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Chapter 1

Introduction

Contents
1.1 Quadrotors in robotics . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Visual and optimal aspects in biology . . . . . . . . . . . . . . . 5

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Quadrotors in robotics

In the same way research in robotic vehicle mobility favoured wheeled robots to de-
rive fundamental results, among all Unmanned Aerial Vehicles (UAVs) quadrotors
have been considered as the most flexible and versatile platforms worldwide for un-
dertaking aerial research over the last 15 years. These vehicles are capable of agile
motion and stable hovering in 3D space that offer ideal capabilities for many differ-
ent applications including but not limited to: surveillance, search-and-rescue, recon-
naissance, transport and inspection in complex environments. However, quadrotors
are subject to much more uncertainty than ground vehicles (e.g., modelling, actua-
tion and sensing uncertainty) and are more sensitive to external disturbances (e.g.,
wind gust, physical interaction with the environment or other robots). These chal-
lenges have actually enhanced the investigation on more complex research problems
related to three-dimensional planning, control, localization and sensing. Although
quadrotors are known to suffer from a much lower flight efficiency than fixed-wing
aircraft, these low-cost platforms provide now sufficient flight endurance and pay-
load for a number of indoor and outdoor applications and are now more and more
seriously considered for commercial applications (e.g., package delivery, advertising,
aerial photography) or emergency assistance (e.g., first-aid kit delivery Fig. 1.1a,
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1. Introduction

fire fighting Fig. 1.1c, disaster analysis Fig. 1.1b). Moreover, quadrotors are mostly
equipped with vision sensors that bring them to the forefront of inspection and
surveillance in complex and unstructured environments. Note that with the recent
development of new lithium-lion batteries providing up to 2 hours of flight with
a single charge, Impossible Aerospace Fig. 1.1c now opens a door to new exciting
aerial applications.

(a) Quadrotors could be deployed to
rapidly deliver first aid kits.

(b) A quadrotor used by British NGOs
during the Nepal earthquake in April
2015.

(c) Prelaunch units of the new quadrotor US-1 de-
veloped by Impossible Aerospace have been sold
to firefighters, police departments, and search and
rescue teams across the United States. The sys-
tem could carry thermal cameras or multispectral
sensors for search-and-rescue applications.

Figure 1.1 – Example of practical applications completed by a quadrotor UAV

Endowed with a special actuation configuration that allows extremely high mo-
tion capabilities, quadrotors are inherently prone to high speed and agile flights.
Since several years, the research community has been developing new control and
planning methods in the field of three-dimensional dynamic motion for systems with
fast control loops such as quadrotors. Today, quadrotors have reached a very satis-
fying level of autonomy and reliability for fundamental research applications. Yet,
the active research in aerial robotics is pushing the limits of planning, control and
sensing to address more complex and agile tasks.

Moreover, computation improvements have also motivated the revision of al-

2



1.1. Quadrotors in robotics

ready existing control and planning techniques (especially optimization-based meth-
ods) to the concept of aerial robots that can plan their motion online and quickly
respond to changes in dynamic environments. Starting from this idea, many re-
searchers have focused their effort on apprehending flight characteristics and proper-
ties of motion itself (optimality, representation and especially the notion of smooth-
ness1) and their implications in control and planning for completing complex and
reactive tasks such as aggressive grasping [5] or interception manoeuvres [6]. Several
testbeds such as [7, 8, 9] have originated from these fundamental studies to demon-
strate the feasibility of new motions that are close to the actuation limits (and
singularities) such as flips [10], aerobatics [11], swing manoeuvres [12] or juggling
[13].

Figure 1.2 – A classic quadrotor platform (from MikroKopter 2) used for our experiments.

Originally composed of four propellers (see Fig. 1.2), quadrotors have been sub-
ject to numerous advanced mechanical design extensions depending on the aerial
task to be performed. One can acknowledge overactuated variable-pitch quadrotors
[14, 15] or aerial systems with tilting rotors (see e.g., [16]). Finally, there exists sys-
tems that can change their configuration: for a hexarotor in [17] or for a complex
multi-body UAV in [18] (Fig. 1.3a). In a similar spirit [19] augments a quadrotor
with a hooking system to enhance its motion capabilities and [20] with anchoring
modules to extend its flight autonomy for instance Fig. 1.3b.

These platforms are mostly designed to facilitate physical interaction and naviga-
tion in cluttered environment. Yet, complex actuation leads to larger uncertainties
and the complex control algorithms involved make them not mature enough for
undertaking aggressive motions in 3D we are interested in.

1The exact meaning of this term will be clear later
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(a) The multilink DRAGON system
can change its shape for passing in
narrow holes or carrying objects, from
[18].

(b) The SpiderMAV uses an air-compressed
module to shoot hooks attached with wires to
stabilize itself, from [20].

Figure 1.3 – Complex augmented aerial systems capable of extending their flight capabilities

In the course of this thesis, several fundamental works have arisen from the re-
search community to demonstrate that quadrotors are capable of performing com-
plex tasks while exploiting their full potential especially in terms of agility. Along
these works, state estimation and sensing algorithms have been improved to cope
with high speed motions. The sensory channel has not changed much but has surely
improved due to continuing progress in technology. Quadrotors can now be equipped
with complex vision sensors such as a lidar or a kinect. For instance [21] equipped
a quadrotor with a nodding Hokuyo lidar, a second lidar serving as an altimeter
and a high-resolution stereo camera to perform autonomous flights at impressive
speeds up to 18m/s. Among all vision sensors, cameras are still the most preferred
ones and possess a long history in robotic control. New kind of cameras are even
developed especially for these applications such as the event-based cameras [22].

Since quadrotors have fewer independent control actuators than degrees of free-
dom (four motors for controlling six degrees of freedom) they belong to the large
class of underactuated mechanical systems. Controlling such systems is challenging
to the nonlinear control community especially in terms of stability and robustness.
Developing controllers for these systems is clearly motivated by the mechanical gain
procured by their simple mechanical structure. A extensive study of the control of
underactuated systems can be found in e.g., [23].

Even though nonlinear controllers have been developed for quadrotors, stable
and robust control is still challenging when the system has to undertake aggressive
manoeuvres. This is due to the fact that the robot attitude is not negligible and
aerodynamics become significant and are difficult to model and to incorporate in
control. In this context, proofs of convergence and stability are much more laborious
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1.1. Quadrotors in robotics

to establish. Nowadays, optimization-based planning methods appear to be more
and more flexible and adapted for computing trajectories at the edge of the system
motion capabilities for satisfying multiple (and possibly conflicting) goals while
being subject to numerous (and possibly nonlinear) constraints.

Pioneered by [1] (Fig. 1.4a) in 2011 very recent works show how optimization
techniques are able to produce aggressive flight modes based on the generation
of feasible and smooth trajectories [24] demonstrated that quadrotors can even
undertake agile motions in a complete autonomous way using vision as principal
feedback Fig. 1.4b. All the papers cited in this section were published in 2016 at
the earliest and shown in Fig. 1.4 and Fig. 1.5. This shows the current interest that
has sparked in the field of agile manoeuvres.

(a) Smooth and fast flights between
hoops, from [1].

(b) Autonomous agile passage through a
window using visual feedback, from [24].

Figure 1.4 – Aggressive trajectories performed at the GRASP Lab from the University of
Pennsylvania (left) and at the Robotics & Perception Group - UZH ETH Zurich (right).

Figure 1.5 – Aggressive perching manoeuvres (left figure from [5]) and agile swing manoeu-
vres with a suspended load (right figure from [25])
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1. Introduction

1.2 Visual and optimal aspects in biology

It is not new, in many occasions research gets its inspiration from biology. Indeed,
even small insects are able to deal with very complex tasks using visual feedback
that we still cannot fully replicate today. It has been shown that a dragonfly aims
at aligning its body and bearing to the prey’s direction of motion to improve ma-
noeuvrability and speed while closing the vertical distance to it (Fig. 1.6). They
even predict the prey’s motion such that there is virtually no prey motion on the
eye for most of the flight [26].

Figure 1.6 – Hunting approach of a dragonfly and head motion (from ??).

Raptors approach their preys by following a spiral trajectory rather than a
(shorter) straight path [27] in order to keep the prey in the field of view and to
optimize flight speed (Fig. 1.7). Indeed, following a straight path would force the
falcon to turn its head to keep visibility of the prey, an action which would produce
significant aerodynamic disturbances and reduce flight speed.

Figure 1.7 – Trajectory optimization in peregrine falcons. Anatomical structure of the
falcon eye with the deep fovea (the area specialized in acute vision) pointing approximately
45 degrees to the side of the frontal line. Spiral trajectory followed by the falcon to optimize
visual perception and air drag while flying toward its prey (from [27]).

We can see that trajectories are then the (natural) result of a joint performance
maximizing both perception and action and are strongly shaped by biomechanical

6



1.3. Challenges

constraints and visibility. Such optimal aspects have been transferred to aerial
research and referred as perception based planning and sensor-based control.

1.3 Challenges

Quadrotors are under-actuated systems since they have four control inputs to control
their six degrees of freedom. Such a simple configuration is desirable for performing
agile motions but at the cost of shifting the difficulty to the control and the planning
schemes. Literature flourishes with contributions on these topics. Most of the works
consider applications requiring near-hovering flights and low speed motions that
allow the use of much simpler control schemes. As the state-of-the-art in Chapt. 5
will show, recent works have been dedicated to pushing the quadrotors flight limits
in order to perform agile manoeuvres in more complex scenarios. Now, although
sensors are growing in accuracy and processors are becoming more powerful, reliable
estimation of the robot state is still challenging knowing it is crucial in this context.
To the latter purpose but also for designing control schemes, the use of cameras
has been very popular in robotics since they can provide rich information by the
observation of some visual features present in the scene. However, when attached to
a quadrotor the underactuation may severely affect the visual perception since the
camera will undergo possibly large rotations. For these reasons, aggressive control of
quadrotors should account for the capacity of the visual feedback to provide reliable
information.

Figure 1.8 represents a quadrotor with a down-facing camera that needs to move
in the right direction while using the red dot on the ground as visual feedback for
a visual-based control scheme (such as visual servoing [28]). Since the commanded
velocities are defined in the image plane, in order to move in the desired direction,
the robot must necessarily rotate clockwise so as to correctly orient the thrust force
generated by the propellers. While doing so, the field of view of the camera will also
move and the robot might lose visibility of the target. Guaranteeing visibility of the
visual features is of paramount importance since loosing visual tracking leads to an
increasingly poor state estimation (that would just be driven by the odometry, i.e.,
the onboard IMU) and, thus, possibly, to a controller/task failure.

Furthermore, when performing agile flights close to the physical limits of a
quadrotor, motors might saturate, which leads to an inability to control the four
independent degrees of freedom. A proper choice of the dynamic constraints and
considerations on some motion properties such as smoothness are the common in-
gredients for planning feasible trajectories that can be accurately tracked by the
real system.

Failure of the task can also be caused by the magnitude of modelling errors
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1. Introduction

Figure 1.8 – Effect of underactuation for visual control of a quadrotor: the red target is
repelled from the field of view as the quadrotor moves towards it.

and disturbances that are boosted at high speeds. Robustness is of paramount
importance in that case and can be achieved by efficiently adapting the trajectory
on-line according to changes of the environments or to the tracker response. A
second reasoning (among others) is to model or identify the unknown variables and
aspects in order to be directly incorporated in control. These techniques will help
absorbing the uncertainties acting inside or on the system.

This thesis tackles the following challenges:

• The exploitation of the potential of a quadrotor in terms of agility to perform
agile manoeuvres.

• The incorporation of a collection of vision-based constraints in planning for
maintaining visibility.

• The efficient re-planning of reactive trajectories subject to multiple constraints.

• The incorporation of the state estimation uncertainty at the planning stage.

1.4 Thesis contributions

More precisely, this thesis focuses on developing real-time trajectory generation al-
gorithms for undertaking aggressive motions while satisfying a collection of complex
constraints with a particular care for visual perception. We rely on already existing
trajectory controllers running at a high frequency for accurately tracking the opti-
mal trajectories. Nevertheless, the design of such trajectories incorporates motion
aspects that are beneficial for the tracker performance. These strategies use a Reced-
ing Horizon Control (RHC) approach for modifying online the reference trajectory
in order to account for noise, disturbances and any other non-modelled effect. We
are mostly interested in visual perception, therefore the presented planning strate-
gies targets visual constraints for maintaining visibility and avoiding occlusions by
obstacles present in the environment. Indeed, quadrotors can estimate their state
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by collecting visual measurements from targets that have to remain visible dur-
ing motion. The presented planning methods rely on efficiently solving nonlinear
optimal control programs and are applied to the tracking of a moving target and
navigation. This thesis also presents a contribution in uncertainty-aware planning
under intermittent measurements collected from vision. The goal is to relax the vis-
ibility constraints that can be very restrictive for navigating in large environments.
The contributions are listed below:

• An on-line re-planning algorithm for generating minimum-time trajectories
under visibility constraints.

• A reactive re-planning strategy for aggressive target tracking while avoiding
occlusions and collisions.

• A novel graph-search planner for finding robust minimum-time trajectories in
the presence of intermittent visual measurements for a unicycle and a quadro-
tor.

Our work led to the following contributions:

• Penin, Bryan and Spica, Riccardo and Giordano, Paolo Robuffo and Chaumette,
François. “Vision-Based Minimum-Time Trajectory Generation for a Quadro-
tor UAV” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2017.

• Penin, Bryan and Giordano, Paolo Robuffo and Chaumette, François, “Vision-
based reactive planning for aggressive target tracking while avoiding collisions
and occlusions” IEEE Robotics and Automation Letters, 2018.

• Penin, Bryan and Giordano, Paolo Robuffo and Chaumette, François, “Minimum-
Time Trajectory Planning Under Intermittent Measurements” IEEE Robotics
and Automation Letters, 2019. Submitted to RAL/ICRA’19.

1.5 Thesis structure

This thesis is divided into three main parts. The first part (Part I) contains an
introduction to the ingredients for control and planning for quadrotors. Then, the
main tools used in our works are presented along with a state of the art in the related
topics. The second part (Part II) highlights our contributions about optimization-
based planning algorithms. The results illustrated in this part correspond to the
following publications of the candidate [2, 3] and [4]. The third part (Part III) con-
tains the thesis conclusions and future directions. Finally, we report complementary
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information corroborating a few technical sections.

Outline of Part I
This part contains preliminaries on the different tools and techniques involved in
this thesis and a state-of-the-art on the related topics.

Chapter 2 gives an introduction to the quadrotor system and an overview of classic
control, planning and state estimation techniques. It also introduces the notion of
differential flatness which is a fundamental property in trajectory planning. Finally,
we bring to light the issues related to vision-based control.

Chapter 3 provides standard techniques for solving an optimal control problem.

Chapter 4 introduces Model Predictive Control and preliminary results of simple
applications to trajectory generation with a quadrotor are presented.

Chapter 5 gives an extensive state of the art for the topics of online planning,
vision-based control and optimal aggressive trajectory generation.

Outline of Part II
This part contains the author contributions

Chapter 6 provides our contributions on minimum-time vision-based planning in
the presence of visibility constraints.

Chapter 7 presents our planning frameworks for addressing collisions and occlu-
sions avoidance while tracking a moving target. A relaxed formulation is given for
allowing reactive re-planning.

Chapter 8 introduces the uncertainty-aware graph-search algorithm that we de-
veloped for finding robust minimum-time trajectories in presence of intermittent
visual measurements.

Outline of Part III
Chapter 9 reports the conclusions of the thesis and the main contributions brought
to the state of the art are summarized. Moreover, some open issues are listed and
we discuss future directions which would be worth exploring.
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Appendix A gives the complete flat transformation and its inverse for the quadro-
tor.

Appendix B provides complementary information on the B-spline curves and de-
tails on the relevant manipulation algorithms used in this thesis.

Appendix C includes an introduction to numerical techniques for evaluating deriva-
tives and especially complex-step differentiation. Practical results are given for
comparing finite difference with complex-step difference.
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Chapter 2

Planning and control of a
quadrotor UAV

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Quadrotor model . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 General control and trajectory generation techniques for a quadro-
tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Quadrotor control . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Trajectory generation for a quadrotor . . . . . . . . . . 21

2.3.3 Smoothness . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Differential flatness . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Definition and properties . . . . . . . . . . . . . . . . . . 26

2.5.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.3 Differential flatness in control and trajectory planning . 29

2.6 Vision-based control . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Issues related to vision-based control . . . . . . . . . . . . . . . 30

2.1 Introduction

Our focus in this chapter is on the modelling of the quadrotor dynamics and on the
role of controllers and trajectory generation.

Because of the nonlinear dynamic behaviour, the control and guidance of quadro-
tors remain subjects of active research, especially in applications covering search-
and-rescue, surveillance, inspection, etc. For these applications, high stability, high
precision hovering ability, high bandwidth, and high manoeuvrability are important.
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2. Planning and control of a quadrotor UAV

Figure 2.1 – Quadrotor model

Quadrotors have been widely adopted as experimental platforms for research in
flying robotics. Reasons for the popularity of these vehicles include the ability to
hover, mechanical simplicity and robustness, and their exceptional manoeuvrability
due to typically high thrust-to-weight ratios explained by the relatively large off-
center mounting of the propellers. Such a configuration offers very low rotational
inertia, thus allowing large translational accelerations and extraordinarily fast ro-
tational accelerations (when free of other body parts or payloads). These motion
capabilities authorize complex and agile manoeuvres that have been demonstrated
in [29, 30, 31, 24] for instance.

Moreover, having four propellers of small diameter reduces the damage in case
of collision with an obstacle due to their low kinetic energy. This makes it safer to
navigate in narrow and cluttered environments. Some works even studied recovery
flight modes for quadrotors in case of complete loss of one to three propellers [32].

2.2 Quadrotor model

Now let us derive the general equations of motion for the quadrotor. With refer-
ence to Fig. 2.1, let us define a world frame W “ te1, e2, e3u (being ei the i-th
column of the identity matrix) and a body frame B “ txB,yB, zBu with fixed origin
OB attached to the center of mass (COM) and axis zB parallel to the propeller
rotational axes. The configuration manifold is the special Euclidean group SE(3),
which is the semi-direct product of R3 and the special orthogonal group SO(3)
“ �

R P R3ˆ3 | RTR “ I, detR “ 1
(
. Let us also assume, without loss of general-

ity, that the robot COM corresponds to the barycentre of the propellers.

The robot state is

χ “

¨
˚̊
˚̊
˝

rB
WRB
vB

BωBW

˛
‹‹‹‹‚

P SEp3q ˆ R6 (2.1)

where rB P R3 is the position of the robot COM in W, WRB P SO(3) is the rotation
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2.2. Quadrotor model

matrix from W to B, vB the COM linear velocity expressed in W and BωBW the
angular velocity expressed in B.

In some cases, for more clarity, we will also use the roll, pitch and yaw (RPY)
angles to represent the orientation of the robot. The rotation matrix corresponding
to a given RPY configuration is given by:

WRBpφ, θ,ψq “ RzpψqRypθqRxpφq

“

¨
˚̋
cψcθ cψsθsφ ´ sψcφ cψsθcφ ` sψsφ

sψcθ sψsθsφ ` cψcφ sψsθcφ ´ cψsφ

´sθ cθsφ cθcφ

˛
‹‚

(2.2a)

(2.2b)

It is also immediate to verify that the inverse transformation is given by:

θ “ Arctan2
ˆ

´r31 ˘
b
r232 ` r233

˙

φ “ Arctan2 pr32, r33q
ψ “ Arctan2 pr21, r11q

(2.3a)

(2.3b)

(2.3c)

where rij indicates the component on the i-th row and j-th column of WRB. The
transformation has a singularity of representation for cospθq “ 0.

As known, the derivative of the rotation matrix is given by:

W 9RB “ WRBBΩBW (2.4)

where BΩBW is the skew-symmetric matrix built with the components of BωBW .
More specifically, assuming that

BωBW “

¨
˚̋
ωx

ωy

ωz

˛
‹‚ (2.5)

we have

BΩBW “

¨
˚̋

0 ´ωz ωy

ωz 0 ´ωy

´ωy ωx 0

˛
‹‚ (2.6)

The map that relates BωBW to the corresponding skew-symmetric matrix BΩBW is
often called hat-map. Its inverse typically takes the name of vee-map. The angular
velocity of the robot is also related to the vector of roll, pitch and yaw angles
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derivatives, indeed

BωBW “ RxpφqT
¨
˚̋

9φ
0

0

˛
‹‚` RxpφqTRypθqT

¨
˚̋
0
9θ
0

˛
‹‚` RxpφqTRypθqTRzpψqT

¨
˚̋
0

0
9ψ

˛
‹‚

(2.7)

then

BωBW “ Tpθ,φq

¨
˚̋

9φ
9θ
9ψ

˛
‹‚ (2.8)

where

Tpθ,φq “

¨
˚̋
1 0 ´ sinpθq
0 cospφq cospθq sinpφq
0 ´ sinpφq cospθq cospφq

˛
‹‚ (2.9)

Since

detpTpθ,φqq “ cospθq (2.10)

the above relation is invertible out of the singularities of representation and its
inverse is ¨

˚̋
9φ
9θ
9ψ

˛
‹‚“

¨
˚̋
1 sinpφq tanpθq cospφq tanpθq
0 cospφq ´ sinpφq
0 sinpφq{ cospθq cospφq{ cospθq

˛
‹‚BωBW (2.11)

As it is well known, each of the four propellers produces a force of modulus fi

along zB and a torque of modulus τi about zB. Both can be modelled in first
approximation as proportional to the square of the motor rotational speed ωi

fi “ kωi
2

τi “ bωi
2

(2.12a)

(2.12b)

where k and b are the thrust and drag factors respectively. They are both positive
and their value depends on the shape of the propellers.

We also introduce the following input transformation:
¨
˚̊
˚̊
˝

u1

u2

u3

u4

˛
‹‹‹‹‚

“

¨
˚̊
˚̊
˝

k k k k

0 kl 0 ´kl

´kl 0 kl 0

b ´b b ´b

˛
‹‹‹‹‚

¨
˚̊
˚̊
˝

ω1
2

ω2
2

ω3
2

ω4
2

˛
‹‹‹‹‚

“ Aũ (2.13)

where l is the distance between the rotor axes of rotation and the geometric center of
the quadrotor. The matrix A has always maximum rank, then the transformation
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2.2. Quadrotor model

is also invertible. The transformed input vector comprises the total thrust force u1

along zB and the torques u2, u3, u4 around xB, yB and zB respectively.

Having said that, the forces acting on the system are the gravity force directed
along zB “ e3 and the total thrust force generated by the propellers and directed
along zB. We also assume that the robot center of mass is coincident with its
geometric center, where the total thrust is applied. With these assumptions, the
translational dynamics of the system is given by the following Newton’s equation:

m:rB “ ´mge3 ` u1zB (2.14)

where m is the robot mass and g P R3 the (constant) gravity acceleration in the
world frame. The angular acceleration is governed by the Euler’s equation. Since
the gravity force is applied to the robot center of mass, the only torque acting on
the system is the one generated by the propellers, hence

JB 9ωBW ` BωBW ˆ JBωBW “

¨
˚̋
u2

u3

u4

˛
‹‚ (2.15)

where J P R3ˆ3 is the inertia tensor. If the robot is assumed to have a perfect
cylindrical symmetry with respect to the axis zB, the inertia matrix is also diagonal
and two of its eigenvalues, namely Jxx and Jyy, are equal. This makes it possible, if
desired, to neglect the gyroscopic term BωBW ˆ JBωBW without introducing large
modelling errors (see for example [29]).

Finally, we define the quadrotor dynamics with simplified notation as

9r “ v

9v “ g ´ f

m
zB

9R “ Rrωsˆ
9ω “ J´1prJωsˆω ` τ q

(2.16a)

(2.16b)

(2.16c)

(2.16d)

where r¨sˆ the usual skew-symmetric operator, R “ WRB and pf, τ q P R4 are the
total thrust and torques applied by the propellers, which can be expressed as a set of
control inputs u in terms of the individual propeller thrusts u “ pf1, f2, f3, f4q P R4

with the linear expression (2.13).

Most of agile control methods have proved that high performance flights can be
performed with the present quadrotor model [29, 33, 30]. Nowadays, efforts seem to
be less and less allocated to the development of more accurate dynamical modelling
(the above equations of motion are approximate, see e.g., [34] for a more precise
modelling). It seems these issues have reached an adequate level of maturity and
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do not need further major improvements, at least concerning standard applications.
Incorporating the motor dynamics would add a fifth order to the dynamics without
significantly improving the performance. Modelling simplifications are even more
and more considered (especially on the inputs constraints) in order to face with more
complex and higher-level tasks applications [6, 35, 36]. Since one seeks to exploit the
quadrotor’s agility, it would be reasonable to consider aerodynamic effects, which
become consistent when small aerial vehicles reach high velocities. However, these
effects are rather complex to model and to incorporate into the control. For these
reasons we choose to neglect any aerodynamic effect, entrusting the control action
for their compensation. A philosophy largely exploited in control in robotics (more
details are given in the following section).

2.3 General control and trajectory generation
techniques for a quadrotor

Although quadrotors have a low mechanical complexity their control is still chal-
lenging. The major difficulty lies in the system underactuation, i.e., the coupling
between the translational and rotational motions (2.16b). Since the number of inde-
pendent inputs is less than its degrees of freedom some trajectories are not reachable
making it difficult to find feasible trajectories and then design reasonable tracking
control laws.

2.3.1 Quadrotor control

The most common nonlinear control techniques used to control quadrotor are back-
stepping [37], integral backstepping [38], sliding-mode control [39], feedback lin-
earization [40] and combination of these methods [41]. Because of the highly non-
linear dynamics most of the works in the area use controllers that are derived from
linearisation of the model around hover conditions [42]. Stability can be guaranteed
for reasonably small roll and pitch angles [43]. These simplifications lead to neglect-
ing the underactuation and alleviate the equations of motion to derive stability and
convergence proofs.

Besides these common control schemes, several other control methods from the
optimal control theory have been proposed in the literature for quadrotor control
such as Linear Quadratic Regulator control (LQR) [44], Model Predictive Control
(MPC) [45].

At a lower level, a common architecture for underactuated control consists in a
two-loop design [46, 47], where the outer loop is the position control and the inner
loop provides attitude (roll, pitch and yaw) control, as illustrated in Fig. 2.2. The
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Figure 2.2 – Classic two loop controller. A task provides the desired position pd and yaw
angle ψd. The position controller generates the required pitch and roll angles to the attitude
controller which applies the computed input thrust and torques to the system.

outer loop typically implements a PD control law on position and velocity with
feed-forward terms to compensate for gravity and accelerations from a reference
trajectory. A desired acceleration is computed and mapped to the desired collective
thrust and a desired attitude of the simplified quadrotor model. The inner loop
controls the attitude together with the altitude on the assumption that the attitude
dynamics of a quadrotor are much faster than its position and velocity dynamics.
Such a control strategy provides almost asymptotical stability. In practice a two
cascaded control loop is often used instead of a single one for controlling the attitude,
e.g., in [48, 49]. The reason is that it is more practical to separate the onboard
processing on two independent units. One handles the state estimation and high-
level control on the body rates while the second processing unit runs a low-level
controller on the attitude.

Nevertheless, there are no stability and convergence guarantees when the atti-
tude of the vehicle deviates substantially from hover conditions. These properties
can be stated in the design of only a few controllers used for tracking these trajec-
tories. [50] designs a nonlinear geometric controller in SO(3) which is almost global
exponential stability for the load attitude tracking, and almost global exponential
attractivity of the load position tracking. In [1] the system is underactuated; how-
ever, it is possible to design controllers that guarantee convergence from almost
any point on SE(3). An other appropriate controller for aggressive manoeuvres is
the one proposed by [51] that developed a nonlinear tracking controller on SE(3)
and shown to have exponentially stable dynamics and almost globally exponential
attractiveness of the complete dynamics (under some conditions and precise knowl-
edge of the inertial parameters). This controller has been used for the simulations
and the experiments presented in this thesis.

Control techniques can offer reasonably fast motions [30, 52] but generally lead to
severe sub-optimalities when the system is subject to multiple nonlinear constraints.
In this case, it appears to be more attractive to produce trajectories that fulfil a set
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of boundary conditions and dynamic constraints, specific properties, and optimal
criterion and then fed to an accurate trajectory tracker. Some work in this area
has addressed complex and agile tasks such as aerobatic manoeuvres [29, 1] and
ball catching [35]. Similar problems have been addressed using MPC [53, 54]. With
these approaches, guarantees of convergence are only available when the linearised
model is fully controllable [54] or if a control Lyapunov function can be synthesized
[55]. As such it appears to be difficult to directly apply such techniques to the
trajectory generation of a quadrotor. Learning algorithms have been successful in
learning models [56], agile motions [10] or stabilization policies [57] using data from
simulated and real world. Although very promising, these approaches do not appear
to lend themselves (yet) to more general motion planning or trajectory generation,
such as in environments with obstacles for instance.

2.3.2 Trajectory generation for a quadrotor

Once trajectory tracker algorithms are designed, the problem shifts to the higher
level of task definition often assimilated into trajectory planning which is devoted
to generate the reference inputs for the trajectory tracker.

In applications seeking agile manoeuvres, it is necessary to develop flight plans
that leverage the dynamics of the system instead of simply viewing the dynamics
as a constraint on the system. It is necessary to relax small angle assumptions and
allow for significant excursions from the hover state. A recent focus has been the
planning and following of trajectories that exploit the dynamical capabilities of these
vehicles. Results include algorithms that plan trajectories from classes of motion
primitives [6, 35], while others solve an optimal control problem for approximate or
full vehicle dynamics (e.g. for minimum snap [1] or minimum time [58]).

Robust trajectory tracking is crucial especially for high speeds and accelera-
tions. In [59] the authors chose to consider a more accurate dynamical model in the
controller by incorporating the motor dynamics and aerodynamic drag effects. In-
deed, identifying the model parameters and external disturbances will improve the
controller performance. Similarly [60, 61] developed a controller compensating for
aerodynamic effects and especially the drag. [60] was able to exhibit lower position
errors even at flight speeds up to 18m/s in [21].

It is also important to account for the tracking precision and energy consumption
when designing aggressive and complex trajectories. Otherwise the tasks may not
be effectively completed due to instabilities or motor saturations.

A popular approach in robotics and first applied to manipulators is to pro-
duce smooth motions; i.e. trajectories with good continuity features; in particular,
continuous velocity, accelerations and jerks in the interests of avoiding mechanical
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resonance (e.g., for manipulators) and reducing stresses to the actuators and to the
mechanical structure. Smooth trajectories will help performing aggressive and fast
trajectories for a quadrotor while aiding the controller action. Finally, smoothness
is desirable for maintaining the quality of onboard sensor measurements. Since vi-
sion is part of the planning scheme, smooth motions may help reducing motion blur
in the image plane to facilitate visual tracking.

2.3.3 Smoothness

In this section we discuss the smoothness of motion in robotic applications. First of
all, a movement is perceived to be smooth, when it happens in a continual fashion
without any interruptions. It is closely related to effort minimization which is a
major objective, especially in manufacturing for cost and ecological reasons, but it
is also desirable for robots carrying limited energy source (e.g., robots for spatial
and submarine exploration). Among others, these conclusions motivated the use of
smooth trajectories to connect two states and was applied to robotics [62, 63] a few
years later with robotic arms to name a few.

The resolution problem of optimal trajectory satisfying a smooth performance
index is considered as an optimal control problem. So one of the keys in trajectory
generation is the selection of an appropriate cost function.

As often research takes inspiration from direct observations from the nature. In
[64] the authors observed that for reaching trajectories human appears to minimize
the integral of the square of the norm of the jerk which is the time derivative of
acceleration, hence, the third time derivative of position.

...
r “ d3r

dt3
(2.17)

For a particular trajectory xptq that starts at t0 and ends at time tf , one can
measure smoothness by calculating the jerk cost:

ż tf

t“t0

}...xptq}2dt P R (2.18)

The derivative to minimize has motivated a large number of research especially in
the neuroscience domain. These studies reveal some observations:

‚ the minimum jerk criterion does not produce acceleration jumps at the start
and end points, while the minimum acceleration criterion does.

‚ it is related to the control effort minimization

‚ the jerk can be minimized independently on each axis [64]
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Later [65] pushed the study to higher derivatives (snap: the fourth derivative
of position, crackle: the fifth derivative of position, pop: the sixth derivative of
position). They found that as the order of the derivative increased, the solution
to the functional xptq approached a step function. It is indeed legitimate to ask
ourselves: What derivative to minimize ?

‚ Acceleration is the simplest, but most naive to define as the goal, since it
will imply the less possible thrust, thus constraining excessively the aggres-
siveness of the trajectory. Smooth trajectories are desirable, but with some
aggressiveness to explore the time optimal possible trajectory

‚ Jerk is a better representative of the aggressiveness of the true system inputs
[35] and, like the acceleration, has a direct link with thrust. Moreover [6]
affirms that maintaining constraints on the acceleration and jerk leads to a
continuous thrust during the manoeuvre, which is then supported by [66] when
affirming that constraints on jerk are necessary for a smooth trajectory.

‚ Snap trajectories have also been proven effective to generate quadrotor tra-
jectories [67], due to the linkage in the motors commands and body rate
derivatives.

Trajectories that quadrotors can follow quickly and accurately should be at
least continuous up to the third derivative of position (or C3). This is because, for
quadrotors, discontinuities in lateral acceleration require instantaneous changes in
attitude and discontinuities in lateral jerk require instantaneous changes in angular
velocity.

In the past 10 years this approach has been extended to quadrotors. Jerk is
minimized in [68, 6, 69] where feasible trajectories are generated based on the de-
coupling of the rotational degrees of freedom. Analytic solutions for minimum jerk
trajectories between collision-free points have been formulated in [70] using the Pon-
tryagin’s minimum principle (see e.g., [71]). In [1] the authors separated the optimal
problem into four independent optimization problems and minimize the integral of
the squared snap and the yaw acceleration since the inputs u2 and u3 are function
of the fourth derivative of the positions and u4 is function of the yaw angle second
derivative.

[72] chose to optimize over the integral of the squared norm of the accelera-
tion instead of snap, minimizing the energy that the considered helicopter needs.
Compared to snap, acceleration directly translates into permanent additional thrust
that all the motors have to provide, while snap just causes particular motors to spin
up/down quickly. In[73] the jerk is minimized for a quadrotor and is more generally
a choice for robot manipulators [65].
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Minimizing the snap is present in many optimization frameworks in the literature
(pioneered by [1], see also [74, 75]). Indeed, an even more important goal than
finding minimum-time trajectories might be trajectory smoothness, especially for
quadrotors. It plays a role in producing safer trajectories which will facilitate the
trajectory controller action [76]. Although the first quantity acts on the optimal
inputs, it mainly produces smooth trajectories for a quadrotor (by helping to reduce
the angular acceleration) while using the actuation capability since the solution
yields a trajectory with a larger peak speed relative to average speed (see [65] for
more details).

Finally, in [67, 1] a optimal trajectory is computed to pass though a number
of position keyframes in a continuous way instead of following straight lines which
have an infinite curvature at the keyframes that would force the quadrotor to stop
at each connection.

To summarize, there seems to be no good general answer on which method is
to be favoured between acceleration, jerk or snap and this might depend on the
application. The next section introduces the property of differential flatness. We
show that the inputs are a function of fourth-order derivative of position. For this
reason and as it is done in [1] we choose to minimize the snap.

2.4 State estimation

The challenge is now to get a reliable knowledge of the robot’s state since the perfor-
mance of the controller depends on the quality of the state estimate. Many robotic
applications rely on external centralized localization systems such as Vicon or global
positioning system (GPS) or full SLAM systems [77, 78]. However, GPS signals are
only available outdoor and are not sufficiently reliable and precise enough for some
specific tasks (e.g., involving interaction with the environment or navigation among
obstacles). One may often need accurate knowledge of the state and a solution is
to exploit local observations of the environment.

To obtain a reliable response from a quadrotor for experimental purposes some
preliminary tasks are required: the calibration of the Inertial Measurement Unit
(IMU), an identification of offsets, biases, motor curves, etc. Once all of this is
completed (see e.g., [79] for further details on the procedure) state estimation algo-
rithms are implemented. Their role is to provide a reliable estimate of the system
state based on the outputs of a channel of proprioceptive sensors (e.g., accelerome-
ter, gyroscope,...) and exteroceptive sensors (e.g., altimeter, cameras, lidar,...).

State estimation algorithms are generally based on multi-sensor fusion to com-
bine the sensory measurements and properties of different sensors (e.g., acquisition
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rate, robustness to some noise, weight,...). In aerial robotics the attitude and an-
gular velocity are the most important as they are primary variable in attitude
control of the vehicle. A very popular choice is to combine an IMU composed of
an accelerometer and a gyroscope with a camera to merge high rate acceleration
and angular velocity measurements (from the IMU) with lower rate visual cues.
These visual measurements can be used for, e.g., position, orientation and velocity
estimation from the environment or for visual odometry [80]. Sensor-fusion algo-
rithms have been successfully applied in many works to provide full autonomy of
the robotic platforms, e.g., [81, 82]. Fully autonomous high-speed navigation has
only been achieved in the last few years (e.g., [21, 83]). These recent developments
were largely supported by the improvements of sensors in terms of measurement
accuracy, compactness and acquisition rate. Most of the approaches use Extended
Kalman filters (EKF) for its robustness and simplicity. However, no guarantees of
convergence and stability are given. These questions are addressed in [84] by the
design of an observer endowed with exponential stability and convergence guaran-
tees. The observer fuses optical flow with inertial measurements to estimate the
attitude, the linear velocity and the depth of a camera observing a planar target.

2.5 Differential flatness

Planning trajectories in high dimensional space is challenging especially with an
underactuated system. In this section we show how control and planning problems
can be simplified without any additional approximations by using the fact that the
quadrotor dynamics are flat. This property makes the trajectories design easier and
guarantees the trajectories are feasible, i.e., trajectories that satisfy the equations
of motion.

2.5.1 Definition and properties

Differential flatness was primarily introduced by Fliess [85] in a differential algebraic
context aimed at nonlinear system [85]. Then Martin, Murray, Rouchon, Lévine and
Van Nieuwstadt [86, 87] made further study about this theory and its implications
in trajectory generation. They discovered the existence of a set of flat outputs
with nonlinear dynamic characteristics that allow exact linearisation of particular
nonlinear systems. In a nutshell, for a differentially flat system, all states and inputs
can be expressed as algebraic functions of a set of outputs and their derivatives.
More specifically, a nonlinear system:

9x “ fpx, uq, x P Rn, u P Rm (2.19)
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is termed flat if we can find outputs σ P Rm of the form

γ “ ξpx, u, 9u, . . . , urq ξ : Rn ˆ pRmqr`1 Ñ Rm (2.20)

such that

x “ φxpγ, 9γ, . . . , γlq φ : pRmqr Ñ Rn

u “ φupγ, 9γ, . . . , γlq ψ : pRmqr`1 Ñ Rm

(2.21a)

(2.21b)

where ξ, φx and φu are smooth functions and γ is called the flat outputs. This
means that the new system’s description is given by the m algebraic variables γi, i “
1, . . . ,m. So for a differentially flat system, if given a desired trajectory γd, we can
obtain all expected states, inputs and outputs:

xd “ φxpγd, 9γd, . . . , γldq
ud “ φupγd, 9γd, . . . , γldq

(2.22a)

(2.22b)

Note that ξ is bijective.

In [88] the authors presented a catalogue of flat systems in 1995 including non-
holonomic mobile robots, the Planar Vertical Take-Off and Landing (PVTOL) air-
craft, the inverted pendulum and the ducted fan. They also provided insights on
determining if a system is differentially flat by considering its mechanical struc-
ture. Since then, new flat systems have emerged, for instance, the ballbot robot
under small angles assumptions [89] and especially the quadrotor in [1] and later
revised and extended with the consideration of rotor drag effects in [59]. Several
“protocentric aerial manipulators” (systems where the first joint of the manipulator
coincides with the quadrotor center of mass) were proven to be flat [90] as well as
a quadrotor tethered by cables/bars [91]. It is known from [1] that the quadrotor
dynamics (2.16) are flat with flat outputs γ “ pr,ψqT P R4 [1], where ψ is the
yaw angle from the usual roll/pitch/yaw decomposition of the rotation matrix R.
Indeed, under the assumption f ą 0, one can find an invertible algebraic mapping
of the form:

χ “ φχpr,v, 9v, :v,ψ, 9ψq
pf, 9f, :f, τ q “ φup 9v, :v, ...v,ψ, 9ψ, :ψq

(2.23a)

(2.23b)

We report the complete proof of the flat transformation and its inverse transfor-
mation for the quadrotor dynamics in Appendix A. For simplicity of notation, we
indicate with σ “ pr,v, 9v, :v, ...v,ψ, 9ψ, :ψq the vector of all quantities appearing on the
right side of (2.23), and with σχ “ pr,v, 9v, :v,ψ, 9ψq only those involved in (2.23a).

The implications of flatness for all these systems is that the trajectory generation
problem can be reduced to simple algebra, in theory, and computationally attractive
algorithms in practice. For instance, in the case of the quadrotor the state space
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2. Planning and control of a quadrotor UAV

of dimension 12 can be reduced to a 4-dimensional space in which the integration
of equation (2.19) (often costly and numerically challenging step) is not necessary.
Traditional approaches to trajectory generation, such as optimal control, cannot be
easily applied in many cases (see [88] for examples). Since the flat output functions
are completely free, the only constraints that must be satisfied are the initial and
final conditions on the endpoints, their tangents, and higher order derivatives. Any
other constraints on the system, such as bounds on the inputs, can be transformed
into the at output space and (typically) become limits on the curvature or higher
order derivative properties of the curve. Moreover, any curve that satisfies the
boundary conditions in the flat output space is a trajectory of the original system.

Referring to Fig. 2.3, the problem of finding curves that take the system from
xp0q, up0q to xpT q, upT q is reduced to finding any sufficiently smooth curve that
satisfies γkp0q and γkpT q up to some finite number l. There is no need to solve a
two-point boundary value problem (BVP) if the system is differentially flat. Once
all the boundary conditions and trajectory constraints are mapped into the flat
output space, (optimal) trajectories can be planned in the flat output space and
then lifted back to the original state and input space with (2.22). The idea is that
this methodology alleviates adjoining the system dynamics in the optimal control
problem formulation. Consequently, the number of variables in the optimal control
problem is reduced to expedite real-time computation. Therefore, by converting
the input constraints on the quadrotor to constraints on the curvature and higher
derivatives of the position and the yaw angle, it is possible to design efficient tech-
niques for the generation of feasible trajectories.

2.5.2 Existence

Differentially flat systems encompass all linear, controllable systems and many non-
linear systems as well. Although there is no general methods to judge whether the
system 9x “ fpx, uq, x P Rn, u P Rm is differentially flat and it is difficulty to find
the flat outputs for most known differentially flat systems, some researchers still
found and proved the existence of flat outputs of some systems (like the one cited
in the previous section). While Fliess [85, 92] and Charlet [93] provided necessary
conditions and sufficient conditions separately for a class of systems, Chetverikov
is the first to show necessary and sufficient conditions [94]. Yet, one frequently has
to resort to trial and error to construct the flat outputs. Flat outputs of a system
are not unique [88], it is therefore preferable to select the flat outputs leading to
simple computations for the mappings φx and φu. Their choice can also be moti-
vated by the design of the control laws or the planning formulation into a reduced
or more relevant space. In [95] the flat outputs are chosen as a set of image features
to simplify the planning in the image space for a grasping task performed by a
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Figure 2.3 – Trajectories in the state space can be mapped in the static flat space (i.e.,
without dynamics) of lower dimension. Any smooth enough curve in the flat space will be
feasible in the state space.

quadrotor.

In addition, a particular parametrization may also depend on the complexity of
deriving the constraints from the outputs. However, it is generally recommended
to use a parametrization that eliminates all equality constraints. Indeed, equality
constraints are the most difficult to handle in nonlinear programming.

2.5.3 Differential flatness in control and trajectory planning

At this point, differential flatness plays a strictly practical role and quickly gained
popularity for deriving control schemes and solving various optimal control problems
as the state of the art in Chapt. 5 will show. Indeed, a transformation of the
system into a linear equivalent description is obtained and then it is straightforward
to design a controller based on linear control theory, e.g., [96] with disturbance
rejection and [30] with the use of a LQR for controlling a hexacopter Fig. 2.4.
Furthermore, classic polynomial control laws can be applied on the flat outputs and
their derivatives and compared with the actual flat state measurements. Such a
method has been efficiently validated in [37]. Such control laws can be adopted for
tracking any trajectory ydptq “ pγdptq, 9γdptq, . . . ,γplq

d ptqq directly in the space of the
Brunovsky states by considering the new control inputs ω “ γpl`1q. Then, the real
world inputs u are obtained via dynamic feedback and applied to the real system.

This strategy was adopted in e.g., [97] to design a visual-based controller for
a UGV and [98] for controlling a tethered aerial robot. Asymptotical convergence
can be achieved with an appropriate choice of the gains that can be determined by
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2. Planning and control of a quadrotor UAV

Figure 2.4 – System architecture for LQR control of a hexacopter. A function (f̂´1) converts
the inputs u to the actual commands ν fed to the real system (commanded in acceleration
with w) from [30].

pole-placement techniques to ensure good tracking and some robustness to model
uncertainties as well. However, in general, after a given order

¯
l ď l one may loose

the capacity to observe the higher-order derivatives of the flat outputs. Typically,
one resort to designing observers as also shown in [98, 37].

A similar strategy is found in optimization-based control: the optimal control
outputs are computed in the flat space which are then lifted back to the space of
the real control inputs, see e.g., [99].

As already discussed in Sect. 2.3 from a control perspective, most early research
on quadrotor dynamics focused on near-hover operation. Now, in the context of
fast motion, differential flatness has been considered as a strong system property
that can be used for generating dynamically feasible trajectories for underactuated
robotic systems leading to significant progress both in trajectory generation and
control of quadrotor systems in the recent years (e.g., [1, 100, 101, 30] to name a
few).

In [102] a comparison is proposed between differential flatness and dynamic
feedback linearisation in motion planning. Indeed, the two properties are equivalent
in the sense that any feedback linearisable system is also differentially flat and vice
versa as it is demonstrated in [92]. Moreover, the feedback linearising outputs and
the flat outputs of a system coincide.

2.6 Vision-based control

To be reactive to changes in the environment, the use of on-board cameras has
become a fundamental necessity. Indeed, moderately invasive and low power, they
come with numerous computer vision algorithms for tracking objects, mapping,
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detecting obstacles but also for giving various measurements to non-linear observers
(e.g., through active vision, state estimation).

For these reasons, incorporating visual cues in the loop has become a popular
approach in robotic control for many years for designing robust and reactive control
laws to complete positioning [103], grasping tasks [95] or navigation among obstacles
[104] to name a few. However, vision is not without its challenges. Computation
is intense and can result in low sample rate. Vision-based control techniques may
be deceived by ambiguities between certain camera motions and scale since there
exists a problem with scale recovery when using a single camera. Finally, they
can suffer from delays between the image frame capture, transmission and process-
ing. However, processors continue to improve and many vision-based autonomous
applications are flourishing [24, 105, 106, 107].

2.7 Issues related to vision-based control

A historical technique is visual servoing [28]. Visual servoing is the fusion of results
from many elemental areas including high-speed image processing, kinematics, dy-
namics, control theory, and real-time computing. This popular control scheme uses
visual cues for directly controlling the robot’s motion and referred as Image-Based
Visual Servoing (IBVS). This strategy was originally developed in the context of in-
dustrial robots (see e.g., [108] for a survey on the topic), which are usually equipped
with low-level high-gain control loops that allow neglecting the dynamics of the
platform and, e.g., controlling it at the velocity level. Unfortunately, such simplifi-
cation cannot be extended to quadrotors away from near-hovering conditions. Since
quadrotors show non-negligible dynamics the visual control problem becomes sig-
nificantly more complex. This is due to the inherent under-actuation that generates
rotations of the camera which may conflict with the main servoing task (as detailed
in the Introduction). Intuitively, in order to overcome this problem, the robot can
either limit its rotational motion (thus reducing the acceleration and increasing the
time needed to reach the desired position) or compensate the rotation by also mov-
ing upwards for increasing the size of the scene projected within the camera field of
view.

Standard visual servoing approaches for underactuated systems, such as quadro-
tors, oftentimes do not explicitly ensure that the relevant image features stay in the
camera’s field of view, especially while the system is performing agile manoeuvres.

Preserving visibility is a substantial concern when vision is in the loop since
losing track of features may lead to a failure of the task. The original formulation
of visual servoing does not prevent critical configurations related to:

31
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• field of view limits, i.e., the target may become invisible as the camera moves;

• occlusions, i.e., the image features may be occluded due to obstacles or body
parts;

• singularities, i.e., specific features configurations can lead to an ill-conditioning
of the interaction matrix (e.g., the cylinder singularity for three points);

• local minima, i.e., the control law may lead to a convergence to unexpected
configurations. Local minima may appear with the use of redundant measure-
ments that is the usual approach to avoid singularities;

Finally, one can complete the above list with issues related to aggressive motion
planning:

• physical constraints such as feasibility constraints;

• camera underactuation, i.e., when a camera is attached to an underactuated
robot such as a quadrotor the image features are more subject to being repelled
from the camera center as the quadrotor perform translational motions.

• motion blur, i.e., the aggressiveness of the camera motion (especially with
high angular accelerations) may lead to poor quality of the image frames that
can jeopardize the vision algorithms.

• collision with obstacles or self-collision;

Note that two mechanical solutions could of course help reducing the effect of
underactuation: 1) a pan-tilt camera could be mounted instead of a fixed camera
[109]. Apart from the additional payload and extra consumption, sensing is still
limited and one cannot guarantee that all visual features will remain visible. 2) fully
actuated quadrotors with tilting propellers [15, 14] have been recently developed to
gain full access to the 6 DOFs (see, e.g. [110, 111] for visual controllers). Therefore,
a fixed camera would be less subject to rotation motions but still, if aggressive
motions are performed rotations are possible.

In this thesis we provide optimization-based solutions ensuring visibility of visual
features. Moreover, in Sect. 7.6 and Chapt. 8 we present solutions for relaxing the
visibility constraints in complex environments.
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Chapter 3

Optimization and numerical
resolution
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3.1 Introduction to optimization

In many occasions, the trajectory generation problem cannot be solved analytically.
An exception is formed by linear systems. For general systems we can only solve
the generation problem by repeatedly integrating the system equations and trying
to minimize some errors between the computed trajectory and the desired trajec-
tory. The resolution of more and more complex problems may not be possible by
analytic resolution techniques. Moreover, we believe they may be too difficult and
not generic enough. In this section we introduce optimization and especially direct
optimization which we believe represents a more appropriate approach for the res-
olution of complex problems. The idea is to compute a finite sequence of optimal
controls and states over a time horizon as a numerical approximation of the system
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dynamics. Optimization is a well-understood field and is able to exhibit valid in-
puts and trajectories adapted to changes in the task, the environment and system
dynamics.

3.2 Minimum-time trajectory generation problem

A very specific trajectory generation problem in robotics is the generation of time-
optimal trajectories between two states. The problem of connecting a given initial
state χ0 at time t and a chosen final state χf at a time t ` T can be formulated as
that of constructing a feasible trajectory

χptq˚ : rt, t ` T s Ñ X (3.1)

for the state of the quadrotor where X denotes the state space, and T defines the
trajectory duration. Now, an infinite number of trajectories can connect these two
states. Since one seeks the generation of agile manoeuvres, we are particularly
interested in minimizing the completion time T . Using an optimal formulation
we define Problem 1 where Jpχp.q,up.qq P R defines the cost function or objective
function that we want to minimize. Given the dynamic model (3.2d) at a generic
time t, we seek for a solution to the following optimization problem.

Problem 1 Find χpsq,upsq, T, s P rt, t ` T s, such that:

min
χpsq,upsq,T

Jpχpsq,upsqq “ T

s.t. χptq “ χt,

χpt ` T q “ χ˚,

9χ “ hpχ,uq,
upsq P U ,@s P rt, t ` T s

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

where χt is the current robot state, χ˚ is the desired one, and (3.2d) was introduced
to represent (2.16) in a compact form.

Note that Problem 1 is quite general. In particular, it does not impose any
constraint on the initial and final states which, e.g., do not have to be hovering
states (i.e. with R “ I, v ” 0, and ω ” 0).

We also want to find a feasible trajectory for the quadrotor. This is encoded
with (3.2d) that imposes the trajectory to respect the nonlinear dynamics equations
(2.16).

The robot is finally subject to (nonlinear) inputs constraints (3.2e) due to the
physical limits of its actuators. These constraints act on the minimum and maxi-
mum values of the system inputs. Vector u contains then the propellers individual
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thrust (u “ pf1, f2, f3, f4q P R4). Note that, since the propellers can not change
their direction of rotation during the motion, we have to assume fi ą 0.

The set of admissible control inputs is the box U “ rfm, fM s4 with 0 ă fm ă fM

where fm and fM are determined by the physical characteristics of the motor, the
available power, propeller, etc. One can prove that Problem 1 is solvable [1, 112],
i.e., there always exist a parameter T such that (3.2e) are satisfied (with a reasonable
choice of fm and fM ).

3.3 Pontryagin’s minimum principle

The problem of generating optimal trajectories for a quadrotor UAV has been ad-
dressed with analytic resolution [69, 58] using Pontryagin’s minimum principle. This
optimal control theory principle has been formulated by Lev Semenovich Pontrya-
gin and his students in 1956 and defines a necessary, but not sufficient, condition
for optimality of a system trajectory. The problem is a generalization of the Euler-
Lagrange equations that also includes problems with constraints on the control
inputs and applies to a large class of control problems.

Let us assume that we want to find a trajectory for the state and the input

χptq˚ : rt, t ` T s Ñ X

uptq˚ : rt, t ` T s Ñ U
(3.3a)

(3.3b)

that minimizes the cost function

J “ Φpχpt ` T q˚q `
ż t`T

t
F pχptq˚,uptq˚q dt (3.4)

subject to

9χ “ fpχptq,uptqq, χptq˚ “ χ0, χpt ` T q˚ “ χf (3.5)

Neglecting the time dependencies, we define the Hamiltonian of the system as

Hpχ,u,pq “ F pχ,uq ` pTf pχ,uq (3.6)

where p is also called the costate vector and plays a similar role to the Lagrange
multipliers.

The Pontryagin’s principle states that if uptq˚ is an optimal trajectory for the
input and χptq˚ is the corresponding optimal trajectory for the state, then the
following conditions hold

9χptq˚ “ f pχptq˚,uptq˚q
9χptq˚ “ χ0

9χpt ` T q˚ “ χf

9pptq “ ´∇χH pχptq˚,uptq˚,pptqq

(3.7a)

(3.7b)

(3.7c)

(3.7d)
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and for all t P rt, t ` T s

9uptq˚ “ argmin
uPU

Hpχptq˚,u,pptqq (3.8)

Moreover if the total time tf is not fixed by the problem, the following condition
also holds true

Hpχptq˚,uptq˚,pptqq ” 0 (3.9)

For a detailed explanation of the Pontryagin’s principle, refer to e.g. [71]. It has
hence been shown that the solution to the minimum-time problem is generally a
bang-bang control policy [113], that is, a control policy in which the control signal
switches between two or several extreme values. Pontryagin’s minimum principle
is exploited in [6, 69, 114] and [9] to generate minimum-time trajectories for a
quadrotor. For instance [6] generates minimum-time interception trajectories for
aggressively catching a ball in mid-air: bang-singular trajectories where the goal is
to reach a given position at a given time, while minimizing the time required to stop
after the intercept. These methods are computationally fast, with solution times
on the order of microseconds which is compatible for closed-loop control.

However, these strategies are not able to account for geometric constraints and
are independent of the yaw angle in order to decouple the quadrotor axes. In this
thesis, we consider more complex constraints such as visibility constraints that are
not compatible to Pontryagin’s minimum principle as far as we know.

In the next section we show how an optimal control problem (OCP) can be
turned into a nonlinear program (NLP) that is suited for numerical resolution.

3.4 Numerical solutions of optimal control problems
using nonlinear programming

Nonlinear optimization describes the class of optimization problems when the objec-
tive or constraint functions are not linear and not known to be convex as well. These
problems are considered as much more complex and difficult to solve and there is
no effective method of solving them. However, there exist different approaches to
their resolution that involve some compromises.

The problem of finding a local minimizer x P Rn for a nonlinear function F pxq
subject to a set of nonlinear constraints c ě 0, where cpxq P Rn, is a nonlinear
constrained optimization problem. All the problems of interest to be solved in this
thesis can be generalized into the form
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Problem 2

min
x

F pxq
s.t. cpxq ě 0

(3.10a)

(3.10b)

Optimization problems of the form of Problem 2 can be a very difficult problem
to solve. Algorithms to solve this problem may take many iterations and function
evaluations. Moreover, global optimization of Problem 2 is a difficult problem and
an open area of research. In this thesis, we will concentrate on using the well
understood numerical techniques that will find local minimum.

Nearly all techniques for nonlinear programming are iterative, producing a se-
quence of subproblems related in some way to the original problem. Newton meth-
ods have rapid local convergence rates, but fail to converge from all starting points.
Gradient descent methods converge from nearly any starting point but have poor
local convergence properties. Line-search methods are one means of ensuring global
convergence while attempting to maintain fast local convergence. Line-search meth-
ods limit the size of the step taken from the current point to the next iterate. Such
methods generate a sequence of iterates of the form

xk`1 “ xk ` αp (3.11)

where p is the search direction obtained from the subproblem, and α is a positive
scalar step-length that has to be chosen carefully. However, determining a minimizer
along p is an iterative process and frequently time consuming. Typically, x is
determined by a finite process that ensures a reduction in F pxq. See [115] for an
overview of line-search methods.

Two very different approaches may be considered to solve Problem 2, the indirect
one and the direct one.

3.4.1 Indirect and direct methods for nonlinear programming

Most early numerical methods of solution to constrained optimal trajectory gener-
ation problems relied on either indirect or direct methods of solution. The indirect
method relies on finding a solution to the Pontryagin’s maximum principle presented
earlier. Indirect methods turn the problem into an integration problem consisting of
ordinary differential equation (ODE) or differential-algebraic equation (DAE). The
resulting problem is a differential equation which is unfortunately often too complex
to be integrated as is. When it is possible, this approach provides a complete (and
often comparatively cheap) solution to the problem. However, this type of approach
is usually applied on a specific system and/or task so the differential equation can
be simplified enough to be integrated.
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The direct method obtains solutions by direct minimization of the objective
function, subject to the constraints of the optimal control problem. In the direct
approach, the optimal control problem is transformed into a NLP. In a first ap-
proach, this can be done with the so-called direct single– and particularly– multiple
shooting methods. The key strategy is to divide the time vector, state and con-
trol trajectories into a finite grid. Therefore, the direct approach directly solves
a discretized approximation of the nominal problem using numerical optimization
techniques. This allows turning an optimization problem of an infinite dimension
(the search space is infinite dimensional) to a finite one in order to be efficiently
solved by selecting outputs from a finite dimensional space. This results in finding a
numerical solution to a two-point boundary value problem (BVP), if no closed form
solution can be found. Examples along this line can be found in [116, 117]. These
methods normally cannot meet the performance requirement for on-line calculation,
especially when the system manoeuvring time is short. In addition, the optimal tra-
jectories represented by the discrete collocation points are not continuous or smooth
curves.

Is is known from e.g., [118] that direct methods are generally less precise but
more robust to the initial solution guess than indirect methods. However, it appears
that the computational requirements of direct methods are at least that of indirect
methods. The collocation method of [119] and adjoint method [120] take part of
the most relevant transcription methods to the trajectory generation problem.

3.4.2 Nonlinear solvers

Now that we showed how OCPs are discretized to obtain a structured NLP in non-
convex form one has to select a nonlinear solver. Sequential Quadratic Program-
ming (SQP) and Interior Point Methods (IPM) are popular gradient-based classes
of methods considered to be effective and reliable for locally solving (3.10b). These
methods are guided by the first- and second- order derivatives, i.e., the gradients
and the Hessian matrix. Interior point refers to the fact that the slack variables
are required to remain strictly positive throughout the optimization (more can be
found in [121]). SQP ([122, 123]) is the technique we will use to solve the nonlinear
programming problems presented in this thesis. The fundamental approach SQP is
to solve a NLP by solving a sequence of quadratic programs (QP) that are easy to
solve. More precisely, at each iteration of a SQP, one solves a QP subproblem that
models Problem 2 locally at the current iterate. The solution to the QP is used as
a search direction by a line-search algorithm to determine the next iterate.

SQP is known for its rapid convergence (a few SQP iterations) when iterating
from an initial point (or initial guess) that is close to a (local) minimum but may
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show erratic behaviour when the initial point is far. Moreover, SQP is not a feasible
method; that is, neither the initial guess nor any of the subsequent iterations need to
be feasible (a feasible point that satisfies the constraints). This is a major advantage
since finding a feasible point when there are nonlinear constraints may be nearly as
hard as solving the NLP itself. However, converging to a minimum would generally
require more iterations than starting from a feasible point.

SQP solvers differ in the way the Hessian is approximated, the line-search is
done, the QP subproblems are solved or the constraints are relaxed. SQP has
been shown a powerful tool and because of its superlinear convergence rate and its
ability to deal with nonlinear constraints. It is currently considered as one of the
most powerful algorithm to solve numerous formulations of NLP.

Note that the gradients have to be supplied and their accuracy is crucial for
local convergence. In principle the gradients can almost always be computed using
very little additional computational effort. In practice, and especially with highly
nonlinear programs analytic formulation of the Jacobians can be very complex,
subject to errors and finally hard to code. We will see in Appendix C that there
exist efficient numerical methods for accurately evaluating these functions.

The Hessian is even more complex and approximation methods exist such as
the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) [124]. This method builds
an approximation of the Hessian based on successive gradient evaluations that are
stored over for a given horizon. This method has proven to have a good performance
even for non-smooth optimizations. Thus, the Hessian matrix will help accelerating
local optimization.

Both SQP and IPM methods iterate from an initial guess for the optimization
variables. This initial guess is therefore critical and has huge impact of the objective
value of the local solution obtained. Using local optimization methods, one often
has to resort to experimenting with the algorithm choice, parameters and initial
guess. The methodology is not rigorously defined.

In the next section we show how Problem 1 can be turned into a NLP using dif-
ferential flatness and parametrization with B-spline curves. The described method
is the one we use in this thesis.

3.5 Differential flatness and B-spline curves for
nonlinear programming

Referring to Sect. 2.5.1, we show how an optimal control problem can be reposed to
allow direct optimization to occur within the output space (of the flat outputs) as
opposed to the control space. First of all, we map the problem to the space of the
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flat outputs and their derivatives that we indicate with σ “ pr,v, 9v, :v, ...v,ψ, 9ψ, :ψq.
Thanks to differential flatness, one can move the planning problem from the input
space to the flat output space (i.e., the problem becomes a static problem): any
sufficiently smooth trajectory of the flat outputs is, in fact, guaranteed to be an
admissible trajectory for the original system dynamics. This property is extremely
interesting for our purposes because it allows avoiding to deal with the non-linear
differential equality constraint (3.2d), which would require the numerical integration
of the system dynamics during the numerical optimization phase. A prediction of
the state at any time in rt0, tf s can, instead, be computed algebraically from the
planned flat-output trajectory. For these reasons differential flatness has been widely
used for trajectory planning in the past [125, 1, 112].

Mapping Problem 2 into the flat space gives the equivalent following problem

Problem 3

min
σp.q

Lpσq

s.t. gpσq ě 0

(3.12a)

(3.12b)

Now, in solving Problem 3, we face two challenges: (i) instead of a finite set of
variables, the optimization variable is a function σp.q and (ii) the constraints must
be enforced at all time instances. Therefore, the problem is infinite dimensional
with an infinite number of constraints. To cope with the infinite dimensionality
σp.q is usually approximated with fixed parametric curves defined by a finite set of
variables, a technique known as parametrization.

3.5.1 Parametrization of the flat outputs

There are many curves defined by a finite number of variables that can be used
to approximate the outputs σp.q (Fourier series, Legendre polynomials, Laguerre
polynomials, Chebyshev polynomials, Taylor series, etc.). Now, a requirement is to
accurately represent a basis of a trajectory with a reasonable number of decision
variables that will constitute the degrees of freedom of the solver. A second impor-
tant requirement of the curve is the ability to set a level of continuity Ck, without
adding additional constraints. Specifying the level of continuity is necessary, since
the states and inputs are a function of the outputs and their derivatives. A high de-
gree single polynomial would be necessary to satisfy complex constraints but solving
for the coefficients of high degree curves can be an inefficient and ill-conditioned op-
eration. Finally, when a high number of basis functions is desired in order to satisfy
multiple conditions still leaving some room for optimization, polynomial functions
are not a good choice. Indeed to increase the number of parameters in a polynomial
we need to increase its degree. Local support is also a desirable property of the basis
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3.5. Differential flatness and B-spline curves for nonlinear programming

functions. Local support means that the curves only influence the curve locally to
the current point of interest which is also favourable for numerically stable computer
implementation.

A solution that meets the main requirements are Bézier polynomials or B-splines
[126]. An exhaustive introduction on B-spline is given in Appendix B including
the many interesting properties and manipulation algorithms these curves possess.
These functions are obtained as a composition of a certain number of polynomials,
each of whom is defined in a limited sub-domain of the overall function domain. The
advantage of this solution is that we can increase the number of curve coefficients by
increasing the number of polynomial components, while maintaining a low degree of
the single polynomials. In particular a spline is said to be of degree p if it is composed
by polynomials of degree p. A B-spline curve is constructed from Bézier curves
joined together with a prescribed level of continuity between them. The points at
which the curves are joined are called the breakpoints and are constructed so that
they join with some level of continuity. The breakpoints are a strictly increasing
sequence of real numbers. A non-decreasing sequence of real numbers containing
K ` 1 breakpoints U “ pu0, ..., uKq is called the knot vector. A breakpoint may
appear multiple times in the interior of a knot vector and be referred as a breakpoint
of multiplicity m. A recurrence relation is used to define the B-spline basis functions
Bi,j of the B-spline curves:

spuq “
nÿ

i“1

Bi,ppuqP i n ě k ´ 1 (3.13)

where P i are the control points and the Bi,p are piecewise polynomial functions of
degree p (and order k “ p ` 1) forming a basis for the vector space of all piecewise
polynomial functions of the desired degree and continuity. Given the knot vector
U and the degree p, the B-spline basis functions are defined by:

Bi,0puq “
#

1 if ui ď u ď ui`1

0 otherwise
Bi,ppuq “ u´ui

ui`p´ui
Bi,p´1puq ` ui`p`1´u

ui`p`1´ui`1
Bi`1,p´1puq

(3.14)

Now, in the case of the quadrotor, given a vector of control points P “ pr1, . . . , rnr ,ψ1, . . . ,ψnψ
q P

R3nr`nψ , and two (fixed) normalized knot vectors U p P r0, 1sKp ,Uψ P r0, 1sKψ , the
flat output trajectories can be represented as:

$
’’’’&
’’’’%

rpsq “
nrÿ

i“1

Bi,kr

ˆ
s ´ t

T

˙
ri

ψpsq “
nψÿ

i“1

Bi,kψ

ˆ
s ´ t

T

˙
ψi

,@s P rt, t ` T s, (3.15)
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3. Optimization and numerical resolution

where Bi,k is the i-th B-spline basis function of order k, which can be computed
recursively as described in [85].

Given (2.23), in order to ensure state continuity and input boundedness, one
has to guarantee Lipschitz continuity of :v and 9ψ (and continuity of lower order
derivatives). This condition can be met by using open-uniform distributions of
K “ n ` k knots (i.e. ui “ 0, for i “ 1, . . . , k, ui “ 1, for i “ n, . . . ,K, and
uk, . . . , un equally spaced in r0, 1s) and by taking k “ kr “ 4 for r and k “ kψ “ 2

for ψ.

Problem 1 can, finally, be restated as a NLP as follows.

Problem 4 Find P , T , such that:

min
P ,T

T

s.t.
@
P ,Bdr

kr
ptq,Bdψ

kψ
ptqD “ σχt ,

@
P ,Bdr

kr
pt ` T q,Bdψ

kψ
pt ` T qD “ σχ˚

u
´
P ,Bdr

kr
psq,Bdψ

kψ
psq

¯
P U , @s P rt, t ` T s

(3.16a)

(3.16b)

(3.16c)

(3.16d)

where Bd
kpsq P Rn is d-th order derivative B-spline basis of order k evaluated at

s P rt, t ` T s. The above formulation is adopted in our works to numerically solve
optimal control problems with different costs and constraints.

Although, the system nonlinear dynamics equality constraints (2.16) become
transparent due to the flatness transformation, their nonlinearities are in fact trans-
ferred to the other constraints, here, the real inputs constraints (3.16d). Indeed, the
inputs obtained with u “ φupr, 9r, :r, rp3q, rp4q,ψ, 9ψ, :ψq are more complex to evaluate
than in their original formulation (2.13).

As already said, to guarantee the continuity of the state, the position must
be continuous up to the third order of derivation while the yaw angle must be
continuous up to the first order. To keep the degree of the spline as low as possible
we use two different splines: one for the position vector and an other (scalar) one
for the yaw angle. The parameter s can be directly equal to the time and we will
choose the knot vector so that all the internal nodes have multiplicity 1. For a 4-th
order clamped B-spline with n control points, the knot vector is

U “
ˆ
0, 0, 0, 0, 0,

1

pn ´ kq , . . . ,
n ´ k ´ 1

pn ´ kq , 1, 1, 1, 1, 1

˙
(3.17)

The number n of control points obviously depends on the number of conditions
that we want to impose to the spline and on the redundancy we want to keep for
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3.5. Differential flatness and B-spline curves for nonlinear programming

further optimization. For each of the two connecting trajectories we must satisfy
boundary conditions determined by the initial and final states. Also in this case
the continuity of the state is guaranteed by the continuity of the position up to the
third order of derivation and of the yaw angle up to the first order of derivation.
This results in a total amount of 8 conditions on the position spline and 4 conditions
on the yaw spline. Therefore, in order to satisfy these conditions, we need at least
eight control points for the position (nr “ 8) and four control points for the yaw
(nψ “ 4). If we choose these values we end up with two square linear systems in
the control points that can be conveniently written in a matrix form

ArBPrB “ BrB ,

Aψpψ “ bψ

(3.18a)

(3.18b)

where the system variables are

PrB “

¨
˚̊
˚̊
˝

pT
rB,1

pT
rB,2
...

pT
rB,8

˛
‹‹‹‹‚
, pψ “

¨
˚̊
˚̊
˝

pψ,1

pψ,2
...

pψ,4

˛
‹‹‹‹‚

(3.19)

The coefficients matrices ArB and Aψ contain the values of the B-spline basis func-
tions and their derivatives at the initial and final times:

ArB “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

B1,1pt0q B2,1pt0q . . . B8,1pt0q
B

p1q
1,2pt0q B

p1q
2,2pt0q . . . B

p1q
8,2pt0q

B
p2q
1,3pt0q B

p2q
2,3pt0q . . . B

p2q
8,3pt0q

B
p3q
1,4pt0q B

p3q
2,4pt0q . . . B

p3q
8,4pt0q

B1,1ptf q B2,1ptf q . . . B8,1ptf q
B

p1q
1,2ptf q B

p1q
2,2ptf q . . . B

p1q
8,2ptf q

B
p2q
1,3ptf q B

p2q
2,3ptf q . . . B

p2q
8,3ptf q

B
p3q
1,4ptf q B

p3q
2,4ptf q . . . B

p3q
8,4ptf q

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

(3.20)

and

Aψ “

¨
˚̊
˚̊
˝

B1,1pt0q B2,1pt0q B3,1pt0q B4,1pt0q
B

p1q
1,2pt0q B

p1q
2,2pt0q B

p1q
3,2pt0q B

p1q
4,2pt0q

B1,1ptf q B2,1ptf q B3,1ptf q B4,1ptf q
B

p1q
1,2ptf q B

p1q
2,2ptf q B

p1q
3,2ptf q B

p1q
4,2ptf q

˛
‹‹‹‹‚

(3.21)

Finally the known terms are determined by transforming the boundary conditions
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χ0 and χf into the equivalent conditions on the flat outputs and their derivatives

BrB “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

rBT
0

vBT
0

:rBT
0

9aB
T
0

rBT
f

vBT
f

:rBT
f

9aB
T
f

˛
‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

, bψ “

¨
˚̊
˚̊
˝

ψ0

9ψ0

ψf

9ψf

˛
‹‹‹‹‚

(3.22)

The system has a unique solution, provided that t0 ‰ tf and that the knots are
properly chosen.

Any coefficient vector that satisfies the linear constraints (3.18) automatically
satisfies the initial and final state constraints. For simplifications one can fix these
conditions to reduce the number of decision variables. Regarding the B-spline knot
vector, this means that the initial and final elements are fixed.

At this point, any general-purpose optimization strategy can be used to find a
numerical solution to Problem 4. Unfortunately, due to the non trivial non-linearity
of (3.16d), Problem 4 cannot be proven to be convex. The optimization will thus,
in general, return a local minimum. Figure 3.1 shows a solution trajectory and the
inputs profiles obtained from the resolution of Problem 4 with an initial hovering
state at position r “ p0, 0, 1q and a final hovering state r “ p2.5, 2.5, 1q. Note that
satisfaction of the inputs constraints cannot be guaranteed (although it is the case
in this example). The reason is that the inputs are discretized and the inputs can be
very sharp (see Fig. 3.1c). The discretization time-step might be chosen in response
to the sharpness of the inputs.

To sum up, there are three steps to trajectory generation based on the differential
flatness theory; i) The first is to choose flat outputs, so the system can be mapped
to a lower dimensional output space. Meanwhile, the cost function, the boundary
and constraints can also be mapped to the output space; ii) The second is to choose
a suitable basis function to parametrize flat outputs; iii) After parametrizing the
selected outputs, we need to solve a set of coefficients.

In this thesis, we use nonlinear programming to solve for the coefficients of the
B-splines to minimize the cost function subject to bound conditions and trajec-
tory constraints in flat output space. Then, we obtain the flat output trajectories
satisfying the constraints expressed by the computed coefficients.

Note that by suitably parametrizing trajectories with basis functions in the flat
space and by considering linear inequalities in the flat space to model constraints on

44



3.6. Summary

(a) Acceleration profiles that are typical in
bang-bang control.

(b) Trajectory (blue line) and total thrust direction
(red arrows). The green line represents the convex
hull of the spline control points (green dots).

(c) Motors thrust within bounds fm “ 0.1N and fM “ 5N .

Figure 3.1 – Results from the resolution of the minimum-time Problem 4 using the SQP
method of the fmincon function in Matlab. The minimum-time trajectory has a duration
of T˚ “ 2.02s and is found after 13 SQP iterations

states and inputs u it is possible to turn this optimization problem into a quadratic
program that can be solved in real-time for planning. This simplification will be
discussed further in Sect. 4.5 and applied in Chapt. 8.

3.6 Summary

In this chapter, we presented a brief overview of the classical numerical methods
for solving constrained optimal control problems. To sum up, constrained optimal
control problems do not contain a closed form solution, approximation techniques
can be employed for a numerical solution. The advantage of indirect methods is that
very accurate solutions can be obtained. The main disadvantage of indirect methods
is their lack of robustness to a poor initial guess. In this thesis we mainly focus in
the parametrization of trajectories with B-splines whose control points constitute
the decision variables of the nonlinear programs we will define. Several properties
of such curves will be exploited in the design of the planning problems.

Now that we presented a way of solving nonlinear problems we focus on the
on-line generation of optimal trajectories.
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Chapter 4

Model predictive control: toward
trajectory re-planning

Contents
4.1 Introduction and context . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Receding horizon formulation: the linear case . . . . . . . . . . . 50

4.4 An application of MPC to quadrotor control . . . . . . . . . . . 53

4.4.1 A relaxed formulation based on differential flatness . . . 54

4.4.2 Results and delay compensation . . . . . . . . . . . . . . 55

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Introduction and context

One can observe that the research community in aerial robotics is exploring more
and more complex objectives such as tracking a fast moving target, avoiding dy-
namic obstacles, passing through several way-points and so on. More details are
given in the state of the art in Chapt. 5. Designing a controller to perform these
tasks would be challenging and could possibly lead to severe sub-optimality. With
optimization-based controllers, it is easy to include different (and possibly conflict-
ing) objectives and constraints. Now, due to increasing performance of computers,
nonlinear programming tends to be more and more tractable and able to substitute
popular controllers. Having robots planning their own trajectories becomes more
and more practicable. However, in order to be efficient the important goal of opti-
mal trajectory generation is to construct, in real time, a solution that optimizes the
system objective while satisfying system dynamics, as well as state and actuation
constraints.

47



4. Model predictive control: toward trajectory re-planning

Moreover, as briefly discussed in Sect. 2.2, since the system’s model is imperfect,
model and parametric uncertainty (e.g., inertial parameters) may lead to substantial
deviation from the reference trajectory. Classic solutions include adaptive control
[127] for estimating the nominal parameters online. However, trajectories that “ex-
cite” enough the estimation may be hard to find and may even conflict with the main
task especially if we are interested in minimum-time control. A second approach is
to design robust control laws typically implementing feed-forward terms for instance
[59]. Finally, another strategy consists in directly designing specific trajectories that
are robust to these modelling errors or nominal parameters uncertainty [128]. MPC
tackles these issues in a slightly different approach: the reference trajectory and/or
command inputs are adapted in real-time via optimization techniques as a feedback
to cope with disturbances and modelling errors. MPC acts more as a high-level
controller in this approach. Note that MPC techniques can incorporate uncertainty
in the control process and are referred as Robust MPC and Stochastic MPC.

Several randomized trajectory generation techniques (such as RRT ˚ and A˚),
originally applied to the mission level (see e.g., [129, 130, 131]), have been recently
reported in complex scenarios [132] and real-time applications for dynamic systems
[133, 132]. We will introduce and discuss more about search-based methods fur-
ther in this thesis since they also play a decisive role in complex motion planning
nowadays.

In this section, we shed light on reactive replanning methods and especially
Model Predictive Control (MPC) also known as Receding Horizon Control (RHC).
By reactive we mean able to generate solutions on-line fast enough to respond
efficiently to sudden changes in the environment (obstacles, target, ...) or new
situations.

4.2 Principle

In Model Predictive Control, an open-loop trajectory is found by solving a finite-
horizon constrained optimal control problem starting from the current state. The
optimal controls of this trajectory are then applied to the system for a certain
fraction of the horizon length, after which the process is repeated (see Fig. 4.1).
Note that the essence of MPC is to optimize over the predictions of a process
behaviour. Therefore, the process model is essential.

MPC is a family of algorithms which give the possibility to:

• explicitly include in the problem formulation constraints on state, input, out-
put variables, and logic relations;

• consider hundreds of control and controlled variables;
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4.2. Principle

• transform the control problem into an optimization one, where different, and
sometimes conflicting, goals can be stated;

• use very detailed physical (nonlinear, DAE, ...) models with continuous and
integer variables.

• close an optimal control loop

Figure 4.1 – At time k the future sequence of control variables is computed based on the
prediction of the future states. Then the first value of the optimal control sequence is
applied to the system (circled in red). At time k ` 1 the optimization is repeated with the
same prediction horizon.

To implement the receding horizon control strategy, a constrained (and often
nonlinear) optimization control problem must be solved on-line. Due to the com-
plexity of solving a nonlinear programming problem in real-time, the computational
delay cannot be ignored. This is particularly important in aerial and aerospace ap-
plications, where the dynamics is high and the internal control loops are very short.
Originally applied in the process control industry where dynamics are relatively
slow, the application of receding horizon control to aerial vehicles has been pro-
posed and analysed by several researchers [134, 36]. Most popular applications
include system stabilization, evasive manoeuvres, obstacle avoidance and target
tracking.

The receding horizon strategy offers many benefits in this environment, such as
the inherent ability to deal with constraints in the state and control. Examples of
such constraints commonly encountered include dynamic terrain obstacles, dynamic
or pop-up threats, saturations on the actuators, impair of the capacity of a vehicle.
However, a few requirements are needed, we must guarantee the convergence of
the algorithm at each computation, and guarantee the fastness of the convergence.
Indeed, the faster the algorithm is, the less the previous solution is out-dated so the
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4. Model predictive control: toward trajectory re-planning

more the algorithm will be able to improve it instead of just adapt it to the new
situation.

Moreover, these approaches serve little practical purpose until stable and effi-
cient computational techniques are developed to provide real-time solutions to the
underlying constrained nonlinear optimal control problems. Closed-loop stability
has been well defined in [135] but gets much more difficult to prove when the prob-
lem is nonlinear.

In this thesis we take inspiration from the replanning scheme of receding horizon
control for iteratively solving nonlinear programs. This general idea has been widely
employed in research with several planning strategies in order to face the heavy
computation loads and to meet real-time [69, 35, 36].

4.3 Receding horizon formulation: the linear case

Let us define a general linear optimal control problem by considering the following
system

xpk ` 1q “ Axpkq ` Bupkq
ypkq “ Cxpkq

(4.1a)

(4.1b)

where x P Rn is the state vector of dimension n, u P Rm is the input vector of
dimension m and y P Rp is the output vector of dimension p. At time k we want to
compute the sequence of future control variables

up.q “ rupkq, upk ` 1q, ...upk ` N ´ 1qsT (4.1c)

minimizing the objective

Jpxp.q, up.q, kq “
N´1ÿ

i“0

p}xpk ` iq}2Q ` }upk ` iq}2Rq ` }xpk ` Nq}2S (4.2)

where Q “ QT ě 0, R “ RT ě 0, S “ ST ě 0 play the role of weighting matrices
and N denotes the prediction horizon. Finally, }xpk ` Nq}2S is the terminal cost.

The optimal solution to this problem is given by the state-feedback control law

u0pk ` iq “ ´Kpiqxpk ` iq, i “ 0, 1, ..., N ´ 1 (4.3)

where u0p.q is the sequence of optimal inputs and the gain Kpiq is given by the
expression

Kpiq “ pR ` BTP pi ` 1qBq´1BTP pi ` 1qA (4.4)

and P piq is the solution of the difference Riccati equation

P piq “ Q ` ATP pi ` 1qA ´ ATP pi ` 1qBpR ` BTP pi ` 1qBq´1BTP pi ` 1qA
(4.5)
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with terminal condition

P pNq “ S (4.6)

The weighting matrix S plays a role in closed loop stability, a typical choice is
a quadratic Lyapunov function especially for the generalization to nonlinear and
constrained systems, see [136] for instance. Finally, recalling the Lagrange equation

xpk ` iq “ Aixpkq `
i´1ÿ

j“0

Ai´j´1Bupk ` jq, i ą 0 (4.7)

and defining

Xpkq “

¨
˚̊
˚̊
˚̊
˚̋

xpk ` 1q
xpk ` 2q

...
xpk ` N ´ 1q
xpk ` Nq

˛
‹‹‹‹‹‹‹‚
, A “

¨
˚̊
˚̊
˚̊
˚̋

A

A2

...
AN´1

AN

˛
‹‹‹‹‹‹‹‚
, Upkq “

¨
˚̊
˚̊
˚̊
˚̋

upkq
upk ` 1q

...
upk ` N ´ 2q
upk ` N ´ 1q

˛
‹‹‹‹‹‹‹‚

(4.8)

B “

¨
˚̊
˚̊
˚̊
˝

B 0 0 ¨ ¨ ¨ 0 0

AB B 0 ¨ ¨ ¨ 0 0

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨
AN´2B AN´3B AN´4B ¨ ¨ ¨ B 0

AN´1B AN´2B AN´3B ¨ ¨ ¨ AB B

˛
‹‹‹‹‹‹‚

(4.9)

then the future state variables are given by

Xpkq “ Axpkq ` BUpkq (4.10)

The optimal cost can be found as

J̄pxpkq, up.q, kq “ XT pkqdiagpQqXpkq ` UT pkqdiagpRqUpkq (4.11)

where the term xT pkqdiagpQqxpkq can be ignored since it does not depend on Upkq.
Linear constraints on the state, inputs and outputs can easily be handled with

this framework. Let us define the following constraints the problem is subject to

xpk ` 1q “ Axpkq ` Bupkq

¯
u ď upk ` iq ď ū i “ 0, 1, ...., N ´ 1

¯
x ď xpk ` iq ď x̄ i “ 0, 1, ...., N ´ 1

¯
y ď ypk ` iq ď ȳ i “ 0, 1, ...., N ´ 1

(4.12a)

(4.12b)

(4.12c)

(4.12d)

This problem (quadratic cost function, linear constraints) can be easily solved by
means of a QP method with very reasonable computational time (which obviously
depends on the problem size).
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However, for constrained (and obviously nonlinear) systems the control law is
implicitly defined, i.e., its value can be numerically computed through the solution
of the optimization problem, but its analytic expression is unknown. However, the
principle is the same, only the first element (in general) of the input sequence of the
open-loop solution is applied to the system which defines a time-invariant control
law for the closed-loop of the form u0pkq “ χRHpkq. For the linear case we have

u0pkq “ ´Kp0qxpkq (4.13)

with

Kp0q “ pR ` BTP p1qBq´1BTP p1qA (4.14)

obtained by iterating the Riccati equation backwards from

P pNq “ S (4.15)

Now, one can address the case of nonlinear systems which constitutes a much wider
class than linear systems. Considering the applications, one can resort to local
linearization of the system dynamics and constraints which is a classical technique
in chemical industry. Note that this technique was successfully applied to the control
of robot manipulators [137] to achieve fast motions.

When applied to nonlinear systems, the algorithm may demand tremendous
computational power, and can exhibit poor convergent stability if not implemented
properly. For instance, if one chooses a large prediction horizon the solver may not
be able to compute a solution fast enough. If too short, the resulting solution may
lead to instabilities and even to a failure of the task since the problem may not
have enough degrees of freedom to converge to a solution. These difficulties have
largely prevented its application to stability critical nonlinear systems with fast
dynamics. Increasingly powerful and affordable computing facilities combined with
better understanding of receding horizon control’s stability properties have revived
interests in this area. See e.g., [135, 138] for a good review of recent work in this
field.

4.4 An application of MPC to quadrotor control

In this section we present some simulation and experimental results to illustrate the
role of a MPC scheme applied to trajectory tracking with a quadrotor in presence
of obstacles1.

1This work is the fruit of a common work conducted with Gerardo Rodriguez who completed
his Master Thesis at Inria Rennes
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Since MPC relies on a model equations we choose to use the Brunosvky equiv-
alent linear form (A.32) in the flat space. Without loss of generality we do not
plan over the yaw angle that we assume it is kept constant. Let us define a classic
objective function

Jprp.q,up.qq “
N´1ÿ

i“0

p}ri ´ ri̊ }2Q ` }ui}2Rq ` }rN ´ rN̊}2S (4.16)

where ri “ pxi, yi, ziqT and u “ pxp4q
i , y

p4q
i , z

p4q
i qT are the predicted trajectory and

inputs respectively, r i̊ denotes the i-th reference point. We choose the Gerono
lemniscate as the desired reference path defined at time t by

xptq “ r cospαtq sinpαtq,
yptq “ r cospαtq,
zptq “ z0

(4.17a)

(4.17b)

(4.17c)

Therefore, ri̊ is defined as a moving point on the reference path and we penalize
the deviation of the quadrotor from this reference point over the prediction horizon
N . In order to evaluate the MPC response to obstacle avoidance, we add two planes
along the X and Y-axis located in xwall1 and ywall2 and a spherical obstacle of radius
robs at position robs that overlap with the reference path (see Fig. 4.2). We model
the quadrotor as a sphere of radius l centered in r. The geometric constraints are
defined as

}r ´ robs} ě robs ` l,

x ď xwall1 ` l,

y ď ywall2 ` l

(4.18a)

(4.18b)

(4.18c)

Figure 4.2 – Simulated environment. The blue line represents the lemniscate path to track.
The quadrotor has to avoid collisions with a sphere and two walls while keeping a minimal
distance with the reference path.

As already discussed, thanks to differential flatness any smooth trajectory in the
space of flat outputs can be followed provided that derivatives are correctly bounded.
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Nevertheless, this powerful property can be difficult to apprehend and implement
for real systems involving highly nonlinear dynamics. The following section details
alternatives to the definition of the dynamic constraints for the quadrotor.

4.4.1 A relaxed formulation based on differential flatness

In some cases, changing the planning space to the flat space may not grant obvious
physical meaning and makes the equations, and particularly the expression of the
real system inputs much more complex than their original formulation.

Now, a very debated question is how to define these constraints on the dynamics.
Basically, it is inherent to questions of formulation complexity, conservatism and
planning strategy. Namely, it would be better of course to consider the real physical
limitations of the motors as constraints to guarantee that the trajectories are feasible
by the real system but considering the application it may be more attractive to use
less complex constraints (linear if possible) on different level of the dynamics.

[139] addresses the generation of smooth trajectories in the kinodynamic state
space with inequality constraints on the absolute value of the derivatives of the flat
outputs defined as follows

|v| ă vmax

| 9v| ă amax

|:v| ă jmax

|...v| ă smax

(4.19a)

(4.19b)

(4.19c)

(4.19d)

(4.19e)

Some works have focused on estimating the feasible set in flat output space by
polytopic approximations (e.g., [140]), however this set is generally a non-convex
function of nonlinear inequalities and is a hard optimization problem unto itself.

In this preliminary work we consider the abovementioned constraints (4.19) to
achieve the desired replanning rate and closed-loop stability. Indeed, using con-
straints directly on the motors thrust with constraint (3.2e) were found too complex
for the solver.

Similar choices were made in [6] using constraints on the acceleration and the
jerk. Constraints on the total thrust are evaluated afterwards and the problem is
rescaled until they are satisfied. The conservative nature of the jerk bounds means
that only a fraction of the allowable body rates is typically used. If these exceed
limitations, it was shown that a feasible trajectory can always be found by reducing
the allowable jerk values.
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4.4.2 Results and delay compensation

The MPC scheme was carried out using the ACADO toolkit [141] which implements
a multiple-shooting algorithm. ACADO solves multiple shooting problems thanks
to a SQP algorithm, together with state-of-the-art techniques to condense, relax,
integrate and differentiate the problem. The quadrotor dynamics were simulated
using V-Rep2 at 150Hz. The generated trajectories of the flat outputs were sent
to TeleKyb [142] at a rate of 30Hz which then computed the actual control inputs
using the geometric controller developed in [143].

A major issue in the implementation of receding horizon control is handling the
computational delay associated with the real-time optimization. We present here a
simple method for designing an initial guess and take delay into consideration for
the replanning. We select a section of the optimal states sequence which is sent
to the controller. Since the control loop runs faster than the solver, we choose to
interpolate cubic splines between the optimal states to smooth the controller action.
Finally, to compensate for the delay (assumed constant at 1/30ms) we predict the
initial state for the next OCP by projecting the previous solution in the future (i.e.,
30ms ahead of the current time).

We opted for the following bounds: vmax “ 1.5m{s, amax “ 4m.s´2, jmax “
15m.s´3, smax “ 100m.s´4. The robot is able to plan trajectories that avoid the
obstacles with a prediction horizon N “ 50. The considered optimal control problem
is solved within around 30 ms. The robot profiles during simulation are shown in
Fig. 4.3.

To illustrate the reactivity of MPC we conducted a second simulation where
a human operator is sending velocity commands (up to 1.5m/s) to the quadrotor
via a joystick. We encode collision avoidance constraints so that safe and high-
speed navigation among obstacles is handled by the MPC action, see Fig. 4.4. We
impose the following bounds: vmax “ 1.5m{s, amax “ 10m.s´2, jmax “ 30m.s´3,
smax “ 150m.s´4.

4.5 Summary

The results presented in this chapter demonstrate the potential of real-time receding
horizon control for constrained systems with fast dynamics. Real-time RHC control
represents a revolutionary alternative to the traditional linear or nonlinear controller
design with many benefits.

First, in most cases, a global system model and objective function are easier
to obtain than a traditional linear or nonlinear controller that works globally. For

2http://www.coppeliarobotics.com/
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4. Model predictive control: toward trajectory re-planning

Figure 4.3 – The upper left figure shows the robot path (in red) and the reference path (in
green). The obstacles are represented with the black volumes. The other figures show the
derivatives of the flat outputs x, y, z.

Figure 4.4 – The upper left figure shows the robot path in a cluttered environment. The
robot is able to avoid the static obstacles even though the operator is sending high velocity
commands with the joystick. The other figures show that the dynamic constraints are
respected thanks to the MPC action. Note that the quadrotor reaches linear velocities up
to 1.5m/s
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a complex nonlinear system, classical controller design techniques may show weak
stability proofs and may not exhibit flexible actions to the different possible situa-
tions and environment changes. In comparison, given an accurate nonlinear model
and adequately defined objective function, real-time RHC could provide a global
optimal control that is elegant and flexible. For example, RHC can be easily re-
configured by changing the model or any parameter (see [144] for an illustration of
RHC strategies applied to complex systems).

Second, real-time RHC can provide optimal control solutions, even for systems
with complex constraints such as actuator saturation, operational limits, terrain
avoidance, etc. In contrast, it is extremely difficult to design a classic controller for
constrained systems.

Third, with accurate modelling and precise objective definition, system perfor-
mance could be far more superior than classic linear or nonlinear controller, partic-
ularly for very aggressive manoeuvring that pushes the constraint boundaries.

Fourth, in many cases, real-time RHC eliminates the necessity of both inner
loops and outer loops that is common in classic tracking and stability control de-
sign. Instead, trajectory generation and robust control are performed in a single
integrated design with potentially better performance and higher bandwidth. In
this chapter we used ACADO which is specifically designed for implementing MPC
problems. Yet, handling more complex and nonlinear constraints on the motors
thrust did not lead to satisfactory results, especially for real-time control. In our
thesis we opted for a different on-the-shelf nonlinear solver to generate feasible and
reactive trajectories in the presence of multiple nonlinear constraints for accom-
plishing several vision-based tasks.

Now that we have presented the main ingredients and concepts used in this
thesis, we introduce the most relevant contributions identified in the literature that
are related to our work.
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Chapter 5

Aggressive trajectory generation
and vision-based planning for a

quadrotor: related works
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5.1 Optimization-based methods

Many dynamic manoeuvres have been performed in the recent years using opti-
mization methods. They include fast translations [29], ball catching [35] and flights
through narrow gaps [24] for instance. In [24] a quadrotor flies through a window
using vision as feedback in a complete autonomous way using only onboard sens-
ing and computing. High angular rates were achieved in real experiments. The
aggressiveness of motions is mainly limited by the quality of the visual feedback
(especially due to motion blur).

Due to the growing computation power of computers it becomes more and more
practicable to generate trajectories online. Yet, to meet this challenging demand,
several works have been developing mathematical tools to efficiently generate feasi-
ble trajectories close to the actuation limits by relying on more or less conservative
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approaches. We can refer to the following leading strategies listed below. All of
these methods rely on a particular optimal criterion.

‚ Using a class of lightweight motion primitives: Several approaches merge
optimal trajectories and reactive re-planning by generating computationally
lightweight motion primitives as an implicit feedback control law. These sim-
ple curves (polynomials, splines, lines) constitute more or less rich trajectories
that are easy to manipulate and evaluate at a lower level. [6, 35] use the Pon-
tryagin’s minimum principle to generate candidate time-optimal trajectories
between two states that are sent to the controller after checking that the con-
straints are satisfied. In [35] a two-dimensional quadrotor model is considered,
the axes are decoupled and conservative feasibility tests are developed on the
total thrust and the angular rates to validate the generated trajectories that
are shown in Fig. 5.1. Nevertheless, position constraints are not considered.
To make such an algorithm successful, the classic paradigm in control schemes
is addressed, namely the trade-off between trajectory quality (i.e., in terms of
feasibility, optimality, constraints satisfaction, ...) and planning rate (which
needs to be high for such an agile system).

Figure 5.1 – Sampled motion primitives for a catching manoeuvre. The presented algorithm
is able to generate about 6700 feasible motion primitives per second, from [35].

‚ using graph-search methods: the approach relies on exploring the state space
with probabilistic methods such as RRT, RRT* or A* algorithms. A path is
built as a succession of straight paths [145] or curves [146] or motion prim-
itives (as shown in Fig. 5.2) forming a set of vertices connected by edges
with a certain level of continuity [147, 133]. Generally, various (and complex)
constraints can be considered. Constraints can be checked at each extended
vertex using simple tests. If constraints are satisfied the vertex is added to
the graph.

‚ using Mixed-Integer Programming: this method involves problems in which
some of the variables are integers. The algorithm is usually employed for
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Figure 5.2 – Example of motion primitives from an initial state for an acceleration-controller
system (left) and a jerk-controller system (right). The black arrow indicates the correpsond-
ing control inputs, from [147].

finding collision-free paths passing through a set of keyframes by minimizing
some criterion. This planning method is capable of handling a large set of
constraints but usually only enforces collision avoidance with obstacles or
body parts and plans a single trajectory with integer constraints (see e.g., [31]
Fig. 5.3 or [148] for a single quadrotor, [149] for multiple agents and [150]
for multi-body system). The environment is often partitioned into convex
sub-regions in the configuration space, constraints are linear and differential
flatness is used for tractability reasons but the solver generally takes seconds
to hundreds of seconds to determine a proper solution.

Figure 5.3 – Agile path tracking with a micro quadrotor in a heavily cluttered environment
of strings and poles. The algorithm takes about 10 minutes to return a solution, from [31].

‚ using direct optimization: this method (that we presented in Chapt. 3) is
capable of dealing with generic problems with various constraints. Nonlin-
ear problems can be solved numerically using SQP for instance to generate
online optimal solutions if properly posed. Re-planning strategies have been
demonstrated by successively solving OCP, such as MPC [36].

‚ using a combination of the aforementioned techniques: in many occasions, a
collision-free path is built and a second step involves an optimization program
that computes a path of higher resolution taking the system dynamics into
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account. Examples along this line are numerous, e.g., [148] combines mixed-
integer programming and direct optimization, [33] combines graph-search and
direct optimization to perform high-speed flights for a quadrotor, and [151]
combines a variant of the three methods.

5.2 Graph-search approaches

These approaches that we briefly introduced earlier in Sect. 5.1 are widely exploited
in the literature. Also very generic and computationally more and more attractive,
they have been successfully applied to solve many motion planning problems for
UAVs. Searching algorithms such as RRT* or A* are known for suffering from
the curse of dimensionality–the ability to properly scale to high-dimensional space.
Nowadays, several techniques have been proposed to overcome these limitations.
Many authors separate the problem into two steps: an optimal path is found through
graph-search without considering dynamic constraints. Then, an optimal dynamic
trajectory is generated by optimizing over a collection of waypoints. This second
step plays the role of enforcing dynamic feasibility and constraints by adapting
the trajectory speed [43], jerk [69] or time [1] such that input constraints are not
violated. This process is generally done recursively or using a scaling algorithm
[35, 152] until dynamic constraints become active. These approaches are usually
sufficiently fast to provide a feedback loop by re-planning the reference trajectory
at every controller update. In [75] the authors combine RRT* with polynomial
trajectory generation to compute dynamically feasible trajectories for a quadrotor
using a two-step approach (see Fig. 5.4). A variant of RRT for flat systems is
detailed in [153] to produce smooth dynamically feasible motion plans in real-time
and for online navigation in dynamic environments with a quadrotor in [133]. Both
works exploit differential flatness to build a look-up table of pre-computed feasible
motion primitives.

However, several classes of problems cannot be treated using this approach. For
instance the robot orientation cannot be properly considered at the geometric stage
in general. The sole counter example is [147] where constraints on the quadrotor
attitude are considered at the planning stage (see Fig. 5.5).

Finally, such techniques become more and more adapted to real-time planning
and successfully applied to navigation in unknown environments, see e.g., [154, 151,
155].
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Figure 5.4 – A path is built from a straight-line RRT* (middle figure) and then refined to
obtain a minimum-snap trajectory that is feasible for the real system (right figure). The
approach is much faster than a RRT* with a polynomial steer function (left figure), from
[75]).

Figure 5.5 – A minimum-jerk trajectory is found for ensuring safe navigation among ob-
stacles. The collision avoidance relies on the robot occupancy modelled as an ellipsoid (in
pink) which is more accurate than a spherical model (in red), from [132]).

5.3 The minimum-time problem

Naturally, the generation of aggressive trajectories often resorts to the minimization
of time. Having the flying time T as a decision variable is very complicated. It is
a free parameter (i.e., it is not directly subject to any constraints) but it strongly
acts on the dynamic constraints and the shape of the trajectory (see Fig. 5.6).

Figure 5.6 – Shape of a trajectory passing through waypoints with different flying times,
from [75].
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If trajectories are parametrized with polynomials, T appears in each derivative
as a nonlinear decision variable resulting in re-evaluation of the basis at each solver
iteration. Moreover, as T converges to zero numerical stability can be compromised.

[156] overcame with this numerical issue by minimizing instead the settling time
N P N, namely the number of discrete-sampling intervals required to reach the
goal. This method greatly alleviates the numerical resolution and is able to sup-
press high frequency chattering due to measurement noise especially occurring in
the vicinity of the origin. In [137] a similar penalization is considered but in a hier-
archical optimization framework to approach minimum-time trajectories for robot
manipulators.

In a similar philosophy, many works rely on scaling approaches [69] to perform
motion close to the actuation limits. Bang-bang strategies [58] are designed for
quadrotors. [139] relies on a closed-form solution to compute arcs in the kinody-
namic state space that tend to minimize the flying time. Here, the intuition is to
minimize the time spent to reach the full speed during a flying phase resulting in
bang-similar-bang. In the end it is shown that this implies to maximize time spent
at maximum snap during jerk variations and to minimize the durations of snap
variations.

[157] reformulates the minimum-time problem by expressing the quadrotor dy-
namics in a new set of “transverse” coordinates with respect to the reference path.
However real-time could not be achieved.

In our works (e.g., [2, 4]), due to the underactuation a quadrotor equipped with
a camera may have to increase its height in order to enlarge its field of view for
converging faster towards a visual target while keeping it in the image plane. In this
context, rescaling strategies might not be able to reproduce such a behaviour and
will lead to severe sub-optimal solutions since it only acts on the single temporal
parameter. The same observations can be made when addressing collision avoidance.

5.4 Vision-based control for the underactuated
quadrotor

As already discussed, most vision-based approaches assume first-order or fully-
actuated systems. Classic methods cannot be directly applied to quadrotors due to
their complex dynamics and inherent underactuation that conflicts with the main
servoing task.

In the next section we present how the issues related to vision with underactu-
ated systems are addressed in the literature.
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5.4.1 Visibility constraints and occlusion avoidance

A common approach in IBVS is to decouple the rotational kinematics of the vehi-
cle from the image features. The image feature error is projected in a “rotation-
compensated” camera frame or “virtual plane” (see Fig. 5.7) which is horizontal
and has the same position and yaw angle of the real camera’s image plane. Thus,
by re-projecting the image points using attitude measurements the camera rota-
tion is decoupled from the translation motion. This virtual plane also facilitates
the estimation of depth of image points. This strategy has been applied in several
works, e.g., in [95, 158, 159, 160, 105] for the design of globally stable dynamic
IBVS schemes. Although these works develop controllers that guarantee the image
error in the rotation-compensated frame will converge to zero, the quadrotor un-
deractuation is not explicitly taken into account by the control design. Therefore,
it is still possible for the image features to completely leave the camera field of view
if the system has significant rotation, resulting in tracking failure for high speed
manoeuvres.

[161] presents several IBVS control techniques which decouple the image space
from the task space by using spherical image moments as features [162]. Since the
image error becomes a function of position only, large rotations could still occur,
making the system vulnerable to failure as previously described.

Although, dynamic visual servoing schemes have been developed for second order
or under-actuated systems (e.g., [161], [159], [163] or [164] for quadrotors), the
underlying assumptions fail for high-speed manoeuvres and in any case, do not take
into account possible loss of visibility or occlusions. Yet, the effort was allocated to
proving stability of the closed-loop dynamics and providing robustness analysis.

In [165, 166] a dynamic IBVS controller based on a backstepping method is
proposed using first-order spherical image moments as visual features. Both papers
provide interesting passivity properties and rigorous proofs of closed-loop stability,
but the proposed interaction matrices remain ill-conditioned as the image feature
is insensitive to change in altitude. Hence, performance suffers from a low rate of
convergence in altitude. Following these works [167] later eliminates the need of
height estimation and the use of an external sensor for measuring the translational
velocity. Guarantees of convergence are given for landing on a moving target. How-
ever, features are assumed to remain visible at all times and such a controller may
not be applied to higher-speed translational motions.

[168] introduced a controller that takes into account the quadrotor underactu-
ation and uses a virtual spring force to prevent the robot from rotating too much.
However, a small change in roll or pitch may cause a large change in the proposed
interaction matrix. This clearly reduces the quadrotor reactivity and, in any case,
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Figure 5.7 – Virtual image plane always parallel to the ground, from [159].

does not strictly guarantee the satisfaction of visibility constraints.

Some authors focused on feature estimation for recovering the visual-based task
rather than avoiding occlusions [169] or visibility losses [170]. In [171] the authors
propose a vision-based algorithm to autonomously track a moving object. The
tracking algorithm is robust to occlusions but does not avoid them and assumes the
target stays in the field of view.

Potential fields are classically used for designing control laws for repelling visual
cues from the projected obstacles in the image [172],[173] but this technique may
strongly conflict with the nominal servoing task and increase the chance of falling
into local minima. Gradient Projection Methods (GPM) use the system redundancy
to mitigate the completion of two tasks [174],[175]. The secondary task gradient is
projected on the null-space of the main task and uses the remaining redundancy to
complete the avoidance task [174]. However, if all DOF are used one cannot apply
this approach. Obviously, the redundancy formalism does not appear reasonable
when dealing with underactuated robots such as quadrotors. Using the same redun-
dancy formalism spirit a 6-DOF robot is controlled in [175] while simultaneously
avoiding occlusions and joint limits. A relaxed control law is proposed which uses
all DOF to simply prevent the main task error from increasing while performing a
secondary task.

Another approach is to use activation functions in the control law to enable
smooth transitions between safe and forbidden regions in the image plane [176].
The control acts on features that are out of some confidence area in order to release
some degrees of freedom to manage others tasks. However, this technique raises
stability issues.
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After an examination of the relevant literature we can conclude that vision-
based control laws for underactuated systems, such as quadrotors, oftentimes do
not explicitly ensure that the relevant image features stay in the field of view of
the camera and hardly deal with occlusions. In any case, they can be applied to
perform agile manoeuvres. Note that visual servoing controllers for fully actuated
second-order systems have been proposed in the literature (see, e.g. [110, 111].

In the context of vision-based optimization, using visual features as flat out-
puts has been considered. [177] extended their peer work [178] by encapsulating an
image-based flatness formulation inside a MPC scheme by using the target image
coordinates of a mobile robot as flat outputs. Now, visibility constraints appear in
the flat space and thus are more simple to satisfy. However, this work only considers
a fixed overhead camera. Further improvements were made more recently in [160]
by finding flat outputs in the image plane considering a fixed camera attached to
a 2D quadrotor to perform visual-based agile grasping in the XZ plane Fig. 5.8.
The authors presented a trajectory generation method which guarantees dynamic
feasibility and enables incorporating visual constraints as linear constraints. How-
ever, the existence of differential flatness is only possible with some model conser-
vatism/approximations. Indeed, the mapping was done in a virtual image plane
which is it not affected by the pitch angle. Therefore, the visibility constraints are
not specified in the real image plane and may be too restraining for large rotations.

Figure 5.8 – Aggressive catching manoeuvres at 3m/s in the sagittal plane using a monocular
camera. The catching strategy is inspired from the natural behaviour of the bald eagle
snatching its prey, from [160].

The generation of motion primitives candidates presented in [35] has been ap-
plied to autonomous landing on a visual target in [170]. The target visibility is
not guaranteed but a Kalman filter is used to estimate the target position in case
of partial visibility losses. Nevertheless, this technique might not be suitable to
complex 3D motions when the trajectory is shaped by visibility constraints for in-
stance. Indeed, in many occasions the quadrotor may have to accelerate upwards
in order to compensate for the camera rotation that inherently repels the image
features from the image plane center. An other relevant degree of freedom used for
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keeping visibility of point features is to also combine rotations along zB to exploit
the “shape” of the field of view (if one considers a square field of view). This is
something that we observed in our works [2, 3] but rarely seen in the literature.

Recently, self-collision and simple occlusion avoidance tasks for a humanoid were
incorporated in a quadratic optimization problem in [179]. Visibility of the feature is
handled by using an avoidance task as in [176]. A more precise occlusion avoidance
formulation is proposed in [180] but uses a larger set of visual constraints. In [181]
the authors explored a randomized kinodynamic hybrid path planning approach
applied to a manipulator for finding a feasible path. It satisfies a great deal of
constraints both in the image and in the joint space but takes a few minutes to
return a solution (see Fig. 5.9).

Figure 5.9 – A visual servoing task is performed with a manipulator while avoiding occlusions
and loss of the visibility features, from [181].

More and more works incorporate perception objectives within an optimization
program to keep some visual features in the field of view of the camera in order to
improve the quality of the vision-based state estimation [182] (see Fig. 5.10a) or for
keeping a visual feedback of a moving target [106] as shown in Fig. 5.10b.

Finally, MPC has taken down many of these issues through numerical optimiza-
tion. [101] implemented a dense hybrid optimal visual servoing scheme to steer
the underactued quadrotor towards a goal pose encoded as a desired goal set of
image features. It uses a Perspective-n-Point (PnP) algorithm to estimate the goal
state then an optimal trajectory minimizes the reprojection error of the features
along the trajectory and the deviation of the path from the goal state. Although
a large set of image features are considered there is no guaranty that enough fea-
tures remain in the field of view since it is not encoded as a hard constraint. [183]
uses barrier functions in a MPC framework to keep a quadrotor in the field of view
of a mobile platform with a upward-looking camera in the presence of external
disturbances. In [74] smooth collision-free trajectories are generated for multiple
quadrotors by predicting the agents motion using pose observations. A stochastic
MPC was implemented in [107] for autonomous aerial grasping. The MPC action
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(a) A quadrotor is equipped with a front-looking
camera and is asked to fly at 3m/s around a re-
gion of interest while keeping it visible in the field
of view of its camera, from [182].

(b) A quadrotor tracking a moving target with
a downward-looking camera. The quadrotor is
able to increase its height in order to compen-
sate for the camera rotation as the quadrotor
moves forward, from [106].

Figure 5.10 – Examples of optimal navigation merging aggressive motion and perception
objectives.

is able to respect visibility constraints but the achieved trajectories are close to
near-hovering. Field of view and inputs constraints were considered in a fully au-
tonomous aggressive target tracking receding horizon framework relying on onboard
sensors with a downward camera attached to the quadrotor used for estimating the
target position [106] which constitutes one of the most relevant works. The real
robot velocity hits 5 m/s and was able to compensate for the camera rotation by
accelerating upwards (see Fig. 5.10b). The authors algorithm generates smooth
trajectories by minimizing the relative velocity error and the jerk first and then
penalizing the relative position error after some proximity threshold is reached. We
believe such a strategy contributes in improving motion stability but may however
abate the motion aggressiveness.

In the aforementioned works, only a few consider hard visibility constraints for
a fully actuated robot for aggressive motion, i.e., [106]. A second relevant work
considers tracking a moving target with a quadrotor while avoiding obstacles in
an unknown environment by generating on-line smooth and dynamically feasible
trajectories provided that the target stays in the field of view [184].

5.5 Perception and uncertainty-aware planning

Since vision plays a major role in state estimation, many works have merged visual
objectives with stochastic problems.

In [185] the authors resort to an RRT* algorithm to find optimal and online
paths that minimize the pose uncertainty by driving a quadrotor equipped with
a downward-looking camera toward regions of rich texture (see Fig. 5.11). The
approach relies on photometric information of the ground in the context of visual
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odometry. This work is one of the first to incorporate perception goals in path
planning with a quadrotor. However, the planning takes place in a 2.5D set-up
(motion in the horizontal plane and at a given fixed height) and is not designed for
generating dynamic motions.

Figure 5.11 – The two figures on the left show paths obtained without taking the state
uncertainty into account (represented by the orange ellipsoids). With the presented method
the planner is able to find paths with minimal uncertainty (the blue ellipsoids are much
smaller), from [185].

A comment we can make on trajectory smoothness (already mentioned in the
Introduction of this thesis) is that smoothness may also play a decisive role in
vision-based trajectory since a jerky camera motion with high angular acceleration
especially will make the projection of a 3D point onto the image suffer from motion
blur, making it very complicated, if not impossible, to extract meaningful informa-
tion. This issue has been recently raised in [182] in the context of robust visual
perception with a fast moving autonomous quadrotor. The authors adopt a MPC
framework to optimize over perception objectives for providing robust and reliable
visual feedback during motion. The authors choose to maximize the visibility of
a collection of points of interest by penalizing the deviation of their projections
from the image center and the velocity of their projections in the image plane (see
Fig. 5.10a). Here, a forward-looking camera is attached. The quadrotor is able to
exploit the height of the room to compensate for the pitch while moving to manage
the visibility of points of interest. Moreover, the planning naturally mostly acts
on the system’s heading since rotating around zB directly affects the visibility and
at a lower energy cost than for accelerating upwards (since the total thrust is also
penalized).

Recently, the Robotics & Perception Group at ETH developed a new dynamic
vision sensor or event-based camera [22] which is way less sensitive to motion blur
and change of illumination and has a lower-latency compared to classic CCD cam-
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eras. A second solution exploited in [21] is to control the exposure time of cameras
to limit motion blur. Thus, motion blur issues can be managed both by hardware
and control solutions.

In [186] the authors consider a nonholonomic robot that has to reach a goal
area of a given size delimiting the admissible position uncertainty (Fig. 5.12). The
authors implemented a RRT variant where uncertain states are modelled as boxes.

Figure 5.12 – A robust path is found for a unicycle. Notice that the problem may not be
feasible if the final constraint is too tight or if the level of uncertainties is too large (upper
pictures), from [186].

Other recent works have considered underactuated robots and sensor limitations
in the context of active exploration [187, 188]. However, in these works the robot
dynamics are simplified and the input constraints (i.e. the propeller speed) are not
strictly imposed. An active sensing strategy considering the full quadrotor dynamics
was proposed in [189], but without considering strict input constraints. Moreover,
these works focus on environment coverage and a correct robot localization and none
of them attempts to maintain visibility with respect to a specific set of features,
which could, instead, be useful for target tracking applications.

5.6 Summary

In contrast to the presented works, our contributions merge vision-based and motor
thrust constraints for the full dynamics of the quadrotor within fast and efficient
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5. Aggressive trajectory generation and vision-based planning for a
quadrotor: related works

receding horizon frameworks that are capable of generating smooth and feasible
optimal trajectories at the camera rate (30Hz) even though the problem is highly
nonlinear. The re-planning strategies have been tested in various simulation tests
and also with a real quadrotor by relying on an external motion capture Vicon
system.

We have seen that a few works are tackling the issue of minimizing the uncer-
tainty along a specific trajectory. However, depending on the environment topol-
ogy and the visual features present in the scene, such a trajectory may return a
solution that takes large detours before reaching the goal. Indeed, assuming an
optimal solution exists providing continuous visual sensing (e.g., the system passes
by every visual landmarks present on the scene), the resulting trajectory would be
sub-optimal in terms of completion time and energy. We address this issue in our
work presented in Chapt. 8.
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Chapter 6

Aggressive vision-based trajectory
generation
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6.1 Introduction

In this section we derive several optimal frameworks to perform reactive tracking
of a moving target while ensuring visibility constraints. We demonstrate that the
defined optimal problems are suited for a re-planning strategy inspired from MPC.
To do so, we present our hot-start algorithm and the different techniques used for
aiding the SQP solver converge to a local minimum within the given time allocation.

75



6. Aggressive vision-based trajectory generation

6.2 Reactive target tracking: a minimum-time optimal
problem

Figure 6.1 – Quadrotor model

Referring again to Fig. 6.1 let us assume the robot to be equipped with an on-
board camera whose pose w.r.t. B is known from a preliminary calibration. Without
loss of generality we assume that the camera is down-facing with optical center in
OB and optical axis parallel to zB. An image processing algorithm (whose design
is beyond the scope of this work) provides a measure of the perspective projection
of a collection of N fixed 3-D points w.r.t. the frame B given as follows

βi “ RT pri ´ rq
zBTRT pri ´ rq “

»
—–
xi

yi

1

fi
ffifl P P2, i “ 1, . . . , N (6.1)

where ri P R3 is the known position of the features in the inertial frame and P2

is the space of 3-D homogeneous vectors. We assume that the number of points
and their configuration is such that the complete pose pr,Rq of the robot can be
reconstructed using visual information only. In particular, we consider N “ 4 points
on the ground plane since this is sufficient for our 3D case (one could also consider
more complex features such as image moments [162]).

We also want to consider the field of view constraints so the object does not
leave the image. The simplest way to solve this problem is to prescribe a maximum
attitude angle (e.g., arccospe3 ¨ Re3q ď βmax). A trajectory could then be planned
simultaneously using the maximum attitude constraint and the reduced field of view
to constrain the relative positions. However, this approach is more conservative than
desired, especially when aggressive maneuvers are necessary. Certainly, we do not
want to restrict the maximum attitude. Instead, we directly incorporate the field
of view as constraints in the optimization by defining the (square) image domain as

Ω “ tβ P P2 s.t. maxpβTxB,βTyBq ď tanpαqu (6.2)

76



6.2. Reactive target tracking: a minimum-time optimal problem

where α is the camera field of view: the measurement (6.1) is available iff βi P
Ω. Later in Sect. 6.6 the visibility constraints will be defined on the unit sphere
considering the spherical projection of the image features.

The sensory equipment is completed by an inertial measurement unit (IMU)
providing a measure of the robot angular velocities ω and specific force RT p 9v ´
gq at a much higher frequency than the camera frame rate. We assume that a
state estimator, such as the ones described in [190, 79], uses the visual and inertial
measurements to provide an estimation of the current robot state at the IMU rate.
Note, however, that between two image frames, the robot pose estimation can only
be updated by dead-reckoning of the IMU data. Due to noise and IMU biases,
this “inter-frame” estimation is expected to be of much lower accuracy than the one
obtained after visual measurements.

6.2.1 Problem definition

Thanks to the flatness property it is possible to move the trajectory planning prob-
lem from the control space to the output space. Since the flat transformation is
invertible, as it has been shown in Appendix A, we can transform the conditions
on the initial and final states in equivalent conditions on the flat outputs and their
derivatives that we indicate with

σi “ pri,vi, 9vi, :vi,ψi, 9ψiq
σf “ prf ,vf , 9vf , :vf ,ψf , 9ψf q

(6.3a)

(6.3b)

Given the dynamic model (2.16), the input transformation (2.13), and the mea-
surement equation (6.1), at a generic time t, we seek for a solution to the following
optimization problem.

Problem 5 Find T,χpsq,upsq, s P rt, t ` T s, such that:

min
χpsq,upsq,T

T

s.t. χptq “ χt

χpt ` T q “ χ˚

9χ “ hpχ,uq
upsq P U ,@s P rt, t ` T s
βipsq P Ω,@s P rt, t ` T s, i “ 1, . . . , N

(6.4a)

(6.4b)

(6.4c)

(6.4d)

(6.4e)

(6.4f)

where χt is the current robot state, χ˚ is the desired one, and (6.4d) was introduced
to represent (2.16) in a compact form.
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6. Aggressive vision-based trajectory generation

As shown in Sect. 3.2 Problem 5 does not impose any constraint on the initial
and final states, however, if both χt and χ˚ are hovering states, βiptq P Ω,βipt`T q P
Ω,@i “ 1, . . . N , and the hovering input u “ pmg{4,mg{4,mg{4,mg{4q P U is not
an isolated point in U , then a solution to Problem 5 always exists. Indeed, in this
case, it is always possible to find a sufficiently large T such that the robot moves
in near-hovering conditions, along a feasible and almost straight trajectory from
the initial pose to the desired one [1, 112]. Now, due to the absence of rotational
motions, the linear trajectory in 3-D space is also mapped to linear trajectories of
the image features from βiptq to βipt ` T q. Thanks to the convexity of the image
domain Ω, this guarantees that the feature visibility will be maintained.

Problem 5 contains non-linear algebraic and differential constraints and, to the
best of our knowledge, does not admit an explicit analytic solution. As it is often
the case in these situations, we then attempt to find a sub-optimal solution using a
numeric resolution strategy as discussed in the next section.

6.3 Numerical resolution

In its original form, Problem 5 is not suited for a direct numerical resolution. First of
all, the system dynamic equation (6.4d) represents a non-linear differential equality
constraint, which is particularly hard to deal with in a numerical resolution scheme.
In addition to this, the search space of the problem (the control input time law
uptq) is infinite dimensional. As explained in Sect. 3.5 in order to overcome these
problems, we exploit differential flatness for eliminating constraint (6.4d) and we
use B-spline parametrization to obtain a finite representation of the search space.

As mentioned in the above section, the robot can move from any state to any
other, provided that the limits on the propeller rotational speeds are not too strict.
As a consequence, whatever are the initial and final states there always exist a feasi-
ble trajectories. Nevertheless with the introduction of the B-spline parametrization,
we have reduced the search space so that it may not contain these feasible transfer
trajectories. Moreover, even when our search space contains some feasible solutions,
it may not contain the optimal one in the sense that we might still find a better
solution if we enlarged the search space.

Problem 5 can be restated as a NLP as follows.
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6.4. Recursive online control

Figure 6.2 – Consider two pairs of dots on the ground horizontal plane (XY view in the
upper right corner). It would be possible to cope with the field of view constraints by
planning a near hovering trajectory (e.g. path in red), but in this work we aim at finding
a trajectory similar to the path in yellow which is much more dynamic (and with a shorter
completion time).

Problem 6 find P , T , such that:

min
P ,T

T

s.t. σχptq “ σχt ,

σχpt ` T q “ σχ˚ ,

βipsq P Ω,@s P rt, t ` T s, i “ 1, . . . , N,

upsq P U , @s P rt, t ` T s,

(6.5a)

(6.5b)

(6.5c)

(6.5d)

(6.5e)

where σχt “ φ´1
χ pχtq and σχ˚ “ φ´1

χ pχ˚q.

At this point, any general-purpose optimization strategy can be used to find a
numerical solution to Problem 6. Unfortunately, due to the non trivial non-linearity
of (6.5d–6.5e), Problem 6 cannot be proven to be convex. The optimization will
thus, in general, return a local minimum.

6.4 Recursive online control

Once Problem 6 is solved, the resulting flat output trajectory could be used in (2.23)
for computing the control inputs u to be fed to the system. In practice, however,
different sources of disturbance (e.g. noise, miscalibrations, neglected dynamics, and
so on) will make the robot to quickly diverge from the planned trajectory when using
such an open-loop control strategy. In order to cope with these uncertainties and
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disturbances, we then incorporate a feedback action in the considered optimization
schemes.

The reasons are multiple: i) since the B-spline order is minimal the snap is
piecewise continuous and the inputs can be very sharp (see Fig. 6.3). If one sends
such values to the controller we can observe a deviation from the original trajectory.
Now, if one increases the B-spline order we can see that the system model integration
on smoother inputs result in a more accurate resulting trajectory. ii) having an extra
feedback action from the controller provides more robustness to uncertainties and
a higher stability.

Figure 6.3 – Example of (bounded) motors thrust profiles considering a parametrization of
the flat outputs with a 4-th order B-spline basis.

As already introduced in Sect. 4.2 we take inspiration from Model Predictive
Control [191] to perform an on-line re-planning of an optimal trajectory by solving
Problem 6 each time a new visual measurement is available. By doing so, we expect
to improve the system performance while, more importantly, ensuring the satisfac-
tion of the visibility constraint (6.5d). Finally, instead of feeding the optimal inputs
sequence directly to the system we send the optimal trajectory to the trajectory
controller [51] as in [143, 1] at the solver rate.

On the one hand, this allow to reject, to some extent, the disturbances acting on
the system. On the other hand, however, the optimality of the resulting trajectory
can be compromised and, more importantly, the visibility constraints (6.5d) can be
violated.

6.4.1 Trajectory re-planning strategy

A major issue in the implementation of receding horizon control is handling the
computational delay associated with the real-time optimization. We present here
our method for designing an initial guess and take delay into consideration for the
re-planning.

The re-planning strategy is best explained by a visual example, shown in Fig. 6.4.
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6.4. Recursive online control

Figure 6.4 – Single instance of the re-planning process. The red line represents the trajectory
computed in a previous planning iteration. The robot is following this trajectory when, at
time tk, a visual measurement and a new state estimation become available (green dot).
The red trajectory is split and clamped to this measurement, resulting in the green line.
The first part of this latter is immediately used as reference for the controller. The second
part (the dashed green line) is fed as initial guess to the solver of Problem 6, and also used
to predict the state in which the system will be at time tk ` δtp, when the optimization will
be over. Finally, the blue line is the new optimal trajectory resulting from the numerical
resolution of Problem 6. The process is repeated again at tk`1, when a new measurement
is available.

Let us assume that, in a previous planning step, at time t “ tk´1, the resolution
of Problem 6 generated a trajectory σk´1, represented in red in the figure. The
system is now at time t “ tk and a new visual measurement becomes available to
be used in the innovation step1 of the state observer to produce an estimation of
the current system state χ̂t. This estimation will, in general, be different from the
expected system state Φχpσk´1ptqq due to the non-idealities mentioned above. A
new optimal trajectory should, hence, be planned by solving Problem 6 and using
the current state estimate to compute the initial condition σχt .

Unfortunately, the resolution of Problem 9 requires a non-negligible time to
complete. This time will, in general, vary, depending on the quality of the initial
guess for the optimization variables, on the number of necessary iterations and
on the available computational resources. Here, for simplicity, we assume that
the processing will be concluded after, at most, a constant maximum duration δtp,
possibly by introducing a watchdog timer and accepting an intermediate sub-optimal
solution.

For computing the system control inputs while the optimization is running, we

1Note that we trigger the planning at camera rate and not at the estimation rate. This is
motivated by computational limitations and by the fact that, as already mentioned, the inter-
frame estimation obtained by dead reckoning is expected to have a much lower accuracy.
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simply “adapt” the previous trajectory to the new initial conditions by using a fast
procedure that does not involve the resolution of Problem 6. First of all, we split
the trajectory σk´1 at time tk, as described in Sect. 6.4.2, to extract only its second
part σ`

k´1 (the dashed red curve in Fig. 6.4). Then, we look for a new trajectory
σ´
k (represented in green in Fig. 6.4) that is “as close as possible” to σ`

k´1, but
starts from Φ´1

χ pχ̂tq. Details about this step are provided in Sect. 6.4.3. Note that
this “temporary” trajectory σ´

k is sub-optimal and its calculation does not take
into account any of the actuation and visibility constraints (6.5d–6.5e), which, as a
consequence, could be violated. However, we accept this risk in order to be able to
provide an immediate update of the reference trajectory to the new state estimation
while a better solution is being computed by appropriately resolving Problem 9 as
follows.

During the optimization process, the system will, most probably, move away
from the current state χt. As a consequence, if χptq were used as initial condition
in (6.4b) (or, equivalently, (6.5b)), the newly planned trajectory would not start
from the actual state of the robot at time t ` δtp. We mitigate this problem by
using the trajectory σ´

k also to predict (by a simple B-spline evaluation) the value
of the flat outputs corresponding to the state χ̂topt in which the system will be when
the optimization will be over. This value is used as initial condition in Problem 6.

Finally, since we use recursive optimization methods to find a solution to Prob-
lem 6, we also need to provide an initial guess for the optimal trajectory. This initial
guess is computed by splitting the trajectory σ´

k at time t ` δtp (green dashed line
in Fig. 6.4) as described in Sect. 6.4.2 and taking the second part (green dashed line
in Fig. 6.4) of the trajectory.

The optimization can finally run and a new optimal trajectory (the blue one
in Fig. 6.4) will be generated. Such trajectory will be used to control the system
starting from time t ` δtp until a new measurement becomes available at time
t “ tk`1. At the arrival of a new measurement the above procedure is repeated.

This strategy allows to re-plan online an optimal trajectory each time a new vi-
sual measurement is available. Each one of the generated trajectories could be used
directly in (2.23b) to calculate the robot inputs. As already mentioned, however,
an alternative possibility is, instead, to use them as references for a fast trajectory
tracker. This second possibility is appealing because it allows to fully exploit the
sensing capabilities of the robot: between two visual measurements, in fact, an es-
timation of the quadrotor state can be obtained, at a much higher frequency, by
using the IMU for dead reckoning. A fast trajectory tracker can, thus, use this
information to reduce the effect of non-idealities between two planning steps.

Note that, as the quadrotor approaches the desired state, the planning distance
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and time horizon tend to zero, potentially introducing numerical issues in the res-
olution of Problem 6. To overcome this problem, when the system is close to the
desired goal, we deactivate the re-planning and directly feed the trajectory tracker
with the desired state χ˚.

6.4.2 B-spline splitting

An advantage of using B-spline trajectories for motion planning is that there exist
lightweight and easy algorithms to perform different manipulations on their shape.
One such manipulation, that we perform multiple times in the recursive algorithm
described in Sect. 6.4.1, is the splitting. Details about how to split a B-spline curve
at a point and how to calculate the knots and control points of the resulting parts
can be found in many sources, such as [192].

An undesirable effect of the splitting operation is that it also modifies the knot
sequence and possibly (depending on the position of the split) even eliminates some
knots. In order to maintain a constant number of uniformly distributed knots (and
thus a constant number of control points acting “evenly” on the whole spline length),
after the split, we perform a sequence of knot insertion and knot removal operations
(see [192]) meant to redistribute the knots of the new trajectory evenly.

De Boor’s algorithm is a generalization of de Casteljau’s algorithm. It provides
a fast and numerically stable way for finding a point on a B-spline curve given a u

in the domain. The core of the algorithm lies in the knot multiplicity rule: if a knot
u is inserted m times to a B-spline/NURBS curve, the last generated new control
point is the point on the curve that corresponds to u. Meaning that we only need
to insert u enough number of times so that u becomes a knot of multiplicity m. If u
is already a knot of multiplicity s, then inserting it m´ s times would be sufficient.
Indeed, after inserting u m times, the triangular computation scheme yields one
point. Because the given B-spline/NURBS curve must pass by this new point, it
is the point on the curve corresponding to u. Note that this argument holds even
if u is inserted as an existing knot. The depicted procedure is more formalized in
Appendix B.2.1. This technique is also applied to evaluate the spline at u. We
simply need to insert u m times and the last point is ppuq

Since the given B-spline curve is subdivided at its knots, each curve segment
has no internal knots. Moreover, the subdivision process makes the internal knots
to have multiplicity m` 1, and the curve segment is “clamped” at the first and last
control points of each curve segment.

In the process of subdividing a B-spline curve, a large number of control points
will be introduced. Therefore, manipulating a B-spline curve is easier than manip-
ulating its component Bézier curves. Moreover, the B-spline curve of degree p is
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Cp´m continuous at a knot point, where m is the multiplicity of the corresponding
knot. When we manipulate a B-spline curve by moving control points, this continu-
ity is always maintained. However, if a B-spline curve is subdivided into a sequence
of Bézier curves, maintaining the continuity at the joining control points would be
a challenging task. Consequently, handling a B-spline curve is much easier than
handling a sequence of Bézier curves.

6.4.3 Adapting previous trajectories to new initial conditions

In this section we describe how to efficiently “adapt” a previously computed B-spline
trajectory (e.g. the trajectory σ`

k´1 represented by a red dashed line in Fig. 6.4) to
a new estimation of the current robot state (green dot in Fig. 6.4). To perform this
operation we exploit two important properties of B-splines:

• The local support property stands that the shape of the curve in a knot span
psk, sk`1q is only determined by a subset of k of the B-spline control points.

• The convex hull property guarantees, instead, that in each knot span, the
spline curve is locally contained in the convex hull of the same subset of control
points. In practice this allows to conclude that changing the first control points
(those determining the initial state of the system) will not affect the shape of
the spline towards its end (in particular the final system state will not change)
and that two splines with similar control points (according to some norm) are
also geometrically close to each other.

Given a spline σ`
k´1, with control points P , the control points P ´ of the new

spline σ´
k can then be computed by solving the following linear quadratic optimiza-

tion.

Problem 7 Find a vector of control points P ´ such that

min
P´

1

2

nrÿ

j“1

›››rj ´ r´
j

›››
2 ` 1

2

nψÿ

j“1

›››ψj ´ ψ´
j

›››
2

s.t. σχptq “ σχt ,

(6.6)

(6.7)

Note that Problem 7 does not take into account the actuation and visibility con-
straints in (6.5d–7.10h). While we cannot formally guarantee that these constraints
will not be violated, we want to stress that the resulting trajectory is only used
for a short amount of time, namely the time needed for the numerical resolution of
Problem 6. Introducing a saturation of the control commands one still guarantees
the satisfaction of (7.10h) at the cost of introducing a deviation of the robot from its
nominal trajectory. Finally, by introducing some security margins in the definition
of Ω, one could also reduce the probability of losing feature track in practice.
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6.5 Simulation setup and results

In this section we report the results obtained by using our planning method in a
physically realistic simulation environment. In this thesis we used the on-the-shelf
optimization library NLOPT [193] that we present below.

6.5.1 The NLOPT algorithm

NLOPT is a free/open-source library for nonlinear optimization and implements a
number of optimization algorithms routines in including: It also provides stopping
routines to stop iterating once some termination criterion is satisfied, e.g., maximal
number of iterations or function-value ftol, step tolerance xtol and especially the
maximal running time (which is not the case of ACADO) to control the minimal
variations in local searches and to stop when sufficient precision is reached. This
feature is desirable for our re-planning strategy.

More precisely, we use the SQP C++ routine implemented in NLOPT as the
SLSQP (Sequential Least-Squares Quadratic Programming) algorithm from [194].
It optimizes successive second-order (quadratic/least-squares) approximations of
the objective function, with first-order (affine) approximations of the constraints.
The approximations of the objective function are done via the Broyden-Fletcher-
Goldfarb-Shanno method (BFGS) to build an approximation of the Hessian matrix.

6.5.2 Simulation results

The quadrotor dynamics were simulated using V-Rep2 with a time step of 6ms. The
planning strategy described in Sects. 6.3 and 6.4 was implemented in C++ and the
SQP method of NLOPT was used to numerically resolve Problem 6. The generated
trajectories were sent to TeleKyb which then computed the actual control inputs
using controller [79, 143].

We simulated visual measurements at a rate of 15Hz for four targets positioned
in p˘0.2,˘0.1q. In our implementation, each planning operation (resolution of Prob-
lem 6) takes about 30ms during which the system uses an adaptation of a previously
planned trajectory, obtained by resolving Problem 7. Thus, a new trajectory is sent
to the controller at the rate of 30Hz.

The simulated camera had a field of view of 90 degrees (α “ π{4) and each
propeller could generate thrusts between 0.1N and 7N. For realism purposes, we
introduced a Gaussian noise into the state measurements (up to 2% absolute error)
and into the motors thrust sent by the controller (up to 5% absolute error). We also
purposely used different inertial parameters for the re-planning algorithm and for

2http://www.coppeliarobotics.com/
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the actually simulated quadrotor in V-Rep in order to introduce presence of (typical)
modelling errors between planned trajectory and actual execution. In particular,
we used the following values:

mass Inertia matrix (diagonal)
Planning 1.0 (0.01562 0.01562 0.03125)
Simulation 1.08 (0.016 0.0145 0.027)

Table 1. Inertial parameters used for the re-planning and in V-Rep

Figure 6.5 – Successive snapshots taken from V-Rep at different time instants. The straight
line represents the vertical axis of the camera, the blue line is the planned trajectory and
the red line is the actual system trajectory. The camera view is shown in the upper right
corner.

Figure 6.5 shows some snapshots of the simulation. The robot started from
an initial hovering state at r “ p´1.1, 1.1, 2q and ψ “ 1.6 rad and was required
to reach another hovering state with r˚ “ p0, 0, 0.6q and ψ˚ “ 0. The solid red
line in Fig. 6.5 shows the resulting quadrotor trajectory in space while the blue
line represents the currently planned trajectory. Figure 6.6 shows the predicted
evolution (given the currently planned trajectories) of the four points in the image
plane at equally spaced time instants. The actual evolution of the four image point
coordinates is shown in Fig. 6.7 whereas Fig. 6.8 shows the thrust generated by each
propeller. The dashed lines in Figs. 6.6 to 6.8 represent the constraints.

The robot was able to accomplish the task in a total time of approximately 2.3 s

over which the trajectory planning algorithm was triggered 34 times.

During motion, the quadrotor reached a translational speed up to 1.0m{s along
the X axis, and rotations up to 20 deg as illustrated in Fig. 6.9. From Fig. 6.7
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Figure 6.6 – Image feature trajectories planned at different planning steps. Four dashed
segments represent the boundaries of the image domain. The image features are initially in
the upper right corner.

Figure 6.7 – Actual image feature coordinates measured during the re-planning. The hori-
zontal dashed lines represent limits of the image domain.

Figure 6.8 – Motor thrusts evolution for the four propellers with horizontal dashed lines
representing the actuation domain U “ r0.1, 7s.
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Figure 6.9 – Linear velocity (upper figure) and pitch and roll angles (bottom figure) during
motion.

one can see that the features moved very close to the limits of the field of view.
Finally Fig. 6.8 shows that also the motor thrusts hit the actuation limits. These
results clearly show that the performed trajectory was rather aggressive and that
the actuation and sensing capabilities of the robot were exploited. Therefore, we
showed that in the presence of modelling uncertainties and noise, the feedback
introduced by updating the reference trajectory was able to reject some of these
disturbances while satisfying the several constraints. We encourage the reader to
watch the video3 attached to the concerned contribution [2]: there, we show how
an “open-loop” execution of the initially planned trajectory quickly fails to meet
the visibility constraints because of the (purposely introduced) actuation noise and
model uncertainties. On the other hand, as discussed, the online re-planning allows
gaining a sufficient level of robustness against these non-idealities. As it is common,
a high planning rate is privileged against optimality to some extent.

The rest of this chapter presents our second contribution [3] that addresses more
complex vision-based tasks.

6.6 Vision-based target tracking

In this section, we first address the case of tracking a moving 3D target with a
front-looking camera and ensuring final visibility of the target at the (unique) image
center. We assume that the relative pose of the target can be estimated using vision
only as done in [106] with some preliminary knowledge of the target model (e.g., the
target radius in case of a sphere). We are also interested in allowing the quadrotor

3https://www.youtube.com/watch?v=mZrS2wutZCI
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6.6. Vision-based target tracking

undertaking aggressive manoeuvres for reaching the target in near minimum-time
conditions. The final goal is to reach a hovering state such that the target appears
at the image center while keeping a safety distance from the target (see Fig. 6.10).

Figure 6.10 – The quadrotor has to follow the target in red while keeping a safety dis-
tance represented by the light blue sphere. The terminal constraint in the image space is
represented by the green circle. The blue circle represents the field of view inside which
the feature trajectory must lie. Here, the optimal trajectory in blue steers the quadrotor
towards a final position (white dot) and the resulting image feature trajectory is the one in
white

6.6.1 Multi-objective cost function

For achieving the aforementioned behaviour we adopt multi-objective programming
and minimize the following weighted cost function at running time t with weights
wi ą 0 P R.

J “ w1

ż t`T

t
}...vptq}2dt ` w2

ż t`T

t

››› :ψptq
›››
2
dt

` w3

ż t`T

t
}dptq ´ Rs}2dt ` w4

ż t`T

t
}vptq}2dt

(6.8)

The latter is divided into four parts: the first and the second terms minimize
the norm of the snap and the norm of the yaw acceleration respectively. They are
used for encouraging smoothness while still exploiting the quadrotor aggressiveness
[1]. The third term minimizes the error between the Euclidean distance dptq of
the target to the camera and a value Rs defined as a safety distance: the radius
square of the sphere centred on the target at position q (see Fig. 6.10). Naturally,
to achieve more aggressive trajectories, one can enforce this cost. The fourth term
penalizes the path length. It is an approximation of the sum of the path segmentsřk“N´1

k“0 }rpk ` 1q ´ rpkq}2 which appears to be equivalent to penalizing the linear
velocity over the time horizon. Indeed, for a circular symmetric target the quadrotor
may fly around the target indefinitely without changing the image feature position,
an effect arising from the residual available degrees of freedom and that one can
prevent by adding this fourth term.
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6. Aggressive vision-based trajectory generation

In the previous section (Sect. 6.2) we minimized the completion time T to gener-
ate aggressive trajectories [2] . Here, we are dealing with more complex constraints
and we will show that we can still exploit the quadrotor’s agility. Moreover, we
avoid the penalization of such a complex parameter and the re-evaluation of the
B-spline bases at each solver iteration. The completion time T is then a fixed pa-
rameter and should be chosen as a rough upper bound of the time required to reach
the final pose vicinity. If T is too small, the trajectories might be infeasible. If too
high, the system may be less reactive.

Finally, by suitably weighing these costs we are able to trigger the expected
behaviour and prevent the objectives from conflicting with each other.

6.6.2 Visibility constraints

In this section we propose an alternative to (6.5d) for the formulation of constraints
on the image features. Let us define the spherical projection of a target point in 3D
w.r.t. the frame B as the bearing vector

β “ RT pr ´ rq
}RT pr ´ rq} “ m

}m} P S (6.9)

where r P R3 is the position of the feature in the world frame and S is the surface
of the unit sphere and m “ pu, v, 1q is the image measurement from which β is
computed.

Defining ec as the camera optical axis in the frame B, namely, xB (or yB) for a
front-looking camera and ´zB for a down-looking camera, the visibility constraint
is written as

βT ptqec ě cospα{2q,@s P rt, t ` T s (6.10)

where α is the angle of view of the camera and β is given by (6.1). Fig. 6.11 shows
that (6.10) is equivalent as constraining the feature bearing angle β but whose
numerical evaluation is more complex. In contrast to the previous formulation
(6.5d) a single constraint is defined using (6.10). However, the field of view of the
camera is modelled as a cone (see Fig. 6.10) which is a less realistic representation
than a pyramid-shaped field of view.

Now, instead of imposing equality constraints on the final position in order to
guarantee visual convergence of the target to the camera center, we rather define a
terminal constraint such that the feature bearing angle has to belong to a (smaller)
angular area at the camera centre (see Fig. 6.10) with

βT ptqec ě cospγ{2q,@s P rt ` Tv, t ` T s, 0 ď Tv ď T (6.11)

where γ is the angle defining the circular region of convergence in the image. The
time Tv is a parameter that defines at what time the feature shall enter the vicinity
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6.7. Simulation and experimental results

region. It can be tuned to affect the convergence rate towards this region. Namely,
a value closer to 0 will demand a longer activation of the constraint. Tv will also
vary depending on the camera orientation due to the quadrotor dynamics.

Figure 6.11 – The visual constraints (6.10) is equivalent as ensuring that the angular position
β of an image point P is lower than the field of view angle α{2

With the above definitions, one can encapsulate visibility constraints and visual
convergence for any camera orientation. The approach considered in [101] penalizes
the motion aggressiveness since it minimizes the deviation of the image features
from the center of the camera in the image plane. Therefore it does not fully
exploit the image space while, in our case, the target is free to move away from the
camera center in order to allow large rotations of the camera and therefore large
accelerations of the quadrotor.

Following the same strategy as in Sect. 6.2, we exploit differential flatness and
parametrize the flat outputs with B-splines with control points P . We define the
following problem with the cost function (6.8)

Problem 8 Find P such that:

min
P

J

s.t. σχptq “ σχt ,

σpiqpt ` T q “ σχ˚ , i “ 1, . . . , 3,

upsq P U , @s P rt, t ` T s,
βT ptqec ě cospα{2q,@s P rt, t ` T s,
βT ptqec ě cospγ{2q,@s P rt ` Tv, t ` T s

(6.12a)

(6.12b)

(6.12c)

(6.12d)

(6.12e)

(6.12f)

6.7 Simulation and experimental results

The video4 attached to this work [3] shows the reactive target tracking considering
the scenario depicted in Fig. 6.10 to validate the proposed replanning strategy with
the visibility constraints detailed in Sect. 6.6.2. Figure 6.12 shows successive snap-
shots of the simulated environment. We show in Fig. 6.13 that the computed inputs

4https://www.youtube.com/watch?v=mvvF1I72HM8
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6. Aggressive vision-based trajectory generation

and images features trajectories are maintained within their allowed domains. We
exploit again the replanning strategy described in Sect. 6.4.1 and the SQP opti-
mization routine from NLOPT to compute the optimal solutions.

Figure 6.12 – Successive snapshots taken from V-Rep at different time instants. The blue
line is the planned trajectory and the red line is the actual system trajectory. The camera
view is shown in the upper right corner where the red circle represents the field of view
limits and the blue circle represents the vicinity constraint (6.11).

(a) Optimal motor thruts profiles constrained be-
tween 0.1N and 5N.

(b) Images features trajectories in the
image plane with a field of view of 90˝.

Figure 6.13 – A representative set of the computed inputs Fig. 6.13a and image features
Fig. 6.13b trajectories from the resolution of Problem 8.

We also conducted the same re-planning strategy with a real quadrotor. We
used a MK-Quadro equipped with a front-looking camera with a field of view of
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6.7. Simulation and experimental results

45˝. The setup included an on-board ODROID-XU4 Linux computer running ROS
and the TeleKyb framework for interfacing the replanning algorithm which ran on a
standard desktop PC (Quadcore Intel i7 CPU@2.6 GHz). A Vicon motion capture
system was employed for giving state measurements of the quadrotor and position
measurements of the tracked target. We used AprilTags as a generic target attached
on top of another MK-Quadro controlled remotely (Fig. 6.14). The video shows the
general behaviour of the system.

Figure 6.14 – The center of the box (yellow dot) attached on a second quadrotor and covered
by four ApriTags had to remain inside the field of view of the camera (red circle) during
the entire flight and appear inside the blue circle in the end of the computed trajectories
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Chapter 7

On collisions and occlusions
avoidance

In this chapter we address vision-based navigation in the presence of obstacles for
target tracking applications. Since we consider the visibility constraint on the
tracked target it is crucial to also avoid the occlusions generated by the obsta-
cles themselves with the target. To do so, we design a new constraint formulation
in the image space by drawing the analogy with volumetric constraints used for
collision avoidance. In order to improve the convergence towards a local minimum
we use complex-step differentiation (CS) to efficiently approximate the gradients of
the nonlinear terms in the cost function and of the nonlinear constraints.

7.1 Contributions

In Sect. 6.2 we presented preliminaries for online minimum-time trajectory re-
planning under field of view constraints. In this chapter we show that reactive
manoeuvres can still be achieved without minimizing time and in the presence of
more complex constraints. Besides, we improve the accuracy and the numerical
stability of the gradients evaluation by using complex-step differentiation which
aids the SQP convergence. Our method differs from most relevant works (e.g.,
[180, 181, 179]) under three main aspects:

‚ efficient and reactive online re-planning strategy considering an underactuated
robot

‚ soft occlusion avoidance formulation in the image space

‚ visual constraints independent of the camera/UAV configuration
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7. On collisions and occlusions avoidance

7.2 Constraints formulation

In this section, we describe the vision-based optimization scheme for avoiding col-
lisions with static spherical obstacles of radius Rocc and the occlusions they might
generate with the tracked target, see Fig. 7.1. Collision-free trajectories with N

static spherical obstacles of inflated radius Rcol ą Rocc at position robs are gener-
ated using volumetric constraints such as

}r ´ robsi}2 ą Rcol
2
i , i “ 1, . . . , N (7.1)

Figure 7.1 – An optimal trajectory for a quadrotor equipped with a camera is generated
for reaching a minimum distance with a target (blue sphere) while avoiding collisions with
spherical obstacles (inflated dark spheres) and occlusions of the target from the obstacles
(red spheres).

The occlusion constraint can be modelled analogously to (7.1), but in the image
plane, as follows

}β ´ βobsi}2 ą a21, i “ 1, . . . , N (7.2)

where β and βobs are the image projections of the target and the obstacle center
respectively. Using spherical projection, a sphere is projected as an circle in the
image (see Fig. 7.2). Therefore we choose a1 as the radius of this projected circle.
For an obstacle of radius Rocc one has [195]

a1 “ Rocc

}O} (7.3)

where O is the vector of coordinates of robs in the camera frame.

Using perspective projection a sphere is projected as an ellipse in the image
plane. In this case, we choose a1 as the length of the semi-minor axis of the projected
ellipse of the spherical obstacle of radius Rocc, see Fig. 7.3. Assuming knowledge
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7.2. Constraints formulation

of the size of an obstacle in 3D with coordinates robs “ pXo, Yo, Zoq in the image
plane one has [196]

a21 “ R2
occ

4pZ2
o ´ R2

occq
(7.4)

Figure 7.2 – The spherical projection of a sphere in the image of a camera at position C is
a circle of radius a1.

Figure 7.3 – The perspective projection of a sphere in the image plane of a camera at
position C is an ellipse of semi-minor axis a1.

With constraint (7.2) one seeks to prevent the target from colliding the pro-
jected obstacles (see Fig. 7.1) in the image space by keeping a minimum length a1

that grows as the depth Zo of the obstacle in the camera frame decreases. As the
quadrotor moves towards the target the occlusion constraints from the obstacles
passing behind the camera are of course discarded.

However, when dealing with occlusion avoidance with a quadrotor there exist
configurations where strict avoidance is not feasible. Indeed, when the target goes
exactly below an obstacle (for a down-looking camera, see Fig. 7.4) the quadrotor
may not have sufficient actuation capability or sufficient space for avoiding any
occlusions. These situations may occur for any camera orientation. Therefore, in
order to avoid such critical situations and always provide a feasible solution, we
introduce a slack variable λ within the occlusion constraint to authorize partial
occlusion if necessary. Considering (7.4) we set

a21 “ pRocc ´ λq2
4pZ2

o ´ pRocc ´ λq2q , s.t 0 ď λ ď Rocc (7.5)
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7. On collisions and occlusions avoidance

The λ term plays the role of relaxing a hard constraint when the solver encoun-
ters not feasible situations. At the most critical configurations when the target is
below an obstacle (Fig. 7.4), the collision constraint can be reduced or even can-
celled by having λ reach the value Rocc which is the actual radius of the obstacle
(lower than Rcol). With equation (7.5) we observed very reactive responses from
the system in case of occlusions. This may be due to the fact that small changes of
λ induce a strong action on the occlusion constraint (7.2). Besides, by imposing a
straightforward upper bound (Rocc) for λ, its action will take effect only in case of
violations of constraint (7.2).

Figure 7.4 – In case of strong and sudden occlusions when the target is below an obstacle,
the red trajectory cannot be a viable solution since it may violate actuation and/or spatial
constraints. We instead allow minimal constraint violations to keep the solver efficient.
The blue trajectory is then a relaxed solution where λ hits its limit value Rocc (obstacle
radius). The orange trajectory represents the case of a less relaxed occlusion constraint
where λ eventually reaches a smaller value and is zero when there are no occlusions (green
trajectory)

It would make sense of course to use the ellipse semi-major axis defined as:

a22 “ R2
occpX2

o ` Y 2
o ` Z2

o ´ R2
occq

4pR2
occ ´ Z2

o q2 (7.6)

This formulation would give more conservative occlusion avoidance constraints.
However, in practice one has X2

o ` Y 2
o ! Z2

o especially if one considers the lim-
ited camera field of view. This is why we consider the semi-minor axis (7.4) which
also has the advantage of being less complex.

Of course, the occlusion constraint and the slack variable λ introduce conser-
vatism to some extent. However, the main objective of λ is to improve stability and
continuity of the solution in case of critical configurations.

7.3 Optimization problem definition

Finally, the current optimization problem related to the scenario shown in Fig. 7.1
can be stated as the following static NLP considering the cost function (6.8)
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7.3. Optimization problem definition

Problem 9 Find P ,λ such that:

min
P ,λ

J ` w5}λ}2

s.t. σχptq “ σχt ,

σpiqpt ` T q “ σχ˚ , i “ 1, . . . , 3,

upsq P U , @s P rt, t ` T s,
βT ptqec ě cospα{2q,@s P rt, t ` T s,
βT ptqec ě cospγ{2q,@s P rt ` Tv, t ` T s
}rpsq ´ robs}2 ą R2

col,@s P rt, t ` T s,
}βpsq ´ βobs}2 ą a21,@s P rt, t ` T s,
0 ď λ ď Rocc

(7.7a)

(7.7b)

(7.7c)

(7.7d)

(7.7e)

(7.7f)

(7.7g)

(7.7h)

(7.7i)

where σχt “ φ´1
χ pχtq and σχ˚ “ φ´1

χ pχ˚q. For a final hovering state χ˚ one has of
course σpiqpt ` T q “ 0, i “ 1, . . . , 3. We choose not to explicitly constrain the final
Cartesian position which is considered as a free parameter to be determined by the
optimization algorithm. We seek feasible trajectories with constraint (7.7d) but,
due to unknown target motion, the quadrotor might not have sufficient actuation
to always satisfy the visibility constraint (7.7e).

The costs and constraints gradients in the flat space are computed analytically.
However, we think it is more efficient to estimate (numerically) the gradients of the
visual and inputs constraints instead of deriving their complex and heavy analytic
formulation. To do so, we use complex-step differentiation [197]. It can be shown
that the first-order derivative of a function f P R can be approximated as

Bf
Bx “ �pfpx ` ihqq

h
` Oph2q, h P R (7.8)

where i is the complex number such that i2 “ ´1 and �pzq denotes the imagi-
nary part of a complex number z. This technique is attractive to determine first
derivatives since it only requires a single evaluation of the function and avoids the
problem of subtractive cancellation of classic finite approximation (round-off errors).
Therefore, it is known to have superior accuracy (close the analytic accuracy) and
numerical stability as analysed in [198]. It is also less intrusive in terms of program
transformation than automatic differentiation which can sometimes require large
and deep source overloads. On the other hand, complex differentiation requires
some mathematical adaptations to be used with complex values (the square root or
the absolute value functions for instance) which increases the computational cost.
The choice between these two methods then hinges on a trade-off between ease of
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7. On collisions and occlusions avoidance

implementation and execution efficiency and is further discussed in [199]. More
details and comparison results are given in Appendix C.

7.4 A reactive re-planning framework with a
down-looking camera

In this section, we express the re-planning strategy for tracking a mobile target on
the ground (as shown in Fig. 7.4). We choose to consider a down-looking camera
with a (more realistic) pyramid-shaped field of view as in our work [2] in order to
also show that the planning strategy is able to exploit the corners of the field of
view. The perspective projection of the target is again considered

β “ RT pr ´ rq
zBTRT pr ´ rq “

»
—–
u

v

1

fi
ffifl P P2 (7.9)

where P2 is the space of 3-D homogeneous vectors.

In this case, we adopt the penalization of the position error between the quadro-
tor and the target in the XY plane denoted as exy P R2. Moreover, we let the final
height zT free but bounded for limiting the motion along e3. This lighter formula-
tion will basically compute trajectories for steering the quadrotor to a final hovering
position such that the target appears at the camera center.

We define the following optimal problem

Problem 10 Find P ,λ such that:

min
P ,λ

J2 “ w1

ż T

t
}...vptq}2dt ` w2

ż T

t
} :ψptq}2dt

` w3

ż T

t
}exyptq}2dt ` w4zT ` w5}λ}2

s.t. σχptq “ σχt ,

σpiqpt ` T q “ 0, i “ 1, . . . , 3,

rxypt ` T q “ rx̊y,

ψpt ` T q “ ψ˚, (arbitrary value)

βpsq P Ω,@s P rt, t ` T s,
upsq P U , @s P rt, t ` T s,
}rpsq ´ robs}2 ą R2

col,@s P rt, t ` T s,
}βpsq ´ βobs}2 ą a21,@s P rt, t ` T s,
0 ď λ ď Rocc,

Zmin ď zT ď Zmax

(7.10a)

(7.10b)

(7.10c)

(7.10d)

(7.10e)

(7.10f)

(7.10g)

(7.10h)

(7.10i)

(7.10j)

(7.10k)

(7.10l)

100



7.5. Simulation results

where rx̊y is the target position in the XY plane at time t and the (square) image
domain Ω “ tβ P P2 s.t. maxp|βTxB|, |βTyB|q ď tanpαqu.

It should be noted that the gradient of the occlusion avoidance constraint (7.10g)
gives three possible descent directions for the decision variables for satisfying this
constraint. More precisely, the SQP algorithm can: i) increase the distance between
βpsq and βobs, ii) reduce the quantity a1 by increasing the distance Zo, iii) relax
the constraint by increasing λ. In order to restrain the second direction that steers
the solution towards the local minima of infinite height (a1 Ñ 0) we put an upper
limit on the quadrotor final height zT with an additional constraint (7.10l). We
also minimize zT (linear in P ) to prevent the camera from staying at the maximum
height Zmax. We also consider a minimum height Zmin for preventing the quadrotor
from flying below the obstacles since our main focus is to show its ability to avoid
occlusions. This is indeed a behaviour the quadrotor may exhibit. This formulation
allows efficient re-planning at the rate of 30Hz. Simulation results are given in the
next sections.

We also give more insight on the different system behaviours triggered by dif-
ferent tuning of the weights in the cost function (7.10b).

7.5 Simulation results

The presented approach was validated in a physically realistic environment. The
inertial parameters of the quadrotor were slightly biased on purpose to introduce
model uncertainties. The quadrotor dynamics were simulated using V-Rep at
150Hz. We exploit again the re-planning strategy described in Sect. 6.4.1 and
the SQP optimization routine from NLOPT to compute the optimal solutions. The
generated trajectories of the flat outputs were sent to TeleKyb which then computed
the actual control inputs using controller [143].

The tracked target shown in Fig. 7.4 is manually commanded in velocity satu-
rated at 1.0 m/s. We considered three spherical obstacles of radius Rocc “ 0.15m

and of inflated radius Rcol “ 0.4m (see Fig. 7.7). The video1 attached to this
work [3] shows the pertinence of having occlusion constraints in vision-based navi-
gation since obstacles may occlude the target in many occasions if not considered
at the planning stage. Finally, we show the efficiency of our re-planning frame-
work in avoiding immediate and sudden occlusions. When critical situations are
encountered the slack variable is able to keep a stable flight by allowing very brief
occlusions.

1https://www.youtube.com/watch?v=mvvF1I72HM8
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Table 7.1 shows some performance indexes from the on-line resolution of Prob-
lem 10 for a flight duration of about 90 seconds. One has respectively: the number
of computed trajectories, the duration Tmax for the stopping criterion, the plan-
ning horizon T , the range of SQP iterations and the mean iteration, the step and
constraint tolerance and finally the percentage of total optimization instances that
failed to return a solution within Tmax. When it occurs the previous solution is
returned.

loops Tmax T iterrange SQPiter tol ratio
2734 33ms 3.5s r6, 63s 31 10´4 6%

Table 7.1 – Settings and performance of the solver for a 90 seconds flight

In the proposed formulations, the weights in the cost function are free parameters
and need to be tuned empirically in order to generate the expected behaviour. Since
the optimal problem is complex and highly nonlinear, any set of weights can generate
a different response. However, from our experience the tuning triggers consistent
responses and does not necessitate a particularly fine analysis. Generally, a higher
w1 will produce smoother trajectories and less aggressive motion. A higher w3 will
increase the convergence rate towards the target and a lower w5 will tend to produce
more relaxed occlusion constraints. Table 7.2 shows the numerical parameters used
for the simulation. Moreover, we have used five different sets of weights (Table 7.3)
an discuss their consistent effect on the generated trajectories shown in Fig. 7.7.

T w1 w2 w3 w4 w5

3.5s 1e´5 5e´3 1e1 5 5e3

Table 7.2 – Considered parameters for the simulation

Trajectory w1 w2 w3 w4 w5

orange 1e´5 5e´3 5e1 5 5e3

blue 1e´4 5e´3 1e1 1e´1 5e3

green 1e´3 5e´3 1e1 1e1 1e3

yellow 1e´5 5e´3 1e1 1 5e4

pink 1e´3 5e´3 1e1 5 1e4

Table 7.3 – Values of the weights used for generating the trajectories shown in Fig. 7.7

The hot-start method presented in our work [2] definitely helps the solver as
showed in Table 7.4. Using the exact same conditions we compared the performance
of the solver with:

‚ our hot-start algorithm (M1) in Sect. 6.4.1

‚ using the previous solution (M2)
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Figure 7.5 – Evolution of λ for the simulation. The peaks reveal the presence of sudden
occlusions. The flat section (from around instance 1100 to instance 1700) respresents a
flight period when the target is far from the obstacles. Therefore, λ is very close to 0. Here
λ did not hit the upper limit Rocc “ 0.15m.

Figure 7.6 – Evolution of zT for the simulation. The final height was bounded between 1.9m
and 3.5m. Again, zT reaches its minimum value when no collisions and occlusions occur.

‚ using the initial solution (a straight line from the initial to the final flat state)
(M3)

method mean number of SQP iterations failure ratio
M1 25 2.8%
M2 33 20%
M3 43 84%

Table 7.4 – Convergence comparison between three different initial guess strategies. Failure
ratio represents the percentage of total solutions that fail to converge within the current
rate (1/30 ms).

Methods M2 and M3 clearly fail to meet the solver performance achieved using
method M1. Moreover, M3 even quickly led to a failure of the task. The ratio can
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Figure 7.7 – Different solution trajectories returned with different sets of weights (in Ta-
ble 7.3) in our simulation environment. The camera view is shown in the upper right corner
with the image trajectories and a view from above the target is shown below. The orange
trajectory uses the chosen values (in Table 7.2) with a higher w3. One can observe a faster
convergence towards the image center (with an overshoot). The blue one has a higher w1

resulting in a smoother trajectory than the orange one. The green one is even smoother
and is more compliant to occlusions (less jerky) since w5 is lower. The yellow trajectory
is very sharp (low w1) because the occlusion constraints are more respected (high w5) and
the final height is less penalized (low w4). The pink solution gives a different and smoother
path (high w1) that benefits less from the constraints relaxation (since w5 is high).

quickly escalate. Indeed if the solver fails in returning a solution within 1/30 ms, its
last (infeasible) iterate will still be used as initial guess to the next solver instance,
probably generating an increasing depreciation of the initial guess.

7.6 Summary

In this work, we adapted our previous approach [2] on vision-based optimal trajec-
tory generation to a wider context by considering reactive target tracking and both
occlusions and collisions avoidance for either a front or a down looking camera (or
any other camera/UAV configuration).

The quadrotor trajectories are mainly driven by vision while seeking aggressive
but smooth trajectories that respect actuation and sensor limits for any camera
orientations. Then, starting from a good initial guess the solver is able to return
an optimal solution about 94% of the time within 1/30ms allowing an online re-
planning strategy capable of absorbing noise, disturbances and any non-modelled
effect for long duration flights. The same strategy was applied during an experiment
using a real quadrotor for the case of a front-looking camera.

In contrast to the literature, we proposed a method that explicitly handles visi-
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bility constraints and occlusion avoidance within a fast online re-planning strategy.
Besised, the occlusion constraint is expressed as a single constraint per object in
contrast to [180]. Finally, we coped with the issue that the discontinuity of occlusion
constraints can generate by introducing a minimal relaxation in Sect. 7.2.

The optimization problem in the current contribution differs in several points
from the minimum-time Problem 6, especially in terms of costs and constraints.
Although the re-planning strategy is the same, we emphasize the general online
re-planning efficiency with different optimal problems. Moreover, the complex-step
differentiation method plays a non negligible role in the framework. Indeed, optimal-
ity and stability of the re-planning framework has been improved by accelerating the
gradient evaluation and improving its accuracy and numerical stability compared
to our previous work [2].

To be successful, our path-planning approach requires a complete knowledge of
the environment and robot model. These requirements can be limiting in many real
applications. The need for such exact knowledge could be relaxed by accounting
for modelling and calibration uncertainties at planning stage. Finally, future work
includes validating the method with real (and maybe dynamic) obstacles and the use
of vision only for estimating the target relative position. In this case the relaxation
term will play an even more decisive role.
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Chapter 8

Toward visual constraints
relaxation: planning under

intermittent measurements
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8.1 Introduction

The role of navigation in robotics is to find a path moving a robot from its cur-
rent state to a goal state. Practical experiments on path following show us that
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paths cannot always be followed, because nothing is as perfect in reality as as-
sumed during the planning (e.g., dead reckoning is not perfect in the real world).
So there is a strong need to take into account the uncertainties during the planning
phase. Indeed, model, sensors and environment uncertainties are inherent to many
robotic applications and may lead to a failure of the task or impair the possibility
to accurately follow a path if disregarded at the planning stage. For these reasons
uncertainty-aware planning, also called belief-space planning, has received consider-
able attention in recent years. The concept of robust path planning can be tracked
back to the mid 1990s. A class of control techniques that operate over the belief
space, known as partially-observable Markov decision processes (POMDPs) [200]
has been derived to address the above problem. Another class of works exploits
local optimal control policies assuming a linear quadratic Gaussian (LQG) control
strategy. However, these approaches suffer from the “curse of dimensionality”, in
particular POMDPs are notorious for their computational complexity that may pro-
hibit their application for navigation in complex or uncertain environments in high
dimensional state spaces. In [201] a more scalable LQG variant is proposed and ap-
plied to environments with discontinuous sensing regions. An approximate solution
to POMDPs is given in [202] but with the use of considerable pre-processing. To
deal with more complex objectives, deterministic planners such as RRT* and A*
have become very popular since they benefit from asymptotic optimality and can
explore the whole configuration space efficiently. In [203] a graph-search based on
A* is proposed by discretizing the environment into cells for finding a safe route for
a unicycle vehicle. Active visual perception with a quadrotor has been addressed
in [185] for determining the path with minimal state uncertainty considering pho-
tometric information, and in [204] for maximizing visual coverage of a scene in
presence of obstacles, localization and sensing uncertainty. Recently, [205] proposed
an approximate POMDP control policy based on an initial guess trajectory returned
by a RRT planner in a discretized environment.

In this work, we aim at planning a trajectory from an initial to a final state
in presence of obstacles and input constraints for non-trivial robotic systems (like
a quadrotor). We assume that the state is not available (especially the position)
but on-board sensors (including a camera) are used to reconstruct the state with
some estimation algorithm fusing position measurements in the world frame recon-
structed from vision. Note that these measurements can be intermittent because of
limited field of view, maximum range and so on. We want that the path guarantees
some desired level of uncertainty in the reconstructed state despite the fact that
measurements are not always available. More precisely, the goal state has to be
reached with a bounded position uncertainty to guarantee some confidence level on
the robot’s location. Therefore, the system has to collect sufficient information from
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Figure 8.1 – Simulation environment for our framework. An optimal collision-free trajectory
for the unicycle case connects the initial state (green dot) and a final state (yellow dot) in
presence of obstacles (blue boxes). The pose uncertainty is represented by the blue ellipsoids
whose size is reduced as soon as a landmark (red bars) is close enough to the robot and
enters the field of view of the simulated camera attached to the robot. We assume the
landmarks are not occluded by the obstacles. The propagated edges of the two graphs are
rendered as the red curves.

visual landmarks sparsely placed in the environment to satisfy this final constraint
(see Fig. 8.1 considering a unicycle equipped with a front-looking camera with ref-
erence to Fig. 8.2). Basically, the shape of the trajectory will vary depending on
the level of uncertainty, i.e., process and measurement noises (e.g., see [206] with a
unicycle) but also on the given initial and final states which is, to the best of our
knowledge, not the case in the literature.

Figure 8.2 – A unicycle equipped with a fixed camera receives position measurements up-
dates whenever a visual landmark (red dot) is close enough and enters the field of view.

Literature in perception-aware planning has generally focused on maximizing
observability [185, 207, 208] (or minimizing the state uncertainty) based on some
criteria e.g., the trace or the smallest eigenvalue of the covariance matrix. This
strategy definitely helps in finding a path that tries to collect as much as information
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as possible for preventing the state uncertainty to increase too much. However, the
path itself may be severely suboptimal in terms of length and duration (e.g., [209]
for optimal self-calibration of UAVs). Indeed, the path length is generally not
constrained and can be excessively long, especially if the robot needs to pass by all
the regions/beacons with richest information.

Figure 8.3 – A minimum snap (red) passing through waypoints and a trajectory (green)
yielding well-observable states. This trajectory is much longer and much more complex,
from [209].

In this work, we propose a minimum-time planning algorithm for dynamic sys-
tems returning feasible and robust trajectories that do not guarantee minimal state
uncertainty along the trajectory but a bounded state uncertainty with given bounds
at the goal, which we consider is a more practical application.

8.2 Contributions

This work focuses on finding robust paths for a robotic system by taking into ac-
count the state uncertainty and the probability of collision. We are interested in
dealing with intermittent exteroceptive measurements (e.g., collected from vision).
We assume these cues provide reliable measurements that will update a state es-
timation algorithm wherever they are available. The planner has to manage two
tasks: reaching the goal in a minimum time and collecting sufficient measurements
to reach the goal state with a given confidence level. We present a robust perception-
aware bi-directional A* planner for differentially flat systems such as the unicycle
and the quadrotor UAV and use a derivative-free Kalman filter to approximate the
belief dynamics in the flat space. We also propose an efficient way of ensuring con-
tinuity and feasibility between the graphs by exploiting the convex-hull property of
B-spline curves.
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In a previous chapter (Sect. 7.6) we considered hard visibility constraints that
may become too restrictive for minimum-time planning. In this chapter, we pro-
pose to relax these constraints by allowing intermittent visual cues losses to perform
faster trajectories in larger and more complex environments. We implement a bi-
directional A* algorithm that grows two graphs, one from the initial state and one
from the final state (see Fig. 8.8). A solution trajectory is built by connecting the
two graphs. This work blends the following features within graph-search algorithm:
(i) incorporation of model and sensor uncertainty in collision avoidance and per-
ception, (ii) generation of minimum-time and feasible trajectories for flat dynamic
systems, (iii) incorporation of discontinuous visual measurements that are function
of the robot’s attitude, (iv) efficient graph connection using the convex hull property
of B-spline curves.

Our work is mostly based on the recent work of [147] and [132] that propose an
efficient A* planner in the flat space of a quadrotor which is applied to aggressive
and precise collision avoidance that is function of the robot attitude in cluttered
environments. In contrast to [132] we include perception constraints and state
uncertainty and directly minimize the time. To the best of our knowledge, this is
the first time minimum-time trajectories are generated in a graph-search planner
while accounting for uncertainty in the visual perception which is affected by the
system’s attitude. to a unicycle for illustrating the approach, and then also to
the case of a quadrotor for demonstrating the feasibility on a much more complex
system while performing aggressive motions.

The rest of this chapter is organized as follows. Sect. 8.3 introduces differential
flatness and the modelling of a quadrotor. Sect. 8.4 presents the uncertainty-aware
planner formulated as a graph-search problem. How the graph is built is described
in Sect. 8.5. The graphs rewiring is detailed in Sect. 8.6. In Sect. 8.7 simulation
and experimental results are presented for a quadrotor with an onboard camera.
Finally we draw some conclusions and future directions in Sect. 8.8.

8.3 Preliminaries

8.3.1 Differential flatness

As already said in Sect. 2.5 differentially flat systems are systems whose state χ

and inputs u can be expressed as algebraic functions of flat outputs derivatives up
to some suitable order [210]. Let us remind the reader that differential flatness is
often used in planning for the following reasons: i) the problem size is reduced, ii)
any smooth enough curve in the flat space is feasible by the real system, iii) the
system dynamics are linear in the flat space. The proposed algorithm is applicable
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to systems represented as d independent chains of integrators of a given order r of
the form

ηprq “ ν (8.1)

where ν P Rd denotes the new inputs and η P Rd are the flat outputs. Let us define
the system state in the flat space as

s “
´
η, ...,ηpr´1q

¯
P Rdpr´1q (8.2)

In the rest of the chapter we consider the system position as the flat outputs, e.g.,
η “ px, y, zq in the three-dimensional space.

8.3.2 Application to a quadrotor UAV

Figure 8.4 – Quadrotor model

With reference to Fig. 8.4 the quadrotor is known to be flat with flat outputs
px, y, z,ψq [59]. The quadrotor dynamics can be decoupled into four linear subsys-
tems of the form

xp4q “ u1, y
p4q “ u2, z

p4q “ u3, ψ
p2q “ u4 (8.3)

where ν “ pu1, u2, u3, u4q defines the new control inputs in the flat space. For the
sake of simplicity, we do not plan over the yaw angle ψ that is assumed to be constant
at zero. Moreover, we consider the quadrotor as three triple-integrators controlled in
jerk along axes X, Y and Z (i.e., η “ px, y, zq P R3). With the above simplifications
we seek to alleviate the planner whose complexity grows exponentially with the
state dimension. Finally, we consider the state vector s “ pη, 9η, :ηq and jerk inputs
ν “ ηp3q. We consider that the quadrotor is equipped with a fixed downward-looking
camera capable of providing reliable position measurements when fixed landmarks
on the ground enter the limited field of view.
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8.3.3 Application to a unicycle

With reference to Fig. 8.2, as usual, the kinematic model of a unicycle is

$
’&
’%

9x “ v cospθq
9y “ v sinpθq
9θ “ ω

(8.4a)

(8.4b)

(8.4c)

where v and ω are the forward and angular velocities inputs of the robot respectively
while px, yq are the coordinates of the center of the rear axle and θ is the robot
orientation in the world frame. It can be shown that the unicycle is flat with flat
outputs [211]:

η “ px, yq P R2 (8.5)

Namely, the system can be fully linearised and described by a double integrator
with state s “ pη, 9ηq P R4

:x “ u1, :y “ u2 (8.6)

where u1 and u2 are the new control inputs.

The real system inputs and angular position can be obtained from the flat out-
puts and their derivatives as follows

v “
a

9x2 ` 9y2, ω “ 9x:y ´ 9y:x
9x2 ` 9y2

, θ “ Arctan2
ˆ

9x
9y

˙
(8.7)

We will see in the next section why it is interesting to propagate the above
dynamic models in the flat space instead of (8.4) (for the unicycle case) to extend
the two A* graphs.

8.4 Problem formulation

We aim at solving an optimal control problem connecting an initial state sinit and
a final state sgoal in a minimum time T . Let us define the following optimal control
problem.

Problem 11 Find the input ν and time T such that:

min
ν,T

T

s.t. sp0q “ sinit,

spT q “ sgoal,

maxteigpP ηpT qqu ď λ̄,

p 9ηpτq, :ηpτq,ηp3qpτqq P X free @τ P r0, T s

(8.8a)

(8.8b)

(8.8c)

(8.8d)

(8.8e)
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where eigpP ηpT qq P Rd contains the eigenvalues of the position covariance matrix
P η at the goal state sgoal and X free :“ r´v̄, v̄s3 ˆ r´ā, ās3 ˆ r´j̄, j̄s3 denotes the
hypercube space of the admissible velocities, accelerations and jerks. The desired
bound on the position uncertainty is defined by λ̄ ą 0. For nonlinear systems such
as a quadrotor, the Extended Kalman Filter (EKF) is often used for approximating
the belief dynamics. The EKF is based on a linearization of the system dynamics
which results in cumulative errors due to the local linearization assumption. In this
paper, since we plan directly in the flat space we can use a so-called derivative-free
Kalman filter without the need for derivatives and Jacobians calculations. Moreover,
the state estimation accuracy of a derivative-free Kalman filter can be improved
w.r.t. a standard EKF, especially for nonlinear systems [212]. Considering the
linear equivalent system in the flat space one defines the process model. When a
landmark is visible we have

9s “ As ` Bu ` ζ, y “ Cs ` � (8.9)

where ζ is the process noise and � is the measurement noise. For a flat system
controlled in acceleration (i.e., r “ 2), assuming the velocity is estimated through
filtering of position measurements, the matrices A, B, and C are given by

A “

¨
˚̊
˚̊
˝

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

˛
‹‹‹‹‚
, B “

¨
˚̊
˚̊
˝

0 0

0 0

1 0

0 1

˛
‹‹‹‹‚
, C “

˜
1 0 0 0

0 1 0 0

¸
(8.10)

In the next sections we will show how Problem 11 can be transformed from an
infinite dimensional optimal control problem to a finite dimensional bi-directional
graph-search problem. We choose to extend two graphs to improve the search,
to increase the rate of convergence and the chance to find a solution especially in
complex and cluttered environments. Moreover, the use of two graphs generally
propagates fewer vertices than with a single graph [213].

8.4.1 Motion primitives

As in [147] we use polynomials to parameterize the flat state components and gen-
erate motion primitives to explore the flat space in a discrete way. More precisely,
by applying a number of sampled constant inputs νk P r´j̄, ..., j̄s3 along each axis
for a duration τ ą 0 one can iteratively build a graph GpV,Eq rooted in state s0.
Here, V defines the set of discrete states denoted as the vertices s in the graph
representation that are connected with a motion primitive referred as an edge in
the set E (e.g., see Fig. 8.1). For a flat system controlled in jerk (i.e,. r “ 3) a
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motion primitive represents the state sptq starting at state s0 for t P r0, τ s with a
curve defined as

sptq “ Mpνk, s0, tq :“

»
—–
νk

t3

6 ` :η0
t2

2 ` 9η0t ` η0

νk
t2

2 ` :η0t ` 9η0

νkt ` :η0

fi
ffifl (8.11)

These trajectories reflect the system dynamics thanks to differential flatness and
provide the minimum jerk between the states s0 and spτq [35]. The free flat space
will be explored with a propagation of these motion primitives further detailed in
Sect. 8.5. Naturally, changing the admissible bounds for νk and duration τ will
affect the free space coverage.

Problem 11 can be reformulated as Problem 12 in the graph representation
where we seek the trajectory connecting the initial and goal states with the optimal
control sequence ν k̊ and the minimal number N˚ of motion primitives.

Problem 12 Find the sequence νk and N such that:

min
νk,N

N

s.t. s0 “ sinit,

sN “ sgoal,

maxteigpP η
N qu ď λ̄,

p 9ηk, :ηk,η
p3q
k q P X free @k P v0, Nw

(8.12a)

(8.12b)

(8.12c)

(8.12d)

(8.12e)

where P η
N is the covariance matrix on the position at the goal vertex. The resulting

trajectory will have a total time N˚τ . Finally, collisions are avoided by considering
the robot shape as representative of the position uncertainty ellipse (or ellipsoid in
3D) whose estimation is detailed in the next section. Motion primitives that violate
the collision constraints are not added to the graph.

The advantage of graph-search planners in contrast to optimization-based meth-
ods (and especially gradient-based) is that complex constraints are not directly part
of the optimization problem but are checked at each vertex expansion. Moreover,
optimization-based methods may not be adapted to problems involving discontinu-
ous constraints gradients as for (8.12d) that is the solution of a stochastic process
with intermittent Kalman updates and possibly large periods without any sensing
information. Evaluating such a gradient for gradient-descent solvers would be chal-
lenging and computationally intense since it is also completely re-evaluated at each
iteration. In the next section we show how state uncertainty is included in visual
perception and in collision avoidance to guarantee perception of visual measure-
ments and safe navigation to a given level of confidence.
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8.4.2 State estimation uncertainty

Let σ be the major axis of the uncertainty ellipse P η at a given state. Then, for a
99% confidence level one has σ99% “ ?

9.21
?
λ (from the Chi-Square probabilities)

where λ is the largest eigenvalue of P η. This confidence ellipse defines the region
that contains 99% of all samples that can be drawn from the Gaussian distribution.
We take a circle (a sphere in 3D) with radius σ99% as representative of the robot
occupancy. It will vary with the pose uncertainty and will be incorporated in the
planner for ensuring robust collision-free paths.

Now, let us include the position uncertainty in the visual measurements.

8.4.2.1 Unicycle case

A visual landmark at known position ηL “ pxL, yLq in the world frame (see Fig. 8.2)
is visible when it lies at a given range r from the camera at position η “ px, yq and
when its bearing angle φ lies within r´α,αs. One has

φ “ Arctan2
ˆ
y ´ yL
x ´ xL

˙
´ θ,

r “ }η ´ ηL}

(8.13a)

(8.13b)

The uncertainty Δφ P R related to the bearing angle φ can be obtained as a function
of the state uncertainty and is given by

Δφ “
ˆ Bφ

Bη
Bφ
B 9η

˙T
˜
Pη 0

0 P 9η

¸ ˆ Bφ
Bη

Bφ
B 9η

˙
(8.14)

where Pη and P 9η denote the position covariance matrix and the linear velocity co-
variance matrix respectively. The covariance matrices of the flat states are evaluated
with the Kalman filter along each valid discretized motion primitive. Applying the
same process for the range condition (with lower and upper bounds

¯
r and r̄), one

can ensure a (theoretical) 99% confidence on the perception if the following upper
bound conditions are satisfied at a given state

|φ| ` ?
9.21Δφ ă α

¯
r ă r ` ?

9.21Δr ă r̄

(8.15a)

(8.15b)

8.4.2.2 Quadrotor case

With reference to Fig. 8.6, in order to check that a landmark at known position rL

is visible at a given time instant, we check the following perception conditions on
angles β1 and β2 on both X-Z and Y-Z planes. On a given plane one has

βi “ arccos

ˆpp ´ rLq.li
}p ´ rL}

˙
, i “ 1, 2 (8.16)
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where p is the camera position in the world frame and li are given by

l1 “
˜
cosα ´ sinα

sinα cosα

¸
t, l2 “

˜
cosα sinα

´ sinα cosα

¸
t (8.17)

With g as the (constant) gravity acceleration and a as the robot acceleration in the
world frame one has t “ pa`gq{}a ` g}. Again due to uncertainty on its state (and
especially its pose) a landmark may not be perceived as expected at a given time
instant (see Fig. 8.5 and Fig. 8.7). Therefore, to guarantee robust visual perception
we extend conditions (8.16) with the uncertainty on the bearing angles βi.

(a) Without state uncertainty the
quadrotor state is known exactly, so
are the landmarks position in the
image.

(b) With state uncertainty the sys-
tem state is not known exactly.
This uncertainty is reflected in the
image plane (see Fig. 8.7).

Figure 8.5 – Simulated quadrotor and visual perception of a landmark on the ground at a
given time instant in the graph space.

Since the βi are function of position and acceleration, the bearing uncertainty
Δβ P R on a given plane can be computed as

Δβ “
ˆBβ

Bη
Bβ
B:η

˙T
˜
P η 0

0 P :η

¸ ˆBβ
Bη

Bβ
B:η

˙
(8.18)

where P :η is the acceleration covariance matrix. This way one can ensure a (theo-
retical) 99% confidence on the perception if the following upper bound conditions
are satisfied on both planes X-Z and Y-Z at a given state

|βi| ` ?
9.21Δβ ă 2α, i “ 1, 2 (8.19)

These conditions allow an exact and fast evaluation of the visibility and only rely
on the flat state. Moreover, it allows us to consider a realistic pyramid-shaped field
of view (since we do not plan over the yaw). The update step of the Kalman filter is
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therefore applied with the simulated measurements whenever conditions (8.19) are
met along the propagated motion primitives.

Figure 8.6 – The quadrotor in the vertical planes X-Z and Y-Z with ψ “ 0. For simplicity let
us assume that the robot COM p corresponds to the camera position. Having uncertainties
on the state affects the visual perception. To evaluate if a landmark (red blob) is visible
under the state uncertainty we check that condition (8.19) is satisfied on both planes.

8.5 Building the graph

In this section we show how to exploit some vertices to efficiently explore the free
space with the design of an heuristic function in order to build the graph. Tradition-
ally, distance-based heuristics are used but they are not very relevant for dynamic
or nonholonomic systems that cannot change their velocity, acceleration or orienta-
tion instantaneously. That is why a heuristic function more appropriate for second-
or higher-order systems has been proposed in [147], by taking smoothness into ac-
count. As well know, A* algorithms rely on two functions: the heuristic function
hps, s1q that encodes an (optimistic) approximation of the cost-to-go from a ver-
tex s to a goal vertex s1 and the function gpsq which represents the cost of vertex
s. Without a heuristic, A* is equivalent to a Dijkstra search, but encoding some
theoretic information into the heuristic function can greatly reduce the number of
expansions in favouring exploration toward promising directions/areas. We use the
heuristic function proposed in [147] that originates from the resolution of Pontrya-
gin’s minimum principle and invite the reader to refer to the latter paper for more
information. This function now encodes the “effort” required to connect two states
given the considered control input (e.g., velocity, acceleration or jerk) and is used
to select vertices leading to the exploration toward regions with minimal energy
in order to encourage smooth trajectories. The cost of an edge itself is gpsq “ τ

because we want to minimize the time. We propose a bi-directional A* algorithm
that builds two graphs G1 and G2. G1 starts at the initial state s0 and G2 starts
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(a) A landmark on the ground perceived
in the image plane without state uncer-
tainty.

(b) Possible landmark positions in the
image plane due to state uncertainty on
a quadrotor.

(c) If the green 3-sigma ellipse is fully contained in the
field of view, the landmark is guaranteed at 99% to be
visible at a given time instant (in theory).

Figure 8.7 – Effect of state uncertainty on the visual perception for the quadrotor case.
If the robot is asked to follow a given path, due to state uncertainty a visual landmark
may not be perceived as expected (Fig. 8.7b) but will lie in a given probabilistic region
(Fig. 8.7c) whose size is defined by a given confidence level which is related to the Gaussian
distribution.
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at the final state sN . Both graphs will be propagated and connected to return full
trajectories from sinit to sgoal.

Designing an efficient space exploration is tedious when complex tasks are in-
volved and should not rely on a too strong a priori. Namely, in our case, the search
should not be biased towards the goal since it may not collect sufficient visual cues
from the landmarks to satisfy (8.12d). When multiple goals are present one may
bias the search towards these goals, here, the landmarks. However, ensuring conver-
gence to the final goal is not straightforward, especially for dynamic systems with
perception goals. In the end, we choose to not rely on any exploration a priori to be
able to deal with any environment and landmark configurations (provided a solution
exists). We will rely instead on random-based exploration by smoothly propagating
vertices toward states sampled randomly in the free space. Algorithm 1 runs for
a given number of iterations I and is detailed below. Note that the uncertainty is
only propagated on graph G1 with the Kalman filter since graph G2 is grown back-
wards (i.e., from the final goal sgoal towards the initial state sinit). With reference
to Fig. 8.9, the algorithm procedures are detailed below:

Sample: returns an independent and uniformly distributed random sample ver-
tex srand in the free space.

NearVertices: given a sample vertex srand, a graph G “ pV,Eq and a ball
region Br of a given radius ρ, the set of near vertices is defined as Nearps,G, ρq “
ts P V : dps, srandq ď ρu where d is the Euclidean distance and ρ “ γplogpKq{Kq1{q

is the radius for expansion with K is the number of vertices and q is the space
dimension. The ball radius helps capturing vertices when the graph is hollow and
shrinks with the number of vertices to reduce the computation time. We use a
constant radius γc for finding connections candidates (see procedure ConnectG).

GetSortedList : given a list of vertices V and a goal s1, this function returns a
list Ls of the sorted vertices s P V in increasing heuristic cost hps, s1q.

ChooseBestParent : the vertex with lowest h cost from a list of vertices is chosen
for expansion. We seek to find the parent vertex that will expand vertices towards
the given goal with the lowest energy (highest smoothness).

BestVertices: when no near vertices are found in Br, this function finds the
vertex s in graph G1 with lowest cost hps, sN q and analogously for G2 with hps, s0q.

ExtendVertex : propagates a motion primitive from a given parent vertex. This
function includes the belief state propagation with the Kalman filter and collision
and feasibility tests.

InsertVertices: valid vertices/edges are added to the graph and marked as chil-
dren from their parent vertex.

InsertVertex : this function inserts a single vertex/edge pair.
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Algorithm 1 Bi-A*

1: gps1bestq Ð 8, gps2bestq Ð 8
2: for i Ð 1 to I do
3: srand Ð Samplepq
4: pX1

near, X
2
nearq Ð NearV erticespsrand,G1,G2, ρq

5: pX1
c , X

2
c q Ð NearV erticespsrand,G1,G2, γcq

6: if X1
c ‰ and X2

c ‰ then
7: ps1new, s2newq Ð ConnectGpX1

c , X
2
c q

8: pP η
N , collq Ð BackPropps2new, Ps1new

,G2q
9: if maxteigpP η

N qu ď λ̄ and !coll
10: if gps1newq ` gps2newq ă gps1bestq ` gps2bestq
11: s1best “ s1new, s

2
best “ s2new

12: end if
13: if X1

near ‰ then
14: Ls Ð GetSortedListpX1

nearq
15: s1̊ Ð ChooseBestParentpLs, sN q
16: Lc

1 Ð ExtendV ertexps1̊q
17: G1 Ð InsertV erticespLc

1q
18: end if
19: if X2

near ‰ then
20: Ls Ð GetSortedListpX2

nearq
21: s2̊ Ð ChooseBestParentpLs, s0q
22: Lc

2 Ð ExtendV ertexps2̊q
23: G2 Ð InsertV erticespLc

2q
24: end if
25: if X1

near “ and X2
near “ then

26: ps1̊ , s2̊q Ð BestV erticespG1,G2q
27: Lc

1 Ð ExtendV ertexps1̊q
28: G1 Ð InsertV erticespLc

1q
29: Lc

2 Ð ExtendV ertexps2̊q
30: G2 Ð InsertV erticespLc

2q
31: end if
32: end forreturn s1best, s

2
best

121



8. Toward visual constraints relaxation: planning under
intermittent measurements

ConnectG : this procedure is triggered whenever vertices from both graphs are
found in the procedure NearVertices within a second ball region of constant radius
γc centered on srand. Indeed, we seek pairs of vertices in a vicinity region to per-
form connection tests (see Algorithm 2) using the function solveQP presented in
Sect. 8.6. Note that γc can for instance, be chosen as the “spatial resolution” of
motion primitives or larger to find more connections.

BackProp: given a vertex s0 with a covariance matrix P 0 from graph G1, once
a connection is found we back-propagate the state uncertainty through G2 by con-
sidering the sampled states between s0 and the goal sN (see Fig. 8.9).

Algorithm 1 aims at finding the most direct trajectory towards the goal, espe-
cially in case of low process noise and tries to mimic a couple of nice properties of
classic graph-search planners, namely: i) expansion towards unexplored regions; ii)
probabilistic completeness due to a uniform random walk ; iii) asymptotic optimality.

(a) I “ 100, G1: 271 vertices. G2: 187 vertices (b) I “ 100, G1: 2427 vertices. G2: 2302
vertices

(c) I “ 100, G1: 5774 vertices. G2: 4081 ver-
tices

Figure 8.8 – Planner performance in exploring a 2D environment. When the graphs are
hollow and no near vertices are found, both graphs propagate vertices toward each other
(Fig. 8.8a). This helps finding a direct path that may be the optimal solution in case of
low process noise. G2 extends fewer vertices in this environment because of the obstacles
that are slightly cutting down its expansion. One can see that the free space is explored in
a reasonable uniform way.
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Algorithm 2 ConnectG
Input: X1

c , X
2
c

1: success “ false
2: for s1 in X1

c do
3: for s2 in X2

c do
4: if hps1, s2q ă h̄ then
5: success Ð solveQP ps1, s2q
6: if success “ true then
7: return ps1, s2q
8: end if
9: end if

10: end for
11: end for
12: return 0

Figure 8.9 – 2D case: Inside a ball of radius ρ centered at srand (black dot), picture 1 shows
how the vertex with lowest cost h is chosen for expansion (in cyan). The black arrows
represent the vertex velocity vector. If vertices from graph G1 (in green) and from graph G2

(in yellow) are found inside a ball region of fixed radius γc, connections trials are performed
except for connections with a high h cost (orange lines). Note that we consider the opposite
velocity (and higher derivatives) vectors for vertices coming from graph G2. If a candidate
connection is found (blue line) the uncertainty is propagated along G2 starting from s1new
(picture 3). If no collisions are found between the obstacles (blue box) and the uncertain
robot occupancy (turquoise ellipses) and if the final constraint (8.12d) is satisfied on P η

N , a
solution trajectory is reconstructed from the initial vertex s0 (green dot) to the goal vertex
sN (yellow dot) and its total cost is evaluated.
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Algorithm 2 performs connection trials on the vertices in X1
c , X

2
c if their heuris-

tic cost is lower than a given value h̄. This value can be chosen off-line to skip
connections that may require “too much” energy (see Fig. 8.10). Usually, graph-

Figure 8.10 – Computation of the heuristic cost hps1, s2q between multiple vertices s1 and
a goal vertex s2 at the origin. The arrows represent the vertices linear velocity. As we can
see the vertex with the lowest cost is the one whose velocity vector is the most “aligned”
with the goal velocity vector. Vertices that are closer to the goal have a higher cost.

search planners for dynamic systems involve two steps. First, an optimal path is
found ignoring the system dynamics. Then a refining step is performed by optimiz-
ing over a selection of state keyframes along the path. The resulting trajectory is
smoothed and more adapted to dynamic systems (see e.g., [147], [33]). However,
the shape of this trajectory may strongly differ from the original path (e.g., in [33]).
In our context, visual perception cannot be guaranteed with such a technique and
it does not take into account the uncertainty in collision avoidance. A key role of
the bi-directional planner used in this work is that if a connection is made, the
initial and final states are exactly connected, which is generally not the case in the
graph-search planners literature. For instance, [147] stops the search when a vertex
becomes close enough to the goal state sgoal, a condition that may not be met if
not properly tuned. In this work we aim instead at finding the optimal trajectory
that will be directly tracked by the real system without additional refining steps.

Next section details how the connection between the two graphs is performed in
an optimal and efficient way.

8.6 Connecting the graphs

Connecting the two graphs is a critical step. One has to ensure state continuity
between two candidate vertices s1 P V1 and s2 P V2 in a given time Tc. This
problem is known as the Boundary Value Problem (BVP). Moreover, one wants
to ensure feasibility as well and connections have to be evaluated quickly since the
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process may be called many times. We propose an optimal formulation to the BVP
that can be solved as a single convex quadratic program. We exploit the convex-hull
property of B-splines in order to impose constraints directly on the curve control
points to alleviate the solver.

8.6.1 Solving the constrained BVP

The problem we want to solve is the following

Problem 13 Find s,ν such that:

min
s,ν

ż Tc

0
}νpτq}2dτ

s.t. sp0q “ s1,

spTcq “ s2,

p 9ηpτq, ...,ηprqpτqq P X free @τ P r0, Tcs

(8.20a)

(8.20b)

(8.20c)

(8.20d)

We penalize the input norm to obtain a smooth connection trajectory. For the
quadrotor one minimizes the jerk norm (i.e., r “ 3). Now, we parameterize the flat
state s as B-splines to turn the infinite dimensional problem to a finite one with
a limited number of coefficients that can be solved numerically. A trajectory s is
parameterized as

sptq “
i“nÿ

i“0

Bi,ppτqP , @τ P r0, T s (8.21)

where Bi is a polynomial basis of degree p (of order k “ p ` 1) and P P Rn`1

represents the set of coefficients.

Considering constraints on the real system inputs would require a nonlinear
solver. We choose to simplify the problem for the unicycle case by replacing these
constraints with bounds on the linear velocity 9η and acceleration :η.

8.6.2 A linear quadratic program based on B-splines

The reason we use B-splines is for their convex hull property that will allow us to
write linear inequality constraints directly function of the B-spline control points.
A similar approach has been used in [214] for manipulators.

These techniques are attractive and mostly adopted because of the convex hull
property of the B-spline parametrization, which states that a spline is always con-
tained in the convex hull of its B-spline coefficients [126]. This way, spline con-
straints can be relaxed to constraints on the B-spline coefficients and we are ensured
that the B-spline curve will satisfy the same constraints. Replacing semi-infinite sets
of constraints by finite, yet conservative sets is called a B-spline relaxation. B-spline
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relaxations can only be applied on splines, meaning that all constraints must be writ-
ten as derivatives, antiderivatives, or polynomials of splines. Therefore, a nonlinear
change of variables needs to be adopted to transform all constraints into bounds on
spline functions [215] The major advantage is that B-spline relaxations avoid time
gridding of the constraints, while they guarantee constraint satisfaction at all times.
The disadvantage is that B-spline relaxations also introduce some conservatism.
This conservatism can be reduced by choosing a higher dimensional basis, at the
cost of introducing extra constraints [214]. This conservatism stems from the dis-
tance between the control polygon and the spline itself. Knot insertion is generally
the preferred technique, since, in this way, the conservatism reduces quadratically
with the number of constraints, while this decrease is only linear when using degree
elevation [216]. In addition, knot insertion allows refining the control polygon only
locally, whereas degree elevation always affects the entire control polygon. Since
using a higher dimensional basis translates into more constraints, it is necessary to
make a trade-off between conservatism and computational complexity (number of
constraints).

For nonlinear systems, one can resort to convex approximations of the feasible
set [217, 140]. Inevitably, this method introduces conservatism in the problem.
Moreover, some feasible sets do not admit such a polytopic approximation, e.g.
obstacle avoidance constraints.

Constraints (8.20d) can be mapped in the space of the control points. Let us
differentiate the B-spline of degree p defined on the clamped knot vector of size
n ` k ` 1 such that ui ď ui`1, i “ 0, . . . , n ´ k

U “ p0, . . . , 0loomoon
p`1

, up`1, . . . , uk´p´1, 1, . . . , 1loomoon
p`1

q (8.22)

The first derivative can be expressed as a function of the control points P with

s
1puq “ p

i“n´1ÿ

i“0

Bi`1,p´1ptq P i`1 ´ P i

T pui`p`1 ´ ui`1q (8.23)

Let us define the vector of new coefficients

Qi “ p
P i`1 ´ P i

T pui`p`1 ´ ui`1q , @i P v0, n ´ 1w (8.24)

For the second derivative one has

s
2puq “

i“n´2ÿ

i“0

Bi`2,p´2ptqRi (8.25)

where Ri are the control points of the second derivative. One has

Ri “ pp ´ 1q Qi`1 ´ Qi

T pui`p`1 ´ ui`2q , @i P v0, n ´ 2w (8.26)
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Now we can express Q and R as functions of P with

Q “ AQP , R “ ARQ “ ARAQP (8.27)

where matrix AQ P Rnˆpn`1q and AR P Rpn´1qˆn. Similarly, control points of the
third derivative are given by

Si “ pp ´ 2q Ri`1 ´ Ri

T pui`p`1 ´ ui`3q , @i P v0, n ´ 3w (8.28)

Now, one can easily set semi-infinite bounds on the derivatives coefficients Q, R
and S that are linear in P . All the constraints can be rewritten as functions of the
control points P . One wants to solve the following problem on each axis.

Problem 14 Find P such that:

min
P

P T pBT
r BrqP

s.t.
@
P , Bjp0qD “ η

piq
1 , @pi, jq P v0, r ´ 1w2

@
P , BjpTcq

D “ η
piq
2 , @pi, jq P v0, r ´ 1w2

´ v̄ ď Qi ď v̄, @i P v0, n ´ 1w
´ ā ď Ri ď ā, @i P v0, n ´ 2w
´ j̄ ď Si ď j̄ @i P v0, n ´ 3w

(8.29a)

(8.29b)

(8.29c)

(8.29d)

(8.29e)

(8.29f)

where Br is the r-th derivative of the B-spline basis function. We recall that r “ 3

for the case of a quadrotor and we minimize the jerk.

The problem can be written in the compact form of a quadratic program with

Problem 15 Find P such that:

min
P

1

2
P THP ` fTP

s.t. AP ď b,

AeqP “ beq

lb ď P ď ub

(8.30a)

(8.30b)

(8.30c)

(8.30d)

where H P Rnˆn denotes a positive (semi-)definite Hessian matrix, f P Rn is the
gradient vector (null here), A P Rmˆn is the constraint matrix and Aeq P Rrˆn is
the equality constraint matrix. The upper and lower bounds on the constraints are
defined by the vectors b P Rm and beq P Rr and bounds on the decision variables
can be set with lb P Rn and ub P Rn but will be null in our case. Here we will not
impose bounds on P , i.e, (8.30d) is not considered.

Problem 14 is easily solved using qpOASES [218] that implements an online
active set strategy. Note that the connection time Tc is fixed and we found that
choosing Tc “ τ generates a reasonable amount of successful connections.
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8.7 Simulation and Experimental results

In this section we show some results from different scenarios for the 3D quadro-
tor. Figure 8.11 shows two optimal trajectories and Fig. 8.12 shows the constrained
derivatives along a connection considering B-splines of order 4. With the given de-
gree we can see that the curves (e.g., the jerks) are not penalized by conservatism.
Finally, Fig. 8.13 shows the tracking performance for a simulated quadrotor in V-
Rep using controller [143]. We can see that despite considering the third-integrator
model approximation we can follow the optimal trajectory quite accurately regard-
ing the attitude tracking.

(a) An optimal trajectory providing robust colli-
sion avoidance and guaranteed visual perception.

(b) In this case the quadrotor is able to increase
its height to compensate for the rotation of the
camera and to enlarge its field of view.

Figure 8.11 – Two optimal trajectories for the quadrotor with τ “ 0.35s and j̄ “ 10m.s´3

in a 12x8x5m3 operating region considering four visual landmarks (red dots). The initial
and final states are chosen such that no landmark is visible so the quadrotor starts with
some uncertainty and is able to reach the goal with a bounded uncertainty by observing the
landmarks during its motion. Note that the motion primitives are not represented.

For the experiment illustrated in this section we used a MK-Quadro equipped
with a front-looking camera with a field of view of 45˝ tracking the AprilTags
with ViSP [219]. The setup includes an on-board ODROID-XU4 Linux computer
running ROS and the TeleKyb framework for controlling the quadrotor. An optimal
trajectory computed off-line using a jerk input j̄ “ 4m.s´3 is tracked by the system
(see Fig. 8.14) in presence of two obstacles (blue boxes) and four landmarks. Finally,
Problem 14 is solved within 5 ms for the 3D quadrotor after about 90 SQP iterations
and the planner is able to find an optimal trajectory in 5 to 10 seconds.

The related video1 shows 6 different solution trajectories tracked by the quadro-
tor. Apart from environment differences, several solutions may be found with very

1https://www.youtube.com/watch?v=VD3WyA1wEaQ
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Figure 8.12 – Constrained velocities, accelerations and jerks along the connection trajectory
with bounds v̄ “ 2m.s´1, ā “ 4m.s´2 and j̄ “ 10m.s´3. The small squares represent the
B-spline control points.

Figure 8.13 – Plots of the attitude tracking. The dashed lines are the command values while
the solid lines show the actual robot attitude in V-Rep.

different characteristics and shape. This is explained by the random-based search
of the algorithm and by the non-convex nature of the optimal program driving the
solutions to local minima. The fifth trajectory Fig. 8.11b shows an interesting be-
haviour, the quadrotor flies above the two obstacles by increasing its height. This
way, the field of view is extended and sufficient visual measurements can be col-
lected. Thus, the presented algorithm is able to generate this behaviour that we
depicted in the previous work [2]. Finally, we chose very low values for the process
and the measurement noise. The computed trajectory (the sixth one) actually re-
sembles to a minimum-time trajectory in the sense that the quadrotor flies directly
toward the goal state at a constant height without “passing” by the visual land-
marks. One can conclude that the proposed algorithm is able to generate consistent
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Figure 8.14 – Snapshots of the quadrotor during the experiment. The quadrotor is tracked
with a Vicon system and follows an optimal trajectory (in green) along which landmarks
(the AprilTags in orange) are visible on some portions. The lower right figure shows an
Apriltag tracked using ViSP when the quadrotor is at the configuration circled in red. The
evolution of the uncertainty is shown below after running the Kalman filter on the recorded
data and using the AprilTags detection. The landmark at the goal is not taken into account
in the planning and is was used to check that the quadrotor reaches its goal within the
expected confidence region.

solutions regarding the noise magnitude.

8.8 Summary and future directions

In this chapter we proposed to incorporate perception constraints in a graph-search
planner for planning minimum-time and feasible trajectories for flat dynamic sys-
tems. We believe that the optimization frameworks presented in the previous works
which rely on gradient-descent methods may not be adapted to the considered goals
in this section. They provided limited state space exploration and were not able
to generalize to the large environments considered in this work. The optimization
framework allows exact connection between a given initial and final states while en-
suring collision avoidance and bounded final uncertainty at the goal by accounting
for the state uncertainty at the planning stage. We considered visual measurements
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that are a function of the attitude and proposed an efficient optimal graph rewiring
by exploiting the convex-hull property of B-splines. Of course, other exteroceptive
sensors could be considered such as laser range finders or sonar arrays along with
more accurate measurement noise models. One could as well incorporate uncertain-
ties related to wheels skid and odometry bias in the unicycle case. The planner
success rate depends on the motion primitives parameters, the ball regions radius
and the maximal number of iterations. It could be possible to re-plan optimal
trajectories during motion and even consider dynamic obstacles for the unicycle
case. We assumed the position of the landmarks is known but it would be possible
to incorporate their position uncertainty in the planner. Finally, we believe the
triple-integrator approximation of the quadrotor dynamics could become closer to
a fourth-integrator model by having an additional noise in the current model. This
would give a more adequate representation of the real quadrotor dynamics which
would result in a more feasible trajectory.
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Chapter 9

Conclusion and future directions

In this last chapter, we wish to review the main theoretical and experimental results
achieved in the thesis and point out some issues that are still left open. Regard-
ing the latter, we also intend to indicate possible directions to follow for further
investigation and research.

9.1 Summary and contributions

The goal of this thesis was mainly to explore the generation of reactive trajectories
for a quadrotor subject to visibility constraints and inputs constraints. The consid-
ered system consists in a regular quadrotor equipped with a fixed camera (either
down- or front-looking). Since we focused on exploiting the potential of a quadro-
tor in terms of agility to perform aggressive motions, the effect of underactuation
could not be ignored, especially because visual perception is very sensitive to the
inherent rotation motions. Moreover, we assumed visual feedback played crucial
roles either for state estimation or for tracking a moving target. Thus, a collec-
tion of visual constraints were formulated in this thesis such as visibility constraints
(Sect. 6.7) followed by occlusion avoidance constraints (Sect. 7.6) encapsulated in
an optimization framework.

In Sect. 6.7 we proposed re-planning strategies inspired from Model Predictive
Control to generate minimum-time and feasible trajectories while keeping a set of
visual features in the field of view of the camera. We proposed a hot-start algo-
rithm for building initial guess trajectories by exploiting properties of B-splines
curves. We were able to efficiently re-plan optimal trajectories at a rate of 30Hz.
This preliminary work led to the resolution of more complex problems in Sect. 7.6
for tackling collisions and occlusions avoidance in real-time. We proposed a multi-
objective nonlinear program, first for tracking a free moving target in 3D space with
a front-looking camera then for avoiding occlusions generated by spherical obsta-
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cles in the environment considering a down-looking camera. We dealt with sudden
occlusions and critical camera/target configurations that would lead to a failure of
the solver in principle by adding a slack variable to the nonlinear program that
acts as a damper to relax the occlusions avoidance constraints. Such a parameter
helped improving the continuity of the solution and therefore the stability of mo-
tion. We showed that tuning the optimization programs do not require fine analysis
(although it may be interesting to show a sensitivity analysis) and that we are able
to manage conflicting goals to exhibit the desired behaviours. Finally, we succeeded
in computing optimal trajectories in real-time by improving the evaluation of the
gradients necessary for the SQP solver with the use of complex-step differentiation.
With this method we are able to obtain a lightweight evaluation of the complex
gradients with a near analytic precision. We showed that the hot-start algorithm
definitely contributed in the success of the re-planning framework.

In Chapt. 8 we addressed the problem of planning under intermittent visual
measurements provided by visual landmarks scattered in the environment. The
objective was to relax the vision-based constraints developed in the previous con-
tributions which may highly restrict the robot motions to limited operating spaces.
We proposed a graph-search algorithm that takes state and measurement uncer-
tainties into account to find robust and collision-free trajectories that satisfy a con-
fidence level at the goal state. In contrast to several works we searched for robust
minimum-time paths ensuring some confidence level instead of paths with minimal
uncertainty. This strategy may make more sense depending on the configuration
of the obstacles and the landmarks in the environment. Indeed, if the system and
the sensors are well known, the uncertainty is low, thus one may navigate almost
directly to the goal and arrive with a limited state uncertainty. On the other hand,
if the system is subject to large uncertainties in a complex environment, one also
seeks the most direct path connecting the goal state by collecting a sufficient (and
ideally a minimal) amount of visual measurements. The proposed algorithm grows
two graphs based on a A* variant which are connected smoothly to build a full
feasible trajectory for the considered flat dynamic systems. The motivation was to
improve the rate of convergence and to plan a trajectory that connects the initial
and final states exactly, which is not often the case in the literature. To the best
of our knowledge, this is the first time minimum-time trajectories are generated
in a graph-search planner while accounting for uncertainty in the visual percep-
tion which is affected by the robot attitude. We demonstrated the utility of the
algorithm by considering a unicycle and a 3D quadrotor.

In this thesis we extensively used properties of the differential flatness both for
trajectory planning and state estimation. We used a derivative-free Kalman filter
for the latter in Chapt. 8. This technique contributed in improving the fastness
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of the algorithm although is it not suited for real-time planning (at least for the
quadrotor case). Differential flatness played a significant role in simplifying tra-
jectory generation to meet real-time planning and for the propagation of feasible
motion primitives in Chapt. 8.

Properties of the B-spline curves were also largely exploited in the presented
contributions. In Sect. 6.7 we took advantage of the properties of compact form and
smoothness along with powerful manipulation algorithms to instantly build initial
guess trajectories. Then, such a parametrization allowed the use of a reasonable
number of control points to satisfy the considered constraints. Finally, in Chapt. 8
we exploited the convex hull property to develop a quadratic program for smoothly
connecting the two graphs with B-spline curves while satisfying linear inequality
constraints.

9.2 Open issues and future perspectives

However, even if our approaches presented several promising results it also high-
lighted some limitations both theoretical and practical.

One limitation of our work is that we relied on an external motion-capture Vicon
system providing accurate state estimates at a high frequency. In our works, we
assumed that navigation relies on a state estimation algorithm which is updated
with the visual measurements extracted from computer vision. The design of the
image processing algorithms was beyond the scope of this thesis. Although, it would
be relatively easy to implement them using ViSP.

In order to fully prove the presented works, we believe experimental results
should be conducted by relying on onboard sensors (a single camera and an inertial
measurement unit) and computers for detecting, localizing, and tracking moving
objects. As pointed out in Chapt. 8, motion blur may impair computer vision
algorithms. One possible solution could be to reduce the system aggressiveness or
to directly incorporate motion blur as an additional noise affecting the perception.
Another approach could be the minimization of motion blur at the planning state
(e.g., by minimizing the features velocity in the image plane or by penalizing the
angular rates of the quadrotor). As explained in the experimental sections, we
equipped our robot with an ODROID-XU4. However, we think that the new, and
more powerful, NVIDIA JETSON TX2 module could be a more reasonable solution
for a complete onboard implementation of the vision, planning and state estimation
modules.

Although [160] warned that finding images features as flat outputs might be
impossible if one considers the full dynamics of the 3D quadrotor we tried to de-
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rive a differential flat mapping between the state space and the image space but
the equations become very complex (so would be the constraints on the inputs)
if one considers the rotation matrix. Furthermore, it would require knowledge of
high-order derivatives that are not directly measurable. Maybe partial differential
flatness (as in e.g., [220]) might bring a weaker but elegant mapping of the dynamics
in the image plane.

Now, further improvements and extensions could be considered in Sect. 7.6. We
only dealt with spherical obstacles, but more complex shapes could be considered.
One possibility could be to find the (minimal) enclosing sphere (i.e., the smallest
sphere containing the object). For elongated objects such as bars, one could cover
the object main axis with a finite number of spheres as it is done sometimes for
collision avoidance with robot manipulators (a technique known as “sphere swept
models” see e.g., [221]). However, dealing with dynamic obstacles seems quite chal-
lenging. To do so, vision would play a major role in estimating the object’s position.
Thus, as always, there is a trade-off between conservatism/accuracy and ease of
computation.

Finally, more accurate noise models could replace the current ones in Chapt. 8
without adding an excessive burden to the computing. Thus, conservatism could
be reduced and more precise trajectories could be found.

9.3 Final thoughts

Aerial navigation has received considerable attention over the last 15 years. Very
powerful and efficient forms of optimal planning methods have emerged to tackle
more complex scenarios and environments involving obstacles or additional moving
parts that traditional controllers were not able to address. In 2011, [1] demonstrated
the ability of optimization techniques to design feasible and high-speed flight plans
for quadrotors for passing through obstacles with substantial pitch and roll angles.
The presented strategy inspired many works to study aggressive motions, feasibility
and re-planning strategies. Six years later, [24] was able to reproduce such scenarios
in a fully autonomous fashion by re-planning optimal trajectories using vision as
principal feedback. This work merges planning and vision and proved that active
vision is definitely a key to the future of aerial navigation especially associated
with agile manoeuvres. Moreover, since deep-learning has handily surpassed every
existing computer vision techniques for tracking, detecting and localizing, it has
been very seriously considered in robot control and planning. Now, deep-learning
constitutes the state-of-the-art approach across computer vision, audio, and natural
language processing and is largely adopted and studied by the research community.
Therefore deep-learning is gaining in maturity exponentially and is even about to
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replace the action of many existing complex controllers. The reason is not especially
because of the recent theoretical improvements made in the field by mainly because
of the impressive fastness of today’s computers. Indeed, Moore’s law stating that
the number of transistors in an integrated circuit doubles about every two years is
coming to an end (mainly because of heat exchange and electronic disturbances due
to proximity of circuits). However, the power of computers keeps growing due to
parallelization of processors and the use of graphics processing units (GPU). Now,
robots are even able to efficiently develop robust and complex flight plans by learning
from their “mistakes” (even from crashes [222]). Besides, learning can be accelerated
by using simulation data. If properly done, it can save a considerable amount of
time and of course avoid tedious experimental setups and replacements of spare
parts. However, such techniques are expensive since they require a considerable
computational power which is not always affordable. Although the strength of deep-
learning is its ability to generalize and adapt to new situations, a few aspects remain
unclear. We are not yet able to prove its robustness, stability and convergence,
central criteria that might refrain its adoption in industry especially at the control
level. Moreover, huge data sets are needed and may be difficult to obtain depending
on the targeted task. Besides, it is known that slightly altering the input data (e.g.,
changing a few pixels in the input image) of a well -trained neural network can lead
to absurd outputs. Interpretability in deep learning referring to understanding why
a system makes a certain decision is a hot topic and an open problem.

For these reasons, more interpretable techniques such as model-based and an-
alytic control techniques which rely on a long history of research developments
will still play a major role in the future. Note that the hidden process of pat-
terns generation in deep-learning has already been modelled to replicate some of
its properties to some extent. For instance, a visual servoing task is proposed in
[223] that eliminates the need for detecting and tracking image features by using
photometric Gaussian mixtures. This strategy subsamples the images and extracts
photometric data at increasing levels of precision until convergence. This technique
mimics deep-learning and is able to drastically improve the convergence domain of
a classical visual servoing task and to reduce the computation expense. Finally, new
computers and sensors are being developed and will give the possibility to address
even more complex scenarios. Even-based cameras seem to constitute promising
elements of the future sensory channel of aerial robots and any system involving
fast camera motions.

To conclude, this thesis tackled and revealed challenging problems that are cur-
rently addressed actively by the research community. A key aspect to the success
of future autonomous and complex navigation seems to lie in coupling of trajec-
tory planning and the considered tasks especially including vision-based perception
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objectives. Algorithms requiring extensive computation loads can now be easily
deployed on on-board computers to generate safe and robust motions on-line for
reactively responding to changes in the environments.
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Appendix A

The proof of differential flatness
for the quadrotor

In this appendix we give the differential flatness transformation and its inverse for
the quadrotor.

A.1 Flat transformation

Defining

t :“ :rB ` ge3 (A.1)

and considering u1 is always positive, from (2.14) we obtain the direction of the
robot vertical axis

zB “ t

}t} (A.2)

and also the total thrust

u1 “ m}t} (A.3)

Given the yaw angle ψ “ σ4 we can define the vector:

yB :“ Rzpψqe2 “ p´ sinpψq cospψq 0qT (A.4)

and from (2.2) it is easy to verity that:

yC ˆ zB “ cospϕqxB (A.5)

Provided that cospϕq ą 0, we are the able to compute xB as

xB “ yC ˆ zB
}yC ˆ zB} :“ x̃B

}x̃B} (A.6)

The last axis of the frame B is simply given by

yB “ zB ˆ xB (A.7)
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A. The proof of differential flatness for the quadrotor

and the rotation matrix describing the full 3D orientation of the robot is

WRB “ pxB yB zBqT (A.8)

Now we take the first derivative of (2.14)

m 9aB “ 9u1 ˆ zB ` ωBW ˆ u1zB (A.9)

Projecting the equation along zB we obtain

9u1 “ mzT
B 9aB (A.10)

We can now substitute 9u1 and u1 back in (A.9) getting

ωBW ˆ zB “ 1

}t}r 9aB ´ pzT
B 9aBqzBs

“ 1

}t}pI ´ zBzT
Bq 9aB :“ h

(A.11a)

(A.11b)

We assumed in (2.5) that ωBW has components ωx,ωy and ωz in the body frame,
i.e.

ωBW “ ωxxB ` ωyyB ` ωzzB (A.12)

then

h “ pωxxB ` ωyyB ` ωzzBq ˆ zB “ ´ωxyB ` ωyxB (A.13)

and hence

ωx “ ´hTyB

ωy “ hTxB

(A.14a)

(A.14b)

The third component ωz is found by considering that from (2.4)

ωz “ yT
B 9xB (A.15)

and

9xB “ pI ´ xBxT
Bq 9̃xB››› 9̃xB

›››
(A.16)

Then, since yT
BxB “ 0, we can conclude that

ωz “ yT
B

9̃xB
}x̃B} “ ỹB

}x̃B}p´xC ˆ 9ψzB ` yC ˆ hq

“ 1

}x̃B}rxT
C pyB ˆ 9ψzBq ´ yT

C pyB ˆ hqs

“ 1

}x̃B}pxT
CxB 9ψ ` yT

C zBωyq

(A.17a)

(A.17b)

(A.17c)
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A.1. Flat transformation

Once the values of ωx,ωy and ωz are known we are able to compute ωBW as:

ωBW “ WRB

¨
˚̋
ωx

ωy

ωz

˛
‹‚ (A.18)

To calculate the angular acceleration B 9ωBW we operate in the same way. By deriving
(A.9) with respect to time we obtain:

m:aB “ :u1zB ` 2ωBW ˆ 9u1zB ` 9ωBW ˆ u1zB ` ωBW ˆ pωBW ˆ u1zBq (A.19)

Projecting this equation along zB we have:

mzBT :aB “ :u1 ` zBT rωBW ˆ pωBW ˆ u1zBqs (A.20)

from which we can isolate :u1:

:u1 “ mzBT r:aB ´ ωBW ˆ pωBW ˆ u1
m

zBqs (A.21)

Substituting :u1 in (A.19) and putting

δ :“ :aB ´ ωBW ˆ pωBW ˆ u1
m

zBq “ :aB ´ ωBW ˆ }t}h (A.22)

we obtain

9ωBW ˆ zB “ 1

u1
rmδ ´ mpzBTδqzB ´ 2ωBW ˆ 9u1zBs

“ 1

}t}rpI ´ zBzBT qδ ´ 2pzBT 9aBqhs :“ l

(A.23a)

(A.23b)

Now assuming that B 9ωBW “ pm n oqT , and hence

9ωBW “ mxB ` nyB ` ozB (A.24)

It is easy to verify that

m “ ´lTyB

n “ lTxB

(A.25a)

(A.25b)

The third component o is found by taking the derivative of (A.19)

o “ 1

}x̃B}pyT
CxB 9ψ2 ` xT

C 9xB 9ψ ` xT
CxB :ψ ´ xT

C zBωy
9ψ ` yT

Chωz ` yT
C zBnq

´ x̃T
B 9̃xB

}x̃B}3 pxT
CxB 9ψ ` yT

C zBωyq

“ 1

}x̃B}pxT
C 9xB 9ψ ` xT

CxB :ψ ´ xT
C zBωy

9ψ ` yT
Chωz ` yT

C zBn ´ xT
B 9̃xBωzq

(A.26a)

(A.26b)

(A.26c)
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A. The proof of differential flatness for the quadrotor

Since

yT
Ch “ ´ωBWT pyC ˆ zBq “ ´ωBWT x̃B “ ´}x̃B}ωx

x̃T
B 9̃xB “ xT

C pxB ˆ zB 9ψq ´ yT
C pxB ˆ hq “ yT

C zBωx ´ xT
C yB 9ψ

(A.27a)

(A.27b)

we have

o “ 1

}x̃B}rxT
C 9xB 9ψ ` xT

CxB :ψ ` xT
C yBωz

9ψ ´ xT
C zBωy

9ψ ` yT
C zBpn ´ ωxωzqs ´ ωxωy

(A.28)

Moreover from (2.4) we obtain

xT
B 9xB “ 0

yT
B 9xB “ ωz

zT
B 9xB “ ´ωy

(A.29a)

(A.29b)

(A.29c)

then
xT
C 9xB “ xT

C pyBωz ´ zBωyq (A.30)

and we conclude that

o “ 1

}x̃B}r2pxT
C yBωz ´ xT

C zBωyq 9ψ ` xT
CxB :ψ ` yT

C zBpn ´ ωxωzqs ´ ωxωy (A.31)

Finally, from Sect. 2.2 we compute the remaining inputs pu2, u3, u4q
As already said, the strength of differential flatness is to transform the system

such that the equations of motion for the flat output variables become trivial. Us-
ing the flat output and its derivatives, the system of (2.16) can be written in the
Brunovsky linear canonical form:

d4x

dt
“ v1

d4y

dt
“ v2

d4z

dt
“ v3

d2ψ

dt
“ v4

(A.32a)

(A.32b)

(A.32c)

(A.32d)

One can define a new system 9zptq “ Azptq ` Bvptq with new control inputs v with
v “ pv1, v2, v3, v4qT . With

A “

»
————–

A1 04ˆ4 04ˆ4 04ˆ2

04ˆ4 A1 04ˆ4 04ˆ2

04ˆ4 04ˆ4 A1 04ˆ2

02ˆ4 02ˆ4 02ˆ4 A2

fi
ffiffiffiffifl

(A.33)
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A.1. Flat transformation

B “

»
——————————————–

03ˆ4

B1

03ˆ4

B2

03ˆ4

B3

01ˆ4

B4

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

(A.34)

A1 “

»
—–
0 1 0 0

0 0 1 0

0 0 0 1

fi
ffifl ; A2 “

«
0 1

0 0

ff
(A.35)

B1 “
”
1 0 0 0

ı

B2 “
”
0 1 0 0

ı

B3 “
”
0 0 1 0

ı

B4 “
”
0 0 0 1

ı

(A.36a)

(A.36b)

(A.36c)

(A.36d)

(A.36e)

A.1.1 Inverse flat transformation

Now, we deal with the inverse problem of the one studied in Appendix A.1: given
the state of the robot in terms of rB, 9rB, WRB and BωBW and possibly the input
vector u, we want to compute the value of the flat outputs and their derivatives.
The position vector and its derivative are simply contained in the state and can
immediately be extracted from it. Using the equations reported at the beginning of
Sect. 2.2 we can compute the roll, pitch and yaw angles and their derivatives from
the state components WRB and BωBW . The linear acceleration is given by (2.14)

:rB “ u1
m

zB ´ ge3 (A.37)

If the thrust is fixed then :rB is univoquelly defined, otherwise any value satisfying
the equation

pI ´ zBzT
Bq:rB “ ´gpI ´ zBzT

Bqe3 (A.38)

is valid. In general we can split :rB into its components orthogonal and parallel to
the local axis zB

:rB “ ´gpI ´ zBzT
Bqe3 ` pu1 ´ gzT

Be3qzB (A.39)
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A. The proof of differential flatness for the quadrotor

and it is clear that the latter component can be chosen at will (inside an admissible
interval) since it is controlled by the total thrust input u1. Once we know :rB, we
define

f “ :rB ` ge3 (A.40)

and we compute the component of 9aB orthogonal to zB from (A.11) solving

pI ´ zBzT
Bq 9aB “ }f}WRB

B
ωBW ˆ zB (A.41)

The minimum norm solution is

9aB “ }f}WRB
B
ωBW ˆ zB (A.42)

If 9u1 is fixed, then we must add to 9aB a component along the zB axis such that
(A.10) is satisfied, i.e.,

9aB “ }f}WRB
B
ωBW ˆ zB ` 9u1

m
zB (A.43)

Assuming that the torque inputs u2, u3 and u4 are known we can compute the
angular acceleration in the body frame from Sect. 2.2

B 9ωBW “ J

»
—–

¨
˚̋
u2

u3

u4

˛
‹‚´B ωBW ˆ JBωBW

fi
ffifl (A.44)

and using (A.31) we compute :ψ as

:ψ “
po ` ωxωyq}x̃B} ´

”
2

`
xT
C yBωz ´ xT

C zBωy

˘ 9ψ ` yT
C zBpn ´ ωxωzq

ı

xT
CxB

(A.45)

where n and o are the last two components of B 9ωBW . We also compute the compo-
nent of δ orthogonal to zB by solving the system

pI ´ zBzT
Bqδ “ r}f} 9ωBW ` 2pzT

B 9aBqωBW s ˆ zB (A.46)

derived from (A.23). Again the minimum norm is:

δ “ “}f} 9ωBW ` 2pzT
B 9aBqωBW

‰ ˆ zB (A.47)

If 9u1 is not fixed and we chose 9aB according to (A.42), then the above equations
simplify to

pI ´ zBzT
Bqδ “ 9ωBW ˆ }f}zB (A.48)

and

δ “ 9ωBW ˆ }f}zB (A.49)
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A.1. Flat transformation

It is easy to demonstrate that if :u1 is also given, then in order to satisfy (A.21) we
have to add to δ a component along zB, i.e.,

δ “ r}f} 9ωBW ` 2pzT
B 9aBqωBW s ˆ zB ` :u1

m
zB (A.50)

Finally, inverting (A.22), we obtain

:aB “ δ ` ωBW ˆ pωBW ˆ }f}zBq (A.51)
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Appendix B

Parametrization using B-splines

An overview of B-splines, from which much of the following is derived, can be found
in De Boor [126].

B.1 B-spline curve properties

In this section we provide a complete list of B-spline properties. Several of them
are exploited in this thesis to derive algorithms to serve planning and optimization
purposes.

‚ Bi,ppuq is a piecewise polynomial of degree p;

‚ Bi,ppuq has a minimum local support, i.e. it is equal to zero outside the interval
rui, ui`p`1s.;

‚ Non negativity: the basis functions are positive;

‚ Geometry invariance: the B-spline basis function defines a partition of the
unity, i.e.

nÿ

i“0

Bi,ppsq “ 1 @u P ru0, uKs (B.1)

which assures the B-spline is invariant under affine transformations (transla-
tion, rotation or scaling) of its control points;

‚ Local support: the function Bi,k is zero outside rui, ui`ks. This means that the
change of a control point P i only modifies the spline in the interval rui, ui`k`1s

‚ the B-spline can be scaled or translated in time by scaling or translating the
knot vector. The derivatives will scale or translate accordingly, in particular
if Û “ λU then ûpiqptq “ upiqptq

λi ;
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B. Parametrization using B-splines

‚ convex hull : because the basis functions are positive and sum up to one, a
spline is always contained in the convex hull of its control polygon which is
the convex hull of the spline control points. This polygon corresponds to the
piecewise linear interpolation of the spline coefficients.

‚ the B-spline is of class C8 in the interior of every knot span and it is of class
Cp´m in a knot of multiplicity m;

‚ the number of knots K ` 1 is related to the number of control points n and
to the order of the curve k by K “ n ` k

‚ the derivative of a B-spline is also a B-spline of lower degree. Indeed

spiqptq “
n´1ÿ

i“1

Bi,pptqP u0 ď t ď uK (B.2)

and it is possible to efficiently compute the r-th order derivative of the basis
functions in terms of the basis functions of degree p ´ i defined on the same
knot vector U

B
prq
i,p puq “ p!

pp ´ rq!
rÿ

l“0

ar,lBi`1,k´rpuq (B.3)

where the coefficients ar,l are defined in a recursive way

a0,0 “ 1

ar,0 “ ar´1,0

ui`p´r`1 ´ ui

ar,i “ ar´1,l ´ ar´1,l´1

ui`p´r`l`1 ´ ui`l
, for l “ 1, ..., r ´ 1

ar,r “ ´ar´1,l´1

ui`p`1 ´ ui`1

(B.4a)

(B.4b)

(B.4c)

(B.4d)

Thanks to all these properties, B-splines have been widely used in different
applications such as computer graphics, data interpolation and trajectory planning,
e.g., [101], [224]. For an exhaustive description of the B-splines and their properties
see [225].

Figure B.1 shows basis functions of a B-spline curve. If the initial and final knots
have multiplicity k then the B-spline curve is clamped– the first and last control
points coincide with the endpoints of the curve, i.e. spu0q “ P 0 and spuKq “ P n.

B.2 Manipulation algorithms

B-spline curves benefit from very powerful algorithms such as evaluation, knot in-
sertion, knot removal and subdivision. A brief description of these algorithms are
given in this section.
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B.2. Manipulation algorithms

Figure B.1 – Basis functions of an degree four (order five) B-spline with 11 control points.
The knot vector contains 16 knots.

‚ evaluation algorithm: A B-spline curve can be evaluated at a parametric
point u using the De Boor algorithm given in De Boor and explained in
Appendix B.2.1.

‚ knot insertion algorithm: A knot can be inserted into a B-spline without
changing the geometry of the curve. The new curve is identical to the old one,
with a new basis.

The algorithm is known as Boehm’s algorithm. Inserting knots is generally
used for refining the curve at a specific region and corresponds to an order
elevation. As a result, the modified curve will get closer to its convex hull. If
a knot is inserted at u as many times as the order of the original B-spline, the
curve and the convex hull will coincide at u.

‚ knot removal algorithm: Knots can be removed for data reduction and curve
approximation.

‚ subdivision algorithm: A B-spline curve can be subdivided into multiple B-
splines without changing the shape of the original curve. A subdivision at a
specific parameter u can be performed either by applying the de Boor algo-
rithm at u or by inserting a knot p times at u, where p is the B-spline curve
degree. Such a process uses the De Boor algorithm and is detailed in the next
section.

B.2.1 The curve subdivision algorithm

This section details the procedure for subdividing a B-spline curve of degree p with
control points P “ pP0, P1, . . . , Pnq related to the knot vector U in two B-spline
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B. Parametrization using B-splines

curves without modifying the shape of the original curve. This algorithm is the core
of the hot-start algorithm presented in Sect. 6.4.2.

First, the function findspan finds the knot span ruk, uk`1q containing u (see
[226] p.80 for details on the algorithm). From the convex hull property (see the
previous section), spuq lies in the convex hull defined by the control points Pk “
pPk´p, Pk´p`1, . . . , Pkq. Now, we show the procedure for subdividing a B-spline
curve in two at the point u. Thus, the output of the algorithm consists in two
B-spline curves, one has the left curve defined by the pair tP L,ULu and the right
curve defined by the pair tPR,URu (see Fig. B.2). The algorithm is referred as the
De Boor algorithm and necessitates operations only on the subset Pk of the control
points P . The algorithm performs the insertion of the knot u p times. The shape of
the curve is unchanged but the two curve halfs become independent. Indeed, curves
of degree p corresponding to a knot vector with a knot u of multiplicity p have their
local support contained in either r0, us or ru, 1s. In Fig. B.3 we show how the control
points of the two curves are determined using the De Boor algorithm. In the end
one has P L “ pP0, P1,1, P2,2, . . . , Pp,pq with knot vector UL “ pr0, uq , uloomoon

p

q and

PR “ pPp,p, Pp´1,p, . . . , P1,p, Ppq with knot vector UR “ p uloomoon
p

, pu, 1sq.

Figure B.2 – Running the De Boor algorithm at the parametric point u. At the final knot
insertion, the last control point P3,3 “ u resulting in two independent left and right curves.

For our hot-start algorithm, we are interested in the right section since it corre-
sponds to the future trajectory that will be adapted and used as initial guess for the
next solver instance. Once the original curve (i.e., the previous solution) is split, we
need to add the potential missing knots until the length of UL matches the length
of U . Indeed,the length of UL varies with the position of u in the knot span. Such
an operation is done with the knot insertion algorithm detailed in [226] p.161. To
do so, control points are also added. Then, UL is rescaled between r0, 1s to finally
match the original uniform knot vector U . In the end, we have a new vector of
control points P̂ L of same length as P defining the new B-spline curve with the
pair

!
P̂ L,U

)
of degree p.
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B.2. Manipulation algorithms

Figure B.3 – Data flow diagram for the De Boor algorithm. The enveloppe contains the
control points of the two independent curves.
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Appendix C

Gradient evaluation

C.1 On derivatives evaluation

Since we rely on gradient descent optimization algorithm, the quality of the gradient
evaluation is central for driving the optimal solution towards a local minimum.
Moreover, we are concerned with its accuracy and computational burden.

Differentiation results are well-known for certain classes of functions (quadratic
functions for instance), but can be tricky for others. Although, analytic differenti-
ation can be computed for complex constraints or terms in the cost function, their
formulation generally inflates and may be tedious and subject to errors. Moreover,
when one needs to code them it may take a huge amount of space and memory.
Therefore, numerical solutions may become more attractive. In this section, we
discuss and compare the most popular numerical differentiation techniques: finite
difference, automatic differentiation, complex-step differentiation. Here, the main
concerns are the accuracy, the numerical stability and the computation load.

C.2 Gradient approximation techniques

The technique of differentiation was introduced independently by Isaac Newton
(1642´1727) and Gottfried Leibniz (1646´1716). Formally, the slope of the tangent
line at a point x is the limit of the ratio of the change in the function to the change
in the independent variable, as that change approaches 0, i.e.:

f
1pxq “ lim

ΔxÑ0

fpx ` Δxq ´ fpxq
Δx

(C.1)

The quotient in (C.1) is referred to as the Newton quotient or the difference quotient.
Another way of expressing the derivative of a function derives from its expansion
in a Taylor series, introduced by Brook Taylor in 1715. The Taylor series expresses
any analytic real or complex function at a real or complex number a by an infinite
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C. Gradient evaluation

sum over its derivative terms:

fpxq “ fpaq ` f
1paq
1!

px ´ aq ` f
2paq
2!

px ´ aq2 ` ... “
8ÿ

n“0

f pnqpaq
n!

px ´ aqn (C.2)

Hence, for an analytic function, differentiation is equivalent to evaluating terms of
a Taylor series.

C.2.1 Finite difference method

One method that is very commonly used is finite differencing. Although it is not
known for being particularly accurate or computationally efficient, the biggest ad-
vantage of this method lies in the fact that it is extremely easy to implement.

Taking a “ x`Δx in equation (C.2) and reordering we can obtain an expression
for the first order derivative similar to (C.1):

f
1pxq “ fpx ` Δxq ´ fpxq

Δx
` OpΔxq (C.3)

An expression like (C.3) is called a Finite Difference (FD) approximation, in this
case the first-order forward approximation for the first derivative, where the dif-
ferential step is taken in the positive direction. The symbol O expresses the error
related to truncating the Taylor series in the second order derivative. Fourth-order
accuracy can be achieved, of course at the price of increasing computational cost.
Whatever the order of accuracy, all FD approximations involve a truncation error
depending on the step size Δx. FD approximations are still the most classic, simple
and intuitive approaches to approximate derivatives of a function, and are widely
used in numerical schemes. However they suffer from numerical issues related to the
“step-size dilemma”, that is, the desire to choose a small step size to minimize trun-
cation error while avoiding the use of a step so small that errors due to subtractive
cancellation become dominant [122].

Working with arbitrarily small steps Δx is not feasible on a computer. FD
schemes, as the name suggests, involve some difference operator in the numerator,
and this difference itself is an intrinsic problem. For a given step size Δx, and
particularly for small steps, the differences of the values of our function at successive
evaluation points may become small, leading to a loss of significant digits as one
approaches machine precision, and eventually a value zero for the numerator and
the derivative when the computer fails to recognize the difference between the two
numbers. This problem is known as subtractive cancellation or term cancellation.
Since in numerical simulations we often have little hints on the actual shape of the
functions involved, subtractive cancellation is not straightforward to control, which
forces us into a conservative choice of step size at the expense of larger truncation
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C.2. Gradient approximation techniques

errors. On the other hand, large values of Δx may create instabilities and affect the
data quality. In the next section we introduce a less intuitive technique when Δx is
a complex number that provides better numerical accuracy and stability than FD.

C.2.2 Complex-step differentiation

Most naturally, derivatives of real functions are evaluated using real numbers, but
the less intuitive idea of using an imaginary number in real functions differentiation
has been shown capable of overcoming the term cancellation inherent to the ordinary
FD method, as well as reducing the associated approximation error. The use of
complex variables in numerical differentiation was introduced by [227], describing
a method for computing the derivatives of any analytic function. After falling
into oblivion for 20 years, this theory reappeared in the scientific literature when
Squire and Trapp [197] formally presented the Complex Step Method (CS) to obtain
a very simple expression for estimating the first and second derivatives of a real
function using a purely imaginary number i (i2 “ ´1). This estimate is suitable
for use in modern numerical computing and has been shown to be very accurate,
extremely robust and surprisingly easy to implement, while retaining a reasonable
computational cost. Further research on the subject has been carried out by [228]
for sensitivity analysis.

The CS method can be very easily derived from the Taylor series expansion of
fpx ` iΔxq, i.e.,

fpx ` iΔxq “ fpxq ` iΔxf
1pxq ` piΔxq2

2!
f

2pxq ` piΔxq3
3!

f
3pxq ` . . .

“
8ÿ

n“0

piΔxqn
n!

f pnqpxq

(C.4a)

(C.4b)

Taking the imaginary part on both sides and reordering we obtain the CS expression
for the first derivative found by [197]

f
1pxq “ �pfpx ` iΔxqq

Δx
` OpΔx2q (C.5)

Note that, �pfpxqq “ 0 because x is set to be a real number. Compared to (C.1) this
solution is not a function of differences, which ultimately provides better accuracy
than a standard finite difference. The second order term in the Taylor series expan-
sion of fpx ` iΔxq appears with a factor of i2, meaning that it is a real quantity.
Compared with (C.3) the truncation error is now of order Δx2, thus smaller.
An expression for the second order derivative can be found by taking the real part
of (C.4) and reordering,

f
2pxq “ 2pfpxq ´ �pfpx ` iΔxqqq

Δx2
` OpΔx2q (C.6)
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Using the Taylor series expansion of fpx ´ iΔxq, it can be verified that

Repfpx ` iΔxqq “ �pfpx ´ iΔxqq (C.7)

Therefore, (C.6) can be written as

f
2pxq “ 2pfpxq ´ �pfpx ´ iΔxqqq

Δx2
` OpΔx2q (C.8)

Equation (C.5) and (C.6) are the most basic equations that can be found using
(C.4). The numerical advantages of the CS method are noticeable: Equation (C.5)
actually shows a single term in the numerator rather than a difference, and hereby
circumvents the instability related to term cancellation inherent to all classic, real
valued FD approximations besides being more accurate. Equation (C.6) and (C.8)
allows to compute an approximation to the second derivative in a single step that
cannot be achieved by any FD approximation.

Generalizations to high order derivatives made by [229] and [230] were done by
converting the Taylor series into a Fourier series (Taylor expansion of fpx`Δxeiθq,
i.e.,

fpx ` Δxeiθq “ fpxq ` Δxeiθf
1pxq ` Δx2

2!
e2iθf

2pxq ` Δx3

3!
e3iθf

3pxq ` . . .

“
8ÿ

n“0

pΔxqn
n!

eniθf pnqpxq

(C.9a)

(C.9b)

In the expression (C.9) the imaginary step does not vanish with even powers of the
Taylor series which allows to compute high order derivatives by combining different
Δx steps values and using the real or imaginary part without the limitations of
the ordinary CS method. The main limitation of this formulation is that the real
and imaginary steps are set to be orthogonal (eiθ “ cos θ ` i sin θ) depending on
a parameter θ. In other words we cannot choose the relation between real and
imaginary step sizes which brings many advantages as discussed below.

For first derivatives the complex-step approach does not suffer subtraction can-
cellation errors as in standard numerical finite-difference approaches. Therefore,
since an arbitrarily small step-size can be chosen, the complex-step method can
achieve near analytical accuracy. However, implementation of the complex-step
approach for second derivatives does suffer from round-off errors. Therefore, an
arbitrarily small step-size cannot be chosen. Moreover, one of the limitations of the
CS method is that only the first-order derivative is accessible using the imaginary
part of the function, while second derivatives are proportional to i2 and have to be
evaluated by taking the real part of the function.

The advantages of the complex-step approximation approach over a standard
finite difference include: 1) the Jacobian approximation is not subject to subtrac-
tive cancellations inherent in roundoff errors, 2) it can be used on discontinuous
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functions, and 3) it is easy to implement in a black-box manner, thereby making it
applicable to general nonlinear functions.

C.2.3 Automatic differentiation

In terms of implementation, the continuous approach can only be derived by hand,
while the discrete approach to differentiation can be implemented automatically
if the program that solves the discretized governing equations is provided. This
method is known as algorithmic differentiation, computational differentiation or
automatic differentiation. It is a well-known method based on the systematic appli-
cation of the chain rule of differentiation to computer programs [231]. This approach
is as accurate as other analytic methods, and it is considerably easier to implement.

C.2.4 Implementations

The implementation of any of the derivative calculation methods, for practical pur-
poses, should be as automated as possible. Changing the source code manually is
not only an extremely tedious task, but is also likely to result in the introduction
of coding errors in the program. There are two main possibilities for implementing
algorithmic differentiation: by source code transformation or by using derived data
types and operator overloading. To implement algorithmic differentiation by source
transformation, the whole code must be processed with a parser and all the deriva-
tive calculations are introduced as extra lines of code. The resulting extended code
is greatly enlarged and it becomes practically unreadable. This fact constitutes an
implementation disadvantage as it becomes impractical to debug this new extended
code.

However, for CS several mathematical functions need to be rewritten in their
complex form before implementing the gradient evaluation. In the next section we
provide a few functions that we needed in our optimal control problems.

C.2.5 Table of complex functions

For CS we need to keep both the real and the complex part of every functions
involved in the constraints evaluation. Therefore, some functions need to be used
in their complex form, see table C.1.

Of course the computation is increased and from practical aspects, the code
length is inevitably larger after implementing the aforementioned transformation
but only the parts involved in the constraints evaluation are concerned, which is
not the case of AD that requires a full overload of the code. In the next section, we
compare the performance of FD versus CS using Matlab and show how using CS
affects the solver performance.
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Function Complex form
?
z

?
2
2 p

ba
x2 ` y2 ` x ` isgnpyq

ba
x2 ` y2 ´ xq

cospzq cospxq coshpyq ´ i sinpxq sinhpyq
sinpzq sinpxq coshpyq ` i cospxq sinhpyq
z2 x2 ´ y2 ` 2ixy
z1 ¨ z2 z1 ¨ z2 “ px1x2 ` y1y2q ` ipx1y2 ´ y1x2q

Table C.1 – Complex formulation of a few classic functions with z “ x ` iy

C.3 Comparison results

Considering the collision avoidance constraint of a single obstacle

´}r ´ robs}2 ` Rcol
2 ă 0 (C.10)

Its gradient is

∇col “ ´2rpr ´ robsq (C.11)

and can be seen in Fig. C.1

Figure C.1 – Analytic evaluation of the collision avoidance constraints gradient.

Figure C.2 shows that the relative error between the analytic gradient of (C.10)
and its approximate with FD and CS is of the order of Matlab floating-point relative
accuracy (2.2204e-16). Whereas the error with FD is larger to a factor of 1e10.
Moreover, the precision of CS seemed not to be affected by different step values,
which is not the case for FD.

Table C.2 shows the average time taken to approximate the nonlinear constraints
gradient by FD and CS. Interestingly, CS seems to be about twice as fast as FD.
This result shows the advantage of having a single evaluation of the considered
function with CS instead of two for FD.

Now, from the above result, we can assume CS provides results very close to
the analytic form. In Fig. C.3 we compare the absolute error between FD and CS
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Figure C.2 – Relative error with CS and h “ 1e ´ 10.

Method Computation time
FD 1.62e´2 s
CS 0.84e´2 s

Table C.2 – Average computation time of the constraints gradient with FD and CS (with
Matlab)
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approximate of a single element of the occlusion constraints with respect to different
step values h. As we can see, the error increases when h is too small (h ă 1e´12)

Figure C.3 – Absolute error with respect of step h.

and too large (h ą 1e´1) which is due to the typical term cancellation effect related
to FD. Finally, the graph shows that a large range of values can give pretty good
approximates.
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Titre : Contributions à la génération de trajectoires optimales et réactives basées vision pour un 
quadrirotor UAV 

Mots clés : contraintes visuelles, optimisation nonlinéaire, navigation aérienne agile, quadrirotor  

Résumé : La vision représente un des plus 
importants signaux en robotique. Une caméra 
monoculaire peut fournir de riches informations 
visuelles à une fréquence raisonnable pouvant être 
utilisées pour la commande, l’estimation d’état ou la 
navigation dans des environnements inconnus par 
exemple. Il est cependant nécessaire de respecter 
des   contraintes visuelles spécifiques telles que la 
visibilité de mesures images et les occultations 
durant le mouvement afin de garder certaines cibles 
visuelles dans le champ de vision. Les quadrirotors 
sont dotés de capacités de mouvement très réactives 
du fait de leur structure compacte et de la 
configuration des moteurs. De plus, la vision par une 
caméra embarquée (fixe) va subir des rotations dues 
au sous-actionnement du système. Dans cette thèse 
nous voulons bénéficier de l’agilité du quadrirotor 
pour réaliser plusieurs tâches de navigation basées 
vision. Nous supposons que l’estimation d’état 
repose uniquement sur la fusion capteurs d’une 
centrale inertielle (IMU) et d’une caméra monoculaire 
qui fournit des estimations de pose précises. 
 

Les contraintes visuelles sont donc critiques et 
difficiles dans un tel contexte. Dans cette thèse 
nous exploitons l’optimisation numérique pour 
générer des trajectoires faisables satisfaisant un 
certain nombre de contraintes d’état, d’entrées et 
visuelles nonlinéaires. A l’aide la platitude 
différentielle et de la paramétrisation par des B-
splines nous proposons une stratégie de 
replanification performante inspirée de la 
commande prédictive pour générer des trajectoires 
lisses et agiles. Enfin, nous présentons un 
algorithme de planification en temps minimum qui 
supporte des pertes de visibilité intermittentes afin 
de naviguer dans des environnements encombrés 
plus vastes. Cette contribution porte l’incertitude de 
l’estimation d’état au niveau de la planification pour 
produire des trajectoires robustes et sûres. Les 
développements théoriques discutés dans cette 
thèse sont corroborés par des simulations et 
expériences en utilisant un quadrirotor. Les 
résultats reportés montrent l’efficacité des 
techniques proposées. 

 

Title : Contributions to optimal and reactive vision-based trajectory generation for a quadrotor UAV 

Keywords :  visibility constraints, nonlinear optimization, agile aerial navigation, quadrotor UAV 

Abstract : Vision constitutes one of the most 
important cues in robotics. A single monocular 
camera can provide rich visual information at a 
reasonable rate that can be used as a feedback for 
control, state estimation of mobile robots or safe 
navigation in unknown environments for instance. 
However, it is necessary to satisfy particular visual 
constraints on the image such as visibility and 
occlusion constraints during motion to keep some 
visual targets visible. Quadrotors are endowed with 
very reactive motion capabilities due to their compact 
structure and motor configuration. Moreover, vision 
from a (fixed) on-board camera will suffer from 
rotation motions due to the system underactuation. In 
this thesis, we want to benefit from the system 
aggressiveness to perform several vision-based 
navigation tasks. We assume state estimation relies 
solely on sensor fusion of an onboard inertial 
measurement unit (IMU) and  

a monocular camera that provides reliable pose 
estimates. Therefore, visual constraints are 
challenging and critical in this context. In this thesis 
we exploit numerical optimization to design feasible 
trajectories satisfying several state, input and visual 
nonlinear constraints. With the help of differential 
flatness and B-spline parametrization we will 
propose an efficient replanning strategy inspired 
form Model Predictive Control to generate smooth 
and agile trajectories. Finally, we propose a 
minimum-time planning algorithm that handles 
intermittent visibility losses in order to navigate in 
larger cluttered environments. This contribution 
brings state estimation uncertainty at the planning 
stage to produce robust and safe trajectories. All the 
theoretical developments discussed in this thesis 
are corroborated by simulations and experiments 
run by using a quadrotor UAV. The reported results 
show the effectiveness of proposed techniques. 

 


