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Abstract 

The bacterial flagellar motor (BFM) is a macromolecular complex which allows bacteria to swim in 

liquid media. Located at the base of the flagellum, this remarkably small (~45nm) yet powerful rotary 

motor rotates each flagellum up to ~1000 revolutions per second in both counterclockwise (CCW) and 

clockwise (CW) directions. The motor rotation is generated at the interface between the two key 

components of the motor: the stator protein complexes (each composed of 4 MotA and 2 MotB proteins) 

and the C- ring protein complex at the base of the rotor. The stator complexes are structurally and 

functionally discernible modules of the motor, and their dynamical association and dissociation around 

the rotor controls the torque generation. Previously, dynamic nature of the stators has been demonstrated 

by the fluorescence detection of the stators fused to a fluorescent protein (FP). When a FP is fused to 

MotB, the motor is functional, but a reduced motility of the cells has been observed. The precise reasons 

for such reduction in motility is yet to be determined.  

The first project aims to investigate how the FP tag on the stator protein modifies the torque 

generation and switching of the motor. This is important because the fluorescent protein tag lies at the 

interface between stator and rotor, where torque and switching are produced. Three different FPs (eGFP, 

YPet, Dendra2) were fused to MotB. Interestingly, despite the high similarity of these three FPs’ 

structures, our analysis revealed that the three fusion stators generate different torques by single stator. 

Furthermore, the motors driven by the fusion stators showed significantly impaired switching abilities. 

When switching direction of the rotation, the absolute value of the speed of WT motors does not change, 

whereas this symmetry of speed upon switching is not observed in the fusion stator motors and 

switching can be accompanied with a significant (~30%) decrease in absolute speed. Both the impaired 

torque generation and the switching ability were improved by introducing a rigid linker between the 

stator and the FP tag. Taken together, this study provides a further insight into the dynamics of the stator 

and rotor interaction at its interface.  

When the cells carrying the fluorescently labeled stators were observed in a custom made TIRF-

fluorescence microscope with single molecule capability, the fluorescence signals were detected as 

concentrated clusters in the membrane as expected for the stator proteins around the motors, together 

with a population of stators diffusing in the membrane. The fluorescent clusters were also observed at 

the center of rotating cells tethered to the glass slide by a single flagellum, confirming that the 

fluorescent spots observed were attributable to the functioning motors.  

In a second project developed in Bertus Beaumont lab at TU Delft, taking BFM as an 

experimental evolutionary model system, its modularity and evolvability have been explored to learn 

the molecular details of the evolution of molecular machines. When the stators of E.coli (K-12) have 

been replaced by a set of 21 homologue foreign stators, some of the foreign stators were immediately 

compatible with the E.coli motor, while some of the non-compatible stators were positively modified 

by a chemotaxis evolution experiment. More than half of those evolved motors accumulated beneficial 

mutations in the functional domains of their foreign stator genes. Motilities of the evolved motors were 

investigated and compared at the level of population (chemotaxis), single cell (swimming) and single 

motor. This three-levels of functional investigation enabled detailed functional characterizations of the 

evolved or foreign motors. Especially, the single motor level assays revealed that those beneficial 

mutations improved the torque generation and/or the switching ability. The detailed genotype and 

phenotype investigations of the evolutionary modified BFM may bring an insight into how molecular 

machines such as BFM have evolved as well as the functional effects of the beneficial mutations that 

facilitate functional integration. 

 



ii 

 

Résumé de la thèse en français 

Le moteur flagellaire bactérien (BFM) est un complexe moléculaire qui permet aux bactéries de nager 

dans un milieu liquide. Situé à la base de la flagelle et fixé sur la membrane cellulaire, ce moteur rotatif 

remarquablement petit (~45nm) mais puissant entraîne la rotation de chaque flagelle à une fréquence 

pouvant atteindre 1000Hz, et en alternant son sens de rotation. La rotation du moteur est générée à 

l’interface entre deux éléments clés: les protéines formant le stator (MotA and MoB) et l’anneau C 

“switching complex” à la base du rotor. Les stators sont des modules du moteur structurellement et 

fonctionnellement différentiables du reste du moteur, et leurs association et dissociation dynamique 

autour du rotor contrôle la génération du couple. Puisque les protéines du stator génèrent le couple de 

rotation du moteur, il a été démontré qu’une protéine fluorescente fusionnée avec MotB permet 

d’observer et d’étudier la nature dynamique de cette protéine par une détection de fluorescence. Quand 

une protéine fluorescente (PF) est fusionnée à MotB, le moteur est en état de marche mais une réduction 

générale de la mobilité de la cellule a été observée. La raison précise d’une telle réduction de mobilité 

n’a pas été étudiée. 

Le but de cette étude est de comprendre comment la fusion PF de la protéine du stator modifie 

la génération du couple et le sens de rotation du moteur. C’est particulièrement important car le tag FP 

se trouve à l’interface entre le stator et le rotor, là où le couple et le changement du sens de rotation sont 

produits. Trois différentes PFs (eGFP, YPet, Dendra2) ont été fusionnées à la protéine MotB. Malgré 

la haute similarité de leurs structures, notre analyse a montré que les trois stators fusionnés génèrent des 

couples différents. Les stators marqués avec YPet produisent un couple moyen similaire au WT (stators 

sans tag PF), alors que les stators marqués avec eGFP et Dendra2 produisent respectivement 70% et 

40% du couple moyen du WT. De plus, les moteurs utilisant les stators fusionnés ont montré des 

capacités de changement de sens de rotation réduites. Lors d’un changement de sens de rotation, la 

valeur absolue de la vitesse des moteurs WT ne change pas. Cette “symétrie” de vitesse lors du 

changement n’apparaît pas avec les moteurs à stators fusionnés et le changement peut être accompagné 

d’une importante diminution (~30%) de la vitesse absolue. 

En observant par microcopie TIRF avec détection de molécules uniques, des stators marqués 

dans un moteur en état de marche, les signaux de fluorescence sont détectés à la membrane comme 

prévu pour ces protéines, montrant une population de stators diffusant dans celle-ci. Les clusters 

fluorescents étaient visibles au centre des cellules en rotation, attachés au couvre-glace par une seule 

flagelle, confirmant que le tag de fluorescence peut être visualisé dans des moteurs en état de marche.  

  Dans un second projet développé dans le laboratoire Bertus Beaumont à TU Delft, en prenant 

le BFM en tant que système modèle d’évolution expérimentale, sa modularité et son « évolubilité » ont 

été explorés pour apprendre les détails au niveau moléculaire de l’évolution de ce type de machine. Les 

stators de E.coli ont été échangés par un set de 21 stators étrangers homologues. L’expérience a révélé 

que les protéines du stator peuvent être échangées entre espèces de bactéries distantes et certains stators 

non compatibles peuvent être modifiés positivement par un procédé d’évolution pour devenir 

fonctionnels. Au cours de cette évolution, les bactéries ont accumulé des mutations avantageuses dans 

leurs gènes motA et motB étrangers, tout particulièrement dans leur domaine fonctionnel. Des mutations 

identiques dans des stators différents ont été observées, indiquant que l’évolution peut se reproduire. 

L’analyse fonctionnelle au niveau d’un seul moteur a révélé que ces mutations avantageuses 

amélioraient la génération du couple et/ou la capacité du moteur à changer de sens. Les investigations 
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détaillées du génotype et du phénotype du BFM modifié par évolution apportées par cette étude, 

pourraient donner une idée sur la façon dont des machines moléculaires comme le BFM ont évolué, et 

les effets fonctionnels des mutations bénéfiques qui facilitent l'intégration fonctionnelle. 
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Chapter 1. Molecular Motors and the Bacterial Flagellar 

Motor 
 

1.1  Molecular Motors 
 

1.1.1  Introduction to the life in motion 

 

Growth, sensing and reproduction of cellular life require certain degree of dynamical physical 

movements in both inside and outside of the cell. Likewise, one of the main features that distinguish 

cellular life to inorganic matters is their capacity to move autonomously. Having a power to move 

spontaneously is particularly a vital characteristic of animal life, and arguably, self-movement 

could have already presented at the origin of life [1]. Biophysics is interdisciplinary science that 

studies the complexity and functionality of life using mathematical and physical tools. Biophysics 

look for the patterns in life, analyze them with math and physics [2]. Hence, the motility in cellular 

life, which embraces both simplicity of physical laws and complexity of cellular life, is one of the 

main subjects in biophysics.  

There are several biological macromolecules known as molecular motors or biological 

nano-machines. As the name suggests, mechanical movements are essential for their performance. 

The mechanical action of these motors is driven by chemical energy, such as ATP hydrolysis or 

ion translocation, which result in conformational changes of the molecular motors [3-6]. 

Understanding how the conformational change results in the mechanical action of the motor is 

essential to understand their complete mechanism. The molecular motors play various roles in 

cellular life, such as genetic information processing, molecules transporting and rotating an external 

flagellum. Eukaryotic cellular life has three types of motors: 1) nucleic acid DNA machines 

(replisome) [7-12], 2) cytoskeletal motors- kinesin, myosin and dynein [13-17], and 3) rotary 

motors – ATPases [18-21]. Prokaryotes also contain those motors but in simpler versions with 

respect to the eukaryotic motors. In addition, prokaryotes have another rotary motor that facilitates 

their unicellular movement, which is called the bacterial flagellar motor [22-25]. General functions 

of these eukaryotic and prokaryotic motors will be introduced in the following sections of this 

chapter, and the bacterial flagellar motor will be discussed in details in chapter 1.2 as this is the 

molecular motor studied in this thesis.  
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Lastly, why study motor proteins? First reason is to expand our existing knowledge in 

biology, as these motors play essential roles in cellular processes. With this, secondly, we can apply 

for two possible practical outcomes: 1) engineering nano-motor [17, 26, 27] as understanding the 

design principles of molecular motors may guide us to construct efficient nanoscale machine, and 

2) in relevance to medicine, these motor proteins can be unique therapeutic targets as inhibition or 

enhancement of their activity may cause various therapeutic benefits. [6, 12].  

 

 

1.1.2  Nucleic acid motors and linear motors 

 

Nucleic acid motor proteins refer to all the molecular motors involved in synthesis or replication 

of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) polymers. The most well-known 

nucleic acid motor is the DNA replicating enzyme- DNA polymerases (DNAP). There are more 

than 30 different types of DNA polymerases discovered, some of which have distinct structures of 

the catalytic subunits [7-8]. The main function of the DNA polymerases is in DNA repair and 

replication, but they also play diverse roles in cell-cycle check points, homologous recombination 

and development of the immune system [8]. The DNAP works together with a primase, which is a 

special type of polymerase that initiates polymerization of a short RNA primer by identifying a 

specific sequence [4,11]. Without this primase, DNAP cannot initiate DNA replication. Together 

with the DNAPs and primases, there are helicases and topoisomerases in eukaryotic replisome. The 

replisome is a multiprotein DNA replication machinery, loosely analogous to a sewing machine [9, 

30-31] (Figure 1.1a). Helicase unwinds a double strained (ds) DNA into single strained (ss) DNA 

so that the DNAP can replicate the ssDNA [9-12]. Topoisomerases are responsible for untangling 

super-coiled and interlinked DNA structures during replication (decatenation of DNA) [4, 28].  

Another DNA template directed nucleic acid motor is the RNA polymerase (RNAP), which 

transcribes various types of RNAs from DNA templates. Just like other molecular motors, the 

RNAP consists of large number of subunits, and there are multiple different types of RNAPs in 

eukaryotic cells [4]. Another nucleic acid motor is the ribosome, which is responsible for 

synthesizing a chain of amino acids (polypeptides) from a messenger RNA (mRNA). Functionally 

important sites of a ribosome can be found in between the ribosomal subunits [29], implying the 

importance of the interactions between subunits. The driving force of these nucleic acid motors is 

primarily ATP/GTP hydrolysis, though any enzymatic interactions with DNA/RNA and small 
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molecules (ligands, co-factors etc) or metal ions may involve in the generation of their mechanical 

action.  

Cytoskeletal motors (kinesin, myosin and dynein) are linear motors, tracking down the 

microtubules and actin filaments to transport organelles, vesicles and chromosomes for the 

redistribution and organization of the cellular components. Their activities are essential in cellular 

transport processes, and they utilize the energy of ATP hydrolysis [3-4,13-17]. Cytoskeletal motors 

can attach and detach actively to the actin filaments or microtubules, and they walk along the 

filament uni-directionally either towards plus-end or towards minus-end of the linear cytoskeletal 

filaments. The filaments are linear but placed in a complex manner with crossovers. Since kinesin 

and myosin motors are functional in in vitro system in simple cellular environments, they have 

been studied extensively at the single molecule levels using optical-trap force spectroscopy. In the 

single-molecule experiment, a bead is chemically attached to the motor protein and the 

displacement of the bead is monitored by a laser beam [3,14-15]. The bead particle trajectories 

obtained in optical-trap force spectrometry can reveal the motions of these motor proteins, such as 

single step size and run lengths. The global architectures of the kinesin and the myosin are shown 

in figure 1.1b. They are dimers consisting of two identical protein chains, walking in a ‘hand-over-

hand’ fashion (alternating one of the two identical protein chains that bound to the microtubule) 

with a step size of ~8 nm [13-16].   
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Figure 1.1 Architectures of the eukaryotic replisome (A) and the cytoskeletal motors, kinesin and 

myosin (B). (A) 3D electron microscopy (EM) reconstruction of S. cerevisiae replisome structure: 

Cdc45-Mcm2-7-GINS (CMG) helicase is shown in multiple color subunit (not-labelled parts), two 

DNAPs (Pol α and Pol ε) is shown in green and blue, Ctf4 (a fork-stabilization factor that connect 

helicase and polymerase) is in cyan. Replisome move in the direction of the blue arrow, and the red and 

black lines illustrate possible leading- and lagging-strand DNA. The size of helicase and pol ε complex 

is about 20 nm. In comparison to the other linear motors and rotary motors, the available information 

on how replisome work is very limited, most likely due to their very high complexity [5]. (B) Stepping 

kinesin (pink) and dynein (blue) motors that walk along the microtubule utilizing ATP hydrolysis. The 

microtubule has two different ends, a plus and a minus end, and the diameter of the microtubule is 25 

nm. The figures (A,B) are adapted from [31] and [14], respectively. 
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1.1.3  Rotary motors 

 

There are two known rotary motors: ATPases and the Bacterial Flagellar Motor (BFM). These 

motors have been studied for more than 40 years, yet there are still many open questions, especially 

regarding the detailed “power stroke” mechanism. ATPases are ATP-fueled ion pumps that 

transport solutes or ions across the plasma membrane and the intracellular compartment. Therefore, 

they are important to maintain normal physiological cellular life [18-21]. Vacuolar ATPase (V-

ATPase) and F-type ATPase (F-ATPase) exhibit opposite cellular functions, though they share a 

highly similar overall architecture. The V-ATPases is facilitated by the ATP hydrolysis to transport 

protons, and produce a proton gradient. The roles of V-ATPases are involved in the intracellular 

membrane traffic, the entry of various viruses and toxins and tumor cell invasiveness [19]. The 

transmembrane Na+/K+ ATPase extrude three Na+ cations and bring two K+ cations into the cell by 

ATP hydrolysis, and its implication in neurological disorders has been identified [20]. F-type 

ATPases (ATP synthases), on the other hand, synthesize ATP- the biological energy carrier using 

the potential energy from the proton gradients [21]. The BFM is another powerful reversible rotary 

motor, driven by a proton flux, that rotates the bacterial flagella, and they will be discussed in depth 

in chapter 1.2. 

In summary, there are five common features of all these (nucleic acids, linear and rotatory) 

molecular motors. First, they are nano-meter size efficient biological machines. As compared to 

man-made machines with 10~30 % efficiency, theses molecular machines may have a maximal 

possible efficiency [3]. Second, they are composed of multiple subunits, also called modules or 

components. Third, the mechanochemical mechanisms involve the hydrolysis of nucleotides (i.e., 

ATP or GTP) or the electrochemical gradient (i.e., proton ion force). This chemical energy induces 

conformational change of the proteins, which transfers further into the motion and other mechanics 

of their active subunits. Fourth, as they are small within nanometer size scales, the viscous forces 

dominate their activity in comparison to the inertial forces [115]. Fifth, the molecular motors are 

composed of the two functional units- the rotary part (rotor) that move and the stationary part 

(stators) that do not move and generate mechanical movement of rotor. 
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1.2  The Bacterial Flagellar Motor (BFM) 
 

1.2.1  Bacteria motility 

 

In 1683, Antony van Leeuwenhoek observed bacteria for the first time, which he referred to 

animalcules. He could discover them owing to their impressive motion which had captured his 

attention [22]. The bacterial flagella and the populations of swimming cells directed towards light 

source or oxygen were first observed in the nineteenth century [22]. Each cell possesses about five 

flagella, which are arranged polarly or laterally around the cell body, and the flagella play a key 

role in the bacterial movement in liquid environments [32-36]. The bacterial swimming motility 

takes place when individual cells swim in a random direction powered by their rotating flagellar 

[22-25, 32-38]. They swim in a smooth forward swimming movement (about 1 s, on average), and 

they also tumble, a rapid switch of direction (about 0.1 s, on average). To allow the forward 

swimming, the flagella form a bundle when they all rotate in the same CCW (counter-clockwise) 

direction. When one or more flagellar filaments switch their direction of rotation to CW (clockwise), 

the flagella bundle flies apart, and the cell stops, and rotates randomly, so that the following run 

will be in a new direction (figure 1.2). 

 

 

Figure 1.2 (A) a bundle of rotating helical flagella of Salmonella. (B) Bacterial cells swim by alternating 

run and tumble modes. The “run” phase is facilitated by a bundle of flagella that all rotate in CCW 

(counter-clock wise) direction. The “tumble” phase is facilitated by one or a few flagella reversing their 

rotational direction to CW (clock wise), resulting in the separation from the bundle. Then, the cell swim 
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in a new direction in the next run. (C) E. coli cell swimming with a bundle of several flagellar filaments, 

one filament falls out from the bundle and switch its direction of rotation. The figures are adapted from 

[37] (for A, B) and [38] (for C). 

 

 

Besides their swimming motility in liquid environment, bacterial cells possess swarming, 

twitching, gliding and sliding motilities [37, 39-42] (Note: Escherichia coli species do not possess 

all those motilities). Swarming is a bacterial motility facilitated by the flagella to move over solid 

surfaces. The swarming motility is also operated by rotating flagella, but can be distinguished from 

the swimming motility for their multicellular group movement rather than individual cells 

movement. The swarming motility requires surfactant, increased cell to cell interactions and 

increased number of flagella per cell [39-42]. Twitching motility is also a surface motility, induced 

by the pili on the surface. The extension and retraction movement of the pilum pull the cell closer 

to where the pili were attached [39-42]. Gliding is another active surface movement without flagella 

or pili. Instead, it uses focal-adhesion complexes, which is a putative cell surface-associated 

complex [39, 42]. Sliding is a surface spreading movement without an active motor [37, 39]. The 

sliding motility relies on the secretion of surfactants which then reduce surface tension, and the cell 

growth further promote the colony to spread away. Thus, sliding is driven by the outward pressure 

of cell growth, without any aids of flagellar motors or pili. 
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1.2.2  Structure of the BFM and its molecular components 

 

The bacterial flagellar motor (BFM) is the macromolecular complex which rotates each flagellum 

to promote bacteria to swim in liquid media [22-25]. This remarkably small (~45nm in diameter), 

yet powerful biological rotary electric motor can rotate up to 300 Hz for E.coli and up to 1700 Hz 

for Vibrio species [22-24, 44-48]. BFM is distinguishable from other molecular motors for its bi-

directionality: the capacity to switch the direction of rotations from CCW to CW (or vice versa) 

[33-36, 51]. The motor is composed of about 30 multiple protein components [51].  

The flagellum consists of at least three parts: the basal body, the hook and the filament 

(figure 1.3). The hook and the filament are in the cell exterior, and the basal body (rotary motor) is 

embedded within the cell membrane. The filament is composed of a single protein called flagellin 

(FliC), and how this protein is bonded each other determines the global degree of twist of the 

filament [22, 52-53]. Thus, although the flagella are relatively stiff, their long cylindrical structure 

can change between distinct polymorphic forms, either left-handed or right-handed filaments each 

with distinct values of curvature and twist [22, 38, 52]. These different helical waveforms of 

filaments may aid an efficient thrust. The hook is found between the basal body and the filament. 

Unlike the stiff flagellar filament, the hook is a flexible short filament (~50 nm). It functions as a 

universal joint that connects and transfer the torque produced by the motor to the helical filament 

[51, 54]. The structure of the hook is similar to the filament [53]. Each subunit of the hook 

(protofilament) can cycle between short and long forms, creating the curved and flexible hook. It 

is also shown that the disrupted bundle formation can result in atypical swimming behavior [54]. 
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Figure 1.3 (Top) A typical macromoleular complex bacterial flagellum. It is composed of the two 

external components: a long helical filament and a hook (acting as a universal joint). Then, embedded 

in the membrane, the structure called a basal body is found, which includes four main rings (L ring, P 

ring, MS ring and C ring) around the periplasmic rod. MotAB are the motor stators. Acting as proton 

translocation channels, they can diffuse in the membrane and bind and unbind to the motor. FliL is 

presumably placed between the stator and the C-ring. The stators are stationary, while all the basal body 

is rotating. The C-ring is composed of the three proteins, FliG, FliM and FliN. This ring is called a 

switching complex because it is responsible for the switching from the default CCW state to CW upon 

the binding of the switching regulator CheY-P. Figure is adapted from [42]. (Bottom) Architecture of 

the bacterial flagellar motor based on 3D EM reconstructions of the CW-locked motor (grey) from 

Salmonella typhimurium (EMDB accession code: 1887) and the stator complex (blue). The stator is 

positioned above the outer lobe of the C-ring where it is seen in electron cryotomograms by [49]. L-

ring and P-ring on the outer membrane and peptidoglycan layer are not shown. The figure is adapted 

from [50].  
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A structure of the BFM is shown in figure 1.3. The two rings L-ring and P-ring are located 

in the outer membrane and peptidoglycan layer. The basal body is composed of the rod, the MS-

ring (26-fold symmetry) and the C-ring (34-fold symmetry), which are the rotating part of the motor 

[33-36]. The C-ring, composed of the three proteins, FliG, FliM and FliN, is responsible for both 

torque generation and switching activity. The stator complexes, bound to the peptidoglycan layer, 

are torque-generating transmembrane proteins MotA and MotB (figure 1.3). FliL is a recently 

discovered member of the motor. It is suggested that FliL may interact with both the stators and 

the rotor complex, thereby it can influence on the motor speed and directional bias [55-56]. Overall 

the structure of BFM share some features in common with man-made rotary motors, which are also 

composed of the rotating rotor part and the stationary stator part with ratchets that generates thrust. 

The C-ring complex (a part of the rotor) and the stator complexes are the main torque generating 

elements of the motor, hence their functions, structures and dynamics will be discussed in detail in 

the following sections.  

 

1.2.3  Torque generation at the stator and rotor interface 

 

The motor rotation is generated at the interface between the stators and the C- ring switching 

complex at the base of the rotor [57-60]. Torque can be defined as the twisting force that causes 

rotation, according to τ = F * R, where F is the force applied at a distance R from the axis of rotation. 

The stator complex is composed of four MotA and two MotB proteins, and the topology of MotA 

is shown in figure 1.4a [61-62] and their structure is not known. MotA has four transmembrane 

(TM) regions with two long cytoplasmic loops in between TM2 and TM3 and in after TM4. These 

two cytoplasmic loops are known to interact with a FliG protein in the C-ring, and produce torque. 

Some of the charged residues of MotA that showed a critical role in torque generation are shown 

in figure 1.4. MotB has only one TM and a long stretch of amino acid sequences in the periplasmic 

space, ending in a domain known to bind to the PG. This domain in MotB enables the stator to 

anchor to the peptidoglycan layer, so that the stator can remain stationary while rotating the rotor 

[63]. The structure of stator complex is not known, though a partial structure of MotB [48] and a 

3D electron microscopy (EM) reconstruction image of stator are available [63]. Stators are proton 

channels, transmitting protons across the membrane [23, 63]. The proton ion translocation is 

regulated by the proton motive force (PMF) in E.coli. The PMF consists of two parts: membrane 

potential and transmembrane ion concentration gradient.   
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The C-ring complex is composed of the three proteins, FliG, FliM and FliN, as shown in 

figure 1.3. The C-ring is about 45 nm for E.coli motor (other bacterial species can have larger C-

ring [74]), and the stoichiometry of these proteins are estimated to be: 26 (or 34) for FliG, between 

32 and 37 for FliM and 120 ± 26 for FliN  [64-67]. Interestingly, the copy numbers of FliM and 

FliN can vary depends on the directional bias of flagellar rotation, revealing highly dynamic nature 

of the BFM [65, 67]. The stoichiometry between FliM and FliN is estimated to be 1:4, while 

mismatched stoichiometric ratio between FliG and FliM is expected [64-66]. The C-ring complex, 

specifically the C-terminus of FliG, interacts with the cytoplasmic region of MotA. The C-terminus 

of FliG protein contains multiple conserved charged residues (figure 1.4). In summary, ion 

translocation induces a conformational change in the cytoplasmic region of MotA, where an 

electrostatic interaction with FliG could occur [57-60], generating torque and. causing FliG to move.  

 

 

 

 

Figure 1.4 (A) MotA topology showing some of the MotA-FliG interaction sites. The charged residues 

at the MotA cytoplasmic loop play a critical role in torque generation. Figure is adapted from [57]. (B) 

The same illustration as in (A) but with the structures of the stator complex (4 MotA and 2 MotB) and 

the middle and C-terminal domains of the rotor protein FliG. The FliG C-terminal domain contains 

charged residues that interact with the charged residues of the cytoplasmic domain of MotA. Figure is 

adapted from [23]. 
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It is well accepted that the proton translocation through the stator complex results in the 

conformation change of the stator complex, and this conformation change can push the rotor to 

generate torque. However, the detailed mechanics behind this energy conversion remain poorly 

understood. A recent study [68] proposed a model describing how torque can be generated in the 

BFM. Here, the two fundamental forces are electrostatic and steric. Contrary to the previous 

electrostatic model [60], it is proposed that the electrostatic forces ensure the proper positioning of 

the stators around the rotor, while the steric forces generate the actual “power stroke”. The authors 

[68] proposed that a proline residue (Pro173) on the TM3 helix of MotA may act as a “hinge” [75], 

causing “bending” (fig 1.5 a). This conformational change leads to a steric push imposed on FliG, 

generating the power stroke. This model also proposes that two pairs of MotA are required to 

complete one step for CCW rotation, while the other two pairs are active for CW rotation (fig 1.5b, 

c). 

 

 

 

 

Figure 1.5 A model by [68] (A) a proton binds to Asp32 of MotB, causing re-organization of hydrogen 

bonds, and further into a local elastic strain in the MotA helix. This results in a drastic “swivel” and 

“kink” conformational change of the stator protein. (B) Proposed arrangement of stator membrane 

domains (four α-helices of four MotA subunits and a single helix of a MotB). The loops between helices 

2 and 3 of MotA (shown as solid bars) interact with the rotor FliG. The green spots represent the ion 

channels. They are associated by loop 1 and 3, but not by loop 2 and 4. Loops 1 and 3 drive CCW 

rotation, and loops 2 and 4 drive CW rotation. (C) Proposed mechanics of the power stroke. Note that 

the figure A and C are a 2D depiction of a 3D process. Figures are adapted from [68] 
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1.2.4  Fluorescent protein tags on the BFM molecular components 

 

Being able to observe cellular processes happening underneath the membrane brings a tremendous 

advantage in biological study, and it can be a way to elucidate the complex and dynamic nature of 

macromolecular complex. Since most of the biological molecules are not fluorescent, they need to 

be labelled with additional fluorescent probes such as fluorescence proteins (FP), organic dyes, 

quantum dots, etc. Numerous fluorescence labeling strategies and diverse advanced fluorescent 

probes have been developed in recent years [69-71]. To visualize BFM components, fluorescent 

protein labelling has been favored for its advantages in direct genetic encoding, 1:1 direct 

stoichiometry and less toxicity.  

In general, choosing which labelling strategy to take and which fluorophore to use are 

critical to generate functional fusion proteins, because the addition of a fluorescent protein tag may 

alter the original functions of the protein of interest. Especially, when the target protein forms many 

functional contacts with other proteins, such as the dense arrangement of the BFM, it is important 

to measure functionality for each fusion protein [73]. For example, it is observed that when a 

fluorescent protein is attached to either N- or C- terminal sites of MotA, the motor became non-

functional as measured by chemotaxis swarm plates [72]. Another example is Tar-tdEos and Tar-

mEos fusion proteins in E.coli: tdEos tag is non-functional whereas mEos is partially functional, 

revealing the FP dependent functional specificity of Tar protein [73]. There are four general 

requirements for functional fusion proteins. First, the tag must allow functional interactions 

between all the interacting proteins and allow space around the functional domains or binding sites, 

and not sterically interfere with specific surfaces of the protein. Second, the tag must not aggregate 

or multimerize, which may affect the function or the location of the protein. Third, the tag must 

hold proper folding, stability and protein expression properties. Fourth, the tag must not trigger the 

target of the protein for degradation or modification [72]. The functionality of a particular fusion 

protein cannot be predicted; therefore, it is necessary to test combinations of different FPs fused to 

either the N- or C- termini of proteins, with or without a linker. 

In BFM, several motor protein components (stator protein MotB and C-ring proteins) have 

been fused to a FP to perform fluorescence microscopy that uncover the dynamic nature of the 

motor functions in response to the different loads [76-78], ion motive force [44, 79], mutant stator 

proteins [80] and rotational bias [65,67]. To study the dynamics of the stators, FP tagged MotB has 

been used [82]. An example study that explored the dynamic properties of stator units is shown in 

figure 1.6. Although FP tagging at the C-terminal is generally better in preserving the localization 

of the native protein than tagging at the N-terminal [81], the FP was often attached to the N-
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terminus of MotB since the C-terminus of MotB is in periplasm. The motor driven by FP-MotB 

stators is functional but with a reduced motility [82], and the precise reasons for such reduced 

motility has not been investigated. Despite the fact that the FP tag on MotB are lying at the stator-

rotor interface, where the torque and switching are generated, it was only speculated that the FP tag 

on MotB somehow interferes with the power-stroke mechanism and no studies were available to 

understand how the FP tag on the stator affects the torque generation and switching mechanism. 

Therefore, we aim to perform detailed functional investigation of the FP-MotB fusion stator motors 

in this thesis (Chapter 3).  

 

 

 

 

Figure 1.6  Dynamic properties of the stator proteins revealed by fluorescence microscopy. (A) 

Schematic drawing of the PomA/GFP-PomB stator complex. Unlike MotA/MotB, the PomA/PomB is 

a sodium translocating stator. (B) The stators localization around the rotor is found in the polar flagellum 

of Vibrio alginolyticus, only when the sodium ions are present. This demonstrates that the sodium is 

required for stator assembly. (C) Schematic drawing of the dynamical engagement/disengagements of 

the sodium-dependent stator to the rotor. The PomA/PomB stator units associate to the motor only in 

the presence of Na+ ions, and change the conformation from the inactive state to the active state. Figure 

is adapted from [44]. 
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1.2.5  Stator dynamics 

 

Successive incorporation of stators in the motor have observed since 1984 [83]. This successive 

incorporation is referred to “resurrection”, because it is observed that the paralyzed MotB knockout 

motors began to spin again within several minutes after inducing the MotB gene, with their 

rotational speed changing in a series of steps [83]. The number of stators bound to the motor is 

directly proportional to the rotation speed. The maximum number of torque-generating units in the 

motor was first suggested to be 8 [84], then later it is suggested to be at least 11 [88]. The 

observation that torque can be restored in a series of equally spaced steps, especially by the re-

introduction of the protein MotA and MotB, confirmed the critical role of stators in torque 

generation, revealed their dynamical activity in the motor and provided a useful tool (resurrection 

experiment) to study the torque generation mechanism at the single torque generating unit [83-92, 

79]. 

Dynamical turnover of stator proteins from the membrane to the motor was also observed 

[82]. The stators have been observed to remain bound into the motor with a mean dwell time of 

~30 seconds, before disengaging and diffusing away in the membrane. A similar remodeling of the 

motor components was also observed for FliN and FliM, the two C-ring proteins [65-67]. The stator 

incorporation is dependent on the applied load on the motor as well as the ion motive force (IMF). 

Load dependent stator incorporation was observed by three different labs [76-78]: the higher load 

on the motor, the higher number of stator bound to the motor. It is suggested that the periplasmic 

domain of MotB may be involved in load-dependent of the motor [93], but further studies will be 

required to identify the detailed mechanisms of mechano-sensing behavior of the motor. When IMF 

is disrupted, the stators diffuse away from the motor. Then, when the disrupted IMF is restored, the 

stators can incorporate back to the motor, showing that IMF presence is necessary for continued 

motor integrity [44, 79]. All these stator dynamics were studied using fluorescence microscopy. As 

a result of the two recent discoveries of the load- and IMF- dependent stator dynamics, the number 

of the stators bound in the motor can be controlled 1) by the control of the expression level [83-84, 

88] or 2) by imposing a low mechanical load or 3) by the control of the IMF. The stator 

incorporation can be observed by the step-wise speed changes of the rotating bead attached to the 

flagellum. 
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1.2.6  Switching dynamics 

 

The BFM rotates in both counterclockwise (CCW) and clockwise (CW) directions. This 

bidirectional torque generation is symmetric as shown by [110]. The switch of the direction of 

rotation is initiated when CheY-P proteins (the switching regulating- phosphorylated CheY protein) 

bind to the switching complex, which presumably cause a conformational change in FliM. This 

conformational change triggers allosterically a rotation of the orientation (~180 degree) of the 

charged ridge in the C-terminus of FliG, which interacts with the charged cytoplasmic loop of 

MotA. This 180° rotation of the charged FliG domain presumably causes different electrostatic 

interactions with the stators, and this process is thought to be responsible for change in rotation 

direction (figure 1.7a) [97, 101-104]. The structure of FliG and its rotational conformational 

changes were proposed [101-103]. The structure of the full-length FliG protein from Aquifex 

aeolicus consists of distinct amino-terminal(N), middle (M) and carboxy-terminal(C) globular 

domains. These domains are connected by the two long helices (helixNM and helixMC). The N-

terminal domain is responsible for the flagellar assembly and binding to FliF proten in MC ring. 

The C-terminal domain is responsible for torque generation and rotational switching (inset in figure 

1.7a) [101]. Numerous mutagenesis studies have already shown the significant roles of the charged 

residues in helix C5 for torque generation [57-60, 109]. The structural analysis predicts that 34 

copies of FliG form the C-ring (figure 1.7b), a number which is higher than the previously proposed 

26-fold symmetry, and that more or less than 34 FliG proteins create improbable domain 

arrangements and inconsistency with EM data (~45 nm in diameter) [101].  

The domain right before the C-terminus of FliG, specifically the 245MFXF248 motif and 

Asparagine 216 in the ARMc domain, is suggested to be acting as a hinge that generates a smooth 

conformational rotation of the helix C5 [102,111]. A mutagenic analysis of FliG also revealed that 

residue substitutions in the middle domain of FliG (so called connector residues 180~199) generate 

wide range of unusual functionalities such as strongly CW biased, infrequent switchers, rapid 

switchers, and transiently or permanently paused [105]. It is also found that when FliG has a three-

amino-acid deletion (∆Pro-Ala-Ala) at positions 169 to 171, it became an extreme clockwise (CW) 

motor [100]. This mutant is called a CW-locked mutant of Salmonella (PAA).  
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Figure 1.7 (A) An illustration showing a hypothetical FliG movement and its interaction with the 

cytoplasmic loops of MotA. A CheY- P molecule bound to FliM trigger the FliG to have two 

conformations: CW rotation states or CCW rotation state. Whether the FliG can adapt another 

conformational state than these two simple two-state (CW/CCW) is still an open question. A crystal 

structure of the torque generating helix C5 is shown in inset. Positive and negative charged residues are 

in red and blue, respectively. (B) A FliG ring displaying opposing switch states viewed from the top 

and side. The structural model by [101] predicts that having two different conformational state (the right 

side of the rings are in a CW state whereas the left side are in a CCW state) in a single C-ring is possible. 

(C) Structural overview of the full-length FliG monomer. Torque helixC5 is labeled with a red asterisk. 

The conformational change of the ARMc and loopc (just below the C-terminal domain) may rotate the 

C-terminal domain, and promote the switching of the rotational direction. Figures adapted from [99] 

and [101]. 
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In strains lacking CheY (the chemotaxis regulator), motors rotate exclusively CCW, and 

cells swim smoothly [132]. The structural mechanism of how a CheY-P binding is associated with 

a switching event of the motor remains unknown. However, conformational spread model describes 

the coupling between CheY-P binding and the cooperative FliG subunits conformation change [98]. 

In this model, switching events follow the allosteric cooperativity coupled with the conformational 

spread model. The CheY-P binding initiates conformational change of the CCW state FliG to CW 

state FliG, and these changes can be spread to adjacent FliG subunits to share a identical 

conformational state (either CCW or CW state) [113]. Switching is not an instantaneous event- and 

typically, it has an exponential distribution with a characteristic time of 4-8ms where the fastest 

events take less than 1ms and the slowest take up to 100ms. The switching time distribution does 

not change with the direction of the switch (CCW-CW or CW-CCW) [98]. Between switching 

events, flagellar motors rotate in CCW and CW at about the same speed. When this symmetry of 

rotation speed is not reached during a single switch, the switch is termed incomplete. The 

conformational spread model propose that incomplete switches can occur when the conformational 

change of the entire C-ring is incomplete, with the result of collapsing back to the previous stable 

(CW or CCW) state (figure 1.8a). 

Switching events occur randomly about once a second in average. Switching frequency 

responses to chemotactic stimuli transiently. For example, addition of attractant or removal of 

repellent causes reduced switching frequencies [95-96]. Switching dynamics under low load (60-

nm- diameter gold spheres on a hook) revealed linearly increased switching rates with respect to 

motor torque, with a maximum frequency at the intermediate rotation speed [107]. Switching 

measurement on the motors lacking flagella is important to eliminate any possibility that the 

filaments contribute to the switching dynamics [114]. Consequently, it is suggested that switching 

regulation is coupled to torque generation, meaning that the number of stators bound to the motor 

have an effect on the switching dynamics [99]. In this model, stators are hypothesized to accelerate 

the FliG conformation flipping rates (conformational change between CCW and CW), thereby a 

motor is predicted to switch more often with more stators, with a maximum switching rate at 

intermediate speed (figure 1.8 b and c). The switching rate shows a maximum at intermediate speed, 

because a stator 1) accelerates the conformation flipping rates of individual rotor switching units, 

which favors slower motor speed and 2) increases torque, affecting more switching units within 

unit time, which favors faster speed. 

Load dependent switching dynamics was also observed [106]. At high load (a bead bigger 

than 1.44 µm), CW intervals lengthened appreciably, whereas CCW intervals remained about the 

same for all loads. In other words, the probability of the motor rotating in CW (CW time) increases 
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under high load, especially when the motor spins slowly [106]. Since CW rotation is associated 

with tumbling and changing the direction of swimming, the cells may have evolved to rotate longer 

in CW at high load, which they sense as a viscous environment. The “dwell time” indicates the 

time that the motor remains in each CW or CCW state. The distributions of CCW and CW intervals 

follow an exponential distribution, which agrees with the two-state Poisson process motor 

switching model [107].  

 

 

 

 

Figure 1.8. (A) In conformational spread model, successful growth of conformational flips will 

eventually encompass the whole ring (complete switching); but more frequently, the event may collapse 

back (incomplete switching). Figure adapted from [112]. (B-C) How switching events can be influenced 

by torque generation. (B) A cartoon showing stator acting on more rotor switching unit (RSU) with 

increasing motor speed per unit time. (C) Stator torque lowers the activation energy barrier for those 

contacting RSUs (easier to move from CW state to CCW state, vice versa). In this case, the flipping 

rate in the conformational spread model is increased. Figure is adapted from [99] 
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1.3  Evolutionary dynamics of the bacterial flagellar motor 
 

1.3.1  Biological complexity, modularity and evolvability 

 

Biological complexity can be found at the level of organisms, organs, cell and macromolecular 

protein complexes. Molecular motors, such as the ribosome, the spliceosome and the BFM, are 

macromolecular proteins that possess great biological complexities. They are assembled by 

multiple differentiated proteins that are structurally linked each other to perform biological 

functions. Asking a question like how these complex molecular machines have evolved has been 

one of the biggest challenges in biology. Neodarwinian biological evolution is driven by two 

mechanisms: genetic variation and natural selection [116]. Genetic variations can arise by multiple 

molecular mechanisms, and the natural strategies to modify genomic DNA sequences (mutations) 

can be categorized in: 1) small local sequence changes by replication of infidelities, 2) intra-

genomic rearrangement of DNA segments by re-combinational reshuffling of genomic DNA 

segments, 3) the addition of a foreign organism DNA segment (i.e., horizontal gene transfer) [116]. 

In principle, genetic variation is a random process rather than a targeted response to a specified 

need. Natural selection arises when the genetic variations have a beneficial effect such that the 

organisms can fit into the new environment better. As a result, it is the natural selection that directs 

the process of evolution, leading evolutionary adaptation (increased fitness) in altered physiological 

or environmental conditions. 

Epistasis refers to the phenomenon of the effects of genotype changes at one locus affects 

the fitness contribution of another locus [117]. When a mutation on a gene is largely constrained 

by another gene, they are linked by an epistatic interaction. The principle of protein interactions 

can be seen as epistatic interactions. When a system is composed of many interacting components 

like molecular motors, epistasis is likely strong. This implies that evolution towards a novel 

function on the basis of small random mutations along a step-wise adaptive trajectory is statistically 

unlikely, because typically mutations compromise existing functions rather than generate new ones 

[117-118]. Therefore, the two-step process of adaptive evolution (genetic variations followed by 

natural selection) alone cannot fully explain the complexity found in macromolecular complexes. 

Numerous population genetics and comparative genomic studies suggest another evolution force. 

It is suggested that complex molecular motors may have evolved by compositional evolution that 

is either neutral or adaptive [133].  
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Constructive neutral evolution takes into account non-adaptive evolutionary forces such as 

genetic drift, genetic variations as well as the emerging concept of modularity and evolvability of 

biological components [120-122]. This mode of evolution explains that biodiversity and 

complexity have emerged through horizontal gene transfer, gene duplication and divergence. The 

failure of a new introduced gene to correctly interact with preexisting protein subunits can provide 

a potential ground for neutral evolution to cause complexification of protein complexes (figure 1.8). 

The directional force of the neutral evolution can be the increased fitness of the foreign protein 

subunit of the new host rather than or not limited by the natural selective forces such as adaptation. 

Adaptive evolution, on the other hand, focuses on how genetic variations are translated into 

phenotypes and achieving a higher fitness based on mutations and natural selection [123]. This 

mode of evolution may play a role in piecing together different pre-existing proteins and promote 

their further functional integration. Therefore, in the eyes of compositional evolution, the 

collaborative efforts by the constructive neutral evolution and adaptive evolution may take place 

to generate biological complexity and diversity in the process of biological evolution. 

  

 

Figure 1.8  Constructive neutral evolution towards a macromolecular complex. Independent cellular 

components A and B fortuitously interact, then, gradually they become interdependent, because the 

interaction allows (presuppresses) mutations that would otherwise inactivate A and increase the chances 

of further mutations. This process eventually limits the chance of each component to reverse back to 

function independently. In this illustration, two modules A and B evolved collectively to generate a 

single dependent activity. Figure is adapted from [122]. 
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If the interactions between protein components in macromolecular complexes are relatively 

few, weak and non-specific, instead of many, strong and specific, this mode of interactions can 

form modules. Modularity in protein complexes allows each component to interact with only a 

subset of other components in a system, and promote functional independence [117, 124]. 

Biological systems’ modularity can be described as modular organizations of biological structure 

[125]. If the prospective components of a protein complex possess a degree of modularity—that is 

to say, a degree of functional and structural independence—then evolution might be capable of 

forging new functional interaction between them. Modularity affects how biological systems 

evolve. First, it reduces epistasis. Owing to the less epistatic interactions, less constraints on 

adaptation can be achieved [126]. Second, due to the limited epistasis interactions, it prevents 

potentially harmful protein-protein interactions that lead to non-beneficial functionalities, but 

promote an efficient protein network [124]. Third, it may enable modules to acquire multiple 

functions, because the functional independence of each module can allow each module to adapt 

novel functionalities depending on where and when they are expressed in cellular backgrounds. 

Forth, it allows component exchange, resulting in horizontal gene transfer (HGT), which is 

important in shifting the global phenotype and a central force in microbial evolution [127]. In 

conclusion, modularity is an important as it eliminates unnecessary needs of searching/trying out 

the entire space of possibilities (random mutations towards a gradual trajectory of beneficial 

mutations). Modularity can limit the search to a subspace of the modular solutions, instead of the 

entire space of possibilities. It can also facilitate evolution of modular protein complexes since 

separated independent components enable more evolution (from each discernable module) to occur 

than from a single complex system [125]. Therefore, with the help of modularity, the biological 

system enhances evolvability- the capacity of a system for adaptive evolution [117]. 

Compositional evolution suggests that complex systems like molecular motors evolve 

gradually by the addition and exchange of pre-existing components (which work as modules) [119]. 

However, extensive experimental evidences that provide molecular mechanisms underlying this 

mode of evolution process is lacking. In order to provide an experimental insight into how evolution 

can cause functional integration of pre-existing proteins with a degree of fortuitous pre-adaptation, 

Bertus Beaumont lab developed an evolution experiment with a BFM modified by a component 

exchange. Exploring the evolutionary dynamics of the macromolecular machines may lead us to a 

better understanding of how that particular system evolved as well as their unique functional 

features, and in the ends, perhaps it can help unravel the origins of biological complexity. 
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1.3.2  Experimental evolution of BFM  

 

Biological component exchange between homologues has been studied extensively and shown that 

inter-species gene replacement, also called HGT, often results in either neutral or deleterious 

phenotype [128]. The lab of Bertus Beaumont, using the BFM as the experimental model system, 

systematically exchanged stator proteins (both MotA and MotB proteins) and generated a series of 

stator chimeric BFMs, termed cBFM. The list of cBFMs can be found in Table 5.1. We use the 

term foreign stator to indicate the exchanged stators. The stator complex was exchanged instead of 

other BFM protein components, because they are the main torque generating element of the motor 

and structurally independent part of the motor. Stators diffuse around the membrane, and 

dynamically associate and disassociate from the rotor complex during rotation. In addition, several 

studies showed signs of component exchange of stator proteins across bacterial species [129, 130]. 

For example, Shewanella oneidensis MR-1 possess two stator systems: MotAB and PomAB stators, 

which confer a different mode of ion translocations (protons and sodium ions), and it is speculated 

that MotAB were acquired by HGT as a consequence of adaptation to a low-sodium environment 

[129]. Some bacteria species also encode two distinct flagellar systems, and utilize more than one 

mode of motility, which are adaptable based on the environment [131]. Therefore, the stator 

exchange in BFM across the bacteria kingdom provides an excellent potential ground in which 

modularity and evolvability can be tested. 

Compositional evolution explains that when a foreign component is integrated into a 

system, they can be immediate compatible or potentially compatible (evolutionarily generated 

mutations modified the component to be compatible) or incompatible [119]. The compatibility 

deals with the functionality as well as the capacity to transcribe and express the exchanged foreign 

proteins in adequate level. Importantly, it is also related with the capacity to generate high 

probabilistic mutations that lead to an increased fitness (evolved compatibility). In order to gain an 

experimental insight into compositional evolution, Bertus Beaumont lab challenged these 

compatibility schemes in a series of cBFM strains. The cBFM experimental evolution was carried 

out by applying a selective advantage of the motility during chemotaxis assay. When cells are 

motile (immediately compatible), they swim towards more nutrient rich environment in the semi-

soft agar, moving further away from where they were first introduced. When cells are non-motile 

(incompatible), they remain at the original spot without making further migration. Those that were 

not motile immediately were kept on growing in the semi-soft agar, to check if they could evolve 

motility (potentially compatible) by observing the appearance of migration. This “later born” 

motile group appears as a population of a flare in semi-solid agar. In summary, in this evolutionary 
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experiment, the following questions were asked: will the motor still be functional if we swap the 

stator component? If not, can the non-functional motor be evolved to become functional? (figure 

1.9) 

 

 

Figure 1.9  Modularity of BFM was investigated when foreign components (Mot AB homologues) are 

exchanged. Of those that did not show immediate compatibility (non-motile functionality), evolution 

experiment was performed to test their evolvability. 

 

 

The cBFM experimental evolution provided an answer to the phylogenetic compatibility 

range, and the results are discussed in chapter 5.1. Followed up from the cBFM evolution 

experiment, we identified a set of foreign evolved stators that carries beneficial mutations, which 

described in chapter 5.2. Then, these beneficial mutations were identified and analyzed (chapter 

5.3). Functional characterizations of a series of evolved cBFM and their ancestor cBFM were 

performed and described in chapter 5.4 and 5.5. The functional characterization of cBFM was made 

at the three different motility levels: population swimming in semi-solid agar, single cell swimming 

in liquid media and single motor rotation in liquid motility buffer. As a final point, cBFM provided 

an excellent model system to explore novel functionality of the BFM, since cBFM can be seen as 

a E.coli flagellar motor driven by genetically modified or non-modified foreign stators. The 

detailed functional characterizations of the cBFM provide the phenotypic effects caused by the 

foreign stators and their mutations.  
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Chapter 2. Experimental Methods and Materials 
 

2.1 Cells and cultures 

 

2.1.1 E.coli Strains and plasmids 

Strains and plasmids used in this study are shown in table 2.1, and the cBFM plasmids used for 

single motor tethered cell assay are shown in table 2.2. The entire list of the cBFM strains can be 

found in table 5.1. Briefly, RP437 derivative ∆MotAB, sticky filaments strain named JPA605, 

carrying pBAD33 plasmid vectors encoding MotA, FP-MotB (or MotB for wildtype) were used 

for most of the bead assays and tethered cell assays. For control experiments, strains that express 

MotA and MotB from the native promoter, RP437, MT02, MT03 and JPA804 were used. Strain 

MG1655 ∆MotAB was used for the cBFM chemotaxis assay, and strain RP437 ∆MotAB (JPA604) 

was used fusion stators chemotaxis experiments. 

Table 2.1. Bacterial strains and plasmids used in this study 

E. coli strains Description Source or reference 

RP437 derivatives of Escherichia coli K-12 strain 

(commonly used for E.coli motility assays) 

Parkinson JS (1978) 

MG1655 Escherichia coli K-12 strain From Bertus Beaumont lab 

MG1655 ∆MotAB MG1655, ∆MotAB From Bertus Beaumont lab 

MT02 RP437, fliCst variant A gift from Richard Berry lab 

MT03 RP437, fliCst variant, ∆CheY A gift from Richard Berry lab 

JPA804 RP437, fliCst variant, 28-eGFP-MotB A gift from Richard Berry lab 

JPA605 RP437, fliCst variant, ∆MotAB A gift from Richard Berry lab 

JPA604 RP437, ∆MotAB A gift from Richard Berry lab 

JHC36 RP437, fliCst variant, ∆MotAB, ∆CheY A gift from Richard Berry lab 

Plasmids 
  

pBAD33 pBAD ara promoter, Cmr ATCC® 87402™ 

pTrc99a Tcr promoter, Amp pTrc99a-rat FABPI,  

addgene 13577 

pMMB206 Tac/lacUV5 promoter, Cmr ATCC® 37808™ 

pFX40 Lac promoter, Amp From C.Dekker lab, TU Delft 

pRmHA3 3xFlag-eGFP eGFP gene  Obtained from Anna Haagsma 

pYPet-His YPet gene Addgene 14031 

Tol2-mpx-Dendra2 Dendra2 Addgene 29574 

pBAD33_MotAB MotAB in pBAD33 From Bertus Beaumont lab 

pMH_01 MotA, 28AA of MotB-eGFP-MotB in pBAD33 This study 

pMH_02 MotA, eGFP-MotB in pBAD33 This study 

pMH_03 MotA, Ypet-MotB in pBAD33 This study 
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pMH_04 MotA, Ypet-GGGGS-MotB in pBAD33 This study 

pMH_05 MotA, Ypet-EAAAK-MotB in pBAD33 This study 

pMH_06 MotA, Dendra2-MotB in pBAD33 This study 

pMH_07 MotA, Dendra2-GGGGS-MotB in pBAD33 This study 

pMH_08 MotA, Dendra2-GSGSGS-MotB in pBAD33 This study 

pMH_09 MotA, Dendra2-3xGGGGS-MotB in pBAD33 This study 

pMH_10 MotA, Dendra2-EAAAK-MotB in pBAD33 This study 

pMH_11 MotA, Dendra2-3xEAAAK-MotB in pBAD33 This study 

pMH_12 MotA, -6AA_Dendra21-MotB in pBAD33 This study 

pMH_13 MotA, eDendra22-MotB in pBAD33 This study 

pMH_14 MotAB in pTrc99a This study 

pMH_15 MotA, Dendra2-MotB in pTrc99a This study 

pMH_16 MotA, Ypet-MotB in pTrc99a This study 

pMH_17 MotAB in pMMB206 This study 

pMH_18 MotA, Denra2-MotB in pMMB206 This study 

pMH_19 MotA, Ypet-MotB in pMMB206 This study 

pMH_20 MotAB in pFX403 This study 

pMH_21 MotA, Ypet-B in pFX40 This study 

pMH_22 MotA, Ypet-GGGGS-MotB in pFX40 This study 

pMH_23 MotA, Ypet-EAAAK-MotB in pFX40 This study 

pMH_24 MotA, Dendra2-B in pFX40 This study 

pMH_25 MotA, Ypet-EAAAKx3-MotB in pBAD33 This study 

1. Dendra2 protein with the last six amino acids (C-terminus) deleted. 

2. First 6 and last 7 AA sequence of eGFP were replaced to the first and last Dendra2 sequence. 

This is an optimized Dendra2 for bacterial cells, engineered in [58]. 

3. This is a pFX40 vector backbone without the entire 5266 bp gene inserts (YFP-MinD, MinE 

and LacZ and LacY). 

*Abbreviations: Cmr, chloramphenicol resistant; Amp, ampicillin resistant. 

 

 

Table 2.2 cBFM-P plasmids used for single motor analysis 

Plasmids Description Bacterial species of MotAB gene 

cBFM8 Laf TU in pBAD33 Escherichia coli O111:H- str. 11128 

cBFM8.1a A134S Laf T and laf U in pBAD33 
 

cBFM8.1c A134S & L284R Laf T and Laf U in pBAD33 
 

cBFM8.1d A134S & E87K Laf T and Laf U in pBAD33 
 

cBFM11 MotPS in pBAD33 Bacillus pseudofirmus OF4 

CBFM11.1i MotP and Q52P MotS in pBAD33 
 

cBFM17 MotAB in pBAD33 Listeria monocytogenes EGD-e 

CBFM17.1a MotA and S39I MotB in pBAD33 
 

CBFM17.1b MotA and F53V MotB in pBAD33 
 

CBFM17.1f MotA and S39R MotB in pBAD33 
 

CBFM17.1h MotA and F53V Mot B in pBAD33 
 



 

33 

 

CBFM17.1j 18bp insertion MotA and Mot B in pBAD33 
 

CBFM17.1k 9bp deletion MotB 
 

CBFM17.1o 15bp deletion MotB 
 

CBFM18 MotAB putative in pBAD33 Bacillus megaterium DSM319 

CBFM18.1e Q237K MotA and MotB in pBAD33 
 

 

2.1.2  Bacterial cells glycerol stocks preparation 

Strains were grown to stationary phase in LB-broth containing appropriate antibiotic(s) at 37 C (~ 

16 hours) with shaking. The stationary phase cells were mixed with sterile 50 % glycerol in a 1: 1 

ratio and stored at – 80 ºC freezer. 

 

2.1.3  Media, buffers and chemical stocks preparation 

The following media, buffers, antibiotics and gene inducer stocks were prepared and used for cell 

cultures and assays.  

 

Tryptone Broth (1 L) 

10 g Tryptone enzymatic digest from casein (95039 Sigma-Aldrich) 

5g of sodium chloride 

adjust pH to 0.7 with 5N NaOH 

Deionized / Milli-Q water 

 

 

Terrific broth (T5574 Sigma) 

23.6g/L Yeast Extract 

11.8g/L Tryptone 

9.4g/L K2HPO4 

2.2g/L KH2PO4 

4ml/L Glycerol 

 

LB media  

10g tryptone 

5g yeast extract 

10 g sodium chloride 

 

Antibiotics and gene inducers 

Ampicillin 100 ug/ml (in distilled water) 

Chloramphenicol 34 ug/ml (in 95 % ethanol) 

10% w/w L-Arabinose (A3256 Sigma) (i.e.1g of Arabinose to 9ml of milliQ water) 
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500 mM IPTG (I6758 Sigma) 

Both stocked were filter sterilized with a 0.22μm filter and stored at -20 C. 

 

 

2.1.4  Cell's growth rate (OD 600) measurements 

Growth rates were estimated by their optical density (OD) at a wavelength of 600 nm, which 

indicates the concentration of the bacterial cells in a liquid media. 96 well plates were used to 

measure the cell growth rates in the automated multi-mode microplate reader Cytation 3 (biotek). 

Each well contained 200 µl of either LB media or Tryptone broth with appropriate antibiotics and 

inducers as indicated. 1 µl of glycerol frozen stock cell samples were inoculated in each well, grown 

at 33 °C with orbital shaking. OD 600 were measured in every 20 minutes for 14~16 hours. Each 

strain was analyzed in triplicate to minimized the mis-pipetting errors. 
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2.2  Molecular biology genetic engineering 

 

2.2.1 Plasmid vectors collection 

The desired plasmid vector expression system had to meet the following conditions: low, tightly 

regulated but fast expression. The plasmid vectors collected are listed in Table 2.3. pBAD33 vector 

is well suited for the tightly controlled low expression of the gene [1]. In addition, three other 

vectors with IPTG inducible promoters were collected to see if they could express the genes faster 

than pBAD33 vectors. The four vector systems were used to express the fusion stator proteins 

(figure 2.1). pFX40 have a lac promoter and a medium copy number (5~10 copies per cell). This 

vector was collected by the C. Dekker’s lab in TU Delft since they used this vector to express fusion 

proteins in E.coli [2]. pTrc99a and pMMB206 were obtained as they were used by previous BFM 

studies including resurrection experiments [3-4]. The sources of these vectors are listed in Table 

2.1. 

Table 2.3 The list of the plasmid vector expression systems collected 

Plasmid vector Promoter Regulator Origin of replication 

pBAD33 Ara promoter AraC pACYC184/p15A 

pFX40 Lac promoter LacIq pBR322 derivative 

pTrc99a Trc promoter LacI ColE1 origin 

pMMB206 Tac/lacUV5 lacIq OriV/T (IncQ) 

 

 

Figure 2.1 A simplified illustration of the plasmid maps with the MotA and FP-MotB gene inserts. 



 

36 

 

2.2.2 Primer design 

For the standard PCR reaction, 18~25 bp of 5’ DNA sequences and the reverse complement 

sequence of 18~25 bp of 3’ DNA sequences were used as forward and reverse primers. For the 

Gibson reactions, the primers were designed to contain 25~ 40 bp overlapping linear DNA 

fragments. The list of PCR primers used are shown in Table 2.4. 

 

Table 2.4  PCR primers 

primer sequence (5' …. 3') length(bp) remark 

222 ggt agc ATG AAG AAT CAA GCG CAT CCG ATT ATT GTC 48 MotB initial 84bp fragment forward 

primer 

223 GTC ATA AAG TCG GCA TAA GCA ATC TTC CAC 39 MotB initial 84bp fragment reverse 

primer (from 104) 

224 ATG GTG AGC AAG GGC GAG GAG CTG TTC ACC 39 eGFP PCR Forward primer 

225 CGC TTG ATT CTT CAT gct acc CTT GTA CAG CTC GTC CAT GCC 

GAG 

60 eGFP PCR Reverse primer 

226 GCTTATGCCGACTTTATGAC 20 for vector right arm (eGFP-MotB) 

227 TCCTCGCCCTTGCTCACCATAATCTTCCACGATCCATGTG 40 for vector left arm (eGFP-MotB) 

228 ATG AAG AAT CAA GCG CAT CCG 27 MotB initial 84bp fragment forward 

primer  

229 CGG ATG CGC TTG ATT CTT CAT CTT GTA CAG CTC GTC CAT 

GCC GAG 

59 eGFP PCR Reverse primer (no linker) 

293 ATGAACACCCCGGGAATTAAC 21 Dendra 2 PCR_Forward 

294 CCACACCTGGCTGGGCAG 18 Dendra 2 PCR_Reverse 

295 ATGTCTAAAGGTGAAGAA 18 Ypet PCR_Forward 

296 TTTGTACAATTCATTCATAC 20 Ypet PCR_Reverse 

297 CCAGCCAGGTGTGGAAGAATCAAGCGCATC 30 MotB-Dendra2 PCR_Forward 

298 GAATGAATTGTACAAAAAGAATCAAGCGCATCCG 34 MotB-Ypet PCR_Forward 

300 ACGAATTCAAGGAGATATACATGTGCTTATCTTATTAGGT 40 MotA-Lac Promoter PCR_forward 

301 TTAATTCCCGGGGTGTTCATTCATGCTTCCTCGGTTGT 38 MotA-Dendra2 PCR_Reverse 

302 AATTCTTCACCTTTAGACATTCATGCTTCCTCGGTTGT 38 MotA-Ypet PCR_Reverse 

303 GGTGGTgcatgcAGGCACCCCAGGCTTTACAC 32 Lac promoter PCR (SphI) Forward 

304 ATGTATATCTCCTTGAATTCGTAATCATGG 30 Lac promoter PCR Reverse 

305 GGTGGTAAGCTTTCACCTCGGTTCGGCT 28 MotB PCR_reverse (HindIII) 

312 TCATGCTTCCTCGGTTGTCG 20 MotA End reverse 

313 GGTGGTGCATGCAGGCAC 18 Lac promoter (forward) shorter 

primer 

1 ACAACCGAGGAAGCATGAATGAACACCCCGGGAATTAAC 39 Dendra 2_Forward with MotA overlap 

2 TAATCGGATGCGCTTGATTCTTCCACACCTGGCTGGGCAG 40 Dendra 2 PCR_Reverse with MotB 

overlap 

3 ACAACCGAGGAAGCATGAATGTCTAAAGGTGAAGAA 36 Ypet PCR_Forward with MotA overlap 

4 TAATCGGATGCGCTTGATTCTTTTTGTACAATTCATTCATAC 42 Ypet PCR_Reverse with MotB overlap 

5 CCATGATTACGAATTCAAGGAGATATACATGTGCTTA 

TCTTATTAGGTTACCTG 

 
MotA Forward (EcoRI-pFX40) 

8 TTCGCTCGCGTATCGGTGATTCACCTCGGTTCGGCTGATG 40 pFX40 MotB reverse (for MotAB PCR) 
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9 CATCAGCCGAACCGAGGTGAATCACCGATACGCGAGCGAA 40 pFX40 MotB Forward (for pFX PCR) 

12 GAATTGTACAAAggtggcggtggcagcAAGAATCAAGCGCATCCG 
 

MotB-Ypet fusion GGGGS linker 

Forward primer for Gibson rxn 

13 gctgccaccgccaccTTTGTACAATTCATTCATACCC 
 

MotB-Ypet fusion GGGGS linker 

Reverse primer for Gibson rxn 

14 GAATTGTACAAAgaagcggcagctaagAAGAATCAAGCGCATCCG 
 

MotB-Ypet fusion EAAAK linker 

Forward primer for Gibson rxn 

15 cttagctgccgcttcTTTGTACAATTCATTCATACCC 
 

MotB-Ypet fusion EAAAK linker 

Reverse primer for Gibson rxn 

16 GAATTCGAGCTCGGTACCCGAAGGATGATGTCGTGC 

TTATCTTATTAGGTTACC 

 
SacI tag pcr primer for motA Forward 

(only for pBAD) 

17 ACAGCCAAGCTTGCATGCCTGCTCACCTCGGTTCGGCTGATG 
 

SphI tag pcr primer for motB Reverse 

18 GGTGGTGAATTCGTGCTTATCTTATTAGGTTAC 
 

EcoRI tag pcr primer for motA Forward 

21 ACAGACGACAACCGAGGAAGCATGA ATGGTGAGCAA 

GGGCGAGGA 

 
egfp with 25 bp motA end (for gibson) 

Forward 

22 CAGGGCGCTTACTGGCTCAT 
 

end part of motB reverse 

23 TTGATTCTTCATgctaccgctaccgctaccCCACACCTGGCT 

GGGCAGGG 

 
GSGSGS linker Dendra2 bind (reverse) 

24 AGCCAGGTGTGG ggt agc ggt agc ggt agcATGAAGAATC 

AAGCGCATCC  

 
GSGSGS linker MotB bind (forward) 

25 TTGATTCTTCAT ctt agc tgc cgc ttc CCACACCTGG 

CTGGGCAGGG 

 
EAAAK linker Dendra2 bind (reverse) 

26 CAGGTGTGG gaa gcg gca gct aag ATGAAGAATCAAG 

CGCATCC 

 
EAAAK linker MotB bind (forward) 

27 GATGCGCTTGATTCTTCAT GGGGCTGTAGCGGGCCACGG 
 

Dendra2 binds (without last 6AA) 

reverse 

28 CCGTGGCCCGCTACAGCCCC ATGAAGAATCAAGCGCATC 
 

MotB binds (Dendra2 without last 

6AA) forward 

29 ATGTCTAAAGGTGAAGAA CTGATCAAGGAGGACATGCGCG 
 

Dendra2 forward with first 6 AA of 

eGFP seq 

30 CTTGTACAATTCATCCATACC CAGGGGGCTGTAGCGGGCCACG 
 

Dendra2 reverse with last 7 AA of 

eGFP seq 

31 ACAGCCCCCTGGGTATGGATGAATTGTACAAG 

ATGAAGAATCAAGCGCATC 

 
MotB bind (with Dendra2 and GFP 

ending) 

32 ACAACAGACGACAACCGAGGAAGCATGA 

ATGAACACCCCGGGAATTAAC 

 
Dendra 2_Forward with MotA overlap 

33 CTCCTTGATCAGTTCTTCACCTTTAGACAT 

TCATGCTTCCTCGGTTGTCG 

 
MotA binds reverse (with Dendra2 

and GFP overhang) 

 

 

2.2.3 Polymerase chain reaction (PCR) and overlap extension PCR 

Polymerase chain reactions (PCR) were carried out using either Phusion® High-Fidelity DNA 

Polymerase (NEB) or Q5 High-Fidelity DNA Polymerase (NEB) according to their instructions. 

Both high fidelity polymerase PCR kits share the same protocol except the buffer and the 

polymerase. Overlap-extension PCR was also performed using Phusion polymerase with two DNA 

templates to link, instead of one DNA template. In this case, one set of each primer from the two 

DNA templates were used (i.e., the N-terminal primer of the first DNA template, and the C-terminal 
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primer of the second DNA template). Multiple trouble shooting reactions were performed to obtain 

optimized PCR conditions. 

 

Thermo-cycling conditions  

step 1 Initial denaturation 94 ºC, 2 min 

step 2 Denaturation 92 ºC, 10 seconds 

step 3 Annealing 55~68 ºC1, 10~30 seconds 

step 4 Extension 72 ºC, x min2 

step 5 to step 2 (30 cycles) 

step 6 Final extension 72 ºC, 2 min 

 
1. Annealing temperature can be determined by the Tm of primers and the sequence of the binding sites. 

2. Extension time can be determined by the length of DNA sequence to be amplified (30 seconds per 

kb) 

 

 

 

2.2.4  DNA electrophoresis 

To check the size of the DNA fragments followed by PCR reaction or DNA restriction enzyme cut 

reactions, DNA electrophoresis was performed. Agarose gel was prepared at concentrations 

between 0.8 and 1.2 % (w/v) (depending upon the size of DNA bands expected) in 0.5 X TBE 

buffer (90 mM Tris-borate, 2 mM EDTA, pH 8.0). Ethidium bromide was added in the agarose gel 

to avoid gel staining procedure after the DNA electrophoresis. DNA fragments were separated 

according to their sizes while electrophoresed at between 80 and 145 V. Gels were visualized on a 

UV trans-illuminator and imaged using Gel Doc imager (Bio-Rad). 

 

2.2.5  DNA purification 

PCR product DNA fragments were purified using NucleoSpin Gel and PCR clean up kit by 

Macherey-Nagel, according to their instructions. Small-scale plasmids DNA purification (mini-

prep) was carried out using NucleoSpin plasmid kit (Macherey-Nagel), according to their 

instructions. In brief, 3 ml of stationary phase culture was centrifuged and resuspended in 

resuspension buffer. Lysis buffer was added and left for 1 min to ensure full lysis reaction. 

Neutralization buffer was then added and the mixture was centrifuged for 5 min (~11,000 x g). The 

supernatant was decanted and the plasmid DNA was purified using silica spin column. Plasmid 

DNA was eluted in 30~70 μl elution buffer and stored at - 20 ºC until required. 
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2.2.6 Restriction digests 

Restriction digests were carried out either to create the desired DNA fragments with given sticky 

endings for the T4 ligation reaction or to check success of the ligation reactions. DNA restriction 

digest reaction was carried out using appropriate restriction enzyme(s) (New England Biolabs), the 

desired DNA templates, the reaction buffer provided, 2 - 10 units of enzyme and BSA (if necessary). 

The 20 - 50 μl volumes of total reaction mixture was incubated for 2 h at 37 ºC, unless the 

instructions stated otherwise. 

 

2.2.7 DNA ligation by T4 ligase 

After the restriction digested DNA fragments with matching overhangs were generated, the DNA 

products were purified by column purification. Gel purification was avoided since the agarose gel 

substance may hinder the ligation reactions. Vector and insert DNA templates in a ratio of about 1: 

3 or 1: 5 (total amount of DNA present ~1μg) were ligated in a reaction volume of 20 μl containing 

2 μl T4 DNA ligase (NEB), supplied reaction buffer, and left at 16 ºC for overnight (~16 h). This 

ligation DNA solution was subsequently transformed into high efficiency competent cells. 

 

2.2.8  Gibson recombination reactions 

To generate the DNA vector and insert templates for the Gibson recombination reaction, PCR was 

performed with the primers carrying 20 ~ 40 overhang sequences. The primers were designed such 

that the final products can generate a minimum of 25 bp overlap sequences (ideally over 35 bp 

sequences) between the two or three DNA templates. See the table 2.4 for the list of Gibson reaction 

primers. The PCR products were purified by column purification. Gel purification was avoided 

since the agarose gel substance may hinder the ligation reactions. Gibson assembly master mix 

(NEB) was used and the reaction mixture was prepared according to their instruction. Vector and 

insert(s) DNA products were mixed in a ratio of 1:3 ~ 1:10 (total amount of DNA present ~ 1 μg) 

in a total reaction volume of 20 μl, containing 10 μl Gibson reaction master mix (NEB). Incubated 

in a thermocycler at 50°C for 1 hour, followed by (high efficiency) competent cell transformation 

with 2~5 ul of the Gibson reaction mixture. 
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2.2.9  Competent cells and E.coli transformation 

Competent cells for the motilities assays were prepared using the following calcium-chloride 

method. 5 ml of desired e. coli strain was grown overnight at 37° C in LB to stationary phase. The 

overnight culture was diluted in 1:100 in fresh LB medium and grown at 37 °C until O.D. (600 nm) 

0.4-0.6 was reached. The cells were harvested by centrifugation, resuspended carefully in 100 mM 

CaCl2 and incubated on ice for 20 minutes. The last step was repeated twice, including a longer 1-

hour incubation on ice, and small aliquots with 15 % glycerol were prepared and stored at -80 °C. 

For the T4 ligation or Gibson assembly reaction mixture, commercially available high efficiency 

competent cells NEB5 alpha or NEB10 beta were used instead. 

For the heat shock transformation procedure, Ca2+ competent cells were thawed on ice, 

about 1~5ng of super-colied purified plasmids (or 10~50 ng for the ligation mix) were added and 

incubated on ice for 30 minutes. Cells were heat shocked at 42 °C for 1 minute, followed by 15 

min on ice. Either 1ml of LB media or SOC media was added to the heat-shocked cells and 

incubated at 37 °C for 1 hour to allow cells to recover and express antibiotic resistance genes. 

(Using SOC media generated a much higher yield of colonies the next day). 200 µl of the mixture 

was spread onto antibiotics selective LB agar plate, then incubated at 37 °C overnight. 
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2.3  Bioinformatics 

 

2.3.1 DNA sequencing 

DNA was sequenced by Beckman Coulter Genomics Sequencing Service using Sanger DNA 

sequencing method. DNA sequences were analyzed using the NCBI blast sequence alignment and 

SnapGene software package. Sequencing plasmid DNA samples were supplied at a concentration 

of 100 ng / µl (5 µl /reaction) and primers at 5 µM (2 µl /reaction). The sequencing primers used 

are listed in Table 2.5.  

Table 2.5 sequencing primers 

primer sequence (5' …. 3') length(bp) remark 

77F CTACCTGACGCTTTTTATCGC 21 Binds ara promoter pBAD33 forward primer 

211 CGGCAACGATGCGCTTAAGCG 21 Binds end region of MotB forward primer 

212 CAGCTTGCCGGTGGTGCAGATG 22 Binds beginning region of EGFP reverse primer 

213 GCAGCTCGCCGACCACTACCAGC 23 Binds end region of EGFP forward primer 

220 GCGTTTGGTATTGTTGCGGCTG 22 Binds mid region of MotA forward primer 

230 ACGCCGAAAGCCAGAATGAG 20 Binds end region of MotB forward primer 

232 GAACTTCAAGATCCGCCACA 20 Binds mid-end region of eGFP forward primer 

233 TGATTACACCCAAAGCCAGG 20 Binds mid region of MotB forward primer 

251 GCATGAAAACGCCGAAAGCCAG 22 Binds end region of MotB forward primer 

312 TCATGCTTCCTCGGTTGTCG 20 Binds end region of MotA reverse primer 

10 GCAGCTGGCACGACAGGTTTCC 22 pFX40 forward sequencing (before lac promoter) 

11 GGTTCTAAACATCGGGCGATTC 22 Binding mid region of MotB reverse primer 

19 AAGCGCACCCAGCTCGGCGG 20 Binds mid region of MotA reverse primer 

20 CTCAAAATCGATCTGGTCCAGG 22 Binds mid region of MotB forward primer 

22 CAGGGCGCTTACTGGCTCAT 20 Binds end region of MotB reverse primer 

 

 

2.3.2  Sequencing and structural alignments 

DNA and protein sequences of cBFM MotAB and fluorescent proteins (eGFP, Ypet and Dendra2) 

were aligned using multiple sequence alignment package T-coffee [5] by combining the alignment 

methods of Clustal, Probcons and Muscle into one unique alignment. T-Coffee can align Protein 

(Expresso), DNA and RNA sequences. The 3D structural alignments were done via PBD analysis 

tools available online at www.rcsb.org. 
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2.4  E.coli motility assays 

 

2.4.1 Chemotaxis soft-agar plate assay 

 

The population motility was measured by observing chemotaxis on soft agar plates. As cells 

metabolize nutrients in the agar, they create a gradient of chemicals and, if chemotactic, swim from 

the point of inoculation up the attractant gradient to the regions of higher nutrient concentration, 

forming a large ring. The chemotaxis assay was performed in half fold diluted LB media with 

appropriate antibiotics and gene inducers. The percentage of agar was strictly set to 0.3% (or less) 

to ensure swimming motility rather than swarming motility [6-7]. The 0.3 % agar plates were 

prepared in Bertus Beaumont lab for cBFM chemotaxis assays. The 0.3% agar plate for cBFM 

assays was composed of: 

 

½ x LB agar (400 ml) 

2 g peptone from casein, tryptic digest (Fluka 500 gr cat no:70172) 

1 g yeast extract (Fluka 100 gr cat no: 70161) 

2 g NaCl 

1.2 g agar (0.3 %) 

 

autoclave: 20 min 120 °C, after cooling (~50 °C) 

400 µL chloramphenicol antibiotics + 4 mL 20% arabinose (0.2 %) 

 

For the chemotaxis assays of FP-MotB fusion stators, either 0.223 or 0.25 % agar plates 

were prepared instead of 0.3 % agar plate (0.3% agar plates generated much harder agar plates than 

the ones prepared in Beaumont lab in TU Delft due to the difference in autoclave procedure in CBS, 

Montpellier). 27 mL of solution were added to each plate and they were dried overnight with closed 

lid. 5 μl aliquots of stationary phase cultures (in LB-broth, at 37 ºC) were inoculated onto the soft 

agar plates, with no more than three samples per plate. To prevent any evaporation, the soft agar 

plates were placed in boxes (three plates per box) and incubated at 37 ºC for 8~12 h, depending 

upon the strains being assessed. The chemotaxis speeds were measured as the distance of the 

forefront of the ring from the inoculation point (or diameter of the ring) after a given incubation 

time. Each set was repeated in triplicate. 
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2.4.2  Single cell swimming assay in liquid media 

Swimming behavior of cBFM-P E.coli cells in liquid media were monitored in a bovine serum 

albumin (BSA) tunnel slide. The BSA tunnel slide (~100 µm height) was prepared with a 

microscope slide, a same size cover slide and a double sided sticky tape (figure 2.2a). Up to seven 

stick strips (~ 4mm x ~25mm size strips) were placed on the microscope slide, then a cover slide 

on top with an overhang of about 1-2 mm with respect to the microscope slide to finish flow 

channels. About 20 ul of 0.5% BSA solution (5 mg/ml) was added to the flow channels and dried 

overnight to prevent the cell bodies sticking to the surface of the slide. 

E. coli was grown in 5ml of half LB + CAM (25µg/ml) at 37 °C with shaking at 250 rpm 

until stationary phase (overnight culture). The overnight culture was diluted 1:10 in fresh 5 ml of 

half LB + CAM (25µg/ml) + 0.2 % arabinose media and grown further at 37 °C for 2 hours (± 

15min) to induce the stator gene expression (OD600 of ~ 0.5 or less). The culture was diluted 

tenfold in the same fresh half LB media. About 10~15 µl of the diluted cell culture was added to 

the each BSA tunnel slide. Both ends of the slides were sealed with vacuum silicone. The cells 

were rested in the slide for at least two minutes before recording so that most cells can swim right 

above the glass surface. The swimming behaviors were monitored and recorded under the dark 

field microscope at room temperature (~23 °C) for 30 seconds each. Three independent 

experiments were performed for each cBFM strain. 

 

2.4.3  Single motor - tethered cell body and rotating bead assay  

Cell preparation was the same for both tethered cell body and rotating bead assays. Cells 

were grown at 33 °C in 3 ml tryptone broth (Sigma Aldrich) with the appropriate antibiotics and 

inducers until OD 600 of 0.55~0.65. For the cBFM tethered cell assay, cells were grown at 37 °C 

instead. About 0.7 ml of cell suspension was passed through two syringes with 26-gauge needles 

(26 µm) connected by a piece of polyethylene tubing (~10 cm long, 0.58 mm inner diameter) at 

least 50 times. This procedure is performed on sticky FliC mutant strains (JPA605, JHC36, MT02, 

MT03) to shear the long filaments of E.coli flagellum to achieve shorter flagellum, which will be 

either attached to the bead or to the slide. Shortened flagella can ensure that a spinning bead is close 

to the cell body and does not attach itself to neighboring cells or flagella. The sheared cell 

suspension was collected by centrifuging at 3,615 g (3,000 rpm) for two minutes. The cell pellet 

was resuspended in ~400 µl of motility buffer (10 mM potassium phosphate / 0.1 mM EDTA/ 10 

mM lactic acid, pH 7.0).  
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For tethered cell assay, the prepared cell sample in motility buffer was added to the custom-

made flow chamber (Figure 2.2b), allowing the cells to rest and the sticky flagellar stubs to be 

attach to the glass surface by hydrophobic interaction. The flowing cells can be washed by the fresh 

motility buffer and Kim-wipe tissue. For bead assay, the glass cover slide of the flow channel 

(Figure 2.2c) was coated with poly L-lysine (PLL) before introducing the cell sample. Poly L lysine 

allow cells stuck onto the surface of the channel slide due to their charge interactions (positively 

charged PPL and negatively charged cell body). After the PLL coating, the cells were introduced 

and left settle for few minutes, then 1.1 µm diameter polystyrene latex beads (sigma) were attached 

to the filament stubs (just by introducing the beads in the flow channel), followed by washing with 

the same motility buffer. The rotation of the bead or rotation of the cell body were monitored for 

3~5 min each, in a laser bright-field setup [59], recorded by CMOS fast camera at frame per second 

(FPS) of 100, 300 and 500 depending on the experiment. All experiments were carried out at room 

temperature 22 °C. 

 

 

Figure 2.2 Three tunnel slides for (A) swimming assay, for (B) tethered cell assay and (C) for bead 

assay. 
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2.5  Single motor data analysis 

 

2.5.1 Tethered cell data analysis 

The recorded videos were cropped around the rotating cell bodies to reduce the file sizes. 

This step can reduce a file size of ~ 1 GB to 200~300 MB. The video includes stacks of the images 

of the rotating cell body (100 images per second, FPS=100), and the center of rotation is where the 

flagellar is tethered on the glass surface. The center of the rotation was identified by the standard 

deviation image of the recorded video (figure 2.3a). The center of the rotation was identified either 

by automatic 'center detection' or by a manual click on the image. The drag of the rotating cell body 

varied based on the size of the cell body and the position of the working motor in the cell body. 

The tethered cell drag was calculated based on the cell length, the distance between the center of 

the cell and the rotational axis, length and the width of the cell (figure 2.3b). The equations to 

calculate these frictional drag coefficients can be found in SI of [8]. The angle of the cell body from 

the center of the rotation were tracked (figure 2.3c). From this tracked angle verse time, the rotation 

speed and the switching events of the cell body were measured. The torque produced by the motor 

was calculated by the calculated drag value and the rotation speed using the software written by Dr. 

Pedaci (python). 
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Figures 2.3  A representative image of a standard deviation of rotating cell body (A) and a distribution 

of measured cell length and width of this cell (B) are shown. The cell length, cell width and the 

long/short cell axis for this particular cell are shown in the bottom left corner. A single frame of this 

rotating cell body image and its angle vs time trace are shown (C). Angle and time trace and a snap shot 

of the corresponding rotation cell. Switching events can be seen when the tracked angle change from 

positive to negative. Blue arrows represent switching events from CCW to CW, and orange arrows 

represent switching events from CW to CCW (FPS=100).  

 

Switching of the tethered cell was defined as when the cell switches its direction of rotation 

for more than 90 degree (angle) with a minimum speed of 0.1 Hz. Consequently, the switching 

threshold was set as 2/3 of CCW mean rotation speed (down threshold) and a fixed rotation speed 

of 0.1 (up threshold). The speed that passes both thresholds is counted as a switch. The angle of 

rotation per frame can be changed by the rotation speed; when the cell is rotating at a low speed 

(<2 Hz), high number of frames are required to check whether they rotated in opposite direction 

for more than 90 degrees. So the filter set was adjusted accordingly. The filter is defined as 

replacing Y number of raw data points into a single data point with the median of neighboring raw 

data points (median filter), where Y being the filter set value. The rotation of the cell body was 

recorded as a movie with a 100 frame per second (FPS), which gives 100 tracked angles of the 

rotation (raw data points) per second, and this angle of the rotation per frame can be measured by 

an equation: (360 degrees * X Hz) / 100 FPS, where X is the speed of the rotation (Hz). Thus, the 

filter set was decided by the minimum number of frames needed to turn 90 degrees, which is 90 

degrees divided by the angle of rotation per frame. 
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2.5.2 Bead assay data analysis 

The flagellar motor rotation was measured by a 1.1 µm polystyrene bead on the sticky flagellar 

stub of the BFM (Figure 2.4_a). The center position of the bead on the rotating stub was tracked 

using a high-speed camera, and their time trace of the X and Y positions were plotted (Figure 2.4c). 

Figure 2.5 shows the bead position in x and y plane separately, and x y axis together with lines 

connecting each entry. In order to ensure that the video of the rotating beads was not effected by 

other extraneous factors, the bead traces with a right circle or a fine ellipse were selected. Normally 

the rotating beads were recorded for at least 3 minutes. Since this is a long enough time to cause 

any small drift of the stage, where the cells on the coverslip lies, a neighboring stuck bead were 

also recorded as a reference bead. This reference bead can tell us the stage movements during the 

experiment. To correct this artifact, each entry of the center position of the rotating bead was 

subtracted by the center position of the reference bead. The corrected time trace of the x and y 

positions of the bead is shown in figure 2.4d. This drift correction made the trajectory of the bead 

more like a single circle without much scattered dots around. Then, the algorithm fits an ellipse 

into this bead trajectory using the least squares fitting [9-10] (Figure 2.4e). This fitted ellipse bead 

trajectory was used to obtain the angle (turn) time trace, and subsequently, speed time trace as 

shown in figure 2.6. The sampling frequencies (FPS) of the bead assays was 300 Hz, which allows 

~3.3 ms of time resolution. 
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Figure 2.4 (A) A schematic image of a rotating bead attached to the flagellar stub in E.coli cell. (B) A 

reference bead stuck on the glass slide trajectory in a x-y plane. This bead drifted in Y-axis. (C) A 

rotating bead trajectory in a x-y plane before drift correction. (D) A rotating bead trajectory in a x-y 

plane after drift correction. The trajectory is ellipse (instead of circle) because the location of the 

flagellum that the bead was attached to was not in perfectly perpendicular. (E) A drift corrected rotating 

bead trajectory in a x-y plane after an ellipse fit (a fitted ellipse to the entries). The blue dots represent 

all the x-y plane entries of the time trace. The angle time trace and speed time trace of the corresponding 

bead are shown in figure 2.6.   

 

 

 

 

 

 

 

Figure 2.5 The X- and Y- axis time traces corresponding to the bead in figure 2.4 is visualized (Left). 

When these two x-y plane time trace is plotted together, it creates a circle as shown in the right. All the 

entries (dots) are connected with a line. 
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The angle time trace shows a simple linear regression relationship between the angle and 

the time. This reveals the fact that this motor rotated mostly in CCW bias rotational direction in a 

steady speed. When the angle time trace is zoomed in, this linear regression relationship can be 

more like a multiple linear regression if there were switching events (figure 2.6a). Here, switching 

event was defined as when the rotation speed crosses 2/3 of both mean positive speed and mean 

negative speed. The switching threshold for positive speed (up_th) and negative speed (dw_th) can 

show a great difference if the mean rotation speeds in positive and negative speed varies a lot, like 

seen by fusion stator motors. Therefore, to count the number of switching events in the speed-time 

trace, the up switching threshold was set to 2/3 of the mean positive rotation speeds (red arrow in 

figure 2.6b) and the down switching threshold was set to 2/3 of the mean negative rotation speed 

(green arrow in figure 2.6b). When the speed time trace is zoomed in, it shows rapid switching 

events from CCW to CW and CW to CCW. 

 

 

 

Figure 2.6 Switching events seen from angle-time trace (A) and speed time trace (B). The switching 

events were counted by setting a switching threshold (2/3 of mean rotation speed). The red and green 

arrows in the speed time trace represents up and down switching threshold, respectively.  
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The measured speed-time traces are intrinsically noisy (possibly due to the thermal noise 

influencing the position of the bead). To reduce the noise, we applied a 21-points (approximately 

0.07 seconds) window median filter, which assigns to each point in the trace the median of the 21 

points around it.  A filter of 21 points was used for most of the cells. Figure 2.7 shows the effects 

of the filter in speed time traces. For the cells with a rotation speed of lower than 20 Hz, higher 

filter set was used to minimize higher noise level and to ensure counting all the switching events.  

 

 

 

Figure 2.7 Effect of the filter window over the same speed time trace. Blue points: raw data, dark: 

filtered trace.  
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2.6  Single molecule fluorescence imaging in live E.coli cells 

 

2.6.1 Cleaning the microscope slide 

The coverslips (Menzel glaser) were rinsed with acetone, ethanol and filtered water, sonicated in 

1M KOH for 20 min, rinsed again with water, dried quickly under air flow, passed through a flame, 

and then stored dry until use. This cleaned slide showed reduced amount of visible background 

fluorescence on the glass slide when excited by 552 nm laser. However, this cleaning procedure 

was not able to completely get rid of all the background fluorescence. Interestingly, the background 

fluorescence on the glass slides were excited mostly by 552 nm laser but not so much by 488 nm 

laser. So, the glass slide without the cleaning procedure above were used for all the fluorescent 

proteins excited by 488 nm laser. 

 

 

2.6.2 Epi and TIRF fluorescence microscope 

 

An inverted custom built fluorescence microscope (developed in Pedaci lab) was used. The 

microscope contains multiple illumination paths for 650nm (red), 552 nm (yellow-green), 488nm 

(blue), 405nm (violet) laser lights and 100 x 1.45 NA oil objective (Nikon). Both epi- and TIRF- 

(total internal reflection) fluorescence imaging was performed in this microscope. In a wide field 

epi-fluorescence imaging mode, the light travels through the objective lens to illuminate the sample, 

and then the light emitted from the sample travels back through the same objective to the detector 

(figure 2.8). In TIRF mode, a tilted excitation generates an evanescent field at the cell sample at 

the interface between two media having different refractive indices, which is the contact area 

between a specimen and a glass coverslip [11, 12]. Thus, TIRF imaging is advantageous for 

membrane fluorescent protein imaging. The switch between Epi and TIRF was facilitated by the 

dichroic mirror, mounted just before the excitation light passes through the objective (figure 2.8). 

The position of the dichroic mirror was adjusted to control the incident illumination angle, such 

that the light can pass through the objective either on axis or with the critical angle for total internal 

reflection. Since this adjustment was done manually, the TIRF images taken in the same day are 

comparable, and the direct comparison of the ones taken in different days was avoided. 
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Figure 2.8 A simplified epi- and TIRF- fluorescence microscope. The dichroic mirror was moved to 

change the excitation illumination angle to the objective (TIFP < > epi).  

 

 

 

650nm laser light was used for the low intensity bright-field illumination, therefore used 

for bead assay. 488nm laser light was used to excite eGFP, Ypet and unconverted Dendra2 

fluorescent proteins. The emission light passed through a 495 nm dichroic mirror (T495lpxr, 

Chroma) and a 525 nm emission filter (band width = 50 nm). 405nm and 552nm laser lights were 

used to photo-convert and excite Dendra2, respectively, and the emission light passed through a 

560 nm dichroic mirror (T560lpxr, Chroma) and a 590 nm filter (band width = 50 nm). In order to 

record the fluorescence signal and the rotating bead of the same motor of the E.coli cell, a dual 

recording set up was built (figure 2.9). The additional dichroic mirror (T647lpxr) splits the FP 

emission light and the red light scattered by the beads. The emission filter (ET700/50 nm) in front 

of the CMOS camera (Optronis CL600x2M) was mounted (in tilted way) to filters out most of the 

unnecessary background signals and efficiently record the bead rotation. An iris can be placed in 

between the two dichroic mirrors to localize a small region of the interest where rotating beads are.  
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Figure 2.9  A schematic drawing of the dual recording set up. EMCCD camera can record the FP 

fluorescent signals from the cell samples while CMOS camera can record rotating beads or rotating cell 

bodies, simultaneously. The emission filter and the dichroic mirror are depending on which FP to image. 

 

 

 

Cell sample preparation for the fluorescence imaging was the same as described in 2.4.3 

(single motor bead assay and tethered cell assay). Especially, it was convenient to use the tethered 

cell assay flow slide since it contains both stuck cells and tethered cells. Stuck cells can be used to 

visualize the fluorescence intensity of the whole cell body or membrane and the tethered cells can 

be used to visualize the fluorescence intensity of the functioning motor as the sheared sticky 

filaments were tethered to the bottom window of the flow chamber. The cell sample slide was 

placed onto a slide holder which was then screwed into a piezoelectric nanostage on a z-nano 

positioning stage (PI). Total illumination area was ~5,435 µm2 and the illumination intensity of the 

488 nm laser at the sample was ~ 7 mW in epi mode and ~ 0.3 mW in semi TIRF mode (when the 

laser intensity setting was 20 mW). Each pixel size of the images (512x512) from the EMCCD 

camera was 144 ± 1 nm and from the CMOS camera was 148 ± 1 nm. All experiments were 

performed at 20 °C.   
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2.6.3 Image acquisition and data analysis 

Images (512 x 512 pixels) were acquired using a back-illuminated cooled (-80 °C) Electron 

Multiplying Charge Coupled Device (EMCCD) camera (iXon Ultra 897, Andor). An acousto-optic 

tunable filter (AOTF) was used to control and select a specific wavelength from the laser sources. 

The image acquisition was controlled by a custom written software (Labview 8, National 

Instruments). EM (electron multiplying) gain and the exposure time were varied, but, normally EM 

gain of 50 ~ 132 and exposure time of 100~500 ms (in frame transfer mode) were used for the 

unconverted three FPs. The image acquisition for the photo-converted Dendra2 is discussed in 

chapter 5.4. Images from the EMCDD camera were recorded in .tif format and imported into 

Python or ImageJ for further analysis. The details of image analysis will be discussed in Chapter 4. 
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Chapter 3. Characterizing the flagellar motors driven by 

fluorescent protein tagged stators 

 

 

3.1  Rationale and aims 
 

Stator proteins have been labeled by a fluorescent protein (FP), mainly GFP, by several groups to 

monitor their localization and understand their dynamics owing to their central role in torque 

generation [1-6]. Labeling the stators by a FP is the most commonly used method to visualize them, 

because they are in the inner membrane of the cell and have no accessible part from the extracellular 

side, making standard immuno-fluorescence or other membrane protein labeling methods 

unfeasible. According to the putative topology of MotA and MotB, both the N-terminus and C-

terminus of MotA and the N-terminus of MotB are in the cytoplasmic side. The C-terminus of 

MotB is in the periplasm, where the stator complexes are anchored. When a FP is attached to MotA 

both to the N-terminus and the C-terminus, the motor becomes non-functional and no fluorescent 

spots are visible [7]. When a FP is attached to the N-terminus of MotB, however, the motor is 

functional. Hence, the FP-MotB is used by many studies to monitor stators by fluorescence. It has 

been reported that, however, while the motors with the FP-MotB stator were functional, their 

motility is reduced [1,4]. It is only speculated that the FP tag on MotB interferes somehow with the 

power-stroke mechanism, but no studies are available to understand how the FP tag on the stator 

affects the torque generation as well as the switching mechanism.  

In this study, MotB fusion proteins with the three different fluorescent proteins (eGFP, 

YPet, Dendra2) were constructed, initially, to learn more about the stator dynamics in the 

functioning motor. Our functional characterization of the motors carrying the FP tags consistently 

showed unusual behaviors, mainly related to switching. Considering the proximity of the 

fluorescent tags to the stator-rotor interface, this impaired function of the motor is not surprising. 

Therefore, the goal of the project was re-oriented and started to investigate the detailed activities 

of the FP tagged motors. Using single molecule biophysics approaches, the following aims and 

questions were addressed. 

 

 



 

57 

 

 

Aims of this chapter 

1. Quantitatively analyze population chemotaxis and single motor speed, and the effects of 

the FPs on them. 

2. Identify whether the reduced motility caused by FPs tag is due to the less number of stators 

bound to the motor or whether each stator produces less torque. 

3. Identify how the various aspects of the switching activities are affected by the FP tag. 

4. Examine if the impaired functions of the motor can be restored by having a linker between 

FP-MotB. 

5. Explore possible explanations for how different FP tags (even though they were similar in 

size, structure and location) cause different effects on the motor. 

6. Propose possible explanations that could explain the impaired motor functions caused by 

the FP tag on the stators. 
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3.2  FP-MotB fusion stator constructions 

Enhanced GFP (eGFP) is a mutant variant of wild type GFP [8]. eGFP is the most widely used, 

well characterized, stable, bright, monomer and previously used FP for E.coli motility proteins. 

Hence, eGFP-MotB fusion construct was tried at first. The construct previously made by other 

groups presents - a N-terminus fragment (~28 codons) of motB which was added in front of eGFP-, 

following the hypothesis that the N-terminus of motB could contain a putative membrane protein 

trafficking motif sequence [7]. Accordingly, we constructed the 28 AA-eGFP-MotB fusion protein 

by linking the first 28 codons sequence of motB to eGFP, followed by a ligation into 

pBAD33_motA and motB vector (Figure 3.1). The vector with this FP-MotB fusion protein was 

named pBAD33_MotA, 28AA-eGFP-MotB (or pMH_01). 

 

 

Figure 3.1. 28AA-eGFP-MotB fusion protein construction. The N-terminus 84 bp of MotB sequence 

was fused to eGFP using overlap extension PCR. Then, this fragment was ligated into the linear 

pBAD_MotAB vector DNA by Gibson recombination reaction. The resulting construct is called 

pBAD_MotA, 28AA-eGFP-MotB (or pMH_01). 

 

 

In addition, eGFP-MotB fusion stator, which do not have the additional 28 AA sequence 

of motB in front of eGFP, was constructed to test whether the additional 28 AA were necessary. In 

addition to the eGFP fusion stator, two more fluorescent proteins – YPet and Dendra2- were fused 

to the N-terminus of motB. YPet is a Venus mutant variant of YFP, made for FRET study paring 

with CyPet [9]. Dendra2 is a monomeric green to red photo-convertible protein, derived from 

octocoral Dendronephthya sp [10, 11]. YPet was chosen since it is supposed to be almost twice as 
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bright as eGFP [12]. Dendra2 was chosen since it is a photo-convertible FP which can be used for 

PALM super resolution microscopy. All the three FPs, including unconverted form of Dendra2, 

can be excited at 488 nm and emit around 510 nm, making it especially well-suited for detection 

by commonly used microscopes. It is reported that eGFP and Dendra2 show reasonable folding 

efficiencies and fast maturation rates at 37 °C in both bacteria and mammalian cells [12-13]. 

However, YPet folding efficiency and maturation rate are less clearly known. YPet shows a good 

photostability and a better resistance to acidic environments than other yellow FPs [14], though 

eGFP and Dendra2 provide higher photostability. In total, four FP-MotB fusion proteins with the 

three different fluorescent proteins were constructed (Table 3.1). All the constructs did not have 

any linker sequences between the FP and motB. 

 

Table 3.1. Photophysical properties of the FPs fused to MotB [10~14] 

MotB-

fusions 

Excitation 

(nm) 

Emission 

(nm) 

Brightness(a) Photostability(b) pKa Oligomerization 

eGFP 488 507 100 174 6.0 monomer or 

weak dimer 

YPet 517 530 238 49 5.6 monomer or 

weak dimer 

Dendra2 

(Green) 

490 507 67 - 7.5 monomer 

Dendra2 

(red) 

553 573 57 3.3* 

(photostablity of 

Dendra [11]) 

- monomer 

(a) Relative brightness (% of eGFP). (b) Time for bleaching from an initial emission rate of 1,000 

photons/s down to 500 photons/s (t1/2; for comparison, fluorescein at pH 8.4 has t1/2 of 5.2 s); data 

are not indicative of photostability under focused laser illumination. 

 

 

motA and FP-motB were expressed under the control of the arabinose promoter by 

pBAD33 vector to ensure a tight regulation of the expression in motAB knockout RP437 derivative 

E.coli cells [30]. Gene replacement on the chromosome was not tried, because we wanted to have 

a control over the gene expression using different inducer concentrations. The gene expression 

control was intended to perform the classic resurrection experiment [22-23], which requires cells 

to express MotAB proteins gradually. The advantage of having a gene expressed by inducible 

vector system is being able to control the expression level by the different concentrations of inducer 
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molecules and simpler step to construct the strain. The disadvantages of having gene expressed by 

inducible vector system can be 1) higher cell to cell variations, 2) different growth conditions as 

compared to the cells do not carry any plasmid vectors, 3) lower or higher gene expression than the 

native expression level, and 4) over expression of the gene of interest may interfere with other 

endogenous gene expression mechanisms.  

Despite the fact that the structure of the stator complex is not known, based on the existing 

structural information, we can predict the following: 1) one stator complex carries two FPs linked 

directly to the N-terminus MotB, likely forming a dimer, because the known stoichiometry of MotA 

and MotB trans-membrane proteins is 4 MotA and 2 MotB [15], 2) the FP tag is placed in the center 

of the stator complex, because the two MotBs are likely located at the center of the stator complex 

[16], 3) the FP tag may directly or indirectly interact with the cytoplasmic region of MotA, because 

MotA proteins have two long cytoplasmic loops around the short N-terminus stretches of MotB 

(Figure 3.2a); 4) the FP tag creates an extended stretch below the stator complex, because the FP 

is probably longer than the length of the cytoplasmic complex of MotA. The cytoplasmic part of 

MotA can be predicted to be about 3.5 nm long (personal communication with Dr. Gilles Labesse) 

and the FP has a shape of a cylinder with a length of 4.2 nm and diameter of 2.4 nm [8], 5) the FP 

tags may interact with FliG proteins in the C-ring complex, because FliG proteins interact with the 

torque generating cytoplasmic domain of MotA [17]. Therefore, considering all these topological 

constrains, it is likely that the FP tag interacts with the cytoplasmic loops of MotA and FliG in the 

C-ring (Figure 3.2). 
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Figure 3.2. (A) Topology of the MotA and FP-MotB fusion protein and the top and side view of the 

schematic illustration of the fusion stator are shown. The AA lengths of each cytoplasmic loops and 

peptidoglycan domain are shown. MotA has four transmembrane domains and MotB has one. The C-

terminus end of the FP is linked directly to the N-terminus of MotB and the FP tag is located at the 

center of the stator complex with an extended stretch below the stator complex. The amino acid (AA) 

sequence of MotA, MotB, FP are 333, 309, 239 (eGFP), 230 (Dendra2), 238 (YPet), respectively. (B) 

A schematic illustration of the BFM complex with FP-tagged stator or WT stator (no FP tag).   
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3.3  Reduced chemotaxis motility by fusion stator motors 

In order to check the success of the FP fusion stator constructs, their motility and fluorescence 

signals were checked prior to the single motor analysis. Fluorescence microscopy data is described 

in chapter 4. The motility of the strains with the fusion stators were checked by chemotaxis assays. 

JPA604 strain (MotAB knockout of RP437 strain) carrying appropriate plasmid vectors (pBAD33) 

expressing MotA and FP tagged MotB was used. As a positive control, wildtype (WT) strain 

expressing MotA and MotB by the same vector was prepared. Another wildtype (WT_np, RP437) 

strain expressing MotA and MotB by their native promoter was also prepared. The soft agar plates 

contained appropriate antibiotics and indicated concentration of inducers, except for RP437 strain 

which express stator proteins by the native promoter. Chemotaxis performance include the abilities 

of the motors to rotate and to switch properly. For simplicity, the strains of E.coli used in this work 

are referred to as YPet, eGFP, Dendra2, WT and WT_np strains. When the chemotaxis speed of 

the two eGFP strains were compared, both were motile, but the eGFP-MotB showed a larger 

diameter of the colony than the 28AA eGFP-MotB fusion strain (Figure 3.3). This indicates that 

this additional 28 AA MotB N-terminal part was not necessary and caused a more reduced motility. 

Thus, eGFP-MotB fusion, without the 28AA, were used as eGFP stator throughout the study. 

 

 

 

Figure 3.3. Left: a representative chemotaxis soft agar plate with WT, eGFP and 28 eGFP strains. Right: 

chemotaxis motility of the same strains for 8 hours on the 0.25% soft agar in the presence of 0.01% 

arabinose. Five replicates of the same assay were performed and the error bars indicate the standard 

deviations of the values. 
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When the motilities of the three fusion stator strains were compared, YPet and eGFP 

showed a similar chemotaxis speed (~50% speed of WT), with YPet being slightly faster than eGFP. 

Dendra2, on the other hand, showed much lower chemotaxis speed than YPet or eGFP (30-40 % 

speed of WT) (Figure 3.4). The chemotaxis speeds were increased as the L-arabinose (gene inducer) 

concentrations increased, with a maximum speed at 0.1% arabinose as expected by [19] (Figure 

3.4). When the chemotaxis motility of the two wildtype strains - WT_np (RP437) and the WT 

(JPA604 carrying pBAD33_MotAB)- were also compared, the WT_np chemotaxis at a similar 

speed to the WT in soft agar plate with arabinose 0.325 mM ~ 0.65 mM (equivalent to 0.05~0.01% 

of [ara]). However, a direct comparison of these two data should be avoided, because WT and 

WT_np have 1) different growth conditions since no antibiotic and L-arabinose was required for 

RP437 strain, which does not carry any plasmid vectors, and 2) different in cell to cell variations; 

more homogenous gene expression is expected in WT_np than in WT. In addition, RP437 showed 

a broader range of chemotaxis speeds based on the softness of the agar plates for unknown reason.  

 

 

    

 

Figure 3.4  Left: Representative chemotaxis assay (at 0.65 mM ara) showing the four strains. Right: 

Chemotaxis motility of the four strains by different inducer concentrations. L-arabinose concentrations 

of 0.001%, 0.002%, 0.05%, 0.01%, 0.1% are equivalent to 0.065 mM, 0.13 mM, 0.325 mM, 0.65 mM, 

6.5 mM, respectively. The area marked pink represents the RP437 strain (WT_np) chemotaxis motility. 
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The YPet and Dendra2 fusion stators were also expressed by three other vector expression 

systems than pBAD33, and their motilities on soft agar were tested (Figure 3.5). The chemotaxis 

speeds varied (~30%) depending on the expression vectors used, but the relative chemotaxis speeds 

of the three strains (WT, YPet, Dendra2) remained constant. pMMB206 and pBAD33 vectors 

showed a tight protein expression control, while pFX40 and pTrc99a [20] vectors did not. 

Interestingly, YPet fusion by pTrc99a vector did not swim well when IPTG (50 µM) inducer was 

present in the media, but swim better when no inducer was present. The OD600 growth curve of 

the YPet-MotB fusion stator on pTrc99a strain also clearly revealed that the cell cannot grow well 

when the IPTG inducer was added to the media (Appendix A). The underlying reason behind this 

reduced growth rate is not known. One hypothesis is that the gene expression by the pTcr99a vector 

is higher than other vectors, and over expression of the YPet-MotB fusion protein inhibits the cell 

growth. Protein expression level measurements will be required to answer these questions. In this 

study, only pBAD33 vectors were used for the experiments. 

 

 

Figure 3.5. Motility tests of the WT, YPet and Dendra2 fusion stators expressed by four different vectors. 

The graph shows the mean diameters (in cm) of the indicated strains, after ~8 h on 1/2 LB soft agar 

plates. The semi-solid agar plates were without or with (second columns with *) inducers. The inducer 

used was either 50 µM IPTG or 0.2% arabinose. The antibiotics ampicillin (100 µg/ml) were used for 

pFX40 and pTrc99a, and chloramphenicol 10 µg/ml and 33 µg/ml were used for pMMB206 and 

pBAD33, respectively. The strains carrying pMMB206 and pBAD33 vectors did not chemotaxis when 

no inducer was present, suggesting a much better control over the protein expression than pFX40 and 

pTrc99a. The data is from the three to four independent experiments, and the error bars represent 

standard deviations. 
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3.4  Single motor rotation speed by fusion stator motors 

In order to examine the functions of the motors carrying the three fusion stators, 1.1 µm diameter 

beads were attached to the truncated hydrophobic flagella filament of the motor and their rotation 

was monitored by a fast CMOS camera at 300 frames per sec (FPS). In figure 3.6, we show the 

distributions of the speeds recorded from the single-motors of the four strains. The rotation speeds 

of WT varied from ~20 Hz to ~ 70 Hz with an average rotation rate of ~45 Hz (number of motors 

= 56). The wild type motors (WT_np), expressing the stator genes by the native promoter in the 

genome, also showed similar rotational speeds, suggesting the growth condition (presence of 

antibiotics and arabinose in the media) and the source of the stator expression do not affect the 

motor rotation speeds in this experiment condition. Despite the big difference in the chemotaxis 

speed, the average rotation speed of YPet fusion stators (~43 Hz, n.motors= 59) was close to the 

WT rotation speed. On the other hand, motors with the stators tagged by eGFP and Dendra2 

produced 58% and 33% average rotation speeds with respect to WT (~ 26 Hz, n.motors= 39  and 

~15 Hz, n.motors= 54, respectively). 

This assay was performed in both high (0.1% L-arabinose = 6.5 mMol) and low induction 

conditions (0.002% L-arabinose = 0.13 mMol). The 0.1% of L-arabinose was selected for the high 

induction growth condition as pBAD expression vector induces maximum expression around 0.1 

~ 0.2 % of arabinose concentration [19]. The 0.002% was selected for the low induction growth 

condition as the immune-blot assay performed in [4] suggests that 0.002% arabinose expresses 

MotAB proteins close to the stator gene expression level by the native promoter. Although a 

slightly reduced average rotation speeds were observed from the low induction growth condition 

cells, possibly due to less number of stator bound to the motor in average, the average rotation 

speeds of the cells grown in these two different conditions were similar. This suggests that the 

number of stators expressed by the low induction condition (0.002% ara) was high enough to 

generate a motor with full (or high enough number of) stators. Another difference between these 

two induction conditions was the yield of finding the rotating beads. In general, a higher yield of 

rotating beads was seen from the cells grown in the high induction condition than from the cells 

grown in the low induction condition. This may indicate that the cells grown in the low induction 

condition contain higher number of empty motors (motors without any stators bound). The major 

difference between the cells grown in these two induction conditions was their switching 

frequencies, which will be discussed in section 3.7. 
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Figure 3.6. Speed distributions for the four strains (wild type MotB, YPet-MotB, eGFP-MotB, Dendra2-

MotB fusion stators) at (A) high [ara] = 6.5mMol and (B) low [ara] = 0.13 mMol induction and (C) 

WT_np motor (MT02, stator induced by native promoter). Red indicates CCW biased cells and blue 

indicates CW biased cells. The number of motors measured were 56, 59, 39, 54 for high induction and 

34, 47, 27, 44 for low induction (for WT, YPet, eGFP and Dendra2, respectively). The green dashed 

lines represents the averaged distribution of all motors. (D) the mean rotation speeds of the speed 

distributions of A~C. The red bars indicate CCW biased cells and the blue bars indicate CW biased 

cells. The first two bars (red and blue) are from the high induction growth cells and the other next two 

bars (red and blue) are from the low induction growth cells. WT_NP has only two bars instead of four 

bars, since no inducer was needed for this strain. The error bar represents the standard deviation. Each 

cell was measured for 3~5 minutes at 300 FPS (time resolution of ~10 ms).  
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The motors that rotate in counter-clock wise (CCW) for more than 50% of the total 

recording time (approx. 3min) are defined as CCW biased cells, and vice versa for CW biased cells. 

When CCW biased cells do not switch at all, the CCW bias is 1. While most of the motors were 

CCW biased cell, occasionally some CW biased cells (below 0.5 of the CCW bias) were observed 

from all four strains (Figure 3.7a). These CCW and CW biased cells are represented by red and 

blue curves in figure 3.6. Despite the big differences in switching frequencies (chapter 3.7), there 

was no big difference in the rotational bias between the fusion stator motors and WT motors with 

an overall mean of about 86 % of time spent rotating in CCW, except the high induction (0.1% ara) 

YPet motors and the low induction Dendra2 motors (figure 3.7b).  

 

 

Figure 3.7. (A) Number of the motors plotted against CCW bias. When CCW biased motors do not 

switch at all, the CCW bias is 1. When CW biased motors do not switch at all, the CCW bias is 0. (B) 

Averaged CCW bias of the total cells. The x axis labeled with * (asterisk) indicate the motors from the 

[Ara]=0.13mM and without it are the motors from [Ara] = 6.5 mM. 

 

 

Both CCW and CW biased cells from all four strains showed similar mean rotation speeds, 

which are represented by the two main peaks (green curves summing the blue and red curves) at 

opposite speeds in figure 3.6. Therefore, the reduced average rotation speeds by the eGFP and 

Dendra2 stators affects symmetrically both CW biased and CCW biased cells. The peaks of the 
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blue and red curves of the tagged motor decreased by roughly 4% (YPet), 40% (eGFP) and 68% 

(Dendra2) as compared to WT motor. We call this effect “symmetric torque reduction (STR)”. 

When a single WT motor switched between CW and CCW states, their rotation speeds were rather 

symmetric. In other words, when switching, WT motors reach the same absolute value of the speed 

in the opposite direction. Interestingly, when fusion stators motors switch, this symmetric switching 

speeds was not observed (figure 3.6, 3,8). For example, when CCW biased YPet motor switches 

from CCW to CW, it reaches a fraction of its previous speed in the CW direction (and the same is 

true for CW biased cells switching from CW to CCW). This was true for all three tagged motors. 

We call this hindered switching as “asymmetric switching” (ASW). Therefore, in summary, tagged 

motors exhibit symmetric torque reduction (STR) by showing the reduced speed in both CW and 

CCW biased rotation direction, and asymmetric switching (ASW) by showing a lower speed in the 

less-biased rotation direction when they switch. 

 

 

Figure 3.8. Ratio of the CW mean rotation speeds to the CCW mean rotation speeds (blue dots), and 

ratio of the CCW mean rotation speeds to the CW mean rotation speeds (red dots); less-bias direction 

over bias direction. Each dot represents individual motors. Average of the mean ratios (excluding the 

zero ratios) are shown on the graphs. The data is from the low induction condition cells. 
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3.5  Different torque generated by single fusion stators 

Regardless of their bias, the eGFP and Dendra2 fusion stator motors showed reduced absolute 

rotation speeds compared to the YPet fusion and WT motor (in terms of the STR, defined above, 

of the motors with the eGFP and Dendra2 tags). Since torque and rotation speed of the motor are 

proportional to the number of stators bound to the motor [22, 23], and the torque generated by a 

single stator can also vary depending on the load, temperature and pH [2, 24, 25], the observed 

symmetric speed reduction could be the result of either lower number of active fusion stators bound 

to the rotor complex, or of a lower torque produced by each fusion stator. In order to identify the 

underlying cause for such reduction, the torque generation per single stator among the four strains 

was compared. This comparison was made by measuring the step-wise speed increments (or 

decrements) during the bead assays, which corresponds to the stator association and dissociation to 

the rotor complex [23].  

Normally, the rotation speed of the motor was constant during the 3~5 min of the recorded 

period. However, we occasionally observed cells showing spontaneous step-wise increments and 

decrements of the rotation speeds (figure 3.9). Since the stators actively engage and disengage 

around the rotor [1], it is assumed that these naturally occurring steps in torque are due to the 

dynamic interactions between the stator and the rotor (termed “stator turnover” in [1]). In addition 

to this subset of motors showing spontaneous step-wise speed changes in the switching strain 

(JPA605), additional bead assays with the non-switching ∆CheY strain (JHC36) was performed, 

because switching events may hinder accurate analysis of the step-wise speed increments.  

 

 

 

 

 

 

Figure 3.9. Representative speed-time traces of a WT motor showing spontaneous speed increments 

during bead assay. 
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Torque values, instead of speed, were compared to estimate an accurate average torque 

generated by single stators, because torque values can make more accurate comparisons as it takes 

into account the difference in the lengths of the flagellar stubs where rotating beads are attached to. 

The difference in flagellar stubs lengths lead to different drag coefficients of each motor, which 

affect the motor rotation speeds at a given generated torque. Torque was calculated from the 

estimated drag coefficients and the speed measurements. At low Reynolds number, torque is given 

by  τ = γ * ω, where ω is the angular speed and γ is the drag coefficient caused by a bead rotating 

on a circular trajectory with a radius r. The drag coefficient is estimated to be   = 6 " η r , where 

η is a viscosity of fluid media, and the equation is based on the Stokes formula [21]. The average 

diameter of the circular trajectory, which is proportional to 2 x stub length, was 1.344 ± 0.2 µm 

(measured by the eGFP motors). Figure 3.10 shows representative WT and eGFP motors with 

discrete torque changes and their torque histograms with multiple Gaussian distributions. 

 

 

Figure 3.10 Torque-time traces and their torque histograms of the representative WT and eGFP motors. 

The torque-time traces show discrete torque changes over time. The torque levels were determined by 

fitting multiple Gaussian distributions to the histograms (the algorithm which draw the histograms 

artificially amplifies the discrete torque levels by summing local histograms along the time trace). The 

Gaussian curves, determined by selecting two positions around the peak manually, are shown in 

different colors in the histogram. The torque peaks were separated by roughly equal intervals, 

corresponding to different numbers of stators bound to the motor. Here, WT motor shows torque 

intervals of roughly ~180 pN nm, while eGPF motor shows torque intervals of ~ 100 pN nm. 

 



 

71 

 

Typically, the measured torque values were separated by roughly equal intervals, with some 

variations in torque increments within the same motor and among different motors. The measured 

torque intervals from individual motors (the total number of 17~18 cells per strain) are shown in 

figure 3.11a, and the distribution of the pair-wise distances between measured torque steps is shown 

in figure 3.11b. These graphs describe the probability distributions of all the distance between the 

values of the torque plateaus found in given traces. From the first peak of the pair-wise distance 

distributions of torque levels, we obtained a good estimation of the torque generated by a single 

stator. The torque generated by WT single stators is estimated to be 162 ± 48 pN nm, which agrees 

with the previous two studies, 158 ± 49 pN nm by [24] and 146 ± 35 pN nm by [22]. YPet motors 

generated similar torque per stator to the WT motors but only slightly reduced with a wider 

distribution, with a peak value of 149 ± 73 pN nm. eGFP and Dendra2 fusion motor showed reduced 

torque per stator; 96 ± 35 pN nm and 65 ± 38 pN nm, respectively. In general, it was more difficult 

to observe steps from the Dendra2 strains than other strains, probably due to their torque intervals 

were close to the noise level in the speed time traces. In summary, the torque intervals by YPet 

motors do not decrease much with respect to WT, while eGFP and Dendra2 motors do. In addition, 

since YPet motors were able to generate similar torque per stator (torque intervals) to the WT motor, 

while their switching ability was significantly impaired (Asymmetric Switch) compared to the WT 

motor, this result may imply that torque generation and switching ability can be decoupled.  
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Figure 3.11. Stepwise torque changes of the four strains. The data was collected by normal bead assays 

with JPA605 strains and with JHC36 (non-switching) strains. (A) Torque changes per individual motors. 

# of cells measured: WT=17, YPet=17, eGFP=17 and Dendra2=18. (B) Pair-wise distance distribution 

of the measured torque steps of the five strains. The peak values of the distribution are shown, which 

are determined by Gaussian fit in the first peak of each distribution. 

 

 

Table 3.2 summarize the activity of the BFM measured at three different levels: population 

chemotaxis, single motor, single stator. Except for the chemotaxis motility of YPet, the order of 

the three motility measurements of the four strains is consistent: WT shows the best motility 

followed in order by YPet, eGPF and Dendra2. The incomplete switching ability of the YPet motors 

explains the reduced chemotaxis motility of the YPet strains with respect to the WT strains, despite 

their similar average torque in single motor assay. The average rotational speed of WT motors was 

46 Hz, which is equivalent to ~1,600 pN nm. Since the torque generated by a single WT stator was 

estimated to be 162 ± 48 pN nm, the average number of stators in the motor can be estimated to be 

10 ± 2 (1,600 divided by 162). In the same manner, the estimated average number of the FP-tagged 

stators in the motor are 10 ± 3 for YPet motor, 10 ± 3 for eGFP motor and 8 ± 3 for Dendra2 motor. 

Therefore, except Dendra2 motor, all three motor had about 10 stators bound to the motor, 

suggesting that the mechano-sensing (the ability to recruit more stators when experiencing a high 

load on the motor) of the YPet and eGFP fusion stators was similar to WT motor on relatively high 

load (~1.1 µm bead was attached to the flagellar stub). Since the number of stators when fully 
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bound in the motor is proposed to be 11 [22], this result also eliminates the possibility of having 

MotA alone stators (stator complex without MotB) bound to the motor and disturb the torque 

generation and the switching events. 

 

Table 3.2 Summary of the three motilities of the four strains 

 Chemotaxis 

(cm) * 

Single motor 

(Hz)* 

Single stator 

(pN nm) 

Estimated average number of 

stators bound to the motor 

WT (MotB) 5.2 ± 0.2 45.7 ± 10.8 162 ± 48 9.9  ± 2.5 

YPet-MotB 2.9 ± 0.2 43.3 ± 11.7 149 ± 73 10.2 ± 2.7 

eGFP-MotB 2.8 ± 0.1 26.6 ± 7.1 96 ± 35 9.7  ± 2.6 

Dendra2-MotB 2.4 ± 0.4 15.6 ± 5.1 65 ± 38 8.4  ± 2.7 

*The chemotaxis values are from [ara] = 6.5mM and the single motor speed values are from [ara] 

= 6.5mM CCW bias cell. 
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3.6  Impaired switching abilities by fusion stator motors 
 

3.6.1  Asymmetric switching of the tagged motor 

As shown in figure 3.6 and 3.8, the most apparent difference in WT and FP fusion motors was the 

different ratio of the mean speeds in CW and CCW rotation in a switching motor; WT motors rotate 

at similar speeds in both directions (symmetric switching), while FP fusion motors rotate in 

different speeds from one direction to another (asymmetric switching). Asymmetric switching 

(ASW) behavior by tagged motors was consistently observed throughout the whole bead assays. 

The degree of ASW varied by different fusion motors as well as within the same fusion motors 

(figure 3.8). The ASW was most apparent in Dendra2 tagged motors, which pause rather than 

rotating in the opposite direction. The speed histograms shown in figure 3.12 illustrate the 

asymmetric switching of the YPet and eGFP motors (lower speeds in CW rotation with respect to 

their CCW), and the symmetric switching of WT motor (similar speeds in both CW and CCW 

rotations). In this histogram, WT and YPet shows similar time spent in CW direction of rotation 

(~34% of time), although WT motor switched much more frequently, indicating the difference in 

time spent in CW rotational states as well as a possibility of different switching time/duration. 

These two differences in switching events will be discussed in the following two sections. 

 

Figure 3.12. Speed histograms of the three CCW-biased WT, YPet and eGFP switching cells, showing 

ASW of YPet and eGFP motors. The histogram is plotted by the selected time course of 50 seconds 

when they showed most frequent switching events (WT, Ypet, eGFP switched 134 times, 84 times and 

43 times, respectively). When YPet and eGFP tagged motors change their direction of rotation, the 

rotation speed could not reach their original rotation speed: YPet motor went from ~38 Hz to ~ -17 Hz 

and eGFP motor went from ~30 Hz to -11 Hz (WT motor: ~35 Hz to -33 Hz). Statistical data are shown 

as a table on the right.  



 

75 

 

3.6.2  Extended CW resident time by the tagged motors 

The time spent between two consecutive switching events is defined as resident time, which also 

refer to the time remained at each CW or CCW rotational state: CW resident time or CCW resident 

time. In case of the motors rotating a 1.1 µm bead, the distributions of the CW and CCW resident 

time were exponential with a long tail (non-exponential) (figure 3.13). The main difference of the 

WT motors and fusion stator motors was the extended CW resident time of CCW biased motors, 

and vice versa for the CW biased motors. WT motors remained at CW rotational states for no more 

than ~1.3 s, while the FP tagged motors often showed the CW resident time of longer than 1.3 s, 

exhibiting a wider distribution with a longer tail than WT motors (figure 3.13). For example, the 

average CW resident time of the WT motors was 0.3 ± 0.1 s, while the YPet motors showed an average 

CW resident time of ~ 2.7 ± 3.7 s (data taken from the [ara] = 6.5 mM). This observation was true for 

the measurements from both [ara] concentrations. The difference in resident time between the WT 

motors and the fusion stator motors may explain the similar CCW bias (~0.85) of the WT, YPet 

and eGFP motors in average, shown in figure 3.7 [Ara]=0.13mM, even though their switching 

frequencies were different by a factor of two or four. The switching frequencies are discussed in 

section 3.7. 
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Figure 3.13. (A) Illustration of how to define CCW and CW resident times. (B) Resident time of the 

CCW bias cells in both induction conditions [ara] = 6.5mM (left) and [ara] = 0.13mM (right). The CW 

resident time of WT (black dashed lines) shows distinctly shorter tails than the other fusion stator motors 

in both [ara]. The CW resident time of [ara]=0.13 mM were lower than that of [ara] = 6.5 mM in average. 

In [ara]=0.13 mM, the CCW resident time of the WT and YPet (black and yellow solid lines) did not 

show a huge difference while eGFP and Dendra2 tend to have longer resident time. (C) is showing the 

same graph in (B) in second in x-axis, instead of logarithm values.  
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3.6.3  Extended switching duration by the fusion stator motors 

As an initial attempt to characterize in more detail the difference in the switching process of WT 

and FP tagged motor, single switching events were detected and zoomed in. In order to check any 

difference in switching duration in the four strains, all the switching events of a single motor were 

overlaid and their speed histograms were compared (Figure 3.14). If the tagged motors spend more 

time to switch, we expect to see higher counts between the positive and negative mean speeds in 

the overlaid speed histogram during switch. Although certain differences in the switching event 

were observed in these histograms, it was hard to obtain accurate quantitative analysis. Mainly due 

to the lack of high temporal resolution of the data and the algorithms to make accurate comparisons. 
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Figure 3.14  Examples of the overlaid switching events of the four strains’ motors. We found complete 

switch events that cross both CCW and CW thresholds (2/3 of mean speed) in the same direction in the 

median filter set =11. Then the overlaid speed histogram was plotted by these switching events at 2/3 

of mean speed ±100 (unfiltered) points in each side. WT motors show two distinct peaks which 

represent mean speed in CCW and CW, and low counts between these two peaks (i.e short time spent 

during the switch event). YPet motors here show three peaks; two on each side representing the mean 

rotation speeds and another peak at 0 Hz. eGFP motors show two peaks including one at 0 Hz. Therefore, 

the YPet and eGFP motors shown here tend to remain at 0 Hz during switching. Switching duration 

analysis for Dendra2 was difficult due to their low rotation speed and less frequent switching events.  

 

 

In addition to the overlaid switches histograms, switching durations of the four strains were 

measured. Switching duration is defined as the time took from 2/3 of the mean positive speed to 

2/3 of the mean negative speed (and from negative speed to positive speed as well). The switching 

duration distribution of the three strains (WT, Ypet and eGFP) showed peaks between 20 ~ 30 ms 

(Figure 3.15a). Since switching duration analysis of Dendra2 was difficult due to the low speeds 

and less frequent switching events, Dendra2 motors were not considered here. According to [27], 

the WT motor switching duration distribution have a peak at 8 ms with a standard deviation of 15 

ms. A possible explanation for such a discrepancy with our measurement is the different time 

resolution and filter set used. The running window median filter is defined as replacing each point 

with the median of X points around it, where X is the filter set value. Figure 3.15b shows how 

different filter sets can shift the switching duration peaks noticeably. The three FP fusion strains 

also showed the similar shift. In the data from current study, the switching duration can be reduced 

to be closer to 8 ms if the filter set is reduced from 11 to 4 as well. However, a filter set of 11 was 

used instead of 4, because having the latter potentially causes errors in counting the switching 

events (due to the low time resolution of ~10 ms).  

Interestingly, although the three strains showed the same peak around 25 ms, YPet and 

eGFP tagged motors showed wider switching duration distributions compared to WT motor. This 

difference can be seen by the average and standard deviation of the switch durations: for WT it is 

33 ± 26 ms, for eGFP 49 ± 40 ms and for YPet 56 ± 50 ms. This is ~ 33% and ~ 60 % decrease in 

switching durations from WT. Therefore, together with the fact that the WT rotation speeds in both 

CCW and CW were higher than that of YPet and Dendra2, the FP tags caused longer switching 

duration, potentially due to their less efficient switching process. This result may help us understand 

how the switching mechanism by FP-tags was hindered. However, further analysis of switching 

duration should be performed at a higher time resolution, and perhaps at a lower load as well, 
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because the data recorded here (300 FPS, 1.1 µm beads) do not have likely a resolution high enough 

for an accurate analysis of the cellular events happening within 10 ms. 

 

 

 

Figure 3.15. (A) switching duration of the three strains, [ara]=0.13 mM, filter set =11. Average switch 

duration values and standard deviations are shown in inset. (B) WT motor switching durations at 

different filter sets.  
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3.7  Switching frequency was highly affected by fusion stators 

The switching frequencies of the fusion stator motors were also affected such that the three motors 

with FP-tags switched much less frequently than WT cells (Figure 3.16). YPet fusion stator showed 

less altered switching frequencies than eGFP or Dendra2, while switching frequency of the 

Dendra2 was most affected. This result follows somehow the same trend observed in the torque 

generation of single stators (YPet with 92 %, eGFP with 60 % and Dendra2 with 40 % of the WT 

torque generation). The influence of stators on switching frequencies/dynamics has been suggested 

before in [28]. In this study, torque dependent switching rate was suggested with a hypothesis that 

a stator can affects the switching frequency by accelerating the FliG conformation flipping rates 

when torque is applied to the FliG units. Since the interactions between the stators and the rotor 

component FliG is vital for both torque generation and switching, it can be expected that a distortion 

of the torque generating domain of the stator influencing the switching dynamics of the motor. 

 

 

Figure 3.16. Switching frequencies of the four strains in ara = [6.5 mM] and [0.13 mM] induction 

conditions are shown as distribution in (A) and as mean with STD in (B). The colored bars in (A) 

represent cells that did not switch during the recorded time (~3 min). 
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Interestingly, the switching frequencies of the motors grown in the two different induction 

conditions were different by a factor of two (figure 3.16b). In high induction condition, WT motors 

showed a switching frequency of ~0.32 switches/second, including more non-switching cells 

during the recorded period (colored bars in figure 3.16a). In lower induction condition, the 

switching frequency of the WT motor increased to ~0.66 switches/second, close to the switching 

frequency of the WT_np (MT02, the strain that expresses stators by their native promoter) (MT02 

data can be found in appendix B). The increased switching frequencies at lower induction condition 

were consistently observed by the fusion stator motors as well. This reduced switching frequencies 

of the cells over-expressing motAB is in line with [31]. In [31], the stator gene over-expressing 

motors showed lower fluctuations of CCW bias to some extent, but no quantitative data are 

available (Note that here we measured the cell rotation for about 3~5 minutes, whereas in [31] the 

authors measured for 30 minutes, and CCW bias fluctuations, not switching frequencies). 

Previously, the correlations of the switching frequencies to load, torque (speed), mechanical 

feedback of the flagellum have been studied [28-30], but no extensive study has been performed so 

far with respect to the stator expression level. Although we have observed a clear difference of the 

switching frequencies from the motors grown in different gene induction conditions, in order to 

validate a direct correlation between the stator expression level and the switching frequency, further 

investigations in the expression levels of the switching regulating signaling proteins (such as CheY, 

CheW) in both low and high induction conditions will be required, as over-expression may hinder 

expression levels of the other signaling molecules.  
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3.8  Having a linker between the FP and MotB improves motor functions 

The previous results were based on the direct fusion between the FP and MotB. In this section, we 

studied how a linker (of 5AA and 15 AA) between the FP and the N-terminus of MotB influences 

the torque-generation and the switching ability of the BFM. Four types of linkers were tested: short 

and flexible (GGGGS), short and rigid (EAAAK), and two longer versions of them (GGGGS x3 

and EAAAK x3) [32]. The functional effects of the linker were primarily focused on Dendra2 

fusion stator, because they exhibited most impaired functions in both torque generation and 

switching ability. Dendra2 fusion stators with four different linkers were constructed and their 

motilities were investigated. Functional effects of the linkers on YPet motors were also investigated 

since they showed the most WT-like motor functions. The list of the fusion stators with a linker 

that we studied are: Dendra2-EAAAK-MotB, Dendra2-GGGGS-MotB, Dendra2-EAAAKx3-

MotB, Dendra2-GGGGSx3-MotB, YPet-EAAAKx3-MotB, YPet-EAAAK-MotB, YPet-GGGGS-

MotB.  

Chemotaxis motilities of the fusion stators with a linker were compared to the fusion stators 

without a linker (figure 3.17). In Dendra2 fusion group, Dendra2 with a long and rigid linker 

(EAAAKx3) showed the largest chemotaxis diameter, followed in order by Dendra2-GGGGSx3, 

Dendra2-EAAAK, Dendra2-GGGGS and Dendra2. The fusions with a linker showed improved 

chemotaxis motilities and the two longer linkers (3x) improved chemotaxis more than the shorter 

versions (1x).  In YPet fusion group, YPet with the rigid linker (EAAAK) also showed the largest 

chemotaxis diameter compared to the flexible linker (GGGGS). In both fusion groups, having a 

linker improved chemotaxis and the rigid linkers (EAAAK) always improved better than the 

flexible linkers (GGGGS).  
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Figure 3.17. Chemotaxis speed comparisons of the Dendra2 and YPet fusion stators with linkers. Soft 

agar plate images are shown on the top and the averaged chemotaxis diameters of the three replicates 

experiments are shown in the bottom. The chemotaxis of the YPet fusion with a long and rigid linker 

was not tested since this fusion construct was made later. The chemotaxis assay was performed on the 

0.25~0.223 % agar plates with 0.01% arabinose induction condition for 8 hours at 37 C. Error bars are 

standard deviations. 

 

 

The improved chemotaxis ability by the presence of a linker was also demonstrated in the 

single motor bead assays: the four linker Dendra2 fusions increased rotation speeds (figure 3.18). 

Especially, the Dendra2 with a longer and rigid linker (EAAAKx3) showed distinctively improved 

motor rotation speeds, nearly by a factor of two in average. The fastest cell observed by this strain 

showed a rotation speed of ~55 Hz, demonstrating that they can generate high enough torque to the 

wild-type motor (~46 Hz in average). This torque generation is also reflected on the steps in the 

torque signal of this fusion motor (figure 3.19). In comparison to the Dendra2 fusion without a 

linker, the torque generation by single stator improved nearly by a factor of two in average as well: 

from 65 ± 38 pN nm to 113 ± 35 pN nm. 
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The Dendra2 motors with linkers also improved the degree of ASW. The switching events 

observed in Dendra2 without a linker were rather ‘pauses’ (i.e. switch to a speed close to zero) than 

actual reversal rotations. However, the Dendra2 with linkers could rotate in both directions; in other 

words, the asymmetric switch (defined above) becomes less severe. These improved asymmetric 

switches can be seen by the two bleu peaks in the speed histograms in figure 3.18a. Although 

Dendra2 showed improved asymmetric switches, the cells still could not fully restore the symmetric 

switches. The Dendra2 fusion with the most improved asymmetric switches was EAAAKx3 linker 

fusion, but its ratio of the mean CCW and CW rotation speeds were 0.18, meaning that the motors 

rotate at CW direction with the 18% mean rotation speed of CCW direction in average.  

 

 

 

Figure 3.18. Histograms of rotation speeds of the Dendra2 motors and the Dendra2 motors with linkers 

(A) and their mean rotation speeds in a bar graph (B). The zero speed is indicated by yellow dotted lines. 

The Dendra2 motors without a linker and with CCW bias (blue) do not rotate in negative speed much 

(<5%). The Dendra2 motors with linkers can rotate in negative speeds (which can be seen by the small 

peaks in negative speed at 2~5 Hz in the histograms and the orange bars in the bar graph). The fusion 

with EAAAKx3 linker improved both positive and negative speed the most (with speeds of 5 Hz in CW 

and in 28 Hz in CCW). The number of cells measured were 54, 23, 20, 30, 30 in the right to left order 

in (B). 
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Figure 3.19. Speed per single stator of Dendra2 3x EAAAK fusion motors. (A) a step wise speed 

increment by a Dendra2 3x EAAAK linker motor, rotating a 1.1 µm bead. The maximum rotation 

speed was around 45 Hz. The speed increments for the trace in (A) are indicated in the range box 

in (B). (B) pair-wise (single stator) torque distance from the 10 individual Dendra2 EAAAKx3 

motors.  

 

 

The Dendra2 fusion motors with linkers increased their switching frequencies as well, 

except for the Dendra2 stator with a long and flexible linker (GGGGSx3) (figure 20). The two rigid 

EAAAK linkers improved the switching frequencies better than the GGGGS linkers. Consistently, 

Dendra2- EAAAK x3 showed the most improved switching frequency. 
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Figure 3.20  Switching frequencies of the Dendra2 fusion stators. The histograms show the 

distributions of the switching frequencies for each Dendra2 fusion motors, and the mean switching 

frequencies are shown in the histogram. The EAAAK x3 showed the highest switching frequency 

while GGGGS x3 showed the lowest. The red bar indicates the cells did not show switching events 

during the time course of recording. 

 

 

 

The YPet fusion stators with linkers did not show a significant improvement in rotation 

speeds (~43 Hz in average) since the YPet motors without any linker already showed a torque 

similar to WT. As seen above by the Dendra2 stators with linkers, however, the long and rigid 

linker (EAAAKx3) consistently exhibited a positive effect on the switching mechanism. YPet-

EAAAKx3-MotB fusion improved, but not fully, asymmetric switch (figure 3.21). YPet fusion 

without a linker showed ~27 % symmetrical rotation speeds in both directions, while YPet-

EAAAKx3 fusion improved to ~ 40 %. The other two YPet fusions with short linkers (GGGGS 

and EAAAK) did not show such improved asymmetric switches (data not shown). 
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Figure 3.21 The EAAAKx3 linker improved asymmetric switching. (A) Ratio of the CW mean rotation 

speeds to the CCW mean rotation speeds (blue dots), and ratio of the CCW mean rotation speeds to the 

CW mean rotation speeds (red dots); less-bias direction over bias direction. Each dot represents 

individual motors. Average of the mean ratios (excluding the zero ratios) are shown on the graphs. The 

data is from the high induction condition cells. The same speed ratio plot for the YPet-MotB fusion is 

shown in fig 3.8. Having the linker EAAAKx3 improved asymmetric switches (ASW); change of the 

mean ratio of 0.27 to 0.40. (B) Example speed-time traces of the YPet-3xEAAAK fusion and the YPet 

fusion. The fusion with EAAAKx3 switched from +30 Hz to -20 Hz, while the same YPet fusion 

without a linker switched from +35 Hz to -15 Hz.  

 

 

In addition to the improved asymmetric switching, the dwell time (resident time) in CW 

and CCW states of the YPet-EAAAKx3-MotB fusion motors were comparable to the WT motors. 

The other three YPet fusion motors (YPet-MotB, YPet-EAAAK-MotB, YPet-GGGGS-MotB) 

often exhibited extended CW or CCW resident time (for CCW bias or CW bias cell, respectively), 

whereas the YPet-EAAAKx3-MotB fusion motors did not show this extended resident time 

anymore (fig 3.22a). The switching frequencies of all the YPet fusions were lower than that of the 

WT motors. In general, having the EAAAK linkers showed a higher switching frequency than 

having a GGGGS linker (fig 3.22b). Taking all together, the YPet-EAAAKx3 linker motor 

functions like WT motor, except their not fully recovered ASW performance and reduced switching 

frequency. In conclusion, having a linker can improve 1) torque generation per stator, 2) 

asymmetric switches (but not fully) 3) switching frequencies and 4) the CW and CCW resident 

time. 
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Figure 3.22 (A) The mean (non-bias rotation direction) resident time of the WT and the YPet fusion 

motors are shown. Non-bias rotation direction indicates either CW rotation for the CCW bias motors or 

CCW rotations for the CW bias motors. Its resident time is the time spent in the least visited (non-bias) 

direction of rotation. Unlike the other YPet fusion motors, the EAAAKx3 linker fusion of the YPet 

motor showed the mean non-bias rotation direction resident time of 0.3 s, which is comparable to WT. 

(B) The distributions of switching frequencies for each strain are shown. The numbers on the 

distributions indicate the mean switching frequencies. The number of cells used were: YPet (59 cells), 

YPet-EAAAKx3 (32 cells), YPet-GGGGS (49 cells), YPet-EAAAK (30 cells) and WT (56 cells). 
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3.9  Structural alignment of eGFP and YPet and Dendra2 proteins  

As an initial attempt to achieve the structural understanding of how these three FP tags cause such 

differences in functionalities, a multiple sequence alignment of the three FPs using their structural 

information is performed and shown in figure 3.23a. They share a highly similar structure with 99% 

structural similarity. All three FPs have a typical GFP like β-barrel structure with rather flexible N- 

or C-terminus (figure 3.23b). The least similar sites are the N- and C-terminus regions, which both 

are exposed on the top surface of the folded β sheet structure, where they encounter (and may 

interact with) the stator proteins MotA and MotB.  
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Figure 3.23. (A) Multiple sequence alignment (MSA) of eGFP, YPet and Dendra2 FP using structural 

information (Espresso alignment) [33]. Red portions have a high reliability and are expected to be more 

accurate than the rest. Consistency is estimated from a library computed using structure template-based 

sequence alignment. The structural templates assigned to each protein are: eGFP: 4xvpC, Ypet: 1mywA, 

Dendra2: 2vzxH. In this MSA, they shared 99% of the sequence similarity. (B) Structure of eGFP [8] 

and Dendra2 [34], and their structure alignments using the FATCAT structure alignment tool on the 

RCSB PDB website. The colors represent each amino acids and the table of the color scheme is shown 

on the right. C-terminus sites of both proteins are more flexible. 

 

The FP-MotB fusions have such a structure that the C-terminus of FP (end of FP) is directly 

connected to the N-terminus of MotB (beginning of MotB) (Figure 3.2a). The sequence alignment 

of the fusion site (the short stretches of C-terminus endings together with the N-terminus of MotB) 

show that higher similarity between eGFP and YPet than Dendra2, suggesting a possible reason for 

the functional similarity found between eGFP and YPet fusion than that of Dendra2 fusion (figure 

3.24). Several studies [35-37] reported that having a N-terminus tag or a C-terminus tag can cause 

functional differences of the protein of interest. 

 

Figure 3.24. Sequence alignments of the sites connecting FP and MotB protein. eGFP and Ypet shows 

the identical sequences except the two columns (red boxes), Dendra2, on the other hand, shows less 

similarity. 
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3.10  Discussion 
 

In order to elucidate the underlining mechanism of the impaired functions in presence of the fusion 

stators, we can conceive different possible scenarios, which are based on well accepted two 

underlining mechanisms [38-40]: first, torque generation is governed by the interaction between 

the charged-residues in both the rotor protein FliG (helix C5 of the C-terminus) and the cytoplasmic 

loops of MotA [38, 39], second, a switch from CCW to CW rotation is induced by the distinct 

conformational change of the FliG protein, so called closed and open states of FliG protein [40-43]. 

The first observation was the symmetric torque reduction (STR) due to the reduced torque 

generation by single fusion stators. Possible mechanisms which can explain STR include 1) eGFP 

and Dendra2 tags (proteins with electrostatic potentials) interfere with the torque generating 

cytoplasmic region of MotA so that the stator and rotor interactions (torque generation mechanism) 

became less efficient. YPet tag however did not interfere, as significantly as the other two tags, 

with this region of MotA. 2) the FP tags interfere with the torque generating region of FliG (helix 

C5 of C-terminus domain) more significantly, rather than with MotA. 3) the FP tags interfere with 

the proton translocation mechanism (although this is less likely since the FP tag is located away 

from the putative pore site). 

A second observation was the inability to achieve fully symmetric switching in tagged 

motors (i.e. the observation of ASW), which is observed both in the CW and the CCW biased 

motors. Possible causes of such asymmetric switch include 1) the FP tags directly block or interfere 

with the FliG (~180 °C) conformational change, which is required to go from the CCW (open) state 

to CW (closed) state, and vice versa for the change from CW to CCW. This possibility is based on 

the several FliG structure models that the switch is induced by the FliG conformational change [40-

43]. In this first scenario that the FP tags prevent the FliG conformational change, we propose that 

the FliG can remain in between the fully CW or CCW state. Such an intermediate conformation of 

FliG is functional and leads to a reduced speed with respect to the fully open or close conformations, 

creating ASW (figure 3.24). 2) Following [17], it is conceivable that only two out of the four MotA 

units are specifically responsible for the CCW rotation (while the other two units apply CW torque 

uniquely). In this scenario, the presence of two FPs could cause significant structural perturbations 

for only one of the MotA pairs in a stator, while the FliG switching conformational change can be 

considered not impaired. For example, when the CCW state of the FliG ring is interacting with the 

less impaired MotA pair, the motor works properly, but when the FliG ring switches to the CW 

state, it interacts with the impaired MotA pair, which results in reduced torque generation in CW 

rotation. The scenario in 2) is more complex than that in 1), because, in this scenario, the stator 
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should have a preferred and always identical binding orientation around the rotor, to affect 

systematically the speed in one direction more than in the other. In addition, this second scenario 

seems to be less likely, because ASW was observed from both CCW and CW based motors, 

affecting symmetrically. In case that stators can bind in any orientation around the rotor, for this 

scenario to be true, we should observe also another kind of asymmetric switches (i.e. CCW biased 

motors rotating at low CCW speed and switching to high CW speed), which we did not observe.  

In summary, we can propose the following mechanisms to explain our observations (this is 

an initial attempt to explain the impaired motor functions observed in presence of the FP fusion 

stators, which requires further experiments to validate). First, to explain the symmetric torque 

reduction (STR), the FP tags (which is composed of charged molecules creating electrostatic 

potentials) interfere with the torque generating stator-rotor interface, so that the stator and rotor 

interactions became less efficient. The interface here is in between the charged residues in the 

cytoplasmic loops of MotA and the helix C5 of the C-terminus domain of FliG. Alternatively, the 

proton translocation mechanism could be impaired by the tag. To account for the asymmetric 

switching (ASW), the FP tags interfere with the conformational change of the FliG unit in contact 

with the stator (either by directly blocking this process or by indirectly interfering with other 

components in the C-ring switch complex) to prevent the complete switches between the fully open 

and closed conformations (Figure 3.25). A set of intermediate and functional conformations 

between the fully open and fully closed FliG state is expected in this proposed mechanism to 

explain ASW. 
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Figure 3.25 An illustration of the interaction between the fusion stator and FliG switching complex. 

When a FP is tagged to a stator complex, the FP tag inhibits the FliG switching complex to transit from 

CCW state to CW (or vice versa), this interference can be a possible cause of the asymmetric switches. 

(A) and (B) illustrate the same scenario. (C) illustrates this scenario in coupled with the mechanics of 

the torque generation [17] model. The green rectangle represents the FP tag. 

 

 

 

 

Lowered switching frequencies were also observed in presence of the FP tag. Interestingly, 

these lowered switching frequencies showed a correlation with the reduced torque generation: YPet 

fusion showed the highest (among the three fusion stators) average torque generated by a single 

stator, followed by eGFP and Dendra2. This order in torque reduction is also observed in the 
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switching frequencies; YPet fusion (~0.32/sec) switched most frequently among the three fusions, 

followed by eGFP (~0.14 /sec) and Dendra2 (~0.02 /sec). In other words, lowered torque is 

accompanied by lowered switching frequency. This correlation between the reduced torque and 

reduce switching frequencies may suggest that the stator and rotor interaction can play an important 

role in the switching dynamics, as it has been suggested by [28]. In addition, FP tags caused 

extended resident time (>1s) in less-biased rotational direction (in 1.1 µm bead assay condition), 

and such long resident time was not observed by the WT motors. This implies that how FP tag near 

the stator and FliG interface can influence all functional aspects of the switching dynamics. 

The fusion stators with a linker sequence between the FP and the MotB were also 

constructed and tested. Having a linker improved the chemotaxis motility as well as the various 

aspects of the single motor functions. Interestingly, rigid linkers (EAAAK) always improved the 

impaired functions of the motor better than flexible linkers (GGGGS), especially the longer version 

of EAAAK linker (EAAAKx3 three times repeated EAAAK) improved all aspects of the functions 

of the motor: torque generation per single stator, asymmetric switches, less-bias resident time and 

switching frequency. The end to end length of the EAAAK linker is shorter than that of the GGGGS 

linker, forming a coiled α-helix, which is a rigid and stable structure. It is speculated that this type 

of linkers serves as rigid spacers to effectively separate protein domains, and to reduce their 

unfavorable interactions [32]. The GGGGS linkers, on the other hand, allow certain degree of 

flexibility, movement and interactions of the protein domains [32]. Consequently, the FP tag with 

the flexible linker probably remains in the vicinity and interfere with the stators more than the rigid 

linker might. The long and rigid linker (EAAAKx3) may increase the space between the stator and 

the FP tag, decreasing interference in interactions. Taken together, the improved functions of the 

motor by the rigid linker may provide an insight in the localization of the stators in the motor and 

their interactions with the FliG rotor components. In addition, these observations underline how 

the location and flexibility of the FP tag around the stator-FliG interface area can influence on the 

various functional dynamics of the motor.  
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Chapter 4. Single molecule fluorescence microscopy 
 

4.1  Rationale and aims 
 

The stators of the BFM (each a protein complex formed by 4 MotA and 2 MotB) freely diffuse in 

the inner membrane, and bind and unbind to the motor complex. Understanding this dynamical 

movement of the stator complexes remains one of the main interests in the field. One promising 

approach to understand this phenomenon is single-molecule fluorescence techniques, as it enables 

us to probe various processes on the level of individual molecules in live bacterial cells [1], such 

as individual stator complexes in the motor. For example, in super-resolution microscopy, being 

able to detect single molecule fluorescence in live cell can provide high spatial (~30 nm) resolution 

information of the stators localized around the motors [2]. In addition, the fluorescence signals 

from the three FP fusion stator motors were imaged and compared quantitatively in both Epi and 

TIRF microscopies. 

 

Therefore, in this study, we aim to  

1. visualize the three FPs attached to the stator protein MotB in live E.coli cells in both Epi 

illumination and TIRF illumination, and to check and compare the fluorescence signals 

from the three FP-MotB fusion protein constructs. 

2. quantitatively compare the fluorescence signals of the cells grown in two different gene 

inducers [L-arabinose] concentrations. 

3. image photo-converted fluorescent protein Dendra2 fused to MotB protein (by photo-

activated localization microscopy, PALM). 

4. establish an experimental-set up that can simultaneously record the fluorescence signals 

from the cell and the bead rotation (simultaneous dual recording). 
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4.2  Localization of the FP tagged stators 
 

The fluorescence signals of both immobilized cells and rotating tethered cells, expressing the FP 

(eGFP, YPet and unconverted Dendra2)-MotB fusion proteins, were imaged by Epi- and TIRF 488 

nm laser illuminations using the microscope described in chapter 2.5. The negative control cells 

express the wild-type (WT) MotB protein (without the FP) by the same expression vector 

(pBAD33). The cells were grown in the same condition as for the bead assays that described in 

chapter 2.4.3. The data from the Andor EMCCD camera was saved as a stack of 512x512 pixel tiff 

images, then the fluorescence intensities from the raw image files were computed in the open-

source biological image analysis software Fiji imageJ [3].  

Two internal fluorescence intensities were measured: cell body fluorescence intensity and 

motor spot fluorescence intensity. The cell body fluorescence intensity, which includes auto-

fluorescence of the cell and the fluorescence from the diffusing FPs, was estimated by taking the 

mean intensity of the 3x3 (pixel) region of interest (ROI) where no clusters of fluorescent spot 

appear in the cell. Three ROIs per cell were considered to measure an accurate cell body 

fluorescence intensity to average out the inhomogeneity in fluorescence. The motor spot 

fluorescence intensity was estimated by taking the maximum intensity of the 3x3 ROI, where they 

show a cluster of the bright fluorescence intensity. The fluorescence intensity of the background of 

the slide (instrumental noise) was low and similar between each sample. All the fluorescence 

intensity and image comparisons were strictly made by the images taken on the same day to ensure 

that the alignment and microscope setting were identical.  

 

 

4.2.1 Fluorescence images of the four strains in Epi and TIRF illumination 

 

The fluorescence signals excited by the 488 nm laser from the cells stuck on the slides showed both 

concentrated clusters in the membrane as expected for the motor (1~6 clusters per cells) and a more 

homogeneous fluorescence over the entire cell body, likely due to the diffusing population of stators 

in the membrane. The percentage of finding spinners per field of view were all identically high 

(>15%) for all four strains. In order to confirm that the fluorescence signals were actually 

attributable to well folded functional FP-MotB in the motor, the fluorescent spots in the rotating 

cell body (tethered cell assay) of the three fusion stator strains were imaged and compared to their 

negative control cells which holds the same condition but expresses MotB protein without the FP 

tag. A bright fluorescence signal was found in the center of the rotating cell body from all three FP 

tagged MotB proteins expressing cells, while negative control cells produce a much lower 
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fluorescence (figure 4.1). This result supports that those spots were actually clustered FP-MotB 

fusion proteins around the motor.  

These fluorescence signals at the center of the rotation from the tethered cells were detected 

in both Epi and TIRF illumination. TIRF mode (having the light coming through the objective with 

a glancing angle of incidence) improved visualizing the fluorescence spots in the cells. The figure 

4.1 shows examples fluorescence images of the four strains in both Epi and TIRF illumination. The 

images are the sum. max and std of the stacks of 50 frames (100 ms/frame). In those images, the 

cells visualized in TIRF appear smaller cells than in Epi mode, since their peripheral membrane 

sides were not illuminated. The cells in these images were expressed by 0.002% arabinose (low 

gene induction condition). 
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103 

 

 

Figure 4.1 Example fluorescence images of the four strains in both Epi and TIRF modes. Brightness 

and contrast of the images were set by the auto-scale mode. The cells, expressing FP-MotB or MotB by 

low induction (0.002% arabinose), were either stuck or tethered on the glass slide. Some of the rotating 

tethered cells are indicated by yellow circles. The images were recorded at 100 ms/frame for 300 frames, 

and here the images are shown as SUM, MAX and STD (standard deviation) of the first 50 stacks of 

300 frames. The rotating cells are depicted as dots with some cell body fluorescence signals around the 

dots. The stuck cells from the three FP-fusion strains show fluorescence spots in the cells, while no 

fluorescence spot formation is found from the WT strain. 
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4.2.2  Fluorescence signals at the center of rotation 

 

The motor fluorescence intensities of the rotating cells (schematically shown in fig.4.2a) displayed 

in figure 4.1 were compared, and their photo-bleaching time trace are shown in figure 4.2b and 

4.2c. Here, only the fluorescence spots from the center of rotating cells were taken as the motor 

fluorescence signal, which were calculated by mean intensity of the region of interest (ROI) of 3x3 

pixel at the center of rotation. The cell body fluorescence background (auto-fluorescence) was 

calculated by 3x3 ROIs centered on several (typically 20-30) stuck cells in regions of the cell body 

not displaying fluorescent spots or clusters. The background signal was calculated by several 3x3 

ROIs on the glass, and was rather constant throughout the whole frames. The cell body auto-

fluorescence signal comparison of those four strains revealed that Ypet cells have the highest auto-

fluorescence signal, followed by eGFP, Dendra2 and WT showing the lowest intensity. However, 

when the signal of interest divided by the noise level (SNR) was compared, eGFP showed the 

highest SNR (figure 4.2d). 
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Figure 4.2 Motor fluorescence intensity of the four strains. (A) a schematic of a rotating tethered cells 

and an example image of a rotating cell with a fluorescence signal in the center of the rotation (eGFP 

strain). (B) the fluorescence intensity of the motor spot, the auto-fluorescence and the background is 

plotted over 30 seconds. The number of cells used for averaging are shown on the graphs. (C) the data 

on (B) is shown as a SNR. (D) the first frame SNR of the four strains. 

 

 

Imaging the fluorescence signals right below the rotating beads on a stuck cell were also 

attempted, because detecting the fluorescence signal of the motor rotating a bead is a promising 

method to study the stator dynamics in relation to the torque generation at different loads. To image 

both the rotating bead and the eGFP fluorescence signal on the same cell, different illuminations 

and filters were required. Magnetic beads (NEB S1420S) that do not emit fluorescence signal by 

488 nm laser were used to prevent any unwanted fluorescent noise background. To visualize the 

bead on the EMCCD, the emission filter in front of the camera was removed and very low 660 nm 

laser light (~ 2 mW) was used. Figure 4.3 shows an example cell with a rotating bead and the 

fluorescence image of the same cell. The fluorescence image was imaged with a 488nm laser by 

Epi-illumination that was focused on the upper side of the membrane. In this image, a bright 

fluorescent spot near the rotating bead was observed. However, there was a shift of about 8 pixels 

between the first movie of the rotating bead and the second acquisition of the motor fluorescence, 

(likely due to a tilt in the filter that had to be removed and replaced again depending on the 

illumination) which should be corrected to perfect the technique. Being able to detect the motor 

fluorescence intensity of the motor rotating a bead can bring many advantages over a tethered cell 
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assay measurement. Therefore, fluorescence imaging of the motor spot of the cells rotating a bead 

should be optimized in the future.   

 

 

 

 

Figure 4.3 (A) A schematic figure of a rotating bead on a stuck cell from the side view, and an example 

image of a stuck cell with a bead attached from the top view. (B) An example cell with a rotating bead 

on the top. Unlike SUM image, the standard deviation (STD) image of a stack of 500 frames shows a 

bead only, which reveals that the bead was moving while everything else around was static. Sum and 

max images of the eGFP fluorescent signal image show a few of fluorescent spots on the cells near the 

bead.  
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4.2.3  YPet-MotB imaging in Epi illumination and in TIRF illumination 

 

Fluorescence signals of the YPet-MotB fusion strains imaged by Epi- 488 nm laser 

excitation showed clusters of fluorescent spots (Fig 4.4a). However, unlike the eGFP-MotB strains, 

the fluorescent spots in these YPet cells were less apparent and their cell body fluorescence were 

higher than the WT negative control cells (Figure 4.4b). The distribution of the cell body 

fluorescent intensities of the YPet cells was wide compared to that of the negative control WT cells, 

suggesting high cell to cell variation and high number of diffusing YPet molecules in the cell. When 

the cells were imaged by TIRF illumination so that only the cell membrane in contact with the glass 

is illuminated, the cell body fluorescence intensity of the WT cells was reduced by half, while that 

of the YPet cells was not (figure 4.4b). This result may suggest that most of the cell body 

fluorescence intensities of the YPet cells are from the membrane rather than from the cytosolic part 

of the cell. The distributions of the signal to noise ratio (SNR) of the YPet cells (signal is the motor 

spot intensity) from Epi illumination and TIRF illumination are shown in figure 4.4c. TIRF mode 

slightly shifted the distribution to the right (a better SNR). The cells were grown in a high induction 

[0.1% arabinose] condition in this figure. 
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Figure 4.4  (A) Fluorescence imaging of the YPet-MotB cells and the MotB (negative control, WT) 

cells in Epi and TIRF illumination. The cells were E. coli strains JPA605 carrying either plasmid vector 

of pBAD33_MotA, MotB, and pBAD33_MotA, YPet-MotB, both expressing the stator genes by 0.1% 

arabinose induction condition. Rotating YPet cells showing the fluorescent spots in the rotational 

centers are indicated by yellow arrows. No clusters of the fluorescence spots formations were found in 

WT cells. (B) Histograms of the cell body fluorescence signals from Epi and TIRF modes. TIRF 

illumination reduced cell body autofluorescence for the WT cells but not for the YPet cells. The 

histograms are normalized and the number of cells measured were 48 and 32 for the YPet cells and 57 

and 45 for the WT cells (Epi and TIRF, respectively). (C) SNR of the YPet motor spot fluorescence 

intensities in both Epi and TIRF mode are shown. The mean SNR for TIRF and EPi were 1.27 ± 0.17 

and 1.20 ± 0.13, respectively. 
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4.3  Fluorescence signals of the cells grown in high and low level of gene 

induction conditions 
 

Fluorescence signals of the eGFP-MotB cells grown in two different gene induction conditions 

(high and low) were compared. The cells were imaged by 488nm laser TIRF illumination for a 

period of about 20 s (200 ms x100 frames, frame transfer mode). The stack of images was summed 

into a single image and its background were subtracted using a subtract background function 

(rolling ball radius of 10) in Fiji_ImageJ. The “subtract background” commend on ImageJ removes 

smooth continuous backgrounds from the image based on the a “rolling ball” algorithm described 

in [13]. Each flied of view (FOV) had a similar number of cells (60~80 cells), and their background 

noise level were almost identical, thus the mean fluorescence intensity of the entire FOV of each 

sample were compared. Consistently, (about twice) higher total mean fluorescence signal was 

detected from [0.1% ara] FOVs than from [0.002% ara] FOV from all four different FOVs of each 

sample. Example images are shown in figure 4.5. This observation was confirmed in Epi-

illumination as well, constantly showing nearly twice higher total fluorescence intensity in [0.1% 

ara] FOV than in [0.002% ara] FOV (data not shown).  

 

 

Figure 4.5 TIRF images of the eGFP-MotB cells grown in high [0.1% ara] and low [0.002% ara] 

induction conditions are shown. Their surface fluorescence intensity plots are shown with the same 

vertical scale bar, indicating the difference in emission from individual cells. Histograms of the entire 
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field of view pixel values are shown. The peak at low intensity represents the background, and the broad 

signals at higher intensity represents the fluorescence signals from the cells. The mean pixel intensities 

of [0.1% ara] sample is more than twice higher than that of [0.002% ara]. The x-axis range is the same 

in both histograms. 

 

 

 

The difference in fluorescence signal intensity was also observed from the strains 

expressing the FP-MotB protein by native promoter and by the plasmid vector. The eGFP strain 

(JPA804, a gift of R.Berry’s lab) that expresses the 28AA-eGFP-MotB fusion protein by their 

native promoter (named eGFP_NP for simplicity) was imaged as a positive control since the 

fluorescence signal of this strain has already confirmed by a previous study [4]. The cells showed 

bright fluorescent spots mostly at the periphery of the cells by the 488 nm laser illumination (figure 

4.6a). The eGFP strain (JPA605_pBAD33 MotA, eGFP-MotB) that expresses the eGFP-MotB 

fusion protein by pBAD33 expression vectors also showed eGFP fluorescence signal as 

concentrated clusters in the cell, mostly on the cell membrane as well, revealing the membrane 

localization of MotB proteins (figure 4.6a). This strain is named eGFP for simplicity. 

The fluorescence signals by these two strains (GFP and eGFP_NP) were compared from 

the sum of the pixel intensities of 100 frames (with an exposure time of 0.2 s per frame in frame 

transfer mode). While both strains showed fluorescence clusters (fig 4.6a), eGFP_NP showed a 

better signal to noise ratio than eGFP: the mean cell body fluorescence of eGFP_NP was 16 % 

lower but the mean motor spot intensity was about 9% higher when compared to eGFP (figure 

4.6b). This difference is observed by the distribution of eGFP motor signal to noise ratio (SNR: the 

spot fluorescence intensity divided by the corresponding stuck cell body fluorescence intensity) 

(figure 4.6c). The eGFP strain here was grown in a high induction condition (0.2% arabinose) 

overexpressing the stator genes, while eGFP_NP expresses the gene by their native promoter. The 

native expression level of the stator protein (MotB) is considerably lower than the gene induced by 

0.2% arabinose by pBAD33 vector as shown by the immuno-blot experiment in [5]. The estimated 

number of the stator proteins in a native cell is ~190 ± 80 per cell [6]. This suggests that this cell 

body fluorescence intensity data may correspond to the difference in the expression levels of the 

two eGFP-MotB strains. 
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Figure 4.6 Comparison of the fluorescence intensity of cells expressing eGFP-MotB by native promoter 

and by a high induction condition vector expression system (pBAD33). (A) Representative images (sum 

of 100 stacks of images) of the cells from the negative control strain JPA605 (top), expressing MotB 

without eGFP tag by pBAD33 vectors, JPA804 (middle), expressing 28AA eGFP-MotB (eGFP_NP) 

and JPA605 (bottom), expressing eGFP-MotB by pBAD33 vectors. The grey scale of the images was 

automatically optimized brightness and contrast by ImageJ. No fluorescence spot formation was found 

in JPA605 negative control cells while the two eGFP expressing cells showed concentrated clusters of 

fluorescence signals mostly on the cell membrane. The cells were stuck on the poly L- lysine coated 

glass slide. The images were recorded in Epi-illumination by 488 nm laser, for 100 frames at 0.2 s 

exposure time with a -80 C cooled EMCCD camera (80 EM gain, 488 nm laser intensity: 20 mW 2/10). 

(B) Fluorescence intensities of the eGFP spots and that of the cell bodies of the three strains. (C) 

Normalized histogram showing the distributions of SNR (the spot fluorescence intensity divided by 

their cell body fluorescence intensity) of eGFP_NP and eGFP cells. The distribution was made by the 

104 fluorescent spots in live 40 eGFP_NP cells and 82 spots in live 33 eGFP cells. eGFP_NP has a 

wider distribution than eGFP cells, and the mean SNR of eGFP_NP was 1.54±0.26 and the mean SNR 

of eGFP was 1.24±0.16. 
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4.4  Photo-converted Dendra2 imaging in live E.coli 
 

Green-to-red photo-convertible fluorescent protein Dendra2 fused to MotB protein was imaged in 

order to test the possibility of resolving a super resolution image of the stators around the motor 

using a photo-activated localization microscopy (PALM). Dendra2 is characterized as monomeric, 

fast and efficient maturation, high contrast photo-conversion, bright fluorescence and high 

photostability fluorescent protein [7]. Dendra2 can be photoactivated (red form) by both UV-violet 

(e.g., 405 nm laser) or blue light (e.g., 488 nm laser), though activation with blue light is much less 

efficient than with UV-violet light. The activated Dendra2 possesses the maximum excitation at 

553 nm and emission at 573 nm [7]. Dendra2 is a suitable fluorescent protein for the photoactivated 

localization microscopy for molecular counting, as demonstrated in [8] since Dendra2 

photobleaches three times faster and blinks seven times less when compared to another 

photoconvertible fluorescent protein mEos2.  

Dendra2 can be photo-activated by two methodologies [9]: The first method is to activate 

and excite them instantaneously by having both the photoactivation laser (405 nm) and the 

excitation laser (552 nm) on simultaneously. The laser power of the activating light should be 

considerably low (and slowly increased over time), while the laser power of the exciting laser 

should be high enough to subsequently photobleach the photoactivated Dendra2, so that fluorescent 

proteins are sequentially photoactivated, detected and photobleached one at a time and sparsely in 

the FOV (figure 4.7a). A second method is to have them photoactivated by a pulse of the activating 

laser followed by a pulse of the excitation laser (552nm) so that all the Dendra2s, photoactivated 

by each pulse, are photobleached before the next activation pulse (figure 4.9a). In each activation 

pulse (405 nm illumination time), one or few Dendra2 is photoactivated, and these photoactivated 

Dendra2 should be imaged until they photobleach (552 nm illumination time). This second method, 

despite intrinsic difficulties, is more reliable for the estimation of the stoichiometry of molecules 

in a closed proximity, as in principle it can discriminate blinking of a single fluorophore, and 

reduces the possibility to convert and count more than one molecule in a cluster.  

Initially, the photoactivated red form of Dendra2s were visualized by the first method, 

having both lasers on simultaneously (images of the non-activated green form of Dendra2 are 

shown in figures 4.1). Dendra2 photoactivation, emission and photobleaching events were 

sequentially detected, revealing that the FP localized mostly at the cell membrane (figure 4.7). The 

reduced photoactivation efficiency was also observed as expected when the power of activation 

laser (405 nm) was reduced (figure 4.7e). WT cells was imaged in the same illumination condition 

as a negative control and showed no activation nor emission lights (figure 4.7e).  
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Figure 4.7 Simultaneous photoactivation and imaging of Dendra2-MotB in live E.coli cells. (A) 

Dendra2s are photoactivated, detected and photobleached by simultaneous illumination with the 405 

nm activating laser and the 552 nm imaging laser. (B) Photoactivated Dendra2 fluorescence detected 

with the EMCCD camera shows fluorescence around the membrane and some spots on the membrane.  

EMCCD images of Dendra2 (yellow box ROI) in selected frames show fluorescence emission states 

and dark states (pixel size ~ 147 nm). (C) Time trace of the emission intensity of the fluorescence area 

shown above. (D) PALM reconstruction image (by QuickPALM analysis in imageJ) of the same FOV 

in (B). This image reveals that Dendra2-MotB are mostly localized at the cell membrane and some 

localized area at the membrane, representing possible location of the motors. (E) When 405nm 

activation laser light is reduced by more than half, less fluorescence signals were detected and WT 

negative control cells showed no fluorescence signal excited by both 405nm nor 552 nm laser 

illuminations. All images here were done in the same day (Scale bar, 1 μm.) 
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Figure 4.8 shows the emission time traces of some of the selected spots from the field of 

view in figure 4.7. The Dendra2 emission per peak just below 2000 (a.u) were most frequently 

observed, indicating potential single emission intensity of the activated Dendra2. The peaks above 

2000 (a.u) are presumably multiple Dendra2 proteins (at the motor or nearby) emitting light at the 

same time. Multiple peaks with short off times followed by longer off times were often seen. The 

off time is non-activating/emitting period. The multiple peaks can be the multiple Dendra2 

activated at the same time or Dendra2 blinking events [9]. 

 

 

Figure 4.8. Emission intensity of 9 fluorescence clusters of Dendra2 (ROI of 3x3) from figure 4.7b. 

Each peak can represent emission events. The two lasers (405nm and 552nm) were simultaneously on 

and the frame rate was 20 ms. 

 

 

Photoactivated Dendra2s were visualized by the second method as well. The cells were pre-

bleached by illuminating the 552 nm lasers before activating Dendra2 to photobleach all the pre-

activated (naturally red form) Dendra2 proteins (figure 4.9a). Then, upon a pulsed 405 nm laser 

illumination to photo-convert a fraction of the Dendra2 molecules, a pulse of the 552 nm 

illumination was followed to image the photo-converted Dendra2 molecules. The fluorescence 

emission was especially concentrated at the peripheral side of the cells, while less fluorescence was 

detected elsewhere. The sum and max images of the recorded frames (>1000 frames) revealed the 
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(diffraction-limited) localization of the photoactivated Dendra2 molecules (figure 4.9c). Although 

these images are not the super-resolution images of Dendra2-MotB, they already provide different 

and improved/sharper fluorescence images without much cell body fluorescence background when 

compared to the fluorescence images by the conventional non-photoconvertible FPs (eGFP, YPet, 

and non-converted green form of Dendra2), confirming their membrane localizations.  

Due to the current limit of the PALM spatial resolution, which is in the 20~40 nm range 

[1], however, the precise localization of more than 2 or 3 Dendra2-MotBs in the 45 nm diameter of 

motor is not possible. The number of stators at the motor should be limited to only two stators 

bound state, but we had no means to control and limit the motor to rotate at a fixed number of 

stators (only two stators in this case) at this stage. Therefore, resolving PALM super resolution 

image of only two stators (Dendra2-MotB) bound state in the motor could not be achieved in this 

study. However, it is possible to resolve super resolution images showing how stators are 

distributed in the entire cell membrane (not just focused on the localization of the bound stators in 

the motor), favorably from the Dendra2-MotB expressed by the native promoter. Super-resolved 

stator localization images may provide a detailed information on the stator expression level on the 

membrane as well as the patterns of the diffusing stators around the motor, which could potentially 

enlighten our current understanding of stator dynamics and stator turnovers. 
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Figure 4.9  Dendra2-MotB imaging in live E.coli cell after sequential pulses of photo-activating 405 

nm laser and exciting 552 nm laser. (A) naturally activated Dendra2s are initially photobleached by 502 

nm laser (pre-bleach) prior to the photoactivation by 1 second of 405 nm laser pulse. The fluorescence 

intensity of the selected ROI at the cell membrane (top trace) shows intensity increase upon 405 nm 

laser illumination while another ROI outside of the cell area (bottom trace) shows no intensity change. 

A single frame is shown which is at a time point indicated as a red box in the intensity time trace. (B) 

three other images of the cell from (A) including the same Dendra2 ROI. The numbers on the images 

represent the frame number (frame rate=50ms, in frame transfer mode). (C) SUM and Max of the stack 

of 1249 frames of the same cell with the same selected ROI (a yellow box). 
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4.5  Dual recording set up and a proposed experiment 
 

In order to record the function of the motor and the fluorescence signal of the stator bound to that 

same motor simultaneously, a dual recording set up was established (see figure 2.9 in chapter 2). 

The function of the motor can be monitored from the rotation of the cell body (“tethered cell” assay) 

or from the rotation of a bead (“tethered bead” assay) attached to a sheared flagellum or hook, 

recorded by a fast CMOS camera (typically at 500 – 1000 FPS, up to ~10000 FPS). At the same 

time, the fluorescence signal of the same motor can be recorded by an EMCCD camera at up to 20 

ms per frame.  

One experiment that can be done, in the future, in this dual recording set up is the 

measurement of stator binding and torque generation in a high temporal resolution (figure 4.10). 

The aim of such experiment would be to observe stator binding by both the fluorescence of the last 

incorporated stator and by a change in speed of the bead. In this way, it could be possible to observe 

if a time delay exits between the stator binding time and the speed increment of the motor (torque 

generation). This would indicate an activation time for the bound stator, which could shed light on 

the mechano-chemical cycle of the stator, still not well characterized [10-12]. Such a speed 

increment (delayed from the fluorescence step given by the incorporation of a stator) could be 

observed only if the delay is longer than 20 ms, corresponding to the highest time resolution of the 

EMCCD. Tracking a single eGFP molecule over an extended period is impossible due to the 

photobleaching. Thus, a TIRF illumination of tethered cells can be tried to photobleach only the 

eGFP molecules in the bottom membrane side of the cell where they are exposed to the laser. When 

the non-photobleached eGFP-MotB from other side of membrane (not exposed to the laser) 

incorporates to the motor that was rotating the cell body, a fluorescence signal could be observed 

from the center of the rotation while a speed increment could be detected by a CMOS camera. 

Ideally, small tethered cells with lowest drag values should be tried to better observe speed 

increment or decrements.  
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Figure 4.10 A schematic drawing of the proposed dual recording experiment in the TIRF illumination. 

The continuous 488 nm illumination photobleaches all the eGFP molecules where exposed to the TIRF 

illumination, and when a non-photobleached stator bound to the motor, an eGFP fluorescence signal 

followed by an increment of the speed can be detected. The potential time delay between stator 

incorporation and the torque generation is marked by an orange arrow. 
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4.6  Discussion 
 

The fluorescence imaging of the live E. coli strains expressing the FP tagged stator proteins 

revealed that those fusion stators were localized at the cell membrane, as expected for the 

membrane proteins. 1~8 clusters of fluorescence spots per cell were also detected. These 

fluorescent clusters are most likely motor spots as confirmed by the fluorescence imaging of the 

rotating cells tethered on the glass surface, which showed a bright fluorescent spot at the center of 

the rotation. The tethered cells imaging can be optimized by TIRF illumination that focus on the 

membrane side. Thus, the cells grown at low induction (0.002 % ara) excited by TIRF illumination 

showed the most visible clusters of the fluorescent spots.  In contrast to the cells expressing the FPs 

(eGFP, YPet and Dendra2)-MotB fusion proteins, the negative control cells (expressing MotB by 

the same vector) showed lower cell body fluorescence signals and no visible clusters of fluorescent 

spots at the cell membrane when illuminated by 488 nm laser.  

Among the three FPs, YPet cells showed the highest cell body fluorescence compared to 

the other strains and tended to photobleach faster than eGFP. Dendra2 (unconverted green form) 

was less bright than eGFP and YPet. These relative fluorescence intensities of the three FPs are 

somewhat comparable to the known brightness of the three FPs (see table 4.1). However, a precise 

comparison of the three FPs can be made only after measuring the fluorescence intensity of each 

FP at the single molecule level. The fluorescence intensities of eGFP-MotB in two different 

induction conditions (low and high by the same plasmid vector system) were compared. This 

comparison revealed that the cells grown at the higher induction have a higher total fluorescence 

intensity, which likely represents the higher number of diffusing stators on the cell membrane in 

average. How the increased number of diffusing stators at the membrane effect the stator turnover 

or the switching frequency of the motor has yet to be measured. However, in this study, a reduced 

switching frequency (by half) was observed in the cells over expressing the stators (figure 3.16).  

Photoactivated form of Dendra2 was imaged by 405 nm photo-activating laser and 552 nm 

exciting/imaging laser. The photo activated Dendra2 images clearly showed that Dendra2-MotB 

are localized at the cell membrane. This membrane localization was better visible by photo 

activated Dendra2 images than unconverted green form Dendra2 images. In summary, the 

fluorescence signals from all three FPs were detected, revealing that the three FP-MotB fusion 

proteins were well folded, transported, localized to the cell membrane and bound to the motors at 

the membrane. The novel dual recording set up can monitor the speed of the motor rotation and the 

stator fluorescence signals simultaneously. This dual recording may help to uncover the dynamic 

properties of stators and their activation mechanism at the highest spatial and temporal resolution. 
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Chapter 5. Evolutionary integration of foreign stators in 

the BFM: functional effects of compatibilizing mutations 
 

5.1  Intro to the cBFM evolution experiment and aims  
 

The macromolecular complexes of the cell, including protein complexes such as the BFM, are 

composed of multiple protein components that have a certain degree of structural and functional 

independence. This organization of the biological system is referred to as modularity, as discussed 

earlier in chapter 1.3. Comparative studies have provided overwhelming evidence indicating that 

the evolutionary origin, innovation and adaptation of protein complexes are involved in functional 

incorporation of pre-existing proteins. In order to gain an experimental insight into the potential of 

evolution to forge new functional interactions between proteins in a complex, we examined if 

evolution can cause functional integration of pre-existing proteins with a degree of fortuitous pre-

adaptation. Specifically, we examined the incorporation of incompatible orthologous BFM 

components into the BFM and other cell systems of E.coli. Exploring the evolutionary dynamics 

of a macromolecular machines in a well-controlled system may lead to a progress in a better 

understanding of molecular details of the evolutionary transitions as well as the origins of biological 

complexity. In addition, a molecular machine modified by component exchange can provide a 

unique model system to explore their functional dynamics.  

The laboratory of Bertus Beaumont designed and conducted an experimental evolution 

study on BFM (before I join the project) upon which the work described in this chapter builds 

further. The evolution experiment result is introduced in this section, and the follow up studies that 

I performed are discussed from the chapter 5.2. The experimental model system involves a series 

of E. coli strain in which the stator genes motA and motB had been exchanged with their 

orthologues (foreign stators) from different strains and species of bacteria. These strains are 

referred to chimeric BFM (cBFM) strains in this study. The evolution experiment was performed 

in the porous semi-solid agar (0.3% w/v), in which populations of motile cells can form a moving 

chemotaxic front, allowing rapid colonization of the petri dish from the point of inoculation. Thus, 

the chemotaxis abilities are measured by examining the migration distance of the cBFM strains 

from their center of origin in the semi-solid agar plates.   

In principle, efficient motility promotes migration of the cells forming circles of 

chemotactic rings, whereas non-motile cells remain at the original spot as a single colony. Figure 
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5.1 (top two images) shows populations of non-motile and motile cells in semi-solid agar plates. 

Interestingly, another type of the chemotactic motility - colonies around the original spot of 

inoculation rather than forming chemotactic rings (bottom right in figure 5.1) - was also observed. 

We call this motility as atypical chemotaxis (ATC), and the underlying mechanism of such motility 

is unknown. When a cell evolves an improved ability to chemotaxis in semi-solid agar compared 

to their direct ancestor, they form a flare of motile population of cells. An example image of a flare 

is shown in figure 5.1 (bottom left image). Flares are wedge-shaped populations of cells capable of 

escaping from the chemotactic front of their ancestral populations in semi-solid agar. The 

chemotactic front speed focuses on the speed of the chemotactic front of the cells. Therefore, these 

flares are noticeable when the chemotactic front speeds of the two populations are distinctly 

different. The experiment looked for these flares, which can be referred to as adaptive evolutionary 

changes in chemotactic front speed of a particular genotype moved. These flares of motile bacteria 

cells have been observed by several studies [1-5], but the flares of cBFM are distinguishable than 

the flares from these studies for theirs (stator orthologs) chimeric nature of the motor. 
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Figure 5.1  Examples of chemotaxis assay plates that show non-motile, motile and atypical chemotaxis 

(ATC) strains. Two types of ATC - asymmetric and symmetric - were observed. A flare diverging out 

from the ATC cells were often observed. The images were taken from the following strains 13-p, 8.1b-

p, 11.1h-p and 29.1f-p (in a clockwise direction from non-motile cell). 

 

 

 The list of the cBFM and the outcome of the evolution experiment are shown in table 5.1. 

In brief, some of the strains were not capable of performing chemotaxis (population level of 

swimming); however, selection for motility caused some of them to be evolved to perform 

chemotaxis.  Consequently, the cBFM foreign stators were categorized into the three compatibility 

groups: ‘motile immediately’, ‘not motile but capable of evolving motility’ and ‘not motile and not 

able to evolve motility. Out of the total twenty-one cBFM, five cBFMs showed an immediately 

chemotaxis motility (immediately compatible), six showed evolved motility (potentially 

compatible) and the remaining ten cBFM showed no motility and never evolved to be motile 

(incompatible group) (Table 5.1). The potentially compatible cBFM strains were selected by 

allowing further growth of the non-immediately compatible cBFM strains on the semi-solid plates. 

When there is an evolution of increased fitness (chemotaxis ability in this case), a flare of a 

population of the cells can be observed. The evolution of increased fitness was checked in every 

24 h. Most flares were observed within 6 days and the selection was continued for 35 days. For the 

detailed flares selection procedures, please refer to the PhD thesis of Regis Flohr. The strains that 

evolved to become motile represent functional integration of the pre-adapted yet incompatible 

stator orthologues, while the strains that never evolved to become motile represent incompatibility 

to achieve the functional integration. It is important to note that, however, some of the instances of 

these incompatible group strains might be because the orthologues stators were not expressed [6].  
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Table 5.1  A set of 22 MotAB homologs and their chemotaxis assay result 

 

1.The numbers on the plasmids correspond to the group number of cBFM). 2. Gram-positive or gram negative 

bacteria. 3. All the other stators are proton translocating stators.  

 

 

These phenotypic compatibility ranges were reflected on the genotypic similarity ranges of 

the cBFM stator orthologs (figure 5.2). The phylogenetic trees of the 22 motA and motB 

orthologues revealed that the immediately motile strains (yellow circled five cBFMs in figure 5.2) 

were indeed in close genetic distance to the wildtype motA and motB (E.coli K-12). The 

evolutionary modified compatible group (the six evolved cBFMs) is diverged into two groups in 

this phylogenetic tree. The first group with the cBFM 11, 17 and 18, which showed a ATC motility, 

and the second group with the cBFM 08, 13 and 29, which showed non-motile motility. 

Accordingly, these evolved cBFM strains can form two compatibility groups: the first group 

showed ATC motility from the beginning, then evolved to show normal motility in semi-solid agar, 
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and the second group showed no motility from the beginning, then evolved to be motile in semi-

solid agar. 

 

 

 

Figure 5.2  The phylogenetic trees of the 22 MotAB homologues. The trees were generated by the 

MotAB homologues amino acid sequences alignment by PSI/TM-Coffee (Align Proteins using 

Homology Extension against Reduced Databases) on website http://tcoffee.crg.cat/apps/tcoffee 

/do:tmcoffee and the online software TreeDyn 198.3. A scale bar is showing genetic distance. Sequence 

similarities (by PSI/TM-Coffee, transmembrane protein alignment) of the proteins are shown on the 

right side of each phylogenetic tree. 

 

 

The cBFM that evolved to be motile showed a series of consecutive evolutionary integrations, 

which were observed as multiple generations of flares (up to sixth generations). The evolution 

trajectories from the six evolved strains, shown in figure 5.3, display certain difference within the 

cBFM group as well as between the cBFM groups. Certain lineages evolve further up to fifth or 

sixth flare/generations, while certain lineages stop evolving after the primary flare. In order to 

understand the pattern of genotypic changes occurred in those flares of strains and to see how the 

mutational trajectories fit in the fitness landscape, the entire pool of the evolved cBFM strains were 

sequenced and began to determine the order of mutations in some lineages. As an initial attempt to 

achieve the overall goal of understanding of the molecular details of the evolutionary transitions, 

here, we focused on the identification and analysis of the mutations of the early stage of 
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evolutionary paths (primary flares), with an aim to resolve the functional effects of the mutations 

at the three different motility levels (population swimming, single cell swimming, single motor 

rotation). In particular, functional analysis of the cBFM at the single motor level was a primary 

interest in this chapter, because the rotation of the BFM is the fundamental element of bacterial cell 

swimming motility. The aims of this chapter are listed below. 

 

i. identify cases in which the first beneficial mutation had occurred in the stators. 

ii. look at the mutated amino acids on the sequence alignment of the 22 motAB orthologues 

and the literature to see what is known about changes at these sites. 

iii. observe the motility of the non-evolved and evolved (cBFM-P) strains at the single cell 

level. 

iv. characterize the motility of the non-evolved and evolved (cBFM-P) strains at the single 

BFM level. 

 

 

 

 

Figure 5.3  Evolutionary flare trajectories. cBFM8 had five primary flares, of which the first and the 

last flares evolved further (secondary, third, etc…). The other cBFM strains also exhibit multiple 

evolution trajectories in a similar manner. The last flares of each lineage are called end points. We 

focused on the primary flare strains in this chapter (figure made by Regis Flohr, a PhD student at 

Beaumont lab). 
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5.2  Primary flare strain (cBFM-P) preparations and motile strains 

screening 
 

In order to understand the nature of evolutionary modifications that occurred in the early stages of 

the evolution, we first asked if any mutations had occurred in motA and motB. If so, are those 

mutations sufficient to improve the motility? To answer such questions, chemotaxis assay 

screening was performed with cBFM-P strains. The cBFM-P strains are the original motAB 

knockout E.coli K-12 parental cells that carry the plasmid vectors, encoding the foreign stator genes, 

isolated from the evolved primary flare strains. Figure 5.4 illustrates how the cBFM-P strains were 

prepared. The motility of the cBFM-P strains was tested in semi-solid agar (chemotaxis assay) in 

the same way as it was performed for the cBFM evolution experiment. The cBFM-P strains were 

prepared and their chemotaxis assays were performed together with Regis Flohr, a PhD student at 

Beaumont’s lab.  

 

 

Figure 5.4  Primary flare strains cBFM-P preparation: the plasmid vectors encoding motAB homologue 

genes from the evolved cBFM strains were isolated and transformed back to the original motAB 

knockout E.coli K-12 strains, where there is no additional mutation. The potential mutations are shown 

as yellow stars on the genome (tangled blue line) and on the plasmid vector (red circular line). The 

motility of these cBFM-P strains was tested in semi-solid agar and compared that to their ancestor’s 

motility. 
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Total 59 cBFM-P strains from six evolved foreign stators (cBFM 8,11,13,17 and 18) were 

prepared. The list of the cBFM-P strains tested and their chemotaxis assay screening results are 

shown in figure 5.5. The chemotaxis assays revealed that 36 strains out of 59 strains (~61%) 

improved chemotaxis than their ancestors. All the strains tested from the cBFM8-P and 29-P were 

more motile than their ancestors, while 13 out of the 15 strains from the cBFM 17-P and half of the 

cBFM18-P strains showed an improved motility compared to their ancestors. In contrast, cBFM11-

P and 13-P had one or none of such improved motile strains. This chemotaxis screening result 

implies that certain changes had occurred in the plasmid vectors, which led to a better fitness in the 

given constraint (chemotaxis adaptation). In order to determine whether there were the genetic 

modifications in the stator genes, which were sufficient to improve the motility, we sequenced the 

foreign stators genes of the cBFM-P. 

 

 

 

Figure 5.5  The chemotaxis motility screening results of the cBFM-P strains. The ancestors (cBFM) 

chemotaxis motilities are indicated in the first column by three colors: red colored strains indicate ATC 

motility, blue indicates normal motility, black indicates no motility in semi-soft agar. Six different types 

of motilities were observed by cBFM-P strains. a: ATC; a!: asymmetric ATC; m: motile; n: non-motile; 

a&e: ATC followed by a flare; m&e: motile followed by a flare. The motility test result varies greatly 

from one group to another.   
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3.3  Beneficial mutations of the MotA/B homologues 
 

To identify the genetic modification occurred in those foreign stator genes, those that showed an 

improved motility than their direct ancestors (the 36 plasmid vectors) were sent out for Sanger 

sequencing. The sequencing reads were primarily focused on the sequences encoding motA and 

motB genes and the promoter sequences (the upstream of motA). In addition to this sanger 

sequencing, whole genome sequencing of the entire cBFM populations was performed by next 

generation sequencing (NGS). The sequenced cBFM populations (by NGS) are pooled samples of 

the end-point genotypes of the replicate evolutionary lineages of each cBFM strain. The NGS data 

confirmed that there are no additional mutations outside the coding region on the plasmids, except 

for cBFM29. Further analysis of this NGS data will not be discussed in this study.  

The cBFM-P motAB mutations are listed in Table 5.2, together with their chemotaxis 

speeds measured by Regis Flohr. The number of mutations identified per each cBFM group varied: 

three different genotypes from the cBFM8, one genotype from cBFM11, seven different genotypes 

from cBFM17, one genotype from cBFM18 and three different genotypes from cBFM29. These 

mutations are beneficial mutations since they improved population motilities in semi-solid agar. 

The beneficial mutations are mutations that cause positive and beneficial effects, thereby they are 

rare [7]. The seven independent primary flares of the cBFM18 carried an identical mutation Q237K 

on motA. The identical mutations were also observed by other cBFM groups, which indicates the 

repeatability of evolution [8]. In contrast to the cBFM18, multiple types of causal mutations in both 

motA and motB homologues were found in the cBFM17, which indicates that there were several 

possibilities to functionally integrate the cBFM 17 foreign stator, while a single possibility was 

available for the cBFM18 foreign stator. Most mutations were single nucleotide polymorphisms 

(SNPs), though four insertion and deletion mutations were found in cBFM17. Mutations were also 

found on the non-coding region and at the beginning of motA from cBFM29. These mutations were 

single nucleotide point mutations including a silent mutation.  
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Table 5.2  The list of beneficial mutations found on the primary flare motAB homologues and the      

corresponding cBFM-P strains’ chemotaxis speeds. 
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The motility of the cBFM-P strains at the population level (chemotaxis assay) was checked 

to investigate the phenotypic effects of the mutation, prior to the single cell and single motor levels 

of the functional investigations (section 5.4 and 5.5). The population swimming speeds of the 

cBFM-P strains were determined by measuring the distance the front of a population of cells had 

travelled per hour in semi-solid agar 8h after inoculation. The range of chemotaxis motility was 

from ATC to slow motile and normal motile. The phenotype data was in an agreement with the 

genotype data (Table 5.2). Single point mutations on either motA or motB were sufficient to make 

cBFM 11, 17, 18 (the ATC motile compatibility group B) motile, suggesting the possibility of a 

higher structural similarity between the stators of cBFM 11,17,18 and the stators of E.coli BFM. 

Figure 5.6 shows how many times each mutation occurred and the location of the mutations. Most 

mutations occurred more than once, especially, a preliminary replicate experiment (performed by 

Thierry Janssens, postdoc in Beaumont lab, unpublished observations) also found the same 

mutations A134S, F53V and Q237K. Such observations - same mutations evolving in replicate 

experiments - were observed by other studies as well [8-10]. 

 

 

 

 

Figure 5.6  (A) Single nucleotide mutations and insertion/deletion mutations were found in motA and 

motB. The numbers in parenthesis represent how many times the mutation occurred. The mutations that 

were also found in the preliminary replicate evolution experiment are in red. (B) the locations of the 

mutations are shown on the putative MotAB topology.  
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Sequence alignments of the 22 motA and motB homologues were performed to see 

functional, structural, or evolutionary relationships between the sequences (figure 5.7). A sequence 

alignment arranges multiple DNA or protein sequences, and identifies the regions of similarity 

between the sequences. The alignment revealed that most mutations remain in a proximity to the 

previously known functionally important residues, such as torque generating conserved charged 

residues (R90E, E98K, E150K) on the cytoplasmic loop of MotA [11-14, 17], two proline residues 

(P173, P222) at the interface between the cytoplasmic domain and the membrane domain of MotA 

[15], and the putative proton binding residue A32 on MotB TM1 [16]. Previous studies have shown 

that many mutations on the cytoplasmic loop of MotA either abolished or impair torque generation. 

In addition, many of the mutations involve in loss or gain of a proline residue, suggesting that these 

mutations disrupt function by altering the protein conformation rather than by directly affecting the 

residues that interacts with the FliG rotor components [17]. The sequence alignment revealed that 

all the mutations identified were not strictly in the conserved residues, and many of them were 

involved in either a change of charged residue (E87K, Q237K) and or a gain of proline residue 

(Q52P) (figure 5.7). 

 

 

Evolutionary modification in cBFM8 

In cBFM8, a single mutation of A134S LafT (equivalent to MotA), which showed atypical (ATC) 

chemotaxis, occurred in all five cBFM8 strains including the evolved cBFM8 strains from the 

previous replicate evolution experiment. Additional mutations at either L284R or E87K in LafT 

generated normal chemotaxis, especially the E87K mutation (cBFM8.1d-P) made the strain 

chemotaxis as fast as the WT strain. The L284R mutation is located at the end of C-terminus site, 

and the mutation E87K (a reversal charge shift from the negatively charged glutamic acid to the 

positively charged lysine) is in a proximity to the torque generating (charged) residues. 

Interestingly, these three residues (E87K, A134S and L284R) substituted their original amino acids 

to the corresponding E.coli MotA amino acids (figure 5.7). For example, the glutamic acid (E) at 

residue 87 is substituted to the lysine (K), which is the next (one residue after) corresponding amino 

acid of E.coli MotA at this site. This result may provide an insight into how non-compatible 

components overcome the non-compatibility issue, such as the foreign stators acquired better 

structural fits to the rest of E.coli flagellar motor components. 
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Evolutionary modification in cBFM11 

Unlike the other evolved foreign stators, cBFM11 MotPS of Bacillus pseudofirmus is a sodium 

stator [18]. The mutation Q52P on MotS is in a domain called MotB plug domain (residues 53 to 

66 in motB). It is shown that in frame deletion of this domain causes proton flow leakage, 

influencing cell growth [19, 20]. It is also shown that the stators of Bacillus flagellar motors can 

alter their ion specificity by the mutations (i.e., Q43S, A46Q and M33L) [21, 22], which are near 

the plug domain. This single point mutation improved the motility from ATC to normal chemotaxis. 

 

Evolutionary modification in cBFM17 

One insertion modification on MotA and six different mutations (including two deletions) at three 

different sites on MotB (at sites A37, S39 and F53) were found in cBFM17. Deletion or insertion 

mutation is supposed to cause a greater structural change. The 5 AA insertion, repeated 5AA 

upstream at the G172 of MotA, was found in the periplasmic region between TM3 and TM4, which 

is the pore forming domain along with the TM of MotB [23]. This insertion mutation strains (17.1g 

and j) showed the slowest chemotaxis speed (slow motile), though generated second/third (or more) 

flare trajectories. Two deletion mutations were found near the pore forming domain of MotB (at 

A37 and S39). The 5AA deletion at S39 strain (cBFM17.1o-P) chemotaxis faster (0.635 ± 0.044) 

than the 3AA deletion at A37 strain (cBFM17.1k-P) (0,554 ± 0.029). The single nucleotide 

modifications S39I/R and F53V/L improved chemotaxis motility from the ATC motility of 

cBFM17 to normal chemotaxis. E.coli codon usage bias may took an advantage in the cBFM17 

mutations [24]. For example, AGT (S) codon is less frequently used in E.coli than ATT (I) or CGT 

(R), which may facilitate a better expression of the protein. 

 

Evolutionary modification in cBFM18 

Independently evolved all eight strains of the cBFM18 showed only one single point mutation 

(Q235K) on MotA. Previous evolution experiment also showed the identical Q235K mutation 

(mutational recurrence). This mutation improved the ATC motility of cBFM18 to normal yet very 

slow chemotaxis motility. E.coli codon usage bias may influenced such an improvement, since the 

CAA (Q glutamine) codon is three times less frequently used than the AAA (K lysine) codon.  
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Evolutionary modification in cBFM29 

Three mutations (L3M, N2N and in non-coding region) at the first and second AA of MotA were 

found from cBFM29. The N2N is a silent mutation changed nucleotide codon from AAC to AAT, 

and L3M mutation changed CTG codon to ATG, which are not favored by E.coli codon usage. 

Considering the location of these mutations, they do not affect the structure of the stator complex 

neither. The motilities of all cBFM29-P strains were ATC without an exception. Further analysis 

of their plasmid vectors (by the NGS data from a pool of the entire cBFM29 flares/strains) revealed 

that there were some mutations in the P15A origin of replication site in their plasmid vectors. 

Consequently, the copy number of these plasmids went up about 20x than other plasmids, 

suggesting that the improved ATC motility from non-motile strains was due to an altered 

expression levels. 

 

In summary, all mutations (except for the cBFM29 mutations) were found near the 

functional domains: 1) the cytoplasmic loop of MotA where they interact with the rotor component 

to generate torque and 2) the periplasmic region near the pore forming transmembrane segment of 

MotB. Thus, most mutations were identified around the well-conserved and functionally essential 

residues. Perhaps, the underlying reason behind this is due to the fact that the foreign stators that 

we introduced were essentially wildtype stators, which embraces all the operative functional 

domains, but not compatible with the rest of the E.coli rotor components. Consequently, the 

mutations that could enhance the structural fitness/compatibility with the rest of the E.coli motor 

components could have improved the functionality. In this regard, the mutations identified here 

may provide an insight into the structural difference between the E.coli (WT) stator and the foreign 

stator, in a condition that the mutation introduced functional/structural modification instead of 

expression level modification.  
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Figure 5.7 The amino acid sequence alignment of the 22 MotAB homologues. Only the segment of 

sequences where the mutations were found are shown. The mutation sites are indicated by red squares 

and the functionally important residues such as MotA-FliG interacting sites (A90, E98, E150) and the 

proton binding sites (D32) are indicated by red arrows. Note: 6AA insertion mutation means 6AA 

upstream of G177 is repeated twice. 
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5.4  Single cell swimming motility of cBFM-P 
 

In the previous sections, the motility of the cBFM was described at the population level in semi 

solid agar (chemotaxis). In order to appreciate their motility at the level of basic causal element, 

and to see how the population level chemotaxis motility can be comparable to the single cell or the 

single motor level of motilities, their swimming ability at the single cell level in liquid media as 

well as the single motor rotation (section 5.5) were observed. The strains were grown in ½ LB 

media and their swimming was also observed in ½ LB media to have the same motility condition 

as in the chemotaxis experiment. Three independent replicates per strains, together with the positive 

and negative control in each time, were observed and recorded in AVI video files (see chapter 2.4.2 

for the detailed experiment procedure). Qualitative measurement of the single cell swimming 

abilities was recorded manually. Three different swimming states were monitored: (A) most cells 

(>80%) swim actively, even in a cripple way, (S) a few cells (<5 % of the population) swim slowly 

or tumble, and (N) no cells swim (see Table 5.3). When cells do not swim, they are stationary with 

Brownian motions, but when cells tumble or swim slowly, they exhibit directional movements and 

marked (S, semi-motile). We were interested in the capability of single cell swimming in liquid 

from the following four groups: 1) the original cBFM strains that showed immediate chemotaxis 

motility (the compatibility group A), 2) the original cBFM strains that showed ATC motility and 

the strains evolved to be motile (the compatibility group B and C), 3) the original cBFM strains 

that never chemotaxis (the compatibility group D) and 4) all the unique primary flare mutants (total 

of 18 cBFM-P strains) from the compatibility group B and C. Firstly, the ancestor 22 cBFM strains 

swimming ability in liquid media were examined (Table 5.3).  
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Table 5.3 List of the cBFM strains with their swimming abilities in the population level (chemotaxis 

column) and in the single cell level (swimming column).  

 

 

 

The five original cBFMs that were immediately functional in semi-agar (cBFM 

#2,3,22,24,26, light yellow colored in Table 5.3) were actively swimming in liquid media as well, 

though they were swimming slower than WT. However, the evolved original cBFM strains (cBFM 

#8,11,13,17,18,29) showed surprisingly diverse single cell swimming abilities, ranging from no 

swimmers at all (N) to a few swimmers (S) and active swimmers (A). Especially, unlike our earlier 

expectation, cBFM17 cells swam in liquid, raising a question on the functional/cellular mechanism 

of the ATC motility in semi-solid agar. A study [25] also observed this type of functional mismatch 

between the chemotaxis ability and the swimming ability from several FliG and motA/B double 

mutations strains. They reported that the mutations permitted a better chemotaxis than swimming 

motility were in or near the transmembrane regions of both MotA and MotB, suggesting a possible 

correlation between proton translocation and motor rotation at high load. The other two ATC strains 

(cBFM 11 and 18) showed a cripple way of slow swimming in liquid, with only few cells exhibiting 

slow swimming activities or tumbling. The other three evolved strains (cBFM 8, 13, 29) that 
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showed no chemotaxis ability exhibited no swimming activity in liquid, along with the ten non-

evolved and non-chemotaxis strains (cBFM 5, 14, 15, 16, 19, 20, 21, 23, 25, 28), as expected.  

The results of the single cell swimming assay with the strains that carries the unique 

mutations of the foreign stators (cBFM-P) are shown in Table 5.4. The motilities of their ancestor 

strains’ (denoted as strain 8, 11, 17, 18 and 29) are also shown. Table 5.4 provides a comprehensive 

summary of the data to see how the mutations (change of genotype) affect the two types of 

phenotypic characteristics (chemotaxis and single cell swimming). In brief, all ATC motile stains 

also showed few “slow and tumbling” swimmers in liquid. All normal chemotaxis strains showed 

active swimmers in liquid, except that 17.1g strain (slow motile chemotaxis) did not show any sign 

of motility in liquid. 

 

Table 5.4 List of cBFM-P strains with their motilities in semi solid agar (chemotaxis) and in liquid 

(swimming)  
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5.5  Single motor rotation motility of cBFM-P 
 

The functional dynamics of the series of cBFM-P motors at the single motor level were 

characterized. Single motor rotation was measured by monitoring the rotation of a tethered cell, 

instead of monitoring the rotation of a bead attached to the flagellar, because the tethered cell assay 

provides a higher yield to find the rotating cell bodies than the bead assay, and there were total 17 

strains to test. Rotation of the cell body also provides a higher load on the motor than the rotation 

of a bead, which makes a suitable method to measure and compare the functional dynamics of the 

cBFM motors that underwent to swim in a viscous semi-solid agar environment.  

Tethered cell assays were performed by attaching a sheared flagellar on a glass surface, and 

the rotating cell bodies were monitored. Three independent replicate experiments were performed 

per sample. A schematic illustration of a tethered cell is shown in figure 5.8a. The evolved foreign 

stators and non-evolved ancestor foreign stators were expressed in E.coli JPA605 strain, which is 

the same strain used for the fusion stator bead assays (a RP437 derivative MotAB knockout sticky 

fliC). The cells were grown in 0.1% arabinose induction condition. Their growth time to reach 

certain OD600 varied; similar or extended growth time was required for the cBFM-P strains to 

reach OD600 of 0.55 with respect to the WT strain.  The extended growth time were no more than 

1.5 hours (30% more than for the WT strain), except for the cBFM8.1c. This strain, exceptionally, 

required much longer time to grow: about three time longer than the WT, which possibly influenced 

their motor functions. The sticky FliC strain- the strain with more hydrophobic flagellar - was used 

since it allows an efficient tethering process. See chapter 2.4 and 2.5 for the detailed experiment 

procedure and analysis. Total 7 different measurements were recorded for the detailed 

characterizations of each cBFM-P motor: the percentage of observing spinners per field of view (% 

spinners), mean CCW torque values, the degree of rotation speed variation (torque fluctuation), 

switching frequency (/s), mean CW time, mean CCW time and CCW bias (figure 5.8). 
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Figure 5.8 (A) a schematic drawing of the tethered cell assays. Sticky flagellar filaments of the motors 

were stuck on the glass slide. (B) seven different quantitative measurements were made for each cBFM 

strain. The assay generates a torque vs time trace shown in C. Torque fluctuation1 was calculated by 

dividing the standard deviation of CCW torque by the mean torque value. (C) From the torque vs time 

trace, the six measurements (2) ~ (7) shown in (B) can be obtained. Switching is counted when the 

direction of rotation switched from either CCW (counter-clockwise) to CW (clockwise) or from CW to 

CCW crossing the 0-torque value.  

 

 

The number of tethered cells rotating varied by strains. The percentages of rotating cells in a field 

of view (FOV) were measured by dividing the number of rotating cells per FOV by the total number 

of cell in the same FOV. This measurement is important since it can tell about how homogenously 

the foreign stators are functionally compatible in the large population of cells. The total number of 

the cells per FOV was in a range of 100 ~ 400 cells, and three different microscopic FOVs from 

three independent replicate experiments were considered. The likelihoods of finding the spinning 

cells were high (> 20%) for most of the strains. But, the cBFM 8.1a, 17, 17.1o -P showed ~10%, 

and the cBFM11, 8.1c-P showed less than 1% likelihood of finding spinning cells. No spinners 

were found from the cBFM8 strain. The percentage of finding spinners from the cBFM18 was 

unexpectedly high, despite their previously seen low motility; the population and single cell level 

of their motility was ATC and few cells crippling swimming motility, respectively. 
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Figure 5.9  The mean percentages of spinners out of total number of cells per field of view. Typically, 

total number of the cells on a glass surface was in a range of 100-400. The mean percentages (%) were 

obtained from total of 9 different microscopic fields during the three replicate experiments. The 

spinners % can be categorized into four: high (>20%), medium (~10%), low (~1%) and none (0%). The 

error bars indicate standard deviations. 

 

 

The cell body rotation speeds were converted into torque values, after taking into account 

the drag coefficients from each cell (see ch. 2.5.1). Unlike the motors from the bead assay, all of 

them were CCW biased motors, thus the CCW torque values were considered as their torque values. 

The mean torque values of the cBFM(-P) strains are shown in a bar graph in figure 5.10. The mean 

torque generated by the WT motors was 470 ± 148 pN nm (the mean rotation speed of WT motor 

was about 4 ± 1.6 Hz with a maximum rotation speed of ~8 Hz). This is (~66%) lower than the 

known torque value of WT BFM (~1300 pN nm) [26]. Since we are looking at the relative torque 

changes of cBFM in comparison to the WT motor, this WT torque difference may not be an issue 

in this scope of comparison, though this may remain disputable. The four cBFM ancestor strains 

(8, 11, 17 and 18 cBFM) showed mean torque values of 0 pN nm (cBFM8), 48 ± 21 pN nm 

(cBFM11), 204 ± 123 pN nm (cBFM17) and 252 ± 131 pN nm (cBFM18), and their evolved motors 

(cBFM-P) showed either similar or improved torques.  
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Figure 5.10  Mean torque values of the cBFM motors (both ancestor cBFM 8, 11, 17, 18 and their 

evolved cBFM-P) and the WT motor. The number of cells measured were: 31, 0, 29, 20, 30, 11, 44, 27, 

28, 39, 29, 34, 28, 27, 41, 39 and 35 in the same order as in the graph (left to right). The error bars 

indicate standard deviations. Statistical t-Test (Two-Sample Assuming Unequal Variances) was 

performed between the ancestor strains and the evolved strains, and between the evolved strains for 

cBFM8: *P < 0.01, **P < 0.001, ***P < 0.0001. 

 

 

The speed and torque distributions of the WT tethered cell is shown in figure 5.11. The 

speed distributions of other 16 cBFM(-P) strains can be found in appendix C. When compared to 

the WT motors rotated a 1.1 µm bead, the WT tethered cells (rotated its own body) showed two 

noticeably different functional characteristics. 1) No CW biased cells were observed from the 

tethered cells. This is reflected on the speed histogram: only red color CCW biased cells (figure 

5.11a) were observed, unlike the bead assay speed histogram generated both red color CCW biased 

cells and blue color CW biased cells (figure 3.6 a). 2) The tethered cells had a higher CW resident 

time on average (1.7 s for tethered cell and 0.23 s for the bead assay), including the switching 

events with the extended CW resident time (of more than 1.5 sec). A wider CW resident time 

distribution of the WT tethered cells can be seen in figure 5.11c. Assuming that rotating a cell body 

impose a higher load on the motor than rotating a 1.1 µm bead, this result is consistent to the motor 

switching under high load observed by [33]. Their finding was clockwise (CW) intervals 

lengthened appreciably at high loading whereas counterclockwise (CCW) intervals remained about 

the same for all loads. The WT strain used, the growth condition, the induction condition 

[arabinose]=0.1% and the recording time (3 to 5 min) were the same in both tethered cell assay and 

bead assay measurements.  
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Figure 5.11  Summary of the WT motor tethered cell assay results. (A) torque and speed histograms of 

the WT tethered cells. The green line represents cumulative histograms of 31 motors. Only CCW biased 

cells (red color) were observed, whereas CW bias cells (blue color) were also observed during the bead 

assay (see figure 3.6a). (B) the distribution of switching frequencies are shown by individual cells 

(upper) and by total switching events (lower). All the tethered cells measured switched during the time 

course of recording (average time of 262s). Average of switching frequency was 0.31 ± 0.23 (/s), which 

is close to that of the bead assay 0.32 ± 0.21 (/s). (C) the CW and CCW time distribution of the WT 

motors are represented by individual cells. Each dot represents switching time (intervals), and the 

switching events above the yellow line (1s) in CW time graphs represent the CW resident time of more 

than 1 s. 
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Interestingly, while recording the rotation speeds of the tethered cells, it was observed that 

the rotation speeds of the cBFM motors fluctuate noticeably, while the WT motors tend to have a 

rather constant rotation speed with low or no degree of fluctuation (figure 5.12). The degree of the 

torque fluctuation (equivalent to the rotation speed variance) was measured by the standard 

deviation of the mean CCW torque of the individual cell divided by its mean CCW torque. This 

value indicates how much the rotation speed varies (%) from the mean rotation speed. The mean 

values for each motor are shown in figure 5.12b. All cBFM motors showed about roughly two-

times (in a range of 1.3~2.8 times) higher torque fluctuation values than that of the WT motors. 

These increased torque fluctuations may reflect the unstable nature of the foreign stator - rotor 

interactions. According to [27], at a fixed rotation rate (constant number of bound stators), a motor 

rotates more smoothly (decreased fluctuation) with a higher step size (a step refers to the angular 

degree moved by a single power stroke mechanism of the stator-rotor interaction force), suggesting 

that the higher torque fluctuations were due to the lowered step sizes per revolution of the cBFMs. 

Since the torque of the cBFM was generated by the foreign stators, causing altered stator and rotor 

interactions in the E.coli K-12 motor, it can be speculated that their power stroke mechanism with 

the E.coli FliG rotor units was different than that of the WT motors.  
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Figure 5.12  (A) example rotation speed vs time traces of the WT motor and the cBFM8.1d motor 

showing the higher degree of rotation speed variation by the cBFM8.1d motor than that observed by 

the WT motor. This difference in speed variation is reflected on the speed histogram: a peak around -4 

Hz for the WT motor is observed whereas a wider peak around -2 ~ -4 Hz is seen for the cBFM8.1d-P 

motor (note: negative speed is CCW rotation in the tethered cell assay). (B) Mean torque fluctuations 

of the cBFM and WT motors. The mean torque fluctuation value (X): the rotation speed 

varies/fluctuates in X % from the mean speed. The error bars indicate standard deviations.  

 

 

 

The mean switching frequencies of the WT and the cBFM motors are shown in figure 5.13, 

and the distribution of the WT motors switching frequencies was shown in figure 5.11b. The 

switching frequency was measured by dividing the total number of switching events by the total 

recording time. All strains showed a wide range of switching frequencies. The mean switching 

frequency of the WT motors was not very different than that of some of the cBFM motors. However, 

there were certain percentages (5~20 %) of the cBFM motors that did not switch during the time 

course of recording (~5 minutes), while all WT motors switched at least once. Especially, about 

20% of the cBFM8.1c and 8.1d -P and cBFM18 cells did not show switching events (data not 

shown). The main difference of the WT motors and the cBFM motors in switching dynamics was 

more apparent in their CW switching time, as shown in figure 5.15. 
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Figure 5.13 Switching frequencies of the WT motors and all the evolved (cBFM-P) and their ancestor 

cBFM motors. The error bars indicate standard deviations.  

 

 

 

 

Unlike the other three ancestor strains (cBFM8,11 and 18), the ancestor strain cBFM17 

already showed a moderate torque generation and switching frequency. According to the switching 

frequencies and mean torque values relationship plot in figure 5.14, the cBFM strains performed 

the best (or closest to the WT motor performance) are the four cBFM17 strains, 17.1b, o, f and h. 

cBFM17.1b has a F53V mutation, 17.1o has a 5AA deletion at S39, 17.1f has a S39R mutation and 

17.1h has a F53L mutation (Table 5.2). Thus, the 5AA deletion at S39 motB (BFM17.1o-P) and 

the single nucleotide point mutations S39R and F53L (cBFM17.1f and h -P, respectively) improved 

torque generations, and the F53V (cBFM17.1b) improved both torque generation and switching 

frequency. In contrast, the 3AA deletion at A37 motB (cBFM17.1k-P), the S39I motB mutation 

(cBFM17.1a-P) and the 6AA insertion between the TM3-TM4 G173 of motA (cBFM17.1j-P) 

lowered the switching frequency and did not improved the torque generation. Strikingly, even 

though all mutations were found in the three motB residues (37, 39, 53) consistently, except for the 

cBFM17.1j, distinctly different functionalities at the single motor level were observed, suggesting 

the complexity and importance of the residues between the 37 to 53 in motB. For example, the 

S39R (17.1f-P) mutation, which changed serine to a positively charged arginine, improved torque 

generation while the S39I (17.1a-P) mutation did not. The F53L (17.1h-P) mutant only improved 

torque generation while F53V (17.1b-P), which is a proline substitution mutation, improved both 

torque and switching frequencies. 
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The strains cBFM8 did not rotate at all, but their evolved foreign stator motors improved 

both torque and switching frequencies. The single nucleotide change of A134S in LafT (cBFM8.1a) 

produced a functional motor from the non-functional motor (cBFM8), and the additional mutations 

(L284R and E87K) further improved torque generations (cBFM8.1b and c). cBFM11 performed 

the worst, but a mutation Q52P in motS (cBFM11.1i) improved both the torque generation and the 

switching frequencies. The evolved motor of the cBFM18 (cBFM18.1e) has a Q237K mutation in 

the cytoplasmic region of motA, where MotA possibly interacts with FliG proteins, and this 

evolved motor showed an improved switching frequency. 

 

 

 

Figure 5.14  Relationship between switching frequencies and torque values of each cBFM strains. The 

x axis gives the average torque values shown in 5.10, and the y axis gives the average switching 

frequencies of each cBFM strains shown in 5.13. The arrows indicate how the evolved strains migrated 

from the ancestor strains (cBFM 8, 11, 17 and 18) toward the WT motor in this plot. The error bars 

indicate standard errors of the means.  

 

 

The mean switching frequencies were plotted against the mean CW time and against the 

CCW bias (figure 5.15). When CW resident time of the WT motors and of the cBFM motors were 

compared, the cBFM motors showed shorter CW resident time on average than that of the WT 
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motors (x-axis in figure 5.15a). The 17.1k-P and cBFM11 showed longer averaged CW time but 

with wide error bars. This difference is reflected on their higher CCW bias values (the percentage 

of time spent in CCW rotation) (x-axis in figure 5.15b). 13 motors out of the 31 WT motors (~42%) 

had CW time of longer than 1 s, but most of the cBFM motors did not have the CW time of longer 

than 1 s. In this plot, the three evolved cBFM17 motors (17.1a, 17.1k and 17.1j), which showed a 

poor performance in both switching and torque generation, were located relatively closely each 

other as well as the other four evolved cBFM17 motors (17.1b, o, f, h), forming two groups of 

cBFM17 family. This average CW time is also reflected on the CCW bias values, generating almost 

an identical mirror relationship when compared to the switching frequencies (except for the 

cBFM11 and cBFM17.1J, k -P motors).     

 

 

 

Figure 5.15  Switching frequencies of the WT motor and the evolved (and non-evolved) foreign stator 

motors are plotted against the average CW resident time (left) and the CCW bias (right). The average 

CW time and the mean CCW bias of each cBFM strain are shown on the abscissa, and the mean 

switching frequencies are plotted on the ordinate. The arrows indicate how the ancestor cBFM migrated 

towards the WT motor. All cells were CCW bias motors. The error bars indicate standard errors of the 

means.  
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Table 5.5  Comprehensive data table of the cBFM-P strains (N# is the number of cells measured). 
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5.6  Discussion 
 

How macromolecular complexes such as molecular machines have evolved is a challenging yet 

very festinating question. Compositional evolution suggests that they might have evolved through 

the stepwise addition of pre-existing protein components [28]. The BFM is an excellent model 

system that can provide an experimental insight to test this compositional evolution theory [29-31]. 

Prior to the present study, the modularity and evolvablability of BFM is tested by exchanging the 

orthologues of the stators in E.coli BFM, which we called cBFM. Some of the non-compatible 

foreign stators in cBFM were evolved to be functionally compatible, and the result of this evolution 

experiment was shown in table 5.1. Followed up from this evolution experiment, 1) the mutations 

occurred on motA and motB during the first stage of the evolution and 2) their functionalities (in 

three levels of motilities) were examined to understand the molecular details of the evolutionary 

transitions.  

When the evolved foreign stators were put back to the E.coli K-12 ∆MotAB strain 

(resulting strains were called cBFM-P), more than half (~62%) of the cBFM-P strains showed 

improved chemotaxis ability than their ancestors, suggesting that the modification on the stator 

genes played a vital role during evolution. Total 15 different beneficial mutations on motA and 

motB foreign genes were identified. Strong mutational variations between the different cBFM 

groups (strain-specific constraints) were also observed (Table 5.2 and figure 5.6). Most mutations 

were single nucleotide polymorphisms (SNPs), though four insertion and deletion mutations were 

found on motA and motB from cBFM17. The mutations were found near the functional sites of the 

stators: stator-rotor interacting cytoplasmic loops and the proton channel forming domains. Some 

of them were repeatedly discovered by independently evolved strains as well. This mutational 

recurrence suggests that evolution is repeatable by favoring certain genetic modifications better 

than others [9].  

The three-different level of motilities (population, single cell and single motor) of the non-

evolved cBFM (ancestors) and their evolved cBFM-P strains were examined. When their 

population swimming motilities and their single cell swimming motilities were compared, these 

two motilities were mostly in agreements, except for the cBFM17 strain (Table 5.3 and 5.4). 

Unexpectedly, cBFM17 showed atypical motility (ATC) in semi-solid agar but normal active 

swimming in liquid. Other ATC strains showed a few fractions of cells tumbling/crippling way of 

swimming in liquid.  

 



 

152 

 

Their motilities at the single motor level revealed more detailed functional differences. In 

comparison to the WT motor, all cBFM showed reduced torque generation (~53 %) and switching 

frequencies (~70%) on average (figure 5.14). Two noticeably different functions in cBFM and WT 

motors was observed. First is the higher degree of the cBFM rotation speed variations, which 

measured as torque fluctuations. WT motors usually rotated at a fixed rotation speed without a 

much speed fluctuation, while most of the cBFM rotated in wider range of rotation speeds, 

exhibiting higher speed fluctuations (figure 5.12). This fluctuation analysis of the rotational speeds 

generated by the foreign stators may suggest the different stepping mechanisms of the WT motors 

and of the motors driven by foreign stators [27]. The dwell time at CW rotation of the cBFM-P was 

also relatively shorter than WT; cBFM-P did not rotate in CW for extended period time of more 

than 1 s, while certain percentage of the WT motors rotated in CW for a period of more than 1 s 

(note that all tethered cells were CCW biased motors). 

The evolved foreign stator motors improved motor performances compared to their 

ancestor motors. The cBFM8.1a-P with A134S mutation improved the motor from non-functional 

to functional motor. The cBFM8.1d-P (double mutations E87K and A134S on motA) showed the 

most improved functionality in consideration of the three parameters: percentage of spinners in 

total number of cells (spinners percentage), torque and switching frequency. These two mutations 

E87K and A134S are located in near the two well-known stator-rotor interaction sites (R90 and 

E150). The cBFM8.1a-P (A134S) showed improved torque generation and switching frequency 

(about twice higher than cBFM8.1d-P), but a lower spinner percentage (~10%) than cBFM8.1d-P. 

Thus, an additional mutation E87K on cBFM8.1d-P improved the spinner percentage (~20%), but 

lowered its switching frequency. cBFM11 showed a poor motor performance, including the very 

few spinners (~0.04 %) per field of view. Its evolved motor – the cBFM11.1i-P with a beneficial 

mutation of Q52P MotB- improved motor functions in all three parameters (18% of finding 

spinners, 34% of torque generation and 76% of switching frequency of the WT motor). The 

mutation (Q52P) is near the pore forming domain, and a specific implication on the ion specificity 

of this domain was discussed in [21]. The cBFM18 motors, unexpectedly, functioned well (except 

their switching ability) despite their poor performance in the previous two motilities assays. The 

cBFM18.1e-P, with a mutation Q237K on cBFM18, improved switching frequencies. The evolved 

stators of the cBFM17 seem to have divided into two groups: the cBFM 17.1 b, f, h, o, which 

improved motor functions and the cBFM 17.1 a, j, k, which did not. As a final point, the figure 5.14 

revealed that the cBFM phenotypes (torque generation and switching frequency) can be varied in 

all combinations by mutations, i.e., one up while another is stable or both up. This suggests that 

these phenotypes can be modulated by mutations in an orthogonal manner. In other words, different 

BFM properties can by independently tuned by mutations. This lack of pleiotropic effects suggests 
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that the mutations are modularly encoded within the stator, thereby increase the evolvability of a 

system. 

The cBFM 29 had mutations at the second and third residues of the N-terminus and in the 

non-gene coding region of the plasmid vectors, as well as the mutations at the origin of replication 

on the vector. Thus, it is highly speculated that the improved motilities observed by the evolved 

cBFM29 strains are due to the altered gene expression level [6] or due to the N-terminal codon bias 

[32]. The gene expression level can be altered by protein folding rates, codon bias, other 

modifications on the vectors such as DNA methylation (epigenetics). Therefore, it is possible that 

an altered foreign stator expression level, which is not direct the structural and functional element, 

influenced their improved chemotaxis motility during the evolution experiment. To check this 

possibility, the foreign stator protein expression level analysis will be carried out as a follow up 

study. 
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Chapter 6. Concluding remarks and future researches 
 

In chapter 3, we quantitatively characterized switching dynamics of the BFM driven by the stators 

tagged by three different FPs (fusion stators). Owing to the unexpected switching behaviors 

observed by these motors, the symmetric nature of the bi-directional rotations of the BFM was re-

visited. The asymmetric switching (ASW) of the fusion stator motors and the incomplete switching 

described in the conformational spread model (described in figure 1.8a) share a similar feature in a 

sense that no symmetry of the CW and CCW rotation speeds is reached during a single switch. 

However, the ASW is distinguishable from the incomplete switches for the following reasons. 1) 

the ASW was observed consistently without an exception, whereas the incomplete switches occur 

occasionally due to the incomplete conformational change of the entire C-ring. 2) the ASW was 

accompanied by three other switching modifications (prolonged CW or CCW resident time, the 

reduced switching frequencies and the extended switching time), revealing that various aspects of 

the switching dynamics of the motor are altered for the ASW of the fusion stator. 3) the ASW has 

a tag-specificity, meaning that the level of asymmetry is different by which FP is fused to and by 

the presence or absence of linkers. Furthermore, a tendency of the FP tagged motors (as well as for 

the WT motors) to pause or slow down around 0 Hz during switching events were often observed 

(appendix D), suggesting the existence of a transition state (at 0 Hz) between the CW and the CCW 

states. 

The switching dynamics of the fusion stator motors can be in line with the mechanics of 

the torque generation model that described in figure 1.5. This model takes the four subunits of 

MotA as a bundle of four gears, where two of each are responsible for either CCW rotation or CW 

rotation via contact with the FliG proteins. The conformational change of the C-terminus torque 

generating domain of the FliG (~180 °C) facilitates this transition, so that it interacts with each two 

pairs of MotA. In a scenario that the FP-tag hinders the transition of the FliG conformational change, 

which described in figure 3.25, the ASW of the fusion stator motors is caused by the FliG stuck in 

somewhere between these two pairs of MotA. Although an additional experiment will be required 

to validate this model, the fusion stator study may provide an important insight in our current 

understanding of how the symmetric bi-directional rotations can be achieved. 

An experiment that can be done to test the mechanics of torque generation model is by 

examining the symmetricity of torque generated by the product of two MotA genes fused together, 

one of which is mutated to be non-functional (MotA-MotA*). If this model is valid, the torque 

generated by each CW and CCW rotation state can be dramatically different, because one side of 
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MotA responsible for a certain direction is designed to be non-functional. Control experiments can 

be the same assays with multiple other combinations of the MotA fusions, such as two wildtype 

MotA fused together (MotA-MotA) and five others (WT, MotA*, MotA*-MotA, MotA-MotA*, 

motA*-motA*). Such experiment, together with the fusion stator study, may provide an important 

insight to support the model by [2]. 

Another remark from this thesis study is that we observed the motors rotate exclusively 

either CCW or CW in strains lacking CheY gene (the chemotaxis regulator) [MT03 in Appendix 

B]. This result can be a useful addition to the previous report that the motors rotate exclusively 

CCW in such a motor. The existence of CW-biased motors was also prominent throughout the 

whole fusion stator bead assay, raising a question on the nature of bi-directionality once more. 

Furthermore, the dwell times in CW rotation (CW resident time) of the motors rotating a cell body 

were longer than those observed in motors rotating a 1.1 µm bead. This observation is consistent 

with the previous observation that the CW resident time lengthened appreciably at high load (above 

1.44 µm beads) [1]. The motors rotating a cell body showed CCW bias exclusively as well, 

suggesting that there are certain correlations between the bias, the time spent in CW rotation state 

and the load. Since the rotational direction is determined by the conformational states of the C-ring 

of the motor, this suggests that the C-ring can be in either CW or CCW state only when the imposing 

load is relatively not too high (< a 1.1 µm bead), but the C-ring can form CCW state only when the 

imposing load is relatively high (like a cell body). The dwell times in CW rotation were also altered 

greatly by the FP-tagged stators and by the foreign stators (cBFM). The motors with the FP-tags 

showed lengthened CW resident time (as if they are experiencing a higher load than the actual load 

of a 1.1 µm bead), on the other hand, the cBFM did not show the lengthened CW resident time like 

the WT motors did in the same condition. Identifying the correlation between the load on the motor 

and the dwell time of each CW and CCW state may provide an important step forward in both 

mechano-sensing and the switching dynamics of the motor. 

The discovery that an anchored component (MotB) of a multi-protein complex diffuses in 

the membrane and exchanges rapidly with the motor expanded the conventional ‘static’ view of 

molecular complexes [2]. The underlying mechanisms of the stator turnover are not clear. However, 

one may speculate that the mechanics involved in torque generation (energy transduction as a result 

of the conformational change and the interactions with the FliG proteins) eventually damage or 

alter the functionality of each stator. Typically, the BFM rotates at a constant speed for an extended 

period during bead assays, without making any clear signs of stators leaving or engaging. Therefore, 

stator turnover seems remarkably fast and efficient, likewise, prompt stator activation and 

inactivation mechanism around the motor seems inevitable as well. Stator turnover opened 
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numerous intriguing questions: is each stator only used for a certain period and degraded (finite 

functional life time), or are they recycled? Are there functional and physiological benefits of the 

stator turnover? Do components of other macromolecular complexes also undergo dynamic 

exchange? How the stator turnover rates change in relation to the stators expression level, in 

relation to the mechanical load, and in relation to the ion motive force? The last question can be 

answered by observing the rates of the successive incorporation of the stators in the different 

conditions that can alter the following three parameters: the stator expression level can be altered 

by different inducer concentrations, the mechanical load can be altered by applying magnetic force 

to trap the bead rotated by the motor, the ion motive force can be altered by applying different 

sodium concentrations buffer. PomAPotB (a sodium stator that can be utilized in E.coli) should be 

used here instead of MotAMotB (proton stator). 
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Appendix 

 

A. OD600 growth curves  

 

 



 

160 

 

 
 

 
 

 

 

 

 



 

161 

 

B. WT BFM rotation (MT02 and MT03) with a 1.1 µm bead, see Table 2.1 for the strains 

information. 
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C. cBFM-P torque and speed histograms 
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D. Switching events of the BFMs often slowed down around 0 Hz  (1.1 µm bead assay), 

in relation to the figure 3.14. Switching events from the two independent motors 

(top and bottom) are shown per each motor.  
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The bacterial flagellar motor (BFM) is a macromolecular complex which allows bacteria to swim 

in liquid media. Located at the base of the flagellum, this remarkably small (~45nm) yet powerful 

rotary motor rotates each flagellum up to rotation speeds of ~1000 Hz in both counterclockwise 

(CCW) and clockwise (CW) direction. The motor rotation is generated at the interface between 

the two key components of the motor: the stator protein complexes (each composed of 4 MotA 

and 2 MotB proteins) and the C- ring protein complex at the base of the rotor. The stator 

complexes are structurally and functionally discernible modules of the motor, and their 

dynamical association and dissociation around the rotor controls the torque generation. 

Previously, dynamic nature of the stators has been demonstrated by the fluorescence detection 

of the stators fused to a fluorescent protein (FP). When a FP is fused to MotB, the motor is 

functional, but a reduced motility of the cells has been observed. The precise reasons for such 

reduction in motility is yet to be determined.  

The first project aims to investigate how the FP tag on the stator protein modifies the torque 

generation and switching of the motor. This is important because the fluorescent protein tag 

lies at the interface between stator and rotor, where torque and switching are produced. Three 

different FPs (eGFP, YPet, Dendra2) were fused to MotB. Interestingly, despite the high similarity 

of these three FPs’ structures, our analysis revealed that the three fusion stators generate 

different torques by single stator. Furthermore, the motors driven by the fusion stators showed 

significantly impaired switching abilities. When switching direction of the rotation, the absolute 

value of the speed of WT motors does not change, whereas this symmetry of speed upon 

switching is not observed in the fusion stator motors and switching can be accompanied with a 

significant (~30%) decrease in absolute speed. Both the impaired torque generation and the 

switching ability were improved by introducing a rigid linker between the stator and the FP tag. 

Taken together, this study provides a further insight into the dynamics of the stator and rotor 

interaction at its interface.  

When the cells carrying the fluorescently labeled stators were observed in a custom made TIRF-

fluorescence microscope with single molecule capability, the fluorescence signals were 

detected as concentrated clusters in the membrane as expected for the stator proteins around 

the motors, together with a population of stators diffusing in the membrane. The fluorescent 

clusters were also observed at the center of rotating cells tethered to the glass slide by a single 

flagellum, confirming that the fluorescent spots observed were attributable to the functioning 

motors.  

In a second project developed in Bertus Beaumont lab at TU Delft, taking BFM as an 

experimental evolutionary model system, its modularity and evolvability have been explored to 

learn the molecular details of the evolution of molecular machines. When the stators of E.coli 

(K-12) have been replaced by a set of 21 homologue foreign stators, some of the foreign stators 

were immediately compatible with the E.coli motor, while some of the non-compatible stators 

were positively modified by a chemotaxis evolution experiment. More than half of those evolved 

motors accumulated beneficial mutations in the functional domains of their foreign stator genes. 

Motilities of the evolved motors were investigated and compared at the level of population 

(chemotaxis), single cell (swimming) and single motor. This three-levels of functional 

investigation enabled detailed functional characterizations of the evolved or foreign motors. 

Especially, the single motor level assays revealed that those beneficial mutations improved the 

torque generation and/or the switching ability. The detailed genotype and phenotype 

investigations of the evolutionary modified BFM may bring an insight into how molecular 

machines such as BFM have evolved as well as the functional effects of the beneficial mutations 

that facilitate functional integration.  

 

 

 


