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Titre: Impacts du changement climatique et des pratiques agricoles sur la culture des 
principales céréales du monde 
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Résumé:  

Les terres cultivées représentent un cinquième de la surface émergée de la Terre. Elles 
fournissent des nutriments à l'homme, modifient le cycle biogéochimique et l'équilibre 
énergétique de la terre. L’évolution des terres cultivées dans le contexte du changement 
climatique et avec une intensification des actions anthropiques constitue un enjeu important 
pour la sécurité alimentaire et les exigences environnementales du développement durable. 
Le manuscrit de thèse s’inscrit dans cette thématique en exploitant les données de 
différentes sources et la modélisation numérique. Les données utilisées sont : les statistiques 
de rendements, les observations agro-météorologiques à long terme, les résultats des sites 
d’expérimentation avec du réchauffement, les jeux de données globales issus des processus 
de fusion ou d’assimilation, les données climatiques historiques et de projection future. La 
modélisation fait appel aux modèles statistiques et aux modèles de processus. Le manuscrit 
est composé d’une série de travaux de détection et d'attribution. Ils explorent la phénologie, 
le rendement et leurs réponses aux changements climatiques et aux pratiques de gestion. Ils 
sont soit sur l'échelle régionale soit sur l’échelle globale, en fonction de la disponibilité des 
données et de leur pertinence. 

Le chapitre 2 décrit la construction et l’utilisation d'un modèle statistique avec des 
données provinciales de rendement au Nord-est de Chine et des données climatiques 
historiques. Les résultats montrent un effet asymétrique de la température diurne sur le 
rendement du maïs. Le rendement du maïs augmente de 10.0±7.7% en réponse à une 
augmentation moyenne de 1oC pendant la saison de croissance quand il s’agit de la 
température minimale de nuit (Tmin), mais le rendement diminue de 13,4±7,1% quand il 
s’agit de la température maximale de jour (Tmax). Il y a une grande disparité spatiale pour 
la réponse à Tmax, ce qui peut s'expliquer partiellement par le fort gradient spatial de la 
température pendant la saison de croissance (R = -0,67, P <0,01). La réponse du rendement 
aux précipitations dépend aussi des conditions d'humidité. Malgré la détection d'impacts 
significatifs du changement climatique sur le rendement, une part importante de ses 
variations n’est pas expliquée par les variables climatiques, ce qui souligne le besoin urgent 
de pouvoir attribuer proprement les variations de rendement au changement climatique et 
aux pratiques de gestion. 

Le chapitre 3 présente le développement d’un algorithme d'optimisation basé sur la 
théorie de Bayes pour optimiser les paramètres importants contrôlant la phénologie dans le 
modèle ORCHIDEE-crop. L’utilisation du modèle optimisé permet de distinguer les effets 
de la gestion de ceux du changement climatique sur la période de croissance du riz (LGP). 
Les résultats du modèle optimisé ORCHIDEE-crop suggèrent que le changement climatique 
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affecte la LGP différemment en fonction des types du riz. Le facteur climatique a fait 
raccourcir la LGP du riz précoce (-2,0±5,0 jour / décennie), allonger la LGP du riz tardif 
(1,1±5,4 jour / décennie). Il a peu d'effet sur la LGP du riz unique (-0,4±5,4 jour / décennie). 
Les résultats du modèle ORCHIDEE-crop montrent aussi que les changements intervenus 
dans la date de transplantation ont provoqué un changement généralisé de la LGP, mais 
seulement pour les sites de riz précoce. Ceci compense à la hauteur de 65% le 
raccourcissement de la LGP provoquée par le changement climatique. Le facteur dominant 
du changement LGP varie suivant les trois types de riz. La gestion est le principal facteur 
pour les riz précoce et unique. Ce chapitre démontre aussi qu'un modèle optimisé peut avoir 
une excellente capacité à représenter des variations régionales complexes de LGP. Les 
études futures devraient mieux cerner les défauts d'observation et documenter les différentes 
pratiques de gestion afin de réduire les incertitudes qui existent encore dans l'attribution de 
causes pour le changement de LGP. Elles devraient aussi faciliter l'intégration de la 
modélisation et de l’observation. 

Le chapitre 4 présente des résultats issus d’une exploration conjointe avec les données 
de sites, d’un côté, et la modélisation globale, de l’autre côté. L’observation est un ensemble 
de données avec du réchauffement contrôlé, coordonné sur 48 sites du monde pour les 
quatre cultures les plus répandues (blé, maïs, riz et soja). La modélisation est assise sur un 
ensemble de modèles de cultures sur des mailles régulières couvrant le globe. Le but est 
d'estimer les réponses du rendement de ces céréales au changement de température (ST), 
l’estimation étant contrainte par les données d’expérimentation. Le nouveau cadre avec 
contraintes intègre des données de sites d’observation avec un réchauffement contrôlé et la 
modélisation globale des cultures. Les résultats montrent, avec une probabilité > 95%, que 
des températures plus chaudes réduisent les rendements du maïs (-7,1 ± 2,8% K-1), du riz 
(-5,6 ± 2,0% K-1) et du soja (-10,6 ± 5,8% K-1). Pour les blés, ST étant moins négatif, il y a 
seulement 89% de probabilité pour que son rendement soit négatif (-2,9 ± 2,3% K-1). Les 
contraintes apportées par les observations de terrain avec du réchauffement contrôlé 
permettent de réduire les incertitudes associées au réchauffement global. La réduction est de 
12 à 54% pour les quatre cultures. Une principale implication de ces résultats s’applique 
aux évaluations des conséquences climatiques dans le cadre de l'Accord de Paris qui 
préconise des efforts nécessaires pour que le réchauffement global soit limité à 2 K 
au-dessus du niveau de l’époque préindustrielle. Dans ce cas, les rendements des principales 
cultures connaissent une réduction de 3% à 13%, sans tenir compte des effets de CO2. 
Même si le réchauffement est limité à 1,5 K, aucun des principaux pays de ces cultures ne 
bénéficierait des températures plus chaudes sans une adaptation efficace. Le maïs, le riz et 
le soja seraient plus vulnérables à l'augmentation des températures que le blé. 

Le chapitre 5 présente une estimation cohérente (une sorte de ré-analyse) sur la 
contribution de l'irrigation au rendement mondial du blé et du maïs, tout en poursuivant le 
même cadre bayésien intégrant les mesures de terrain et la modélisation des cultures. La 
ré-analyse ainsi obtenue a plus de précision que toutes autres estimations simples lorsque le 
résultat est confronté aux statistiques nationales des Etats-Unis. A l'échelle mondiale, 
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l'irrigation contribue respectivement à 34%±25% et 22%±23% au rendement irrigué pour le 
blé et le maïs. Les grandes variations spatiales de la contribution de l’irrigation au 
rendement sont davantage attribuables à l'approvisionnement climatique en eau qu'à la 
demande. En accord avec les ressources de ruissellement disponibles, la priorité de 
construire des installations d'irrigation se déplace vers l'Europe de l'Est et l'Inde pour le blé 
et vers le Brésil pour le maïs. Si l'on transforme les terres cultivées pluviales en terres 
irriguées, 30 à 47% des terres pluviales actuelles ne disposent pas de ressources locales 
suffisantes à la demande d'irrigation, y compris certaines régions importantes (par exemple 
le Nord de la Chine et le Centre-Ouest des États-Unis) qui devraient développer des projets 
d’extraction d'eau souterraine ou des projets de transfert d’eau inter-bassin. En considérant 
qu’il y a d’importantes surestimations de la contribution de l'irrigation au rendement des 
cultures dans la plupart des modèles antérieurs, on doit ici préconiser que les analyses, 
fondées sur ces résultats surestimés, concernant l'économie agricole et de l'hydrologie 
devrait être réexaminée.  

Enfin, pour clôturer le manuscrit, une discussion est présentée autour de l'implication 
des résultats des chapitres précédents sur le développement continu du modèle 
ORCHIDEE-crop et son application potentielle pour la modélisation couplée 
terre-atmosphère. 
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Abstract:  

Croplands accounts for one-fifth of global land surface, providing calories for human 
beings and altering the global biogeochemical cycle and land surface energy balance. The 
response of croplands to climate change and intensifying human managements is of critical 
importance to food security and sustainability of the environment. The present manuscript 
of thesis utilizes various types of data sources (yield statistics, long-term 
agrometeorological observations, field warming experiments, data-driven global datasets, 
gridded historical climate dataset and projected climate change) and also modelling 
approaches (statistical model vs. process model). It presents a series of detection and 
attribution studies exploring how crop phenology and crop yield respond to climate change 
and some management practices at regional and global scales, according to data availability.  

In Chapter 2, a statistical model is constructed with prefecture-level yield statistics 
and historical climate observations over Northeast China. There are asymmetrical impacts 
of daytime and nighttime temperatures on maize yield. Maize yield increased by 10.0±7.7% 
in response to a 1 oC increase of daily minimum temperature (Tmin) averaged in the 
growing season, but decreased by 13.4±7.1% in response to a 1 oC warming of daily 
maximum temperature (Tmax). There is a large spatial variation in the yield response to 
Tmax, which can be partly explained by the spatial gradient of growing season mean 
temperature (R=-0.67, P<0.01). The response of yield to precipitation is also dependent on 
moisture conditions. In spite of detection of significant impacts of climate change on yield 
variations, a large portion of the variations is not explained by climatic variables, 
highlighting the urgent research need to clearly attribute crop yield variations to change in 
climate and management practices.  

Chapter 3 presents the development of a Bayes-based optimization algorithm that is 
used to optimize key parameters controlling phenological development in ORCHIDEE-crop 
model for discriminating effects of managements from those of climate change on rice 
growth duration (LGP). The results from the optimized ORCHIDEE-crop model suggest 
that climate change has an effect on LGP trends, but with dependency on rice types. Climate 
trends have shortened LGP of early rice (-2.0±5.0 day/decade), lengthened LGP of late rice 
(1.1±5.4 day/decade) and have little impacts on LGP of single rice (-0.4±5.4 day/decade). 
ORCHIDEE-crop simulations further show that change in transplanting date caused 
widespread LGP change only for early rice sites, offsetting 65% of climate-change-induced 
LGP shortening. The primary drivers of LGP change are thus different among the three 
types of rice. Management is predominant driver of LGP change for early and single rice. 
This chapter demonstrated the capability of the optimized crop model to represent complex 
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regional variations of LGP. Future studies should better document observational errors and 
management practices in order to reduce large uncertainties that exist in attribution of LGP 
change and to facilitate further data-model integration.  

In Chapter 4, a harmonized data set of field warming experiments at 48 sites across 
the globe for the four most-widely-grown crops (wheat, maize, rice and soybean) is 
combined with an ensemble of gridded global crop models to produce emergent constrained 
estimates of the responses of crop yield to changes in temperature (ST). The new 
constraining framework integrates evidences from field warming experiments and global 
crop modeling shows with >95% probability that warmer temperatures would reduce yields 
for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and soybean (-10.6±5.8% K-1).  For wheat, 
ST was less negative and only 89% likely to be negative (-2.9±2.3% K-1). The 
field-observation based constraints from the results of the warming experiments reduced 
uncertainties associated with modeled ST by 12-54% for the four crops. The key implication 
for impact assessments after the Paris Agreement is that with global warming limited within 
2 K above pre-industrial levels will still reduce yields of major crops by 3% to 13%, 
without considering effects of atmospheric CO2 concentrations. Even if warming was 
limited to 1.5 K, none of the major producing countries of these crops would likely benefit 
from the warmer temperatures without effective adaptation. Maize, rice and soybean would 
be more vulnerable to increasing temperatures than wheat. 

In addition to model-data integration for assessing climate change impacts, Chapter 5 
reanalyzed irrigation contribution to global wheat and maize yield with the Bayesian 
framework integrating estimates from both field measurements and crop modelling. The 
reanalysis has more precision than any single estimate when confronted with US statistics. 
At global scale, irrigation contributes to 34%±25% and 22%±23% of irrigated yield for 
wheat and maize respectively. The large spatial variations in irrigation contribution to crop 
yield are driven more by climatic water supply than by climatic water demand. When 
matching with available runoff resources, the priority of building irrigation facilities shift to 
eastern Europe and India for wheat and to Brazil for maize. If shifting global rainfed 
croplands into irrigated ones, 30% - 47% of current rainfed croplands do not have sufficient 
local runoff resources to meet irrigation demand, including some hotspots (e.g. northern 
China and mid-western US), which will have to rely on groundwater or trans-basin water 
transfer program. The large overestimates in crop-model-simulated irrigation contribution to 
crop yield suggest that previous model-based analyses of agricultural economy and 
hydrology will have to be revisited. 

Finally, a discussion is given around the implication of findings in previous chapters 
on the ongoing development of ORCHIDEE-crop and its potential application for the 
land-atmospheric coupled modelling.  
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Chapter 1  Introduction 

Food security under changing climate is a critical global issue, with rising population 

projected to reach 9.6 billion ~2050s (UN, 2012). To feed such huge population, global food 

production has to increase by more than 70% (FAO, 2012). This estimates will have to be 

even larger (~110%), if considering potential change in diets (Tilman et al., 2011). The 

anthropogenic climate change (IPCC, 2013) has been an important factor limiting 

sustainable food supply and causing fluctuations of supply-demand balance global crop 

production (Godfray et al., 2010; Beddington et al., 2012; Lesk et al., 2016). Therefore, 

studying climate change impacts on crop ecosystems is vital for sustainability of the society. 

 

The human managements on croplands not only produces food, but also left its 

footprint on biophysics and biogeochemical cycle of the earth system. According to 

Ramankutty et al. (2008), croplands comprise 20% of global land surface, which accounts 

~25% of greenhouse gas emission to the atmosphere (Foley et al., 2005; World Resource 

Institute, 2013; Tian et al., 2016). The global carbon cycle has also been modified by 

croplands. For example, studies have shown that, the “Green Revolution” over the past five 

decades has significantly change seasonal variations of atmospheric CO2 (Gray et al., 2014; 

Zeng et al., 2014). In addition, human management has profoundly affected the energy and 

water balance of the land surface. The annual water withdraw for irrigation accounts for 

~70% of global water withdraw from the river runoff. Therefore, it is essential to explore 

the relationship between climate and croplands as the component of the earth system 

models.  

 

As the Introduction of the thesis, we first overview knowledge on how climate change 

has influenced crop phenology, yield, energy balance and water cycle. Then we synthesize 

status of crop model developments. In the end, we present the objective and structure of the 

thesis.  
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1.1  The impact of climate change on croplands 

Phenology and yield 

The growth duration of a crop determine the time length of light interception and 

photosynthesis, therefore the crop yield and its water and energy balance. As sensitivity of 

crop to climate variations are not equally sensitive across the growing season (Porter & 

Semenov, 2005), which can be particularly sensitive to climate variations at certain 

reproductive phase (e.g. Hatfield et al., 2011; Espe et al., 2017), the timing of key 

phenological events are also of great importance. Thus, understanding how phenology 

respond to climate change is a prerequisite to understand how climate change affects crop 

ecosystems.  

 

It has long been recognized that climate change has significant impacts on crop growth 

duration. Each 1°C of warmer temperature shorten growth duration by ~7 days by average 

(Muchow et al., 1990; IPCC, 2007). However, this average sensitivity cannot really 

represent the theories and observations. A widely-adopted theory of cardinal temperatures 

suggest that, crop growth accelerates with warmer temperature when it is below the 

optimum temperature for crop development (e.g. Hatfield et al., 2011), which shorten the 

growth duration. However, when temperature is above its optimum, the acceleration with 

higher temperature may disappear. This critical temperature threshold (the optimum 

temperature) may differ largely across crops and varieties ranging from 20°C to 35°C 

(Sanchez et al., 2014). It should be noted that how crop-climate relationship may change 

above the optimum temperature is largely uncertain and differ across crops (Craufurd & 

Wheeler, 2009). For example, some studies found rapid senescence of wheat after exposure 

to 32-34oC during flowering period (Asseng et al., 2011; Lobell et al., 2013). However, for 

rice, the limited number of researches indicate that growth duration is not responsive to 

temperature when it goes beyond the optimum (Yoshida, 1983). These observational 

evidences, however, have not been well accounted in many widely used crop models 

(Sanchez et al., 2014). For example, the CERES model used for assessing food security 

under climate change in China (e.g. Xiong et al., 2009; Xiong et al., 2010) only considers 

the acceleration effects of warming but not the high temperature stress (e.g. Lobell et al., 

2013)。 
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For natural ecosystems, many studies have consistently shown that global warming 

over the past few decades has advanced the spring onset date (e.g. Menzel et al., 2006; 

Wang et al., 2015), lengthening the growing season (e.g. Garonna et al., 2014), though it 

may reverse over a few regions due to climate flucturations (e.g. Piao et al., 2011). However, 

unlike the consistency found for natural ecosystem, the trend in crop growth duration was 

quite diversified in different researched. For example, Siebert et al. (2012) found growth 

duration of oat over Germany is shortening by 0.1-0.4 day/10a over past five decades; Tao 

et al. (2006) found growth duration for rice over China have also shortened over past two 

decades. However, more recent researched over past two to three decades found growth 

duration for major cereal crops (rice, wheat and maize) over China has become longer (e.g. 

Liu et al., 2012; Liu et al., 2013; Tao et al., 2013; Xiao et al., 2013; Li et al., 2014). These 

results appear contradictory, but can be reconciled with adaptation measures by selecting 

long-duration varieties.  

 

Crop yield can be affected by temperature change through different pathways. First, 

rising temperature directly drives change in photosynthetic rate (Figure 1.1). When 

temperature is below the optimum temperature, rising temperature will enhance 

photosynthetic rate, while it suppress photosynthetic rate when temperature goes beyond the 

optimum. Respiration processes also subject to temperature regulations. However, the 

optimum temperature for respiration is usually higher than that of photosynthesis and 

outside measurement range (Figure 1.1). It is therefore commonly believed that higher 

temperature will lead to higher respiration rate. The net effect of temperature on 

photosynthesis and respiration is the temperature effects on crop productivity. Night-time 

warming was believed to negatively affect crop yield as respiration increase while 

photosynthesis is still zero (Peng et al., 2004; Lobell et al., 2012a). However, due to 

potential compensation effects that enhance photosynthesis on the day (Wan et al., 2009), 

warmer nighttime temperature may also improve crop productivity. Second, certain phase of 

crop reproductive growth (e.g. silking and grain filling) is sensitivity to high/low 

temperature stress (e.g. Schar et al., 2004; Espe et al., 2017). For example, high temperature 

stress can lead to failure of flowering, grain formation and grain filling, leading to reduced 

crop yield (Schar et al., 2004; Porter & Semenov, 2005; Asseng et al., 2011; Teixeira et al., 
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2013). Third, as mentioned in previous paragraph, temperature change will affect the length 

of growing duration, which affect the accumulation of photosynthesis and thus yield. 

Usually, higher temperature lead to shorter growing duration and lower yield (e.g. Iqbal et 

al., 2009; Giannakopoulos et al., 2009; Lobell et al., 2012b). Finally, increase in 

temperature lead to exponential increment of vapor pressure deficit, which may also stress 

the productivity of croplands (e.g. Lobell et al., 2013). 

 

Figure 1.1 Schematic diagram for relationship between temperature and rates of 

photosynthesis and respiration (Porter & Semenov, 2005) 

 

The impact of precipitation change on crop yield remains more controversial. Some 

studies show that 20% decrease in precipitation will still have limited impacts on maize 

yield over USA (Lobell et al., 2013), while other studies found precipitation change as more 

dominant factor than change in temperature and atmospheric CO2 on crop yield (Ko et al., 

2010). Probably due to expansion of irrigation, which may alleviate the water stress to crop 

production, the studies on impact of precipitation on crop yield is much less than that of 

temperature. However, climate change will lead to change in irrigation demands (Elliot et 

al., 2014) and spatio-temporal distribution of available water resources. Whether sufficient 

irrigation water can be provided is a urgent research question to answer. In addition, 

projected increase in exteme events, such as droughts and flood (IPCC, 2012), may also 

leads to fluctuations of global crop productions (Lesk et al., 2016).  
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Solar radiation reaching the land surface is the energy source of photosynthesis and 

thus crop productivity. Interannual variations of solar radiation has significant impacts on 

rice yield over China (Zhang et al., 2010). However, it is so commonly assumed that crop 

growth was more stressed by temperature and water availability (Hatfield et al., 2011), the 

impact of variations of solar radition on crop yield remains largely uncertain.  

 

Despite growing knowledge on the mechanism how climate change could influence 

crop yield, our knowledge on the key parameters (e.g. cardinal temperature) and dominant 

climatic factors driving yield change remains unclear. Regional and inter-crop differences 

may further complex situation. Large uncertainties, therefore, still exist in quantifying 

climate change impacts on crop production (IPCC, 2013a). A synthesis of 66 studies on 

climate change impacts on crop yield (IPCC, 2013a) found that warming of 1-2 oC may lead 

to decline of wheat and maize yield. However, rice in tropical region and maize in 

temperate regions show different response to warming in different studies. As a result, even 

qualitative conclusions are difficult to make. Different global studies drew different 

conclusions on how rice yield respond to climate change. For example, Lobell et al. (2011) 

found climate change over past three decades may slightly enhance the yield, while recent 

multi-model intercomparison study (Rosenzweig et al., 2014) found climate change will 

reduce rice yield, without considering the CO2 fertilization effect. Therefore, detailed 

regional studies are warranted in order to reduce the uncertainties. However, regional 

studies based on statistics, long-term agro-meteorological site observations and crop models 

drew contrast conclusions on how climate change affects rice yield over China (Lin et al., 

2005; Yao et al., 2007; Tao et al., 2008; Xiong et al., 2007; Xiong et al., 2009; Zhang et al., 

2010; Welch et al., 2010; Tao et al., 2012), highlighting large uncertainties in the estimates. 

Single model studies are prevalent among previous ones (e.g. Lin et al., 2005; Xiong et al., 

2007; Yao et al., 2007; Xiong et al., 2009; Tao and Zhang, 2012) , but the uncertainties 

related to model structures and parameters remains largely unexplored. Recent studies 

seems indicating the multi-model ensemble may improve confidence in projecting how crop 

yield may respond to the changing climate (Asseng et al., 2015; Martre et al., 2015; Li et al., 

2015).  
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Land surface energy and water exchange 

Irrigation accounts for ~70% of global water widraw (Shiklomanov & Rodda, 2003), 

which is also a key variable for projecting crop production and food security (IPCC, 2013a). 

The irrigation water requirements of croplands are determined by balance of precipitation 

and evapotranspiration, both of which are affected by climate change. Anthropogenic 

climate change is projected to alter the spatial distribution of annual precipitation (IPCC, 

2013b), which will change the water availability over contemporary cropping area. The 

seasonal distribution of precipitation may also altered (IPCC, 2013b), which may induced 

seasonal shortage of water supply during growing season.  

 

Climate change affect evapotranspiration through three pathways. First, it affects crop 

productivity, which consume water affect the rate of evapotranspiration; Second, it regulates 

length of growing season, which affects the annual sum of evapotranspiration; Finally, 

warmer temperature will directly change saturated water vapor pressure and stomatal 

conductance, the net effect of which may accelerate the crop evapotranspiration (e.g. 

Ben-Asher et al., 2008). One factor often dismissed in studies on crop evapotranspiration is 

the impact of solar radiation (Hatfield et al., 2011), which directly alter the energy balance 

of the land surface (Wild et al,. 2005). The commonly used empirical equation 

(Penmman-monteith) in crop models does not include effects of solar radiation, which may 

underestimate variations of evapotranspiration. Rising atmospheric CO2 will lead to 

decrease of stomatal conductance and thus reducing transpiration (Leaky et al., 2006). 

Across different FACE experiments, stomatal conductance by average reduce by 20% in 

response to enhanced CO2 at 550 ppm (Ainsworth et al., 2005). The reduction of stomatal 

conductance may further enhanced to 30%-40% under doubling CO2 concentration 

(Hatfield et al., 2011). However, at canopy level, the observed change of evapotranspiration 

under double CO2 is only 8%-13% (Hatfield et al., 2011), which can result from negative 

feedbacks result from higher CO2 induced higher leaf temperature and photosynthetic rate 

(Leaky et al., 2009; Burkart et al., 2011). Rising atmospheric CO2 and temperature drive 

change evapotranspiration in different direction, which is a hotspot for impact studies and 

remains largely uncertain (Liu & Tao, 2013). Complex interactions among climate change 

factors in affecting evapotranspiration may have not been fully understood and incorporated 

in the models. For example, rising CO2 may enhance vegetation growth, and thus surface 
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roughness, resulting in reduced wind speed (Vautard et al., 2010). The lower wind speed 

resulted from rising CO2 may thus reduce evapotranspiration.  

 

Overall, experimental and model studies show that warmer temperature lead to 

increasing cropland evapotranspiration (e.g. Guo et al., 2010; Hoff et al., 2010; Gerten et al., 

2011). Field observational studies in general agree that rising atmospheric CO2 will lead to 

decrease of cropland evapotranspiration (e.g. Reddy et al., 1995; Leaky et al., 2006; 

Bernacchi et al., 2007). Assuming no change of crop varieties, the global modelling study 

show the overall effect of climate change following RCP8.5 will be reducing global crop 

irrigation demand by 8%-15% (Elliot et al., 2014), but the sign and magnitude change 

across crops and regions. Uncertainties are still large, as hydrological models and crop 

models differ, by average two times, in the estimate of crop irrigation demand (Elliot et al., 

2014).  

 

1.2 Crop models, from sites to the globe 

Crop models are the essential tool integrating our knowledge of climate change 

impacts on croplands. The field-scale crop model started from 1960s with two genres: The 

waegningen group led by de Wit (1965) developed crop growth model based on light use 

efficiency module. Crop models such as WOFOST and ORYZA(Bouman & Van Laar, 2006) 

are evolution of this type of models. The other genre is the CERES type of model (Ritchie 

et al., 1985) based on earlier work by Duncan (1967), including CROPGRO. DSSAT is the 

platform integrating both CERES and CROPGRO. APSIM is an Australian model also 

belongs to this genre. Despite the differences among these models, there are some 

resemblance on them, such as the use of radiation use efficiency (RUE) module or water use 

efficiency (WUE) module, the thermal accumulation module to drive crop phenology, the 

use of variants of Penman-Monteith equation for calculation of evapotranspiration. These 

traditional crop model have strong suits in detailed simulation of organ developments, given 

a large number of parameters. However, the equations used are often highly empirical. For 

example, the water and nutrient stress to crop phenology development, the ratio of actual to 

potential evapotranspiration are often empirical parameter between 0 and 1. Such 

formulation of equations will easily lead to over-parameterization and uniformality issues in 

representing physiological process. The photosynthesis in these models are semi-empirical 
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WUE or RUE model (Soussana et al., 2010), instead of the physiology based 

Farquhar(Farquhar & Sharkey, 1982). Under contemporary climate, these crop models may 

be parameterized to reflect the characteristics of the croplands, but its robustness to be 

extrapolated into future and project impacts of climate change could be dubious (Nowak et 

al., 2004; Soussana et al., 2010). For example, Wang et al. (2012) show WUE and RUE 

model may predict contrast response of productivity to climate change over China. There 

are a long list of this type of crop models developed by researches from different countries 

(e.g. STICS (Brisson et al., 2008), SIMRIW(Horie, 1987; Zhang et al., 2014), Agro-C 

(Huang et al., 2009), RiceGrow (Tang et al., 2009), McWLA(Tao and Zhang, 2012)), which 

have been developed and tuned for a certain crop-region. As a result , in recent model 

intercomparison of crop models for wheat, maize and rice, no models can out-perform 

others in four test sites at different regions of the globe (Li et al., 2015; Martre et al., 2015).  

 

 

Figure 1.2 evolution of some crop models (Rosenzweig et al., 2014) 

Researchers have realized the difficult in applying the site-scale model at regional and 

global scales (Challinor et al., 2009), at which climate change impacts and economy models 

have to operate. The other generation of crop models was thus developed to explore large 

scale crop-climate relationships, such as IMAGE (Leeman & Solomon, 1993). These model 

typically divide the globe into several agro-ecological zones. Empirical relationship 

between climate and yield was then built usually with agro-statistics. Some selective 

process may also be incorporated into these models for model improvements, such as 
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GLAM (Challinor et al., 2004). Compared with traditional crop models mentioned in 

previous paragraph, these models have far less input requirements and parameters and low 

requirement of computing resources, which facilitates large-scale applications. However, its 

empirical nature may hurdle further exploration on how management practices may affect 

the croplands’ response to climate change (Challinor et al., 2004). When climate change 

beyond its contemporary range of variations (Mora et al., 2013), it is hard to prove whether 

the contemporary empirical relationship may still apply. Similar issues also apply for 

different types of statistical models (e.g. Lobell et al., 2011). 

 

Compared with previously mentioned models, terrestrial ecosystem models have more 

physiology-based formulations. However, previous studies often neglect or simplified 

representation of crop ecosystems (e.g.Piao et al., 2009). The simplified module cannot 

represent the generally short growth duration of crops (Smith et al., 2010) and different 

allocation strategy of croplands than natural ecosystems (Bondeau et al., 2007). All earth 

system models in CMIP5 did not include a specific crop module. As croplands role in global 

biogeochemical cycle being gradually brought more attentions, there are some efforts 

introducing crop modules into the ecosystem models (Drewniak et al., 2013). For example, 

Kucharik (2003) bring crop phenology, irrigation and fertilization module into IBIS model, 

resulting in better representation of spatio-temporal variations of maize yield over US due 

to climate and management differences (Kucharik, 2003; Kucharik, 2008). Levis et al. 

(2012) bring Agro-IBIS into community land model, finding improved representation of 

dynamics in leaf area index (LAI), net ecosystem exchange and thus seasonal variations of 

atmospheric CO2 concentration. Bondeau et al. (2007) introduce crop functional type to LPJ. 

The improved LPJmL model, though only introduce improvements of phenology at that 

time, simulated 24% less global vegetation carbon pool than original LPJ model and 

produce significant difference in spatio-temporal variations of net primary productivity. 

Similarly, ORCHIDEE has also tried to introduce STICS model for simulating crop 

phenology, finding the model become better representing interannual variations of LAI and 

net primary production. Overall, the introduction of crop module can improve ecosystem 

models in representing spatio-temporal variations of cropland ecosystems, making it an 

alternative choice to study regional and global croplands, how they may respond to climate 

change.  
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Despite the large differences in the complexity of introduced crop module, the 

agro-ecosystem models still have limitations in representing the crop growth dynamics, 

such as the morphology of crop organs, the grain quality, and the lack of nutrient cycling, 

particularly for micro-nutrients such as potassium. In addition, the process-based ecosystem 

models usually requires larger amount of computational resources following the same 

protocol of simulations. The consumption of computing resource by ORCHIDEE-crop is 

one magnitude larger than that required by pDSSAT and pAPSIM (Elliot & Wang, personal 

communication). It becomes a bottleneck for the application of agro-ecosystem models, 

though increasing computing power globally may gradually alleviate the pressure. 

 

The Global Gridded Crop Model Inter-comparison (GGCMI) project brought different 

types of crop models together to perform simulations forced with consistent climate and 

management forcing (Elliot et al., 2015). This ongoing global effort will help us further 

understand the advantage and disadvantage of different crop models and reduce large 

uncertainties in estimating crop yield response to climate change at global and regional 

scale.  

 

1.3 Objectives and structure of this thesis 

The general goal of this PhD thesis is to describe the efforts using both statistical tools 

and processed based crop models to 1) detect climate change impacts on crop phenology 

and yield, identifying key climatic factors regulating crop yield variations and estimating 

the temperature sensitivity of crop yield, and 2) attribute the crop yield change to climate 

and management factors, at regional and global scale.  

 

In Chapter 2, I built statistical models using yield statistics at prefecture scale during 

the past three decades over Northeast China, along with contemporary historical climate 

data, to explore the yield-climate relationship and its spatial variations. In addition, I 

explored how climate-yield relationship evolve along the climate gradient.  

 

In Chapter 3, I developed a Bayes-based parameterization system to optimized 

parameters of ORCHIDEE-crop model to represent the spatio-temporal variations of rice 



Introduction  

11 

growing season duration during past three decades over China. The carlibrated 

ORCHIDEE-crop model is then driven by historical change in climate and management in 

order to attribute observed change in China’s rice phenology.  

 

In Chapter 4, An emergent constraint framework was built to integrate global gridded 

crop models and field warming experiments in order to reanalyze and refine global crop 

yield response to warmer temperature. The implications for crop yield change under climate 

change goal of Paris Agreement and data and knowledge gap for reducing uncertainties are 

explored.  

 

In Chapter 5, Using global gridded crop models and data-driven model for global 

rainfed and irrigated crop yield, I applied Bayesian model average to reanalyze potential 

contribution of irrigation to global crop yield. Based on the reanalysis, the supply-demand 

balance of irrigation water demand and surface runoff supply was also analyzed.  

 

In Chapter 6, I summarized the findings of previous chapters. Implications of the 

studies on ongoing development of ORCHIDEE-crop model and the IPSL earth system 

model are explored and discussed.  
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Chapter 2 Detecting climate change impacts on 

maize yield in Northeast China 

Summary 

Northeast China (NEC), the most productive maize growing area in China, has 

experienced pronounced climate change. However, the impacts of historical climate changes 

on maize production and their spatial variations remain uncertain. In this study, we used 

yield statistics at prefecture scale over the past three decades, along with contemporary 

climate data, to explore the yield-climate relationship and its spatial variations. At the 

regional scale, maximum and minimum temperature changes had opposite impacts on maize 

yield, which increased by 10.0±7.7% in response to a 1 oC increase in growing season mean 

daily minimum temperature (Tmin), but decreased by 13.4±7.1% in response to a 1 oC 

increase in growing season mean daily maximum temperature (Tmax). Variations in 

precipitation seemed to have small impacts on the maize yield variations 

(-0.9±5.2 %/100mm). However, these responses of maize yield to climate variations were 

subject to large spatial differences in terms of both the sign and the magnitude. ~30% of the 

prefectures showed a positive response of maize yield to rising Tmax, which was in contrast 

to the negative response at the regional scale. Our results further indicate that the spatial 

variations in the yield response to climate change can be partly explained by variations in 

local climate conditions. The growing season mean temperature was significantly correlated 

with the response of maize yield to Tmax (R=-0.67, P<0.01), which changes from positive 

to negative when the growing season mean temperature exceeds 17.9±0.2 oC. Precipitation 

became the dominant climatic factor driving maize yield variations when growing season 

precipitation was lower than ~400 mm, but had a weaker influence than temperature over 

most of the study area. We conclude that, although NEC is a region spanning only one more 

millions of kilometer squares, the divergence of the yield response to climatic variations 

highlights the need to analyze the yield-climate relationship at fine spatial scales. This 

chapter has been published as Wang X et al. (2014) Divergence of climate impacts on maize 

yield in Northeast China. Agriculture, Ecosystems & Environment, 196, 51-58. 
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1. Introduction 

Understanding how climate change has been affecting crop production is a prerequisite 

to ensure global food security and to inform adaptation decisions (IPCC, 2007; 

Schmidhuber and Tubiello, 2007; Godfray, 2011). Both modeling and empirical studies 

have indicated that maize yield is negatively affected by climate change at the global scale 

(IPCC, 2007; Lobell et al., 2011). However, global analyses could have hidden regional 

winners and losers (Godfray et al., 2010). Detailed regional analyses are thus required to 

explore possible mechanisms for the spatial differences in impacts of climate change on 

maize yield.  

 

Maize is one of the staple food crops in China, which is currently the world’s second 

largest maize producer (Meng et al., 2006). Although maize is cultivated in every province 

in China, the three provinces in Northeast China (NEC) alone account for more than 30% of 

China’s maize production and 27% of its maize growing area (National Bureau of Statistics 

in China (NBSC), 2011). Part of this region is also the most productive maize growing area 

in China, known as the golden maize belt. Over the past decades, NEC has experienced 

faster warming than the lower latitudes of China, along with pronounced precipitation 

changes (Piao et al., 2010; Editorial Board of National Climate Change Assessment Report 

(EBNCCAR), 2011). Understanding how this historical climate change could have 

influenced maize production in NEC is thus critical to China’s food production and to 

decisions on climate change mitigation.  

 

A variety of approaches, including statistical analyses and crop models, have been used 

to explore the influence of climate change on maize production in NEC (e.g. Xiong et al., 

2007; Tao et al., 2008; Chen et al., 2011; Liu et al., 2012; Zhang and Huang, 2012). The 

estimates of the response of maize yield to climate change are, however, largely uncertain as 

they differ even in their signs. Some modeling studies (Xiong et al., 2007; Liu et al., 2012) 

indicate that warming, in particular an increase in maximum temperature, could reduce 

maize yield in NEC. For example, simulations by Liu et al. (2012) showed that a 1 oC 

warming in maximum temperature would reduce maize yield by 2 – 9% at different sites in 

NEC. On the contrary, another analysis indicated that 1 oC warming could improve maize 

yield by more than 20% in parts of NEC (Wang et al., 2007), which is in line with some 
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other studies indicating warming has benefited maize yield in NEC (EBNCCAR, 2011; 

Chen et al., 2011). Consequently, more empirical evidence is still needed to reduce the 

uncertainties in diagnosing and predicting the response of maize yield to climate change.  

 

Empirical yield-climate relationships are often explored with yield statistics at 

province, county or farm scale (e.g. Tao et al., 2008; Chen et al., 2011; Liu et al., 2012; 

Zhang et al., 2012). It was found that the response of crop yield to climate change is 

scale-dependent (Tao et al., 2008; Zhang et al., 2010). As the relationship between maize 

yield and climate at prefecture scale has not yet been explored, it is of need to fill this gap. 

Moreover, a prefecture in NEC usually spans a relatively homogeneous geographic area 

from ~5 to ~54 thousand km2, covering a few grids of the high-resolution gridded climate 

dataset (Mitchell & Jones, 2005). The match of scale in statistics and climate data makes it 

suitable to explore yield-climate relationship. In addition to the scale issue, previous studies 

show large spatial variations in the response of crop yield to climate change (e.g. Tao et al., 

2008; Chen et al., 2011), but these differences often remain unexplained or qualitatively 

attributed to regional differences in crop management, soils, crop varieties and other factors 

(e.g. Tao et al., 2008; Lobell et al., 2008). Hence, in this study, we analyzed both the 

yield-climate relationship and its spatial variations over 36 prefectures in NEC during 

1980-2009. The objectives of this study were (1) to understand how maize yield, at regional 

and prefecture scale, has responded to historical climate change over the past three decades, 

and (2) to explore whether spatial variations in these responses can be explained by 

differences in local climate conditions.  

 

2. Datasets and Methods 

2.1 Study Area 

Northeast China (NEC) is located in northernmost China (38oN-54oN) (Figure 1). It 

has a cool summer (mean June-August temperature 20 oC) and long winter (five months), 

which results in a short thermal growing season (May - September) that only allows single 

cropping. As Figure 2a shows, the mean growing season temperature in maize planting 

areas generally follows a latitudinal gradient from 10 oC in the north to 22 oC in the south, 

except for some high-altitude mountainous areas (Daxing’anling, Xiaoxing’anling and 

Changbai mountain range) which are cooler than other regions on the same latitude. The 

growing season precipitation exhibits a southeast-northwest gradient, decreasing from more 
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than 800 mm to less than 400 mm (Figure 2b).  

 

Figure 1. Geographic location of Northeast China (NEC) and spatial distribution of the 

elevation over NEC.  

 

The prefecture is a mid-level administration that is part of a province and containing 

several counties. The NEC is comprised of 36 prefectures with their area range from 

4.8×103 km2 (Liaoyang) to 5.44×104 km2 (Heihe).  

 

Maize is widely cultivated in NEC (Figure 2c). The total maize growing area is about 6 

million hectares. The average yield is about 5000 kg/ha, ranging from 3575 to 9051 kg/ha 

among different prefectures with warmer area tending to have larger yield (Figure S2). The 

most productive area concentrated in Songliao Plain (Figure 2d).More than 90% of the 

maize fields over this region is rainfed (NBSC, 2011), with average precipitation more than 

300mm during the maize growing season (Figure S2).  

 

2.2 Datasets 

Yield statistics for each prefecture area and in each province were obtained from the 

Agricultural Yearbook (1980-2009) of Liaoning Province, Jilin Province, and Heilongjiang 

Province, the three provinces comprising NEC (Figure S1), accessed from 



 

22 

http://data.cnki.net. It should be noted that prefecture-level statistics for Heilongjiang during 

1980-1985 and for Liaoning during 1980-1991 are not available from the database.  

 

Figure 2. Spatial distribution of (a) mean growing season temperature, (b) growing 

season precipitation, (c) maize cultivation fraction, and (d) maize yield over NEC during 

1980-2009. 

 

Monthly temperature and precipitation data during 1980-2009 were obtained from the 

Climatic Research Unit (CRU, University of East Anglia), at a spatial resolution of 0.5 

degrees (Mitchell and Jones, 2005). We defined the maize growing season as the period 

from May to September according to the typical cropping system in NEC (Meng et al., 

2006). The maize growing area was obtained from the Maps of Cropland Distribution in 

China (Frolking et al., 2002), which has a spatial resolution of 0.5 degrees.  
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2.3 Analyses 

For each prefecture area, growing season mean daily maximum temperature (Tmax), 

growing season mean daily minimum temperature (Tmin) and growing season precipitation 

(Pre) were calculated as the maize growing area weighted averages during May-September 

each year.  

 

To explore the relationship between variations in yield and climate, our analyses were 

based on the first difference time series of the maize yield and climate variables, which is a 

commonly applied approach to minimize the influence of slowly varying factors such as 

changes in crop management and varieties (Nicholls, 1997; Lobell and Field, 2007; Tao et 

al., 2008). The first difference time series of maize yield, Tmax, Tmin and Pre are denoted 

hereafter as Δyield, ΔTmax, ΔTmin and ΔPre, respectively. Pearson correlation and partial 

correlation analyses were applied to measure the relationships between maize yield and 

climate variables. P = 0.10 was chosen a priori as the significance level for statistical tests, 

which was intended to reduce the risk of Type II error. Multiple linear regression (Eq. 1) 

was applied to calculate the response of maize yield to climate change:  

Δyield = aΔTmax + bΔTmin + cΔPre +I + ε    (Eq. 1) 

where a, b and c are the response of maize yield to change in Tmax, Tmin and Pre, 

respectively. I is the intercept of the regression, and ε is the residual.  

 

The covariations between climate variables have long been recognized but remain a 

challenge in understanding the yield-climate relationship (Evans and De Datta, 1979; 

Sheehy et al., 2006). Our multiple regression approach was considered to be capable of 

minimizing the impacts of the covariations, in order to obtain reasonable estimates of the 

climate impacts on the yield (Welch et al., 2010).  

 

The changing maize varieties could also contribute to the variations in Δyield, but we 

do not include the varieties in the equation because we do not have access to year-to-year 

variations on maize varieties applied in each prefecture area. However, this should have 

limited impacts on our analyses since a recent study indicated the climate sensitivity for 

some physiological parameters seems to be invariant between different varieties (Parent and 

Tardieu, 2012).  
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3. Results and Discussion 

3.1 Regional scale maize yield-climate relationships 

At a regional scale, the maize yield over NEC showed large year-to-year variations (the 

SD for Δyield is 946 kg ha-1). The variations in maize yield were significantly negatively 

correlated with ΔTmax (R=-0.35, P=0.07), but only weakly correlated with ΔPre (R=0.24, 

P=0.21) and ΔTmin (R=-0.004, P=0.99) (Figure 3). Previous studies have shown the 

importance of understanding the correlation structure among climate variables in order to 

avoid misinterpretation of the yield-climate relationship (Sheehy et al., 2006; Welch et al., 

2010). To minimize the influence of the covariation between climate variables, partial 

correlations and multiple regressions were applied in the following analyses (see Methods; 

Lobell and Field, 2007).  

 

Figure 3. Relationship of variations in maize yield (Δyield) with variations in (a) 

growing season mean daily maximum temperature (ΔTmax), (b) growing season mean daily 

minimum temperatures (ΔTmin), and (c) growing season precipitation (ΔPre) over NEC 

during 1980-2009. Labels within the panel show correlation and partial correlation 

coefficients. The asterisk indicates statistically significant correlation at the 0.10 level. Solid 

grey lines show least squares linear fits. 

 

Partial correlation between Δyield and ΔTmax (statistically controlling variations in 

ΔTmin and ΔPre) (R=-0.35, P=0.07) was stronger than that between any other pairs of 

candidate climate variables, indicating that Tmax was the dominant climatic factor at the 

regional scale. The multiple regression analysis showed that maize yield will decrease by 

13.4±7.1% in response to a 1 oC increase in Tmax, which is consistent with previous 

estimates at provincial scales of between -5% oC-1 and -15% oC-1 (Tao et al., 2008). At the 
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same time, the opposite response of Δyield to ΔTmin was found, with a magnitude of 

8.6±9.2% oC-1.  

 

It should be noted that variations in the climatic variables explained only ~20% of 

maize yield variations at the regional scale, which indicates that a substantial fraction of the 

yield variation was not explained by the multiple regression model with regional average 

climate variations. Those unexplained yield variations might have been associated with 

changes in socioeconomic conditions that could have influenced crop management (Lobell 

and Field, 2007) or with the spatial differences in yield response to climate variations, 

which are explored below.  

 

3.2 Spatial patterns of climate-maize yield relationships  

3.2.1 Spatial pattern of the Tmax-maize yield relationship 

There were large spatial differences in the relationship between Δyield and ΔTmax. 

About 70% of the prefectures showed negative partial correlation between Δyield and 

ΔTmax (statistically controlling the variations in ΔTmin and ΔPre) (Figure 1; Figure 4a). 

The partial correlation between Δyield and ΔTmax weakened from south to north, and was 

strongest and most statistically significant (P<0.10) in the southern-most Liaohe Plain 

(including Anshan, Panjin, and Fuxin). In the mountainous area, maize yield generally 

showed a positive response to ΔTmax. The positive partial correlation between Δyield and 

ΔTmax was statistically significant (P<0.10) in Daxing’anling, Jixi and Qitaihe. 

 

The response of Δyield to ΔTmax, derived from the multiple regression, ranged from 

-29.5±15.2 % oC-1 to 23.6±9.7 % oC-1 in different prefectures. In Figure 4a, we found that 

the regionally negative responses of Δyield to ΔTmax were mostly induced by the negative 

response of Δyield to ΔTmax over the plain area, since more than 60% of the maize growing 

area lies in those plains. The strongest negative response was found in Panjin, on the Liaohe 

Plain (-30% oC-1), while the negative response of Δyield to ΔTmax in the Songnen Plain and 

Sanjiang Plain was moderate (between -19.9 % oC-1 and -0.2 % oC-1). A positive response of 

Δyield to ΔTmax was found in mountainous areas (Changbai Mountain, Daxing’anling and 

the edge of the Mongolian Plateau), accounting for about 30% of the prefectures, with the 

highest response being found in Daxing’anling (23.6±9.7 % oC-1).  
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Figure 4. Spatial distribution of the response of Δyield to (a) ΔTmax, (b) ΔTmin, (c) 

ΔPre over each prefecture in NEC during the past three decades. The white bars show the 

coefficient of partial determination (R2).  

 

Since NEC is a cold temperate region, warming has been thought to reduce the cold 

damage and lengthen the thermal growing season, and thus benefit maize yield (Wang et al., 

2007; Liu and Lin, 2007; IPCC, 2007; EBNCCAR, 2011). However, over the major maize 

production area in NEC, the prevailing negative response of Δyield to ΔTmax, which is 

consistent with previous studies at a provincial scale (Tao et al., 2008; Zhang and Huang, 

2012), suggests that increasing daytime temperature has already negatively affected the 

maize yield. Some modeling studies have suggested that the decrease of maize yield in 

response to rising maximum temperature was primarily attributed to the acceleration of crop 

maturation and shortening of crop development duration (Wolf and Van Diepen, 1994; Lin 

et al., 2005; Xiong et al., 2007). If this was the primary reason for the negative impacts of 

ΔTmax on Δyield, we should expect a uniformly negative response of Δyield to ΔTmax 

rather than the opposite responses of Δyield to ΔTmax observed in the plain and in the 

mountainous areas. Alternatively, previous studies have indicated that maize yield will be 

lower if exposed more to extreme heat (temperature higher than 30 oC) (Schlenker and 

Roberts, 2009; Lobell et al., 2013). We found that this hypothesis could explain the spatial 

differences in the response of Δyield to ΔTmax. Over the past three decades, maximum 

monthly mean Tmax in the plain area (such as Shenyang, Jinzhou and Fuxin) has exceeded 

30 oC in 23% of the years, while maximum monthly mean Tmax over some mountainous 

areas, such as Yanbian, Daxing’anling and Yichun, has never reached 30 oC.  
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To further explore whether the spatial heterogeneity of the response of Δyield to 

ΔTmax could be explained by local climate conditions, we correlated the spatial variations 

in the response of Δyield to ΔTmax with spatial variations in mean growing season 

temperature (GST) and mean growing season precipitation (GSP) (Figures 5a and b). We 

found that while the spatial gradient of GSP could not explain the variations in the response 

of Δyield to ΔTmax (R=-0.01, P=0.95), there was significant negative correlation between 

GST and the response of Δyield to ΔTmax (R=-0.67, P<0.001). As GST increased, the 

response of Δyield to ΔTmax changed from positive to negative. The threshold of this 

positive-to-negative transition was about 17.9±0.2 oC. It is projected that the temperature 

over NEC will have increased by more than 2oC by the end of this century under the IPCC 

A2 scenario (EBNCCAR, 2011). If the relationship between GST and the response of Δyield 

to ΔTmax holds true in future, the negative response of Δyield to ΔTmax would be expected 

to occur over a larger spatial extent across NEC.  

 

3.2.2 Spatial pattern of the Tmin-maize yield relationship 

Figure 4b shows the spatial distribution of the relationship between Δyield and ΔTmin. 

In contrast to the relationship between Δyield and ΔTmax, we found positive partial 

correlation between Δyield and ΔTmin in 53% of the prefecture area, including most of the 

Liaohe Plain, Xiaoxing’anling and northern part of Sanjiang Plain (Figure 4b). The largest 

response of Δyield to ΔTmin was found in Fushun (26.6±15.9 % oC-1), which was about 

three times larger than the response of Δyield to ΔTmin at the regional scale. Such a spatial 

difference in the sign and magnitude of the response of Δyield to ΔTmin indicates that 

regional analyses could have hidden “winners” and “losers” under climate change (Godfray 

et al., 2010) even in a relatively small region, like NEC. 
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Figure 5. The response of Δyield to climate variations at the prefecture scale along the 

spatial gradient of mean growing season temperature (GST) (upper panels) and growing 

season precipitation (GSP) (lower panel) during the past three decades. The response of 

Δyield to ΔTmax with (a) GST and (b) GSP. The response of Δyield to ΔTmin with (c) GST 

and (d) GSP. The response of Δyield to ΔPre with (e) GST and (f) GSP. Texts show 

correlation coefficients (R) and their statistical significance (P).  

 

A rising minimum temperature was found to negatively impact the crop yield in 

tropical and warm temperate regions (Peng et al., 2004; Welch et al., 2010) primarily due to 

increased respiration cost and reduced grain-filling duration caused by higher nighttime 

temperatures (Peng et al., 2004; Morita et al., 2005; Prasad et al., 2008; Mohammed and 

Tarpley, 2009). However, previous studies have shown that a rising minimum temperature 

could have benefited maize yield in NEC at provincial or regional scales (Tao et al., 2008; 

Chen et al., 2011; Liu et al., 2012). Such a positive response of maize yield to minimum 

temperature could be explained by two possible mechanisms. Firstly, although a warmer 

minimum temperature increases the respiration loss of carbohydrates during nighttime, this 

“starvation” of carbohydrate could stimulate photosynthesis during the following day (Paul 

and Foyer, 2001; McCormick et al., 2006). This stimulation of photosynthesis was found to 

exceed the carbon loss induced by higher nighttime temperatures, thus enhancing the 

productivity of cold temperate ecosystems (Wan et al., 2009). Secondly, warmer nighttime 
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temperatures could alleviate cold stress for germination and grain filling and reduce frost 

occurrence in NEC, where crop growth was thought to be limited by temperature (Chen et 

al., 2011). Therefore, the response of Δyield to ΔTmin should depend on the magnitudes of 

the opposing impacts exerted by rising minimum temperature. The contrary positive and 

negative impacts may also explain the generally small response of Δyield to ΔTmin (within 

±10% oC-1 for 70% of the prefecture areas).  

 

A previous study has indicated that the spatial variations in the sensitivity of Δyield to 

ΔTmin could be related to precipitation variations (Liu et al., 2012) at the provincial scale, 

but our spatial analyses indicated the response of Δyield to ΔTmin was not significantly 

correlated with either GST or GSP at prefecture scale (Figure 5c and d).  

 

3.2.3 Spatial pattern of the precipitation-maize yield relationship 

The spatial distribution of the relationship between variations in precipitation and 

variations in maize yield is shown in Figure 4c. Consistent with previous studies (Tao et al., 

2008; Chen et al., 2011), variations in precipitation did not exert significant impacts on 

maize yield over most of NEC (89% of the prefectures). This is not surprising, since NEC in 

general received abundant precipitation and the evapotranspiration demand is lower than 

that in other parts of China due to the relatively low temperature (Ma, 1996). However, in 

the western part of NEC, where precipitation is lower than 400 mm (Figure 2b), there were 

significant positive correlations between Δyield and ΔPre in Jinzhou, Songyuan and 

Chaoyang (R=0.54, P=0.04, R=0.73, P<0.01, and R=0.82, P<0.01, respectively).  

 

Spatial analyses revealed a significant positive correlation between GST and the 

response of Δyield to ΔPre (R=0.32, P=0.06; Figure 5e). This is probably because warmer 

temperatures could enhance the growth and evaporation demands on soil water (Breshears 

et al., 2005), and thus result in higher water stress during maize growth (Lobell et al., 2013). 

The warmer temperature induced water stress may have left precipitation as the limiting 

climatic factor for maize yield variations, as indicated by the observation that changes in 

Δyield have become more sensitive to changes in ΔPre. This highlights the interaction 

between temperature and precipitation in regulating variations in the maize yield. 

 

As spatial variations in the demand for water could significantly influence the response 
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of Δyield to ΔPre, it may be hypothesized that changes in growing season precipitation, 

which is the major source of water supply to rainfed maize, should also influence the 

response of Δyield to ΔPre. Indeed, although the linear relationship between response of 

Δyield to ΔPre and GSP is statistically insignificant (P=0.15), there seems to be a nonlinear 

relationship between these variables (Figure 5e). Piecewise linear regression (Wang et al., 

2011) indicated that a critical threshold occurred at about 442 mm. When GSP was below 

the threshold, the response of Δyield to ΔPre significantly decreased in response to an 

increase in GSP (P=0.07), while the response of Δyield to ΔPre became invariant to changes 

in GSP when GSP was larger than 442 mm (P=0.75). This critical threshold we detected 

was similar to that of a previous modeling study (Liu et al., 2012), which suggested that the 

water deficit should limit the potential yield of maize when precipitation is below 500 mm. 

It should be noted that our detection of the critical threshold between the response of Δyield 

to ΔPre and GSP was strongly affected by the few prefectures showing larger responses of 

Δyield to ΔPre than the rest of the study area (Figure 5e). In order to make more reliable 

projections, further studies based on finer scale data, which have a larger sample size, are 

needed to test whether the detected critical threshold is robust. 

 

More than 90% of the maize growing area in the region is rainfed (Xiong et al., 2007; 

NBSC, 2011), and there was low correlation between Δyield and ΔPre over most of this 

region, thereby confirming that precipitation was not the limiting factor for maize 

production in this region over the past three decades. Nevertheless, this does not suggest 

that precipitation is a negligible factor in predicting future changes in maize yield. With the 

expansion of the maize growing area into northern and drier parts of this region (Zhang, 

2004; Yun et al., 205; Xiong et al., 2007), and because warming induces an increase in 

drought stress (Breshears et al., 2005; Dai, 2011; Lobell et al., 2013), the role of 

precipitation could become more critical in the future.  

 

3.2.5 Spatial pattern of the dominant climatic factor for maize yield variations 

As shown in Figure 6, temperature variations (including variations in Tmax and Tmin) 

were the dominant or co-dominant climatic factors driving the variations in maize yield 

over most of the area in NEC (27 of 36 prefectures), which is broadly consistent with 

previous modeling and empirical studies (Tao et al., 2008; Chen et al., 2011; Liu et al., 

2012). Tmin was the predominant climatic factor in 11 prefectures, mainly located in 
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Xiaoxing’anling Mountain and the Liaohe Plain, while Tmax was the predominant climatic 

factor in 16 prefectures mainly located in Liaodong Peninsula, Changbai Mountain and 

Daxing’anling Mountain. However, there were also some areas where temperature was less 

important than precipitation in driving variations of maize yield. Precipitation was found to 

be the dominant or co-dominant factor in 9 of the 36 prefectures (Figure 6), concentrated in 

areas with less precipitation during the growing season.  

 

Figure 6. Spatial distributions of climatic controls on variations in maize yield. 

Coefficient of partial determination (R2) between variations in maize yield and variations in 

the climate variables (Tmax, Tmin and Pre) were used to identify the dominant climate 

factor. Red indicates Pre was the primary climatic factor driving maize yield variations, 

green indicates Tmin was the primary climatic factor driving maize yield variations, and 

blue indicates Tmax was the primary climatic factor driving maize yield variations. 

 

4. Implication for future research 

 

Predicting the impacts of future climate change on crop yields heavily relies on the 

performance of process-based crop models (e.g. IPCC, 2007; Asseng et al., 2013) which, 

are typically developed and parameterized using a few sites of experimental trials (Xiong et 

al., 2008; Lobell et al., 2010). However, if failing to reproduce the spatial differences in the 

response of crop yield to climate change, models successful at just a few experiment sites 

may still produce biased estimates either at other sites with different climates or at larger 

spatial scales. Indeed, model inter-comparison results have shown that uncertainties in the 

model-predicted responses of crop yields to climate change are smaller at sites that may 

have been used for calibrations than those at sites that have not been used (Asseng et al., 
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2013). This highlights the need to constrain the modeled response of crop yield to climate 

change by using more than just a few sites of experimental trials. Spatial variations of the 

observed yield response to climate variations provide a means of assessing the models, and 

this approach is thus recommended to be included in the crop model benchmarking efforts, 

in order to further understand and constrain the uncertainties in the predicted impacts of 

climate change on crop production at regional and global scales.  

 

One of the limitations in our study was that we only considered growing season 

average climate variables (Tmax, Tmin, and Pre). Crop response to climate variations may 

differ among different phenophases (Kristensen et al., 2011) and there is increasing 

evidence suggesting that climate extremes, such as droughts and extreme heat, have exerted 

significant influence on historical changes in crop yields (e.g. Asseng et al., 2011; 

Maltais-Landry and Lobell, 2012). Although these effects can be partially captured when 

using average climate variables (Lobell et al., 2008), further studies with high 

spatio-temporal resolution climate and crop development/phenology data in combination 

with crop models are needed to examine the effects more closely and to reduce the large 

uncertainties in the empirically-derived response of maize yield to climate change as 

presented in our study.  
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Table S1. Correlations among variations in regional climate variables, including 

growing season mean daily maximum temperature (Tmax), growing season mean daily 

minimum temperature (Tmin) and growing season precipitation (Pre), during 1980-2009.  

 

P  

R 
Tmax Tmin Pre 

Tmax - <0.001 0.032 

Tmin 0.633 - 0.463 

Pre -0.400 0.142 - 
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Figure S1. Spatial distribution of municipal administrations over NEC. 
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Figure S2. Spatial correlation between maize yield and growing season climate 

variables: (a) average daily maximum temperature (Tmax), (b) average daily minimum 

temperature (Tmin) and (c) precipitation (Pre)).  
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Chapter 3 Attributing historical trends in 

China’s rice growing season based on 

calibrated ORCHIDEE-crop model 

 

Summary  

Whether crop phenology changes are caused by change in managements or by climate 

change belongs to the category of problems known as detection-attribution. Three type of 

rice (early, late and single rice) in China show an average increase in Length of Growing 

Period (LGP) during 1991-2012: 1.0±4.8 day/decade (±standard deviation across sites) for 

early rice, 0.2±4.5 day/decade for late rice and 2.0±6.0 day/decade for single rice, based on 

observations from 141 long-term monitoring stations. Positive LGP trends are widespread, 

but only significant (P<0.05) at 25% of early rice, 22% of late rice and 38% of single rice 

sites. We developed a Bayes-based optimization algorithm, and optimized five parameters 

controlling phenological development in a process-based crop model (ORCHIDEE-crop) 

for discriminating effects of managements from those of climate change on rice LGP. The 

results from the optimized ORCHIDEE-crop model suggest that climate change has an 

effect on LGP trends dependent on rice types. Climate trends have shortened LGP of early 

rice (-2.0±5.0 day/decade), lengthened LGP of late rice (1.1±5.4 day/decade) and have little 

impacts on LGP of single rice (-0.4±5.4 day/decade). ORCHIDEE-crop simulations further 

show that change in transplanting date caused widespread LGP change only for early rice 

sites, offsetting 65% of climate change induced LGP shortening. The primary drivers of 

LGP change are thus different among the three types of rice. Management are predominant 
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driver of LGP change for early and single rice. This study shows that complex regional 

variations of LGP can be reproduced with an optimized crop model. We further suggest that 

better documenting observational error and management practices can help reduce large 

uncertainties existed in attribution of LGP change, and future rice crop modeling in 

global/regional scales should consider different types of rice and variable transplanting 

dates in order to better account impacts of management and climate change. This chapter 

has been published as Wang X et al. (2017) Management outweighs climate change on 

affecting length of rice growing period for early rice and single rice in China during 

1991–2012. Agricultural And Forest Meteorology, 233, 1-11. 
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1. Introduction 

The Length of the Growing Period (LGP), defined as the interval in days from the day 

of planting/transplanting to the day of maturity, is an integrated indicator of crop 

development that has been related to production (Bassu et al., 2014, Zhang & Tao, 2013). 

Shortening LGP caused by warmer climate is recognized as a key emerging response 

through which climate change may impact agricultural production (Bassu et al., 2014, 

Estrella et al., 2007, Lin et al., 2005, Porter et al., 2014). However, historical change in 

LGP has been reported diversely across different crops and regions. Some studies found 

shortening LGP over the past decades (Chmielewski et al., 2004, He et al., 2015, Siebert &  

Ewert, 2012, Tao et al., 2014b, Xiao et al., 2013). For example, oat in Germany was found 

to have shorter LGP over the past five decade with rates of change ranging from -0.1 to -0.4 

day/decade (Siebert & Ewert, 2012). On the other hand, there are also studies finding little 

change or even a lengthening in LGP (Liu et al., 2012, Liu et al., 2010, Sacks &  Kucharik, 

2011, Tao et al., 2013, Zhang et al., 2013). For example, maize in the US Corn Belt shows 

lengthening LGP during 1981-2005 with an average positive trend of 5 day/decade (Sacks 

& Kucharik, 2011).  

 

The LGP change of China’s rice (Oryza sativa), which is the staple food resource for 

more than half of Chinese population and the crop with the largest growing area in the 

country, has attracted research interest. Observed trends of rice LGP across different stations 

vary largely from -2 day/decade to more than 7 day/decade over the past 2-3 decades, the 

majority of the field-scale observations showing either non-significant change or a 

lengthening of LGP (Liu et al., 2010, Tao et al., 2006, Tao et al., 2013). One hypothesis 

explaining the lack of evidence for shortening trend of rice LGP was that management 

practices has counterbalanced the effects of climate change (e.g. Liu et al., 2012, Tao et al., 
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2013, Zhang et al., 2013). However, large uncertainties remain on the relative contributions 

of climate change, shifts in transplanting date and other management practices (e.g. use of 

longer-duration cultivar), which limits our ability to understand the past trends and project 

the near term evolution of LGP and its possible consequences for future crop production.  

 

Attribution of the observed trend of LGP from past observations remains challenging 

because both changes in climate and in management practices have taken place 

simultaneously. Recent studies used statistical models to characterize the interannual 

sensitivity of rice LGP to temperature and to separate the contribution of the temperature 

trend to LGP trend for rice and maize crops over the period 1981-2009 (Tao et al., 2014a, 

Tao et al., 2013, Zhang et al., 2013). This approach has some limitations: first, statistical 

models built from interannual LGP variations cannot isolate the impact of changing planting 

dates from the effects of climate change; second, statistical analyses usually assume linear 

and constant response to climatic variations (Zhang et al., 2013), but several studies showed 

that the response is neither linear (Lobell et al., 2013) nor constant with time (Lobell et al., 

2014; Burke & Emerick, 2015). On the other hand, crop models can provide an alternative 

mean to further understand mechanisms and quantify the attributions of different drivers 

(e.g. Lobell et al., 2012). Therefore, a question to ask in complement of the statistical 

models is whether crop models can be used as an independent method to separate climate 

change impacts from management. Using crop models factorial simulations where each 

driver is varied at a time, or combined, instead of statistical models based on historical data 

can overcome the limitations by having mechanistic representation of climate change 

impacts (Gregory &  Marshall, 2012), but earlier application of crop models for the 

attribution of rice LGP trends were criticized for lack of validation for the study region (Tao 

et al., 2013).  
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The first objective of this study is to optimize a process-based crop model to represent 

rice phenology in China. The second objective is to run the optimized model for attributing 

LGP change to climate change and change in various management practices during the last 

two decades. To achieve these goals, we first collected and harmonized observations of the 

rice LGP during 1991-2012 from an extensive station network in China (287 sites). Then, a 

random set of 80% of the sites is used to optimize the process-based crop model 

(ORCHIDEE-crop) under a Bayesian framework, by calibration of the parameters 

controlling rice phenology. The optimized model results are then evaluated against the 

remaining 20% of the site observations. Finally, contributions to LGP trends from climate 

change, transplanting date change and other management practices (including cultivar 

change) are separated by comparing the LGP observations and simulations of the optimized 

model driven by observed and fixed transplanting date.  

 

2. Methods 

2.1 Rice phenology observations from Agrometeorological stations 

Transplanting and maturity date of rice in China during 1991-2012 were recorded over 

287 agro-meteorological field stations by the Chinese Meteorological Administration, 

covering the entire rice growing area, from the northeast to the southwest and Hainan Island 

(Fig. 1). The length of These observations were made following a standardized protocol 

across sites (CMA, 1993). The dataset includes single rice (177 stations), early rice (110 

stations) and late rice (110 stations). Early rice and late rice have the same number of 

stations because they are two consecutive crops on the same site comprising the double rice 

cropping system (i.e. rotation between early rice and late rice (Tao et al., 2013)). 80% of the 

287 stations are used to optimize ORCHIDEE-crop model parameters. Time coverage of the 
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stations ranges from few years to 21 years (Fig. 1) with 141 stations (88 for single rice and 

53 for early/late rice) having records longer than 15 years, which are the long-term stations 

used for the detection and attribution of LGP trends (Figure S3).  

 

Fig. 1. Spatial distribution of agrometeorological stations in China for (a) early rice, 

(b) late rice, and (c) single rice. Color shows the number of years of available observations 

in each station. Blue circle indicates stations randomly selected to cross-validate the model. 

(a) early rice

(b) late rice 

(c) single rice 
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Grey shading indicates the fraction of rice growing area (Frolking et al., 2002) that darker 

pixel has larger area of rice croplands. 

 

2.2 Simulating rice phenology with ORCHIDEE-crop model 

ORCHIDEE-crop model (svn version no. 2409) is a process-based crop model, which 

is based on the generic vegetation model ORCHIDEE (Krinner et al., 2005), simulating 

carbon, water and energy fluxes (e.g. photosynthesis, respiration and evapotranspiration) 

and includes an agronomical module simulating crop phenology, leaf area dynamics, growth 

of reproductive organs, carbon allocations and management impacts (Wu et al. 2015). The 

formula for crop phenology, leaf area dynamics, growth of reproductive organs were 

originated from a generic crop model STICS (Brisson et al., 2003). Compared with 

ORCHIDEE-STICS (Gervois et al., 2004), an earlier version of the crop model, which 

chained the ORCHIDEE model with STICS only through leaf area dynamics, 

ORCHIDEE-crop has a complete coupling between crop growth and physiology of carbon 

and water exchanges in soil-vegetation-atmosphere continuum. ORCHIDEE-crop calculates 

thermal unit accumulation, photosynthesis and energy exchange on a half-hourly time step, 

while leaf area dynamics, carbon allocation and biomass and soil organic carbon change are 

simulated on a daily time step.  

 

Like most crop models, the crop growth cycle in ORCHIDEE-crop is divided into 

several stages with the developments driven by accumulated thermal unit. Since simulation 

of rice growth starts from transplanting (LEV), the growth cycle is divided into only three 

phases, which are divided by the onset of grain filling (DRP) and the physiological maturity 

(MAT). The thermal unit (gdd) needed to grow from transplanting to maturity are prescribed 

parameters (GDDLEVDRP and GDDDRPMAT). Accumulation of thermal unit (gdd) is calculated 
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at each half-hourly time step following Eq. 1: 

 

Where f(t) is a tri-linear function of temperature (T) following Eq. 2, δp (δv, δn, δw) are 

crop-specific scalars for photo-period (vernalization, nitrogen, water) regulations 

respectively. ε is a scalar parameter describing the sensitivity of the crop to nitrogen and 

water stress.  

 

As described above, temperature change has a first-order control over gdd (Fig. S1). 

Therefore, the most important parameters for accumulations of gdd are GDDLEVDRP, 

GDDDRPMAT, Tmin, Topt and Tmax (Table 1), which are to be optimized in the parameter 

optimization. Details of the regulation scalars can be found in Brisson et al. (2008). In our 

study, δv=1 because transplanted rice require no vernalization to develop; we assumed that 

δn=1 and δw = 1 because 93% of rice cropland in China is irrigated 

(http://www.knowledgebank.irri.org/country-specific/asia/rice-knowledge-for-china/2013-0

6-03-07-15-17, Salmon et al., 2015), and the nitrogen fertilizer application rate is higher 

than 100 kgN ha-1 (Zhou et al., 2014). In this study, we also assumed δp=1, which indicates 

that photoperiodic constraint on the phenology is minimal for rice. This is probably true for 

early and single rice, because varieties insensitive to day-length change are commonly used 

(Cao et al., 2011). There are, however, cases for late rice, where day-length sensitive 

varieties are used (Cao et al., 2011), but we cannot account it due to lake of information on 

the extent for application of day-length sensitive varieties. Further details on 

ORCHIDEE-crop structure and parameters can be found in Wu et al. (2015). It should be 

noted that rice phenology development is modelled mostly by temperature driven processes 
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in almost all rice models (Li et al., 2015), so the parameter we chose here represent the main 

processes driving the phenology development. Other parameters of ORCHIDEE-crop are 

not optimized here, because the phenology observations can provide loose constraint on 

them.  

 

In this study, two types of simulation experiments were performed for each site: (1) For 

validation and comparison with observed LGP, simulation S0 was driven by observed 

variable climate and the observed variable transplanting date each year at each station; (2) 

For isolating the impact of transplanting date from that of climate change on LGP, 

simulations S1 was driven by a time-invariant (fixed) transplanting date defined as the 

average of the earliest three year of each record. Climate forcing for simulation S0 and S1 

was obtained from CRU-NCEP dataset v5.2 

(http://dods.extra.cea.fr/data/p529viov/cruncep/). The difference between S0 and S1 can be 

used to attribute the fraction of LGP trends explained by changes in transplanting dates. 

Assuming the model structure has no time-dependent systematic errors, the residual 

difference (∆) between trends in observed LGP and in simulation S0 can be interpreted as 

reflecting the contribution of all other management operations not considered in S0, 

including change in the cultivars. Previous studies usually interpreted such a residual 

between observed and modelled LGP (either from statistical modelling or from process 

modelling) as being caused by change in the cultivars used over time (Liu et al., 2012, Tao 

et al., 2013, Zhang et al., 2013), but it could cover other changes in agronomic practice, 

such as fertilization change.  

 

2.3 Parameter optimization with particle filter 

We used a particle filter method with sequential importance resampling (PFSIR) to 
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optimize the ORCHIDEE-crop parameters for early, late and single rice phenology 

respectively over China. Particle filter is a Monte-Carlo implementation of recursive 

Bayesian theorem to estimate the posterior probability density of a state-space (here is the 

parameter set of the model) (van Leeuwen, 2009). A set of ensemble members of the 

parameter set called “particles” hereafter, are used as a discrete approximation of the 

multi-dimensional probability density function (PDF) of the model parameters. The PDF 

evolves by propagating all particles forward in space or time through the ORCHIDEE-crop 

model. Each step when observations become available, each particle is assigned a weight 

(or importance) according to the model-observation differences. A new set of particles is 

generated after each iteration by resampling the weighted particles (sequential importance 

resampling). The optimized parameter sets for early rice, late rice and single rice are 

obtained through applying PFSIR to ORCHIDEE-crop model respectively. Particle filters 

has been found to have broader suitability than traditional variational methods (Chorin &  

Morzfeld, 2013), in particular for non-linear cases. Thus, variant forms of particle filter 

have become growingly popular when applying in earth system models (e.g. Bilionis et al., 

2014, Yu et al., 2014). Further details of PFSIR used in this study can be found in the 

Appendix.  

 

Advantages of using the PFSIR method are multiple: First, unlike error minimization 

methods or manual adjustments previously adopted (e.g. Gregory &  Marshall, 2012, 

Zhang et al., 2014a), PFSIR not only provides a best (maximum likelihood) estimate, given 

an observation probability, according to the Bayes theorem, but also the uncertainties of the 

optimized parameters; Second, unlike variational methods (e.g. 4D-Var) assuming Gaussian 

distributions of the parameters, no assumptions are necessary for the posterior parameter 

distribution of the parameters in the particle filter, which makes it suitable for a model like 
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ORCHIDEE-crop that uses some non-Gaussian and threshold-like parameters; Third, 

particle filter does not assume linearity of the state-space, which overcomes some of the 

limitations of methods based upon linearization of the state-space such as ensemble Kalman 

filter (van Leeuwen, 2010); Fourth, when being fed with large dataset, the Bayes-based 

particle filter is less sensitive to data outliers than error minimization methods (e.g. 

Kersebaum et al., 2015), which also make it suitable for application in crop models and 

over regional scale; Fifth, the particle filter does not require the effort of constructing the 

tangent linear model of the original model for calculating sensitivities of the model output 

to its parameters, and tends to have higher efficiency than other Monte-Carlo methods 

(Gaucherel et al., 2008). The particle filter is thus recommended for non-linear data 

assimilation, though has limitations for high-dimensional system (van Leeuwen, 2009). 

With growing number of parameters (dimension of the parameter space), the filter may 

become less efficient and required a huge number of computing resources in order to obtain 

satisfactory estimates. Some improvements to the particle filter would be needed in such 

high-dimensional cases (e.g. van Leeuwen, 2010). Given the relatively small dimension of 

the parameter set (Table 1), this poses little threats to our study.  

 

To evaluate the robustness of the optimized model, we randomly selected 20% of the 

sites (22 sites of early rice, 21 sites of late rice and 35 sites of single rice, see Fig. 1 for its 

spatial distribution) as validation sites. The validation sites are not used into the PFSIR, 

providing independent evaluation measurements of the performance for the optimized 

model. It should be noted that the probability of posterior parameter distribution usually 

reflects the strength of constraint from the observation data, thus the spread of posterior 

probability distribution is also a metric to evaluate the performance of the particle filter. 

Larger spread of posterior probability distribution would indicate loose constraint from the 
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observations.  

 

It should be noted that we infer only one set of optimized parameter for each rice type 

over China, which is consistent with our intention to use a generic model across large 

regions, but could be a limitation in cases when local varieties within the same rice type 

have very different parameters. Separating the rice growing area into finer zones and 

producing multiple parameter sets for each rice type (Zhang et al., 2014a) may yield smaller 

errors due to increased degree of freedom and a potentially better calibration reflecting the 

diversity of local varieties. But doing this would also increase the risk of over-fitting and 

would require a detailed zoning map of rice crop varieties instead of zoning map of climate. 

In addition, there are growing requests for assessing climate change impacts over regional 

and global scales (Rosenzweig et al., 2014) asking for robust parameter sets representing a 

broad scale of the growing area.  

 

2.4 Trend analyses 

We calculated the trend of rice LGP from the observations, the simulations S0 and S1, 

and for the residual ∆ by regressing time series of LGP at each station against year using 

least square regression. The trend estimates were compared with non-parametric test (Sen’s 

slope) (Fig. S2). The similar estimates between least square regression slope and Sen’s slope 

indicate robustness of the trend estimates to potential outliers. Statistical significance was 

reported based on two-tailed t-test. Only stations with more than 15 years of observations 

during 1991-2012 are used in the trend analyses (Fig. S3).  

 

3. Results 

3.1 Simulated LGP with prior and posterior parameters 
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Fig. 2 shows the histogram of the simulated bias of LGP (difference between observed 

LGP and simulated LGP) for simulation S0 before and after optimization, and for the three 

rice types. Over site-years used in optimization, the posterior model largely reduces the root 

mean square error (RMSE) from 32.7 days (prior) to 14.8 days for early rice (optimized) 

(Fig. 2a), from 108.9 days to 12.4 days for late rice (Fig. 2b), and from 73.7 days to 24.4 

days for single rice (Fig. 2c). When we only look at spatial variations across sites (Fig. S4), 

we found that the posterior model not only reduces the absolute errors (indicated by the 

vicinity to 1:1 line), but also better reproduces the spatial LGP gradient among the sites 

used for optimization. The R2 for the spatial gradient improves from 0.41 (P<0.01) to 0.55 

(P<0.01) for early rice (Fig. S4a), from 0.00 (P=0.91) to 0.33 (P<0.01) for late rice (Fig. 

S4b), and from 0.21 (P<0.01) to 0.47 (P<0.01) for single rice (Fig. S4c). Interannual 

variations of LGP at the long-term sites used for optimization also show significant 

improvement for all three rice types (P<0.05) (Fig. S5). These show that given the structure 

of the ORCHIDEE-crop model, with the PFSIR optimization method, it is possible to find a 

set of parameters for each of the three rice types, which provides an improved fit to the LGP 

observations across sites and years. 

 

To test whether the improvements due to optimization is limited to the sites chosen for 

optimization, we also use the prior and posterior model parameters in ORCHIDEE-crop 

runs at the cross-validation sites. The RMSE of LGP for the simulation S0 with prior 

parameters are 33.9 day for early rice, 113.0 day for late rice and 74.5 day for single rice, 

respectively. The RMSE of LGP with posterior parameters at the cross-validation sites are 

16.3 day for early rice, 10.2 for late rice and 19.2 for single rice, which are close to that over 

the optimization sites (Fig. 2d-f). Therefore, the RMSE reduction over the validation sites is 

similar to that over the optimization sites (Fig. 2d-f). The improved spatial gradients (Fig. 
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S4d-f) and interannual correlation between observed and modeled LGP (Fig. S5d-f) also 

hold for the validation sites. Indeed, when we re-selected the sites used for optimization and 

running the particle filter once again for testing, we obtain a similar set of parameter set 

than the one presented in Table 1, further indicating the robustness of the optimized models 

in reproducing the spatiotemporal variations of rice LGP in China during 1990-2012, for the 

three rice types.  

Table 1. Prior and posterior parameters for early rice, late rice and single rice.  

 Prior Posterior 

 Generic rice Early rice Late rice Single rice

GDDLE

VDRP 

895±115 
860 ± 9 610±12 645±5 

GDDDR

PMAT 

554±115 
322 ± 7 345±9 420±6 

Tmin 13.0±4.3 9.9 ± 0.5 9.2±1.1 9.4±0.5 

Topt 30.0±4.3 32.3 ± 1.9 23.4±0.6 22.8±0.5 

Tmax 40.0±4.3 36.5 ± 3.6 38.2±1.1 35.7±0.7 
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Fig. 2. Histogram of the differences between observed length of rice growing period 

(LGP) and simulated LGP with prior parameters (blue-edged bars) and optimized 

parameters (grey bars) for (a) optimization sites of early rice, (b) optimization sites of late 

rice, (c) optimization sites of single rice, (d) validation sites of early rice, (e) validation sites 

of late rice, and (f) validation sites of single rice.  

 

The optimization of ORCHIDEE-crop parameters not only significantly reduced the 

misfit with site observations but also significantly changed the simulated trend in LGP (Fig 

S4). For early and single rice, the trend in optimized LGP (-0.7±2.7 day/decade (mean ± 
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standard deviation across sites) for early rice and -0.5±5.2 day/decade for single rice) differs 

by more than 60% (P<0.01) from the prior modeled LGP trend (-1.7±4.8 day/decade for 

early rice and -1.5±18.4 day/decade for single rice)(Fig. S6a and c). For late rice, the 

optimization even changes the sign of the simulated LGP trend and largely reduced the 

spatial variations of the trend (Fig. S6b). The average LGP trend for late rice is changed 

from -7.5±16.7 day/decade to 1.0±3.0 day/decade (Fig. S6b). The optimized model thus 

produces lengthening instead of shortening LGP for late rice. The LGP trend simulated by 

the optimized model is further analyzed in the section “attribution of LGP trends to climate 

change, transplanting date change and other management factors”.  

 

3.2 Optimized parameter sets 

Fig. 3 shows the probability distribution of the five optimized parameters (see Methods 

section for descriptions of the parameters) of the ORCHIDEE-crop simulation for LGP 

before (prior) and after (posterior) optimization for early rice, late rice and single rice, 

respectively. Optimized (posterior) parameters of thermal unit requirements (GDDLEVDRP 

and GDDDRPMAT) show largest uncertainty reduction (UR) with a 90% error reduction in the 

standard deviation after optimization (Fig. 3a and b, Table 1), indicating strong 

observational constraints on these parameter values. Early, late and single rice have their 

posterior thermal unit requirements (GDDLEVDRP and GDDDRPMAT) concentrated in a narrow 

range of values, which are significantly different from each other (P<0.05). On the other 

hand, the temperature threshold parameters regulating phenological development (Tmin, Topt, 

and Tmax in Eq. 2) show different values after optimization among the three rice types. For 

early rice, Tmin for phenology development is well constrained with a UR of 78% (9.9±0.5 

oC, Fig. 3d), while Topt has a large posterior range between 29 oC and 35 oC (32.3±1.9 oC, 

Fig. 3c) and a UR of 55%. For late and single rice, optimized Tmin are slightly lower than 
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early rice (9.2±1.1 oC for late rice and 9.4±0.5 oC for single rice, Fig. 3d) and UR of 52% 

and 78%. On the contrary, optimized Topt for late and single rice are much lower than early 

rice (23.4±0.6 oC for late rice and 22.8±0.5 oC for single rice, Fig. 3c) with UR ~85%. The 

higher optimal Topt and Tmin values found for early rice, compared to single and late rice 

suggest that early rice must be more acclimated to the high temperature in spring and 

summer over southern China, which matches its geographical distributions (Fig. 1) and was 

not accounted in the prior values of these parameters. For all the three rice types, the 

posterior probability distribution of Tmax shows a large range (Fig. 3e) indicating that this 

temperature threshold that corresponds to the stop of phenology development is less well 

constrained from the LGP observations, likely because Tmax is a high-end threshold, which 

is not frequently reached in the historical period 1991-2012 (4 site-days for early rice, no 

site-day for late rice and 7 site-days for single rice). 
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Fig. 3. Histogram of the prior and posterior parameter distribution for early rice, late 

rice and single rice. The optimized parameters include (a) GDDLEVDRP, (b) GDDDRPMAT, (c) 

Topt, (d) Tmin, and (e) Tmax (see Methods section for definitions and descriptions of the 

parameters). 

 

3.3 Attribution of LGP trends to climate change, transplanting date change and other 

management factors 

At country scale, observations show an average lengthening of LGP for all three types 

(a) 

(b)  

(c)  

(d)  

(e)  
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of rice (Fig. 4). Single rice sites show the largest lengthening rate of 2.0±6.0 day/decade 

(mean ± standard deviation in spatial variations), followed by early rice (1.0±4.8 day/decade) 

and late rice (0.2±4.5 day/decade). But there are large site-to-site variations in the observed 

LGP trend (Fig. S7). For single rice, 61% of the sites show a trend towards longer LGP, 

50% of which are statistically significant (Fig. S7c). For early and late rice, the percentage 

of sites showing longer LGP is similar (58% and 55% for early and late rice respectively), 

but the percentage of significant positive trends was smaller than that for single rice (27% 

and 19% for early and late rice respectively). There is a large proportion of sites showing no 

significant change of LGP (more than 50% for all three types of rice), indicating that LGP 

change is either weakly sensitive to climate change or compensated by effects of change in 

climate and managements. To further understand the drivers of the LGP trends, we 

estimated the contribution of climate change alone from simulation S1, the contribution of 

transplanting date from the difference between simulation S0 and S1, and interpreted the 

contribution of all other management (OM) as being caused by a non-modeled residual term 

∆, as explained in the Method section. 
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Fig. 4. Box plot of change in the length of rice growing period length (LGP) over the 

past two decades derived from observations and simulations for the three rice types. The 

LGP change due to climate change is obtained from simulation S1; The LGP change due to 

change of transplanting date is obtained by the difference between simulation S0 and 

simulation S1; The LGP change due to other management (OM) is obtained by the 

difference between observations and simulation S0. The lower and upper edge of the box 

indicate 25th and 75th percentile of the trends. The line and cross inside the box indicate the 

median and the mean of the trends, respectively.  

 

As Fig. 4 and Fig. 5 shows, the impacts of climate change on LGP change differs 

between the three rice types. For early rice sites using the simulation S1 with the optimized 

model, we infer an average shortening of LGP induced by climate change alone of -2.0±5.0 

day/decade (Fig. 4). Except for sites in Hainan and Guangxi, the shortening of LGP in 

simulation S1 is widespread (71%) and significant at 41% of the early rice sites (Fig. S7j). 

However, for late rice, climate change alone leads to an average lengthening of the LGP of 

1.1±5.4 day/decade, with 16% of the sites having a significant lengthening mostly in Hunan, 

Jiangxi and Fujian provinces (Fig. S7k). This positive LGP trend for late rice in response to 
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climate change occurs in ORCHIDEE-crop because temperature during the growing season 

is reaching the optimum temperature of phenology development for late rice in southern 

China (Table 1). For single rice, the contribution of climate change to LGP trends shows 

regional differences. Climate change is modeled to shorten LGP over northeastern China 

and high-altitude Yungui plateau over southwestern China, but to lengthen LGP in the 

middle and lower reach of Yangtze River basin (Fig. S7l). These regional contrasts for 

single rice LGP trends leads to a near neutral average impact of climate change on LGP 

trend across China (-0.4±5.4 day/decade, Fig. 4). Among all the sites, climate change is the 

dominant factor contributing to the observed LGP trend for 26% of early rice sites, 28% of 

late rice sites and 19% of single rice sites (Fig. 5). 

 

We found that 66% of the early rice sites experienced earlier transplanting date during 

1991-2012 (Fig. S8). From the difference between modeled LGP in simulation S0 and S1, 

we infer that the earlier shift of the transplanting date (-2.0±4.8 day/decade) alone, has 

lengthened the LGP of early rice by 1.3±5.5 day/decade (Fig. 4). But earlier transplanting 

practice have not been adopted widely for late rice and single rice sites, and the observation 

sites showing positive and negative trends in transplanting dates are of similar proportion 

for late rice and single rice (Fig. S8b and c). The magnitude of the average trend in 

transplanting date is also small for these two types of rice (-0.3±3.4 day/decade for late rice 

and 0.1±4.1 day/decade for single rice), which has minor impacts on the simulated LGP 

change in the S0-S1 difference (-0.1±5.0 day/decade for late rice and -0.1±1.7 day/decade 

for single rice, Fig. 4). Therefore, the earlier shift of transplanting date is the dominant 

factor contributing to the trend of LGP at 17% of early rice sites (Fig. 5a), and a minor 

driver of LGP trends for other rice types, being dominant at only 7% of the late rice sites 

(Fig. 5b) and 2% of the single rice sites (Fig. 5c).  



Attributing historical trends in China’s rice growing season based on calibrated ORCHIDEE-crop model  

61 

 

Fig. 5. Spatial distribution of the controlling factors on change in the length of 

growing period (LGP) for (a) early rice, (b) late rice, and (c) single rice. Green color 

indicates LGP change is primarily driven by climate change, blue color indicates LGP 

change is primarily driven by transplanting date change, and red color indicates LGP 

change is primarily driven by other management. Intermediate colors indicate 

co-dominance by more than one factor.  

(a) earl

(b) late rice

(c) single
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On average across sites, the role of other management practices (OM), inferred from 

the residual trend not explained by transplanting date and climate change, is found to be the 

predominant factor for LGP change for early and single rice. OM are identified to be 

responsible for a lengthening of LGP by 2.1±3.9 day/decade for early rice and 2.8±7.6 

day/decade for single rice (Fig. 4). A great majority of the early rice sites (71%) and single 

rice sites (64%) show positive contributions of OM trends. Over 20% of early rice sites sand 

27% of single rice sites, the OM induced LGP trend is statistically significant (P<0.05, Fig. 

S7d-f). On the contrary, OM contributes to a shortening of LGP for late rice by -0.8±5.8 

day/decade (Fig. 4), with a significant LGP shortening in Hunan, Jiangxi, Guangdong and 

Fujian provinces (Fig. S7e). The dominant role of OM is prevalent in southern China 

provinces, such as Guangdong, Guangxi and Yunnan for both early rice and late rice (Fig. 

5a-b). For single rice sites, OM is the predominant driver of the LGP trend from the 

northeast to the southwest at 78% of the sites (Fig. 5c).  

 

4. Discussion 

Our analyses of a large network of rice phenological observations with more than 100 

long-term stations across rice growing area in China indicate that the LGP of single rice has 

become longer over the past two decades, which is consistent with a recent study focused on 

Northeast China and Yangtze River basin during 1980-2009 (Tao et al., 2013). Although 

site-to-site variations are large, all three rice types exhibit an average trend towards longer 

LGP. The ORCHIDEE-crop model optimized upon observed LGP was run using factorial 

simulations, with either climatological (fixed) or observed transplanting dates, and variable 

climate. The results suggest that the primary factors driving the LGP trends are not the same 

among the three rice types.  
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We found that recent climate change considered as a single driver in the model, 

shortened the LGP of early rice (Fig. 4 & Fig. S7j), which is consistent with previous 

statistical modelling (Zhang et al., 2013) and process modeling based on four sites (Liu et 

al., 2012). For late rice, climate change appears to have induced little change or a 

lengthening of LGP, which is different from early rice (Liu et al., 2012, Tao et al., 2013) 

and from some other temperate crops (Lobell et al., 2012). This is because the optimized 

parameter values indicate a lower optimum temperature (23.4 ± 0.6 oC) for phenology 

development of late rice than for early rice. Late rice sites are mainly located in southern 

China where temperature after transplanting (around July and August) is higher than this 

optimal temperature of phenology development of late rice (Li et al., 2010). Thus, further 

warming beyond the temperature optimum will not accelerate the phenology development 

and cause a lengthening of LGP (Fig. S1, Yin, 1994). It should be noted that the optimum 

temperature that we determined from PFSIR is consistent with statistical analyses of rice 

phenology observations in southern China (Xie et al., 2008) and with the incubation study 

(Summerfield et al., 1992), but lower than that used in previous models (Liu et al., 2012, 

Zhang et al., 2014b), parameters of which may have originally derived from earlier studies 

based on assumptions or rice varieties in Southeast Asia (e.g. Kropff et al., 1993). Our 

capability to further assess this parameter is rather limited since field trials determining the 

optimum temperature of phenology development are rarely available, requiring more data 

and future studies to refine this key parameter in order to more accurately project climate 

change impacts on LGP change. It should also be noted that, although high temperature 

stress did not necessarily shorten LGP, it may still adversely affect rice yields as it stresses 

photosynthesis (Yin & Struik, 2009), and thus reduce biomass accumulation for the harvest.  
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By comparing the simulations driven by fixed transplanting dates (S1) and by variable 

transplanting dates (S0), we can separate the contribution of transplanting date trends on 

LGP trends. Although an earlier transplanting date is a pragmatic autonomous adaptation 

through which farmers adapt to climate change (Olesen et al., 2011), its effect on the 

regional trends of LGP was not separated by previous statistical models (Tao et al., 2013, 

Zhang et al., 2013), probably due to its co-variations with climate (Tao et al., 2006). It may 

also be related with the linear assumption of previous statistical analyses (e.g. Tao et al., 

2013; Zhang et al., 2013), which can be improved using recent progresses in statistical 

analyses including non-linear or threshold like equation (e.g. Burke & Emerick, 2015; 

Solomon, 2016). We found that changes in transplanting date were widespread over the last 

20 years for early rice sites in southern China, and that they contributed to lengthen LGP, 

whereas climate change has the opposing effect of shortening LGP. This suggests that the 

adoption of earlier transplanting date has partly mitigated climate change impacts on early 

rice growth over the past two decades. However, the same adaptation strategy is probably 

not possible for late rice because earlier transplanting and lengthening of LGP nearly 

compensate for each other for early rice, leaving no more time during the season available 

for earlier transplanting of late rice (MOA, 2014). In addition, advancing transplanting dates 

for late rice to mitigate climate change will have limitation due to frost risk and 

photo-period constraints in the autumn. The same reason may also explain why single rice 

sites show large site-to-site variations on the sign of change in transplanting date (Fig. S8).  

 

Other management practices were found to be the dominant driver of LGP trends for 

early rice and single rice across the country (Fig. 5), which is about one magnitude larger 

than the contribution of transplanting date and climate trends for early rice and single rice, 

though with large site-to-site variations (Fig. 4). Previous studies usually interpreted this 
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residual contribution not explained by climate change as the contribution of cultivar change, 

in particular the adoption of long-duration cultivars (Liu et al., 2012, Tao et al., 2013, 

Zhang et al., 2013), which was supported by the empirical assessment of change in thermal 

requirements (Zhang et al., 2014b). This hypothesis is reasonable, since use of 

longer-duration cultivars is one of the most commonly used practices to achieve higher 

yields and mitigate the impacts of climate change (Aggarwal & Mall, 2002, Porter et al., 

2014). However, there are other management practices that could also impact LGP trends. 

For example, foliage nitrogen fertilizer spraying on leaf in the late growing season, can also 

lead to increase of leaf longevity and the growing season (Russell et al., 1990). Future 

studies should account for these effects with spatially and temporally explicit datasets in 

order to more accurately attribute and project LGP change. In addition, OM trends may not 

necessarily induce longer LGP. Local agronomists in China have been studying and 

recommending the combination of rice varieties with shorter-duration and longer-duration 

cultivars in order to improve yield and to minimize risk of exposure to climate extremes (e.g. 

Ai et al., 2010; Mao et al., 2015; Li et al., 2016) Shorter-LGP induced by OM seems to be 

widespread for late rice in southern China. These efforts were taken likely because shorter 

LGP for late rice can have the advantage to avoid the damage induced by cold weather 

events during anthesis and grain filling, known as the “cold dew wind” (Huo &  Wang, 

2009, Wu et al., 2014). The risk of late rice exposure to cold damage can be more than 30% 

for some regions in southern China according to (Wu et al., 2014), and warming over past 

decades does not alleviate the risk of the weather events and reduce late rice production 

when it occurs (Huo &  Wang, 2009, Ministry Of Agriculture, 2014).  

 

Unlike previous studies identifying climate change as the dominant driver of rice 

phenology change, using field trials (De Vries et al., 2011), statistical models (Zhang et al., 
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2013) or crop model simulation (Yao et al., 2007), our analyses combining phenology 

observations and optimized crop model simulations indicate that management practices 

(including both change in transplanting date and changes of OM) probably outweigh the 

impact of climate change on LGP change for early rice and single rice in China during the 

past two decades. However, we are only able to separate the effects on LGP trends of trends 

transplanting date from other management practices, such as cultivar change, due to limited 

data on spatio-temporal variations of other management practices. On the other hand, 

attribution of LGP trends to OM has the largest uncertainty in this analysis since the role of 

OM is inferred from the misfit of model runs driven by climate change and observed 

transplanting date and the observations. Errors in the attribution of LGP trends to climate or 

transplant date trends, depends largely on the crop model used, a structural bias in this 

model, and non-unified observational error across sites and years will translate into an 

erroneous attribution to OM. Through the Bayesian optimization framework (particle filter 

with sequential importance resampling), we optimized the ORCHIDEE-crop model to fit 

the spatio-temporal variations of LGP for the three rice types across China. The optimized 

model not only can reproduce the phenology of the sites used for optimization, but also 

remains robust when applied to validation sites (Fig. 3). Therefore, the optimized model 

provides some confidence in the attribution, compared to models not optimized for rice 

croplands in China (e.g. Liu et al., 2012). Indeed, the posterior model largely differs from 

the prior model in the estimated climate change impacts on LGP change (Fig. S6), further 

highlighting the necessity of optimizing crop models for regional studies. Admittedly, the 

optimized model simulations still cannot perfectly reproduce spatiotemporal variations in 

LGP, which may introduce uncertainties in the attribution of LGP trends to climate trends, 

but this should not largely impact our conclusions because we found no significant 

correlation between trend in the residual LGP (difference between observations and 
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simulation S0) and the trend in growing season temperature (Fig. S9). This indicates that the 

trend attributed to OM is probably not biased by climate trend unexplained by 

ORCHIDEE-crop. On the other hand, in addition to optimizing the parameters of a single 

model against observations to reduce parameter uncertainties, recent studies indicate that 

multiple models can perform better than one model (Li et al., 2015, Martre et al., 2015), due 

to the consideration of structural uncertainties. Although there are many difficulties in 

coordinating multiple models, promising future studies using model ensembles with the 

same protocol can improve our understanding regarding the structural uncertainties (e.g. 

Elliott et al., 2015). It should also be noted that almost all current rice models, including 

ORCHIDEE-crop predict phenology development based on variations in temperature. The 

physiological impacts of non-temperature drivers should be further explored in future 

studies. Finally, observational error may also play an important role in the attribution to OM, 

which have largely been neglected both in our modelling study and previous statistical 

attribution (e.g. Zhang et al., 2013). Since the observation over all the stations followed the 

same protocol (CMA, 1993), it is often assumed that the observational error is uniform 

across sites and years. Thus, it would not impact the trend estimates and therefore 

attribution of the LGP trends. Although the assumption is reasonable, the reliability of this 

assumption remains uncertain. For better data-model integration, we recommend future data 

collection efforts to further report the error term together with the observations, which will 

help minimize potential biases in model parameterization and attribution efforts.  

 

Conclusions 

In this study, we calibrated ORCHIDEE-crop model to represent spatio-temporal 

variations of rice LGP for three different types of rice in China, and applied this model 

forced by historical change in climate and transplanting date to attribute the trend in rice 
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LGP. On one hand, we showed that, technically, 1) using Bayes-based particle filter, a 

generic process-based crop model can be objectively parameterized to represent 

spatio-temporal variations in rice LGP over China and 2) attribution of LGP trend based on 

calibrated model provides an alternative to statistical attribution previously used. On the 

other hand, through factorial simulations, we found that LGP change for different rice types 

show contrasting dominant drivers. Managements outweighs climate change in affecting 

LGP of early and single rice, but not for late rice. This suggests that future modelling efforts 

at global and regional scale should consider various types of rice grown and time-varying 

management practices. Since large uncertainties still remain in understanding change in 

LGP, improving documentation of management practices in addition to transplanting date, 

better description of observational error and ensemble crop modelling can further reduce 

uncertainties in attributing climate change impacts in future studies. 

 

Appendix: Particle filter with sequential importance resampling 

The basic idea of the particle filter is to represent the probability distribution function 

(PDF) of the parameters through an ensemble of parameters, each set of which is called a 

particle. At each step of the particle filter, the relative importance of the particle, or weight 

(w) is given by Eq. A1: 

 

where N is the number of particles, y is the observation and p(y|xi) is probability 

density of the observations given the simulation with the particle xi (M(xi)) following Eq. 

A2: 

 

where δ is the observation error. In this study, we assume observational error is 
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uniform across sites and years, since the observations over the network were made by 

trained staff following the same protocol (CMA, 1993), which are designed to unify and 

minimize the observational error across the network. Theoretically, it is possible to 

analytically have the PDF of the particles by putting all observations into the equation in 

one time. However, in practice, over a large number of sites/time steps, it requires a large 

number of particles to well sample the entire parameter space and computationally 

inefficient by wasting time in barely possible particles. Therefore, the Markov process 

(filter) to realize recursive Bayesian theorem is applied here (Eq. A3): 

 

where x1:N is the particle after N iterations. This Markov process makes the entire 

calculation iterative. When there is no observation in site i, the Markov process can still 

evolve by adding a random term to the particle in site i-1, but what we aim is to obtain final 

posterior PDF of the parameters given the observations over N sites (y1:N):  

 

Using Eq. A3 to further break down Eq. A4, we obtain Eq. A5: 

 

Applying Eq. A2 to Eq. A5, we obtained the numerical solution for all terms from 1 to 

N. For each step i, importance resampling is taking place to randomly redraw a new 

ensemble of particles from the weighted old ensemble to represent p(xi), which leads to 

disregard particles that have very small weights and thus refine the ensemble. Sometimes 

the importance resampling may disregard some locally low probably particles but having 

global significance. Therefore, we usually perform twice of the entire PFSIR process with 

different re-order observations to test its convergence in order to minimize the potential 
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error due to this. More details and illustration of the particle filter can be found in van 

Leeuwen (2010). To adapt ORCHIDEE-crop model to different cropping systems, single 

rice and double rice (early rice and late rice) in China, we adapted particle filter with 

sequential importance resampling (van Leeuwen, 2009) separately for the three rice types 

(Table 1). 

 

Prior parameters of the ORCHIDEE-crop was obtained from (Irfan, 2013). The range 

of prior parameters were obtained from Sanchez et al. (2014), which synthesized 

experiment knowledge on the range of basal, optimal and maximum temperature thresholds 

of rice development, and Valade et al. (2014), which contains modeller’s prior knowledge 

for the range of the parameters. Since we knew little about the prior probability distribution 

of the parameters, we assumed the prior parameter equally distributed within its range in 

order to guarantee a well sampling of the entire parameter space. Another issue may limit 

the capability of PFSIR is the error in the observation data. Unfortunately, accuracy 

description of the phenology observations are not available except that observations were 

made following the same standard protocol. However, the dataset is being treated as reliable 

data source without the need to do further filtering (e.g. Tao et al., 2013; Zhang et al., 2013).  
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Supplementary Information 

Figure S1. Response of phenology development to temperature based on the prior 

parameters. See Methods section and Eq. 2 for detail explanations for the parameters (Tmin, 

Topt and Tmax). 
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Figure S2. Comparison of trend estimates by parametric tests (linear regression slope) 

and non-parametric tests (Sen’s slope). Different colors indicate sites of different rice types 

(early rice, late rice and single rice). The dash line indicates 1:1 ratio.  
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Figure S3. Spatial distribution of long-term (>15 years) rice phenology observation 

sites. Shaded area indicates the rice growing area with darker pixels having larger growing 

area. 
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Figure S4. Spatial relationship between observed length of rice growing period length 

(LGP) and simulated LGP for (a) optimization sites of early rice, (b) optimization sites of 

late rice, (c) optimization sites of single rice, (d) validation sites of early rice, (e) validation 

sites of late rice, and (f) validation sites of single rice.  
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Figure S5. Inter-annual relationship between observed length of rice growing period 

(LGP) and simulated LGP for (a) optimization sites of early rice, (b) optimization sites of 

late rice, (c) optimization sites of single rice, (d) validation sites of early rice, (e) validation 

sites of late rice, and (f) validation sites of single rice. Blue-edge bars indicate simulation 

results with prior parameters, and grey bars indicate simulation results with posterior 

parameters. 
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Figure S6. Histogram of change in length of rice growing period (LGP) estimated by 

ORCHIDEE-crop model for (a) early rice sites, (b) late rice sites and (c) single rice sites. 

Blue-edge bars indicate simulations with prior parameters, and grey bar indicate simulations 

with posterior parameters.  
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Figure S7. Spatial distribution of change in length of rice growth period (LGP) over 

the past two decades derived from (a-c) observations, (d-f) the difference of observations 

and simulation S0 (driven by observed transplanting date, see Methods section), (g-i) the 

difference of simulation S0 and simulation S1 (driven by fixed transplanting date, see 

Methods section) and (j-l) simulation S1 for (left panel) early rice sites, (central panel) late 

rice sites and (right panel)single rice sites. Black square indicates statistically significant 

(P<0.05) trend.  
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Figure S8. Spatial pattern of change in transplanting date over the past two decades for 

(a) early rice sites, (b) late rice sites and (c) single rice sites.  
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Figure S9. Relationship between trend in growing season temperature and trend in 

LGP residual (the difference between observed LGP and simulated LGP after optimization) 

for (a) early rice sites, (b) late rice sites and (c) single rice sites. 
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Figure S10. Spatial pattern of change in growing season temperature over the past two 

decades for (a) early rice sites, (b) late rice sites and (c) single rice sites.  
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Chapter 4  Reanalyzing global crop yield 

response to warmer temperature using 

manipulation experiments and global crop 

models 

 

Summary  

Response of global crop yield to warmer temperature is fundamental to food security 

under climate change, but its magnitude remains uncertain and largely relies on crop 

modeling (Challinor et al., 2014; IPCC AR5). Here, we harmonized a global dataset of field 

warming experiments comprised of 48 sites for the big four crops (wheat, maize, rice and 

soybean), and utilized the ensemble of gridded global crop models (Rosenzweig et al., 2014) 

together to perform data-constraint estimates of crop yield response to change in 

temperature (ST). Compared with warming experiments, ensemble mean of crop models 

tends to overestimate the magnitude of ST for wheat, but underestimate ST for other crops. 

Through emergent constraint at global scale, we have more than 90% confidence that 

warmer temperature will reduce yield for maize (-7.1±2.8% K-1), rice (-5.6±2.0% K-1) and 

soybean (-10.6±5.8% K-1), while ST for wheat is also likely to be negative (-2.9±2.3% K-1). 

The data-based constraint reduces uncertainties associated with crop model estimates by 

12%-54% for different crops. At country scale, the best estimates of ST for the top five 

producers of each crop are prevalently negative. Considering different climate change 

scenarios (1.5 K, 2.0 K, RCP2.6 & RCP6.0 at the end of this century), yield loss due to 
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warming ranges from 2% to 24% among these major producers, and the maximum yield 

loss becomes 12%, if global warming can be limited by 2.0K. Even with the lowest 

warming scenario (1.5 K), none of major producers for the studied crops is likely to benefit 

from warmer temperature without effective adaptation, though yield vulnerabilities may 

differ by one magnitude across crops and countries. At the time of preparation, this chapter 

is going to be submitted as Wang X et al.  Field warming experiments constrain global crop 

yield reductions under Paris' global warming targets.  
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Rapid warming over the past decades have significant impacts on crop yield (Lobell et 

al., 2011). The severity of this issue has been masked by yield increment through green 

revolution. With exhaustion of technological potential (Brisson et al., 2010) and expected 

increase in climate change impacts (Tubiello et al., 2007), our society is facing a great 

challenge: Can we ensure food security for the ever-growing global population under 

climate change? The first step to adapt for expected warmer climate is to understand how 

crop yield response to temperature change. It was generally believed that warmer 

temperature negatively affects crop yield when baseline temperature is about or above the 

optimum, while it could positively affect crop yield in cool region where temperature is well 

below the optimum (Porter et al., 1999; IPCC AR4; Sanchez et al., 2014). However, recent 

studies show that higher temperature in cool climate can also reduce crop yields (Semenov 

et al., 2012; Teixeira et al., 2013; Asseng et al., 2015). Despite our growing knowledge that 

the yield response to temperature change is crop and region specific (e.g. Zhao et al., 

2016ab; Asseng et al., 2016), the global picture of crop yield respond to warmer 

temperature is still quite vague. The winners and losers of crop production due to warmer 

temperature remains largely uncertain either.  

 

Crop models are the widely used tools in predicting yield response to warming 

(Wheeler et al., 2013; Challinor et al., 2014). These process-based models simulate how 

temperature affect crop growth dynamics at daily or sub-daily time-steps, though models 

may vary in the formula, in the way of model tuning, and thus in parameter values. 

Contemporary assessment of crop response to warmer climate largely relies on crop 

simulations performed with different models, settings and locations (Challinor et al., 2014; 
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Asseng et al., 2014; IPCC AR5). The ensemble of gridded crop models (Rosenzweig et al., 

2014) provides us a set of global simulations driven by consistent climate and management 

forcing. Recent studies show that model ensemble may have smaller biases in simulated 

yield than the individual model over the multi-site tests (Asseng et al., 2014; Bassu et al., 

2014; Martre et al., 2015; Li et al., 2015), but the structure and parameter differences in the 

models still result in large uncertainties in the yield response to temperature change (Asseng 

et al., 2013; Asseng et al., 2014; Bassu et al., 2014; Martre et al., 2015; Li et al., 2015; 

Muller et al., 2016). On the other hand, by exposing crops to artificial warming, field 

warming experiments provide direct estimates on yield response to warmer temperature, 

without hypotheses on the processes. For decades, scientists have performed warming 

experiment for various crops around the world (Van et al., 1999; Ottman et al., 2012; Tian et 

al., 2012), comprising a rich mine to dig for exploring warming impacts. However, these 

experiments have largely been neglected in current global assessments (e.g. Challinor et al., 

2014; IPCC AR5; Liu et al., 2016) due to the challenge to scale up from field to regions and 

the globe. In this study, we address this challenge with the emergent constraint approach 

(Cox et al., 2013), through which we reassess global and regional crop yield response to 

warmer temperature jointly using field warming experiments and crop models. We focus on 

the big four crops (wheat, maize, rice and soybean), which accounts for more than 60% of 

global caloric production.  

 

First, we harmonized a global field warming experiment dataset comprised of 48 sites 

(Fig 1) coming from 46 peer-reviewed literatures (see Methods). Wheat is the mostly 

studied crop with 25 sites, which distribute over the top four wheat producers (European 

Union, China, India and US). If we assume pixels with similar baseline climate (difference 



 

92 

in mean annual temperature less than 1oC and difference in annual precipitation less than 

150mm) to the sites can be well represented by the sites, 70% of the wheat cropping area is 

well represented (Fig 1a). The less represented area mostly locates in northern high latitude, 

such as central Canada and Russian Siberia. Rice has the second most sites spreading 

among the top-two rice producing countries (China and India) and others (Fig 1b). Although 

cropping area of wheat and rice are on the same magnitude, the extents of rice cropping area 

are much more concentrated than that of wheat. The 15 sites (60% of wheat sites) still well 

represent 60% of rice cropping area. The less represented area has very humid climate, like 

that around the equator. There are five maize sites in four countries including top two maize 

producers (US and China), which account 60% of global maize production. 30% of maize 

cropping area is well represented, but hot climate zones (e.g. Africa and South America) are 

not (Fig 1c). Soybean has the least number of sites among them. The three sites locate in US 

and Japan, well representing 15% of global soybean croplands. Though soybean production 

of the two countries accounts for 35% of global production, major data gaps exist for other 

large soybean producers, such as Brazil, Argentina and China (Fig 1d).  
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Figure 1 Spatial pattern of experiment sites and its representativeness for (a) wheat, (b) 

rice, (c) maize and (d) soybean. Black dots show the location of experiment sites. 

Representativeness is measured according to the difference between the grid and the site 

with most similar climate in mean annual temperature (MAT) and mean annual precipitation 

(MAP). Well represented area (see Methods) is shown in green, with brighter green color 

indicate closer climate resemblance to experiment sites and larger harvest area. Blue and red 

color gradient is proportional to the difference between grids and sites in MAT and MAP. 

Blue colors indicate larger difference in MAP, while red color indicate larger difference in 

MAT. Magenta colors indicate the differences in both MAT and MAT are large. Only 

contemporary crop harvest area is shown for each crop according to Chad et al., 2008. 

 

 

As the field warming sites are not evenly distributed over the cropping area and crop 

yield response to warming varied largely with background climate (Ruiz-Vera et al., 2014; 

Zhao et al., 2016), statistics (e.g. mean or median) of the sites cannot be directly interpreted 

as regional/global values. However, we found that crop models simulating larger negative 

warming impacts on the experiment sites also predict larger yield loss in response to 
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warmer temperature globally (Fig 3a-d). This strong relationship (R2=0.46-0.87 for different 

crops) between site-scale yield response to warmer temperature (ST) and global-scale ST 

enables us to use observations at field experiment sites to constraint the probability 

distribution of global yield response to change in temperature. At the experiment sites, the 

observed ST are largely within the range of ST simulated by seven models, but difference 

between observed ST and model mean ST have different signs among different crops. For 

wheat, the observed site-mean ST (-1.6±1.2% K-1) is close to the upper end of simulated 

site-mean ST (Fig 2a), while the observed site-mean ST for maize (-10.3±1.0% K-1) and 

soybean (-7.4±2.9% K-1) are at the lower end of simulated site-mean ST (Fig 2c-d). For rice, 

the observed site-mean ST (-7.4±2.9%K-1) relatively close to the model mean.  

 

Fig 2e shows the probability density function (PDF) of global ST predicted by ensemble 

crop models before constraint (assuming each crop model is equally likely to correctly 

estimate ST) and that by emergent constraint with observations from field warming sites. 

The emergent constraint both changes the best estimates of global ST and narrows the 

associated uncertainties (s.d. of the PDF) by 12% - 54% for different crops studied. For 

wheat, the best estimate of global ST reduces to -2.9±2.3% K-1 from -3.8±2.6% K-1. On the 

contrary, global ST for the other crops become more negative (-7.1±2.8% K-1 for maize, 

-5.6±2.0% K-1 for rice, and -10.6±5.8% K-1 for soybean respectively) than the prior model 

estimates (-2.9±6.1% K-1 for maize, -4.6±2.8% K-1 for rice, and -4.2±6.6% K-1 for soybean 

respectively). Among the four crops, largest correction of global ST occurred in soybean 

(150%), but the uncertainties of global ST of soybean is at least two times than the other 

crops, due to very limited number of warming experiment sites for soybean (Fig 1c) and 

large discrepancies across the sites on the warming impacts (Fig 2d; Tacarindua et al., 2013; 
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Kumagai & Sameshima, 2014; Ruiz-Vera et al., 2015). The prior model spread in ST for 

maize is similar to that for soybean (Fig 2e). However, the high confidence of warming 

impacts over the experiment sites results in tripled estimates of global ST and largest error 

reduction (54%) through observational constraint. The constraint leads to relatively smaller 

change in best estimates of ST for rice (22%) and wheat (14%), as the prior spread of crop 

model estimates on wheat and rice yield response to warming are about 40% to that of 

maize and soybean (Fig 2a-b) and relatively more consistent with the field warming 

experiments. Previous studies for wheat reporting widespread negative impacts of warming 

on wheat yield has already raised alerts on global food security (e.g. Zhao et al., 2016; Liu 

et al., 2016). However, the magnitude of wheat yield loss in response to warming is much 

less than that of maize and rice, which are the staple food resources for developing countries 

in Africa and Asia, highlighting a potentially larger susceptibility of the less developed 

countries to climatic change.  
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Figure 2 Emergent constraint of crop yield response to temperature change (ST) based 

on experiment data. (a-d) Relationship between ST over the field warming experiment sites 

and ST over the globe simulated by global gridded crop models for (a) wheat, (b) rice, (c) 

maize and (d) soybean. Orange lines shows the best estimates of ST (Solid lines) and 

associated uncertainties (Dashed lines) derived from the experiments. (e) probability density 

function of global ST before (dashed lines) and after constraint by experiment data (solid 

lines) for the four crops. The empty triangles show the ensemble model mean of ST before 
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constraint, while the filled triangles show the best estimate of ST after constraint. 

 

To distinguish potential winners and losers due to warming, we further constraint 

country-wide ST over top five producers of each crop, which represent 35% - 59% of global 

production of that crop (FAO, 2014). The relationship between simulated global ST and 

country-wide ST across the models are used in this constraint (see Methods; Extended Data 

Fig 1). For major producers of wheat, ST over India, USA and France are larger than global 

ST (Fig 3a), which is less than half of ST over India (-7.0±4.5% K-1). ST over China 

(-2.6±4.8% K-1) and Russia (-2.6±4.3% K-1) are similar and slightly lower than global ST, 

though prior model estimates show larger ST over China than that over Russia (Fig 3a). 

Data-based multi-regional analyses that can be compared with our study is still lacking, but 

recent hotspot analysis of warming impacts on wheat yield seems supporting our finding 

that India may be one of the most susceptible wheat producer to warmer temperature 

(Asseng et al., 2016), suggesting our country-based constraint approach is quite robust 

though still with large uncertainties. Indeed, the uncertainties of wheat ST after constraint at 

the country scale are 2-3 times than that of global wheat ST (Fig 3a). The country-scale ST 

for wheat may be even slightly larger than the prior model ensemble, because models 

disagree largely on regional differences in ST (Extended Data Fig 2). Similar lack of error 

reduction applies to country-scale ST for soybean (Fig 3g), but not for rice (Fig 3c) and 

maize (Fig 3e), where observational constraint reduces uncertainties for country-scale ST by 

4% - 44% for different countries (Fig 3c & e). For rice, the difference in ST among countries 

are relatively small. China, the largest rice producer, has the least negative rice ST of 

-4.3±3.1% K-1, while Bangladesh, one of the least developed countries, may suffer most 

from warming (-6.8±2.9% K-1). For maize, ST across countries differ more than two times. 
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Maize yield of its largest producer, USA, is probably mostly affected by warming 

(-10.9±6.0% K-1). Although the prior model ensemble shows some major producers (maize 

over France and soybean over Argentina) might have slight yield increment in response to 

warming, however, the observational constraint shows that none of the major producers for 

the studied crops is likely going to benefit from warming (Fig 3).  

 

The expected warming may not be unanimous globally that lower latitudes and coastal 

area may experience smaller magnitude or warming than the rest land area (IPCC AR5). 

Therefore, in addition to spatial variations in ST, the projected spatial pattern of warming 

may also affect the vulnerability and uncertainties in crop yield responses to projected 

global warming. For wheat and rice, the difference in yield response is dominantly 

explained by the difference in ST across countries (Fig 3b,d). It is less so for maize and 

soybean as the predicted yield responses of different countries deviate from the gradient of 

ST (Fig 3f,h). This is mostly related to that the magnitude of warming over US corn belt is 

much lower than other major maize producing area (Extended Data Fig 6). In spite of 

uncertainties in spatial variations of ST and warming magnitude, the overall picture is quite 

clear. Even with the 1.5 degree scenario, which is the target set in Paris agreement and has 

the lowest magnitude of warming, the yield loss in response to warming can still be 

substantial ranging from 1.6% to 6.6% among major cereal producers (Fig 3b,d,f,h). If 

anthropogenic CO2 emission follows voluntary nationally determined contributions, the 

track of emission will lie between RCP 2.6 and RCP 6.0 (Hempel et al., 2013). Accordingly, 

at the end of this century, warming induced yield loss may range from 1.8% to 9.6% for 

major cereal producers under RCP 2.6, and it is between 7.2% and 24.2% under RCP 6.0 

(Fig 3b,d,f,h). If we successfully limited global warming by 2.0 K as agreed in the Paris 
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agreement, the warming induced yield loss can be limited by 2.9-12.5% (Fig 3b,d,f,h). 

 

Figure 3 Yield response to temperature change (ST) and its vulnerability under different 

climate change scenarios (1.5 K, 2.0 K, RCP2.6 and RCP6.0) over top five producers of 

(a-b) wheat, (c-d) rice, (e-f) maize and (g-h) soybean. Bars on the left panels show 

country-scale ST before (empty bars) and after (filled bars) emergent constraint. Colored 
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lines show the global-scale ST and uncertainties after constraint. Right panels show the 

relationship between ST and yield loss due to global warming projected by the climate 

model under different scenarios (1.5 K, 2.0 K, RCP 2.6 and RCP 6.0 at the end of this 

century). 

 

To summarize, our approach scales up the field warming experiment results to the 

globe and reduce uncertainties in projected warming impacts on global crop yield. While we 

have more than 90% confidence that global ST for maize, rice and soybean is negative, the 

global ST for wheat is only likely to be negative because of smaller magnitude of negative 

response and existence of positive ST over some experiment sites. With more clear global 

pictures of ST, the remaining main uncertainties in projecting warming impacts on crop 

yield lie in three aspects. First, our constraint approach only slightly reduced uncertainties 

in regional ST mainly due to limited number and uneven distribution of available 

experiment sites. This is particularly the case for latitudes northern than 45oN (Fig 1), which 

could be substantial with the prospects of northward expansion of croplands (Pugh et al., 

2016). Second, the interactive effects of warming and simultaneous change in atmospheric 

CO2, moisture supply and adaptation measures are yet well understood and quantified (e.g. 

Ruiz-Vera et al., 2015; Schauberger et al., 2017; Tack et al., 2016; Usui et al., 2016). For 

example, FACE experiments show that the interactive effects of warming and atmospheric 

CO2 can be either insignificant for rice (Usui et al., 2016) or changing soybean yield by up 

to 33% (Ruiz-Vera et al., 2013), but extrapolating the few FACE sites to wider regions are 

still challenging. Finally, spatial pattern, magnitude and seasonality of warming is also a 

substantial source of uncertainties (e.g. Osborne et al., 2013), which requires joint 

inter-sectoral modelling efforts (Rosenzweig et al., 2017) by climate and crop modellers.  
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Methods 

 

Field warming experiments 

A literature search was performed on studies that applied artificial warming on wheat, 

rice, maize or soybean through Web of Science, Google Scholar and China National 

Knowledge Infrastructure (CNKI; http://www.cnki.net). We considered all peer-reviewed 

studies published between January 1990 and February 2016 from which the yield changes 

and warming magnitude were reported. To avoid the confounding effects of methodological 

difference between field studies and in-door incubations, we restricted the database to 

field-scale experiments, and no laboratory or controlled condition experiments are included. 

To avoid short-term noise, we only considered experiments that last more than two months 

and include reproduction stage of growing season. Following the above criteria, a total of 48 

sites (Fig. 1) from 46 literatures were found and included in the analysis. The sensitivity of 

crop yield to global temperature change, ST (% K-1), was used to represent the response of 

crop yield to temperature change. The studies with local temperature change (ΔT) unequal 

to +1 K were firstly adjusted to +1 K impact by dividing the impact value by ΔT, which 

assumed a quasi-linear relationship between impacts and ΔT.  

 

 

Global gridded crop models (GGCMs) 

The Inter-Sectoral Impact Model Intercomparison Project 1 (ISI-MIP-1; Warszawski et 
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al., 2014) started a fast-track global climate impact assessment for the main global crops in 

2012, including wheat, rice, maize and soybean. Seven global gridded crop models (EPIC, 

GEPIC, IMAGE, LPJ-GUESS, LPJmL, pDSSAT and PEGASUS) were used to simulate 

crop yield in 0.5o × 0.5o grid cells over the globe, forced with climate reconstruction for 

1980-2099 (Extended Data Figure 2-5). The simulations were carried out under a scenario 

of constant CO2 concentration (380 ppm in 2000) and full irrigation, to avoid confusion of 

covariance with CO2 and precipitation. More detailed information about the simulations can 

be found in Rosenzweig et al., 2014. ST values simulated by global crop models were 

calculated from yield changes between 2029-2058 (+2 K of global mean temperature) and 

1981-2010 (baseline) which were then divided by change in local temperature. For global or 

country-scale ST, all the grids were averaged by weighting the corresponding growing area 

of each crop (Chad et al., 2008).  

 

Emergent Constraint at global and country scale 

Emergent constraint is an approach to bridge two diagnostic variables, where one can 

be confronted with experimental or observed data, the others cannot, across an ensemble of 

models. Its efficiency has been proved by recent earth system studies in correcting biases 

and reduce uncertainties (e.g. Cox et al., 2013; Sherwood et al., 2014).The theoretical 

details of the emergent constraint are explained in Cox et al., 2013. In our study, we applied 

emergent constraint approach to bridge the ST at field sites and ST at global and country 

scale. For the constraint at global scale, the uncertainties in ST estimates come from three 

sources: uncertainties in observed site scale ST, uncertainties in simulated site scale ST, and 

uncertainties in the relationship between site scale ST and global scale ST (Fig 2) For the 

constraint at country scale, it includes an additional source of uncertainties in the 
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relationship between global scale ST and country scale ST simulated by the crop models 

(Extended Data Fig 6).  

 

Climate change projection under various scenarios 

Four climate change scenarios (+1.5 K, +2.0 K, RCP2.6 and RCP8.5) were considered 

in this study because +1.5 K and +2.0 K are the agreed target by Paris agreement in limiting 

the degree of global warming (UNFCCC, 2015). RCP2.6 and RCP6.0 represents the lower 

bounds and higher bounds of emission pathways if anthropogenic CO2 emission follows 

INDCs (intended nationally determined contribution; IEA, 2016). The spatial pattern of 

global warming was deduced from the bias-corrected climate change projection by 

IPSL-CM5A-LR (Hempel et al., 2013). We used this model result because it is the only 

available bias-corrected climate projection available for impact studies at the time of 

preparation of this manuscript. Although a large ensemble of CMIP5 climate model 

projections are available, it is difficult to extract the scenarios of 1.5 K and 2.0 K (Frieler et 

al., 2016), mostly because the simulation length did not extended back to pre-industrial 

period. We defined the period of +1.5 K (+2.0 K) as the 30-year running mean of global 

temperature exceeding 1.5 K (2.0 K) warmer than the pre-industrial period in RCP2.6 

(RCP6.0), following the impact model protocol providing results for the IPCC “special 

report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and 

related global greenhouse gas emission pathways” (Frieler et al., 2016). At the end of this 

century (2070-2099), the global warming projected by the bias-corrected IPSL-CM5A-LR 

represent 1.7 K (RCP2.6) and 3.2 K (RCP6.0) warmer global temperature than the 

pre-industrial period (1860-1889). The vulnerability of crop yield of major cereal producers 

was calculated as the products of ST and projected temperature change over the country. 
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Extended Data Figure 1 Relationship between ST over the globe and ST over the five 

major producers simulated by global gridded crop models for (a-e) wheat, (f-j) rice, (k-o) 

maize and (p-t) soybean. 
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Extended Data Figure 2 Spatial patterns of ST simulated from seven global gridded 

crop models (a-g) for wheat. The black dots represent the sites for field warming 

experiments. 
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Extended Data Figure 3 Spatial patterns of ST simulated from seven global gridded 

crop models (a-g) for rice. The black dots represent the sites for field warming experiments. 
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Extended Data Figure 4 Spatial patterns of ST simulated from seven global gridded 

crop models (a-g) for maize. The black dots represent the sites for field warming 

experiments. 
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Extended Data Figure 5 Spatial patterns of ST simulated from seven global gridded 

crop models (a-g) for soybean. The black dots represent the sites for field warming 

experiments. 
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Extended Data Figure 6 The predicted changes of mean annual temperature (MAT) 

over contemporary growing areas for wheat (a-c), rice (d-f), maize (g-i) and soybean (j-l) 

under different climate change scenarios (+1.5 K, +2.0K, RCP2.6 and RCP6.0). 
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Chapter 5 Global irrigation contribution to 

wheat and maize yield 

Summary  

Irrigation is an important management option for increasing crop productivity and 

adapting for adverse climate change impacts. However, the irrigation contribution to global 

crop yields remains unclear, in particular because direct observations are scarce. Here, we 

provide such estimates for wheat and maize at global scale by developing a Bayesian 

framework integrating estimates from both climate analogue approach and global crop 

modelling on the relative difference between attainable rainfed and irrigated yield (Δyield). 

The resulted reanalysis outperform initial sources when confronted against independent US 

statistical survey data. Our results show that, at global scale, Δyield is 34% (±25%) for 

wheat and 22% (±23%) for maize. Spatial variation in Δyield are several folds, driven more 

by gradients in precipitation than by evaporative demand. Moreover, 30–47% of 

contemporary rainfed areas would not have sufficient local runoff resources to fulfill the 

potential irrigation demand. The tension between irrigation demand and available water 

resources at local and river basin scales suggest that engineering efforts such as trans-basin 

water diversion would be needed to expand irrigation on a sustainable basis. Considering 

reanalyzed Δyield was about half than ensemble model estimates, hydro-economic and 

agro-economic studies based on simulated effect of irrigation on yield improvement would 

have to be revisited. At the time of thesis preparation, this chapter is going to be submitted 

as Wang X et al. Global irrigation contribution to wheat and maize yield 
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Over the next several decades, the projected increase in global population and 

increasing demand for animal products will require substantial increases in global crop 

production (Tilman et al., 2011; FAO, 2012). Because cropland expansion is limited by 

availability of land, negative implications for greenhouse gas emissions (Houghton et al., 

2012; Carlson et al., 2017), and severe ecological consequences (Cassman et al., 2003; 

Laurance et al., 2014) via removal of forests and grasslands, much attention has been 

devoted to the intensification of crop production systems in ways that minimize 

environmental impacts. The challenge of increasing crop yields is further enhanced by 

climate change, which is expected to result in substantial net declines in regional to global 

crop yields (Lobell et al., 2011; Asseng et al., 2015; Rosenzweig et al 2014). Improving and 

expanding current irrigation is seen as a possible measure to achieve higher yield levels in 

water-limited regions while also improving the resilience of cropping systems to climate 

variability (Mueller et al., 2012; Jägermeyer et al. 2017; Schauberger et al., 2017). 

 

Despite recognizing the importance of irrigation to increasing yield (Mueller et al., 

2012; Jägermeyer et al. 2016), the contribution of irrigation to yield increment at regional to 

global scales remains uncertain. The classical methods assumed one/two coefficient of 

evapotranspiration for each crop, which dismiss climatic and varietal variability. Different 

assumptions taken by different researcher based on this line of methods can result in 

estimates differed by two times (40% of production in Rosegrant et al. 2009 vs. 20% of 

production in Siebert and Döll 2010). More recent studies (e.g. Mueller et al., 2012, 2013; 

Jägermeyer 2016, 2017; Neverre et al. 2016) generally take two more complex methods: the 
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climate analogue (CA) and process based crop modeling.  

 

The CA approaches are based on global datasets of census and survey-derived yield 

data, combined with classification of climatic growing zones and irrigation extent. 

Attainable yields are defined as the 95th percentile yields within a climate zone, and these 

are calculated including and excluding irrigated areas to define rainfed and irrigated 

attainable yields (Mueller et al., 2012; Mueller et al. 2013; see Methods). With this 

approach, the contribution of irrigation to yield under current technology can be estimated 

because it implicitly accounts for factors (e.g. climate and crop varieties) interacting with 

irrigation. However, spatial extrapolation of the derived attainable yields relies upon 

relatively simple climate indices (growing degree days and precipitation). These indexes do 

not account for intra-seasonal weather variations and the disproportionate effects of 

short-duration weather events during sensitive periods of the growing season (e.g. episodes 

of dry periods (Lesk et al., 2016), hot extremes (Lobell et al., 2012; Gourdji et al., 2013) 

and low temperature stress (Espe et al., 2017) during reproductive growth period). As an 

alternative to up-scaling farm-level data, gridded crop models provide spatially explicit 

simulations of irrigated and rainfed yield over the globe. Due to mechanistic representations 

of crop growth dynamics, daily or sub-daily temporal resolution and efforts put to improve 

and evaluate simulated crop response to climate variations (Martre et al., 2015; Li et al., 

2015; Muller et al., 2016), the ensemble of these models was shown to robustly representing 

impacts of spatial variations in climate on yield (e.g. Asseng et al., 2015; Liu et al., 2016). 
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However, such models also have limitations in representing the diversity of crop varieties, 

management practices, irrigation technology and soil properties (e.g. Folberth et al., 2016), 

which may lead to biases in estimating the magnitude of irrigation contribution to the yield 

in a specific location.  

 

As the advantages of CA and gridded crop model approaches are complementary, we 

hypothesize that integrating their results in a single coherent framework may overcome their 

respective limitations and lead to more precise estimates of the role of irrigation on regional 

and global crop yield. Here we use the climate analogue (CA) attainable yield dataset from 

Mueller et al. (2013) (see Methods) and the crop model simulations from the Global 

Gridded Crop Model (GGCM) inter-comparison project (Elliott et al., 2015; see Methods), 

with 10 state-of-the-art gridded crop models. These crop models also provided results for 

the latest assessment report of the Inter-governmental Panel on Climate Change (IPCC). We 

reanalyze the above data streams with Bayesian Model Averaging (see Methods; Raftery et 

al., 2005), focusing here on wheat and maize due to their large-scale geographic coverage, 

dominant role in global crop production and data availability.  

 

First, we examine the performance of our reanalysis against an independent dataset of 

irrigated and rainfed yield over the US based on county yield surveys from the US 

Department of Agriculture that differentiate rainfed from irrigated yields (referred to as 

gridded-USDA in the following). We compare Δyield (the ratio of the difference between 
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irrigated and rainfed yield to irrigated yield; see Methods) in the gridded-USDA dataset to 

Δyield estimated by CA (Fig 1a), by GGCMs (Fig 1b) and by the combined Bayesian 

reanalysis of both (Fig 1c). Δyield from CA is less biased than that from GGCMs as Δyield 

from CA distributed on both side of 1:1 line (Fig. 1a), while Δyield from GGCMs is almost 

always higher than Δyield from gridded-USDA and on average more than twice than 

gridded-USDA (Fig. 1b). However, the correlation between Δyield from gridded-USDA and 

Δyield from GGCMs (r=0.67 for wheat, r=0.72 for maize; Fig 1b) are larger than that 

between gridded-USDA and Δyield from CA (r=0.49 for wheat, r=0.59 for maize; Fig 1a). 

This suggests a better representation of spatial variations in Δyield by the GGCMs. The 

Bayesian fusion reanalysis integrating CA and GGCMs provides a more precise estimate of 

Δyield than either of the methods taken separately, by preserving good spatial variations 

(r=0.69 for wheat, r=0.76 for maize) and reducing the large biases in Δyield from GGCMs 

(Fig 1c).  

 

Based on our reanalysis, global mean Δyield for wheat is 0.34±0.25 (mean ± standard 

deviation over contemporary harvested area (Monfreda et al., 2008)) and for maize is 

0.22±0.23. This suggest that full irrigation may increase wheat yield (52%) more than maize 

yield (28%) in relative terms at global scale. However, the contribution of irrigation to crop 

yields has large spatial differences (Fig 2). For wheat (Fig 2a), Δyield varies by an order of 

magnitude across latitudes. Wheat yields benefit more from irrigation in semi-arid and 

subtropical regions (between latitudes 15oN and 23oN Δyield >50%, i.e. irrigated yield is 
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double of rainfed yield) compared to higher latitudes (Δyield <10%). In some major wheat 

producing regions, such as the US, eastern Europe (Ukraine and western Russia) and the 

lower reach of the Yangtze river basin, yield increases from irrigation are limited (<10%), 

probably due to sufficient precipitation during wheat growing seasons (Extended Data Fig 

1). By contrast, in drier regions such as the US Great Plains, the Mediterranean, Central 

Asia, northern China and Australia, wheat yield is found to benefit largely from irrigation 

(Δyield >50%). There are, however, some “wet” region (where annual precipitation is larger 

than 1000mm) showing a large positive Δyield, such as southwestern China and India. This 

can be either related to a mismatch between wheat growing seasons and the wet season over 

these regions affected by South Asia monsoon or related to the larger evaporative demand 

induced by higher temperatures. The latitudinal differences in Δyield of maize are not as 

large as those of wheat (Fig 2b). Large Δyield of maize is found in semi-arid and summer 

dry regions around ~30oN, such as the US Great Plains, southern Europe and northwestern 

China, with a few exceptions in Brazil (mainly the Cerrado area) and South Africa. 

Although the potential for yield increment over sub-Saharan Africa is generally high 

(Mueller et al., 2012), however, the Δyield of maize over this region is low due to 

coincidence between maize growing season here and the wet season.  

 

Given that climate drivers for the spatial variations in Δyield may vary among different 

crops and regions, we perform partial correlation analyses between Δyield and various 

climate variables for 3.5o by 3.5o moving windows (Fig 3). We find that Δyield across about 
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half of the crop area (47% for wheat, 43% for maize) is significantly correlated (P<0.05) 

with mean annual temperature, whereas areas showing a significant correlation with annual 

precipitation are even larger (67% for wheat, 70% for maize). For both wheat and maize, 

the dominance or co-dominance of temperature in Δyield are only found in north of 40oN, 

such as Canada, the Northeast US and Northeast China, while precipitation is dominant in 

spatial variations of Δyield over all other regions. This implies that spatial variations in 

Δyield are mostly determined by variations in climatic water supply, proxied by 

precipitations, rather than climatic water demand, proxied by temperature. The correlation 

between Δyield and precipitation is only weak for maize over western Africa, eastern India 

and southern China, suggesting that local maize yield is not primarily limited by water 

supply, which is consistent with the low Δyield over these regions (Fig 2). The above results 

remain robust when we change the proxy of climatic water demand from temperature to 

potential evapotranspiration (PET) (Extended Data Fig 2; See Methods).  

 

Increasing crop yield through extension of irrigation to realize Δyield shown in Fig. 2 is 

limited by available water resource. We therefore compared reanalyzed irrigation 

requirement for wheat and maize (see Methods) with available runoff resources (Fekete et 

al., 2000), which provides a limit to surface water supply for irrigating contemporary 

rainfed wheat and maize croplands. We consider two parameters for irrigation practices in 

utilizing runoff: 1) the Δyield threshold, which determines the minimum irrigation benefit, 

above which we apply full irrigation and 2) maximum ratio of runoff that can be diverted 
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sustainably for irrigation while safeguarding the riverine ecosystems (Jägermeyr et al., 

2017). When considering a reasonable range of the two parameters (Fig 4a; see Methods 

section), 80.2 million ha to 125.9 million ha of contemporary rainfed wheat and maize 

cropland do not have sufficient runoff to meet the full irrigation demand (Fig 4b; Extended 

Data Fig 3), which accounts for 30% - 47% of contemporary rainfed croplands of wheat and 

maize. Large area with water deficit concentrates around 30oN and 30oS, including western 

US and Canada, circ-Black Sea, Central Asia, North and Northeast China, Argentina, South 

Africa and Australia (Fig 4b; Extended Data Fig 3) with the largest deficit found in 

southwestern Australia exceeding 100 mm. When comparing the irrigation demand with 

river discharge (GRDC, 2007) at basin scale for major river basins growing wheat and 

maize (Extended Data Fig. 4), we also found large spatial heterogeneity in the balance 

between water supply and irrigation demand (Extended Data Table 1). The projected 

irrigation requirements of wheat and maize accounts for less than 0.1% of river discharge in 

Congo basin but more than three times than the river discharge of Murray basin (Extended 

Table 1). Irrigation requirements exceeds 20% of today’s river discharge for one fifth of the 

basins (Don, Huai, Tigris & Euphrates, Yellow River, Ural), highlighting the grand 

challenge of fully realizing the potential of irrigation to increase crop yield globally for 

wheat and maize. If further considering today’s water withdrawal may already be 

non-sustainable in some basins where demand-to-supply ratio is low (e.g. 4% for Indus), 

irrigating the crops in a sustainable way becomes even more challenging. Besides mining 

ground water for irrigation, the trans-basin water transfer program (e.g. the South-to-North 
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Water Diversion Project in China) can be a viable and sustainable alternative to mitigate the 

imbalance between water supply and demand, as the total irrigation demand over Yellow 

River basin and Yangtze River basin accounts for only 1.4% of river discharge of Yangtze 

River.  

 

We note that the above analysis on the balance between irrigation supply and demand is 

subject to several uncertainties. In particular, on the supply side, the available runoff that 

can be used for irrigation varied substantially within the basin and across the seasons. We 

have also ignored elevation constraints that may determine whether hillside croplands can 

use runoff for irrigation. On the demand side, our approach likely underestimates irrigation 

demands for two reasons. We only consider wheat and maize, while other 

irrigation-demanding cereals (e.g. rice), cotton, vegetable and oil crops have not been 

included due to data limitations. We estimated rainfed cropland area as area without 

irrigation facilities (Siebert et al., 2013), which may underestimate the area of croplands 

needing additional irrigation as many croplands equipped with irrigation facilities today are 

still rainfed or applying deficit irrigation due to economic consideration or access to water 

resources (Siebert et al., 2013). With potentially smaller demand and larger supply than the 

reality, our estimates on the imbalance between projected irrigation demand and supply may 

still be quite conservative. At global scale, despite growing details of spatial distribution of 

irrigation facilities (Siebert et al., 2013), our knowledge on the amount and spatial and 

temporal distribution of irrigation water applied in croplands remains a data gap limiting 
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our analyses to realize the potential of irrigation for yield increment.  

 

Overall, our integrated estimate combining empirical evidences and process modelling 

on irrigation contribution to yield provides new insights for interdisciplinary studies in 

agronomy, hydrology and economy. The reanalyzed Δyield can be used directly to provide 

yield difference between irrigated and rainfed crop to obtain the localized average irrigation 

water value when yield difference is the essential factor in determining water use decisions 

(Neverre et al., 2016). Since global Δyield estimated by crop models varied by a factor of 4 

across themselves and was, on average, ~2 times larger than observations, previous 

hydrologic analyses rely upon one crop model or one simplified empirical model (one/two 

crop specific coefficient for evapotranspiration) to estimate the yield difference between 

irrigated and rainfed crop could have largely underestimated uncertainties in yield 

difference between rainfed and irrigated yield (e.g. Rosegrant and Cai, 2002; Siebert and 

Döll 2010; Jägermeyr et al., 2017). 

 

Sustainably enhancing crop yield through expansion of irrigation could prove difficult. 

Improvement of irrigation practices could save water and allow to expand irrigation 

(Jägermeyer et al. 2016), as could long distance transfers between water rich basins and 

water poor basins such as the South-to-North Water Diversion Project in China (Berkoff, 

2003). As a next step, the improved estimation of Δyield could be used to value more 

precisely irrigation water value and allow large scale hydroeconomic evaluations which also 
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represent other sectors to gain in better precision and thus decisions (Neverre et al. 2016).  

 

 

Methods 

Attainable yield estimates from climate analogues 

The estimated rainfed and irrigated attainable yields are derived using a climate 

analogue approach, which is updated from Mueller et al. (2012) as described in Mueller et 

al. (2013). A series of climatic growing zones are defined based on increments of growing 

degree days and precipitation. Within each growing zone, “irrigated” attainable yields are 

calculated as the area-weighted 95th percentile of all yield observations (Monfreda et al. 

2008) within the bin. The “rainfed” attainable yields are calculated from all yield 

observations within the bin that are located in a political unit with <10% of crop area 

irrigated, where crop-specific irrigation maps are from the MIRCA2000 irrigation dataset 

(Portmann et al. 2010). The rainfed and irrigated attainable yield estimates used for this 

analysis are grid cell averages derived from replicating this sampling procedure for varying 

numbers of climate zones, from 100 to 400 (10x10 to 20x20 growing degree day and 

precipitation increments). 

A limitation of this dataset is that the irrigated attainable yields may not be different 

from the rainfed attainable yield estimates if little area is actually irrigated within a climate 

zone. Further, we note that for the comparison with USDA data, the underlying yield dataset 

upon which these estimates are based (Monfreda et al. 2008) does include county-level 
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USDA yield data (although these data are a combination of rainfed and irrigated 

observations). 

Global gridded crop models 

We used Phase 1 simulation results by global gridded crop model inter-comparison 

(GGCMI) results (Elliott et al., 2015). The phase 1 of GGCMI includes an unprecedented 

number of crop models (10) with very different nature of formulas. For example, 

photosynthesis of crops was simulated with different methods including Farquahar scheme 

and light use efficiency scheme. The parameters of even the same scheme may differ across 

models (Folberth et al., EPIC difference paper). A full list of models, their characteristics 

and their references can be found in Extended Data Table 2. However, all models follow the 

same simulation protocol (Elliott et al., 2015) with the same forcing of gridded climate and 

management (planting date and fertilization rate) in order to minimize the impacts of 

difference in model drivers. All models provided “harmnon” simulations, which simulate 

historical crop yield forced by historical climate dataset but assuming unlimited nitrogen 

supply to the croplands (Elliott et al., 2015) are used in the analysis. We use simulations 

with “harmnon” settings instead of “fullharm” settings forced with more realistic fertilizer 

rate because 1) it helps to avoid interactive effects of fertilization and irrigation, and 2) it is 

closer to the assumption used in the climate analogue approach, making the two datasets 

directly comparable.  

Gridded US dataset 

The gridded rainfed and irrigated crop yield over US (gridded US) dataset is based on 
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county rainfed and irrigated yield statistics provided by the US Department of Agriculture 

(USDA), postprocessed by Elliott et al.. The statistics were gridded to 0.25 degree 

according to the weighted crop area over each county. The dataset covers 1980–2010, and 

we use the average across this time period. Further details of the dataset can be found in 

Schauberger et al. (2017).  

The gridded-USDA dataset is suitable for evaluating our reanalysis because 1) it is 

independent from both products we used in this study, and 2) unlike in many less-developed 

countries where rainfed farming is often paired with a significantly lower management 

intensity (e.g. less fertilizer input and pest control measures), the rainfed and irrigated 

management over the same county in US is more often associated with access to water 

resources. It may thus more closely approximate spatial variations in the contribution of 

irrigation alone to crop yield instead of the contribution of co-varying factors. 

Runoff and river discharge  

The global runoff dataset (UNH-GRDC composite runoff fields) used in this study is a 

reanalyzed product based on observed river discharge collected by Global Runoff Data 

Centre (GRDC) and simulations by a climate driven hydrology model (Water Balance 

Model). This dataset has composite runoff fields, which preserve the accuracy of discharge 

measurements as well as give the spatial and temporal patterns of the best estimates of 

runoff. Since the dataset has already accounted contemporary utilization of runoff for all 

purposes, including irrigation, it serves in this study as an estimate of available water 

resources that can potentially be used to irrigate the rainfed croplands. UNH-GRDC dataset 
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has a spatial resolution of 0.5o and temporal resolution of one month over the entire global 

land surface (Fekete et al., 2000).  

River discharge data from Global River Discharge Center (GRDC, 2007) was used as 

the data source for 405 river basins with mean annual discharge [km³] of the gauging station 

nearest to the mouth as potentially available water resources to irrigate wheat and maize 

croplands.  

Bayesian model average 

We derived Δyield as the ratio of the difference between the irrigated yield and the 

rainfed yield to the irrigated yield (Eq. 1).  

 

The irrigated yield is chosen as the dividend, instead of the more intuitive rainfed yield, 

because the rainfed yield can be very small or even zero in extreme cases jeopardizing the 

stability of the analyses. The reanalysis of Δyield integrating the global gridded crop models 

and climate analog approaches was performed with algorithm called Bayesian model 

average (BMA, Raftery et al., 2005), which has been proven to be an effective methods in 

ensemble weather forecast, but has not yet been applied in agricultural studies. The idea of 

BMA is to derive posterior probability of each model given a target dataset. The posterior 

probability of each model is then used to calculate model weights (Wi for the ith model) in 

the model ensemble and result in reanalyzed estimates that “best” combine information 

from different datasets. The derivation of Wi follows the Bayesian equation (Eq. 2): 
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where Mi is the ith model estimates on Δyield and O is the Δyield estimated from the 

climate analog approach. In the prior (P(Mi)), we assumed each model is equally skillful in 

projecting Δyield. The conditional probability P(O|Mi) is therefore proportional to the 

misfits between the ith model simulation and climate analog estimates. With Wi, the 

posterior probability for the best estimate of Δyield in the reanalysis will follows Eq. 3:  

 

Where P(Δyield|Mi,O) is conditional probability density function of Δyield based on Mi and 

O. A Monte-carlo Markov chain method is used to derive the optimal Wi for each model 

(Raftery et al., 2005).  

Potential Evapotranspiration (PET) 

In addition to temperature, we use potential evapotranspiration (PET) as a surrogate to 

estimate climatic demand of water from croplands. We follow the modified Haude equation 

(Castellvi et al., 1997) to derive PET, which has been proven effective in building statistical 

models for regional crop yield (Gornott et al., 2016). The climatic variables used in 

calculating PET comes from AgMERRA dataset, which was also the climate forcing for 

GGCM simulations (Elliot et al., 2015).  

Balance between irrigation requirements and runoff supply 

We first obtain potential irrigation water withdraw calculated by each GGCM (Elliot et 

al., 2014; Elliot et al., 2015). To ensure consistency between reanalyzed Δyield and 
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irrigation demand, we use the same model weights (see Bayesian model average) to 

calculate reanalyzed irrigation demands used in the main text. The irrigation demands 

estimated by GGCMs assuming 100% irrigation efficiency, which is not realistic when 

comparing with available runoff resources. Therefore, at each grid, we divide the reanalyzed 

irrigation demand by crop-specific irrigation efficiencies (Jagermeyr et al., 2015) to attain 

actual irrigation withdrawals from surface water bodies.  

On the water supply side, the UNH-GRDC dataset considers today’s human water 

withdrawal for industrial, domestic and agricultural usage from river runoff. River 

ecosystems provide life- supporting functions that depend on maintaining minimum river 

discharge, i.e. environmental flow requirements (EFRs) (Pastor et al., 2014, Poff et al. 

1997). However, the quantification of EFRs is not trivial as estimation methods vary quite 

uncertain, which may vary by 4 times with different methods (e.g. EFRs estimated by 

different methods ranges from 12-48% for Nile and 30-67% for the Amazon). A detailed 

account of such is beyond the scope of this study and can be found in Jägermeyr et al. 

(2017). The large uncertainties in EFRs and lack of data for other potential usages make it 

difficult to estimate the overall sustainable water resources available for irrigating wheat 

and maize. Therefore, we assumed a fraction of runoff used for irrigating wheat and maize 

croplands. To make our estimates more conservative, the range of this fraction is set from 

20% - 40%. This range of fraction is already 2-4 times larger than global runoff withdraw 

for all sectors (Jägermeyr et al., 2017). The choice of 20% or 40% will not qualitatively 

change our findings (Extended Data Figure 3). Confirming our assumptions, Elliott et al. 
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(2014) assumed that up to 40% of naturalized runoff might be used human needs including 

irrigation. Given that both current human water withdrawals are already unsustainable 

across many river basins worldwide (Jägermeyr et al., 2017), and that there are many other 

irrigation-intensive crops in addition to the here-studied wheat and maize (e.g. rice, cotton 

and vegetatbles), the estimates of water deficit in our study appear conservative.  
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Figure 1. Comparison of irrigation contribution to yield (Δyield) estimated from US 

statistics (gridded-US) and from different approaches for wheat (top panel) and for maize 

(bottom panel) over conterminous US. In the left column (a & d), the y-axis shows Δyield 

estimated from the climate analogue (CA) approach; In the central column (b & e), the 

yaxis shows Δyield estimated from gridded crop models; In the right column (c & f), the 

y-axis shows Δyield estimated from Bayesian model average (BMA). Details of different 

datasets and approaches can be found in the Methods section. r indicates correlation 

coefficient between Δyield estimated from gridded-US and other Δyield estimates. **** 

indicates p<0.01.  
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Figure 2. Spatial distribution of Δyield for (a) wheat and (b) maize over contemporary 

growing area. The right panel shows latitudinal distribution of Δyield for each one degree 

latitudinal band. The black curve shows Δyield estimated from the climate analogue dataset 

and the red curve shows Δyield estimated from BMA reanalysis, with shaded area indicates 

the range of uncertainty.  
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Figure 3. Partial correlation in the spatial domain (3.5o×3.5o moving windows) between 

Δyield and climatic variables (mean annual temperature (MAT) and mean annual 

precipitation (MAP)) for wheat (top panel) and for maize (bottom panel). (a,c) bivariate 

mapping for spatial distribution of the partial correlation coefficient between Δyield and 

MAT (RΔyield,MAT) and that between Δyield and MAP (RΔyield,MAP). (b,d) Percentage of 

cropland area where Δyield is controlled by temperature or precipitation depending on the 

chosen threshold (x-axis) for the partial correlation coefficients.  
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Figure 4. Relationship between irrigation demand estimated from the BMA reanalysis for 

contemporary rainfed croplands of wheat and maize and available runoff resources. (a) The 

amount of rainfed crop area when irrigation demand cannot be met with available runoff 

resources, according to different minimum threshold of Δyield (y-axis) and maximum 

threshold of runoff consumption (x-axis). (b) the spatial distribution of the difference 

between irrigation demand and available runoff resources. The spatial pattern is determined 

with the minimum threshold of Δyield for demanding irrigation is 10% and the maximum 

usage of runoff is 30% (corresponding to the black circle in (a)). See Extended Data Fig. 3 

for spatial pattern of different thresholds of maximum runoff usage.  
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Extended Data Figure 1. Spatial distribution of mean growing season temperature and 

precipitation for wheat (top panels) and for maize (bottom panels). (a) mean growing season 

temperature (oC) for wheat; (b) mean growing season precipitation (mm) for wheat; (c) 

mean growing seaon temperature (oC) for maize; (d) mean growing season precipitation for 

maize (mm). 
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Extended Data Figure 2. Partial correlation in the spatial domain between Δyield and 

climatic variables (potential evapotranspiration (PET) and mean annual precipitation (MAP)) 

for wheat (top panel) and for maize (bottom panel). (a,c) bivariate mapping for spatial 

distribution of the partial correlation coefficient between Δyield and PET (RΔyield,PET) and 

that between Δyield and MAP (RΔyield,MAP). (b,d) Percentage of cropland area where Δyield 

is controlled by PET or precipitation depending on the chosen threshold (x-axis) for the 

partial correlation coefficients. Same to Figure 3 but using PET to replace MAT. 
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Extended Data Figure 3. The spatial distribution of the difference between irrigation 

demand and available runoff resources determined with maximum runoff usage threshold of 

(a) 20% and (b) 40%. 
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Extended Data Figure 4. Spatial distribution of top 25 river basins having largest rainfed 

wheat and maize croplands. Colorbar show area of rainfed wheat and maize croplands 

within the basin according to Monfreda et al. (2008). 
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Extended Data Table 1. Balance of river discharge and irrigation demand of 

contemporary rainfed wheat and maize croplands for 25 river basins with largest 

rainfed area of wheat and maize. River discharge is the mean annual discharge of the 

gauging station nearest to the mouth that is represented in GRDC database (GRDC, 2007). 

Irrigation demand is estimated by reanalyzed irrigation demand by GGCMs (see Methods). 

Rainfed crop area is derived from Monfreda et al. (2008). 

 

Basin Name  Rainfed area 
(103 km2) 

Discharge 
(103 m3) 

Demand 
(103 m3) 

 Demand to 
supply ratio (%)

Mississippi  367.2 535.0 60.0  11.2 

Danube  126.0 202.3 25.0  12.3 

Nelson river  120.4 95.5 14.7  15.4 

Ob  110.9 400.4 17.2  4.3 

Parana  106.5 476.3 10.6  2.2 

Volga  64.7 256.7 2.7  1.1 

Yangtze river   60.2 899.4 3.7  0.4 

Don  56.5 25.5 7.7  30.0 

Murray  51.8 6.7 24.9  372.0 

Ganges  47.0 379.6 6.4  1.7 

Dniepr  46.7 47.1 3.6  7.7 

St.lawrence  45.6 268.2 2.0  0.8 

Amur  39.4 314.7 4.2  1.3 

Huai River  30.4 27.9 7.8  28.0 

Tigris &  29.7 37.6 15.6  41.6 
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euphrates 

Yellow river  27.5 45.0 9.3  20.8 

Orange  27.2 9.0 13.7  152.4 

Niger  25.7 159.5 0.3  0.2 

Ural  25.3 9.4 5.0  53.4 

Nile  21.2 39.5 1.8  4.5 

Congo  19.5 1269.3 0.1  0.0 

Indus  19.2 91.6 3.6  3.9 

Uruguay  19.0 170.5 0.3  0.2 

Elbe river  17.8 22.4 1.6  7.1 

Loire  17.3 26.4 4.3  16.1 
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Extended Data Table 2. Characteristics of used crop models 

Model Type1 CO2 effects2 Stresses3 Fertilizer application4 Calibration5 Calibrated 

parameters  

Reference 

CGMS-WOFOS

T 

Site-based LF, TE W, T NA Site-specific sum 

requirements 

De Wit & van 

Diepen, 2008 

EPIC-BOKU Site-based RUE, TE W, T, A, N, 

P, BD, AL

automatic N input (max

200 kg Ha-1 yr-1) PK

(national stat. IFA)

dynamic application 

Site-specific 

(EPIC 0810) 

NA   Izaurralde et 

al., 2006 

EPIC-IIASA Site-based RUE, TE W, T, A, N, 

P, BD, AL

NP (sub-national stat by

Balkovič et al. (2013);

Mueller et al. (2012)); P

timing: rigid; N timing:

automatic (based on N

stress) 

Site-specific 

and global 

, HIpot (ric, 

mai) F 

(others) 

Izaurralde et 

al., 2006 

EPIC-TAMU Site-based RUE, TE W, T, H, A, 

N, P, BD, 

AL 

NPK at planting Site-specific 

and global 

HIpot (maize) Izaurralde et 

al., 2012 

GEPIC Site-based RUE, TE W, T, A, N, 

P, BD, AL

NP (national stat:

FertiSTAT), dynamic

Site-specific 

and global 

HIpot (for 

maize and 

Liu et al., 

2007 
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application of N, rigid

application of P 

rice) 

LPJ-GUESS Ecosystem LF, SC W, T NA Uncalibrated NA Lindeskog et 

al., 2013 

LPJmL Ecosystem LF, SC W, T NA National AImax HI αa Waha et al., 

2012 

ORCHIDEE-cr

op 

Ecosystem LF, SC W,T,N Automatic N input (IFA) Uncalibrated Wu et al., 

2015 

pAPSIM Site-based RUE W, T, H, A, 

N 

SPAM by You et al. (2014),

(1/2 at planting, 1/2 at day

45) 

Site-specific 

(APSIM) 

NA Elliot et al., 

2014 

pDSSAT Site-based RUE (for

wheat, rice,

maize) and

LF (for

soybean) 

W, T, H, A, 

N 

SPAM by You et al. (2014),

(1/2 at planting, 1/2 at day

45) 

Site-specific 

(DSSAT) 

NA Elliot et al., 

2014 

PEGASUS Ecosystem RUE, TE W, T, H, N, 

P, K 

NPK (national stat. IFA),

annual application 

Global Deryng et al., 

2016 

Notes: (NA where not applicable) 

1 Site-based: site-base crop model; Ecosystem: global ecosystem model 
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2 Elevated CO2 effects: LF: Leaf-level photosynthesis (via rubisco or quantum-efficiency and leaf-photosynthesis saturation; RUE: 

Radiation use efficiency; TE: Transpiration efficiency; SC: stomatal conductance 

3 W: water stress; T: temperature stress; H: specific-heat stress; A: oxygen stress; N: nitrogen stress; P: phosphorus stress; K: potassium 

stress; BD: bulk density; AL: aluminum stress (based on pH and base saturation) 

4 Fertilizer application, timing of application; NPK annual application of total NPK (nutrient-stress factor); source of fertilizer application 

data; timing: annual or dynamic 

5 F: fertilizer application rate; HIpot: Potential harvest index; LAImax: maximum LAI under unstressed conditions; HI: harvest index; αa: 

factor for scaling leaf-level photosynthesis to stand level; β: radiation-use efficiency factor; TH: Total Heat unit required for the maturity; TC: 

Technological coefficient; TS: Temperature sensitivity of photosynthesis; LR: ratio of leaf to above ground biomass. 



 

149 

Chapter 6  Conclusions and perspectives 

Overall, this thesis presented a series of studies detecting and attributing change of 

crop yield to climate change and management practices. Through these studies, the author 

not only improved the ORCHIDEE-crop model, but also advanced our ways to integrate 

crop model outputs and observational data streams. With ensemble of global gridded crop 

models and observational data-streams, we quantify and reduce uncertainties on how yield 

of major cereal crops respond to warmer temperature and irrigation practices. The key 

conclusions for each chapters are as follows.  

 

Firstly, based on the statistical model built upon yield statistics and climate, we found 

maximum and minimum temperature changes had opposite impacts on maize yield over 

Northeast China. Maize yield increased by 10.0±7.7% in response to a 1 oC increase in 

growing season mean daily minimum temperature (Tmin), but decreased by 13.4±7.1% in 

response to a 1 oC increase in growing season mean daily maximum temperature (Tmax). 

The responses of maize yield to climate variations were subject to large spatial differences 

in terms of both the sign and the magnitude. Furthermore, the growing season mean 

temperature was significantly correlated with the response of maize yield to Tmax (R=-0.67, 

P<0.01), which changes from positive to negative when the growing season mean 

temperature exceeds 17.9±0.2 oC. Precipitation became the dominant climatic factor driving 

maize yield variations when growing season precipitation was lower than ~400 mm, but had 

a weaker influence than temperature over most of the study area. These results highlight that 

spatial variations in the yield response to climate change can be explained by spatial 

gradients in local climate conditions. The robustness of process models in regional 

application would have to be carefully calibrated and examined.  

 

Secondly, the particle filter based optimization was developed and applied in 

optimizing parameters controlling phenological development in ORCHIDEE-crop for three 

types of rice over China. The calibrated model forced by historical change in climate and 

transplanting dates was used to attribute the length of growth period (LGP) of rice to 
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managements and climate change. The results suggest that climate change has an effect on 

LGP trends dependent on rice types. Climate trends have shortened LGP of early rice 

(-2.0±5.0 day/decade), lengthened LGP of late rice (1.1±5.4 day/decade) and have little 

impacts on LGP of single rice (-0.4±5.4 day/decade). ORCHIDEE-crop simulations further 

show that change in transplanting date caused widespread LGP change only for early rice 

sites, offsetting 65% of climate change induced LGP shortening. The primary drivers of 

LGP change are thus different among the three types of rice. Management are predominant 

driver of LGP change for early and single rice. This study shows that complex regional 

variations of LGP can be reproduced with an optimized crop model. Better documenting 

observational error and management practices can help reduce large uncertainties existed in 

attribution of LGP change through data-model integration. 

 

Thirdly, integrating field warming experiments at 48 sites across the globe and an 

ensemble of gridded global crop models (Rosenzweig et al., 2014) through emergent 

constraint approach, we produce field-data-constrained new estimates of the responses of 

crop yield to changes in temperature (ST). The new estimates show with >95% probability 

that warmer temperatures would reduce yields for maize (-7.1±2.8% K-1), rice (-5.6±2.0% 

K-1) and soybean (-10.6±5.8% K-1). For wheat, ST was less negative and only 89% likely to 

be negative (-2.9±2.3% K-1), which is 50% less than previous estimates (Zhao et al., 2017; 

Liu et al., 2016). The field-observation based constraints from the results of the warming 

experiments reduced uncertainties associated with modeled ST by 12-54% for the four crops. 

The key implication for impact assessments after the Paris Agreement is that with global 

warming limited within 2 K above pre-industrial levels will still reduce yields of major 

crops by -3 to -13%, without considering effects of atmospheric CO2 concentrations. Even if 

warming was limited to 1.5 K, none of the major producing countries of these crops would 

likely benefit from the warmer temperatures without effective adaptation. Maize, rice and 

soybean would be more vulnerable to increasing temperatures than wheat. 

 

Finally, the global reanalysis of irrigation contribution to wheat and maize yield was 

performed by Bayesian model average to integrate estimates from both data-driven datasets 

and global crop modelling. The reanalysis was found to have more precision than estimates 

either by data-driven dataset or by global crop model ensemble when confronted with US 
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statistics. The reanalysis shows that, at global scale, irrigation contributes to 34%±25% and 

22%±23% of irrigated yield for wheat and maize respectively. The further analysis on 

supply and demand balance of irrigation water shows that the priority of building irrigation 

facilities is on eastern Europe and India for wheat and Brazil for maize. If shifting global 

rainfed croplands into irrigated ones, 30% - 47% of contemporary rainfed croplands do not 

have sufficient local runoff resources to meet irrigation demand, including some hotspots 

(e.g. northern China and mid-western US), which will have to rely on groundwater or 

trans-basin water transfer program. The large overestimates (~2 times than the “bottom-up” 

estimates) and uncertainties (~4 times difference among models) in model simulated 

irrigation contribution to crop yield suggest that previous model-based analyses of 

agricultural economy and hydrology will have to be revisited. 

 

During the PhD studies, I have also been developing the ORCHIDEE-crop model by 

incorporating multiple management practices and a new allocation scheme, which considers 

phenological growth regulation and the full nutrient cycling of nitrogen and phosphorus. 

Like many land surface models, the original allocation scheme in ORCHIDEE, and thus 

earlier version of ORCHIDEE-crop, is photosynthesis centric (Friedlingstein et al., 1998). 

The carbon assimilation simulated by Farquhar scheme is the “source” of crop growth 

allocated in a cascading manner to each organ of the crop (Figure 6.1). However, results 

presented in Chapter 2and 3, and results from FACE experiments (Long et al., 2006) clearly 

indicates that crop growth dynamics are strongly regulated not only by photosynthesis but 

also “sink strength” of assimilated carbon, which has been hypothesized to be associated 

with crop phenology and nutrient availability (e.g. Ainsworth et al., 2004). Therefore, I am 

going to improve the allocation scheme of ORCHIDEE-crop model, making it from a 

“cascade” model into a “spiral” model, which consider multiple down-regulations to 

potential photosynthesis assimilations (Figure 6.1). Such improvement will help the model 

become a better tool to understand how climate change would have been affecting croplands, 

though such multiple feedback loops will make the model more unstable and difficult to 

calibrate (e.g. Goll et al., 2017). The other major shortcoming of ORCHIDEE-crop model is 

the coverage of crop types is limited to winter wheat, maize and rice at the moment. Though 

these three crops account substantial portion of global calorie production, they only cover 

about one-fifth of global croplands. The large cropland area with other crop types can not be 
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well represented due to lack of parameter sets for other crops. We will expand the model 

parameter sets for other crops (e.g. soybean, rapseed, millet) in the future studies.  

Figure 6.1 Schematic plot showing the change from “cascading” allocation model (black 

lines, Friedlingstein et al., 1998), where crop growth was controlled by the source to 

“spiral” allocation model (black + blue lines), which interactively consider source-sink 

constraint in crop growth. 

 

On the other aspect, as mentioned in Chapter 1 and Chapter 5, climate change not only 

affect the food production and carbon cycling of croplands, but also the surface water and 

energy balance of them. Thus, the climate-cropland relationship is not unilateral. The 

crop-growth related change in surface albedo, evapotranspiration and surface roughness will 

feed back to the atmosphere and affect the local and regional climate. The significant 

historical change in cropping intensity, crop productivity and management practices (e.g. 

irrigation) could have already left a footprint on global climate (e.g. Lobell et al., 2008ab; 

Jeong et al. 2014). In current version of IPSL earth system model, croplands are represented 

with very productive C3 and C4 grasslands, which could have dimissed the feedback of 

crop land surface to the climate. Here, we illustrate the potential influence of surface 

variables on climate through comparing offline simulations of non-crop version of 

ORCHIDEE and ORCHIDEE-crop over China during the past three decades.  

 

As shown in Figure 6.2, the land surface properties simulated by non-crop and crop 

version of ORCHIDEE show drastic differences. Compared with the calibrated 
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ORCHIDEE-crop model (Wang et al., 2017), the non-crop version of ORCHIDEE under 

estimate the LAI by 2-6 folds and under estimate the evapotranspiration from rice croplands 

by a magnitude. The underestimate of LAI reflects the failure of non-crop ORCHIDEE to 

represent the phenology and growth dynamics of productive Chinese rice, while the 

underestimate of latent heat flux is related both to the underestimate of LAI and the lack of 

accounting for irrigation practices. On the other words, the current IPSL earth system model 

may have underestimated the albedo of the rice croplands and the evaporative cooling 

effects due to application of irrigation practices.  

 

Figure 6.2 Simulated (a-b) leaf area index and (c-d) latent heat flux of rice croplands over 

China by standard ORCHIDEE model (a, c) and ORCHIDEE-crop model (b,d) 

 

As the land surface component of IPSL model, the crop branch of ORCHIDEE has the 

potential to be coupled with LMDZ in order to explore the complex interaction between 

croplands and the atmosphere. Recent studies have demonstrated the capability of such 

model in estimating, for example, the feedback of LAI increment to historical warming 
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trend (Zeng et al., 2017; Li et al., in prep). The coupled LMDZ-ORCHIDEE-crop model 

will contribute to our understanding on how change in crop growth, land use and crop 

managements may have been influenced the historical change and future evolution of the 

climate system.  
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