryan, and H. J. Kim, “Autonomous landing of a vtol uav on a

moving platform using image-based visual servoing,” in 2012 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2012, pp. 971–976.

[104] J. Thomas, J. Welde, G. Loianno, K. Daniilidis, and V. Kumar, “Autonomous

flight for detection, localization, and tracking of moving targets with a small

quadrotor,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1762–

1769, 2017.

[105] H. Seo, S. Kim, and H. J. Kim, “Aerial grasping of cylindrical object using

visual servoing based on stochastic model predictive control,” in 2017 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2017,

pp. 6362–6368.

[106] D. Kragic, H. I. Christensen et al., “Survey on visual servoing for manipu-

lation,” Computational Vision and Active Perception Laboratory, Fiskartorpsv,

vol. 15, p. 2002, 2002.

Bibliography

[107] A. Cretual and F. Chaumette, “Application of motion-based visual servoing to

target tracking,” The International Journal of Robotics Research, vol. 20, no. 11,

pp. 878–890, 2001.

[108] R. Mahony and S. Stramigioli, “A port-Hamiltonian approach to image-based

visual servo control for dynamic systems,” Int. J. of Robotics Research, vol. 31,

no. 11, pp. 1303–1319, 2012.

[109] E. Zergeroglu, D. M. Dawson, M. S. de Querioz, and A. Behal, “Vision-

based nonlinear tracking controllers with uncertain robot-camera parameters,”

IEEE/ASME Trans. on Mechatronics, vol. 6, no. 3, pp. 322–337, Sep 2001.

[110] R. Spica, A. Franchi, G. Oriolo, H. H. Bülthoff, and P. Robuffo Giordano,

“Aerial Grasping of a Moving Target with a Quadrotor UAV,” in 2012 IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems, Vilamoura, Portugal, Oct. 2012,

pp. 4985–4992.

[111] H. Hermes and G. Haynes, “On the nonlinear control problem with control ap-

pearing linearly,” Journal of the Society for Industrial and Applied Mathematics,

Series A: Control, vol. 1, no. 2, pp. 85–108, 1963.

[112] W. Van Loock, G. Pipeleers, and J. Swevers, “Time-optimal quadrotor flight,”

in European Control Conference (ECC), 2013. IEEE, 2013, pp. 1788–1792.

[113] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.

[114] H. J. Pesch, “Real-time computation of feedback controls for constrained op-

timal control problems. part 1: Neighbouring extremals,” Optimal Control Ap-

plications and Methods, vol. 10, no. 2, pp. 129–145, 1989.

[115] ——, “Real-time computation of feedback controls for constrained optimal

control problems. part 2: A correction method based on multiple shooting,”

Optimal Control Applications and Methods, vol. 10, no. 2, pp. 147–171, 1989.

[116] A. V. Rao, “A survey of numerical methods for optimal control,” Advances in

the Astronautical Sciences, vol. 135, no. 1, pp. 497–528, 2009.

[117] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using non-

linear programming and collocation,” Journal of Guidance, Control, and Dy-

namics, vol. 10, no. 4, pp. 338–342, 1987.

[118] E. Polak, Optimization: algorithms and consistent approximations. Springer

Science & Business Media, 2012, vol. 124.

Bibliography

[119] M. Wright, “The interior-point revolution in optimization: history, recent de-

velopments, and lasting consequences,” Bulletin of the American mathematical

society, vol. 42, no. 1, pp. 39–56, 2005.

[120] P. E. Gill, W. Murray, and M. H. Wright, “Practical optimization,” 1981.

[121] C. T. Lawrence and A. L. Tits, “Nonlinear equality constraints in feasible

sequential quadratic programming,” Optimization Methods and Software, vol. 6,

no. 4, pp. 265–282, 1996.

[122] C. G. Broyden, “The convergence of a class of double-rank minimization algo-

rithms 1. general considerations,” IMA Journal of Applied Mathematics, vol. 6,

no. 1, pp. 76–90, 1970.

[123] M. B. Milam, “Real-time Optimal Trajectory Generation for Constrained Dy-

namical Systems,” Ph.D. dissertation, California Institute of Technology, 2003.

[124] C. D. Boor, A practical guide to splines. Springer-Verlag New York, 1978,

vol. 27.

[125] G. Antonelli, E. Cataldi, F. Arrichiello, P. R. Giordano, S. Chiaverini, and

A. Franchi, “Adaptive trajectory tracking for quadrotor mavs in presence of pa-

rameter uncertainties and external disturbances,” IEEE Transactions on Control

Systems Technology, vol. 26, no. 1, pp. 248–254, 2018.

[126] P. Robuffo Giordano, Q. Delamare, and A. Franchi, “Trajectory generation for

minimum closed-loop state sensitivity,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA), 2018.

[127] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The

international journal of robotics research, vol. 20, no. 5, pp. 378–400, 2001.

[128] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning for agile

autonomous vehicles,” Journal of Guidance, Control, and Dynamics, vol. 25,

no. 1, pp. 116–129, 2002.

[129] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic

motion planning with moving obstacles,” The International Journal of Robotics

Research, vol. 21, no. 3, pp. 233–255, 2002.

[130] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based Motion Plan-

ning for Aggressive Flight in SE (3),” arXiv preprint arXiv:1710.02748, 2017.

[131] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-uav motion

replanning for exploring unknown environments,” in 2013 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2013, pp. 2452–2458.

Bibliography

[132] A. Raemaekers, “Design of a model predictive controller to control uavs,”

Technische Universiteit Eindhoven, 2007.

[133] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained

model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,

pp. 789–814, 2000.

[134] R. M. Murray, “Optimization-based control,” California Institute of Technol-

ogy, CA, 2009.

[135] S. A. Homsi, A. Sherikov, D. Dimitrov, and P.-B. Wieber, “A Hierarchical

Approach to Minimum Time Control of Industrial Robots,” in 2016 IEEE Int.

Conf. on Robotics and Automation, Stockholm, Sweden, May 2016, pp. 16–21.

[136] R. Findeisen and F. Allgöwer, “An introduction to nonlinear model predictive

control,” in 21st Benelux Meeting on Systems and Control, vol. 11. Technische

Universiteit Eindhoven Veldhoven Eindhoven, The Netherlands, 2002, pp. 119–

141.

[137] A. Boeuf, J. Cortés, R. Alami, and T. Siméon, “Planning agile motions for

quadrotors in constrained environments,” in 2014 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2014, pp. 218–223.

[138] N. Faiz, S. Agrawal, and R. Murray, “Differentially flat systems with inequality

constraints: An approach to real-time feasible trajectory generation,” Journal

of Guidance, Control, and Dynamics, vol. 24, no. 2, pp. 219–227, 2001.

[139] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open Source

Framework for Automatic Control and Dynamic Optimization,” Optimal Con-

trol Applications and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[140] V. Grabe, M. Riedel, H. H. Bülthoff, P. R. Giordano, and A. Franchi, “The

TeleKyb Framework for a Modular and Extendible ROS-based Quadrotor Con-

trol,” in 2013 European Conference on Mobile Robots (ECMR). IEEE, 2013,

pp. 19–25.

[141] T. Lee, M. Leokyand, and N. H. McClamroch, “Geometric tracking control

of a quadrotor UAV on SE(3),” in 49th IEEE Conf. on Decision and Control,

Atlanta, GA, Dec. 2010, pp. 5420–5425.

[142] M. Geisert and N. Mansard, “Trajectory generation for quadrotor based sys-

tems using numerical optimal control,” in 2016 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2016, pp. 2958–2964.

Bibliography

[143] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-

query path planning,” in 2000 IEEE International Conference on Robotics and

Automation, vol. 2. IEEE, 2000, pp. 995–1001.

[144] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path plan-

ning,” 1998.

[145] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, “Search-based motion planning

for quadrotors using linear quadratic minimum time control,” in 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE,

2017, pp. 2872–2879.

[146] R. Deits and R. Tedrake, “Efficient mixed-integer planning for uavs in clut-

tered environments,” in 2015 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2015, pp. 42–49.

[147] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic pro-

gram trajectory generation for heterogeneous quadrotor teams,” in 2012 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 2012,

pp. 477–483.

[148] S. Tang and V. Kumar, “Mixed integer quadratic program trajectory gener-

ation for a quadrotor with a cable-suspended payload,” in 2015 IEEE Inter-

national Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.

2216–2222.

[149] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and

V. Kumar, “Planning dynamically feasible trajectories for quadrotors using safe

flight corridors in 3-d complex environments,” IEEE Robotics and Automation

Letters, vol. 2, no. 3, pp. 1688–1695, 2017.

[150] P. M. Bouffard and S. L. Waslander, “A hybrid randomized/nonlinear pro-

gramming technique for small aerial vehicle trajectory planning in 3d,” Planning,

Perception and Navigation for Intelligent Vehicles (PPNIV), vol. 63, 2009.

[151] L. Bascetta, I. M. Arrieta, and M. Prandini, “Flat-rrt*: A sampling-based

optimal trajectory planner for differentially flat vehicles with constrained dy-

namics,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 6965–6970, 2017.

[152] R. Allen and M. Pavone, “A real-time framework for kinodynamic planning

with application to quadrotor obstacle avoidance,” in AIAA Guidance, Naviga-

tion, and Control Conference, 2016, p. 1374.

Bibliography

[153] P. Florence, J. Carter, and R. Tedrake, “Integrated perception and control at

high speed: Evaluating collision avoidance maneuvers without maps,” in WAFR

2016, 2016.

[154] L. Van den Broeck, M. Diehl, and J. Swevers, “Model predictive control for

time-optimal point-to-point motion control,” IFAC Proceedings Volumes, vol. 44,

no. 1, pp. 2458–2463, 2011.

[155] S. Spedicato and G. Notarstefano, “Minimum-time trajectory generation for

quadrotors in constrained environments,” IEEE Transactions on Control Sys-

tems Technology, vol. 26, no. 4, pp. 1335–1344, 2018.

[156] H. Jabbari, G. Oriolo, and H. Bolandi, “Dynamic IBVS Control of an Un-

deractuated UAV,” in 2012 IEEE Int. Conf. on Robotics and Biomimetics,

Guangzhou, China, Dec. 2012, pp. 1158–1163.

[157] H. Jabbari and G. Oriolo and H. Bolandi, “An Adaptative Scheme for IBVS of

an Underactuated UAV,” Int. J. of Robotics Research, vol. 29, no. 1, pp. 92–104,

2014.

[158] J. Thomas, G. Loianno, J. Polin, K. Sreenath, and V. Kumar, “Toward au-

tonomous avian-inspired grasping for micro aerial vehicles,” Bioinspiration &

Biomimetics, vol. 9, no. 2, p. 025010, 2014.

[159] O. Bourquardez, R. Mahony, N. Guenard, F. Chaumette, T. Hamel, and

L. Eck, “Image-Based Visual Servo Control of the Translation Kinematics of a

Quadrotor Aerial Vehicle,” IEEE Trans. on Robotics, vol. 25, no. 3, pp. 743–749,

2009.

[160] F. Chaumette, “Image moments: a general and useful set of features for visual

servoing,” IEEE Transactions on Robotics, vol. 20, no. 4, pp. 713–723, 2004.

[161] G. Fink, H. Xie, A. F. Lynch, and M. Jagersand, “Nonlinear dynamic image-

based visual servoing of a quadrotor,” Journal of unmanned vehicle systems,

vol. 3, no. 1, pp. 1–21, 2015.

[162] R. Mebarki, V. Lippiello, and B. Siciliano, “Nonlinear visual control of un-

manned aerial vehicles in gps-denied environments,” IEEE Transactions on

Robotics, vol. 31, no. 4, pp. 1004–1017, 2015.

[163] T. Hamel and R. Mahony, “Visual servoing of an under-actuated dynamic

rigid-body system: an image-based approach,” IEEE Transactions on Robotics

and Automation, vol. 18, no. 2, pp. 187–198, 2002.

Bibliography

[164] ——, “Image based visual servo control for a class of aerial robotic systems,”

Automatica, vol. 43, no. 11, pp. 1975–1983, 2007.

[165] P. Serra, R. Cunha, T. Hamel, D. Cabecinhas, and C. Silvestre, “Landing on a

moving target using image-based visual servo control,” in Decision and Control

(CDC), 2014 IEEE 53rd Annual Conference on. IEEE, 2014, pp. 2179–2184.

[166] R. Ozawa and F. Chaumette, “Dynamic visual servoing with image moments

for a quadrotor using a virtual spring approach,” in 2011 IEEE Int. Conf. on

Robotics and Automation, 2011, pp. 5670–5676.

[167] R. Fleurmond and V. Cadenat, “Handling visual features losses during a co-

ordinated vision-based task with a dual-arm robotic system,” in 2016 European

Control Conference (ECC). IEEE, 2016, pp. 684–689.

[168] D. Falanga, A. Zanchettin, A. Simovic, J. Delmerico, and D. Scaramuzza,

“Vision-based autonomous quadrotor landing on a moving platform,” in Pro-

ceedings of the IEEE International Symposium on Safety, Security and Rescue

Robotics, Shanghai, China, 2017, pp. 11–13.

[169] C. Teuliere, L. Eck, and E. Marchand, “Chasing a moving target from a flying

uav,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2011, pp. 4929–4934.

[170] N. J. Cowan, J. D. Weingarten, and D. E. Koditschek, “Visual servoing via

navigation functions,” IEEE Transactions on Robotics and Automation, vol. 18,

no. 4, pp. 521–533, 2002.

[171] Y. Mezouar and F. Chaumette, “Path planning for robust image-based con-

trol,” IEEE Transactions on Robotics and Automation, vol. 18, no. 4, pp. 534–

549, 2002.

[172] E. Marchand and G. D. Hager, “Dynamic sensor planning in visual servoing,”

in 1998 IEEE International Conference on Robotics and Automation, vol. 3.

IEEE, 1998, pp. 1988–1993.

[173] N. Mansard and F. Chaumette, “A new redundancy formalism for avoidance

in visual servoing,” in 2005 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2005, pp. 468–474.

[174] D. Folio and V. Cadenat, “A controller to avoid both occlusions and obsta-

cles during a vision-based navigation task in a cluttered environment,” in 44th

IEEE Conference on Decision and Control, 2005 and 2005 European Control

Conference. CDC-ECC’05. IEEE, 2005, pp. 3898–3903.

Bibliography

[175] G. Allibert, E. Courtial, and Y. Touré, “A flat model predictive controller for

trajectory tracking in image based visual servoing,” IFAC Proceedings Volumes,

vol. 40, no. 12, pp. 993–998, 2007.

[176] R. Rao, V. Kumar, and C. Taylor, “Visual servoing of a ugv from a uav using

differential flatness,” in Proceedings. 2003 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), vol. 1. IEEE, 2003, pp. 743–748.

[177] D. J. Agravante, G. Claudio, F. Spindler, and F. Chaumette, “Visual servoing

in an optimization framework for the whole-body control of humanoid robots,”

IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 608–615, 2017.

[178] D. Nicolis, M. Palumbo, A. M. Zanchettin, and P. Rocco, “Occlusion-free

visual servoing for the shared autonomy teleoperation of dual-arm robots,” IEEE

Robotics and Automation Letters, 2018.

[179] M. Kazemi, K. K. Gupta, and M. Mehrandezh, “Randomized kinodynamic

planning for robust visual servoing,” IEEE Transactions on Robotics, vol. 29,

no. 5, pp. 1197–1211, 2013.

[180] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-aware

model predictive control for quadrotors,” arXiv preprint arXiv:1804.04811, 2018.

[181] W. Ding, M. R. Ganesh, R. N. Severinghaus, J. J. Corso, and D. Panagou,

“Real-time model predictive control for keeping a quadrotor visible on the camera

field-of-view of a ground robot,” in 2016 American control conference (ACC),

2016, pp. 2259–2264.

[182] J. Chen, T. Liu, and S. Shen, “Tracking a moving target in cluttered envi-

ronments using a quadrotor,” in 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 446–453.

[183] G. Costante, C. Forster, J. Delmerico, P. Valigi, and D. Scaramuzza,

“Perception-aware path planning,” arXiv preprint arXiv:1605.04151, 2016.

[184] R. Pepy, M. Kieffer, and E. Walter, “Reliable robust path planning with ap-

plication to mobile robots,” International Journal of Applied Mathematics and

Computer Science, vol. 19, no. 3, pp. 413–424, 2009.

[185] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic map-

ping using cauchy-schwarz quadratic mutual information,” in 2015 IEEE Int.

Conf. on Robotics and Automation, May 2015, pp. 4791–4798.

Bibliography

[186] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual exploration

and coverage with a micro aerial vehicle in unknown environments,” in 2015

IEEE Int. Conf. on Robotics and Automation, May 2015, pp. 1071–1078.

[187] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart, “Motion-

and uncertainty-aware path planning for micro aerial vehicles,” Journal of Field

Robotics, vol. 31, no. 4, pp. 676–698, 2014.

[188] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and

R. Siegwart, “Monocular Vision for Long-term Micro Aerial Vehicle State Es-

timation: A Compendium,” J. of Field Robotics, vol. 30, no. 5, pp. 803–831,

2013.

[189] H. Michalska and D. Q. Mayne, “Robust receding horizon control of con-

strained nonlinear systems,” IEEE transactions on automatic control, vol. 38,

no. 11, pp. 1623–1633, 1993.

[190] N. M. Patrikalakis and T. Maekawa, Shape Interrogation for Computer Aided

Design and Manufacturing. Springer, 2009.

[191] S. G. Johnson, “The nlopt nonlinear-optimization package.” http://ab-

initio.mit.edu/nlopt.

[192] D. Kraft, “A software package for sequential quadratic programming,”

Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und

Raumfahrt, 1988.

[193] R. Spica, P. R. Giordano, and F. Chaumette, “Active structure from motion

for spherical and cylindrical targets,” in 2014 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2014, pp. 5434–5440.

[194] W. Squire and G. Trapp, “Using complex variables to estimate derivatives of

real functions,” Siam Review, vol. 40, no. 1, pp. 110–112, 1998.

[195] R. Abreu, D. Stich, and J. Morales, “On the generalization of the complex

step method,” Journal of Computational and Applied Mathematics, vol. 241,

pp. 84–102, 2013.

[196] J. Martins, P. Sturdza, and J. Alonso, “The connection between the complex-

step derivative approximation and algorithmic differentiation,” in 39th Aerospace

Sciences Meeting and Exhibit, 2001, p. 921.

[197] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

Bibliography

[198] M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “Belief space planning

simplified: Trajectory-optimized lqg (t-lqg),” arXiv preprint arXiv:1608.03013,

2016.

[199] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion planning

under uncertainty,” in 2011 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2011, pp. 723–730.

[200] J. P. Gonzalez and A. Stentz, “Planning with uncertainty in position an op-

timal and efficient planner,” in 2005 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2005, pp. 2435–2442.

[201] B. Davis, I. Karamouzas, and S. J. Guy, “C-opt: Coverage-aware trajectory

optimization under uncertainty,” IEEE Robotics and Automation Letters, vol. 1,

no. 2, pp. 1020–1027, 2016.

[202] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under un-

certainty using differential dynamic programming in belief space,” in Robotics

Research. Springer, 2017, pp. 473–490.

[203] A. Lambert and D. Gruyer, “Safe path planning in an uncertain-configuration

space,” in 2003 IEEE International Conference on Robotics and Automation

(ICRA), vol. 3. IEEE, 2003, pp. 4185–4190.

[204] Z. Zhang and D. Scaramuzza, “Perception-aware receding horizon navigation

for mavs,” Tech. Rep., 2018.

[205] S. Candido and S. Hutchinson, “Minimum uncertainty robot navigation using

information-guided pomdp planning,” in 2011 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2011, pp. 6102–6108.

[206] K. Hausman, J. Preiss, G. S. Sukhatme, and S. Weiss, “Observability-aware

trajectory optimization for self-calibration with application to uavs,” IEEE

Robotics and Automation Letters, vol. 2, no. 3, pp. 1770–1777, 2017.

[207] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of

nonlinear systems: Introductory theory and examples,” International Journal

of Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[208] C. P. Tang, “Differential flatness-based kinematic and dynamic control of a

differentially driven wheeled mobile robot,” in 2009 IEEE International Confer-

ence on Robotics and Biomimetics (ROBIO). IEEE, 2009, pp. 2267–2272.

Bibliography

[209] G. G. Rigatos, “Derivative-free kalman filtering for autonomous navigation of

unmanned ground vehicles,” in 2012 1st International Conference on Systems

and Computer Science (ICSCS). IEEE, 2012, pp. 1–6.

[210] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring random

trees for optimal motion planning in complex cluttered environments,” Robotics

and Autonomous Systems, vol. 68, pp. 1–11, 2015.

[211] B. Ichter, B. Landry, E. Schmerling, and M. Pavone, “Robust motion

planning via perception-aware multiobjective search on gpus,” arXiv preprint

arXiv:1705.02408, 2017.

[212] W. Van Loock, G. Pipeleers, and J. Swevers, “B-spline parameterized optimal

motion trajectories for robotic systems with guaranteed constraint satisfaction,”

Mechanical Sciences, vol. 6, no. 2, p. 163, 2015.

[213] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-based motion planning for

autonomous guided vehicles in a dynamic environment,” IEEE Transactions on

Control Systems Technology, 2017.

[214] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-spline techniques.

Springer Science & Business Media, 2013.

[215] C. Louembet, F. Cazaurang, and A. Zolghadri, “Motion planning for flat sys-

tems using positive b-splines: An lmi approach,” Automatica, vol. 46, no. 8, pp.

1305–1309, 2010.

[216] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:

A parametric active-set algorithm for quadratic programming,” Mathematical

Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[217] E. Marchand, F. Spindler, and F. Chaumette, “Visp for visual servoing:

a generic software platform with a wide class of robot control skills,” IEEE

Robotics and Automation Magazine, vol. 12, no. 4, pp. 40–52, December 2005.

[218] S. Ramasamy, G. Wu, and K. Sreenath, “Dynamically feasible motion planning

through partial differential flatness.” in Robotics: Science and Systems, 2014.

[219] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Real-time collision

avoidance with whole body motion control for humanoid robots,” in 2007

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2007, pp. 2053–2058.

Bibliography

[220] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by crashing,” in 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2017, pp. 3948–3955.

[221] N. Crombez, G. Caron, and E. M. Mouaddib, “Photometric gaussian mix-

tures based visual servoing,” in Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on. IEEE, 2015, pp. 5486–5491.

[222] F. Suryawan, J. De Doná, and M. Seron, “On splines and polynomial tools

for constrained motion planning,” in 2010 18th Mediterranean Conference on

Control & Automation (MED). IEEE, 2010, pp. 939–944.

[223] L. Biagiotti and C. Melchiorri, Trajectory planning for automatic machines

and robots. Springer Science & Business Media, 2008.

[224] L. Piegl and W. Tiller, The NURBS book. Springer Science & Business Media,

2012.

[225] J. N. Lyness, “Numerical algorithms based on the theory of complex variable,”

in Proceedings of the 1967 22nd national conference. ACM, 1967, pp. 125–133.

[226] J. Martins, I. Kroo, and J. Alonso, “An automated method for sensitivity

analysis using complex variables,” in 38th aerospace sciences meeting and exhibit,

2000, p. 689.

[227] K.-L. Lai and J. Crassidis, “Extensions of the first and second complex-step

derivative approximations,” Journal of Computational and Applied Mathemat-

ics, vol. 219, no. 1, pp. 276–293, 2008.

[228] R. Bagley, “On fourier differentiation-a numerical tool for implicit functions,”

International Journal of Applied Mathematics, vol. 19, no. 3, p. 255, 2006.

[229] L. B. Rall and G. F. Corliss, “An introduction to automatic differentiation,”

Computational Differentiation: Techniques, Applications, and Tools, vol. 89,

1996.

Titre : Contributions à la génération de trajectoires optimales et réactives basées vision pour un
quadrirotor UAV

Mots clés : contraintes visuelles, optimisation nonlinéaire, navigation aérienne agile, quadrirotor

Résumé : La vision représente un des plus
importants signaux en robotique. Une caméra
monoculaire peut fournir de riches informations
visuelles à une fréquence raisonnable pouvant être
utilisées pour la commande, l’estimation d’état ou la
navigation dans des environements inconnus par
exemple. Il est cependant nécessaire de respecter
des contraintes visuelles spécifiques telles que la
visibilité de mesures images et les occultations
durant le mouvement afin de garder certaines cibles
visuelles dans le champ de vision. Les quadrirotors
sont dotés de capacités de mouvement très réactives
du fait de leur structure compacte et de la
configuration des moteurs. De plus, la vision par une
caméra embarquée (fixe) va subir des rotations dues
au sous-actionnement du système. Dans cette thèse
nous voulons bénéficier de l’agilité du quadrirotor
pour réaliser plusieurs tâches de navigation basées
vision. Nous supposons que l’estimation d’état
repose uniquement sur la fusion capteurs d’une
centrale inertielle (IMU) et d’une caméra monoculaire
qui fournit des estimations de pose précises.

Les contraintes visuelles sont donc critiques et
difficiles dans un tel contexte. Dans cette thèse
nous exploitons l’optimisation numérique pour
générer des trajectoires faisables satisfaisant un
certain nombre de contraintes d’état, d’entrées et
visuelles nonlinéaires. A l’aide la platitude
différentielle et de la paramétrisation par des B-
splines nous proposons une stratégie de
replanification performante inspirée de la
commande prédictive pour générer des trajectoires
lisses et agiles. Enfin, nous présentons un
algorithme de planification en temps minimum qui
supporte des pertes de visibilité intermittentes afin
de naviguer dans des environnements encombrés
plus vastes. Cette contribution porte l’incertitude de
l’estimation d’état au niveau de la planification pour
produire des trajectoires robustes et sûres. Les
développements théoriques discutés dans cette
thèse sont corroborés par des simulations et
expériences en utilisant un quadrirotor. Les
résultats reportés montrent l’efficacité des
techniques proposées.

Title : Contributions to optimal and reactive vision-based trajectory generation for a quadrotor UAV

Keywords : visibility constraints, nonlinear optimization, agile aerial navigation, quadrotor UAV

Abstract : Vision constitutes one of the most
important cues in robotics. A single monocular
camera can provide rich visual information at a
reasonable rate that can be used as a feedback for
control, state estimation of mobile robots or safe
navigation in unknown environments for instance.
However, it is necessary to satisfy particular visual
constraints on the image such as visibility and
occlusion constraints during motion to keep some
visual targets visible. Quadrotors are endowed with
very reactive motion capabilities due to their compact
structure and motor configuration. Moreover, vision
from a (fixed) on-board camera will suffer from
rotation motions due to the system underactuation. In
this thesis, we want to benefit from the system
aggressiveness to perform several vision-based
navigation tasks. We assume state estimation relies
solely on sensor fusion of an onboard inertial
measurement unit (IMU) and

a monocular camera that provides reliable pose
estimates. Therefore, visual constraints are
challenging and critical in this context. In this thesis
we exploit numerical optimization to design feasible
trajectories satisfying several state, input and visual
nonlinear constraints. With the help of differential
flatness and B-spline parametrization we will
propose an efficient replanning strategy inspired
form Model Predictive Control to generate smooth
and agile trajectories. Finally, we propose a
minimum-time planning algorithm that handles
intermittent visibility losses in order to navigate in
larger cluttered environments. This contribution
brings state estimation uncertainty at the planning
stage to produce robust and safe trajectories. All the
theoretical developments discussed in this thesis
are corroborated by simulations and experiments
run by using a quadrotor UAV. The reported results
show the effectiveness of proposed techniques.

Bibliography

