
HAL Id: tel-01973957
https://pastel.hal.science/tel-01973957

Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variational approach to dynamic fracture and
applications to the fragmentation of metals and ceramics

Arthur Geromel Fischer

To cite this version:
Arthur Geromel Fischer. Variational approach to dynamic fracture and applications to the fragmen-
tation of metals and ceramics. Solid mechanics [physics.class-ph]. Université Paris Saclay (COmUE),
2018. English. �NNT : 2018SACLX096�. �tel-01973957�

https://pastel.hal.science/tel-01973957
https://hal.archives-ouvertes.fr


 
  

Variational Approach to Dynamic 
Fracture and Applications to the 

Fragmentation of Metals and 
Ceramics 

 
 

Thèse de doctorat de l'Université Paris-Saclay 
préparée à l’Ecole polytechnique 

 
 

École doctorale n°579 sciences mécaniques et énergétiques, 
matériaux et géosciences  (SMEMAG) 

Spécialité de doctorat: Mécanique des solides 

 
 

Thèse présentée et soutenue à Palaiseau, le 6 décembre 2018, par 

 

 Arthur GEROMEL FISCHER 
 
Composition du Jury : 
 
M. Corrado  MAURINI 
Professeur, Université Pierre-et-Marie-Curie    Président 

M. Blaise BOURDIN 
Professeur, Louisiana State University    Rapporteur 

M. Jean-François MOLINARI 
Professeur, Ecole polytechnique fédérale de Lausanne  Rapporteur 

M. Eric LORENTZ 
Directeur de recherche, EDF     Examinateur 

M. Julien YVONNET 
Professeur, Université Paris-Est-Marne-la-Vallée   Examinateur 

M. Skander EL MAI 
Ingénieur de recherche, CEA Gramat    Examinateur 
M. Jean-Jacques MARIGO 
Professeur, Ecole polytechnique     Directeur de thèse 

M. Daniel GUILBAUD 
Ingénieur de recherche, CEA Saclay    Invité 

N
N

T
 :

 2
0

1
8

S
A

C
L

X
0

9
6
 



ii



Abstract

The main objective of this work was the study of the fragmentation of a
metallic shell. This thesis is divided into four parts: construction of a damage
model, numerical implementation, calibration of the model parameters using
experimental data and analytical works.

In this work, we considered a model that couples the standard gradient
damage models with plasticity and dynamics. Using the energy and the
action of the system, we could obtain all the equations necessary to describe
the dynamic ductile model: the equations of dynamics, the plasticity criterion
and the damage criterion. We then detail the numerical implementation of
these models.

Some qualitative behaviours are then obtained, such as the number and
the direction of cracks, and the convergence to the quasi-static model.

In order to better understand the influence of the parameters, we studied
the problem analytically. By studying the amplitude of the perturbations, we
describe how to obtain an analytic approximation for the number of cracks
in a ring under expansion.

In order to run realistic simulations, it is needed to calibrate the material
parameters. We focus here on a simple case of brittle materials. The exper-
imental data were obtained in a series of shockless spalling tests performed
by the CEA.

We also study other forms of regularization, now applied to the plastic
strain, avoiding localization in zero-thickness bands. We considered using
the dissipative properties of the temperature field to regularize the model.
Finally, we conclude with plasticity models where we add a term depending
on the gradient of the plastic strain (gradient plasticity models).
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Résumé

Cette thèse porte sur l’étude de la fragmentation d’enveloppes métalliques
avec des applications dans le domaine militaire. L’enveloppe est mise en
expansion par la détonation d’explosifs et la très forte pression (quelques
centaines de kilo-bars) ainsi générée. L’état de contrainte induit dans le
matériau va conduire à sa fragmentation et à la génération d’un très grand
nombre d’éclats. Le principal objectif de cette thèse est de prévoir le nombre,
la forme et la distribution massique de ces fragments.

Cette thèse est divisée en cinq parties : la construction d’un modèle
d’endommagement, l’implémentation numérique, des études analytiques, la
calibration des paramètres du modèle en utilisant des données expérimentales,
et des travaux analytiques.

Tout d’abord, nous avons considéré des modèles qui couplent les modèles
d’endommagement classiques avec la plasticité et la dynamique. En utilisant
l’énergie et l’action du système, nous avons obtenu toutes les équations qui
décrivent le modèle dynamique et ductile : l’équation de la dynamique, le
critère de plasticité et le critère d’endommagement.

Nous avons ensuite détaillé l’implémentation numérique de ces modèles.
Deux codes ont été utilisés : la bibliothèque d’éléments finis FENICS et le
logiciel EUROPLEXUS. Dans un premier instant, nous avons implémenté
les modèles d’endommagement avec la bibliothèque FENICS pour des tests
initiaux, en particulier pour des problèmes unidimensionnels. Ensuite un
des modèles de fracture ductile a été implémenté dans le code industriel
EUROPLEXUS, avec lequel nous avons fait des simulations des problèmes
tridimensionnels.

En ce qui concerne la performance du code, le problème d’endommagement
peut être écrit comme un problème linéaire, où la matrice en question est
symétrique définie-positive. Par conséquent, nous avons pu utiliser la méthode
du gradient-conjugué, déjà implémentée dans la bibliothèque PETsC, et qui
marche très bien dans les codes parallélisés.
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Dans un premier instant, des résultats qualitatifs ont pu être obtenus,
comme le nombre et la direction des fissures, ainsi qu’une étude de la con-
vergence vers le modèle quasi-statique.

La principale application est l’explosion d’un cylindre métallique à cause
d’une forte pression intérieure. De façon surprenante, le problème d’un cylin-
dre avec un chargement radial perd sa symétrie et nous obtenons plusieurs
fissures inclinés qui se croisent. Une première question que se pose c’est de
comprendre pourquoi ces zones de localisation de l’endommagement appa-
raissent.

Afin de mieux comprendre l’influence de chaque paramètre du modèle,
nous avons fait des études analytiques. Le problème du cylindre a été sim-
plifié en un anneau, qui peut être vu comme une barre avec des conditions aux
limites périodiques. A partir de l’observation de l’amplitude des perturba-
tions, nous avons pu décrire comment obtenir une approximation analytique
du nombre de fissures pour l’anneau en expansion.

Cependant, pour être capable de simuler des problèmes réalistes, il est
nécessaire de calibrer les paramètres du modèle. Nous nous sommes intéressés
plus particulièrement au problème d’écaillage de matériaux fragiles (céramiques).
A partir des données expérimentales obtenues par une série d’expériences
réalisée par le CEA, nous avons pu calibrer les paramètres de notre modèle
pour avoir une bonne approximation de l’énergie dissipée par le processus de
rupture.

Des travaux complémentaires ont également été réalisés concernant l’écaillage
et la modélisation de la striction. Afin d’empêcher la localisation de la
déformation plastique dans des bandes d’épaisseur nulle, d’autres formes de
régularisation ont été étudiées, comme par exemple, l’utilisation des pro-
priétés dissipatives du champ de température. Enfin, nous avons conclu ce
travail en proposant des modèles de plasticité où l’énergie dépend aussi du
gradient de la déformation plastique (modèles de plasticité à gradient).

D’une forme générale, les travaux effectués pendant cette thèse ont aidé
à mieux comprendre l’évolution de l’endommagement dans un contexte dy-
namique. Sur le plan numérique, ces modèles marchent, peuvent être par-
allélisés et donnent des bonnes directions de fissures. La fragmentation d’un
cylindre sous pression a été étudiée en 1D et 3D et l’influence de chaque
paramètre du problème a pu être identifiée. Comme continuation de ce tra-
vail, nous avons encore deux grandes questions théoriques : la convergence
vers le modèle quasi-statique et l’épaississement des régions endommagées.
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Je remercie le Laboratoire de Mécanique des Solides de l’Ecole Poly-
technique et, en particulier, son directeur, Patrick Le Tallec, pour l’accueil
chaleureux et la bonne ambiance de travail.
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Je remercie également tous mes professeurs qui m’ont motivé et poussé
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Introduction

The initiation and propagation of cracks is still an unresolved question in
fracture mechanics. Several models have been studied in different contexts
(Barenblatt [9], Abraham and Rudge [1], Hentz and Daudeville [24], Hakim
and Karma [23]), in quasi static and dynamics (Ravi-Chandar [48], Larsen
[27]), and accounting for different phenomena. The main objective of this
thesis is to explain the development of the so-called ”gradient damage mod-
els” (Pham [42]) and its extension to ductile materials under a dynamic
loading.

The main application behind this thesis is that of a metallic shell that
expands due to a strong internal pressure, until it fragments. Several models
have been proposed to estimate the number and size of the resulting frag-
ments. These models focus mostly on the one-dimensional expanding ring
and use statistical arguments or presence of micro-voids, as in Mott and Lin-
foot [37], Grady [20]. Our approach differs from the previous ones in the
sense that we consider a homogeneous and sound material, and no random
phenomenon is considered.

The idea behind the models used in damage mechanics is that we can
represent the crack by a damage field. No a-priori hypothesis of its path is
made.

As we will see in a simple example, local models are not capable of cor-
rectly predicting damage evolution (Peerlings and Brekelmans [41], Pham
et al. [44]). Softening local damage models allow damage localization in in-
finitely thin bands and, consequently, cracks with zero energy dissipation
(Benallal [10]). In finite elements simulations, this implies that the mesh size
determines the size of the localization zones and the results will necessarily
depend on the mesh used. Moreover, some attention must be payed to the
mesh in order to avoid creating a preferential direction for crack propagation
(Negri [38]).

In this context, the problem of localization is solved by adding a nonlocal
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term, such as an integral (Pijaudier-Cabot and P. Bazant [47], P. Bazant and
Pijaudier-Cabot [39], Peerlings and de Vree [40], Lorentz and Andrieux [31])
or a gradient (Comi [16], Lorentz and Benallal [32], Lorentz et al. [33]) of
the damage or the strain. The family of gradient damage models contain the
gradient of damage weighed by a parameter called the ”characteristic length”
(Pham et al. [45]) in order to avoid a localization in a band of null thickness.

These models have been originally proposed for quasi-static brittle dam-
age evolution, but have also been extended to ductile (Alessi et al. [3], Ambati
et al. [5], Miehe et al. [36]) and dynamic loading (Bourdin et al. [14], Borden
et al. [12], Li et al. [29]). In this thesis, we explain the necessary changes to
the original model, in order to take plastic deformations and inertial effects
into account.

In the first chapter, we briefly present the construction of gradient damage
models for brittle softening materials based on the principle of minimum
energy. We discuss the main hypothesis and the need for regularization. We
then talk about the Von-Mises plasticity criterion, how to write it using a
principle of minimum energy and how to couple plasticity and damage by
using a suitable form of energy, as done by Alessi et al. [2]. We conclude the
model by removing the hypothesis of static equilibrium at each instant and
adding inertial effects. We follow the same methodology of Li et al. [29]: we
write the Lagrangian and the action of the system, and find the equations
of dynamics, along with the criterion of damage and plasticity evolution, by
using the principle of least action.

In Chapter 2, once the model is complete, we detail how the evolution
of damage and plasticity is calculated numerically, and the schemes used
for the temporal integration. In a first stage, we consider the standard La-
grangian discretization using P1 elements. We then show some examples
to validate our implementation, test the convergence rate in function of the
mesh size and the time-step and have a first insight in how the parameters
of the problem affect the results. We conclude this chapter by detailing the
implementation of the discontinuous Galerkin (DG) methods for quasi-static
and dynamic damage-plasticity problems. The FEniCS library (Logg [30])
and the industrial code EUROPLEXUS are used.

In Chapter 3, we study the particular case of a cylinder in expansion.
After fragmentation, we want to count the number of fragments obtained and
determine how it depends on the parameters used. The problem is axially
symmetric and, therefore, we should obtain an axially symmetric profile for
the damage. Surprisingly, this is not what happens, as we obtain radial
cracks somewhat evenly spaced. In order to understand what is causing the
evolution of these cracks, we focus mostly on the one-dimensional case, that
is, a ring. By studying the linearised system, we show that some modes of
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perturbation grow faster than others, allowing us to predict the number of
cracks that appear in the simulations.

Chapter 4 consists of the calibration of the model. The identification of
the parameters used in the gradient damage model is of great importance if
such material is to be used in an industrial context. We study the shockless
spalling test of a ceramic material and, from the results obtained in the ex-
periments, we want to propose a model representing the material behaviour.
With these tests, we are also able to better understand the role of the strain
rate in the critical stress and the dissipated energy.

Finally, in Chapter 5, we study possible forms of regularization for soft-
ening materials. Local models for ductile softening materials have the same
problems found in local damage models, that is, problems of existence or
unicity of solutions and absence of stable configurations. We study how
adding a dependency on the gradient of the plasticity to the total energy
could solve the problem of localization in infinitely thin bands. We also
study the temperature-plasticity coupling: when plasticity occurs, energy is
dissipated as heat, increasing the temperature of the bar. The main ques-
tion is whether the regularization character of the heat equation is enough
to regularize the plastic strain.

3
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Chapter

1
Dynamic Gradient Damage

Models

The objective of this first chapter is to explain the development of the
so-called ”gradient damage models” and its extension to ductile materials
and dynamic loading. The main idea of these models is that a crack can be
represented by a scalar (the damage field). No hypothesis are made a-priori
of its path.

We explain how gradient damage theory deals with the question of dam-
age localization in infinitely thin bands (and, consequently, cracks that dissi-
pate no energy) by adding a term containing the gradient of damage weighed
by a parameter called the ”characteristic length”. Roughly speaking, this
constant is going to determine how thick the crack region is going to be.

These models have been originally proposed for quasi-static brittle dam-
age evolution, but have also been extended to ductile (Alessi et al. [3], Ambati
et al. [5], Miehe et al. [36]) and dynamic loading (Bourdin et al. [14], Borden
et al. [12], Li et al. [29]). The main objective of this chapter is to explain
the necessary changes in order to account for both plastic deformations and
inertial effects.

More precisely, we first present the construction of gradient damage mod-
els for brittle softening materials based on the principle of energy minimiza-
tion. We discuss the main hypothesis and present one example in order to
illustrate the need for regularization. We then briefly talk about Von-Mises
plasticity criterion and how to take it into account. We conclude the model
by moving from quasi-static to dynamic loadings.

5



Chapter 1 – Dynamic Gradient Damage Models

1.1 Gradient Damage Models

We present here a simplified construction of gradient damage models for
brittle elastic materials when there are no other dissipative phenomena. We
are going to consider the case of small strains theory and isotropic material.

For a more detailed construction of these models, see Marigo [35], Bourdin
et al. [13], Pham [43], Pham et al. [45]. For the proof of Gamma-convergence
to Griffth’s model (Griffith [21]), the reader is referred to Braides [15], Dal-
Maso and Toader [17].

We denote the stress by σ, the strain by ε, the displacement by u and
the rigidity tensor by E. When working in a 1D scenario, we are going to
call the Young’s modulus simply by E, the stress by σ and the strain by ε.

We recall that ε = 1
2
(∇u + ∇Tu). It is clear that we consider that the

variables in question are regular enough so that trace and the energies are
well-defined. Unless otherwise stated, the variables will be either in the L2(Ω)
or the H1(Ω) spaces. The contracted product of two tensors a and b will be
denoted by a:b and, for elastic materials, the stress can be written σ = E:ε.

1.1.1 Construction of a Damage Model (non-regularized)

In this section, we are going to describe a family of damage models that
can be applied to different types of materials. We will discuss the qualitative
properties of these models.

We begin the construction by making the following hypothesis:

1. Damage can be represented by a scalar α∈[0, 1]. When α=0 the mate-
rial is sound and when α=1 the material is completely broken.

2. The rigidity tensor E(α) is a function of α and the material becomes
less rigid when α increases. When the material is completely broken,
there will be no rigidity left, in other words, E(α=1) = 0. It is impor-
tant to notice that, for a fixed damage value, the stress-strain relation
is supposed to be linear (σ=E(α):ε).

3. Damage is irreversible, that is, it can only grow in time (α̇≥0).

We now need to specify under which circumstances damage increases.
For that, we are going to use an idea similar to Griffith’s criterion (Griffith
[21]), based on the notion of elastic energy restitution, in its variational form
(Francfort and Marigo [18]).

The elastic energy can be written as

ψ(ε, α) =
1

2
ε:E(α):ε. (1.1)

6



1.1 – Gradient Damage Models

For a fixed deformation, a small increase δα>0 of damage causes a loss
of elastic energy equivalent to −∂ψ

∂α
(ε, α)δα>0. We compare the variation of

elastic energy to a threshold k(α). As in Griffith’s model, the rate of energy
restitution is always smaller or equal to a threshold value and the crack only
propagates when we have an equality. For this family of damage models, the
propagation criterion can be written as

− 1

2
ε:E′(α):ε ≤ k(α),

{
α̇ = 0 if − 1

2
ε:E′(α):ε < k(α)

α̇ ≥ 0 if − 1
2
ε:E′(α):ε = k(α)

(1.2)

where k(α)≥0 is a function of α representing the necessary energy restitution
necessary for damage to evolve.

Let w(α) be a function such that w′(α) = k(α). We define the energy
density by

W (ε, α) = ψ(ε, α) + w(α). (1.3)

We can write the stress as

σ =
∂W

∂ε
(ε, α) (1.4)

and the damage evolution criterion as

∂W

∂α
(ε, α)·α̇ = 0, (1.5)

where each of the two factors is non-negative.
Now let β̇ ≥ 0 be a small increase of damage in time. We have that

∂W

∂α
(ε, α)·(β̇ − α̇) ≥ 0. (1.6)

Consider a structure whose initial configuration is given by Ω ⊂ Rn

(n=1, 2, 3).
Suppose we have a volume force f acting on the whole structure, an

imposed displacement u0 on ∂u ⊂ ∂Ω and a normal stress T on ∂T ⊂ ∂Ω.
We also suppose that ∂u

⋂
∂T = ∅ and ∂u

⋃
∂T = ∂Ω. The static equilibrium

can be written as 
divσ + f = 0 in Ω

u = uD on ∂u

σ·n = T on ∂T .

(1.7)

We fix a test function w such that w = 0 on ∂u. Then∫
Ω

(
divσ·w + f ·w

)
dΩ = 0 (1.8)

7



Chapter 1 – Dynamic Gradient Damage Models

and Green’s formula shows that

∫
∂u

(σ·n)·wdS︸ ︷︷ ︸
0

+

∫
∂T

T ·wdS −
∫

Ω

σ:ε(w)dΩ +

∫
Ω

f ·wdΩ = 0. (1.9)

We define

C = {u : u=uD on ∂u}
C0 = {w : w=0 on ∂u}

. (1.10)

The static equilibrium problem consists of finding u ∈ C such that∫
Ω

∂W

∂ε
(ε(u), α):ε(w)dΩ =

∫
Ω

f ·wdΩ +

∫
∂T

T ·wdS, ∀w ∈ C0. (1.11)

If we consider the evolution problem where the time is denoted by t, by
integrating (1.6), we obtain the following problem: find α̇≥0 such that∫

Ω

∂W

∂α
(ε, α)·(β̇ − α̇)dΩ ≥ 0, ∀β̇ ≥ 0. (1.12)

We define the total energy of the system by

E(u, α) =

∫
Ω

W (ε(u), α)dΩ−
∫

Ω

f ·udΩ−
∫
∂T

T ·udS. (1.13)

It is easy to see that the evolution problem, given by equations (1.11) and
(1.12), is equivalent to finding u ∈ C and α̇≥0 such that

DE(u, α)(v − u, β̇ − α̇) ≥ 0, ∀v ∈ C, ∀β̇ ≥ 0. (1.14)

1.1.2 Regularized Model

It is now a well-known fact that local softening damage models are not
viable (Alessi et al. [3], Pham [42]) as they allow damage localization in
infinitely thin bands. The example below illustrates this problem:

Example 1.1.1. Consider a 1D bar represented by the interval [0, L] and a
material such that E(α)=E0(1− α)2 and w(α)=w1α.

When in equilibrium, we know that σ(x)=σ (constant).
We will show that for any 0<θ<1 fixed, we can construct a solution to

the damage problem such that there is no damage in the interval (0, θL) and
uniform damage in (θL, L).

8



1.1 – Gradient Damage Models

In fact, for x∈(0, θL), we have ε(x)=σ/E0.
For x∈(θL, L), the damage criterion can be written as

w1 = −1

2
E ′(α)

σ2

E(α)2
= E0(1− α)

σ2

E2
0(1− α)4

=
σ2

E0

1

(1− α)3
. (1.15)

Therefore, damage in this interval is given by

α∗ = 1− 3

√
σ2

w1E0

. (1.16)

The dissipated energy can be calculated

D =

∫ L

0

w(α)dx =

∫ L

θL

w1α
∗dx = w1α

∗(1− θ)L (1.17)

This shows that we have a solution of the damage problem for any θ. We
can see that damage can be localized in an infinitely thin band and if we take
θ → 1, the dissipated energy D tends to zero.

In a finite elements code, the size of the damage band will be determined
by the mesh size. This means that refining the mesh will produce different
results and dissipated energies that can tend to zero.

The main idea behind gradient damage models is to add to the energy
a term that depends on the gradient of damage. This way, sharp damage
profiles will dissipate an infinite amount of energy and will not be minimizers
of this energy. This construction leads to the notion of a characteristic length
of the damage problem. We will now use an energy density of the form

W (ε, α,∇α) = ψ(α, ε) + w(α) +
1

2
w1`

2∇α·∇α, (1.18)

where ` is the characteristic length and w1>0 is a normalization constant.
In the previous section, when describing the model, we first proposed an

evolution law based on the energy restitution rate. We then expressed the
static equilibrium and damage evolution by a principle of minimum energy.
For this new energy density, we are going to use directly the principle of
minimum energy to obtain an evolution law, instead of manually proposing
it. We notice that for a homogeneous damage profile, we obtain the same
damage criterion.

We have

σ = E(α):ε =
∂W

∂ε
(ε, α). (1.19)

9



Chapter 1 – Dynamic Gradient Damage Models

We define the dissipated energy by

D(α) =

∫
Ω

(
w(α) +

1

2
w1`

2∇α·∇α
)
dΩ (1.20)

and redefine the total energy

E(u, α) =

∫
Ω

W (ε(u), α,∇α)dΩ−
∫

Ω

f ·udΩ−
∫
∂T

T ·udS. (1.21)

The evolution problem consists of finding u ∈ C and α̇≥0 such that

DE(u, α)(v − u, β̇ − α̇) ≥ 0, ∀v ∈ C, ∀β̇ ≥ 0. (1.22)

1.2 Damage Coupled with Plasticity

The family of models we have developed so far cannot take into account
residual strains. In this section, we want to extend the damage models
described in section 1.1.2 to ductile materials.

For that, we first review the plasticity model that we are going to use,
showing how it can be written as a problem of energy minimization. We then
discuss the model obtained when writing an energy functional that contains
both plasticity and damage dissipation terms.

In this thesis, only the Von-Mises criterion will be studied, even though
only a few adaptations are needed if we want to consider other criteria.
More details about the coupling gradient damage and plasticity can be seen
in Alessi et al. [3], Tanne [50].

We finish this section by showing some examples of material behaviour
that can be obtained using this approach.

1.2.1 Perfect Plasticity Model

Unidimensional Model

In this section, we follow the approach of Marigo [34], Alessi et al. [2].

We will denote the plastic strain by εp. The total strain can be decom-
posed in an elastic part (a part that contributes to the stress) and a plastic
part (a permanent strain). The stress-strain relation is now

σ = E(ε− εp). (1.23)

10



1.2 – Damage Coupled with Plasticity

Figure 1.1: Damage (dashed green) and normalized stress (blue) for a generic
ductile material.

In the general case, σ is admissible if it satisfies f(σ)≤0, where the func-
tion f depends on the criterion used. The evolution law is given by the
relation

|ε̇p|·f(σ) = 0. (1.24)

We are interested in the Von-Mises yield criterion, where σY is the yield
stress. In 1D, we have

f(σ) = |σ| − σY ≤ 0. (1.25)

This behaviour is shown in Figure 1.1. We can see the normalized strain,
normalized stress and normalized plastic strain.

We define the cumulated plastic strain from zero to the instant t as

p̄(t) =

∫ t

0

|ε̇p|dτ (1.26)

and the energy density for a elasto-plastic material as

W 1D(ε, εp, p̄) =
1

2
E(ε− εp)2 + σY p̄. (1.27)

Proposition 1.2.1. The 1D version of the Von-Mises criterion, written as

1. yield criterion: |σ| ≤ σY

2. flow rule: 
ε̇p ≥ 0 if σ = +σY

ε̇p = 0 if |σ| < σY

ε̇p ≤ 0 if σ = −σY
(1.28)

11



Chapter 1 – Dynamic Gradient Damage Models

is equivalent to

1. stability condition: for any p∗, we have W 1D(ε, εp, p̄) ≤ W 1D(ε, p∗, p̄+
|p∗ − εp|)

2. energy balance: Ẇ 1D(ε, εp, p̄) = σε̇.

Proof. We first notice that for any p∗, we have

W 1D(ε, p∗, p̄+|p∗−εp|)−W 1D(ε, εp, p̄) =
1

2
E(p∗−εp)2−E(ε−εp)(p∗−εp)+σY |p∗−εp|.

(1.29)
If the yield criterion holds, it is easy to see that the stability condition is

also true.
Conversely if the stability condition holds and by taking p∗→εp, we obtain

− E(ε− εp)(p∗ − εp) + σY |p∗ − εp| ≥ 0. (1.30)

If we divide it by p∗− εp and study the cases p∗≥εp and p∗≤εp, we obtain
the yield criterion.

We take the derivative of W 1D:

Ẇ 1D(ε, εp, p̄) = σ(ε̇− ε̇p) + σY |ε̇p|. (1.31)

If the flow rule holds, it is easy to see that the the energy balance is also
verified.

Finally, if the energy balance holds, then

σε̇p = σY |ε̇p|. (1.32)

Thus, if |σ|≤σY , then ε̇p=0. Otherwise ε̇p and σ have the same sign.

By using this, it is clear that the plasticity criterion can be written as the
minimization an energy defined as the integral of W 1D.

Three-dimensional Model

In 3D, the stress-strain relation can be written as

σ = E:(ε− εp). (1.33)

The Von-Mises criterion is now given by the function

f(σ) =

√
3

2
s:s− σY , (1.34)

12



1.2 – Damage Coupled with Plasticity

where s:=σ− Trσ
3
I is the deviatoric stress. We also recall that this criterion

imposes that Trεp=0.
We can define the energy density as

W 3D(ε, εp, p̄) =
1

2
(ε− εp):E:(ε− εp) +

√
2

3
σY p̄ (1.35)

and, by following the same steps described in 1D, we can show that cal-
culating the evolution of plasticity in 3D is equivalent to minimizing this
energy.

1.2.2 Damage-Plasticity Coupling

In this section, in order to construct a family of models that account
for plasticity and damage, instead of proposing the evolution laws for each
variable, we work directly with a suitable form of energy and, by minimizing
this energy, we deduce the constitutive relations. For simplicity, we remove
volume forces from our calculations

We recall that, in section 1.1.2, we obtained a total energy for brittle
damage:

Ebrittle(u, α) =

∫
Ω

(
ψ(α, ε(u)) + w(α) +

1

2
w1`

2∇α·∇α
)
dΩ. (1.36)

We recall that the evolution of the system for quasi-static loading can be
obtained minimizing this energy with respect to u and α. A perturbation in
the direction u gives us the static equilibrium and a perturbation in α gives
us the damage criterion.

In section 1.2.1, we showed that the evolution of the plasticity minimizes
the energy

E1D
plast(ε, ε

p) =

∫
Ω

(1

2
E(ε− εp)2 + σY p̄

)
dΩ (1.37)

in 1D, and

E3D
plast(ε, ε

p) =

∫
Ω

(1

2
(ε− εp):E:(ε− εp) +

√
2

3
σY p̄

)
dΩ (1.38)

in 3D. By examining perturbations in ε and εp, obtain the static equilibrium
and the plasticity criterion, respectively.

As we can see, the problems of damage and plasticity are similar in the
sense that the quasi-static evolution in both cases is found after minimizing
the total energy. For the coupled problem, we are going to use an energy
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Chapter 1 – Dynamic Gradient Damage Models

form that is, in a way, a combination of the damage energy and the plastic
energy. For that, we are going to assume that the yield stress now depends
on the damage, that is, σY =σY (α).

We define the the following 1D and 3D energies for the damage-plasticity
(DP) coupling:

E1D
DP (u, εp, p̄, α) =

∫
Ω

(1

2
E(α)(ε(u)− εp)2 + σY (α)p̄+ w(α) +

1

2
w1`

2α′2
)
dΩ

(1.39)
and

E3D
DP (u, εp, p̄, α) =

∫
Ω

(1

2
(ε(u)−εp):E(α):(ε(u)−εp)+

√
2

3
σY (α)p̄+w(α)+

1

2
w1`

2|∇α|2
)
dΩ.

(1.40)
To obtain the quasi-static evolution criterion, we minimize the total en-

ergy with respect to all three variables (u, εp and α):

• The minimization of the displacement gives us the static-equilibrium:

divσ = 0 , where σ = E(α):(ε(u)− εp). (1.41)

• The minimization of the plastic strain gives us√
3

2
s:s ≤ σY (α) and ‖ε̇p‖ ·

(√3

2
s:s− σY (α)

)
= 0. (1.42)

• The minimization of α gives us the new damage criterion (after taking
the derivative with respect to α and integrating by parts). In 1D:

1

2
E(α′)(ε(u)− εp)2 + σ′Y (α)p̄+ w(α′)− w1`

2α′′ ≥ 0 (1.43)

In 3D:

1

2
(ε(u)− εp):E′(α):(ε(u)− εp) +

√
2

3
σ′Y (α)p̄+ w′(α)− w1`

2∆α ≥ 0

(1.44)

We also have α̇=0 when we have a strict inequality.

Example 1.2.2. Consider a bar given by Ω=[0, L] under traction, where
the displacement at the extremities are controlled. We want to calculate the
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1.2 – Damage Coupled with Plasticity

evolution of damage and plastic strain for the homogeneous case. We consider
the case σ0

Y <
√
w1E0. We take the functions

E(α) = E0(1− α)2 , w(α) = w1α , σY (α) = σ0
Y (1− α)2. (1.45)

Since we are assuming uniformity in space, we only have to calculate the
scalars σ, ε, εp and α.

We have 3 different stages:

• elastic phase: it is easy to see that while ε <
√
σ0
Y /E0, then σ <

σY (α)=σ0
Y and there is no change in the plastic strain. Since there is

no plastic strain, the damage criterion is the same for brittle materials
and we see that the bar does not suffer any damage.

• plastic phase: if ε >
√
σ0
Y /E0, then plastic strain evolves. In a pure

traction test, the plastic strain and the cumulated strain are the same
and we must have E0(ε−εp)=σ0

Y . Thus p̄=εp=ε−σ0
Y /E0.

The damage criterion becomes

− (1− α)
(σ0

Y )2

E0

− 2(1− α)σ0
Y p̄+ w1 ≥ 0. (1.46)

It is easy to see that for α=0, we have a strict inequality while εp< w1

2σ0
Y
−

σ0
Y

2E0
.

• damage-plastic phase: the plasticity continues to evolve and the plastic
evolution criterion gives us εp = ε−σ0

Y /E0.

The damage criterion is now

− (1− α)
(σ0

Y )2

E0

− 2(1− α)σ0
Y p̄+ w1 = 0. (1.47)

We can thus find

α =

σ0
Y

E0
+ 2p̄− w1

σ0
Y

σ0
Y

E0
+ 2p̄

. (1.48)

Figure 1.2 shows these three phases. We see the normalized (in function
of damage threshold) stress σ̄ = σ/σc and strain ε̄ = σ/εc. We can clearly
identify the three phases in the stress curve.
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Chapter 1 – Dynamic Gradient Damage Models

Figure 1.2: Damage (dashed red), normalized stress (blue) and plastic strain
(green dots), according to example 1.2.2.

1.3 Material Behaviour

In order to illustrate the reach of such models, we show some examples
of material behaviour that we can obtain only by changing how the function
E(·), w(·) and σY (·) depend on α. The curves were obtained considering
homogeneous damage, as in example 1.2.2.

In Figure 1.3, we have E(α)=(1 − α)2 and w(α)=α and we don’t have
plastic strain. We can clearly see an elastic phase and then a phase where
damage evolves. By taking into account the plastic evolution (Figure 1.4),
we see that we have now three phases (elastic, plastic with no damage and
plastic with damage). It is important to notice that, for both models, the
stress is maximal before the beginning of the damage phase and then it
decreases until it reaches zero.

For this next set of models, where we take w(α)=α2, we see that the
behaviour changes. In Figure 1.5, we see the evolution of brittle damage.
There is no longer an elastic phase and, as strain increases, both damage
and the stress increase, even though the relation stress-strain is no longer
linear because of damage evolution.
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1.3 – Material Behaviour

Figure 1.3: Brittle damage. E(α)=(1− α)2 and w(α)=α.

Figure 1.4: Ductile damage. E(α)=σY (α)=(1− α)2 and w(α)=α.
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Figure 1.5: Brittle damage. E(α)=(1− α)2 and w(α)=α2.

Figure 1.6: Ductile damage. E(α)=σY (α)=(1− α)2 and w(α)=α2.
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The list of models described above is, of course, far from extensive. Many
other evolution laws could be created by taking, for instance, a different
polynomial degree for the previous expressions or by combining them. It is
important to notice that when we take functions E, w and σY that depend
linearly or quadratically on α, the damage problem is linear, which is a
easier to calculate, specially numerically. If E(α)/σY (α) is constant for every
α, then the plasticity problem depends only on the strain, and not on the
damage.

1.4 Dynamic Damage Models

To formulate the evolution of the dynamic system, we are going to use
the principle of least action, as in Li [28].

Suppose we have a mechanic system Ω whose displacement is u and stress
is σ(u). At each instant t ∈ [t1, t2] we impose a displacement uD(t) on
∂u ⊂ ∂Ω and a normal stress T (t) on ∂T ⊂ ∂Ω. We also suppose that
∂u
⋂
∂T = ∅ and ∂u

⋃
∂T = ∂Ω. We have the following equations:

ρü = divσ + f on Ω

u = uD(t) on ∂u

σ·n = T (t) on ∂T .

(1.49)

We fix a test function w such that w(x, t)=0 on ∂u for all t ∈ [t1, t2] and
w(t=t1) = w(t=t2) = 0 on Ω. Then∫

Ω

ρü·wdΩ =

∫
Ω

(
divσ(u)·w + f ·w

)
dΩ (1.50)

and Green’s formula shows that∫
Ω

ρü·wdΩ =

∫
∂u

(σ·n)·wdA︸ ︷︷ ︸
0

+

∫
∂T

T ·wdA−
∫

Ω

σ(u):ε(w)dΩ +

∫
Ω

f ·wdΩ.

(1.51)
We integrate this equation between instants t1 and t2, and after an inte-

gration by parts, we obtain(∫
Ω

ρu̇·wdΩ
)∣∣∣t2

t1
−
∫ t2

t1

(∫
Ω

ρu̇·ẇdΩ
)
dt =∫ t2

t1

(∫
∂T

T ·wdA
)
dt−

∫ t2

t1

(∫
Ω

σ(u):ε(w)dΩ
)
dt+

∫ t2

t1

(∫
Ω

f ·wdΩ
)
dt.

(1.52)
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We define the kinetic energy of the system

K(u̇) =

∫
Ω

1

2
ρ‖u̇‖2dΩ (1.53)

and the potential energy

P(u) =
1

2

∫
Ω

σ(u):ε(u)dΩ−
∫

Ω

f ·udΩ−
∫
∂T

T ·udA. (1.54)

Applying the boundary conditions of w on t1 and t2, we have∫ t2

t1

(∂P
∂u

w − ∂K
∂u̇

ẇ
)
dt = 0, ∀w. (1.55)

We have thus shown that the problem (1.49) implies equation (1.55). It is
easy to see that equation (1.55) can be obtained by searching for stationary
points of an action functional defined by

S(u, u̇) =

∫ t2

t1

P(u(t))−K(u̇(t))dt. (1.56)

This motivates us to construct a dynamic gradient model by defining
a suitable form of the action functional. Instead of using a purely elastic
energy

∫
σ:ε, we are going to use the energies defined by equations (1.39)

and (1.40) with the terms containing the plastic strain and energy dissipated
by the damage process. We remember that they were written as

E1D
DP (ε, εp, p̄, α) =

∫
Ω

(1

2
E(α)(ε− εp)2 + σY (α)p̄+ w(α) +

1

2
w1`

2α′2
)
dΩ

and

E3D
DP (ε, εp, p̄, α) =

∫
Ω

(1

2
(ε−εp):E(α):(ε−εp)+

√
2

3
σY (α)p̄+w(α)+

1

2
w1`

2|∇α|2
)
dΩ.

We take the external loads into account and define a potential energy as

PDP (u, εp, α) = EDP (ε(u), εp, p̄, α)−
∫

Ω

f ·udΩ−
∫
∂T

T ·udA. (1.57)

We define the new Lagrangian by

LDP (u, u̇, εp, p̄, α, t) = PDP (u(t), εp(t), p̄, α(t))−K(u̇(t)) (1.58)
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and the action by

SDP (u, u̇, εp, p̄, α) =

∫ t2

t1

LDP (u, u̇, εp, p̄, α, t)dt. (1.59)

We define the admissible displacement space C and admissible damage
space D by

C = {u : u(t)=u0(t) on ∂u}
D = {α ∈ [0, 1] : α̇ ≥ 0 on Ω}

(1.60)

In order to preserve the irreversibility of damage and plasticity, instead
of searching for stationary points, we will now only consider the unilateral
minimal condition of the action, that is, we search an displacement u∈C,
damage α∈D and εp such that

SDP (u, u̇, εp, p̄, α) ≤ SDP (w, ẇ, p, ‖p− εp‖+ p̄, β) (1.61)

for any w∈C, β∈D and p.
In particular, if we take β=α and p=εp, we must have

∂SDS
∂u

(w − u) +
∂SDS
∂u̇

(ẇ − u̇) = 0 (1.62)

and, by following the previous calculations in reverse order, we find the prob-
lem given by (1.49).

We now set w=u and p=εp to study the damage evolution. If at an
instant t the damage is αt then we define the admissible damage Dt taking
αt and the irreversibility condition into account:

Dt = {β : β̇ ≥ 0 and β ≥ αt on Ω}. (1.63)

For every β∈Dt
∂SDS
∂α

(β − α) ≥ 0. (1.64)

From this, it is easy to see that we obtain the same damage criterion for
dynamic configurations and quasi-static loading:

∂EDP
∂α

(u, εp, p̄, α)·(β − α) ≥ 0. (1.65)

Finally, we look at the plastic evolution by taking w=u and β=α. Then,
for any p, we must have

SDP (u, u̇, εp, p̄, α) ≤ SDP (u, u̇,p, ‖p− εp‖+ p̄, α),
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which is the same criterion used in the quasi-static case, that is, for any p

EDP (u, εp, p̄, α) ≤ EDP (u,p, ‖p− εp‖+ p̄, α). (1.66)

The whole set of equations can now be written:

• Dynamic evolution: 
ρü = divσ + f on Ω

u = uD(t) on ∂u

σ·n = T (t) on ∂T .

(1.67)

• Damage evolution: for any β≥0 admissible, we have

∂EDP
∂α

(u, εp, p̄, α)·(β − α) ≥ 0. (1.68)

• Evolution of plastic strain: for any p, we have

EDP (u, εp, p̄, α) ≤ EDP (u,p, ‖p− εp‖+ p̄, α). (1.69)
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Chapter

2
Numerical Implementation and

Validation

In this chapter, we detail the numerical implementation of the gradient
damage model using the finite elements method. We consider a spatial dis-
cretization based on the standard Lagrange family of P1 elements, unless
otherwise stated. We first discuss the damage problem, calculations of the
plastic strain and dynamics, showing the algorithms and numerical methods
used for each separate problem. We then show some test cases to validate our
implementation and we discuss some qualitative properties of the dynamic
damage model.

For the time discretization, we consider the instants ti, with ti+1=ti+∆t.
In 1D, the elements of the mesh have the same length ∆x. In 2D and 3D,
we will specify whether we are using a structured mesh or an unstructured
mesh.

We finish this chapter by detailing the implementation of the discontinu-
ous Galerkin (DG) methods. We write the variational formulation associated
to it and how the type of element used affects our results.

For the calculations, we used the FeniCS (Logg [30]) library and the
industrial code Europlexus [51].

2.1 Implementation of Plasticity

We present here the algorithm we used when calculating the evolution of
the plastic strain. We will consider that the total deformation ε is known
and fixed, and we are only interested in the evolution of εp. Even though this
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algorithm is commonly used in solid mechanics, we considered important to
detail it here.

The only important remark here is that this algorithm considers the yield
stress σY to be constant. When coupling plasticity and damage, the only
necessary change for the algorithm is to consider the yield stress as a function
of damage.

2.1.1 Plasticity in 1D

We first discuss how the plasticity was implemented. We remember from
section 1.2.1 that the evolution of the plasticity can be found by minimising
W 1D defined by

W 1D(ε, εp, p̄) =
1

2
E(ε− εp)2 + σY p̄. (2.1)

It is important to notice that this is a local problem, that is, it can be
solved independently in each element or Gauss point.

Suppose that the plastic strain is (εp)i. We define the auxiliary function

f(ε, p) =
1

2
Ep2 − Eεp+ σY |p− (εp)i−1|. (2.2)

In the discrete problem, it is clear the the minimization of f in p is
equivalent to the minimization of W 1D(ε(u), εp) in εp.

The function f is strictly convex in p and is differentiable everywhere
except in p=(εp)i−1. As a consequence, f has one unique minimum.

We use two auxiliary results:

Proposition 2.1.1. For a given ε, set σ∗=E(ε−(εp)i−1). The value p that
minimizes f(ε, p) can be characterized by:

(1) If |σ∗|≤σY , then the minimum is attained in (εp)i−1.

(2) If |σ∗|>σY , then the minimum is attained at a point such that ∂f
∂p

(ε, p)=0.

Proof. We write p=(εp)i−1 + e. Then

f(ε, p) = f(ε, (εp)i−1) +
1

2
Ee2 − σ∗e+ σY |e|. (2.3)

(1) If |σ∗|≤σY , then σ∗e≤σY |e| and f(ε, p)≥f(ε, (εp)i−1)+1
2
Ee2. Hence, the

minimum is attained when e = 0, that is, when p=(εp)i−1.
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(2) If |σ∗|>σY , we put e=hσ∗/|σ∗|, with h>0. Then

f(p) = f(ε, (εp)i−1) +
1

2
Eh2 − σ∗h+ σY h. (2.4)

If h is small enough, then f(ε, p)<f(ε, (εp)i−1). Since f is regular every-
where except e=0, we must have ∂f

∂p
(ε, p) = 0.

Proposition 2.1.2. In the evolution problem, we set σ∗=E(εi − (εp)i−1).
The minimization of W in εp is equivalent to:

(1) If |σ∗|≤σY :
(εp)i = (εp)i−1. (2.5)

(2) If |σ∗| > σY :

(εp)i = (εp)i−1 +
(

1− σY
|σ∗|

)(
εi − (εp)i−1

)
(2.6)

and ∣∣∣E(εi − (εp)i)
∣∣∣ = σY . (2.7)

Proof. We have already proved (1) in proposition (2.1.1).
To prove (2), again by proposition (2.1.1), we have to find p such that

∂f
∂p

(εi, p)=0.

We notice that for e 6=0 and |δe|<|e|, we have

|e+ δe| = |e|+ δe
e

|e|
. (2.8)

Then
∂f

∂p
(εi, p) = Ee− σ∗ + σY

e

|e|
= 0. (2.9)

Hence,

E(p− (εp)i−1)− E(εi − (εp)i−1) + σY
e

|e|
= 0. (2.10)

Rearranging the terms,

E(ε(i,j) − p) = σY
e

|e|
. (2.11)
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If we write σ=E(εi − p), then, by taking the absolute values, we obtain
|σ|=|σY |.

We can write

e =
σ∗ − σ
E

. (2.12)

Since we are working on the case |σ|=σY < |σ∗|, we have

e

|e|
=

σ∗ − σ
|σ∗ − σ|

=
σ∗

|σ∗|
. (2.13)

Finally, by (2.10),

e =
1

E

(
σ∗ − σY

e

|e|

)
=

1

E

(
σ∗ − σY

σ∗

|σ∗|

)
(2.14)

and

(εp)i := p = (εp)i−1 + e = (εp)i−1 +
(

1− σY
σY
|σ∗|

)
(εi − (εp)i−1). (2.15)

This is an elastic prediction - plastic correction procedure: we calculate
the current strain and stress based on the previous time instant assuming that
the material is elastic (elastic prediction). If the stress is inside the elastic
domain, that is, |σ∗|<σY , we keep it and the plasticity does not change. On
the other hand, if the stress is not in the elastic domain, we update the plastic
deformation (plastic correction).

2.1.2 Plasticity in 3D

In this section, we are going to write the same results as in the previous
section, but now to a problem in 3D. We use the standard Von Mises criterion:

tr(εp) = 0 (2.16)

and √
3

2
s : s ≤ σY , (2.17)

where the deviatoric stress tensor s is given by

s = σ − tr(σ)

3
I. (2.18)
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The discrete energy density at the instant i+ 1 is written as

W (ε, εp) =
1

2
(ε− εp):E:(ε− εp) +

√
2

3
σY ‖εp − (εp)i‖+

√
2

3
σY p̄i, (2.19)

where
‖e‖ =

√
e:e. (2.20)

We now define e as the deviatoric part of ε and since tr(εp)=0, the mini-
mization of W in εp is equivalent to

min
p : tr(p)=0

f(p), for every point in Ω (2.21)

where

f(p) := µp:p− 2µe:p+

√
2

3
σY ‖p− (εp)i−1‖. (2.22)

(The Lamé’s coefficients are denoted by λ and µ.)
We set σ∗=E:(εi − (εp)i−1) and its deviatoric part is given by s∗=2µ(e−

(εp)i−1).
The following propositions are the 3D equivalents of the auxiliary results

in section 2.1.2:

Proposition 2.1.3. The value p that minimizes f(ε, p) can be characterized
by:

(1) if ‖s∗‖ ≤
√

2
3
σY , then the minimum is attained in (εp)i−1;

(2) if ‖s∗‖ >
√

2
3
σY , then the minimum is attained at a point such that

∂f
∂p

(ε, p) = 0.

Proof. We write p = (εp)i−1 + δ. Then

f(ε, p) :=

µp:p− 2µe:p+

√
2

3
σY ‖p− (εp)i−1‖+ f((εp)i−1)− µ(εp)i−1:(εp)i−1 + 2µe:(εp)i−1 =

f((εp)i−1) + µδ:δ + 2µp:(εp)i−1 − 2µ(εp)i−1:(εp)i−1 − 2µe:δ +

√
2

3
σY ‖δ‖ =

f((εp)i−1) + µδ:δ + 2µδ:(εp)i−1 − 2µe:δ +

√
2

3
σY ‖δ‖ =

f((εp)i−1) + µδ:δ +

√
2

3
σY ‖δ‖ − s∗:δ.

(2.23)
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(1) If ‖s∗‖ ≤
√

2
3
σY , then f(ε, p) ≥ f(ε, (εp)i−1)+µδ:δ. Hence, the minimum

is attained when δ = 0.

(2) If ‖s∗‖ >
√

2
3
σY , we put δ = hs∗/‖s∗‖, with h > 0. Then

f(p) = f((εp)i−1) +

√
2

3
σY h− ‖s∗‖h+ µh2. (2.24)

If h is small enough, then f(p) < f((εp)i−1). Since f is regular everywhere
except δ = 0, we must have ∂f

∂p
f(p) = 0.

Proposition 2.1.4. The minimization of W in εp is equivalent to:

(1) If ‖s∗‖ ≤
√

2
3
σY :

(εp)i = (εp)i−1. (2.25)

(2) If ‖s∗‖ >
√

2
3
σY :

(εp)i = (εp)i−1 +

(
1−

√
2
3
σY

|s∗|

)(
ei − (εp)i−1

)
. (2.26)

Proof. The proof of (1) follows directly from the last proposition.
To prove (2), we have to find p such that ∂f

∂p
(ε, p) = 0.

We derive f and apply it to a tensor δ:

∂f

∂p
(ε, p):δ = 2µ(p− ei):δ +

√
2

3
σY

p− (εp)i−1

‖p− (εp)i−1‖
:δ = 0. (2.27)

If
σi = E:(εi − p) (2.28)

and si is its deviatoric part, we must have

si =

√
2

3
σY

p− (εp)i−1

‖p− (εp)i−1‖
. (2.29)

It’s clear that

‖si‖ =

√
2

3
σY . (2.30)
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We note that
si = s∗ + 2µ((εp)i−1 − p) (2.31)

and, by equation (2.29), si and s∗ have the same direction.
Since we know s∗, we obtain

si =

√
2

3
σY

s∗

‖s∗‖
. (2.32)

Finally, applying this to (2.29) and (2.31),

p− (εp)i−1 = si
‖p− pi−1‖√

2
3
σY

= si
‖si − s∗‖

2µ
√

2
3
σY

= s∗
‖si − s∗‖
2µ‖s∗‖

=

(
1−

√
2
3
σY

‖s∗‖

)
s∗

2µ
=

(
1−

√
2
3
σY

‖s∗‖

)
(ei − (εp)i−1).

(2.33)

We conclude by taking (εp)i = p.

2.2 Implementation of Damage

The implementation of damage using the FEniCS library is straight for-
ward: we define the total energy of the system and find its derivative with
respect to α and in the direct β using the derivative(energy, alpha,

beta) command.
We solve the resulting constrained minimisation problem using the class

OptimisationProblem along with the NonlinearVariationalSolver.
The main advantage of this approach is that, once the code is imple-

mented, studying the influence of the functions E(α), w(α) and σY (α) de-
mands little effort in terms of programming.

We now detail the implementation of the damage problem in the indus-
trial code EUROPLEXUS. We use the model E(α)=(1− α)2E0, w(α)=w1α
and σY (α)=(1− α)2σ0

Y .
The damage problem consists of finding α ∈ [αmin, αmax] that minimizes

the total energy, that is∫
Ω

(α− 1)εelEεelβ + w1β + w1`
2∇α∇β + 2(α− 1)σY p̄β ≥ 0,∀β. (2.34)

We have to solve a linear system on the form Aα = b, where

A = (εelEεel + 2σY p̄) + w1`
2∇T∇ (2.35)
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and
b = εelEεel + 2σY p̄− w1. (2.36)

The first step is the initialization of our variables and of the libraries used
(PETSC and TAO).

Initialization:

• Create the table containing the value of α at each node.

• Store the determinant of the jacobian J0 on each element at t = 0.

• Initialize PETSC and TAO.

• Assemble the constant matrix A0 := w1`
2∇T∇J0.

• A0(i, j) = A0(j, i) = δij if the material of the node i cannot be damaged.

• Set the vectors αmin = 0 and αmax = 1

At each time step i+ 1:

• update the value of αmin:=αi;

• assemble the matrix A1 := εelEεel + 2σY p̄;

• assemble vector b and the matrix A = A0 + A1;

• find the vector αi+1 by solving Aα = b using TAO ;

It is important to recall that the solution of this last linear system using
TAO also takes into account the irreversibility condition. The GPCG solver
(J. Moré and Toraldo [26]) is used. Others solvers, such as the Scalable
Nonlinear Equations Solvers (Balay et al. [8]) were tested, but with a less
satisfying performance in our problems.

2.3 Dynamic Numerical Schemes

In this section, we describe the schemes used to solve the dynamic evolu-
tion. We first discuss each method for an elastic material and then we add
its extension to damage and plasticity.

We are going to detail three schemes: the explicit Newmark scheme,
an implicit variational scheme and the generalized midpoint rule scheme,
studying the influence of vibrations, convergence rate, energy dissipation
and stability for each one.
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2.3.1 Explicit Newmark Scheme

This method is used to solve second order (linear or non-linear) differential
equations. It is commonly used in civil engineering for numerical evaluation
of the dynamic response of structures. In particular, the industrial code we
used for the large calculations uses this scheme, so we first investigate its
properties and how to couple it with damage.

The finite elements method gives us a system of the form

MÜ(t) +KU(t) = f(t). (2.37)

We will approximate U(t), U̇(t) and Ü(t) by the sequences U i, U̇ i and Ü i

satisfying 
U i+1 = U i + ∆tU̇ i + (∆t)2

2
Ü i

U̇ i+1 = U̇ i + ∆t
2

(Ü i + Ü i+1)

MÜ i+1 = f(ti+1)−KU i+1.

(2.38)

It is easy to see that this implies that{
(U i+1 − U i) = (U i − U i−1) + ∆t(U̇ i − U̇ i−1) + (∆t)2

2
(Ü i − Ü i−1)

U̇ i − U̇ i−1 = ∆t
2

(Ü i−1 + Ü i).
(2.39)

Therefore
U i+1 − 2U i + U i−1 = (∆t)2Ü i. (2.40)

We obtain the equivalent equation for the Newmark scheme

MU i+1 − 2U i + U i−1

(∆t)2
+KU i = f(ti). (2.41)

We can see that this scheme is a second order scheme (in time). It is now
a well-known fact that this scheme is stable if

max
j
λj(∆t)

2 < 4, (2.42)

where λj are the eigenvalues of the problem KU = λMU .
In particular, for a uniform 1D mesh with elements of length ∆x, we

have that the eigenvalues of the laplacian are smaller than 4/(∆x)2. For a
material of density ρ and Young’s modulus E, we obtain thus the following
CFL condition

∆t

∆x
≤
√
ρ

E
. (2.43)

We now have to change the matrix K because of damage and the force f
to include the effects of plasticity. In order to avoid confusion, we will use the
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notation u for the displacement, v for the velocity, a for the acceleration , α
for the damage and εp for the plastic strain. When written in the variational
form, form a test function w, we have∫

Ω

ρawdV +

∫
Ω

E(α)ε(u)ε(w)dV =

∫
Ω

E(α)εpε(w)dV (2.44)

which, can be written as

Ma+K(α)u = f(α, εp). (2.45)

We propose the following algorithm:

(1) Update boundary conditions.

(2) Calculate ui+1 = ui + ∆tvi + (∆t)2

2
ai.

(3) Repeat:

(3.1) solve the plasticity problem;

(3.2) solve the damage problem;

(3.3) stop when the alternate minimisation converged for damage αi+1

and plastic strain (εp)i+1.

(4) Find the acceleration Mai+1 = f(αi+1, (εp)i+1)−K(αi+1)ui+1.

(5) Find the velocity vi+1 = vi + ∆t
2

(ai + ai+1).

(6) Advance to time step i+ 1.

As we’ll see in the validation section, this method produces good results
with an almost-constant energy. The main problem we face here is the ap-
parition of vibrations.

We also notice that when the yield stress and rigidity tensor have the
same dependency on the damage, the result of the plasticity problem is in-
dependent of the damage. For this reason, the damage and the plasticity
problem will be solved only once, allowing us to gain a significant amount of
time at teach iteration.

2.3.2 Implicit Variational Scheme

The objective of this subsection is to propose a simple, intuitive and
easy to implement scheme that allows us to compare results using a different
discretization.
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Contrary to the previous section, we now propose a method for the dy-
namic equation that should be solved, along with the problems of damage
and plasticity, until convergence of all variables.

For this scheme, we use the same ideas of Bourdin et al. [14]. We use the
following approximation for the second derivative of u:

üi ≈ ui − 2ui−1 + ui−2

∆t2
. (2.46)

The problem of dynamics becomes finding the displacement ui+1 solution
of∫

Ω

(ε(ui+1)−(εp)i+1):E(αi+1):ε(w)dV = ρ

∫
Ω

ui+1

∆t2
·wdV−ρ

∫
Ω

2ui − ui−1

∆t2
·wdV ,

(2.47)
for any test function w admissible.

We show that this scheme is dissipative for the elastic problem. In fact,
the problem can be written as∫

Ω

ε(ui+1):E:ε(w)dV = ρ

∫
Ω

vi+1 − vi

∆t
·wdV , (2.48)

where

vi =
ui − ui−1

∆t
. (2.49)

By taking w=vi+1∆t=ui+1−ui, we find∫
Ω

ε(ui+1):E:
(
ε(ui+1)− ε(ui)

)
dV = ρ

∫
Ω

(vi+1 − vi)·vi+1dV , (2.50)

We remark that

(vi+1 − vi)·vi+1 =
1

2
‖vi+1‖2 − 1

2
‖vi‖2 +

1

2
‖vi+1‖2 +

1

2
‖vi‖2 − vi·vi+1 =

1

2
‖vi+1‖2 − 1

2
‖vi‖2 +

1

2
‖vi+1 − vi‖2.

(2.51)

This shows us that

(
1

2
ε(ui+1):E:ε(ui+1) +

ρ

2
‖vi+1‖2)− (

1

2
ε(ui):E:ε(ui) +

ρ

2
‖vi‖2) =

−1

2
(ε(ui+1 − ε(ui)):E:(ε(ui+1 − ε(ui))− ρ

2
‖vi+1 − vi‖2.

(2.52)
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We see that the total energy between two time steps always decreases if
there are no sources of energy to the system. From these calculations, we
can expect this change of energy to be proportional to ∆t2 at each time step.

In conclusion, this method is very dissipative (dissipation proportional to
∆t), and the numerical solution is more regular than the analytic solution
(this becomes very evident when studying a problem containing shockwaves).
This regularizing effect, even though undesirable in certain cases, can be
helpful when analysing the behaviour of displacement and velocity near the
cracks, as will be discussed later.

Even though we don’t have stability problems, we still have to pay at-
tention to the time step in order to control how much energy is dissipated
numerically.

2.3.3 Generalized Midpoint Rule Scheme

In this section, we detail a 1D algorithm that can be seen as a general-
ization of the previously proposed variational scheme. This scheme and the
calculations presented could easily be extended to 2D and 3D, but we chose
to focus on the 1D case, as we wanted to try a third method to obtain the
qualitative behaviour of our model.

We start by presenting the scheme and the calculations in Simo and
Hughes [49] for an elastic-plastic problem.

We fix η ∈ [0, 1], θ ∈ [0, 1] and δ ∈ [0, 1], and define

f(σ) = |σ| − σY . (2.53)

For a variable X, we define the notation

Xθ = (1− θ)Xi + θXi+1. (2.54)

We have the following equations for an elastic-plastic material:

ui+1 − ui = ∆tvη∫
Ω
ρ (vi+1−vi)

∆t
w +

∫
Ω
σθw

′ = 0, ∀w
εpi+1 − ε

p
i = p sign(σθ), p ≥ 0

f(σδ) ≤ 0

p · f(σδ) = 0.

(2.55)

To obtain the stability, we take the test function w = ui+1 − ui = ∆tvη.
Therefore ∫

Ω

ρ(vi+1 − vi)vη +

∫
Ω

σθ(u
′
i+1 − u′i) = 0. (2.56)
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We have

(vi+1−vi)vη = (vi+1−vi)
(

(1−η)vi+ηvi+1

)
= ηv2

i+1−(1−η)v2
i +(1−2η)vivi+1.

(2.57)
Since

vivi+1 =
1

2

(
− (vi+1 − vi)2 + v2

i+1 + v2
i

)
, (2.58)

we have

(vi+1 − vi)vη =
1

2

(
v2
i+1 − v2

i

)
− (1/2− η)(vi+1 − vi)2. (2.59)

From this general expression, we can study the properties for each par-
ticular case.

Purely Elastic Case

When there is no plastic strain, we have∫
Ω

ρ(vi+1 − vi)vη +

∫
Ω

Eu′θ(u
′
i+1 − u′i) = 0. (2.60)

We can then see that the difference of total energies (elastic energy plus
kinetic energy) between two different instants is∫

Ω

ρ

2
v2
i+1+

1

2
E(u′i+1)2−

∫
Ω

ρ

2
v2
i−

1

2
E(u′i)

2 =

∫
Ω

(
1

2
−η)(vn+1−vi)2+(

1

2
−θ)E(u′i+1−u′i)2.

(2.61)
From that, we obtain the the scheme is table if η≥1/2 and θ≥1/2 and

non-dissipative if η=θ=1/2.

Elastic-Plastic Case

For an elastic-plastic material, the relation∫
Ω

ρ(vn+1 − vn)vη +

∫
Ω

Eσθ(u
′
n+1 − u′n) = 0 (2.62)

still holds. We have then

σθ(u
′
i+1 − u′i) = σθ

( 1

E
(σi+1 − σi) + p sign(σθ)

)
=

1

E
σθ(σi+1 − σi) + p|σθ|.

(2.63)
On one hand, we have

σθ(σi+1 − σi) =
1

2

(
σ2
i+1 − σ2

i

)
− (1/2− θ)(σi+1 − σi)2. (2.64)
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On the other,

p|σθ| = p·f(σθ) + pσY . (2.65)

This implies that∫
Ω

ρ

2
v2
i+1 +

1

2E
(σi+1)2 −

∫
Ω

ρ

2
v2
i −

1

2E
(σi)

2 +

∫
Ω

pσY =∫
Ω

(1/2− η)(vi+1 − vi)2 +
(1/2− θ)

E
(σi+1 − σi)2 − pf(σθ).

(2.66)

We use the fact that pf(σδ)=0. Therefore, if θ=δ, then the last term
disappears.

The scheme is stable and non dissipative if θ=η=δ=1/2.

Adding Damage

We now try to obtain similar results for the case where damage is con-
sidered. The difficulty appears from the fact that E is no longer constant
between iterations. There is also a question of how to define σθ from the
other variables. For instance, we can take


σ1
θ = (1− θ)σi + θσi+1

σ2
θ = E(αθ)(u

′
θ − ε

p
θ)

σ3
θ =

(
(1− θ)E(αi) + θE(αi+1)

)
(u′θ − ε

p
θ) = Eθ(u

′
θ − ε

p
θ).

(2.67)

As in the calculation of plasticity, we are free to choose γ∈[0, 1] and define
at which moment between ti and ti+1 we want the damage criterion to be
satisfied, leading to the following system of equations



ui+1 − ui = ∆tvη∫
Ω
ρ (vi+1−vi)

∆t
w +

∫
Ω
σθw

′ = 0, ∀w
εpi+1 − ε

p
i = p sign(σθ), p ≥ 0

f(σθ) ≤ 0

p · f(σθ) = 0

αγ := argminα≥αi
E(uγ, ε

p
γ, p̄γ, α).

(2.68)

We propose then the following algorithm:
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(1) Solve the displacement problem:{
ui+1 − ui = ∆tv1/2∫

Ω
ρ (vi+1−vi)

∆t
w +

∫
Ω
σ1/2w

′ = 0, ∀w
(2.69)

(2) Solve the plasticity problem at the instant θ=1/2.

(3) Solve the damage problem at the instant γ.

(4) Check the convergence of ui+1, (εp)i+1 and αi+1. Repeat if it did not
converge, otherwise go to the next iteration.

From the previous calculations, it is natural to consider θ=1/2. Numerical
experiments have shown that for all of these choices of σθ or γ, the system
will have the same behaviour when the time-step and mesh size are small
enough.

From a theoretical point of view, we can show that by taking σθ=Eθ(u
′
θ−ε

p
θ),

we obtain a scheme that is stable. In fact, as in the previous calculation, we
take the test function w=∆t

2
(vi+vi+1)=ui+1−ui.

We have ∫
Ω

ρ

2
(vi+1 − vi)(vi + vi+1) +

∫
Ω

σ1/2(u′i+1 − u′i) = 0. (2.70)

It is clear that the first term is equivalent to the change in the kinetic
energy. We will then focus on the second term. We write Ei:=E(αi) and
obtain

σ1/2(u′i+1 − u′i) =

1

4
(Ei + Ei+1)(u′i+1 − ε

p
i+1 + u′i − ε

p
i ) ·
(
(u′i+1 − ε

p
i+1)− (u′i − ε

p
i ) + (εpi+1 − ε

p
i )
)

=

1

4
(Ei + Ei+1)

(
(u′i+1 − ε

p
i+1)2 − (u′i − ε

p
i )

2
)

+
1

4
(Ei + Ei+1)(u′i+1 − ε

p
i+1 + u′i − ε

p
i )(ε

p
i+1 − ε

p
i ) =

1

2
Ei+1(u′i+1 − ε

p
i+1)2 − 1

2
Ei(u

′
i − ε

p
i )

2 +
1

4
(Ei − Ei+1)

(
(u′i+1 − ε

p
i+1)2 + (u′i − ε

p
i )

2
)

+

+ σ1/2(εpi+1 − ε
p
i ).

(2.71)

If we write the dissipated energy as

D =

∫
Ω

1

4
(Ei − Ei+1)

(
(u′i+1 − ε

p
i+1)2 + (u′i − ε

p
i )

2
)

+ σ1/2(εpi+1 − ε
p
i ), (2.72)
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we obtain, as in the previous cases, that the difference between the kinetic
plus the elastic energy between two instants changes of −D, that is,(∫

Ω

ρ

2
v2
i+1+

∫
Ω

1

2
E(αi+1)(u′i+1−εpi+ 1)

)
−
(∫

Ω

ρ

2
v2
i +

∫
Ω

1

2
E(αi)(u

′
i−ε

p
i )
)

+D = 0.

(2.73)
To show that this scheme is stable, we only have to show that D≥0.

In fact, as in the ductile case, we know that σ1/2(εpi+1−ε
p
i )≥0. Using the

irreversibility of the damage, we know that Ei≥Ei+1, proving that D≥0 and,
therefore, that the scheme is stable.

2.4 Numerical Verification

In this section, we show some test cases in order to verify our numerical
implementation. One of the difficulties found when testing the model was the
absence of simple analytic solutions that could be used to test all phenomena
at the same time.

The first test was the homogeneous solution found in example 1.2.2. Due
to the simplicity of this case, the results will not be shown in this section.

In order to test the convergence rate and dissipative properties of the pro-
posed algorithms, we ran a series of simulations for fixed material parameters,
and we compared the results for different numerical parameters.

The third test we used was the study of a rigid-plastic bar subjected to
damage. For this case, it is possible to construct an analytic solution for
the dynamic damage problem. The numerical implementation cannot be
completely rigid, since the dynamics of the system depends on the elasticity.
For this reason, we ran simulations using very large values for the rigidity.

Finally, as a last test, we propose an algorithm in order to obtain the
evolution of damage for a quasi-static loading. The main difficulty of this case
is that we want to impose the dissipated energy, and not the displacement.
Since this problem is hard to be solved numerically, it will allow us to test if
the damage profile can be found in a reliable way.

2.4.1 Rate of Convergence

In this section, we will detail the tests used to validate our numerical
implementation. More precisely, we use these tests in order to verify rate of
convergence, stability and energy conservation of each scheme.

Since we want to test the quadratic convergence in time of these schemes,
we want a non-homogeneous problem such that the second derivative in time
of the solution is continuous in time. When testing plasticity evolution and
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damage localization, we want to avoid border effects, so we want maximum
stress to happen far from the extremities. Based on these considerations, we
propose the problem below on the interval [0, 1] for the displacement u:

initial conditions: {
u(t=0) = 0

v(t=0) = −π cos(πx);
(2.74)

boundary conditions: {
u(x=0) = − sin(πt)

u(x=1) = sin(πt).
(2.75)

We then solve the equation ü=u′′ numerically. For this 1D problem,
it is clear that the analytic solution is u(x, y)= − sin(πt) cos(πx), but we
prefer calculating the error of our simulations in a purely numeric way, as
this approach is also suitable for the cases with damage and plasticity. The
approach remains simple: if we want to test the error using a mesh and a
time-step, we will first run a simulation where the time-step and the mesh
are a lot finer than the ones in question and consider this result as the exact
solution of the problem.

We first test the elastic Newmark scheme. When taking ∆t=∆x, we can
verify the superconvergence property (Hughes [25]), where we obtain errors
of order 10−14 even for a coarse mesh.

For this first series of tests, we will take ∆t=0.5∆x in order to respect
the stability condition and avoid the superconvergence case. For the Geneza-
lized Midpoint Rule scheme, the mesh and the time-step are independent,
and superconvergence does not occur. Since we are interested in the conver-
gence in time, we take a mesh fine enough so that the errors caused by the
discretization in space are negligible when compared to errors produced by
the temporal discretization. The errors are obtained using the L2 norm.

In order to test the convergence rate and dissipative properties of the
proposed algorithms, we ran a series of simulations for fixed material param-
eters, and we compared the results for different numerical parameters. We
can see in the quadratic convergence in Figure 2.1 for both schemes.

When comparing both schemes, it is important to keep in mind that
the error in the Genezalized Midpoint Rule scheme comes exclusively from
temporal discretization, whereas in the Newmark scheme the error originated
from the spatial discretization is non-negligible, since the time-step and mesh-
size are of the same order. Since the Newmark scheme is explicit, it is the
one who runs the fastest between the two, when using the same mesh and
time-step. We also verified that the energy is conserved for both schemes.
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Figure 2.1: Error in the displacement for different values of time-step. The
dashed red line represents the quadratic convergence rate.

The next step is to add damage and plasticity to the schemes. We will
use the same initial and boundary conditions given by equations 2.74 and
2.75.

For both schemes, adding damage to the system does not change the
convergence rate. We consider E(α)=(1−α)2 and w(α)=α. The errors in the
displacement are shown in Figure 2.2 and the errors in damage are shown
in Figure 2.3. By comparing the errors to the dashed red line, we verify the
quadratic convergence of displacement and damage of both schemes.

Figure 2.2: Error in the displace-
ment for different time-steps at
t=0.2.

Figure 2.3: Error in the damage
profile for different time-steps at
t=0.2.

When considering plasticity (with or without damage), we obtain a clear
loss of the quadratic convergence. Even if we try changing the instant be-
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tween ti and ti+1 when plasticity is calculated, we do not obtain a better
convergence rate. One possible explanation for this is that the plasticity de-
pends on the gradient of u, which cannot be obtained with enough precision
with the type of finite elements that we are using.

In summary, the two schemes we implemented have a quadratic con-
vergence rate for purely elastic and brittle damage problems, but a poorer
convergence rate when plasticity is considered.

For the Newmark scheme, when there is only damage or only plasticity,
or when the yield stress and rigidity tensor have the same dependency on
the damage, we solve each problem only once, making this scheme very fast
in each iteration.

For the Genezalized Midpoint Rule scheme, since we have to solve each
problem a few times before converging, along with the fact that the dynamic
problem is implicit, each iteration takes more time. This fact is, however,
counterbalanced by the fact that there are no restrictions on the time-step.

In terms of stability, numeric experiments show that both schemes can
be considered to conserve the total energy, but we have no theoretical results
supporting our claim. For the Genezalized Midpoint Rule scheme, we proved
that the scheme is always stable.

2.4.2 Rigid-Plastic Bar

We consider a bar of density ρ and [−L,L]. We suppose that its extrem-
ities are being pulled with constant speed ε̇0L > 0. We also suppose the
initial speed is uniform. We also suppose that the bar is not damaged at t=0
and the damage phase is imminent.

We first construct an analytic solution to this problem and then we com-
pare it to the numerical results. We consider

σP (α) = (1− α)σ0
P (2.76)

and
w(α) = w1α. (2.77)

Dynamic equation:
σ′ − ρv̇ = 0. (2.78)

Compatibility equation:
v′ − ε̇ = 0. (2.79)

Since there is no elastic deformation and the movement is always in the
same direction, we can consider that the accumulated plasticity is equal to
the total deformation:

ṗ = |ε̇|. (2.80)

41



Chapter 2 – Numerical Implementation and Validation

Figure 2.4: Representation of the two regions of the bar.

The boundary conditions can be written as
v(x = −L) = −ε̇0L

v(x = L) = ε̇0L

α(x = −L) = α(x = L) = 0

. (2.81)

The initial condition are
v(x, t = 0) = ε̇0x

p(x, t = 0) = ε(x, t = 0) = ε0

α(x, t = 0) = 0

. (2.82)

Since we are about to start the damage phase, we have

ε0 =
w1

σ0
P

. (2.83)

We define the parameter

c2
0 =

σ0
P

ρε0

. (2.84)

We search for a symmetric solution and we divide the bar in two zones:
in zone (1), the bar plastifies and is damaged; in zone (2), the bar is damaged
but there is no evolution in plasticity. The boundary between the two regions
is expressed by X(t) or T (x) and x = X(t)⇔ t = T (x).

Region (1):

By hypothesis, there is plastic and damage evolution in this region.
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By (2.76) and (2.78), ρv̇ = σ′ = −α′σ0
P and we obtain

α′ =
−v̇
c2

0ε0

and α′′ =
−ε̈
c2

0ε0

. (2.85)

From the damage criterion, we have

0 = w1 − σ0
P ε− w1`

2α′′. (2.86)

After differentiating it twice in time, we find

ε̈ = −ε0`
2α̈′′. (2.87)

From (2.85) and (2.86):
c2

0α
′′ = `2α̈′′. (2.88)

Since this equation does not depend on x, we can solve it:

α′′(x, t) = A(x) cosh
(c0t

`

)
+B(x) sinh

(c0t

`

)
(2.89)

We have α = 0 for t = 0, so A(x) = 0.
Differentiating (2.86) in time, we find

v′ = ε̇ = −ε0`
2α̇′′. (2.90)

The initial conditions also give us v′0 = ε̇0 = −ε0`
2α̇′′(t = 0) = −c0ε0`B(x).

Therefore,

α′′(x, t) = − ε̇0

c0ε0`
sinh

(c0t

`

)
(2.91)

and

v′ = ε̇0 cosh
(c0t

`

)
. (2.92)

Using again (2.86), ε = ε0(1− `2α′′) and

ε = ε0 +
ε̇0`

c0

sinh
(c0t

`

)
(2.93)

Region (2):

By hypothesis, there is only damage evolution in this zone. We only
consider here the points x ≥ 0.

Since there is no plastic change, the speed of all points is the same:
v = ε̇0L.

Differentiating (2.86) in time, we find

α̇′′ = 0, α̇′ = F (t) and α̇ = F (t)(L− x). (2.94)

Therefore, α can be written as

α = G(t)(L− x) +H(x). (2.95)
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In the boundary:

In region (1), equation (2.92) gives us v′1. In region (2), we know that
v2 = ε̇0L. By continuity, we must have v1(X(t), t) = v2(X(t), t). Thus,

v1 = ε̇0 cosh
(c0t

`

)
(x−X(t)) + ε̇0L. (2.96)

We know the (plastic) deformation in (1) is given by (2.93).
Since the plasticity in (2) does not change in time, we have ε2(x, t) =

ε2(x, T (x)) = ε1(x, T (x)) and

ε2 = ε0 +
ε̇0`

c0

sinh
(c0T (x)

`

)
(2.97)

Since region (2) is being damaged, (2.86) is valid and

`2α′′2 = 1− ε2

ε0

. (2.98)

By (2.97) and (2.98),

α′′2 = − ε̇0

c0ε0`
sinh

(c0T (x)

`

)
. (2.99)

Therefore α̇′′2 = 0.
We differentiate (2.91) in time to find

α̇′′1 = − ε̇0

ε0`2
cosh

(c0t

`

)
. (2.100)

We take x→ 0 in (2.96) to find

v1(0+, t) = ε̇0

(
L−X(t) cosh

(c0t

`

))
. (2.101)

We integrate (2.86) in order to obtain the jump in 0:

[u] + `2ε0[α′] = 0 (2.102)

and, by symmetry,

α′(0+, t) = −u(0+, t)

`2ε0

. (2.103)

Thus

α̇′1(0+, t) = −v1(0+, t)

ε0`2
= − ε̇0

ε0`2

(
L−X(t) cosh

(c0t

`

))
(2.104)
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and, since α̇′2 is constant,

α̇′2 = α̇′2(L, t) = α̇′1(0+, t) +

∫ L

0

α̇′′ = α̇′1(0+, t) + α̇′′1X(t) = − ε̇0L

ε0`2
. (2.105)

We imposed α(L, t) = 0, which implies

α̇2(x, t) = − ε̇0L

ε0`2
(x− L). (2.106)

We can find

α̇′1(x, t) = α̇′1(0+, t)+

∫ x

0

α̇′′1 = − ε̇0

ε0`2
L− ε̇0

ε0`2
cosh

(c0t

`

)(
x−X(t)

)
. (2.107)

We integrate the above expression and, by continuity of α̇ in X(t),

α̇1(x, t) =
ε̇0L

ε0`2
(L− x)− ε̇0

2ε0`2
cosh

(c0t

`

)(
x−X(t)

)2

. (2.108)

We remember that v1 is given by (2.96). We calculate

v̇1 =
ε̇0c0

`
sinh

(c0t

`

)
(x−X(t))− ε̇0 cosh

(c0t

`

)
Ẋ(t). (2.109)

We use (2.85) to obtain

α̇′1 = − v̈1

c2
0ε0

= − ε̇0

`2ε0

cosh
(c0t

`

)
(x−X(t))+2

ε̇0

`c0ε0

sinh
(c0t

`

)
Ẋ(t)+

ε̇0

c2
0ε0

cosh
(c0t

`

)
Ẍ(t).

(2.110)
From (2.107) and (2.110), we get the differential equation

cosh
(c0t

`

)
Ẍ(t) +

2c0

`
sinh

(c0t

`

)
Ẋ(t) = −c

2
0L

`2
. (2.111)

Since the whole bar is undergoing plastic deformation at t=0, we must
have X(0)=L.

At t=0, σ is uniform and v̇1=σ′=0. Since all points continue to plastify,
X does not change and Ẋ(0) = 0.

We can now solve (2.111):

X(t) =
L

cosh( c0t
`

)
. (2.112)

We find the inverse of this function to obtain T (x):

T (x) =
`

c0

cosh−1
(L
x

)
. (2.113)

45



Chapter 2 – Numerical Implementation and Validation

Equation (2.108) becomes

α̇1(x, t) =
ε̇0L

2

ε0`2
− ε̇0

2ε0`2
cosh

(c0t

`

)
x2 − ε̇0L

2

2ε0`2

(
cosh

(c0t

`

))−1

. (2.114)

Since α1(t=0)=0, we can find

α1(x, t) =
ε̇0L

2

`c0ε0

(
− x2

2L2
sinh

(c0t

`

)
+
c0t

`
− arctan

(
tanh

(c0t

2`

)))
. (2.115)

We can also find σ1 = (1− α1)σ0
P .

We showed in (2.106) that α̇2 does not depend of t. Therefore

α2(x, t) = α1(x, T (x)) + α̇2

(
t−T (x)

)
= α1(x, T (x)) +

ε̇0L

ε0`2
(L−x)

(
t−T (x)

)
.

(2.116)
In region (2), σ′2=v̇2=0. We can find the stress in this region by

σ2(x, t) = σ1

(
x, T (x)

)
. (2.117)

ANALYTIC SOLUTION

We have the two regions separated by:
X(t) = L

cosh(
c0t
`

)
or T (x) = `

c0
cosh−1

(
L
x

)
.

Region (1):

This region is defined by the pair (x, t) such that |x| < X(t)

α1(x, t) = ε̇0L2

`c0ε0

(
− x2

2L2 sinh
(
c0t
`

)
+ c0t

`
− arctan

(
tanh

(
c0t
2`

)))
σ1(x, t) = (1− α1)σ0

P

ε1(x, t) = ε0 + ε̇0`
c0

sinh
(
c0t
`

)
.

Region (2):

This region is defined by the pair (x, t) such that X(t) < |x| ≤ L
α2(x, t) = α1(x, T (x)) + ε̇0L

ε0`2
(L− x)

(
t− T (x)

)
σ2(x, t) = σ1

(
x, T (x)

)
ε2(x, t) = ε0 + ε̇0`

c0
sinh

(
c0T (x)
`

)
.
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Numerical solution

We solved this problem numerically and compared the numerical solution
to the analytic one.

The numerical schemes implemented so far work only for elastic bars
and, by hypothesis, we have a rigid-plastic bar. This issue was solved by
setting the Young’s modulus large enough so that the elastic deformation is
negligible compared to the plastic deformation. We are going to consider the
Young’s modulus as E(α)=(1− α)qE0, for q ≥ 0.

In the rigid bar, p = ε and at t = 0, we have ε = w1/σ
0
P .

For the elastic bar, we must take into account this difference:{
p(x, 0) = w1

σ0
P
− qσ0

P

2E0

ε(x, 0) = p(x, 0) +
σ0
P

E0
.

(2.118)

Numerical results

We obtained good results numerically and when we refine the mesh and
increase E0, the results are also more precise.

Figures 2.5 and 2.6 were obtained using 1000 elements.

Figure 2.5: Example of stress and damage profiles on the bar. In these
cases, t=0.22.

Figure 2.6: Evolution of X(t).
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Final remarks

• Numerically, we obtained the most accurate results for q=1, that is,
E(α)=(1− α)E0.

• Increasing the value of E0, we increase the amplitude of oscillations for
σ. We can solve this problem by refining the mesh.

• We also needed to refine the mesh in order to find a smooth profile for
X(t).

• The stability condition for the Newmark scheme requires ∆t ≤ ∆x√
E0

.
Since we need big values for E0 and we need a fine mesh, the time step
is small and the simulations take a long time to run.

2.4.3 Control of Dissipated Energy

As a test for the code used, we propose a numerical algorithm to obtain
the snapback curve. Our goal is to find the evolution of damage when the
dissipated energy is controlled and compare it to the usual case, where we
consider the displacement at one of the extremities as the loading parameter.
This problem is hard to be solved numerically and, thus, will allow us to see
the robustness of our code and the solvers used.

We consider a brittle 1D bar Ω = [0, L] under a quasi-static loading
u(0, t) = 0 and u(L, t) = t. We are going to use the AT1 model, that is,
E(α)=E0(1− α)2 and w(α)=w1α.

As we already know, this bar under traction deforms elastically for ε <
εc :=

√
w1/E0 and breaks instantly after. As a result, σ and the energies are

discontinuous in time.
We remember that the dissipated energy is

D(α) =

∫
Ω

w(α) +
1

2
w1`

2(α′)2dΩ, (2.119)

the elastic energy is

Eel(u, σ, α) =

∫
Ω

1

2
E(α)(u′)2dΩ− σu(L) (2.120)

and the total energy is

E(u, σ, α) = Eel(u, σ, α) +D(α). (2.121)

More precisely, in this chapter we want to find an admissible triplet
(u, σ, α) such that we can control the value of D(α):
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1. σ(x) = E(α(x))u′(x) = σ(constant);

2. E(u, α) ≤ E(u, β), for all β ≥ α admissible;

3. D(u, α) = t fixed.

Mathematical Notions

We remember here (without much rigour) some results that were useful
in our calculations. Details can be seen in Allaire [4].

Let V be a Hilbert space and we define the subset K ⊂ V using the
constraints F = {Fi}1≤i≤n:

K = {v ∈ V : Fi(v) ≤ 0, i = 1, ..., n}. (2.122)

Suppose we want to solve the constrained optimization problem

inf
v∈K

J(v). (2.123)

We first define the Lagrangian L : (V × Rn) → R associated to this
problem as

L(v, p) = J(v) + p · F (v). (2.124)

We say that (u, p) ∈ V × Rn is a saddle point or minimax point if

∀q ∈ Rn J(u)+q·F (u) ≤ J(u)+p·F (u) ≤ J(v)+p·F (v) ∀v ∈ V . (2.125)

Theorem : Suppose that (u, p) is a saddle point of L. Then u ∈ K and u
is global minimum of J in K.

For v ∈ V and q ∈ Rn, we set

J (v) = sup
q∈R
L(v, q) and G(q) = inf

v∈V
L(v, q). (2.126)

Theorem : The pair (u, p) is a saddle point of L if and only if

J (u) = min
v∈V

(
sup
q∈Rn

L(v, q)
)

= max
q∈Rn

(
inf
v∈V
L(v, q)

)
= G(p). (2.127)
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Control of Dissipated Energy

For a fixed displacement u and scalar t, we want to solve the problem

inf
α≥0:D(α)=t

E(u, α). (2.128)

We define the Lagrangian for the constraint D(α) = t:

L(α, λ) = E(u, σ, α) + λ(D(α)− t). (2.129)

We want to find
max
λ∈R
G(λ), (2.130)

where
G(λ) := inf

α≥0
L(α, λ). (2.131)

Figure 2.7: Function G(λ) for E0=w1=1

For a given value of λ, we can easily calculate the above minimization in
α (and thus find G(λ)) using the library TAO.

We have now to find the maximum with respect to λ. We take ∆λ
sufficiently small and we calculate the approximations to the derivatives of
G: {

G ′ = G(λ+∆λ)−G(λ)
∆λ

G ′′ = G(λ+2∆λ)−2G(λ+∆λ)−G(λ)
(∆λ)2

(2.132)
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The point of maximum satisfies G ′(λ) = 0. We could use Newton’s algo-
rithm to solve this problem:

λn+1 = λn − G
′

G ′′
. (2.133)

This approach, however, does not work well numerically. As we can see in
Figure 2.7, G is almost a straight line everywhere, except for a small region.

We notice that we can write the Lagrangian as

L(α, λ) = Eel(u, σ) + (1 + λ)D(α)− λt. (2.134)

The minimization of the Lagrangian with respect to α is similar to our
usual damage problem, where the dissipated energy is multiplied by 1+λ. As
a result, for large values of λ, α = 0 (we do not reach the critical displacement
to damage) and D(α) = 0. Therefore, the Lagrangian varies linearly with λ
in this region. Hence

d2G
dλ2

= 0. (2.135)

This shows that we cannot use Newton’s algorithm for large values of λ.
Numerical simulation have also shown convergence problems if λ is too small.

We chose to use a brute-force algorithm. It is clear that this approach is
not optimal, but it works reasonably well and gives us good results.

To find the maximum of G, we first fix the non-empty interval [A0, B0]
and N ≥ 2. We use the iterative algorithm, starting at n = 0:

• We set ∆ = (Bn − An)/N .

• Set λn as the argument tested which gives the largest value of G:

λn = arg max
0≤i≤N

G(A0 + ∆ · i). (2.136)

• Find αn such that

L(αn, λn) = inf
α≥0
L(α, λn). (2.137)

• Stop if D(αn) = t.

• Otherwise
(An+1, Bn+1) = (λn −∆, λn + ∆) if An < λn < Bn

decrease An, Bn = λn + ∆ if λn = An

An = λn −∆, increase Bn if λn = Bn.

(2.138)
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The above algorithm searches for the largest value of G in an interval that
decreases with each iteration. It stops when it reaches the maximum, that
we know is when D(αn) = t. The concavity of G assures the convergence.

For a fixed displacement u, we have described how we can find α such
that D(α) = t. We describe now the main algorithm.

We set σ0 = σc = E0εc and α0 = 0.
For n ≥ 1:

• Find the displacement u∗

u∗ = arg min
u
E(u, αn−1, σn−1) (2.139)

• Find a saddle point (α∗, λ) of the Lagrangian (u∗ is the displacement
used implicitly in the definition of L). Thus D(α∗) = t.

• Find the displacement un:

un := arg min
u
E(u, α∗, σn−1). (2.140)

• Find the damage profile αn:

αn := arg min
α≥0
E(un, α, σn−1). (2.141)

• Find the new value of the imposed stress σn as the mean stress on the
bar:

σn :=

∫
Ω
E(αn)ε(un)dΩ∫

Ω
dΩ

. (2.142)

• Stop if αn = α∗.

Analytic Solution

We are now going to briefly remember construction of a localized solution
in the interval [x0 −D, x0 +D], where x0 is the center of the damage profile
(assumed to be symmetric) and the value of D is unknown for now.

Since the whole region is damaged, α satisfies the damage criterion ev-
erywhere:

1

2
A′(α)ε2 + w′(α)− w1`

2α′′ = 0. (2.143)

If we write S(α)=1/E(α), then (omitting α) S ′ = −1/E2E ′. Thus E ′ =
−E2S ′ and

− 1

2
S ′(α)σ2 + w′(α)− w1`

2α′′ = 0. (2.144)
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We multiply this expression by α′ and we integrate to obtain

− 1

2
S(α)σ2 + w(α)− w1`

2α
′2

2
= constant = − σ2

2E(0)
. (2.145)

We define the function H by

H(α) := σ2
( 1

w1E(0)
− S(α)

w1

)
+

2w(α)

w1

. (2.146)

Then
`2α′2 = H(α). (2.147)

The maximum value αmax of α is such that H(αmax) = 0. For a given
αmax, we can find the value of the stress σ on the bar:

σ =

√
2w(αmax)

S(αmax)− 1/E(0)
. (2.148)

We can then find the damage profile using the relation

x(α) = x0

∫ αmax

α

`

H(β)
dβ. (2.149)

Results

We now compare the analytic and the numerical results. As we can see in
Figure 2.8, our algorithm gives us the correct damage profile when comparing
to the analytic solution (dashed red lines).

Figure 2.9 shows the different profiles we obtain. In the legend, we see
the maximum value of damage. It is important to remark that the support
of the damage profile decreases as damage increases. This, however, does
not contradict the irreversibility condition as, in a quasi-static simulation,
the cracks appear instantly without passing through the intermediate stages.

Finally, Figure 2.10 shows the stress in function of the displacement dur-
ing the snapback. The analysis begins at σ=1, when damage begins and
follows the decrease in the stress.

Overall, we obtained a purely numeric method to obtain the snapback
phenomenon. We impose the dissipated energy at each instant and, from
that, we obtain the damage profile, as well as the stress and the strain. We
validated our results by a comparison with the analytic solution.
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Figure 2.8: Damage profile for D(α) = 0.1 for E0=w1=1.

Figure 2.9: Damage profiles for E0=w1=1.

2.5 Qualitative Behaviour

In this section, we will briefly discuss the results obtained in our simula-
tions. As for material behaviour, we considered E(α)=E0(1−α)2, w(α)=w1α
and, when plastic strains are considered, σY (α)=σ0

Y (1−α)2.
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Figure 2.10: Stress-displacement relation for E0=w1=1.

2.5.1 Multiple Cracks

When studying the rupture of a bar under a quasi-static loading, we
obtain one single damage profile that appears instantly. When dynamics are
considered, the damage profile increase gradually. If the internal length is
small enough, we can obtain multiple cracks. These cracks do not appear
necessarily at the same time, they depend on the waves propagating in the
system.

We also see that the average damage in the bar changes when we use
different strain rates: when we increase the strain rate, we also increase the
average damage, as can be seen when comparing Figures 2.11 and 2.12.

For smaller strain rates, we obtain less cracks. This leads to the ques-
tion of what would happen when ε̇→0. Unfortunately we cannot decrease ε̇
enough in our simulations to know if there will be only one damage profile.

2.5.2 Convergence to Quasi-Static

When comparing the results obtained for a quasi-static loading and for a
dynamic loading, the damage profiles are not the same.
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Figure 2.11: Damage profile for a brittle material with E(α)=(1 − α)2 and
w(α)=α. We considered `=0.1 and ε̇ = 0.1.

Figure 2.12: Damage profile for a brittle material with E(α)=(1 − α)2 and
w(α)=α. We considered `=0.1 and ε̇ = 1.0.

We consider a 1D bar, and we impose α=0 at the extremities. In quasi-
static, the displacement at the borders is controlled. In dynamics, we impose
uniform strain rate ε̇ in the bar and we study what happens when ε̇→0. We
see that the damage profile converges, but to a new profile that dissipates
more energy (between 25% and 30% more) than the one in quasi-static, as
shown in Figure 2.13.
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Figure 2.13: Analytic damage profile for a brittle material under quasi-static
loading (red) and damage profile under dynamic loading obtained numeri-
cally (blue).

We have found two factors that contribute to this difference. The first
one is the irreversibility condition. It is known that the intermediate dam-
age profiles in the family of AT1 models have larger support than the final
configuration, when α=1 (see, for instance, Figure 2.9). The quasi-static
crack happens instantly and, therefore, it does not go through the intermedi-
ate profiles. Since the dynamic crack appears gradually, it goes through the
intermediate stages and, due to the irreversibility condition, the final stage
will be larger than the one in quasi-static. By removing the irreversiblity
condition, we have verified that, in fact, its contribution in the difference of
profiles is minor.

The main factor seems to be the snapback phenomenon. When it occurs,
it is now well known that there is a difference between the energy dissipated
by the damage process and the energy gathered in the elastic phase. As a
result, there is a discontinuity in time of the total energy. In the dynamic
model, almost all the energy is used to damage the structure, leading to a
larger damage profile. To test this hypothesis, we consider a test case where
there is no snapback. As shown in Pham [46], this can be obtained if the
internal length is large enough. Therefore, we consider `=0.5. In this case, we
obtain in Figure 2.14 almost the same profiles for quasi-static and dynamic
loadings.
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Figure 2.14: Analytic damage profile for a brittle material under quasi-static
loading (red) and damage profile under dynamic loading obtained numeri-
cally (blue) for `=0.5.

2.5.3 Thickening of Cracks

If we continue the running a simulation after the value of a damage profile
has reached the value of 1, the cracks continue to evolve. We notice that in
a crack, α=1 in an interval that increases with time (see Figure 2.15) and
the displacement profile has oscillations in this interval. We observed this
phenomenon with all numerical schemes we implemented. This thickening
of cracks was also noticed in other works in the damage community (Bleyer
et al. [11], Li [28]).

What we found out is that, in fact, α is just arbitrarily close to 1, as
we are not allowed to have this value in an interval. In fact, by writing our
energy as

E =

∫
Ω

1

2
E(α)|u′|2 + w1α +

1

2
w1`

2|α′|2dΩ (2.150)

and supposing that α=1 in an interval I, then for all β<0 sufficiently small
and every point in the interval, we have

1

2
E ′(α)β + w1β − w1`

2α′′β ≥ 0. (2.151)

We also have that α′′=0 and if we consider E(α)=(1−α)2, then E ′(α)=0.
As a result, we have w1β≥0 for all β≤0. This is a contradiction. We have
thus proved that α cannot be equal to 1 in an interval.

58



2.5 – Qualitative Behaviour

Figure 2.15: Damage profile for a brittle material (`=0.1 and very low strain
rate). We see that α=1 in an interval, indicating a thickening of the crack.

This absence of rigidity leads to another undesirable effect: a displace-
ment field that is very irregular in the fractured regions (see Figure 2.16).
This holds true even for the variational scheme, despite its tendency to reg-
ularize the numeric solution.

2.5.4 Direction of Cracks

When studying 2D and 3D ductile fracture, we can observe that the
direction of cracks is not the same as in brittle fracture. In quasi-static, it
has been shown in Tanne [50] that the direction of cracks depends on the
yield stress σY , σc:=

√
w1/E0 and on the thickness of the specimen. When

σc>>σY , if we consider a rectangle under traction, the cracks that appear
are inclined and close to one of the borders.

As in quasi-static, we obtain for dynamic loading that the angle also
depends on the internal length and on height of the plaque.

One example of crack is shown in Figure 2.17. For this simulation, we
considered E0=1, σ0

Y =0.5 and `=0.05. As for the boundary conditions, we
considered α=0 at the extremities x=0 and x=1. At the instant t, the
imposed displacements are u|x=0 = (0, 0) and u|x=1 = (t, 0).
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Figure 2.16: Displacement for a brittle material after rupture. We see that
u is irregular in the region where the crack appeared.

2.6 Discontinuous Galerkin

So far, the discretization of all the variables was based on the classic La-
grange elements. We present now the Discontinuous Galerkin (DG) methods.

Discontinuous Galerkin methods are finite element methods that allow
discontinuities in the discrete trial and test spaces. We are never able to
create a real fracture if the displacement u is continuous: one (or more)
element will suffer all the deformation. In a fragile quasi-static fracture, this
caused errors in the profile of σ. From a practical point of view, it would
be natural to allow discontinuities in the discrete space, making the DG
approach very appealing.

Another reason is the study of a dynamic bar. We want to be able to
continue the simulation after the first crack appeared and, when a crack
appears, we want each part of the bar to act as an independent bar. This is
only possible if the nodes of different elements are completely independent.

The objective of this section is to first present a heuristic derivation to
the Poisson problem using the Symmetric Interior Penalty method (Arnold
[7]), as in Antonio Di Pietro and Ern [6], and, from that, obtain a suitable
form of energy that can be applied to gradient damage problems, both in
quasi-static and dynamics.

There is, however, a price to pay: the number of nodes increases and the
weak formulation is more complicated. In fact, the discontinuities appear on
the variational formulation as integrals of jumps in the boundary between
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Figure 2.17: Damage profile for a ductile 3D plaque under traction.

elements. Because of these new terms, the coercivity is no longer evident.
One last important difference in terms of implementation is the appli-

cation of boundary conditions: when using Lagrange elements, we imposed
a displacement at the boundary. When using DG-methods, the boundary
conditions are a part of the variational formulation.

2.6.1 Heuristic derivation

We consider the Poisson problem in a domain Ω:{
−∆u = f in Ω,

u = u0 on ∂Ω,
(2.152)

where f ∈ L2(Ω)the source term and the solution at the boundary is given
by the function u0 ∈ L2(Ω).
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We consider the Sobolev space Hk(Ω) and define the broken Sobolev space
on the mesh T :

Hk
broken(T ) := {v ∈ L2(Ω) : v|T ∈ Hk(T ), for all element T of the mesh T }.

(2.153)
We search an approximate solution to (2.152) in the space H1

broken(T ).
Before we continue, we need some definitions:

Definition 2.6.1. If F is a face in the mesh T , we say that

(i) F is an interface if there are two different elements T1 and T2 in T
such that F = ∂T1 ∩ ∂T2;

We denote the set of all interfaces by Fi.

(ii) F is a boundary face if there are is one element T ∈ T such that
F = ∂T ∩ ∂Ω;

We denote the set of all boundary faces (exterior faces) by Fe.

Definition 2.6.2. Consider a function v ∈ H1
broken(T ), two mesh elements

T+ and T− sharing a face, and the normal n from T− to T+. We define:

(i) Average of a function:

〈v〉 =
1

2

(
v|T+ + v|T−

)
. (2.154)

(ii) Jump of a function:

JvK =
(
v|T+ − v|T−

)
. (2.155)

It’s easy to verify the jump identity:

JuvK = JuK〈v〉+ 〈u〉JvK. (2.156)

We have now all the necessary definitions and we can proceed to the
calculations.

Suppose that u ∈ H1
broken(T ) ∩H2(Ω) is the exact solution to (2.152).

Then, for all v ∈ H1
broken, we have∫

Ω

−∆u · v =
∑
T∈T

∫
T

−∆u · v =

∫
Ω

f · v. (2.157)

If we integrate by parts, we have∑
T∈T

∫
T

∇u · ∇v −
∑
T∈T

∫
∂T

(
∇u · nT

)
· v =

∫
Ω

f · v, (2.158)
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n

T+T−

〈v〉 JvK

v|T−

v|T+

Figure 2.18: One-dimensional example of the average and jump between two
elements.

where nT is the outward normal to T on ∂T .
Each face F in Fi is shared by two mesh elements T+ and T−. Hence,∫

∂T+∩F

(
∇u · nT+

)
· v +

∫
∂T−∩F

(
∇u · nT−

)
· v =∫

F

(
∇u · nT+

)
· v −

∫
F

(
∇u · nT+

)
· v =

∫
F

J
(
∇u · n

)
· vK,

(2.159)

where n = nT+ = −nT− .
Therefore,∑

T∈T

∫
T

∇u·∇v−
∑
Fi∈Fi

∫
Fi

J
(
∇u·n

)
·vK−

∑
Fe∈Fe

∫
Fe

(
∇u·n

)
·v =

∫
Ω

f ·v. (2.160)

The solution u is continuous and its gradient is continuous. This means
that JuK = 0 and J∇uK = 0 in every face.

We then have∑
T∈T

∫
T

∇u·∇v−
∑
Fi∈Fi

∫
Fi

〈∇u·n〉JvK−
∑
Fe∈Fe

∫
Fe

(
∇u·n

)
·v =

∫
Ω

f ·v. (2.161)
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For (w, v) ∈ H1
broken(T )×H1

broken(T ), we define the forms

a0(w, v) =

∫
Ω

∇w ·∇v−
∑
Fi∈Fi

∫
Fi

〈∇w ·n〉JvK−
∑
Fe∈Fe

∫
Fe

(
∇w ·n

)
·v, (2.162)

and

L0(v) =

∫
Ω

f · v. (2.163)

By our calculations, the form a0 is consistent.
We also want the discrete bilinear form to preserve the original symmetry

of the exact bilinear form. We define

a1(w, v) =

∫
Ω

∇w · ∇v+

−
∑
Fi∈Fi

∫
Fi

〈∇w · n〉JvK−
∑
Fi∈Fi

∫
Fi

JwK〈∇v · n〉+

−
∑
Fe∈Fe

∫
Fe

(
∇w · n

)
· v −

∑
Fe∈Fe

∫
Fe

w ·
(
∇v · n

)
,

(2.164)

and

L1(v) =

∫
Ω

f · v −
∑
Fe∈Fe

∫
Fe

(
∇v · n

)
· u0. (2.165)

The form a1 is consistent, symmetric and a1(u, v) = L1(v), for all v ∈
H1
broken(T ).

We now fix two constants C1 and C2. We define

a(w, v) =

∫
Ω

∇w · ∇v+

−
∑
Fi∈Fi

∫
Fi

〈∇w · n〉JvK−
∑
Fi∈Fi

∫
Fi

JwK〈∇v · n〉+
C1

h

∑
fi∈Fi

∫
Fi

JwKJvK+

−
∑
Fe∈Fe

∫
Fe

(
∇w·n

)
·v −

∑
Fe∈Fe

∫
Fe

w·
(
∇v·n

)
+
C2

h

∑
Fe∈Fe

∫
Fe

w·v,

(2.166)

and

L(v) =

∫
Ω

f ·v −
∑
Fe∈Fe

∫
Fe

u0·
(
∇v·n

)
+
C2

h

∑
Fe∈Fe

∫
Fe

u0·v, (2.167)

where h represents the diameter of the smaller element of the mesh.
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If C1 and C2 are large enough, the bilinear form a is coercive (Antonio
Di Pietro and Ern [6]). Using the Lax-Milgram Lemma, we know there exists
one unique u ∈ H1

broken(T ) such that

a(u, v) = L(v), for all v ∈ H1
broken(T ). (2.168)

As a consequence, there exists a unique u ∈ H1
broken(T ) that minimizes

the functional

E(u) =
1

2

∫
Ω

||∇u||2+

−
∑
Fi∈Fi

∫
Fi

〈∇u·n〉JuK +
C1

h

∑
Fi∈Fi

∫
Fi

JuK2+

−
∑
Fe∈Fe

∫
Fe

(
∇u·n

)
·u+

C2

2h

∑
fe∈Fe

∫
Fe

||u||2+

−
∫

Ω

f ·u+
∑
Fe∈Fe

∫
Fe

u0·
(
∇u·n

)
− C2

h

∑
Fe∈Fe

∫
Fe

u0·u.

(2.169)

2.6.2 Application to the gradient damage model

We now apply the previous results to the gradient damage model. Using
the DG elements, the discrete problem allows discontinuities in u.

We write the quasi-static displacement problem as{
−div

(
E(α)(ε(u)− εp)

)
= 0 in Ω,

u = u0 on ∂Ω.
(2.170)

We want to find u ∈ H1
broken(T ) such that, for all v ∈ H1

broken(T ){
−
∫

Ω
div

(
E(α)ε(u)

)
v = −

∫
Ω

div
(
E(α)εp

)
v in Ω,

u = u0 on ∂Ω.
(2.171)

We integrate by parts:∫
Ω

div
(
E(α)εp

)
v =

∑
T∈T

∫
T

div
(
E(α)εp

)
v = −

∑
T∈T

∫
T

(
E(α)εp

)
ε(v)+

∑
T∈T

∫
∂T

(
E(α)εp·n

)
v

(2.172)
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From the calculations in the previous section, the bilinear form can be
defined as

a(w, v) =

∫
Ω

E(α)ε(w)·ε(v)+

−
∑
Fi∈Fi

∫
Fi

〈E(α)ε(w)·n〉JvK−
∑
Fi∈Fi

∫
Fi

JE(α)wK〈ε(v)·n〉+
C1

h

∑
fi∈Fi

∫
Fi

JE(α)wKJvK+

−
∑
Fe∈Fe

∫
Fe

(
E(α)ε(w)·n

)
·v −

∑
Fe∈Fe

∫
Fe

E(α)w·
(
ε(v)·n

)
+
C2

h

∑
Fe∈Fe

∫
Fe

E(α)w·v.

(2.173)

The form L is now

L(v) = −
∑
Fe∈Fe

∫
Fe

u0·
(
ε(v)·n

)
+
C2

h

∑
Fe∈Fe

∫
Fe

u0·v −
∫

Ω

(
E(α)εp

)
ε(v)+

∑
T∈T

∫
∂T

(
E(α)εp·n

)
v

.

(2.174)

Thus we can find the displacement u by minimizing the functional

EDG(u) =
1

2

∫
Ω

E(α)(ε(u)− εp)·(ε(u)− εp)+

−
∑
Fi∈Fi

∫
Fi

〈ε(u)·n〉JE(α)uK +
C1

h

∑
Fi∈Fi

∫
Fi

JE(α)uKJuK+

−
∑
Fe∈Fe

∫
Fe

E(α)
(
ε(u)·n

)
·u+

C2

2h

∑
Fe∈Fe

∫
Fe

E(α)||u||2+

∑
Fe∈Fe

∫
Fe

E(α)u0·
(
ε(u)·n

)
− C2

h

∑
Fe∈Fe

∫
Fe

E(α)u0·u+

∑
Fi∈Fi

∫
Fi

〈E(α)εp〉JuK +
∑
Fe∈Fe

∫
Fe

E(α)u0·
(
εp·n

)
.

(2.175)

To solve the damage problem, we have to minimize this same energy with
respect to α. By doing so, we are able to allow discontinuities in the displace-
ment when α=1 and, reciprocally, enforce α=1 where there is a displacement
in u.

It is important to emphasize that using the standard one-dimensional
energy E =

∫
Ω

1
2
E(α)|ε(u)− εp|2 +w1α+ 1

2
w1`

2|α′|2 for the damage problems
yields invalid results. In fact, for a broken bar, we have a discontinuous
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displacement and zero strain everywhere, leading to the absence of damage
in the bar. This is not a problem with Lagrange elements because jumps are
not allowed and all the deformation is located in one element. By refining the
mesh, the value of u′ tends to +∞. The term 1

2
E(α)|u′|2 is large if E(α) 6= 0.

2.6.3 Quasi-static results

We now apply this same formulation for the quasi-static brittle damage
evolution problem. We consider E(α)=α and w(α)=α, L=1 and `=0.1.

In order to illustrate the advantages of the DG formulation, we show the
results for a one-dimensional coarse mesh with only 20 elements.

We can see in Figure 2.19 the displacements obtained for each case. We
can see that, for the standard formulation, since no discontinuities in the
displacement are allowed, most of the strain is localized in the center of the
bar, and the residual strain in the rest of the bar is much larger than the
one obtained when using DG elements. When using the DG formulation, the
residual strain is irrelevant and there is a clear discontinuity in the middle,
as expected.

Figure 2.19: Displacements obtained using the standard P1 elements and the
DG formulation for the quasi-static brittle problem.

We use Figures 2.20 and 2.21 to compared the damage profile. It is
clear the the profile obtained using the DG formulation provides a better
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approximation to the analytic one. We remind that only 20 elements were
used.

Figure 2.20: Damage profile obtained using the standard P1 elements for the
quasi-static brittle problem.

Figure 2.21: Damage profile obtained using the DG formulation for the quasi-
static brittle problem.
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For a quantitative result, we first compare the stress in the bar after
fracture. The expect value is clearly zero. After numerically differentiating
u and multiplying this value by E(α), we obtain σ=0.015 for the standard
formulation and σ=0.0005 when using the DG formulation.

We then compare the energy dissipated in the damage process. As we al-
ready know, the dissipated energy for this problem is given by D = 4

√
2`/3 =

0.189. We obtain D=0.242 for the standard formulation and D=0.179 for
the DG formulation, an error five times smaller.

In summary, we can obtain a real discontinuity, a better damage profile
and a lower residual stress when using DG methods.

2.6.4 Dynamic damage problem (Newmark scheme)

The natural progression of this work is the implementation of the Discon-
tinuous Garlerkin method for solving the wave equation and the dynamics of
the damage problem. We will follow the same approach as Grote et al. [22].

The main calculations have already been performed for the quasi-static
problem. In that case, the equation of displacement could be obtained by
minimizing the energy given by equation (2.175). We obtained a problem
defined by

ah(u, v) = Lh(v), ∀v ∈ H1
broken (2.176)

where ah(·, ·) is continuous, symmetric and coercive, as long as α≤αmax<1.
The exact expression for each form is written in equations (2.173) and (2.174).
This problem is equivalent to solving divσ = 0 on the domain Ω. We recall
that the boundary condition u0 is already included in the energy (2.175).

The dynamic equation consists in solving{
ρü+ divσ = 0 in Ω

u = u0(t) on ∂Ω.
(2.177)

for given initial conditions u(t=0) and u̇(t=0).
From these considerations, the displacement problem can be expressed as

finding u such that∫
Ω

ü·v + ah(u, v) = Lh(v), ∀v ∈ H1
broken. (2.178)

The integration in time will be performed using the explicit Newmark
scheme. At the time instant ti, we calculate the acceleration Ü i+1 from the
displacement U i, damage α and plastic strain εp (these last two variables are
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present in the variational formulation of the problem and will be omitted
here): ∫

Ω

¨U i+1·v + ah(U
i, v) = Lh(v), ∀v ∈ H1

broken. (2.179)

With this change in the calculation of the acceleration, the numerical
solution is the same as in section 2.3.1.

With this approach, we do not gain precision and the numerical calcu-
lations are longer. The main advantage of this approach is that if α=1 in
a certain point, a discontinuity in the displacement becomes possible. We
consider a bar given by the interval [−L,L], where ε=1 and u̇=0 at t = 0,
and we block the extremities u(±L)=±L. It is clear the this system does
not move. We now impose a thin damage profile, with α=1 in the center.
As a result, each side of the bar behaves as an independent bar, where one
extremity is blocked and the other one is free. This does not happen when
using the standard formulation. The comparison of damage profiles is show
in Figure 2.22.

Figure 2.22: Displacements obtained using the standard P1 elements and the
DG formulation for the dynamic problem of a bar with a sudden crack in the
middle (t=0.25).

This approach, unfortunately, does not solve the problem of thickening
of cracks or irregular displacement near the crack tips in the general damage
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evolution problem. Discontinuities in the displacement are possible exclu-
sively when α=1, but displacements become irregular before we reach this
phase.
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Chapter

3
Application: Explosion and

Fragmentation of a Ring

The objective of this chapter is to model a cylinder in expansion, until
it breaks in many parts. We then want to count the number of fragments
obtained and determine how it depends on the parameters used. The main
difficulty is that the cylinder is invariant by rotation and, therefore, we should
obtain a damage configuration that is also axially symmetric. Surprisingly,
this is not what happens, as we obtain radial fissures somewhat evenly spaced,
as shown in Figure 3.1.

Figure 3.1: Example of fracture of a cylinder using the dynamic gradient
damage approach.
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We want to know what is causing damage profiles to localize in this
axial symmetric problem. Our main focus is on the study of the role of each
material parameter in the number of fragments in a one-dimensional periodic
bar. The first step consists of establishing the dimensionless problem and
knowing how many effective variables are in the problem. We then run a
series of numerical simulations in order to obtain how many cracks appear in
the bar for each set of parameter. We noticed that, in a homogeneous bar,
small perturbations (even purely numerical perturbations) were sufficient to
create localized damage profiles.

We then study the linearised system and show that some modes of per-
turbation are amplified faster than the others. Our main result is that, by
finding these modes, we can predict the number of cracks that appear in
the simulations. From that, we can obtain an analytic approximation to
the number of the cracks in the bar, depending on the material and loading
parameters.

We conclude by showing the simulations for a complete three dimensional
ring to validate the results using the one dimensional simplification.

3.1 Fragmentation of a Brittle Ring

3.1.1 1D Periodic Bar

We are interested in obtaining the number of fragments of a ring under
expansion. We consider first a brittle material, and the plasticity will be
added in the next section. Instead of working with a ring in a 3D scenario,
we consider a bar [0, L] and the following periodic conditions in the strain ε
and damage α: {

ε(x+L, t) = ε(x, t), x ∈ R
α(x+L, t) = α(x, t), x ∈ R,

(3.1)

for every t ∈ R.
We also suppose that we start our study with a completely sound bar

under uniform (in space) strain rate ε̇0. At the instant t = 0, we have{
ε̇(x, 0) = ε̇0, x ∈ [0, L]

α(x, 0) = 0, x ∈ [0, L].
(3.2)

For simplicity, we assume that the initial strain is zero, that is, ε(x, 0) = 0,
x ∈ [0, L]. The ring of initial perimeter L suffers uniform expansion. At an
instant t, the perimeter of the ring is L+ε̇0Lt. The displacement u at the
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extremities and ε must satisfy∫ L

0

ε(x, t)dx = u(L, t)− u(0, t) = ε̇0Lt. (3.3)

It is clear that ε(x, t) = ε̇0t satisfies the above condition.
At each time instant t, we write

ε(x, t) = ε∗(x, t) + ε̇0t. (3.4)

The variable ε∗ is the difference between the real strain and the uniform
strain. It is easy to see that ε∗ is periodic in x and∫ L

0

ε∗(x, t)dx = 0. (3.5)

We define the function u∗ as the difference between the real displacement
and the uniform displacement, that is,

u∗(x, t) = u(x, t)− ε̇0xt. (3.6)

By differentiating the above equation with respect to x, we find that
(u∗)′ = ε∗. It is clear that that u∗ is periodic.

The stress can be written as

σ(x, t) = E(α)((u∗)′ + ε̇0t). (3.7)

The dynamic equation is

ρü∗(x, t) = ρü(x, t) = σ′. (3.8)

Finally, we write the energy to be minimized in the evolution of damage
as

E(u∗, α) =

∫ L

0

1

2
E(α)((u∗)′ + ε̇0t)

2 + w(α) +
1

2
w1`

2(α′)2. (3.9)

The problem consists of finding two periodic variables u∗ and α satisfying
the dynamic equation (3.8) and dE

dα
(u∗, α)β = 0 for every β admissible.

3.1.2 Dimensionless Parameters

The objective of this section is to show that the problem of a bar made
of a brittle material under traction depends only on two dimensionless pa-
rameters.
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We consider a bar Ω = [0, L]. We write E(α) = E0a(α), where a(α=0)=1
and a(α= 1)=0.

The study of the damage evolution consists in defining an energy and
finding its minimum with respect to α:

E(u, α) =

∫
Ω

(1

2
E0a(α)

(
ε(u)

)2
+ w1α +

1

2
w1`

2(α′)2
)
dΩ. (3.10)

The dynamic equation in 1-D can be written as

ρü = σ′ = E0

(
a(α)ε(u)

)′
(3.11)

and we impose a displacement on the extremities:{
u(x=0, t) = 0

u(x=L, t) = ε̇0Lt.
(3.12)

For this model, we have the following parameters: L, E0, w1, `, ρ and ε̇0.
The first step is to reduce the number of parameters of the problem.
Since we are interested in finding the minimizer of E , it is clear that we

can redefine E as

E(u, α) =

∫
Ω

(1

2

E0

w1

a(α)
(
ε(u)

)2
+ α +

1

2
`2(α′)2

)
dΩ. (3.13)

It is clear that the dynamic equation depends only of E0

ρ
. Therefore, we

are only interested in 5 values: L, E0

w1
, E0

ρ
, `, and ε̇0

We will change the scale of our variables in order to remove 3 parameters
from our problem.

We first write x̃=x/L and t̃=Tt, for some constant T>0 that we will
specify later.

If x∈Ω, then x̃∈[0, 1]. The imposed displacements are now{
u(x̃=0, t) = 0

u(x̃=1, t) = ε̇0Lt.
(3.14)

If f(x, t) is a function of x and t, we define

f̃(x̃, t̃) := f(x, t). (3.15)

We differentiate it to obtain

df(x, t)

dx
=

1

L

df̃(x̃, t̃)

dx̃
and

df(x, t)

dt
=

1

T

df̃(t̃, t̃)

dt̃
. (3.16)
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Suppose we have a constant U0>0. We define{
ũ(x̃, t̃) := 1

U0
u(x, t)

α̃(x̃, t̃) := α(x, t).
(3.17)

Thus

E(ũ, α̃) =

∫
Ω

(1

2

E0U
2
0

w1L2
a(α̃)

(dũ
dx̃

)2
+ α̃ +

1

2

`2

L2

(dα̃
dx̃

)2
)
dΩ (3.18)

and
1

T 2

d2ũ

dt̃2
=

E0

ρL2

d

dx̃

(
a(α̃)

dũ

dx̃

)
. (3.19)

Since we only assumed T and U0 were two positive constants, we can

now fix them. We set U0=L
√

w1

E0
and T=L

√
ρ
E0

. We also define ˜̀:= `
L

and

˜̇ε0:=ε̇0
TL
U0

.
We have

E(ũ, α̃) =

∫
Ω

(1

2
a(α̃)

(dũ
dx̃

)2
+ α̃ +

1

2
˜̀2
(dα̃
dx̃

)2
)
dΩ (3.20)

and the dynamics of the system is

d2ũ

dt̃2
=

d

dx̃

(
a(α̃)

dũ

dx̃

)
. (3.21)

Considering x̃ and t̃ as the space and time variables (and removing the
tilde from out notation), we obtain the dimensionless problem in Ω=[0, 1] :

• The damage profile α minimizes the energy E taking into account the
irreversibility condition, where E is given by

E(u, α) =

∫
Ω

(1

2
a(α)

(
ε(u)

)2
+ α +

1

2
`2
(
α′
)2
)
dΩ. (3.22)

• The time evolution of the displacement u is given by

ü =
(
a(α)ε(u)

)′
, (3.23)

under the imposed boundary conditions{
u(x=0, t) = 0

u(x=1, t) = ε̇0t.
(3.24)
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Example 3.1.1. Suppose we want to study the fracture of a bar made of a
brittle material. We suppose this bar is 10 cm long and is being stretched with
a constant speed of 100m/s. For this material, we suppose that we have a
density ρ=8000kg/m3, modulus of elasticity E0=210GPa, fracture toughness
KIC=50MPa·m1/2 and an ultimate tensile strength σc=1000MPa. We also
consider E(α)=E0(1−α)2 and w(α)=w1α.

When using this damage gradient model in a quasi-static scenario, we
know from Pham et al. [44] that

w1 =
σ2
C

E0

=
(1000 · 106)2

210 · 109
Pa = 4.7MPa. (3.25)

The fracture energy Gc rate can be found:

Gc =
K2
IC

E0

=
(50 · 106)2

210 · 109
= 11.7kPa ·m. (3.26)

Again from [44], we know that the energy dissipated by the fracturing
process can be written as

Gc = `σC
4
√

2

3
. (3.27)

We obtain `=1.2·10−5m and ˜̀=`/L=1.2·10−4.
The values of T and U0 are

T = L

√
ρ

E0

= 0.1

√
8000

210 · 109
s = 2 · 10−5s (3.28)

and

U0 = L

√
w1

E0

= 0.1

√
4.7 · 106

210 · 109
m = 4.7 · 10−4m. (3.29)

The deformation can be now be found:

ε =
du

dx
=
U0

L

dũ

dx̃
= 4.73 · 10−3dũ

dx̃
. (3.30)

The dimensionless deformation speed is

˜̇ε0 = ε̇0
TL

U0

= 4.3 · 10−3ε̇0 = 0.43. (3.31)

This bar can be simulated using our model with only two parameters (˜̀=
1.2 · 10−4 and ˜̇ε0 = 0.43).

When analyzing the results, one must keep in mind that a time of 1 in
the simulation is equivalent to 2 · 10−5 s. In the same way, a deformation of
1 in the simulation is equivalent to ε = 4.73 · 10−3 in the real bar.

78



3.1 – Fragmentation of a Brittle Ring

To conclude, this section shows that we only need to parameters in our
simulations: the internal length ` and the strain rate ε̇. For this reason, we
set all the other parameters equal to one. The above example shows the
values of ` and ε̇ that we can obtain for a realistic material. Even though
we are not interested in the behaviour of one specific material, the values we
calculated in the example allow us to have an idea of the expected range of
each parameter.

3.1.3 Influence of Each Parameter

The following step is understanding the influence of the parameters in the
number of cracks in the bar. This problem is highly sensitive to numerical
parameters, specially the size of elements ∆x. Even though it is a purely
numerical parameter, it is has a great importance in the number of fragments
we are able to obtain. Therefore, for each set of parameters we want to study,
we run several simulations with different values of ∆x and see if the number
of fragments converge for ∆x → 0. We emphasize that we are interested in
the convergence of the number of the fragments, and not in the convergence
of u and α. Since we have a periodic problem, a translation of (u, α) would
be a different numerical result, but the same physical result.

Numerical simulations show that there is only a small difference between
the results if the mesh is fine enough. The number of fragments seems to
converge as ∆x→ 0.

We illustrate the damage evolution in Figure 3.2, where the damage pro-
files are shown for different time instants. The system evolves uniformly until
it reaches a critical value, causing stress and damage to localize in multiple
places at the same time. Each point where α=1 represents a crack. We recall
that the dimensionless problem has only two parameters (ε̇ and `).

For this bar of unitary length, the mesh size h is the inverse of the number
of elements. In Figure 3.3, we can see that for 1/` ≤ 1000, a simulation using
2000 elements (Nelem = 2000) is accurate. For 1/` ≤ 2000, 5000 elements
are enough. This holds true for other values of ` and Nelem. Hence, we will
consider that the results are accurate if h ≤ `/3. For other values of ε̇0, this
relation also seems to be valid.

In Figure 3.3, we can see that for 1/` ≤ 1000, a simulation using 2000
elements (Nelem = 2000) is accurate. For 1/` ≤ 2000, 5000 elements are
enough. This holds true for other values of ` and Nelem. Hence, we will
consider that the results are accurate if 1/` ≤ 1

3
Nelem or, equivalently, ` ≥

3/Nelem. For other values of ε̇0, this relation also seems to be valid.
Again from Figure 3.3, we can see that the number of fragments increases

linearly with 1/` for ε̇0 = 0.5. This linear behavior holds true for every other

79



Chapter 3 – Application: Explosion and Fragmentation of a Ring

Figure 3.2: Example of behaviour of evolution of the system. We see the
damage profile α∗ for different time instants. We use the dimensionless
parameters ε̇=0.5 and `=0.02.

value of ε̇0 between 10−4 and 102 tested.
We can see the influence of ε̇0 in Figure 3.4. We make ε̇0 vary between

10−4 and 102. The number of cracks change from less than 500 to over 1000.
We conclude with two remarks. Firstly, we can see that the behaviour is

not monotone. For close values of ε̇0, we see that there is an oscillation in
the number of fragments. But nevertheless, we see a clear tendency for the
number of fragments to increase as the strain rate increases.

Secondly, we remark that a small initial perturbation does not change the
number of cracks in the end. In fact, we launched these simulations using an
initial perturbation on the displacement or the damage profile at t=0. We
tried different shapes but we emphasize that the number of cracks in the end
is the same if the amplitude of the perturbation is sufficiently small. There
is, however, some minor changes in how they appear and how many of these
cracks develop until total failure.

3.2 Stability of the Homogeneous Solution (Brit-

tle Material)

In this, section, we study the evolution of a small perturbation to the
system in order to explain the number of cracks that appear in the bar. This
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Figure 3.3: We fix ε̇0 = 0.5 and see the number of cracks for different values
of `.

approach has been used in other works in order to study the development of
necks in elastic bars subjected to dynamic stretching, such as Vaz-Romero
et al. [52].

3.2.1 Study of a Perturbation

We consider a periodic bar [0, L] made of a brittle material such that
E(α)=E0(1− α)2 and w(α)=w1α.

We recall that the homogeneous strain and damage can be written as

ε0 = ε̇t and α0 = 1− w1

E0ε2
0

. (3.32)

We are going to study the influence of a perturbation of the form (δε, δα).
The dynamics of the system can be written as

ρε̈ =
(
(1− α)2E0ε

)′′
. (3.33)

If we take (ε, α)=(ε0 + δε, α0 + δα) and consider only the terms of the
first order, we obtain

ρδε̈ = (1− α0)2E0δε
′′ − 2E0(1− α0)ε0δα

′′ (3.34)

or, equivalently,

δα′′ =
1

2

w1

E0ε3
0

δε′′ − ρε0

2w1

δε̈. (3.35)
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Figure 3.4: Influence of ε̇0 for a fixed value of `.

We now write the damage criterion and look at the terms of the first
order:

E0ε
2
0δα + 2(α0 − 1)E0ε0δε− w1`

2δα′′ = 0. (3.36)

We now use the expression of δα′′ found in the dynamic evolution equation
and we find

E0ε
2
0δα−

2w1

ε0

δε− w1`
2
(1

2

w1

E0ε3
0

δε′′ − ρε0

2w1

δε̈
)

= 0. (3.37)

We now differentiate this expression twice in space

δα′′ =
2w1

E0ε3
0

δε′′ +
w2

1`
2

2E2
0ε

5
0

δε′′′′ − ρ`2

2E0ε0

δε̈′′. (3.38)

and we replace the expression of δα′′ in equation (3.34) to find

ρδε̈− ρw1`
2

E0ε2
0

δε̈′′ = − 3w2
1

E0ε4
0

δε′′ − w3
1`

2

E2
0ε

6
0

δε′′′′. (3.39)

We now use that ε0=ε̇t, to find the equation dictating the evolution of
the perturbation:

ρδε̈− ρw1`
2

E0ε̇2t2
δε̈′′ = − 3w2

1

E0ε̇4t4
δε′′ − w3

1`
2

E2
0 ε̇

6t6
δε′′′′ (3.40)

We try to find a solution in the form δε= sin(kx)f(t). We thus obtain
the ordinary differential equation to be solved:

ρ
(

1 +
w1`

2k2

E0ε̇2t2

)
f ′′(t) =

( 3w2
1k

2

E0ε̇4t4
− w3

1`
2k4

E2
0 ε̇

6t6

)
f(t) (3.41)
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3.2.2 Numerical Solution

As we have seen in section 3.1.2, the brittle problem depends only on the
internal length and the strain rate. For this reason, as an initial study, we
are going to fix all parameters equal to one (with the exception of `, t and
k). We take `=0.02 and k=2πN and we look at the evolution of the mode
N between the instant where damage begins to increase (t0=1) and tf=5.

For that, we have to solve the equation f ′′(t)=gN(t)f(t). The solution
will be denoted fN . We can solve these equations numerically, with initial
values f(0)=1 and f ′(0)=0. The behaviour changes drastically depending on
N :

• for small values of N , fN has an amplitude of order 105;

• for medium values of N (N≈10), fN has an amplitude of order 1020;

• for large values of N , fN has an amplitude of order 101.

Figure 3.5: N = 1, amplitude
14000

Figure 3.6: N = 12, amplitude
1028

For these same parameters, we plot the amplitude of fN(t) for different
values of N , and t=5.0 fixed (Figure 3.8).

Suppose that we run the simulation of the whole system and find N
cracks. For this same N , we find that the amplitude fN of the mode N is a
lot bigger than for the other modes.

Since all the perturbation modes are present, we are going to consider
that the one that dominates the system is the first one to be amplified of a
factor S.

When using the library FEniCS, we find that max(ε)−min(ε) ≈ 10−16 in
the first iteration. We are going to consider that the perturbation becomes
visible when they have the amplitude of 10−3. For this reason, we choose
S=1013.
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Figure 3.7: N = 70, amplitude 8

With that in mind, we propose a criterion to determine the number of
cracks in the system by studying the amplitude of the each perturbation.
We are going to consider that the first perturbation to reach the threshold S
will be the one that dominates the system and dictates the number of cracks
that are going to appear.

More precisely, for each perturbation N , we denote by tN the time such
that the amplitude reaches the threshold, that is, |fN(tN)|=S (we are going
to ignore the modes that do not reach the threshold).

The mode N∗ is the first one to reach the threshold (tN∗≤tn, ∀n) and,
therefore, N∗ cracks will appear.

ε̇ ` Cracks (simulation) N∗

1.0 10−2 20 18
1.0 5·10−3 36 34
1.0 2·10−3 81 82
1.0 10−3 162 160
1.0 5·10−4 318 318
1.0 10−4 1040 1500

Table 3.1: Comparison between number of cracks found in the simulations
and using the numeric calculations.

As we can see in Table 3.1, our method gives us a good approximation for
the number of cracks. We have, however, to pay attention to some details:
for instance, if we take `=10−3, we find t100=1.0323 and t1600=1.0311. If we
take `=10−4, we find t1000=1.0032 and t160=1.0028.
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Figure 3.8: Amplitude of fN(t) as a function of N and t=5 fixed. We consider
`=0.02.

If `=10−4 and ε̇=10−5, the values of t100 and t200 are very close (t100=100000.0357
and t200=100000.0328). This means that we cannot tell if the bar is more
likely to have 100 or 200 cracks.

Another important aspect is that this method does not capture well the
influence of the strain rate. If, for instance, we fix `=10−3 and change ε̇, we
don’t see a change in result when ε̇ is very small.

Even if the number of cracks, in some cases, isn’t exactly the same found
in the simulations, we find the correct instant for when the perturbations
become visible.

If we know the time tN∗ when the threshold is reached for the mode N∗,
then we can calculate the damage value:

α∗ = 1− w1

E0ε̇2t2N∗
. (3.42)

We compare the values of damage for which the perturbations become
visible in Figure 3.15. We can see that we have very precise results (and it
works well for every internal length and strain rate).

In order to validate our reasoning and calculations, we are going to make
a test. Instead of supposing that all modes have the same initial amplitude,
we are going to force one mode to have a larger amplitude. For modes that
develop at roughly the same time, this should allow us to control the number
of cracks that are going to appear.
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Figure 3.9: Value of α when the perturbations become visible (`=0.01). In
blue, the values found in the simulations. In red, the results using the method
described above.

We recall that:

• purely numerical perturbations are of the order of 10−16;

• we are going to impose perturbations with amplitude between 10−12

and 10−3.

• a perturbation sin(2πNx/L) creates N cracks (if N is one of the modes
that increases fast enough);

• we can also find the value of α when cracks appear (the number of
cracks is already known).

Since we only have one mode acting, we are going to impose a small initial
perturbation A0sin(2πNx/L) and see when its amplitude reaches one.

In the table below, `=0.02 and ε̇=1. Our method could not accurately
predict how many cracks we should have since the instants when modes
between 8 and 12 reach the threshold were almost the same. If we impose a
perturbation sin(2πNx), with N between 8 et 12, we should find N cracks
and the value of α when instabilities become visible should depend only on
the initial amplitude.

This is exactly what we found with this simple test. We compared these
values of α found using our method, and imposing a initial perturbation to
ε and running the simulation of the whole system. The values can be seen
in Table 3.2.
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initial amplitude α in our method α in the complete simulation
10−8 0.537 0.564
10−7 0.392 0.419
10−5 0.390 0.419
10−5 0.390 0.419
10−4 0.331 0.365

Table 3.2: Comparison between the value of damage for which instabilities
become visible in the simulations and using the numeric calculations when a
perturbation is imposed.

3.2.3 Analytic Approximation

The method developed in the previous section gives us good results when
compared to the full simulation. In order to go further, we would like to be
able to tell explicitly how each parameter influences the number of cracks
and when they start to localize.

We recall that each perturbation is written as sin(kx)f(t), where

ρ
(

1 +
w1`

2k2

E0ε̇2t2

)
f ′′(t) =

( 3w2
1k

2

E0ε̇4t4
− w3

1`
2k4

E2
0 ε̇

6t6

)
f(t). (3.43)

We now define the dimensionless ratios

τ =

√
E0

w1

ε̇

`k
t and λ =

√
w1

ρ

1

ε̇`
. (3.44)

We define y(τ)=f(t) and we have

y′′(τ) = λ2g(τ)y(τ) (3.45)

where

g(τ) =
3τ 2 − 1

τ 4(τ 2 + 1)
. (3.46)

We are going to study the behaviour of g(τ) in three regions:

τ << 1/
√

3

In this region, g(τ)<0. As a result, the growth of y is not enough to
influence the system.
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Figure 3.10: Value of y for τ << 1/
√

3 for λ=100.

τ close to 1/
√

3

We write τ=1/
√

3 + T .
Thus

g(τ) =
(
√

3τ − 1)(
√

3τ + 1)

τ 4(τ 2 + 1)
≈ 27

√
3

2
T (3.47)

and
d2y

dT 2
≈ 27

√
3

2
Ty(T ). (3.48)

By using Airy’s function, we can find a solution to this problem and see
that it does not grow fast enough.

τ >> 1/
√

3

We can find a numerical solution to this equation and see that the function
y(τ) increases really fast.

We consider the change of variable y = exp(λz). We have y′ = λ exp(z)z′,
y′′ = (λz′′ + λ2z′2) exp(z) and

1

λ
z′′ + (z′)2 = g(τ). (3.49)

Since we are working with large values of λ, we consider the Taylor ex-
pansion z = z0 + z1/λ.
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Figure 3.11: Value of y for τ close to 1/
√

3 for λ=100.

Figure 3.12: Value of y for τ >> 1/
√

3 for λ=100.

By taking the terms that depend on λ0, we find z′20 = g(τ). Therefore
z′0= ±

√
g(τ). Since we are interested by the functions that grow very fast,

we are going to take z′0=+
√
g(τ).
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The terms preceded by λ−1, are z′′0 + 2z′0z
′
1 = 0. Therefore

z′1 = −z′′0/2z′0 = −1

2

d

dτ
log z′0 = −1

4

d

dτ
log g(τ). (3.50)

If we want y(τ=τ0)=1, we must have z(τ=τ0)=0.
We define

G(τ) =

∫ τ

1√
3

√
g(s)ds (3.51)

Thus z = G(τ)−G(τ0)− 1
4λ

(log g(τ)− log g(τ0)).
We find the approximation for y:

y(τ) ≈ exp(λz) = exp(λ(G(τ)−G(τ0)))
g(τ0)1/4

g(τ)1/4
(3.52)

With this approximation, if λ is large enough, we have a very good ap-
proximation and we cannot differentiate the exact from the approximate
curve.

The adimensional time τ0 is the correspondent to tc=
√
w1/E0/ε̇.

Damage and the perturbation start to evolve at τ0. We fix a thresh-
old S and, for a perturbation that has unitary amplitude, we can find the
adimensional time τ ∗ for which y(τ ∗)=S.

By taking the logarithm on both sides of the equation, τ ∗ satisfies

G(τ ∗)−G(τ0)− 1

4λ
(log g(τ ∗)− log g(τ0)) =

logS

λ
. (3.53)

Our goal is to find the first perturbation to reach the threshold. The real
instant where that happens will be denoted by t∗. We remark that

t∗ = τ ∗
tc
τ0

. (3.54)

Our problem consist in finding the value of k that minimises t∗:

min
k>0

t∗. (3.55)

We recall that

τ =

√
E0

w1

ε̇

`k
t. (3.56)

The values of τ and t are connected by the material constants and k. By
changing the value of k, we also change τ0 and, if we know the value τ0, we
can find k. For this reason, we are going to solve the problem

min
τ0

t∗, (3.57)
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which is equivalent to finding

min
τ0

τ ∗

τ0

. (3.58)

We define the auxiliary function

ψ(τ) = G(τ)− log g(τ)

4λ
. (3.59)

It is easy to see that

ψ(τ ∗) = ψ(τ0) +
logS

λ
. (3.60)

We take the Taylor expansion of ψ to find

ψ(τ ∗) ≈ ψ(τ0) + ψ′(τ0)(τ ∗ − τ0). (3.61)

These two equations allow us to find an approximation to τ ∗ by using

ψ′(τ0)(τ ∗ − τ0) =
logS

λ
. (3.62)

Therefore, we have

τ ∗ ≈ τ0 +
logS

λψ′(τ0)
. (3.63)

The minimisation problem (3.58) becomes

min
τ0

[
1 +

logS

λτ0ψ′(τ0)

]
, (3.64)

which is equivalent to maximising the function τψ′(τ).
Since we are working with large values of λ and the value of g(τ) has only

some small variations close to 1, we are going to consider that the function
τψ′(τ) does not depend on λ.

We only have to calculate once the maximum value of τψ′(τ). This value
is reached for τ0≈1.0, and τ0ψ

′(τ0)≈1.05.
Since we now know τ0, we can find the number N of cracks :

N =
kL

2π
=

L

2π

√
E0

w1

ε̇tc
`τ0

. (3.65)

We simplify this expression to find

N ≈ L

2π`
(3.66)
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Figure 3.13: Function τψ′(τ) for large values of λ (λ=100 in the image).

We use equations (3.54) and (3.63) to find

t∗ = tc
(
1 +

logS

λτ0ψ′(τ0)

)
≈ tc

(
1 +

logS

1.05λ

)
. (3.67)

The value of damage for which the localized solutions appear is

α∗ = 1− w1

E0(ε̇t∗)2
≈ 1− 1

(1 + logS
1.05λ

)2
= . (3.68)

By replacing λ, we find

α∗ ≈ 1− 1

(1 + ρε̇`
1.05
√
w1

logS)2
(3.69)

Results

We can see the results in Figures 3.14 and 3.15. To summarize:

• we have good approximations for the number of cracks and damage
value;

• the number of cracks depends exclusively on `, the small influence of
the strain rate is not taken into account;
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• the chosen threshold influences the instant where the perturbations are
considered visible, but not the number of cracks;

• the approximation for αmin is less precise for large strain rates.

Figure 3.14: Number of cracks for ε̇=1 and different values of `. The analytic
approximation is obtained by the expression L/2π`.

Figure 3.15: Value of α0 for different dimensionless strain rates ε̇.
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3.3 Complete 3-D Simulation of a Ring

The last part of this work consists of comparing the results obtained for
the 1-D periodic bar to those obtained for a 2-D or 3-D ring. More precisely,
we want to know if the number of cracks we obtained in 1-D or 3-D are the
same for a brittle material.

The multidimensional problem is clearly more complex. In the 1-D bar,
we had two main parameters: the internal length and the strain rate. For a
complete 3-D ring, we also have to study the influence of the thickness, the
amplitude and the form of the applied loading, and there are more available
options for the shape of the initial perturbation.

After running a set of simulations, we obtained answers for some of these
questions: the thickness has little influence on the number of cracks, as long
as it is small compared to the internal radius, but not too small as a very
thinner rings pose problems for damage localization; the 2-D and the 3-D ring
behave in the same way, so most of the tests were done in a 2-D scenario.

As for the loading, we considered an imposed displacement at the internal
surface or an internal pressure. The form of this loading (that is, uniform or
almost uniform with sufficiently small perturbations) has little influence on
the number of cracks; it does, however, play an important role in facilitating
damage localization and the instant when these damage profiles appears. We
place ourselves in the case of small strain rates (in the dimensionless problem,
when compared to one). For larger values of the strain rate (close or larger
than one), the localization of damage is not guaranteed or is very close to
α=1, making it difficult to distinguish the cracks.

When running our simulations, we used a structured mesh, as nodes are
aligned with the direction of the movement and allow us to better represent
the dynamics of the system. Different mesh sizes were used, giving us close
(with a difference of less than 20%) numbers of cracks. The mesh is illustrated
in Figure 3.17.

To be precise, the system starts at rest u(t=0)=v(t=0)=0. The external
boundary is free of constraints (σrr=0) and a displacement proportional to
the time is imposed in the inner boundary (ur=ε̇0t).

The radius of the internal hole is Ri=1 and we tried different values of
the external radius Re between 1.05 and 1.2, yielding similar results.

For the 1-D problem, we showed that the number of cracks was very close
to L/(2π`) and that the strain rate has only a small influence in the number
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Figure 3.16: Illustration of a generic mesh used for the simulations.

of damage profiles that appear. In a multidimensional ring, the length L of
the bar represents the perimeter, so the expected number of cracks is 1/`.

For the simulations, we considered the dimensionless problem by setting
E=1, ν=0.3, ρ=1, w1=1, Re=1.1 and placed ourselves in the case of plane
stress.

Table 3.3 shows the results we obtained for a fixed strain rate ε̇=0.5 and
different values of internal length. We expected the number of cracks to be
proportional to 1/`, but that is not what happens here. For lower values
of `, we overestimated the number of cracks and, for higher values of `, we
underestimate the number of cracks. We used a mesh of size 10−3.

` expected number of cracks cracks obtained in the simulation
0.063 16 23
0.0315 32 38
0.0156 64 58

Table 3.3: Influence of the internal length in the number of cracks for ε̇=0.5.

We see in table 3.4 that the strain rate plays an important role in the
number of cracks. We fixed `=0.063 and we see a significant change in the
number of cracks for ε̇=0.05 and ε̇=0.5. For values lower than ε̇=0.05, we
didn’t see a significant change in the number of cracks. For values higher
than ε̇=0.5, the localization of cracks was less evident and the results were
not considered.
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ε̇ expected number of cracks cracks obtained in the simulation
0.025 16 14
0.05 16 14
0.125 16 17
0.25 16 20
0.5 16 23

Table 3.4: Influence of the strain rate in the number of cracks for `=0.063.

Figure 3.17: Damage profile for ε̇=0.5 and `=0.0157. We obtained 58 cracks
(64 expected).

This means that the 2-D and 3-D cases are more complex and that the
study of the one-dimensional bar is not enough to accurately predict the num-
ber of cracks. We have, however, the same tendency (increase for smaller in-
ternal lengths and higher strain rates) and the the number of cracks obtained
is on the same order of the predicted value.
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Other sources of difference might be the non-uniformity of the damage
in the radial coordinate and the presence of more components in the stress
tensor.

3.4 Stability of the Homogeneous Solution (Duc-

tile Material)

We will now study the behaviour of the system when we also consider
plastic strain. We consider the dimensionless model described by the energy∫ L

0

(1

2
(1− α)2(ε− p)2 + α +

1

2
`2(α′)2 + (1− α)2σpp̄

)
dx, (3.70)

where the new parameters σp is defined by the ratio of the original yield
stress and the critical damage stress.

Since the complete plasticity problem is difficult to study, we will consider
p̄=p and search for p that minimises the energy.

We have the following dimensionless equations:
dynamic : ε̈ =

(
(1− α)2(ε− p)

)′′
plasticity : ε− p = σp

damage : −(1− α)(ε− p)2 + 1− `2α′′ − 2σp(1− α)p = 0.

(3.71)

We first consider the homogeneous solution. It is easy to see that

ε0 = ε̇t and p0 = ε̇t− σp. (3.72)

Damage begins to evolve at t=(1 + σ2
p)/(2σpε̇) and can be written as

α0(t) = 1− 1

(ε0 − p0)2 + 2σpp0

= 1− 1

2σpε̇t− σ2
p

. (3.73)

We consider the perturbation (δε, δp, δα). We have
δε̈ = −2σp(1− α0)δα′′

δε = δp

(σ2
p + 2σpp0)δα− `2δα′′ − 2σp(1− α0)δp = 0.

(3.74)

As in the brittle case, we replace δα′′ in the last equation, differentiate it
twice in space and find

(σ2
p + 2σpp0)δα′′ +

`2

2σp(1− α0)
δε̈′′ − 2σp(1− α0)δε′′ = 0. (3.75)
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We now replace δα′′ in the movement equation:

δε̈ = −
4σ2

p(1− α0)2

σ2
p + 2σpp0

δε′′ +
`2

σ2
p + 2σpp0

δε̈′′. (3.76)

We now inject a perturbation δε=sin(kx)f(t). We have

(1 +
`2k2

σ2
p + 2σpp0

)f ′′(t) =
4σ2

p(1− α0)2k2

σ2
p + 2σpp0

f(t). (3.77)

This gives us

f ′′(t) = gk(t)f(t) with gk(t) =
4σ2

p(1− α0)2k2

σ2
p + 2σpp0 + `2k2

. (3.78)

We now replace p0 and α0 to find

f ′′(t) = gk(t)f(t) with gk(t) =
4

(2ε̇t− σp)2
(2σpε̇t−σ2

p

k2
+ `2

) (3.79)

The function gk(t) is always positive and decreases for sufficiently large
times. Besides, the bigger the value of k, the slower this function decreases.
For this reason, the value of fk(t) increases with k, as we can see in Figures
3.18-3.21.

Figure 3.18: Evolution of f(t) for
k=1, σp=0.5, `=0.01 and ε̇=1.0.
Amplitude 1.15.

Figure 3.19: Evolution of f(t) for
k=10, σp=0.5, `=0.01 and ε̇=1.0.
Amplitude 100.

We conclude that the number of cracks found will depend on the mesh
used since finer meshes allow more modes to appear. This is in agreement
with the simulations, both in 1-D and in 2-D. When refining the mesh, we
the plastic strain is concentrated in very few elements and the simulations do
not seem to converge when refining the mesh. This is illustrated in the two-
dimensional simulations of a ductile ring, where we impose the displacement
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Figure 3.20: Evolution of f(t) for
k=100, σp=0.5, `=0.01 and ε̇=1.0.
Amplitude 6·1015.

Figure 3.21: Evolution of f(t)
for k=1000, σp=0.5, `=0.01 and
ε̇=1.0. Amplitude 1024.

of the interior surface. We see that if the ring is thick enough, the cracks
are no longer in the radial direction, but inclined, as observed in rectangles
by Tanne [50]. In the simulations, we use an external radius of 1.2 and an
imposed displacement radial displacement uR=0.5·t. We use the same time
step ∆t=103 and we vary the number of elements, always respecting the
stability condition. We see that multiple cracks appear and they cross each
other (Figure 3.22).

We see in Figure 3.22 that the cracks did not fully develop. To better
analyse what happened, we look at damage profile at the external surface
when angle varies between 0 and 2π. We show the results for 500 elements
(Figure 3.23) and 2000 elements (Figure 3.24) in the perimeter. The number
of elements in the radial direction has little influence in the number of cracks.
We can see that the damage does not converge and we obtain more localized
damage profiles when we refine the mesh.

3.5 Conclusion of the Chapter

We have studied the development of damage profiles in an one-dimensional
periodic bar. The main objective was to understand the unexpected appear-
ance of localized profiles in a homogeneous bar. We showed that these profiles
appear because small perturbations (of amplitude equivalent to the numeri-
cal errors) were amplified to the point of becoming visible in the system. We
then proceeded with an analytic study, where we found an approximation for
the number of damage profiles that appeared. This analytic approximation
confirms that the internal length is the main factor dictating the number of
cracks. The last part was a comparison between the one-dimensional bar
and a multidimensional ring. There were some differences in the results, but
overall, the order of the number of cracks is preserved, as well as the tendency
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Figure 3.22: Damage on a ductile cylinder using 2000 elements on the perime-
ter.

to obtain more cracks for smaller internal lengths or larger strain rates.
The main difference comes when comparing to energy models (Grady

[19]), that predict that the number of fragments is proportional to ε̇2/3. These
models use the assumption that all kinetic energy is transformed in surface
energy, and, therefore, increasing the number of cracks. In our model, this
hypothesis no longer holds as an important part the of energy is dissipated
as homogeneous damage.

Lastly, we see a difference of behaviour between the brittle and ductile
cases. In the linearised system of equations obtained for a ductile material,
the term corresponding to the perturbation of the elastic energy disappears.
The equation that describes the amplitude of the perturbation changes dras-
tically and there is no longer a value of the period k that maximises this
amplitude. This means that, if the mesh is fine enough, the growth of the
perturbation will be captured in the brittle case. In the ductile case, how-
ever, finer meshes allow us to capture more modes of perturbation. Since
the growth of amplitude of these modes is not bounded, we do not obtain
convergence.
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Figure 3.23: Damage on the external surface for a ductile cylinder using 500
elements on the perimeter. We obtain 48 profiles.

Figure 3.24: Damage on the external surface for a ductile cylinder using 2000
elements on the perimeter. We obtain 68 profiles.
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Chapter

4
Shockless Spalling

The identification of the parameters used in the gradient damage model
is of extreme importance if such model is to be used in an industrial context.
In this chapter, we detail how these parameters can be calibrated from a set
of experiments.

The objective of this chapter is to study the shockless spalling test of
a ceramic material and, from the results obtained in the experiments, we
want to propose a model representing the material behaviour with as few
parameters as possible, otherwise it would be impossible to identify them all.
These tests also allow us to better understand how the strain rate influences
the critical stress and the dissipated energy.

We remark that we are interested in the behavior of a brittle material
since a ductile material would require more parameters to be calibrated and,
therefore, observing the influence of the strain rate would be more difficult.
Our model depends thus on only three parameters (instead of four, for the
ductile case): the internal length `, the function E(α) describing how damage
affects de rigidity and the function w(α) describing the dissipation of energy.

The difficulties we faced come from the fact that we are working with
shock-waves and the material in question does not have the same properties
in quasi-static and in dynamics. We will begin this chapter by describing the
experiments and showing that calibrating the parameters using only quasi-
static tests is not enough to account for all the dynamic phenomena.

With that said, the emphasize that we want to propose material param-
eters that work well for both quasi-static and dynamic loadings.
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4.1 Description of the Spalling Tests

In this section, we will describe the experiments and their numerical mod-
elling. The details of the experiments can be seen in Zinszner et al. [53].

4.1.1 Spalling Experiments

For each experiment, a specimen of height 10mm was placed in a pulse
machine. The machine applied a compressive stress at one of the extremities
of the specimen, while the other extremity was free of constraints. A com-
pressive wave then propagated in the material and reached the free surface.
The wave then returned, but now as a traction wave of same amplitude,
causing the fracture of the specimen.

From each experiment, we obtained three informations:

1. the input stress as a function of time;

2. the velocity of the free surface (figure 4.1);

3. the distribution of cracks in the specimen (figure 4.2).

Figure 4.1: Free surface velocity for the six experiments (Zinszner et al. [53]).
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Figure 4.2: Analysis of the specimen for experiment G692 (Zinszner et al.
[53]).

4.1.2 Numerical Implementation

The cracks, the imposed pressure and the velocity at the free surface
were uniform in the transverse direction, allowing us to model the specimen
as a one-dimensional bar. Simulations were also performed in a 2D or 3D
scenario, but there was no significant change in results, as we’ll see in the
next sections.

This approach has two main advantages:

1. working with a one-dimensional model allows us to perform many sim-
ulations, even if we have a very fine mesh;

2. we don’t have to worry about different models of traction-compression
asymetry, we will just consider the sign of the stress σ.

We model the specimen as bar [0, L]. At the extremity x=0, we impose
a controlled compression wave. The elastic behaviour of the system allows
the wave to travel through the whole bar and be reflected on the other side,
returning as a traction wave.
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This traction wave is then responsible for the fracture of the bar. We then
compare the damaged zones obtained in the simulations to the regions where
cracks appear in the experiments. The extremity x=L is free and vibrates.
The velocity of this free surface is also measured and compared to numerical
results.

For these simulations, we impose a damage criterion that allows fracture
only in traction (σ>0).

The material used was the Al23 alumina. We have ρ = 3890 kg/m3,
E=350 GPa, σc = 202.8 MPa, L=10mm.

4.2 Using the standard AT1 model

We first run the simulations using the standard AT1 model. We recall
that E(α)=E0(1− α)2 and w(α)=w1α.

The behaviour of a bar using this damage model is well-known. Using
the analytic results for a quasi-static loading, we know that we have an
homogeneous elastic phase and then sudden rupture when the stress reaches

the critical value σc. We can thus find w1= σ2
c

E0
=0.1175MPa).

We can also find in the literature that KIC = 4 MPa · m1/2. Comparing
it to the energy obtained in a quasi-static test, we have

K2
IC

E
=

4
√

2

3
`w1.

We can then find the characteristic length ` = 0.000206m.

We can see in Figure 4.3 the damage profile. The region where α=1 is
roughly the same as the regions where, in the experiments, we had a large
crack density.

In Figure 4.4, we see the velocity of the free surface. We take E(α) =
E0(1−α)q for different values of q. Using the critical stress σc, we can easily

find w1 = σ2
c

E
q
2
. We can see that the value of q does not produce signifi-

cant changes in the surface velocity. When comparing the experimental to
the numerical results, we see that we have a good region for the cracks, but
the free surface velocity is overestimated. In this work, we present possi-
ble modifications to the model in order to better approach the free surface
velocity.
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Figure 4.3: Damage profile for the AT1 model in the G692 experiment.

4.3 Change in the critical stress

We consider the standard AT1 model. The first possible solution for the
difference in the free surface velocity could be a simple change in the value
of the constant w1, which is equivalent to changing the critical stress σc, as
σ2
c=E0w1.

By changing the value of w1, we can see its influence in the model. Since
we don’t want to change the value of the dissipated energy, changing w1

forces us to also change `.

We can see in Figure 4.5 that increasing the value of σc causes a change
to the free surface velocity. For higher values of σc, we see that the velocity,
after the initial peak, has lower values for the minimum, but keeps roughly
the same values for the following peaks. In the experiments, we observe that
the peaks are lower after rupture.

This approach, however, is not recommended for two reasons: the first
one is that by changing the critical stress, it will no longer coincide with the
one of the quasi-static experiment. The second reason is that, to have a good
approximate curve for each experiment, we would need a different value of
σc for each case, even though the same material was used.
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Figure 4.4: Velocity of the free surface for E(α)=E0(1−α)q and w(α)=w1α.

4.4 Dependency of the deformation speed ε̇

Since for each experiment the velocity of the bar was different, we decided
to use a law for w1 that depended on the value of strain rate ε̇.

We proposed a law of the form

w1(ε̇) =
(
1 +

ε̇2

ε2
ref

)
w1,

for some reference constant εref such that the results would be according to
the experiments. This approach allows us to find the correct value for the
critical stress when ε̇ tends to zero and we obtain the quasi-static case.

The value of ε̇ can be found in two ways: by finding the derivative of
the velocity in space, or by dividing by ∆t the difference of the strain in two
successive instants.

As we can see in Figure 4.6, this method gives us good results for the
G692 test, and the critical stress is unchanged for a quasi-static simulation.
This method, however, is not viable because for each experiment, we need a
different value of εref . By taking εref=5000s−1, we obtain a good velocity
curve for the G692 test, but the same is not true for the G672 test, as shown
in Figure 4.7).
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Figure 4.5: Velocity of the free surface for the AT1 model and different values
of the critical stress.

4.5 Two-dimensional simulations

All the simulations discussed so far were of a one-dimensional bar. We
tried the same simulations in 2D, imposing a uniform pressure at x=0.

We tried the plane-strain and the plane-stress cases, but there were no
significant changes in results.

It is worth noting that in 2D and 3D, we have many more choices of
the traction-compression asymmetry criterion and these choices were not
explored in this work. We imposed the condition Trε>0 in order to have
damage, so we could test the influence of moving from a one-dimensional to
a multi-dimensional model.

When comparing the 1D to the 2D results, we see that we obtain the
same damage region and that the free surface velocity is still far from that
of the experiments.

4.6 Other laws for w(α)

We tried adding more terms to w(α). For instance, if we write w(α)=w1α+w2α
2,

we obtain some interesting results. Using this model, we can have a numer-
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Figure 4.6: Velocity of the free surface when w(·) depends on the strain rate
(εref=5000s−1).

ical curve that approaches the experimental one much better. Even though
the results are still not perfect, we obtain better results for all the cases.
It is important to notice that a change in w2 does not change the critical
stress (which depends on w′(α=0), so we can change this value as much as
we want and the model will still be compatible with the results obtained in
the quasi-static test.

In Figures 4.10 and 4.11, we considered w(α)=w1(α + 12α2).

We conclude by observing that the calibration is done only once and
works for every case, as opposed to what happened in the previous sections.

4.7 Adding a dissipation term

We add, to the discrete energy, a term proportional to ∆t
(
αi−αi−1

∆t

)2

. By

doing so, we obtain the discrete version of a damage criterion that depends
also on α̇.

So far, this is the most effective approach. We can see in Figure 4.12
that the velocity at the free surface decreases and, if we consider only its

110
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Figure 4.7: Velocity of the free surface when w(·) depends on the strain rate
for different values of εref .

amplitude, is close to that of the experiments. This amplitude is related
to the energy that remains between the cracks and the free surface of the
specimen, meaning that we have conserved the correct amount of energy
and, therefore, we have the appropriate dissipation.

In particular, once we obtain the value of w1 from the quasi-static exper-
iments, we define

w(α) = w1α + k1∆t
(αi − αi−1

∆t

)2

. (4.1)

By doing so, the damage criterion depends also on α̇, causing the model
to depend implicitly on the strain rate.

This new form of dissipation is compatible with the results obtained in
the quasi-static test, as the last term disappears as the strain rate tends to
zero.

It is important to notice that, with this approach, we obtain the correct
dissipation for all the spalling tests for the same dissipation function as we
can see in Figures 4.12 and4.13.
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Figure 4.8: Damage profile in 2D.

4.8 Conclusion of the Chapter

In this chapter, we proposed changes to the initial damage model in order
to better approach the experimental results, in particular, the free surface
velocity.

The results obtained are, qualitatively, close to the experiments. When
considering only the region where damage appears, we are able to find a good
approximation using our simulations. As for the free surface velocity, we are
able to control the amplitude and the position of the the simulated velocity
without changing the critical stress of the material. The next step is to find
a solution for the difference in the period of the oscillations.

For the one-dimensional problem, the most effective change is in the func-
tion w(α), where adding a quadratic term or a term that depends on α̇ yields
good results.

For the 2D or 3D model, there is still room for future work if we consider
the traction-compression asymmetry.
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Figure 4.9: Free surface velocity in 1D and 2D.

Figure 4.10: Velocity of the free surface after adding a quadratic term to w
(experiment G672).
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Figure 4.11: Velocity of the free surface after adding a quadratic term to w
(experiment G692).

Figure 4.12: Velocity of the free surface after adding a dissipative term to w
(we consider k1=0.15MPa) - experiment G672.
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Figure 4.13: Velocity of the free surface after adding a dissipative term to w
(we consider k1=0.15MPa - experiment G692.
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Chapter

5
Regularization of the Plastic

Strain

The main motivation behind the regularization of the damage field comes
from the fact that brittle damage with softening behaviour are not viable,
as there are problems related to the existence or unicity of solutions, or
absence of stable configurations. The same is true for other phenomena
in solid mechanics, such as plasticity. In particular, we are interested in
finding a model where the plastic strain appears in a region of the structure,
representing, for instance, the necking of bar, instead of being localized in a
zero-thickness band.

In this chapter, we propose different ideas for the regularization the plastic
strain:

1. temperature-plasticity coupling: when plasticity occurs, energy is dis-
sipated as heat, increasing the temperature of the bar. The heat equa-
tion is then used to calculate the evolution of the temperature. The
main objective is to discover if the regularization character of the heat
equation is enough to regularize the plastic strain;

2. gradient plasticity: to solve the problem of localization of the plastic
strain in softening materials, we follow the same approach as in the
gradient damage models and we add a gradient term to the total energy.

These models are then applied in the setting of a quasi-static traction
test to see which are viable and which are not.
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The objective of this chapter is to propose models and study their one-
dimensional behaviour. The analysis performed here is far from extensive
and a more rigorous work would be needed for each case.

5.1 Temperature-Plasticity Coupling

The objective of this section is to propose a one-dimensional model where
the plastic strain does not localize in one single element for softening mate-
rials. The main idea is to use the dissipative properties of the heat equation
in order to regularize the plastic strain.

We want to study a softening material such that the yield stress decreases
when the temperature increases. We work with a bar subjected to a quasi-
static loading. We will deduce the three equations that dictate the evolution
problem:

• static equilibrium;

• evolution of the plastic strain by comparing the stress to the yield
stress;

• evolution of the temperature, where the energy dissipated by the plastic
process appears as a heat source.

We then conclude this section by discussing the difficulties found and why
this model is not suitable.

5.1.1 Temperature-plasticity coupling

In this model, the evolution of the plastic strain is the only dissipative
mechanism.

We consider a material with density density ρ0, internal energy e, speed
v, temperature T , entropy s, heat flow q and volume heat source h.

We begin this section by stating the energy balance in its integral form:

d

dt

∫
Ω

ρ0

(
e+

1

2
v2
)
dΩ =

∫
∂Ω

q·ndS+

∫
Ω

ρ0hdΩ+

∫
∂Ω

(σv)·ndS+

∫
Ω

fvdΩ, (5.1)

for any volume Ω.
Locally, this is equivalent to

ρ0ė+ ρ0vv̇ = div(q) + ρ0h+ div(σv) + fv. (5.2)
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We use the dynamic equation (ρ0v̇ = divσ + f) to find

ρ0ė = div(q) + ρ0h+ σε̇. (5.3)

We define the free energy ψ(ε, T, εp) = e− Ts.
Then

ė = ψ̇ + Ṫ s+ T ṡ =
∂ψ

∂ε
ε̇+

∂ψ

∂T
Ṫ +

∂ψ

∂εp
ε̇p + Ṫ s+ T ṡ =

∂ψ

∂ε
ε̇+

∂ψ

∂εp
ε̇p + T ṡ.

(5.4)

We recall that, using the second law of thermodynamics, we must have
σ = ρ0

∂ψ
∂ε

and s = −∂ψ
∂T

.
Therefore, the energy balance becomes

ρ0

( ∂ψ
∂εp

ε̇p + T ṡ
)

= div(q) + ρ0h. (5.5)

Then

ρ0T ṡ = div(q) + ρ0h−
∂ψ

∂εp
ε̇p (5.6)

For this initial model, we suppose there is no dilation and that

ψ =
1

2
E(ε− εp)2 − 1

2
c0(T − T0)2. (5.7)

We have the stress
σ = E(ε− εp) (5.8)

and the equilibrium
div σ = 0. (5.9)

We can write the plasticity criterion as

|σ| ≤ σY (T ). (5.10)

By differentiating the free energy with respect to T and then differenti-
ating it in time, we find

ṡ = c0Ṫ . (5.11)

Considering that there is no volume heat h and that the heat flow is

q = k∇T , (5.12)

we find that
ρ0c0T Ṫ = k∆T + σY (T )ε̇p. (5.13)
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If we consider that there are only small oscillations in temperature, and
define C0 := ρ0c0T0, we obtain a very simple model of temperature-plasticity
coupling: 

σ = E(ε− εp)
|σ| ≤ σY (T )

C0Ṫ = k∆T + σY (T )ε̇p.

(5.14)

To calculate the evolution of (u, εp, T ), we use a variation of the stan-
dard alternate minimization algorithm, where we solve one problem at time,
while keeping the other variables fixed, until all three variable converge. The
FEniCS library was used.

Suppose that, for the discrete solution, we know u(t−∆t), ε(t−∆t) and
T (t−∆t).

At the instant t, we have:

• displacement problem: find uj such that σ′ = 0, where we control the
displacement at the extremities;

• plasticity problem: find (εp)j such that σ = E((uj)′−(εp)j) ≤ σY (T j−1);

• temperature evolution:

C0
T j − T (t−∆t)

∆t
= k∆T j + σY (T j)

(εp)j − εp(t−∆t)

∆t
. (5.15)

• Repeat this process until we obtain convergence for uj, (εp)j, and T j.
We then take u(t) := uj, p(t) := (εp)j and T (t) := T j.

We fix one of the extremities of the bar, pull the other extremity with
constant speed v. The boundary conditions used in the temperature problem
will be detailed in the results section.

5.1.2 Dimensionless problem

In order to better understand the problem, the first step is to reduce
the number of variables available. We consider a bar of length L and define
x̃ = x/L. We also consider a length scale U0 > 0 and characteristic time
τ > 0 (to be specified later), and define t̃ = t/τ .

We define the dimensionless displacement and temperature by

ũ(x̃, t̃) =
u(x, t)

U0

and T̃ (x̃, t̃) =
T (x, t)

T0

. (5.16)
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We have
du

dx
=
U0

L

dũ

dx̃
and

dT

dt
=
T0

τ

dT̃

dt̃
. (5.17)

We begin by normalizing the stress. We define σ0 := σY (T0) and σ̃(T̃ ) =
σY (T )/σ0. This way, the plastic phase begins when the stress σ̃ reaches one.

We define

p(x̃, t̃) =
L

U0

εp(x, t). (5.18)

We also have

σ̃ =
E

σ0

U0

L
(
dũ

dx̃
− p). (5.19)

Since we are free to specify U0, we define U0 = Lσ0/E.
Rewriting the evolution of the temperature, we obtain

C0T0

τσ0

dT̃

dt̃
=

kT0

L2σ0

d2T̃

dx̃2
+
U0

Lτ

σY (T )

σ0

dp

dt̃
(5.20)

or, equivalently,
C0T0L

U0σ0

dT̃

dt̃
=

kT0τ

U0Lσ0

d2T̃

dx̃2
+
dp

dt̃
. (5.21)

We can then chose the last free parameters τ as τ = LU0σ0/kT0.
We can change notations without generating any confusion to consider

the spatial and temporal derivatives to be in respect to the dimensionless
position x̃ and time t̃, and remove the tilde from the dimensionless variables
to obtain 

σ = (u′ − p)
|σ| ≤ σY (T )

C1Ṫ = ∆T + σY (T )ṗ,

(5.22)

where the initial temperature is T0 = 1 and σY (1) = 1.

Example 5.1.1. In order to have a reference value for the dimensionless
parameters of a realistic material, we consider a 10cm specimen made of
steel.

Its density is ρ=8000kg/m3 and the specific heat capacity cp=500J/kgK,
so that the heat capacity is C0=ρcp=4·106J/Km3.

The Young’s modulus is E=200GPa and the yield stress σY =250MPa.
We consider the temperature T0=300K and thermal conductivity k=50W/mK.

By using the previous expressions, we obtain

U0 =
LσY
E

=
0.1m·250MPa

200GPa
= 0.000125m (5.23)
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τ =
LU0σY
kT0

=
0.1m·0.000125m·250MPa

50W/mK·300K
= 2.08333s (5.24)

C1 =
C0T0L

U0σY
=

4·106J/Km3·300K·0.1m
0.000125m·250MPa

= 3840. (5.25)

5.1.3 Homogeneous results

We want to study the homogeneous response of this system. In the nu-
merical simulations, this is achieved by controlling the displacement at the
extremities (u(0) = 0 and u(L) = t), and imposing T ′(0) = T ′(L) = 0.

Analytically, we have the scalars σ, ε, p and T . The equations to be
solved are given by (5.22).

The relation of the yield stress and the temperature still needs to be
specified. We consider here the particular case

σY (T ) =
1

T
. (5.26)

It is easy to see that we first have an elastic phase while ε ≤ 1.
After the beginning of the plastic phase, we have

ε− p =
1

T
(5.27)

and

C1Ṫ =
ṗ

T
. (5.28)

We multiply this expression by T and integrate from t = 0 to the instant
t to obtain

T 2 = 1 +
2p

C1

. (5.29)

For a given strain ε in the plastic phase, we use equation (5.27) to find

p− 1√
1 + 2p

C1

− ε = 0. (5.30)

Equation (5.30) can easily be solved to give us the answer of the system.
We define

f(ε, p) = p− 1√
1 + 2p

C1

− ε. (5.31)
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In order to study the snapback phenomenon when the plastic phase begin,
we first observe that f(1, 0) = 0. In this same point (ε, p) = (1, 0), we have
that ∂f

∂ε
= −1 and ∂f

∂p
= 1− 1

C1
.

Using the implicit function theorem, we have that the relation between a
small change in the strain and in the plastic strain:

∆ε ≈ (1− 1

C1

)∆p. (5.32)

Therefore, we have two situations:

1. if C1 > 1, then the plastic strain will increase when the strain increases;

2. if C1 < 1, we can see the snapback phenomenon.

We see in Figure 5.1 the evolution of the stress when we increase the
strain, for the homogeneous problem. Figure 5.2 shows the temperature and
the plastic strain. The imposed boundary conditions (T ′(0) = T ′(L) = 0) do
not provoke any dissipation, and the temperature is always increasing. We
see that the curves are smooth and that the analytic and the numeric curves
are the same, validating our numerical implementation.

Figure 5.1: Stress-strain relation for C1=2 in the homogeneous temperature-
plasticity coupling model.

We see in Figures 5.3 and 5.4 the results for the problem when C1 = 0.1.
In this case, we can see there is a snapback in the beginning of the plastic
phase. We do not obtain the same curves analytically and numerically, even
after refining the numerical parameters. This is not a surprise, since we
obtain a discontinuity in p(ε) and T (ε) when ε = 1. To obtain convergence
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Figure 5.2: Evolution of the temperature and of the plastic strain for C1=2
in the homogeneous temperature-plasticity coupling model.

of the discretization that we used for the evolution of the temperature, given
by equation (5.15), it is required that the temperature be continuous.

Therefore, a more sophisticated time discretization is needed. One pos-
sible idea is to use a scheme that follows the snapback curve.

Figure 5.3: Stress-strain relation for C1=0.1 in the homogeneous
temperature-plasticity coupling model.

5.1.4 Non-homogeneous results

We then analyse a non-homogeneous case. We consider the same prob-
lem, that is, σY (T ) = 1/T , but with a different boundary condition for the
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Figure 5.4: Evolution of the temperature and of the plastic strain for C1=0.1
in the homogeneous temperature-plasticity coupling model.

temperature. We consider that the extremities are in contact with a surface
with constant temperature. We impose T (0)=T (L)=T0=1. In this prob-
lem, the temperature is dissipated and, in the absence of a heat source, the
temperature will become uniform in the bar and equal to 1.

We have no analytic results for this model. Numerically, however, this
example works very poorly. For the examples below, we set C1=1 and use
100 elements. We remark that increasing the number of elements does not
change the results.

These parameters, even though they are not realistic (when compared,
for instance, to steel where C1≈4000), are useful to show how the time step
dt influences the results.

We see the evolution of the stress when the strain increases in Figure 5.5.
We first observe that we do not obtain numeric convergence when changing
the time-step. We can see that the stress decreases abruptly at certain values
of strain, and then increases linearly until the next drop. The number and
the instant where these drops happen changes with the time-step used.

Figure 5.6 shows the maximum temperature and plastic strain as the total
strain increases. Again, we observe that there is no convergence. We also
notice that temperature and plastic strain jump for some values of strain
(same instants where the stress drops). The dissipation of heat is faster than
the increase of strain. As a result, the stress does not reach the yield limit
and the material is, once again, in elastic phase. This elastic phase lasts until
the yield stress is reached again, and the cycle begins once again.

As a final example of why this model is not suitable, we consider a more
realistic case by taking C1=4000. We show the plastic strain in Figure 5.7.
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Figure 5.5: Evolution of the stress for C1=1 in the non-homogeneous
temperature-plasticity coupling model for three different values of dt.

We recall that the main objective of this section was to use the tempera-
ture as a way of controlling the localization of the plastic strain in softening
materials. By taking the C1 parameters to be that of a steel, the regularizing
effect is obtained in excess, leading to an almost uniform profile, with some
small variations near the boundaries.

In conclusion, the regularization using the dissipation of the temperature
does not work well. The proposed model is very simple, but the numerical
implementation needs some attention. For the homogeneous case, the model
works well only when there is no snapback. For the non-homogeneous prob-
lem, the results are even worse, as we did not obtain convergence using our
numerical scheme.

5.2 Gradient Plasticity

We follow the same idea of regularization used in gradient damage and we
add, to the total energy, a term that depends on the gradient of the plastic
strain. As we have seen in the introduction chapter, the quasi-static evolution
of the plastic strain can be written as a problem of energy minimization.
We present here the construction of a gradient-plasticity model as natural
extension of the standard plasticity theory, but with a term that prevents
localization in infinitely thin bands.

Even though this is not our main motivation, one important feature of
this approach is the ability to better predict size effects, as no length scale
appears in conventional plasticity theory.
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Figure 5.6: Maximum temperature and plastic strain for C1=1 in the non-
homogeneous temperature-plasticity coupling model for three different values
of dt.

We will suppose that the bar is always in traction so that p̄ = εp ≥ 0,
allowing us to remove the cumulated plasticity of the model.

We consider the general case and define the energy

E(ε, εp) =

∫
Ω

1

2
E(ε− εp)2 + w(εp) + σC`

2(εp)′2. (5.33)

As in gradient damage, we have a term of elastic energy, a term of energy
dissipated by standard plasticity, and a last term consisting of the squared
of the gradient of the plastic strain, weighed by a characteristic length ` and
a normalization factor σC , having the unit of a stress.

The standard Von-Mises criterion is equivalent to

w(εp) = σY ε
p. (5.34)

5.2.1 Localized Solution

We start the analysis ot this model by construction a localized solution
p on the interval I = (−D,+D) when the displacement at the extremities
is controlled. By differentiating the total energy with respect to the plastic
strain, we can obtain

− σ + w′(p)− 2σC`
2p′′ = 0. (5.35)

Since σ is constant, we can multiply by p′ and integrate the previous
expression in space to obtain

− σp+ w(p)− σC`2p′2 = Constant = 0 (5.36)
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Figure 5.7: Maximum temperature and plastic strain for C1=1 in the non-
homogeneous temperature-plasticity coupling model for three different values
of dt t=1.51.

since p(D) = p′(D) = 0 and we can consider w(0) = 0.

Therefore

`

√
σC

−σp+ w(p)
dp = dx. (5.37)

The stress σ and the maximum plastic strain pmax are related by

w(pmax) = σpmax. (5.38)

We will suppose that the strain is symmetric and the maximum value is
attained in x = 0. We can obtain x from the plastic strain p:

x =

∫ pmax

p

`

√
σC

−σp+ w(p)
dp. (5.39)

The value of the extremity D is thus given by

D = `

∫ pmax

0

√
σC

−σp+ w(p)
dp. (5.40)

It is clear that the support of the region depends linearly on `.

Finally, we can write the displacement at the extremity L of the bar as a
function of σ

u(L) =

∫ L

0

u′(x)dx =

∫ D

0

p(x)dx+
σL

E
. (5.41)
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5.2.2 Numerical Example

In order to test the model’s ability to regularize, we consider a softening
material.

We consider the particular case

w(εp) = σY
εp

1 + εp/pC
, (5.42)

for the constants σY and pC .
In order to obtain a localized solution away from the extremities, we fix

εp(−L) = εp(L) = 0 and run the numerical simulations using theFEniCS
library.

We consider the bar [−L,L], with L=0.5, and with the parameters E=1,
`=0.05, σC=0.5, pC = 1.0 and σY =1.0.

At the time instant t, we impose the displacements u(±L)=± t

2
.

The numerical problem consists of minimizing the total energy with re-
spect to the strain and the plastic strain. For that, we use the well-known
alternate minimization algorithm, where we minimize the energy with respect
to one of the variables, while the other is fixed, until we obtain convergence.
It is important to recall that we consider a bar under an increasing load, so
that we can consider that ε̇p≥0 at all times. Numerically, this is done by
considering that εp(ti)≥εp(ti−1).

As opposed to the damage problem, we noticed that we need a great
number of iterations in order to obtain convergence. For a one-dimensional
mesh with 400 elements with a tolerance of 10−6, a few hundred iterations
are needed before convergence is reached.

In the previous section, we obtained the analytic expression for the pro-
file of the plastic strain. This expressions could be easily solved by direct
numerical integration. In Figure 5.8, we see that the profiles obtained using
the finite-element simulation and the numerical integration coincide.

The support of the localized solution increases with time, until it reaches
the borders and there are no longer localized solutions (Figure 5.9).

We see the stress as a function of the displacement in Figure 5.10. As
expected, we first have a linear relation, until σ reaches the critical value σY .
There is then a sudden decrease in stress, which then continues to slowly
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Figure 5.8: Profile of the plastic strain at t=1.5.

decrease. This is true while a localized solution exists. Once the support
of the solution is large enough, making it occupy the whole bar, the stress
increases as the strain increases.

In conclusion, we have a model that allows the evolution of an elastic
phase, followed then by the evolution of the plastic strain. The main

feature of this model is its capacity to control the problem of localization in
thin bands by using a gradient term.

As for the boundary conditions, since we wanted to study localization
profiles in the center of the bar, they were taken to be zero and its

importance could be ignored. As the system evolves, however, the support
of the plastic strain becomes the whole bar, and the chosen boundary

conditions are of extreme importance. A possible continuation to this work
is understanding their influence in the profile obtained and what is their

physical meaning.

Another possible continuation is the extension of this model to higher
dimensions. As we have seen, we have considered the plastic strain to be
equal to the cumulated strain. Since this hypothesis no longer holds in

higher dimensions, the extension of this model to a plaque or a cube is not
trivial.
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Figure 5.9: Profile of the plastic strain at t=4.0.

5.3 Gradient Plasticity Coupled with Damage

5.3.1 Damage-plasticity coupling

A natural continuation of the gradient plasticity is its coupling with dam-
age. The theory of gradient damage has one internal length, responsible for
determining the thickness of a crack. In the same way, our model of gradi-
ent plasticity has also one internal length used to define the support of the
damage zone.

We then propose a model of damage-plasticity coupling using two internal
lengths `α and `p. The approach remains the same as in the other cases: we
define a suitable form of energy and study the quasi-static evolution of the
system by minimizing this energy, at each instant, with respect to the strain,
the damage field and the plastic strain.

We consider the energy of a bar [0, L] under traction:

E(ε, α, p) =

∫ L

0

(1

2
E(α)(ε−p)2 +w(α)+w1`

2
αα
′2 +σY (α)p+

1

2
γ(α)λ2

pp
′2
)
dx.

(5.43)

The function γ(α) has the unit of a stress and is used for normalization.
We are interested, in particular, in the behavior of the system when γ is
constant or when γ(α)→0 as α→0.

We assume the loading is increasing. For this reason, the plastic strain is
also always increasing (ṗ≥0).
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Figure 5.10: Stress-strain curve for the gradient plasticity model.

Numerically, we solve this problem using an alternate minimization algo-
rithm:

• For the instant ti, impose the displacements u(0)=0 and u(L)=ti:

– minimize E with respect to ε, keeping α and p fixed;

– minimize E with respect to p, keeping ε and α fixed;

– minimize E with respect to α, keeping ε and p fixed;

– check convergence on all variables.

• Go to the next time-step.

We remark, once again, that the irreversibility conditions of α and p are
imposed as αi≥αi−1 and pi≥pi−1.

The final question that needs to be addressed is that of the boundary
conditions. In the following simulations, we allowed the material to have an
elastic phase, followed by the uniform evolution of plasticity. The damage
process is the main agent in localization. We therefore consider p′=0 and
α=0 at the extremities of the bar.

5.4 Results

We are interested in the behaviour of the dimensionless problem. More
specifically, we want to know how the two characteristic length of the system
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interact. We are going to consider a unitary bar and E(α)=(1−α)2, w(α)=α,
σY (α)=(1−α)2σP and, unless otherwise stated, σP=0.5. For this set of pa-
rameters, it is easy to verify that the plastic phase begins at ε=0.5, and the
damage phase begins when ε=1.25 and p=0.75.

The first steps consists of validating our numerical implementation. We
consider two cases where we know what should happen:

1. when σP>1, we obtain the standard gradient damage model;

2. when σP<1, we obtain the uniform plastic evolution before the begin-
ning of the damage phase.

After verifying that the code works for these two cases, we study the
behaviour of the system for different values of `α and `p. We remark that,
for each of the following cases discussed, different time-steps and mesh sizes
were tested, always yielding the same results. For this reason, the numerical
parameters used will be omited.

We consider the case `α=`p=0.1. This case seems to gives the expected
result, that is, the damage profile and the plastic strain are spread in the
center of the bar, as shown in Figures 5.11 and 5.12. In particular, we remark
that the plastic strain evolves uniformly until the beginning of the damage
phase, where it is equivalent to 0.75, and then evolves only in a interval near
the center.

Figure 5.11: Damage profile for `α=`p=0.1 localized in the center of the bar
for t=1.30.

We see in Figure5.13 the stress-strain relation for this model. We can
clearly identify the elastic phase for ε<0.5, the homogeneous plastification
for 0.5 < ε<1.25 and then the damage phase. During the damage phase, we
see that the damage first increases slowly and then instantly jumps to one,
representing a completely broken state with no stress left.
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Figure 5.12: Plastic strain for `α=`p=0.1 for t=1.30.

Figure 5.13: Stress-strain relation in the localized gradient plasticity coupled
with damage model for `α=`p=0.1.

By dividing both characteristic lengths by a constant, one could expect
that the damage and plastic strain profiles will also be divided by the same
constant. This is not what we observe, however. We consider the case
`α=`p=0.05.

Figures 5.14 and 5.15 show that the behaviour of the system changes
completely. The damage profile jumps instantly from zero to one and the
plastic strain remains uniform, without any localization.

In order to better understand what happens we will fix the value of `α and
change the value of `p. We will first study the support of the localized plastic
zone. We know that the damage phase begins when p=0.75 and the plastic
strain is always increasing. We are therefore going to calculate the size of
the support of the plastic strain by measuring the interval where p>0.75.

We see in Figures 5.16 and 5.17 the size of the localized zone for different
values of `p, when `α=0.05 and `α=0.1, respectively.

We see in Figure 5.16 that there is a change in the behaviour when
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Figure 5.14: Damage profile for `α=`p=0.05 after fracture. The interval
where α=1 has the size of one element of the mesh.

Figure 5.15: Plastic strain for `α=`p=0.05 after fracture.

`p≈0.09. We go from a model where there is no localization of the plastic
strain to a model where the plastic strain evolves in an interval of approxi-
mate length 0.4.

Figure 5.17 shows the influence of `p when `α=0.1. There is no longer
two different types of behaviour, as in the previous case. When we decrease
`p, the region of plastic localization decreases continuously. By decreasing
`p and the mesh size, the support of the plastic zone converges to zero and
the overall behaviour is the same of the model without the gradient of the
plastic strain.
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Figure 5.16: Size of the zone where the plastic strain localizes `α=0.05 and
different values of `p.

Figure 5.17: Size of the zone where the plastic strain localizes `α=0.1 and
different values of `p.

5.5 Conclusion

Due to the complexity of the differential equations involved, we were not
able to obtain analytic expressions describing the evolution of the system.
For `α=0.1, the system behaves in the expected way, that is, there is a zone
where there is damage localization and a zone where there is localization of
the plastic strain. Furthermore, decreasing `p causes a decrease in the zone
of plastic localization that approaches zero as `p tends to zero.

The behaviour of the system when `α=0.05 is completely different. The
dependency with respect to `p is more complicated, as there is localization
of the plastic strain for small values of `p. The causes of this behaviour is
not clearly and needs to be further investigated. By testing different mesh
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sizes and times-steps, the origin of this difference of behaviour does not seem
to be numerical. Our guess is that this is a question of instability leading to
a snapback, but so far we have no mathematical proof and further work is
needed.

Overall, the model gives us promising results. For the functions taken as
E(α), w(α) and σY (α), along with the boundary conditions, we always have
an elastic phase and a homogeneous plastification phase. We can adjust the
model’s behaviour after the beginning of the damage phase by changing the
characteristic lengths `α and `p, allowing us to obtain a a material that will
break instantly, or a material that breaks slowly and allows the development
of a localized plastic zone.
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Conclusion and Future Work

The main objective of this work was the study of the fragmentation of a
metallic shell. In order to achieve this goal, several intermediate steps were
necessary: the construction of a damage model; its numerical implementa-
tion; calibration of the model parameters using experimental data and some
analytical works.

Gradient damage models have been originally proposed for quasi-static
brittle damage evolution, but have been extended to other scenarios, such
as for ductile materials or dynamic loadings. In this work, we considered
a model that couples these last two phenomena. This was done by writing
a suitable form of energy that couples the elastic energy with the energy
dissipated by the damage and plasticity process. Using this energy and the
action of the system, we could obtain all the equations necessary to describe
the dynamic ductile model: the equations of dynamics, the plasticity criterion
and the damage criterion.

We then described, in Chapter 2, all the numerical aspects related to
these models. The plasticity problem is solved in a straight-forward fashion,
by locally comparing the stress to a threshold. The damage problem, as it is
a global problem, requires us to assemble a large system that is then solved
using the PETsC library. To solve the equation of dynamics and find the
displacement field, we used two main schemes: the explicit Newmark scheme
and a new version of the Generalized Midpoint Rule Scheme. In summary,
these two schemes have a quadratic convergence rate for purely elastic or
brittle damage problem, but a poorer convergence rate when plasticity is con-
sidered. Numeric experiments showed that both schemes can be considered
to conserve the total energy, but we have no theoretical results supporting
our claim. For the Genezalized Midpoint Rule scheme, since we have to solve
each problem several times before converging, along with the fact that the
dynamic problem is implicit, each iteration takes more time. This fact is,
however, counterbalanced by the fact that there are no restrictions on the
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time-step. We were also able to prove stability for this scheme.
After the validation of our implementation, we were able to obtain some

qualitative behaviours for our model. When considering the standard bar un-
der traction, we see a very different behaviour depending whether the loading
is quasi-static or dynamic. For the quasi-static scenario, only one crack ap-
pears. For the dynamic model, multiple cracks can appear, depending on the
parameters used. We also recall that the system keeps evolving and other
damage profiles can appear and develop, even after an initial crack appeared,
due to the waves that keep propagating in the system.

A natural question to be posed in regards to this dynamic model is
whether it converges to the quasi-static model when taking sufficiently small
strain rates. When comparing the results obtained for a quasi-static loading
and for a dynamic loading, the damage profiles are not the same. When
decreasing the strain rates the damage profile seem to converge, but to a
new profile that dissipates roughly 30% more energy than the one obtained
under the assumption of a quasi-static test. The reason is not yet completely
understood, but it might be related to the fact that, in the quasi-static ex-
periment, a part of the energy is dissipated by the snapback process, leaving
less energy to be dissipated by the crack.

The last aspect concerns the direction of cracks. The quasi-static traction
test of a brittle specimen causes the crack to be perpendicular to the load-
ing. When plasticity is added, the cracks forms an angle with the traction
direction depending on the thickness of the specimen and on the material
parameters used. The orientation of the crack can change of up to 45◦. In
dynamics, this remains true. It was observed, especially in the expanding
ring, that the cracks are in the radial direction for brittle materials and are
inclined for ductile materials.

Since the study of the fragmentation of a complete shell is too costly
in terms of computer power, we studied the case of a ring under expan-
sion. This ring was modelled as a periodic one-dimensional bar and as a
real three-dimensional ring. Due to the symmetry of the three-dimensional
ring, we expected the response to depend only on the radius, and not on the
angle. However, this is not what we obtained in the simulations, as some
radial cracks appeared. We then focused on the questions of why and how
many cracks appear in this ring. We have shown that the localized cracks
result from the growth of small perturbations that are amplified of 1010 times
or even more. Using this idea, we were able to find the moment where these
cracks develop and analytically show that, as a first approximation, the num-
ber of cracks depends only on the internal length.

After establishing a model, implementing it and testing it for the case
of a ring, the last necessary step in order to run more realistic simulations
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in an industrial context is to calibrate the model parameters. Since this
is an initial study, we focused on a brittle material, as a ductile material
would require more parameters to be studied. Experiments have noticed that
materials don’t have the same properties for different strain rates. In Chapter
4, the spalling tests were used to propose material parameters that work
well for both quasi-static and dynamic loadings by comparing the changes
in our model to the experimental data obtained. We found that the best
two approaches were to add, to the term of dissipated energy w(α), a term
proportional to α2 or a term proportional to α̇, so that there was no change
to the critical quasi-static stress.

The final chapter consists of the study of other forms of regularization,
but now applied to the plastic strain, so that it is no longer localized in a
zero-thickness band. The first attempt was to use the dissipative properties
of the temperature field to regularize the model. From a numerical point of
view, this model was not optimal, as we had convergence problems.

We then talked about removing the temperature from the equations and
adding a term depending on the gradient of the plastic strain. This approach
allows us to control the growth of sharp profiles and work well numerically.
The final test was coupling this gradient plasticity model to the gradient
damage model. This new model has two characteristic lengths that dictate
the size of the damage and the plastic strain profile. Increasing these char-
acteristic lengths causes the damage and plastic strain profiles to be more
spaced out in the bar, but overall, the behaviour or this model is not yet
completely understood.

In terms of future work, there is clearly room for more simulations and
comparison with experiments, as the main focus of this thesis was the theoret-
ical understanding of damage models coupled with plasticity and dynamics.
In this context, there are mainly two questions that remain open:

1. Why doesn’t this model converge to the quasi-static model? Is it only
the snapback process, or is the strain rate still too elevated? If we
are able to run simulations with a sufficiently low strain rate, will we
obtain only one damage profile?

2. After a damage profile appeared and evolved to the point of reach-
ing one, there is a thickening of the region where α=1. Analytically,
we have shown that this should not happen. Future work should be
devoted to understand what is happening.
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Titre : Approche variationnelle de la rupture dynamique et applications à la fragmentation  des 

métaux et céramiques 

Mots clés : endommagement, fragmentation dynamique, plasticité 

Résumé : Le principal objectif de ce travail est 

l'étude de la fragmentation d'enveloppes 

métalliques. 

Cette thèse est divisée en quatre parties : la 

construction d'un modèle d'endommagement, 

l'implémentation numérique, la calibration des 

paramètres du modèle en utilisant des données 

expérimentales, et des travaux analytiques. 

Tout d'abord, nous avons considéré des modèles qui 

couplent les modèles d'endommagement classiques 

avec la plasticité et la dynamique. En utilisant 

l'énergie et l'action du système, nous avons obtenu 

toutes les équations qui décrivent le modèle 

dynamique et ductile : l'équation de la dynamique, 

le critère de plasticité et le critère 

d'endommagement. Nous avons ensuite détaillé 

l'implémentation numérique de ces modèles. 

Des résultats qualitatifs ont ensuite pu être obtenus, 

comme le nombre et la direction des fissures, ainsi 

que la convergence vers le modèle quasi-statique. 

Afin de mieux comprendre l'influence de chaque 

paramètre du modèle, nous avons étudié  

analytiquement le problème. A partir de 

l'observation de l'amplitude des perturbations, nous 

avons pu décrire comment obtenir une 

approximation analytique du nombre de fissures 

dans le cas d'un anneau en expansion. 

Cependant, pour être capable de simuler des 

problèmes réalistes, il est nécessaire de calibrer les 

paramètres du modèle. Nous nous sommes 

intéressés plus particulièrement au cas des 

matériaux fragiles. Les données expérimentales ont 

été obtenues par une série d'expériences réalisée par 

le CEA. 

Afin d'empêcher la localisation de la déformation 

plastique dans des bandes d'épaisseur nulle, d'autres 

formes de régularisation ont été étudiées, comme 

par exemple, l'utilisation des propriétés dissipatives 

du champ de température. 

Enfin, nous avons conclu ce travail en proposant 

des modèles de plasticité où l'énergie dépend aussi 

du gradient de la déformation plastique (modèles de 

plasticité à gradient). 

 

 

Title: Variational approach to dynamic fracture and applications to the fragmentation of metals and 

ceramics 

Keywords: damage, dynamic fragmentation, plasticity 

Abstract: The main objective of this work was the 

study of the fragmentation of a metallic shell. This 

thesis is divided into four parts: construction of a 

damage model, numerical implementation, 

calibration of the model parameters using 

experimental data and analytical works. 

In this work, we considered a model that couples the 

standard gradient damage models with plasticity and 

dynamics. Using the energy and the action of the 

system, we could obtain all the equations necessary 

to describe the dynamic ductile model: the 

equations of dynamics, the plasticity criterion and 

the damage criterion. We then detail the numerical 

implementation of these models. 

Some qualitative behaviours are then obtained, such 

as the number and the direction of cracks, and the 

convergence to the quasi-static model. 

In order to better understand the influence of the 

parameters, we studied the problem analytically. By 

studying the amplitude of the perturbations, we 

describe how to obtain an analytic approximation 

for the number of cracks in a ring under expansion. 

In order to run realistic simulations, it is needed to 

calibrate the material parameters. We focus here on 

a simple case of brittle materials. The experimental 

data were obtained in a series of shockless spalling 

tests performed by the CEA. 

We also study other forms of regularization, now 

applied to the plastic strain, avoiding localization in 

zero-thickness bands. 

We considered using the dissipative properties of 

the temperature field to regularize the model. 

Finally, we conclude with plasticity models where 

we add a term depending on the gradient of the 

plastic strain (gradient plasticity models). 
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