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sereine que tu as eu en notre projet dès le début – ainsi que notre tentative d’entraînement
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Résumé

(en français)

Variation et sélection sont au coeur de l’évolution Darwinienne. Cependant, ces deux
mécanismes dépendent de processus eux-même façonnés par l’évolution. Chez les micro-
organismes, qui font face à des environnements souvent variables, ces propriétés adap-
tatives sont particulièrement bien exploitées, comme le démontrent de nombreuses ex-
périences en laboratoire. Chez ses organismes, l’évolution semble donc avoir optimisé sa
propre capacité à évoluer, un processus que nous nommons évolution de l’évolution (Evo-
Evo). La notion d’évolution de l’évolution englobe de nombreux concepts théoriques, tels
que la variabilité, l’évolvabilité, la robustesse ou encore la capacité de l’évolution à innover
(open-endedness). Ces propriétés évolutives des micro-organismes, et plus généralement
de tous les organismes vivants, sont soupçonnées d’agir à tous les niveaux d’organisation
biologique, en interaction ou en conflit, avec des conséquences souvent complexes et contre-
intuitives. Ainsi, comprendre l’évolution de l’évolution implique l’étude de la trajectoire
évolutive de micro-organismes – réels ou virtuels – et ce à différents niveaux d’organisation
(génome, interactome, population, ...).

L’objectif de ce travail de thèse a été de développer et d’étudier des modèles math-
ématiques et numériques afin de lever le voile sur certains aspects de l’évolution de
l’évolution. Ce travail multidisciplinaire, car impliquant des collaborations avec des
biologistes expérimentateur·rice·s, des bio-informaticien·ne·s et des mathématicien·ne·s,
s’est divisé en deux parties distinctes, mais complémentaires par leurs approches : (i)
l’extension d’un modèle historique en génétique des populations – le modèle géométrique
de Fisher – afin d’étudier l’évolution du bruit phénotypique en sélection directionnelle,
et (ii) le développement d’un modèle d’évolution in silico multi-échelles permettant une
étude plus approfondie de l’évolution de l’évolution. Dans un premier temps, grâce à une
version étendue du modèle de Fisher, nous avons montré qu’un bruit corrélé sur différents
caractères phénotypiques évolue sous sélection directionnelle vers une forme bien partic-
ulière permettant de compenser en grande partie le coût de la “complexité phénotypique”,
qui limite habituellement et fortement les chances de fixer des mutations favorables lorsque
le nombre de caractères sous sélection est grand. Ces résultats prometteurs démontrent
l’importance et l’avantage sélectif du bruit phénotypique en sélection directionnelle, et
devrait susciter de nouveaux travaux de recherche, en collaboration avec des biologistes
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10 Résumé

expérimentateur·rice·s. Dans un deuxième temps, grâce au développement d’un modèle
d’évolution expérimentale in silico multi-échelles, nous avons pu reproduire virtuellement
des approches expérimentales in vivo – notamment l’expérience d’évolution à long terme
(LTEE) – et ainsi contribué à comprendre les phénomènes de construction de niche et
d’émergence d’un cross-feeding stable, prémisses à la diversification et à la spéciation
bactérienne. Ce modèle d’évolution in silico nous a également permis de nous interroger
sur l’émergence et l’évolution de la régulation génétique, comme solution au maintien de
l’économie énergétique de la cellule. Nos résultats, encore préliminaires, confirment l’idée
que le rôle de la régulation génétique n’est pas d’ajuster le métabolisme aux conditions
environnementales, mais plutôt d’assurer l’économie énergétique interne et la survie de la
cellule, indépendamment des variations environnementales. Ces premiers résultats sug-
gèrent également que la structuration des génomes bactériens est fortement influencée par
les contraintes énergétiques internes.

Cette thèse a été financée par le projet européen EvoEvo (FP7-ICT-610427), grâce à la
commission européenne.

(in english)

Variation and selection are the two core processes of Darwinian Evolution. Yet, both are
directly regulated by many processes that are themselves products of evolution. Microor-
ganisms efficiently exploit this ability to dynamically adapt to new conditions. Thus,
evolution seems to have optimized its own ability to evolve, as a primary means to react
to environmental changes. We call this process evolution of evolution (EvoEvo). EvoEvo
covers several aspects of evolution, encompassing major concepts such variability, evolv-
ability, robustness, and open-endedness. Those phenomena are known to affect all levels
of organization in bacterial populations. Indeed, understanding EvoEvo requires to study
organisms experiencing evolution, and to decipher the evolutive interactions between all
the components of the biological system of interest (genomes, biochemical networks, pop-
ulations, ...). The objective of this thesis was to develop and exploit mathematical and
numerical models to tackle different aspects of EvoEvo, in order to produce new knowledge
on this topic, in collaboration with partners from diverse fields, including experimental
biology, bioinformatics, mathematics and also theoretical and applied informatics. To
this aim, we followed two complementary approaches: (i) a population genetics approach
to study the evolution of phenotypic noise in directional selection, by extending Fisher’s
geometric model of adaptation, and (ii) a digital genetics approach to study multi-level
evolution. This work was funded by the EvoEvo project, under the European Commission
(FP7-ICT-610427).
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Foreword

I precisely remember the first book of theoretical biology I read. At this time, I was an
aircraft mechanic, apparently far from the academic world. With Chance and Necessity,
Jacques Monod made a remarkable demonstration of the central dogma of molecular
biology, introduced 12 years ago by Francis Crick (Crick, 1958). As a novice, I have been
impressed by the clarity and the rigor of this philosophical essay, stamped with a certain
arrogance to have explained everything about life on Earth.

L’ultima ratio de toutes les structures téléonomiques des êtres vivants est
donc enfermée dans les séquences de radicaux des fibres polypeptidiques, “em-
bryons” de ces démons de Maxwell biologiques que sont les protéines globu-
laires. En un sens, très réel, c’est à ce niveau d’organisation chimique que
gît, s’il y en a un, le secret de la vie. Et saurait-on non seulement décrire ces
séquences, mais énoncer la loi d’assemblage à laquelle elles obéissent, on pour-
rait dire que le secret de la vie est percé, l’ultima ratio découverte (Monod,
1970).

This book sowed the seeds of my fascination for evolutionary biology. In the following
year, I went back to school with this kind of convictions: living organisms own a “genetic
program”, encoding for their phenotype. This program is regularly altered by purely ran-
dom mutations, thereby providing the fuel for evolution. I found comfortable consistency
with this dogma in the first lessons I followed at university. The apotheosis has probably
been reached on reading The Selfish Gene by Richard Dawkins (Dawkins, 1976).

During my first year of college, I met astonishing people1 that pushed me to take a more
measured look at theoretical biology. In particular, I had the opportunity to read the
work of Jean-Jacques Kupiec (Kupiec and Sonigo, 2000; Kupiec, 2008), a fervent partisan
of nominalism in science, that definitively influenced my scientific itinerary. While J-J.
Kupiec’s narrative is tinged with a touch of bitterness, his epistemology has the merit to
promote thought and criticism. I will always remember the little joke I heard at the time:
“People believing that stochastic gene expression is important are often to the left, people
believing that a genetic program exists are often to the right”2.

1See the acknowledgments.
2A classical debate between essentialist and nominalist views in sum.
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Armed with this very small, but necessary epistemological knowledge, I finally read On the
Origin of Species by Charles Darwin. I was not surprised to discover that his reasoning was
almost at the opposite from Jacques Monod’s ones. While the latter stated that the three
properties distinguishing living organisms from the rest of the universe were teleonomy,
autonomous morphogenesis and reproductive invariance, Charles Darwin original theory
defined individual differences and natural selection as the main properties of life.

No one supposes that all the individuals of the same species are cast in the
very same mould. These individual differences are highly important for us, as
they afford materials for natural selection to accumulate, in the same manner
as man can accumulate in any given direction individual differences in his
domesticated productions (Darwin, 1859).

Indeed, a form of essentialism flowed back in biology in the 1960’s, mainly following Erwin
Schrödinger’s book What is Life? (Schrödinger, 1944), and the discover of DNA structure
(Avery et al., 1944; Watson and Crick, 1953). According to E. Schrödinger, most physical
properties on a large scale (e.g. diffusion process or kinetic theory of gases) emerge from
chaos at a low scale: this property is known as the principle of order-from-disorder. On
the contrary, living matter “is likely to involve ‘other laws of physics’ hitherto unknown,
which however, once they have been revealed, will form just as integral a part of science
as the former ” (Schrödinger, 1944). E. Schrödinger was believing in a principle of order-
from-order, the living matter escaping from thermodynamics laws. This point of view,
while probably never accepted as is by convinced darwinists1, still influences nowadays
scientific works.

Pour la biologie moléculaire, l’organisme est donc toujours une machine déter-
ministe, mais la vieille horloge de Descartes a été remplacée par un ordinateur
(Kupiec, 2008).

As a consequence, a paradoxical representation of life pervaded theoretical biology for
decades: while a small “Copernican revolution” was accomplished in evolutionary biology
with C. Darwin, a strong essentialism was hidden in the wood, particularly in molecular
biology.

One example is the strong belief that genes are the fundamental units of natural selec-
tion. Initially, genes have been defined as inheritable units predetermining2 phenotypic
traits (Johannsen, 1911) (W. Johannsen also introduced the notions of genotype and phe-
notype). As discussed right above, the discover of DNA and the mechanisms of gene
expression reinforced this view and led to a “genocentric” view of evolution, with a clear

1In Chance and Necessity, J. Monod largely argued against the principle of order-from-order in life.
However, all the paradox of his interpretation of life resurged when he used the term “Maxwell’s demons”
to design enzymes.

2One could ask why a causation was introduced, while just a correlation was observed.
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separation between the genotype, undergoing mutations and inherited, and the phenotype
(Rivoire and Leibler, 2014). This net separation is often criticized as a resurgence of an
Aristotelian interpretation of life1, against the evident nominalism of C. Darwin. The
selfish gene by Dawkins (1976) is often cited as a culmination of genetic reductionism in
biology.

Another consequence of essentialism in biology is the belief that mutations purely occur at
random. As stated by Monod (1970), the purpose—or teleonomy—of any living organism
is to transmit its intact genotype—by reproductive invariance—to its offspring. Of course,
as explained by J. Monod himself, teleonomy is not teleology: the apparent finalism of life
is a consequence of natural selection. But the damage is done: in the face of teleonomy
and reproductive invariance, the way mutations occur is necessarily out of the scope
of selection. For decades, any statement that organisms could partly control the way
mutations occur (e.g., the evolution of mutation rates, globally or locally on the genome),
was accused of finalism—which is indeed quite paradoxical. In the last decades, this
dogmatic view has been undermined by experimental an theoretical highlights, leading to
the idea that evolution could shape its own fate. This phenomenon is usually known as
the evolution of evolvability.

A last example I would give is the classical interpretation of organismal development as a
genetic program, deterministically expressing the phenotype from the genotype: “chaque
œuf contient donc, dans les chromosomes reçus de ses parents, tout son propre avenir,
les étapes de son développement, la forme et les propriétés de l’être qui en émergera.
L’organisme devient ainsi la réalisation d’un programme prescrit par l’hérédité” (Jacob,
1970)2. An essential role is attributed to the concept of protein stereospecificity, confer-
ring to the cell the ability to run deterministic and logical tasks based on signaling and
regulation pathways. As stated by Kupiec (2008): “bien que cela soulève de nombreux
problèmes, ce programme génétique a été conçu par analogie avec un programme informa-
tique”. However, biochemical reactions do not escape thermodynamics laws, and the low
number of molecules involved in many biological processes implies that “chance is at the
heart of the cell ” (Gandrillon et al., 2012). Nowadays, the stochastic nature of cellular
functioning is widely documented and accepted, but its consequences on the evolution of
biological organisms are still largely unknown.

Of course, there is no sense to criticize a posteriori the work of an entire scientific commu-
nity, without considering the extraordinary progresses of biology during the XXth century.
This is why my thesis work will be mostly based on the rationale that the tools and mod-
els of theoretical evolutionary biology proven to be efficient can be revisited, extended or
modified to ask new scientific questions.

The starting point of my thesis work is the process of evolution of evolution, or EvoEvo, as
coined by Hindré et al. (2012), that encompasses the evolution of variability, evolvability,

1The model (the essence) of an organism is encoded in its genotype, out of the scope of natural
selection (in the world of ideas), its phenotype being an imperfect instantiation of the model (in the
sensible world).

2These words could remind the preformationist views developed during the XVIIth century.
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robustness and open-endeness.

There is no scientific theory without modeling (Servedio et al., 2014). I explored two
different—but not opposite—modeling approaches to study EvoEvo: mathematical mod-
eling and multi-scale individual-based simulations. On this particular point, I have been
strongly influenced all along my stay in the INRIA-Beagle team by the complementary
approach of Carole Knibbe and Guillaume Beslon, well-resumed by the quadruplet “Cre-
ate, Play, Experiment, Discover ”, used as a slogan for the 14th European Conference on
Artificial Life.

As explained in chapter I, there is a deep sense to tackle EvoEvo by these two modeling
sides. The first, and most obvious reason is that analytical demonstrations are needed to
sit a theory and convince a scientific community. The second reason is more specific to
EvoEvo: the evolution of an organism implies the interaction of many biological organiza-
tion levels, with different temporalities and scales. To properly understand how evolution
shapes such a complex system, we need to simulate it with a multi-scale model catching,
at least partially, this complexity (Lavelle et al., 2008). As stated by S. L. Peck: “The
world is complex and we need all the tools that we can muster to understand it” (Peck,
2004).

This manuscript is structured as following: in a first chapter, I will introduce the concept
of evolution of evolution, and the modeling approaches used to decipher some of its
aspects. Then, in part A, I will present a mathematical modeling study on the evolution
of phenotypic noise. This model extends Fisher’s geometric model (Fisher, 1930). In
part B, I will introduce Evo2Sim, a multi-scale model of in silico experimental evolution
(Hindré et al., 2012) dedicated to the study of evolution of evolution (chapter III). Two
results obtained with this model will be presented, one on niche construction and the
evolution of stable cross-feeding (chapter IV), another on the evolution of regulation
when organisms undergo strong energy trade-offs (chapter V).

Some of these results have been published, or submitted to scientific journals. Others
come from documents produced in the course of the FP7 EvoEvo project I were involved
in, or are preliminary. I will indicate it when it will be the case. This manuscript also
contains appendices; I will refer to them in the main text when necessary.
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Some rain forests in the Amazon region occur on white-sand soils. In these
locations, the physical environment consists of clean white sand, air, falling
water, and sunlight. Embedded within this relatively simple physical context,
we find one of the most complex ecosystems on earth, containing hundreds of
thousands of species. These species do not represent hundreds of thousands of
adaptations to the physical environment. Most of adaptations of these species
are to the other living organisms. The forest creates its own environment.
(Ray, 1993)

Figure 1 – An example of complex ecosystem. From Nausicaä, by Hayao Miyazaki.
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Chapter I

Introduction

I.1 The limits of the modern synthesis

Variation and selection are at the core of evolution (Darwin, 1859). In theory, these two
mechanisms are sufficient to engage a process of Darwinian evolution, where differences
in reproduction and survival rates—summarized by the concept of fitness—lead to the
“survival of the fittest” (Spencer, 1864). During the XXth century, the modern synthesis
has been developed to rise this mechanism as the central paradigm of biology, merging
C. Darwin’s and G. Mendel’s theories (Huxley, 1942) (Fig. I.1). Variation and selection
are also exploited in other fields such as evolutionary optimization algorithms. However,
while the modern synthesis mostly focused on molecular evolution, at the level of the
genotype (by attributing a fitness to an allele segregating in the population for example),
selection actually plays on the phenotype of an organism (Lande, 1976). Despite the
attempt of quantitative genetics to link phenotypic variability with genetic mutations,
the relationship between the genotype and the phenotype, known as the genotype-to-
phenotype map (Alberch, 1991), is far from being understood, and classical models of
evolution are unable to explain the most integrated properties of living organisms, e.g.,
phenotypic innovations or major transitions (Smith and Szathmary, 1997). Three main
reasons could be invoked to explain the apparent failure of modern synthesis to model the
most complex evolutionary outcomes:

• Biotic systems process information. In the early 1970’s, Paulien Hogeweg and
Ben Hesper coined the term “bioinformatics” to design the study of “informatic processes
in biotic systems” (Hogeweg and Hesper, 1978; Hogeweg, 1978). Even if the term has
later been distorted to refer to biological data analysis, an important idea was released:
according to P. Hogeweg, “it seemed to us that one of the defining properties of life was
information processing in its various forms, e.g., information accumulation during evo-
lution, information transmission from DNA to intra and intercellular processes, and the
interpretation of such information at multiple levels” (Hogeweg, 2011). Indeed, an essen-
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Variation
 Selection


Figure I.1 – Variation and selection at the heart of Darwinian evolution. As symbolically
represented by the Darwin finches, whose beaks are adapted to various sizes and shapes of seeds,
variation and selection are at the heart of Darwinian evolution, a theoretical basis to the modern
synthesis.

tial property of living species seems to be their ability to accumulate information from
past environments, on the long-term. By “learning” about past environmental features,
species can “react” to new environments, by enhancing their evolvability (e.g., by in-
creasing mutation rates, or favoring mutations in a specific region of their genome, ...),
or their robustness (e.g., by evolving DNA repair mechanisms, or by buffering genetic
variations through the regulation network, ...). During the last decades, this property of
evolution received a lot of interest, and is often referred as evolution of evolvability1.

• Evolution acts at multiple levels. In 2003, Paulien Hogeweg and Nabuto Takeuchi
noticed that: “although there has been much discussion on what is the appropriate level on
which Darwinian selection operates, we now know that in many cases the interesting fea-
tures arise through the occurrence of multiple levels of selection which act in concordance
and/or in conflict” (Hogeweg and Takeuchi, 2003). While the definition of “level” is the
source of a classical debate in biology2, one would hardly disagree that life takes place on
multiple physical and time scales. A living organism is composed of one or more cells,
each containing a cytoplasm with numerous and complex structures, DNA, RNA, pro-
teins and so on. Each organism interacts with its environment and with other organisms.
Populations of organisms modify their environment, creating new selective pressures, and
various species interact together, directly or indirectly. Life on earth thus scales from
molecules to entire ecosystems, all of these structures interacting and evolving in concert.
Here, a question rises about how to model such a complex system. Nobody pretends to
be able to forecast the weather by only simulating a set of gas molecules under brownian
motion. With such a low-scale modeling, important properties of weather, such as gravity
and Coriolis forces, temperature gradients or day/night cycles will never emerge from the
model. This is quite similar in evolutionary biology: a gene-centered model will not be
able to produce the most integrated properties of evolution, simply because there is no

1The concept of information accumulation and “evolution learning” is also a concern of the extended
evolutionary synthesis, an attempt to extend the modern synthesis (Laland et al., 2015; Watson and
Szathmáry, 2016).

2See Banzhaf et al. (2016) for a discussion on the notion of “biological level”.
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support in the model for it (Banzhaf et al., 2016). To do so, multi-level models are
needed.

• Interesting properties of evolution emerge with second-order selection. Ac-
cording to Tenaillon et al. (2001), the Darwinian view of evolution needs a refinement to
explain its “complex dynamic aspects”. More than just a selection for better adaptation to
a specific environment, second-order selection, or indirect selection (Kirschner and
Gerhart, 1998; Reisinger and Miikkulainen, 2006), acts on the regulation of the processes
of adaptation to any new environment (Pennisi, 1998). Some survival strategies could
not evolve without second-order selection, such as evolution of mutation rates and mu-
tators (Denamur and Matic, 2006), or evolution of bet-hedging (Beaumont et al., 2009)
for example. Second-order selection is also responsible for the emergence of important
processes discussed just above, such as information accumulation in biotic systems.

Finally, as shown in Figure I.2, long-term evolution and second-order selection led to the
emergence of many mechanisms observed in living systems, at all the biological organi-
zation levels. These mechanisms directly control the variability of organisms, and are
themselves under selection. Hence, we can expect that living organisms, more than being
adapted to their environment, are adapted to evolve. Hindré et al. (2012) coined the
term evolution of evolution (EvoEvo) to refer to this evolutionary process.

Variation
 Selection


DNA repair 

Mutator 
genes 

Transposable 
elements 

Horizontal 
transfert Stochasticity of 

gene expression 

Sex 

Network 
modularity 

Niche 
construction Resource cycling 

Figure I.2 – Long-term evolution leads to evolution of evolution. On the long-term, living
organisms have evolved different mechanisms (DNA repair, horizontal transfer, sex, and so on) that
control their own variability. However, these mechanisms are themselves under selection, implying
that the basic mechanisms of evolution are therefore themselves evolving, a process called evolution
of evolution, or EvoEvo.
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I.2 What is evolution of evolution?

By evolving, living organisms permanently adapt to rarely stable and sometimes unpre-
dictable environments. Moreover, organisms constantly modify their environment, by
interacting with it and by evolving, thus generating complex and challenging conditions.
While higher eukaryotes have evolved complex sensori-motor systems to plastically adapt
to environmental variations, micro-organisms (that represent more than an half of the
biomass on earth) do not have such complex sensoring abilities. However, they are sur-
prisingly efficient to adapt to their environment by simply ... evolving. Many experimental
studies demonstrated that bacteria and viruses are able to adapt to new environments in
only a few tens of generations (Rainey and Travisano, 1998; Zhang, Q.,Lambert, G., Liao,
D., Kim, H., Robin, K., Tung, C.-k., Pourmand, N., 2011). Hence, micro-organisms are
excellent candidates to study evolution of evolution (Hindré et al., 2012).

EvoEvo encompasses the evolution of four essential evolutionary properties: variability,
evolvability, robustness, and open-endedness. While the notions of evolvability and
robustness pervaded theoretical evolutionary biology during the last decades, the concept
of open-endedness is more familiar to computational scientists. However, it is strongly
related to phenotypic innovations and major transitions (Smith and Szathmary,
1997), two important concepts in evolutionary biology.

I.2.1 Variability

Variability is the ability to generate new phenotypes. It is a necessary condition for any
evolutionary process to take place. A lot of biological mechanisms have been identified
that produce and/or control variability:

(1) Genetic variability. For historical reasons, genetic variability has been widely
studied during the XXth century, and a variety of mutational events altering genomes
have been identified (point mutations, small insertions and deletions, large rear-
rangements, horizontal transfers, gene amplifications, ...). Many mechanisms are
known to modify the rate at which these mutation events occur in the genome,
locally or globally, as reviewed in Ryall et al. (2012). For example, when contin-
gency loci—localized on small portions of the genome—are mutated, mutation
rates are locally increased. Another example is mutations in DNA repair or
maintenance genes, that can lead to hyper-mutator strains, which have constitu-
tively elevated mutation rates. In some conditions, these strains can be positively
selected and favor adaptation (Tenaillon et al., 1999; Denamur and Matic, 2006).
As a last example, transient changes in the expression level of DNA re-
pair and maintenance genes allow for rapid mutation rates increase in case of
environmental stress (Foster, 2007);

(2) Phenotypic plasticity. According to Stearns (1989), phenotypic plasticity refers
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to phenotypic variability in response to the environment. Micro-organisms own ge-
netic regulation networks, able to sense their environment. Evolution can shape
these regulation networks such that one genotype can produce many phenotypes as
a function of an environmental signal (the reaction norm). When one genotype pro-
duces several discrete phenotypes depending on the environmental signal, we speak
about polyphenism. When one genotype produces a single phenotype, whatever
the environmental variations, we speak about environmental canalization, one
source of evolutionary robustness (Waddington, 1942);

(3) Transgenerational epigenetic inheritance. According to Veening et al. (2008),
epigenetic inheritance refers to any transmission of a cellular state from one genera-
tion to another without genome modification. A classical example of this mechanism
is DNA methylation or acetylation (Avery, 2006). For example, the agouti yellow
mouse phenotype is due to the unmethylation of the retrotransposon gene Avy,
inserted upstream of agouti gene. Agouti yellow mices have yellow coat and suf-
fer obesity. It appeared that unmethylated sequences are transmissible from one
generation to the other via the gametes, without modification of the genotype.

(4) Phenotypic stochasticity. Finally, the stochastic fluctuations of the phenotype
(or phenotypic noise) are an important source of variability (Symmons and Raj,
2016). Phenotypic noise is mainly due to the inherent stochastic nature of biochem-
ical reactions inner the cell, because of the low number of implicated molecules and
thermodynamic fluctuations. An example is stochastic gene expression (SGE).
SGE has an important role in genetic regulation and the emergence of interesting
phenotypic properties such as stochastic switching (Acar et al., 2008; Tsuru et al.,
2011). Stochastic fluctuations are of primary importance in some survival strate-
gies, such as bet-hedging (Veening et al., 2008), as reviewed in details by De Jong
et al. (2011). The evolution of phenotypic noise will be studied in part A of this
manuscript.

All these mechanisms being themselves under selection, we can expect that variability—
and thus evolution—can evolve.

I.2.2 Evolvability and robustness

The question of the evolution of evolvability and its relationship with the evolution of
robustness has received important contributions in the last years. However, the question
is still open. While the term evolvability has been used in different ways (Wagner, 2013), it
is usually defined as the ability to increase the proportion of beneficial mutations,
while robustness is defined as the ability to withstand mutations without losing
fitness. Both mechanisms has been shown to evolve, mainly in numerical simulations (see
e.g. Bedau and Packard 2003; Elena and Sanjuán 2008; Crombach and Hogeweg 2008;
Beslon et al. 2010b). Demonstrating evolution of evolvability or robustness experimentally
is much more difficult since it necessitates to perform experimental evolution experiments,
which are long and costly (see e.g. Elena and Lenski 2003).
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At first sight, evolvability and robustness seem to be antagonistic. An evolvable organism
should not be robust, and a robust organism should not be evolvable. However, the re-
markable ability of Darwinian evolution to generate sophisticated emergent properties is
demonstrated here. Indeed, evolvability has an important role in innovation: a biological
system is evolvable if it can acquire novel functions through genetic change that increase
fitness (Wagner, 2005). However, and counter-intuitively, robustness and neutral mu-
tations also play a key role in the innovation process, because they allow to explore the
phenotypic space while the fitness of the organism remains constant. By exploring the
neutral landscape of an organism, neutral mutations promote future innovation.

This mechanism has nicely been represented by Wagner (2008) (Fig. I.3). Let’s consider
a network of all possible genotypes of an organism, each node being a genotype, linked to
accessible other genotypes by single mutations. A fitness is attributed to each genotype.
Some mutations are neutral, meaning that they link two genotypes with the same fitness,
negative (if they decrease the fitness), or positive. A positive mutation can also be an
innovation (the acquisition of a novel function with a beneficial fitness value, as discussed
later in this introduction). For a robust organism, many mutations are neutral, such that
evolution consists to travel in the neutral genotype network. Robust organisms can thus
explore vast regions of the genotype network with no consequence on their fitness, and
access new genotypes not accessible otherwise. As metaphorically stated by A. Wagner:

Perhaps the most compact way to express this problem is with an analogy from
politics: evolving populations need to be both “conservative” and “progressive”
at the same time (Wagner, 2012).

(1) 

(2) 

(3) 

Neutral mutation


Beneficial mutation


Figure I.3 – Evolution on the genotype network for a robust organism. Each genotype
is represented by a node, colored according to its fitness. Single mutations linking genotypes together
generate a network, explored by evolving populations of organisms. The successive fixed mutations
are represented by a path on this network. Beneficial mutations are represented by green arrows, while
neutral ones are represented by grey arrows. Here, the evolutive path is composed by long successive
travelling sessions on the neutral network, punctuated with three beneficial mutations (inspired from
Wagner 2008)
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I.2.3 Open-endedness

The notion of open-endedness has been extensively discussed in Banzhaf et al. (2016).
Often defined as the ability to continuously produce novelty and/or complexity, open-
endedness is a quite fuzzy notion. Considered as an important modeling challenge in
the field of artificial life, the term is almost unknown in theoretical biology. Indeed, this
recent concept still needs to be properly defined. According to Banzhaf et al. (2016),
open-endedness is essentially a modeling concept, and can refer to the capacity of a
model to generate “novelty”. Banzhaf et al. (2016) identified three types of novelties,
depending on model capabilities: variation, innovation and emergence:

(1) Variation. A variation is defined here as a change to the values of a variable, or an
instance in the model. This means that variations are simply the exploration of the
predefined space of the model (“novelty in the model ”, Banzhaf et al. 2016). This
definition could correspond to the notion of variability presented above;

(2) Innovation. An innovation is a change to the model itself. Hence, an innovation
modifies the space in which variation can operate (“novelty that changes the model ”,
Banzhaf et al. 2016). This definition could correspond to the notion of innovation
discussed above;

(3) Emergence. Emergence is a change to the “meta-model”. Indeed, a model is the
instantiation of a conceptual model, defining types of objects and their relationships
(“novelty that changes the meta-model ”, Banzhaf et al. 2016). This idea is exempli-
fied by Andrews et al. (2011): collective behavior (e.g. collective bird fly) is often
modeled by a class of individual-based models known as flocking or boids models
(Reynolds, 1987). It is first needed to define the behavior of the boids (to define the
agents), and then to collect individual positions (to collect data) in order to detect
flockness (to measure the data). Then, a meta-model of a flocking model is the
association of the concepts of agent, data and measure (Andrews et al., 2011). The
notion of emergence directly refers to major transitions. According to Smith and
Szathmary (1997), a major transition occurs when “entities that were capable of in-
dependent replication before the transition can only replicate as parts of a large unit
after it”. The comprehension of this property of living organisms is an important
challenge for evolutionary biologists.

We see that the concepts of variability, evolvability, robustness and open-endedness are
intertwined in a complex way. Their evolution also require interdependencies between
many mechanisms and properties, at multiple levels of biological organization.
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I.3 Capturing the whole spectrum of EvoEvo, or the
necessity to build multi-level models

I.3.1 Modeling choices and the experimental method

Building a model is a tough task, since modeling choices depend on the scientific question,
but also on the kind of desired output (consciously or not) and maybe on some intuition.
On this point, the modeling work presented in this manuscript has been largely influenced
by the approach of the INRIA-Beagle team, in particular the works of Knibbe (2007) and
Beslon (2008) on the modeling of complex biological systems. A model is always false,
and implies unavoidable assumptions, simplifications and shortcuts (Banzhaf et al., 2016).
But more than that, when a model is correctly used to produce a new hypothesis or theory,
this hypothesis or theory should acquire its own existence, independently from the model
(Grimm, 1999). In this sense, the model is useful to generate new ideas, but should then
disappear in their shadow (Beslon, 2008).

According to Servedio et al. (2014), in evolutionary research, as in many other fields,
some models are conceived to test the logic of verbal explanations of a theory, in the
same way that empirical data is used to test scientific hypotheses. To build such a
proof-of-concept model, we should follow the four steps of the experimental method
promoted by Claude Bernard: (i) First, observe the nature and build hypotheses. (ii)
Then, pick assumptions and build a model. (iii) Third, analyze the model, and finally
(iv) evaluate new hypotheses and propose new directions, closing the loop (Fig. I.4).
Even if the reality of scientific modeling has been shown to be more complex (the four
steps are often interconnected, and even self-connected, such that building a model consist
in navigating between them, Chalmers 1990; Beslon 2008), we should stick to this “best
practice” guideline as much as possible. The hardiest task (but also the most exciting)
probably consists in picking the right assumptions and build the model.

There is no well-defined guideline to pick the modeling assumptions, and to adjust the
complexity of the model. However, depending on the scientific question, the model must
at least represent the objects of interest, and their interactions. Regarding the study
of EvoEvo, two important theoretical objects summarize the relationship between an
evolving organism and its environment: the genotype-to-phenotype map, and the
fitness landscape:

(1) The genotype-to-phenotype map. The phenotype of an organism results from
a complex and non-linear cascade of developmental, physiological and regulatory
processes, summarized by the concept of genotype-to-phenotype map. According to
the central dogma of molecular biology (Crick, 1958), the development of an organ-
ism reflects the flow of information from the genetic sequence to the phenotype. As
such, the genotype-to-phenotype map is an object that represents all the functions
of an organism (transcription, translation, regulation, protein folding, metabolism,
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environmental sensing, and so on). Hence, the genotype-to-phenotype map is gen-
erally a very complex object, an important condition to the evolution of evolution,
as discussed above.

(2) The fitness landscape. The fitness landscape is considered as one of the most im-
portant concepts in theoretical evolutionary biology. The fitness landscape projects
the space of all possible genotypes, or phenotypes of a population of organisms in
the space of fitness values, usually through a fitness function. Firstly used by Wright
(1932), the fitness landscape is at the heart of historical models of evolution, such
as Fisher’s geometric model (Fisher, 1930) or NK-fitness landscapes model
(Kauffman and Levin, 1987). The latter has been used to show how the complexity
of a landscape influences the course of an evolutionary process (Correia and Fonseca,
2007). The former will be presented in detail in part A of this manuscript. Often
represented by a smooth function (e.g., a Gaussian-shaped function in Fisher’s ge-
ometric model), the fitness landscape of living organisms is probably a much more
complex, fluctuating and highly dimensional landscape (as discussed below).

Observe nature and build hypotheses 

Gather evidence 

Analyze evidence 

Evaluate hypotheses and propose new directions 

Pick assumptions and 
build a model 

Analyze the model 

(A) The scientific 
method 

(B) Proof-of-concept 
models 

Figure I.4 – Proof-of-concept modeling and the scientific method. This flowchart shows
the steps in the scientific process, with a parallel between the scientific method, as defined by C.
Bernard, and proof-of-concept modeling methodology. (A) The main steps of the scientific method.
(B) The steps of proof-of-concept modeling (inspired from Servedio et al. 2014).

I.3.2 The necessity of multi-level modeling of evolution

Computational models have been used to study evolution since the beginning of the
1990’s (Adami, 2006). However, since then, most computational models used a par-
tial representation of the genotype-to-phenotype map, generally in a fixed, predefined,
fitness landscape. Yet, fitness is the result of the interaction of all the biological struc-
tures of an organism, including its interactions with the environment. Similarly, the
variability/robustness/evolvability/open-endedness of the phenotype is the result of the
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interaction of variability/robustness/evolvability/open-endedness of all the biological struc-
tures of an organism, including its interactions with its environment. Furthermore, these
properties are co-dependent and they may interact in a cooperative or competitive way
(e.g., evolving chaperone proteins reduce phenotypic variability, thereby increasing ro-
bustness). Moreover, both the genotype-to-phenotype map and the fitness landscape are
very likely to change during the course of evolution. That is why a computational model
of EvoEvo must be multi-level, including the main organization levels of the genotype-
to-phenotype map and the fitness landscape (genome, transcription network, metabolic
network, phenotype, fitness, population, environment, and so on).

First, the genotype-to-phenotype map has long been considered as a one-directional and
deterministic process, the genetic information flowing from the genotype to the phenotype.
However, the development of living organisms is a non-deterministic process, depending
on many molecular mechanisms that are fundamentally stochastic, as demonstrated by
the stochastic nature of gene expression (Elowitz et al., 2002). Thus, one genotype can
lead to several random phenotypes, and this stochastic variability can itself evolve through
the genotype-to-phenotype map, as discussed in part A of this manuscript. Moreover, the
information can flow back from the phenotype to the genotype (e.g., thanks to RNA
interference, genetic regulation, or environment influence). Altogether, these mechanisms
make the genotype-to-phenotype map of an organism a very complex object to analyze,
generating non-intuitive situations through evolution of evolution.

Second, the fitness landscape of living organisms is much more complex than suggested
in early models of evolutionary biology. The fitness of an organism depends on its en-
vironment. However, organisms constantly interact with it (including other organisms),
such that the fitness landscape is constantly fluctuating, triggering complex evolutionary
outcomes, such that co-evolution, niche construction, resource cycling, and ultimately
major transitions. Some authors use the concept of fitness seascape to render the effect
of fluctuating fitness landscapes on evolution (Mustonen and Lässig, 2009).

As a whole, we see that the genotype-to-phenotype map and the fitness landscape form
a complex system, which cannot be modeled statically as it is the case in classical math-
ematical representations (Fisher, 1930; Kauffman and Levin, 1987) (even the number of
dimensions in the fitness landscape and in the genotype-to-phenotype map are evolv-
able). Moreover, both the genotype-to-phenotype map and the fitness landscape interact
through evolution, a condition for evolution of evolution. For these reasons, a model
of evolution of evolution should necessarily include complex, multi-layered and evolvable
genotype-to-phenotype map and fitness landscape. Such a model will incorporate a large
set of parameters and its study is likely to be very difficult. But as a compensation, it will
give rise to new hypotheses and predictions, impossible to obtain with previous models.
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I.3.3 But ...

Based on the previous arguments, one could argue that our modeling approach should
be exclusively a computational multi-scale approach, in the hope to observe the most
complex features of EvoEvo; it would be foolish to do so. (i) The first reason is that
history of theoretical evolutionary biology demonstrated the importance of mathematical
models to understand evolution. From mendelian genetics to population genetics, quan-
titative genetics, coalescence theory, and so on, mathematical models remain the most
powerful—and convincing—scientific tools. (ii) The second reason is that when the in-
tuition of an hypothesis or a theory is acquired by the exploitation of a computational
model of evolution, the best practice would be to derivate the mathematical equations
representing the phenomenon in a more abstract way, and provide a robust mathematical
analysis, if possible. This is for example the case for ævol model (Knibbe et al., 2007a)
(presented below): in ævol, a strong correlation between the genome size of bacterial-like
digital organisms and their mutation rates has been identified. This observation has fur-
ther been generalized with a more abstract mathematical model (Fischer et al., 2014).
(iii) The third reason is more practical: if some properties of EvoEvo can be studied with
mathematical models, there is no reason not to do it (Peck, 2004). The approach used in
this manuscript mostly results from this last reason. We decided to have a complemen-
tary approach, anchored in the modeling practice of the INRIA-Beagle team, using both
sustainable mathematical and complex multi-scaled and individual-based approaches, as
exemplified in the next parts of this manuscript.

I.4 State of the art

We have seen above that the study of EvoEvo requires the use of a variety of models, in-
cluding mathematical and multi-scaled individual-based approaches. In both cases, many
models, with sometimes a long history behind them, already allowed to largely highlight
the evolutive interactions between the genotype-to-phenotype map and the fitness land-
scape. Two modeling approaches will be presented below, and then be used as a basis to
decipher some aspects of EvoEvo: (i) Fisher’s geometric model, an historical mathe-
matical model of the genetic theory of adaptation, and (ii) digital genetics formalism,
that led to an experimental method in evolutionary modeling: in silico experimental
evolution.

I.4.1 Fisher’s geometric model of adaptation

Fisher’s geometric model (FGM, Fisher 1930) has a long and interesting history (reviewed
in Orr 2005; Tenaillon 2014), and received renewed interest in the last decades. According
to Tenaillon (2014), a reason is that behind its apparent simplicity and limited number
of parameters, FGM integrates a full model of mutations and epistatic interactions, with
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surprising emergent properties.

In FGM, each phenotypic character of an organism is represented by an axis in a Cartesian
coordinate system. R.A. Fisher used the term phenotypic complexity to refer to the
dimensionality n of this space. Let’s define the phenotype of an organism with n characters
by a point z = (z1, z2, ..., zn)T (T being the matrix transposition operator). The fitness
W (z) of this organism is then determined by its distance to the fitness optimum zopt,
such that:

W (z) = exp
[
−(z − zopt)TΣ−1(z − zopt)

]
(I.1)

where Σ denotes a n × n positive-definite and symmetrical matrix defining the shape
of the fitness landscape. For the sake of simplicity, an isotropic fitness landscape is
usually assumed, meaning that fitness varies independently and in the same proportion
for all characters. The origin of the coordinate system is also used as the fitness optimum
(zopt = 0), such that the fitness function is reduced to a simple Gaussian-shaped function:

W (d) = exp

[
−d

2

2

]
(I.2)

with d = ‖z‖ the euclidean distance of the phenotype z from the fitness optimum. Mu-
tations are represented by a random vector r = (r1, r2, ..., rn)T moving the ancestral
phenotype z to its offspring z′ such that z′ = z + r. The probability distribution of the
mutants is often characterized by a multivariate normal distribution of the form:

p(r) =
1√

(2π)n|Σr|
exp

[
−1

2
rTΣ−1r r

]
(I.3)

with Σr a covariance matrix. Thus, a mutation can potentially modify every characters,
a property known as the universal pleiotropy assumption (Wagner and Zhang, 2011).
Usually, initial conditions are a maladapted clonal population of asexual organisms, sitting
at a certain distance from the optimum zopt. Then, the work consists in studying the
bout of adaptation towards the optimum. FGM implies some well-known assumptions,
as described in details in Martin (2014): (i) the distribution of all random variables have
finite mean and variance and satisfy Lindeberg’s conditions (the central limit theorem
can be applied), (ii) the fitness function is twice differentiable and admits at least one
non-degenerate optimum, (iii) mutations have mild effects on the phenotype (mutational
events remain “local”), (iv) each mutation potentially affect every characters (the universal
pleiotropy assumption), and (v) the variety of mutants is very large, such that quantitative
characters vary continuously (the infinite-alleles approximation).

For a given phenotype z, Fisher (1930) demonstrated that the probability Pa(x) that
a random mutation of a given phenotypic size s is favorable is 1 − Φ(x), where Φ is
the cumulative distribution function of a standard normal random variable, and x is a
standardized mutational size x = s

√
n/(2d). n is the number of characters and d = ‖z‖ is

the euclidean distance to the optimum. As shown in Figure I.5A, this probability quickly
decreases with the mutational size.

R.A. Fisher also suggested that organisms may pay a cost for the complexity of their phe-
notype (the complexity being defined here as the number of characters n under selection),
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because the probability to fix a beneficial mutation of a certain size literally vanishes when
the number of characters increases (Orr, 2000). In consequence, only mutations with a
very small size should segregate in a population. R.A. Fisher argued that his result
was a demonstration of a micro-mutationism view of evolution, populations evolving
smoothly by very little steps. However, R.A. Fisher omitted to consider that mutations
occur in populations of finite size. As later demonstrated by M. Kimura with the neutral
theory of evolution, new mutations appearing in a population have a significative chance
to be lost at random, especially when their beneficial value is low. Thus, according to the
cost of complexity and the effects of genetic drift, we should expect that only mutations
of an intermediate size would segregate in an evolving population. Finally, as discussed
by Orr (2005), evolution towards a fitness optimum cannot be reduced to the study of a
single mutational event. When the entire boot of adaptation towards the fitness optimum
is scrutinized in FGM, it appears that the size of fixed mutations depends on the distance
from the optimum: very few large mutations are usually necessary to approach the fitness
optimum, the remaining distance being filled with many small mutations, as shown in
Figure I.5B.
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(B) Successive fixed mutations 
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Figure I.5 – The beneficial value of a mutation in FGM depends on its size. (A) The
probability Pa(x) for a mutation of normalized size x = s

√
n/(2d) (with n the number of characters,

and d = ‖z‖ the euclidean distance from the fitness optimum) to be favorable is Pa(x) = 1− φ(x)
(blue curve). (B) When a population evolves towards the fitness optimum zopt, a few number of
large mutations are usually sufficient to approach zopt. Then, a lot of small mutations are necessary
to reduce this distance to zero, as shown in blue (inspired from Orr 2005).

I.4.2 In silico experimental evolution: a tool to study evolution

In silico experimental evolution (Hindré et al., 2012; Mozhayskiy and Tagkopoulos, 2013;
Batut et al., 2013) is an approach based on the usage of individual-based models to evolve
digital organisms in a computer, a field known as digital genetics. In digital genet-
ics models (Adami, 2006), organisms are modeled by data-structures representing their

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



42 I. Introduction

genotype. The kind of structure used depends on the studied level(s) of organization
(numerical vectors, binary sequences, regulation network, ...) and the formalism used to
develop the model (reviewed in Mozhayskiy and Tagkopoulos 2013; Hindré et al. 2012).
As discussed in part B of this manuscript, the development of an in silico model of evo-
lution needs some “ingredients”. The minimum requirement is the evolutionary engine
enabling the data-structures to reproduce, mutate and be selected depending on a fitness
function. Many digital genetics models have been proposed in the literature, Avida being
the best known (Wilke et al., 2001; Adami, 2006). However, only a few models are able to
efficiently address questions related to evolution of evolution, in particular because most
formalisms impose that the structure of organisms and the fitness landscape are fixed over
time.

The increasing number of parameters and the computational and time resources needed to
run multi-scale individual-based simulations forbid an exhaustive and rigorous exploration
of the parameters and state spaces of the system, as it could be the case for Fisher’s
geometric model for example. Hence, an experimental approach is needed to study
this kind of models. According to Peck (2004), complex simulation models should be
explored with the same experimental and statistics tools used for real systems:

Simulations are experimental systems. Their complexity can make them closer
cousins in complexity to nature itself than to simple analytic models, but with
a powerful advantage over the real world: the modeler has complete control
of the system (Peck, 2004).

In evolutionary biology, the experimental method that consists in studying evolving or-
ganisms is experimental evolution. In experimental evolution, fast replicating micro-
organisms (e.g., bacteria or viruses) are being evolved in controlled environments for
thousands of generations (Philippe et al., 2007). It is then possible to recover precisely
the evolutionary history of lab strains by reviving frozen samples (Elena and Lenski,
2003). However, despite its explanatory and statistical power, experimental evolution
remains a long and costly process. In silico experimental evolution (ISEE) consists
in mimicking this process with digital organisms (Hindré et al., 2012; Mozhayskiy and
Tagkopoulos, 2013; Batut et al., 2013), as shown in Figure I.6: ancestral microbial (or
digital) populations are evolved in controlled environments and regularly frozen (or saved
in a backup), independent repetitions are made, and frozen populations can be revived
(or reloaded in memory) to perform competition experiments and other analyses. ISEE
approach while be exemplified in the part B of this manuscript.

Two formalisms have recently been used to develop computational models allowing for in
silico experimental evolution. Knibbe et al. (2007a,b) used the sequence-of-nucleotides
formalism to develop ævol software. With this model, the authors showed that indirect
selection could select specific genetic and network structures depending on the mutational
and selective pressures (Knibbe et al., 2007b; Beslon et al., 2010b,a). In parallel, Crom-
bach and Hogeweg (2008) developed the pearls-on-a-string formalism and used it to
show that, in time-varying environments, regulation networks, metabolic networks and
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Fossil records: Regular sampling and freezing at -80°C
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Figure I.6 – In vivo and in silico evolution experiments. Ancetral real micro-organisms
(top) and digital organisms (bottom) are propagated in controlled environments, in a laboratory or in a
computer respectively. Wet or digital populations are regularly frozen, or saved in backups, respectively
and can be revived or reloaded at any time. Many replicate populations can be independently evolved
from a common ancestor T0 (inspired from Hindré et al. 2012).

species networks can acquire structures that increase the evolvability of the organisms
(Crombach and Hogeweg, 2007, 2008, 2009). These two formalisms are described in the
next sections.

I.4.3 The sequence-of-nucleotides formalism

In the sequence-of-nucleotides formalism, the genome is a variable-length string of char-
acters. Predefined signal sequences, analogous to promoters, terminators or start/stop
codons, are used to detect genes. Therefore, mutational processes, such as point mu-
tations, small insertions and deletions, or large rearrangements can be simulated in a
realistic manner (Hindré et al., 2012). The sequence-of-nucleotides formalism has been
successfully used to study e.g., the evolution of non-coding DNA and the genes number
(Knibbe et al., 2007b), the evolution of the size and topology of gene networks (Dwight
Kuo et al., 2006; Beslon et al., 2010b), gene network interference (Mattiussi and Flore-
ano, 2007; Marbach et al., 2009), the evolution of “public good” production (Frénoy et al.,
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2013), and the reduction of genome size in some species (Batut et al., 2013).

Here, we will focus on the ævol software (Knibbe et al., 2007a), because we will get in-
spired from its genome and genetic regulation representations in the following. In ævol,
each digital organism owns a circular, double-stranded chromosome (Fig. I.7a) that is
actually a string of binary nucleotides, 0 being complementary of 1 and reciprocally. This
chromosome contains coding sequences (genes) separated by non-coding regions. Each
coding sequence is detected by a transcription-translation process and decoded into a
“protein” able to contribute positively or negatively to a range of abstract quantitative
characters (Fig. I.7a). The mechanisms of transcription and translation are modeled in
detail (Fig. I.7b,c,e), depending on a genetic code (Fig. I.7d). The combination of all
proteins yields the value of each abstract phenotypic character (Fig. I.7g). Adaptation is
then measured by comparing the phenotypic values to an arbitrary set of target values.
The most adapted individuals have higher chances of reproduction. When a chromo-
some is replicated, it can undergo point mutations, small insertions and small deletions,
but also large chromosomic rearrangements: duplications, large deletions, inversions, and
translocations. The various types of mutations can modify existing genes, but also create
new genes, delete some existing genes, modify the length of the intergenic regions, modify
gene order, and so on.

ævol model has been extended to include regulation of genetic expression, by adding a
representation of cellular gene networks (Beslon et al., 2010b). This extended version of
ævol, named R-ævol, is a model of prokaryotic regulation. To simulate the interactions
between transcription factors and promoters, two binding sites are defined for each
promoter. Located immediately before the promoter, the enhancer site increases the
transcriptional activity when transcription factors bind to it. Directly following the pro-
moter, the operator site, down-regulates the promoter’s activity when a transcription
factor binds to it. Each promoter i owns a basal expression level βi, which depends on how
close its sequence is to a consensus sequence. The transcriptional activity of this promoter
depends on the combined activity of the enhancer site activity Ai and the operator site
activity Oi, that read:

Ai(t) =
∑
j

cj(t)Aji (I.4)

and:
Oi(t) =

∑
j

cj(t)Oji (I.5)

with Aji (resp. Oji) the affinity of protein j for the enhancer site of the promoter i (resp.
for the operator site) and cj(t) the concentration of protein j at time t.

The transcription rate ei(t) of the RNA sequence associated to the promoter i is then
given by the following Hill-like function:

ei(t) = βi

(
θn

Oi(t)n + θn

)(
1 +

(
1

βi
− 1

)(
Ai(t)

n

Ai(t)n + θn

))
(I.6)

where n and θ are the two parameters defining the shape of the Hill-function. Finally,
given the transcription rate, one can compute the protein concentration (for simplicity, it is
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(a)	Chromosome	

(b)	
(c)	

(d)	

(e)	

(f)	

(g)	

Figure I.7 – A description of ævol model. In the model, each organism owns a circular double-
stranded binary chromosome (a) along which genes are delimited by predefined signal sequences (b).
Promoters and terminators mark the boundaries of RNAs (c) within which coding sequences are in
turn identified between a Shine-Dalgarno-START signal and an in-frame STOP codon. Each coding
sequence is then translated into a protein sequence using a predefined genetic code (d). This protein
sequence is decoded as three real parameters called m, w and h (e). Proteins, phenotypes and
environments are represented similarly through mathematical functions that associate a level to each
abstract phenotypic character in [0, 1]. The contribution of a protein is a piecewise-linear function
with a triangular shape, with position m, half-width w and height h (f). All proteins encoded
in the chromosome are then combined to compute the phenotype (g), which is compared to the
environmental target to compute the fitness of the individual (inspired from Knibbe and Parsons
2014).

assumed that the protein concentration is linearly proportional to the RNA concentration)
through the following synthesis-degradation rule:


ci(0) = βi/φ

dci
dt

= ei(t)− φci(t)
(I.7)

where φ is a temporal scaling constant representing the protein degradation rate. Thus,
when a gene is regulated, the concentration of its product is scaled up or down depending
on its transcription rate.
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I.4.4 The pearls-on-a-string formalism

In the pearls-on-a-string formalism, the genome is a variable-length string of “pearls” of
different types: phenotype genes, transcription factor genes, repeats, retrotransposons,
binding sites, and so on. Each pearl type can exist in a predefined number of variants.
Mutational operators (point mutations, rearrangements) can modify the genes number,
the order of the pearls and the regulation. The pearls-on-a-string formalism has been suc-
cessfully used for the study of genome and network evolvability (Crombach and Hogeweg,
2007, 2008), resource processing in ecosystems (Crombach and Hogeweg, 2009), and sym-
patric speciation (ten Tusscher and Hogeweg, 2009).

Recently, Cuypers and Hogeweg (2012) developed a multi-scale model based on the pearls-
on-a-string formalism: the Virtual Cell model. As shown on Figure I.8, in Virtual Cell
model, digital organisms own circular genomes made of “pearls”, encoding for five types of
proteins. Organisms grow on an externally provided resource A (Fig. I.8a), by pumping
it (Fig. I.8b) or by passive diffusion through the cell’s membrane (Fig. I.8c). The
pumps require the consumption of an energy carrier molecule X, enzymatically produced
from A by a catabolic reaction (Fig. I.8d). Both A and X molecules are required to
build end products via another enzymatic reaction (Fig. I.8e). Two other protein types
are transcription factors that up-regulate or down-regulate the production of proteins
depending on the effect of their ligands, A or X (Fig. I.8f). With their model, Cuypers
and Hogeweg (2012) proposed that the complex genotype-to-phenotype map of digital
organisms drives genome size dynamics, due to an emerging interplay between adaptation,
neutrality, and evolvability, showing that genome expansion and streamlining are generic
patterns of evolving systems. More recently, Cuypers et al. (2017) shown with the Virtual
Cell model that depending on the frequency of environmental changes, digital organisms
evolve different adaptive strategies: when the change frequency is low, evolution leads
to phenotypic plasticity, while when the change is high, evolution leads to enhanced
evolvability.

I.5 An attempt to merge sequence-of-nucleotides and
pearls-on-a-string formalisms

I.5.1 A common formalism: the “bag of tuples”

The sequence-of-nucleotides and the pearls-on-a-string formalisms have a common
property: while their genomic representation (the way information is stored in the genome)
differ significantly, in both formalisms, a non-ordered set of tuples is extracted from the
genomic data-structure: a bag of tuples.

A tuple is an ordered list (x1, x2, ..., xn) : T1 × T2 × ...× Tn with Ti the “product type” of
xi (e.g., R, N,...). In both sequence-of-nucleotides and pearls-on-a-string formalisms, the
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Figure I.8 – A description of the Virtual Cell model. In Virtual Cell model, digital organisms
own circular genomes made of “pearls”, encoding for five types of proteins. Organisms grow on
an externally provided resource A (a), by pumping it (b) or by passive diffusion through the cell’s
membrane (c). The pumps require the consumption of an energy carrier molecule X, enzymatically
produced from A by a catabolic reaction (d). Both A and X molecules are required to build end
products via another enzymatic reaction (e). Two other protein types are transcription factors that
up-regulate or down-regulate the production of proteins depending on the effect of their ligands, A
or X (f) (inspired from Cuypers and Hogeweg 2012).

genotype-to-phenotype map is based on the extraction of an unordered set of tuples from
the genotype. This set of tuples is then used to build the higher organism level in another
specified space. For example, ævol uses a complex and non-linear artificial genetic code
to extract a set of triplets (m,w, h) ∈ R3 from a circular and double-stranded binary
sequence. In pearls-on-a-string models, the genome is an unordered list of tuples. De-
pending on the complexity of projection operators, the evolution on the genome structure
and the genotype-to-phenotype map will not be the same. In both models, the order of
the tuples does not impair the fitness, but, since the tuples are encoded locally in the
genome (in coding regions, or in pearls), the modification of their order on the sequence
can potentially affect long-term evolution, as demonstrated in Knibbe et al. (2007a,b).

I.5.2 Bags of tuples and artificial chemistries

When developing a new individual-based model of evolution, one important task is to
define an artificial chemistry for this model: how to represent the various bio-molecules
(DNA, RNA, proteins, metabolites, and so on) and their interactions? Artificial chemistry
(AChem) is an entire field of research (Dittrich et al., 2001; Banzhaf and Yamamoto, 2015),
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which is not directly in the scope of this manuscript. However, it is important to define
here the most basic steps necessary to develop an AChem:

An AChem can be defined as a triplet (S,R,A), where S is the set of all possible molecules,
R is a set of reaction rules representing the interactions among the molecules, and A is an
algorithm describing the reaction vessel or domain and how the rules are applied to the
molecules inside the vessel (Dittrich et al., 2001). The set of molecules S = {s1, s2, ..., sn}
can potentially be infinite. A reaction rule r ∈ R is a chemical equation:

s1 + s2 + ...+ si → s′1 + s′2 + ...+ s′j (I.8)

With the reactants (or the substrates) on the left side, and the products on the right side.
i is the order of the reaction. The set of reaction rules R can be defined explicitly (all
possible reactions r are defined and are in finite number), or implicitly. In this example,
stoichiometry is 1 for all reactants, but there is no constraint on this point. The algorithm
A is applied on an instance of S, that is, a collection P of molecules. The set of chemical
equations R can be solved with stochastic or deterministic methods, possibly adding
spatial rules.

From this simple definition, two ways to define an AChem in the bag-of-tuples formalism
are possible in first instance (Fig. I.9):

(1) Each tuple codes for a reaction rule. In this case, each organism i owns a specific set
of reactions rules Ri, somehow carrying its own artificial chemistry. For instance, a
tuple (x1, x2, ..., xn) could define the chemical equation of order n/2:

s1 + s2 + ...+ sn
2
→ sn

2
+1 + sn

2
+2 + ...+ sn (I.9)

With xi ≡ si (Fig. I.9.1).

(2) Each tuple codes for a chemical species, being potentially a reactant for a subset
of reactions in R. In this case, R is defined once for the whole system, a reaction
occurring only if all the reactants are present. For instance, let’s consider the set of
reaction rules R containing the reaction:

si + sj ↔ si.sj (I.10)

And the reaction:
si.sj → sk + sj (I.11)

With si, sj, sk ∈ S, and “.” symbolizing a chemical bound. Thus, a singleton xj ≡ sj
(a tuple of length 1) catalyzes the enzymatic reaction:

si + sj ↔ si.sj → sk + sj (I.12)

To describe more precisely the reaction, it is also possible to replace the singleton xi
by a pair (xj, cj), with cj = [sj]. With this AChem, a tuple could encode a useless
compound, if no other reactant is present (Fig. I.9.2).

The bag-of-tuples formalism thus provides a general framework to encode an artificial
chemistry with a genetic sequence. As shown in part B, we chose the modeling scheme
(1) to define the artificial chemistry in our multi-scale model of evolution (Fig. I.9.1).
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Genome 
data-structure 

Tuples 
set 

(1) The set of tuples defines a set 
of reaction rules R 

(2) The set of tuples defines 
products of genes and are possibly 
compounds or catalysts of a subset 
of reactions in R 

(a) 	

(b) 	
(c) 	 (d) 	

Figure I.9 – A general framework for the bag-of-tuples formalism. (a) At each replication,
the genome data-structure undergoes mutations (point mutations, large rearrangements, recombina-
tions, horizontal transfers). (b) A mapping, often complex and non-linear, gives a non-ordered set
of tuples (the bag of tuples). (c) Depending on modeling choices, the set of tuples defines: (1) an
independent set of reactions rules R in each organism, or (2) chemical products (proteins, catalysts,
metabolites, ...) involved or not in a subset of reactions belonging to R. (d) The set of reaction rules
defines the interactome of the organism (the biochemical network including all organism’s reactions).
On modeling purpose, this biochemical network can be splitted into several sub-networks (genetic
regulation network, metabolic network, ...).

I.6 Outline

To summarize, we have seen that the modeling approach needed to model and study
EvoEvo is multi-faceted, but can efficiently use well-defined modeling formalisms available
in the literature.

On the one hand, it is essential to extend previous mathematical models used in the-
oretical evolutionary biology to deal with some aspects of EvoEvo. The advantage of
this approach is to provide robust predictions, often accompanied with analytical solu-
tions and mathematical proofs. In the next part of this manuscript, this approach will
be exemplified with an extended version of Fisher’s geometric model accounting for the
evolution of phenotypic noise (part A). With this model, we made promising predictions
on the evolution of phenotypic noise in the face of phenotypic complexity.

On the other hand, we have seen that some of the most salient properties of EvoEvo
emerge from multi-level evolution. The usage of a multi-scaled individual-based model
of evolution, including a complex and evolvable genotype-to-phenotype map is required
to tackle this complexity. Two formalisms have been independently developed with the
ultimate goal to deal with some of the EvoEvo aspects: the sequence-of-nucleotides formal-
ism and the pearls-on-a-string formalism. Moreover, a methodology has been specifically
developed to study in silico models of evolution: in silico experimental evolution, that
provides the same experimental tools than wet experimental evolution. In the second part
of this manuscript, a multi-scale model of evolution merging these different formalisms
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will be presented. This model allowed us to study the evolution of niche construction and
stable cross-feeding, and also the evolution of genetic regulation networks.
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Part A

An extended version of Fisher’s
geometric model to study phenotypic

noise
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Chapter II

Phenotypic noise and the cost of
complexity

The results presented in this chapter have been submitted to the
Evolution journal.
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My Umi said shine your light on the world
Shine your light for the world to see
(Mos Def – Umi Says, Black on Both Sides)

Abstract

Experimental studies demonstrate the existence of phenotypic diversity despite
constant genotype and environment, and suggest that the intensity of this pheno-
typic noise could be evolvable. Theoretical models based on a single phenotypic
character predict that during an adaptation event, phenotypic noise should be
positively selected under directional selection, and then be reduced when the
selection becomes stabilizing. However, it is unclear whether the (temporary)
selective advantage of phenotypic noise would hold for more realistic, multidi-
mensional phenotypes. Indeed, Fisher’s geometric model of adaptation predicts
a cost of complexity, where beneficial mutations become increasingly harder to
fix as the number of phenotypic characters increases. Here, we extend Fisher’s
geometric model by adding an evolvable phenotypic noise. We show that the cost
of complexity makes noise useless under directional selection, except if noise cor-
relations between characters are evolvable. In this case, noise evolves to a specific
configuration, with elevated noise towards the fitness optimum, and minimized
noise in all other directions. Such an aligned noise speeds up adaptation and
largely compensates for the cost of complexity. By analyzing published phe-
nomic data of 37 yeast strains, we confirm the plausibility of intra-strain noise
correlations between phenotypic characters.

II.1 Introduction

The phenotype of an organism results from a complex and non-linear cascade of develop-
mental, physiological and regulatory processes, formalized by the concept of genotype-to-
phenotype map (Alberch, 1991). An increasing number of experimental studies demon-
strated that the genotype-to-phenotype map is not a deterministic process and can gen-
erate phenotypic diversity (Symmons and Raj, 2016), not explained by environmental
interactions. Indeed, isogenic populations having the same genotype and grown in the
same environment sometimes exhibit a random distribution of phenotypes, a phenomenon
known as phenotypic noise (Yvert et al., 2013). This observed phenotypic stochasticity
is mainly due to the propagation of stochastic molecular events (Elowitz et al., 2002; Jo
et al., 2005; Raser and O’Shea, 2005; Bahar et al., 2006; Dar et al., 2014) through the
genotype-to-phenotype map.

Recent experimental results have suggested that phenotypic noise can be tuned. Yvert
et al. (2013) used single-cells phenomics (Ohya et al., 2015) on different natural strains of
yeast to measure hundreds of phenotypic characters. They showed that phenotypic noise
is strongly dependent on the strain background and largely character-specific (specific
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strains showing elevated noise for subset of characters) but also global (a few strains dis-
playing elevated noise for many unrelated characters). Shen et al. (2012) demonstrated
the importance of “variance-controlling genes” controlling phenotypic variance in Ara-
bidopsis thaliana. Boukhibar and Barkoulas (2016) reviewed experimental results also
demonstrating the existence of “variance-amplifier loci”, “phenotypic capacitors”, or “mas-
ter regulators” controlling phenotypic noise on multiple characters (Levy and Siegal, 2008;
Lempe et al., 2013).

Theoretical and experimental results also tend to demonstrate that phenotypic noise has
an impact on fitness. On the one hand, phenotypic noise appears to be deleterious for
organisms facing a stable environment. Recently, Keren et al. (2016) demonstrated with
an experimental study on Saccharomyces cerevisiae that phenotypic characters sensitive to
variation (i.e., having a sharp fitness function) exhibit low noise, in opposition to robust
characters, that exhibit higher noise levels. Mineta et al. (2015) used a mathematical
model from population genetics to demonstrate that elevated phenotypic noise reduces
effective population size and enhances genetic drift, when the population is at the fitness
optimum. On the other hand, many experimental and theoretical studies demonstrated
the positive role of phenotypic noise in several evolutionary stable strategies (ESS) such
as bet-hedging (Kussell and Leibler, 2005; Acar et al., 2008; Beaumont et al., 2009; Tsuru
et al., 2011), stable mix and altruistic strategies (De Jong et al., 2011), or bacterial
persistence (Balaban et al., 2004). Phenotypic noise could also be exploited by organisms
in stress responses (Chalancon et al., 2012). For example, Charlebois et al. (2014) showed
with a mathematical model that regulatory network motifs can enhance drug resistance
by transiently increasing isogenic cell-to-cell variability. Holland et al. (2014) measured
variability on fitness-dependent phenotypic characters in natural populations of yeasts.
They showed that populations living in a polluted environment develop high heterogeneity
as a survival strategy against adverse conditions in the wild. Experimental studies on
yeast also revealed that expression noise of essential genes (Newman et al., 2006) (or
“dosage-sensitive” genes, Fraser et al. 2004) is minimized to prevent harmful variations
(Lehner, 2008; Wang and Zhang, 2011). Moreover, “stress-related” genes (e.g., drug-
resistance genes) often present high levels of expression noise (Fraser and Kærn, 2009;
Zhuravel et al., 2010; Charlebois et al., 2011, 2014; Charlebois, 2015). This phenomenon
was demonstrated in laboratory experiments on Escherichia coli (Ito et al., 2009), and
on yeast (Liu et al., 2015).

Together, these studies support “the possibility that, if noise is adaptive, microevolution
may tune it in the wild. This tuning may happen on specific traits or by varying the
degree of global phenotypic buffering” (Yvert et al., 2013). Phenotypic noise thus appears
as a complex and evolvable phenotypic character, exploited in many survival strategies.
However, while phenotypic noise has been demonstrated to be exploited by evolution in a
variety of ESS, the possible role of an evolvable phenotypic noise in directional selection,
when a population must adapt to a new environment, is poorly known. A few studies
examined the simple case of a single gene undergoing stochasticity of gene expression,
and brought important insights. Zhang et al. (2009) suggested with a mathematical
model of a single gene that elevated expression noise facilitates evolution in directional
selection, because it enhances the probability to fix beneficial mutations. According to the
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authors, this facilitated evolution is only possible if the fitness function is convex (there
is no advantage for elevated noise in the case of a linear or a concave fitness function).
A recent experimental study on Saccharomyces cerevisiae (Keren et al., 2016) suggests
that fitness landscapes related to gene expression present a variety of curvatures, among
which convex, concave or linear forms. The prediction of Zhang et al. (2009) has also
been corroborated by a recent experimental study by Bódi et al. (2017), that showed
that phenotypic heterogeneity due to the stochasticity of gene expression enhances the
adaptive value of beneficial mutations on a specific gene of Saccharomyces cerevisiae in
directional selection.

As stated by Eldar and Elowitz (2010), “based on these general results, one might expect
increased phenotypic noise during periods of adaptation to new environments, followed by
reduction in noise when selection becomes stabilizing”. It is tempting to generalize results
from single gene models to the level of an entire and complex phenotype undergoing phe-
notypic noise. However, this generalization is far from being straightforward. Indeed, the
phenotype is the result of a complex and non-linear process involving the expression of tens
on thousands of genes. Fisher’s geometric model of adaptation (FGM) has been specif-
ically conceived to study the adaptation of complex phenotypes to a new environment.
Using it, Fisher (1930) suggested that organisms may pay a cost to the “complexity” of
their phenotype, beneficial mutations becoming increasingly harder to fix when the num-
ber of phenotypic characters under selection increases. As demonstrated by Orr (2000),
the cost of complexity is a robust result of FGM, little affected by organismal modularity
(Welch and Waxman, 2003). In 2006, Martin and Lenormand (2006) compared the dis-
tributions of fitness effects of mutations across several species (from Escherichia coli to
fruit flies). Their results suggest that there may be a cost to phenotypic complexity, even
if it is weaker than predicted by theoretical studies. Could the evolution of phenotypic
noise and its adaptive value be impacted by the complexity of the phenotype? And if yes,
what are the consequences on the predictions made by Zhang et al. (2009) and Eldar and
Elowitz (2010) for a population evolving a single phenotypic character?

To address these questions, we extended FGM with a model of evolvable phenotypic noise.
Based on an analysis of yeast phenomic data, we allowed for evolvable correlations be-
tween the noise levels on the various characters. We studied how phenotypic noise would
evolve when a population of asexual organisms is placed under directional selection, and
must adapt to a novel environment. With this model, named σFGM, we showed that
phenotypic noise is indeed beneficial for organisms evolving a single phenotypic charac-
ter in directional selection (Zhang et al., 2009; Eldar and Elowitz, 2010). However, this
benefit is quickly impaired when the number of characters increases. Nonetheless, this
cost of complexity on the phenotypic noise can be compensated if noise correlations be-
tween characters are allowed to evolve. In this case, phenotypic noise evolves towards a
flattened, one-dimensional configuration in the phenotypic space, with elevated noise in
the direction of the fitness optimum, and minimized noise in all other directions. When
phenotypic noise evolves this pattern, it strongly facilitates evolution towards the fitness
optimum by producing very fit organisms and by increasing the probability to fix bene-
ficial mutations. In these conditions, the convergence time towards the fitness optimum
is even faster than for organisms having no phenotypic noise (as in canonical FGM),

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



II.2. Methods 57

thereby demonstrating that an evolvable phenotypic noise can significantly compensate
for the cost of complexity, as defined by Fisher (1930). Thus, our results suggest that
such a non-isotropic and correlated phenotypic noise could be exploited by evolution, and
call for further experiments to assess the functional nature of phenotypic noise.

II.2 Methods

Analysis of phenomic data in various strains of yeast

In order to guess what would be the general shape of the phenotypic noise in real organ-
isms, we analyzed phenomic data provided by Yvert et al. (2013). The authors monitored
125 phenotypic characters on isogenic populations of 37 strains of yeast, in order to charac-
terize phenotypic diversity at a single-cell resolution. We used raw datasets provided by
the authors (freely available at http://sunlight.k.u-tokyo.ac.jp/wild37noise/index.html)
to study intra-strain isogenic phenotypic noise.

The purpose of the analysis was to determine whether intra-strain variability presents
correlations between characters once inter-strain correlations between characters have been
removed.

We first processed inter-strain variability. The idea was to find a phenotypic space in which
there is as little character-specific variability and correlation as possible. Here we had 37
isogenic strains, hence 37 genotypes. We defined the “phenotype” of a strain/genotype as
the vector of mean trait values, computed over all cells from this strain/genotype. We
then defined the “centered phenotype" of a strain/genotype by removing the grand mean
of each character. The singular value decomposition of the 37 × 125 matrix of centered
strain phenotypes gave us a set of orthonormal linear combinations of characters. By
construction, when the centered strain phenotypes are expressed according to these new
characters, they lose all their pairwise correlations, implying that the variance-covariance
matrix is diagonal for those new characters. Moreover, we normalized the variance of
each new strain phenotype to 1, such that the 37 new strain phenotypes were isotropically
distributed.

This new base is the closest analogy we could think of to the phenotypic space in the
classical version of Fisher’s geometric model. Fisher’s phenotypic space is orthogonal and
normalized, and mutations on the genotype cause phenotypic traits to vary independently
and with the same amplitude, according to an isotropic mutational distribution.

The second step was to project intra-strain single-cell data in Fisher’s space, and to
compute the possible remaining correlations of intra-strain phenotypic variability in this
space.

The whole analysis is presented in more details in Appendix II.5.2.
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II.2.1 Evolving phenotypic noise in Fisher’s geometric model

In Fisher’s geometric model, the phenotype of an organism is represented as a point
z = (z1, z2, ..., zn)T ∈ Rn (T being the matrix transposition operator) where n is the num-
ber of phenotypic characters under selection. Fisher (1930) used the term “phenotypic
complexity” to refer to the dimensionality n. The absolute fitness of this organism is de-
termined by its Euclidean distance d(z, zopt) = ‖z−zopt‖2 from the fitness optimum zopt,
the absolute fitness function W (z) commonly being a simple Gaussian-shaped function
reading:

W (z) = exp

[
−d(z, zopt)

2

2

]
. (II.1)

Usually, zopt lies at the origin of the euclidean space (zopt = 0). In FGM, mutations are
modeled as a random perturbation of the ancestral phenotype z. It is usually assumed
that a mutation can affect multiple trait values (an hypothesis known as the “universal
pleiotropy assumption”, Paaby and Rockman 2013). The mutated phenotype z′ ∈ Rn is
a random vector drawn from a n-dimensional multivariate normal distribution centered
at z, with a n× n covariance matrix Cz,

z′ ∼ Nn(z,Cz). (II.2)

The distribution of z′ is often assumed to be isotropic around z, such that mutations
have no preferential direction and can affect all characters similarly; in that case Cz
can be written as σ2

zIn, with In the n × n identity matrix, and σz the standard devia-
tion of the mutation sizes along each axis. Usually, initial conditions are a maladapted
clonal population of asexual organisms, sitting at a certain distance of the optimum zopt
(d(z, zopt)� 0). Then, the work consists in studying the bout of adaptation towards the
optimum.

Fisher’s geometric model implies some well-known assumptions helping mathematical
resolution of the equations (Martin, 2014): (i) the distribution of all random variables
have finite mean and variance and satisfy Lindeberg’s conditions (the central limit theorem
can be applied), (ii) the fitness function is twice differentiable and admits at least one
non-degenerate optimum, (iii) mutations have mild effects on the phenotype (mutational
events remain “local”), (iv) each mutation potentially affect all trait values (an assumption
known as the universal pleiotropy assumption), and (v) the variety of mutants is very
large, such that trait values vary continuously (an assumption known as the “infinite-
alleles” approximation).

We now present an extended version of Fisher’s geometric model accounting for an evolv-
able phenotypic noise. We called this extended model σFGM. In canonical FGM, the
phenotype z of each organism is deterministic and fixed by mutations. Decades ago, Rus-
sell Lande paved the way to the usage of mathematical models of population genetics to
study the impact on fitness of stochastic events (Lande, 1976) and correlations between
characters (Lande and Arnold, 1983). In line with this work, we represented the pheno-
type of each organism by a random variable. We assumed that the phenotype z follows
a normal multivariate distribution N (µ,Σ). The vector µ ∈ Rn is the mean phenotype
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of the organism, and the n × n matrix Σ is the covariance matrix of the phenotypic
noise around its mean µ. Thus, the phenotype of a given organism can be characterized
by a deterministic component µ (equivalent to z in canonical FGM) and a stochastic
component characterized by the covariance matrix Σ representing the phenotypic noise.

The fitness of an organism is given by its realized phenotype z, the fitness function W (z)
being defined in Equation II.1. However, W (z) is now a random variable, so it is useful
to look at the expected fitness W (µ,Σ) of an organism with parameters µ and Σ,

W (µ,Σ) =

∫
Rn

W (z)p(z,µ,Σ)dz, (II.3)

where p(z,µ,Σ) is the density function of the law N (µ,Σ),

p(z,µ,Σ) =
1√

(2π)n det Σ
exp

[
−1

2
(z − µ)TΣ−1(z − µ)

]
. (II.4)

Compared to canonical FGM, a distinction is made between the realized phenotype z and
the parameters µ and Σ characterizing the distribution of z. Here, µ and Σ undergo
mutations and are the inherited properties of the phenotype, while the realized phenotype
z is not inherited. Thus, we purposely place ourselves in a worst-case scenario for the
evolution of noise, meaning a scenario where a high noise level is not trivially expected to
be selected (Charlebois et al., 2011).

Our model allows for correlated phenotypic noise through the covariance matrix Σ. This
choice is justified both by mathematical and experimental considerations: let us define
a phenotypic space where mutations of the mean phenotype µ are orthogonalized and
normalized, i.e., mutations on µ are isotropically distributed in this space. As in canon-
ical FGM (Eq. II.2), the mutation probability distribution is isotropic. If we make the
reasonable hypothesis that molecular mechanisms controlling the mean phenotype and its
variance are not the same (see e.g., Viñuelas et al. 2012), there is no reason to suppose
that phenotypic noise, nor its mutations, are also orthogonal in this phenotypic space,
i.e, that the phenotypic noise is isotropic. Consequently, it is necessary to consider a
correlated phenotypic noise. This modeling choice is supported by a recent experimental
work by Cressler et al. (2017) on Daphnia pulicaria, a species of freshwater zooplank-
ton. By growing genetic variants in a wide range of food quality environments, and by
measuring three important life-history characters (growth, reproduction and longevity),
they showed that there is no significant genetic correlations between characters, while
there are significant non-genetic correlations. We also performed additional analyses on
recently published single-cell data measuring hundreds of phenotypic characters from dif-
ferent species of yeast (Yvert et al., 2013). Our results suggest that phenotypic noise is
indeed correlated in a space where mean phenotypic character variations between strains
are uncorrelated (see Appendix II.5.2 and first part of the Results section).

We now describe in more details our modeling of the genotype-to-phenotype map in
σFGM. The n× n covariance matrix Σ is a real, symmetric and positive-definite matrix.
As such, it admits an eigenvalue decomposition

Σ = UDUT . (II.5)
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The matrixD is a diagonal matrix containing the n positive eigenvalues σ2 = (σ2
1, σ

2
2, ..., σ

2
n)T

of Σ, with D = diag(σ2). The matrix UT is a real orthogonal matrix decomposed as a
product of rotations (U can be chosen as not to have any reflections, see Anderson et al.
1987).

We thus made the following geometrical interpretation: Σ defines an hyper-ellipse in
Rn with semi-axis orientations are given by the column vectors of U , and the semi-axis
lengths by the square roots of the eigenvalues. Geometrically its makes sense to express
mutations in the phenotypic noise by mutations in the lengths and in the orientations
of the semi-axes of the hyper-ellipse. Therefore, we define Σ by a vector of n lengths
σ = (σ1, σ2, ..., σn)T and a vector of n(n− 1)/2 rotation angles θ = (θ1, θ2, ..., θn(n−1)/2)T .

The matrix U is built by applying successive rotations (in that specific order),

U =
n−1∏
i=1

n∏
j=i+1

Gij(θn(i−1)+(i−1)(i−2)/2+j−i) (II.6)

with Gij(θ) the Givens matrix associated to the rotation between axes i and j, with an
angle θ.

Metzger et al. (2015) suggested with an experimental study that the expression noise
of TDH3 gene may evolve faster than its mean expression. To test this hypothesis, we
decided to mutate µ, σ and θ independently in σFGM. Indeed, in this model the mean
phenotype µ results from the genotype-to-phenotype map and is defined in an abstract
way, such that there is no particular reason to consider it correlated with the phenotypic
noise, as it is the case for gene expression for example (Ozbudak et al., 2002). Similarly to
Equation II.2, the mutated mean phenotype µ′ follows a multivariate normal distribution
µ′ ∼ Nn(µ,Cµ), the mutated phenotypic noise amplitudes vector is σ′ ∼ Nn(σ,Cσ),
and the mutated phenotypic noise orientations vector is θ′ ∼ Nn(n−1)/2(θ,Cθ). Cµ,
Cσ and Cθ are three constant covariance matrices of sizes n × n for Cµ and Cσ, and
n(n− 1)/2× n(n− 1)/2 for Cθ.

In summary, σFGM includes three classes of variables: µ, σ and θ. The mean phenotype
of each organism is represented by a vector µ. The phenotypic noise of each organism
is modeled by a multivariate normal law Nn(µ,Σ), Σ being decomposed in its semi-
axis sizes σ, and its rotation angles θ. σFGM also includes three constant mutational
parameters Cµ, Cσ and Cθ, and a fitness function W (z) being defined here as a simple
Gaussian-shaped function (Eq. II.1). Canonical Fisher’s geometric model is a particular
case of σFGM, when the noise vanishes and there is no mutation on noise amplitudes
(i.e., σ → 0 and Cσ = 0; see details in Appendix II.5.4).

While σFGM admits a relatively low number of parameters, it generates complex and
non-intuitive outcomes. Besides the analytical resolution of equations in the simplest cases
(see below), we had to develop numerical tools to solve the equations in the most complex
situations, especially for elevated phenotypic complexity. Our numerical approaches are
presented below. All the mathematical variables used in this manuscript are listed in
Table II.1.
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Table II.1 – List of mathematical variables.

Variable notation Type Description
n N Dimension of phenotypic space
z Rn Phenotype
W Rn → R Fitness function
d Rn × Rn → R Euclidean distance to optimal phenotype
zopt Rn Optimal phenotype
Cz Rn×n Covariance matrix of mutations in FGM
µ Rn Mean phenotype in σFGM
Σ Rn×n Covariance matrix of phenotypic noise in σFGM
W Rn × Rn×n → R Expected fitness given µ and Σ in σFGM
D Rn×n Diagonal matrix of eigenvalues of Σ
U Rn×n Real orthogonal matrix of the eigenvectors of Σ
σ2 Rn Eigenvalues of Σ
θ Rn(n−1)/2 Pairwise plane rotations to generate U
Cµ Rn×n Covariance matrix of mutations of µ in σFGM
Cσ Rn×n Covariance matrix of mutations of σ in σFGM
Cθ Rn(n−1)/2×n(n−1)/2 Covariance matrix of mutations of θ in σFGM
sµ R Cµ = s2µIn
sσ R Cσ = s2σIn
sθ R Cθ = s2θIn(n−1)/2

II.2.2 A numerical implementation of σFGM

As shown in the Results section below, it is possible to perform an analytical resolution
of σFGM equations in simple conditions, e.g. when organisms evolve a single phenotypic
character, or when the phenotypic noise is isotropic. However, for the most complex
scenarios, a numerical approach is needed to solve the evolutionary trajectories through
time.

To this aim, we consider a Markov process where random events are the appearance of
new mutants in the population. This stochastic process is known in population dynamics
as the stochastic branching process of Galton-Watson (Watson and Galton, 1875), with
jumps corresponding to mutated offspring. This branching process proceeds as follows.
We consider a finite population with N(t) organisms at time t, where each organism is
characterized by a unique triplet (µ,σ,θ). From this triplet, a realized phenotype z
is drawn from the multivariate normal distribution Nn(µ,Σ). This realized phenotype
remains constant for the lifetime of the organism. Time evolves continuously.

(0) At the beginning of a simulation, a isogenic population of N0 organisms having the
same triplet (µ0,σ0,θ0) is generated;

(1) During a time interval ∆t, the probability for an organism to produce an offspring
during the interval t + ∆t is pbirth = W (z) × ∆t + O(∆t2). O(∆t2) is due to the
possible occurrence of other events in the interval ∆t (branchings, or deaths) that
introduce a small error in the probability estimation. If ∆t is small enough, this
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error is negligible. To avoid to many events to occur during any time interval, ∆t is
rescaled such that the best fitness Wmax in the population at time t is always equal
to 0.1 (∆t = 0.1/Wmax);

(2) At birth, an organism acquires the mutated triplet (µ′,σ′,θ′) derived from its par-
ent’s one (µ,σ,θ);

(3) To keep the population size constant around a target size Neq, we introduced a death
process. During a time interval ∆t, every organism as the same probability pdeath
to die, proportional to the population size N :

pdeath = max

(
0,

N −Neq

N

)
. (II.7)

For the sake of simplicity, we made an additional assumption on the mutational process.
We considered that mutations are isotropic for µ, σ and θ. Each mean trait value µi
independently mutates through a normal distribution N (0, s2µ). Each semi-axis size σi
independently mutates through a normal distribution N (0, s2σ). Finally, each rotation
angle θi independently mutates through a normal distribution N (0, s2θ). Thus, by varying
the relative values of sµ, sσ and sθ, it is possible test the hypothesis of Metzger et al.
(2015) (see above) at the level of the phenotype. The stochastic branching process is
simulated with a time-adaptive tau-leaping algorithm (Gillespie, 2007). An example of
the temporal dynamics is represented on Figure II.5.1, for n = 10 dimensions. The code
of the numerical solver is freely available in Script II.5.7, and is distributed under the
open source GNU General Public License. Details on the numerical solver are given in
Appendix II.5.3.

II.3 Results

II.3.1 Phenomic data on 37 strains of yeast reveals correlated
phenotypic noise

Using raw datasets provided by Yvert et al. (2013), we determined whether intra-strain
variability presents correlations between characters once inter-strain correlations between
characters have been removed. We found that intra-strain phenotypic noise is indeed
correlated in many ways, for all the 37 strains.

For example on Figure II.1a, we show what would be an uncorrelated phenotypic noise for
each strain for the two first principal components (PC1 and PC2) of the Fisher’s space (the
shape of the phenotypic noise of each strain is symbolized by an ellipse representing the
standard deviation of the associated bivariate normal law, rescaled by a factor 0.002). On
Figure II.1b, the real observed phenotypic noise is represented, showing noise correlations
for all the strains. The most variable combinations of phenotypic characters (following
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Figure II.1 – Yeast intra-strain phenotypic noise is correlated in Fisher’s space. A singular
value decomposition (SVD) is performed on the mean trait values of each of the 37 yeast strains. This
space is similar to the phenotypic space used in Fisher’s geometric model, where phenotypic characters
mutate independently and with the same amplitude (i.e. mean phenotype mutations are isotropic in
this space). For this reason, we called this space “Fisher’s space”. We then projected single-cell data
of each strain in this space. We identified the two Fisher’s space axes showing most elevated noise
correlation in mean, for all strains: they correspond to the first two components of Fisher’s space (PC1
and PC2). a, Expected phenotypic noise for each strain without noise correlation between Fisher’s
space axes (each axis representing a linear combination of phenotypic characters). The shape of the
phenotypic noise of each strain is symbolized by an ellipse representing the standard deviation of the
associated bivariate normal law. Each ellipse is tagged with the corresponding strain name. The size
of the ellipses are rescaled by a factor 0.002 to better distinguish them. The coordinates of the center
of each ellipse correspond to the real position of the corresponding strain in the Fisher’s space (from
real data). b, Real observed phenotypic noise is represented, showing noise correlation between PC1
and PC2 axes, for all the strains.

PC1 and PC2 axes) between strains are also those exhibiting the most correlated intra-
strain phenotypic noise. Thus, if one assume that phenotypic differences across strains are
adaptive, our result suggests that the phenotypic characters most exposed to directional
selection are also the ones with the most correlated phenotypic noise between characters.

Our analysis is described in details in Appendix II.5.2, in Data II.5.5 in Data II.5.6, and
in Script II.5.8.

II.3.2 Analytical and numerical study of σFGM

Our analytical and numerical approach followed three steps, as presented in Figure II.2.
(1)We first studied σFGM in the case of organisms evolving a single phenotypic character,
in order to evaluate previous statements (Zhang et al., 2009; Eldar and Elowitz, 2010; Bódi
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et al., 2017) (Fig. II.2a). (2) We then studied σFGM for more complex phenotypes when
the phenotypic noise is isotropic, to test whether the fitness benefit of phenotypic noise
for a single character is maintained for higher phenotypic complexity (Fig. II.2b). (3)
Finally, we studied analytically and numerically the most general case in σFGM, where
noise amplitudes on each character, as well as noise correlations between characters are
evolvable, as suggested by our analysis of the phenomic data provided by Yvert et al.
(2013) and by the experimental study by Cressler et al. (2017) (Fig. II.2c).
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Figure II.2 – Three successive approaches to model phenotypic noise in Fisher’s geometric
model. a, Example of an evolvable phenotypic noise on a single phenotypic character (n = 1). µ = 4
and σ = 1 (black box). The phenotypic distribution follows z ∼ N (µ, σ2) (blue area). The one-
dimensional fitness landscape W (z) = exp

[
−z2/2

]
is represented in dark blue (dark blue dot: fitness

optimum at zopt = 0). b, Example of an evolvable isotropic phenotypic noise on two phenotypic
characters (n = 2). µ = (4, 1)T and σ = 2 (black box). The standard deviation of the bivariate and
isotropic phenotypic distribution is represented by the disc colored in blue. The fitness landscapeW (z)
is represented by a gradient of blue (dark blue dot: fitness optimum at zopt = (0, 0)T ). c, Example
of an evolvable anisotropic and correlated phenotypic noise on two phenotypic characters (n = 2).
µ = (4, 1)T , σ = (3, 2)T and θ = (π/4) (black box). The standard deviation of the bivariate
phenotypic distribution is represented by the blue ellipse colored in blue. The fitness landscape W (z)
is represented by a gradient of blue (dark blue dot: fitness optimum zopt = (0, 0)T ).

II.3.2.1 Elevated phenotypic noise is beneficial in directional selection for a
single phenotypic character.

We first studied σFGM in the simple case of the evolution of a single phenotypic character.
The phenotypic noise is then reduced to an univariate normal law N (µ, σ2), with µ the
single mean trait value and σ the standard deviation of the phenotypic noise on this
character (Fig. II.2a). To understand what would be the selective pressures on µ and
σ in the phenotypic space, we analytically studied the sub-population fitness W (µ, σ),
under the hypothesis of an infinite population (Eq. II.3). The mathematical details of our
analytical and numerical approaches are presented in Appendix II.5.3 and Appendix II.5.4.
Figure II.3 shows that, if evolvable, phenotypic noise should increase during directional
selection, and then decrease when selection becomes stabilizing, as predicted in Eldar
and Elowitz (2010). When the population is far from the fitness optimum zopt, it is
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beneficial to increase the phenotypic noise (Fig. II.3 green area). On the contrary, when
the population is near the fitness optimum, or when noise amplitude is too high, it is
better to decrease phenotypic noise, as shown in previous studies (Mineta et al., 2015;
Keren et al., 2016) (Fig. II.3 red area).
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Figure II.3 – Variations of the sub-population fitness W (µ, σ) depending on µ and σ values.
Following the purple curve, the optimal µ value given a σ value. Following the orange curve, the
optimal σ value given a µ value. Green area: it is beneficial to increase the phenotypic noise. Red area:
it is beneficial to reduce the phenotypic noise. Three trajectories following the fitness gradient are
represented (1) in blue (initial values: µ0 = 4, σ0 = 1), (2) in brown (initial values: µ0 = 6, σ0 = 4)
and (3) in green (initial values: µ0 = 2, σ0 = 8). Black dot: fitness optimum zopt. Orange circle:
inflection point dth = 1 of the fitness landscape W (z). Grey arrows indicate the direction of the
fitness gradient, but not its amplitude.

Thus, depending on the euclidean distance from the fitness optimum, there exists an
optimal value of σ giving the highest fitness value, as shown by the orange curve on
Figure II.3. At the critical distance dth = 1 (Fig. II.3 orange circle, Appendix II.5.4),
which corresponds to the inflection point of the fitness functionW (z) (Zhang et al., 2009),
phenotypic noise is always deleterious and must be minimized by organisms. However,
reducing the euclidean distance from the fitness optimum is always beneficial, whatever
the value of σ, as shown by the purple curve on Figure II.3. As exemplified by trajectories
(1), (2) and (3) on Figure II.3, a population adapting to the new fitness optimum (Fig.
II.3 dark blue dot) will increase or decrease its phenotypic noise depending on initial
conditions. The prediction of Eldar and Elowitz (2010) corresponds to trajectory (1), e.g.,
when a population anciently in stabilizing selection (with reduced phenotypic noise) must
adapt to a new environment. Trajectories (2) and (3) could correspond e.g., to a single
stress-related gene, with elevated phenotypic noise at the moment of the environmental
shift.
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Then, in the case of a population evolving a single phenotypic character, our results
confirm the claim that phenotypic noise is beneficial in directional selection, when the
population is far from the fitness optimum, and that phenotypic noise is deleterious in
stabilizing selection, when the population reaches the fitness optimum (Eldar and Elowitz,
2010). As previously demonstrated by Zhang et al. (2009), a condition to the positive
selection of phenotypic noise is the existence of a convex fitness landscape. In a recent
experimental study on Saccharomyces cerevisiae, Keren et al. (2016) suggest that it could
be the case for many traits.

II.3.2.2 There is a cost of complexity on isotropic phenotypic noise in direc-
tional selection

When organisms evolve a single phenotypic character, σFGM is in accordance with pre-
vious results (Zhang et al., 2009; Eldar and Elowitz, 2010; Bódi et al., 2017). However,
the fitness effect of phenotypic noise is unclear when the phenotypic complexity increases,
since the evolution of phenotypic noise can potentially be impeded by a cost of com-
plexity, as defined by Fisher (1930). To address this question, we first generalized the
one-dimensional case by increasing the number of phenotypic characters, but keeping an
isotropic phenotypic noise (similar to a “global” phenotypic noise affecting the whole phe-
notype, Yvert et al. 2013). An isotropic noise is applied to the mean phenotype µ of an
organism, by independently varying each trait value µi with the same amplitude σ (Fig.
II.2b). In σFGM, this scenario corresponds to constrain the evolution of the covariance
matrix Σ such that Σ = σ2In, and to remove noise correlations (θ = 0). We repeated
the analysis made for a single phenotypic character, but ranging from a single to 50 char-
acters. The details of our analytical and numerical approaches are presented in Appendix
II.5.3 and Appendix II.5.4.

The results, presented in Figure II.4, show that the advantage of an isotropic phenotypic
noise is quickly impeded when the phenotypic complexity increases. First, the euclidean
distance dth below which phenotypic noise is deleterious increases with the phenotypic
complexity. An analytical resolution shows that dth increases as the square root of the
number of phenotypic characters (dth =

√
n, Fig. II.4a, and Appendix II.5.4). Second, the

fitness gain brought by an optimal phenotypic noise (Fig. II.4a orange and grey curves)
quickly vanishes with phenotypic complexity. Indeed, when organisms have more than one
phenotypic characters (n > 1), the beneficial value of phenotypic noise becomes rapidly
negligible (Fig. II.4b). The maximal fitness gain when phenotypic noise is optimal also
rapidly falls down, with e.g., a maximal fitness gain for two characters (n = 2) representing
only ∼ 36% of the maximal gain for a single character (Fig. II.4b black dots).

These results show that predictions based on the evolution of a single character cannot
be generalized as is at the level of the phenotype, when the phenotypic noise is isotropic,
as it undergoes a cost of complexity.
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Figure II.4 – Effects of phenotypic complexity on isotropic phenotypic noise fitness gain. a,
Variation of the optimal σ value, depending on the euclidean distance. x axis: the euclidean distance
from the fitness optimum is varied from 0 to 10, for all phenotypic complexities (d = ‖µ‖). y axis:
the amplitude σ of the phenotypic noise is varied from 0 to 10. Grey curves: optimal σ value for each
phenotypic complexity. Phenotype complexities n = 1, n = 5, n = 10 and n = 50 are highlighted
in orange. Black circle: the critical euclidean distance dth below which phenotypic noise is always
deleterious is equal to

√
n (exemplified here for n = 5, n = 10 and n = 50). b, Fitness gain when σ

is optimal, compared to canonical FGM scenario with no phenotypic noise (σ = 0). Dark blue dot:
fitness optimum. Black curves: fitness gain when isotropic noise is optimal. Phenotypic complexity
n = 1 is highlighted in green. The green area indicates the difference of fitness gain between n = 1
and n = 2. Red line: no fitness gain (no phenotypic noise scenario). Black dots: maximal fitness
gains when n = 1 and n = 2. The maximal fitness gain of isotropic noise when n = 2 represents
∼ 36% of the maximal gain for a single character.

II.3.2.3 Anisotropic and correlated phenotypic noise is beneficial when aligned
with the fitness optimum

Finally, we studied the most general case in σFGM, as described in Methods. Noise
amplitude on each character, as well as noise correlations between characters are evolvable
(Fig. II.2c). As a first step, we analyzed the model in a static situation, with no mutational
process (as for previous results), in order to guess what would be the selective pressures
on the phenotypic noise.

We show mathematically (Appendix II.5.4) that when the population is far from the fitness
optimum, the best configuration (i.e., the one that gives the best fitness advantage) is a
flattened, one-dimensional phenotypic noise, with elevated noise in the direction of the
fitness optimum and no noise in all other directions. Any other form of phenotypic noise
(isotropic or not perfectly aligned with the fitness optimum) gives a lower sub-population
fitness W (µ,Σ). This does not mean that a badly aligned phenotypic noise is deleterious
for organismal fitness, compared to an organism with no phenotypic noise for example.
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As shown in Figure II.4, even an isotropic noise slightly increases the fitness when the
population is far from the fitness optimum. However, as also shown in Figure II.4, the best
fitness gain is obtained when the phenotypic noise is one-dimensional. Similarly, the best
phenotypic noise configuration in n dimensions consists in a dimensionality reduction to
fight the cost of complexity on phenotypic noise. A population evolving such a phenotypic
noise will recover the benefit of a single character scenario, phenotypic noise conferring a
strong fitness advantage to organisms in directional selection (Figs. II.3 and II.4). The
mathematical demonstration of this result is provided in Appendix II.5.4.

II.3.2.4 Evolvable anisotropic and correlated phenotypic noise compensates
for the cost of complexity in directional selection

To test our mathematical prediction on the evolution of an anisotropic and correlated
phenotypic noise (see above), we used a numerical scheme to compute the evolutionary
trajectory of an initially maladapted population towards the fitness optimum. To do
so, we estimated the evolution of the population distribution n(µ,σ,θ) through time by
simulating the stochastic branching process in finite population associated to the model,
as described in Methods.

In directional selection and with a complex phenotype, if organisms are allowed to evolve
a correlated phenotypic noise, will they do so? And if yes, what will be the consequence
on the evolution speed depending on phenotypic complexity? To address these questions,
we measured the convergence time to the fitness optimum of an evolving population in
four different scenarios:

(1) The mutation sizes sσ and sθ of the phenotypic noise parameters σ and θ are lower
than for sµ (sµ = 0.01, sσ = sθ = 0.001);

(2) The mutation sizes sσ and sθ are equal to the mutation size sµ (sµ = sσ = sθ = 0.01);

(3) The mutation sizes sσ and sθ are higher than sµ (sµ = 0.01, sσ = sθ = 0.1).

(4) Organisms have no phenotypic noise, as in canonical FGM (sµ = 0.01, sσ = sθ = 0.0,
and σ = 0,θ = 0)

The simulations were computed for a phenotypic complexity ranging from n = 1 to n = 10.
100 repetitions have been computed per parameter set. The population was considered
to have converged towards the optimum when the mean fitness of the population was
higher than 0.9. All populations were initialized with a very low level of phenotypic noise
(σ ∼ 0), and no rotation of the covariance matrix Σ (θ = 0). The initial euclidean
distance was dinit = 4.0 for all the simulations (beyond the critical distance dth =

√
n, see

above). To do so, the µi values of the initial mean phenotype µ were set to µi = dinit/
√
n.

To keep the mutation sizes constant whatever the phenotypic complexity, sµ, sσ and sθ
were also normalized by

√
n.
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To facilitate the analysis of numerical outputs, we used three different measures:

(1) The maximal eigenvalue indicates the amount of phenotypic noise on the distribu-
tion Nn(µ,Σ) (Eq. II.4), and is equal to max(σ2);

(2) The maximal eigenvalue contribution indicates the contribution of the maximum
eigenvalue to the total amount of noise. It is obtained by computing:

max(σ2)∑
i∈n

σ2
i

; (II.8)

(3) The maximal eigenvector correlation is the correlation (dot product) between the
eigenvector associated to the maximal eigenvalue, and the direction of the optimum.
If the correlation ≈ 1, the principal axis of the phenotypic distribution is aligned
towards the optimum. If the correlation ≈ 0, the principal axis is orthogonal to
the direction of the optimum (by symmetry, we take the absolute value of the dot
product).

For each numerical simulation, both the mean and the variance of these measures have
been computed along the 100 repetitions, at each time-step. As shown in Figure II.5, an
evolvable phenotypic noise speeds up evolution, whatever the phenotypic complexity (Fig.
II.5a). However, this gain depends on the mutation size of phenotypic noise parameters
(sσ and sθ) relative to the mutation size of the mean trait values (sµ). If sσ and sθ are
lower or equal to sµ, the fitness gain is low (Fig. II.5a). If sσ and sθ are higher than sµ, the
evolution speed gain is significant, with a convergence time much lower than for canonical
FGM scenario (with no phenotypic noise), whatever the phenotypic complexity. The
analysis of the three measures indicates that a cost of complexity exists on the evolution
of the phenotypic noise, such that if sσ, sθ ≤ sµ, the phenotypic noise does not have
the time to evolve towards a one-dimensional shape (with elevated noise in the direction
of the fitness optimum, and no noise in all other directions). For each measure (the
maximum eigenvalue, its contribution and its dot product), the maximum value reached
during a simulation is plotted against the phenotypic complexity, for each of the four
scenarios (Figs. II.5b,c,d). This maximum value represents the efficacy of evolution in
shaping the phenotypic noise in directional selection, knowing that noise increases when
the population is far from the fitness optimum, and then decreases when the population
reaches the fitness optimum. A trade-off seems to exist between the convergence time of
the mean phenotype µ and the time needed for evolution to shape the phenotypic noise.
On Figure II.5b, we see that the maximum eigenvalue does not reach the optimal value
≈ 9.0 when sσ, sθ ≤ sµ. However, when sσ, sθ > sµ, the maximum eigenvalue reaches the
optimal value whatever the phenotypic complexity. Indeed, in this situation organisms
have time to evolve the most beneficial, flattened form of phenotypic noise. On Figures
II.5c and II.5d, the maximum eigenvalue contribution and the maximum eigenvalue dot
product are strongly lessened with phenotypic complexity when sσ, sθ ≤ sµ, while they
are almost equal to 1 whatever the phenotypic complexity when sσ, sθ > sµ. In the latter
case, the phenotypic noise evolves towards a near perfect flattened form, as predicted
previously, hence strongly speeding up adaptation.
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Figure II.5 – An evolvable anisotropic and correlated phenotypic noise speeds up evolution. a,
Convergence time towards the fitness optimum. Four scenarios are evaluated. Black curve: canonical
FGM scenario, with no phenotypic noise. Colored curves: evolvable phenotypic noise scenarios. x-
axis: phenotypic complexity, from n = 1 to n = 10. y-axis: Convergence time. b, c, d, Maximum
values of b, the maximum eigenvalue (max(σ)), c, the maximum eigenvalue contribution (Eq. II.8),
and d, the maximum eigenvalue dot product (with the direction of the fitness optimum) reached
by the population during its evolution towards the fitness optimum, respectively. Four scenarios are
evaluated (legends): three with evolvable phenotypic noise, one with no phenotypic noise (canonical
FGM scenario). For each scenario, the mean (colored lines) and the standard deviation along the 100
repetitions (shaded areas) are represented. In all cases, the scenario where sσ, sθ > sµ is characterized
by the evolution of a near perfectly flattened and one-dimensional phenotypic noise, fully aligned with
the fitness optimum, as predicted mathematically.

II.4 Discussion

The fitness benefit of elevated phenotypic noise in directional selection was foreseen by
Eldar and Elowitz (2010), who stated that “one might expect increased phenotypic noise
during periods of adaptation to new environments, followed by reduction in noise when
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selection becomes stabilizing”. Based on a mathematical model, Zhang et al. (2009) also
stated that elevated noise would increase the probability to fix beneficial mutations in
directional selection, provided that the local fitness landscape is convex. This prediction
has been corroborated in a recent experimental study on the evolution of a single gene
in Saccharomyces cerevisiae (Bódi et al., 2017). However, these results are based on
the evolution of a single phenotypic character, while real phenotypes are much more
complex, with multiple characters under selection. We extended Fisher’s geometric model
(Fisher, 1930) to account for evolvable phenotypic noise, in order to address the question of
how phenotypic noise would evolve in directional selection, when organisms own complex
phenotypes. This model, named σFGM, allows for evolvable phenotypic noise amplitudes
on each character, but also for evolvable noise correlations between characters, as justified
by our analysis of the phenomic data of Yvert et al. (2013), and an experimental study
by Cressler et al. (2017).

First, we studied analytically the case where organisms own a single phenotypic character,
and must evolve towards a novel environment. Doing so, we confirmed previous results
(Zhang et al., 2009; Eldar and Elowitz, 2010; Bódi et al., 2017): elevated phenotypic noise
is beneficial under directional selection, when the population is far from the fitness opti-
mum and experiences a convex fitness landscape. When the population is near the fitness
optimum, the phenotypic noise is deleterious and must be minimized, confirming previous
statements that phenotypic noise is deleterious under stabilizing selection (Mineta et al.,
2015; Keren et al., 2016).

In 1930, Fisher (1930) hypothesized that organisms evolving towards a fitness optimum
experience a cost of complexity, beneficial mutations becoming increasingly harder to fix
when the number of phenotypic characters under selection increases. Here, we demon-
strated that this cost of complexity also hinders the benefit of an elevated phenotypic
noise in directional selection, when noise is isotropic. In this case, when the number
of phenotypic characters is higher than one, the beneficial fitness effect of phenotypic
noise quickly vanishes. Moreover, the critical distance from the fitness optimum below
which the phenotypic noise must be minimized increases as the square root of the number
of characters, suggesting that for a constant distance from the fitness optimum, more
complex organisms are expected to be less noisy.

Recent studies suggested that phenotypic noise could be considered as a complex phe-
notypic character, possibly tuned by the genotype-to-phenotype map (Yvert et al., 2013;
Boukhibar and Barkoulas, 2016), and correlated (Cressler et al., 2017). Here, we demon-
strated that under directional selection on a convex fitness landscape, the best possible
configuration for the phenotypic noise is to evolve towards a flattened, one-dimensional
configuration, with elevated noise in the direction of the fitness optimum, and no noise
in all other directions. In this case, the evolving population recovers the beneficial value
of an elevated phenotypic noise, as for the single phenotypic character scenario. We also
demonstrated that in this specific configuration, phenotypic noise increases the probability
to fix beneficial mutations and accelerates evolution, whatever the phenotypic complex-
ity, thereby partly compensating for the cost of complexity. To be fully exploitable by
evolution, the properties of the phenotypic noise must evolve at a higher speed than the
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mean phenotype. However, it is not required for the noisy phenotype to be inherited in
our model, suggesting that when it is the case (Charlebois et al., 2011), this constraint
could be relaxed.

Our findings are in accordance with recent experimental results. First, Cressler et al.
(2017) demonstrated the existence of correlated phenotypic noise on Daphnia pulicaria
(a freshwater zooplankton). By measuring three integrated phenotypic characters at the
individual level (body growth, number of eggs and longevity) on different populations of
genetic variants, they showed that there are no significant genetic correlations between
characters, while there is strong evidence for positive non-genetic correlations between
characters. Moreover, they showed that increasing phenotypic noise enhances growth
rate when non-genetic correlations between characters are positive, in agreement with our
prediction on the evolution of phenotypic noise. Second, our analysis of single-cell yeast
data provided by Yvert et al. (2013) revealed that the phenotypic characters showing
the strongest noise correlations are also the most variables between strains, suggesting
that a correlated phenotypic noise evolved on the phenotypic characters most exposed
to directional selection (Appendix II.5.2). Finally, an experimental study by Metzger
et al. (2015) suggested that the expression noise of TDH3 gene may evolve faster than its
mean expression, suggesting that it could be the case for phenotypic noise in general, in
agreement with our findings.

As a whole, our results show that such non-isotropic phenotypic noise could be exploited
by evolution, and suggest further experiments to assess the functional nature of pheno-
typic noise. In particular, phenotypic noise has been demonstrated to have a role in drug
resistance (Singh et al., 2010; Charlebois et al., 2014; Charlebois, 2015), cancer cells pro-
liferation (Gascoigne and Taylor, 2008; Cohen et al., 2008; Huang, 2012; Pisco et al., 2013)
as well as in the process of decision-making, seen as an adaptation to a environmental
change (Richard et al., 2016). It could be interesting to initiate new experiments letting
biological populations adapt to a novel environment, and acquire phenotypic noise data
at the individual level (Ohya et al., 2015). The long-term evolution experiment (LTEE,
Elena and Lenski 2003), where populations of Escherichia coli are evolved in a minimum
glucose medium since more than 66,000 generations, and regularly frozen to keep track
of evolution, would be a good candidate to initiate such an experiment. Moreover, our
predictions on the evolution of phenotypic noise in directional selection could be used to
predict the future direction of evolution, and to localize the fitness optimum in the phe-
notypic space. Indeed, tracking the evolution of phenotypic noise experimentally could
help biologists understand what are the selective pressures at work on organisms, and to
anticipate the next evolution steps.

By extending Fisher’s geometric model with evolvable phenotypic noise, we offered general
predictions on what would be the evolution of phenotypic noise in directional selection,
and its consequences on the fate of asexual populations experiencing directional selection.
Our demonstrations rely on the assumption that the phenotypic noise and the fitness
landscape are Gaussian-shaped, as it is historically the case in Fisher’s geometric model.
If the phenotypic noise is not Gaussian, other particular cases could appear, even if locally
there is always a benefit to be noisy in directions where the fitness is convex. By relaxing
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our hypotheses, other interesting questions could be tackled, for example the case where
the fitness landscape is multimodal or not static, the case of a degenerated noise (e.g.,
where some directions in the phenotypic space are forbidden), or whether the case of a
multiplicative noise. By deciphering the conditions in which phenotypic noise evolves
towards specific patterns, our results may contribute to the growing field of predictive
biology.
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II.5 Supporting Information

II.5.1 Figure S1. An example of the temporal dynamics in σFGM.
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Figure II.6 – An example of the temporal dynamics in σFGM. A simulation in n = 10 dimensions
is initialized with 10,000 organisms having the same triplet (µ0,σ0,θ0), with µ0 = {4.0/√n}T ,
σ0 = 0, and θ0 = 0. The initial population is then localized on the hyper-sphere of radius 4.0, none
of the phenotypic characters being aligned with the fitness optimum zopt, and thus requiring to be
adapted. sµ = 0.01, and sσ = sθ = 0.1. The simulation stopped when the population mean of the
mean fitness 〈W (µ)〉 reached 0.9. a, The population mean of the mean euclidean distance 〈d(µ)〉.
b, The population mean of the mean fitness 〈W (µ)〉. c, The population mean of the maximal
eigenvalue. d, The population mean of the maximal eigenvalue contribution. e, The population
mean of the maximal eigenvector correlation with the direction of the fitness optimum. The standard
deviation of each variable is represented by a shaded blue area.
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II.5.2 Appendix S1. Various wild-types of yeast exhibit corre-
lated phenotypic noise.

In this appendix, we present the results of our analysis on the experimental single-cell
data provided by Yvert et al. (2013). We assume that the reader is aware of the basic
definitions and equations provided in the main manuscript.

Yvert et al. (2013) used automated image analysis to describe yeast phenotypic diver-
sity at a single-cell resolution (known as phenomics, Ohya et al. 2015). They monitored
n = 125 phenotypic characters on isogenic populations of m = 37 different strains of
yeast, living in natural or laboratory conditions. For each strain, they measured 5 repli-
cates of approximately 200 cells each (∼1000 cells per strain). They demonstrated that
phenotypic noise significantly differs between strains, supporting “the possibility that, if
noise is adaptive, microevolution may tune it in the wild ” (Yvert et al., 2013).

We used the raw datasets published by the authors to measure intra-strain (i.e. isogenic)
noise correlations between characters. The goal of our study is to test the existence of
correlated phenotypic noise in natural strains of yeast. The datasets provided by Yvert
et al. (2013) are structured as following: for each strain of yeast, a set of files is provided
in a dedicated folder (a dataset per replicate). For each replicate, the list of single-cell
measures is dispatched in three different files in xls format. Each cell is identified by a
unique tag per image and the tag of the captured image. Each time a measure failed (on
one character, or on the entire cell), the corresponding element (or line) in the table was
filled with value −1. Several characters are redundant (for example the volume and the
size of the nucleus), and strongly correlated. Moreover, each trait value is provided with
specific units (e.g., number of pixels, volume or angle units), such that some normalization
is necessary. The code associated to this analysis is freely available in Script II.5.8. One
can run again the whole analysis by following instructions provided in the README file.
The raw dataset is freely provided by Yvert et al. (2013).

The purpose of the analysis is to determine whether intra-strain variability presents cor-
relations between characters once inter-strain correlations between characters have been
removed.

Let us first process inter-strain variability. The idea is to find a phenotypic space in which
there is as little character-specific variability and correlation as possible. Here we have
37 isogenic strains, hence 37 genotypes. We define the “phenotype” of a strain/genotype
as the vector of mean trait values, computed over all cells from this strain/genotype. We
then define the “centered phenotype" of a strain/genotype by removing the grand mean
of each character. The singular value decomposition of the 37x125 matrix of centered
strain phenotypes will give us a set of orthonormal linear combinations of characters. By
construction, when the centered strain phenotypes are expressed according to these new
characters, they lose all their pairwise correlations, implying that the variance-covariance
matrix is diagonal for those new characters. Moreover, we normalize the variance of each
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new strain phenotype to one1, such that the 37 new strain phenotypes are isotropically
distributed.

This new base is the closest analogy we could think of to the phenotypic space in the
classical version of Fisher’s geometric model. Fisher’s phenotypic space is orthogonal and
normalized, and mutations on the genotype cause phenotypic traits to vary independently
and with the same amplitude, according to an isotropic mutational distribution.

The second step is to project intra-strain single-cell data in Fisher’s space, and to analyze
the possible remaining correlations of intra-strain phenotypic variability in this space.

Figure II.7 shows the detailed steps of our analysis, as described below. First, we converted
each xls file into csv format, and we merged the three files of each replicate to obtain a
single datasetM0,s,r (s ∈ {1, ..., 37}, r ∈ {1, ..., 5}) per replicate, and we removed useless
information (such as cell identifiers, coordinates on the image, and so on) (Fig. II.7.1).
Then we merged the 5 replicates of each strain (Fig. II.7.2) to compute the matrix M0

of the mean phenotypic characters per strain (Fig. II.7.3). Each column M0j ofM0 was
centered and normalized to obtain the matrix M (Fig. II.7.4):

Mj =
M0j −mean(M0j)

stdev(M0j)
. (II.9)

We also standardized each replicate to obtain 37 × 5 matrices Ms,r, s ∈ {1, ..., 37}, r ∈
{1, ..., 5} (Fig. II.7.6). For each column M0,s,rj of M0,s,r:

Ms,rj =
M0,s,rj −mean(M0,s,rj)

stdev(M0,s,rj)
. (II.10)

To find Fisher’s space, we computed a SVD from M (see details below, and Fig. II.7.5).
For each standardized replicate dataset Ms,r, many trait values are missing, and are re-
placed by −1 values, making impossible some mathematical operations. For this reason,
a next step was to estimate the missing values: we used a simple conservative method,
as described below (Fig. II.7.7). Finally, each replicate dataset was projected in Fisher’s
space (Fig. II.7.8). The inter-replicate variability was evaluated to ensure that experimen-
tal variability is low enough (Fig. II.7.9), and intra-strain phenotypic noise correlations
were analyzed (Fig. II.7.10).

We describe below the steps requiring details.

Estimation of missing values

To estimate missing values, we first computed the cell-to-cell Pearson correlation matrix
C associated to each replicate, based on available data. Knowing there are m′ ∼ 200

1Which is why our analysis is not exactly a PCA: We drop the singular values that are usually left in
the PCA.
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cells and n = 125 phenotypic characters in each replicate, we defined a cell by a vector
Xi ∈ R125, with i ∈ {1, ...,m′}.

Each missing value xi,j of Xi (with j ∈ {1, ..., n}) was recovered by computing:

xi,j = X̄i +

m′∑
k=1

(xk,j − X̄k)ci,k

m′∑
k=1

|ci,k|
(II.11)

with ci,k element ofC. This simple method is conservative, meaning that noise amplitudes
tend to be reduced through this estimation method. Moreover, we removed all cells Xi

that contained only −1 values.

Singular value decomposition

Let us consider the matrix M of dimension m× n that contains the standardized mean
phenotypic trait values of each strain, where m is the number of strains (m = 37), and
n is the number of characters (n = 125). M can be decomposed into a m ×m unitary
matrix U , a m× n positive and diagonal matrix Σ, and a n× n unitary matrix V such
that:

M = UΣV ∗ (II.12)

with V ∗ being the conjugate transpose of V .

The diagonal entries of Σ are the singular values σ ∈ Rm of M . V contains the right-
singular vectors of M , defining the base where m linear combinations of phenotypic
characters are separated and orthonormal. These linear combinations give 37 new pheno-
typic characters, whose means vary independently and have been normalized to the same
amplitude. In the following, we will call the space generated by the base V the “Fisher’s
space”.

As shown on Figure II.8, looking at the vector σ reveals that only the first 8 singular
values carry significant variability between mean phenotypic characters (a method to keep
significant singular values consists in removing all values after the shoulder point in Fig.
II.8). We thus truncated matrices V and Σ to only keep the most significant singular
values and singular vectors. To this aim, we defined the matrix Vcut of size n×8 containing
the 8 first singular vectors of V , and the matrix Σcut of size 8× 8 containing the first 8
singular values σcut such that Σcut = diag(σcut).
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Intra-strain data projection in Fisher’s space

Since the singular value decomposition has been computed onM , and the most significant
singular values and vectors have been isolated, we can use the base Vcut and the diagonal
matrix Σcut to project each replicate data in Fisher’s space. Let us define the m′ × n
matrixMs,r which contains the single-cell data of the replicate r ∈ {1, ..., 5} of the strain
s ∈ {1, ..., 37}. m′ is the number of cells (m′ ∼ 200), and n is the number of characters
(n = 125). The projection of Ms,r in Fisher’s space is computed as following:

M ′
s,r = Ms,rVcutΣ

−1
cut (II.13)

with Σ−1cut = diag(1/σcut) a diagonal matrix where the diagonal entries are the reciprocal
of the first 8 singular values. M ′

s,r represents the single-cell data of the replicate r of the
strain s, projected in Fisher’s space.

Results

Inter-replicate variability does not impair phenotypic noise analy-
sis.

A first step in our analysis of intra-strain phenotypic noise is to check the absence of
significant experimental variability between replicates. To this aim, we compared the
structure of each replicate. For each replicate dataset Ms,r (with r ∈ {1, ..., 5} and
s ∈ {1, ..., 37}), we computed the vectors µs,r and σs,r containing respectively the means
and the standard deviations by character of Ms,r. As shown in Figures II.9 and II.10,
replicates do not vary significantly from each other (each plot represents a strain, with
one color per replicate). We also computed and plotted the correlation matrix of each
replicate (5 matrices per strain) to check that experimental variability does not affect
noise correlation structure. Noise correlations appeared to not strongly vary between
replicates of each strain. The 37 figures corresponding to the 5 correlation matrices of
each strain are provided in Data II.5.5.

As a conclusion, we didn’t notice impairing experimental variability between replicates.
For this reason, we decided to merge replicates in a single dataset to facilitate further
analyses.

Phenotypic noise correlation matrices for each strain.

As described previously, experimental variability between replicates is low enough to allow
us to merge replicates in a single datasetM ′

i , with i ∈ {1, ..., 37}. First, in order to identify
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possible phenotypic noise correlations in Fisher’s space, we computed the correlation
matrix of M ′

i ∀ i, and performed a Pearson correlation test on each off-diagonal pair of
variables, with α = 0.05. A Bonferroni correction of k = 28 (k = 8∗7/2) was also applied
on each test. Then, we focused on the phenotypic characters exhibiting elevated noise
correlations, as shown below.

Correlation matrices demonstrated that all the natural strains of yeast studied in Yvert
et al. (2013) exhibit correlated phenotypic noise in Fisher’s space (defined before as the
space where inter-strain mean phenotypic characters are uncorrelated and of the same
amplitude). For each strain, we found significant noise correlations, despite the Bonferroni
correction (k = 28). For each correlation matrix, we generated a figure showing the
correlations and the results of the Pearson correlation test. For each pair of characters,
the strength of the correlation is symbolized by the size of the corresponding circle. A blue
color indicates a positive correlation, and a red color a negative correlation. When the
Pearson correlation test is negative, the corresponding circle is marked with a cross. The
37 figures corresponding to the correlation matrix of each strain are provided in II.5.6.

Phenotypic characters with the highest noise correlation are also
the most variable between strains.

For each strain, we also identified the two axes of the phenotypic space showing the highest
phenotypic noise correlation. As shown in Figure II.11, in a majority of strains, these two
axes correspond to the first two axes of Fisher’s space. These axes correspond to the most
variable inter-strain mean phenotypic characters. On Figure II.12a, we show what would
be an uncorrelated phenotypic noise for each strain for the two first principal components
(PC1 and PC2) of the Fisher’s space (the shape of the phenotypic noise of each strain is
symbolized by an ellipse representing the standard deviation of the associated bivariate
normal law, rescaled by a factor 0.002). On Figure II.12b, the real observed phenotypic
noise is represented, showing noise correlations for all the strains.

One must remember that PC1 and PC2 axes are a combination of phenotypic characters.
The most variable combinations of phenotypic characters between strains are also the
ones exhibiting the most correlated intra-strain phenotypic noise. Thus, if one assume that
phenotypic differences across strains are adaptive, this result suggests that the phenotypic
characters most exposed to directional selection are also the ones with the most correlated
phenotypic noise between characters.
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Raw	datasets	(xls	format)	

(1)	Convert	to	csv	and	merge	

5	replicates	per	strain	

(37×5	datasets)	

1	dataset	per	strain	

(2)	Merge	replicates	

(3)	Compute	the	matrix	of	
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Figure II.7 – Step-by-step protocol used to analyze single-cell data. (1) Each xls file
is converted into csv format, the three files related to each replicate being merged to obtain a
single dataset M0,s,r (s ∈ {1, ...,m = 37}, r ∈ {1, ..., 5}) per replicate. (2) The 5 replicates
of each strain are merged to obtain a single dataset per strain. (3) The matrix M0 of the mean
phenotypic trait values per strain is computed. (4,6) Datasets are standardized according to the
mean vector µM ∈ R125 and the standard deviation vector σM ∈ R125 ofM0. (5) A singular values
decomposition (SVD) is computed from standardized inter-strain datasetM (see above for the details
of the SVD). (7) Replicate missing values are estimated (see above). (8) Each replicate dataset is
projected into Fisher’s space. (9) Inter-replicate variability is evaluated to ensure that experimental
variability is low enough. (10) Intra-strain phenotypic noise correlations are analyzed.
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Figure II.8 – Ordered singular values contained in σ. A simple empirical method to keep only
significant variations is to isolate all the singular values located before the shoulder point in the ordered
plot (as shown by a blue dashed line). Here, we kept the first 8 singular values.
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Figure II.9 – Mean phenotypic trait values per replicate per strain. For each replicate of each
strain, the mean phenotypic trait values are plotted (one color per replicate on each plot, one plot
per strain).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



II.5. Supporting Information 83

1
2

3
4

5
6

7
8

0.30.50.7
B
Y4
74
3

In
de
x

1
2

3
4

5
6

7
8

0.30.5

YJ
M
42
8

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.5

YJ
M
42
1

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.60.9

T7
3

In
de
x

NULL

1
2

3
4

5
6

7
8

0.40.6

D
B
VP
G
46
51

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

D
B
VP
G
17
88

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

YJ
M
32
6

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.5

YJ
M
14
5

In
de
x

1
2

3
4

5
6

7
8

0.30.5

YP
S1
00
0

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

Y9
J

In
de
x

NULL

1
2

3
4

5
6

7
8

0.40.8

D
B
VP
G
13
73

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

C
LI
B
21
9

In
de
x

NULL

1
2

3
4

5
6

7
8

0.40.6

C
LI
B
38
2

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.6

YJ
M
32
0

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

YJ
M
41
3

In
de
x

1
2

3
4

5
6

7
8

0.350.55

YJ
M
43
4

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

YJ
M
45
4

In
de
x

NULL
1

2
3

4
5

6
7

8

0.40.60.8

YJ
M
26
9

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

U
C
1

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

D
B
VP
G
35
91

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

I1
4

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

YJ
M
43
6

In
de
x

1
2

3
4

5
6

7
8

0.30.6

YP
S1
63

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

C
LI
B
29
4

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.6

U
C
8

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.6

C
LI
B
15
4

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.6

C
LI
B
15
7

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.5

YJ
M
65
3

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.6

D
B
VP
G
17
94

In
de
x

1
2

3
4

5
6

7
8

0.30.60.9

C
LI
B
19
2

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

D
B
VP
G
18
53

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

Y1
2

In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.50.7

YJ
M
28
0

In
de
x

NULL

1
2

3
4

5
6

7
8

0.40.6

R
M
11

In
de
x

NULL

1
2

3
4

5
6

7
8

0.40.6

Y3 In
de
x

NULL

1
2

3
4

5
6

7
8

0.30.6

C
EC
T1
01
09

1
2

3
4

5
6

7
8

0.30.6

W
E3
72

NULL

Figure II.10 – Standard deviation of each phenotypic character per replicate per strain. For
each replicate of each strain, the standard deviation of each phenotypic character is plotted (one color
per replicate on each plot, one plot per strain).
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Figure II.11 – Mean phenotypic noise correlations in the Fisher’s space. a, The mean
correlation matrix across all the replicates of all the strains has been computed and plotted here. For
each pair of characters, the strength of the correlation is symbolized by the size of the corresponding
circle. A blue color indicates a positive correlation, and a red color a negative correlation. b, All
off-diagonal pairwise correlations between the first 8 axes of Fisher’s space are sorted by decreasing
order. The most correlated axes in mean are axes 1 and 2 (called PC1 and PC2).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



II.5. Supporting Information 85

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

BY4743

YJM428

YJM421

T73

DBVPG4651

DBVPG1788

YJM326

YJM145

YPS1000

Y9J

DBVPG1373CLIB219

CLIB382
YJM320

YJM413

YJM434

YJM454

YJM269

UC1

DBVPG3591

I14

YJM436

YPS163

CLIB294

UC8 CLIB154

CLIB157

YJM653

DBVPG1794

CLIB192

DBVPG1853

Y12

YJM280

RM11

Y3

CECT10109
WE372

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

BY4743

YJM428

YJM421

T73

DBVPG4651

DBVPG1788

YJM326

YJM145

YPS1000

Y9J

DBVPG1373CLIB219

CLIB382
YJM320

YJM413

YJM434

YJM454

YJM269

UC1

DBVPG3591

I14

YJM436

YPS163

CLIB294

UC8 CLIB154

CLIB157

YJM653

DBVPG1794

CLIB192

DBVPG1853

Y12

YJM280

RM11

Y3

CECT10109
WE372

Expected phenotypic noise without 
noise correlation in the Fisher’s space 

Observed real phenotypic noise 
in the Fisher’s space 

Interstrain first principal component (PC1) Interstrain first principal component (PC1) 

In
te

rs
tra

in
 s

ec
on

d 
pr

in
ci

pa
l c

om
po

ne
nt

 (P
C

2)
 

In
te

rs
tra

in
 s

ec
on

d 
pr

in
ci

pa
l c

om
po

ne
nt

 (P
C

2)
 

a b 

Figure II.12 – Yeast intra-strain phenotypic noise is correlated in the Fisher’s space. A
singular value decomposition (SVD) was performed on the mean trait values of each of the 37
yeast strains. This space is similar to the phenotypic space used in Fisher’s geometric model, where
phenotypic characters mutate independently and with the same amplitude (i.e. mean phenotype
mutations are isotropic in this space). For this reason, we called this space “Fisher’s space”. We then
projected single-cell data of each strain in this space. We identified the two axes showing the highest
noise correlation in mean, for all strains: they correspond to the two first components of Fisher’s
space (PC1 and PC2). a, Expected phenotypic noise for each strain without noise correlation between
Fisher’s space axes (each axis representing a linear combination of phenotypic characters). The shape
of the phenotypic noise of each strain is symbolized by an ellipse representing the standard deviation
of the associated bivariate normal law. Each ellipse is tagged with the corresponding strain name.
The size of the ellipses are rescaled by a factor 0.002 to better distinguish them. The coordinates of
the center of each ellipse correspond to the real position of the corresponding strain in Fisher’s space
(from real data). b, Real observed phenotypic noise is represented, showing noise correlation between
PC1 and PC2 axes, for all the strains.
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II.5.3 Appendix S2. A numerical solver for σFGM.

In this appendix, we present in more details the numerical solver of σFGM. We assume
that the reader is aware of the basic definitions and equations provided in the main
manuscript.

To estimate the evolution of the population distribution n(µ,σ,θ) through time, we
simulated the stochastic branching process associated to σFGM equations (as discussed
in Methods). Once initial conditions are defined (Table II.2), the evolutionary trajectory
of n(µ,σ,θ) is simulated through time using Algorithm 1, which is similar to a time-
adaptive tau-leaping algorithm (Gillespie, 2007).

Parameters of the numerical solver

Table II.2 – List of parameters of the numerical solver for σFGM.

Variable Symbol Domain
Number of particles N [1,+∞]
Number of phenotypic characters (or dimensions) n [1,+∞]
Initial mean phenotype vector µ0 Rn

Initial Σ eigenvalues vector σ0 Rn

Initial Σ rotation angles vector θ0 Rn(n−1)/2

µ values mutation size standard deviation sµ ≥ 0
σ values mutation size standard deviation sσ ≥ 0
θ values mutation size standard deviation sθ ≥ 0

These parameters must be set to initialize a stochastic branching process simulation.

Code availability

The code of the numerical solver and parameter exploration scripts is freely available in
Script II.5.7, and is distributed under the open source GNU General Public License.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



II.5. Supporting Information 87

Main algorithm of the numerical solver

Data: Set initial conditions (Table II.2); Set N particles with the same initial
parameters µ0, σ0 and θ0.

Result: Evolution through time of the population distribution n(µ,σ,θ).
t = 0;
Nt = N ;
while Stop criteria not reached do

Wmax = max(Wi), for i ∈ [0, N ];
dt = 0.1/Wmax;
for i = 1 ... N do

if uniform_draw(0,1) < Wi × dt then
i′ = Duplicate(i);
Mutate(i′);
zi = multivariate_normal_draw(µi,Σi);
Wi = W (zi);
Nt = Nt + 1;

end
end
pdeath = max (0, (Nt −N)/Nt);
for i = 1 ... N do

if uniform_draw(0,1) < pdeath then
Kill(i);
Nt = Nt − 1;

end
end
t = t+ dt;
Compute_moments();
Compute_statistics();

end
Algorithm 1: Main algorithm of the numerical solver of σFGM. This algorithm sim-
ulates the stochastic branching process associated to the equations of σFGM. In this
algorithm, similar to a tau-leaping algorithm, the timestep dt is not fixed and depends
on the best organism’s fitnessWmax at time t. This method is used to avoid long periods
with no branching events (usually when population fitness is very low). Thus, the time
scale is rescaled to set the proliferation rate of the best particle at 0.1: at each simula-
tion time-step, dt = 0.1/Wmax. The population size Nt is also regulated by recomputing
the death probability pdeath at each time-step such that pdeath = max (0, (Nt −N)/Nt).
Finally, at each time-step, the two first moments of n(µ,σ,θ) are computed to extract
the evolutionary trajectory, as well as the maximal eigenvalue, the maximal eigenvalue
contribution and the maximal eigenvector correlation.
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Parametric exploration for a single phenotypic charac-
ter.

We performed a parametric exploration in the space (µ, σ) at a high resolution. More pre-
cisely, we computed the integrals in ∂W (µ, σ)/∂σ and ∂W (µ, σ)/∂µ using the numerical
method of Gauss-Kronrod adaptive integration on infinite intervals (QAGI) provided by
the Gnu Scientific Library. We explored µ and σ between 0 and 10, with a step of 0.01,
thus representing the computation of 106 points. We only explored µ ≥ 0 since the model
is symmetric for µ < 0 and µ > 0.

We used the data to numerically find the ridge ∂W (µ, σ)/∂σ = 0, and the W (µ, σ)
gradient in the space (µ, σ).

Parametric exploration for an isotropic noise in n dimen-
sions

We also performed a parametric exploration in the space (µ, σ) at a high resolution.
We computed the integral ∂W (µ, σ)/∂σ using the numerical method of Gauss-Kronrod
adaptive integration on infinite intervals (QAGI) provided by the Gnu Scientific Library.

We explored µ1 (all other µi, i ∈ {2, . . . , n} being equal to 0) and σ between 0 and 10,
with a step of 0.05, from n = 1 to n = 50, thus representing the computation of 2.106

points. We only explored µ1 ≥ 0 since the model is symmetric for µ1 < 0 and µ1 > 0.

We used the data to find numerically the ridge ∂W (µ, σ)/∂σ = 0 for each dimension, and
the W (µ, σ) gradient in the space (µ, σ).
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II.5.4 Appendix S3. Analytical study of σFGM.

In this appendix, we present in details our analytical study of σFGM. We assume that the
reader is aware of the basic definitions and equations provided in the main manuscript.

Analytical study for a single phenotypic character

In the single-character’s version of σFGM (n = 1), each organism owns two evolvable
parameters µ ∈ R and σ ∈ R+, encoding for the phenotypic distribution z ∼ N (µ, σ2).
The probability density to express the phenotype z is:

p(z, µ, σ) =
1

σ
√

2π
exp

[−(z − µ)2

2σ2

]
. (II.14)

The fitness W (z) of the expressed phenotype z reads:

W (z) = exp
[
−z2/2

]
. (II.15)

However, it is much more informative to look at the expected fitness W (µ, σ) of an
organism (µ, σ), that reads:

W (µ, σ) =

∫
z

p(z, µ, σ)W (z)dz

=

∫
z

1

σ
√

2π
exp

[−(z − µ)2

2σ2

]
exp

[
−z

2

2

]
dz.

(II.16)

We performed an analytical study ofW (µ, σ) in the space (µ, σ). We computed the partial
derivatives ∂W (µ, σ)/∂µ and ∂W (µ, σ)/∂σ in order to predict what would be the selective
pressures on µ and σ, depending on the distance from the fitness optimum zopt = 0.

By way of introduction, we know that for f continuously differentiable in x and t, accord-
ing to the Leibniz’s rule:

d

dt

∫
R
f(x, t)dx =

∫
R

∂

∂t
f(x, t)dx. (II.17)

Let us define the function f(z, µ, σ) such that:

f(z, µ, σ) = p(z, µ, σ)W (z) (II.18)

then:
W (µ, σ) =

∫
R
f(z, µ, σ)dz. (II.19)
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Partial derivation on µ

According to Equations II.17 and II.19, we know that:

∂W (µ, σ)

∂µ
=

∫
z

∂

∂µ
f(z, µ, σ)dz. (II.20)

Let us compute ∂f/∂µ:

∂f

∂µ
=

1

σ
√

2π
exp

[
−z

2

2

](
exp

[−(z − µ)2

2σ2

])′

=
1

σ
√

2π
exp

[
−z

2

2

]
(z − µ)

σ2
exp

[−(z − µ)2

2σ2

]

=
(z − µ)

σ2
f(z, µ, σ)

=
(z − µ)

σ2
p(z, µ, σ)W (z)

(II.21)

p(z, µ, σ) being a Gaussian density, we know that:

∂p(z, µ, σ)

∂z
= −(z − µ)

σ2
p(z, µ, σ). (II.22)

Then, Equation II.21 can be rewritten as following:

∂f(z, µ, σ)

∂µ
= −∂p(z, µ, σ)

∂z
W (z). (II.23)

Here, the goal here is to determine the sign of ∂W (µ, σ)/∂µ, that reads:

∂W (µ, σ)

∂µ
=

∫
z

∂f(z, µ, σ)

∂µ
dz

=

∫
z

−∂p(z, µ, σ)

∂z︸ ︷︷ ︸
Anti-symmetric function

× W (z)︸ ︷︷ ︸
Symmetric function

dz.
(II.24)

To determine the sign of ∂W (µ, σ)/∂µ, we must consider the shape of the integrated
function, being the product of:
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(1) −∂p(z, µ, σ)/∂z, an anti-symmetric function centered on µ, negative if z < µ, and
positive if z > µ (Fig. II.13a);

(2) W (z), a strictly positive and symmetric function, centered on 0 (Fig. II.13b).

When µ = 0, the product of the anti-symmetric and symmetric functions ∂p(z, µ, σ)/∂z×
W (z) is an anti-symmetric function, its integral thus being equal to zero (Figs. II.13c and
II.13d). Then, the sign of ∂W (µ, σ)/∂µ depends on µ as following:

If µ < 0 , ∂f(z, µ, σ)/∂µ > 0

If µ = 0 , ∂f(z, µ, σ)/∂µ = 0

If µ > 0 , ∂f(z, µ, σ)/∂µ < 0

(II.25)

Hence, for any value of σ > 0, the selective pressures act to reduce µ towards µ = 0,
defining a ridge ∂W (µ, σ)/∂µ = 0 when µ = 0. Any organism owning a value of µ 6= 0
has a lower fitness than an organism with µ = 0, for any given value of σ. This ridge is
plotted in purple on Figure II.15.

As revealed in Equation II.21, two other conditions exist for ∂W (µ, σ)/∂µ = 0:
If µ→ ±∞ , ∂f(z, µ, σ)/∂µ = 0

If σ → +∞ , ∂f(z, µ, σ)/∂µ = 0
(II.26)

Thus, organisms located very far from the fitness optimum (i.e., |µ| � 0), or organisms
with a very dispersed phenotypic distribution (i.e., σ � 0), do not experience selective
pressures. However, according to Equation II.16, their mean fitness W (µ, σ) is almost
equal to zero in these conditions.

Another critical condition to clarify for the partial derivative ∂W (µ, σ)/∂µ is when σ → 0.
Equation II.24 can help us to solve this special case. Indeed, normal distributions with
parameters µ and σ converge towards a Dirac distribution δ(z − µ) when σ → 0. The
Dirac distribution satisfies, for all continuous function ϕ(z),∫

z

δ(z − µ)ϕ(z)dz = ϕ(µ). (II.27)

The first derivative of the Dirac distribution (in the sense of distributions) satisfies:∫
R
δ′(z − µ)ϕ(z)dz = −ϕ′(µ) (II.28)
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and the n-th derivative, denoted δ(n), satisfies:∫
z

δ(n)(z − µ)ϕ(z)dz = (−1)nϕ(n)(µ). (II.29)

Thus, starting from Equation II.24, we can derive the following limiting equation when
σ → 0:

lim
σ→0

∂W

∂µ
= lim

σ→0

∂

∂µ

∫
R
p(z, µ, σ)W (z)dz

=
∂

∂µ
lim
σ→0

∫
R
p(z, µ, σ)W (z)dz

=
∂

∂µ

∫
R
δ(z − µ)W (z)dz

=
∂W (µ)

∂µ

= W ′(µ).

(II.30)

Thus, when σ → 0, the system converges towards canonical FGM scenario, according
that µ ≡ z in this case.

Partial derivation on σ

We first rewrite the equation f(z, µ, σ) to separate σ from other terms:

f(z, µ, σ) =
W (z)√

2π
× 1

σ
exp

[−(z − µ)2

2σ2

]
. (II.31)

Let us define the term a = W (z)/
√

2π that does not depend on σ, such that:

f(z, µ, σ) = a× 1

σ
exp

[−(z − µ)2

2σ2

]
. (II.32)

The partial derivation of f with respect to σ is more technical than for µ. We describe it
step by step below. Let us define the terms u and v such that:

u = exp

[−(z − µ)2

2σ2

]
v = σ

(II.33)

Then:
∂f(z, µ, σ)

∂σ
= a× (u′v − uv′)

v2
(II.34)
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with: 
u′ =

(z − µ)2

σ3
exp

[−(z − µ)2

2σ2

]
v′ = 1

(II.35)

Thus, the derivative ∂f/∂σ reads:

∂f(z, µ, σ)

∂σ
= a×


σ(z − µ)2

σ3
exp

[−(z − µ)2

2σ2

]
− exp

[−(z − µ)2

2σ2

]
σ2



= a× exp

[−(z − µ)2

2σ2

]
×

 (z − µ)2

σ2
− 1

σ2


= a× exp

[−(z − µ)2

2σ2

]
× (z − µ)2 − σ2

σ4

=
(z − µ)2 − σ2

σ3
f(z, µ, σ)

=
(z − µ)2 − σ2

σ3
p(z, µ, σ)W (z)

(II.36)

p(z) being the density of a normal law, we know that:

∂2p(z, µ, σ)

∂z2
=

(z − µ)2 − σ2

σ4
p(z, µ, σ). (II.37)

From Equation II.36, we thus find:

∂f(z, µ, σ)

∂σ
=

∂2p(z, µ, σ)

∂z2︸ ︷︷ ︸
Symmetric function

× σ W (z)︸ ︷︷ ︸
Symmetric function

. (II.38)

We were not able to compute the ridge ∂W (µ, σ)/∂σ = 0. We used a numerical scheme
to compute ∂W (µ, σ)/∂σ depending on µ and σ (see Appendix II.5.3).

However, it is possible to determine analytically some essential characteristics of the ridge
∂W (µ, σ)/∂σ = 0 (Fig. II.15 orange curve):

(1) The sign of ∂W (µ, σ)/∂σ when σ → 0;
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(2) The position of the inflection point µ = dth, below which the phenotypic noise is
always deleterious (Fig. II.15 orange circle).

(1) As previously (Eq. II.30), when σ → 0, ∂W (µ, σ)/∂σ reads:

lim
x→0

∂W (µ, σ)

∂σ
=

∫
z

δ
′′
(z − µ)× σ W (z)dz

= (−1)2σ W
′′
(µ)

= σ(µ2 − 1) W (µ)

= 0.

(II.39)

Thus, when σ → 0, the first order selective pressure on σ vanishes, for any values of µ.
This means that to determine whether low noise levels are beneficial, one must look at the
second derivative of W with respect to σ, and identify the inflection points that separate
the regions where noise is beneficial or deleterious.

(2) We first compute ∂2f/∂σ2. From Equation II.36, we define the terms u and v such
that: 

u =
(z − µ)2 − σ2

σ3

v = f(z, µ, σ)

(II.40)

Thus, ∂2f/∂σ2 = u′v + uv′, with:

u′ =
σ2 − 3(z − µ)2

σ4

v′ =
(z − µ)2 − σ2

σ3
f(z, µ, σ)

(II.41)

The second derivative of f then reads:

∂2f(z, µ, σ)

∂σ2
=

(z − µ)2 − σ2

σ3
f(z, µ, σ) +

(
σ2 − 3(z − µ)2

σ4

)2

f(z, µ, σ)

= f(z, µ, σ)

(
σ4 − 3σ2(z − µ)2 + (z − µ)4 − 2(z − µ)2σ2 + σ4

σ6

)

= f(z, µ, σ)

(
2σ4 − 5(z − µ)2σ2 + (z − µ)4

σ6

)
.

(II.42)
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Figure II.13 – Behavior of ∂W (µ, σ)/∂µ. a, The normal distribution derivative −∂p(z, µ, σ)/∂z
is an anti-symmetric function centered on z = µ, such that the function is negative when z < µ
and positive when z > µ. Here, an example is given for µ = 1 and σ = 1. The red vertical line
represents the value of µ, which is an axis of symmetry of the function. b, The Gaussian-shaped
fitness function W (z) is a strictly positive, symmetric function centered on z = 0. c,d, The product
of both functions, equal to ∂f(z, µ, σ)/∂µ is biased towards positive values if µ < 0 (blue curve),
towards negative values if µ > 0 (red curve), or anti-symmetric if µ = 0 (green curve). Thus the
integral

∫
z ∂f(z, µ, σ)/∂µ dz is respectively positive, negative, or zero, if µ is negative, positive or

zero (as shown in panel d, purple curve).

As demonstrated previously, it is possible to rewrite this equation to extract derivatives
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of normal law densities:

∂2f(z, µ, σ)

∂σ2
= f(z, µ, σ)

(
(z − µ)4 − 6(z − µ)2σ2 + 3σ4

σ6
+

(z − µ)2σ2 − σ4

σ6

)

= σ2 f(z, µ, σ)

(
(z − µ)4 − 6(z − µ)2σ2 + 3σ4

σ8
+

1

σ2

(z − µ)2 − σ2

σ4

)

= σ2 f(z, µ, σ)

(
(z − µ)4 − 6(z − µ)2σ2 + 3σ4

σ8
+

(z − µ)2 − σ2

σ6

)

= σ2 W (z)

(
∂4p(z, µ, σ)

∂z4
+

1

σ2
× ∂2p(z, µ, σ)

∂z2

)

=

(
σ2 W (z)

∂4p(z, µ, σ)

∂z4

)
︸ ︷︷ ︸

→0 when σ→0

+

(
W (z)

∂2p(z, µ, σ)

∂z2

)
.

(II.43)

Consequently, when σ → 0, the partial derivative ∂2W (µ, σ)/∂σ2 reads:

lim
x→0

∂2W (µ, σ)

∂σ2
= (µ2 − 1) W (µ). (II.44)

The only value of µ for which ∂2W (µ, σ)/∂σ2 = 0 is |µ| = 1. When |µ| < 1, ∂2W (µ, σ)/∂σ2 <
0, meaning that the selective pressure is towards a reduction of the phenotypic noise σ.
When |µ| > 1, ∂2W (µ, σ)/∂σ2 > 0, meaning that the selective pressure is towards an
increase of the phenotypic noise σ (Fig. II.14 blue curve, and Fig. II.15 orange curve and
circle). Thus, dth = 1.

Analytical and numerical studies of an isotropic noise on
n phenotypic characters

As described in Results, an isotropic noise is applied to the mean phenotype µ, by inde-
pendently varying each trait value µi with the same noise amplitude σ. The probability
p(z,µ, σ) for an organism (µ, σ) to express the phenotype z is then:

p(z,µ, σ) =
∏
i∈n

1

σ
√

2π
exp

[−(zi − µi)2
2σ2

]
. (II.45)

As in the previous section, the goal is to compute the second derivative of W (µ, σ) on
σ, and find its inflection point to detect the critical euclidean distance dth below which
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phenotypic noise must be minimized. However, we now must compute it in n dimensions.
Hopefully, two conditions allow us to strongly simplify the equations:

(1) Noise is isotropic, such that W (µ, σ) can be decomposed in a product of one-
dimensional integrals;

(2) The mean phenotype of an organism µ is taken away from the fitness optimum on
a single axis, all other axes remaining at a distance zero of the fitness optimum.
By rotational symmetry, we can generalize to any position µ away from the fitness
optimum.

W (µ, σ) reads:

W (µ, σ) =

∫
Rn

p(z,µ, σ)W (z)dz

=

∫
R
p(z1, µ1, σ)W (z1)dz1 × ...×

∫
R
p(zn, µn, σ)W (zn)dzn.

(II.46)

If we only move the mean phenotypic trait value µ1 away from the fitness optimum, all
other mean trait values being equal to zero, W (µ, σ) then reads:

W (µ, σ) =

∫
R
p(z1, µ1, σ)W (z1)dz1 ×

(∫
R
p(z, 0, σ)W (z)dz

)n−1
. (II.47)

As demonstrated above, we know that for a single character and when σ → 0, the suc-
cessive derivatives of W (µ, σ) read:

W = W (µ)

W
′

= 0

W
′′

= (µ2 − 1)W (µ)

(II.48)

Moreover, when µ = 0, we find that:
W 0 = 1

W
′
0 = 0

W
′′
0 = −1

(II.49)
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We then define the terms a, b and c such that:

a =

∫
R
p(z1, µ1, σ)W (z1)dz1

b =

∫
R
p(z, 0, σ)W (z)dz

c = b n−1

(II.50)

We now compute the second derivative of W (µ, σ) on σ, according to a, b and c, this
equation reads:

∂2W (µ, σ)

∂σ2
= ac′′ + 2a′c′ + a′′c (II.51)

With: 
c′ = (n− 1)b′b n−2

c′′ = (n− 1)(n− 2)b′b n−3 + (n− 1)b′′b n−2
(II.52)

Then, the complete equation of ∂W (µ, σ)/∂σ reads:

∂2W (µ, σ)

∂σ2
= a ((n− 1)(n− 2)b′b n−3 + (n− 1)b′′b n−2)

+ 2a′(n− 1)b′b n−2

+ a′′b n−1.

(II.53)

We now replace the terms a and b by the corresponding terms in Equations II.48 and
II.49:

∂2W (µ, σ)

∂σ2
= W

(
(n− 1)(n− 2)W

′
0W

n−3
0 + (n− 1)W

′′
0W

n−2
0

)
+ 2W

′
(n− 1)W

′
0W

n−2
0

+ W
′′
W

n−1
0 .

(II.54)

Finally, the second derivative of W (µ, σ) on σ reads:

∂2W (µ, σ)

∂σ2
= (µ2

1 − n)W (µ1). (II.55)

The only value of µ1 for which Equation II.55 is equal to zero is µ1 = ±√n. Since this
result is valid when the euclidean distance d = ‖µ‖ is equal to

√
n, we can conclude
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that the critical distance below which isotropic phenotypic noise must be minimized is
dth =

√
n.

Anisotropic and correlated phenotypic noise is beneficial
when aligned with the fitness optimum

Let us consider the organism (µ,σ,θ) in a n-dimensional phenotypic space, sitting at a
certain distance of the fitness optimum zopt (beyond dth =

√
n) and evolving towards it.

We describe the phenotypic noise of this organism by a multivariate normal distribution
Nn(µ,Σ). This multivariate normal distribution can be represented by an hyper-ellipse
in Rn, as shown in Figure II.16 for two dimensions.

We now define the axes v1, ...,vn (the origin of the new basis also being µ), with v1 aligned
towards the fitness optimum zopt, all other axes vi being orthogonal to v1 (Fig. II.16a).
Along axis v1, the organism (µ,σ,θ) experiences a convex fitness if ‖µ‖ > 1. Along all
other axes vi, the organism experiences a concave fitness, sitting at a local optimum in
all cases (Fig. II.16b). The basis associated to axes v1, ...,vn is the orthonormal matrix
V of size n×n, where v1 is defined by the vector µ. By defining µ = µ/‖µ‖, the matrix
V reads:

V =
(
µ| ...

)
(II.56)

The goal here is to find the phenotypic noise configuration that maximizes the expected
fitness W (µ,Σ), knowing that:

W (µ,Σ) =

∫
Rn

p(z,µ,Σ)W (z)dz. (II.57)

We first make a variable change by defining ε such that the realized phenotype z = µ+ε.
Thus:

W (µ,Σ) =

∫
Rn

p(ε,0,Σ)W (µ+ ε)dε. (II.58)

According to our previous results, we know that if ‖µ‖ > 1, phenotypic noise is beneficial
along v1 axis, where W (z) is convex, and is deleterious along all other orthogonal axes of
V (Fig. II.16b). Thus, for any covariance matrix Σ and for any ε ∼ Nn(0,Σ), the fitness
W (µ+ ε)of the expressed phenotype z = µ, ε is always lower or equal to the fitness of its
projection along axis v1 (i.e., the distance towards the optimum will always be shorter or
equal for the projection). Thus:∫

Rn

p(ε,0,Σ)W (µ+ ε)dε ≤
∫
Rn

p(ε,0,Σ)W (µ+ µTεµ)dε. (II.59)

We then express ε in the basis V by making the following variable change: s = V Tε.
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Consequently, ε = Vs, such that:

µTεµ = µTV sµ

= s1µ.
(II.60)

We can rewrite the right term of the Equation II.59 as following:∫
Rn

p(Vs,0,Σ) W (µ+ s1µ)︸ ︷︷ ︸
Only depends on s1

ds1, ..., dsn. (II.61)

The termW (µ+s1µ) only depending on s1, we can extract it from the integral by writing:∫
R
W (µ+ s1µ)

[∫
Rn−1

p(Vs,0,Σ)ds2, ..., dsn

]
ds1. (II.62)

The probability density function p(Vs,0,Σ) from Equation II.62 is strictly equivalent
to p(s,0,V TΣV ) (demonstration not shown here). In this case, the inner integral of
Equation II.62 reads: ∫

Rn−1

p(s,0,V TΣV )ds2, ..., dsn. (II.63)

This equation (Eq. II.63) describes the marginal density of s1, following the univariate
normal law:

s1 ∼ N (0,
[
V TΣV

]
1,1

) (II.64)

the subscript “1, 1” denoting the coefficient of the first raw and first column.

Then, Equation II.63 reads:∫
R
W (µ+ s1µ)p(s1, 0,

[
V TΣV

]
1,1

)ds1. (II.65)

Note that, by rotational symmetry, W (µ + s1µ) = W ((‖µ‖ + s1)e1), because vectors
µ and µ are aligned. Thus, Equation II.65 is just the one dimensional expected fit-
ness W (‖µ‖,

[
V TΣV

]
1,1

). Previous results demonstrated that along axis v1, phenotypic
noise properties can be described in one dimension, such that there is an optimal value[
V TΣV

]
1,1

= σ2
opt that maximizes the expected fitness W (‖µ‖,

[
V TΣV

]
1,1

). This leads
to the inequality:

W (‖µ‖,
[
V TΣV

]
1,1

) =

∫
R
W (z)p(z, ‖µ‖,

[
V TΣV

]
1,1

)dz ≤ W (‖µ‖, σ2
opt). (II.66)

By decomposing the covariance matrix Σ in its eigenvalues σ2, such that Σ = UDUT ,
we obtain:

V TΣV = V TUDUTV . (II.67)
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If the eigenvector u1 of U (Fig. II.16a) is aligned with the axis v1 of the basis V , then the
best phenotypic noise configuration is to have σ2 = {σ2

opt, 0, ..., 0} (with D = diag(σ2)).

As a whole, our analytical study led to two important inequalities described in Equations
II.59 and II.66. For any organism (µ,σ,θ) where ‖µ‖ > 1, the first inequality (Eq.
II.59) demonstrates that it is always preferable to not have positive phenotypic noise
that is not aligned with the fitness optimum (i.e., along the axis v1). However, if none
of the principal components ui of the covariance matrix Σ are aligned with the fitness
optimum, this optimal scenario is unreachable because there is always positive phenotypic
noise orthogonal to the direction of the fitness optimum ui (the inequality II.59 is strict).
On the contrary, if one of the principal components u1 is aligned with the fitness optimum,
it is possible to minimize orthogonal noise components (the inequality II.59 is not strict).

Moreover, in the case where u1 is aligned with the fitness optimum and if orthogonal
noise components are set to zero (i.e., phenotypic noise is one-dimensional), results pre-
sented above show that it exists an optimal noise amplitude σ2

opt that maximizes the one
dimensional expected fitness W (‖µ‖,

[
V TΣV

]
1,1

). This corresponds to setting all the
eigenvalues of Σ to zero, except the one associated to u1, that is equal to σ2

opt.

Concluding remarks

Our demonstrations mainly rely on the study of the local convexity of the fitness function.
As such, any function admitting the same properties as W (z) = exp [−z2/2] (i.e., a
positive function being concave at the optimum and admitting one convex inflection point)
will give the same general results. Moreover, in our study, phenotypic noise and mutation
distributions are Gaussian-shaped. As demonstrated above, this choice allowed us to
obtain precise analytical results.
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Figure II.16 – Anisotropic and correlated phenotypic noise for two traits. a, The phenotypic
distribution of an organism (µ,σ,θ) is defined by a multivariate normal distribution with mean µ
(black dot), noise amplitudes σ1 and σ2 (black arrows) along axes u1 and u2, and a parameter of
correlation θ1 (grey angle), defining a rotation of the basis U = (u1,u2). A phenotype z (purple
dot) is generated from the multivariate normal distribution by drawing a random vector ε ∼ Nn(0,Σ)
(with Σ the covariance matrix built from σ and θ), such that z = µ + ε. The contribution of ε
on each axis v1 (in green) and v2 (in blue) of the basis V , where v1 is aligned with the fitness
optimum zopt, is represented by the vector s = (s1, s2)

T . The fitness landscape is represented by a
gradient of blue centered on the fitness optimum zopt (blue dot). b, Fitness along axes of the basis
V = (v1,v2). Along axis v1, aligned with the fitness optimum zopt, the organism experiences a
convex fitness (if ‖µ‖ > 1). Along axis v2, orthogonal to v1, the organism a concave fitness, sitting
on a local fitness optimum.

II.5.5 Data S1. Phenotypic noise correlations matrices of each
replicate of the 37 strains of yeast in Fisher’s space.

https://github.com/charlesrocabert/SigmaFGM/tree/master/phenomics_analysis/DataS1.zip

https://github.com/charlesrocabert/SigmaFGM/tree/master/phenomics_analysis/DataS1.zip
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II.5.6 Data S2. Phenotypic noise correlations matrices of each
of the 37 strains of yeast in Fisher’s space, with Pearson
correlation tests.

https://github.com/charlesrocabert/SigmaFGM/tree/master/phenomics_analysis/DataS2.zip
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II.5.7 Script S1. A numerical solver for σFGM.

https://github.com/charlesrocabert/SigmaFGM
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II.5.8 Script S2. Phenomics analysis of 37 strains of yeast.

https://github.com/charlesrocabert/SigmaFGM/tree/master/phenomics_analysis
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Chapter III

Evo2Sim, a multi-scale model
dedicated to Evolution of Evolution

The development of Evo2Sim is part of the European project
EvoEvo (FP7-ICT-610427). The description of work of the
project and the deliverables related to Evo2Sim are freely

available at www.evoevo.eu.
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Although there has been much discussion on what is the appropriate level
on which Darwinian selection operates, we now know that in many cases the
interesting features arise through the occurrence of multiple levels of selection
which act in concordance and/or in conflict.
(Hogeweg and Takeuchi, 2003)

III.1 Meet Evo2Sim

Figure III.1 – Evo2Sim logo.

Evo2Sim is a multi-scale and individual-based model of evolution, inspired from
pearls-on-a-string (Crombach and Hogeweg, 2008) and sequence-of-nucleotides (Beslon
et al., 2010b; Hindré et al., 2012). As discussed in introduction, developing complex rep-
resentations of the genotype-to-phenotype map and fitness landscape has been a primary
goal in the conception of this model. To do so, we used the bag-of-tuples formalism
(also discussed in introduction) to develop an artificial chemistry allowing for multi-
level evolution.

Two major objectives constrained the development of Evo2Sim: (i) integrate a maximum
number of pertinent biological structures and levels (genome, genetic regulation, metabolic
network, cell, population, ...) to enable deep exploration of EvoEvo, and (ii) maintain the
model complexity low enough to enable its practical use. As such, a tough compromise
had to be made between the degree of realism (the number of assumptions we want to
pick to build the model, see Servedio et al. 2014), and what we want the model to tell us.
This modeling problem is well-resumed by the concept of Medawar zone: as illustrated
in Figure III.2, the Medawar zone is the area where the model complexity is most likely
to produce fruitful results. Too simple models are unlikely to produce novel or significant
results. Too complex models may not succeed at all or may be rejected by the research
community at large (Loehle, 1990).

As described in the description of work of the EvoEvo project1, a primary objective in the
development of Evo2Sim was to merge the R-ævol model (Beslon et al., 2010b), which
includes a complex representation of the genome and the genetic regulation network, with
the pearls-on-a-string formalism, which is very flexible and allows for vast modeling possi-
bilities at the level of the regulation and the metabolism (Crombach and Hogeweg, 2007,
2008, 2009). Six biological structures have been modeled in Evo2Sim. (i) The genome
encodes two interlaced networks: (ii) the genetic regulatory network, that controls
gene expression, and (iii) the metabolic network, that allows the cell to perform tasks

1Available at www.evoevo.eu
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Figure III.2 – The Medawar zone. The Medawar zone is the area where the model complexity is
most likely to produce fruitful results. Too simple models are unlikely to produce novel or significant
results. Too complex models may not succeed at all or may be rejected by the research community
at large (Loehle, 1990).

in interaction with the environment. (iv) Together, these three first levels form the
fourth one: the cell. By uptaking, transforming and releasing metabolites (actively or at
death), the cell grows, and produces material necessary to its division. (v) Living cells
compose the population, and evolve in (vi) a two dimensional environment, in which
free metabolites diffuse and degrade over time.

The fitness of each organism depends on the production of essential metabolites, built
from available resources in the local environment. Doing so, organisms constantly modify
their environment, thus perturbing selective pressures. Free metabolites can be depleted,
new unseen free metabolites can appear in the environment, resources can cycle, and
so on. The fitness landscape is then completely dependent on the interaction between
the population and the environment, and is evolvable. In this sense, it could be more
appropriate to use the term fitness seascape to render the fluctuating selective pressures
(Mustonen and Lässig, 2009).

In the following section, the modeling choices for the artificial chemistry, the genotype-
to-phenotype map and the fitness landscape will be described in more details.

III.2 The genome

III.2.1 Genome structure

In Evo2Sim, the genome structure mimics bacterial genomes organization, with some
simplifications. Following the pearls-on-a-string formalism, the resolution of genomic
sequences is coarse-grained: no nucleotides representation here, a sequence is made of
genetic units, somehow corresponding to small DNA sequences carrying specific func-
tions. Thus, the genome is a circular, single-stranded sequence of genetic units, belonging
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to five different types: non-coding units (NC), promoter units (P), binding site
units (BS), transcription factor coding units (TF) and enzyme coding units (E).
There is a unique, hard-coded, reading frame. Each genetic unit is an ordered list of
attributes (a tuple), and has a specific role in the mapping. The interactions between the
various objects of Evo2Sim artificial chemistry are defined by integer values called “tags”.
For example, if a transcription factor tag matches to a binding site tag, the transcription
factor is allowed to bind to it. Metabolites are also implicitly defined by tags ∈ N. In this
case, we refer to the metabolite by # (e.g. metabolite #10). The different genetic units
and their attributes are described below, and summarized in Table III.1:

(1) Non-coding units (NC) have no particular function. They constitute the non-coding
part of the genome, which has been demonstrated to have a strong influence on the
long-term evolution of the genome structure (Knibbe et al., 2007a);

(2) Promoter units (P) contain a floating-point number β ∈ [0.0, 1.0] representing the
production rate of the protein(s) under its control. Indeed, transcription and trans-
lation are implicit processes in Evo2Sim. β can be up or down-regulated by the
regulation network;

(3) Binding site units (BS) participate to the regulation if they flank promoters up-
stream (enhancer site) or downstream (operator site), and if transcription factors
bind to them (Fig. III.3). To this aim, they own a transcription factor tag TFtag ∈ Z
indicating which transcription factors can bind;

(4) Transcription factor coding units (TF) encode for transcription factors whose prop-
erties are defined by four attributes: the binding site tag BStag ∈ Z indicates on
which binding site to bind. The co-enzyme tag CoEtag ∈ N∗ indicates which co-
enzyme can bind to the transcription factor, and activate or inhibit it. The co-
enzyme constant kCoE, the free activity Afree and the bound activity Abound define
the effect of the co-enzyme on the transcription factor. Finally, the binding win-
dow Wbind controls the transcription factor binding affinity, allowing it to bind on a
binding site with a certain degree of mismatch;

(5) Enzyme coding units (E) encode for enzymes, that catalyze metabolic reactions.
Four attributes define the activity of an enzyme: the substrate tag s ∈ N∗; the
product tag p ∈ N∗; and two constants kcat ∈ R and kcat/km ∈ R+. These attributes
define the properties of the Michaelis-Menten equation ruling the metabolic reaction.

As for real bacteria, Evo2Sim genomes own functional regions having some transcrip-
tional activity, and non-coding regions. Functional regions must have the following
pattern: a promoter (P), optionally flanked upstream or downstream by one or more
binding sites (BS), followed by one or more contiguous coding units (E or TF). A pro-
moter can thus control several coding units, like in bacterial operons. Upstream binding
sites constitute the enhancer site of a promoter, that up-regulates its activity. Down-
stream binding sites constitute the operator site of a promoter, that down-regulates its
activity. The first unit that is not a coding one interrupts the transcription and marks
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the end of the functional region. Importantly, apart from non-coding units (NC), any
units that are not correctly ordered to form a functional region also compose the non-
coding part of the genome. Figures III.3a and III.3b give some examples of combinations
of genetic units forming functional or non-functional regions. The structure of a typical
functional region is also presented in Figure III.3c.

Table III.1 – Presentation of the five types of genetic units. Each genetic unit is represented
by a graphical symbol (that will be used in further figures), and is an ordered list of attributes (a
tuple). NC units have no attributes. P units have one attribute (the basal expression level β). BS
units also have one attribute (the transcription factor tag TFtag). TF coding units own 5 attributes
(the binding site tag BStag, the co-enzyme tag CoEtag, the co-enzyme constant kCoE, the free and
bound activities Afree and Abound, and the binding window Wbind). E coding units own 4 attributes
(the substrate tag s, the product tag p, the kcat constant, and the kcat/km constant. The role of
each genetic unit is detailed in the following sections.

Type of genetic unit Attributes Graphical symbol

Non coding unit (NC) No attributes; NC 

Promoter unit (P) Basal expression level β;

Binding site unit (BS)
Transcription factor tag
TFtag;

Transcription factor cod-
ing unit (TF)

Binding site tag BStag;

Co-enzyme tag CoEtag;

Co-enzyme constant kCoE;

Free activity Afree;

Bound activity Abound;

Binding window Wbind;

TF 

Enzyme coding unit (E)

Substrate tag s;

Product tag p;

kcat constant;

kcat/km constant;

E 
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Figure III.3 – Some examples of arrangements of genetic units forming or non-functional
functional regions. Grey circles: non-coding units (NC). Blue triangles: binding site units (BS).
Orange crosses: promoter units (P). Purple squares: transcription factor coding units (TF). Magenta
circles: enzyme coding units (E). The functional regions of a genome are those that have the following
pattern: a promoter (P), optionally flanked upstream (enhancer site) or downstream (operator site)
by one or more binding sites (BS), followed by one or more contiguous coding units (E or TF). a.
Some functional combinations of genetic units. b. Some non functional combinations of genetic units.
c. An example of the structure of a typical functional region. The genome is a circular single-strand
genome with a single reading frame. A zoom is done in one functional region (magenta regions).
The rest of the genome (in grey) is non-coding (non-coding units or any type of unit not correctly
arranged to form a functional region).
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III.2.2 Mutational operators

At each replication, the genome undergoes point mutations and large rearrangements
(duplications, deletions, translocations and inversions). To account for the effects of
these events on the coarse-grained genome, two additional types of mutation have been
introduced in Evo2Sim: (i) transitions : a genetic unit can transit from one type to
any other at a certain rate, and (ii) breakpoints: during large rearrangements, genetic
units located on sequence breakpoints are exposed to mutations.

(1) Point mutations. Point mutations modify the attributes of a genetic unit by
adding random values to them. Each attribute (see Table III.1) owns a dedicated
mutation kernel whose properties are predefined as model parameters (usually
uniform or gaussian). Two types of attribute exist: integer values and floating-
point values. Integer variables mutate by adding a random value from a uniform
distribution. Floating-point variables mutate by adding a random value from a
normal distribution. For example, the basal expression level β (a floating-point
variable) mutation kernel is a normal law with a variance defined by the user at the
beginning of the simulation. The substrate tag s (an integer value) mutation kernel
is a uniform law with a range defined by the user at the beginning of the simulation.
In summary, the parameters of eight mutation kernels have to be set by the user
(see the Evo2Sim user guide in Appendix A). Besides the parametrization of the
mutation kernels, the point mutation rate must be set by the user. The point
mutation rate is expressed per attribute per replication;

(2) Transitions. Genetic units can also undergo a type transition from any unit type
to any other at a rate defined by the user. The transition rate is expressed per
genetic unit per replication. All types of genetic units are actually implemented
as a tuple containing all possible attributes, like (unit_type, β, s, p, kcat, kcat/KM).
The unit type tells us which parameters are functionally relevant and the others
are free to mutate neutrally. Doing so, digital organisms can explore the neutral
fitness landscape and potentially innovate if a non-coding unit is re-functionalized
by a type transition (as it the case for pseudogenes);

(3) Duplications. Large duplications consist in duplicating a random sequence on the
genome, and inserting the duplicate at a random location. To select the random
sequence to duplicate, two random locations are uniformly drawn in the whole
genome. The insertion point is also drawn uniformly (for example, it is possible to
insert a duplicate in the duplicated sequence). A duplication implies one breakpoint
(Fig. III.4a). The duplication rate is expressed per genetic unit per replication;

(3) Deletions. Large deletions consist in deleting a random sequence from the genome,
and join the two extremities of the remaining sequence. To select the random
sequence to delete, two random locations are uniformly drawn. A deletion implies
two breakpoints (Fig. III.4b). The deletion rate is expressed per genetic unit per
replication;
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(4) Translocations. Large translocations consist in moving a random sequence from
one genome location to another. To select the random sequence to move, two
random locations are uniformly drawn. The insertion point is also drawn uniformly
in the whole genome. A translocation implies three breakpoints (Fig. III.4c). The
translocation rate is expressed per genetic unit per replication;

(5) Inversions. Large inversions consist in reverting a random sequence on the genome.
To select the random sequence to revert, two random locations are uniformly drawn
in the whole genome. An inversion implies two breakpoints (Fig. III.4d). The
inversion rate is expressed per genetic unit per replication;

(6) Breakpoints. In real genomes, spontaneous rearrangement breakpoints have no
reason to lie exactly between two functional regions and could thus break them. To
model that with the coarse-grained genome representation, the content of the two
genetic units that are adjacent to a rearrangement breakpoint is altered. Suppose
for example that a deletion joins two genetic units, one containing the attributes
(unit_type1, β1, s1, p1, kcat1, (kcat/KM)1) and the other the attributes (unit_type2,
β2, s2, p2, kcat2, (kcat/KM)2). Then for each attribute, there is a probability for
the value in unit 1 to be exchanged with the value in unit 2. Both units could for
example exchange their values of s, thereby leading to (unit_type1, β1, s2, p1, kcat1,
(kcat/KM)1) and (unit_type2, β2, s1, p2, kcat2, (kcat/KM)2). The breakpoint rate is
expressed per breakpoint per replication, and must be set by the user.

III.3 The genetic regulatory network

When transcription factors are expressed, they can contribute to the genetic regulatory
network by binding to functional enhancer or operator sites. At each time-step t and for
each promoter i belonging to a functional region, four steps are necessary to compute the
activity of the network:

(1) The activity As(t) of each binding site s reads:

As(t) =
∑
j

cj(t)Ajs (III.1)

with cj(t) the concentration of the transcription factor j at time t and Ajs ∈ [0, 1]
the affinity of this transcription factor for the binding site s. In the following, all the
concentrations will be expressed in arbitrary concentration units (ACU). The
affinity Ajs depends on the distance between the transcription factor tag TFtag(j) ∈
Z and the binding site tag BStag(j) ∈ Z, and the binding window Wbind(j) of the
transcription factor j. It reads:
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a. Duplication 
 b. Deletion 


c. Translocation 
 d. Inversion 
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Figure III.4 – The four types of large rearrangements in Evo2Sim. At replication, genomes
undergo four types of large rearrangements: a. duplications, b. deletions, c. translocations, and d.
inversions. The genome sequence targeted by the rearrangement is colored in blue. Breakpoints are
represented by red arrows. The genetic units undergoing mutations at breakpoints are colored in red.

Ajs =


1− |TFtag(j)− BStag(j)|

Wbind(j)
if |TFtag(j)− BStag(j)| ≤ Wbind(j)

0 else

(III.2)

Figure III.5 shows the variation of the affinity when the distance between the tran-
scription factor tag and the binding site tag varies.

(2) From (1), the activities of the enhancer site Ei(t) > 0 and of the operator site
Oi(t) > 0 flanking the promoter i read:


Ei(t) =

∑
s ∈ enhanceri

As(t)

Oi(t) =
∑

s ∈ operatori
As(t)

(III.3)

(3) Then, the expression rate ei(t) of the promoter i is given by the following Hill-like
function:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



118III. Evo2Sim, a multi-scale model dedicated to Evolution of Evolution

-10 -5 0 5 10

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

|TF tag - BS tag|

A
ffi
ni
ty

Figure III.5 – The affinity of a transcription factor for a binding site depends on the distance
between their respective tags. On x-axis, the distance between the transcription factor tag and
the binding site tag. On y-axis, the affinity computed thanks to Eq III.2. Here the binding window
Wbind = 5.

ei(t) = βi.

(
θn

Oi(t)n + θn

)
.

(
1 +

(
1

βi
− 1

)
.

(
Ei(t)

n

Ei(t)n + θn

))
(III.4)

with βi ∈ [0, 1] the basal expression level of the promoter i, n and θ two constants
shaping the Hill-like function (defined by the user).

(4) At each time-step t, coding units being controlled by the promoter i are expressed
at a rate ei(t). Then, the concentration of each protein depending on the promoter
i in the cytoplasm depends on the following synthesis-degradation rule:


ci(0) =

βi
φ

∂ci
∂t

= ei(t)− φ.ci(t)
(III.5)

with φ the protein degradation rate, set by the user before the beginning of any
simulation.

III.4 The metabolic network

Enzyme coding units products can either be pumps, pumping metabolites from or to the
growth medium, or enzymes performing catalytic transformations in the metabolic space.

Let us consider an enzyme in the cytoplasm that catalyzes one specific reaction s → p
(with s ∈ N∗ and p ∈ N∗ being the substrate and the product of a Michaelis-Menten-like
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reaction, respectively). The variation in concentrations [s] and [p] over time are then
driven by Eq III.6:


d[s]

dt
= −kcat[E][s]

KM + [s]

d[p]

dt
=
kcat[E][s]

KM + [s]

(III.6)

where KM and kcat are the kinetic attributes of the enzyme (KM being deduced from kcat
and kcat/KM attributes).

Is s = p, enzymes are treated as pumps, for which [s] and [p] describe the internal and
external concentrations of the same metabolite. If kcat is positive (resp. negative), [s] is
the external (resp. internal) concentration of the metabolite and [p] the internal (resp.
external) concentration. The dynamics of metabolic concentrations [s] and [p] are thus
also driven by Eq III.6 when the enzyme coding unit product is a pump.

III.5 Coupling the genetic regulatory network and the
metabolic network

Bacteria are able to sense their environment by detecting the presence of a particular
molecule or signal, and to give an appropriate answer by updating their gene expression
profile. The archetype of this behaviour is the lactose operon (Jacob and Monod, 1961).

As shown in Figure III.6, this operon is composed of three genes (lacZ, lacY and lacA),
controlled by one promoter flanked by an operator. Another gene, lacI, codes for a
transcription factor which inhibates the operon when binding on the operator. lacI is
constitutively expressed and its concentration in the cytoplasm is almost constant. How-
ever its conformation, hence its affinity for the operator is modified by lactose. In absence
of lactose, lacI is active and down-regulates the operon. If lactose is present, it binds on
lacI and inhibits it. In this case, the operon is expressed and the cell is able to degrade
lactose.

This mechanism is integrated to Evo2Sim: some metabolites can behave as co-enzymes,
and repress or activate transcription factors activity. To this aim, each transcription factor
own a co-enzyme tag CoEtag ∈ N∗, a co-enzyme constant kCoE, a free activity Afree and a
bound activity Abound. A metabolite m can repress or activate a transcription factor in
four ways:

(1) If Afree = 1 and Abound = 0, m inhibits the transcription factor;
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(2) If Afree = 0 and Abound = 1, m activates the transcription factor;

(3) If Afree = 1 and Abound = 1, the transcription factor is always activated;

(4) If Afree = 0 and Abound = 0, the transcription factor is always repressed.

Figure III.6 – The lactose operon. The lactose operon is inactive in the absence of lactose (top)
because a repressor blocks attachment of RNA polymerase to the promoter. With lactose present
(bottom), the repressor is inactivated, and transcription of lactose-processing genes proceeds (from
https://2fsfox.blogspot.fr/2013/05/the-lac-operon-continued-and-other.html).

Table III.2 resumes these different outcomes by using the following picture: let’s consider
a transcription factor as a structure with two arms, linked by a pivotal point. The active
site of the transcription factor is located on one arm, its exposure depending on the
equilibrium state (or conformation) of the structure. Two configurations are possible:
one when the transcription factor is free, and another when a co-enzyme binds to it via
the anchoring points located at arms end. The combination of free and bound activities
then leads to four behaviors, as described in Equation III.7.
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[TF+] =



[TF]× kCoE
kCoE + [m]

if Afree = 1 and Abound = 0

[TF]× [m]

kCoE + [m]
if Afree = 0 and Abound = 1

[TF] if Afree = 1 and Abound = 1

0.0 if Afree = 0 and Abound = 0

(III.7)

Table III.2 – The eight possible states of a transcription factor. The transcription factor is
represented in dark grey. Its active site (the part allowing binding on a binding site) is represented in
green. Depending on free and bound activities attributes, the co-enzyme (in blue) acts as an activator
or a repressor. The active site is then free (or not) to bind on a binding site.

Free TF Bound TF Free activity Bound activity

1 0

0 1

1 1

0 0

III.6 Optional feature: energy constraints

One of the most evident constraints living organisms must cope with in the real world
are the laws of thermodynamics. Indeed, real organisms cannot violate the energy bal-
ance with their environment, or have negative entropy. One direct consequence is that
global entropy cannot decrease, whatever the organism’s activity. For example, catabolic
reactions produce heat, that will propagate in the local environment of the organism (and
possibly kill it). This energy is lost for the organism. In this sense, life could be seen as a
fight against entropy (Alberts et al., 2013), as illustrated in Figure III.7. Billions years of
evolution made cells very efficient engines to exploit the energy gained with catabolism.
Energy carriers, like ATP molecules, allow cells to transfer the energy won by degrading
food, or capturing photons, in useful but costly reactions (for example, producing—or
actively degrading—a protein). This coupling between food process (catabolism), and
production of useful macromolecules (anabolism) is at the heart of cell’s metabolism.

We introduced energy constraints in Evo2Sim by doing the distinction between two types
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of reactions: reactions rewarding the cell in energy (catabolic reactions), and reactions
consuming energy (anabolic reactions). Implicit energy carrier molecules allow us to
compute the energy balance E of the cell at each time-step t. To this aim, we introduced
a notion of reaction cost, each type of reaction owning a specific cost defined by the user
before the beginning of a simulation. There are four energy costs:

(1) The expression cost cexpr ≥ 0: the cell consumes energy when proteins are ex-
pressed;

(2) The degradation cost cdegr ≥ 0: the cell consumes energy when proteins are
degraded (symbolizing, e.g., the functioning of the proteasome);

(3) The enzymatic cost cenz ≥ 0: depending on the type of metabolic reaction (see
below), the cell consumes or produces energy when an enzymatic reaction is per-
formed;

(4) The pumping cost cpump ≥ 0: the cell consumes energy when a metabolite is
pumped in or out;

Figure III.7 – An impossible-to-win fight against entropy. An illustration of the unavoidable
increase of entropy in a system (from www.phdcomics.com).

Enzymatic reactions consume or produce energy depending on the values of the substrate
tag s, the product tag p and the enzymatic cost cenz:

(1) if s < p, the reaction consumes energy at a rate (p− s).cenz

(2) if s > p, the reaction produces energy at a rate (s− p).cenz
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It is then possible to describe the evolution of the energy balance E through time, as
following:

∂E
∂t

=
∑

i ∈ catabolic reactions

(
∂[pi]

∂t
× (si − pi)× cenz

)

− ∑
i ∈ anabolic reactions

(
∂[pi]

∂t
× (pi − si)× cenz

)

− ∑
i ∈ inflowing pumps

(
∂[sin]

∂t
× (sin − sout)× cpump

)

− ∑
i ∈ outflowing pumps

(
∂[sout]

∂t
× (sout − sin)× cpump

)

− ∑
i ∈ expressed genes

(
∂[ei]

∂t
× cexpr

)
− ∑

i ∈ degraded proteins
([ci]× φ× cdegr)

(III.8)

For practical reasons, E is not solved as an ordinary differential equation. Indeed, incor-
porating energy in differential equations would have lead to intractable simulations. For
this reason, the energy balance E is evaluated at the end of each simulation time-step t.
The cell’s score is impaired if the energy balance E ≤ 0 (the score function is described
below).

III.7 The score function

The set of all metabolites contained in the cell’s cytoplasm can be converted into a unique
concentration vectorM = {m1,m2, ...,mn}. In Evo2Sim,M constitutes the “phenotype”
determining the score S of the cell. It is then possible to define a score function f : Rn →
R+ such that S = f(M ).

Some metabolites are essential to cell’s growth, and some other are intermediate products
or waste. In Evo2Sim, essential metabolites are prime numbers: their production
contributes to the growth rate by increasing the probability to produce offspring. However,
producing metabolites above a predefined threshold leads to cell’s toxicity, and impairs
cell’s score. Let’s define the subset of M representing the essential metabolites E =
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{e1, e2, ..., em} ⊂M . Then, the score S of the cell is:

S =


∑

i ei if (∀e ∈ E | e < TE) ∪ (∀m ∈ (M\E) | m < TM)

0 else
(III.9)

with TM the toxicity threshold of non-essential metabolites (M\E) and TE the toxicity
threshold of essential metabolites (E).

If the cell’s score is under a minimum score S < Smin defined by the user, then S = 0.

Importantly, the score and the fitness are different. The score represents the instantaneous
performance of a cell (being computed at each time-step), while the fitness is usually
defined as the combined effect of survival and reproduction, and can only be computed a
posteriori, when the whole cell’s history is known. We will never compute the fitness in
Evo2Sim. Instead, we will analyze the lineage of the final population, that is supposed
to have increased its mean fitness through time, in order to recover evolutionary events.

III.8 Population and selection

Organisms evolve on a two-dimensional toroidal grid (each location containing at most
one organism), and compete for the external metabolites to produce offspring in empty
locations. They interact with their local environment by pumping metabolites in and
out and they release their metabolic content at death. At each time-step, organisms are
evaluated and either killed, updated or replicated depending on their current state:

(1) If the organism does not die and cannot divide (e.g., because there is no free space
in its neighborhood), its metabolic network is updated, and its score is computed;

(2) Organisms can also die randomly with a probability following a Poisson law of
parameter pdeath expressed per organism per time-step. At death, the metabolic
content of a cell is released into the local environment;

(3) For each empty grid location, all living organisms in the Moore neighborhood whose
score is higher than a minimum score Smin compete. The organism having the best
score in the neighborhood is allowed to divide if it did not replicate previously at
the same time-step (such that any dividing cell generates at most two daughters per
time-step).

III.9 The environment

The physical environment is described at the grid level: each grid location contains ex-
ternal metabolites, each with its concentration. These external metabolites diffuse with
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a diffusion parameter D expressed in gridstep2.time-step-1, meaning that a fraction D of
each metabolite present at one location will diffuse to each of the eight neighboring grid
locations at each time-step. The discrete diffusion equation we are using is inspired from
Frénoy et al. (2013). External metabolites are also degraded with a degradation rate Dg,
meaning that a fraction Dg of each metabolite at each location will disappear at each
time-step. We made the simplifying assumption that there are no enzymatic reaction in
the environment, and that metabolite transformation only occurs inside the organisms.

At each time-step t, each grid location k of coordinates (x, y) is characterized by the
individual occupying the location (possibly none), and the list of free metabolites, each
metabolite i being at concentration ci,k(t). Given the parameters of the environment, the
dynamics of a free metabolite i in a grid location k reads:

ci,k(t+ 1) = ci,k(t)−Dg.ci,k(t) +
∑

j ∈ neighbors

D.ci,j(t)− 8.D.ci,k(t) + Ii(t) (III.10)

With Ii the inflow rate of metabolite i in the environment.

In conclusion, Evo2Sim allows for a precise parametrization of the environment. Apart
from parameters described above, it is possible for the user to set a variety of behaviors
(e.g. the periodicity of metabolites influx, the type of metabolites provided or their
locations, ...). It is thus possible to mimic realistic experimental setups, such as chemostat
or batch-culture, as we will discuss in the next chapter.

III.10 Trophic networks

Cells uptake various metabolites, provided externally or being by-products released by
other cells. Evo2Sim keeps trace of the metabolic activity of every cells and computes,
at each time-step, a trophic network representing the relationships between cells. This
feature is mandatory to study, for example, the evolution of cross-feeding in the popula-
tion.

At each time-step t, a trophic profile is computed for each organism from its metabolic
network activity. The trophic profile is a bit string summarizing the uptake, production,
and release activity of an organism. The length of the bit string is defined by the largest
metabolite tag present in the system at time t. For example, if an organism uptakes
metabolite #4, produces #3 from #4 and releases #3, knowing that the largest metabolite
tag in the system is #5, then its profile is |00010|00100|00100|. Organisms with identical
trophic profiles are grouped together, and the trophic network is computed depending
on profile relationships. For example, if organisms of a profile i uptake a metabolite
produced by a profile j, then a directed link is created from i to j. Cooperating links
are also computed: a cell cooperates with another cell if the former actively releases
metabolites useful to the latter.

Trophic profiles are then classified in four trophic levels:
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(1) Level 0 cells exclusively feed on exogenous metabolites, flowing in the environment;

(2) Level 1 cells feed on exogenous metabolites and on metabolites produced by other
cells;

(3) Level 2 cells exclusively feed on metabolites produced by other cells;

(4) No level cells have no active uptaking functions.

Figure III.8 shows a simple example of trophic network computed on the fly during a
simulation, and available in Evo2Sim HTML viewer (see Appendix A). Exogenously
provided metabolites are symbolized by a black node (the ENV node), and other trophic
profile nodes are colored depending on their level (purple for level 0, blue for level 1,
green for level 2 and grey for no level). Trophic links are represented by solid arrows,
cooperating links being represented by dashed arrows.

ENV 

0 1 

2 3 

Figure III.8 – A basic example of trophic network. A basic example of a trophic network, as it
is computed in Evo2Sim, is presented here. Exogenously provided metabolites are represented by
a black node tagged ENV. Trophic profiles (i.e., a group of cells having the exact same metabolic
activity) exclusively feeding on exogenous metabolites belong to the level 0, and are represented by
purple nodes. Trophic profiles feeding on exogenous metabolites and on by-products of other cells
belong to level 1 ; they are represented by blue nodes. Trophic profiles exclusively feeding on by-
products are represented by green nodes (level 2). Trophic profiles having no metabolic activity are
represented by grey nodes. Here, one level 0 profile feeds on the environment, one level 1 profile feeds
on the environment and on profile 0, one level 2 profile feeds on profiles 0 and 1, and one profile has
no metabolic activity (no level).

III.11 Lineages and phylogeny

In Evo2Sim, phylogenetic relationships are exhaustively recorded during a simulation.
Two trees are updated at each time-step: the lineage tree, that saves the lineage re-
lationships of every living cells, and the phylogenetic tree, that saves the complete
phylogeny of every living cells. Besides phylogenetic relationships, many informations
about the genome structure, the phenotype, the mutations, the trophic profile, and so on,
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Figure III.9 – Live update of lineage and phylogenetic trees. At each time-step t, the population
state is updated (divisions, deaths, cell updates, ...): (i) at each division, the two daughter cells are
added to the trees as leaves, with their parent as a common ancestor, (ii) dead cells are removed
from trees. Both lineage and phylogenetic trees are pruned (dead branches are removed), and the
phylogenetic tree is shortened (intermediate nodes not being common ancestors are removed). In
this example, we start at time t. The common ancestor of the whole population (CA, in red) is
the dead cell labelled 0. The most recent common ancestor (MRCA, in blue) is the alive cell 2.
Tree leaves are represented in green and all correspond to alive cells (first row). The population state
is then updated to time t + 1: the cell 3 dies, and the cell 2 divides in daughter cells 2 and 5 (the
cell 2 is still tracked because it divided 4 times and didn’t died yet). These events are added to both
trees (second row). Then, pruning and shortening algorithms are applied: the lineage tree looses
the branch 3− 3. The phylogenetic tree looses the leaf 3, and the oldest 2 node. The MRCA is now
the node 2, linked to nodes 2 and 4.

are saved in every nodes of the trees. Thus, it is possible to precisely recover the evolution
of a population, including fixed mutations. In particular, it is possible to determine if
trophic groups are monophyletic, and thus can be considered as ecotypes (see the next
chapter for a precise example).

Algorithmically speaking, the phylogenetic tracking deployed in Evo2Sim is updated as
follows: at each simulation time-step t, (i) new offspring are added to both trees (Fig.
III.9b), (ii) both trees are pruned to remove dead branches (Fig. III.9c), and (iii) the
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phylogenetic tree is shortened to remove intermediate nodes between common ancestors
(Fig. III.9c). One node in the lineage or phylogenetic tree corresponds to one generation
in the population. This means that when a cell produces offspring, new nodes are created
for the two daughters, even if each cell is individually tracked for its entire life. For
example, two or more contiguous nodes in a tree could correspond to a single cell that
divided one or more times, as shown in Figure III.9 with cell #2. In each tree, the common
ancestor (CA) of the whole population is tagged (red node on Fig. III.9), as well as the
most recent common ancestor (MRCA, blue node on Fig. III.9).

III.12 General algorithm

The general algorithm behind Evo2Sim is a classical, asynchronous algorithm of in silico
evolution (Hindré et al., 2012). At each time-step, each living cell is evaluated, and a
decision is made between death, division, or simple update (as presented in Fig. III.10).
The lineage and phylogenetic trees are updated on the fly, as well as the trophic network.
In the same time, very complete statistics are computed (tracking hundred of variables),
and a large amount of statistics (population means, best individual lineage, phylogeny,
...) are displayed on the fly, in the Evo2Sim HTML viewer (see Appendix A).

To solve the ordinary differential equations, We used the adaptive Runge-Kutta-Cash-
Karp method (RKCK). At each simulation time-step t and for each alive cell, the state of
the genetic regulatory network and the metabolic network are updated by solving the ODE
system during tODE time-steps. This constant is set by the user before the beginning of
the simulation (usually tODE = 100, meaning that each simulation time-step corresponds
to 100 ODE time-steps). Altogether, if we consider a 32 × 32 environmental grid full of
organisms, a time-step involves a thousand of ODE systems. The parameter values of
each ODE system are potentially unique, as they are encoded in the organism’s genome
and thus result from the mutation process. Those ODE systems can also differ by their
number of equations, which depends on the organism’s genome.

Moreover, Evo2Sim admits parallel computing algorithms, and is designed for high per-
formance computing (see the user guide in Appendix A).
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Figure III.10 – Global picture of Evo2Sim. a. Description of the genotype-to-phenotype
mapping. Organisms own a coarse-grained genome made of units. This genome is a circular single-
strand sequence, with a unique reading frame. Non coding (NC) units are not functional (a.1).
The arrangement of the units on the sequence defines functional regions, where a promoter (P,
blue cross) controls the expression of enzyme coding units (E, red circles) or transcription factor
coding units (TF, purple squares), thereby allowing for operons (here, one E and one TF). When
coding units are expressed (a.2), they contribute to the genetic regulatory network (for TFs) and
the metabolic network (for Es). Depending on their attributes (see III.2 and III.3), transcription
factors bind on binding sites. (a.3) If they bind on the enhancer sequence (binding sites flanking the
promoter upstream), the promoter activity is up-regulated. If they bind on the operator sequence
(binding sites flanking the promoter downstream), the promoter activity is down-regulated. (a.4)
Metabolites can bind on a transcription factor as co-enzymes, and activate or inhibit it, depending
on transcription factor attributes (see III.5). Enzymes perform metabolic reactions in the cytoplasm
(a.5), or pump metabolites in or out (a.6). The score of an organism is computed from its “essential
metabolites” (usually the score is the sum of essential metabolite concentrations). Lethal toxicity
thresholds are applied to each metabolic concentration and forbid organisms to accumulate resources.
b. Description of the population and environment levels. Organisms are placed on a 2D toroidal
grid, and compete for resources and space. When an organism dies, it leaves its grid cell empty and
organisms in the Moore neighborhood (if any) compete to divide in available space. The competition
is based on scores, a minimal threshold being applied on scores to forbid worst organisms to divide. At
division, daughters share cytoplasm content (enzymes and metabolites). At death, metabolites from
the cytoplasm are released in the local environment, and diffuse on the grid (b.1). On the largest
scale, the population evolves on the environment by up-taking, transforming and releasing metabolites.
Metabolites then diffuse and are degraded. This strong interaction between the population and the
environment allows for the evolution of complex ecological situations, depending on environmental
properties (b.2).
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III.13 Code availability

We developed Evo2Sim in C++, from scratch. Some scripts are written in Python and R,
especially for the automatic generation of live statistics and figures. We also implemented
a HTML viewer, including many informations (from best lineage evolution to phylogeny),
useful to track evolution during a simulation. This viewer includes some Javascript. The
code is hosted on Github in charlesrocabert/Evo2Sim repository. The Evo2Sim user
manual is available in Appendix A. Some simulation examples are also available on the
EvoEvo project website at http://evoevo.liris.cnrs.fr/evo2sim/.

III.14 What next?

In the two following chapters, we will present two results obtained with Evo2Sim. The
first has been published in PLoS Computational Biology, and is about niche construction
and the evolution of stable cross-feeding. This work does not consider genetic regulation.
For this reason, a simplified version of Evo2Sim will be presented. The second result is
preliminary and is about genetic regulation evolution when energy constraints are applied
to digital organisms.
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Chapter IV

Beware Batch Culture: Seasonality and
Niche Construction Predicted to Favor
Bacterial Adaptive Diversification

The results presented in this chapter have been published in
PLoS Computational Biology.
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IV. Beware Batch Culture: Seasonality and Niche Construction

Predicted to Favor Bacterial Adaptive Diversification

No one wins. One side just loses more slowly.
(Roland “Prez” Pryzbylewski – No refugees, The Wire)

Abstract

Metabolic cross-feeding interactions between microbial strains are common in
nature, and emerge during evolution experiments in the laboratory, even in ho-
mogeneous environments providing a single carbon source. In sympatry, when
the environment is well-mixed, the reasons why emerging cross-feeding interac-
tions may sometimes become stable and lead to monophyletic genotypic clusters
occupying specific niches, named ecotypes, remain unclear. As an alternative to
evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale
model of in silico experimental evolution, equipped with the whole tool case of
experimental setups, competition assays, phylogenetic analysis, and, most im-
portantly, allowing for evolvable ecological interactions. Digital organisms with
an evolvable genome structure encoding an evolvable metabolic network evolved
for tens of thousands of generations in environments mimicking the dynamics of
real controlled environments, including chemostat or batch culture providing a
single limiting resource. We show here that the evolution of stable cross-feeding
interactions requires seasonal batch conditions. In this case, adaptive diversifi-
cation events result in two stably co-existing ecotypes, with one feeding on the
primary resource and the other on by-products. We show that the regularity of
serial transfers is essential for the maintenance of the polymorphism, as it allows
for at least two stable seasons and thus two temporal niches. A first season is
externally generated by the transfer into fresh medium, while a second one is
internally generated by niche construction as the provided nutrient is replaced
by secreted by-products derived from bacterial growth. In chemostat conditions,
even if cross-feeding interactions emerge, they are not stable on the long-term be-
cause fitter mutants eventually invade the whole population. We also show that
the long-term evolution of the two stable ecotypes leads to character displace-
ment, at the level of the metabolic network but also of the genome structure.
This difference of genome structure between both ecotypes impacts the stability
of the cross-feeding interaction, when the population is propagated in chemostat
conditions. This study shows the crucial role played by seasonality in temporal
niche partitioning and in promoting cross-feeding subgroups into stable ecotypes,
a premise to sympatric speciation.

IV.1 Introduction

Stable metabolic cross-feeding interactions between microbial strains are commonly ob-
served in nature (Stams, 1994; Dejonghe et al., 2003; Costa et al., 2006; Katsuyama et al.,
2009). For example, nitrification, an important step of the nitrogen cycle, is carried out
in consecutive steps by several bacterial species maintaining cross-feeding interactions
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(Costa et al., 2006). In laboratory experiments, microbial populations also demonstrated
their ability to quickly establish metabolic cross-feeding interactions between morphotypes
(Rainey and Travisano, 1998; Rainey and Rainey, 2003; Helling et al., 1987; Rosenzweig
et al., 1994; Turner et al., 1996; Treves et al., 1998; Rozen and Lenski, 2000; Rozen et al.,
2005, 2009).

An important question, at the crossroads between ecology and evolution, is the evolu-
tionary stability of such cross-feeding polymorphisms, because they are often considered
to be the first steps toward speciation. According to Cohan (2002), the species concept
in bacteria should not rely on the named species of systematics but on the notion of
ecotype, which itself relies on the ecological and evolutionary dynamics of the subpop-
ulations. Two bacterial subpopulations may be considered as different ecotypes if they
form monophyletic clusters, occupy different ecological niches and if periodic selection
purges diversity in one subpopulation independently from the other (Cohan, 2002). A
cross-feeding polymorphism therefore leads to adaptive diversification and ultimately to
speciation when it is stable enough to resist the invasion of a mutant that would otherwise
take over the whole population.

If the environment is spatially structured, the stabilization of new ecotypes that emerged
after an adaptive diversification event is facilitated by the locality of environmental con-
ditions and frequency-dependent interactions. This mechanism of allopatric (or micro-
allopatric) divergence is well-known, since ecotypes can escape competitive exclusion in
their local niches (Cohan, 2002). For example, Pseudomonas fluorescens populations
have been shown to produce adaptive diversification events in spatially heterogeneous
environments, but not in homogenized conditions (Rainey and Travisano, 1998; Rainey
and Rainey, 2003).

Microbial populations can also exhibit adaptive diversification in sympatry, when the
environment is homogeneous with a single carbon source. In this case, the stability of
ecotypes is maintained by frequency-dependent interactions, often due to cross-feeding
interactions, as observed in the Long-Term Evolution Experiment with Escherichia coli
(LTEE) (Elena and Lenski, 2003). In this ongoing experiment, 12 populations are being
independently propagated in a constant glucose-limited environment in batch culture
since 1988. The experiment reached 66,000 generations at the time of this writing. Every
day, 1% of the population is transferred into fresh medium such that each population
experiences a daily cycle of feast and famine phases. In one of the 12 populations, a long-
term polymorphism has been observed (Rozen and Lenski, 2000). Two ecotypes, named S
and L (for Small and Large, related to their respective colony sizes on plate), evolved from
a common ancestor before generation 6,500. The L ecotype grows efficiently on glucose,
while the S ecotype mainly grows on acetate, a by-product secreted by L (Großkopf et al.,
2016). Experiments showed that the interaction between S and L ecotypes relies on
negative frequency-dependent selection, each ecotype having a selective advantage when
rare. This balanced polymorphism is now stable for more than 55,000 generations (Rozen
and Lenski, 2000). It was also shown that S and L ecotypes specialized in their own
niches, the L ecotype increasing its ability to grow on glucose but not on acetate, and
conversely for the S ecotype (Großkopf et al., 2016).
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The evolutionary stability of this polymorphism may be explained by the temporal niche
partitioning that arises from the periodic transfers into fresh medium (Spencer et al.,
2007). A first season starts immediately after a transfer, when the environment contains
mostly glucose. The L ecotype grows during this season, consumes glucose and secretes ac-
etate, thereby generating a second season where the environment contains mostly acetate
and supports the growth of the S ecotype.

Yet several experiments have shown that microbial populations can also evolve cross-
feeding interactions in a chemostat in a few tens of generations. Those interactions appear
to be stable over a few hundreds of generations (Helling et al., 1987; Rosenzweig et al.,
1994; Treves et al., 1998). In chemostat, there is no obvious spatial or temporal niche
partitioning and it is thus intriguing that the dynamics predicted by the competitive
exclusion principle has not been observed so far. Indeed, one would expect a mutant to
eventually appear, which would either completely degrade glucose or feed on both glucose
and acetate, thereby outcompeting the specialized ecotypes. It has been proposed that
energy constraints and flux optimization principles prevent competitive exclusion, thereby
stabilizing the polymorphism (Pfeiffer and Bonhoeffer, 2004; Gerlee and Lundh, 2010b).
However, experimental evolution in chemostat has generally been performed for only a
few hundreds of generations (up to 1,900 generations in Helling et al. (1987)), precluding
the possibility to confirm this statement on a longer term.

Thus, as a step to better understand how cross-feeding, niche construction and seasonality
contribute to microbial diversification, we addressed here the following question: What
makes emerging cross-feeding interactions stable in the long-term, in single carbon source
batch culture or chemostat experiments?

While experimental evolution provides a very precise picture of evolution, it remains a
long and costly process. An alternative approach consists in simulating evolution in a
computer. In Silico Experimental Evolution (ISEE), where digital organisms are evolved
for tens of thousands of generations, reproduces the environmental conditions of experi-
mental evolution (Hindré et al., 2012). Like in the wet approach, it is possible to simulate
several independent populations to understand the respective importance of general laws
and historical contingencies. In addition, ISEE provides an exhaustive fossil record and,
more importantly, allows for “impossible experiments" (O’Neill, 2003), like saving the fit-
ness at full resolution for tens of thousands of generations, or changing any parameter
(mutation rates, environment fluxes) at will.

We developed Evo2Sim, a multi-scale computational model of in silico experimental
evolution. Evo2Sim allows us to address many questions raised by experimental evolu-
tion (Hindré et al., 2012). Typically, we can use it to investigate how evolution shapes the
different organization levels of an organism (e.g., genome size, complexity of the regulation
network and metabolic network) and of an ecosystem (polymorphism, speciation) depend-
ing on global parameters such as environmental conditions or mutation rates. Here, we
tested which environmental conditions can lead to stable adaptive diversification events,
by reproducing the resource dynamics of experimental evolution setups like chemostat
and batch culture.
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Previous mathematical works have already studied the conditions of interspecific coex-
istence via resource partitioning (Stewart and Levin, 1973), and of cross-feeding inter-
actions (Doebeli, 2002; Pfeiffer and Bonhoeffer, 2004; Gudelj et al., 2016), during one
or more competition episodes. Stewart and Levin (1973) studied the conditions of co-
existence of several ecotypes in batch culture and chemostat. However, they focused on
a single episode of competition between preexisting strains without modeling a random
mutational process. Moreover, the strains were not allowed to cross-feed on by-products
of other strains. Rozen et al. (2009) and Ribeck and Lenski (2015) modeled analytically
the cross-feeding interaction between S and L ecotypes in the LTEE, showing the exis-
tence of negative frequency-dependence in batch conditions. These models also did not
include a mutational process. Gudelj et al. (2016) studied the short-term dynamics of
two competitors in various environmental conditions including batch and chemostat, and
showed that stable cross-feeding was possible, depending on initial competitors frequency
and resource abundance. Again, this model did not include the mutational process. Other
mathematical studies introduced a simplified evolutionary dynamics, by computing suc-
cessions of competition episodes and introduction of fit mutants. For example, Pfeiffer and
Bonhoeffer (2004) studied the conditions of emergence of stable cross-feeding in chemo-
stat conditions, when a trade-off on ATP production is introduced on abstract metabolic
pathways. Doebeli (2002) compared the conditions of emergence of cross-feeding poly-
morphism in chemostat and batch culture. The authors concluded that the evolution
of cross-feeding is more likely in chemostat than in batch culture. However, this model
forced a trade-off between consumption rates of glucose and acetate, forbidding the emer-
gence of a generalist mutant. Two rates are evolvable but only the glucose consumption
rate is mutable, as the acetate rate is deduced from the glucose rate. The rate at which
acetate is secreted is constant (i.e., it does not depend on glucose consumption, which
could affect the generality of the conclusions). Thus, none of the previous models take
into account a realistic random mutational process, and none of them explicitly models
the genomic level. Indeed, it is difficult to include a competition process as well as real-
istic mutational dynamics in a single mathematical model. Another approach consists in
simulating evolution with individual-based models.

Computational models of in silico experimental evolution have already been used to ex-
plore the evolution of cross-feeding interactions. Johnson and Wilke (2004) used the Avida
software (Ofria and Wilke, 2004) to study the evolution of resource competition between
two digital species coexisting via mutualistic cross-feeding in a closed environment, with
only two possible metabolites. However, they did not test the influence of the environmen-
tal dynamics. Williams and Lenton (2010) used an individual-based evolutionary model to
explore the stability of connected ecosystems undergoing cross-feeding and “evolutionary
regime shifts". Yet, the genotype-to-phenotype mapping of their organisms was rather
simple (fixed size arrays defining the affinity of the organism for each resource), thus not
allowing to study the effects of ecological dynamics on genome and metabolic network
structures. Crombach and Hogeweg (2009) and Boyle et al. (2012) studied the evolution
of resource cycling and its stability. In the first model (Crombach and Hogeweg, 2009),
the resource cycling was imposed by the system. In the second model (Boyle et al., 2012),
the environment was strongly structured (patches of individuals with random migration
events), such that it was not possible to study sympatric diversification. Chow (2004)
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used Avida (Ofria and Wilke, 2004) to explore the relation between productivity and
diversity in a digital ecosystem under mixed influx of nine pre-defined resources, while
Gerlee and Lundh (2010b) explained the maintenance of cross-feeding interactions in a
microbial population by energy and efficiency constraints on metabolic fluxes. To do so,
they developed an individual-based model evolving simple binary strings, thereby preclud-
ing evolvable interactions between the different organization levels of an organism, and
their possible effects on the ecological dynamics. Gerlee and Lundh (2010a) also related
ecosystem productivity to energy-uptake efficiency, with the same type of individual-
based model as in Gerlee and Lundh (2010b). Recently, Liu and Sumpter (2017) used
an individual-based model evolving artificial ecosystems relying on a “number soup”: In
this model, each species perform one modular addition transforming specific numbers into
others, immediately available for other species. With their model, authors showed that
artificial ecosystems always self-organize to consume all the available resources. While
stable cross-feeding, and reciprocal cross-feeding, are common evolutionary outcomes in
their model, authors also show that whole population extinctions sometimes occur, even
without external perturbations. Yet, the absence of complex and evolvable genotype-to-
phenotype map in their model precludes the possibility to get insights into the influence
of ecosystem evolution on the structure of the organisms. Finally, Großkopf et al. (2016)
predicted the adaptive diversification event leading to S and L ecotypes in the LTEE, by
mixing flux balance analysis (FBA) and in silico evolution in a single model. By mod-
eling the evolution of reaction rates in the metabolic network of Escherichia coli, they
demonstrated that the emergence of a stable cross-feeding similar to S and L interaction
is highly probable in the LTEE conditions. However, in their model, digital organisms
are highly constrained (there is no innovation, e.g. new by-products cannot appear in
the evolutionary process). To the best of our knowledge, none of these individual-based
models compared the evolution of stable cross-feeding in different experimental setups,
such as batch culture or chemostat.

To sum up, we were not able to find in the literature models that combine: (i) an
explicit mutational process along with the modeling of natural selection and drift, (ii)
evolvability at all organization levels (genome structure, metabolic network, number of
reactions, number of metabolites, reaction rates, ...), and (iii) a comparison between
batch culture and chemostat.

Our results show that stable cross-feeding interactions are favored in batch culture, owing
to the seasonality of the environment. In continuous culture, the absence of seasonality
precludes niche construction and leads to competitive exclusion, even if the population is
initially composed of two ecotypes maintaining frequency-dependent interactions. We also
demonstrate that the long-term evolution of a stable cross-feeding interaction in batch
culture leads to character displacement (Legac et al., 2012; Großkopf et al., 2016), at
the level of the metabolic network but also of the genome structure. This difference of
genome structure between the two ecotypes has an impact on the further stability of the
cross-feeding interaction when the population is propagated into continuous culture.
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IV.2 Model

Evo2Sim is a multi-scale and individual-based computational model. Digital bacterial-
like organisms own a coarse-grained genome that contains genomic units encoding a
simplified metabolic network. The organisms evolve on a two-dimensional toroidal grid
(the environment), uptaking, transforming and releasing metabolites, and dividing in
the presence of empty spots or dying. Extracellular metabolites diffuse across the grid
spots. In this model, metabolites are implicit molecules identified by a tag ∈ N∗. The
model is described in more details below, and summarized in Figure IV.1. The source
code is written in C++. All the material necessary to replay experiments (software,
parameter files, strain backups, ...) is freely available at http://www.evoevo.eu/adaptive-
diversification-simulations/. The latest version of Evo2Sim is available on Github in
charlesrocabert/Evo2Sim repository.

IV.2.1 Genome structure

The genome is a circular single-stranded sequence of genomic units, inspired from Crom-
bach and Hogeweg (2008) and Beslon et al. (2010b). Genomic units belong to three
different types: non-coding units (NC), promoter units (P), and enzyme coding units
(E). The order of the units in the genome determines the existence of functional regions,
meaning that not all sequences of units are functional. The functional regions of a genome
are those that have the following pattern: a promoter (P) followed by one or more enzyme
coding units (E). A promoter can thus control several coding units, as bacterial operons.
The first genomic unit that is not enzyme coding interrupts transcription and marks the
end of the functional region.

Non-coding units (NC) have no particular function. They constitute the non-coding
part of the genome. Promoter units (P) contain a floating-point number β ∈ [0.0, 1.0]
representing the production rate of the protein(s) depending on the promoter. All the
parameters and their units are listed in Table IV.8.1. Enzyme coding units (E) contain
two integers s and p ∈ N∗, indicating the tag of the substrate and product respectively,
two floating-point numbers kcat ∈ ±[10−3, 10−1], and the ratio kcat/KM ∈ [10−5, 10−3]
describing the enzymatic kinetics (see the description of the metabolic network below).
In the special case where s = p, the enzyme is considered as a pump, actively pumping in
(or out) the metabolite s if kcat is positive (or negative, respectively). Initial genomes of
50 genomic units are generated. These genomes contain ten P and ten E, all with random
positions and attribute values.

Upon cell division, the parental genome is replicated with mutations in the two daughter
cells. Each genomic unit can undergo point mutations, meaning here changes in the
numbers it contains, like the values of s, p, kcat and kcat/KM for an E. Each unit attribute
mutates at a rate of 10−3 per attribute per replication. For the substrate/product tags,
a mutation consists in randomly incrementing/decrementing s or p respectively. For kcat
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Figure IV.1 – Presentation of the model. The genotype-to-phenotype mapping, as well as the
population and environment, are schematized here. (A) Description of the genotype-to-phenotype
mapping. Organisms own a coarse-grained genome that contains genomic units. (A.1) Non-coding
units (NC, grey circles) are not functional. The arrangement of the genomic units on the circular
single strand defines functional regions, where a promoter (P, blue cross, A.2) controls the expression
of all contiguous enzyme units (E, red circles), thereby allowing for operons. (A.3) When enzyme
units are expressed, they contribute to the metabolic network. (A.4) Enzymes perform metabolic
reactions in the cytoplasm, or pump metabolites in or out (see the description of the metabolic network
below). The score of an organism is computed from its “essential metabolites" (see the description
of the score function below). Lethal toxicity thresholds are applied to each metabolic concentration
and preclude organisms to accumulate resources. (B) Description of the population and environment
levels. Organisms are placed on a 2D toroidal grid, and compete for resources and space. (B.1)
When an organism dies, it leaves its grid spot empty and organisms in the Moore neighborhood (if
any) compete to divide in the available spot. The competition is based on scores, a minimal threshold
being applied on scores to preclude worst organisms to divide. At division, daughters share cytoplasm
content (enzymes and metabolites). At death, metabolites from the cytoplasm are released in the
local environment and diffuse on the grid. (B.2) At the largest scale, the population evolves in
the environment by uptaking, transforming and releasing metabolites. Metabolites then diffuse and
are optionally degraded. This interaction between the population and its environment allows for the
evolution of complex ecological situations.

or kcat/KM , a random number drawn from N (0, 0.1) is added to the decimal logarithm of
the parameter. β mutates by adding a random number drawn from N (0, 0.1). A genomic
unit can also undergo a type transition from any unit type to any other at a predefined
rate, set here to 10−3 per genomic unit per replication. All types of genomic units are
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actually implemented as a tuple containing all possible attributes, like (unit_type, β, s,
p, kcat, kcat/KM). The unit type tells us which parameters are functionally relevant and
the others are free to mutate neutrally.

The genome can also undergo rearrangements affecting segments of any number of genomic
units. There are four types of rearrangements : duplications, deletions, translocations
and inversions. All rearrangement rates are set to 10−3 per genomic unit per replication,
hence the number of rearrangements is related to the genome size thereby limiting genome
expansion (Fischer et al., 2014). The breakpoints for each rearrangement are randomly
drawn in the whole genome. In real genomes, spontaneous rearrangement breakpoints
have no reason to lie exactly between two of our genomic units and could thus break our
genomic units. To model that with our coarse-grained genome representation, we alter
the content of the two genomic units that are adjacent to a rearrangement breakpoint.
Suppose for example that a deletion joins two genomic units, one containing the attributes
(unit_type1, β1, s1, p1, kcat1, (kcat/KM)1) and the other the attributes (unit_type2, β2,
s2, p2, kcat2, (kcat/KM)2). Then for each attribute, there is a probability of 10−3 for the
value in unit 1 to be exchanged with the value in unit 2. Both units could for example
exchange their values of s, thereby leading to (unit_type1, β1, s2, p1, kcat1, (kcat/KM)1)
and (unit_type2, β2, s1, p2, kcat2, (kcat/KM)2).

IV.2.2 Metabolic network

Gene products can either be pumps, pumping metabolites from or to the growth medium,
or enzymes performing catalytic transformations in the metabolic space.

Let us consider an enzyme in the cytoplasm, that catalyzes one specific reaction s → p,
with s ∈ N∗ and p ∈ N∗ being the substrate and the product of a Michaelis-Menten-like
reaction, respectively. The variation in concentrations [E], [s] and [p] over time are then
driven by Eq IV.1:



d[E]

dt
= β − φ[E]

d[s]

dt
= −kcat[E][s]

KM + [s]

d[p]

dt
=
kcat[E][s]

KM + [s]

(IV.1)

where β is the basal production rate specified in the promoter unit, φ is the enzyme
degradation rate (set to 0.1 per centi-time-step for all enzymes here, with 1 centi-time-
step = 0.01 time-steps), KM and kcat are the kinetic attributes of the enzyme (KM being
deduced from kcat and kcat/KM attributes).
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Pumps are treated here as special enzymes for which [s] and [p] describe the internal and
external concentrations of the same metabolite. If kcat is positive (resp. negative), [s] is
the external (resp. internal) concentration of the metabolite and [p] the internal (resp.
external) concentration. The dynamics of metabolic concentrations [s] and [p] are thus
also driven by Eq IV.1 when the gene product is a pump.

Each organism has an ODE (Ordinary Differential Equation) system that keeps track of:
(i) the concentrations of all metabolites inside the organism, i.e., internal concentrations,
(ii) the concentrations of all metabolites at the organism’s location on the grid, i.e.,
external concentrations, and (iii) the concentrations of all proteins (pumps and enzymes)
in the cytoplasm. For a very simple organism whose genome merely encodes one pump
importing metabolite #10 into the cell, and one enzyme converting #10 to #7, the ODE
system would read:



d[Pump]

dt
= βPump − φ[Pump]

d[Enzyme]
dt

= βEnzyme − φ[Enzyme]

d[#10external]

dt
= −k

Pump
cat [Pump][#10external]

KPump
M + [#10external]

d[#10internal]

dt
=
kPump
cat [Pump][#10external]

KPump
M + [#10external]

− kEnzyme
cat [Enzyme][#10internal]

KEnzyme
M + [#10internal]

d[#7internal]

dt
=
kEnzyme
cat [Enzyme][#10internal]

KEnzyme
M + [#10internal]

(IV.2)

The number of equations in the ODE system generally differs across individuals within
a population because it depends on the number of functional genes, and chromosomal
rearrangements like duplications and deletions can alter gene number. In practice, the size
of the ODE system goes from tens to thousands of equations depending on the individual.
Similarly, the parameter values of the ODE system also vary across individuals, as they
are encoded in the organism’s genes and thus result from the mutation process.

Initially, in the individuals used to seed a run at time-step 0, each protein starts at its
equilibrium concentration β/φ, and each metabolite starts with an internal concentration
of 0.0 ACU (Arbitrary Concentration Unit). At time-step 0, for all grid spots, external
concentrations are initialized to 0.0 ACU for all nutrients except for metabolite #10 (the
exogenous carbon source). Between time-steps 0 and 1, the ODE system computes the
dynamics of the metabolite and protein concentrations, using the adaptive Runge-Kutta-
Cash-Karp method (RKCK), during 100 centi-time-steps. In organisms that possess a
pump for metabolite #10, this metabolite will enter the cell. If the genome of this
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organism also encodes an enzyme to transform #10 into #7 for example, then the internal
concentrations will show an accumulation of #7. At time-step 1, each organism will either
die, divide or just survive (see paragraph “Population and environment" below for details).
If the organism merely survives without dividing, its current internal concentrations are
used as initial conditions for the computation of the next 100 centi-time-steps (i.e., for the
transition from time-step 1 to 2). If the organism divides, each of the two daughter cells
inherits half of each metabolite and each protein amounts. These will constitute the initial
conditions for each cell’s ODE system for the next 100 centi-time-steps. If the organism
dies, its internal content is released into the environment, thereby increasing the local
external concentrations. As the metabolites can diffuse across the grid, the metabolites
produced by the dead cell, like metabolite #7, will become available to the neighboring
cells, which will thus be able to feed on both #10 and #7, if they own the corresponding
pumps. This process is repeated for each transition from time-step t to time-step t+ 1.

Thus, when e.g., a 32×32 grid is full of organisms (see the description of the experimental
protocol below), a time-step involves the computation of about a thousand different ODE
systems, each of them containing from tens to thousands of equations depending on gene
number.

IV.2.3 Score function

Some metabolites are essential for an organism’s replication. Here, we arbitrarily define as
essential the metabolites whose tag is a prime number. The score of an organism is then
simply defined as the sum of its internal concentrations of essential metabolites. However,
to prevent organisms from producing a single specific prime number in huge quantities,
we also define lethal toxicity thresholds for both essential and non essential metabolites.
Here these toxicity thresholds are set to 1.0 ACU for all metabolites.

IV.2.4 Population and environment

Organisms evolve on a two-dimensional toroidal grid, each spot containing at most one
organism. The physical environment is described at the grid level: each grid spot contains
external metabolites, each with its concentration. These external metabolites diffuse
with a diffusion parameter D = 0.1 gridstep2.time-step-1, meaning that a fraction D
of each metabolite present at one location will diffuse to each of the eight neighboring
grid spots at each time-step. The discrete diffusion equation we are using is inspired
from Frénoy et al. (2013). External metabolites are also degraded with a degradation
rate Dg, meaning that a fraction Dg of each metabolite at each location will disappear
at each time-step. We make the simplifying assumption that there are no enzymatic
reaction in the environment, and thus that metabolite transformation only occurs inside
the organisms. Organisms compete for the external metabolites to produce offspring in
empty spots. They interact with their local environment by pumping metabolites in and
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out and releasing their metabolic content at death. At each time-step, organisms are
evaluated and either killed, updated or replicated depending on their current state:

1. If the organism does not die and cannot divide (e.g., because there is no free space
in its neighborhood), its metabolic network is updated, and its score is computed.
If lethal toxicity thresholds are reached, the organism dies (see point 2);

2. Organisms can also die randomly with a probability following a Poisson law of
parameter pdeath = 0.02 per organism per time-step. At death, the metabolic content
is released into the local environment;

3. For each empty grid spot, all living organisms in the Moore neighborhood whose
score is higher than a minimum score of 10−3 ACU compete. The organism having
the best score in the neighborhood is allowed to divide if it did not replicate pre-
viously at the same time-step (such that any dividing cell generates at most two
daughters per time-step).

IV.3 Experimental protocol

In all our simulations, the environment provided one primary resource with tag mexo =
#10. To initialize an evolutionary run, the entire grid was populated with individuals
having random genomes (different for each individual). This initial population was allowed
to evolve for 500 time-steps, at which point its viability is assessed. We repeated this
procedure until a viable population was found, i.e., with at least 500 viable individuals
after the 500 time-steps. In this case, some organisms possess at least one pump to
internalize mexo, and (because mexo is not a prime number, see the description of the score
function above) one enzyme to transform mexo into a prime number, thereby producing
an “essential metabolite". Up to a few hundred trials were usually needed to find a viable
population, which was then used to seed the evolutionary run. Each evolutionary run was
seeded with a different viable population. These organisms grow on the primary resource
and start to release by-products (mostly at death), hence modifying their environment.
Populations evolved in two different environments:

1. The periodic environment, in which the resource dynamics of the LTEE (Elena
and Lenski, 2003) was mimicked. The environment was periodically refreshed by
removing all the external metabolites and introducing mexo at concentration fin =
10.0 ACU per grid spot. Internal metabolites were not affected by the refresh event.
The refresh period was ∆t = 333 time-steps. We call a “cycle" this time interval be-
tween two environmental resets. The value of ∆t was calibrated to let the organisms
live for approximately 7 generations per cycle, as in the LTEE. Within each cycle,
the metabolites in the environment were conserved (Dg = 0 per time-step). Note
that we mimicked the resource dynamics of the LTEE but not the 1% population
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subsampling occurring during serial transfers, because it would have implied trans-
ferring populations of 10 individuals or fewer. Such a low population size would
have implied dramatic genetic drift and impeded adaptive evolution (in the LTEE,
where the population size before sampling is very large, the 1% subsampling still
leaves the population large enough to keep genetic drift reasonably low). To sim-
ulate subsampling, a significantly larger grid would have been needed, making the
whole campaign impossible to compute in a reasonable time.

2. The continuous environment, in which the resource dynamics of a chemostat
environment was mimicked. The medium was constantly provided with a small
influx of the primary resource. All the external metabolites were slowly degraded.
Specifically, at each time-step, a concentration ∆fin = 0.03 ACU of mexo was added
in every grid spot, and external metabolites were degraded at rate Dg = 0.003 per
time-step.

For each environment, 12 independent populations were propagated for 500,000 time-
steps (approximately 50,000 generations). On the long-term, the quantity of resources
available in the system was equivalent in both environments. The grid size is 32 × 32.
Complementary experiments were also run in a randomized batch environment similar to
the periodic environment except that the environment reset intervals followed a Poisson
law of parameter ∆t = 333 time-steps instead of the exact regular period of 333 time-
steps. The simulation parameters common to all the simulations are described in Table
IV.8.1.

IV.3.1 Cross-feeding interactions

In order to detect the potential cross-feeding interactions in the population, the metabolic
activity of each individual was evaluated at each time-step. For each organism, a “trophic
profile" was computed from its metabolic network activity. The trophic profile is a binary
sequence summarizing the uptake, production and release activity of an organism. The
length of the binary string was defined by the largest metabolite tag present in the system
at time t. For example, if an organism uptakes metabolite #4, produces #3 from #4 and
releases #3, knowing that the largest metabolite tag in the whole grid is #5, then its
profile is |00010|00100|00100|. We classified organisms in two trophic groups depending
on their trophic profiles:

1. “Group A" pumps in mexo, and possibly other metabolites,

2. “Group B" pumps in group A by-products, and possibly other metabolites, but not
the primary resource mexo.

A trophic group is considered an ecotype if the organisms of the group form a monophyletic
cluster (see below).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



144
IV. Beware Batch Culture: Seasonality and Niche Construction

Predicted to Favor Bacterial Adaptive Diversification

IV.3.2 Phylogenetic relationships

Phylogenetic relationships were exhaustively recorded during each simulation. Since or-
ganisms can only divide once per time-step, phylogenetic trees are binary trees. It was
possible to recover the line of descent of any organism, and to compare the phylogenetic
tree structure with the distribution of the trophic groups in the population. In particular,
we can determine if groups A and B are monophyletic, and thus can be considered as
ecotypes. To this aim, we computed a phylogenetic structure score (PS score) to identify
the degree of monophyly of both groups. This phylogenetic structure score was defined
as PS = |f1 − f2|, where f1 and f2 are the relative frequencies of group B in both sub-
trees rooted to the last common ancestor of the whole final population. A high PS value
indicates a strong clustering of groups A and B in the phylogenetic tree, i.e., that groups
A and B are two different ecotypes. A low PS value indicates a random distribution or
the absence of polymorphism.

IV.4 Sensitivity analysis

We tested variations of our parameters set (see Table IV.8.1), by changing the death
probability pdeath, the external metabolites diffusion rate, the mutation rates, the toxicity
thresholds, the “migration rate" (a parameter controlling the fraction of exchanged pairs
among all possible pairs of individuals), and the grid size. Details and results are described
in Appendix IV.8.5.

IV.5 Results

First, the global evolutionary dynamics of the system can be analyzed by looking at
main simulation statistics. The evolution of the mean score, the environmental richness
(the number of different metabolites available in the environment), the number of trophic
profiles, and the proportion of organisms of group A or B are represented in Figure IV.2.
The score and the environmental richness were of the same order of magnitude in the
continuous and the periodic environments, but they were more stable in the continuous
environment. The number of trophic profiles showed no striking difference between the
periodic and the continuous environment (Figs. IV.2A.3 and IV.2B.3), indicating that
polymorphism was common in both situations. However, the dynamics of groups A and
B were completely different. In the periodic environment, groups coexisted, even if they
showed long-term frequency variations (Fig. IV.2A.4). In the continuous environment,
group B quickly emerged too but also quickly disappeared in all cases (Fig. IV.2B.4).
Thus, even if the diversity of trophic profiles was similar in both environments, all profiles
belonged to group A in the continuous environment. Hence, there was no group exclusively
specialized on by-products in the continuous environment, while they were common in
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the periodic one.

Figure IV.2 – Evolution of typical variables. Evolution of the mean score (A.1 and B.1),
the environmental richness (the number of different metabolites present in the environment, A.2 and
B.2), the number of trophic profiles (A.3 and B.3), and the proportion of organisms of group A
or B are represented (A.4 and B.4). (A) Evolution in the periodic environment. (B) Evolution in
the continuous environment. In A.4 and B.4, group A is represented in solid lines and group B in
dashed lines.

Impact of environmental dynamics on evolved genome and network
organization

We compared the structure of both the genome and the metabolic network of final A
organisms (after 500,000 time-steps) from the continuous and periodic environments of
the main campaign (see above). We evaluated five variables: (i) the mean genome size,
(ii) the mean amount of non-coding DNA, (iii) the mean number of enzyme coding
units encoding the same metabolic reaction (the “metabolic redundancy"), (iv) the mean
number of different essential metabolites pumped in (the “uptake diversity"), and (v)
the mean number of different essential metabolites produced (the “production diversity").
For each measure, we performed a two-sample Wilcoxon test with a Bonferroni correction
(n = 5).

As shown in Table IV.1, there was no significant variation in the amount of non-coding
DNA and the uptake diversity. By contrast, genome size (resp. 227.47 and 346.24
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units, p-value < 0.001/5) and metabolic redundancy (resp. 15.80 and 7.98 units, p-
value < 0.001/5) were significantly lower in the periodic environment compared to the
continuous environment. Moreover, the number of essential metabolites produced was sig-
nificantly higher in the periodic environment than in the continuous environment (resp.
5.04 and 6.58 essential metabolites, p-value < 0.001/5). These differences are explained by
selective pressures on the metabolic network. Indeed, organisms experienced a trade-off
between maximizing their score (i.e., maximizing the concentration of essential metabo-
lites in their cytoplasm) and avoiding lethal toxicity thresholds. In the periodic environ-
ment, the external resource mexo was introduced by bursts of 10.0 ACU at each serial
transfer. Thus, to maximize the score without reaching toxicity thresholds, organisms
must avoid specializing on a single essential metabolite and instead spread the toxicity
by distributing metabolic fluxes in the production of several essential metabolites. In
the continuous environment, the external resource was continuously provided at a lower
concentration (0.03 ACU at each time-step). In this case, the selective pressure on toxic-
ity was relaxed and the number of essential metabolites produced was significantly lower.
Interestingly, metabolic fluxes were also adjusted by amplifying or deleting genes. Indeed,
in the continuous environment, there were more copies of E (enzyme coding units) than in
the periodic environment, while the production diversity was lower, meaning that those
units were amplified in the continuous environment to maximize metabolic fluxes, thus
increasing the genome size.

Table IV.1 – Comparison of the structure of the genome and metabolic network
structure of final A organisms evolved in the continuous and periodic environments.
Five variables were evaluated: (i) the mean genome size, (ii) the mean amount of non-coding DNA,
(iii) the mean number of E encoding the same metabolic reaction (the “metabolic redundancy"), (iv)
the mean number of different essential metabolites pumped in (the “uptake diversity"), and (v) the
mean number of different essential metabolites produced (the “production diversity"). The standard
deviation is also shown (mean ± sd.). For each measure, we performed a two-samples Wilcoxon test,
with Bonferroni correction (n = 5).

Variable Continuous env. Periodic env. Wilcoxon test Units
Genome size 346.24 ± 12.98 227.47 ± 53.21 *** Genomic units
Non-coding DNA 5.69 ± 1.21 4.69 ± 1.54 - Genomic units
Metabolic redundancy 15.80 ± 1.84 7.98 ± 2.08 *** Genomic units
Uptake diversity 3.48 ± 0.37 3.87 ± 1.41 - Metabolites
Production diversity 5.04 ± 0.31 6.58 ± 0.93 *** Metabolites

Figure IV.3 shows an example of organisms A and B evolved in the periodic environment
after 500,000 time-steps (repetition 10). The final best individual of groups A (Fig. IV.3A)
and B (Fig. IV.3B) are represented including their genome (Figs. IV.3A.1 and IV.3B.1),
metabolic network (Figs. IV.3A.2 and IV.3B.2) and internal metabolic concentrations
(Figs. IV.3A.3 and IV.3B.3). The metabolic network of organism A was structured around
mexo (this metabolite being a hub in the network), even if the organism also fed on some
by-products. Organism B’s metabolic network was less complex, and indicates that the
organism mostly grew on A-secreted products. Most parts of both genomes were coding
enzymes, revealing large operons all along the genomes.
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Figure IV.3 – Final best individuals of groups A and B, from repetition 10 of the
periodic environment. (A) Final best organism A. (B) Final best organism B. (A.1, B.1) The
circular single-stranded genome. Non-functional regions are white, promoters black, E red, revealing
numerous operons all along the genomes. (A.2, B.2) The metabolic network. Non essential and
essential metabolites are colored in black and blue, respectively. Non-functional parts of the metabolic
network (where fluxes are null) are shown in grey. (A.3, B.3) The internal metabolic concentrations
(non essential metabolite concentrations: black. Essential metabolite concentrations: blue).

Relationship between ecology and phylogeny

For each simulation, we analyzed the final phylogenetic tree and compared it to the
distribution of groups A and B. All the phylogenetic trees are represented in Figure
IV.8.2. Leaves are colored depending on their trophic group (group A in blue, group B
in green). The structure of the trees was strongly related to the type of environment.
In the periodic environment (Fig. IV.8.2), 5 phylogenetic trees among 12 (repetitions
1, 3, 7, 9 and 10) showed two well-separated clusters, each belonging to one ecological
group. In these repetitions, two ecotypes evolved separately and remained stable on
the long-term, showing that a stable cross-feeding interaction evolved. In the seven other
cases, trees were less deep, had no well separated clusters, and no clear correlation between
ecological groups and phylogenetic structure was observed. In the continuous environment
(Fig. IV.8.2), trees were much shorter than in the periodic environment. Group A went
to fixation in all repetitions. Then, while polymorphism and cross-feeding existed at a
similar level in both periodic and continuous environments (Figs. IV.2A.3 and IV.2B.3),
this polymorphism was not stable in the continuous environment.
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Evolution of phylogenetic structure and trophic groups

To get more insight into the evolutionary dynamics, we computed the distribution of the
Most Recent Common Ancestor (MRCA) age at each time-step for all the simulations.
The MRCA age reflects the stability of the polymorphism in a population. As shown
in Figure IV.4, distributions confirmed that the deepest trees evolved in the periodic
environment, with a mean MRCA age of 71, 004 time-steps, and a large distribution tail
(some trees having almost the same depth as the total simulation time - 500, 000 time-
steps). By contrast, the mean MRCA age is only 13, 524 time-steps in the continuous
environment and 11, 684 time-steps in the complementary experiment with randomized
refresh. This result indicates that environmental variations must be regular to favor
stable cross-feeding interactions. The evolution of MRCA age during simulations is also
represented in Figure IV.8.3, for the three types of environment. This figure gives a better
idea of the evolutionary dynamics of the phylogenetic trees. It shows that the MRCA age
regularly collapsed in the random and continuous environments, but was still increasing
for some simulations in the periodic environment.

Figure IV.4 – Distribution of the Most Recent Common Ancestor age in all the
simulations. For each environment, we computed the distribution across repetitions of the Most
Recent Common Ancestor (MRCA) age, for each simulation time-step. All pairwise Student tests are
significant, with Bonferroni correction (p-value < 0.001/3).

We then compared the phylogenetic structure with the distribution of groups A and
B on tree leaves by computing the phylogenetic structure score PS (Fig. IV.5A). In
Figure IV.5B, this PS score is plotted against the MRCA age every 1,000 time-steps for
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all the repetitions (grey points). Points corresponding to the end of each simulation are
colored in black. On each plot, three areas are identified: the purple area indicates long-
diverged clades (MRCA age higher than 200,000 time-steps), the orange area indicates
when clades correspond to ecotypes (PS score > 0.9), and the intersection of the previous
two areas (inside dashed borders) indicates long-diverged monophyletic ecotypes. In the
periodic environment (Fig. IV.5B.1), the deepest trees were also the most structured,
with two well separated monophyletic ecotypes A and B. In the random environment
(Fig. IV.5B.2), the situation was contrasted, with a large distribution of the PS score,
ranging from monomorphic trees (A or B groups being fixed), to polymorphic trees.
However, the MRCA age was very short compared to the periodic environment, revealing
the instability of the phylogenetic structure. Note that the random environment is the
only one where we observed a population extinction (1 out of 12). In the continuous
environment (Fig. IV.5B.3), the population was mostly monomorphic (group A being
fixed), with short MRCA ages.

To evaluate the robustness of these results to the variation of main simulation parame-
ters, we performed a sensitivity analysis. The results are presented in details in Appendix
IV.8.5. Even if some parameters were more sensitive than others (e.g., the death prob-
ability and the toxicity thresholds, discussed in Appendix IV.8.5), this analysis revealed
that our results are robust. In the continuous environment, no single simulation evolved
a stable A/B cross-feeding in the whole analysis. Moreover, when the diffusion rate was
infinite, or when the population was perfectly mixed (all locations being randomized at
each time-step), almost all repetitions (80% in infinite diffusion conditions, 100% in well-
mixed conditions) evolved a stable A/B cross-feeding in the periodic environment (see
Appendix IV.8.5). This result is in agreement with previous studies showing that the
spatial structure may affect polymorphism (Hauert and Doebeli, 2004; Gerlee and Lundh,
2012).

These results confirmed that the periodic environment strongly favored the evolution of
stable cross-feeding interactions, in contrast to the random and continuous environments,
in apparent contradiction with the results of wet experiments in chemostat, and we will
discuss this point below.

Evolution of trophic profiles

We then recovered the proportion of trophic profiles over time (at every 1,000 time-steps)
in all the simulations of the periodic and continuous environments (Figs. IV.6A and IV.6B,
respectively). Trophic profiles belonging to groups A and B are colored in shades of blue
and green, respectively. Those figures show that evolution in the model was ruled by
periodic selection in a highly polymorphic population. This polymorphism was mainly
due to competition for resources, with the organisms constantly competing for the primary
resource but also the by-products available in the environment. However, in the periodic
environment (Fig. IV.6A), trophic profiles from groups A and B coexisted over time,
with periodic selection events occurring independently in both groups. This dynamics
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Figure IV.5 – Phylogenetic structure score against the MRCA age. (A) The PS score.
The PS score is a measure indicating the degree of clustering of A and B trophic groups, on the
two clades linked to the MRCA. A high PS value (> 0.9) indicates well separated A and B clusters.
(B) For each environment, the PS score is plotted against the MRCA age every 1,000 time-steps,
for all repetitions, with the points corresponding to the final trees (at 500,000 time-steps) colored
in black. Purple area: long-diverged clades (MRCA age higher than 200,000 time-steps). Orange
area: clades corresponding to ecotypes (PS score > 0.9). Intersection (inside dashed borders): long-
diverged monophyletic ecotypes. (B.1) Periodic environment. (B.2) Random environment. (B.3)
Continuous environment.

is typical from multiple niche selection, where beneficial mutations do not spread in all
the population owing to competitive exclusion, but are confined in one specific niche. In
the continuous environment (Fig. IV.6B), group A was predominant in all simulations,
periodic selection affecting the whole population. In these conditions, the level of cross-
feeding was maintained but the interactions were not stable (as shown by Figs. IV.2A.3
and IV.2B.3).
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Figure IV.6 – Evolution of trophic profiles in the population for the continuous and
periodic environments. Trophic profiles gather organisms that own the exact same metabolic
activity (see Methods). Blue and green profiles belong to trophic groups A and B, respectively. (A)
Continuous environment simulations. (B) Periodic environment simulations.
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These results reinforce the fact that stable cross-feeding interactions were only possible in
the periodic environment. Specifically, in the periodic environment, evolution was driven
by multiple niche selection, with periodic selection events independently occurring in
ecotypes A and B. On the opposite, in the continuous environment, evolution was driven
by periodic selection and competitive exclusion, indicating that there was less opportunity
for niche construction.

Ecological dynamics in the periodic environment

Comparative analysis of phylogenetic structure in the different environments revealed
that the periodic environment especially favored the evolution of stable cross-feeding
interactions, leading to two monophyletic ecotypes A and B in 5 of 12 repetitions, with
the ecotype A feeding on the primary resource and possibly on some by-products, while
ecotype B consumed by-products. In the LTEE, it has been shown that the coexistence
of S and L ecotypes is driven by negative frequency-dependent interactions (Rozen et al.,
2005, 2009). We analyzed in details the 5 populations to see whether the stable cross-
feeding interactions were comparable to the S/L interaction.

Mutational history of ecotypes A and B.

In the 5 populations that evolved a stable cross-feeding, we recovered the mutational his-
tory of the lineages of ecotypes A and B. Final phylogenetic trees of the 5 populations are
represented in Figure IV.7. For each tree, the trophic group of the MRCA, as well as the
generation at which one of the monophyletic ecotypes switched from the ancestor group
to the other one (i.e., when one ecotype lost or gained inflowing pumps for the primary
resource), are shown. In all 5 populations, the same pattern emerged: the population
was primarily of group A, but niche construction on by-products resulted in adaptive
diversification, with one ecotype strongly specializing on by-products, such that it lost
the ability to uptake the primary resource.

Interestingly, in all simulations, the loss of this ability was not the source of the adaptive
diversification. The diversification event occurred a few hundreds of generations before
the loss of the pump provoking the change of trophic group. In the LTEE, the S ecotype
specialized on acetate, but was still able to grow on glucose. However, recent work has
shown that while the S ecotype improved its ability to grow on acetate since the diver-
sification event, it was not the case on glucose, presaging a possible complete loss of its
ability to grow on glucose in the longer term (Großkopf et al., 2016). Conversely, the L
ecotype improved its ability to grow on glucose, but not on acetate, also presaging a loss
of ability to grow on acetate at a longer term.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



IV.5. Results 153

Figure IV.7 – Analysis of the adaptive diversification event leading to the mono-
phyletic ecotypes A and B. In the phylogenetic trees of final evolved populations, the colored
circles indicate the trophic group and the generation of the common ancestor. The colored triangles
indicate the generation when one monophyletic ecotype moved from one trophic group to the other
(i.e., losing or gaining pumps to feed on external nutrient). Group A (blue) grows on the primary
resource and possibly on by-products. Group B (green) exclusively grows on by-products.

Ecotype B frequency-dependent fitness in short term competition experi-
ments.

To test whether ecotypes A and B coexistence is maintained by negative frequency-
dependent interactions, we performed short term competition experiments with the 5
populations that evolved a stable cross-feeding interaction at the end of the simulations
in the periodic environment (repetitions 1, 3, 7, 9 and 10). Initial populations were seeded
at 9 different initial frequencies of B (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9—each
with 10 repetitions) and were propagated in the same periodic environment during 1 cycle
(i.e., 333 time-steps). Then, we computed the log-fitness (Chevin, 2011) of ecotype B,
taking into account its initial frequency and its frequency at the end of the first cycle. Fig-
ure IV.8 demonstrates that the ecotypes A and B interaction was frequency-dependent,
the ecotype B being favored when initially rare, and penalized when initially abundant.
Since the external conditions varied during the seasons, the B organisms were not favored
during the whole cycle. Video IV.8.6 shows the variation of B relative fitness over the
333 time-steps of the first cycle, at a full temporal resolution. This video shows the es-
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tablishment of the negative frequency-dependent interaction along the cycle, and reveals
that the relative fitness of B was initially negative at all initial frequencies. Indeed, at
each cycle, B ecotype growth was delayed compared to A ecotype, the former growing
on by-products during the second season, while the latter grew on fresh primary resource
during the first season. At low initial frequencies of B, their small number can randomly
lead to their extinction, thus artificially reducing its mean relative fitness. Those results
are in full agreement with the LTEE (Rozen and Lenski, 2000; Ribeck and Lenski, 2015).

Figure IV.8 – Frequency-dependent relative fitness in short-term competition experi-
ments. The frequency-dependent fitness was computed using log-fitness Chevin (2011); Ribeck and
Lenski (2015) in short term competition experiments, starting with different initial frequencies of B
ecotype. For each of the 5 populations that evolved monophyletic ecotypes at the end of the simula-
tions, 10 repetitions were run per initial frequency of B (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9).
The global mean frequency-dependent fitness is represented in black. Mean fitness per population is
shown in shaded colors. Each individual experiment is plotted in shaded color dots, related to their
mean color.

Convergence to an oscillatory dynamics.

Owing to their negative frequency-dependent interaction, the relative frequencies of eco-
types A and B should stabilize over time, as in the LTEE (Rozen and Lenski, 2000). We
extended the previous competition experiments to 10 cycles and recorded the A and B
proportions at each time-step (Fig. IV.9). Trajectories show that at all initial frequencies
of B, a stable oscillatory dynamics was reached for each repetition (Fig. IV.9A for repeti-
tion 1, Fig. IV.9B for rep. 3, Fig. IV.9C for rep. 7, Fig. IV.9D for rep. 9 and Fig. IV.9E
for rep. 10). The observed variability was due to contingent evolutionary differences be-
tween the 5 populations, and to a sampling effect when the initial frequency of B was low.
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Here again we observed exactly the dynamics observed in the LTEE (Rozen and Lenski,
2000; Ribeck and Lenski, 2015), even if the small population size artificially increased the
oscillatory dynamics.

Figure IV.9 – Convergence to an oscillatory dynamics over 10 serial transfer cycles.
Ecotype B is advantaged when rare, but is penalized when initially common, leading to a balanced
polymorphism. Nine different initial frequencies of B have been tested (0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9). Each trajectory is the mean of the B frequency among the 10 repetitions of each
of the 5 populations. (A) Population 1. (B) Population 3. (C) Population 7. (D) Population 9.
(E) Population 10.

Stability of the A/B cross-feeding interactions when transferred in
the continuous environment

In the continuous environment, no stable cross-feeding interaction evolved. This result is
in apparent contradiction with wet experiments during which E. coli populations evolved
in a continuous culture with glucose as a single limiting carbon source (Helling et al.,
1987; Rosenzweig et al., 1994; Treves et al., 1998). In those experiments, cross-feeding
interactions emerged after a few hundreds of generations. Nonetheless, our results showed
that cross-feeding interactions quickly emerged in the continuous environment, but these
interactions were not stable (Fig. IV.2).

To test whether a population with two stable A and B ecotypes (evolved in the periodic
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environment) could persist when placed in the continuous one, we let populations from
the periodic environment evolve in chemostat-like environments for 500,000 time-steps.
The 5 populations that evolved a stable cross-feeding in the periodic environment were
propagated in a continuous environment at two different stages of their evolution: (i) just
after adaptive diversification (early populations, see Fig. IV.7), (ii) and at the end of the
simulations (late populations, after 500,000 time-steps). As a control, these populations
were also propagated in the periodic environment. For each population, 10 repetitions
were run in each environment. Then, we evaluated the stability of the A/B cross-feeding
interaction by counting the number of simulations where the interaction persisted, the
number of simulations where the interaction failed, and the time before interaction failure.

The proportion of simulations where the interaction persisted are displayed in Table IV.2
for the continuous environment, and in Table IV.3 for the periodic environment. The
evolution of the proportions of groups A and B is also shown in Figures IV.10A and
IV.10C for the continuous environment (early and late populations, respectively), and
in Figures IV.10B and IV.10D for the periodic environment (early and late populations,
respectively). First, Table IV.2 shows that, for early populations in the continuous en-
vironment, the interaction was not robust and persisted in only 6% of the assays. For
late populations in the continuous environment, the interaction was more robust, as the
polymorphism persisted in 50% of the assays. For early populations in the periodic envi-
ronment, the interaction was also not robust (the interaction persisted in only 18% of the
assays), even if more populations maintained the interaction than in the continuous envi-
ronment. This low percentage is probably due to the experimental protocol: populations
were transferred in a periodic environment at the beginning of a new cycle, whatever the
previous seasonal context of the population. The interaction was then destabilized while
the diversification event was still recent, leading to a high probability to loose the inter-
action (a situation similar to what occurred in the random environments). However, for
late populations in the periodic environment, most assays kept the polymorphism stable
(the interaction persisted in 78% of the assays), indicating that seasonality is of primary
importance to stabilize the interaction.

Table IV.2 – Proportion of assays where polymorphism persisted in chemostat condi-
tions. For each population, 10 assays were simulated. The stable polymorphism was considered to be
lost if the MRCA age changed, indicating that one of the two monophyletic groups was outcompeted.

Pop 1 Pop 3 Pop 7 Pop 9 Pop 10
Early populations 0% 0% 0% 30% 0%
Late populations 90% 70% 30% 40% 20%

Table IV.3 – Proportion of assays where polymorphism persisted in batch conditions.
For each population, 10 assays were simulated. The stable polymorphism was considered to be lost
if the MRCA age changed, indicating that one of the two monophyletic groups was outcompeted.

Pop 1 Pop 3 Pop 7 Pop 9 Pop 10
Early populations 30% 20% 0% 40% 0%
Late populations 100% 100% 90% 60% 40%
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Figure IV.10 – Stability of the A/B interaction evolved in the periodic environment,
when placed in the continuous one. Early populations were transferred just after adaptive
diversification. Late populations were transferred at the end of the simulations (500,000 time-steps).
For each repetition that evolved two ecotypes A and B (rep. 1, 3, 7, 9 and 10), 10 repetitions
of 500,000 time-steps were run. The stable polymorphism was considered to be lost if the MRCA
age changed, indicating that one of the two monophyletic groups was outcompeted. In this case,
the simulation is colored in green, and red before and after this event, respectively (simulations
where the A/B interaction was maintained during the whole experiment are fully green). (A) Early
populations transferred in the continuous environment. (B) Early populations transferred in the
periodic environment. (C) Late populations transferred in the continuous environment. (D) Late
populations transferred in the periodic environment.

Figure IV.11 shows the distribution of the time before A/B interaction failure for early
and late populations in the continuous environment. Late populations were much more
robust, since extinctions happened significantly later (with a mean of 142,291.2 time-
steps) than for early populations (with a mean of 37,173.68 time-steps). Student test
gives a p-value < 0.001.
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Figure IV.11 – Time before A/B interaction failure in the continuous environment.
The time (in time-steps) is measured for all competition experiments in the continuous environment
(50 simulations) where the interaction failed. Persistent interactions are not considered here. Early
populations loose the interaction significantly earlier than the late ones (Student test is significant
with a p-value < 0.001).

Vulnerability of ecotype B to A fast-growing mutants when transferred in the
continuous environment.

In order to understand why the A/B interaction failed in half of the continuous environ-
ment experiments (50% of the assays in the late populations), and why the A/B interaction
failures implied the extinction of ecotype B in most cases (80% of the failures in the late
populations), we studied in details the evolution of digital organisms in this environment.

For each late population propagated in the continuous environment (Fig. IV.10C), we
compared the initial A ecotype to the final A ecotype (after 500,000 time-steps of evo-
lution in the continuous environment). We performed the same genomic and metabolic
analysis as in section “Impact of environmental resource dynamics on evolved genome
and network organization". Table IV.4 shows that A organisms (i) significantly increased
their genome size (from 189.99 to 269.73 units, p-value < 0.001/5), their mean metabolic
redundancy (from 6.69 to 10.86 units, p-value < 0.001/5) and mean uptake diversity
(from 1.17 to 1.69 metabolites, p-value < 0.001/5), and (ii) significantly decreased their
mean production diversity (from 7.14 to 5.66 metabolites, p-value < 0.001/5), when they
evolved in the continuous environment for 500,000 time-steps. Indeed, the relaxation of
selective pressures to maintain concentrations under the lethal toxicity thresholds led to
a restructuring of A organisms towards a genome and metabolic network well-adapted to
continuous conditions (see Table IV.1). This modification of ecotype A phenotypes im-
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paired the negative frequency-dependent interaction between the A and B ecotypes: since
B organisms consumed A-secreted by-products, the reduction of the production diversity
of A organisms led to the extinction of ecotype B in half of the assays.

Table IV.4 – Comparison of the genome and metabolic network structure of initial
and final ecotype A, when transferred in the continuous environment. Five variables
were evaluated: (i) the mean genome size, (ii) the mean amount of non-coding DNA, (iii) the
mean number of E encoding the same metabolic reaction (the “metabolic redundancy"), (iv) the
mean number of different essential metabolites pumped in (the “uptake diversity"), and (v) the
mean number of different essential metabolites produced (the “production diversity"). The standard
deviation is also shown (mean ± sd.). For each measure, we performed a two-samples Wilcoxon test,
with Bonferroni correction (n = 5).

Variable Initial pop. Final pop. (500,000t) Wilcoxon test Units
Genome size 189.99 ± 49.85 269.73 ± 96.69 *** Genome units
Non-coding DNA 4.69 ± 2.10 5.18 ± 2.01 - Genome units
Metabolic redundancy 6.69 ± 1.46 10.86 ± 4.81 *** Genome units
Uptake diversity 1.17 ± 0.54 1.69 ± 1.13 *** Metabolites
Production diversity 7.14 ± 0.73 5.66 ± 1.78 *** Metabolites

To exemplify these statistical results, we studied in details the evolution of ecotypes A
and B in the 10 repetitions of the late population 3, when propagated in the continuous
environment (Fig. IV.10C.3). At the beginning of the assays, ecotypes A and B interacted
through a negative frequency-dependent cross-feeding: ecotype A organisms produced es-
sential metabolites 2, 3, 5, 7, 11, 13, 17 and 23; ecotype B organisms consumed metabolites
2, 3, 5 and 7 (all secreted by ecotype A organisms). We evaluated the evolution of the 8
essential metabolites that were produced by ecotype A organisms at the beginning of the
assays (Fig. IV.12). Ecotype A organisms reduced their production of essential metabo-
lites in all assays. However, when ecotype A organisms stopped producing metabolites 2,
3, 5 and/or 7, ecotype B organisms systematically went to extinction. On the opposite,
when ecotype A organisms stopped producing metabolites 17 and/or 23 (but maintained
the production of 2, 3, 5 and 7), ecotype B was not affected. These results confirm the
mechanism of B extinction: when placed in continuous conditions, ecotype A organisms
reorganized their metabolism and produced fewer essential metabolites. Now, while doing
so they may stop producing metabolites that were necessary for the survival of ecotype
B organisms, leading to their extinction.

The robustness of the A/B interaction in late populations is explained by
character displacement and niche specialization.

In order to understand why the interaction between A and B ecotypes was more robust
in late than early populations, we compared the genomic and metabolic structures of
early and late populations, independently for A and B ecotypes. We performed the same
statistical tests as in Tables IV.1 and IV.4 (two-samples Wilcoxon test with Bonferroni
correction of n = 5). The results are presented in Table IV.5. In both ecotypes, the
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Figure IV.12 – Loss of essential metabolites production of ecotype A organisms in the
10 repetitions of the late population 3 in the continuous environment assays. The
10 repetitions of the population 3 are displayed. The 8 essential metabolites (2, 3, 5, 7, 11, 13, 17,
and 23) that were produced by ecotype A organisms at the beginning of the assays are represented
vertically for each repetition. Colored metabolites indicate a production loss. Essential metabolites
that are consumed by ecotype B organisms are colored in red, the others in green. At the top, the
evolution of groups A and B proportions is represented in green when the A/B interaction persisted
and in red when the interaction failed. In all simulations where A ceased to produce a metabolite
pumped-in by B, B went to extinction.

genome size, amount of non-coding DNA and metabolic redundancy were significantly re-
duced. However, if ecotype A significantly reduced its uptake diversity and increased its
production diversity, ecotype B evolved in an opposite way (i.e., ecotype B significantly
increased its uptake diversity and reduced its production diversity). The traits of eco-
types A and B diverged: (i) ecotype A strongly specialized on mexo (with a mean uptake
diversity of 1.17 metabolites), and optimized metabolic fluxes according to the trade-off
between avoiding lethal toxicity thresholds and maximizing the score (as explained above,
this selective pressure resulted in reduced genome size and metabolic redundancy, and in-
creased production diversity). (ii) Ecotype B specialized on by-products by increasing
the uptake diversity and reducing the production diversity. This demonstrates that eco-
types A and B specialized to their own niches, and that ecotypes A and B traits diverged
by character displacement, in complete agreement with the LTEE (Legac et al., 2012;
Großkopf et al., 2016).
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Table IV.5 – Comparison of the genome and metabolic network structure of initial
ecotypes A and B in the early and late populations. For each ecotype, five variables
were evaluated: (i) the mean genome size, (ii) the mean amount of non-coding DNA, (iii) the
mean number of E encoding the same metabolic reaction (the “metabolic redundancy"), (iv) the
mean number of different essential metabolites pumped in (the “uptake diversity"), and (v) the
mean number of different essential metabolites produced (the “production diversity"). The standard
deviation is also shown (mean ± sd.). For each measure, we performed a two-sample Wilcoxon test
with Bonferroni correction (n = 5).

Variable Early pop. Late pop. Wilcoxon test Units
A genome size 257.09 ± 42.31 189.99 ± 49.85 *** Genome units
A non-coding DNA 6.37 ± 1.14 4.69 ± 2.10 ** Genome units
A metabolic redundancy 8.20 ± 0.83 6.69 ± 1.46 *** Genome units
A uptake diversity 3.12 ± 0.51 1.17 ± 0.54 *** Metabolites
A production diversity 6.82 ± 0.12 7.14 ± 0.73 * Metabolites
B genome size 274.93 ± 31.98 203.14 ± 59.59 *** Genome units
B non-coding DNA 9.70 ± 8.21 4.20 ± 2.05 *** Genome units
B metabolic redundancy 9.86 ± 2.48 8.04 ± 2.54 ** Genome units
B uptake diversity 3.74 ± 0.76 4.59 ± 0.84 *** Metabolites
B production diversity 6.26 ± 0.70 5.85 ± 0.57 ** Metabolites

Character displacement explained the apparent robustness of the A/B interaction in late
populations. Indeed, niche specialization led A organisms to specialize on mexo and in-
crease their production diversity. On the other hand, B organisms specialized on a large
number of by-products. However, character displacement and niche specialization was
stronger in late than early populations. For this reason, late A organisms needed more
mutations (and then more evolution time) to adapt to continuous conditions (i.e., re-
ducing the production diversity and increasing metabolic redundancy, see Table IV.1)
than early A organisms. Thus, B organisms were slower out-competed in late than early
populations.

To assess those conclusions, we studied in details the evolution of ecotypes A and B in the
10 repetitions of the early population 3 (Fig. IV.10A.3), in the exact same way than in
Figure IV.12. The result is available on Figure IV.8.4, and shows that A organisms from
early populations reduced their production diversity (mean of 3.4 metabolites) more than
A organisms in late populations (mean of 2.0 metabolites). Indeed, A organisms were
less specialized and thus needed less time to adapt to the continuous conditions, thereby
favoring the extinction of ecotype B.

The fact that beneficial mutations from ecotype A spread all over the population in the
continuous environment (Fig. IV.4) indicates that competitive exclusion occurred. In this
case, according to (Cohan, 2002), A and B groups cannot be considered as separate eco-
types in the continuous environment, although the same organisms were separate ecotypes
in the periodic environment. Note that in 5 assays over all experiments, ecotype B fixed
in the population (1 assay for early populations in the continuous environment, 3 assays
for late populations in the continuous environment, and 1 assay for late populations in the
periodic environment). When ecotype B invaded the population, by-products were not
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produced anymore by ecotype A, therefore dooming the whole population to extinction
(as exemplified in repetition 3 of late population 1).

Hence, the stability of the A/B cross-feeding interaction in the continuous environment
relied on the evolutionary time elapsed in the periodic environment since adaptive diver-
sification. This shows that the co-evolution of ecotypes A and B in the periodic envi-
ronment strengthened their interaction, meaning that niche specialization stabilized the
cross-feeding and fostered a robust negative frequency-dependence. However, even if the
cross-feeding interaction seemed stable over few thousands of generations, in the continu-
ous environment a beneficial mutation in ecotype A lineage can lead to the extinction of
ecotype B lineage. Therefore, the stability of the A/B polymorphism in the periodic en-
vironment did not rely only on their cross-feeding interaction, but also on the seasonality
of the environment.

IV.6 Discussion

Using in silico experimental evolution, we have shown that the long-term maintenance of
cross-feeding interactions is favored in a seasonal environment, where the environment is
reset and primary resource is supplied at regular intervals. In this environment, 5 simula-
tions over 12 evolved a stable cross-feeding interaction at the end of the simulations, with
two monophyletic ecotypes coexisting via a negative frequency-dependent interaction. At
each cycle, ecotype A grows during the first season, feeding on the primary resource and
releasing by-products, while ecotype B exclusively feeds on by-products during the second
season. The stable coexistence of ecotypes A and B is then based on niche construction,
followed by a negative frequency-dependent interaction, as the S and L ecotypes in the
LTEE. According to our model, batch culture experiments seem to especially favor the
evolution of stable cross-feeding polymorphisms owing to the cyclic nature of the envi-
ronment that generates the conditions for the existence of at least two stable seasons:
a first season is externally generated by the cyclic mechanism (thus being intrinsically
stable) while the second one is generated by the replacement of the exogenously-provided
nutrient by the secreted by-products through a mechanism of niche construction.

In the continuous environment, where the primary resource is constantly provided (like in a
chemostat), cross-feeding interactions emerged, but were not stable because of competitive
exclusion. In this case, organisms enriched their environment via their metabolic activity,
such that mutants were temporarily able to feed on by-products. But the absence of
seasonality precludes any possibility for the stabilization of cross-feeding interactions.

Our multi-scale model allowed us to investigate the impact of resource dynamics on the
organization of genome (e.g., gene amplification) and of the metabolic network. It also
allowed us to dissect the precise mechanism behind the evolved robustness of the cross-
feeding interaction. We demonstrated that those results are robust to model parameter
variation. Indeed, stable cross-feeding interactions emerged in the periodic environment
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for a wide range of parameter values, including well-mixed populations and infinite diffu-
sion rate, while they never appeared in the continuous environment, thus reinforcing our
conclusions (Appendix IV.8.5).

Previous wet experiments in chemostat demonstrated the emergence of cross-feeding in-
teractions (Helling et al., 1987; Rosenzweig et al., 1994; Treves et al., 1998). In those
experiments, E. coli populations have been propagated in a chemostat with glucose as a
single limiting carbon source for at most 1,900 generations. When isolated and evolved
together in competition experiments, the different mutants identified to contribute to
the cross-feeding interactions reached a stable equilibrium owing to frequency-dependent
interactions (Rosenzweig et al., 1994). Several reasons were invoked to explain why cross-
feeding interactions could be stable in chemostat, despite the competitive exclusion prin-
ciple. According to Pfeiffer and Bonhoeffer (2004), cross-feeding may evolve in microbial
populations as a consequence of the maximization of ATP production, and the mini-
mization of enzyme concentrations and intermediate products. Those constraints may
hinder the emergence of mutants completely degrading glucose (or uptaking glucose and
acetate), and outcompeting other cells by competitive exclusion. In our model, organisms
do not need to explicitly produce energy carriers. However, competition for resources,
toxicity thresholds and division impose metabolic flux optimization. Based on the same
conclusions, Doebeli (2002) also suggested that this trade-off between uptake efficiency
on the primary and the secondary resources should favor the emergence of cross-feeding
polymorphism in chemostat but not in batch culture, because in a chemostat, by-products
are more abundant and constantly provided. However, the limit of this model is that the
rate of by-product production did not rely on the rate of primary resource consumption.
Besides, a more recent theoretical work concluded that, in a continuous and well-mixed
environment, the diversity of cross-feeding polymorphism was negatively correlated with
primary resource abundance (Gerlee and Lundh, 2010a).

Our results shed a new light on this question. First, in our model, cross-feeding poly-
morphisms emerged both in the periodic and continuous environments. However the
stabilization of the cross-feeding interactions was favored in the periodic environment,
leading to the evolution of specialized ecotypes. Cohan (2002) defined an ecotype as an
independent monophyletic cluster occupying a specific ecological niche. Ecotypes are at
the heart of the bacterial species concept: what makes the genetic cohesion of an asex-
ual bacterial species is periodic selection that regularly purges the genetic diversity in
the same ecological niche (Cohan, 2002). As a consequence, ecotypes occupying different
niches independently experience selective sweeps, the mutants from one niche not invading
the ones from the other niche. Thus, the stability of a cross-feeding polymorphism should
only be analyzed in the light of the robustness of each ecotype against selective sweeps
by other ecotypes (Cohan, 2002). This mechanism is observed in the LTEE, as well as
in our model. In the periodic environment, ecotypes A and B independently experience
periodic selection events. In the continuous environment, competitive exclusion implied
that only one ecotype evolved in this environment.

Secondly, when ecotypes A and B evolved in the periodic environment were transferred in
the continuous environment, they retained their negative frequency-dependent interaction
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for hundreds of generations, until a selective sweep purged the whole population diversity,
and destroyed the cross-feeding interaction. Moreover, ecotypes A and B that evolved
for a long time in the periodic environment had a more robust interaction in continuous
conditions, because of niche specialization and character displacement on the long-term.
In the light of those results, we suggest to distinguish between ecological stability and
evolutionary stability. Even if different monophyletic clusters, related by cross-feeding
interactions, have frequency-dependent interactions, they are not necessarily robust to
competitive exclusion on the long-term. In this sense, ecotypes A and B are no longer
ecotypes in the continuous environment. By contrast, in the periodic environment, A and
B ecotypes can be considered as proto-species.

Those remarks lead us to hypothesize that the S and L interaction observed in the LTEE,
which is still at an early stage, should not be stable in a chemostat on the long-term, even
if it could become more and more stable. We also hypothesize that the S/L polymorphism
is an ongoing speciation event. On the long run, the S ecotype could even loose the ability
to consume glucose.

In a more general view, what we observed is strongly related to known results about
temporal niche partitioning in ecology (Spencer et al., 2007). Bacterial communities
commonly undergo adaptive diversification or niche specialization in sympatry, when the
environment is seasonal. For example, this mechanism has been observed in marine
microbial communities (Gilbert et al., 2012), and in lake phytoplankton (Grover, 1988). In
the LTEE (Rozen et al., 2009) and in our model, seasonality of glucose originates from the
serial transfer, but the seasonality of acetate is due to cross-feeding and niche construction.
Moreover, we demonstrated in our model than negative frequency-dependent cross-feeding
is not enough to stabilize the interaction between multiple ecotypes. External factors are
necessary, such a regular serial transfer. While the environment is intentionally simplified
in those experiments, we can expect much more complex environmental conditions in
nature.

Such complex interactions between external factors, emergent cross-feeding interactions
and niche construction are therefore of primary importance to understand the evolution
of microbial communities in well-mixed environments. Using a computational model of
ISEE to decipher those interactions seems to be a rich complementary approach to wet
experiments and mathematical modeling.

IV.7 Conclusion

Using a multi-scale computational model of ISEE, we studied the evolution and stability
of cross-feeding interactions in well-mixed environments, providing a single limiting re-
source periodically or continuously, as in batch cultures or chemostat devices. Our results
led us to consider a stable cross-feeding polymorphism as the stable coexistence of differ-
ent ecotypes, defined as different monophyletic clusters undergoing independent periodic
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selection events in their own ecological niche (Cohan, 2002). We observed that, even if
cross-feeding polymorphism systematically appears in all the simulations, the evolution
of stable ecotypes coexisting via cross-feeding is favored in the periodic environment, sim-
ilarly to the S/L polymorphism observed in the LTEE (Rozen and Lenski, 2000). In the
continuous environment, competitive exclusion precludes the stabilization of cross-feeding
interactions, in apparent contradiction with wet experiments. Indeed, while ecotypes in-
teracting via cross-feeding can temporarily coexist, a mutant always eventually outcom-
petes them. Then, we suggest to study the evolution of cross-feeding polymorphism by
fully integrating the notion of ecotype, and distinguishing between ecological stability
and evolutionary stability, the latter including long-term evolutionary dynamics such as
periodic selection. Our results contributed to understand temporal niche partitioning,
by modeling various mechanisms such as cross-feeding, niche construction and seasonal-
ity. At a more general scale, our results may contribute to the study of the evolution of
bacterial communities, by deciphering the conditions of sympatric speciation in asexual
populations.
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IV.8 Supporting Information

IV.8.1 Table S1. Common simulation parameters for the entire
experimental protocol.

Parameters for the initialization of genomes Value Unit
Initial number of non-coding units (NC) 10 genomic-units
Initial number of promoter units (P) 10 genomic-units
Initial number of enzyme units (E) 10 genomic-units
Range for the random drawing of β in initial genes [0, 1] ACU.centi-time-step-1
Range for the random drawing of s and p in initial genes #1 to #20 dimensionless
Range for the random drawing of kcat in initial genes [10−3, 10−1] centi-time-step-1
Range for the random drawing of kcat/KM ratio in initial genes [10−5, 10−4] centi-time-step-1.ACU-1

Parameters of the intracellular dynamics Value Unit
Duration of one population time-step 100 centi-time-steps
Protein degradation rate φ 0.1 centi-time-step-1
Non essential metabolites toxicity threshold 1.0 ACU
Essential metabolites toxicity threshold 1.0 ACU
Minimum score 10−3 ACU
Parameters of population dynamics Value Unit
Total simulation time 500,000 time-steps
Grid width W 32 gridsteps
Grid height H 32 gridsteps
Death probability pdeath 0.02 organism-1.time-step-1
Metabolite tag of the primary resource mexo #10 dimensionless
Diffusion parameter D 0.1 gridstep2.time-step-1

Parameters of point mutations Value Unit
Point mutation rate 1e-03 attribute-1replication-1
Substrate tag mutation size 1 dimensionless
Product tag mutation size 1 dimensionless
log(kcat) tag mutation size 0.1 dimensionless
log(kcat/KM) tag mutation size 0.1 dimensionless
β mutation size 0.1 ACU.centi-time-step-1
Probability that a genomic unit changes type 1e-03 genomic-unit-1.replication-1

Parameters of genomic rearrangements Value Unit
Duplication rate 1e-03 genomic-unit-1.replication-1
Deletion rate 1e-03 genomic-unit-1.replication-1
Translocation rate 1e-03 genomic-unit-1.replication-1
Inversion rate 1e-03 genomic-unit-1.replication-1
Probability of attribute swap at breakpoint 1e-03 attribute-1.breakpoint-1
Maximum genome size 10000 genomic units

Those parameters are common to all the simulations of the experimental protocol.
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IV.8.2 Figure S1. Final phylogenetic trees of each simulation.

Figure IV.13 – Final phylogenetic trees of each simulation. (A) Phylogenetic trees of the 12
repetitions in the periodic environment. (B) Phylogenetic trees of the 12 repetitions in the continuous
environment. Tree leaves are colored depending on their trophic group: group A in blue, group B
in green. Phylogenetic trees are numbered by repetition. For each tree, the scale is represented in
simulation time-steps.
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IV.8.3 Figure S2. Evolution of the MRCA age during simula-
tions, for the three types of environments.

Figure IV.14 – Evolution of the MRCA age during simulations, for the three types of
environments. For each environment, all the repetitions are represented in different colors. (A)
Periodic environment. (B) Random environment. (C) Continuous environment.
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IV.8.4 Figure S3. Loss of essential metabolites production of
ecotype A organisms, in the 10 repetitions of the early
population 3 in the continuous environment assays.

Figure IV.15 – Loss of essential metabolites production of ecotype A organisms, in
the 10 repetitions of the early population 3 in the continuous environment assays.
The 10 repetitions of population 3 are displayed. The 7 essential metabolites (2, 3, 5, 11, 13, 17,
and 23) that were produced by ecotype A organisms at the beginning of the assays are represented
vertically for each repetition. Background colors indicate a production loss. Essential metabolites that
are consumed by ecotype B organisms are colored in red, the other in green. At the top, the evolution
of groups A and B proportions is represented, and is colored in green when the A/B interaction
persisted, or in red when the interaction failed. In all simulations where A have ceased to produce a
metabolite pumped-in by B, B has gone to extinction.
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IV.8.5 Appendix S1. Sensitivity analysis on six key parameters.

To evaluate the robustness of our results to the variation of main simulation parameters,
we performed a sensitivity analysis. We explored six key parameters, selected for their
importance and their influence on evolutionary dynamics:

(1) The death probability pdeath, that controls the probability to die at each simulation
time-step (the same for every individuals, see "Population and environment" sec-
tion). We explored pdeath around the default value (pdeath = 0.02), i.e., pdeath = 0.005
and pdeath = 0.1. Because this parameter is highly sensitive, we also explored inter-
mediate values, i.e., pdeath = 0.01 and pdeath = 0.05

(2) The diffusion rate (see "Population and environment" section). We explored the
diffusion rate around the default value (diffusion parameter D = 0.1 gridstep2.time-
step-1), i.e., D = 0.02 gridstep2.time-step-1 and the special condition of a perfectly
well-mixed environment.

(3) The mutation rates (see "Genome structure" section). We explored the mutation
rates around the default value (10−3), i.e., 2.10−4 and 5.10−3.

(4) The toxicity thresholds, that impose a lethal upper threshold to internal cell’s
metabolic concentrations. We explored the mutation rates around the default value
(1.0), i.e., 0.1 ACU (Arbitrary Concentration Unit) and 5.0 ACU.

(5) The “migration rate" rmig: this parameter controls, at each time-step, the fraction of
exchanged pairs among all possible pairs of individuals. As competition is local, this
parameter thus controls whether an individual directly compete with its siblings or
with more distantly related individuals. By default, the migration rate is rmig = 0.0.
We then explored this parameter with to higher values: rmig = 0.5 (half of the
locations are randomized) and rmig = 1.0 (every locations are randomized).

(6) The grid size. The default grid size being 32×32, we tested sizes 20×20 and 50×50.

Because of computational loads, we varied each parameter separately around our default
parameters set. We computed 10 repetitions for each set of values (with a total of 140
simulations of 500,000 time steps and 1.5 months of computation).

To assess whether a A/B-like stable polymorphism evolved in a given run, we analyzed
the phylogenetic tree of the final population and computed both the PS score (see the
paragraph on cross-feeding interactions in the manuscript) and the time to the most
recent common ancestor (MRCA age). As in Fig 5, we considered that a A/B stable
polymorphism had evolved if (i) the MRCA age was higher than 200,000 time-steps, which
indicates the existence of long-diverged clades, and (ii) the PS score was higher than 0.9,
which indicates that clades match well with ecotypes (ecotypes are monophyletic). The
result of the sensitivity is presented in Fig 1.
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• First, no stable polymorphism evolved in the continuous environment, whatever the pa-
rameter values, while it regularly evolved in the periodic environment, thereby supporting
our main conclusion.

• Second, in the periodic environment, some parameters are more sensitive than others
in the periodic environment.

(i) For example, a lower or higher death probability (Figs 1A.1 and 1B.1) inhibits the
emergence of stable polymorphism. Interestingly, we calibrated the death probability
(0.02 per organism per time-step) and the duration of a cycle in the periodic environment
(333 times-steps) to obtain in theory 6.67 generations per cycle - since 333 ∗ 0.02 = 6.67
- like in the LTEE. A lower death probability exposes individuals to several seasons,
facilitating the evolution of generalists. On the opposite, a higher death rate forbids the
survival of B individuals, that would have too short a lifespan to survive the famine that
(for them) necessarily follows the environment refresh.

(ii) Lower or higher toxicity thresholds (Figs 1A.4 and 1B.4) strongly influence the struc-
turing of the metabolic network, and then the ability for the A/B interaction to be stable
(see part "Stability of the A/B cross-feeding interactions in the continuous environment"
of the manuscript for details).

(iii) The variation of the mutation rates (Figs 1A.3 and 1B.3) also influences the outcome
of the simulations. Stable polymorphism is observed at higher mutation rate but not at
a lower one which may be due to a too slow evolution rate compared with the duration
of the experiment (structured trees are indeed observed at a low mutation rate but the
MRCA ages remain low).

• Third, and most importantly, the exploration of the diffusion rate (Figs 1A.2 and
1B.2) and of the migration rate (Figs 1A.5 and 1B.5) reinforces our conclusions. Indeed,
previous theoretical studies highlighted the fact that spatial structure could inhibit the
emergence of stable polymorphism, while well-mixed conditions could enhance it (Hauert
and Doebeli, 2004; Gerlee and Lundh, 2012). In the case of the periodic environment,
there is a clear correlation between the rate of diffusion and the number of simulations
exhibiting stable polymorphism (D = 0.02 → 0%, D = 0.1 → 42%, well-mixed→ 80%).
Conclusions are the same for the migration rate (rmig = 0.0 → 42%, rmig = 0.5 → 50%,
rmig = 1.0→ 100%). This result is in agreement with previous studies (Hauert & Doebeli,
2004 ; Gerlee & Lundh, 2012). However, there is no stable polymorphism in the continuous
environment in any cases, thus reinforcing our conclusion that stable polymorphism cannot
evolve on the long-term in chemostat-like environments because of competitive exclusion.

•We also explored the grid size, by decreasing the grid size to 20×20, and increasing it to
50× 50 (Figs 1A.6 and 1B.6). A small grid size (20× 20) seems to inhibit the emergence
of a stable polymorphism. Indeed, the population size is probably too small to sustain the
polymorphism. In the large grid, we observed a slightly less stable polymorphism (30%)
than in the default grid (42%), but the difference is not significant.
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IV.8.6 Video S1. Variation of the relative fitness of ecotype B
during an entire cycle.

Variation of the relative fitness of ecotype B during an entire cycle. This video
shows the evolution of the ecotype B relative fitness during the first cycle of the short-term
competition experiment. Each of the 333 frames corresponds to one time-step, the whole
video presenting the entire cycle.

https://doi.org/10.1371/journal.pcbi.1005459.s006
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Chapter V

Why do cells regulate? The fate of
genetic regulation in an energy-limited
cell’s model

The results presented in this chapter are preliminary and
unpublished.
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They are delighted he’s going to eliminate regulations, let them make more
profit; of course, it’ll lead to another crash, but that’s somebody else’s problem.
(Noam Chomsky, 2017)

V.1 Introduction

While studied for decades, the role of genetic regulation in cellular functions and its
evolution are still not completely understood (Savageau, 1998; Shinar et al., 2006). In
living systems, many metabolic pathways are controlled by enzymes, whose expression
levels are under regulation. The best known example of such a regulation is probably
the lactose operon (Jacob and Monod, 1961). When lactose is absent, the transcription
of β-galactosidase, which degrades lactose in glucose and galactose, is repressed. When
lactose is detected in the local environment, the repressor is inhibited, and β-galactosidase
enzymes are produced.

It is often assumed that genetic regulation evolved to optimize cellular metabolism in vari-
able environments. Many modeling tools in systems biology are based on this assumption.
This is for example the case of flux balance analysis (FBA, Orth et al. 2010). FBA
is based on mathematical optimization algorithms to find metabolic flux rates that max-
imize the production of one or more metabolites in a specific metabolic network, often
linked to cellular fitness (e.g. ATP production). FBA assumes that the cell is able to
finely regulate its metabolic activity depending on some constraints (e.g. the availability
of a resource). For example, FBA has been used to study the evolution of cross-feeding
in bacterial populations (Großkopf et al., 2016). Yet, this interpretation of the role of ge-
netic regulation is undermined by recent works showing that “the regulation of metabolic
pathways may have evolved not to match expression of enzymes to levels of extracellular
substrates in changing environments but rather to balance a trade-off between exploiting
one type of nutrient over another ” (Weiße et al., 2015). Indeed, living systems do not
escape thermodynamic laws. Energy and resource allocation to various cell components
are an essential limitation to cell’s activity. Weiße et al. (2015) recently showed with an
in silico model of evolution that regulation may not evolve to adjust gene expression to
external resource concentrations, but to balance internal trade-offs. Indeed, they showed
that the best strategy in an environment providing a single nutrient is not to adjust gene
expression to external nutrient concentrations, but to constitutively express enzymes to
metabolize this nutrient at their maximum value, according to internal trade-offs. In
environments providing two nutrients, the best strategy depends on the uptake efficiency
of the cell for each nutrient. In this case, the expression level of enzymes metabolizing
each nutrient only depends on relative uptake efficiencies, and not on external nutrient
concentrations.

In Evo2Sim, genetic regulation, while freely evolvable, did not emerged in typical con-
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ditions, as shown in chapter IV. Indeed, in Rocabert et al. (2017), the cell model is
energy-free, meaning that regulation and metabolic networks evolve without any energy
allocation trade-offs. In the complex situation of niche construction and the evolution
of stable cross-feeding, none of the simulations shown evolved functional genetic regu-
lation networks, while resource fluctuations were significant. The evolution of efficient
metabolic pathways thus seems sufficient in these conditions to regulate the metabolic
activity, without the intervention of genetic regulation.

In unpublished preliminary experiments with Evo2Sim, C. Knibbe initialized simulations
with digital organisms owning carefully handcrafted regulation and metabolic networks,
and undergoing energy constraints on their metabolism. She showed that even in tough
environments and highly interdependent metabolic and regulation networks, digital or-
ganisms lost their regulation network and evolved a metabolic network with constitutively
expressed enzymes. Moreover, organisms losing the regulation network had a better fit-
ness than the ones keeping a finely regulated metabolism1. The study presented in this
chapter is based on this preliminary work.

We first parameterized Evo2Sim with realistic values when it was possible, for two reasons:
(i) it is impossible to explore the whole parameter space of Evo2Sim. We thus need an
heuristic linked to our scientific question: in the case of an energy-limited model, realistic
values are a good choice. (ii) Evo2Sim is a multi-scale model including the interaction
of many objects and structures. To obtain appropriate results and avoid artifactitious
dynamics, the different objects and structures must be parameterized in a coherent way.
This can be done by setting all parameters in the same orders of magnitude as in real
bacteria, when possible.

Using this parameter setting, we tested two specific environmental and cell model condi-
tions. The first environment alternatively provides two resources: the metabolites #20
and #22. We called this environment env. A. We also ran a complementary experiment
in a second type of environment (env. B), similar to the first one but providing more
resources. In the first model condition, the production of proteins costs energy. In the
second one, this energetic cost is relaxed. However, in both conditions, pumping activity
and anabolic reactions (i.e. the production of metabolites with higher metabolite tag than
the source metabolite, see chapter III) consume energy, while catabolic reactions produce
energy. Initial digital organisms own handcrafted genomes coding for carefully designed
genetic regulation and metabolic networks (see below). When protein production energy
costs exist, regulation is mandatory to survive, because it avoid the depletion of energy
carrier molecules, as described below.

Our results show that the presence of protein production costs led to the evolution of
“virus-like” organisms, having a small genome coding for a single operon, with no non-
coding DNA. This operon codes for both regulation and metabolic networks. Doing so,
digital organisms limit energy consumption in time by producing all proteins at once. In
the absence of protein production costs, digital organisms evolved larger genomes with

1This work has been presented to the Workshop of the International Laboratory EvoAct (Evolution in
action), Autrans, April 2016.
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multiple small operons, half of the genome being non-coding. These organisms completely
lost regulation. Thus, our results suggest that protein production costs strongly influence
the evolution of genome structure and regulation in Evo2Sim. This preliminary work calls
for further experiments in the model to assess the functional nature of genetic regulation.

V.2 Methods

V.2.1 Realistic parameterization in Evo2Sim

The section V.2.1 is largely inspired from the final report of the EvoEvo
project, available at www.evoevo.eu.

Evo2Sim contains many parameters that must be set at the beginning of each simulation
(chapter III and Appendix A). In the case of the study of internal cellular trade-offs, in
order to compare the results of a simulation with in vivo experiments, model parameters
must be tuned to fit typical values found in living cells, for protein and metabolic concen-
trations, cellular lifespan, enzymatic constants, and so on. Moreover, since parameters
are interdependent, one must set the correct order of magnitude of each parameter to
avoid the emergence of purely artificial dynamics in the model. For example, metabolic
reactions must be fast enough to enable the cell to react to environmental changes, but
too fast reactions must be avoided since they would not be possible in practice. We iden-
tified the correct order of magnitude for most of the parameters of Evo2Sim. They are
presented below.

• Time units. Parameters related to internal molecular processes were expressed per
minute. At each simulation time-step and for each digital organism, the internal dynamics
were computed by a time adaptive numerical solver (chapter III) from t = 0 to t = 100
minutes. The population dynamics was thus updated every 100 minutes depending on
the current state of each cell. Given this timescale, we fixed the death rate pdeath at 0.005
per organism per 100 minutes, meaning that each cell lives on average ∼14 days.

• Protein degradation rate. Proteins half-life in E. coli vary from 2 minutes to 70
hours (Maurizi, 1992), depending on the protein (the proteins with low half-life generally
being mutant or badly folded ones). In Evo2Sim, the protein half-life is fixed by the
protein degradation rate φ. We used a degradation rate φ of 5.10−4 per protein per
minute, corresponding to a protein half-life of ∼24 hours.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés

www.evoevo.eu


V.2. Methods 179

• Protein concentration units. Following known values in model bacteria1, we fixed
the cell volume and the grid patch volume to 4 µm3, corresponding to the estimated
volume of an E. coli cell. In order to properly scale the concentrations, we chose the
protein production rate as a relative reference. Let’s first define the unit Z such that 1
Z = 10−8 M. In Evo2Sim, the protein production rate varies between 0 and 1. Given
the protein degradation rate φ, the maximum protein concentration at equilibrium is
1/5.10−4 = 2000 Z. In E. coli, enzymatic concentrations are estimated to vary between
5 and 500 nM. Hence, to fit these values, we considered that 1 Z was equal to 10−8 M,
the protein concentrations thus varying between 0 and 20000 nmol/L. When a protein
concentration is below than 1 Z, we consider that it has disappeared from the cell (since
a concentration lower than 1 Z corresponds to less than one molecule in the cell).

•Metabolic concentration units. In bacteria, intracellular concentration of metabo-
lites varies between 10−7 and 10−2 M (i.e., 10 to 106 Z). Controlled environments used
to cultivate E. coli usually contain between 1 and 20 g/l of glucose, corresponding to
metabolic concentrations of 5.105 and 107 Z in Evo2Sim (the minimal concentration be-
low which E. coli does not grow being 4∼5 g/l).

• KM and kcat values. KM and kcat are the two parameters of the Michaelis-Menten
equation used in Evo2Sim to model the metabolic network dynamics. These values are
encoded in the genome, are enzyme-specific and evolve freely. According to Bar-even
et al. (2011), in natural enzymes the observed values are usually between 10−7 and 10−1

M for KM (101 to 107 Z), and between 6 and 60000 minute-1 for kcat (the median value
being 600 minute-1). Given the range of variation of both values, they are encoded in
logarithmic scale, resulting in a range of 1 to 7 for KM and from 0.8 to 4.8 for kcat.
However, these values raise an unanticipated difficulty: independent mutations on KM

and kcat could result in a ratio kcat/KM varying between 10−5.2 and 102.8 min-1Z-1, which is
a nonsense both mathematically (introducing artificial stiffness in ODEs) and biologically,
since in natural enzymes, the kcat/KM ratio varies between 6.10−4 and 6 min-1Z-1. Indeed,
a trade-off exists between KM and kcat values (Bar-even et al., 2011). We thus decided
to parameterize the Michaelis-Menten reaction with two evolvable parameters: kcat and
kcat/KM ratio (see chapter III). In consequence, in Evo2Sim, kcat varies between 0.8 and
3.8, with a median of 2.8. Compared to realistic values (0.8 to 4.8), we restrained the
range of kcat to avoid very stiffed and intractable ODEs, but keeping the same median.
The ratio kcat/KM varies between -3.22 and -1.22.

Apart from the realistic parameterization, the dynamics of Evo2Sim model and the
methodology used to solve ODE systems are exactly the ones presented in chapter III.

1For a global reference on the biological values, see http://bionumbers.hms.harvard.edu/.
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Table V.1 – Initial genome structure. In Evo2Sim, genomes are composed of genetic units,
of five different types (promoters, binding sites, transcription factor coding units, enzyme coding
units and non-coding units, see chapter III). The genetic units used for generate the initial genome
in this work are listed in the right order here (there is only one strand with a single reading frame in
Evo2Sim). For all enzymes, log10(kcat) = 2.8 and log10(KM/kcat) = −1.22.

Genetic unit type Number Main parameter values
Op. 1

Promoter 1 β = 0.5
Binding site 1 TFtag = 1
Transcription factor 1 BStag = 1; coEtag = #20
Enzyme (pump) 1 s = #20
Enzyme 1 s = #20; p = #5
Non-coding 50 –

Op. 2
Promoter 1 β = 0.5
Binding site 2 TFtag = 2
Transcription factor 2 BStag = 2; coEtag = #22
Enzyme (pump) 1 s = #22
Enzyme 1 s = #22; p = #3
Non-coding 50 –

V.2.2 Initial handcrafted genome structure

For all the simulations in env. A, we initialized digital organisms with the same hand-
crafted genome. As shown in Figure V.1, this genome contains two functional regions
coding for two independent operons (Op. 1 and Op. 2), each allowing for the produc-
tion of an essential metabolite (respectively the essential metabolites #5 and #3), from
two different external resources (respectively #20 and #22). As described in chapter III,
enzymatic reactions #20 → #5 and #22 → #3 are catabolic and provide energy to the
cell, but pumps for #20 and #22 require energy. Each operon is self-inhibiting, unless its
primary metabolite is present in the environment. To this aim, each operon encodes its
self-repressing transcription factor (inhibited by its co-enzyme, the primary resource), a
pump for the primary resource and an enzyme to convert it into an essential metabolite
(i.e. a prime number) (Fig. V.1a). The corresponding metabolic pathways (metabolic
pathway 1 and metabolic pathway 2) are rather simple: each is dedicated to the
production of an essential metabolite and each is regulated by an operon (Fig. V.1b). In
the case where protein production energy costs are high, this regulation scheme ensures
a minimal energy consumption in the absence of the energy source. Indeed, we param-
eterized the protein production costs such that without such a self-inhibiting regulation
pattern, digital organisms would die. The exact structure of the initial genome are shown
in Table V.1.
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Figure V.1 – Initial handcrafted genome codes for two auto-repressed operons. a. The initial
handcrafted genome contains two independent operons Op. 1 and Op. 2. Each operon (Op. 1
or Op. 2). Both operons contain each a promoter (blue rectangle), an operator site composed of
one binding site (green rectangles), a transcription factor coding unit (purple rectangles), and two
enzyme coding units (red rectangles). TF1 and TF2 respectively encode transcription factors 1 and
2 (purple polygons) that repress their own expression (dashed arrow), except if they are inhibited by
their co-enzyme (respectively metabolites #20 and #22). Thus, each operon is self-repressed in the
absence of the co-enzyme. b. Coding units E1 and Pump1 (respectively E2 and Pump2) encode two
enzymes P1 and E1 (respectively P2 and E2), constituting metabolic pathway 1 and metabolic
pathway 2. Each metabolic pathway produces an essential metabolite (respectively the essential
metabolites #5 and #3, dark circles filled in orange color), from two different external resources
(respectively #20 and #22, dark circles), each being a co-enzyme of their respective transcription
factor (TF1 and TF2). Thus, each operon is self-inhibiting, unless its primary metabolite is present
in the environment.

V.2.3 Evaluation of the handcrafted digital organisms

To evaluate our handcrafted genomes, we run simulations in env. A with null mutation
rates, for 500,000 time-steps. We tested the two conditions cited above, namely with
or without protein production energy costs, with 10 repetitions each. In env. A, two
external metabolites (#20 and #22) are introduced at random in each environmental grid
location, following a Poisson process P(λ), with λ the introduction rate. In all simulations,
λ = 0.01 per location per time-step. The degradation rate Dg is set to 0.0001 per gridspot
per time-step in the first environment, and the diffusion rate D is set to 0.01 per gridstep2
per timestep (a gridstep being the width of a gridspot).

The resulting typical cell’s dynamics with protein production costs is shown in Figure
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V.2. The six panels display the behavior of a single cell through time, since its birth
(one time-step corresponding to 100 minutes, see above). Each time one of the external
resources (#20 or #22) is present in the local environment, the corresponding operon
(Op. 1 or Op. 2) produces the corresponding pump and enzyme (Fig. V.2a). The
cytoplasm then contains the external resource (#20 or #22) that is transformed into
the corresponding essential metabolite (#5 or #3) (Fig. V.2c). Each time an operon
transcription is initialized, and before energy supply from the corresponding imported
resource is sufficient, small drops in energy are visible due to temporarily unfavorable
energy balance in the cell (Fig. V.2e black circles). The cell’s score directly depends
on the concentrations of essential metabolites (Fig. V.2f). At division, the tracked cell
inherits half of protein and metabolite amounts of its mother, as clearly visible on Figure
V.2b. Since cell’s content is released in the environment at death, the concentration of
cell’s final products progressively increases in the environment (Fig. V.2d).

a.	Produced	proteins	 b.	Inherited	proteins	 c.	Inner	cell	metabolites	

d.	External	metabolites	 e.	Energy	carrier	 f.	Cell’s	score	

Co
nc
en

tr
a1

on
	(i
n	
Z	
un

its
	=
	1
0-

8 M
)	

Co
nc
en

tr
a1

on
	(i
n	
Z	
un

its
	=
	1
0-

8 M
)	

Time	since	cell’s	birth	(x100	minutes)	 Time	since	cell’s	birth	(x100	minutes)	 Time	since	cell’s	birth	(x100	minutes)	

Op.	1	 Op.	2	

Cell’s	division	

#20	 #5	 #22	 #3	

#5	 #3	

LiGle	energy	
drops	

Figure V.2 – Dynamics of initial digital organisms in environment A with null mutation
rates. The six panels display the behavior of a single cell through time, since its birth (one time-
step corresponding to 100 minutes, see above). Each time one of the external resources (#20 or
#22) is present in the local environment, the corresponding operon (Op. 1 or Op. 2) produces
the corresponding pump and enzyme (panel a). The cytoplasm then contains the external resource
(#20 or #22) that is transformed into the corresponding essential metabolite (#5 or #3) (panel c).
At the beginning of an operon transcription, and before energy is sufficiently produced by degrading
the resource, small drops in energy are visible (panel e black circles). The cell’s score is directly
dependent on the concentrations of essential metabolites (panel f.). At division, the tracked cell
inherits half of protein and metabolite amounts of its mother, as clearly visible on panel b (red
triangles). Since cellular content is released in the environment at death, the concentration of cellular
final products progressively increases in the environment (panel d).

According to the cell’s dynamics presented here, we were expecting that digital popu-
lations evolving in this conditions (env. A and null mutation rates) would never go to
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extinction. However, most of the simulations did not reach 500,000 time-steps. As shown
on Figure V.3, the extinction time was significantly higher (Wilcoxon-Mann-Whitney test
gave a p-value of 0.017) for populations evolving without protein production costs (with
a mean extinction time of 326,000t, 3 simulations out of 10 reached 500,000t), than pop-
ulations evolving with protein production costs (mean extinction time of 160,000t, none
of the simulations reached 500,000t). Two reasons explain these elevated extinction rate:
(i) In environment A, external resources are provided at random, following a Poisson
process. This could lead to prolonged periods of famine, possibly leading to whole popu-
lation extinction, as it is surely the case for simulations without protein production costs.
(ii) When protein production costs exist, energy drops at the beginning of each protein
production (before the resource is sufficiently degraded to compensate for the associated
energy cost) can lead to population’s extinction, especially when energy level is already
low (for example, after a cell division, or a prolonged famine, see Fig. V.2e). Thus,
our handcrafted digital organisms are not very robust to environmental conditions as is,
when no mutation occur in the genome. Extinctions occur especially early when protein
production energy costs are applied (Fig. V.3).
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Figure V.3 – Extinction time in environment A with null mutation rates. The dynamics of
handcrafted digital organisms were tested in the environment A, with null mutation rates, and in
both situations where protein production costs were imposed or not. The mean extinction time of
populations evolving without protein production costs is 326,000 time-steps, 3 simulations out of 10
reaching the 500,000 time-steps. The extinction time of populations evolving with protein production
costs is significantly lower (160,000t in mean), a Wilcoxon-Mann-Whitney test indicating a p-value
of 0.017 (none of simulations reached 500,000t). The reasons of this elevated extinction rate are due
to the cellular internal dynamics, and to the environmental variability, as explained above.
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V.2.4 Experimental protocol

Based on the global parameter settings and the handcrafted genome presented above,
we used Evo2Sim to run simulations in two different scenarios, with or without protein
production energy costs.

(1) Mutation rates. Evo2Sim includes seven types of mutation rates (point muta-
tion rate, duplications, deletions, inversions, translocations, breakpoints and type
transitions, see chapter III). They were all set to 0.01 (per attribute per replication
for the point mutation rate, per genetic unit per replication for rearrangement and
transition rates, and per attribute per breakpoint for the breakpoint rate)1;

(2) Environment. The environment A described above was used in all simulations;

(3) Protein production costs. In Evo2Sim, it is possible to set independent energy
costs on each of the main activities of a cell (protein production, protein degradation,
enzymatic reactions, pumps). For all the simulations, a positive cost were applied
to enzymatic reactions and pumps (a cost of 1 Z of energy per Z of transformed, or
pumped, metabolite). However, two costs were tested for the protein production:
either an elevated cost (1000 Z per Z of produced proteins), or no cost at all (0 Z).
The protein degradation cost was set to 0 for all the simulations;

(4) Initial genomes. For all the simulations, we initialized digital organisms with the
same handcrafted genome described above;

(5) Simulation time. All the simulations have been run for 500,000 time-steps;

We also tested a second environment (env. B), providing external resources ranging from
#20 to #30. Environmental parameters were the same than for environment A, except
that multiple resources could be provided at the same time. To compensate for the higher
quantity of resource provided in the environment, the degradation rate Dg was higher
(Dg = 0.01). In this environment, initial digital organisms own a handcrafted containing
only one operon (Op. 1, see Fig. V.1), in order to evaluate their capacity to innovate by
creating new metabolic functions from their initial operon.

1We also run simulations with low mutation rates (all mutation rates being set at 0.001). However, the
very low number of fixed mutations in evolved populations prevented any relevant analysis. We discussed
this point in the discussion.
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V.3 Results

V.3.1 Digital populations evolving under positive mutation rates
are more robust to extinctions

First, we evaluated the extinction time of populations evolving under positive mutation
rates, compared to the test case with null mutation rates presented above. As shown on
Figure V.4, more populations were able to reach the 500,000 time-steps with mutations
enabled than without, both without and with protein production energy costs.

Importantly, for technical reasons, we were not able to compute some simulations without
protein production costs to the end. The main reason is the evolution of large metabolic
networks in these simulations, with unseen dynamics in previous works with Evo2Sim.
In some simulations, the time needed to finish the simulations (several months) would not
have allowed us to conclude this chapter in reasonable delays. Hence, only 4 repetitions
out of 10 in environment A without protein production costs were completed. They all
reached 500,000 time-steps. Comparing these 4 simulations with the test case with a
Wilcoxon-Mann-Whitney mean comparison test gives a p-value of 0.041, which is slightly
significant.

For populations evolving with protein production costs, the Wilcoxon-Mann-Whitney
mean comparison test is not significant (p-value of 0.623), even if 2 repetitions out of 10
reached 500,000 time-steps (other simulations went extinct).

Hence, evolution seems to allow digital organisms to fix mutation events that reduce the
risk of extinction, thus making digital organisms more robust to famine episodes. In the
next section, we will describe in more details the modifications undergone by the digital
organisms, depending on the protein production energy costs. To this aim, we will focus
on the simulations that reached the 500,000 time-steps.

V.3.2 Digital populations without protein production cost lost
regulation

When mutation rates are enabled, for populations evolving with protein production costs,
2 repetitions reached 500,000 time-steps. For populations evolving without protein pro-
duction costs, the 4 terminated repetitions reached 500,000 time-steps. The next results
are based on these 6 simulations.

We evaluated the capacity of digital populations to keep their genetic regulation network
through evolution. To this aim, we evaluated the last best individual (i.e., the individual
having the best score, see chapter III) of all simulations that reached the 500,000 time-
steps, to see whether the genetic regulation network was lost or not. If the last best
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Figure V.4 – Extinction time in environment A. The dynamics of handcrafted digital organisms
were tested in the environment A, with either null or positive mutation rates, and in both situations
where protein production costs were imposed or not. a. Extinction time without protein production
costs. 80% of the simulations went extinct with null mutation rates, while 0% went extinct with
positive mutation rates. A Wilcoxon-Mann-Whitney mean comparison test gives a p-value of 0.041,
which is slightly significant. b. Extinction time with protein production costs. 100% of the simulations
went extinct with null mutation rates, and 80% went extinct with positive mutation rates. The
Wilcoxon-Mann-Whitney mean comparison test is not significant.

individual possess a regulation network at the end of the simulation (even if it is different
from the initial one), the organism was considered to have kept regulation. As shown in
Table V.2, digital organisms evolving in environment A without protein production cost
(and with positive mutation rates) lost their regulation network in 7 repetitions out of 10
(Table V.2). The 3 repetitions that kept regulation have non-functional networks. Thus,
all the simulations evolving without protein production costs lost efficient regulation.
On the contrary, all the populations evolving with protein production costs kept genetic
regulation.

Thus, all the digital populations evolved towards a regulation-free metabolic network
without internal energy trade-offs, their proteins being constitutively expressed. However,
when significant internal trade-offs are introduced, by setting an energy cost to proteins
production, all the simulations kept genetic regulation. This result is in agreement with
Weiße et al. (2015).
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Table V.2 – Proportion of simulations that kept a regulation network. At the end of
each simulation, if the last best individual had no regulation at all, the simulation was considered to
have lost regulation.

Scenario Null mutation rates Positive mutation rates
Env. A, no protein production cost 100% 30% (0% functional)
Env. A, protein production cost 100% 100%

V.3.3 Protein production costs constrain the evolution of the
genome structure

The results above suggest that the existence of internal cellular trade-offs (here an energy
cost to the production of proteins) is a condition to at least keep, and possibly evolve
genetic regulation networks. But what are the exact differences between digital organisms
evolving with, or without protein production costs? One of the main advantage of in silico
experimental evolution is the possibility to get insights in the details of the structure of
each organism. Using the same 6 simulations that reached 500,000 time-steps (4 without
protein production costs, 2 with), we evaluated the structure of the last best individual
of each simulation. We studied the structure of the genome, the regulation network, the
metabolic network, as well as the metabolic content of the cytoplasm.

As shown in Table V.3, the genome structure evolved in very different directions depending
on the presence or not of protein production costs. Indeed, populations evolving without
production costs own bigger genomes, with many functional regions of small size, and
a large proportion of non-coding DNA (except for repetition 8). However, populations
evolving with production costs all evolved much smaller genomes, with a single functional
region occupying almost 100% of the genome. The latter population thus own a “virus-like”
genome, with a single operon coding for all cellular functions. This situation is examplified
in Figure V.5, representing the genomes of the last best individuals of repetition 6 without
protein production costs and of the repetition 2 with protein production costs. The single
operon of the last best genome of repetition 2 is clearly visible (Fig. V.5b), while 9
smaller operons are visible all along the last best genome of repetition 6 (Fig. V.5a).
Moreover, the latter genome does not contain any binding site (green triangles) and thus
no regulation at all.

V.3.4 For digital populations evolving with protein production
costs, reducing genome complexity enhances metabolic com-
plexity

The analysis of the genome structure of populations evolving with protein production costs
(Table V.3 and Fig. V.5b) indicates that the initial structure of the genetic regulation
network has been modified in the course of evolution. Indeed, initial digital organisms
owned two operons (as described above), while Table V.3 indicates that evolved genomes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



188
V. Why do cells regulate? The fate of genetic regulation in an

energy-limited cell’s model

Table V.3 – Genome structure of the last best individuals in environment A. For each
last best individual, we extracted the genome size, the proportion of coding sequences, the number of
functional regions, and the mean size of functional regions. 4 genomes are evaluated without protein
production costs, 2 with protein production costs.

Repetition Genome size Proportion of coding sequences Nb. functional regions Functional regions mean size
a. Without protein production costs

4 439 54.9% 58 4.16
5 282 66.7% 37 5.08
6 60 76.7% 9 5.11
8 30 100% 1 30

b. With protein production costs
2 32 90.6% 1 29
3 68 100% 1 68
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Figure V.5 – Two examples of evolved genome structures depending on protein production
costs. The genomes of the last best individuals of two examples are represented. Each functional
region is indicated by a blue arrow. Grey circles: non-coding units (NC). Blue octagons: promoters
(P). Green triangles: binding sites (BS). Purple squares: transcription factor coding units (TF). Red
squares: enzyme coding units (E). a. Last best individual’s genome of the repetition 6 without protein
production costs. ∼24% of the genome is non-coding. 9 functional regions are visible, none of them
having binding sites. b. Last best individual’s genome of the repetition 2 with protein production
costs. ∼91% of the genome is coding for a single operon owning an operator site.

own a single operon. In order to get more insights in this phenomenon, we recovered
the lineage of the last best individual of the 2 repetitions that reached 500,000 time-
steps and evaluated the main indicators of the evolution of the genome, the regulation
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network and the metabolic network. As show on Figure V.6 for repetition 2, the loss of a
functional region leading to a “virus-like” genome (Fig. V.6a red line) seems to allow for
the evolution of more complex biochemical networks. Indeed, just after this important
modification of the genome structure, the number of metabolic nodes and edges increased
significantly all along evolution, as well as the functional genome size and the number of
edges in the regulation network. Hence, the regulation network became smaller, but more
connected, while the metabolic network globally grew. The situation is exactly the same
for repetition 3 (data not shown).
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Figure V.6 – Evolution of genome and network structures in the lineage of an evolved
organism in environment A with protein production costs. The lineage of the last best individual
of the repetition 2 is recovered. a. Evolution of the number of functional regions in the genome.
Red line: at this point, the lineage undergone a genomic deletion and kept only one operon. b.
Evolution of the functional genome size (the genome size minus the non-coding DNA). c. Evolution
of the number of nodes in the genetic regulation network. d. Evolution of the number of edges in
the genetic regulation network. e. Evolution of the number of nodes in the metabolic network. f.
Evolution of the number of edges in the metabolic network.

Figure V.7 shows the regulation network and the metabolic network corresponding to
the last best individual of repetition 2. The structure of the genetic regulation network
(Fig. V.7a) shows that a single transcription factor (purple rectangle at the center of the
network) inhibits all the enzyme coding units. This transcription factor is repressed by
co-enzyme #20. The corresponding metabolic network (Fig. V.7b) is much more complex
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and connected than the initial metabolic network (see methods). 4 essential metabolites
are produced (#3, #17, #19 and #23, red rectangles), from 6 different external resources
(#17, #19, #20, #22, #23 and #26, blue rectangles). The environment A providing
only external resources #20 and #22, other resources are wastes of population metabolic
activity. Grey nodes correspond to non functional reactions. The properties of the last
best individual of repetition 3 are similar (data not shown).
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Figure V.7 – Genetic regulation network and metabolic network of an evolved organism in
environment A with protein production costs. The networks of the last best individual of the repe-
tition 2 are represented. a. Genetic regulation network. Green ellipses: co-enzymes (CoE|<metabolite
tag>). Purple rectangles: transcription factors (TF|<BS tag; CoE tag; free activity; bound activity>,
see chapter III). Red rectangles: enzymes (E|<substrate; product>, see chapter III). Solid arrows:
positive regulation. Dashed arrows: negative regulation. b. Metabolic network. Blue rectangles:
external metabolite. Green rectangles: non-essential metabolites (see chapter III). Red rectangles:
essential metabolites (see chapter III). Arrows: enzymatic reaction.

Finally, looking at the metabolic content of the cytoplasm of the last best individual
and at its local environment (Fig. V.8), we see that many metabolites are produced
and released by digital organisms (at death since no outflowing pumps are coded in the
genome). These cellular products are then available for other organisms, thus leading to
a higher complexity of the metabolic network.

V.3.5 Digital populations evolving in diversified environments
with protein production energy costs also evolved a sin-
gle operon

As presented above, we also evaluated our model with digital populations evolving in a
second environment: environment B (see Methods). In this environment, multiple exter-
nal resources are provided, ranging from metabolite #20 to #30. Thus, this environment

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



V.3. Results 191

3 17 19 20 22 23 26

5e
+0
4

5e
+0
5

5e
+0
6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 23 24 25 26 27 28 29 30 31 32 33 34 36 39 40

1e
-0
1

1e
+0
3

1e
+0
7

a.	Cytoplasm’s	metabolic	content	

b.	Local	environment’s	metabolic	content	

C
o
n
ce
n
tr
a
1
o
n
	(
Z
)	

C
o
n
ce
n
tr
a
1
o
n
	(
Z
)	

Figure V.8 – Cytoplasmic metabolic content of an evolved organism in environment A with
protein production costs. a. List of metabolites present in the cytoplasm of the last best individual
of repetition 2. b. List of metabolites present in the local environment of this individual.

is richer (many metabolites are provided at the same time) and more diversified than
environment A. Initial digital organisms own a handcrafted genome only containing one
operon: the Op. 1 described above, that allows an organism to uptake metabolite #20
and to produce essential metabolite #5.

On the 10 populations that evolved in this environment, only two reached the 500,000
time-steps (repetitions 1 and 2)1. In the same manner than for the previous section, we
evaluated in detail the structure of the last best individual of each repetition. As shown
in Table V.4, final genomes present the same virus-like structure as for environment A
with protein production costs, with only a single operon occupying the whole genome.
However, in environment A, digital organisms had lost one operon (Op. 2), keeping
and complexifying the remaining one (Op. 1). Coherently, in environment B, digital
organisms kept their single operon.

However, as exemplified on Figure V.9 for the last best individual of the repetition 2,
digital organisms evolved the ability to exploit the various resources provided in en-
vironment B, without losing the self-repressed regulation controlled by the co-enzyme
metabolite #20. Contrary to environment A, there is less chance for prolonged famine in
environment B, since multiple resources are possibly provided at the same time at each
environmental location. Thus, there is no particular reason to use the metabolite #20

1The same simulations have been run with null mutation rates: 5 repetitions out of 10 reached 500,000
time-steps. The mean extinction time is 390,500 time-steps with no mutation, and 294,500 time-steps
with positive mutation rates (a Wilcoxon-Mann-Whitney test gives a p-value of 0.152). Thus in the
particular case of the environment B, it seems that digital organisms are more robust with null mutation
rates, when they keep their initial structure. The reason is the abundance of external metabolite #20,
and thus the absence of prolonged famine. Evolving organisms are more exposed to whole population
extinctions, meaning that evolution does not lead to more robust organisms in this case.
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Table V.4 – Genome structure of the last best individuals in environment B. For each
last best individual, we extracted the genome size, the proportion of coding sequences, the number
of functional regions, and the mean size of functional regions. 2 genomes are evaluated.

Repetition Genome size Proportion of coding sequences Nb. functional regions Functional regions mean size
1 11 100% 1 11
2 40 100% 1 40

than any other in the environment, except for contingent historical reasons, independently
from the environmental variability.

V.4 Discussion

Cellular metabolism is often considered to be finely tuned by the genetic regulation net-
work by precisely adjusting enzymatic concentrations in response to environmental re-
source fluctuations. However, as theoretically demonstrated by Weiße et al. (2015), it
seems that the role of genetic regulation is not to adapt the metabolic activity to envi-
ronmental changes, but to balance internal energy and resource trade-offs.

In previous experiments with Evo2Sim (Rocabert et al., 2017), where the cell model
was not energy-limited, no functional regulation network evolved (see chapter IV). In the
attempt to study the maintenance and the evolution of genetic regulation, we parameter-
ized Evo2Sim with realistic parameters values, and introduced strong energy trade-offs,
by imposing energy costs to the main cellular functions (protein production, anabolism
and active pumps). We then let digital organisms with handcrafted initial regulation and
metabolic networks evolve in various conditions.

Although many simulations led to population extinctions, our preliminary results suggest
that genetic regulation indeed evolved not to cope with environmental changes, but to
balance internal energy trade-offs, and avoid premature cell death due to the depletion
of energy carrier molecules (as suggested by Weiße et al. 2015). First, we showed that
populations evolving without protein production costs lost genetic regulation, with no
negative effect on the evolution of their metabolic network. On the contrary, popula-
tions that survive under strong protein production costs all kept regulation (Table V.2).
Moreover, our results showed that the genome structure of digital organisms evolving in
Evo2Sim is strongly impacted by the existence of protein production costs: this includes
the non-coding elements, while there is no cost to DNA replication in this model. Indeed,
while digital populations without protein production costs evolved larger genomes, with a
significant amount of non-coding DNA and many functional regions each coding for a few
proteins, populations with protein production costs evolved compacted genomes, with no
non-coding DNA and having a single functional region coding for a large operon. This
self-repressed operon codes all the functions of the cell (regulation and metabolism), its
expression being activated by single co-enzyme.
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Figure V.9 – Structure of an evolved digital organism in environment B, with protein pro-
duction costs. The structure of the last best individual of the repetition 2 is represented. a. Genome
structure. The single functional region is indicated by a blue arrow. Blue octagon: promoter (P).
Green triangles: binding sites (BS). Purple squares: transcription factor coding units (TF). Red
squares: enzyme coding units (E). b. Cytoplasmic metabolic content. Concentrations are in arbitrary
concentration units (ACU, see chapter III). c. Genetic regulation network. Green ellipses: co-enzymes
(CoE|<metabolite tag>). Purple rectangles: transcription factors (TF|<BS tag; CoE tag; free activ-
ity; bound activity>, see chapter III). Red rectangles: enzymes (E|<substrate; product>, see chapter
III). Solid arrows: positive regulation. Dashed arrows: negative regulation. d. Metabolic network.
Blue rectangles: external metabolite. Green rectangles: non-essential metabolites (see chapter III).
Red rectangles: essential metabolites (see chapter III). Arrows: enzymatic reaction.

Digital populations evolving with protein production costs in diversified environments,
providing more resources, also evolved this “virus-like” structure, with a single self-repressed
operon, also activated by a single co-enzyme. This co-enzyme has no clear relation with
environmental dynamics, but is the result of historical constraints and purely internal
trade-offs, unlinked to environmental variability.

As a whole, our results suggest that in Evo2Sim, digital populations evolving with protein
production energy costs undergo important constraints on their genome structure, while
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there is no cost to DNA replication. Indeed, such a “virus-like” structure could be a good
way to limit energy consumption due to protein production, by expressing all cellular
functions at a single time. This protein expression pattern could limit the number of
energy drops. However, as shown on V.9, this specific genome structure does not seem
to limit the evolution of complexity, since digital organisms evolved in the diversified
environment still exploit many resources.

As a next step, these preliminary results could be improved, at least in two directions:

(i) First, a parametric exploration should be performed on energy cost parameters and
mutation rates. Indeed, in these simulations, we set the protein production costs
such that digital organisms losing regulation under elevated protein production costs
systematically die. Moreover, our energy model could be more realistic. In the cur-
rent version of Evo2Sim, energy carrier molecules are not included in ordinary
differential equations, and have no effect on reaction speed. It could be interest-
ing to couple energy more intimately to the artificial chemistry of Evo2Sim, as it
may provide more realistic cell’s dynamics. In this work, we also run simulations
with low mutation rates, but the very low number of mutation events fixed in those
simulations prevented any relevant analysis. However, previous modeling and math-
ematical works suggested that mutation rates have a strong effect on the genome
structure: populations evolving with high mutation rates own small genomes, with
few non-coding DNA and large operons. On the contrary, populations evolving with
low mutation rates own large genomes, with many non-coding DNA and many small
operons (Knibbe et al., 2007a; Beslon et al., 2010b; Fischer et al., 2014). The relation
between genome size and mutation rates follows a power law, linked to a long-term
adjustment between the robustness and the evolvability of digital organisms. Thus,
it could be interesting to study this effect in Evo2Sim, when high energy costs are
applied. For example, by using ævol software, Knibbe et al. (2007b) showed that a
coupling exists between the amount of non-coding DNA and the deleteriousness of
gene mutations. The more deleterious the gene mutations, the shorter the intergenic
sequences (and thus the genome size). In this work, gene mutations are probably
much more deleterious when protein production costs are applied, thus leading to
smaller genomes with few non-coding DNA;

(ii) Second, a clear step is waiting to be crossed between these results and those from
Rocabert et al. (2017) (see chapter IV). Indeed, the long-term evolution experiment
(LTEE, Elena and Lenski 2003) provided insights in the evolution of stable cross-
feeding (Rozen et al., 2005), but also in the evolution of genetic regulation and
metabolic networks. In the LTEE, mutations that led to bacterial diversification in
E. coli are often linked to the regulation of metabolic pathways (see e.g., Großkopf
et al. 2016). Thus, replaying the experimental protocol from Rocabert et al. (2017)
with more realistic parameters and energy costs could provide important insights in
the understanding of bacterial diversification.

Nonetheless, our preliminary results are in agreement with the work of Weiße et al. (2015).
Moreover, we were able to identify evolutive relationship between selective pressures at
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the level of the metabolism, and the structure of the genome. Even if the rationals of
this relationship are still to be unraveled, this is a beautiful demonstration of the ability
of multi-scale models to generate counter-intuitive outcomes, when multiple biological
structures interact and evolve together.
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Conclusion and outlook

The beauty of Darwinian evolution is relying on the remarkable simplicity of its core
principles—variation and selection. With these two basic ingredients and the help of
billions of years of evolution, extraordinarily complex and diversified living systems popu-
lated the earth. This apparent contradiction between the simplicity of Darwinian princi-
ples and the complexity of observed organisms is due to the powerful emergent properties
of evolution, bearing no comparison with other scientific theories.

As discussed in introduction, long-term evolution, indirect selection and multi-level se-
lection are partly responsible, as far as we know, for these counter-intuitive outcomes of
evolution on earth. Indeed, many complex properties of living organisms emerged from
their capacity to accumulate information from past and variable environments (Hogeweg,
2011), through mutations and selection, leading to complex properties such as evolvability
or robustness. The belief that long-term evolution leads to evolution of evolution is now
largely spreading in theoretical evolutionary biology, as demonstrated by the attempt to
extend the modern synthesis (Watson and Szathmáry, 2016), and the idea that evolution
“ learnt how to learn” (Mattick, 2009).

Scientists – and thus scientific theories – are part of a society, with its culture, its econ-
omy and its beliefs. From the animal machine theory of R. Descartes to the digesting
duck of J. de Vaucanson, influenced by scientific and technical progress due to Newtonian
physics, many examples show how biology has been influenced by the historical context.
This is not a coincidence if the dogmatic view that living organisms own a genetic pro-
gram encoded in the DNA molecule emerged as computer science was largely spreading
in industrialized countries. In consequence, we cannot ignore that current advances in
theoretical evolutionary biology have obvious links with the current craze for machine
learning theories. Is there a nascent dogmatism? Nonetheless, as stated by J. Monod,
any scientific theory carries its part of unavoidable dogmatism. If we assume that sci-
entific theories are tools to better understand the world, being aware of the limits of a
theory never prevented its explanation power and its utility. After all, Newtonian theory
is still used in many industrial applications.

In this thesis, we used a complementary modeling approach in the hope of deciphering
the emerging properties of evolution leading to evolution of evolution. First, we studied
the evolution of phenotypic noise with a classical, mathematical approach. Such a model,
with few parameters and the possibility to perform analytical resolutions, allowed us to
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rigorously and completely study some of its properties. The domain and the dynamics
are well-defined: the outcomes of the model could be sometimes counter-intuitive (as it
was the case with σFGM), but they were always completely described by equations. For
example, the conditions in which phenotypic noise would increase in directional selection,
when the population is far from the fitness optimum, and then be minimized in stabilizing
selection, when the population reaches the fitness optimum, are well-defined: the fitness
landscape should be convex, at least locally, and noise correlations between characters
should be evolvable. However, the simplicity of this model comes with an inevitable lack
of information on what would be the mechanisms at work in real organisms. Regarding
evolution, and even more evolution of evolution, this calls for more complex multi-scale
models, in order to better understand the evolution of phenotypic noise when the genome
structure or the genetic regulation network evolve for example.

In the second part of this manuscript, we used a multi-scale model of in silico evolution to
decipher some aspects of indirect and multi-level selection on bacterial-like digital organ-
isms. Contrary to simpler mathematical models, we have seen that this kind of models
almost always provide results that are complex and difficult to apprehend. Moreover,
the approach is radically different from the previous one: the number of parameters, the
amount of data produced and the complexity of the behavior impose an experimental
approach, like for real systems (Peck, 2004). In evolutionary biology, we have the chance
to be able to compare numerical simulations with real evolution experiments, thanks to
the in silico experimental evolution approach (Hindré et al., 2012), which allowed us
to compare our results with the long-term evolution experiment with Escherichia coli
(Rozen et al., 2005; Rocabert et al., 2017). However, the observations made in complex
simulations often need to be evaluated in a more robust and comprehensible way, and to
be generalized. As such, complex models in turn call back for simpler models that can
be perfectly defined ... In other words, analytical models. In the case of the evolution
of stable cross-feeding in bacterial populations, this work has partially be done (see e.g.
Rozen et al. 2009, or Ribeck and Lenski 2015). But other examples demonstrated the
utility to transfer hypotheses raised by in silico experimental evolution models into sim-
pler mathematical models, as it is the case with ævol software, for at least two results:
the link between the genome size and the mutation rates (Knibbe et al., 2007a; Fischer
et al., 2014), and the evolution of cooperation (Frénoy et al., 2013, 2017).

Somehow, complex and multi-scale numerical models provide an intuition of a mechanism,
an hypothesis or a theory, and mathematical models provide a robust and well-defined
solution to this intuition. Thus, studying emergent properties of evolution consists in
alternating between both approaches. But in all cases, the results obtained with these
models call for experimental validation. Regarding the evolution of phenotypic noise, it
would be very interesting to initiate, or exploit, experimental evolution protocols where
micro-organisms are placed in directional selection, and where single-cell data are acquired
at the level of the phenotype (for example, by exploiting barcoding technologies, see
Levy et al. 2015; Venkataram et al. 2016, or by evolving micro-organisms under artificial
directional selection, see Ito et al. 2009). Regarding the results obtained with Evo2Sim,
a possibility would be to replay the experimental protocol of Rocabert et al. (2017) with
an energy-limited cell model, and to compare the results with the precise mutational data
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from the long-term evolution experiment, including mutations in the regulation network
(see e.g. Großkopf et al. 2016).

As a whole, we think that the results obtained along this thesis have a great potential for
further motivating research work and experiments. The paths to take have been cleared;
we hope to follow them and pursue this exciting scientific adventure.
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Chapter 1

Introduction

1.1 Introducing Evo2Sim

Evo2Sim is a multi-scale model of in silico experimental evolution, the virtual pendant
of experimental evolution in wet laboratory (see Fig 1.1). The software is equiped with
the whole tool case of experimental setups, competition assays, phylogenetic analysis,
and, most importantly, allowing for evolvable ecological interactions. Digital organisms
with an evolvable genome structure, encoding evolvable genetic regulation and metabolic
networks are evolved for tens of thousands of generations in environments mimicking the
dynamics of real controlled environments, including chemostat or batch culture.

Evo2Sim was developed under EvoEvo (http://www.evoevo.eu/), a FP7-ICT project
funded by the European Commission (FP7-ICT-610427). The source code is written in
C++.

You can find more details on software description and development on Github page
charlesrocabert/Evo2Sim. A website fully dedicated to Evo2Sim is coming soon.

1.2 License
This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program. If not, see http://www.gnu.org/licenses/.

1.3 Community
Evo2Sim was developed by Charles Rocabert, Carole Knibbe and Guillaume Beslon,
under the EvoEvo project. The list of contributors is displayed in text-file AUTHORS of
Evo2Sim package. You shall find more details on http://www.evoevo.eu/community/.
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1.4 Download
Evo2Sim last releases are available on Github page charlesrocabert/Evo2Sim.

1.5 Contact
For any question about the software, do not hesitate to contact us at
http://www.evoevo.eu/contact-us/.

6

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



E1 

NC 

NC 

TF1 

TF1 

TF2 

E2 

E3 

E4 
E5 

E1 

Circular single-strand 
genome 

Genetic regulatory 
network 

Metabolic  
network 

(a.1)


(a.2)

(a.5)


(a.4)
 (a.6)


(a.3)


a. Genotype-to-phenotype mapping


spot 

spot spot 

b. Population-environment level


Roulette wheel 
selection 

spot 

spot 

Daughters share 
cytoplasm 

spot 

spot 

At death, cytoplasm 
content is released 

Diffusion 
Population 

Environment 
Metabolite 

influx 
Degradation 

and/or 
Rinse 

Diffusion on the grid 

(b.2)
 (b.1)


Non essential metabolite 

Essential metabolite 

C
on

ce
nt

ra
tio

n 

Internal metabolic 
concentrations (   ) 

Score function: 

Toxicity threshold (T) 

Toxicity region 

T


Score 

s = f (X,T )

X

Figure 1.1: Global picture of Evo2Sim. a. Description of the genotype-to-phenotype
mapping. Organisms own a coarse-grained genome made of units. This genome is a circular
single-strand sequence, with a unique reading frame. Non coding (NC) units are not func-
tional (a.1). The arrangement of the units on the sequence defines functional regions, where
a promoter (P, blue cross) controls the expression of enzyme coding units (E, red circles) or
transcription factor coding units (TF, purple squares), thereby allowing for operons (here, one
E and one TF). When coding units are expressed (a.2), they contribute to the genetic regu-
latory network (for TFs) and the metabolic network (for Es). Depending on their attributes,
transcription factors bind on binding sites. (a.3) If they bind on the enhancer sequence (binding
sites flanking the promoter upstream), the promoter activity is up-regulated. If they bind on
the operator sequence (binding sites flanking the promoter downstream), the promoter activity
is down-regulated. (a.4) Metabolites can bind on a transcription factor as co-enzymes, and
activate or inhibit it, depending on transcription factor attributes. Enzymes perform metabolic
reactions in the cytoplasm (a.5), or pump metabolites in or out (a.6). The score of an organism
is computed from its “essential metabolites” (usually the score is the sum of essential metabo-
lite concentrations). Lethal toxicity thresholds are applied to each metabolic concentration and
forbid organisms to accumulate resources. b. Description of the population and environ-
ment levels. Organisms are placed on a 2D toroidal grid, and compete for resources and space.
When an organism dies, it leaves its grid cell empty and organisms in the Moore neighborhood
(if any) compete to divide in available space. The competition is based on scores, a minimal
threshold being applied on scores to forbid worst organisms to divide. At division, daughters
share cytoplasm content (enzymes and metabolites). At death, metabolites from the cytoplasm
are released in the local environment, and diffuse on the grid (b.1). On the largest scale, the
population evolves on the environment by up-taking, transforming and releasing metabolites.
Metabolites then diffuse and are degraded. This strong interaction between the population
and the environment allows for the evolution of complex ecological situations, depending on
environmental properties (b.2).



Chapter 2

Installation instructions

Download the latest release of Evo2Sim on Github page charlesrocabert/Evo2Sim and
save it to a directory of your choice. Open a terminal and use the cd command to navigate
to this directory. Then follow the steps below to compile and build the executables.

2.1 Supported platforms
Evo2Sim software has been successfully tested on Ubuntu 12.04 LTS, Ubuntu 14.04 LTS,
OSX 10.9.5 (Maverick) and OSX 10.10.1 (Yosemite).

2.1.1 Required dependencies

• A C++ compiler (GCC, LLVM, ...)

• CMake (command line version)

• zlib

• GSL

• CBLAS

• TBB

• R (packages ape and RColorBrewer are needed)

2.1.2 Optional dependencies (for graphical outputs)

• X11 (or XQuartz on latest OSX version)

• SFML 2

• matplotlib (this python library is needed for the script track_cell.py (see below)
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2.1.3 HTML viewer dependencies

• Javascript must be activated in your favorite internet browser

Note, however, that Evo2Sim can be compiled without graphical outputs, and hence
no need for X and SFML libraries (see compilation instructions below for more infor-
mation). This option is useful if you want to run Evo2Sim on a computer cluster, for
example.

2.2 Software compilation

2.2.1 User mode

To compile Evo2Sim, run the following instructions on the command line:

$ cd cmake/

and

$ bash make.sh

To gain performances during large experimental protocols, or on computer cluster,
you should compile the software without graphical outputs:

$ bash make_no_graphics.sh

2.2.2 Debug mode

To compile the software in DEBUG mode, use make_debug.sh script instead of make.sh:

$ bash make_debug.sh

When Evo2Sim is compiled in DEBUG mode, a lot of tests are computed on the fly during
a simulation (e.g. integrity tests on phylogenetic trees, or on the ODE solver . . . ). For
this reason, this mode should only be used for test or development phases. Moreover,
unitary and integrated tests must be ran in DEBUG mode (see below).

2.2.3 Executable files emplacement

Binary executable files are in build/bin folder.
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Chapter 3

Typical usage

Evo2Sim includes three main executables (evo2sim_create, evo2sim_bootstrap and
evo2sim_run), and a set of executables dedicated to post-treatments, data recovery or
tests.

Everything in Evo2Sim relies on an ad-hoc file organization where all the data
for a simulation is stored: populations in the population directory, environments in
environment, phylogenetic and lineage trees in tree and so on. It is not recommended
to manually modify these files since this may cause some inconsistency leading to unde-
fined behavior. Besides, most of these files are compressed.

Open a terminal and use the cd command to navigate to Evo2Sim directory. A
typical parameters file is provided in Evo2Sim package, in folder example (an exhaustive
description of the parameters is available in chapter “Parameters description”). Navigate
to this folder using the cd command. Then follow the steps below for a first usage of the
software.

3.1 Creating a simulation
Create a fresh simulation from the parameters file (by default parameters.txt):

$ ../build/bin/evo2sim_create

Several folders have been created. They mainly contain simulation backups (population,
environment, trees, parameters, ...). Additional files and folders have also been created:

• version.txt: this file indicates the version of the software. This information is
useful to ensure that the code version is compatible with the backup files (e.g., in
case of post-treatments).

• track_cell.py: when executed, this python script displays on the fly the internal
protein and metabolic concentrations of the cell at position 0 ⇥ 0 on the grid.
This script is useful to get an idea of internal cell’s dynamics (metabolic fluxes,
regulation, . . . ).

• viewer folder: the viewer is central to the usage of Evo2Sim (see chapter “Simu-
lation viewer”). To access the viewer, open the html page viewer/viewer.html in
an internet browser.

10

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI106/these.pdf 
© [C. Rocabert], [2017], INSA Lyon, tous droits réservés



3.2 Generating viable initial conditions with a boot-
strap

Alternatively to the evo2sim_create executable, use a bootstrap to find a simulation
with good initial properties from the parameters file:

$ ../build/bin/evo2sim_bootstrap

A fresh simulation with an updated parameters file will be automatically created if a
suitable seed is found.

3.3 Running a simulation
In Evo2Sim, running a simulation necessitates to load it from backup files. Here, we will
run a simulation from freshly created backups (see above):

$ ../build/bin/evo2sim_run -b 0 -t 10000 -g

with -b the date of the backup, here 0 (fresh simulation), -t the simulation time, here
10,000 time-steps. Option -g activates the graphical output (not works if the software has
been compiled with the no-graphics option). At any moment during the simulation, you
can take a closer look at the evolution of the system by opening viewer/viewer.html
in an internet browser. You can track internal cell’s dynamics by executing the script
track_cell.py.

Other main executables are described below in section “Main executables descrip-
tion”. You can also obtain help by running the executable with the -h option (e.g.
evo2sim_create -h)
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Chapter 4

Simulation viewer

Evo2Sim comes with an HTML viewer displaying a very complete set of live statistics.
Each new simulation owns a dedicated viewer, which is frequently actualized on the fly
(by default, every 500 simulation time-steps). This viewer has been developed using
Bootstrap, DyGraph, CytoscapeJS, ChartJS and JQuery.

To access the viewer, simply open viewer/viewer.html in an internet browser (Javascript
must be enabled). The different tabs are described below.

4.1 Population
This page displays the evolution of main population statistics (population size, mean
genome size, mean score, ...), as well as the evolution of the trophic network.

4.2 Best lineage
This page displays the evolution of last best individual statistics. These informations are
the most representative of evolutionary dynamics, since they contains all the mutations
fixed since the beginning of the simulation.

4.3 Best individual
This page displays some informations about the last best individual at the moment of
the visualization (genome state, genetic regulation network, metabolic network, internal
metabolic state, ...).

4.4 Environment
This page displays the evolution of main environment statistics, as well as its current
state.
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4.5 Phylogeny
This page displays various rendering of the current phylogenetic tree, as well as some
evolution statistics (number of nodes, common ancestor age, ...).

4.6 Parameters
This page displays the parameters file used to create the simulation, as well as a short
description of parameters usage.
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Appendix A

Main executables description

A.1 evo2sim_create executable
Create a fresh simulation from a parameters file.

Usage:

$ evo2sim_create -h or --help

or

$ evo2sim_create [options]

Options are:

-h, --help: print this help, then exit (optional)

-v, --version: print the current version, then exit (optional)

-f, --file: specify the parameters file (default: parameters.txt)

-rs, --random-seed: the prng seed is drawn at random (optional)

Be aware that creating a simulation in a folder completely erases previous simulation.

A.2 evo2sim_bootstrap executable
Run a bootstrap to find viable initial conditions.

Usage:

$ evo2sim_bootstrap -h or --help

or

$ evo2sim_bootstrap [options]
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Options are:

-h, --help: print this help, then exit (optional)

-v, --version: print the current version, then exit (optional)

-f, --file: specify the parameters file (default: parameters.txt)

-min, --minimum-time: specify the minimum time the new population must survive
(default: 100)

-pop, --minimum-pop-size: specify the minimum size the new population must main-
tain (default: 500)

-t, –trials: specify the number of trials (default: 1000)

-g, --graphics: activate graphic display (optional)

A simulation is automatically created if good conditions are found. The parameters file
is also edited to include the corresponding prng seed value. Be aware that creating a
simulation in a folder completely erases previous simulation.

A.3 evo2sim_run executable
Run a simulation from backup files.

Usage:

$ evo2sim_run -h or --help

or

$ evo2sim_run [options]

Options are:

-h, --help: print this help, then exit (optional)

-v, --version: print the current version, then exit (optional)

-b, --backup-time: set the date of the backup to load (default: 0)

-t, --simulation-time: set the duration of the simulation (default: 10000)

-g, --graphics: activate graphic display (optional)

Statistic files content is automatically managed when a simulation is reloaded from backup
to avoid data loss.
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A.4 evo2sim_generate_figures executable
Extract statistics and generate viewer figures from backup files.

Usage:

$ evo2sim_generate_figures -h or --help

or

$ evo2sim_generate_figures [options]

Options are:

-h, --help: print this help, then exit (optional)

-v, --version: print the current version, then exit (optional)

-b, --backup-time: set the date of the backup to load (mandatory)

A.5 evo2sim_recover_parameters executable
Recover the parameters file from backup files.

Usage:

$ evo2sim_recover_parameters -h or --help

or

$ evo2sim_recover_parameters [options]

Options are:

-h, --help: print this help, then exit (optional)

-v, --version: print the current version, then exit (optional)

-f, --file: specify the name of the parameters file to save (mandatory)

A.6 evo2sim_unitary_tests executable
Run unitary tests.

Usage:

$ evo2sim_unitary_tests -h or --help

or

$ evo2sim_unitary_tests [options]
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Options are:

-h, --help: print this help, then exit (optional)

-v, --version: print the current version, then exit (optional)

-f, --file: specify the parameters file (default: parameters.txt)

To use the unitary tests, the software must be compiled in DEBUG mode (see instal-
lation instructions below).

A.7 evo2sim_integrated_tests executable
Run integrated tests.

Usage:

$ evo2sim_integrated_tests -h or --help

or

$ evo2sim_integrated_tests [options]

Options are:

-h, --help: print this help, then exit (optional)

-v, --version: print the current version, then exit (optional)

-f, --file: specify the parameters file (default: parameters.txt)

-tests, --number-of-tests: specify the number of tests with different seeds (default:
1)

-steps, --number-of-steps: specify the number of steps by test (default: 1)

-rs, --random-seed: the prng seed is drawn at random for each test (optional)

-rp, --random-parameters: the parameters are drawn at random for each test (op-
tional)

To use the unitary tests, the software must be compiled in DEBUG mode (see instal-
lation instructions below).

A.8 Other executables
For all the other executables, you can obtain help by running the executable with the -h
option (e.g. evo2sim_create -h)
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Appendix B

Parameters description

All the parameters of the parameters file are described in details below. Each parameters
receive at least on value. There is three types of values:

• integer: integer number

• float: floating point number

• string: characters string

For each parameter, the type is possibly bounded. In this case, boundaries are indicated.

B.1 Pseudorandom numbers generator
SEED <seed> (integer > 0)

Simply set the seed of the pseudorandom numbers generator (prng). The seed value is
important since it allows to exactly replay a simulation if needed.

B.2 Parallel computing
PARALLEL_COMPUTING <choice> (YES/NO)

This parameter allows to activate, or deactivate, parallel computing at will. Parallel
computing is managed by the external library TBB.

B.3 Simulation schemes

B.3.1 Energy costs scheme

ENERGY_COSTS_SCHEME <choice> (YES/NO)

Choose the energy scheme. By default, biochemical reactions are energy free in Evo2Sim.
When energy costs are activated, inner cell’s chemical reactions produce or consume
energy (an abstract view of energy carriers, like ATP). Transcription, enzymatic reactions
and pumps else produce or cost energy to the cell, which must maintain its energy level
to survive. Specific parameters are used to precisely set energy costs (see below).
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B.3.2 Membrane permeability scheme

MEMBRANE_PERMEABILITY_SCHEME <choice> (YES/NO)

Choose membrane permeability scheme. If membrane permeability is activated, metabo-
lites diffuse through the cell’s membrane at a specific rate (see MEMBRANE_PERMEABILITY
parameter below).

B.3.3 Metabolic inheritance scheme

METABOLIC_INHERITANCE_SCHEME <choice> (YES/NO)

Choose metabolic inheritance scheme. If this parameter is activated, the two daughter
cells share the metabolic content of their parent. Each daughter cell inherits half of
metabolic concentrations.

B.3.4 Enzymatic inheritance scheme

ENZYMATIC_INHERITANCE_SCHEME <choice> (YES/NO)

Choose enzymatic inheritance scheme. If this parameter is activated, the two daughter
cells share the enzymatic content of their parent. Each daughter cell inherits half of
enzymatic concentrations.

B.3.5 Co-enzymes scheme

CO_ENZYME_ACTIVITY <choice> (YES/NO)

Choose co-enzyme scheme. If this parameter is activated, some metabolites act as co-
enzymes. Each transcription-factor owns a site where a specific metabolite can bind,
activating or inhibiting the transcription factor depending on its properties. Activating
this parameter increases the complexity of the genetic regulation network, and more
importantly, allows cells to evolve environmental sensing.

B.3.6 Score scheme

SCORE_SCHEME <choice> (SUM/SUM_MINUS_DEV/COMBINATORIAL)

Choose the score scheme. The score of a cell is computed from its internal metabolic
concentrations:

• SUM scheme: the score is simply the sum of essential metabolite concentrations;

• SUM_MINUS_DEV scheme: the score is the sum of essential metabolite concen-
trations, minus the standard deviation of the concentrations. This score adds an
homeostatic constraint on cells.
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• COMBINATORIAL scheme: the score is computed depending on relative essential
metabolite concentrations. Basically, essential metabolites are considered to form
complex molecules similar to RNA polymerases. Bigger is the polymerase, higher is
its contribution to the score. Then, the bigger polymerase including all the essential
metabolites is defined by the lowest concentration. Since the lowest metabolite
is exhausted for this polymerase, the next one is the contribution of remaining
metabolites, and so forth.

B.3.7 Selection threshold

SELECTION_THRESHOLD <threshold> (float 2 [0, 1])

Define a score threshold, above which cell’s division is forbidden. When neighboring cells
compete for a gap in the environment, one cell is elected at random by a roulette wheel
draw, based on relative scores. However, a minimum threshold is mandatory to avoid
individuals owning a very low score to divide, and drive the population in an artificial
dead-end (where everybody is very bad, but nobody dies).

B.4 Space

B.4.1 Grid width

WIDTH <width> (integer > 0)

Simply define the width of the environmental grid.

B.4.2 Grid height

HEIGHT <height> (integer > 0)

Simply define the height of the environmental grid.

B.5 Output

B.5.1 Simulation backup step

SIMULATION_BACKUP_STEP <step> (integer � 0)

Define the frequency at which backups of the simulation are saved. The resolution is in
simulation time-steps. It is possible to exactly replay a simulation from backup files. Be
aware that backup files size is large, the backup frequency must be reasonable (e.g., 1,000
time-steps).
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B.5.2 Figures generation step

FIGURES_GENERATION_STEP <step> (integer � 0)

Define the frequency at which figures are generated for the html viewer. Some scripts
used to generate figures may take more time to execute for very long simulations, the
backup frequency must be reasonable (e.g., 1,000 time-steps).

B.6 Genome

B.6.1 Load the genome from file

LOAD_GENOME_FROM_FILE <choice> (YES/NO)

Choose to generate genomes at random (NO, in this case, random generation depends
on parameters below), or load a handcrafted genome from a file (YES). In case the
handcrafted genome is loaded, it must be encoded in a file named initial_genome.txt.
The structure of this file is specific and must respect the following scheme:

1. To encode non-coding units (NC), insert the following line: NC <number of units>.
The specified number of random NC units will be inserted (<number of units>
> 0);

2. To encode a promoter unit (P), insert the following line: P <basal expression
level>. A promoter unit with a basal expression level � = <basal expression level>
will be inserted (� 2 [0, 1]);

3. To encode a binding site unit (BS), insert the following line: BS <TF tag>. A
binding site unit owning the specified transcription factor tag value will be inserted
(<TF tag> 2 Z);

4. To encode a transcription factor coding unit (TF), insert the following line: TF <BS
tag> <CoE tag> <free activity> <bound activity> <binding window>. A tran-
scription factor coding unit with specified attributes will be inserted (<BS tag>
2 Z, <CoE tag> 2 N⇤, <free activity> 2 {true, false}, <bound activity>
2 {true, false}, <binding window> � 0);

5. To encode an enzyme coding unit (E), insert the following line: E <substrate>
<product> <kcat> <KM>. An enzyme coding unit with specified attributes will be
inserted (<substrate> > 0, <product> > 0, <kcat> and <KM> 2 specified bound-
aries).

B.6.2 Metabolite tags initial range

METABOLITE_TAG_INITIAL_RANGE <min> <max> (integer > 0; min 
max)

Define the initial distribution of metabolite tags encoded in the initial random genome
(i.e., in transcription factor and enzyme units). min and max values define the boundaries
of a uniform law, used to draw the metabolite tags.
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B.6.3 Binding site tags initial range

BINDING_SITE_TAG_INITIAL_RANGE <min> <max> (float > 0; min 
max)

Define the initial distribution of binding site tags encoded in the initial random genome
(i.e., in transcription factor units). min and max values define the boundaries of a uniform
law, used to draw the binding site tags.

B.6.4 Co-enzyme tags initial range

CO_ENZYME_TAG_INITIAL_RANGE <min> <max> (float > 0; min 
max)

Define the initial distribution of co-enzyme tags encoded in the initial random genome
(i.e., in transcription factor units). min and max values define the boundaries of a uniform
law, used to draw the co-enzyme tags.

B.6.5 Transcription factor tags initial range

TRANSCRIPTION_FACTOR_TAG_INITIAL_RANGE <min> <max>
(float > 0; min  max)

Define the initial distribution of transcription factor tags encoded in the initial random
genome (i.e., in binding site units). min and max values define the boundaries of a uniform
law, used to draw the transcription factor tags.

B.6.6 Transcription factors binding window

TRANSCRIPTION_FACTOR_BINDING_WINDOW <window> (integer �
0)

Define the “binding window” of a transcription factor on a binding site. If transcription
factors and binding site tags are similar enough, the binding is allowed. More precisely
if tagTF 2 [tagTF � window , tagTF + window], the binding is possible.

B.6.7 Initial number of non-coding units

INITIAL_NUMBER_OF_NON_CODING_UNITS <number> (integer � 0)

Define the number of random non-coding units in the initial random genome.

B.6.8 Initial number of enzyme coding units

INITIAL_NUMBER_OF_ENZYME_UNITS <number> (integer � 0)

Define the number of random enzyme units in the initial random genome.
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B.6.9 Initial number of transcription factor coding units

INITIAL_NUMBER_OF_TRANSCRIPTION_FACTOR_UNITS
<number> (integer � 0)

Define the number of random transcription factor units in the initial random genome.

B.6.10 Initial number of binding site units

INITIAL_NUMBER_OF_BINDING_SITE_UNITS <number> (integer � 0)

Define the number of random binding site units in the initial random genome.

B.6.11 Initial number of promoter units

INITIAL_NUMBER_OF_PROMOTER_UNITS <number> (integer � 0)

Define the number of random promoter units in the initial random genome.

B.6.12 Point mutation rate

POINT_MUTATION_RATE <rate> (float 2 [0, 1])

Define the point mutation rate (in attribute-1.replication-1).

B.6.13 Duplication rate

DUPLICATION_RATE <rate> (float 2 [0, 1])

Define the duplication rate (in genomic-unit-1.replication-1).

B.6.14 Deletion rate

DELETION_RATE <rate> (float 2 [0, 1])

Define the deletion rate (in genomic-unit-1.replication-1).

B.6.15 Translocation rate

TRANSLOCATION_RATE <rate> (float 2 [0, 1])

Define the translocation rate (in genomic-unit-1.replication-1).

B.6.16 Inversion rate

INVERSION_RATE <rate> (float 2 [0, 1])

Define the inversion rate (in genomic-unit-1.replication-1).
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B.6.17 Transition rate

TRANSITION_RATE <rate> (float 2 [0, 1])

Define the transition rate (in genomic-unit-1.replication-1).

B.6.18 Breakpoint rate

BREAKPOINT_RATE <rate> (float 2 [0, 1])

Define the breakpoint rate (in attribute-1.breakpoint-1).

B.6.19 Substrate tag mutation size

SUBSTRATE_TAG_MUTATION_SIZE <size> (integer � 0)

Define the size of the uniform distribution used to mutate substrate tags (in enzyme
units). The mutation is defined as tag + U(-size, +size).

B.6.20 Product tag mutation size

PRODUCT_TAG_MUTATION_SIZE <size> (integer � 0)

Define the size of the uniform distribution used to mutate product tags (in enzyme units).
The mutation is defined as tag + U(-size, +size).

B.6.21 kcat mutation size

KCAT_MUTATION_SIZE <size> (float � 0.0)

Define the standard deviation of the gaussian distribution used to mutate kcat constant
(in enzyme units). The mutation is defined as log10(kcat) + N (0, size).

B.6.22 kcat/kM ratio mutation size

KCAT_KM_RATIO_MUTATION_SIZE <size> (float � 0.0)

Define the standard deviation of the gaussian distribution used to mutate kcat/kM ratio
(in enzyme units). The mutation is defined as log10(kcat/kM) + N (0, size).

B.6.23 Binding site tag mutation size

BINDING_SITE_TAG_MUTATION_SIZE <size> (integer � 0)

Define the size of the uniform distribution used to mutate binding site tags (in transcrip-
tion factor units). The mutation is defined as tag + U(-size, +size).
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B.6.24 Co-enzyme tag mutation size

CO_ENZYME_TAG_MUTATION_SIZE <size> (integer � 0)

Define the size of the uniform distribution used to mutate co-enzyme tags (in transcription
factor units). The mutation is defined as tag + U(-size, +size).

B.6.25 Transcription factor tag mutation size

TRANSCRIPTION_FACTOR_TAG_MUTATION_SIZE <size> (integer
� 0)

Define the size of the uniform distribution used to mutate transcription factor tags (in
binding site units). The mutation is defined as tag + U(-size, +size).

B.6.26 Basal expression level mutation size

BASAL_EXPRESSION_LEVEL_MUTATION_SIZE <size> (float � 0.0)

Define the standard deviation of the gaussian distribution used to mutate � constant (in
promoter units). The mutation is defined as � + N (0, size).

B.7 Genetic regulation network

B.7.1 Genetic regulation network time-steps ratio

GENETIC_REGULATION_NETWORK_TIMESTEP <time-step> (float >
0.0)

Define the number of ODE time-steps used to solve the genetic regulation network per
simulation time-step.

B.7.2 Hill function theta parameter

HILL_FUNCTION_THETA <theta> (float 2 [0, 1])

Define the parameter ✓ of the Hill function used to compute the contribution of the
regulation on each promoter transcription.

B.7.3 Hill function n parameter

HILL_FUNCTION_N <n> (float � 0.0)

Define the parameter n of the Hill function used to compute the contribution of the
regulation on each promoter transcription.
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B.7.4 Protein degradation rate

PROTEIN_DEGRADATION_RATE <rate> (float 2 [0, 1])

Define the protein degradation rate per genetic regulation ODE time-step.

B.8 Metabolic network

B.8.1 Metabolism time-steps

METABOLISM_TIMESTEP <time-step> (float > 0.0)

Define the number of ODE time-steps used to solve the metabolic network per simulation
time-step.

B.8.2 Essential metabolites toxicity threshold

ESSENTIAL_METABOLITES_TOXICITY_THRESHOLD <threshold>
(float > 0.0)

Define the maximum cell’s toxicity threshold of essential metabolites. If one essential
metabolite overreaches this threshold in cell’s cytoplasm, the cell dies.

B.8.3 Non-essential metabolites toxicity threshold

NON_ESSENTIAL_METABOLITES_TOXICITY_THRESHOLD
<threshold> (float > 0.0)

Define the maximum cell’s toxicity threshold of non-essential metabolites. If one non-
essential metabolite overreaches this threshold in cell’s cytoplasm, the cell dies.

B.8.4 Initial metabolite amount in cells

INITIAL_METABOLITES_AMOUNT_IN_CELLS <initial_amount> (float
� 0.0)

Define the initial amount of metabolites found in cells when the simulation is created
from scratch.

B.8.5 Maximum reaction size

MAXIMUM_REACTION_SIZE <size> (integer � 0)

Define the maximum jump size of a metabolic reaction in the metabolic space. Consider-
ing s and p to be resp. the tags of the substrate and the product of a metabolic reaction
(catalyzed by an enzyme), the reaction only occurs if |s � p|  size.
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B.9 Energy

B.9.1 Energy transcription cost

ENERGY_TRANSCRIPTION_COST <cost> (float � 0)

Define the cost of producing proteins (mainly by transcription). When a enzyme or
transcription factor unit is transcribed at a certain rate e, energy cost is c = e ⇤ cost.
For computation reasons, the energy is not coupled to transcription equations (i.e., the
reaction speed of the transcription does not depend on energy concentration). If the cost
is set to 0.0, the transcription comes with no energy cost. If the energy becomes negative,
the cell dies.

B.9.2 Energy degradation cost

ENERGY_DEGRADATION_COST <cost> (float � 0)

Define the cost of degrading proteins. When proteins are degraded at rate d, energy
cost is c = d ⇤ cost. For computation reasons, the energy is not coupled to degradation
equations (i.e., the speed of the degradation does not depend on energy concentration).
If the cost is set to 0.0, the degradation comes with no energy cost. If the energy becomes
negative, the cell dies.

B.9.3 Energy enzymatic cost

ENERGY_ENZYMATIC_COST <cost> (float � 0)

Define the cost or the production of energy when performing metabolic reactions. Metabolic
reactions are performed by enzymes needing or producing energy carrier molecules. Let’s
consider s and p the tags of resp. the substrate and the product of a metabolic reaction
catalyzed by enzyme E. If s < p, the reaction consumes energy at rate c = (p� s) ⇤ cost.
If s > p, the reaction produces energy at rate c = (s�p)⇤cost. For computation reasons,
the energy is not coupled to metabolic reaction equations (i.e., the reaction speed does
not depend on energy concentration). If the cost is set to 0.0, metabolic reactions come
with no energy cost. If the energy becomes negative, the cell dies.

B.9.4 Energy pumping cost

ENERGY_PUMPING_COST <cost> (float � 0)

Define the cost of pumping in or out metabolites. When metabolites are pumped in or
out at rate r by a pump, energy cost is c = r ⇤ cost. For computation reasons, the energy
is not coupled to pump equations (i.e., the reaction speed does not depend on energy
concentration). If the cost is set to 0.0, the pumping activity comes with no energy cost.
If the energy becomes negative, the cell dies.
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B.9.5 Energy dissipation rate

ENERGY_DISSIPATION_RATE <rate> (float 2 [0, 1])

Define the rate at which a cell looses its energy stock by dissipation.

B.9.6 Energy toxicity threshold

ENERGY_TOXICITY_THRESHOLD <threshold> (float � 0)

Define a maximum threshold to cell’s energy. If a cell energy stock overreaches this
threshold, the cell dies.

B.9.7 Initial energy amount in cells

INITIAL_ENERGY_AMOUNT_IN_CELLS <amount> (float � 0)

Define the initial energy amount available in cells when the simulation is created from
scratch. This parameter allow for random initialization of complex cells needing energy
production to survive.

B.10 Cell

B.10.1 Membrane permeability

MEMBRANE_PERMEABILITY <permeability> (float 2 [0, 1])

Define the membrane permeability. Metabolites in cell’s cytoplasm or in the local envi-
ronment diffuse through the cell’s membrane depending on their concentrations and the
permeability.

B.11 Population

B.11.1 Death probability

DEATH_PROBABILITY <probability> (float 2 [0, 1])

Define the probability to die at random per simulation time-step. This probability is the
same for every cell, and is constant during cell life. This rate is applied in addition to
other death events linked to toxicity thresholds.

B.11.2 Migration rate

MIGRATION_RATE <rate> (float 2 [0, 1])

If the migration rate is not null, pairs of random cells exchange their location at a defined
rate per simulation time-step. Depending on the strength of the random mixing, cell’s
behavior evolve differently (e.g., to evolve cooperation).
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B.11.3 HGT rate

HGT_RATE <rate> (float 2 [0, 1])

Define the probability for a genome to receive alien genetic sequences at replication. Ge-
netic sequences are generated at random, and do not come from the simulated population.

B.12 Environment

B.12.1 Environment initialization cycles

ENVIRONMENT_INITIALIZATION_CYCLES <cycles> (integer � 0)

Define the number of initialization loops applied to a newly created environment. Ini-
tialization loops are based on environment parameters defined below. For example, If a
concentration c = 0.1 of metabolite 10 is introduced in the environment at every simula-
tion time-step, and if 5 initialization cycles are requested, the initial concentration will be
0.1⇥ 5. This parameter is useful to allow the environment to reach dynamic equilibrium
before introducing new cells.

B.12.2 Environment species tags range

ENVIRONMENT_SPECIES_TAG_RANGE <min> <max> (integer > 0; min
 max)

Define the boundaries of the uniform law used to draw a new metabolite introduced in
the environment.

B.12.3 Environment concentrations range

ENVIRONMENT_CONCENTRATION_RANGE <min> <max> (float > 0.0;
min  max)

Define the boundaries of the uniform law used to draw the concentration of each new
metabolite introduced in the environment.

B.12.4 Environment number of species range

ENVIRONMENT_NUMBER_OF_SPECIES_RANGE <min> <max>
(integer > 0.0; min  max)

Define the boundaries of the uniform law used to draw the number of metabolites intro-
duced in the environment.
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B.12.5 Environment interaction scheme

ENVIRONMENT_INTERACTION_SCHEME <choice>
(NO_INTERACTION/INTERACTION)

Define the interaction scheme between the population and the environment.

• NO_INTERACTION: environment concentrations are not modified by cells. Cells
grow on ressources with constant concentrations.

• INTERACTION: cells modify their environment by uptaking or releasing food.

B.12.6 Environment renewal scheme

ENVIRONMENT_RENEWAL_SCHEME <choice>
(KEEP_MATTER/CLEAR_MATTER)

Define the renewal scheme of the environment at each new variation.

• CLEAR_MATTER: the environment is rinsed at each variation.

• KEEP_MATTER: the environment is NOT rinsed at each variation.

B.12.7 Environment variation scheme

ENVIRONMENT_VARIATION_SCHEME <choice>
(RANDOM/PERIODIC/CYCLIC)

Define the variation scheme of the environment.

• PERIODIC: variation periodically occurs with frequency INTRODUCTION_RATE

• RANDOM: variation occurs with probability INTRODUCTION_RATE

• CYCLIC: variation occurs at each time-step, but is pondered by a sinus function
of period 1/INTRODUCTION_RATE

B.12.8 Environment localization scheme

ENVIRONMENT_LOCALIZATION_SCHEME <choice>
(GLOBAL/RANDOM/SPOT/CENTER)

Define the localization scheme of the environment.

• GLOBAL: the variation affects the whole environment at once (the same concen-
tration(s) of the same new metabolite(s) is introduced everywhere).

• RANDOM: the variation affects the whole environment, but new concentrations
and new metabolites are drawn for each location.

• SPOT: the variation affects only one random spot

• CENTER: the variation affects the center of the environment.
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B.12.9 Environment metabolic scheme

ENVIRONMENT_VARIATION_SCHEME <choice>
(UNIQUE/MULTIPLE/BOUNDARIES)

Define the metabolic scheme of the environment.

• UNIQUE: only one metabolite is introduced at each new variation.

• MULTIPLE: multiple metabolites introduction is possible.

• BOUNDARIES: restricted multiple scheme: only boundaries of the environment
species range are chosen.

B.12.10 Environment introduction rate

ENVIRONMENT_INTRODUCTION_RATE <rate> (float 2 [0, 1])

Define the rate at which environmental variations occur (depends on the variation scheme).

B.12.11 Environment diffusion coefficient

ENVIRONMENT_DIFFUSION_COEFFICIENT <coefficient> (float 2 [0, 1])

Define the diffusion coefficient in the environment grid. Diffusion is based on a simple
algorithm diffusing every metabolites at the same rate in the Moore neighborhood. No
ODEs are used here. For this reason, the algorithm becomes unstable for coefficient >
0.1. Thus, if coefficient > 1, diffusion is infinite (well-mixed environment).

B.12.12 Environment degradation rate

ENVIRONMENT_DEGRADATION_RATE <rate> (float 2 [0, 1])

Define the rate at which metabolites are degraded. All metabolites degrade at the same
rate. Degradation products are implicit, meaning that degraded metabolites simply dis-
appear from the environment.
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