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Titre : titre (en francais).....

Distribution de l'aire algébrique enclose par les marches aléatoires bi-dimensionnelles et le modéle de
HOTStAALET.....cceeiie et ettt sttt besbeeaeete bt st e e e

Mots clés : l'aire algébrique, les marches aléatoires, le modéle de Hofstadter

Cette these porte sur le modéle de Hofstadter i.e., un électron qui se déplace sur un réseau carré couplé
a un champ magnétique homogeéne et perpendiculaire au réseau. Son spectre en énergie est 1'un des
célebres fractals de la physique quantique, connu sous le nom "le papillon de Hofstadter". Cette thése
consiste en deux parties principales: la premiére est I'étude du lien profond entre le modele de Hofstadter
et la distribution de ’aire algébrique entourée par les marches aléatoires sur un réseau carré
bidimensionnel. La seconde partie se concentre sur les caractéristiques spécifiques du papillon de
Hofstadter et I'étude de la largeur de bande du spectre. On a trouvé une formule exacte pour la trace de
I'Hamiltonien de Hofstadter en termes des coefficients de Kreft, et également pour les moments
supérieurs de la largeur de bande.

Cette these est organisée comme suit. Dans le chapitre 1, on commence par la motivation de notre
travail. Une introduction générale du modele de Hofstadter ainsi que des marches aléatoires sera
présentée. Dans le chapitre 2, on va montrer comment utiliser le lien entre les marches aléatoires et le
modele de Hofstadter. Une méthode de calcul de la fonction génératrice de 1'aire algébrique entourée par
les marches aléatoires planaires sera expliquée en détail. Dans le chapitre 3, on va présenter une autre
méthode pour étudier ces questions en utilisant le point de vue "point spectrum traces" et retrouver la
trace de Hofstadter compléte. De plus, 'avantage de cette construction est qu'elle peut étre généralisée au
cas de "l'amost Mathieu opérateur". Dans le chapitre 4, on va introduire la méthode développée par
D.J. Thouless pour le calcul de la largeur de bande du spectre de Hofstadter. En suivant la méme logique,
on va montrer comment généraliser la formule de la largeur de bande de Thouless a son n-i€me moment,
a définir plus précisément ultérieurement.

Title : (titre en anglais).... Algebraic area distribution of two-dimensional random walks and the
HOTStAAIEr TNOAE....c..eeiiie it ettt ettt ettt sbe s cabesbeesteae bt ebeesenees

Keywords : Hofstadter mode, random walks, Algebraic area

This thesis is about the Hofstadter model, i.e., a single electron moving on a two-dimensional lattice
coupled to a perpendicular homogeneous magnetic field. Its spectrum is one of the famous fractals in
quantum mechanics, known as the Hofstadter's butterfly. There are two main subjects in this thesis: the
first is the study of the deep connection between the Hofstadter model and the distribution of the
algebraic area enclosed by two-dimensional random walks. The second focuses on the distinctive
features of the Hofstadter's butterfly and the study of the bandwidth of the spectrum. We found an exact
expression for the trace of the Hofstadter Hamiltonian in terms of the Kreft coefficients, and for the
higher moments of the bandwidth. This thesis is organized as follows. In chapter 1, we begin with the
motivation of our work and a general introduction to the Hofstadter model as well as to random walks
will be presented. In chapter 2, we will show how to use the connection between random walks and the
Hofstadter model. A method to calculate the generating function of the algebraic area distribution
enclosed by planar random walks will be explained in details. In chapter 3, we will present another
method to study these issues, by using the point spectrum traces to recover the full Hofstadter trace.
Moreover, the advantage of this construction is that it can be generalized to the almost Mathieu operator.
In chapter 4, we will introduce the method which was initially developed by D.J.Thouless to calculate
the bandwidth of the Hofstadter spectrum. By following the same logic, I will show how to generalize
the Thouless bandwidth formula to its n-th moment, to be more precisely defined later.
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RESUME SIMPLIFIE

Cette thése porte sur le modéle de Hofstadter 1.e., un électron qui se déplace sur un réseau
carré couplé & un champ magnétique homogéne et perpendiculaire au réseau. Son spectre en
énergie est 'un des célébres fractals de la physique quantique, connu sous le nom "le papillon
de Hofstadter". Cette thése consiste en deux parties principales: la premiére est ’étude du
lien profond entre le modéle de Hofstadter et la distribution de I'aire algébrique entourée par
les marches aléatoires sur un réseau carré bidimensionnel. La seconde partie se concentre sur
les caractéristiques spécifiques du papillon de Hofstadter et ’étude de la largeur de bande
du spectre. On a trouvé une formule exacte pour la trace de I’'Hamiltonien de Hofstadter en
termes des coefficients de Kreft, et également pour les moments supérieurs de la largeur de
bande.

Cette thése est organisée comme suit. Dans le chapitre 1, on commence par la motivation
de notre travail. Une introduction générale du modéle de Hofstadter ainsi que des marches
aléatoires sera présentée. Dans le chapitre 2, on va montrer comment utiliser le lien entre les
marches aléatoires et le modeéle de Hofstadter. Une méthode de calcul de la fonction génératrice
de I'aire algébrique entourée par les marches aléatoires planaires sera expliquée en détail. Dans
le chapitre 3, on va présenter une autre méthode pour étudier ces questions en utilisant le
point de vue "point spectrum traces" et retrouver la trace de Hofstadter compléte. De plus,
I’avantage de cette construction est qu’elle peut étre généralisée au cas de "I’amost Mathieu
opérateur". Dans le chapitre 4, on va introduire la méthode développée par D.J.Thouless pour
le calcul de la largeur de bande du spectre de Hofstadter. En suivant la méme logique, on
va montrer comment généraliser la formule de la largeur de bande de Thouless & son n iéme
moment, & définir plus précisément ultérieurement.



FOREWORD

This thesis is about the Hofstadter model, 1.e., a single electron moving on a two-dimensional
lattice coupled to a perpendicular homogeneous magnetic field. Its spectrum is one of the
famous fractals in quantum mechanics, known as the Hofstadter’s butterfly. There are two
main subjects in this thesis: the first is the study of the deep connection between the Hofstadter
model and the distribution of the algebraic area enclosed by two-dimensional random walks.
The second focuses on the distinctive features of the Hofstadter’s butterfly and the study of
the bandwidth of the spectrum. We found an exact expression for the trace of the Hofstadter
Hamiltonian in terms of the Kreft coefficients, and for the higher moments of the bandwidth.

This thesis is organized as follows. In we begin with the motivation of our
work and a general introduction to the Hofstadter model as well as to random walks will
be presented. In we will show how to use the connection between random walks
and the Hofstadter model. A method to calculate the generating function of the algebraic
area distribution enclosed by planar random walks will be explained in details. In
we will present another method to study these issues, by using the point spectrum traces to
recover the full Hofstadter trace. Moreover, the advantage of this construction is that it can
be generalized to the almost Mathieu operator. In we will introduce the method
which was initially developed by D.J.Thouless to calculate the bandwidth of the Hofstadter
spectrum. By following the same logic, I will show how to generalize the Thouless bandwidth
formula to its n-th moment, to be more precisely defined later.
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I RESUME EN FRANCAIS

Vue d’ensemble et motivations

En 1976, un article sur les niveaux d’énergie d’un seul électron se déplagant dans un réseau
bidimensionnel couplé & un champ magnétique a été publié. Cet article trace I'une des pre-
miéres fractales quantiques, connu sous le nom de papillon de Hofstadter (?7), nommé d’aprés
son découvreur, Douglas Hofstadter. Cependant, I’étude de ce modéle est apparue beaucoup
plus tot. Felix Bloch [1] est le pionnier avec 'une des premiéres contributions. En 1929,
seulement cing ans aprés que Erwin Schrédinger dérivé ’équation de Schrodinger, Bloch a
publié un article sur la structure de bande d’un seul électron dans un réseau cristallin soumis
a un potentiel périodique. V(r) = V(r + T) (ou la période T = nja; + ngag + nzas avec nq,
ng, n3 sont des entiers et aj, ag, ag sont les vecteurs de base du réseau).Son Hamiltonien est
H = p;—r(:;) + V(r). Le théoréme de Bloch déclare que la fonction d’onde d’un tel électron peut
étre écrite comme Y (1) = g, (r)e*T, ot k est le vecteur d’onde et ug,(r + T) = ugn(T)
est une fonction périodique avec la méme périodicité que le potentiel V(r). En utilisant la
fonction d’onde de Bloch et la transformation de Fourier, on peut résoudre la fonction propre
Hpy, = Ep(k)Yk. (n est Uindice de la bande). Il se trouve le spectre d’énergie de la fonction
d’onde de Bloch n’est pas continue. En fait, la présence du réseau (le potentiel périodique)
brise I’énergie (I’énergie cinétique de I’électron libre) en morceaux. Chaque piéce s’appelle une
bande d’énergie et les espaces entre eux sont des régions d’énergie interdites (voir fig. le
cas le plus simple: mélange des deux premiéres bandes uniquement).

D’autre part, presque dans la méme période, Landau [2] travaillait sur le modéle quantique
d’un électron libre dans un champ magnétique perpendiculaire B avec I’'Hamiltonien H =
w. On peut introduire @ = p —eA /h avec la relation de commutation [, 7| = iehB,
et définir les opérateurs a = ot5(m, — imy) et at = 5= (m, +imy) avec [a,at] = 1. a et
a™ sont similaires aux opérateurs de création et d’annihilation d’un oscillateur harmonique.
En utilisant les substitutions ci-dessus, 'Hamiltonien devient H = % = hwp(ata + %) avec
wp = eB/m la fréquence cyclotron. Les énergies propres quantifiées sont maintenant connues
sous le nom de niveaux de Landau: E,, = hwp(n+1/2) ot n est I'indice du niveaux de Landau.
Ainsi, en présence d’'un champ magnétique uniforme, les énergies sont réguliérement espacées
et I'intervalle entre chaque niveau est proportionnel au champ magnétique.(voir fig. .

La question naturelle est de combiner ces deux problémes: que se passera-t-il si quelqu’un
pose un électron sur un réseau discret et lui applique ensuite un champ magnétique perpendic-
ulaire?” Beaucoup de physiciens se sont intéressés & ce probléme depuis des décennies. Parmi
eux, un modéle simple congu par Onsager et Peierls [3] et construit par Harper [4] est devenu un
outil précieux pour étudier ce probléme. L’idée de remplacer le quasi-moment par la quantité
de mouvement en mécanique quantique est le point crucial: Ak — 7, et nous verrons les détails

dans la section suivante. Nous l'appelons aujourd’hui le modéle de Hofstadter, parce que Hofs-



Figure 1: Les bandes d’énergie des ondes de Bloch dans la premiére zone de Brillouin d’un systéme
unidimensionnel: la courbe de dispersion d’énergie Ey vs. k avec le potential V(x) = VOZg e~igw
(9 = 2nm/a, est le vecteur de réseau réciproque) avec Vo = —2 (les courbes rouge et verte) et avec
Vo = 0 (la courbe bleue correspond & lénergie de l’électron libre Ej, = %} Poser: a — 1,h — 1 et
m — 1. Les gaps a k = +m sont les énergies interdites entre la premiére bande et la seconde bande,
and they are equal to 2|Vy|.

A

hwp

Figure 2: Landau level: The degeneracy of the Landau level is infinite, n € N is the index of energy
level.

tadter a été le premier & donner une image intuitive de son spectre fascinant. La figure fig.
représente le papillon de Hofstadter. Ce spectre fractal est le résultat de la compétition entre
deux échelles de longueur: la longueur magnétique lgp = \/h/(eB), et la parameétre cristallin a.
11 affiche les énergies permises d’un électron par rapport au flux magnétique. Cette structure
auto-similarité a une richesse mathématique et en méme temps une signification physique: il
est associé a l'effet Hall quantique entier, chaque intervalle d’énergie (la région vide du spec-
tre) correspond & une quantification entiére de la conductivité de Hall. De plus, le spectre
lui-méme a son propre intérét mathématique pour les études liées & ’analyse spectrale. L’une
des motivations de Hofstadter pour étudier ce probléme réside dans les différentes caractéris-
tiques du spectre pour les cas de champs magnétiques "rationnels" (quand le flux magnétique
sur le flux quantique par unité de cellule est égal & p/q avec p et ¢ sont premiers entre eux)
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et de champs magnétiques "irrationnels" (lorsque le rapport entre les flux est irrationnel).
Pour le cas "rationnel", la structure du spectre est constituée de ¢ bandes, il est continu pour
chaque bande et ne se chevauche jamais sauf si g est pair, alors les deux bandes centrales se
touchent & I’énergie nulle. Pour le cas "irrationnel", le spectre se divise en un nombre infini de
sous-bandes formant 1’ ensemble de Cantor de mesure nulle |5]. A 1’époque de sa découverte,
le papillon de Hofstadter avait plus d’intérét théorique que de "vrais problémes". Voici une
citation de l'article original de Hofstadter [6] "The method is illustrated in a maximally simple
model of the physical situation, but the ideas which arise are, it is to be hoped, applicable to
more realistic models of the physical situation." Cependant, 40 ans plus tard, les physiciens
ont trouvé des indications expérimentales sur ce spectre exotique. |7]. Maintenant, beaucoup
de documents ont été publiés sur le papillon Hofstadter. Expérimentalement, il a découvert de
nouveaux intéréts pour les atomes ultra-froids dans les réseaux optiques [8]. Théoriquement,
des travaux récents, par exemple, montrent que le probléme des valeurs propres quantiques
des variétés de Calabi-Yau est étroitement lié au modele de Hofstadter |9] (ne mentionnant
méme pas les nombres de Chern, la géométrie non commutative...). En tant que personnage
émerveillé par le papillon de Hofstadter, j’espére convaincre le lecteur que méme s’il jette un
coup d’ceil & lui, son charme ne faiblit jamais.

Le modéle de Hofstadter

Le modéle physique menant au papillon de Hofstadter est simple: une particule chargée se
déplace sur un réseau carré couplé a un champ magnétique perpendiculaire. (fig. .On peut
le considérer comme un tight-binding modéle dans lequel il existe une seule bande de Bloch
lorsque le champ magnétique est appliqué [6], mais il pourrait aussi étre compris comme un
électron libre dans un champ magnétique homogéne, et chaque niveau de Landau est divisé
en sous-bandes par un potentiel périodique [10]. Ces deux approches alternatives conduisent
au méme spectre |11].

Dans cette thése, je vais utiliser la présentation du tight-binding modéle, i.e. commencer
par la fonction d’onde Bloch et ajouter le champ magnétique. Dans cette configuration, on
suppose que l’électron se déplace sur un réseau carré avec le parameétre de réseau a et ne
peut sauter que vers ses voisins les plus proches. Le tight-binding modéle est une méthode
semi-empirique utilisée pour calculer la structure de la bande d’énergie et les états de Bloch
& une seule particule d’un matériau. La philosophie ici est de supposer que les atomes dans
un cristal sont localisés et séparés par une distance égale, le cristal est comme un réseau, et
chaque site est un atome, la distance entre chaque atome est le paramétre de réseau. Par
conséquent, I’électron dans un tel modéle est étroitement lié aux atomes, et sa fonction d’onde
est approchée par une combinaison linéaire des orbitales atomiques situés & chaque site.

bande unique en réseau carré 2D

Le tight-binding modéle n’inclut pas les interactions électron-électron. L’Hamiltonien indépen-
dant du temps a un seul électron est écrit

H= Zei i) G+ >t 1) (il

{i.g}
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Figure 3: Hofstadter’s butterfly: Energy is plotted in unit
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m; et n; sont des entiers. Par consé

)
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tralr) = 3"y aulr — Ry)

Maintenant, considérons une seule bande, nous désignons ’état correspondant par |s) tel que

(r[k)

Ainsi, la fonction d’onde de Bloch peut étre réécrite comme suit:

(xls) = 6(r — Ry).
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Figure 4: un seul électron sautille entre les sites d’un réseau carré soumis & un champ magnétique
perpendiculaire B: a est le parameétre d’espacement et ¢ = Ba? représente le flur magnétique & travers
une cellule unitaire

avec |k) = >, e’®Rs|s). I'équation de valeur propre devient

_ (klHk) ik(Rs—R;)
P =g _€s+§j:ts]e J

ou (s|H|s) = e, (s|H|j) = tsj. En supposant €, = 0 et t,; = ¢ est non nul uniquement lorsque
I’électron saute entre les sites les plus proches voisins (|Rs — Rj| = a), alors, on a
E = 2t (cos(aky) + cos(aky))
Avec le Ansatz Onsager-Peierls: remplace hk par p :
E = 2t (cos(apy/h) + cos(apy/h))
— <eiapw/h 4 e—taps /N giapy/h e—iapy/ﬁ)

ol P, = —iha% et p, = —ih%, alors

e=E/t=(T,+ T, +T,+ T, ")

Sans le champ magnétique, T}, T}, et leurs inverses ne sont que des opérateurs de translation
dans chaque direction, tels que

i i
T, = en™* and T, = env.
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Ils agissent sur un état W, , sur un site de réseau m,n comme suit

+1

T;B \Pma,na = \I](mzl:l)a,na
+1

Ty \I/ma,na - \Ilma,(n:l:l)a

Nous trouvons donc le
H=(T,+T,' +T,+ T, ") (1)

Cependant, lorsque le champ magnétique B est appliqué dans la direction z avec un vecteur
potentiel A, il rompt la symétrie de translation de ’'Hamiltonien car le potentiel vectoriel A
n’est pas invariant en déplagant un vecteur de réseau. En utilisant la substitution de Peierls |3],
on a remplacé 'opérateur momentum p par p—eA/c (e étant la charge électrique élémentaire
et ¢ est la vitesse de la lumiére). Par conséquent, en fonction du choix de jauge qu’on a fait,
les opérateurs de translation doivent étre multipliés par une phase supplémentaire. Dans cette
thése, nous travaillons avec le choix de jauge A = (0, Bzx,0) appelé jauge de Landau. Avec
cette jauge, les opérateurs de translation dans = direction ne changent pas, les opérateurs de
traduction dans y direction doivent se multiplier par une phase supplémentaire:

+1 +1
TE W nana = 5P U na = ¥ imit)ana

T+l \Pma,na _ e:t fa(py—eBz/c) N}

iaeBz/c
Y etraeBr/ey

a,(ntl)a- (2)

ma,na —

TyetT, I sont maintenant appelés les opérateurs de translation magnétique. En raison de la
présence du champ magnétique, T, et T}, avoir une structure non commutative:

T.T, = e "T,T, (3)

ouy = 271%, ¢ = Ba? est le flux magnétique par unité de cellule de réseau, ¢o = hc/e est
le flux quantique. Dans ce qui suit, on a défini a = 1. La jauge de Landau brise I'invariance
de translation dans le x direction, mais pas dans le y direction, on peut donc supposer le
comportement de 'onde plane dans la direction y (les fonctions d’onde dans la direction y
sont les états propres de py):

Vin = e mky ®,, and k, is the wave number in the y direction

En utilisant toutes les substitutions ci-dessus, on obtient une équation simplifiée a une dif-
férence propre unidimensionnelle

Qi1 + @1 + 2cos(ky + ym) Py, = E®y, (4)

ou F est I'énergie. Cette équation s’appelle I’'équation de Harper [4]. Dans le cas correspon-
dant, quand v est 'rationnel’, i.e v = 27r§ avec p et g sont des entiers co-prime, ce modéle
simplifie considérablement. Nous allons nous concentrer sur ce cas dans ce qui suit.

Lien entre le modéle Hofstadter et les marches aléatoires

En 1997, en utilisant des techniques de géométrie non-commutative sur 'Hamiltonian de
Hofstadter eq. (1.1, Bellissard et al (|12]) ont mis en relation la distribution en aire des
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marches aléatoires fermées de longueur n avec le n-iéme moment de ’'Hamiltonien. Pour voir
cette relation, nous définissons la fonction génératrice Z,, my.1;.1,(Q)

Zpr ma i da (@) = Z Crnima,iy b (A)QA (5)
A

ol Gy mair 1o (A) est le nombre de deux dimensions marches aléatoires sur un réseau carré
avec m1 nombre de pas vers la droite, ms nombre de pas vers la gauche, ;1 nombre de pas
en haut et [ nombre de pas en bas, qui enferment une aire algébrique A. Pour les marches
aléatoires fermées de longueur n, on définit
n/2
Zn(Q) = Z Zm,m,n/2—m,n/2—m (Q) <6>
m=0
ou il y a m; = mg = m pas dans la direction horizontale, et [y = lo = n/2 — m pas dans
la direction verticale. L’explication spécifique de ces notations est donnée dans le chapitre
suivant.
Le processus de trouver la correspondance entre les marches aléatoires et le modéle Hofs-
tadter est la suivante

e La trace par cellule unitaire est définie comme

Tr (T£1T52) = 5711?-&-712?,0 (7)
oll nq et ng sont des entiers. Par exemple, Tr (TxTx_lTyTy_l) =1, parceque ny = ng =0
dans ce cas. Ty, T}, et leurs inverses sont des opérateurs de translation et ils sont définis

comme eq. (1.2) .
e Selon eq. (1.1]), 'Hamiltonian de Hofstadter élevé a la puissance de n est écrit comme
H'= (T, + T, + T, + T, )"
Réécrire ’équation ci-dessus en utilisant la relation non commutative eq. (1.3)), on trouve

(Tm + Tgc_1 + Ty + Ty_l)n = Z Zm17m2,117l2 (eiW) T;nl_m2Tyll_l2 (8)

my,ma,l1,l12>0
mi+mo+li+la=n

o Ly ma,lila (e”) est la fonction génératrice définie dans eq. |) avec Q = e,
Et comme mentionné précédemment, v = 277%, correspond au rapport entre le flux
magnétique ¢ par cellule de réseau et le quantum de flux ¢y . Par conséquent, quand ) =
e’, nous mappons les marches aléatoires classiques au modéle quantique de Hofstadter.

e Utilisant eq. (1.7)) et eq. (1.8), le n-iéme moment de I’'Hamiltonian de Hofstadter est:
n/2
Tr H;l = Z vamvn/2_mvn/2_m (67’7) = Zn (617) : (9)
m=0
L’opérateur de trace eq. ([1.7]) s’assure que cette somme n’est prise que sur des chemins
fermés de longueur n. Donc, n devrait étre pair.

L’équation eq. (|1.9) relie le modéle quantique de Hofstadter aux chemins de réseau classiques.
Comme mentionné précédemment, dans ce qui suit, nous nous concentrons sur le cas v = 27r§
avec p et ¢ sont des entiers co-prime. Dans le [chapter 2| nous allons utiliser cette connexion

en nous concentrant sur les marches aléatoires.
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CHAPTER

1
I INTRODUCTION

1.1 Overview and Motivations

In 1976, a paper about the energy levels of a single electron moving in a two-dimensional
lattice coupled to a magnetic field was published. This paper plotted one of the first quantum
fractals, known as the Hofstadter’s butterfly (fig. , named after its discoverer, Douglas
Hofstadter. However, the study of this model appeared much earlier. Felix Bloch [1] is the
pioneer with one of the earliest contributions. In 1929, only five years after Erwin Schrodinger
derived the Schrodinger equation, Bloch published a paper about the band structure of a
single electron in a crystal lattice subjected to a periodic potential V(r) = V(r + T) (where
the period T = nja; + noas + nzag with ny, ne, ng are integers and aj, as, ag are the

fundamental lattice vectors). Its Hamiltonian is H = p;g) + V(r). Bloch’s theorem states
that the wavefunction of such an electron can be written as ¢y, (r) = ukm(r)eik", where k
is the wavevector and ug (1 +T') = ug»(T) is a periodic function with the same periodicity
as the potential V (r). By using the Bloch wave function and the Fourier transformation, one
can solve the eigenvalue function Hg,, = Ep(k){r, (n is the band index). It turns out
the energy spectrum of the Bloch wave function is not continuous, in fact, the presence of
the lattice (periodic potential) breaks the energy (kinetic energy of free electron) into pieces.
Each piece is called an energy band and the gaps between them are forbidden energy regions
(see fig. the simplest case: mixing of the first two bands only).

On the other hand, almost in the same period, Landau [2] was working on the quantum
model of a free electron under a perpendicular magnetic field B with Hamiltonian H =
W' One can introduce 7 = p — eA /h with the commutation relation [m,, 7] = iehB,
and define the operators a = o= (7, — imy) and at = 5= (m, +im,) with [¢,a*] = 1. a and
a™ are similar to the raising and lowering operators of an harmonic oscillator. By using the
substitutions above, the Hamiltonian becomes H = % = hwp(ata + §) with wp = eB/m
the cyclotron frequency. The quantized eigenenergies are now known as the Landau levels:
E, = hwp(n + 1/2) where n is the Landau level index with an infinite degeneracy equals to
the flux of the magnetic field in unit of the flux quantum. Thus, in the presence of an uniform
magnetic field, the energies are evenly spaced, and the gap between each level is proportional
to the magnetic field (see fig. [1.2)).

The natural question is to combine these two problems: what will happen if someone
puts an electron on a discrete lattice and then applies a perpendicular magnetic field to
it? Lots of physicists have been interested in this problem over decades. Among them, a
simple model conceived by Onsager and Peierls [3] and built by Harper |4] became a valuable
tool to study this problem. The idea to replace the crystal momentum with the quantum
mechanics momentum operator is the crucial point: hk — 7, and we will see the details
in the next section. Today we call it the Hofstadter’s model because Hofstadter was the
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Figure 1.1: Bloch wave bands in the first Brillouin zone in a one-dimensional system: the energy
dispersion curve of Ey vs. k with the potential V(z) =V, Eg e~9% (g = 2nm/a, is the reciprocal lattice

vector) with Vo = —2 (red and green curve) and with Vo = 0 (blue curve corresponds to the energy of
free electron Ej, = h;ﬁz). Set: a — 1,h — 1 and m — 1. The gaps at k = +m are the energy gaps

between the first band and the second band, and they are equal to 2|Vy|.

A

hwp

Figure 1.2: Landau level: The degeneracy of the Landau level is infinite, n € N is the indez of energy
level.

first to give an intuitive picture for its fascinating spectrum. The figure fig. represents
the Hofstadter butterfly. This fractal spectrum is the result of the competition between two
length scales: the magnetic length Ip = \/h/(eB), and the lattice parameter a. It displays
the allowed energies of an electron versus the magnetic flux. This self-similarity structure
has a mathematically richness and at the same time a physical meaning: it is associated to
the quantum Hall effect, each energy gap (the empty region in the spectrum) corresponds
to an integer quantification of the Hall conductivity. Moreover, the spectrum itself has its
own mathematical interest for studies related to spectral analysis. One of the motivations
for Hofstadter to study this problem is the different features of the spectrum for the cases
"rational" magnetic fields (when the magnetic flux over the flux quantum per unit cell equals
to p/q with p and ¢ are coprimes) and "irrational" magnetic fields (when the ratio between the
flux is irrational). For the "rational" case, the structure of the spectrum consists of ¢ bands,
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it is continuous for each band and never overlap unless ¢ is even then the two central bands
touch each other at zero energy. For the "irrational" case, the spectrum splits into an infinite
number of subbands forming a zero measure Cantor set |5]. Back at the time of its discovery,
Hofstadter’s butterfly had more theoretical interest than related to "real problems". Here is
a quote from Hofstadter’s original paper [6] "The method is illustrated in a maximally simple
model of the physical situation, but the ideas which arise are, it is to be hoped, applicable to
more realistic models of the physical situation." However, 40 years later, physicists have found
experimental indications of this exotic spectrum |7]. Now lots of papers have been published
about the Hofstadter butterfly. Experimentally, it has found some new interests for ultracold
atoms in optical lattices [8]. Theoretically, some recent work, for example, shows that the
quantum eigenvalues problem of Calabi-Yau manifolds is closely related to the Hofstadter
model |9] (not even mentioning Chern numbers, non-commutative geometry...). Being one of
the people who was amazed by Hofstatder’s butterfly, I hope to convince the reader that even
if he just takes a glimpse of it, its charm never decays.

1.2 The Hofstadter model

The physical model leading to the Hofstadter’s butterfly is simple: a single particle moving
on a two-dimensional lattice coupled to a magnetic field perpendicular to the lattice (fig. .
One can consider it as a tight-binding model in which there is a single Bloch band when the
magnetic field is applied [6], but it could also be understood as a free electron in a uniform
magnetic field, and each single Landau level is split into subbands by a periodic potential [10].
These two alternative approaches lead to the same spectrum [11].

In this thesis, I will use the tight binding model presentation, i.e. start with the Bloch wave
function and add the magnetic field. Under this configuration, we assume that the electron
moves on a square lattice with lattice parameter a and can only jump to its nearest-neighbors.
The tight binding model is a semi-empirical method used to calculate the energy band structure
and the single-particle Bloch states of a material. The philosophy here is assuming that the
atoms in a crystal are localized and separated by equal distance, the crystal is like a lattice, and
each site is an atom, the distance between each atom is the lattice parameter. Therefore the
electron in such a model is tightly bound to the atoms, and its wave function is approximated
by a linear combination of atomic orbitals located at each site.

single band in 2D square lattice

The tight binding model does not include electron-electron interactions. The single electron
time-independent Hamiltonian is written as
H =7 eili) (il + Y ti;li) (]
i {i.5}
where i denotes the index of sites on a lattice and {i, j} are the nearest neighbors and ¢; is the
site energy. In the tight binding model, the solution is expanded in terms of atomic orbitals.

Let ¢;(r — R;) be the I-th atomic level at the lattice site R; = a(mjaz + nje_y>) where a is the
lattice parameter, m; and n; are integers. Therefore the Bloch wavefunction is

Yia(r) = Z M Z di(r — Ry)
j I
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Figure 1.3: Hofstadter’s butterfly: Energy is plotted in unit

Now, consider a single band, we denote the corresponding state by |s) such that (r|s)

¢(r — Rs). Thus, the Bloch wavefunction can be rewritten as (r|k) with |k) = > e™Rs|s).
the eigenvalue equation becomes

_ (klHk) _ik(Rs—Ry)
E(k:)_7<k|k> _es+zj:tsje j

where (s|H|s) = e, (s|H|j) = tsj. Assuming ¢, = 0 and t,; = ¢ is nonzero only when the
electron is hopping between the nearest-neighbor sites (|Rs — R;| = a), then we get

E = 2t (cos(aky) + cos(aky))
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Figure 1.4: a single electron hops between sites in a square lattice subjected to a perpendicular
magnetic field B: a is the spacing parameter and ¢ = Ba? represents the magnetic flux through a unit
cell
With the Onsager-Peierls Ansatz : replace ik by p :
E = 2t (cos(apy/h) + cos(apy/h))
—¢ <6iapz/h + e*'iapz/h + eiapy/h + efiapy/h>
where p, = —ih2 and p, = —ih-Z, thus
z o Dy Dy’
e=E/t=(T.+ T, +T,+ T, ")

Without the magnetic field, T}, T), and their inverses are just translation operators in each
direction, such that

T, = 7%= and T, = Py
They act on a state ¥,, ,, at a lattice site m,n as follows

T;El\llma,na = \I](mil)a,na
T;:I\I"ma,na = qjma,(n:l:l)a
Therefore we find the

H=(T,+ T, +T,+ T, ") (1.1)
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However, when the magnetic field B is applied in the z direction with a vector potential A, it
breaks the translational symmetry of the Hamiltonian because the vector potential A is not
invariant by shifting one lattice vector. By using the Peierls substitution [3|, we replaced the
momentum operator p by p—eA/c (e being the elementary electric charge and ¢ is the speed
of light). Hence, depending on the gauge choice we made, the translation operators must be
multiplied by an additional phase. In this thesis, we work with the gauge choice A = (0, Bz, 0)
which is called the Landau gauge. With this gauge, the translation operators in x direction
do not change, the translation operators in y direction must multiply by an additional phase:

Tagtl\pma,na = €i%apijma,mz = \Il(m:tl)

a,na

T;:lqjma,na = e:l:%a(py—eB:c/c)\Ij a = e:’:%aeBx/c\I/ma,(n:l:l)a' (12>

ma,n

Ty and T, I are now called the magnetic translation operators. Because of the presence of the
magnetic field, T, and T} have a non-commutative structure:

T.T, = e "T,T, (1.3)

where v = 277%, ¢ = Ba? is the magnetic flux per unit cell of lattice, ¢g = hc/e is the quantum
flux. In the following, we set a = 1. Landau gauge breaks the translational invariance in the
x direction but not in the y direction, so we can assume the plane wave behavior in the y

direction (wave functions in the y direction are the eigenstates of py):
Vipn = e mky ®,, and k, is the wave number in the y direction

By using all the substitutions above, one gets a simplified one-dimensional difference eigenvalue
equation
Q.1 + Pyt + 2cos(ky +ym) Py, = E®y, (1.4)

where F is the energy. This equation is called the Harper’s equation [4]. In the commensurate
case, when + is 'rational’, i.e v = 272 with p and ¢ are co-prime integers, this model simplify
considerably. We shall focus on this case in the following.

1.3 Connection between the Hofstadter model and random walks

In 1997, by using non-commutative geometry techniques on the Hofstadter Hamiltonian
eq. (1.1, Bellissard et al ([12]) related the area distribution of closed random walks of length n
to the n-th moment of the Hamiltonian. In order to see this relation, we define the generating

function Z,,, 1m0, (Q)

Zimymali o Q) = Z Crmima,la o (A)QA (1.5)
A

where Cpy, my 1, 1, (A) is the number of two-dimensional random walks on a square lattice with
my steps right, mq steps left, {; steps up and lo steps down, which enclose an algebraic area
A. For closed random walks of length n, we define

Zn(Q) = Z Zm,m,n/me,n/me (Q) (16)
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where there are m; = mg = m steps in the horizontal direction, and I} = ly = n/2 — m steps
in the vertical direction. The specific explanation of these notations are given in the next
chapter.

The process of finding the mapping between random walks and the Hofstadter model is as
follows

e The trace per unit cell is defined as

Tr (T7'T5?) = 60,2 1070 (1.7)

where n; and ng are integers. For example, Tr (Tme_lTyTy_l) =1, because ny = ny =0
in this case. T, T), and their inverses are translation operators and they are defined as

eq. (L.2) .

e From eq. (I.1]) , the Hofstadter Hamiltonian raised to the power of n is written as:
H' = (T, + T, ' + T, + T, ")"
Rewrite the equation above by using the noncommutative relation eq. (1.3]), one gets

T+ T+ T+ T = Y Znymans (€7) T ™I (18)

m1,ma,l1,l2>0
mi+ma+li+la=n

where Z,,, mo i1l (e”) is the generating function defined in eq. 1' with Q = €. And
as mentioned before, v = 277(%, corresponds to the ratio between the magnetic flux ¢

per unit lattice cell and the flux quantum ¢g . Therefore, when @ = €%, we map the
classical random walks to the quantum Hofstadter model.

e Using eq. (1.7) and eq. (1.8)) , the n-th moment of the Hofstadter Hamiltonian is:

n/2
Tr HY = Zymn/2-mnj2—m (€7) = Zn (€7) . (1.9)
m=0

The trace operator eq. (|1.7) makes sure that this sum is only taken on closed paths of
length n. Thus, n should be even.

Equation eq. (1.9)) links the quantum Hofstadter model to classical lattice paths. As mentioned
before, in the following, we focus on the case v = 2w2 with p and ¢ are co-prime integers. In
we are going to use this connection by focusing on the random walks.
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CHAPTER

2

ITHE GENERATING  FUNCTION
Zmymali (@)  FOR  RANDOM
WALKS

In this chapter, we are going to show how to derive a formula for Z,, (62”1’/ q) in eq. , the
generating function for the algebraic area of random walks. The results are published in [13|
which is the Article 1 inserted at the end of this chapter.

In we shall first introduce some basic information about two-dimensional ran-
dom walks and their algebraic areas. Also, we will analyse more in detail the generating
function of the algebraic area of random lattice walks and its connection with the Hofstadter
model. Then, we will present a method for deriving an expression for the multivariate generat-
ing function Z,, m, 1,1, (@), which yields simple explicit formulas in some special cases. This
multivariate generating function is then specialized to the generating function of Z, (62“—1)/ 7).
This allows us to derive a closed expression for Z, (e%rp/ q) and thus, thanks to eq. ,
for the traces Tr H;rp g in terms of the Kreft coeflicients eq. . We will also study the

asymptotic behavior of Z, (62’”’/ q) as n — oo for a fixed 27p/q.

2.1 Random walks and their algebraic areas

The random walks we are talking about here are simple planar paths on a square lattice, made
of a sequence of random steps with constant length taken into the four directions (up, down,
left and right) with equal probability [14]. Therefore we define it as an ordered sequence of
four basic steps: x denotes a step to the right, z=! a step to the left, y a step up and y~! a
step down; my, me, I1 and Il are the numbers of steps in these directions respectively. If e.g.
a random walk has n steps, it is defined by a sequence {si, s2,...,s,}, where each s with
k=1,2,...,n can be one of the four operators {x, 2!, y,y~!}. Also, we label them such that
s; is the i-th step. A random walk is closed if and only if m; = mo =mand iy =1l =1, ie. a
walk with an equal number of steps m in horizontal directions and an equal number of steps
[ in vertical directions. If its total length is n, then m € {0,1,...,n/2} and | = n/2 —m.
Closed random walks on a square lattice enclose an algebraic area which is the number of
square units surrounded by the walks. If the curve enclosed by random walks winds around
more than once, the area is counted with multiplicity. The algebraic area is negative if the
walk moves around clockwise, it is positive if the walk moves oppositely. If a walk is open, in
order to define its algebraic area, we can close it by adding the necessary steps to connect its
ending point with its starting point: we choose to add first the minimum necessary number
of steps in vertical directions, then in horizontal directions. E.g., if an open lattice walk has
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my steps right, mqy steps left, I; steps up and [y steps down, we add first |l; — l2| steps in the
vertical direction then |m; — mg| steps in the horizontal direction in order to close it (see the
illustration fig. below). The total number of such random walks is

my1 +ma + 11 + 12
mi,ma,lq,l2

The total number of closed paths with length n is thus

n/2

> (m,m,n/2 —nm, n/2 — m) - <n72)2 (2.1)

m=0

Figure 2.1: Lattice parameter a = 1. Here are examples of 8 random walks and their algebraic area:
71 s a closed walk of 4 steps: it starts from the green point, first go right, next go up, then go left
and finally go down to come back to its starting point. It turns like anticlockwise, and it enclosed one
square unit, so its algebraic area is 1; 7o and 73 are two open walks of 7 steps, as explained above, we
add first necessary vertical steps then horizontal steps to close them, and their algebraic areas are the
number of square units enclosed by them with opposite signs because they move in opposite ways.

()-binomial theorem

Two random walks with the same number {m1,ma, 1,2} of steps in each direction are different
if they have different order in their steps. In order to calculate the algebraic area A for
{m1, ma, 11,12} given, we introduce a Q-commutator such that zy = Qyz. Multiplying both
sides by 7! and y~! on the left and right, we get the full commutation relations between the
four operators x,z =1, y, y~!

1

vy =Quzr; yr '=Qr ly; y lv=Quy (2.2)

10
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By using the noncommutative relations eq. (2.2)) , the algebraic area A of a closed random walk
with n steps can be computed directly from the product of the sequence of steps {s1, s2,...,sn}

s1eeesn = QM

where si, € {z, 27!, y,y~!} with k = 1,2...,n as mentioned before. 1 represents the product
of a normally ordered walk as

-1, -1 —1 -1 -1
{y Y ey WYY, 0,2, 2,0, T ,...,(If}

where there are equal numbers of  and ™!, and the same holds for y and y~'. Such a walk
obviously has zero algebraic area. Hence, the question of calculating the algebraic area of a
closed random walk can be solved in three steps:

e First rearranging the sequence of the steps such that it is normally ordered;

e Then calculating the product of the sequence after the rearrange by using the noncom-
mutative relations eq. ([2.2));

e Finally summing up all the exponent of (), which is the algebraic area A.

E.g., the closed lattice path 7 in fig. , its sequence of steps is {x,y,271, y~ !}, so the
product of this sequence is zyz~'y~! = Qyraz~ 'y~ = Q, the exponent of Q is one, and its
algebraic area is indeed one. For the open walk 75 in fig. [2.1] its sequence of steps after closing

is {y,vy,y,2,z,y 2~ y~ 1y~ 271}, the product of its sequence is y3x?y ta~ly 221 =
Q222 ly 2071 = Q2222 1y 2y22~! = Q4 and its algebraic area is indeed —4. The

other open path 73 in fig. its sequence of steps after closing is {y ', 271, z, 2z, 9,9, v,y L,y L, 271},
its product equals y lzyr~! = Qy~lyzz~! = Q, the exponent of @ is one and its algebraic

area is one.

If x and y satisfy xy = Qyz, then

(@+y)" = Znp(@yra""
k=0

where Z, 1(Q) is the Q-binomial coefficient:

_ (" _ [n]Q'
@)= <k>@ ~ [KlQ![n — Klg! (2.3)
with k |
[k]Q!:1(1+Q)(1+Q+Q2)~-(1+Q+Q2+”_+Qk71) _Hll__%z
=1

when Q = 1, [k]g! turns back into k!, the factorial of k and Z, ;(1) is the usual binomial
coefficient (7). We can understand Z, ;(Q) in the context of random walks: let 2 and y be
the two unit operators which construct the "staircase walks", i.e. walks only go up and right.
Thus, Z, 1(Q) is the generating function for the algebraic area distribution of the "staircase
walks" with k right steps and n — k up steps: Z, 1(Q) = > 4 Cn 1 (A)Q# with C,, x(A) is the
number of such walks enclosing an algebraic A. When Q =1, Z,, (1) is the number of such
"staircase walks".

11
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Generating function of the algebraic area

Let us recall the definitions in section 1.3|of|chapter 1t Cyy, mo.iy .0, (A) is the number of random
walks which enclose an algebraic area A and have my steps right, mo steps left, I; steps up
and [y steps down. In order to study the algebraic area distribution of random walks, we use
eq. (L5), the generating function of the Cyy iy 1.1, (A)’s:

Ay
Zml,mz,h,b(Q): Z Cm1,m2,l1712(A)QA (2'4>
A=—A_

where Ay is the maximum algebraic area enclosed by a path with {m1,ma, 11,12} steps.

|(m1 —ma)(li — lo)| & (m1 —ma)(l1 — I2)
2

(A is the maximum area covered in the positive direction (anticlockwise), A_ is the maximum
area covered in the negative direction (clockwise)). In order to close a open path, one must first
add the vertical necessary steps |l — l2|, then add the horizontal steps |[m; — mg|. Assuming
that m; > mg and I3 > lg, then the ending point is at the top and right side of the initial
point, thus, its maximum areas are A_ = myl; and Ay = lomy + [1ma — lamg. The algebraic
area probability distribution is given by

Ay = max (mq1, mg) max (Iy,l2) — (2.5)

P (A) _ le,mmll,lz (A)
m1,ma,l1la - (m1+m2+l1+l2)
mi,ma,l1,l2
mi+mo+ii+l2) ; ; :
where ( gl o ) is the total number of random walks with m steps right, ms steps left,

1 steps up and ls steps down as mentioned before. Then,

Z 102 (@
ZPml,mz,ll,zg (A)QA = M
A ml’m2,ll,lg

This generating function Z,,, m,i,.0,(Q) can be considered as a generalization of the Q-
binomial coefficient Z, 1(Q) eq. (2.3). Thus

(CL' +y+ l'_l + y_l)n = Z Zm1,m2,l1,l2 (Q)y_llybxml$_m2 (27)

m1,ma,l1,l2>0
mi+mo+li+lo=n

(2.6)

Rewrite (x +y4+at 4 y_l)n as (:L‘ +y4+a T+ y_l) (1: +y4+a T+ y_l)n_l and expand it
by using the noncommutative relations eq. (2.2), one gets

(x +y+ Tt yil)n = Z QillHQ Zimy—1,ma,ly o (Q)yillylzxmlximz

mi,ma,l1,l2>0
mi+ma+li+la=n

+ Z Zm17m2,l1,l2—1(Q)y_llybl"mlx_’m

mi,ma,l1,l2>0
mi+ma+li+lo=n

+ Z Qll_l?thmz—l,ll,lQ (Q)y—l1y12$m1x—m2

m1,ma,l1,l122>0
mi+mo+li+la=n

- Z Zm1,m27l1—17l2 (Q)y_ZIQZQCUmla}_mQ

m1,ma,l1,l12>0
mi+mo+li+la=n

12



Chapter 2 Random walks and their algebraic areas

From above, it is easy to see that Zp,, m, 1,1, (Q) obeys the recurrence relation

Zm1,m2,l1,lz (Q) = Zm1,m2,l1—1712 (Q) + Zmlvm%ll’l?_l(Q)
+ ng*ll Zml—l,m27l17l2 (Q) + Qll*lQ Zml,mgfl,ll,b (Q) (28)

The physical interpretation of this recurrence relation is simply. For the random walks with
my right steps, mg left steps, {1 up steps and ls down steps, we distinguish the four possible
cases for the last step: if the last step is vertical, then the algebraic area does not change; If it
is a step to the left, the algebraic area changes exactly by the current y-coordinate; the same
holds if the last step is a step to the right, but with opposite sign (see fig. .

A A

= lo| 4-mmmmmmmm e I
R

[lh —l2| +

N \

- 7
|m17m2|71 |m17m2| |m17m2\

Figure 2.2: two figures above are two cases for the last step of a path with {mq, ma, 11,12} steps
(blue arrow represents the last step, and black arrow is used to close the path after the last step): the
figure on the left corresponds to the last step goes right, its algebraic increases |ly — la| in the negative
direction(clockwise rotation); the figure on the right corresponds to the last step goes up, its algebraic
area does not change.

As mentioned inchapter 1| evaluate Z,,, m, .1, 1,(Q) at Q = €7, and identify z, y (and their
inverses) with the (magnetic) translation operators T, and T, (and their inverses), eq. (2.7)

turns into eq. . By setting Q = e"?, we mapped classical random walks on the quantum
Hofstadter model. Since we always focus on the case « is rational, in the following, we will
restrict to Q = €2™/9 with p and ¢ are coprime integers, which means @ is a ¢-th root of
unity, so that Q7 = 1. In the next section.

13
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Chapter 2 Zimyma i1 (@)

2.2 The method for determining Z,,, ,,1,1,(Q)

In order to find an explicit formula for Z,,,, m, 1, 1, (@), we introduce the multivariate generating
function

A(xlyx%ylvy%@) = Z Zm1,m2,l1,l2 (Q)qunlxgmyllly?v (2'9)

m1,ma,l1,l2>0
such that we can extract the information of Z,,,, m, 1, 1,(Q) directly from its generating function
A(z1,z2,y1,y2,Q). By using the recurrence relation eq. (2.8) with the boundary conditions
Z0,0,00(Q) =1 and Zy;, my11.0,(Q) = 0 when at least one of the {my,ma,l1,l2} is negative,
one can read immediately
A(z1, 22, Y1, ¥2, Q) = 1L+ y1 A(z1, T2, Y1, Y2, Q) + y2 A1, T2, Y1, Y2, Q) (2.10)
+ l‘]_A(ﬂf]_, x2, Q_1y17 Qy27 Q) + SUQA(.’El, x2, th Q_1y27 Q) (211)

Because Q = e%7/4_ is a root of unity, this turns into a finite system of linear equations. We

set Ak = A($17$2,Qky1,Q_ky2,Q) with AO = Aq = A(x17$27y1)y27Q)' From €q. " we
get

Ay, = A(z1,22,Q"y1, Q Fy2, Q)
=1+ Q1 A(w1, 22, Q%y1, Q F12, Q) + Q F1pA(w1, 22, Q%y1, @ F1p2, Q)
+ 21 A1, 22, Q¥ 1, QM e, Q) + w2 A1, 22, Q5 iy, QTF 0, Q)
=1+ Q" + Q" y2) Ak + 11 Ak 1 + T2 A1

This recurrence relation reduces to a matrix form

co -3 0 .- 0 —x Ay 1
—I1 C1 —xry 0 0 A1 1
0 —X1 C cee 0 0 AQ 1
0 0 0 - cg—2 —2 Ay 1
—x2 0 0 s —I1 Cg—1 Aq,1 1

where ¢, = 1 — QFy; — Q Fy and Q = ¢%7/4. Then, we can use the Cramer’s rule to solve
A(z1,72,Y1,Y2, Q):

1 —z9 O 0 -1

1 C1 —Xy 0 0

1 —I] C9 ce 0 0

1 0 0 cee Cq,Q — X9

1 0 0 —x1 Cg—1

A(l‘lax%ylvy?aQ) :AO = 1 (212)

Co —I9 0 0 —X1
—X1 C1 — X9 0 0

0 —I1 (&) 0 0

0 0 0 e Cq_2 —X9
—x2 0 0 e —=T1 Cg—1




Chapter 2 Zn(Q)

where ¢, = 1 — Q¥y; — Q *yp and Q = €*™/4 as before. In order to see how this process
works, In Article 1, we gave some simple examples with small values of ¢ to show how to
extract the explicit formula of Z,,, m,.1,.1,(Q) from its generating function A(z1,z2,y1,y2, Q).
Please also see the |Appendix D| for a complete derivation of Z,,, m, 1 1. (ezi“/ 7) in the case
where m; — mo = [; —lo = 0 mod ¢ with ¢ = 3 and ¢ = 4 (we are particularly interested in
this case because the closed random walk is a special situation of it: for closed random walks,
m1 —mg =l —lp = 0.). In general, with the increase of ¢, the formula of Z,,, 1,1, 1, (Q)
becomes more and more complicated. Fortunately, when @ is a root of unity, the generating
function A(z1,z2,y1,y2, Q) always has a general shape such that

U(:Ela x2,Y1, 3/2)

1—af —af —yl —yd + V(z122, y172)

A(x17x27y17y27Q) = (213)

where U,V are polynomials and V is symmetric (in its two variables) and has only real
coefficients (and constant coefficient 0). The section 3.3 of Article 1 shows how we obtained
this general shape.

2.3 The generating function for closed random walks of length
n: Z,(Q)

As stated in the beginning, we want to calculate Z,(Q) in eq. , which corresponds to
closed lattice walks of a given length n with m; = my = m and Iy = ly = n/2 —m. This is
simpler than the general case, because Z;/io Zrmmom/2—mn/2—m (@) can be obtained directly
from A(z1,z2,y1,y2, Q) by setting x1 — zx, xo — z/x, y1 — zy and yo — z/y and looking at
the coefficients of zero components of x and y and n component of z. Therefore the problem
is reduced to two steps: first, finding the generating function for Z, (Q)

32, (Q) 2" = 2% Az, 22, 29,2y, Q).

n>0

(2.14)

Then, expending ano Zn (@) 2™ and looking at the coefficients of 2", that will give us the

explicit formula of Z,, (Q).
Now let us first focus on how to find the coefficient [z%")A(zx, 2/, 2y, z/y, Q). From the

eq. (2.12)) and eq. (2.13), we have

A(zw, 2/, 2y, 2y, Q) = Ulez, 2/, 2y, 2/y)

1—29 (294279 +y? +y=9) + V(22 2?)
The denominator of eq. (2.15)) is the determinant of the ¢ X ¢ matrix

(2.15)

co —z/z 0 0 —zx
—zx ¢ —z/x 0 0
0 —2x co 0 0
A(Z.T, Z/.T, ?Y, Z/y) =
0 0 0 Cq—2 —2/x
—z/x 0 0 —2x  Cq-1

where ¢, = 1-QF2y—Q %2 /y and Q = €2"™/4. Since A(zx, z/x, 2y, 2/y) = 1—29 (29 + 279 + y? + 3~ 9)+

V(22,2?%), this determinant is decomposed by two parts: one part is a polynomial of z

15



Chapter 2 Zn(Q)

which is independent of x and y, we define it as by,/,(z) = 1 + V (22, 2%); the other part
is —27 (x4 4+ 2774+ y?+ y~?). Thus, we have

bp/q(2) = Alz, 2,2, 2) + 421

where A(z, z, 2, z) is the determinant

1-22 —Zz o --- 0 -z
—z 1—2zcos (2;”’) —z
0 —z 0
, (2.16)
0 0 0 - 0 —z
—z 0 0 - —z 1—22008(((]—1)2%)
By computing this determinant, we get
lq/2]
bp/q(2 Z ap/q(21)2 (2.17)
with coefficients a,,,(27)
q—21 k, .
a2 = (1SS L Z 4sin (W) 4sin? (7T(k2+22—3>p) dsin? (W(’Hl)p)
k1=0 ko=0 q q q
(2.18)

We call a,/,(2i) the Kreft coefficients [15] because Kreft gave the expression eq. when
computing the determinant of the Harper’s equation in the commensurate case. How to derive
these coefficients is explained in Kreft’s paper |15] (also see the for details). Now
A(zz, z/z, 2y, z/y) rewrites as

Az, 22,29, 2y) = byyg(2) — 2@ + 279 + 3 +y79). (2.19)

Next, we focus on the numerator of A(zz,z/x,zy,z/y,Q). Once the denominator is de-
rived, the numerator becomes easier, because it just replaces the first column of A(zz, z/z, zy, z/y)
by 1. More conveniently, we are only interested in its coefficient of [#%y°]. As it turns out

1 —z/z 0 - 0 —z2x
1 c1 —zx - 0 0
1 —z/z ¢ - 0 0 2
[2%°] . 5 T | =) = L a(2)- (2.20)
1 0 0 R R
1 0 0 - —z/z cg

The specific detailed process of how to deal with the numerator and the denominator of
A(zzx, z/x, 2y, z/y, Q) is given in chapter 5 and appendix of Article 1.
To summarize, we get

bp/q(2) — qb;/q( ?)
bp/q(2) — 29(x9 + 279 + y9 +y=9)

[y Az, 2/, 2y, 2/y, Q) = [2°]

16



Substitute the result above into eq. |) and replace Q by e2™/4, we get the generating
function of Z, (e2i”p/q)

SN b, (2) N2/ 21 \*
S Z, <e2 p/q) - (1 _ (ﬂ)p;q(g)) ’;O <2k) <bp/q(z)> (2.21)

n>0

and it is equivalent to
, 2b, (2)\ 2 16224
Z z, (e2mp/Q> PR I L bt Bl < z 2) (2.22)
n>0 abyse(z) ) ™ by/q(2)
where K is the complete elliptic integral of the first kind:

! 1
Klw) = /0 N

see e.g. [|16], p. 161]. The explicit formula for the Z,(e*7™/)’s (equivalently, the traces
Tr H} ) in terms of the Kreft coefficients a,,(27): for even n > 0,

2mp/q
(2’“)2(61"‘52"‘“""6@/% +2k) \_Q/QJ
. n k Z1742,...7£L /2j72k N
Z, (X7/7) = ey, = =) > q [T awa(20)
m™/q . p/q
q o sl 2 20 b+ 0o + + gl.q/QJ + 2k i

€1+2£2+"'+\-Q/2J€LQ/2J :n/Q—kq
(2.23)
See the appendix A.3 of Article 1 for the complete derivation of eq. (2.23)).

2.4 Asymptotics

n — oo:

The generating function eq. (2.22)) is useful for studying the asymptotic behavior when n — oc.
The critical point here is in eq. (2.22)) contains a complete elliptic integral of the first kind K,
which has a logarithmic singularity at 1:

K(z) = —% log (1 — ) + O(1)

In eq. (2.22), they are at the points where b,/,(2) = +427 . So the asymptotic formulas can
be obtained near these singularities. Please see the section 4 of Article 1 for more details.

q — oo:

From the definition eq. (2.4]), when ¢ goes to infinity, i.e. @ — 1, the noncommutative random
walks become commutative, the generating function for closed random walks with n total
steps and m horizontal steps becomes

n
Zm,m,n/Qfm,n/Qfm(l) = ( )

m,m,n/2 —m,n/2 —m

17



Chapter 2 Summary and perspectives

is the number of such closed paths. Then, Z,(e2™P/9)’s (equivalently, the traces Tr Hy /q)
for even n > 0, becomes

n/2 2
. n _ _ _ n
qg% TrHpr/q - Zn(l) - mZ::OZm,m,n/2m,n/2m(1) - <n/2>

This is the total number of closed paths with length n as mentioned before.

2.5 Summary and perspectives

In this chapter, thanks to the mapping between the algebraic area of lattice walks and the
moments of Hofstadter Hamiltonian, by studying two-dimensional closed lattice walks, we
have computed the generating function of Tr H;rp /q in eq. 1) From this, one can derive
the explicit formulas for these traces eq. in terms of the Kreft coefficients given in
eq. . We also studied the asymptotic behavior as n — co. In Article 1, we show that it

follows a law of the form Tr Hg‘ﬂp Jq ™ g -, where o and 3 are constants depending on p/q.

Also, when ¢ — oo, Tr Hgﬂp g™ (n72)2’ which is the total number of closed lattice walks with
length n. More importantly, concerning random walks, a closed expression for the number
Cpn(A) of closed random walks with length n enclosing a given algebraic area A remains an
open issue. We made recent progress indicating that this information is encoded in the Kreft

coefficients a,/,(2j) discussed above.
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CrossMark
Abstract
We consider the generating function of the algebraic area of lattice walks,
evaluated at a root of unity, and its relation to the Hofstadter model. In
particular, we obtain an expression for the generating function of the nth
moments of the Hofstadter Hamiltonian in terms of a complete elliptic integral,
evaluated at a rational function. This, in turn, gives us both exact and
asymptotic formulas for these moments.

Keywords: Hofstadter model, lattice walks, trace formula

1. Introduction

The algebraic area is the area enclosed by a curve, weighted by the winding number: if the
curve moves around a region in a counterclockwise (positive) direction, its area counts as
positive; otherwise it counts as negative. Moreover, if the curve winds around more than
once, the area is counted with multiplicity. In this paper, we will be studying the algebraic
area of two-dimensional lattice walks starting at the origin and moving up, down, left or right
at each step. If the walk is not closed, we define its algebraic area as that of the closed walk
obtained by connecting its endpoint with its starting point, adding on to the end of the walk
the minimum necessary number of steps, first vertical, then horizontal (see figure 1).
Suppose that a lattice walk moves m; steps right, m, steps left, /; steps up and I, steps
down. If, for example, m; > m, and ; > [, we add [; — [, steps down followed by m; — m;
steps to the left in order to close the path. Let C,, ,1.1,(A) be the number of such walks
enclosing an algebraic area A. Finding the generating function for the C,,, 1, 1.1,(A)’s, i.€.

1751-8113/16/495205+-22$33.00 © 2016 IOP Publishing Ltd  Printed in the UK 1
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Figure 1. A lattice walk with algebraic area 9 — 3 + 1.
Zlnl,m2,11,12 Q) = Z le,mz,ll,ZQ (A) QAs (1)
A

is a difficult task, so far without a definite answer".

One can simplify by restricting this to closed lattice walks of a given length n (n is then
necessarily even), i.e. walks with an equal number m of steps right/left and an equal number
n/2 — m of steps up/down, with m € {0, 1,...,n/2}, and by focusing on the generating
function

n/2
Zn (ei'y) = Z Zm,m,%fm,’z—’fm (ei’y) (2)

m=0

evaluated at Q = €7, a root of unity. One reason for addressing this simpler question arises
from the deep connection between the algebraic area distribution of random walks to the
quantum mechanics of a charged particle in a perpendicular magnetic field. A paramount
example is, in the continuous limit, Levy’s law [3] for the algebraic area distribution of closed
Brownian curves and its connection to the quantum Landau problem.

In the discrete case, the connection is to the quantum Hofstadter model [4] of a particle
hopping on a two-dimensional lattice in a rational magnetic flux v = 27p/q, here counted in
unit of the flux quantum. More precisely, Z, (e"?) is mapped [5] to the nth moment of the
Hofstadter Hamiltonian H.,:

Z,(e") = Tr H. 3)

We will derive an expression for the multivariate generating function of Z,,, ,,, 1.1, as
defined in (1), which even yields simple explicit formulas in some very special cases. The
multivariate generating function is then specialized to the generating function of the Z, (e")s.
This allows us to derive a closed expression for the Z, (¢")s and thus, by virtue of (3), for the
traces Tr HW”, in terms of the Kreft coefficients [6]. Not surprisingly, these coefficients encode,
in a simple way, the quantum secular equation determining the Hofstadter spectrum. We will
also use the generating function to study the asymptotic behaviour of Z,(e!”) as n — oo for
fixed ~.

Needless to say that a better understanding of the moments of the Hofstadter Hamiltonian
could, for example, allow for new interesting insights into the Hofstadter spectrum itself [7],
in particular, in the irrational limit p/q — « where both p, ¢ — co. These endeavours are
left for future publications.

3 For recent efforts in this direction see, for example, [1, 2].
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2. Summary of results

Here is a brief outline of our results. As a first step, we will study the multivariate generating
function

Il
Z ZmlvszleZ (Q)xlml)‘:2m2 y11y22

my,my, 1,120

A(XI, X2, yl’ yza Q) =

associated with Z,, ,,.. ;. ;,(Q). When Q is a gth root of unity, this function can be obtained
from the solution of a linear system of equations: for certain auxiliary functions

Als A27~--sAq—l and AO = A(.X|, X25 Y15 Yas Q)’ we have
co —X2 0 0 —X] A() 1
—X] C| —Xp - 0 0 Al
0 —x o 0 0 Ay B
0 0 0 -~ ¢ —x| (4] [
—X2 0 0 X1 Cy—-1 Aq,l 1

where ¢, = 1 — QFy, — O7%y,; see the following section for details. Solving this system, we
find that A (x, x2, ¥, ¥,, Q) is a rational function, whose general form we investigate. For
very small values of g, we even obtain explicit expressions for Z,, ,;.1,(Q).

Specializing further, we concentrate on Z,(e") as defined in (2), for v = 27p/q. We

prove the generating function to be

ZZ” (6217717/q)zn —

n=0

B szl?/q (@)

16z%

qbp/q (2)

|

2
—K s 4
T [bp/q(z)z] ©®

where K is the complete elliptic integral of the first kind and the polynomial b, /, (z) is defined as

1 —2z —z 0 -z
-z 1 - 21005(2%) —z - 0 0
0 — 0 0
bpyq(2) = 429 + : :Z (:) : .
0 0 0 0 -z
-z 0 0 - —z 11— ZZcos((q - 1)2%)

This is the main result of section 5, which also gives us an exact, albeit somewhat complicated,
formula for Z, (e2™/4). Let a(2), a(4), ... be, up to a change of sign, the coefficients of bpsq(2):

) o
bpg(2) = = Y ap/g (2027
i=0
For even n > 0, we have

. n
Z, (¥ /0 = TrHy ,\ ==
9 k>0 0,09, ..., b 4,220

G420+ 4| 4/2 |l r2=1/2—kq

k bl o by o 2k q
X b e [T a@pb.
b+ + -+ ZLII/ZJ + 2k =1
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Figure 2. Illustration of (7).

From the explicit expression in (4), we can also deduce the analytic behaviour of the
generating function which, in turn, yields the asymptotic behaviour of its coefficients. In
section 6, we show that an asymptotic formula of the form

Z, (g%ip/q) ~ ﬁ . alt
n

holds for fixed p/q and even n as n — oo, where « and 3 are constants that depend on p/q.

3. The generating function for arbitrary walks

As mentioned before, we are interested in evaluating the generating function Z,, ,,, 1.1, (Q)
when Q is a root of unity. Of course, we trivially have

(ml + nmyp + ll + 12)'
mymy ! ’

Zml,mz,ll,lz (1) =

Let us start with some symmetry properties: first of all, it is easy to see that

Zmz,m],ll,lz Q) = Zm],mg,lz,ll Q) = Zml,mz,l],lz (Qil)v (5)
since reflections about the x- or y-axis only change the sign of the algebraic area. Moreover,
Zml,mz,ll,lz (Q) = le,lz,ml,mz (Q) (6)

Finally, if we reverse the direction of a walk with my, m,, [, [, steps right, left, up and down,
respectively, the algebraic areas of the original and the reversed walk add up to
—(my — my)(l; — 1), which is particularly evident if the walk only moves in one quadrant,
as in figure 2.

It follows that

Zymity, (Q) = Q- m=m)bi=yz, 1 (O, @)
and combining this with (5) yields

Zopmyty,(Q) = Q- m=mdh=lz, Q7).
Thus,

Q=27 1, (Q)

is symmetric (in the sense that the coefficients of Q% and Q% are equal for all k). If|Q| = 1
(in particular, if Q is a root of unity), this implies that

4
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Q(ml_mZ)(11_12)/2Zml,m2,l],12 (Q)
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is real.
For further study, we define the multivariate generating function

S Zimint, (@)xM X2yl iz 8)

my,my,l, 1,20

A(XI, X2, )’1, yz» Q) =

We distinguish the four possible cases for the last step: if the last step is vertical, then the
algebraic area does not change. If it is a step to the left, the algebraic area changes exactly by
the current y-coordinate; the same holds if the last step is a step to the right, but with opposite
sign. It is now easy to see that the recursion

Zml,mz,ll,lz (Q) = Zml,mz,ll— 1,0, (Q) + Zml,mz,ll,lz—] (Q)
+ le_llzml—l,mg,ll,lz(Q) + Qll_lzzml,mz—l,ll,lz (Q)
holds, with initial values Zyo00(Q) =1 and Z, u,;,(Q) =0 whenever

min(my, mo, I, [;) < 0. We immediately obtain a functional equation for the multivariate
generating function:

A(.X], X2, Y15 Yo Q) =1 + ylA(xl’ X25 Y15 Vo Q) + yzA(xl’ X2, Y5 Yoo Q)
+ 1AM, x2, 07y, Oyy, Q) + XA, X2, Oy, Q7 'y, Q).

When Q is a root of unity, this turns into a finite system of linear equations. In the following,
we will assume that Q is a (without loss of generality) primitive gth root of unity, so that
07 = 1. Set

Ak = A(xl’ -x2’ Qkyp Q_kyz’ Q)»

which only depends on the residue class of & modulo g. Note that, in particular,
Ag = Ay = A(xi, X2, ¥, Yo, Q). Now, we have

Ap = A(x, x2, 0%y, 07Fy,, Q)
=1+ 0% A(, x2, Ofy, 0%y, O) + 0% y,A(n, x2, QFyp, 07y, Q)
+ XA, x2, Oy, 07Ky, 0) + A, xp, Q5T Yy, 075 Yy, Q)
=1+ Q% + O MDA + A1 + x2Ak: 1.

The resulting linear system can be written in matrix form as

€o

where ¢, = 1 — Q%y, — O~*y,. We can apply Cramer’s rule to solve for A, which

—Xy

0

0

—X

Ag

1

—X X2 0 0 A 1
0 —X] (& 0 0 A2 1
0 0 0 - Cg—2 —X2 Aq_ 2 1
—X2 0 0 X Cy-1 Aq, 1 1

immediately shows that it is a rational function in x;, x2, y;, ¥,.

3.1. Special cases

For small values of ¢, the generating function is simple enough to extract explicit formulas for

Zn i1, (@) from it.
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* Specifically, we obtain for ¢ = 2 (and thus Q = —1)

B L+x+x2+y+y
=) = O+ )Y
Expanding into a power series, we find

_ Ittty
- w)? - O )’

=1+ x4 x2 +y +3) Y (G + x2)* + (O + 3,)D)"

n=0

Ay = AQx, x2, yp» ¥y — 1)

A(xl’ X2, y]’ yz’ _1)

=(l4+x+x+y+w> >,

20 n20

= Z z (Vll + ”lz)((xl + xz)an (yl + y2)2n2

m=0n20 m

(I/ll + ny

" )(xl + xz)zn‘ (yl + yz)an
1

+ (0 + x2)™(yy + y,)
+ (1 + x2)2 (yy + yy)2 ).
From this expression, one reads off the coefficients easily:
Znmyty, (—1)

( Lony + my + L + 1) /2] )(ml + mz)(ll + b
L(my + my) /2]

) if my + my or [} + I, or both are even,

m L

0 otherwise.

* In general, however, the generating function A becomes more complicated. For g = 3, we
immediately obtain

Ltxi+x+y 4y +xt+xF + 3+ 92—xm =y, — Oy — 0y, — 0 'y, — Ony,

1—x?— x5 —y' =y = 3xm — 3y,

which gives us, for example, in the case where m; — m, = [} — [, = 1 mod 3,

Zml,mz,l],lz (627“/3)

min(mymy) min(y.ly) myA+my L+ k4j—2

—  _ a27i/3 3k+j 3

= e . A B
Z Z . omy—k— - —j=1 I—
&= = l,J, m—k—1 my—k L—]j l,—j

b b 9
k=m; mod 3 =1, mod 3 3 3 3 3

Similar formulas hold when m; — m, and [ — [, lie in other fixed residue classes
modulo 3.

* An elegant formula is obtained for Q = +i (i.e. ¢ = 4) if we count walks by the total
number of horizontal and vertical steps: we have

(Wﬂy+wm]

) — om+l
Z Z Zml,mz,ll,lz(j:l) 2 Lm/zJ

mi+my=m L+1,=1
which is obtained from the generating function

I + 2x + 2y + 4xy
1 — 402 — 4y2

A, x,y,y, £i) =



J. Phys. A: Math. Theor. 49 (2016) 495205 S Ouvry et al

Note that we also have
S8 Zuan = L 1)
my,my,ly,lo 9
my+my=m lj+1,=1 Lm/z_l

except when m, [ are both odd, in which case the sum evaluates to 0.

3.2. The general shape

We know now that A is a rational function if evaluated at a root of unity Q. Let us show that it
always has the following shape:
U(.X'], x27 y]7 y2)

, ©)
I—xf —xf —yf =y + Viuxz, yy)

A(.X], X2, y17 y29 Q) =

where U, V are polynomials and V is symmetric (in its two variables) and has only real
coefficients (and constant coefficient 0). By Cramer’s rule, we have

1 —X2 0 cee 0 —X]

1 C| —Xp 0 0

1 —X] Cy - 0 0

1 0 0 Cq—2 —X2

1 0 0 e X Cg—1

A, X2, Yy, ¥, Q) = ; (10)

co —Xp 0 o 0 —X]
—X1 C1 —X2 0 0

0 —x o 0 0

0 0 0 s Cq,z —X2
—X2 0 0 X Cg—1

where ¢, = 1 — QFy, — Oy, as before. Let us show that the determinant A which appears
in the denominator of (10) is indeed of the form 1 — x! — xj/ — y7 — v/ + V(x1x2, y,y,),
where V is symmetric and has real coefficients. This is done in the following steps:

* We note that the determinant A is a polynomial in x;, x5, y;, ¥, with total degree ¢.
* If we replace y; by Qy, and y, by O~'y,, we end up with the determinant

T —X2 0 cee 0 —X]
—X1 Cp —X3 0 0

0 —X1 C3 0 0

0 0 0 Cq_ 1 —X2
—X2 0 0 | Co

which is also obtained from the original determinant A by moving the first row and
column to the end; hence, the value does not change. This means that the only nonzero
terms in A (seen as a polynomial in y; and y, only) that can have a nonzero coefficient are
y{, ¥4 and all powers of y,y,.

* By expansion with respect to the last row and the last column, we obtain
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cg —xp O 0 —x
—X] C] —X2 0 0
0 —X] (%) 0 0
0 0 0 quz —X2
—x, 0 0 —X| Cq—1
co —X2 0 0
—X ¢ —X2 0
=-—x—x{ + ¢4 0 —x o 0
0 0 0 Cq—2
co —x3 O 0 . —Xx 0 0
—X C| —X2 0 —X1 0 0
—X1X> 0 —x o 0 — XX : : : :
S : 0 0 C-3 —X2
0 0 0 Cq—3 0 0 —X Cg-2
It is easy to see that the determinants
U —x 0 0
—X1 Uy 0 0
P an
0 0 U1 —X2
0 0 —X] Uy

where the u; are arbitrary coefficients, satisfy the recursion Dy = u;Dy_| — xix2Dy_> and
are, therefore, polynomials in x;x,.

Combining the observations in the last two items, we see that the determinant is of the
form

A()C], X2, Vp» y2) = 7x1q - xzq - qu - yzq + R(xxo, ylyz)

for some polynomial R. If we set x; = x, = y; = y, = 0, the determinant evaluates to 1,
so we can write R (xjx2, y;y,) = 1 4+ V (xix2, ,,), where the constant coefficient of V
is zero. It remains to show that V is symmetric and has only real coefficients.

If we exchange y; and y,, then A(x, x2, ¥, y) =1 —x —xf —y7 —y/ +
V (x1x2, y,,) obviously does not change. On the other hand, ¢; = 1 — Q/y, — Q7y,
becomes 1 — Qly, — Oy, = ¢;. All other matrix entries are real and, therefore, equal to
their conjugates (if we consider x, x5, y;, ¥, as real variables for the moment). This
means that A is equal to its own conjugate, so it has only real coefficients.
Finally, we observe that A is an irreducible polynomial: suppose for contradiction that it
can be factorized into two nonconstant factors. If we set x, =y, = 0, we obtain a
factorization of 1 — x? — y%, which is irreducible: its factorization as a polynomial in
X1 is

q—1 ]
L= =yl =—[] -0/ -y,
j=0
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and since I — y,7 is not a power of a polynomial, there is no factorization of 1 — x7 — 7
into polynomials.

Thus, the factorization of A becomes (1 — x! — y7) - 1 for x, = y, = 0. So the first
factor has a total degree (at least) ¢, which is already the total degree of A. This means
that the second factor has to be constant, and we reach a contradiction.

Therefore,

U(xls X2, )’1, yz)
L—x —xf =y =yl + V(uxz, yy,)

A()Cl, X2, y13 )’2, Q) =

is in its lowest terms. In view of symmetry condition (6), the function does not change
when x;, x, are replaced by y,, y, respectively. Thus, V must be symmetric.

4. Hofstadter quantum mechanics

As stated in the introduction, Z,,, ., 1.1, (Q) happens to be of interest for the quantum Hof-
stadter model [4], thanks to the mapping (3) between the algebraic area generating function
for closed walks of length n evaluated at Q = e and the nth moment of the quantum
Hofstadter Hamiltonian Tr H.'. Of particular interest is the commensurate flux v = 27p/q,
where p and ¢q are relatively prime, so that O is a primitive gth root of unity.

In the Landau gauge, the Hofstadter Hamiltonian is

-1 -1
H =T +T;' + T, + T,

where the lattice hopping operators T, and 7T obey the commutation relation

T.T, = e "T,T,

They act on a state U, ,, at lattice site {m, n} as follows:
T =Upiin Ty, =™, 0.
Using translation invariance in the y direction one sets ¥, , = e"&®,, to get the eigenenergy
Harper equation
@11 + Pyy + 2cos(ky, + ym)®,, = ED,,.
In the commensurate case v = 27p/q one has on the horizontal axis a periodic model with

period ¢, s0 ¥,,4, = ¢'%®,,. All this amounts to the ¢ X ¢ matrix m,,(E, k,, k,) acting
with zero output on the g-components eigenvector {®g, &y, ..., P, _1}:
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2cos(ky) — E 1 0 -~ 0 e—idk,
1 ZCos(ky—Fz%p)—E 1 0 0
0 1 0 - 0 0
0 0 0 - 0 1
ik, 0 0 - 1 2cos(ky Y- 1)2?) —E
®, 0
o, 0
(=01 (12)
Qq.—Z 0
@, 0

The g eigenenergies E, (k,, k,) with r = 1,...,q are solutions of the secular equation

det(mp/q(Ea kxa ky)) =0,
which, thanks to the identity

det(my, /4 (E, ky, ky)) = det(my/,(E, 0, 0)) — 2(—1)(cos(gk,) — 1 + cos(gk,) — 1),

can be rewritten [8] as

det(m,,,(E, 0, 0)) = 2(=1)(cos(gk,) — 1 + cos(qky) - 1. (13)

The trace is defined as

1 T T dk dk, 4
Tr H, g = _f f 20 27 2 ke B ;
wle o) J s or or ; e ) "

where one sums over the g eigenenergies E, (k, k,) of the Hofstadter Hamiltonian at power n
and integrates over the quasimomenta k. € [—m, 7] and k, € [~m, 7]. So in (14),
computing4 Tr Hy.,/, amounts to:

* first evaluating the determinant of m,,,,(E, 0, 0), a polynomial of degree g in E;

* next solving the secular equation (13) for the g eigenenergies E, (ky, k,); it can be done
numerically and leads to the Hofstadter butterfly when the eigenenergies are plotted
against p/q;

¢ finally summing and integrating to get the trace of the Hofstadter Hamiltonian at a
power n.

Evaluating Tr Hy;,,, in this way (i.e. from its definition (14) in terms of the quantum
eigenenergies) is clearly a difficult task. We are going to address this question not from the
quantum Hofstadter side, but rather via the mapping (3) from the lattice walks combinatorial
side, by evaluating Z, (Q) = "/ Znm2—mz-m(Q) at Q = eX™/4,

m=0
4 For earlier attempts to compute such traces, see, for example [9].

10
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5. The trace formula

In the following, we will derive an expression for the generating function 3 -, Z, (eX™P/a)zn
in terms of a complete elliptic integral, evaluated at a rational function. To this end, we first
specialize the multivariate generating function (8) from the previous section, i.e.

Axy, x2, Yis Yoo 0) = Z Zm],mz,ll,lz (Q))C1ml xzmz yll] yzlz'

my,my,l, 1 >0

One observes that ZZ/:z() Zym,z—m,2—m(Q) can be obtained directly from A (xi, x2, y;, ¥,, Q)
by setting xy — zx, x, — z/x, y; — zy and y, — z/y and looking at the coefficient where
the exponents of x and y are 0 (enforcing m; — m, = 0 andl; — I, = 0) and the exponent of z
is n (which corresponds to the condition my + m, + [j + [, = n).

Let us now look for the coefficient of x%° in A (zx, z/x, zy, z/y, Q) evaluated at Q, a
root of unity: we already know from (9) that the determinant A in the denominator has the
form A(x, x2, ¥, ) = 1 — x5 — xf —yT —y! + V(axz, yy,), so it simplifies to

Ax, 2/x, 2y, 2/y) = 1 — z29(x? + x~ 7 + y9 + y™9) + V(2 2.

Forx=y=1,we get A(z,z,2,2) =1 —4z7 + V(z? z%), which is the determinant of
the ¢ X g matrix

1 -2z -z o - 0 -z
2 1—21005(2’%) 2 0 0
; A ; as
0 0 0 - 0 —z
-z 0 0 -+ —z1-2¢ cos((q — 1)2’%)
Hence, we define
bpsg(2) = Az, 2,2, 2) + 429 =1+ V(2% 29,
a polynomial of degree 2|q/2], with coefficients —a, s, (2i):
) o
bysq(2) = = 3 apsg(2D)2*. (16)
i=0
Now, A(zx, z/x, zy, z/y) rewrites as
A(zx, 2/x, 2y, 2/y) = byq(2) — 29(x? + x77 + y1 + y~9). (17)

Next, we focus on the numerator of A (zx, z/x, zy, z/y, Q). It follows from (17) that the
expansion of 1 /A only contains powers of x and y whose exponents are multiples of —g and
q. On the other hand, in view of its definition as a determinant in (10), the numerator only
contains powers of x and y with exponents between —(¢ — 1) and ¢ — 1. Since we are only
interested in the coefficient of x°y°, we can focus on this coefficient in the numerator as well,
as the other terms will only give rise to monomials in the expansion of A (zx, z/x, zy, z/y, Q)
where the exponents of x and y are not simultaneously multiples of q.

As it turns out, the coefficient of x°y? in the numerator can also be expressed in terms of
the polynomial b, ,:
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1 —=z/x 0 - 0 —zx
1 a —z/x - 0 0
1 —zx c -0 0 z
00 | . D ,,/q<z>—;;/q<z>. (18)
1 0 0 - o —z/x
1 0 0 - —zx ¢y

A proof of this identity is given in the appendix.
Putting everything together that has been established so far for the denominator and
numerator of A (zx, z/x, zy, z/y, Q), we are left with

bp/q(2) — gbilz/q @

0,014 — 14040 )
[x°y01A (zx, z/x, zy, 2/y, Q) [xy]bp/q(z)—zq(xq+x*4+y4+y*4)

This can be expanded as

bp/(@) = (b @ |, #u®

Bp/q(2) — 29(x4 + x4 + 4 + y79) ab,/,@
1

(x4 X7 + 31+ y)

X

z4
by rq(2)

b/ k
[, _ #a®@ Z( 24 ) (64 4 59 4+ Y0 4y,
qbp/q(z) k=0 bypsq(2)

The coefficient of x%° in (x4 4+ x~7 + y9 + y~9)* is ( k

2
K/ 2) if k is even and O otherwise, so

that this procedure finally coalesces to

b/ 2 2k
Zzn(eZiﬂ'p/q)Zn _ (1 . < p/q(Z)] E(Zk) ( z4 ] . (19)
k=0 k

n=0 qbp/q(Z) bp/q(Z)

. 2k \2 k
The series >7;-o( 7, ) x

integral of the first kind:

can be expressed as %K (16x), where K is the complete elliptic

K (x) t

I 1 d
o Ju—ma -y

see, for example, [10, p 161]. To conclude, we have

/
ZZ” (eZiﬂ'p/q)Zn -1 = pr/t] (Z) EK[ 1622‘] ] (20)
n=0 qbp/q (Z) T bp/q (Z)2

For example, when p = 1, ¢ = 8, i.e. Q = exp(2mi/8), we get
bisg(2) = 1 = 162 + (72 — 8v2)z* — (96 — 32v2)2° + 4°

and

DoZu (@ =1 + 422 + (28 + 442)z* + (232 + 7242)2°

n=0

+ (2140 + 960v2)z8 + ---.

12
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Finding the generating function (20) for the Z, (e%™/4)s, or equivalently for the traces
Tr Hy..,/,, narrows it down to determining the polynomial b,,(z), i.e. the coefficients
a,/4(2i) as defined in (16). But these coefficients of b,/,(z) in the expansion of the deter-
minant of the matrix (15) are in one-to-one correspondence with those of the expansion of the
determir;ant of the Hofstadter matrix m,,, (E, 0, 0) in (12), which is a consequence of the
identity”

(=1)?Eb,,,(1/E) = det(m,,,(E, 0, 0)) + 4(—1)7. (21)
So the Hofstadter secular energy equation (13) becomes
Eb,,,(1/E) = 2(cos(gk,) + cos(qky)).

In view of (21), the a,,,,(2i)s can be identified with the Kreft coefficients c,/,(2i) defined in
[6]:

q
det(m, 4 (E, 0,0)) + 4(—1)7 = 3 ¢,/ (2)EZ,
. q

_4_[4
=2 [2

ie.
apsg(20) = ¢,/4(q — 20)(= 14T,

and one ends up with

q—2i k kioy .
apyg QD)= (=37 57 ) sin? (M)
k=0 k,=0 k=0 q
e e R e
g q

(see the appendix for some remarks on these coefficients).

5 To see why (21) holds, recall that by definition, b,/,(z) = A(z, z, 2, ) + 429, where A(z, z, z, z) is the
determinant of the matrix in (15). It follows that

(=1)2E%b,,,(1/E) = (=1)IE1A(1/E, 1/E, 1/E, 1/E) + 4(—1)1,
and

(— 1)IEIA(1/E, 1/E, 1/E, 1/E)

| —2/E “1/E 0 -« 0 “1/E
“1/E 172cos(2'$)/E JE - 0 0
—ceyp| ! E O ’
0 0 0 - 0 _1JE
~1/E 0 0 - —1/E 1—2cos((q— 1)2(L[”)/E
2 E 1 0 - 0 1
1 2cos(?)—E 1 0 0
1o 1 0 0 0
0 0 0 0 i
! 0 0 1 2005(((171)2%)7E

is the determinant of m, /, (E, 0, 0).
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The elliptic integral K satisfies a second-order differential equation with polynomial
coefficients; therefore, so does the generating function Y, - Z,(e*™/9)z" (although it is
generally a rather complicated differential equation), i.e. it is holonomic. For example, when
qg =4, (i.e. Q = i), we have

(40967'5 — 14848z'3 + 17920z — 96967° + 272077 — 41275 4 3273 — 2)
"

x| >2Z, ()"

n=0

+ (2048074 — 5478472 4+ 5248070 — 2646478 4+ 7040z° — 940z* + 5622 — 1)

!/

x| Y Zn(Dz"

n=0

+ (1638473 — 32768z!! + 23040z° — 716877 + 2112z° — 320z + 162)

x| Sz, )z | =o.

n=0

This means that its coefficients, i.e. the traces Ter"WP /g satisfy a linear recursion with
polynomial coefficients. For example, when g = 4, the linear recursion is

n2Z,, (i) = (409612 — 98304n + 589824)Z, 14 (i)
1 (—14848n2 + 3164160 — 1691648)Z, 1, (i)
+ (1792012 — 323840n + 1469440)Z,_ 10 (i)
+ (—96961% + 1383681 — 493568)Z,_5 (i)
+ (2720n2 — 28320n + 74112)Z,_ (i)
+ (—412n2 + 2768n — 4800)Z,,_4(i)
+ (3212 — 104n + 96)Z,,_5 (i). (23)

It is also possible to give an explicit sum formula for the Z, (e%™/4)’s (equivalently, the

traces Tr Hy,,,,) in terms of the Kreft coefficients a(2i): for even n > 0:

2inp/qy — n o _n
Z,(eH/) = TrHy, 0 = — >
k=0 b,y ., g 220
G+200+ -+ 4/2 |04 21=1/2—kq

(2k)2 O+ O+ - +44/2J+2k
k by, oo g 2k lg/2]

2/)4, 24
G+ 4+ g+ 2k [T a5 (24)

see the appendix for a complete derivation. For small values of ¢, this simplifies quite
considerably (see [9]): for ¢ = 2, we have

Z(-h= % (2")2(”/2)2'14&

o<kensa\ k) \ 2k

Likewise, we get the following formula for g = 3:

2 2-3k
7, (4273 = 2n v (Zk) (n/Z - k)6n/ '
3 o<kznse\ k 2k n — 2k
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For a given n, when ¢ increases as well as p—having in mind the irrational limit where
both p and g — co—the number of summation indices in (24) increases as |q/2] + 1.
Clearly the physical results for, say, p/q = 1/2 and p/q = 0.5000001 should be very close
to each other, at least if n is not too large (for very large n, the difference actually goes to
infinity). And yet, the first generating function is a two-dimensional sum while the second is a
5 000 001-dimensional sum. This situation is reminiscent of, for example, the density cor-
relation of the Calogero model obtained in [11] where multi-dimensional integrals of greatly
varying size are obtained for close rational Calogero couplings.

As a final remark, we note that the generating function in (20) is identical to

- 1 W, @2 [ 1672
f Py (E)———dE = |1 — P21 2k - (25)
—4 1 —zE qbp/q(Z) 7T bp/q (Z)

where p, ,, (E) is the Hofstadter density of states:

: : E,/,(1/E) )
Ppsq(E) = EKE%p/q(l/E)) |K(l - (%) ]

Eby/q(1/E)

4
the known identity

4 s2 1
f k|1 - 5= ds = 47K (1622) (26)
4 16 )1 — zs

for the elliptic integral K.

when ‘ ‘ < 1, and zero otherwise [12]. One can show that (25) is directly related to

6. Asymptotics

From the representation (20) of the generating function, namely
) b, (2) 2q
Fora(@) = Sz, (@@l = 1 = Do |2 gf 167 )
n=0 by @ ) \ by @)

the asymptotic behaviour of Z, (e?™/%) as n — oo for fixed p/q can be obtained by standard
means. We note that the elliptic integral K has a logarithmic singularity at 1:

K(x) = —%log(l —x)+ O(1)

as x — 1. This logarithmic singularity carries over to singularities of F,/,(z) at the points
where b, /,(z) = +4z%. For example, if p/q = 1/2, we have b/»(z) = 1 — 472, which
gives us singularities at z = +1/+/8. At these singularities, the asymptotic behaviour of
Fi /2 (z) is given by

Fp) = —%log(l ~ B2+ o)
and

F @) = —%log(l + V82 + o),
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respectively. Application of Flajolet-Odlyzko singularity analysis [13] directly yields

™m

~2 .82y even,
=0 n odd.

Zy(—1) = [Z"]Fl/z(Z){

Similarly, for p/q = 1/3, we have by 3(z) = 1 — 6z°; the dominant singularities (those

closest to the origin) of Fj /3(z) are z = + ﬁ; L We have
2+ 43 2z
F (@)= ———og|l - ————|+ 001
13(2) - g( N 1) (D
as z — ﬁz_l and an analogous asymptotic formula as 7z — — \Ez_ L Singularity analysis
gives us

. Nﬂ . n
Zn(e27r1/3) — [Zn]F1/3 (Z) = (1 + \/g) n even,
=0 n odd.

In the same way, one obtains an asymptotic formula of the form
Z,@0/0) = [y ) ~ 2 - o
n

for arbitrary fixed p/q and even n as n — 00, where « and (3 depend on p/q. The table lists a
few further values:

1
P 5
14-5 +J70+25 3
of V8 Lol 3es f5 o
gl e 194 11-5 + /670 +298-5 7+3./5 56+ 12./21
™ T

m 2

or

NI

OI'i %O
5 5

SR
5 6
-5

™ ™

7. Conclusion

Making use of the connection to the algebraic area of lattice walks, we are able to compute the
generating function of the traces Tr H,;,,, of the Hofstadter Hamiltonian for any fixed
rational number p/g—see (20). From this, one can derive both recursive (see (23)) and
explicit formulas (see (24)) for these traces. The building blocks of (24) are the Kreft coef-
ficients in (22) (see also section 6.2 in the appendix). When ¢ is small, these formulas turn out
to be quite simple. The generating function can also be used to study the asymptotic beha-
viour as n — 00, which follows a law of the form Tr Hyy, /4 ~ % - o, where o and 3 are
constants depending on p/q.
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Appendix

A.1. Proof of (18)

(1) Consider the bivariate determinant

c —z 0 -« 0 —
-z ¢q —z - O 0

0 —z ¢ - O 0
B(y,2) = . . 2 : .

0 0 0 - ¢y —2
=2 0 0 -« — ¢

with ¢, = 1 — z(Q¥ — Q~%y~). It is a priori clear that the determinant B(y, z) can
only contain the powers y—¢, y=4tl . y=1 30 yl  ye=1 y¢ and Z°, 7',...,29,
respectively. If y is replaced by Qy, then c; becomes ¢4 (and c,_; becomes c), so
this amounts to a cyclic permutation of the diagonal entries. Since this does not change
the value of the determinant, we have B(Qy, z) = B(y, z). The only powers of y that
stay invariant under the transformation y +— Qy are y 9, y? and y, so these are the only
powers that actually occur in B(y, z). Moreover, making use of the fact that y and y~!
only occur in the diagonal entries, one easily finds that

g—1
B(y, 2) = I ]] o = (—=19Q1a"D/229 = £z49,
k=0

and likewise [y 9]B(y, z) = +z9. Since the term involving z? cancels in
B(y, z) — i(;—)ZB(y, 7), this means that B(y, z) — éé—ZB(y, z) does not contain y at all
(i.e. it is independent of y). Thus, we can also write

2 z 0
bpsq(2) — . 02 = B(1,2) — ;8_ZB(1’ 2)

=" (B(y, 7) — £gB(y, z)).
q 0z

(2) Next, we apply Jacobi’s formula for the derivative of a determinant [14, part three,

section A.3] to the matrix

co -z 0 - 0 —z
-z ¢ —z 0 0
0 —z ¢ 0 0
M(y.z) = -
0 0 O Cq—2 2
-z 0 0 -z C4-1




J. Phys. A: Math. Theor. 49 (2016) 495205 S Ouvry et al

to obtain

9By, 2 = Ldem (v, 2)) = tr(adj(M(y, )
0z 0z

This gives us, with I, denoting the g X g identity matrix,

)8M(y, z))
0z

oM (y, Z))
0z )

B(yv.2) — 22 B(y. 5= detM(y, 2)) - 5tr(adj(M(y, 2)
q 0z q

= ltr(det(M(y, D)1, — itr(adj(M(y, Z))M)
q q 0z
M (y,
— Liradj ¥ (v, )M (3. 2)) — iu(adj MG, Z))M)
q q 0z

1 . M b
- —tr[ad](M(y, Z))(M(y, 2) — EM)]
q q 0z

1 .
= ;tr(adj M (y, 2)1,)

_ étr(adj M (v, 2))).

(3) The trace in this formula is the sum of ¢ minors of M (y, z), namely the determinants of
the matrices obtained from M (y, z) by removing a row and the corresponding column.
Let these matrices be denoted M, (y, z), M>(y, 2),....M,(y, z). We note that M (y, z)
can be obtained from M, (y, z) by the substitution y — Q*~ly and cyclic permutation of
rows and columns. It follows that

DM (v, 2) = IMy (y, 2) = -+ = [YIM, (. 2).

SO
bysq(2) — ib’ @ =D"B(, 2) — E—B(y, 2)
r/q q r/q q 0z

_ [yo]é(Ml(y, D+ My(y, D)+t My(y, 2))

=M (y, 2).

(4) On the other hand, if we expand the determinant

1 —z/x 0 - 0 —zx
1 ¢ -—-z/x -~ 0 0
1 —zx ¢ -+ 0 0
1 0 0 - ¢ —z/x
1 0 0 - —zx ¢

first with respect to the first column, then with respect to the first row, we obtain
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aq —-z/x - 0 0
—zx ¢ - 0 0
0 0 - cyr —2/x
0 0 - —zx ¢y
Gt —z/x - 00
ot | —E G2 e 0 0
D D2 I S SR A
r=1% 0 0 - cg0 —2/x
0 0 - —2x ¢y
aq —z/x - 0 0
1 —x oy e 0 0
+ > 2" : .o : , 27)
r=1 0 CCymr—n —Z/X
0 0 - —zx ¢y,

where an empty determinant is to be interpreted as 1. Now, we make use of the prior
observation (see (11)) that determinants of the form

uy —Xp 0 0
—X1 Uy 0 0
Dy : : ,
0 0 U1 —X2
0 0 —X] Uy,
where the u; are arbitrary coefficients, satisfy the recursion Dy = uz Dy — x1x,Dy_».

Here, this implies that all the determinants in (27) are actually independent of x, so

1 —z/x 0 -+ 0 —zx

I ¢ -z/x - 0 0

1 - 0 0

[x%°] S :

1 0 0 Cq—2 —Z/X

1 0 0 —ZX €41
a —z/x 0 0 aq —z 0 0

—ZX 0 0 -7 0 0
= [x0y9] : I : =D ¢

0 0 - ¢ —2/x 0 0 - ¢ —2z
0 0 - —zx ¢y 0 0 - —z ¢

= [OIMy (v, 2) = bpyy(@) — éb;,/q@,

completing the proof of (18).
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A.2. The Kreft coefficients

In (22) the coefficients a,,(2i) are properly defined when g > 2i: one has

ap/q(0)=—1,
q—2 . 1
ap/q (2) = 24 sin2 (M),
=0 q
q—4 i . .
aprg@)=— 3 > 4sin’ (—W(ll + 3)]?)4sin2 (—W(lz + Dp ),
i1=0i,=0 q q
q—6 i i . . .
apsq(6) = Z Z 2451112 (M)4 sin? (M)4 sin? (—W (i + Dp ),
i1=0i,=0i3=0 q q q

etc. One obtains in this way that
Ap/q (2) = 261,

2
ayy(4) =—2¢% + g + 2¢q cos(i”),
q

4¢3 — 42q% + 116 2 4
apyq(6) = 4 9+ 7 4 (—4¢* + 24q)cos[Lp) + 4q cos(ip),
3 q q
—4q* + 8443 — 617¢% + 1617 2
ay/q(8) = 4 + %9 G 9"+ el + (4¢° — 62¢% + 252q)cos(i)
q
+(—=9¢% + 779) cos(@) + 12¢g cos(@] + 2¢q cos(gip),
q q q
4¢° — 140g* + 1925¢% — 12505492 + 329164
ap/q(IO) =
15
_ Q44 3 _ 2
N 8g* + 22843 — 226042 + 78969 COS( 2mp )
3 q
3 2 47p 5 67p
+ (10g° — 206g~ + 1108g) cos| — | + (—28¢* + 312g) cos| ——
q q
+ (—44* + 84q) cos(sﬂ) + 16q cos(lOWp) + 4q cos( 127rp)’
q q q
etc.

A.3. Proof of the trace formula (24)
Let us return to the representation (19):

/ 2k
Zz,,(eziﬂp/@z":[l— sz/q(z)]Z(Zk)2[ o ] |
k>0

n=0 qbp/q (Z) k bp/q (Z)

20



J. Phys. A: Math. Theor. 49 (2016) 495205 S Ouvry et al

We notice first that

/ d 4
@z w0
A

qbp/‘l (Z) q ”/’;4(2)

so this can also be rewritten as

. 2 q 2k—1 q
Zzn(eZm'p/q)Zn — £ Z(zkk) (Z—) d Z

>0 9 i>0 bp/q(2) dz by 4(2)

z d 74 2%\ 1 24 2%
de[og(bp/q(z)) ,;1( k ) 2k(bp/q(z)] ]

It follows that

2 s\
z,(e¥/1) = "1 log| | + (Zk)i o) |
(e =k [Og(bp/q(z) ,; k) 2%\ 5,0 )

Now, set s,/,(z) =1 — by/,(z) = Zqu:/lzJa@i)zz" and let us expand —log(b,,,(z)) =
—log(l — s,/4(z)) and by, () * =1 — s,/,(z))%* into series. Note also that
log(z9) = ¢ log z does not contribute to the coefficient of z". We obtain

2 2k
Z,(e27/) = E[zﬂ](—log(l ~5ya@) + 2(2" ) T s,,/,,(z))zk)

4 =k ) 2
n Sp/q @™ (2k)2z2kq (m + 2k — 1)

—Lin L i S .
. ](m%:l m ,; k) 2k Z;O ok )@

The two sums can be combined to a single one:

) ()
k 2%

km=0 m + 2k
(k;m)=(0,0)

(g)z(nwzk)

k 2k n—2kq m 28
X k’%o ——— [2"~24]s,,,(2) (28)
(k,m)=(0,0)

. n n
Zn (6217rp/q) — [Zn] ZquSp/q (Z)m — =

When s/, (z)" = (Zqu:/IZJa (2i)z2i)m is expanded, the resulting terms are of the form
lg/2]
m 2220+ q/2)2) H a(2))b,
Z]» ZZ»"WZI_L]/ZJ j:]

where 4 + £, +---+4 {,/2) = m. Since we are taking the coefficient of 7" 24 the ¢; have to
satisfy

G+ 20 +-+|q/2)6q2 = n/2 — kq.

Putting everything together, we arrive at (24). Note that k = m = 0 is impossible for n > 0,
so the restriction in the sum (28) is actually immaterial.

21
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CHAPTER

3

I HOFSTADTER POINT SPECTRUM
TRACE AND THE ALMOST MATH-
IEU OPERATOR

In this Chapter, we introduce another method to rederive the main results of ie

ca. @23)

(2kk)2(121+zz+ “+€|q/2) +2’“) la/2]

i G102, q/2),2k
Tr — a, 10 (25)
27rp/q Z Z H p/q ]
110 01,02,.0,6 ] g/2) >0 oA ly+ -+ Lg2) + 2k
é1+2£2+“'+\.q/2MLq/2j :n/2—kq

and eq. (2.22)):

2b (2)\ 2 16224
n n __ /
7%:0T‘I'ITIQTI'P/(IZ - (1 qbZ/Z(Z)>7TK(bp/q(z)2)

in the quantum mechanics formalism. We will focus in the Hofstadter model on the so called
"point spectrum traces". The main results have been published in 13|, which is inserted at
the end of this chapter (Article 2).

In order to achieve this goal, we start in by some general considerations on how
to calculate TrHy, . the trace of the n-th moment Hofstadter Hamiltonian. In
we will introduce what a "point spectrum trace" is and how to use it to recover the Tull trace
of the Hofstadter Hamiltonian. In we will show this procedure can be extended
to the asymmetric case without too much difficulty, allowing for a trace formula expressed in
terms of the generalized Kreft coefficients for the almost Mathieu operator.

3.1 Introduction and reminder of the Hofstadter model

Recall the Hamiltonian of the Hofstadter model
Hy =T, +T,' +T,+T," (3.1)
with T, T, = exp (—ivy) T, T;. Its eigenvalue equation is the Harper’s equation

Qpi1 + @1 + 2cos(ky +ym) Py, = By, (3.2)



In the commensurate case with a rational flux v = 27p/q, p and ¢ coprimes, it follows a
g-periodic condition of the wavefunction: ®,,4, = ek=®,.  The eigenvalue equation reduces
to a g x ¢ matrix my,/,(F, ky, ky) (k; and k, are wave numbers € [, 7]) acting with zero
output on the g-components eigenvector {®g, ®1,... P4_1}:

— . —igkz
2cos(ky) — E 1 - 0 0 e oy
1 2008<ky—|—7)—E 1 - 0 0 P,
0 1 O -+ 0 0 0
0 0 0 - () 1 Q,_o
eldhe 1 2cos <ky + (¢ — 1)2%) —EJ \®-1
(3.3)
Hence, the ¢ eigenenergies E,(kz, ky) with r =1,2,..., g are the roots of the secular equation
det(my,/q(E, ky, ky)) = 0. (3.4)

The trace of the n-th moment Hofstadter Hamiltonian is defined as

dky dky <~
Srp/a = / / oo ZE (K, ky) (3.5)

where the integrations are over the quasi-momenta k, and k, € [—7,7]. As mentioned in

Article 1, evaluating Tr Hgﬂp /q in this way is involved, because each of the ¢ eigenenergies

E, (kg, ky) depends on k, and ky, plus, k, and k, vary continuously in the interval € [—7, 7]
Fortunately, there exists a very elegant identity for the determinant det (mp/q(E, kr,ky))
which is the Chambers identity [17]

det (my,)q(E, ks, ky)) = det (my,)4(E,0,0)) 4+ 4(=1)7 — 2(=1)7 (cos(gk) + cos(qky))  (3.6)
This identity says that the det(mp/q(E, k:x,ky)) decomposes into two part: the first part
det (mp/q(E,0,0)) + 4(—1)7 is the characteristic polynomial of F with degree ¢ which is
independent of k, and k,; the second part is composed by cos(gk;) and cos(gk,). We define
the characteristic polynomial as

det (m,,/q(E,0,0)) +4(=1)? = (=1)E%,,,(1/E) (3.7)

with b,,/4(2) is a polynomial with degree 2[4] (2 times the integer part of ¢/2)

bp/q(2 Zap/q (20)2 (3.8)

in terms of the Kreft coefficients a,,/,(27)

q—21 kq .
k 21— 1)p k 21— 3 k; +1
ay/q(20) = (— 1+1 E E E 4sin <1+Z)> 4 5in? <M> . 4gin2 (7T(+)p

k1=0 k2=0 q q
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Chapter 3 Point spectrum trace formula and density of states

as mentioned in eq. (2.18) |chapter 2l Note that a,/,(2i) = 0 as soon as ¢ < 2i. How to derive these
coefficients is explained in Kreft’s paper |15] (see the |[Appendix A for details). Therefore, eq. (3.4)

becomes
E,,,(1/E) = 2 (cos (qks) + cos (qky)) . (3.9)
Solving eq. leads to consider
E%,,,(1/E) = +s (3.10)
where s varies in [0,4] since 2 (cos(gks) + cos(gk,)) varies in [—4,4]. We denote E,(*s) as the roots
of eq. . E%b,,,(1/E) has the following properties (see the figure 1 and the figure 2 in Article 2):

e (i) £%,,,(1/E) is a polynomial of degree ¢, therefore for a given v = 27p/q, there are ¢ energy
bands, and each band never overlap each other except for the case ¢ even, the two central bands
kiss each other in zero energy (see P. Van Mouche [18§]).

e (ii) E,,,(1/F) is lying between —4 and 4. In fact, the eigenenergies also vary within the
interval [—4,4] (see the proof in the [Appendix C)).

e (iii) There exist some symmetry properties of E.(s) and E,(—s) : when ¢ is odd, E,.(s) =
—E +1-,(—s); when ¢ is even, E.(+s) = —Eg41-(£s).

We consider the point spectrum traces

q
Tro Hy, ) = 2%2 (E;}(s) n Ef(—s)) (3.11)

To recover the full quantum Hofstadter trace, we will argue that it will be sufficient to do an integration

of TrysHy /., over s € [—4,4] with an appropriate density of state p(s) such that

4
/4 TrosHyp qp(s)ds = TeHy, o (3.12)

In the next section, we will show how to calculate the point spectrum trace TrosHZ and what

27p/q
is the appropriate density of state p(s) to recover the full quantum Hofstadter trace.

3.2 Point spectrum trace formula and density of states

3.2.1 +s trace formula:

In this section, we consider how to calculate the point spectrum trace

TrisHQﬂ-p/q = 27(1 Z <E7" (S) + E; (_5))'

r=1
We define the generating function of TriSH;’ﬂp /a such that
1,4 q
> Ty, =3 5 (S B+ 3 )
n>0,n even n>0 q r=1 r=1
1 n d n
= (D GEE) + YD E-s)")
q r=1n>0 r=1n>0
1< 1 . 1
2 (Z 1—zE,.(s) + Z 1- zET(—s)>’
r=1 =1
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On the other hand, since the E.(s)’s are the root of Ef(s)b,/,

(1/E(s)) = s, we have

(1/2)%yq(2) = s = [ [(1/2 = Ex(s)),

which is equivalent to

so that
/ ! —FE,(s 1 1
(log(by/q(2))) = Zl 1_ZE(()5) - Zl (1 B m)
which is the same as ( ) ,
Upjg(z) =s2®) 1y 5~ 1
=) =" LT

With the substitutions above, the s spectrum trace generating function becomes

ZTrﬁ: HP =1~ (bp/q(2) — qu)/ _F (bp/q(2) + qu)/
n>0 vl 2q (bp/q(z> - qu) 2q (bp/q(z) + qu)

(1 zb;/q(z) 1

B T

(3.13)

It should be noted that n is always even because of the symmetric properties of E,(s) (as mentioned
in , which is in correspondence with closed random walks, where the total number of steps
must be even.

In order to find the explicit formula for TrigH.

S we rewrite its generating function as

27p/q’
d _ 27 1
Z  dz (z)
Z Tr:tSH;ﬂ'p/an =" ZQ 1— s2( 22 )2
n>0 q by/q(2) bp/q(2)

2k—-1 g 4

- 22 (3% bp/zq(z)) dzby4(2)

k>0

2k

z 24 S A
:qi(bg(w)*;%(bp/m) )

It follows that the TriSHgﬂp/q is just the coefficient of 2™ of ano Tringﬂp/qz” :
P 52k 24 2k
TryHy o= [2"] <log (7) + - (*) >
2mp/q by/a(2) ,; 2k \b,/4(2)

Now set vy,/4(2) = 1—by/(2) = Z}i/fj a(2i)z%" and let us expand —log(by,/4(2)) = —log(1 — v,/4(2))
and b, /q(2)72F = (1 — vp,/4(2)) ¥ into series. Note also that log(z?) = glog z does not contribute to
the coefficient of 2. We obtain

Traatigy, = 20— tos(1 -0 D)+
s4427p/q q g p/q Z o p/q
_ " Vp/q(2)™ (529)2k mA2%k—1\
_q[ ]<m§1 m +k221 2k ng(}( % — 1 )P/q() >
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The two sums can be combined in a single one:

n (") o n s ("5) 2k
T H? — D q m _ n—2kq m
Tisllorp/q q[z ] k;O m+ 2k z Up/q(z) q k;(} o+ 2k [ h’p/q(z)
(k,m)#(0,0) (k,m)#(0,0) (314)
3.14
When v,,/,(2)" = (Z}i/lzj a(2i)z%)™ is expanded, the resulting terms are of the form
m La/2]
2(01+202++1a/2)€|4/2)) 27}
z a )
(61,82,...,@1/%) 311 (29)

where ¢+l + - -+ 4 {|4/2) = m. Since we are taking the coefficient of 2”727, the £; have to satisfy
b1+ 205 + -+ + Lq/QJKLq/QJ = n/2 — kq.

Putting everything together, we arrive an explicit sum formula for the point spectrum trace

(€1+€2+"'+‘€LQ/2J +2k) lq/2]

n L1250 q/2),2k 2% N»

TrogHy g =~ Y > s T apa(29)% (3.15)
7 >0 0,02yl g)2) 20 bt byt A Lgy2) + 2k j=1

€1+2€2+”'+Lq/2J€Lq/2J =n/2—qk

Note that & = m = 0 is impossible for n > 0, so the restriction in the sum eq. is actually
immaterial.

Another thing to keep in mind is that comparing the Hofstadter trace eq. with the point
spectrum trace eq. , we remark that they coincide when ¢ > n/2 since then the summation index
k in eq. 1} necessarily vanishes. It means that Tring‘Trp /a is independent of s as soon as g > n/2.
In Arcticle 2, we also gave the formula for a particular case of the point spectrum trace where s = 0,
the mid-band trace TrOH;rp /o A qualitative interpretation for these traces can stem from the classical
picture of lattice walks contained in the periodic quantum cell of horizontal length ¢ (the lattice walk

the farthest on the horizontal axis from the origin indeed goes to a distance n/2).

3.2.2 Density of states:

Now, in order to recover the full Hofstadter quantum trace TrHJ one has to find a suitable density

2mp/q’
of the states such that .
/ TrosHyp qp(s)ds = TeHy, o (3.16)

—4
and by comparing the full Hofstadter quantum trace TrHQ”ﬂp /q €d- 1' with the +s point spectrum
trace TrisH;rp/q eq. lj the density of states p(s) should satisfy the condition

/ 44 52 p(s)ds — (2:)2 (3.17)

then,
p(s) = 1/(2n*)K (1 — s?/16), (3.18)

it is the density of states for the free spectrum s = 2(cos(gk,) + cos(gky)). For more details about this
density, please see the section III.C of Article 2.

47



Chapter 3 Almost Mathieu operator

3.3 )\ #2: almost Mathieu operator

The methods used above can be extended to the more general case of the almost Mathieu operator

5],

P+ Pt + Acos(ky +ym) @, = E®p, (3.19)
which is similar to the Mathieu equation :
—y"(x) + Acos(z)y(z) = Ey(z). (3.20)

The equation eq. is a one-dimensional discrete Schrodinger equation, which can be understood
as a tight binding model for the Hamiltonian of a single electron in a rectangular lattice coupled with
a perpendicular magnetic field. It introduces a new variable A who corresponds to the ratio between
the vertical and the horizontal hopping amplitudes. In the Hofstadter case, A/ 2 = 1 because of the
symmetry of movement between horizontal and vertical direction. In [ we recovered the
full quantum Hofstadter trace TrHZ p/a by integrating point spectrum traces Trin i v/a with the
appropriate free density of states p( ) on the lattice. This construction can be generahzed to the
almost Mathieu operator when v = 27p/q with p and ¢ are coprime integers. We can calculate the

n-th moment trace formula for the almost Mathieu operator ’IY(H y‘; /a ) in terms of the generalized

Kreft coefficients a;’>21(2j) which depend on A. Indeed, in the Hofstadter case, when v = 27p/q,

eq. (3.19) can reduce to a g X ¢ secular matrix

Acos(ky) — E 1 0 --- 0 e—iake
2T
1 Aeos(ky + Z2) — B 1 - 0 0
0 1 O - 0 0
A
m;/L(E,kx,ky) - : : S :
0 0 0 - () 1
ciaka 0 1 )\cos(ky +(q— 1)27771’) -F

(3.21)
The generalized Chamber’s identity is then

det( mO) (B, ko, k, )):det(m(’\)(E,0,0)>—2(—1)q(cos(qu)—1+()\/2)q(cos(qkjy)—1)). (3.22)

p/q

The eigenvalue equation becomes
det (mm(E,o, 0)) = 2(—1)(cos(qks) — 1+ (A/2)9(cos(qk,) — 1)). (3.23)

In Article 2, we introduce the polynomial b;?;(z)

(k) (A)
bp/q Z ap/q (3.24)

with the generalized Kreft coefficients —a(/) (2) (with a;)/‘ZI(O) =-1)

q—2j k1

1()/21(23) = H_l Z Z Z ap/q (k1 +2j — 2)a (/) (k1 +2j - 2)

k1=0 k=0 k;=0

—(X . A A
o) (ks + 2§ — a8 (ke + 25 — 4) ... al)) (k;)as)) (ky) (3.25)

p/q

where

2in(k+1)p

oy (k) = (/20 (1= ) and @l (k) = (2)e (1 @2/a7%e ).
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Chapter 3 Almost Mathieu operator

shows the detailed derivation of the generalized Kreft coefficients a1(0/>31(2i). With the

substitutions above, det( ) (E,0 0)) rewrites as

v/a
det( ;jL(EOO)) 2=1)7(1 + (3/2)7) = (~1)7ED) (1/B), (3.26)

det( (>21 (B, ky, K )) decomposes into two parts: Eqb( ,(1/E), a polynomial of E and a trigonometric
part independent of E. A proof of Chamber’s 1dent1ty is given in Then, the eigenvalue

equation eq. (3.23)) rewrites as
B (1/B) = 2(cos(qka) + (\/2) cos(qhy)) = +s. (3.27)

with 0 < [s| < 2(1+ (A\/2)9) and —(2+ A) < E < 2+ X with A > 0 (see the proof in
section \ # 2).

The almost Mathieu operator quantum trace, Tr (HQ( ; /q ) is defined as

. b dby X i
e =g [ G S k) (3.25)

where the Eﬁ’\) (ks ky)’s are the eigenvalues of eq. lb Following the same logic as in the Hofstadter

case, instead of calculating Tr (H. ) )™ directly from eq. || we aim at the point spectrum traces

27p/q
Tr, (H(’\)

omp /q) with the appropriate density of states p) (s) such that

2(1+(1/2)7)
/ Try(Hyn )" o™ (s)ds = Tr(Hy,) )"
~2(1+(A/2)9)

n
The key point to obtain the point spectrum trace Trg (H (N ) and its generating function

27p/q

27p/q ™ is to follow precisely the same steps as in [section 3.2, which means we replace the

ap/q(27) by a;>2(2j) in eq. 1) and eq. 1) replace the b,/,(2) by b;%(z) and derive the appro-
priate density p(A)(s). For a more detailed derivation, please see the section IV. of Article 2. The
results are the following

Tr, (H(’\)

)"

(£1+Z2+“'+etq/2J+2k) Y AL 1\ 2
n N 0,02yl 252k 20k
Tr(HQ()\) ) :72 Z La/ ( >Z< > (A/2)20k
T/
p/a 7= 1l B2y 20 b+ Lly A+ ALy +2k\ Kk et k1
L+28o+4+q/2]L q/2)=n/2—qk
(3.29)
la/2]
H ap/q
which is a A-deformation of the quantum Hofstadter trace eq. (2.23).
One also gets the generating function that generalizes eq. (2.22)
M) ! k
n z(b,) (2)) 20\ 2k
ZTr o= (1 et Z( )Z( > (A/2)%ak (3.30)
27tp/ A A ’
X V) =0 0 ) 2 ) 2 CHEL
which rewrites as
A /
0 V' (20 (2) 1 2 16224(\/2)4
ZTr Hyrprg) 2" =1 ey K M) ()2 2q q)?
=0 gby)r (2) \/1 A=) (1= (2n)* T \byy(2)? — 42 (1= (n/2)9)
P/q
(3.31)



Chapter 3 Conclusion

It should be noted that the expression eq. for the generating function can be obtained directly
from eq. . The appendix [E| provides details on the derivation of it.

Another remark is that we can reproduce the results eq. and eq. from the lattice walks
point of view as in Except that for the case X # 2, the lattice is asymmetric (rectangular),
so we denote \/2 as the ratio between the horizontal axis and the vertical axis, then we consider the

generating function A(x1,x2,y1,y2, Q) (defined in eq. (2.9) of , we replace x1 by zzx, x2 by

z/x, y1 by A\/2zy and \/2z/y and look at the coefficients with vanishing exponents in z and y and the
exponent of n in z, which will in turn yield the generating function for the traces Tr (H. ) ). For

2m
more details, please see the appendix C of Article 2. ol
By using our result eq. , in Article 2, we also checked that the Aubry-André duality [19] (it
is an important property which relate eigenfunctions and spectra of the almost Mathieu operator with
given A to those of the almost Mathieu operator with A replaced by 4/))

T (HY )" = (%)"ﬁ (HMA) ), (3.32)

27tp/q 27p/q

holds, as it should.

3.4 Conclusion
In this chapter, we have introduced the point spectrum trace eq. (3.15) to recover the full Hofstadter

quantum trace eq. (2.23]). This procedure has been extended to the almost Mathieu operator in the
commensurate case.

50



Article 2 : Hofstadter point spectrum trace and the almost Mathieu
operator
Stéphane Ouvry, Stephan Wagner and Shuang Wu
JOURNAL OF MATHEMATICAL PHYSICS 59, 073504 (2018)



JOURNAL OF MATHEMATICAL PHYSICS 59, 073504 (2018)

Hofstadter point spectrum trace and the almost
Mathieu operator

Stéphane Ouvry,! Stephan Wagner,? and Shuang Wu'

LLPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
2Department of Mathematical Sciences, Stellenbosch University, Matieland,

Stellenbosch 7602, South Africa

(Received 20 December 2017; accepted 21 June 2018; published online 12 July 2018)

We consider point spectrum traces in the Hofstadter model. We show how to
recover the full quantum Hofstadter trace by integrating these point spectrum traces
with the appropriate free density of states on the lattice. This construction is then
generalized to the almost Mathieu operator and its nth moments which can be
expressed in terms of generalized Kreft coefficients. Published by AIP Publishing.
https://doi.org/10.1063/1.5020147

. INTRODUCTION

In Ref. 1, we focused on the algebraic area generating function of closed lattice walks of a given
length 7 (n is then necessarily even),

Zu(e7),

evaluated at e'?, a root of unity. One reason for studying this quantity arises from the connection of
the algebraic area distribution of random curves to the quantum spectrum of a charged particle in a
perpendicular magnetic field. In the lattice case at hand, the mapping is on the quantum Hofstadter
model® of a particle hopping on a two-dimensional lattice in a magnetic flux y, counted in unit of
the flux quantum. More precisely, Z,(e?) is mapped on the nth moment Tr HJ of the Hofstadter
Hamiltonian H,—thereafter referred to as the quantum Hofstadter trace—

Zy(e”)=Tr H,

by virtue of which evaluating Z,,(¢') for classical lattice walks gives an expression' for the Hofstadter
quantum trace Tr Hy. In the simplified case of a rational flux, not surprisingly, the trace Tr H can be
written in terms of the Kreft coefficients® which encode the Schrodinger equation for the Hofstadter
model

D1 + Dy +2cos(ky + ym)Dy, = ED,,. (D)
One would like to generalize this construction to the almost Mathieu operator case

D1 + Dy y + Acos(ky +ym)Dy, = ED,,, 2)

where A is now a free parameter. This operator, among other things, plays an important role in the
characterization of the fractal structure of the Hofstadter spectrum.* Physically, it describes a quantum
particle hopping on a lattice with horizontal and vertical amplitudes in a ratio A.

We will first rederive the results of Ref. 1 by starting from point spectrum traces—to be
defined later—and integrating them with the appropriate free density of states on the lattice in
order to recover the quantum trace Tr H),. This approach is original and gives a new light on the
results obtained in Ref. 1. The generalization to the almost Mathieu case will then follow provided
that one can extend accordingly the Kreft coefficients construction to the A # 2 case. Finally we
will discuss in Sec. V some direct links which can be established with current activities in the
field.'?

0022-2488/2018/59(7)/073504/18/$30.00 59, 073504-1 Published by AIP Publishing.
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Il. A REMINDER

In the commensurate case with a rational flux y = 2np/q, with p and g co- primes the lat-
tice Hofstadter eigenstates ¢, , = e"®®,, are g-periodic on the horizontal axis Dpyg=e ik« @,,. The
Schrodinger equation (1) then reduces to a g X g secular matrix m,,(E, kv, k) acting with zero output

on the g-components eigenvector {®g, @y, ..., Dy},
2cos(ky) — E 1 0 0 e~k Dy
1 2 cos(k, +2 ) E 1 0 0 D,
0 1 0 0 0 D,
0 0 1 0,
eidke 0 1 2cos(ky +(q — DZL) = E J\ @i

(3)
The g eigenenergies E(ky, ky), Ez(kx, ky), ..., E4(ky, ky) are the roots of det(m,;4(E, ki, ky)) =0

which, thanks to the identity

det(myq(E, ky, ky)) = det(m,4(E, 0,0)) = 2(=1)7(cos(gky) — 1 + cos(gky) — 1), “)
rewrites (see Ref. 5) as
det(my;4(E,0,0)) =2(=1)7(cos(gky) — 1 + cos(gky) — 1). )
The polynomial b, (z) with coefficients —a,;4(2j),
4]
Bprg(@) == ) apqg(2i)2?, (©)
j=0
(ap/q(0) = —1) materializes in det(m,,4(E, 0, 0)) as
det(m,/4(E,0,0)) + 4(=1)? = (-1)"Eb,,(1/E) @)
so that (5) becomes
E%bp,4(1/E) =2(cos(gky) + cos(gky)). ®)

The ay,/4(2j)’s in by 4(z) in (6) are related to the Kreft coefficients c,/,(2/) as
q
2 .
det(m,/4(E,0,0)) + 4(=1)7 = Z cp/q(2j)E21
i=3-1%1

so that a,/4(2)) = ¢p14(q — 2)(=1)7*!. One gets

q-2j k .
k1 +2j—-1 ko +2j—3
apq(2)) = (- 1+ Z Z 24 (—n( ) )p)4sm2(—ﬂ( 274 )p) ...
k1=0 k=0 9
(ki + 1
x4sin2(u), ©)
q
with building blocks
k+1 . 217r(k+1) 217r(k+1)
4 sinz(y) =e (1 - p)e’k>(1 —e p) ap/q(k)ay 4(k),

where

_ik 2in(k+1)p
@pqk)=e"" (1 —e 4
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and «@,/4(k) is the complex conjugate. How to derive (9) is explained in Kreft’s paper’ (see the
Appendix for details). Note that a,/,(2j) = 0 as soon as g < 2j.
A closed expression for the quantum Hofstadter trace, which is defined as

1 (™ [7 dk dky
TrH} =— —_— E ke, ky), 10
”WqLLMM;A}) (10)

where one has integrated over the quasi-momenta k, and k, € [-r, ] the sum of the g eigenenergies
E,(ky, ky)—the roots of (8)—at a power n, has been obtained! in terms of the Kreft coefficients

(f]+fz+---+f|_q/zj+2k) 2
Tr n _n Z f],fz,...,qq/zj,Zk (2]() (11)
27plq ~ , —
110 0.0 L7220 Ot +lygp)+2k\k
O +20++q/2]€4/2)=n/2~qk

Lg/2]

N
[T aa@)®,
j=1

with the generating function

o b, (D) 2 1672
2, TrHs ey = (1 - qbZZ(z))EK(bp/q(zY )

n>0

(12)
2
where K is the complete elliptic integral of the first kind, %K (16x) =Yk >0 (Zkk) xk.

lll. POINT SPECTRUM TRACE FORMULA AND DENSITY OF STATES
A. Mid-band trace formula

One aims at generalizing (11) and (12) to the almost Mathieu operator case (2). To achieve this
goal, first of all, one remarks that the Hofstadter trace (11), valid for all n and ¢, coincides when ¢
> n/2 with the mid-band traces given for the particular cases n =2, ..., 10 in Ref. 6. The mid-band
trace

1 q
TroHs,, = > ENO),
r=1

to be distinguished from the quantum Hofstadter trace (10), is taken solely on the mid-band energies
E,(0), the roots of Ref. 7

E%b,;,(1/E) =0, (13)

to be distinguished from the E,.(k,, ky)’s, the roots of (8) (for an illustration see Figs. 1 and 2).
It is quite straightforward to obtain for all n and ¢ the mid-band trace formula

(f1+f2+---+fw/zj) |_£1/2J

pott [ a@) (4
j=1

n

TroHyy,, =~ L+l ¢
04+
q [1362""[[61/2] >0 1 2 La/2)

f] +2f2+~~~+|_q/2]ftq/zj =n/2

One can check that the Hofstadter trace (11) and the mid-band trace (14) indeed coincide provided
that g > n/2 since then the summation index k in (11) necessarily vanishes. A qualitative interpretation
for this fact can stem from the classical picture of lattice walks contained in the quantum periodic
cell of horizontal length ¢ (the lattice walk the farthest on the horizontal axis from the origin indeed
goes to a distance n/2).

The mid-band trace (14) has a simple combinatorial interpretation: it is the sum of products of
the a, /q(Zj)‘7 ’s corresponding to partitions of 7 in even integer parts of size 2j [no larger than g since
apq(2j) =0assoon as g < 2j],i.e.,2l; +4€r +--- +2|q/2|€| 42| = n, multiplied by the multinomial
weight.



073504-4 Ouvry, Wagner, and Wu J. Math. Phys. 59, 073504 (2018)

e’-6e

10+

+4

+S

\/

-6 -4

-S
-4

-20-

FIG. 1. p=1, g = 3: Ebp;4(1/E) = E3 — 6E; the 3 horizontal red segments are the energy bands; the 3 red dots are the
mid-band energies; the 6 black dots are the +s energies.

The generating function follows as
b’ (2)
/q
> TroH, " =1 - =2, (15)
27p/q qbp4(2)

n>0,neven

6'+86%-4

A

+10

+20 -

FIG.2. p=1,q=4: Elby;4(1/E) = E* — 8E? + 4; the 4 horizontal red segments are the energy bands; the 4 red dots are the
mid-band energies; the 8 black dots are the +s energies.
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which amounts to nothing else but (13); i.e., the E,(0)’s are the roots of E9b;,4(1/E) = 0. To see this,
rewrite

q q
S Ty, = Y l(ZE?(O))z%éZ S GEO)

n>0,neven n>0,neven = r=1 n>0,neven

1 < 1 1 &
:_Zl 2E2(0) Z;(l—m(m 1+zE(0) qrz;l—zE(m

so that (15) becomes

1 < 1 b’ (2)

2z Z _ pla =" (16)
g 1-2E0) by

r=1

On the other hand, (13) rewrites as

q
(1@ = [(1/z = ExO)),
r=1

that is,
bpq(2) = ﬁ(l - z2E,(0))
so that -
(1og(by/q(2)))’ =rZ: #é?()o) = % 2 (1- %Er(o))
or

p/q(Z) 1 q Zq“
p/q(z) < p 1 —ZE (0)
which is (16).

B. +s trace formula

More generally, one can consider the +s spectrum traces

9 q
Tr. Hgﬂp/q ( Z E(s) + Z Ef(—s))
C] r=1 r=1
taken on the 2¢q roots E,(s) and E,(—s) of
E%b,,,(1/E)=sand E9b,;,(1/E)=—s an

with —4 < s < 4 since —4 < 2(cos(gky) + cos(gk,)) < 4 in (8). The mid-band spectrum is obtained for
s = 0, and the edge-band spectrum is obtained for s = 4, which is of particular interest as well (see
Figs. 1 and 2).
Following the same line of reasoning as for the mid-band spectrum, one obtains the +s spectrum
trace generating function
Wbpyg(2) = sz9) 2(bpje(2) + 52%)

p(;wen TroHy, 2" =1 - 2q(bprg@) —529)  2q(by/g(2) + s29)
2B, () - 524y
2Q(b2/ (2) - $22%9)
b (2) 1

rlq
(18)
qbp/q(z) 1- Sz(b o/a (Z))Z
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which rightly reduces to the mid-band case (15) when s = 0. Again (18) is a mere rewriting of the
E,(s)’s and E,(—s)’s being the roots of E9b,,(1/E) = +s in (17).
One has likewise the +s trace formula

(€|+€2+“'+€Lq/2j+2k) I_Q/ZJ

n 1,02, b g2152k 2%k N

Tro HY :—Z Z s ﬂa 295, (19

£0mpla T g Co+la+- by +2k ] praG)7% - (19)
k>0 b6, 6472 20 J=1

f] +2[)2+~~~+ Lq/ZJqu/zJ :n/2—qk

which again reduces to the mid-band trace (14) when s = 0. The combinatorial interpretation of (19)
is again simple in terms of products of s> and of the ap/4(27)’s corresponding to all partitions of n in
even integer parts of size 2¢q and 2j, respectively.

Again, as soon as g > n/2, the trace Tr. HY in (19) does not depend on s anymore and

27p/q
coincides with the Hofstadter trace (11) and, by the same token, with the mid-band trace (14).

C. Density of states

One remarks next that the Hofstadter quantum trace Tng’ﬂp ’ in (11) can be recovered from the

/
2

+§ spectrum trace Tring’m7 /4 in (19) if one replaces s2 by (Zkk) . This replacement amounts to an

integration of (19) over s € [—4, 4] with the density of state p(s),

f TriSHg‘np/qp(s)ds=Tr gﬂp/q (20)
-4

2
f s2kp(s)ds: (Zk) . 21
_4 k

Clearly the free density of states on the 2d lattice,

such that

p(s)=1/Q2a*)K(1 - s*/16), (22)

enforces (21): it is the density of states for the spectrum s = 2(cos(gk,) + cos(gky)). Again, as soon
as g > n/2, the integration in (20) becomes trivial, i.e., the identity. Note that in the spirit of Ref. 8,
one can make the change of variable s = £E%b,;,(1/E) in (21) to obtain

- 2k\?
4(Eqbp/q(1/E)) pp/q(E)dE= k|

where p,/,(E) is the Hofstadter density of states. This yields the trace sum rule
2k)2

Tr(H .

np/qbp/q(l/HZHP/q))Zk = (

or
(41 2
Nprq-2 2k 2k
Tr( ) apQDHE Y ) = ( ; ) ,
=

which is an inversion of (11).
For the generating function as well, which is given by

f Z TrisHy,,, 2" p(s)ds = Z TeHy 2"
44 n

one uses (12), (18), and (22) so that

4 2(b?, (2) — s22%9) 1 §2 !, (2), 2 q 9
—L —%@——F:l—Jﬂ——Km £
/—4( 2q(b§/q(2)—szzz‘1))2ﬂ2 16)” ( qbp/q(Z))” ( (bp/q(Z)))

has to be satisfied. After simplification, this narrows down to
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4 2

1 1 2 9 2
[ a1 fe = 2K s ) )
4 2 16 ]—s( /(Z)) Ve bp/q(z)

le—i ! — ds=47K(167%),
) 16)1- 5222 ¢

which is nothing but the complete elliptic integral of the first kind being the generating function for
2
the square of the binomial coefficients, i.e., %K (162%) =3 (Zkk) 2%k

1.e.,

IV. A #2: POINT SPECTRUM TRACE FORMULA AND DENSITY OF STATES

All these considerations can be extended when A # 2 to the almost Mathieu case (2) whose
secular matrix is

Acos(ky) — E 1 0 --- 0 ek
1 Acostky + L)~ E 1 0
L 0 1 O -+ 0 0
p/q(E an k )_ '
0 0 0O --- 0 1
eidkx 0 1 Acos(ky +(q - 1)2%) -E
(23)
Thanks to the identity
det(my) (E, ke, ky) = det(myy) (E, 0, 0)) = 2(=1)?(cos(gky) = 1 + (4/2)(cos(gky) = 1),
the Schrédinger equation becomes
det(m“) (E,0,0)) = 2(~1)(cos(gky) — 1 +(1/2)%(cos(qky) — 1)). (24)
Again one introduces the polynomial b;’}zl (z) and its coefficients —al(jz] (2)) [with a[(”};(O) =-1],
(4]
b;,//l;(z) =- Z ;’};(21)z21 (25)
=0
such that det(m;’})q(E ,0,0)) rewrites as
det(my) (E,0,0)) + 2(=1)*(1 + (4/2)%) = (-1 EbY) (1 /E) (26)
so that (24) becomes
E"b;’})q (1/E) =2(cos(gky) + (1/2)7 cos(gky)). 27)

In the Appendix, we show how to get a closed expression for the generalized Kreft coefficients
a;;};@i)’s in (25) following the steps of Ref. 3. This procedure coalesces to

q-2j k kj—

D= ST S 0 42— 2 427 -2

ki=0k=0 k=0

@) ky + 2 — day) (o +2f = 4) ... al) (ke (k) (28)

with building blocks

D yg@
@R, (K,
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where
(/l) B 2in(k+1)p
(k)= u/z)e—”( —e )
and
—(/1) ik, _ 2in(k+p
) (k) = (4/2)e™ ( —@j)e )

When A # 2, even though Eu) (k) is not anymore the complex conjugate of a;’}il(k), it is still true that

(’l) (2]) in (28) is real. Indeed its imaginary part cancels because of

dishp .
J

»
i M&
o

when ¢g > j, being a sum of jth powers of gth roots of unity. For example, when j =1,

92 iz (k+1)p iz (k+1)p
dh @)= Za;’};(k)_g})q(k) ant, (1= w2 - e ™)
=0
q_l 2in(k+1)p _ 2in(k+Dp
—@27 Y (1= v - e T
k=0
g-1
=(1/27 ) (1+@/0%) =q(1 +(1/2)?).
k=0

Of all that precedes, in the A # 2 almost Mathieu case, the +s spectrum traces and their generating
function are directly obtained by replacing in the Hofstadter +s spectrum traces and generating
functions (19) and (18) the a,/,(2/)’s by the a;’}zl(2j)’s and so the polynomial b,/,(z) by b;’};(z). This
is due to the purely algebraic construction of these traces in terms of the a,,(2j)’s via the roots of
(17) and therefore, in the A # 2 case, the roots of

2
E"b; />q (1/E) = +s
with 0<|s| <2(1 + (4/2)7), since from (27) necessarily 0 <[2(cos(gk,) + (1/2)7 cos(gky))l
<2(1+(1/2)9).

As stated in the Introduction, one wishes to obtain a closed formula for the almost Mathieu

quantum trace defined as

g, = [ [ Z(E“)(kx,k» 29)

27p/q 27 21

where the E ﬁ/l) (kx, ky)’s are the roots of (27). To do so, as in the Hofstadter case, one aims at integrating
over s € [-2(1 + (4/2)7), 2(1 + (4/2)7)] the +s spectrum trace with the density of state p(/”(s),

2(1+(2/2)7)
/ Te (HY ) p ™D (s)ds =Te(H® )",

—2(1+/2)7) 2rpla 2l
which is such that
2(1+(1/2)7) 2k & [ k\2
/ S2kp(/l)(s)ds — ( ' ) Z ( ) (/1/2)211/{1 (30)
=2(1+(1/2)9) k=0

in analogy to (21). A derivation of p(’U(s) enforcing (30) is given in the Appendix. This density of
states is the A-deformation of p(s) in (22) for the 2d lattice spectrum s = 2(cos(gk,) + (1/2)7 cos(gky)).

Putting all the steps above together, namely, in (19) replacing both the a,/,(2/)’s by the a;’z 2j)’s

2
and s** by (Zkk) Z’,;:O (151 ) (1/2)%d%1 | the almost Mathieu operator quantum trace (29) ends up
as
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(f]+f2+---+f|_q/zj+2k) 2k & k 2
(/l) n n f],fz ..... flq/zJ,zk 20k
Tr(Hyy,,)" == (1/2)%k
2np/
R O tl,fz,...,ze:‘q/zjzo Otbot o+ lygp+2k\ k] =k
{)1+2f2+---+|_q/2Jqu/2J:}’l/z—qk
Lg/2]
Zs 4
[ [ 4@ (31)
j=1

which is a A-deformation of the quantum Hofstadter trace (11).
One also gets the generating function that generalizes (12),
2 ()’

Zz(/l)( 2inp/qy,n 1— plq 2k k 2 2qk1 z4 2k 1
(el = ( iy ) 2o Z (/) (bw(z)), (32)

730 qb,,(D) " i%0 fi=0 vl

2k k k)2 2qki k . .. o ge
where > ;.o (k) > k=0 (k.) (4/2)7%1x* can be viewed again in terms of the complete elliptic

2
integral (2/7)K(16x)=Y;>0 (Zkk) x*. Indeed thanks to the identity

> 2k L k (k)z . (2k) Lk
;(k)x % ki) mz (1—4x(1—y)2) ; (33)

(32) can be summed up to

@
ZZ}S/D(e%ﬂp/q)Zn _ (1 ~ Z(bp(//;l)(z)) 1
> 2 - 2
= . \/ —4GE) (- (/2
2 16229(1/2)1
% 2K 34
n (b(ﬂ) L7 =422 (1 - (/1/2)‘7)2) .

which rightly reduces to (12) when 1 = 2 [see Subsection 2 in the Appendix for a derivation of
the density of state p((s) again in terms of the complete elliptic integral]. One can also check
that the expression (34) for the generating function can be retrieved by starting from (29) and
integrating with respect to the momenta k, and k,.

2
To see why (33) holds, first note that 21121:0 ( ,fl) y*k1 is the coefficient of ° in

(1+¥)k(1+yt)k:i(lj)y’ Zk:( )yfﬂ

i=0 j=0
Thus the left-hand side of (33) is the coefficient of ° in
— (2k k 1
> ( )xk(l +2) A4yt =
i\ k t VT =4x(1+y/D(1 +y1)
B 1
V1 =4x(1 — )2 — dxy(1 + )2/t
1 1

\/1—4x(l—y)2 \/1 v

T=4x(1=y)? t

(1 +1)?
\/W %( ) ) ()
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Now it only remains to see that the coefficient of ° in ((1” ’ ) is precisely (zkk).
Note finally that one can check that the Aubry duality,”
W n n 4/ \n
Tr (Hyy, ) ek S Te(H) (35)
holds, as it should. This happens because the generahzed Kreft coefficients (28) themselves obey the
duality

(/l) 2j (4] r (@) 4/
a0 = (5P a2 = B =K () (36)

which follows from

Xp/q plq Yplq Yolq

( @y (k)a(/l) (k)) — (%) ( (4/1)(]()—(4//1)(]{))

[only the real part is needed here since a;’z (2j) is real]. The duality (35) then follows from (31) and
the duality (36),

TR YDy

k>0 f],fg,...,flq/zj >0
420+ +1q/2]C 2 =n/2—qk

i oy W12
(@27 [ a0t

2K\ <k k)2 2gky (C+la+ g ) +2k
(%) Zhizo (&) /2 (O )
51 +fz+~~~+qu/2J + 2k

Ylq
Jj=1
2k k k 2 qul €1+€2+"'+€Lq/zj+2k
_ n (k) Zkl:() (k]) (1/2) ( f],fz ..... qu/zJ,Zk )
k>0 f],fz,...,flq/zJ >0 {1 + fz +eoeet €LQ/2J + 2k
f1+2f2+---+|_q/2J€|_q/2J:n/z—qk
Lg/2] A
n—2qk @4/ (4 N\
(/22 [ ] asi02))
j=1
2k\ vk k)2 2qk—2qk; (C1+Ca+-+C1q21+2k
= (/2% ) () Zho (o) e (78 )
quO l1,6,..., glq/ZJZO gl +[2+...+€L4/2J +2k

f1+2€2+~~~+ Lq/ZJqu/QJ :I’l/z—qk
Lg/2]

4/2) ¢
l_[ p/q ()7

Jj=1

=" W2y D

k>0 01,6, ..., qu/ZJ >0
€1+2£2+~~+ I_Q/2J€Lq/2j :n/2—qk

2k k (k)2 qu’ (€1+€2+"'+€Lq/2J+2k)
(k) =0 ) CIOT T o 2k

£1+€2+"'+€Lq/2j+2k

Lg/2]
[T asib@p® = a2y ey .
j=1

V. CONCLUSION

One has obtained the A-deformation of the quantum trace (11) in the form of (31). Both trace
formulae have a similar structure, with clearly (31), the almost Mathieu case, reducing when 4 =2 to
(11), the Hofstadter case. Going back for a moment to random walks on a lattice, it would certainly be
interesting to look at possible interpretations of (31) in the context of asymmetric paths with unequal
probabilities on the horizontal and vertical axis.

On the other hand, our results are directly relevant for problems related to Calabi-Yau geometry.
A recent work ' indicates that there exists in the rational case a relation between the almost Mathieu
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operator and the relativistic Toda lattice. As pointed out in Sec. 2 of Ref. 10, there is an invariance
under the modular double operation exchanging y = 2np/q and ¥ =2nq/p (respectively, # and 7 in
the notations of Ref. 10) of the relativistic relative 2-body Toda Hamiltonian

H="+eP)+e" +e*, [x,pl=iy, (37)
where, in Ref. 10, A is denoted as R?. The eigenvalues E and E corresponding to y and ¥ sat-
isfy the polynomial identity P,/,(E) = Pq/p(E), where P,/,(E) is a polynomial of degree g [see
(2.19) in Ref. 10]. Now this polynomial is identical to the polynomial E‘/b;’};(l/E) introduced
in (25) and (26) which encodes the {k,, k,}-independent part of the determinant of the almost
Mathieu Schrodinger equation encapsulated in ml(;/l;(E ,ky, ky). In the present work, we have pre-
cisely obtained in (28) a closed expression for these polynomials in terms of the generalized Kreft
coefficients.

It would certainly be rewarding to see if (28) can bring any pertinent information related to the
various questions raised in Ref. 10, in particular, regarding the quantum A-period for the modulus of

the underlying Calabi-Yau geometry. Finally, in the context of the Hofstadter model itself, the true
role of the double modular transformation y — ¥ remains to be elucidated.
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APPENDIX A: KREFT’S COEFFICIENTS CONSTRUCTION

Following Kreft,> we show how to get a closed expression for the polynomial (26), i.e., for the

q .
Kreft coefficients a'}) (2/) in b'}) (2) = - zj[.g(]) a!) (2j)c% as defined in (25).
1. A=2

One aims at transforming the matrix m,,, (E s K, ky) in (3) into a tridiagonal one by an appropriate
change of basis. First, let us do the change of basis

1 O o .- 0 0

0 & 0o ... 0 0

0 0 €% ... 0 0
mp = .

0 O 0 el(a=2ks 0

0O 0 o - 0 £/ q=Dkx

so that my,, (E, ky, ky) rewrites as

ml_lmp/q(E, kx,ky)ml

2cos(ky) — E etk 0O --- 0 ik
ek 2cosky + ZL)—E eh oo 0 0
0 e‘ikx () . 0 0
0 0 o ... 0 ok
ek 0 0 - ek 2cos(ky + (g - 1)2%) -E

In this new basis, the Schrodinger equation (1) with ®,,,,, = 9% ®,, becomes

m+q — Fm

by +e D! | +2c0s(ky +ym) D), =ED,, @, =]
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Then let us do a second change of basis m; with matrix element

1 2intp o
mj.k:@(—npke 7GR e 10,1, .., g~ 1).

Putting together m; and m, amounts to the change of basis m;m; with matrix element e"kk*‘mjk =

. 2inp (- 2
Kk, 1 k (jk—k*/2)
e —=(=1)y%e a
Vq ’

_E @p4(0) 0 0 plq(q = 1)
0 ap/q(l) —-E e 0 0
(mlmz)_lmp/q (Ea kX9ky)m1m2 = . . . . . '
0 0 e I C )
apglg=1) 0 0 - aplg-2) E
(A1)

. 2inp .
where ap/q(k)=€_lky — (=D)P+Dey (U /204k: - and a@p/q(k) 1is its complex conjugate and
accordingly

CYp/q(’n)d)m+l + ap/q(”n - 1)d)m—l = Eém’ d)m+q = (i)m- (A2)

Both corners ap/,(g — 1) and @,/4(g — 1) in the matrix (Al) can be canceled if elthetky) —

2ir, intp
(—1)(P+1)e_Tp(q_1+1/2) = (—1)(1’“)67], ie, ifky +ky=n(p+ 1) + %. The matrix is then tridiago-
nal with a determinant in (4) equal to (=1)?E“b,,,(1/E), since the trigonometric part vanishes as well;
indeed

(kx + ky) CI(kx - ky)

cos(gky) + cos(gky) =2 cos(q ) cos( 5 )
1 ky — ky

:2COS(7T(P+Q(P+ )>)Cos(q( x >))

2 2
=0
due to p + g(p + 1) being always odd since p and g are co-prime.
One gets the tridiagonal matrix
-E @p/q(0) 0 e 0 0
a@p/4(0) -E aprg(l) -+ 0 0
0 ap/q(1) -E e 0 0
. (A3)
0 0 0 -E pre(q —2)

0 0 0 - Tylg-2) —E
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; inp . . . 2iz (k+1)p .
where a@/,(k), using elkthy) = (—1)P*De70 has simplified to apq(k) = e~ (1—e~ ¢ ). The matrix

(A3) does not depend anymore on k, nor on k, and its determinant satisfies a recursion (see Ref. 3)
leading, respectively, to the Kreft polynomial and Kreft coefficients (7) and (9).

2. A £2

One uses the same method as above to find a closed expression for the polynomial bl(;};(l/E),

namely, transform the matrix mj(;/l; (E, ky, ky) in (23) into a tridiagonal one. To do so, use the same
change of basis mm; as above so that

- A
(mlmZ) lmI()/)q (E’ kx, ky, )mlmz

E @ 0 e 0 Fug-D)
O alm 0
0 a1 -E .- 0 0
= (A4)
0 0 0 - -E  aPg-2)
Gua=D 00 Eg-D)  -E

. .27 .
with a;’})q(k) =(1/2)e"h — (—I)P“e’Tp(k“/ Dk and 5;’};(16) its complex conjugate. Moreover, we
have a resulting Schrodinger equation identical to (A2) provided that a/,(k) is replaced with

g K-
Contrary to the Hofstadter case A =2, both corners a/;’}; (g —1)and E;/}L(q — 1) in the matrix (A4)

cannot simultaneously vanish. One can still choose to have the lower left corner oz(/l) (q 1) to vanish:

this amounts to e/kxtk) = (= 1P+ (1/2)e™ 1) ==yl 2)e . , which can only be achleved

foracomplex ky +ky, [namely, k,+k, = —ilog(1/2)+ 7;” +7(p+1)] sothat e ™*th) = (—1)yP*1(2/ 1)e” v
The matrix (A4) then becomes

Eoao 0 0 e
WO Eaho 0o
0o aym -E - 0 0

, (A5)
0 0 0 ~E a;/};(q—Z)
0 0 0 - a@-2  -E

2int(k+1)p

where a(/l) (k) and « _(/U (k) have simplified to a/(’D (k)—(/l/2)e_ikY(1 —e ¢ ) and a/l(;})q(k)
—(/1/2)e’k

(/l)
p/q (k).

By expanding the determinant of (AS5) with respect to the elements of the first row

a )(k) is not anymore the complex conjugate of
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Eap@ 0 o0 @hg-D) o
_E P - 0 0
_(/1)(0) _E (/l)(]) 0 0 p/q
Xp1q % /q aW N _E . 0 0
o a®a - - 0 0 “rta
p/q
:—E :
0 0 -E Vg -2
/
0 0 0o ... -E ;)//l;(q 2) o “pla
—w 0 0 afp/q(q—Z) -FE
0 0 0 -a@g-2) -E
_ o
E  al)® 0 0
W _
@ @) E 0 0
@ g
p/q(o) p/q(o)
_ ()
0 0 E @, (q=2)
—(
0 0 @ q-2) _E
g _ o
p/q(o) E p/q(l) 0 0
W _
0 @ (1) E 0 0
a1 : L : Co) (46)
%) _
0 0 0 @, (q-3) E
0 0 0 0 —,(f/q(q 2)

it is immediate to see that the part that depends on k. or k, can only come from the last term of
(A6), i.e., from the upper right corner E;’};(q — 1). Therefore to get the desired k,, k-independent
polynomial E9 b,(f/f,(l /E), all that is needed is the determinant of the tridiagonal matrix

- @
E a0 0 0 0
W _ )
I’/q(o) E P/q(l) 0 0
W -
0 @, -E 0 0
- @
0 0 0 E ) (q=2)
oo W -
0 0 0 @,,(q=2) E

which finally yields the A4 # 2 Kreft polynomial and Kreft coefficients (26) and (28).

APPENDIX B: DENSITY OF STATES p{*)(s)

To simplify the notations, let us denote in this section (1/2)¢ by A. Knowing that

2
f p(s)szk ds= (2k)
4 k

for p(s) = (271K (1 — s*/16), where K denotes the elliptic integral, we would like to determine a

function p(V(s) such that
2(1+;l) 2%k k k 2 B
/ PV ()5 ds = ( ) Z ( ) 1%
—2(1+/i) k k]IO kl

as in (30). The special case A = 1 clearly corresponds to the aforementioned formula.
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We interpret the desired function p()(s) as the density of a random variable with support [-2(1 +
), 2(1 + )] that is symmetric (so that the odd-order moments are 0) and has 2kth moment

k 2
2%k K\
My = '
* (k),;)(kl) !
=

The moment generating function associated with this random variable is
k 2
M2k 2k Z 2k Z k 12 2k
(Zk)' P k = ki (2k)!
2k\ [ k 212,(] x%
1 k | \k (2k)!

12 Z (k kl)ﬂ

0“1 k=x,

M
Mx

k1=0k

]
~

2k;

I
gk
b A—az

ky

2k
_\ 4 Z 20k14)
! ]'2

/12k1 x2k1 © 2

_Z Ky 12 Zjvz

j=0
= I(2/lx)l(2x),

8

”\

where I denotes the 0-th order modified Bessel function of the first kind. Thus the random variable
whose density pV(s) we would like to determine is the convolution of two random variables with
moment generating functions /(21x) and I(2x), respectively.

Now note that I(2x) is exactly the moment generating function of an arcsine distribution on the

interval [-2, 2],
2 SX
e
——ds=1(2x),
/—2 V4 — 52

and likewise I(21x) is the moment generating function of an arcsine distribution on the interval

[-24,21],
21 esx -
——————ds=1Q2x).
/_22 aV4a12 — 52

Therefore p(s) must be the convolution of the two densities /(s) = (7V4 — s2)7! (s € [-2, 2],
otherwise A (s) = 0) and ha(s) = (V412 — s2)~! [s € [-21, 2], otherwise hs(s) = 0], which is

pP(s)= / hi(s = (1) dt.
This reduces to several different cases:
e Case 1: 1>1

(1) ifs<-2-22ors>2+21,then pV(s)=0
(2) if-2-21<s<2-24,then

1

S+2
/-” V=522 - 2)

pV()=7""

dt,

(3) if2-21<s<21-2,then

(/l)(s) = /S ! dt,
2 Jd- G- al -
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(4) if21-2<s<21+2,then

(ﬂ)(s) - t.

[
2 - (5 - )R - 1)

e Case2:0<A<1

(1) ifs<-2-21ors>2+2A1,then p(s)=0
(2) if 2-21<s<21-2,then

p(s)=n"? dt,

/S+2 1
21 Jd - (s - 0@l - 2)
(3) if24-2<s5<2-241,then

1

PN (s)=n" / dr,
24 \/(4 (s—1t

PR - 12)

(4) if2-21<s<21+2,then

(ﬂ)(s) P

t.

[
2 - (5 - )R - 1)

All these integrals can be expressed in terms of the complete elliptic integral K(x) that
appeared previously in (12) and (34).

For instance, consider the case that 1> 1 and 21 — 2 <5 <21 + 2. Then we can represent
the density by

21 1
pV(s)=n"2 / - dr. (A7)
2 J@— (s PR - )
Now consider the integral representation
1 K((2/1+2)2—s / dx
24/3 16 /i 2 2_2 ’
2 \/Z Ar \/_ \/(1 xz)(l (2/1-:26)/1 S x )

The rational substitution
81 — 812 =212 +4dst + 212 = 2142
4025 + 4t — 422t — 521 + st>

transforms this (as one readily checks) to the expression in (A7). Thus we have

X =

p(s) =

1 K((21+2)2—s2)
212V 161
in this case. The other cases are treated in a similar fashion. We end up with the following
general formula which holds for all positive values of 1:

0, Is| >2+24,

2 1 2i+2)*—s?
pV(s) = 2”2\5[(( 161 )

2 161 3
nz\/(2j+2)2—s2 K( 2A+2)2~s? )’ Is] <24 =2.

21-2|<|s| <21 +2,
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We remark that the limiting case A = 0 yields the density of an arcsine distribution on [-2, 2].

APPENDIX C: EQUATION (32) CAN BE OBTAINED AS IN REF. 1

In order to reproduce from the lattice walks formulation in Ref. 1 the results obtained above
for A # 2, all that is needed is to consider lattice walks with asymmetric probability jumps on the
horizontal axis versus the vertical axis in a ratio 4. One sets in the generating function A(xy, x2, y1,
¥2, Q) [defined in Eq. (10) of Ref. 1] x; — zx, x5 — z/x, y1 — (1/2)zy, and y, — (4/2)z/y and looks at
the coefficients with vanishing exponents in x and y (i.e., m; — my =0 and [; — [, = 0) and exponent
ninz (i.e., m; +my + l] + 12 = Yl),

1 —-z/x 0 - 0 —ZX
1 & =z o 000
1 -z c;/l) -0 0
1 0 0 c;/l_)z —z/x
0.0 001 110 0 - Cf(z/?l
[x"°)AGex, 2/x, (A/2)2p, (A/2)2/3) = [ T S S (A8)
—ZX ci’l) -z/x 0 0
0 -z o 0 0
0 0 0 W g
-z/x 0 o - —-zx c((f_)l

where ¢V =1 = (1/2)2(efy + *y™!) with o= e2P/4.
As in Ref. 1, the denominator has the form

A(zx,2/x,(/2)zy, (1/2)2/y) = 1 = 29 (x? + X7 + (1/2)7(7 + y™) + V(22 (1/2)*2).
Forx=y=1, we get
Az 2,(1/2)2,(1/2)2) =1 = 292+ 2(2/2)7) + V(2% (1/2)°2)
so that

A(zx,z/x,(1/2)zy,(1/2)z]y)
=A(z,2,(1/2)2,(1/2)2) + 212 + 2(1/2)?) = 22 (x? + x™ 7 + (1/2)1(y? + y™9)).

q .
On the other hand, recall that both the polynomial b;jii(z) =— Zj[j(]) a;’}L(Zj)ZZJ defined in (25) and the

matrix m;’})q(e, 0, 0) defined in (23) are related by (26). Since also

Az, 2,(1/2)2,(1/2)2) = (~2)? det(m';)) (1/2,0,0)),
it follows that

Az, 2, (1/2)2,(1/2)2) = bS] (2) = 212 +2(1/2)7)
and finally

A(x,2/x, (/2)2y, (A/2)z/y) = b)) (2) = 20 (x4 + 374 + (/2707 + 7).
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Accordingly, and as shown in the Appendix of Ref. 1 [see the proof of (18)], the numerator at order
x%y0 ends up being expressed only in terms of b;/}zl(z),

1 -z/x 0 .- 0 -ZX
1 & =z o000
(D)
0.0 beg o 000 %) 2,y
[x Y ] : : : . : : =by4) - Zlbp/q(z) :
1 0 0 02{2 —z/x
1 0 0 - —zx cf;_)l
Finally (A8) rewrites as
b(/l) (2) - gb(/l) )
(3] AGx, 2/x, (4/212, (4/22/) = ) ] — Lt
b1y (D) = 28 (x? +x79 + (A/2)4(y? +y™))
k
Zb(/l) (Z)/ 2

= P I e | 01 + 77+ (27 + y™)
Dp1q@ | iz0\ by @)

which yields the generating function (32) for the traces Tr(H;?p /q)n; we have
[xoyo] (e +x79 +(1/2)7(y7 + y—Q))k - [xoyo] )(/1/2)61(10+kz)xq(k3—k4)yq(k1—kz)

Ky +hy s+ =k (kl’ ko, k3, ka

/2%
k1,k1,k3,k3)( /2

k1+k3=k/2 (
k even

k\ 2 (k/2)\2
=(k/2) Z ( k/l ) (1/2)%k

ki=0

2
The coefficient at order x%y? of (x¢ + x™7 +(1/2)4(y? + y‘q))k is (kl;2) Zil/ io (kk/lz) (A/2)%% if k is
even and 0 otherwise so that finally

(G, 2k
') (2) q 2%\ & (k)
W san_[|q_ Tpla < 2qk
Z Tr(H ) 2" =1 1 HD Z pD (k)Z (kl) (/27

n>0,neven qp/q(z) k>0 p/q(Z) k=0
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CHAPTER

4

I THOULESS BANDWIDTH
FORMULA IN THE HOFS-
TADTER MODEL

In the previous chapter, we used the Hofstadter point trace formula eq. as a tool to get an
expression for the moments of the Hofstadter Hamiltonian eq. . On the other hand, Thouless
[20-22] in the 80’s and 90’s focused on the total bandwidth of the Hofstadter model and its scaling in
the limit ¢ — co. The bandwidth is the addition of the width of all the individual bands. It is defined
in our notation as

(DY (1) (Br(—4) - Er(4)) (4.1)

where E,.(+4) are the solutions of eq. (3.10) with s = +4, the edges of each band (see fig. simple
examples of ¢ = 3 and ¢ = 4). In the next section, we will justify eq. (4.1). So a natural question
arises, using Thouless’s method can we calculate the bandwidth n-th moment, defined as

(~D)T Y (1) (Br(—4) — Er(4))" (4.2)

It turns out computing this n-th moment in the scaling limit ¢ — oo is quite difficult. We will discuss
this challenge and the associated difficulties in the following sections. We are going to argue that we
can generalize Thouless’s approach to

(=1)TY (1) (B (4" = B (4)"), (4.3)

which is a truncation of eq. (4.2)). The results are published in |23] which is the Article 3 inserted at
the end of this chapter. We will come back to the bandwidth n-th moment at the end of this chapter.

4.1 Introduction

As explained in the previous chapter, for a given rational flux v = 27wp/q, the characteristic polynomial
Eb,/,(1/E) defined in eq. has ¢ individual bands (see the simple cases ¢ = 3 and ¢ = 4 in fig. .
Thus, the bandwidth is defined in terms of the 2¢ edges of the bands, that we denote as F,.(4) and
E.(—4) with r =1,2,...,q. They are the solutions of

E%,;(1/E) =4 and B, (1/E) = —4,
respectively. Moreover, we order the edges such that

E1(4) S E2(4) S . S Eq(4) and E1(74) S E2(74) S

< By(—4).
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The bandwidth is then defined as in eq. (4.1
q
(1) (=) (Br(—4) — Ex(4)) .
r=1

The (—1)" and the (—1)9"! factors in this equation are here to keep every term in the summation
positive. Because of the (—1)" factor, a difficulty arises: the plus and minus signs of E,.(4) and E,.(—4)
alternate with each other, so one had to specify the ordering of F,.(4) and E,(—4) (see the examples
in fig. . It is difficult to compute such a non-symmetric sum. However, Thouless managed to
overcome this difficulty and was able to compute the asymptotic behavior of the bandwidth when ¢
goes to infinity :

q—o0 ™

lim g(—1)7 S (1) (By(—4) — E,(4) = 26 (1.4)

This formula tells us that the Hofstadter spectral measure scaled as 322G /q where G = Y77 G

k+1)2
is the Catalan’s constant. We will detail Thouless’s method in the next section.

4.2 Bandwidth calculation: Thouless’s method

First of all, in the following, let us focus on the case ¢ odd. The advantage of g being odd is that there
exists a symmetry property of the band edges

Er(—4) = —Eg41-1(4).

Therefore, using this symmetry, eq. (4.1)) is reduced to the E,.(4)’s:

Also, from eq. 1' we know that FE,.(4) are the roots of det (mp/q(E7 0, O)) =0.

Key points
Thouless made two crucial observations to be able to obtain eq. (4.4):

e The first one is the factorization of det (mp /q(E,0, 0)) This determinant can be factorized into

the product of the determinants of two submatrices m;/'Z(E) and mg/;(E):
det (my/4(E,0,0)) = det (m;/;(E)) det (m;/;(E)) (4.5)
where
E—-2 2 o --- 0 0
1 E — 2cos (277%) 1 0
N 0 1 ) - 0 0
el z T z |
0 0 0 - 0 1
0 0 0 - 1 E72005<q—;12%)71
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E —2cos (2r2) 1 0 - 0 0
1 E-2cos(4x2) 1 -+ 0
_— 0 1 O -+ 0
Mp/q (E) = . . . . .
0 1
0 1 E—2cos<q§—12%p)+1
m;/J;(E) and m (E) are tridiagonal matrices with size (¢+1)/2 and (g —1)/2 respectively. So

the eigenvalues F,.(4) split into two parts: Ef™ and E,”~ which are the eigenvalues of m;/‘Z(E)

and m_, (E) respectively.

p/q

Another critical observation is that the positive eigenvalues E;' alternate with F,”~, and so do
the negative eigenvalues, although the order is reversed (see the fig. [4.1). Thus, the bandwidth
can be written in terms of EFT and E.~ as

at

2

1 g—1
q 2

=2 (“)"E(4) =2 D> B = ) |E |
r=1 1 r=1

r=

Then the bandwidth calculation becomes possible because the equation above is the difference
between two symmetric sums. The price to be paid is the absolute value in front of EX* and
E-~. In the following, we will give some technical details how to calculate the bandwidth in
this way.

@ @ @ —@ L . g @ *—
Eq(4) Ex(4) Es(4) Egen® o Eyfea () Eq(4) Eq(4)
& &' & Hay B £ £

Figure 4.1: the E,.(4) split into EXT and E7~
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E*3-6E

4-8 E*+E*

+
: » E
4

-4

+4
: > E
4

-4

=154

Figure 4.2: two simple examples: the top figure represents the case p =1 and q = 3, its characteristic
polynomial is 6E— E3, the three red segments are the three energy bands, each band do not overlap. The
siz black dots correspond to the edges of bands. Its bandwidth is —Fy(—4) + E1(4) — E2(4) + Ey(—4) —
E5(—4) + E3(4). The bottom figure corresponds to the case p = 1 and q = 4, its characteristic
polynomial is E* — 8E? 4 4, the four blue segments are the four energy bands, two central bands touch
each other in zero energy. Its bandwidth is —FE1(4) + E1(—4) — Ea(—4) + Ex(4) — E5(4) + E5(—4) —

Ey(—4) + E4(4).
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Technics

In order to calculate the absolute value of a, we introduce the integral

2% [ 4
l ( S 1) dz = ald arctan (£> ,
T z—a T a

—iz

which contains an arctangent function in the RHS, and in the limit of x goes to infinity, gives the
absolute value of a:

. 4da x
lim — arctan (7) = 2lal.
T—00 TT a
In the same limit, by partial integration:

iT iT _
lim ( S 1) dz = lim (— log z a) dz.
z—oo | _ . zZ—a z—o0 | . z

(24 1

By using the identities above, we get

o =N 9% iz [ det (m;/; (z))
2 (> IBS =D BT == lim —_—t|d (4.6)
r=1 r=1 Trmee ) e det (m;/J;(z))

So far, all the equations above are exacts. To make further progress for large ¢, what Thouless did is
to make further algebraic manipulations: ETT are the eigenvalues of

2
Cp1 + (2(:05 (an) +d(n—(¢— 1)/2)) an +anp1 = ETra, (4.7)
with 0 < n < (¢ —1)/2 and the boundary conditions a(g41y/2 = a(q—1)/2 and a1 = a_1. E_~ are the
eigenvalues of
27p __
bp—1+ | 2cos Tn —0(n—(q—1)/2) ) by +bpy1 = E~ b, (4.8)

with 1 <n < (¢ — 1)/2 and the boundary condition by = 0. From the two recurrence relations above,
one notices that the ratio of determinants in eq. (4.6) can be written in terms of particular solutions

ay, and b, of eq. (4.7) and eq. (4.8):

det (m;/;(z)) _ a0 by tbe-ne
det (m;'/‘;(z)) -1 = a1 b(gy1)/2 = bg-1)/2

At the limit of ¢ — oo, one can make a continuum approximation for eq. (4.7) and eq. (4.8), the gain
is the transition from difference to differential equations. Thus, a, and b,, are solutions of parabolic
cylinder functions, from |24 pp. 678-693], the approximations of the solutions are

an % (~1)"E (~zq/(4m), /4 /qn)

b~ B* (20/(47), /A7 /q(a/2 ~ )

with E(a, ) = k~?W (a, ) + ik *W (a, —z), E*(a,z) = k~Y*W(a,z) —ik'/?W (a, —z) and W (a, z)
are functions involving gamma functions (see the section 19.17. Standard Solutions in [24]). Therefore,
with the change of the variable y = ¢z/(87i), the ratio between the determinants in the limit of ¢ — oo
is rewritten in terms of the logarithm of the ratio of gamma functions:

g+1

q—1

2 2 o0 F(3/4+y>2
lim 2 § Eft —§ E. - :32/ log | =" | d
qi>c q I r | ] ‘ r | o 08 yr(1/4+ y)2 Y

r=1
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This last integral gives

Jim g (i(—l)r (B(—4) - ET<4>>> ~2 (v (3)-=) (1.9

r=1

which is a rewriting of eq. 1) (™) (i) is the polygamma function of order 1).

4.3 Generalization of Thouless’s formula

The previous section reviewed the method used by Thouless for calculating the bandwidth of the
Hofstadter model. In this section, we now detail what we did by generalizing Thouless’s method to
compute the truncated n-th moment eq. . First, as mentioned above, our goal was to calculate
the bandwidth n-th moment eq. (4.2), which in the case ¢ odd and n odd is

S (1) (B (—4) — B, (4)" (4.10)

Comparing to Thouless’s case when n = 1, there is not only the (—1)" in the front, but moreover,

the difference between E,.(—4) and E,.(4) at the power n, which cannot be decomposed into two
symmetric sums as before. So we leave aside for the time being the task of calculating this bandwidth
n-th moment, and focus on the truncation of eq. (we will come back in the conclusion to the
n-th moment bandwidth). We have defined this truncated n-th moment in eq. , as:

It vanishes when n is even because of the symmetry E,(4) = —Ey41-,(—4). Thus, in the following we
concentrate on the case ¢ odd and n odd. Also, thanks again to the symmetry and the factorization
used previously, it can be written as

SO (1) (Bo(—a)n = By B TR oSNy, 4y

r=1
g+l g-1
factorization : ++n : ——n
= 2 Z ‘Er | - Z |ET |
r=1 r=1

The second equation in the RHS is again the difference between two symmetric sums of absolute values
with a higher order exponent n. Now by following the same logic as in the case n = 1, some identities
can be used to calculate the |[EX*|", which are analogous to the identities mentioned previously but
with an exponent mn:

. i n—1
2 [ 2" i 4a™ T
— — E abz" "1k | dz = —— arctan (f) ,
T z—a & T a

—iT
4a™ T
lim — arctan (7) = 2|a"|

and

T o n—1 1T P a n—1 ak:
li - kon=1=k | gy = 1i —nz" 1 [ log Z— = |de. 4.11
S, (Z_a ot e i [ e log T E e 3D e (D)

—ix —ix k=1
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Chapter 4 bandwidth n-th moment

Comparing with the case n = 1, instead of z we have 2" in the integral, and the corresponding sums
(with index k) make sure that the integrals are finite. Replacing a by E;f* and E,”~, one gets

<1+1 2 iT zdet(mf/f( ) n—1 % E++) Z%l(E**)k
z:\E++W §:|E77VL = — lim nz""1 [ log N S 74 B E: r=1 P’ r=1 T
Tz ) i, det (m:/Z(z)) k=1 kz
(4.12)

kz

q+1 q—1
ks tT gy
In the RHS of eq. (4.12), —2""1>"7_; ! < o2y () ,;Tzzl (e )7 ) does cancel the positive or null

det
exponents in the expansion around z = oo in the logarithm term 2"~ log (de;((p/q(())))) to keep the
e\ Mp/q\#
integral finite. When ¢ goes to infinity, as in the case n = 1, making further algebraic manipulation
and taking the same continuum approximation, with the change of variable y = qz/(8ir), we get

k=2,k even

q+1

2 _ o 1T(3/4 +y)> = E
lim 2q¢" Eft E. "12/ Ll B —— — | d
fm 2| 2 Z' = e o o R ) 2 T |

(4.13)
where the E}’s are the Euler numbers. To get eq. (4.13) from eq. (4.12]), necessarily, we should have
for k even

g+1 g-1
2 2

lim ¢* | SIEFE - SOE | = eo)tEd (4.14)
r=1 r=1

q—o0

This is due to the fact that in eq. l , the polynomial ZZ;;,C oven Ek/(kz4k)y"_1_k plays the same
role as

q+1 g—1
_ T gtk _Ss 2 (p——\k
2:11 2oy (Br k)zk,nzﬁzl (B, ) in eq. (4.12)) to insure that the integral is finite. Indeed, the series
2
expansion when y goes to infinity of log (%%) starts with the polynomial — Z;;k oven kf;#

expressed in terms of the Euler numbers. See the proof in the appendix of Article 3. It is interesting

to note that in order to compute the odd n truncated moment in eq. , one sees appearing in the

RHS of eq. the same truncated moment but now for k£ even, which in turn is given by eq. .
After computing the last integral of eq. , we get

i " (Z(—l)r (B, (—4)" — Er<4>">> =2 (oo (§) - et - e+ at)

r=1
(4.15)
which generalizes the Thouless’s formula eq. (4.9) to n odd (¥(™) is the polygamma function of order

7
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Chapter 4 Conclusion

4.4 Conclusion and opened issues

In this chapter, we generalized Thouless bandwidth formula eq. (4.4) to the truncated n-th moment
eq. (4.15) for n odd. In the Article 3, we derived that for all n odd and n even,

2 (oo (§) -2 = e at)

™
_ 2 n+1 - (_1)k

= ;4 + n!];W

%n! (C(n—l—l,i)—((n—i—l,i))

(e () ()

coincides with eq. when n is odd. And when n is even, it is ¢" times twice the half spectrum
n-th moment given by eq. in terms of the Euler numbers.

Finally, returning to the bandwidth n-th moment defined in eq. for n odd and ¢ odd, we
can rewrite it as

where the symmetry E,(4) = —E4+1--(—4) has again been used. The k = 0 term in the RHS of
eq. (4.17)) is the truncated n-th moment obtained above eq. with a ¢™ scaling. So the natural
guess is that the bandwidth n-th moment should have the same scaling. Numerical simulations indicate
that there exists a simple relation between the k£ = 0 term and the k # 0 terms:

q q
. n r k n—k __ n— 2k . n r n
th& —2q 7;:1(71) E.(—4)"E.(4) = qlLrI;o —2q 7;Zl(fl) E.(4)
_n—= 2]{:% _1\yn—1,/(n) 1 __9n(on+l _ |
e

(4.18)

with k =1,...,(n —1)/2. Replacing the k # 0 terms in eq. (4.17) by eq. (4.18)) and noticing that

(n=1)/2
Z <n>(_1)kn—2k _0
k n ’

k=0

one concludes that in the ¢ — co limit, the bandwidth n-th moment is such that
q
Jim Z_jl(—n (Er(—4) = B.(4)" =0

with n is odd and larger than 1, a fact which is also supported by numerical simulations. Similarly,
when n is even, the bandwidth n-th moment now defined as

Z (E7'(_4) — B, (4))n

r=1
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is such that limy_,o ¢" .7 (E,(—4) — E-(4))" = 0.

Clearly, multiplying the sum in eq. by ¢™ is insufficient, ¢™ is not the right scaling for the
bandwidth n-th moment. In order to find the right scaling, we can turn to a multifractal analysis.
The multifractal analysis was first innovated by Mandelbrot |25] and further developed by others [26],
[27] and [28]. It is a useful tool to tell whether the scaling behavior is a power law for the statistical
moments at different scales. If the statistical moments scale only depends on a single exponent, or
equivalently on a linear function of the moments, the process is monofractal. If the scaling behavior by
scale is a nonlinear function of the moments, the process is multifractal. In the following, we consider
the multifractal dimension of the bandwidth n-th moment.

Consider a normalized quantity

- Mo
o = —=g—— (4.19)
Hy
with
Hr = ‘Er(74) - Er(4)| (420)

q
> (4.21)
for large ¢, whether it is governed by a set of multifractal exponents 7,, defined by

q
S g (4.22)
r=1

which is related to the multifractal dimension d,(n — 1) = 7,. If the scaling behavior in eq. (4.22))

is correct, then log (Y-7_, /i) is linear in log ¢, the multifractal dimension d,, can be obtained in this

way
—1 log( 3:1 fiy)

d, = li . 4.23
qggo n—1 log q ( )

Figure fig. represents numerical simulations for eq. . The values of d,, are displayed as a
function of n in fig. and it seems multifractal because d,, is a non-trivial function of n. These
results also confirm the conclusion we made before: ¢" is not the right scaling for the bandwidth n-th
moment. Because if ¢" was the right scaling, then eq. would be proportional to a constant, which
leads to d,, = 0. This is apparently incompatible with the numerical results of eq. . However,
as shown in fig. for a given n, the values of d,, decrease with the values of ¢, when ¢ increases,
d,, becomes smaller, and converges very slowly. Thus, without comparing theoretical prediction, these
numeric simulations can lead us to nowhere! We leave to further studies the question of finding a right
scaling for the bandwidth n-th moment.
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Figure 4.3: the multifractal dimension of bandwidth n-th moment. Different colors represent different
size q
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Abstract
We generalize the Thouless bandwidth formula to its nth moment. We obtain a
closed expression in terms of polygamma, zeta and Euler numbers.

Keywords: Thouless bandwidth, nth moment, Hofstadter spectrum
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1. Introduction

In a series of stunning papers stretching over almost a decade [1], Thouless obtained a closed
expression for the bandwidth of the Hofstadter spectrum [2] in the ¢ — oo limit. Here the inte-
ger g stands for the denominator of the rational flux v = 27p/q of the magnetic field piercing
a unit cell of the square lattice; the numerator p is taken to be 1 (or equivalently ¢ — 1). In the
following, p will always be understood as equal to 1.

Let us recall that in the commensurate case where the lattice eigenstates ¥, = "o ®,, are
g-periodic ®,,4, = €% ®,, with k,, k, € [, 7], the Schrodinger equation

Dt1 + D1 + 2cos(ky + ym)®,, = e, (1)
reduces to the g X ¢ secular matrix
2cos(ky) —e 1 o --- 0 e itk

1 2cos(ky + L) —e 1 - 0 0

0 1 O - 0 0
mp/q(e,kx,ky) = . : : : :

0 0 0 - () 1

eldks 0 0 -+ 1 2coslhy+(g—1)%E) —e

acting as

! Author to whom any correspondence should be addressed.
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myq(e, ke, ky).® =0 2)
on the g-dimensional eigenvector & = {®, @y, .. ., D, }. Thanks to the identity
det(my,,4(e, ke ky)) = det(my,4(e,0,0)) — 2(—1)?(cos(gky) — 1 + cos(gky) — 1),

the eigenenergy equation det(m,/, (e, k¢, ky)) = O rewrites [3] as
det(m,,4(e,0,0)) = 2(—1)?(cos(gk,) — 1 + cos(gk,) — 1). (3)
The polynomial

bp/q(e Z Ap/q 21

materializes in det(m, 4 (e, 0, 0))

det(m,/4(e,0,0)) +4(-1)7 = (- l)qeqbp/q(l/e) 4)
so that (3) becomes

eqbp/q(l/e) = 2(cos(gky) + cos(gky)).

The coefficients a,,,(2/)’s (with @, ,,(0) = —1) in the polynomial b, ,,(e) above are related to
the Kreft coefficients [4] so that

=2j K
ap/q(2] _1 J+1 Z Z 24 (kl—I—ZJ—l)>

=0 k= 4

x 4gin? (F(kz - 3)p) ... 4sin? (ﬂ(k] + 1)p)
q q

How to get this explicit expression is explained in Kreft’s paper.
We focus on the Hofstadter spectrum bandwidth defined in terms of the 2¢g edge-band ener-
gies e,(4) and e,(—4), r = 1,2,. .., g, solutions of

e’b,/,(1/e) = 4 and b, /,(1/e) = —

respectively (see figures 1 and 2). If one specifies an ordering for the e,(4)’s and the e,(—4)’s
ei(4) <ex(d4) <...<ey(4) and e(—4) <ex(—4) < ... < ey(—4)

the bandwidth is

q
DY (1) (e(—4) — e(4)). ®)
r=1
The Thouless formula is obtained in the ¢ — oo limit as
32 & 1
li 1)t —4) —e.(4)) = — B | L —
qggo qz er(4)) 0 ;:%( ) (2k + 1)2 ©)

(see also [5]). We aim to extend this result to the nth moment defined as
q
(=D (=1) () (—4) — er(4)).
=1 @)
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e’- e
10
+4
. - » ¢
-6 -4 -2 2 4
-4
-10}
=20t

Figure 1. p = 1,q = 3,e%b,,,(1/e) = € — 6e : the three horizontal red segments are
the energy bands; the three red dots are the mid-band energies; the six black dots are
the +4 edge-band energies.

which is a natural generalization of (5): one can think of it as

4
n / \ ﬁp/q(e)e"_lde

where g, (e) is the indicator function with value 1 when |eb,,,(1/e)| < 4 and 0 otherwise.
Let us stress that the bandwidth nth moment defined for n odd as

(DT (1) (er(—4) —er(4))", ®)
r=1

is of particular interest. We will come back to this moment in the conclusion.

Trivially (7) vanishes when n is even—we will see later how to give a non-trivial meaning
to the nth moment in this case. Therefore, we focus on (7) when n is odd and, additionally,
when ¢ is odd, in which case it simplifies further to

q q

23 (—1)ed) =23 (~1)el(—4) ©)

thanks to the symmetry e,(—4) = —e,+1--(4). As said above, the e,(4)’s are the roots of
e?b,/,(1/e) = 4 that is, by the virtue of (4), those of

det(m,/,(e,0,0)) = 0.

2. The first moment: Thouless formula

The key point in the observation of Thouless [1] is that if evaluating the first moment rewritten
in(9)as —2>°7_ (—1)"e,(4) when g is odd seems at first sight intractable, still, thanks to:

e det(m,,(e,0,0)) factorizing as
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et- e?+4

+4

-4

=101

-20"

Figure2. p =1,q =4,¢e%b,,,(1/e) = ¢* — 8¢* + 4 : the four horizontal red segments
are the energy bands; the four red dots are the mid-band energies; the eight black dots
are the =4 edge-band energies—there are two degenerate dots located at the center.

det(m,/,(e,0,0)) = — det(m*' (e)) det(m,, (e))

p/a
where
e—2 2 0 0 0
1 e— 2cos(2$) 1 0 0
0 1 0 0 0
m;/j;(e) = :
0 0 0 0 1
0 0 0 I e—2cos(422) — 1
e— ZCOS(?) 1 0 0
1 e— 2003(4%) 1 0
- 0 1 0 0 0
"/q () = :
0 0 0 - 0 1
0 0 0 - 1 e—2cos(312L) +1

are matrices of size (¢+ 1)/2 and (g — 1)/2, respectively, so that the e,(4)’s split in
two packets e, r=1,2,...,(q+1)/2, the roots of det(m;/j;(e)) =0 and e,
r=1,2,...,(¢g—1)/2, those of det(m_, (e)) = 0. And thanks to:
; \Np/a
e > 9_(—1)"e,(4) happening to rewrite as
D e = lef =D e
r=1 r=1 r=1

4
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(9) becomes tractable since it reduces to the sum of the absolute values of the roots of two
polynomial equations.
Indeed, by using [1]

2i [ 4,
4 ( S 1) dz =2 arctan({),
—ix m a

m Z—a

4a
lim — arctan( ) = 2la]
X—00 T a

2 [ 2y [ix _
lim—l/ ( £ —1>dz: lim—l/ <—1ogZ a)dz
x—oo T [ i \z—a x—oo [ .. z

q+l .
T ] Rty L Al VAL
Zle | Zle ] == tim ixlog<det( iy )& 00

Making [1] further algebraic manipulations on the ratio of determinants in (10), in particular
in terms of particular solutions {®g, @1, ..., <I>q_1} of (2)—on the one hand ®; = 0 and on
the other hand ®,_)/» = ®(441)/>—and then for large ¢ taking in (1) the continuous limit
lead to, via the change of variable y = qz/(87ri),

q+1
- L(3/4+y)
1 2 - =32 1 ——— | d
im 2y | S z|e | os (T2 )
This last integral gives the first moment

Jim g <Zq:(—l)’(er(—4) - er(4))> = % (W (i) - 7r2> (11)

and

one gets

r=1

which is a rewriting of (6) (1»(") is the polygamma function of order 1).
3. The nth moment

3.1. n odd
To evaluate the nth moment one follows the steps above by first noticing in (9) that

qt1 =1
2 2
D @ =Yl =Y eI
r=1 r=1

r=1

holds. Then using

2 4a™
i ( B Zak n—1— k) dz = iarctan(f),
_x\z2—a 0 a

k=0

n
lim
x—00 T

arctan(f) = 2|d"|
a

and
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. . i n—1
2 ek L2 a1 z—a ak
xliglo?/ (Z_Q—Za dz—xliglO; _ix—nz log . —O—Zk—zk dz

k=1

(12)
one gets
N ix zdet(m= (2))
T4 ——n n—1 p/q
2 ; e 1" Z e ) ™ xlggo Cix e <10g ( det(m* mo. (2)) >
g+1 %
- Z 2l 2’21 dz. (13)

In the RHS of (12) the polynomial 2"~ '3, ki cancels the positive or null exponents
in the expansion around z = oo of the logarithm term z"~ 1log 7. Likewise, in (13), the

g—1
+4\k T ,——\k
same mechanism takes place for —z"~! ( Z,l Z" e ) 2 (& ) > with respect to

kzk

nfl zde ( p/q_(z))

log | et ¥ @

onents. Further algebralc manipulations in (13) and, when ¢ is large, taking the continuous
limit, lead to, via the change of variable y = gz/(87i),

. Additionally, the polynomials can be reduced to their k even comp-

hm 24" Z\e++|” Z|eif\” (8mi)" 132

. (3/4+y) - B
" 1o (* + dy. 14
/0 Y ( ©OT(/4+y)2 kz%;m kabyk | 19
To go from (13) to (14) one has used that for k even, necessarily’
lim g* (D (e ) =D (e, )| = (2n)|Ed (15)

q—00
r=1 r=1

where the E’s are the Euler numbers, aresult which is also strongly supported by numerical sim-
ulations. Indeed in (14), as it was the case in (12,13), the polynomial 34 ; o.en Ex/(k4)y" '
cancels the positive or null exponents in the expansion around y = oo of the logarithm term

- L(3/4+y)’
'~ log (yr<1/4+}y>2

upper integration limit so that after integration the end result is finite. Performing this last
integral gives the nth moment—see the appendix for details

Jim g (i(l)’ (eh(~4) e:<4>>) =2 (e () -2 @ = o om)

r=1

)—see the appendix for a proof. It amounts to a fine tuning at the infinite

(16)
2More generally the kth moments Z (e**) and Z 2 ( 7 )K can be directly retrleved from the
coefficients of det(m m. ¥ (e)) and det(m p/q - (e)), respectively. In particular, one finds 3,2 & LefT =2and
g—1 g—1
ST e = — 2 fork odd limg 00 5 (¢ ) = 44/2 and limg_y00 37, (¢~ )k = —4%/2: for k even

—1 2
limgy 00 1/q (Zq (ef Tk > = limye0 1/ (Z:?l (e,T*)k> = (kl/“2> /2. This last result can easily be
2

understood in terms of the number < k';2> of closed lattice walks with & steps [6].
6
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which generalizes the Thouless formula (11) to n odd (¢ is the polygamma function of
order n).

3.2. neven

As said above, the nth moment trivially vanishes when 7 is even. In this case, we should rather
consider a nth moment restricted to the positive—or equivalently by symmetry negative—half
of the spectrum?®. In the ¢ odd case it is

(¢—1)/2

= Y (1) () — ) + ey () 4)
r=1
= D0 (1) (=) = @) + ey n (-D)'T4). an
(q+3)/2

It is still true that

D) =D (e ) = Y (1) (4 =€ (4) + gy ((—1)%14)
r=1 r=1 (g+3)/2

where, since n is even, absolute values are not needed anymore, a simpler situation. It follows
that the RHS of (16) also gives, when 7 is even, twice the ¢ — oo limit of the half-spectrum
nth moment as defined in (17), up to a factor ¢".

3.3. Any n

One reaches the conclusion that

4 ((—1)"—’¢<"> (i) =27 (2" 1) ¢(n+ l)n!)

s

2 — (=Dt
_ 74n+1 | Y
" k; (2k + 1)1

1 3

= 2n(Cn 1) s 1,3)

_ %(_l)n-&-l (W) (l) e (i)) (18)

yields ¢" times the nth moment when 7 is odd*

3Instead of n fi‘ ﬁp/q(e)e"’lde one considers

0 4
n/4ﬁp/q(e)e”71de:n/0 ﬁp/q(e)e"*lde.

4When 7 is odd it is also twice the half-spectrum nth moment

4 4
n/4ﬁp/q(e)e"7lde:2n/0 ﬁp/q(e)e"flde.
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and twice the half-spectrum nth moment when #z is even. Numerical simulations confirm this
result convincingly (even though the convergence is slow when n becomes large). In the n
even case one already knows from (15) that (18) simplifies further to

2|E,|(27)"
from which one gets for the n — co-moment scaling

§n!22".
0

4. Conclusion and opened issues

(18) is certainly a simple and convincing nth moment generalization of the Thouless band-
width formula (6). It remains to be proven on more solid grounds for example in the spirit of
[5].

In the definition of the nth moment (7), one can view the exponent n as a magnifying loupe
of the Thouless first moment. (18) was obtained for p = 1 (or ¢ — 1); it would certainly be
interesting to understand what happens for p # 1 where numerical simulations indicate a
strong p dependence when 7 increases, an effect of the n-zooming inherent to the nth moment
definition (7).

In the n even case, twice the half-spectrum nth moment ends up being equal to 2|E, | (27 /q)",
a result that can be interpreted as if, at the n-zooming level, they were 2|E,| bands each of
length 27 /g. It would be interesting to see if this Euler counting has a meaning in the context
of lattice walks [6] (twice the Euler number 2|E, | counts the number of alternating permuta-
tions in S,,).

Finally, returning to the bandwidth nth moment defined in (8) for n odd, and focusing again
on g odd, one can expand

q (n—1)/2 q
r n n r n—
S (el —a@) =2 3 (1) D e—4e 4 (19)
r=1 k=0 r=1
where the symmetry e,(—4) = —e,41-,(4) has again been used. The k=0 term

=237 (—=1)e,(4)" is the nth moment discussed above and one knows that multiply-
ing it by ¢" ensures in the ¢ — oo limit a finite scaling. Let us also multiply in (19) the
k=1,...,(n—1)/2 terms by ¢": one checks numerically that

n—2k
n

q
Jim —2q D (=1)e(4)

r=1

q
li _2q" _lrr_4kr4n7k:
Jim, q;( )er(—=4)"e(4)

:n_Zki _1\n—1,,(n) 1 __An (An+l _
= (( 1)1y (4) 2" (2"t l)C(n—i—l)n!).
Using r1))2
n =2k
; (k) (=1 n =0

one concludes that in the ¢ — oo limit the bandwidth nth moment is such that
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q
: n 1\ _ _ n —
Jm, " Do) (erl4) )" =0
when 7 is odd and larger than 1, a fact which is also supported by numerical simulations.
Similarly, when n is even, the bandwidth nth moment, now defined as

q
D (er(—4) — er(4))",
r=1
is such that limy . ¢" >_7_ (e,(—4) — ¢,(4))" = 0.
Clearly, multiplying the sum in (19) by ¢" is insufficient, a possible manifestation of the
fractal structure [5] of the band spectrum. We leave to further studies the question of finding
the right scaling for the bandwidth nth moment.
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Appendix

We want to evaluate the integral (14)

- o T(3/4 +y)? — L
o n—1 . n—1 S

k=2, k even

for odd integers n. We will see below that — > 25 ; cven kakyk is indeed the series expansion

I'(3/4+y)* P 5 1—n
of log (/AT ) 8 Y = o0 So for y — 0, the expression in parentheses is of order y

(logy for n = 1), and it is of order y
to obtain

17" as y — 0o. We can now apply integration by parts

n—1

. < (2l'3/4+y) 2IV(1/4+y) 1 E;
L= —(8mi)'-32 [ - S _Zk ) gy,
R y<r<3/4+y> OZESTRR P DR R

In the following, ¥(x) = I''(x)/T"(x) denotes the digamma function. We first show that

2UV(3/4+y) 2U'(1/4+y) _ i Eq

I'3/4+y) I'(1/4+y) Jhyk+1"

20(3/4+y) —29(1/4+y) =
k=0, k even

To this end, we use the well-known integral representation [7, 5.9.12]



J. Phys. A: Math. Theor. 50 (2017) 495204 S Ouvry and S Wu

which yields
(=1/4=y)t  o(=3/4=y)t

2\11(3/4+y)2\11(1/4+y)—2/000 (61—e—t e )dt

00 o(1/4=y)1
—2 [ i
0 el/2 + 1

oo efyf d
= —dr
/0 cosh(z/4)

§ Ekl
o t § j
/0 } g ! t

k=0, k even
o0
E; *

_ —yt
= > i Fe M dr
k=0, k even 0
= E K
= > 4Rk YR

k=0, k even
- Z 4kyk+l >

k=0, k even

as desired. Integration also yields

L(3/4+y)%\ = K
ox Gt eop) == 22w

Now we consider the Mellin transform of 2(¥(3/4 +y) — U(1/4 +y)), i.e.

k=2, k even

Fo = | T AW/t y) — (1/4+ )y dy.

The integral converges for 0 < Res < 1. Using the same integral representation as before, we
find

F I AL
= S t
(s) /0 Y /0 cosh(z/4) Y
oo 1 oo 71 7yt
— [ — d dydr
/0 cosh(t/4)/0 yoe Y

o0 t—s
= F _—
(s) /0 cosh(t/4)
oo —t/4 _ .-3t/4
= 20(s) / .
0 1—e

Now we use the following integral representation of the Hurwitz zeta function [7, 25.11.25]:

1 00 tsflefat
= d
(s-a) F(s)/o e

for a > 0 and Res > 1. This gives us

0 s—1(a—t/4 _ o—3t/4
Clo.1/4) = o3 = s [T

10
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a priori only for Res > 1. However, the integral also converges for Res > 0, so the identity
remains true by analytic continuation. Hence we have

F(s) =2T(s)T(1 = s)(¢(1 —5,1/4) = (1 — 5,3/4)).

The functional equations of the Gamma function and the Hurwitz zeta function yield

P01 =) = sin(ms)
and
C(1—5.1/4) — C(1 — 5.3/4) = ‘W(m, 1/4) - C(5.3/4)).
SO
_ 47T (s) s (s
F(S) - (87’(’)S COS(WS/Z) (C( ’ 1/4) C( ’3/4))

Now we use the general property of the Mellin transform (see [8, p 19]) that subtracting off
terms of the asymptotic expansion at either O or co only changes the fundamental strip of the
Mellin transform, but not the transform itself. Thus we have

47T (n+1)

_ n—1 . _

I, = —(8xi)" ' .32 B con(n(n T 1)72) (C(n+1,1/4) = C(n+ 1,3/4))
= %n!(((n +1,1/4) —¢(n+ 1,3/4))

which is (16) and (18).
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CHAPTER

5)
I EPILOGUE

In this epilogue, we highlight the main results obtained above and the new questions raised by them.
We give a brief discussion on the perspectives of the results obtained from this work and the further
works to be done.

The main subject of this thesis is the deep connection between the Hofstadter model and planar
random lattice walks. In we introduced Z,(Q), the algebraic area generating function of
closed random walks of length n on a 2d lattice, and discussed the formal mapping between TrH7,
the n-th moment of the Hofstadter Hamiltonian (where -y denote the ratio between the magnetic flux
through a unit cell of the lattice and the flux quantum) and Z,(e"”), namely TrH? = Z,(e"). We
were interested in the case where € is a root of unity (“rational case” i.e. v = 27p/q with p and q
are coprime integers). In from the random walk approach, we found the explicit formula
for Z,(e*™/7) in eq. (2.23) in terms of the Kreft coefficients a,,,(2;) defined in eq. . They
are the coefficients of the characteristic polynomial E9b,,/,(1/E) eq. of degree ¢ encoding the
wave number independent part of the determinant of the Hofstadter’s Hamiltonian eq. . More
importantly, a closed expression for C,,(A), the number of closed random walks of length n enclosing
a given algebraic area A remains an open issue. We made recent progress indicating that this type
of information is contained in the Kreft coefficients a,/,(27) given in eq. . These coefficients
are clearly defined for ¢ > 2j. An open related question is how to generalize them to any value of g.
With the Mathematica Simplify command acting on eq. , one can find expression for a,/,(2j)
trigonometric. For examples when 25 = 2,4, 6:

ap/q(Q) =2q

2
ap/q(4) = q (7 + 2cos (?) — 2q>
2 2 4 2
ap/q(6) = ?q (58 + 36 cos <Zp> + 6 cos (Zp> —q (21 + 6 cos (?)) + 2q2>

As the above examples indicate, a,/4(27) can be rewritten as a polynomial of ¢ with maximal degree

2kmp
q

random walks of length 25 with the algebraic area +k (+ when random walks move in counterclockwise,
otherwise —). Therefore, finding a way to rewrite the Kreft coefficients a,/,(2j) and compute their
order g part can give us a closed expression for the number of closed random walks of a given length
enclosing a given algebraic area [29)].

In we introduced the point spectrum trace Y ¢_, E,(s)™ eq. (3.15) as a tool to recover
the Hofstadter trace by integrating it with the suitable density of the state p(s) eq. . The explicit
formula of the point trace TrisH;ﬂp /a is given in eq. (3.15)). The method we used for the Hofstadter
model is generalized for the almost Mathieu operator We have noticed that as soon as
q > n/2, the expression y ¢_, E"(s) does not depend on s anymore. In the limit ¢ goes to infinity (zero

Jj. By computing the part of a,/,(2j) linear in g, its cos ( ) expansion gives the number of closed

magnetic flux), Y>¢_, E,.(s)" = (n’}2)2 (it can easily be understood as the number of closed random

walks with n even steps). Numerical simulations also indicate that Y7, [E,(s)|" = (,, /2)2 when n

is odd. It turns out this last result can be explicitly derived. We are looking at finding an analytical
expression of Y ?_, |E,(s)|" for a finite g. This quantity may be related to graph theory, because the



energy of a graph [30] is defined as the sum of the absolute values of the eigenvalues of its adjacency
matrix. This concept is intimately related to the Hiickel molecular orbital theory (which is called
the tight binding method in solid-state physics and the Hofstadter model is a 2d tight binding model
subjected to a perpendicular magnetic field). In this context, a graph is used to represent a molecule
by considering the atoms as the vertices of the graph and the molecular bonds as the edges, so we
have a direct map between a molecule and a graph. Therefore their eigenvalues are simply related to
each other [31].

In still in the “rational case”, for a given magnetic flux v = 27p/q, there are g energy
bands. For g odd, (—1)" (E,(—4) — E.(4)) is the bandwidth of the r-th band (r = 1,2,...,q) where
E,.(4) and E,(—4) are the two edges of the 7-th band. When n is odd, the n-th moment bandwidth is
defined as in eq. (4.2])

We are interested in finding the appropriate scaling for this n-th moment in the limit ¢ goes to infinity.

In |20], Thouless found that for n = 1 the bandwidth multiplied by ¢ scales like 32 G jﬂ, where
andwidt

G = Z:ZO:O(—I)"C(%%)2 is the Catalan constant. By using Thouless method, in [chapter 4] we were
able to generalize the Thouless bandwidth formula to a truncated n-th moment | , namely

(=17 (E™(—4) — E™(4)). In the limit ¢ goes to infinity, when multiplied by ¢", it scales like
Zyntipl 3, %, eq. (4.16) (this is the Dirichlet beta function S(n + 1) also known as the
Catalan beta function). The actual scaling of the n-th moment bandwidth remains an open issue. It
should be remarked that numerical simulations indicate that there might exist a multifractal structure
at work. Meanwhile, we know that in the case «y being irrational, the spectrum of the Hofstadter model
is a Cantor set (i.e. a nowhere dense set and has no isolated point [5]). Hence, the difference between
the case v rational and irrational remains to be discussed in more details and finding the right scaling
of the n-th moment bandwidth would be interesting in this regard.
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APPENDIX

A
lKREFT’s COEFFICIENTS  CON-
STRUCTION

Following Kreft [15] we show how to get a closed expression for the polynomial (3.26]), i.e. for the
Kreft coefficients a(/) (27) in b( (7)) = Z p/q( 7)2%7 as defined in ([3.24).

A=2:

One aims at transforming the matrix m,,/, (E, k2, ky) in (3.3)) into a tridiagonal one by an appropriate
change of basis. First, let us do the change of basis

1 0 0 e 0 0
0 ¢k 0 o0 0
0 0 ek 0 0
my = . .
0 0 0 ella=2k 0
0 0 0 0 eila—1k
so that m,,, (E, ks, ky) rewrites as
2cos(ky) — E etks 0 .- 0 e—ika
et 2cos <ky + 27%’) —E ek ... 0 0
0 e—ike 0 0 0
ml Mg (B, ke, ky)m : : : ) : :
0 0 0o - 0 ethe
ciks 0 0 - ke 2008<ky +(q- 1)2”7?’) _E

In this new basis the Schrédinger equation (??) with ®,,, = €'?%:®,, becomes

ek ®l L +e D!+ 2cos(ky +ym) D, = EP],, P

!/
m+q — (I)m

Then let us do a second change of basis my with matrix element

1 inp [
mjp = —(—1)PRe TR R2) e (0,1, g1},

Va

ikk

Putting together m; and my amounts to the change of basis m;mo with matrix element e****m;, =
k. 1 2imp (112 /9
ezkkx%(_l)pke q (] / )
-E y/q(0) 0 T 0 Qpe(q—1)
Tp/q(0) -E pyg(l) - 0
0 (1) —E - 0 0
(mama) ™ty g (B, ke, ky) mimsg = : : : . : : (A1)
0 0 0 - ap/e(q —2)

ap/elq—1) 0 0 e Ep/q(q —2) —-F



Kreft’s coefficients construction Appendix A

k

where a,,,,(k) = e™#v — (—1)(p+D) 58 (kH1/2)Fiks @p/q(k) is its complex conjugate and accordingly

Ap/g(M) @1 + 0y q(m — 1)@7,1,1 = Ed,,, Dpq = d,, (A.2)

Both corners a,/,(q — 1) and @,,,(q—1) in the matrix (AI) can be cancelled if e’*=+ks) =
2imp

(—1)PtD) e =3F a=141/2) (71)(1’“)61‘%, i.e. if ky+ky = m(p+1)+7P. The matrix is then tridiagonal
with a determinant in (??) equal to (—1)7E9b,,/,(1/E), since the trigonometric part vanishes as well:

indeed
cos(gky) + cos(gk,) = 2 cos ((](ch;—lfy)) cos (q(ka—ky)>

_ 260S<ﬂ(p+q2(p+ 1))> cos<q(k””2 ky)>

=0

due to p+ g(p + 1) being always odd since p and ¢ are co-prime.
One gets the tridiagonal matrix

B ay,0) 0 - 0 0
@p/q(0) —Eg : ap/(él) e 0 0
0 a, /(1 — 0 0
. o/ . . . (A.3)
0 0 0 —-F apq(q—2)
0 0 0 o Gylg—2) -E

2in(k+1)p

where o, /,(k), using e'(F=+kv) = (—1)P+Ve" 3" has simplified to apq(k) =e ™ (1 —e @ ). The
matrix (A.3) does not depend anymore on k, nor k, and its determinant satisfies a recursion (see [15])
leading respectively to the Kreft polynomial (??)and Kreft coeflicients (77).

A# 2

One uses the same method as above to find a closed expression for the polynomial b;’>21(1 /E), namely

transform the matrix m;ﬁ} (E, ks, ky) in (3.21)) into a tridiagonal one. To do so use the same change
of basis m1ms as above so that

ey ey

:E 2/4(0) )\0 0 Tyrala—1)

a0 -E a9)) 0 0

—(\)
0 a1 —-E .. 0 0
_ A
(m1imo) 1771;/31 (B, ks, ky, ) mimg = : p/:q : N : . (A.4)

0 0 0 B aD)g-2)

g=1) 0 0 - alg-2) -E

Ypq\d Apjg\d

2mp

with ozle(k:) = (A\/2)e ky — (—1)pHlei = (/D Hike 5 a;x(k) its complex conjugate. Moreover,
we have a resulting Schrodinger equation identical to (A.2) provided that ay,/,(k) is replaced with
oY)
ap/q(k)'
A

Contrary to the Hofstadter case A = 2, both corners a;/)q(q —1) and 6221 (¢ — 1) in the matrix

(A.4) cannot simultaneously vanish. One can still choose to have the lower left corner a;ﬁ](q -1)

to vanish: this amounts to e!(*=tky) — (—1)P+1(/\/2)671'%7?(‘171“/2) = (—1)1’“()\/2)@“71), which can
only be achieved for a complex k; + ky (namely k, + k, = —ilog(A/2) + 7F + m(p + 1)), so that

99
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e~ilkstky) — (—1)P+1(2/X\)e” " . The matrix (A.4) then becomes

A —(A
(;)E o) 0 0 a(q—1)
a)) (0) (;)E al}) (1) 0 0
o aYw -E 0 0
pial!) (A5)
0 0 0 -E oz;/xz(q —2)
0 0 0 a(g—2) —E

2imw(k+1)p ( )

A —_(x o A ik, 2in(kt1)p —_(A
where az()/fl(k) and a(/) (k) have simplified to a(/fz(k) = (A\/2)e (1 —e” ¢ ) and ap/q(k:) =

. L7\'( )
(V2)eths (1= (2/N)2e 0
By expanding the determinant of (A.5)) with respect to the elements of the first row

. Note that @ (k) is not anymore the complex conjugate of o™ (k).
r/q p/q

(:)E o, 0 ()\? o 0 7;/21((1 -1 _E (?) (1 - 0
ap/q(o) B ap/q(l) o 0 0 a® 1) p_qE
o a)m -E - 0 0 5 e/a
: ey
_E ()\)( —2) 0 -k p/q(q_Q)
N Aprq\d 0 7(/\) (q ~2) _E
0 p/q(q -2) -k S
E a;>21(2)
an@  -E
e I
p/q( ) p/q( ) : o
(k)_E p/q( —2)
AU -B
a0 —F o)
o
A
+(-)™al) (g - 1) : : (A.6)
ooy -k
0 Byla—2)

it is immediate to see that the part that depends on k; or k, can only come from the last term of
-, i.e. from the upper right corner al /) (¢ —1). Therefore to get the desired kg, ky-independent

polynomial Eqbz(j)‘/q(l /E), all that is needed is the determinant of the tridiagonal matrix

S RPN (1) B

YL )
ap/q(o) —E Oép/q(l)
o aYa -E

. A
—B 1(,/3](61 2)
aM (g - 2) -F

p/q

which finally yields the A # 2 Kreft polynomial (3.26]) and Kreft coefficients (3.25]).
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APPENDIX

ﬁ CHAMBER’S IDENTITY

With the change of basis eq. (A.1)) it is easy to identify the trigonometric part 2(cos(gk,)+cos(gk,)) in

Chagl;)ers’zs identity eq. (3.6) as [[{_q pyq(k)+TTIZ0 @p/q(k); one can also verify S1_¢ apyq (k) (k) =
ap/q\4) = 2q.

Indeed by expanding the determinant of eq. (A.1)) with respect to its last column

—F ozp/q(()) 0 0 ap/q(q — 1)
ap/q(O) -F Oép/q(].) 0 0
0 Qp/q(1) -F 0 0
0 0 0 —-FE ap/q(q—2)
/(g —1) 0 0 Qp/q(q—2) -
ap/q(()) - ap/q(l) 0 0
0 a,,(1) -E 0 0
0 0 0p/q(2) 0 0
(~1) T, 4(g ~ 1) : :
0 0 0 Qp/q(q —3) —-F
ap/q(q—1) 0 0 0 Qp/q(q—2)
—-F ap/q(0) 0 0 0
ap/q(0) 75(’1 ) ap/q(1) 0 0
0 a1 0 0
—ap/e(q—2) .
0 0 0 —E  a,(q—3)
p/q(q—1) 0 0 0 apelg—2
—E  ap,(0) 0 0 0
Qp/q 0) - ozp/q(l) 0 0
O Oép/q 1 0 O
—€ . . . .
0 0 0 -E ap/q(q—3)
0 0 0 ap/qlq—3




Appendix B

Chamber’s identity

and then by expanding the first two determinants with respect to their last row one gets

—p/q(q — 1)p/e(q — 1)

H=1) a4 (g = 1) Tyyle — 2)

+(71)q+IO‘p/q(q - 2)ap/q(q - 1)

—p/q(q — 2)0pse(q — 2)

ap/q(l)

/q(0)
E

ap/q(l)
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ap/q( —4)

o O O

ap/q(q —3)
E




Appendix B Chamber’s identity

Both triangular determinants are the product of their diagonal entries, so one gets

q—1 q—1
(=1t H Qp/q(k) + (=1t H ap/q(k)
k=0 k=0

—-F ap/q(l) 0 0 0
0 Qp/q(2 -F e 0 0
_ap/q(q_ 1)ap/q(q_ 1) . . . .
0 0 0 —F O‘p/q(q - 3)
0 0 0 Qp/qlqg—3 —
—-F ap/q(()) 0 0 0
ap/q(()) 7E(' ) Ozp/q(l) 0 0
0 Qp/q(1 -k 0 0
= p/q(q = 2)0p (g — 2) : )
0 0 0 —b /(g —4)
0 0 0 Apq(q—4) -
-F ap/q(O) 0 0 0
ap/q(()) 77E Ozp/q(l) 0 0
B 0 Oép/?(]. 0 0
0 0 0 —E p/q(q —3)
0 0 0 ap/q(q —3) -

Noticing that the determinant of the ¢ x ¢ tridiagonal matrix

—E  ap,(0) 0 0 0
ap/q(0) l? ) ap/q(1) 0 0
0 /(1 —-F 0 0
D, = p/iJ
0 0 0 B apla-2)
0 0 0 Tp/q(q—2) —E

obeys the recursion Dy = —ED, 1 — a/q(q — 2)@,,/4(q — 2) Dy—2 the last two terms can be regrouped
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to finally get

- Olp/q(O) 0 s 0 ap/q(q -1
¥p/q(0) —E ) apg(l) - 0 ) )
0 ap/q(1 -E - 0 0 - -
= (-1**! H ap/q(k) + H ®p/q(k)
k=0 k=0
0 0 0 ~E ap/q(q —2)
Oép/q( 1) 0 0 Ozp/q( 2) -
—E (1) 0 0 0
p/q(1) _bZ) ap/q(2) 0 0
0 p/a(2 —-F 0 0
— /a0 = Dppe(a =1 : . : : :
0 0 0 —-F ap/q(q —3)
0 0 0 c Apye(g —3) —-F
—E  ap,(0) 0 0 0
Qp/q 0 -F Oép/q(l) 0 0
0 ap/q(l — 0 0
+ .
0 0 0o - ~E ap/q(q —2)
0 0 0 o Tyle—2) -E

where the part [¢_g ap/q (k) + Hg;é @,/4(k) has been isolated. Now the product [{_; a,/q(k) can
be rewritten as a polynomial in e~ *v of degree g

q—1

_ 2inp . . . .
H 0y gk H ( iky _ (_1)pr1e%EE (k+1/2)61k1) = o+ cre™ v 4 ey 4 4 emith
k=0

Clearly ¢ = (—1)Pdeiaks [T4_} e (b H1/2) - (—1)Paeitka (—1)P4 = elak= and ¢, = 1. Assuming now

q > 1, there are ¢ — 1 ways to build ¢,_; at order e~ 4= Dky each multiplied by (—1)”621‘? (k+1/2) giks

qg—1 q—1
2imp 7P 2inkp
Cq—1 = g (—1)Pe a FH/ D gika — ()Pl Hha) E e« =0
k=0 k=0

since ZZ:E e ¢ * when q > 1, vanishes being the sum of the ¢-th roots of unity. Likewise assuming
q > 2 one has for ¢;_»

—1

[

Q
L=

21"(7€1+k2)p
q

Cq—2 = ((—1)”6"(%“ ))2

2

k1=0ko=k1+1
_ ((71)1061,(%4_1c ) 9 41 qzl 62m<k1+k2)p B Z_ ezm(qu+k2)p B 62i7qu1p2>
k1=0 \k2=0 ko=0
21 q—1 q—1
k=0 k=0

I
=
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2imkp _q 2imkp
qg—1 =7%P9 :
since both Zk o€ ¢ and Zk:oi (qk M\;amsh when g > 2. 2im oy +ha) 2imk
2im(ky+ka)p 2im(ky +ka)p =Tk
In general using Zkl 0 Zk2 k41 € a = (Zkl =0 Zkz =0€ a Zkl =0¢€ ), Cq—j

can be written as

—1
a 2im(ky+ko+...+k;+5/2)p

qg—1 q—1
Cq_i:z Z Z (—1)Pe T eliks

k1=0ko=k1+1 k]‘:k]’_1+1

2im (k1 kot tk;)p

:((—l)pei("q“”km))]z:1 qil qi:l e E

k1=0ko=ki1+1 kj:k?j71+l

- ((—l)l’ei(%ﬂz))j (;)jl

q—1 ' q—1 I72 rq-1 q—1
2L7rkp 217rkp 2z7rkp2 j 1 217rkp
e -(G-1 e e e
=0 k=0 k=0 k=0
=0

2irkp 2inkpy 2inkp

since Y0 le a3 eT e 2 =0, ... and Y% ; e o 7 all vanish when ¢ > j. Finally

H ap/q(k) = co+ cqe™ v = e'the 4 o710k
so that
q
H ap/q(k) + H ay/q(k) = 2 (cos(gks) + cos(qky))
Likewise when \ # 2 it is possible to identify in eq. - the trigonometric part 2(cos(gk,) +

_ A) (= py
(3)%cos(gky)) as Hk o p/q( )+ 115 Z éa ,(k); also one can check i (/L(k)a;/fz(k) = az()/zl(Q) =
g+ a(3)*
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@
l ENERGY INTERVAL

A=2

In this section, we show eigenenergies of the Harper’s equation vary between [—4, 4].
Recall the Harper’s equation:

D41 + Pyt + 2cos(ky +ym)dy, = EDy, (C.1)
with v = 27p/q. we introduce a new function ¢, = ®,,/P;,—1, (C.1) becomes :
1
tmt1 = E —2cos(k, +ym) — . (C.2)
171
tm = |E — 2cos(k, +ym) — T (C.3)

if |E| > E, we define |E| =4 4 x with > 0 and give t,, a initial condition ¢, = gexpliT] with ¢ > 0.

Using relations (C.2)) and (C.3)), we get:

1 1

t) = E —2cos(ky) — — = E — 2cos(ky) — ————

1 COS( y) to COS( y) Qexp[ir]
ifo>1:

t1>FE—-2—-1=44+x—-3=1+=x

1 1
ta = E — 2cos(k ——>F-2- >F-3=1
9 cos(ky + ) = 722 +x
1

tm+1:E—2cos(k:y+7m)—t—21+m (C4)

ifo<1:

to1 = [E —2cos(ky —7) —to] ' = [E —2cos(k, —7) — eexplir]
t.1<[EF—-2-— 1]_1 = [E_g]—l =l +$]_1

1
z+1

t_o = [E —2cos(ky — 2v) —t4]7' < {E— 2 — }1 <[E-2-1""'=[1+a]"

-1

to = [E—2cos(ky —ym) —t_mi1]” " < [1 4] (C.5)
In the limit N — oo, from equations (C.4)) and (C.5), we get :
(I)N . N
ltntn_1---tito| = ?gexp[w] >(142)" - o0 (C.6)
0




Appendix C Energy interval

P |42y 50 (.7

[t_nt_Ny1---t_ito] = ’q)
—(N+1)

Soif o > 1, &y — 0o and ®_ |y — o0, if o < 1. Thus |E| > 4, ®,, goes to infinity when m — oo.
Consequently |E| must be less then 4 to keep all @, finite.

A2

In this section, we show eigenenergies of the almost Mathieu Operator: |E(>‘)| <A+2
Recall the almost Mathieu Operator (with A > 0):

[Hg‘(’u](n) =u(n+1)4+u(n—1)+ Acos(2ran + 0)u(n) (C.8)
Harper equation (C.1)) is just the special case of (C.8) when A\ = 2. Replacing 2 by A, (C.1) becomes :
D1 + Py + Acos(ky +ym)®,, = EN,,

Using the same method, equations (C.4) and (C.5|) become :

1
tmi1 = EX — Xcos(ky +ym) — =2 EN -1 (C.9)
-1 ~1
ty = [E()‘) — Acos(ky +ym) — tm+1i| < [E(’\) -\ = 1} (C.10)
(C.6) and (C.7) become :
PN , ) N
|tNtN,1 N 'f1t0| = ?gexp[m—] Z (E — A= 1) (C.ll)
0
®o N -1
tont_n41-toato = |———| < (E®) — X —1) (C.12)
_(n+1)

So, to keep all ®,, finite, |E) — X\ — 1| must less than 1, i.e [E®)| < XA +2 is a necessary condition for

(C.8).
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APPENDIX

ﬁ SIMPLE EXAMPLES OF
ml,mg,ll I (exp(Qm/q))

Explicite derivation of Z,,, ms .1, 1, (exp(2im/q)) in the case where mq — mg = 1; — Iy = 0 mod ¢ with
qg=2,9g=3and g =4.

Recall eq. (2.9)

A<xlam27yl7y2aQ) = Z Zm17m27l17l2 (Q)xl lxgwylllyl;

mi,ma,l1,l2>0

and Cramer’s rule :

1 —x5 0 0 —T
1 C1 —x2 0 0
1 —x1 C2 0 0
]. 0 0 Cq72 —Z2
. 1 0 0 —T1 Cg—1
Ag = Ay = A(z1, 22,1, Y2, exp (2im/q)) = 1 (D.1)
c —x2 O 0 —m
—T1 C1 —x2 0 0
0 —x1 C2 0 0
0 0 0 e Cq_g —T2
—To 0 0 e X Cget

where ¢ = 1 — QFy; — Q *yo. In the following, we are interested in the case of m; — mg = 0 mod ¢
and [; — I = 0 mod ¢, i.e. m; — my and l; — [y are multiples of ¢.

q=2

when g =2, Q = exp (2“‘) = —1, we have

1+z1+22+ 1 + 102
L— (21 +22)% — (11 +y2)%

Ay = A($1,$27y1,y2, —1) =

with m; —mo =13 — Iy = 0 mod 2, A becomes

1
1= (z14+22)% = (y1 +92)*

Ao = A(I17x27ylay27 71) =



Appendix D Simple cases of Zy,, my.iy.0, (€xp(2i7/q))

It is easy to read
0,—2 0,—2

B m1+mae+1l+1la g g
Zml’mz’ll’b(_l) - Z Z my +me + 11 + 122 o

k1=min(m1,mz2) ke=min(l1,l2)

mi+ma+ii+is
—k —k1 lLi—ks la—k
m12 17m22 L 12 2, 22 2 Ky, ko
mi+ma+ii+1lo )
2

0,—2 0,—2
§ E ok1+k2 (
mlfkl msz‘l llfkg lg*kQ
k= ko= 2 ) 2 sy 9 91 9 ,kl, k2
min(mi,m2) min(lq,l2)

(D.2)

And we already know that
L(ml +m2+ll—|—l2)/2j mi1 + mo I+ 15
Zm1,m27l1,l2(_1) =
L(m1 4+ m2)/2] my Iy
Hence, when ¢ = 2, m; — mo =I; — lo = 0 mod 2, one find the identity:

)if mi+ms or l1+ly or both are even

0,—2 0,-2
<m1+m22+ll+lz> <m1 +m2> <11 + lg) _ Z Z ok1+ks
mi4mo l
5 m1 1 ki= ko=

min(mi,m2) min(lq,l2)

< mi+mo+ii+io )
2
—k —k1 li—ks la—k
mi—ki ma 17122,222,]61,]62

2 2

dividing both sides by (%ﬂl“?)!, one finds:

) () K "
(R () T L Rk
min(mi,ms)
0,—2
, ks
X D.3

min(ll,b)

whith the change of variables: m; = my; —a, mg = mo —a,y =1y — b, lo =1lo — b, k1 = k1 —a et
ko = ko — b, one gets:

) (G o=
mi—a 1— _
(o o (Bl o)~ (i — o)
min(my,m2)
0,—2
5 2k22—b
> — - (D.4)
kzz; (bsh2)i(fak2) Ky — b)!
min(lq1,l2)
q=3
When g =3, Q = exp ((“T’T), we have
1 —XT2 —Tq
1 C1 —x2
2im 1 —21 e
A0:A3:A T1,T2,Y1,Y2,€Xp | —— =
3 Co —To —I
—X1 C1 —X9
—X9 —X1 Co
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Appendix D Simple cases of Zy,, ma i1 1o (€xp(2i7/q))

_ltmtmt ity t o3+ +yi +ys — miwe — 1y2 — Qriyr — Q7 iys — Q7 oy — Quays

1—a?t — 23—y} — y3 — 3z120 — Y192

With the extra conditions m; — mo = 0 mod 3 and I; — I = 0 mod 3, one can simplify A:

Al xy, 22,91, Yy2,eXp 2T 2 - o122 — 41y
T I ge 3 1—a2$ — 23—y — y3 — 3z122 — 3y192

Developing A into a powe series and using the relation [2.9] one finds:

. 0,—-3 0,—-3 mi+motli+lot+ki+ko
2T 3 ki+k
Z exp | — = E E 3Tz
mi,ma,l,ls 3 mi—ky mo—ki l1—ko lo—ko k k,
ky= ko= 3 3 3 1 3 HNvlyh2
min(mi,m2) min(l1,l2)

0,3 0,-3 mait+motli+lotki+ko—2
S ;
’I’nl*k}l*l mszlfl llfklz l27k2 k k
k= ko= 3 ) 3 y T3 2T 3 NIy 2
min(mi,ms)—1 min(ly,l2)
0,-3 0,-3 mat+motlyi+lo+ki+ko—2
Y% 3
ml—kl m2—k1 ll—kz—l lz—ktz—l k k
k= ko= 3 ) 3 3 3 5 3 g 1y 2

min(mi,ms) min(ly,l2)—1

with the change of variables: k1 + 1 = k1 for the second sum and ks + 1 = ko for the third sum above,
one gets:

2% 0,—3 0,—-3 my+mo+li+latki+ko

fris (e (2)) = 5% 3

my,ma,l1,l2 P 3 mi—k1 mao—ki li—ko lo—ko ke k

k1= ko= 3 0 3 73 73 MLHR2
min(mi,mz) min(ly,l2)

0,—3 0,—3
k= ko=
min(m1,me2) min(l1,l2)

( my+mo+li+lo+ki+ka—1
3

)3k1+k2—1
mi—ki1 mo—ki lLi—ksy l—k
1 1, 2 1’ 1 2’ 232’]{: ]’k

3 3 3

mi+mo+li+lot+ki+ko—1
3

0,-3 0,-3

_ ( )3k1+k21
: : : : mi—ki mo—ki lLi—ks la—k
kli P 1 1’ 2 1, 132’ 232’k1’k271

3 3

min(mi,m2) min(lq,l2)

my+mao+ii+lo+ki+ko
3 )3k1+k2

0,—3 0,—3
= E: E: mi—ky mao—ki li—ks lo—k
( 13 17 23 1,1327232,k1,k2

k1= ko=
min(mi,ms) min(ly,l2)

kl k2
my+mo+l+lo+ki+k mi+me+l o+ k4 ke

)

0,-3 0,-3 .
SN D ST e
P my+mo+ 1 +lo+ ki + ko

k1=
min(mi,ms) min(ly,l2)

( mi+mo+li+lo+ki+ko )
3

mi—k1 mo—ki lLi—ks l2—k
1-F Mg 1,13272327k17k2

3 3
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Appendix D Simple cases of Zy,, my.iy.0, (€xp(2i7/q))

q=4

When g =4, Q = exp (2%) =i, we have:

1 —X2 0 —X1
1 C1 —T2 0
1 —T1 C2 —X2
24T 1 0 —r1 3
A0:A4:A T1,22,Y1,Y2,€Xp | —/— =
4 Co —T9 0 —I1
—X7 C1 —XT2 0
0 —X Co — X9
—T2 0 —X1 C3
In the case: m; —mo = 0 mod 4 and I; — I = 0 mod 4, simplify A:
" 2% 1 —2z179 — 2192
T1,T exp | — =
15 %2, Y1, Y2, 6XP | — 1— it —yot — 214 — 204 + 2212292 + 201292 — 4y1yo — 42129

Using the same method as before, one gets:

mi,m 5 | €X — =
sma,l,le p 1 Lo L Lo m1+m2+l1+12+2k3+2k‘4

mm(ml ms) min(l1,l2)

( myi+mo+4ly +lo42k342ky )
4

mi—k1 mo—ki li—ks lo—ko ki—ks ko—k

1 1 2 1’ 142’ 2427 12 37 ‘22 4’k37k4

4 4

In order to simplify this formula, one can use the results of the case ¢ = 2 and identity [D-4] First,
rewriting Zy,, mo i1 1o (exp (2”)).

- - — — kitko—k3—kg
um —2 2 (m1 +mo+11 +12)
Zm m — = E
1m0 (exp ( 4 )> Z_ Z_ Z_ — my +mo + Iy + lo + 2ks + 2ky

= k3=
mm(mhmg) mm(ll l2) min(my,m2) mm(lhlg)

( my+mo+ly+lo+2k3+2ky >
4

mi—kiy mo—ki li—ka I 71@ k 71@_ k 71@

1—k1 2 1’142 2—ho kicky ka—hky fo ko,

4 ’ 4
- - —(kg+k
_ Z Z (—2) ™ F gk gy g 1 4 1) (Tatmethtlad 2kt )
ka= ke my 4+ meo + 11 + lo + 2ks + 2ky ks lk,!

min(m1 ms) min(ll,lg)
k1+ko
2

(-2)
Z Z (mi—ki) ) (ma—ki)(li—ka) ) (la—ka) | (ki—ks) | (ka—ka),
4 : 4 : 4 : 4 : 2 : 2 :

k1=
m1n(m1 ,771,2) mln(h lg)

(3+ 4)

4kstka(my +mg + 1y + 1o)

) =)
- kz_ MZ— m1+m2+ll+l2+2k3+2k4
5= =
min(my,mz) min(ly,l2)
(m1+m2+l1+l2+2k3+2k4 |

D.
X Tl interm(my, ma,li,l3) (D.5)
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Appendix D Simple cases of Zy,, ma i1 1o (€xp(2i7/q))

where:
0,—4 0,4 ( 2)#
interm(my, ma, Iy, l2) = Z Z (mi—k1)(ma—k1) ) (li—ka) | (l2—k2) ) (k1—ks) | (k2—ka),
k1= ko= 4 : 4 : 4 : 4 : 2 : 2 °

min(my,ms) min(ly,l2)

min(my,mo)+min(ly,la) kyfkgy
2 2732

0,—4 0,—4 (
- Z Z (mi—ki)y(ma—ki)y(li—ko)(la—ka) | (k1—ks) | (ka—ka),
k1= ko= 4 . 4 . 4 . 4 : 2 : 2 :
min(mi,ms) min(ly,l2)

0,—4 min(my,mp) gy 0,—4 min(ly.03) gy
3 (=1) 2% 3 (=1)" = 273
= (mi—ki)y(ma—ki) k1—ks) (la—k2)(la—k2) | ko—ka
k1= 4 : 4 27 k1= 4 : 4 2
min(mi,mz2) min(my,ms)

with the change of variables: k1/2 = k1 et ko/2 = ko :

0,—2 min(mj,m2)

.
k

I = )i - 51

2k

min(mi,m2)

with the identity [D-4] one finds:

2

k3+ky (7”145"12 —ks (11;12 —k4)
2

. ml;ka l1;k4 min(my,mg)+min(ly,ls)
Znterm(ml’mQ’ll’b) = (m1+m2 _ ki)l(lﬁ-lz _ ﬂ)l (_1) ’ (DG)
4 2/ 4 27

Replacing interm(my, ma,ly,1s) by eq. (D.5) becomes:

7 w27 = 02_2 022 (-2~ b g mg + 1+ D)
mamaslyle oxp 4 o e e m1+m2+ll +l2+2k3+2k4
min(my,mz) min(is,lz)
(ml +m2+l14212+21€3+2’€4 )|

-1
(=1) ks3lky!
k3;k4

9 mi+mo—2ks L+l —2ky
2 2
(ml—i—mz _ Q);(l1+l2 _ @)' my—ks Li—ky
4 27 4 2/ 2 2

OZ_Q Of ARathe (my + my + 1 + 1)
e~ myt+my -+l +ly+ 2k + 2k

min(my,mg)+min(ly,lg)
2

ka= =
min(mi,ms2) min(ly,l2)

min(my,mo)+min(ly,lg)—ks—k mi+mo—2k3 Litlo—2kyg
(_1) (mq 2)+2(1,2) 3—Fkg 5 b}
my—ks li—ky
2 2

< mi+mo—+li+1lo4-2k3+2ky >
4

+ ks i+l k
k37k47 m14m2 _737 14 2 _74
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Appendix D Simple cases of Zy,, my.iy.0, (€xp(2i7/q))

Thus, Zim,,mai1.0 (€xp (%)) can be simplified as:

2im 4k3+k4 ml —+ mo + ll + lg)
Zm m — =
1,m2,l1,l2 (exp < 4 >) Z Z mi1 + mo + 11 + o + 2ks + 2ky

mm(ml 7m2) m1n(l1 l2)

(_1) min (mq ,m2)+1ni2n(l1 o) —kg—ky m1+m;—2k3 ll+l22_2k4
my—ks li—ky
2 2

< mi+mo—+li+1lo42k3+2ky
4
+ ks l1+! k >
k37k47 m147n2 - 737 14 2 — 74
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APPENDIX

E
lDERIVING EQ. (3.31) FROM
EQ. (13.28)

27p

o n dkey dk, E -
> T (H%p/q / / o 21 ZE—ET(kx,ky) (E.1)

n>0

From eq. (3.28)), the generating function of Tr (H(A) /q> can be written as

with £ = 1/z. The eigenvalues EX (k‘gg7 k,) are g roots of
F(E) = B%Y) (1/E) = 2(cos ghy + A cos gk)
where A = (\/2)9, then

f(E) — 2(cos gk, + A cos gk,) = H(E — EM(ky, ky)).

T

Therefore

f'(E) -y 1
f(E) —2(cos gky + Acosqky) = g — EM(k,, ky)

Putting this equation into (F.1J), we get

(A) n Efl(E) ks s 1
;Tr (Hp/ q) T e /_W /_ﬂdkzdkyf(E) — 2(cos gka + A cos gky) (B2)

Evaluating the first integral of k,

/ dkl u __qkl 1 ar du
_» F(E) —2(cos gks + A cos gky) T gq f(E) —2(cosu + A cos gky)

—qm

Translate

. . . —qm+2
the period of is 27w, equation above becomes fiqq;w T

1 du
f(E)—2(cos u+A cos gky) F(E)—2(cos u+Acos gky) *

the domaine of integration so that tan(%) is continuous on this interval :

du © _ti“(%) o0 2dx
/,ﬂ f(B) —2(cosu+ Acosgky) /m (1+22)(f(B) — 2952 — 2A cos gk,)
/°° 2dzx
—oo (f(E) — 2A cos gky — 2) (1 + LE)2hcosakyd2 zQ)

f(E)—2A cos gky—2

_ 2 /°° dx
- _ _ f(E)—2A cos gky+2
f(E) —2Acosqky, —2 J_ 1+ f(E)zA—co;q]kl& 22



Appendix E Dz T (Héjr)p/q)n

. _ f(E)—2A cos gky+2
with b= f(E)fZACOqu;*Qx

_ 2 /oo dp
- V(f(E) —2Acosgky)? —4 J_oc 1 +p?

= 2 2 lim tan™" (p)[2=5

\/(f(E) —2A cos gky )2 — 4 a—oo

2w

\/(f(E) — 2A cos gky)? —

puting this into (£.2)), one gets

S () e = 2L [ dky
S0 pra q 2r J_. \/(f(E) — 2A cos gky)? —
t=ak, B f/(B) [ dt

q2 2 —qm \/(f(E) — 2A cos t)2 —4

_ B /+ at
g 2m o, V(f(E) —2Acost)2 —4

_Ef(B) [T dt
g 2m ), V(f(E) —2Acost)? —4

Ef dt

q / V(f(E) —2Acost — 2)(f(E) — 2Acost + 2)

:Ef’(E/ (1 + tan®(3))dt
a ™ Jo \/(f(E)f2A72+(f(E)+2A72)tan2(%))(f(E)72A+2+(f(E)+2A+2)tan2(%))

change of variable : ﬂg;gﬁ:g tany = tan(%)
_Ef(E) / 2(1 4+ tan’y) dy
q ™ V(1 +tan?y)(f(E)? — (2A — 2)2 + (f(B) + 2A + 2)(f[E] — 2A — 2) tan?y)

_2E f'(E) / V1+tan?y dy
g T VIE)? = (2N =22 + (f(E)? — (2A +2)2) tan? y
_2E fI(E) / dy
q \/f (2A —2)2 —16Asin?y
2E /
~ar \Jf(E 2A —2)2 \/1 gy sin(y)
_2E f’(E) ( 16A )
Cam JF(E)2 - (20 —2)2 \f(E)? - (2A - 2)?
_ [z do . L .
where K(x) = f02 W is the elliptic Integral of the first kind. Thus, we get
n 2F f’(E) ( 16A )
T (HY ) 2= K
;0 (##55270) o JIE)? @A 2 \J(E) - (2A—2)?

which is equivalent to eq. (3.31]).
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