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Abstract

This thesis is focussed on super-resolution (SR) methods for improving automatic recog-

nition system (Optical Character Recognition, face recognition) in realistic contexts.

SR methods allow to generate high resolution images from low resolution ones. Unlike

upsampling methods such as interpolation, they restore spatial high frequencies and

compensate artefacts such as blur or jaggy edges. In particular, example-based ap-

proaches learn and model the relationship between low and high resolution spaces via

pairs of low and high resolution images. Artificial Neural Networks are among the most

efficient systems to address this problem.

This work demonstrate the interest of SR methods based on neural networks for improved

automatic recognition systems. By adapting the data, it is possible to train such Machine

Learning algorithms to produce high-resolution images. Convolutional Neural Networks

are especially efficient as they are trained to simultaneously extract relevant non-linear

features while learning the mapping between low and high resolution spaces.

On document text images, the proposed method improves OCR accuracy by +7.85 points

compared with simple interpolation. The creation of an annotated image dataset and

the organisation of an international competition (ICDAR2015) highlighted the interest

and the relevance of such approaches. Moreover, if a priori knowledge is available, it can

be used by a suitable network architecture. For facial images, face features are critical

for automatic recognition. A two step method is proposed in which image resolution

is first improved, followed by specialised models that focus on the essential features.

An off-the-shelf face verification system has its performance improved from +6.91 up to

+8.15 points.

Finally, to address the variability of real-world low-resolution images, deep neural net-

works allow to absorb the diversity of the blurring kernels that characterise the low-

resolution images. With a single model, high-resolution images are produced with nat-

ural image statistics, without any knowledge of the actual observation model of the

low-resolution image.

i
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Résumé

Cette thèse porte sur les méthodes de super-résolution (SR) pour l’amélioration des per-

formances des systèmes de reconnaissance automatique (OCR, reconnaissance faciale).

Les méthodes de Super-Résolution (SR) permettent de générer des images haute résolution

(HR) à partir d’images basse résolution (BR). Contrairement à un rééchantillonage par

interpolation, elles restituent les hautes fréquences spatiales et compensent les artéfacts

(flou, crénelures). Parmi elles, les méthodes d’apprentissage automatique telles que les

réseaux de neurones artificiels permettent d’apprendre et de modéliser la relation entre

les images BR et HR à partir d’exemples.

Ce travail démontre l’intérêt des méthodes de SR à base de réseaux de neurones pour les

systèmes de reconnaissance automatique. Les réseaux de neurones à convolutions sont

particulièrement adaptés puisqu’ils peuvent être entrâınés à extraire des caractéristiques

non-linéaires bidimensionnelles pertinentes tout en apprenant la correspondance entre

les espaces BR et HR.

Sur des images de type documents, la méthode proposée permet d’améliorer la précision

en reconnaissance de caractère de +7.85 points par rapport à une simple interpolation.

La création d’une base d’images annotée et l’organisation d’une compétition interna-

tionale (ICDAR2015) ont souligné l’intérêt et la pertinence de telles approches. Pour les

images de visages, les caractéristiques faciales sont cruciales pour la reconnaissance au-

tomatique. Une méthode en deux étapes est proposée dans laquelle la qualité de l’image

est d’abord globalement améliorée, pour ensuite se focaliser sur les caractéristiques es-

sentielles grâce à des modèles spécifiques. Les performances d’un système de vérification

faciale se trouvent améliorées de +6.91 à +8.15 points.

Enfin, pour le traitement d’images BR en conditions réelles, l’utilisation de réseaux de

neurones profonds permet d’absorber la variabilité des noyaux de flous caractérisant

l’image BR, et produire des images HR ayant des statistiques naturelles sans connais-

sance du modèle d’observation exact.

iii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI083/these.pdf 
© [C. Peyrard], [2017], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI083/these.pdf 
© [C. Peyrard], [2017], INSA Lyon, tous droits réservés



Remerciements

Je souhaite remercier toutes les personnes qui m’ont permis d’effectuer cette thèse dans
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jamais de ma rappeler que je suis ingénieur informaticien. Merci aux Zikets qui m’ont
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1.1 Context and motivations

The last twenty years have witnessed a spectacular advance in the democratisation of

high technologies. Processes or devices that were expensive and usable only by specialists

are now available for all of us and are part of our everyday life. In particular, photography

and video acquisition devices are nowadays inexpensive and suitable for novices. The

produced content is no longer stored on analogue supports but digitalized and sometimes

synchronized with remote servers. Ericsson mobility report [Eri17] shows that 50% of

the 8.8 ExaBytes of mobile data traffic in 2016 is due to video, and predicts that this

ratio could represent 75% of 71 ExaBytes in 2022.

Retrieving information in such a huge mass of data requires automated process. That

is why automatic indexation systems have been created and can address several scales,

from personal to internet scale contents. Search engines can nowadays give instant results

beyond keyword search, by a semantic understanding of the users requests. However, if a

content is not manually annotated, i.e. when keywords or descriptors are not provided or

irrelevant, classifying it is less straightforward. For multimedia content (images, videos,

audio), this requires to have algorithms able not only to decode the given content in

order to render it, but to actually recognise the content and provide annotation in order
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Chapter 1. Introduction 2

to index it. Such processes may take place offline (i.e. on a pre-existing content) or

online for real-time analysis systems since anybody can now broadcast live streaming on

social media. Companies offering such services cannot afford to have human supervision

given the massive scales (for example, Facebook reports 1.3 billion daily users), and

struggle with inappropriate or illegal contents being streamed on their platform.

Usually, the general pipeline of an automatic recognition system can be split into two

parts. For the first one, low-level signal features such as objects contours, edges or cor-

ners are detected, extracted and combined into intermediate representations that can

describe object parts (e.g. a wheel, an eye, the stroke of a letter). The second part

aims to discriminate the underlying representations to perform classification into sev-

eral classes. To handle the different aspects of this pipeline, researchers have developed

many solutions, involving signal processing, biologically inspired techniques, mathemat-

ical and statistical tools. On top of that, recent advances in machine learning and

artificial intelligence have allow major breakthrough. Algorithms such as Artificial Neu-

ral Networks can be trained with large amounts of data and automatically learn how

to extract relevant features and combine them to classify an object. The performance

of such algorithms can surpass human on a number of tasks, as the machines can have

access to millions of training samples.

Two important recognition systems for multimedia content indexation are Optical Char-

acter Recognition (OCR) and face recognition engines. The first allows to extract useful

information such as speaker’s name, locations, and video topic in conventional new re-

ports for example. Many videos from social networks have now embedded subtitles

to enable watching without sound which is a common usage of mobile devices. Face

recognition can be used to recognise personalities in contents that do not contain tex-

tual information or annotation, or as biometric identification systems or create enriched

photo collections.

At Orange, machine learning approaches and in particular Neural Networks for mul-

timedia content understanding have been used since the early 2000’s, applied to face

detection and recognition [GD04, DG07], action recognition [BMW+11] or text detec-

tion and recognition [DG08, EGMS14]. In [Ela13], it was suggested that SR methods

could be a potential technology to improve character recognition performance, as low-

resolution is one of the bottleneck for OCR.

Several factors can deteriorate the performance of such recognition engines, either by

ambiguous content or degraded image quality. Low resolution is one of the main oper-

ational challenging problems. It is caused by several reasons: distant objects, limited

device capacities, digital image size reduction. In such case, the reliable features that
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Chapter 1. Introduction 3

both humans and machines exploit to recognise shapes and objects end up being irrele-

vant. Fine characteristics such as textures, are mixed into single pixels. Other specific

features are lost, such as those allowing to discriminate between two individuals in face

recognition or fine spacing differences between “nn” and “m” in character recognition.

Such examples of low-resolution content are displayed in Figure 1.1. As a consequence,

both human perception and machine vision systems are flawed because unprepared for

such badly shaped images.

(a) Original HR image

(b) LR image, s = 2

(c) LR image, s = 3

(d) LR image, s = 4

(e) LR image, s = 5

Figure 1.1: Text image extracted from a TV stream, synthesised at several resolutions
using a downsampling factor s. The LR images are upscaled using bicubic interpolation

to have the same size as the original one.

Inspiring researchers – and also fictions, see Figure 1.2 – methods designed to recover

a High Resolution (HR) image from one or several Low-Resolution (LR) are known as

image Super-Resolution (SR). This topic has been very active since the publication of

Tsai and Huang [Hua84] who first modelled the problem. These solutions can produce

SR images that are much more pleasant than a simple interpolated one: they compensate

jaggy edges or blur artefacts by modelling the relationship between LR and HR images.

Several strategies have been adopted to achieve such improvement. Multiple Image SR

techniques assume that many LR images of the same scene or object are available. As

each image contain a slightly different version of the real scene, it is possible to merge this

scattered visual information into one, enhanced image. When only one LR observation

is available, the problem is reduced to a highly ill-posed inverse problem called Single

Image SR (SISR). As the information is not scattered in several images, these approaches

use external knowledge to improve the resolution. This thesis will focus on this second

category of methods, using machine learning algorithms to bring this external knowledge

into the proposed SR frameworks
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Chapter 1. Introduction 4

Figure 1.2: An illustration of SR in popular culture, from the CSI serie1. While the
investigator states “Magnification one hundred for starters”, a piece of forensic software

allows to zoom on the eyes of a witness to reveal a critical clue.

SR has become a standard subject to illustrate advances in machine learning and arti-

ficial intelligence, with a communication around this subject that goes far beyond the

scientific community, as anyone using social networks or portable devices have come

across to visual contents with limited resolution.

Machine Learning has also brought new ways to perform SR. Since the influential work of

Baker et al. [BK02] in 2002, example-based approaches for SR are the most competitive

methods. They aim to capture the relationship between LR and HR image spaces, by

algorithms that learn from many examples of low and high resolution image sets. For

instance, algorithms such as neural networks, dictionary learning, manifold learning or

sparse coding have been used (see chapter 3).

1.2 Scope and objective

The purpose of this thesis is to propose example-based Single Image SR (SISR) ap-

proaches to improve both image quality and the performance of recognition systems.

The SR images must therefore contain the same relevant features as HR images, match-

ing the prior of the recognition system. While other approaches seek to design recogni-

tion systems able to directly recognise low-resolution content, developing SR approaches

has several advantages:

1. It can be easily integrated in a existing production framework and takes the form

of an independent technological component.

1http://www.imdb.com/title/tt0247082/
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2. Second, the same component may be deployed on different systems with similar

needs for high-resolution images, without redesigning each individual recognition

system.

3. Third, it allows to have an explicit representation of the intermediate result, and

use at least two criteria to evaluate the benefits: how well the image is recon-

structed, and how beneficial it is for the downstream system.

In particular, we will focus on improving OCR and face recognition performance using

SR. To do so, we will address text and facial images SR, with different approaches.

This work also aims to address SR in realistic contexts. Usually, SR methods consider

that the LR images are obtained from a HR image with a fixed observation model. How-

ever, LR images extracted from multimedia content may have undergone more complex

degradation. While approaches based on the observation model can account for such

variations, it is more difficult with example-based approaches that learn from the data

itself, often via a implicit mapping. If the examples does not reflect the variations of the

real world, or is the algorithm cannot handle the diversity it faces, no suitable approach

can be trained.

1.3 Summary of our contributions

This thesis is divided into three main contributions. First, to address text image SR in

several contexts (document image, texts from televisual contents), a method based on

neural networks is proposed. This example-based approach relies on specific datasets

that provide useful samples of LR and HR images, and deep neural architectures that

allow to efficiently capture the relationship between the LR and HR image spaces. It

is designed to improve both the image resolution and the performance of automatic

recognition systems (OCR). A new dataset for single text image SR is presented, from

which the first international competition on super-resolution was organised. Results of

this competition are reported and analysed.

The second contribution consists in a new approach for face SR, in order to improve facial

recognition engines. The method consists in two steps performed by neural networks:

a first generic step that improves the resolution of the whole LR image followed by a

specific step that focuses on the facial components such as the eyes, the nose or the

mouth. This hierarchical approach allows to incorporate an a priori knowledge of the

automatic face recognition systems – the dependency on high-resolution facial features.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI083/these.pdf 
© [C. Peyrard], [2017], INSA Lyon, tous droits réservés



Chapter 1. Introduction 6

The third contribution is related to the following real-world observation: while example-

based approaches are very efficient for SR on synthetic low-resolution images (i.e. ob-

tained from a high-resolution image with a known observation model involving blur and

downsampling), it is not likely to process images for which this observation model holds.

To handle the diversity of LR images that can be found in real-world application of SR,

a deep convolutional neural network is trained on a large database created obtained with

many different observation models.

1.4 Organisation of the manuscript

The rest of this manuscript is organised as follows:

❼ Definitions and SR application domains are presented in chapter 2.

❼ A literature review is presented in chapter 3. A particular attention is paid to

example-based methods and domain-specific approaches for text and face images.

❼ In chapter 4, the first contribution, based on neural networks, is introduced for text

images from documents and TV streams. Results of the first international Text

Image Super-Resolution competition of ICDAR 2015 and the associated dataset

are also reported.

❼ Leveraging on the first method, the second contribution described in chapter 5

is new approach to facial SR. It associates a local generic model followed by a

face-specific step, using two neural architectures.

❼ The third contribution in chapter 6 addresses the variability of realistic imaging

models. Using a Deep Convolutional Neural Network, results demonstrate that a

robust model can be trained to perform SR on a variety of low-resolution obser-

vation models.

❼ Finally, a summary of the contributions and perspectives are presented in chapter

7.
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2.1 Introduction

In this chapter, we first give relevant definitions in section 2.2 that will constitute our

basis for the following of the report. We start with defining the terms commonly used in

SR, then describe the use of interpolation methods and their limits, and finally describe

the SR imaging model used in the literature and throughout this work.

The different application domains are reported in section 2.3, including visual enhance-

ment, security and preprocessing images for improving recognition systems, which is the

main application addressed in this thesis.
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Chapter 2. Definitions and Application Domains 10

2.2 Definitions

2.2.1 Defining resolution: spatial and frequency aspects

The term of resolution is a first struggle when addressing the SR domain. While distinct,

terms such as resolution, definition, quality or density are often mixed together. This

is comprehensible as they describe very close properties of signals, actuators or sensors

- in particular images. However, they do have a precise signification that we will point

out and illustrate in the following.

❼ The resolution of a discrete signal is related to its sampling frequency. Therefore,

a high-resolution image is an image with a high pixel density. It makes more

sense when considering scanning devices, where calibration is more precise: the

resolution can be defined in pixel per inch (ppi) which directly links the density

to an absolute quantity. The resolution power of a sensor refers to its capacity to

distinguish between two ideal point sources.

❼ The image definition refers to the number of pixels of an image. However, it is

often related to the image quality, as resizing an image is a very common practice

for display adaptation for example. Thus, a high definition video is also a video

that was recorded using a camera able to hold a good enough resolution to produce

an image content in coherence with such a frame size.

❼ More broadly, image quality is a term that covers a large spectrum of concepts.

Generally speaking, it is a perceptual notion based on the Human Visual System

(HVS) that can be measured on several scales, using different procedures like

sharpness or object recognizability. It may also be evaluated automatically, with

or without a reference image, depending on the employed measure. It also covers

the field of video processing, taking into account the temporal receptivity of the

human brain, that can be more important than the per-frame quality in some

cases.

Image Super-Resolution therefore relates to methods that allow to increase the resolu-

tion, i.e. to resample an image at a higher sampling rate. The “Super” prefix indicates

that these methods must also provide an accurate image signal that is not subject to

distortions. To simply augment the pixel density without concern of the resolution (e.g.

the distinction of two points spots) of the content, most common practice is to use inter-

polation. Thus, before addressing SR, which also aims to recover a latent high-resolution

image, we review the common interpolation approaches in image processing.
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2.2.2 Resampling and Interpolation in Digital Image Processing

Interpolation methods allow to reconstruct a continuous signal from a series of discrete

points. In still image processing, these points are generally uniformly sampled on a 2D

grid. However, depending on the acquisition method and the treated data, one can be

led to process non-uniformly sampled signals. For instance, the fusion of multiple aligned

images can be realised by interpolating the aligned pixels that constitute an irregular

grid, followed by a uniform resampling on the desired regular one.

Such a reconstructed continuous signal can then be sampled at a different rate. If this

rate is higher than the original signal rate, one is performing discrete interpolation or

upsampling ; if the rate is lower, one is performing decimation, subsampling or down-

sampling. Those different terms can have some preferential usage depending on the

context and the used technique.

Interpolation for fixed sampling rates can be seen as a convolution of a continuous kernel

with the discrete samples (see Figure 2.1). The kernel can be seen as the impulse response

of the chosen interpolating method. We will not consider the causality of this impulse

response, as it has varying interest depending on the considered kernel. Additionally,

finite impulse response are practically used.

Once a continuous signal is reconstructed, it can be sampled again to upscale or down-

scale the image signal. This is illustrated in Figure 2.1 via the multiplication of a con-

tinuous signal with a Dirac comb, that yields a discretised signal at a different sampling

rate.

Figure 2.1: Resampling via continuous reconstruction of a discrete 1D signal. First
line: the input signal (blue) is first transformed into a continuous one (pink) using an
interpolative kernel (red, here Lanczos-2). Second line: the resulting signal (pink) can
be resampled at another sampling rate (here, 2/3 with an offset of 0.5 to illustrate a case
of resampling with non-integer ratio). This operation is modelled by a multiplication

of the continuous signal with a Dirac comb (orange).
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In most implementations of resampling methods, the continuous signal is not recon-

structed. Instead, discrete convolutions or matrix multiplications are used. The most

used interpolation methods in image processing and Super-Resolution are generally re-

ferred to as nearest neighbours, linear, cubic, Lanczos(−n), Gaussian. Several optimi-

sations (sample-wise computation, discrete convolutions, pixel recopy) ensure efficient

implementations of those algorithms for the overall interpolation procedure. In the

following, we describe each method, and then sum them up in table 2.4.

2.2.2.1 Reconstruction of ideal unaliased signals with sinc interpolation

Using sinc reconstruction aims to reconstruct a “perfect” continuous signal, from a

discrete signal obtained under Shannon-Nyquist aliasing conditions [Sha49] stating that

the original spatial sampling frequency ωs is at least two times higher than the maximum

spatial signal frequency ωmax:

ωs ≥ 2× ωmax (2.1)

For a given discretised signal i(x) (i.e. a continuous signal multiplied by a Dirac comb),

its Discrete Time Fourier Transform (DTFT) spectrum will have an infinite repetitive

nature, every 2× ωs as depicted in Figure 2.2, as a Dirac comb in the spatial domain is

also a Dirac comb in the frequency domain.

ω

F (ω)

... ...

Figure 2.2: The DTFT of a discrete 1D signal (in blue) is composed of a repetition
of the continuous signal spectrum every ωs (the sampling frequency). To recover the
FT, the DTFT must be multiplied by an ideal low-pass filter (in blue) to retain only

the central spectrum.

To get back the continuous signal, we need the original spectrum by cutting out the

DTFT one at ωs/2. This means multiplying the spectrum by a rect function, centred

in ω = 0 and of width ωs. The inverse Fourier transform of such rect function being

a normalised sinc and the equivalent of a multiplication in Fourier domain being a

convolution, we might obtain a continuous signal Ic (x) by its convolution with our
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discrete signal:

Ic(x) = i(x) ∗ sinc (x) (2.2)

=
∑

n∈Z

i(n)× sinc (x− n)

which is a sum of scaled sinc functions. Although sinc interpolation can theoretically

reconstruct a perfect signal, it is limited by at least two aspects: it has a non-causal

infinite impulse response, and images – in particular LR images for SR – may not be

compliant with the Nyquist requirement and therefore contain levels of aliasing. Thus,

interpolative kernels that exhibit a similar behaviour as the sinc function are used for

practical interpolation.

2.2.2.2 Practical interpolation methods

In practice, intuitive and more simple interpolation schemes are used, predicting miss-

ing pixel values from its close neighbourhood. We adopt a convolution point of view;

although block circulant matrices or loops can be used for actual implementation.

❼ Nearest neighbour interpolation resamples an image by assigning the value of

the nearest sample to the processed samples of the new grid. This process can be

seen as a continuous reconstruction by convolution of a square function with the

discrete signal.

❼ Bilinear interpolation computes the value of a pixel on the new sampling grid by a

weighted sum of the 4 nearest neighbours. The weights are computed according to

the euclidean (L2) distance. Alternatively, this can be seen in 1D as a convolution

with a symmetrical triangle function (see Figure 2.4).

❼ Bicubic interpolation is a widely used method (for both upsampling and down-

sampling) that defines a convolution kernel pa (x) with the following polynomial

formula (for one dimension x):

pa (x) =





(a+ 2)|x|3 − (a+ 3)|x|2 + 1 for |x| < 1

a|x|3 − 5a|x|2 + 8a|x| − 4a for 1 < |x| < 2

0 elsewhere

(2.3)

It is implemented in most of the image processing libraries, in particular in Matlab

with a = −0.5 and the OpenCV library with a = −0.75. The 2D kernel can be

seen in Figure 2.4.
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❼ Lanczos−n interpolation (n being the neighbourhood in pixels) is based on the

following formula for the kernel pn (x) (for one dimension x):

pn (x) =





sinc (x)× sinc
(x
n

)
for |x| < n

0 elsewhere
(2.4)

where sinc is the sinus cardinal function. It aims to reconstruct realistic signals

as it uses sinc function (perfect reconstruction under Nyquist requirements, see

previous paragraph), but modulates it by a second low-frequency sinc. The 2D

kernel can be seen in Figure 2.4.

Figure 2.3 depicts the (1D) spatial and frequency aspects of the mentioned kernels.

We can note that similar spatial kernels can exhibit noticeable differences in frequency.

The fig ures are obtained from time-limited signals, which explains the non-rect sinc

frequency spectrum.

2.2.2.3 Digital processing and Kernel Sampling

We have shown the continuous functions used for resampling and presented the theo-

retical two-step approach. Practically, the kernels are usually sampled, and the desired

image is obtained by convoluting the sampled kernel with the original images. However,

we are left with a choice for the sampling phase, i.e. whether the sampling occurs on or

off the original sampling grid. Figure 2.5 illustrates the different choices of phase.

One important thing to remember is that the choice of resampling grid or the phase

is crucial in some evaluation scheme, as it can produce subpixel shifts and misalign-

ment. Indeed, the common measures for evaluating depend on Figure 2.6 illustrate the

consequence of the chosen phase.

2.2.2.4 A note on subsampling

Generally, when resampling at a lower spatial frequency to simulate a low-resolution

observation, a low-pass filter is applied along the convolution kernel to prevent an strong

aliasing effect to take place. However, if no aliasing occurred, the loss of spatial resolution

would not play any role and the problem would be equivalent to a deblurring problem.

A discussion on this aspect will be conducted later in this manuscript in chapter 6. The

reader can also refer to [Tur90] for advanced frequency analysis of the aforementioned

filters.
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(a) Spatial Comparison of the different interpolative kernels
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(b) Corresponding Spectra and log-Spectra of the selected kernels (on a different bin scale for a
better behaviour visualization).

rect linear
bicubic
(a = −0.3)

Lanczos−2 Sinc

Figure 2.3: Various 1D interpolative kernels in the spatial (A) and frequency (B)
domains. The kernels that mimic a sinc kernel such as Lanczos−2 (cyan) or bicu-
bic (red) are more likely to approach the ideal low-pass filter approached by the sinc

(purple).

2.2.3 Image observation model for SR

Image observation models are used to represent the process between a source scene and

a final discrete image. This process may incorporate the different factors that influence

the transmission of the light signal in the different channels (analogue and digital). We

can end up with interaction at a physical level, in the scene (atmospheric or illumination

conditions), or inside the device (lens aberrations, sensor defects, electromagnetic noise).

After discretisation, some factors can still interact with the production of our final image

(quantization, bit errors, compression). Not all those factors are taken into account,

especially for SR. In the following, we shall first consider continuous aspects (how an

image is acquired from the continuous scene) and refer to works that rely on this aspect.
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Method Kernel (spatial,
2D)

Kernel (Fourier,
2D)

Close-up

Nearest
Neighbour

Bilinear

Bicubic

Lanczos−2

Sinc

Figure 2.4: Interpolation kernels with their spatial and Fourier appearance, and an in-
terpolated image sample, for a scale factor of two. Artefacts are clearly visible: nearest
neighbour interpolation produces blocky images as the pixels are simply reproduced, bi-
linear interpolation creates oversmooth images. Bicubic and Lanczos interpolations are
less smooth, but tend to produce overshoot and ringing artefact on strong edges. As the
low-resolution image contains strong aliasing and strong edges, the Sinc reconstruction

results in many ringing artefacts.
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(a) Off-grid kernel for downsampling by even
factors

(b) On-grid kernel for downsampling by even
factors

Figure 2.5: Different choices of 1D interpolative kernel sampling for digital downsam-
pling, illustrated here for a downsampling factor of 2 and a bicubic kernel. The blue
curve is the continuous kernel, the green one is the obtained discrete version. With
the first kernel, two samples will be merged with an equal value while with the second,

every other pixel will less contribute to the downsampled signal.

Figure 2.6: Different choices of downsampling grids compared with the original HR
pixel grid (on-sample for blue circles, off sample red crosses) that lead to the same
resolution (number of pixels in the image) but with a different subpixel alignment.

Then, we shall focus on discrete-to-discrete models for the creation of low-resolution

images.
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2.2.3.1 Continuous observation models

A perfect SR method should be able to recover the original continuous scene. However,

this is impractical for several reasons: the infinite possible scenes that produced the

observation (even with the use of regularization or constraints) and the non-storable

nature of such continuous signal. However, the continuous parameters such as the point

spread function or the continuous latent image can be manipulated to model the problem.

Although SR methods often consider a discrete inverse problem representation, some

works such as [MI13] consider a real-world set-up and the influence of the choice of

different Point Spread Functions in the model.

2.2.3.2 Discrete observation models

Discrete models are used in most of the works of SR. They consider low-resolution image

as being obtained from a high-resolution image via a pipeline displayed in Figure 2.7.

Note that the definition of HR images are sometimes ambiguous. Generally, the HR

images corpora are selected so that they do not exhibit artefacts (compression, blurry

areas). However, ensuring that all the images have desirable HR content is harder in

large scale image databases.

Figure 2.7: Discrete observation model for LR image synthesis from HR images.

Warping The warping process allows to model an inter-image variability that is im-

portant in the case of multiple image SR. For SISR, this step is skipped and we end up

with a simplified process (see Figure 2.7). For warping, various strategies are adopted,

inducing different level of complexity. The following enumerates the most common

transformations.

❼ Affine transformations – the warped image is obtained through linear transfor-

mation of its coordinates.

– shift: real or integer-valued shifts can be randomly introduced in the 2D HR

space (or grid). This simulates real-life behaviour such a subject translation
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or hand shake. The transformed image I’ is often expressed from the original

image I ′ as follows:

I ′ = I (x+∆x, y +∆y) (2.5)

where (x, y) are the 2D coordinates and (∆x,∆y) are the relative motion.

Some coarse to fine methods can be employed to reduce a large-scale motion

or translation to a subpixel motion estimation problem. The transformation

matrix in homogeneous coordinates is:




x′

y′

1


 =




1 0 ∆x

0 1 ∆y

0 0 1







x

y

1




– rotation: with the same objective, and assuming a small rotation angle ∆θ,

a rotation can be added, so that

I ′ = I (x− sin (∆θ) , y + sin (∆θ)) (2.6)

The transformation matrix in homogeneous coordinates is:




x′

y′

1


 =




cos (∆θ) −sin (∆θ) 0

sin (∆θ) cos (∆θ) 0

0 0 1







x

y

1


 ≃




1 −sin (∆θ) 0

sin (∆θ) 1 0

0 0 1







x

y

1




– General affine and perspective: a more general spatial transformation can

be assumed, as in [CZ01], to simulate perspective that can occur in real-life

sequences:




x′

y′

1


 =




a1 a2 a3

b1 b2 b3

0 0 1







x

y

1




where ai and bi are the coefficients of the affine transformation.

❼ Other transformations

– non-rigid: in some applications, non-rigid motion can be taken into account,

like in [YB08] for facial expression change.
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– occlusions: while recovering a latent or hidden object is rather addressed by

inpainting, the short or long-tem occlusions in time may be taken into account

in the models by outlier regions detection (e.g. [FKMI09]).

However, some methods do not assume such parametric approaches or do not include

them in their model, such as [PETM09] (see paragraph 3.3.3.3 of chapter 3 for more

details). Instead, they perform a non-local search based on similarity between patches

to approximate the alignment (see section 3.2 of chapter 3).

Blurring Blurring is an important part of the process as it removes high-frequencies

and avoid to end up with a totally aliased low-resolution signal. In the SR model, it

corresponds to the point spread function (2D impulse response) of an optical device,

but may also account for the other physical phenomena such as atmospherical blur or

defocus. However, this stage does not include other physical interaction and aberration

such as coma or astigmatism. Specific works address these problems in the literature,

but not explicitly via Super-Resolution.

Different strategies have been proposed for blurring. Most of the time, it is performed

via a low-pass filter convolution kernel. To imitate natural non-negative single channel

blurring kernel, the most employed kernels are tap (or box) kernel, Gaussian kernel of

diverse mean and variance and round circle (out-of-focus blur). However, kernels with

negative values are also used. Mainly, this case arises with the use of interpolative

kernels such as the bicubic and Lanczos ones. Their implicit goal is to reconstruct a

realistic continuous signal, i.e. approaching a sinc with a finite definition interval. As

shown on Figure 2.4 in subsection 2.2.2, negative lobes exist. However, for downsampling

(see next paragraph), these kernels may be anti-aliased i.e. have a 2 times larger spatial

width (2 times smaller spectral width, thus LPF). Furthermore, in [MI13], authors reveal

that positivity might not be a suitable constraint for the blurring kernel in SR, as they

demonstrate that the optimal kernel found by a blind deconvolution process does present

negative lobes.

Downsampling This last step, which can also be referred to as decimation or sub-

sampling, is what makes SR fundamentally different from related linear problems such

as deblurring, as it produces a spatial dimension shrinkage. Most of the time, this last

step is simply a pure decimation process, which is taking every n other pixels. However,

cases can arise where a non-integer scaling factor may be needed. In this case, inter-

polation methods with resampling (see subsection 2.2.2) are necessary and can not be

modelled as a pure filtering and decimation operation.
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Noise An additional noise term can be added. In many methods, only a low level

of noise is considered as the main objective is to recover the lost information during

the warping+blurring+downsampling process. However, a quantization noise is often

present during actual image saving and loading operations. Some work also add gaussian

noise.

2.3 Application Domains

Image SR approaches may serve several purposes, from image restoration to forensic

analysis. Other signals may also benefit from higher sampling rates. The following

paragraphs describe various applications of SR in different domains.

2.3.1 Image refinement and visual enhancement

Many works, especially those addressing general-purpose SR and natural images, can be

used to synthesise HR images from low-resolution ones in order to provide better shaped

images to consumers or users. Dedicated approaches give a particular attention to the

computation load and speed, considering that such approaches might be applied to real

time image resizing.

2.3.2 Surveillance and security applications

In spite of the high-definition sensors that are available and that equip more and more

devices, the problem of low-resolution content still arises in many sensible contexts

like in military or surveillance applications. This can be due to outdated devices, the

distance of a subject to the camera, atmospheric or out-of-focus conditions, subject or

camera movement and many other reasons. Super-resolution is a way of overcoming

such problems and is very critical if used as court proof.

2.3.3 Pre-processing for automatic recognition system

SR can also be used as a pre-processing step, between a captured image and an auto-

matic processing unit that has an a priori of high-resolution images. This can be the

case of many recognition systems such as Optical Character Recognition (OCR) or Face

Verification systems. In this case, while a good image reconstruction can still be inter-

esting, the objective is to produce high-resolution images in which a recognition system

can detect or recognise objects better.
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This thesis mainly addresses this category of applications. SR approaches for several

types of text images SR are presented in chapter 4, and an approach improving facial

images resolution is proposed in chapter 5.

2.3.4 Other paradigms

Audio Super-Resolution Some works have been conducted on the super-resolution

of audio signal. This is highly related to bandwidth extension with many applications

since the late 90’s in speech (notably speech over the phone), music and audio in general

[DBBE+09]. More recently, inspired from the strong interest in image SR, some authors

have proposed several methods to address audio SR. As in image SR, the interest is to

recover high-frequency lost during acquisition or because of the transmission channel

constraints. In recent years, sampling rates for audio have also increased in commercial

products, with the emergence of labels such as Blu-ray Pure Audio or Hi-res audio, that

propose sampling rates from 96KHz up to 192KHz, with higher quantization too (24

bits, where traditional quality is 44.1Khz/16 bit). Analogue to the SD to HD conversion

for video, audio SR can be a solution for conversion of audio signal at such sampling

rates.

Another application in audio is spectrogram Super-Resolution. The traditional way to

obtain spectrograms is to apply Short Term Fourier Transforms (STFT) on successive

windowed parts of the audio signal. However, due to the Heisenberg singularity, increas-

ing temporal resolution (i.e. smaller windows) will decrease the frequency resolution,

and vice-versa. Super-Resolution, in this context, can offer a way to overcome this

limitation and increase the resolution of one of the axis, as in [NMG+10].

Gray-scale Super-Resolution (re-quantization) In [HSCG10], the authors study

the impact of “low grayscale resolution’, i.e. images of poor contrast or low quantization

scale. This case may arise in poor lighting condition as for contre-jour shooting. Finding

the intermediate grayscale values can be seen as super-resolution of the quantization,

and is closely related to the works on High Dynamic Range (HDR) imaging.

Super-Resolution in Microscopy Super-Resolution microscopy is a set of tech-

niques that allow to increase the resolution of images captured by microscopes, going

beyond the diffraction limit. Even if not applicable to every kind of image and de-

vices because dealing with specific images and conditions, these techniques effectively

increase the resolution of images by exploiting special behaviour of light emitters in

biology microscopy. Those method can be classified into two groups:
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❼ Deterministic super-resolution: exploits the non-linearity of fluorophores responses

to excitation to resolve emitters.

❼ Stochastic super-resolution: exploits the non-stationary temporal behaviour to

resolve emitters.

“Semantic” Super-Resolution An interesting concept is proposed in [NS08], where

a semantic description of an event (e.g. a news event) can be “super-resolved” by gath-

ering different sources of information, particularly in the case of audiovisual content in

the patent. Aggregating information from different sources in order to provide exhaus-

tive information can be an interesting research field, with challenging problems such as

concordance, source trust, data aggregation.

2.4 Conclusion

This chapter recalls basic definitions that are useful in the context addressed by this

thesis. Interpolation methods allow to resample a digital signal to different sampling

rate. In the case of an image, they can be used to decrease or increase its resolution.

However, when the resolution is increased by interpolation, the resulting image intensity

values are a fixed linear function of those of the low-resolution image. Therefore, only

the low spatial frequencies are reconstructed in the new image which lacks of sharp

details and other high frequency contents.

SR techniques aim to go beyond these simple resampling methods and predict the missing

high frequencies. For SR, the LR images are considered to be obtained from a HR image

undergoing successive transformations: warping, blurring and downsampling.

Such techniques may be used for many image processing applications, including natural

image enhancement, surveillance and pre-processing so that automatic recognition sys-

tems see their performance improved on low-resolution content. This last point will be

the core of several contributions presented in this manuscript.
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3.1 Introduction

Image Super-Resolution is a research topic that has drown a lot of attention since the

term initially appeared in the early eighties. It refers to a large set of methods that aim to

reconstruct high resolution images from low resolution ones. Not only those techniques

increase the spatial pixel density, but also recover missing high-resolution information,

either by gathering it from several observations or by inferring it from a structured a

priori knowledge. Depending on the processed data and the problem modelling, several

techniques have been explored through the years. The first historical methods addressed

the Multiple-Image Super-Resolution problem (MISR) where several observations of the

25
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same scene are available, with slight variations. Under certain conditions, the high-

resolution image can be recovered almost perfectly. In this survey, we will present the

main methods and refer to more advanced works on this subject. For Single Image Super-

Resolution (SISR), recovering a high-resolution image necessarily involve an external

knowledge, as HR information could not have been split into several observations. The

available information is therefore very poor. This is why the SISR methods aim at

establishing a relation between LR and HR images spaces.

This literature review starts with an overview of MISR methods, which is not addressed

in this work but still very important in the SR community. Then, we propose a more

extended review of existing methods in single image SR, with a focus on learning-based

(or example-based) methods, which is the category of method our contributions rely on.

Finally, we focus on specific SR methods which are designed and evaluated in order to

serve other image processing tasks such as object recognition, as this is how we orientated

our work.

This chapter is organised as follows. A short review of Multiple Image SR methods is

provided in section 3.2. A more advanced review of the Single Image SR literature can

be found in section 3.3. In section 3.4, a focus is made on approaches that are specific

to text and facial images, as they are the category of methods that we address in this

work. Finally, the scope of this thesis is defined regarding the literature review in 3.5.

3.2 Multiple image SR

Super-Resolution was first proposed as a set of methods for synthesising a high-resolution

image from multiple (Kl) low-resolution observations, referred to as Multiple-Image

Super-Resolution (MISR) in the following. These observations are supposed to contain a

slightly different version of the same scene due to perspective, rotation, translation, scale

and noise. The term Super-Resolution is re-employed for the singular case of Kl = 1,

referred to as Single Image Super-Resolution (SISR). As stated in the introduction of

this chapter, the SR problem can be seen as a linear inverse problem where a high-

resolution image x (or more conceptually, a scene) has been transformed through a

linear transformation T into Kl low-resolution images yi. These linear transformations

include spatial dimension reduction, which yields low-resolution observation vectors of

size M2 < N2. For this inverse problem to be well-posed, we need a number Kl of low-

resolution observations, sufficiently large so that Kl ×M2 ≥ N2. Still, the problem can

be ill-conditioned (not stable under disturbed input) and require additional constraints

to render a final, artefact-free HR image.
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In this thesis, we address single image super-resolution. However we give here a short

review of the MISR methods as SISR can sometimes be performed using the same

methods, with Kl = 1, Kl being the number of LR observations.

3.2.1 General principles

In general, MISR is addressed as an inverse problem, where LR observation have been

obtained following the procedure depicted in Figure 3.1.

Figure 3.1: Observation model for multiple low-resolution images obtained from the
same high-resolution image.

Each image is supposed to be obtained from the HR scene that must be reconstructed.

The aim is to gather the split information in the different observations. For this, the

most frequent approaches reverse the imaging model by finding the relative motion of

the LR frames, fuse them and remove remaining artefacts such as blur. These steps can

be done separately or jointly in an iterative scheme.

3.2.2 Main Approaches in Multiple Images SR

The following gives an overview of the different approaches to perform the steps pre-

sented in the previous paragraph.

3.2.2.1 Image registration

Most of MISR methods highly depend on registration techniques. This registration step

is crucial to allow the fusion of the different sources of split information. As mentioned

in subsection 2.2.3, different motions are taken into account. Image registration is a

broad research subject that impacts many application fields such as compression, medical

imaging or remote sensing.
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Global image registration As mentioned in the observation model paragraph (see

2.2.3.2), a coarse-to-fine approach may be considered to first account for large transla-

tion, and then subpixel alignment matters. In [GO04], the authors employ area block

matching to select the area that are most likely to be registered.

Local subpixel registration For subpixel registration, several strategies can be used.

However, the most common is to interpolate all the observed images and find the mini-

mum of a pixel-wise error mesure (such as the sum of squared differences):

ereg = argmin ‖ Iref − f(Ik) ‖ (3.1)

After the registration stage, the aligned information has to be fused into a single image.

3.2.2.2 Image fusion

Once images have been aligned, they must be somehow fused to aggregate the scattered

information. Basic methods referred in the survey [NM14] include mean or median

filtering, weighted mean filtering, iterative back-projection, SVD-based fusion, pixel-wise

Adaboost classifier, projection onto convex sets, Maximum Likelihood and Maximum A

Posteriori (Bayesian) methods. In the next paragraph, we focus on the last category as

it provides a reliable model for SR and still knows advances in the field.

3.2.2.3 Simultaneous Bayesian approaches

Some frameworks allow to model the previous steps in a global optimization process.

Notably, Bayesian frameworks have been proposed to consider the optimization of all the

variables of the problem i.e. the registration parameters and the final high-resolution

image. Examples of Bayesian approaches can be found in [HBA97, TB06, PCRZ06,

PCRZ09, LS11, LS14]. Different frameworks have been progressively introduced, ad-

dressing more and more complex motion and interfering parameters. They can be de-

scribed with the following derivation of the Bayes rule:

p (yk | x,Θk) =
p (x)× p (x | yk,Θk)

p (yk)
(3.2)

where yk is the kth observation in a set of Kl LR images, x is the HR image to be re-

covered and Θk is a set of parameters that contains the SR observation model described

in subsection 2.2.3, for each LR observation. A basic approach is to minimise the a

posteriori log-likelihood, with known parameters Θk. In this case, we end up with a
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classical linear problem with an unknown vector x, and a prior term p (x). However,

more recent approaches include the estimation of those parameters in the optimisation

problem, which is the basis for a blind set-up that allows to recover not only the SR im-

age but also the observation models parameters. While relatively simple subpixel motion

is addressed in [PCRZ06, PRZ06, PCRZ09] with only translational motion and small

rotation [TB06], [LS11, LS14] include an optical flow estimator in their framework, able

to address more unconstrained motion. When adding those supplementary parameters,

different methods can be chosen to solve the optimisation problem. One solution is to

alternate between the parameters, by solving one while fixing the others. By marginal-

izing over some of the random variables, individual estimates can be obtained. [TB06]

marginalize over the SR image to get the registration parameters. [PCRZ06] rather

marginalize over the registration parameters, to use non-gaussian SR image priors such

as the Huber prior. More accurate results can be obtained by taking care of outlier

pixel and learning the priors parameters. As an example, [PRZ06] use a cross-validation

mechanism over pixels in multiple frames to refine Huber prior parameters.

3.3 Single image SR

Considering the previous model of MISR, we focus on the case whereKl = 1; i.e. we only

have one LR observation. In this case, only a fraction of the high-resolution information

is captured. The inverse problem is therefore ill-posed and poorly conditioned, and

a stable solution can only be achieved via coupled constraints on the low-resolution

observation and external knowledge. This external knowledge can relax the problem,

and analogue to the MISR case, supply priors that will condition the final SR image.

We organise the review via four important areas in term of past works: Edge-Directed

Interpolation, gradient profile prior, Bayesian approaches, example-based approaches.

The latter will be more detailed as our work focuses on such methods.

3.3.1 Edge-directed interpolation

Although interpolation produces over-smoothed images, with noticeable artefacts (see

subsection 2.2.2), it is still efficient for stationary or flat regions. An approach proposed

in several works, referred as Edge-Directed Interpolation (EDI), aims to interpolate an

image in a non-blind manner, i.e. taking into account the underlying shapes being inter-

polated. A meaningful option is to interpolate differently depending on the orientation

of the gradient maps – as illustrated in Figure 3.2.
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Figure 3.2: Illustration of EDI methods, figure reproduced from [AW96].

In [LP93], the authors propose an adaptive interpolation scheme based on zero-order

(nearest neighbour) interpolation and b-spline interpolation. The algorithm is guided

by the presence of edge, computed at each pixel as absolute differences with the neigh-

bouring pixels, and utilised to classify each pixel into three groups of three edge patterns

each. Depending on this classification, the value of the neighbouring pixels is not at-

tributed following the edge direction. One of the first works using this approach was

reported in [AW96]. They propose to generate high-resolution edge maps that allow to

adapt the interpolation scheme depending on the presence of edges. The linear interpo-

lation is therefore preferably performed perpendicularly to the gradient direction. Then,

they use a constrained iterative procedure that alternates between high-resolution image

generation using the described procedure, and low-resolution image refinement from this

generated image. In [LO01], authors propose a similar approach, but model the inter-

polation scheme at edges using a relationship between the LR and the HR covariance.

3.3.2 Gradient profiles and natural priors

With the same intuition as EDI, several works propose to focus on edge regions in order

to refine them, rather than adapting the interpolation process. They modify the gradient

profile to produce sharper images as smooth edge is one of the fundamental artefact that

appear when interpolating LR images. The gradient profile is defined as the section of

the 3D gradient image in the direction of the gradient (or perpendicularly to the edge).

The strength of those methods is their ability to address multiple scale using the same

techniques.

In [Fat07], authors model the 1-D gradient profile as a continuity measure C (that can

be seen as the intensity variation) defined via a conditioned Gaussian distribution. At
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each pixel, a conditioning feature vector characterising its nearest edge and its context is

computed. It is used to condition the distribution of C that will be used to construct the

SR image with adapted gradients. Put together, this forms a Gauss-Markov Random

Field from which the whole SR image can be sampled. They add a constraint (similar

to the one described in [IP91]), that ensures that the HR image is coherent with the

input LR image.

Another approach is proposed in [Sun08]. The authors model the gradient profile as

a 1-D Generalized Gaussian Distribution. They define the more likely distribution’s

shape parameter λ using a set of natural images. This approach has the advantage

to have less parameters than [Fat07]. They generate a high-resolution gradient profile

map ∇x̃T by transforming the low-resolution one via this natural statistic. Then, the SR

image is reconstructed via a gradient descent over the energy E
(
x̃|y,∇x̃T

)
that includes

constraints on LR image reconstruction from the SR result and on the gradient map,

defined as:

E
(
x̃|y,∇x̃T

)
= ‖y −DHx̃‖22 + ‖∇x̃−∇x̃T ‖22 (3.3)

The authors further experiment the approach on blurry images in [SXS11], and perform

sharpness transfer between images. They also report that the method is about five times

faster.

A similar approach is taken in [TLBL10], and extended to better approximate high-

resolution texture synthesis by the use of an “exemplar” input. This exemplar’s gradient

field is scaled down and up to form pairs of low and high resolution gradient fields. They

are then included in the energy to be minimised (similar to equation 3.3) to generate

adaptive textures and edges.

3.3.3 Example-based

Example-based methods make use of systems that have a learning and/or storage ca-

pability, and can perform a process given a set of training data. This global term can

incorporate various type of approaches, from distance-based approaches to more complex

ones, that model the underlying generative process, producing SR images conditioned

to a given LR image. Since the 2000’s, these methods have known growing interest in

Super-Resolution. The reference papers [FPC00, FJP02] had a great impact on the ex-

ploration of such methods for SR. In this paper, the authors propose a nearest neighbour

approach that consist in looking for the Knn nearest neighbours of a given observed LR

patch in a database of training samples, and select the best corresponding HR candidate

via a markov network. They also propose an equivalent straightforward approach that

directly selects the nearest neighbour via a robust patch representation.
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In the following, we present the main research work that have been conducted for

example-based SISR, divided into 4 categories: neighbour embedding and manifold

learning (paragraph 3.3.3.1, sparse dictionary learning (paragraph 3.3.3.2, internal learn-

ing (paragraph 3.3.3.3 and neural networks (paragraph 3.3.3.4). Note that some methods

may land in several categories (e.g. sparse code prediction using neural networks).

3.3.3.1 Manifold Learning and Neighbour embedding

In example-based SR, we can represent two data spaces which are a LR space and a

HR space. Given a set of LR and HR samples, LR and HR manifolds can be inferred.

However, the two manifolds do not necessarily exhibit the same shape, and two close

samples in the LR space may result in distant samples in the HR space, due to the

injective nature of the LR-HR relation.

The first method using such approach can be found in [CYX04]. Instead of selecting a

single candidate for the HR patch, the authors make the assumption that LR patches can

be represented as a linear combination of their Knn nearest neighbours. Furthermore,

they consider that the LR and HR manifolds are locally similar, and that the corre-

sponding HR patch can be found using the same linear combination of the HR versions

of the found LR nearest neighbours. They propose to use extract features using first

and second order derivatives, and set Knn = 5. The nearest neighbours are found using

euclidean distance, and the weights of the linear combination of the Knn LR patches are

found using matrix inversion. The results are less noisy than [FJP02], but also smoother

due to the averaging effect of the linear combination. This makes the images look less

realistic in some regions.

To overcome those limitations and reduce the computational cost, other approaches

have been proposed. For instance, in [BRGM12] the authors propose to work with

different patch features (normalised luminance and derivatives) and to use a non-negative

constraint in the LR neighbourhood computation. They show that their approach allows

to work with more coherent manifolds, as the non-negative weights computed from the

LR embeddings allow to reconstruct the HR patches better. In [GZTL12], the authors

propose to extract LR features using Histogram of Gradients and use K-means to create

clusters of similar histograms. More recently, two State-of-the-art approaches – namely

Anchored Neighbour Regression (ANR) and Adjust ANR (A+) – have been proposed,

based on the dictionary construction from [ZEP10] but using different approaches for

sparse search and regression through the dictionary atoms. The ANR approach [TDG13]

is based upon the following principle: a patch is likely to be a linear combination of atoms

that are close from each other on the hypersphere they lie on. Therefore, the search for a
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sparse vector α in the dictionary is replaced with i) the search of the nearest atom from

the processed patch and ii) an offline-calculated projection matrix allowing to produce

the corresponding HR patch. The search is a simple correlation between the features

extracted from the processed patch. The projection matrix is calculated from the Kna

nearest atoms of each atom. The method can be summarised as follows:

1. Build a dictionary using K-SVD and OMP [AEB06, RZE08], similarly to [ZEP10]

2. For each atom dj of the dictionary, select the Kna nearest atoms, and compute the

projection matrix Pj :

Pj = Dh

(
DT

l Dl + λI
)−1

DT
l (3.4)

whereDh is the HR dictionary, Dl the LR one and λ is the regularisation parameter

3. at test time, compute a high resolution patch xn from a low resolution one yn

using:

xn = Pjyn (3.5)

Pj being the projection matrix of atom dj so that:

dj = min
di∈Dl

〈yn, di〉 (3.6)

In [TDSVG14], the authors use the same principle of neighbourhood in the atom space,

but this time compute for each atom a linear projection computed on a pool of Kns

training samples that lie close to a given atom, instead of the previous projection matrix.

This change allows to capture the trends in the neighbourhood directly in the data but

with a fine selection thanks to the atoms. The projection matrix being calculated offline,

there is no time consumed with this operations.

1. Build a dictionary using K-SVD and OMP [AEB06, RZE08], similarly to [ZEP10]

2. For each atom dj of the dictionary, select the Kns nearest pairs of examples from

the training set (Sl, Sh), and compute the projection matrix Pj :

Pj = Sh

(
ST
l Sl + λI

)−1
ST
l (3.7)

with Sl being Kns ×D
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3. At test time, compute a high resolution patch xn from a low resolution one yn

using:

xn = Rjyn (3.8)

with

dj = min
di∈Dl

〈yn, di〉 (3.9)

Semantic context matching Several methods use patch clustering, which makes

sense as LR basic structure are still likely to have similar shape in the HR domain.

However, at a higher semantic level, the similarities can be helpful as well to reduce

the complexity of the manifolds. Intuitively, if we can preselect images with the same

content as our LR observation (e.g. forest, buildings, animals), we are more likely to

obtain coherent reconstructed SR images. In [SZT10], the proposed approach makes use

of the Berkley Segmentation Engine (BSE) to first produce images segment that have a

uniform texture. Similar candidate patches are then extracted from those segments de-

pending on the similarity of the distribution of texture features, using an approximation

of the Kullback-Leibler (KL) divergence distance. The result of this search is illustrated

on Figure 3.3. The fusion of the candidates is obtained via a three-termed optimiza-

Figure 3.3: Result of similar segments using the BSE segmentation of natural images
and texture similarity search with the KL divergence, illustration from [SZT10]. The
left column represent input images and the two other columns the more likely candidates

found by the search.

tion problem including a reconstruction term (coherence with the LR observation), a

Hallucination term (the correspondence of the SR image with the candidates) and an

Edge Smoothness term. This idea is extended in [SH12] where the search is done via a

large-scale search over the Internet, to find images similar to the LR observation.
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In the following, we describe Sparse dictionary learning, where dictionaries of low and

high resolution samples are constructed to perform SR. Note that some approaches are

hard to classify between Neighbour Embedding and Sparse Dictionary learning, as the

notion of “neighbourhood” can be common in both.

3.3.3.2 Sparse Dictionary learning

The main idea behind dictionary learning for SR is to create a set of so-called atoms for

which we possess a LR patch and its HR counterpart. The most simple and intuitive

way to create an atom (or dictionary element/class) is to take a – possibly normalised

– sample pair. When given a LR image, one can simply split it into LR patches, find

a representation using the LR dictionary atoms and use the corresponding HR atoms

to reconstruct the HR image. Through the years, efficient ways of creating dictionaries

have been proposed.

The first main contribution to the use of dictionary was made in [YWMH08]. The

authors propose to use an overcomplete sparse dictionary of low and high resolution

image patches (about 100, 000) to perform SR. A given LR patch yi is represented

as a sparse linear combination of LR dictionary elements αDl, and a HR patch xi is

reconstructed using the corresponding HR elements Dhα.

yi = Dlαi (3.10)

xi = Dhαi (3.11)

For each patch yi of an image, an optimal αi can be found to minimise the following

equation:

argmin
αi

‖yi −Dlαi‖
2
2 + λ‖αi‖1 (3.12)

where λ balances the role of the sparsity of αi. The authors propose to add a constraint

on the top and left border region of the reconstructed HR patch PDhαi to ensure its

compatibility with the previously reconstructed image overlapping the region, w:

‖w −Dhαi‖
2
2 (3.13)

Put together with 3.10, we have:

argmin
αi

‖ỹi − D̃αi‖
2
2 + λ‖αi‖1 (3.14)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI083/these.pdf 
© [C. Peyrard], [2017], INSA Lyon, tous droits réservés



Chapter 3. Literature Review 36

with ỹi and D̃ including both constraints. The sparsity is ensured via the use of a

a L1 norm constraint on the sparse code α during the optimization process. They

also use a global reconstruction constraint using the backprojection method, where the

consistency of the high-resolution image with respect to the model and the low-resolution

observation is ensured. This approach is further improved in [YWHM10] where more

compact dictionaries are constructed from the extracted patch pairs, using an iterative

sparse coding optimisation algorithm [LBRN06].

The authors propose to jointly learn two dictionaries to perform SR: one in the LR space

and one in the HR one. To learn such dictionaries, they extract corresponding patches

from low-resolution (bicubic) and high-resolution images, and add the constraint that

the LR and the HR patch can be linearly reconstructed from their respective dictionaries

using the same sparse vector α. During optimization, the algorithm alternates between

the construction of the dictionary (with a fixed sparse code) and the search for a sparse

code (with a fixed joint dictionary). This gives the following minimisation objective

during the construction:

argmin
αi,Dl,Dh

‖yi − D̃αi‖
2
2 + λ‖αi‖1 (3.15)

For the reconstruction, Dl and Dh have been learned and are therefore fixed, and only

the Z estimation step is required.

Extensions and improvements Several works have proposed improvements from

this sparse formulation. In [DZSW11], the authors explore subdictionary learning for

both deblurring and SR. Instead of learning a single dictionary, they first partition the

high-pass filtered image space using K-means. Then, for each cluster, a dictionary is

learned using a L1 constraint on the sparse code, resolved with an iterative shrinkage

algorithm [DDDM04].

The approach has also been improved in [ZEP10], with the ability to fine-tune the

dictionary with respect to the current image, taking it as a HR image. However, they use

K-SVD to encode the LR sparse representation and use a pseudo inverse to recover the

high-resolution representation. The sparse coding is realized using Orthogonal matching

pursuit (OMP), rather than solving the LASSO optimisation problem with constraints

on the sparse code. They use 1000 atoms as dictionary size for the LR representation.

This approach is sped up in [YWL+12] using a neural network for the sparse vector

inference, which becomes a forward pass instead of a search optimization algorithm.

In [WZLP12], authors propose a different coupling between the sparse codes, which is a

simple linear relation between the LR and HR sparse representation. It can be seen as
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a coupled dictionary of LR patch and HR sparse codes instead of using the same sparse

representation.

3.3.3.3 Internal Learning

Several approaches make use of internal patch recurrence across scales and spatial di-

mensions to avoid external database dependency. This means a pool of low and high

resolution images is extracted directly from the observed image. This supposes the ob-

served images are sufficiently large to contain interesting and various content that can

be observed at different scales. Figure 3.4 summarises this principle.

Figure 3.4: Internal learning approaches capitalise from multiscale analysis of the
input image to create in-place example pairs for learning. This illustration is extracted

from [GBI09].

To perform this internal learning, the idea of adapting the Non-Local Means (NLM)

algorithm [BCM05] have been explored in [EV07] and [PETM09]. The NLM algorithm

is a non-local patch-based method that, for every position in the image, looks for similar

content – in terms of L2 norm – in a neighbourhood (i.e. non-locally), and perform

a weighted sum depending on the similarity. In [EV07], the authors point out the

missing link between the example-based, non-local approaches and the pyramidal or

multi-resolution approaches such as fractal ones. They propose to use a generalisation

of the NLM algorithm to perform super-resolution. The generalisation includes exter-

nal example images for similarity search and across-scale search. A similar approach

is presented in [PETM09], with complementary experiment and extensions. First, they

fuse zero-padded version of the LR similar non-local patches. They propose to use a

deblurring step, as the adapted NLM procedure mainly compensates for the noise and

the downsampling process, but to a lesser extent for the blur in the LR image synthesis
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model. Second, they extend the approach to multiple-image, which is slightly differ-

ent from the external image proposed by [EV07] as they correspond to low-resolution

observation. The NLM approach is equivalent to an implicit, fuzzy motion estimation.

Apart from NLM algorithm, other approaches have been proposed. In [GBI09], patch

cross-scale similarities are exploited: at each position of the input LR image, a patch is

extracted and its nearest neighbours are found in the lower scales. Then, their upper

scales counterparts are used as HR examples for the current processed patch. They

use small scale steps (1.25 or 22/3) to adopt a coarse-to-fine iterative algorithm which is

stable through the experiments. The consistency of the SR image at each scale is checked

using backprojection towards the appropriate scale. In [YHY10], the authors use the

same approach but construct a dictionary by clustering similar patches, and finally

use it to perform SR. Contrary to the previous presented works, authors in [FF11]

propose to use a local upscaling scheme. They use the shape redondancy between a

(M + 1)× (M + 1) patch and its downscaled version of size M ×M , when the selected

scale is low. They use M + 1 : M scale steps. To perform those small scale steps, they

use non-dyadic, biorthogonal filter banks. In [HS11], a Gaussian Process Regression is

performed, with extracting training patches in the bicubic-interpolated image and the

LR one. The framework allows to simultaneously deblur and produce sharp images

at higher resolutions. Moreover, instead of looking for similar patches in the image

domain, the algorithm proposed in [SA14] make this search in several sub-band images,

obtained by oriented bandpass filters, which results in lower reconstruction errors. To

account for the relative rareness of in place examples compared with large-scale external

learning datasets, in [HSA15] the authors use the PatchMatch algorithm [BSFG09] to

enrich the search of non-local patches in the image. This allows to search not only

via 2D translation (horizontal and vertical dimensions in the image) but also via linear

transformation (scale, rotation, perspective), yielding a 7-dimension search, comprising

a plane index, where planes are estimated to account for the perspective effect that occur

in natural images.

3.3.3.4 Neural Networks-based SR

Neural networks has known big advances with the recent trends in deep learning. Re-

gression problems can be addressed via Neural Networks, for which an euclidean loss

between the output of a neural network and the targeted signal may be used.

Primary/Previous work on Super-Resolution using Neural Networks In [AGK95],

a radial basis neural network is used to perform interpolation. Each centre of the hid-

den layer is initialized with a training example and the output layer performs a linear
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regression to predict the value of the central pixel. A variable variance parameter on the

gaussian radial function allows to adjust the sharpness of the resulting image. The exper-

iment is conducted on a single 20× 20 image and does not provide objective evaluation

as no reference image is used for the higher resolution.

In [Pla99], authors propose to predict the missing pixels for the line doubling and inter-

polation problems. They use a one-hidden layered MLP to predict the graylevel values.

For the interpolation problem, they use 24 pixels as an input patch, 16 hidden neu-

rons and 5 output neurons, as described in Figure 3.5 (from the original paper). They

reported good results and a robustness against Gaussian and coding noises.

Figure 3.5: Methods proposed in [Pla99] for interpolation using a one-hidden-layer
perceptron Neural Network. The figure is a compilation from those presented in their

paper.

Similarly, in [DH00], the author propose to use a 1-hidden layered MLP to predict the

values of the missing pixels in an HR grid for binary images. The setup is similar to

[Pla99] but works on binary input images and give more insight about the limitations

and the relation between the training data and the observed improvment in PSNR. A

similar approach is taken in [GSL00], but adapted for Bayer color images. A MLP

is learned for each colour channel with different selection for the 4 × 4 input patch,

depending on the density of color sensor (2 times more for green than for blue and red).

Later in [ZP02], the authors propose to learn the optimal mapping between LR and HR

residuals. The LR residuals are obtained as the difference between a downsampled inter-

polated LR image and the original LR image while the HR residuals are the difference

between the HR and the LR image. They give detailed results on the Kodak dataset for

×2 SR and compare with [Pla99] and [AGK95] approaches, reporting better results in

terms or PSNR .
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In [Kum03, LFP+07], fuzzy approaches are proposed to account for the context of the

processed patch. On smooth regions, a fixed linear interpolation is performed while an

adaptive neural network predicts the weights of a variable linear interpolation kernel

on non-smooth regions. In this paper, the authors capitalize on Kondo’s method which

clusters data and uses a linear filter for each cluster. They propose to learn a non-linear

filter using MLP instead of a linear one. The input 3 × 3 image patches are classified

according to Adaptive Dynamic Range Coding (ADRC) scheme, which is similar to a

local binary pattern (LBP) one but with an inequality threshold defined by the mean of

the 9 values:

iADRC =





0 if i < iaverage

1 if i > iaverage

(3.16)

instead of the central value for LBP:

iLBP =





0 if i < icentral

1 if i > icentral

(3.17)

They use a larger training database composed of 200, 000 patches in each class, consti-

tuting one of the first large dataset for training a neural network for super-resolution.

Autoencoders With the recent work on autoencoding architectures, different ap-

proaches were proposed to take advantage of autoencoders for SR.

For instance, Restricted Boltzmann Machines (RBM) are used in [GGY13]. Their ap-

proach is strongly related to sparse coding methods. It encodes a dictionary of LR/HR

patch pairs in a RBM and take advantage of the framework to iteratively reconstruct

an HR image as a sparse mixture of the embedded patches, via a sparse activation

of hidden neurons. They obtain similar results to neighbour embedding [CYX04] and

sparse coding [YWHM10] methods but with increased speed and an elegant framework.

RBM are also used in [PE14] to encode a relationship between sparse representations in

overcomplete dictionaries.

[NTA13] makes use of a Deep Belief Network (DBN) to learn the autoencoding of the

DCT coefficients of HR images. Then, from the low-frequency coefficients of a scaled-

up LR image, the network iteratively recovers high-frequency as it is the only kind of

image it has learned to produce/generate. In the image domain, [CCS+14] propose a

Deep Network Cascade (DNC) that gradually upscales an input image, until the desired

resolution has been reached. They employ a non-local self-similarity search to find cross-

scale examples that match with the processed patch, with a back-projection constraint.
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In a similar fashion as [DLHT14], authors from [WYW+15] use an auto-encoding con-

volutional structure. The encoder is composed of several convolutions and the decoder

is a set of “deconvolution” layers, that consist of zero-padded convolutions. They show

that this approach allows to learn more localised filters. This is due to the fact that

borders have to be reconstructed using the available spatial data, and not only the cen-

tre of the processed region. They also perform online adaptation of their model using

data augmentation and fine tuning. Given a single image and a pre-trained model, they

create pairs of low and high resolution patches similarly to the internal learning ap-

proaches. The data is augmented by using slightly higher and lower scaling factors (1.2,

0.8). They demonstrate that content adaptation can further increase the effectiveness

of learning-based approaches.

Neural Network-based sparse coding In [OSS14], the authors propose to use a

CNN to approximate the sparse coding methods. Inspired from the work presented in

[KSB+10], they account for the necessary resampling for resolution change. Instead of

upsampling the original LR image, they upsample the sparse feature maps by adding

a linear upsampling matrix in the formulation of [KSB+10] in the decoder part. The

learning process is done via alternating between Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA [BT09]) to approximate the sparse code and one step of stochastic

gradient descent to update the convolution filters. They show results that improve over

conventional interpolation technique while staying competitively fast, as they only use

8 maps.

In [WLY+15], a sparse coding network is also proposed but taking the bicubic image as

an input. Their network is mimicking the sparse coding approach while using Learned

Iterative Shrinkage-Thresholding Algorithm (LISTA [GL10]) and SGD: a LR patch is

extracted with fine-tuned Haar-like extractors and fed into recurrent LISTA stages that

iteratively approximate a sparse code. Finally, the sparse code is used to recover HR

patches that are reorganised with a last convolutional layer.

Convolutional Neural Networks Convolutional Neural Networks have drown a lot

of attention in the last decade. While several works reported competitive results since

the 90’s [LBBH98], new paradigms in computation, data handling and optimization

algorithms have allowed breakthrough in many signal processing applications, particu-

larly in image processing and computer vision area. These architecture play a major

role in Deep Learning as they allow to extract multi-scale hierarchical features from the

processed signals. While previous work include the use of MLP, we now present recent

advances in SR that take advantage of the modern ANN design.
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Figure 3.6: Standard CNN architecture for SR: the upsampled image (using bicubic
interpolation for instance) is convolved by learned non-linear filters in different lay-
ers, merged to form the final High-resolution image. The illustration is taken from

[DLHT14].

In [JMR+07], authors were the first up to our knowledge to use a CNN approach to

perform super-resolution, called super-sampling restoration in the paper. Their goal is

to use larger images to obtain better segmentation and binarization performance. They

use several filters that are reorganized spatially, and that can be used in the 3D case (2

spatial dimensions and one temporal).

Later in [DLHT14], the authors proposed to use a three-layered convolutional neural

network to perform super-resolution. Starting from the bicubic-interpolated image, they

train the network to predict the grayscale HR image. The network serves as a feature

extractor in the first layer (64×9×9 convolution filters), and maps the features to a HR

space in the second layer (32×1×1 convolution filters). The third output layer acts like

a final mapping between the features and the SR image (1 × 5 × 5 convolution filters).

This elegant framework allows to avoid the choice of features as it learns its own. It can

be further argued that the learned features are dedicated to the specific task of SR. The

reconstruction of the grayscale image also gives the approach a generative flavour as the

whole signal is reconstructed. This aspect is however limited as the input signal is rather

filtered than encoded in the network. The model and the choice of convolution sizes also

compare their approach to a dictionary one with feature extraction, LR-HR mapping

and final averaging and spatial coherency. In [DLHT16] the same authors explore further

configurations where this analogy with dictionary learning is less explicit. They reach

slightly higher scores. Their experiments show that using four layers does not increase

the performances of the network. They also use two different datasets for training their

network. The first one is the same as [YWHM10] (91 images, yielding 24, 800 subimages

of size 33 × 33) ; the second one is a subset of Imagenet [RDS+15] containing 395, 909

images, from which they extract 5 million 33 × 33 subimages. They show that using a

large scale dataset allows to gain over smaller dataset, even though the model does not

hold many parameters.
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In [KLL15a] the authors propose several improvements over SRCNN [DLHT14]. First,

like in [ZP02] they use high-frequency targets and not the whole signal. They also

saturate the back-propagated gradient using gradient clipping to benefit from higher

learning rates while avoiding exploding gradients. They show that better results can be

obtained. They also augment the data to take several scales into account. The results

indicate that a single model can handle several levels of bicubic decimation which is a

form of blind set-up for Super-Resolution.

In parallel, they also proposed a second architecture [KLL15b] in which the multiple lay-

ers of the deep network are replaced with a recursive convolutional layer called inference

network that iteratively refines the predicted maps and gathers more spatial context by

its convolutional nature. As shown in Figure 3.7, the architecture is composed of an

embedding network that projects the input image in a suitable space, followed by the

described inference network. At the end, a Reconstruction network maps the obtained

deep features to the image space. They experiment different strategies to overcome

training difficulty that arise due to the depth and the recursive nature of the network.

They find that a combination of skip-connection (i.e. using intermediate output of the

recurrent layer) allows a better training and good performance.

Figure 3.7: Using a “recursive” layer and “skip-connections” tricks allows to gather
more spatial context with the same number of parameters while using intermediate
representations to predict the final SR image. The illustration is taken from [KLL15b].

In [YFY+16], the authors also propose a deep convolutional architecture that aims

at reconstructing images and edges. The input data is composed of the interpolated

low-resolution image stacked with edge maps, extracted with simple hand-crafted edge

detectors. To account for the fact that desired details to be recovered belong to different

frequency band, they propose to iteratively estimate the higher bands from the lower

ones. This iterative nature is embedded in the network using recurrent layers that

predict residuals of the higher bands.

All the neural based approaches above are trained to minimise a pixel-wise error between

the SR image and the original HR one. This makes the prediction difficult for areas with
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complex spatial statistics. In the following are reported several works seeking to produce

credible high-resolution images by incorporating long-range consistency and high-level

knowledge into the training process.

Perception-based SR Traditional learning-based algorithms being trained to min-

imise the difference with the HR training image are good on structural, highly erroneous

regions such as edges. However, they tend to produce oversmoothed results on regions

that would contain fine-grain details and textures on realistic images. These textures

are too diverse and complex to be learned from pixel-wise error such as MSE with a

high-resolution image. Perception-based SR approaches are a very recent set of meth-

ods that aim to take the visual aspect into account, which is a reasonable angle as human

perception of HR image does not depend on a pixel-wise distance but rather on a large

spatial scale coherency. To expand the example of fine-grain textures, those approaches

would sample a coherent, high-resolution texture (e.g. grass, bricks, skin...) rather than

trying to recover the original texture.

In [BSL16], the authors propose to generate SR image using deep models for feature

extraction, allowing a stronger abstraction towards the data. Two deep structures Φ (x)

and Ψ (y) working on the LR image x and the HR one y are coupled via a L2 norm

on their feature vectors. The first extract a vector of features from the LR space. The

second is trained to extract features from the HR image and exhibits a revertible nature,

allowing to update the input data given a desired output feature vector. This work can

be seen as an interesting alternative to the pixel-wise losses used in [DLHT14], as it

brings general purposes features in the SR game. More precisely, the Ψ network is

either a pre-trained CNN based on the VGG-19 architecture [SZ14] or a wavelet-based

scattering network based on [BM13]. The second network Φ is a 5-layer CNN that is

trained with pairs of LR images xi and corresponding HR features Ψ (yi).

In the same spirit of bringing perceptual knowledge to SR, the authors in [JAFF16]

propose a so-called transform network, and use it for style transfer and Super-Resolution.

The concept is to train a network to reconstruct an image that holds not only good low-

level (pixel-level) aspect but also desirable large scale semantic content. To achieve

this, they use several low and high-level losses functions as depicted in Figure 3.8. The

low-level loss function denoted ℓpixel are classical Euclidean and Total Variation (TV)

ones, which contribute to render images with natural properties and similar to the HR

image (in the case of SR). The high-level loss functions are euclidean-based distances

between higher-level neural features ℓfeat, obtained through deep convolutional neural

networks (VGG16 [SZ14]) trained on large scale recognition datasets. A normalised L2

norm can be computed to translate the difference between two convolution maps, one for
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the training image and on for the reference image. For Super-Resolution, they separate

the use of pixel-wise losses (ℓpixel) and semantic losses (ℓfeat). They also use histogram

matching between the generated SR image and the input LR image as a post-processing

step. The reported results show that the ℓfeat loss yields images with pleasing visual

content: long-term coherency between the texture and objects, sharp and continuous

edges. As expected, it performs less good than pixel-wise trained SRCNN architecture

in term of PSNR and SSIM, which are low-level measures. The ℓpixel loss does not

give competitive performance compared with SRCNN, but is still better than bicubic

upscaling.

Figure 3.8: Perceptual Losses allow to bring cost functions that depend on high-level
representation of the output image in the learning process, instead of the usual pixel-
wise squared error with the high-resolution image. The figure is taken from [JAFF16].

More recently, inspired by recent work on Generative Adversarial Neural Networks

(GANs) [GPAM+14], the authors of [LTH+16] proposed a SR scheme with realistic

rendering. GANs make use of two experts that compete with each other (see Fig-

ure 3.9). For SR, one expert generates a SR image (conditioned to a given LR image),

and another expert classifies it into either a HR natural image or a SR image. The

generative model is a CNN composed of a non-linear convolutional layer, followed by

15 identical residual blocks that advantageously gather more context using a single set

of parameters. Finally, two “deconvolution” layers (i.e. convolution with zero-padding)

allow to reconstruct the SR image. The discriminator is a VGG-like network, that uses

both convolutions and strided convolutions (applied every other position) to reduce the

spatial dimension and outputs a single sigmoidal output that classifies the input image

into a real or a SR image. They propose several losses to address the SR task. As in

[JAFF16], and using the residual architecture from [KLL15b] they first experiment with

low-level loss: the classical MSE is used to train a so-called SRResNet. Second, they

propose a perceptual loss composed of three terms: a VGG loss similar to [JAFF16], an

adversarial loss guided by the output probabilities of the classifier, and a regularization

loss based on total variation of the output SR image that favours smoother solutions

by limiting the spatial intensity changes. The results of the SRResNet have high PSNR
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and SSIM scores but yield oversmoothed images, while the images produced by the

adversarial architecture have highly likely and realistic visual shapes and textures.

Figure 3.9: In the GAN approach proposed in [LTH+16], a generator and a dis-
criminator are competing to respectively produce more and more realistic SR images
and distinguish more and more accurately between SR images and HR images. The
more the discriminator network can tell the difference between the two, the more the
generator network is challenged to produce more confusing (thus realistic) images.

3.4 Domain-specific Super-Resolution

As mentioned in subsection 2.3, SR can broadly be separated into two groups of appli-

cations: general purpose applications for which the goal is to perform well on generic

images, mainly for visual enhancement (see paragraphs 2.3.1 and 2.3.2); and domain-

specific applications (see paragraph 2.3.3), where a strong a priori is assumed on the

content of the image and on the goal is rather to allow a better interpretation – either by

a human or a machine. In this section, the literature of text images SR and facial SR is

reviewed, as some contributions of this thesis address these two domains (see chapters 4

and 5). Low-resolution texts are likely to appear in many situations (distance to the

camera, tiny fonts in a scanned documents, etc.), and improving their resolution can help

human readers or OCR systems that require high resolution input images. Dedicated

SR methods can use priors that are specific to text images (e.g. foreground/background

relationship), or use non-local assumptions such as the presence of repetitive patterns

(characters, words). They are reviewed in the next subsection 3.4.1. Facial (or face)

image SR is also referred to as face hallucination. Indeed, those SR algorithms have

a strong a priori on the presence of a face and can “hallucinate” high-resolution faces
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features (eyes, nose, mouth) inside LR images. Different ways of incorporating these

aspects are reviewed in subsection 3.4.2.

3.4.1 SR of Textual Images

Several works focus on textual images. Different assumption can lead the choice of a

method. Particularly, some methods are developed for document image, i.e. images

obtained with the digitalization of a document (most of the time, black text over a

white background), using different devices (scanner, hand-hold device). Other methods

focus on license plates or other sources of text image such as TV or text “in the wild”.

The interest is not only to produce sharper image but also to increase the readability of

the text. A richer evaluation is therefore possible, associating a pixel-wise measure with

an objective measure – relatively to a chosen OCR system.

With this perspective, many works have been conducted, with an interesting diversity

of approaches that we illustrate in the following. A recent review on text image SR

may also be found in [WDL+16]. In [LKD99], authors propose text image enhance-

ment techniques with a focus on registration and driven by text-specific problematics

(horizontal text, background complexity, resolution). Their approach produces ×2 big-

ger images as they proceed with subpixel registration (using interpolated images). A

more SR-driven method was proposed in [CZ00], authors review the IBP algorithm

and propose two estimators for text image sequences: a Bayesian MAP with a Hu-

ber prior, and a TV-regularized one. They first show that a simple ML estimator has

low robustness when solved by optimization, while IBP performs better thanks to the

choice of back-propagation function. Then, the two proposed regularized approaches

are described and evaluated. They demonstrate higher robustness in producing piece-

wise images (desirable for text image: background and foreground) and finer shaped

letters. Implementation of gradient descent optimization for SR is also well detailed. A

non-linear optimization framework is proposed in [TC00], to address low-resolution doc-

ument image SR. Three “scoring functions” are defined ; namely Bimodal, Smoothness

and Average (BSA) scores. The bimodal score ensures that the pixel intensities exhibit

a foreground (black) / background (white) statistical behaviour, corresponding to text

and background. The smoothness score helps regularizing the spatial coherency and the

average constraint score ensures that the obtained image is compliant with the origi-

nal LR image. The derivatives are analytically obtained for each score, which allows a

tractable iterative resolution. The methods yields better OCR accuracy over a large set

of documents, compared with the spline interpolation. Another approach is presented

in [DM05] where the authors explicitly use a multi-frame Bayesian framework similar
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to [CZ00] but add a text-specific bimodal prior. This prior add a supplementary con-

straint on the image that accounts for the bimodal (foreground/background) nature of

document text images. It is modelled as a bimodal Gaussian distribution, where the two

modes are calculated from the SR estimate using an Expectation-Maximization (EM)

algorithm continuously with the optimization algorithm (gradient descent). They test

several combinations with a Huber smoothness prior on the gradient of the estimated

HR image. The best parameters are manually selected to yield the best SR text image.

Another MISR method proposed in [MTM05] uses the Teager filter [MS01] instead of

a specific prior. This filter allows to extract the high-frequency from the LR images

while being robust to noise. Using image registration based on first order Taylor serie

expansion, they fuse the original LR frames and the HR frames separately, using outlier

frame rejection. The two obtained images are interpolated using linear interpolation and

summed up to for the SR image, which is denoised using a 3× 3 spatial median filter.

Taking another perspective, the authors in [LP07] perform a non-local search to take

profit of the repetitive nature of single text images. As letters are likely to appear

several times under slightly different conditions in LR document images, the non-local

search allows to gather the similar shapes and fuse their small variations to produce

well-shaped SR image. The fusion is performed using a median approach, less sensitive

to outliers, and a different scheme is proposed at pixel level on the HR grid, depending

on the presence of original, fused or unknown pixel values. The approach is followed by

a denoising and deblurring step using total variation. The philosophy is therefore close

to MISR (see section 3.2) and internal learning, non-local approaches (see paragraph

3.3.3.3), but is especially relevant for document images.

Sparse coding has also been applied to single text image SR. In [WDL+13, WDA+14],

the authors use multiple dictionaries to perform SR on document and handwritten text

images. The training patches are first partitioned into C clusters in an unsupervised

fashion using the intelligent K-means algorithm proposed in [Mir05]. Then, a joint

dictionary learning takes place in each cluster. At test time, a input patch is used

to recover the sparse joint representation which is used to reconstruct the HR patch

in each cluster. The cluster leading to the best LR reconstruction is chosen among

all the C clusters [WDL+13] or just the Kna nearest ones [WDA+14] – determined

by the euclidean distance between the input patch and the centroids – for the initial

reconstruction. Then, the overlapping patches are averaged. To avoid artefacts, a IBP

step is performed to ensure HR-LR compatibility, and bilateral filtering is used to remove

ringing artefact while preserving edges. The obtained image are cleaner than other sparse

coding methods and improve readability.
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3.4.2 SR of Facial images

The community working on facial images have developed many SR methods, rather

known as Face Hallucination methods. The term “hallucination” can be understood by

the fact that those methods often have a strong a priori on the content of the image

(“there is a face”, “all faces are aligned”, etc.). Thus, in most methods, the location

of facial components is crucial and faces are often aligned. From there, some “global”

methods consider the whole face while other “local” methods focus on fixed locations

(e.g. on a regular grid) that will more likely contain the same content for each face. The

first ones will capture the relationship between components but require an approach able

to capture all the variations without loosing the particularity (i.e. for face recognition

usage). The second ones have a more concise role but run parallel and independent

SR “Experts” on each location and may miss coherency on the overall face (identity,

luminance and contrasts). They are often regularized to yield a likely global face. Some

other methods are more dynamic and make use of facial components detector to enhance

each component independently. These approaches are more suitable for generic systems

where the faces are potentially not aligned.

3.4.2.1 Global approaches

One of the leading works of the domain was conducted by [BK00], where authors report

performance of several algorithms and propose a novel MAP approach with a prior

based on gradient pyramids, specific to aligned faces. Solving the global MAP image

by gradient descent, they demonstrate the ability of such algorithm to produce high-

resolution images, even though artefacts are present in the final images. The algorithm

is suitable for both single image and multiple-image SR. They also conduct extensive

experiments and comparisons to study the impact of scale factor, noise, warping and

occlusion.

Instead of images pyramids, other approaches use linear projections such as PCA to

capture the global features of the face. A two-step approach is proposed in [LSZ01,

LSF07]: the low-resolution facial images are first projected in a higher resolution space

using a global parametric model, learned by PCA. Then, this first estimate is enhanced

using a local, patch-based non parametric model based on a Markov network. The latter

assumes that overlapping patches form a network that incorporates an internal potential

function (the compatibility function with adjacent patches) and an external one (all the

training patches at this position). Thus, it assumes a good face alignment for both steps.

Results show more coherent SR faces than [BK00]. Similarly in [GBA+03], authors

study two approaches when using super-resolution for Eigenface-based face recognition:
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either computing a SR face from multiple LR observations and then refining it using HR

Eigenface space, or using a linear mapping between LR features and the the Eigenface

domain, that can then be used directly for recognition or reconstruction. This approach

is extended in [PL08] with a local model of facial components and an extended morphable

face model. Instead of PCA, in [YTMH08] the authors associate a global model using

Non-Negative Matrix Factorization (NMF) (proposed in [LS01]) and a local enhancement

using sparse coding, as proposed in [YWMH08]. In [ZFC+15], the authors address

face hallucination using a bichannel CNN. The used data contains several degradations

(Gaussian blur, motion blur) and resolutions. Constrained by the presence of face, the

network learns a 2000 element dictionary to produce 100 × 100 HR faces using a first

channel of fully connected layers. The resulting high-resolution components are fused

with the upscaled input image, predicted with a second channel.

Another recent neural approach is proposed in [ZLLT16], where authors take profit

of a cascaded architecture and high-resolution priors. To address faces “n the wild”,

i.e. not aligned faces, the procedure alternates between a dense mapping of facial high

frequency priors and a high-frequency prediction step, which is added to the previous

low-resolution input. For each step of the cascade, a network is learned.

Some global approaches such as those based on NMF [YTMH08] account for the part

based nature of facial images which are composed of additive and locally independent

parts (hair, eyes, nose, mouth, etc.). Many methods [LSZ01, LSF07, YTMH08, PL08]

also use a local step to enhance the quality of the image. In the next section, Local

approaches are presented, in which this aspect is explicitly exploited.

3.4.2.2 Local approaches

While global approaches aim to project the whole face into useful representation, local

approaches focus on specific parts of the face. Such techniques may still require an

implicit face alignment. For instance, if fixed position are considered, the faces must

have been aligned as well. However, the different parts are not jointly projected into the

same space, but rather processed individually.

A first approach that falls in this group can be found in [CZ01]. The authors use a MAP

approach to fuse LR images with two different priors, based on spatial partitioning

of the face into 6 subspaces. On each subspace, a PCA is performed on the training

set. The FS-MAP (for Face Space-MAP) model gives SR face parts that belong to the

computed PCA subspaces (as the optimization is performed over the PCA coefficients),

and therefore present artefacts at the limit of two subspaces, such as between the nose

and the eyes subspaces. The second relaxed IS-MAP (for Image Space-MAP) model
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rather forces the SR face parts to live near their respective PCA subspace – and thus

benefit from the learned representation of HR sub parts – but are more likely and

artefact-free from a global perspective.

Using on fixed positions, the method presented in [JG08] is based on a tensor representa-

tion of a training database under four dimensions: people, modality (orientations), block

(spatial region of the face) and resolution (pyramidal). Their approaches can therefore

handle different orientations while performing SR. They first synthesise multiple modal-

ities from a single input image, and then perform a local high-frequency enhancement.

They also propose an iterative alignment that increase the quality of the SR faces. The

same idea is exploited in [MZQ10], using fixed positions.

To handle the facial expression change of subjects in videos, the authors of [YB08]

proposed a coarse-to-fine lattice-based alignment followed by a local fusion method.

The deformation model aligns a given LR frame (e.g. containing open mouth and closed

eyes) with a reference LR one (e.g. containing close mouth and open eyes). They

show that the employed multi-frame methods benefit from this and allows to produce

well-shaped HR images.

Finally, a neighbour embedding approach is proposed in [JHH+13]. The authors propose

to refine a SR face by iteratively searching for its nearest neighbour on the HR manifold,

using a constraint on the position of the processed patches i.e. considering local “nose”

or “eye” manifolds. Later in [JHWH14], they extend the method by automatically

learning an intermediate dictionary to have a more precise mapping.

Adaptive and relaxed local approaches In [CS14], the authors propose to use a

facial keypoint feature detector to locate and improve the semantic components (eyes,

eyebrows, nose and mouth). They first improve the resolution using an off-the-shelf SR

algorithm. Then, using the detected facial components, a nearest neighbour search is

done in a collection of high-resolution facial components examples. They fuse the chosen

facial components with the image from the first step and produce high-resolution image.

They propose to use different collection depending on the orientation of the face, as the

appearance of the components change with the orientation of the face.

An extension for video can be found in [CCvBS15] with a consistency check on temporal

domain
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3.5 Conclusion

This literature review demonstrate the variety of methods that can be employed to

perform SR. When a single LR image is available, example-based SISR approaches that

automatically learn the relationship between LR and HR images from example pairs

demonstrate good results. In particular, recent advances on Neural Networks make

those approaches suitable for such task. They can be trained on large amount of data

and process images in a single forward pass that does not require online search (e.g.

for a nearest neighbour) or optimisation processes. However, little work has been made

to combine the power of example-based framework and neural networks to address SR

of specific image types such as text or face images, and evaluate the impact on the

recognition engines that process them.

Contributions of this thesis on text single image SR The existing approaches

in example-based text single image SR are promising, for both image reconstruction and

improvement of automatic text recognition engines. However, there is still an important

gap between the SR images and the HR ones, in both aspects. In this thesis, deep

neural networks are used to produce more accurate SR images in chapter 4, providing

an efficient way to learn specific models for text images. To foster research on such

approach in the context of multimedia indexing, a database of text images extracted

from televisual streams is presented, and the results of the first international competition

on SR are reported and described.

Contributions of this thesis on face single image SR In a multimedia indexing

context, faces are likely to appear with different poses, expression and illumination con-

ditions. Therefore, approaches offering maximum flexibility would be favoured. In chap-

ter 5, we introduce a two-step approach using neural networks. Inspired from [CS14],

the proposed approach addresses face SR for lower resolution images and produces facial

image closer to the original HR faces, and more easily recognisable by an automatic face

recognition engine.

Contributions of this thesis on blind and robust SR The third contribution

in chapter 6 will focus on making neural-based SR system robust to the variety of LR

images, such as those obtained via different devices or under varying conditions. A

very specific literature review is proposed at the beginning of this chapter, and a blind

approach is described, that allows to produce accurate SR images without knowledge of

the observation model.
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4.1 Introduction

At Orange Labs, the MAS (Multimedia content Analysis and technologieS) team have

been addressing the problem of audiovisual content indexation over the last ten years.

Suppose you are given a collection of raw digital files (audio, video, image), without

any indication on their nature or their content. Building services around those data like

browsing, clustering or recommendation requires to extract the semantic content from

them. Those semantic contents are generally keywords or ids, that allow to explore the

media in a supervised (known classes and categories) or unsupervised (keywords without

constrain and unconstrained discovery) way.

Though impressive performance are nowadays reached by automatic systems in Au-

tomatic Speech Recognition (ASR), facial recognition and object recognition, it de-

creases when such systems are applied to a degraded signal, pushing the robustness

limit. In particular for visual content (image and videos), the resolution of the images

is of great importance. Figure 4.1 depicts the performance of an OCR system on the

ULR-TextSISR-2013a [NCGKO14] dataset for different resolutions. To address this, two

strategies may be considered. The first consists in learning to recognize low-resolution

objects. The second is to increase the resolution of the image. Those two approaches

are “dual”, and both include a kind of low-resolution image perception. In this thesis,

we investigate around the second option, that provides a clear framework providing vi-

sual enhancement that can be “plugged” before any pre-existing automatic recognition

engine. We shall consider the recognition engines as fixed black boxes, and study the

evolution of their performance with the image resolution that the proposed methods

allow to produce.

The first type of visual objects we address in this work is text. Natural images and

frames extracted from TV streams often exhibit textual information. A very illustrative

case is TV news, where text can indicate information about the speaker, the program,

places, hour, etc. While useful for the watcher, those informations can also be auto-

matically analysed using and Optical Character Recognition (OCR) engine to extract

keywords associated with the image of the video. This has been addressed in previous

work ([SKHS98, Lie03, EGS11, Ela13]). However, the OCR engines generally make the

assumption that the detected text has sufficient resolution. This hypothesis can turn

wrong in many cases as mentioned before: camera shake, distance to the sensor, low

transmission rate. In those cases, text can still be detected by automatic text detection

methods as they are generally more robust and detect LR texts in images as they ex-

hibit relatively close properties or textures with HR texts. The character recognition,

however, is more difficult as it requires well shaped individual letters.
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Figure 4.1: Variation of the Tesseract OCR performance on the ULR-TextSISR-2013a
[NCGKO14] dataset with various text resolution. The horizontal axis represents factors
of downsampling, compared with the high-resolution text. The texts are resampled at

the HR sampling rate with bicubic interpolation.

The rest of this chapter is organised as follows. The postulate is presented in section 4.2:

how adapting the data and providing a suitable learning framework allows to perform

domain-specific SR. In section 4.3, we present the core of our approach. The results

on the ULR-TextSISR-2013a [NCGKO14] document text image database are reported

and analysed in 4.4. They indicate a clear improvement over previous sparse coding

approaches. To address televisual contents containing text, a dataset was created and

a competition organised for the ICDAR2015 conference. Those works are reported in

section 4.5 and the results are analysed. Finally, a discussion on the specificity of the

learned models is proposed in 4.6. As in other machine learning based application, there

is a trade-off between the performance on a type of text images and the generalisation

to new ones. Conclusive remarks are made in 4.7.

4.2 Domain-Specific SR using Data adaptation

As seen in the literature review (see chapter 3), learning-based methods are able to gener-

ate high-resolution images by capturing the relationship between the LR and HR spaces

during the optimisation process. This may be done by learning the relationship of two

manifolds (see paragraph 3.3.3.1), sparse dictionary learning (see paragraph 3.3.3.2) or

neural networks (see paragraph 3.3.3.4). Although using natural image provides reason-

able approximation of high-resolution images, we are now addressing a domain-specific

SR problem that allows to make the assumption that it has inherent characteristics that

have to be taken into account when proposing a solution.
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As an illustration of this simple assumption, Figure 4.2 presents several histograms of

difference images obtained by subtracting to high-resolution images their low-resolution

and upsampled counterparts. The statistical difference between a natural image dataset

(blue curve) and a text dataset (red curve) can be observed, for 8-bit integer images

in the [0, 255] interval. Text images, due to the presence of stronger gradients, exhibit

more frequent high pixel-wise errors than natural ones, for which smoothness priors are

well suited.
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Figure 4.2: Errors histograms between the HR and interpolation images for natural
(in blue) and textual images (in red), illustrating the different nature of data that may
benefit from data adaptation during learning. The d horizontal axis corresponds to the
pixel-wise intensity difference between high-resolution and interpolated images, and the
y axis corresponds to the rate of occurrence (we plot 10

√
p(d) for a more comprehensive

visualization).

To address the specificity of text images, several strategies exist. A first approach is to

use domain-based knowledge to define heuristics that will help in this particular context.

For text images, several assumption may be suitable. Some approaches capitalize on the

fact that several occurrences of the same letter can be found in a given image, and

consider this as a particular case of multiple image super-resolution at character level

[LP07].

The data-based approach rather consider that the statistical properties of text can be

captured by a learning algorithm if a suitable and adequate dataset is provided. Specific

knowledge can be incorporated like in [WDL+13] where the dataset is composed of

likely text strokes and therefore closed to the first mentioned approach, and is used to

reconstruct all sort of text like ancient glyphs.

The approaches presented in the next section fall in this last example-based category.

Example pairs of LR and HR patches are extracted from textual images, and form a

training set with which a neural network can be trained.
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4.3 Proposed methods for text image Super-Resolution

4.3.1 Method 1: Super-Resolution via Multi-Layer Perceptron

The first method we propose is to use multilayer perceptrons to perform super-resolution.

Although MLP with one hidden layer were used in the past [Pla99, AGK95], we pro-

pose to investigate more advanced and deep architectures, by providing an extended

study on the number of layers and neurons per layer. As seen in the definitions (see

subsection 2.2.2 of chapter 2), simplest interpolation approaches consist in a fixed linear

combination of the input pixel values. However, we can construct more powerful system

that incorporate higher level of knowledge, using the edge information as described in

section 3.3.1 of chapter 3. Statistically, most of the lost information in an interpolated

image is located around edges, and flat regions are reasonably well reconstructed using

basic interpolation techniques. Figure 4.3 shows an example of the difference image,

obtained by subtracting an interpolated LR text image to the original HR one), i.e. the

information that an ideal SR system would reconstruct.

Figure 4.3: Difference image (black for minimum negative values, white for maximum
positive values) obtained by subtracting an interpolated LR text image to the original

HR one.

4.3.1.1 Designing the MLP

Multi-Layer Perceptron (MLP) is a feed-forward neural model that maps the input

values to successive non-linear spaces, represented as neuron activations, until it reaches

an output layer from which useful values can be extracted. The parameters of each

layer are optimised to minimise a cost function over a training dataset. The design of

the network can influence this minimization: along with the number of neurons (the

system parameters), the depth of the network also plays a role. In the case of SR, the

addressed inverse problem is not well-conditioned. Non-linear techniques such as sparse

coding also gave significantly good results, in which the size of the overcomplete sparse

representation is essential. To circumvent the observed limitations of linear regression
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and shallow networks referred in paragraph 3.3.3.4 of chapter 3, we propose to use larger

neural networks, with 2 hidden layers. For a better insight of the role of the number of

neurons per layer, we will also evaluate single-hidden-layered nets.

4.3.1.2 Data representation and formatting

To train the neural network, we adopt a patch-based representation. This is a common

data representation for example-based methods as indicated in the literature review (see

subsection 3.3.3 of chapter 3). We propose to extract low-resolution patches directly from

the available LR image, and predict high-resolution pixels corresponding to the central

LR pixel. This is a similar set-up to [Pla99, AGK95]. For a scale factor of s, we aim to

predict s × s pixels on the high-resolution grid from M × M pixels, as represented on

Figure 4.4.

(a) M ×M LR patch (M = 5) (b) s × s HR target pixels (upscaling
factor s = 2).

Figure 4.4: The proposed method aims to analyse a low-resolution M × M patch,
and predict the s × s high-resolution pixels, that are aligned with the central pixel of

the low-resolution patch.

By doing this, we take the a priori that learning only those central pixels permits to

efficiently focus on the most relevant area of the HR image. This differs from many

methods of the literature that predict a large HR patch and perform a coherency check

on the border. Predicting such a border is of course possible (as done in most of the

sparse coding approaches reviewed in paragraph 3.3.3.2 of chapter 3) but would dedicate

a part of the network parameters to this task. This is not optimal as more weights would

be needed in the neural network, to connect the supplementary dimensions of the output

targets, and to account for the increased complexity of the prediction. Averaging borders

could also lead to more blurry images – although more complex fusion scheme could be

used at the price of another increase in complexity.
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Input patches normalisation We normalise the input patches by subtracting the

central pixel value. This shares the same philosophy as LBP and is coherent with the

fact that we predict the central missing HR pixels, which share the same zone of interest.

While it also removes one dimension (the central LR pixel of the input patch always

equals zero), we keep it for sake of representation simplicity.

Target patches normalisation The low-frequency content of the high-resolution

image is highly correlated with the frequency content of the LR image. Even if dependent

on the LR image formation model (see subsection 2.2.3 of chapter 2), the spectrum can

be decomposed into one low-frequency and one high-frequency components:

IHR = ILF + IHF (4.1)

= (↑ ILR) + IHF (4.2)

where (↑ ILR) is the LR image resampled via interpolation on the HR grid, and IHF is

the residual high frequency that shall be predicted by the network. To avoid propagating

the low-frequency information throughout the network, we propose to target only the

high-frequency as in previous works in Sparse Coding, Regression or Neural Networks

[AGK95, YWHM10, TDG13].

Scaling Although neural networks can use any real valued data, it is preferable to

scale the data so that it shares the same scale as the internal representation used in

the network. For instance, using a tanh activation function give neurons values in the

[−1.0, 1.0] interval, and data normalised to fit this scale is better, to avoid saturation of

the activation functions in the network with small derivatives.

As the central pixel is removed, the pixel values can range from −255 to 255. We scale

the input to ensure that values lie in the [−1.0, 1.0] interval by dividing the normalised

patches by 255. For the target, we allow larger values to be linearly inferred by an

output layer by normalising by a value of two times the variance of the target values,

computed from their histogram.

4.3.1.3 Architecture Selection

In order to have insights on how to design our MLP, we propose to test different ar-

chitectures. The input layer of the MLP is the image patch. Each pixel is a node and

will be connected to the first hidden layer of the network. The output layer is linearly

connected to the last hidden layer of the network (i.e. no activation function is applied
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to the output values). Various non-linear spaces dimensions (number of neurons per

layer N) are studied, with one or two hidden layers (higher number of layers did not

bring better performance). The tested architectures are presented in Table 4.1, where

M2 is the number of input pixels. To avoid ending-up with very high number of weights

Table 4.1: MLP architecture selection criteria

Architecture 1st
layer

2nd
layer

Number of parameters

MLP (L = 1) N1 –
(
M2 + 1

)
×N1 + (N1 + 1)× s2

MLP (L = 2) N1 N2

(
M2 + 1

)
×N1+(N1 + 1)×N2+(N2 + 1)×s2

in the proposed architectures, we limit the depth of the network to two hidden layers.

The experimental results on document images are presented in section 4.4.

4.3.1.4 Model Optimisation

For each proposed architecture, we shall train a MLP using a training set and use a

validation set to monitor the evolution of the learning process. We wish to optimise the

network using stochastic gradient descent (SGD) so that it minimises an Euclidean loss

function over the training set:

Θoptimal = argmin
Θ

∑

i∈Ktrain

‖yi − fΘ (xi) ‖
2
2 (4.3)

where Θ is the set of weights (or parameters) of the MLP, yi is the ith normalised target

patch from the Ktrain training samples, xi is the ith normalised input patch and fΘ is

the network’s non-linear function.

In order to adjust the weights, we will start with a random initialization of the network’s

weights using a zero centered Gaussian with a small variance. A stochastic gradient

descent using standard backpropagation algorithm will then be performed using a fixed

learning rate λ.

4.3.2 Method 2 : Super-Resolution via Convolutional Neural network

The second method involves using Convolutional Neural Networks (CNN) instead of

MLP. We shall keep the same patch representation and normalisation. MLP do not

consider the 2D nature of the input patch and connect each of its pixels to all the

neuron of the first layer. This results in a large number of weights (or parameters) in

the network. CNN allow to reduce this number of parameters by applying the same
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learned convolution filters to the different positions of the input patch. The result of

each convolution corresponds to a feature map, that can be further processed by other

layers. Moreover, the CNN keep track of the 2D nature of the patches throughout the

successive non-linear filters, while the MLP do not have internal 2D representations.

4.3.2.1 CNN design for SR

Convolutional Nets allow to extract a spatially structured representation. At each level

of representation (each layer), local features are expected to be found independently

from their exact location. The resulting feature maps are usually spatially reduced via

pooling (subsampling) layers as the presence of a feature is more important than its

exact location. In our case, where we focus on very low-level characteristics of the LR

image signal, we do not use pooling layers. It would make the final prediction harder to

localise, which is moreover meant to lie on a denser spatial grid. However, this ability

to cascade filters is very interesting as we seek for a non-linear transformation from the

input low-resolution data to the high-resolution data. In the MLP method proposed in

subsection 4.3.1, we saw that the whole spatial information has to be extracted in the

first layer, as it is the only one that has access to the raw 2D data. With a convolutional

network, we can keep track of the 2D nature of the data on a deeper scale, along the

layers. Under this relaxation, we can expect more interesting low-level features to be

captured by a CNN, as non-linear spatial features can be extracted by upper layers as

well.

4.3.2.2 Architecture Selection

Again, we propose to evaluate the impact of the architecture design on the SR perfor-

mance and on the complexity of the model. We still consider the output pixels to be

linearly predicted from the same space. In practice, the CNN is designed to extract fea-

tures in a convolutional manner and map them to the high-resolution space. To simplify

the architecture selection, we adopt a non-fully connected scheme between the first and

the second layer, similar to those proposed in [GD04]. This scheme integrates fosters

two behaviours:

❼ Specialization: each convolution map is connected to two kernels of the second

layer, that learn convolution kernels that are specific to this kind of map.

❼ Fusion: every map of the first layer is connected pair-wise to kernels, that learn

convolutional kernels
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This sparse hand-crafted connection scheme allows to reduce the number of parameters.

Given a number of maps in the first layer of NC1, we end up with NC2 maps in the

second layer:

NC2 = (2×NC1) +

(
NC1!

(NC1 − 2)!2!

)

= NC1
(NC1 + 3)

2
(4.4)

for which we hold ΘC2 parameters (including bias):

ΘC2 = NC1

(
2(1 + f2

C2) + (1 + 2f2
C2)

(NC1 + 3)

2

)
(4.5)

where f2
C2 is the filter’s size.

This is illustrated in Figure 4.5 – (A). The convolutional feature maps are followed by

(a) The convolutional layers with a hand-
crafted sparse connectivity. In blue, con-
nections fostering specialisation; in red,

connections fostering fusion.

(b) Neuron layer connected to the convolu-
tion maps, in 1-to-1 fashion.

Figure 4.5: Connection used between layers in the CNN architecture.

a neuron layer. This can be done in a 1-to-1 fashion (see Figure 4.5 – (B) ), where

the neurons learn spatial feature for each map independently, or in a fully connected

fashion, where all maps are fed in each neuron with a large increase in complexity. We

evaluate the impact of the architecture in the next section, along with the first method

using MLP.
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4.4 Application to document image SR

To evaluate the proposed approach on meaningful data, a dataset proposed for document

image SR is used. This allows to evaluate and compare the performance for image

reconstruction (how close the SR image is from the original HR image), but also for text

recognition (how recognisable the reconstructed text is). Both aspects are studied as

well as the learned neural networks to gain insights on the best architectures.

4.4.1 The ULR-TextSISR-2013a dataset

This dataset was presented in [NCGKO14], where the authors proposes a selective patch

processing scheme when using patch-based approaches. They report reconstruction and

OCR mesurements for several learning-based approaches which can serve as a compar-

ative basis.

Data description The dataset is composed of black text over a white background,

similar to the content present in document images (see Figure 4.6). It contains distinct

training and testing data. The training data is composed of a single line containing

all characters present in the set. The testing data is composed of 5 paragraphs from

the Peter Pan book, containing 13, 428 characters. Each paragraph is generated using

three different font families and two different font sizes, yielding six different images per

paragraph. In addition, the text is composed of a mix of normal, italic and bold font

styles that bring more variety and challenging tasks.

Synthesis According to [NCGKO14], while the test images were generated from a

pdf, the training images are generated using imagemagick 1 for both glyph and image

rendering.

Downsampling For downsampling, the Matlab imresize function is used, with ′bicubic′

option, which corresponds to a bicubic interpolative kernel with antialiasing.

4.4.2 Experimental set-up

Based on the ULR-TextSISR-2013a dataset, we propose convenient changes to the train-

ing data and present the evaluation scheme, similar to the one proposed for the original

dataset.

1http://www.imagemagick.org
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Figure 4.6: Example of a LR and HR image pair extracted from the ULR-textsisr-
2013a dataset [NCGKO14].

4.4.2.1 Training data

In order to have a richer training dataset for our system, we propose to produce train-

ing images using the GIMP 2 software, and using the same procedure as described in

[NCGKO14]. We extract a text from wikipedia and generate it accordingly to the orig-

inal training data.

As proposed, we extract pairs of patches from the low and the high resolution images.

We randomly extract the pairs (1, 000 pairs per image) with a non-zero requirement for

the targets. For a patch to be kept, the absolute sum of the normalised target patch

must be superior to ℓ = 0.01, which accounts for at least one pixel that is non-zero. This

ensures that flat patches are not over-represented in the constructed training set.

4.4.2.2 Evaluation measurement

We use the same measures as [NCGKO14] to evaluate the performances of the different

proposed methods: Mean Squared Error (MSE), Peak Signal to Noise Ration (PSNR)

and OCR accuracy.

2https://www.gimp.org/
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1. MSE reflects the squared difference in gray levels between two images A and B of

dimensions X by Y .

MSE =
1

X × Y

∑

x∈[0,X]

∑

y∈[0,Y ]

(
A (x, y)−B (x, y)

)2

2. Employed in signal processing, PNSR gives a more absolute meaning to the recon-

struction, given the maximum value the signal can reach. It is still closely related

to the MSE.

PSNR = 10× log

(
2552

MSE

)

3. The Structural Similarity differs from the first two measures by taking into account

the structure around each pixel (in a sliding window) and gives a better indication

on the visual quality of the resulting image.

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)(

µ2
x + µ2

y + C1

)
(σ2

x + σ2
x + C2)

The overall score is obtained by averaging the SSIM at each position in the image,

also known as MSSIM.

4. When processing text images we can produce a joint evaluation of both standard

measures and classification, recognition or detection scores. Optical Character

Recognition systems allow to produce an accuracy measure for evaluation. The

Character Error Rate (CRR) is used, which is the Levenstein distance between

recognized characters and ground truth transcription, divided by the total number

of characters. Following the proposal of [NCGKO14], the performance of the

proposed approaches are evaluated using the same tools (Tesseract OCR 3.02 and

UNLV-ISRI accuracy tool).

For a fair comparison, and even if not made explicit in the original paper, the reported

CRR results do not take into account ground truth spacing characters, although includ-

ing the related errors. This means that the accuracy score is calculated using:

CRR =
NErr,chars +NErr,spacing chars

Nchars
(4.6)

The dataset contains N = 13, 428 characters, of which Nspacing chars = 2, 550 are spacing

characters. Note that the authors only take Nspacing chars = 2, 258 spacing characters.
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4.4.3 Results and analysis

4.4.3.1 Quantitative Results

We use the same measurements as in [NCGKO14]: image reconstruction measurements

are accomplished via MSE and PSNR, while the OCR improvement is characterized in

term of CRR.

In Table 4.2, we report the results obtained with a single-hidden layer MLP.

Table 4.2: Performances of a 1 hidden-layered MLP on the ULR-textsisr-2013a test
set, with increasing number of neurons N1.

Config. 1-a 1-b 1-c 1-d 1-e 1-f

N1 10 25 50 100 200 500

Complex. 544 1,354 2,704 5,404 10,804 27,004

PSNR 21.61 22.24 22.59 22.88 22.89 22.68

MSE 21.53 19.99 19.20 18.57 18.54 19.00

SSIM 0.947 0.957 0.959 0.960 0.961 0.956

CRR 89.57 92.20 92.09 92.70 92.53 93.03

From this first experiment, we can see that increasing the number of neurons from the

hidden layer does improve the quality of the predicted SR image. However, the results

seem to saturate between 100 and 500 neurons, where the same order of performance

is obtained. However, we can see that the best accuracy is not reached for the best

performing neural network in term of reconstruction. We comment on this result in

paragraph 4.4.3.2.

In the second experiment which results are reported in Table 4.3, we have two hidden

layers in the MLP. We start from a low number of neurons to compare with the previous

experiment, and choose to increase it progressively in both layers.

We observe a similar behaviour to Table 4.2 with an asymptotic level of performances.

We can already notice that adding a second layer allows to break the asymptotic limit

observed with only one layer. This pleads in favour of deeper networks, and not only

more neurons per layer. This is also corroborated by the fact that deeper 2-hidden-

layered configurations obtain systematically better reconstruction results with an equiv-

alent complexity, i.e. with the same number of degree of freedom. This is the case for

configurations {1− a/2− a}, {1− b/2− b}, {1− e/2− e}.
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Table 4.3: Performances of a 2-layered MLP on the ULR-textsisr-2013a test set, with
increasing number of neurons in the two hidden layers.

Config. 2-a 2-b 2-c 2-d 2-e 2-f 2-g

N1-N2 10-10 10-50 50-50 50-100 50-150 100-150 100-200

Complex. 654 1,254 5,254 8,004 10,754 20,754 26,004

PSNR 22.01 22.67 23.05 23.25 23.63 24.15 24.05

MSE 20.52 19.03 18.20 17.80 17.05 16.03 16.23

SSIM 0.9478 0.9601 0.9625 0.9649 0.9695 0.9748 0.9727

CRR 91.97 93.28 92.85 93.73 93.82 94.69 94.44

The third experiment concerns the proposed CNN configuration. Recall that it holds 3

non-linear layers, 2 of which are convolutional with a sparse connectivity and “one-to-

one” connected layers. This allows to limit the number of weights while having a deeper

network, and keeping the spatial convolution practical aspect that allows to generate

directly the output image. These results in Table 4.4 show the pertinence of neural

Table 4.4: Performances of different ConvNet configurations on the ULR-textsisr-
2013a test set.

Config. 3-a 3-b 3-c 3-d 3-e 3-f 3-g 3-h 3-i 3-j

C1 2 4 8 12 16 20 24 28 32 40

Complex. 185 498 1,520 3,070 5,148 7,754 10,888 14,550 18,740 28,704

PSNR (dB) 20.49 21.59 22.89 23.25 23.88 23.79 24.18 24.16 24.55 24.48

MSE 24.36 21.51 18.48 17.74 16.47 16.67 15.91 15.95 15.27 15.39

SSIM 0.918 0.946 0.956 0.958 0.962 0.964 0.968 0.969 0.963 0.972

CRR (%) 90.35 90.70 93.35 95.08 95.23 95.10 95.49 96.09 96.42 96.13

networks for the SR regression task. As shown in Figure 4.7, all the configuration reach

better reconstruction than bicubic interpolation and the reported results of [NCGKO14].

Moreover, configurations using deeper networks (MLP with two hidden layers or CNN)

lead to improved recognition.

The performance observed with the CNN configurations is superior to the one observed

in the MLP. First, the efficiency is increased as we obtain better results in both recon-

struction and OCR accuracy for the same number of parameters (see {2− f/3− i} for

instance). Second, we obtain unreached results in term of accuracy and reconstruction.

Training and Convergence We chose high learning rates without observing diver-

gent behaviour, and lowering it did not result in better convergence. This is mainly
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Figure 4.7: Obtained results for the various tested architectures. The depth of the
networks matters as the MLP with two hidden layers outperforms the shallow one with
a single hidden layer, for equivalent number of parameters. The use of CNN further
improve the results. The previous results obtained in [NCGKO14] are outperformed by

the deep networks.

due to the architecture of the network and the adaptive learning rates depending on the

number of units. We also used low momentum values (0.2) that allow more dynamics

in the learning procedure from a sample to another.

Figure 4.8 represents the evolution of the objective function on the training data for the

different models, which is adequate with the obtained score.
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(a) Mean Squarred Error loss evolution during training, for MLP architectures with
one hidden layer.
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(b) Mean Squarred Error loss evolution during training, for MLP architectures with
two hidden layer.
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(c) Mean Squarred Error loss evolution during training, for CNN architectures.

Figure 4.8: Evolution of the cost function during the training. Deep architectures
(B and C) allow to decrease the cost function compared with the shallow one (A). The
learning also benefits from an increase in the number of parameters for each architecture

category.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI083/these.pdf 
© [C. Peyrard], [2017], INSA Lyon, tous droits réservés



Chapter 4. Text Single Image Super-Resolution 72

4.4.3.2 Qualitative and OCR-based evaluation of the obtained SR images

To better understand the relationship between the pixel-level differences measures by

the classical PSNR/MSE/SSIM, we can take a closer look at the obtained SR images.

Moreover, even if there is a trend of obtaining better OCR accuracy when better re-

construction is reached, this is not always true, as shown in Table 4.2 where the best

OCR accuracy is reached for the third-best reconstruction performance (PSNR/MSE).

We propose a deeper analysis in the next paragraphs.

Qualitative & visual analysis We can already focus on the visual reconstruction of

the SR images and compare them with the LR and the ideal HR ones. Figures 4.9 and

4.10 show those differences for two cases that constitute the most obvious characteristics

that are seen with bare eyes.

The cases of rare letter association is interesting. For complex situation, the network

seems to give an average answer, as depicted for the “ok” transition in word “looked”,

printed in Figure 4.11.

A third interesting case is the font family which is not present in the training set: we

notice different behaviour. A first result is that simple structures are still well recon-

structed, and the blurry effects are removed. At this scale, the result can be expected as

edges are almost similar. Another noticeable behaviour is the “hallucination” of letters,

such as the “e” letter in Figure 4.12.

We also observe noise around letters. This is due to a response of the network to the

stimuli contained in the retina, although the central pixel would not need correction.

Along with that, a “phantom” noise sometimes appears in the white background, where

a tiny residual value is added to the white images. The visual analysis can be enriched

by the per-letter accuracy that shows where the different models take their respective

advantages. Note that the spacing characters can account in the final result, because a

missed spacing character is still added to the error counter.

OCR performance analysis Throughout this study, we used the accsum tool3 that

gives very precise reports and statistics about the errors between the groundtruth

and the obtained OCR results. They include analysis by class of character: Spacing

Characters,Special Symbols,Digits,Uppercase Letters,Lowercase Letters, but

also a detailed representation of the largest edit distances used to compute the final score.

3Originally developed by UNLV/ISRI [RN96] and available at https://github.com/eddieantonio/isri-
ocr-evaluation-tools
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(a) Bicubic

(b) MLP

(c) CNN

(d) HR

Figure 4.9: Results for the Arial, 10pt text for Bicubic interpolation, MLP, CNN.
The proposed SR mehods allow to reduce blur artefact and ambiguous patterns such

as inter character spaces or fine dots.
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(a) Bicubic

(b) MLP

(c) CNN

(d) HR

Figure 4.10: Results for the Times, 10pt font for Bicubic interpolation, MLP, CNN.
More artefacts are noticeable as the font is more complex (mixed low-resolution strokes,

serif).
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(a) Bicubic (b) CNN

Figure 4.11: A complex case where the transition is not well corrected: the strokes
of the “k” letter are not well reconstructed while similar to the “l”, and the “o” seems

deformed by the presence of the complex structure of its ambiguous neighbour.

(a) Bicubic (b) MLP (c) CNN (d) HR

Figure 4.12: For the Courier font that is not present in the training dataset, some
strokes such as vertical and horizontal edges are well reconstructed, while others seem
“hallucinated” in different ways. Here, the “e” letter is well predicted from the MLP
model while poorly inferred by the CNN mode, which seems to draw ambiguous pixels

instead of a straight horizontal stroke.

As mentioned in paragraph 4.4.2.2, we adopted the evaluation protocol of [NCGKO14],

where we do not take into account white-spacing character. This is a pertinent choice

as they tend to be well classified by the OCR even using a simple interpolation.

Table 4.5 shows the overall performance per class. We propose to focus on different

points:

❼ Successfully reconstructed letters i.e. the letters that benefit most from

super-resolution, compared with interpolation

❼ Increased error rates the “hardest” letters to be reconstructed

❼ Surpassing the high-resolution images – when the SR images give better

results than the HR ones.

Punctuation marks As many marks occur for only few pixels in the low-resolution

image, they can end up being ambiguous after SR. Specifically, comas are the marks

that suffer most from the low-resolution, and seem to be often classified as points by

the OCR. Both MLP and CNN based SR systems seem to reconstruct better those

characters, and CNN is especially good for commas (−14 errors / + 7.78%). However,

none of them achieve to get closer to the high-resolution performances (only five missed

comma by the OCR on the HR data).
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Table 4.5: Comparative analysis of the OCR results obtained with the best MLP and
CNN configurations, with bicubic and groundtruth, high-resolution.

Bicubic MLP (config 2-f) CNN (config 3-i) HR

Count Character Missed Right Missed Right Missed Right Missed Right
6 ! 4 33.33 2 66.67 1 83.33 1 83.33
12 ” 6 50 1 91.67 1 91.67 0 100
12 ’ 5 58.33 2 83.33 3 75 0 100
180 , 66 63.33 63 65 49 72.78 5 97.22
6 - 1 83.33 0 100 0 100 0 100

150 . 30 80 9 94 10 93.33 6 96
6 1 1 83.33 2 66.67 0 100 0 100
6 4 1 83.33 2 66.67 0 100 0 100
6 : 0 100 0 100 0 100 0 100
12 ; 6 50 4 66.67 3 75 1 91.67
6 A 0 100 0 100 0 100 0 100
6 B 0 100 0 100 0 100 0 100
36 D 0 100 0 100 0 100 0 100
6 E 2 66.67 0 100 0 100 0 100
24 H 0 100 0 100 0 100 0 100
12 I 0 100 0 100 0 100 0 100
36 M 5 86.11 3 91.67 4 88.89 0 100
6 N 0 100 0 100 0 100 0 100
24 O 8 66.67 3 87.5 3 87.5 2 91.67
12 S 1 91.67 0 100 0 100 0 100
30 T 1 96.67 0 100 0 100 0 100
36 W 10 72.22 3 91.67 1 97.22 1 97.22
6 Y 0 100 0 100 0 100 0 100
6 [ 0 100 0 100 0 100 0 100
6 ] 1 83.33 0 100 0 100 0 100

738 a 48 93.5 18 97.56 12 98.37 6 99.19
144 b 1 99.31 5 96.53 0 100 1 99.31
234 c 22 90.6 9 96.15 6 97.44 0 100
396 d 20 94.95 26 93.43 10 97.47 3 99.24
1338 e 68 94.92 27 97.98 1 99.93 0 100
162 f 33 79.63 9 94.44 13 91.98 6 96.3
222 g 4 98.2 2 99.1 0 100 0 100
744 h 44 94.09 28 96.24 20 97.31 0 100
528 i 77 85.42 15 97.16 19 96.4 5 99.05
6 j 0 100 0 100 0 100 0 100

132 k 1 99.24 4 96.97 6 95.45 4 96.97
354 l 31 91.24 8 97.74 2 99.44 0 100
252 m 17 93.25 5 98.02 1 99.6 0 100
738 n 48 93.5 41 94.44 12 98.37 13 98.24
792 o 41 94.82 50 93.69 14 98.23 37 95.33
204 p 6 97.06 1 99.51 0 100 0 100
6 q 0 100 0 100 0 100 0 100

606 r 58 90.43 18 97.03 16 97.36 6 99.01
660 s 40 93.94 24 96.36 21 96.82 3 99.55
882 t 99 88.78 55 93.76 32 96.37 6 99.32
336 u 18 94.64 13 96.13 9 97.32 2 99.4
90 v 11 87.78 4 95.56 2 97.78 0 100
372 w 24 93.55 16 95.7 7 98.12 12 96.77
36 x 1 97.22 0 100 0 100 0 100
246 y 16 93.5 15 93.9 13 94.72 1 99.59
12 z 2 83.33 4 66.67 3 75 2 83.33
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Successfully reconstructed letters We propose to focus on letters for which the

amount of missed (misrecognised) characters drops by half compared with bicubic in-

terpolation. With that criterion, we can note that for both systems, the largest benefits

goes to the letters (E,W,a,c, e, f, g, i, l, m, p, r, v) for the MLP, and let-

ters (E, W, a, c, d, e, f, h, i, l, m, n, o, p, r, t, u, v, w) for the CNN,

highlighting the higher performances of the CNN models.

Increased error rates Contrary to the previous observations, some letters do not

benefit from the increase in resolution and high-frequencies provided by the SR models.

On such letters, the bicubic interpolation obtains better per-letter recognition scores.

This is noticeable for letters (k, o, z).

Surpassing the high-resolution images Occasionally, we can observe the case

where the Super-Resolution outperforms the HR images. This is the case for letters

(b, w, n) where the CNN has higher recognition score. This is of course not gener-

alised in our case. Moreover, as for the previous remarks, the internal dynamics of the

OCR can also play a role (language model), and it may be dangerous to extrapolate on

the statistics of isolated letters. However, this confirms the interest of learning-based

super-resolution for recognition task and indicates that the learning-based approach may

overtake the groundtruth results and benefit from the large amount of examples it has

seen to propose effective solutions.

4.4.3.3 Analysis of the learned networks

The power of neural approaches is to learn and perform end-to-end tasks. In SR, hand

crafted features are often used and sometimes associated with dimensionality reduction

methods, before being mapped to the HR space. Here, we simultaneously learn feature

extractors (first layers of neural connections), the mapping and the reconstruction of the

HR high-frequency. Although understanding the contribution of each component of a

deep neural network is tricky and a research subject in itself, we can look at some parts

to make reasonable assumptions. Notably, we can examine the learned filters, closest

from the input data. We can also analyse the low-level contribution of some cells in the

network.

Learned filters Observing the learned filters, we can notice that some of them behave

like simple feature extractor (derivative filters a9, c9, with blue borders in Figure 4.13),

close from classical hand-crafted ones and produce densely activated maps. For instance,
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the four filters (a1 − 4, with green border in Figure 4.13) with higher variance for the

MLP are close to diagonal edges extractor , while others such (a10, b1, b3, b7 with orange

border in Figure 4.13) have vertical or horizontal aspects.

Figure 4.13: 9 × 9 weights learned by the first layer of the best MLP architecture,
ordered by variance. Some of them exhibit comprehensive aspects, such as vertical

(orange) and diagonal (green) edge extractors, or derivative filters (blue).

For the CNN, the filters are smaller as the patches are spatially processed by different

layers. While several filters with very low variance appear to be learned by the MLP, the

CNN filters result in simpler ones and more balanced variance. The CNN relaxes the

capture of complex spatial patterns as the forward layers can associate the non-linear

response of the first layer.

Apart from the mentioned filters, we can see that some others are less obvious to explain.

However, as the performance of the network increase with the number of filters, we can
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Figure 4.14: 5 × 5 filters of the first convolutional layer learned by the best CNN
architecture; ordered by variance.

deduce that the network relies on such filters, even if they have less interpretable role.

In the next paragraph, we visualise the latent maps to gain insights on the internal

processing of the neural networks.

4.4.3.4 Optimisation of the proposed architecture

Normalisation scheme simplification for faster convolutional processing The

normalisation scheme chosen for this experiment is patch-based, and is non-trivial to

perform on a full image. The usual schemes (local or global) perform a normalisa-

tion on the whole image before treating it via a convolutional neural network. In

[DLHT14, DLHT16], the authors do not perform any normalisation of the input and

the output. Here, keeping the benefits of the residual targets at output, we evaluate

the performance of the network on non-normalised input. The obtained results are re-

ported in Figure 4.19, and show similar performance. The training time is also similar

and indicate that the convolutive nature of the first layer can get rid of the steady low-

frequency contained in the input patch. While the initial normalisation is patch-based

(i.e. each patch is processed independently, with overlap), this optimisation allows to

visualise the full activation maps on a given image, and have some visual clues on the

behaviour of the network. The first and second layers appear to act as dense non-linear

feature extractors. While the first layer sticks with interpretable features, it is much

harder to predict how the informations may benefit to the final prediction. The last

non-linear layer contains more “simple” activations maps. Each map appear to have a

spatial role and the activation function seems to saturate each position in most cases.

The contribution of each map to the final output (i.e. the learned weights of the last

layer) is displayed in Figure 4.17, and can be seen as overcomplete subpixel basis that

are summed up according to the activated maps to form the output image.
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Figure 4.15: Internal activations of the CNN for a text image. While the latent
maps have complex appearance corresponding to the spatial neural activation, the last
layer exhibits the attributes of the HR-bicubic difference, accordingly to the training

objective.

(a) Activation maps in the first layer (b) Some activation maps in the second
layer

Figure 4.16: Activation maps from the first (A) and the second (B) layers of the
network, for an input image composed of a line of text. The first layer maps (A) have
interpretable appearances as they are similar to high-pass filtered images. The second
layer maps exhibit more complex spatial behaviour as they are a non-linear combination

of the first ones.

Spatially, most of the maps are densely activated. However, some of them have a
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Figure 4.17: Basis weights (learned) of the linear output layer. Each 2×2 output patch
is a linear combination of these basis, weighted by their respective neuron activation.

more sparse or specialised behaviour, only on specific position such as stroke ends (Fig-

ure 4.18a), or small horizontal strokes (Figure 4.18b).

(a) Example of maps activated on stroke ends.

(b) Example of maps activated on small edge strokes.

Figure 4.18: Various observations in the final layer activation maps.

Architecture vs. Equivalence in the number of free parameters The best

performing network is obtained for about 18k parameters (18, 740 exactly). It is however

difficult to evaluate the impact of the architectural variations on the performances of the

system. To evaluate this, we use a similar architecture as configuration 3-c of Table 4.4

but with a fully connected layer as the third layer (instead of one-to-one connections).

This gives the same order of parameter (18, 548).

On Figure 4.19, we observe a slight drop in accuracy, but within the same order of

accuracy for OCR performance (−0.5 points, 95.96 instead of 96.42). Additionally,

due to a slight correction in the example selection, the PSNR score is superior as no

“phantom noise” is present (25.88dB, versus 24.55dB for the best configuration 3-i in

Table 4.4).

What is also lost in this configuration is a high dimensional space before the linear

output layer. We see a trade between compactness configuration and speed. However,
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Figure 4.19: Results obtained with a more compact architecture, with equivalent
number of parameters. Similar performance is obtained for recognition, and a better
PSNR is obtained with cleaner images due the absence of the observed phantom noise

(see 4.4.3.2).

as many weights of the last layer were close to zero, a reduced space seems convenient.

In the following, we shall use it for complementary experiments.

4.4.3.5 Complementary results

To analyse the compromise between the convergence speed (that depends on the quantity

of data for a same number of training epoch over the whole training set) and the accuracy.

As shown before, the training time is reasonable, using high learning rates (10−3). In a

first time, we focus on the impact of a rough quantity of data (and thus the diversity).

In a second time, we analyse how the pruning strategy may be further improved over

the simple scheme of removing non-flat targets.

Influence of the number of training samples Recall that we randomly extracted

120, 000 pairs of patches from the training images during the experiments. We now

analyse how the number of training samples can impact the learning procedure. We

shall reuse the configuration proposed in 4.4.3.4 as it is more compact. We propose to

train randomly initialized network with 4 different numbers of patches: 1, 2k, 12k, 120k,

1, 200k. As depicted on Figure 4.20, training with more samples gives better results

on the ULR-textsisr-2013a test set. This allows us to reach unprecedented scores in

both accuracy and reconstruction measures for the highest number of samples (96.71%

and 26.85 dB). However, lowering the number of samples decreases dramatically the

performances, even if we observe rapidly an increase in the scores, compared with bicubic.
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The training time is linearly increased with the number of training samples, e.g. takes

0.26 seconds per epoch for 1, 200 samples, vs 2 minutes and 20 seconds for 1, 200k

samples, on a i5 M520 CPU with 4 cores.
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Figure 4.20: PSNR and OCR accuracy improvement over quantity of training data
(plotted on a log-scale). The networks benefits from more training samples.

Complementary results using original training data A closer look into the ULR-

textsisr-2013a dataset indicates that there is a lack of compliance between the generated

images for training and testing. Indeed, it seems that the anti-aliasing process used for

producing the high-resolution test images (from a PDF document) is different from the

one used for producing the high-resolution training images (using imagemagick). We

end up with images that are more similar to the testing images, even if differences are

still observable : subpixel shifts are present and impact the anti-aliased rendering, letter

spacing is less accurate than the original training data, and An example of the observed

difference is displayed on Figure 4.21.

To see how this impact the results, we train the previous used architecture in similar

conditions (120,000 training samples) on this training data. This also allows a complete

and fair comparison with the results reported in [NCGKO14]. We observe a degradation

of the results. Even though the observation model is the same, the difference in HR

images produce more ambiguous strokes. As we observed that using ten times more

data helped us to improve the score with the proposed training data, we also train a

network with 1, 200, 000 training samples. Using this “data trick”, we get closer to the

expected results (see Figure 4.22), and still achieve significant improvement over the

results reported in [NCGKO14].

Apart from the high-resolution, the other factor that likely affects the results is the

difference letter occurences. The provided training images contain all possible characters

and pairs of characters. First, it is quite hard to gather all the strokes present in those

images using a random patch selection. Second, these generated images do not reflect

the statistical reality of the English language as the letters appear independently of their
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(a) Bold Arial font letters in the original training set.

(b) Bold Arial font in the proposed training set.

(c) Bold Arial font in the original testing set.

Figure 4.21: Example of the differences between high-resolution images in the training
and testing datasets, due to the underlying antialiasing process when synthesising the
high-resolution letters. While still not exactly the same (different letter spacing, aliasing
and subpixel shifts), the process we used produces similar images to the test images.
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Figure 4.22: Results obtained with original data (using the compact architecture),
we observe competitive results but a decrease in accuracy due to a less precise stroke

reconstruction coming from the difference outlined in 4.4.3.5
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actual appearance probability. Using english text probably serve us as the training text

images share the same letter statistics with the test text images.
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4.5 Super-resolution of TV-based textual content

The proposed approach have been so far tested on a very specific document image

set, that do not reflect all the type of texts that can be found in other contexts. For

multimedia indexation, text can be found with a lot more variability of fonts, colours,

shapes, orientation than the one present in this first study. In this section, the creation

of a dataset with text contained in TV streams is presented. The organisation and

the results of the first international competition on text single image SR based on this

dataset are reported and analysed, and compared with the approach proposed in section

4.4.

4.5.1 Motivation

Televisual contents are very rich and diverse, ranging from cinematographic productions

to live news broadcasting. With the increasing quantity of programs and the new op-

portunity for broadcasting brought by the Internet, a need for indexing such content in

order to be able to browse inside it has risen. Along with speech analysis and recogni-

tion, facial identification or clustering, detecting and recognizing text embedded in the

video may be a precious source of information on the semantic content of the video.

In news broadcasting, it may provide information about language, identity, geography,

subjects, keywords or time.

However, in many situations such textual information may be of poor resolution. While

HD streams are now common on broadcast television, they may contain many ama-

teur videos taken with non-professional equipment (phones, webcam, hand-held devices)

which have reduced resolution or quality. Such streams can also be shared or reproduced

in reduced resolution over the Internet. Moreover, distant scene text can still be chal-

lenging to exploit even in from HR sources.

4.5.2 Creation of the ICDAR2015-TextSR dataset

The only dataset for single text image super-resolution was the one used in this first part

of our work from section 4.3. In order to propose a new SR evaluation framework, and

adequate images for the context of low-resolution televisual text content, we proposed a

new publicly available database4. The main criteria we established were:

❼ Relevant nature of images, from real-world use case,

4https://liris.cnrs.fr/icdar-sr2015
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❼ Challenging text size, fonts and backgrounds,

❼ Double evaluation scheme with available high-resolution images for reconstruction

measures and text annotation for OCR accuracy performance evaluation.

The protocol is presented in the following paragraphs.

Video selection and text image extraction We extracted the text images from

French TV HD video streams, in 5 different channels, on various types of TV shows (news

reports, sport, investigation, entertainment, advertisement). The text was detected

using a similar approach to [DG08] and a draft recognition was performed automatically

using [EGMS14] to prepare annotation. We also added non-detected text manually and

removed poor samples with poor quality. We cropped the text according to the bounding

boxes generated by the detector, and adjusted it when necessary to fit integer multiples

of the different downsampling factors. Examples of such obtained text images are shown

in Figure 4.23.

Figure 4.23: Examples of cropped text from HD TV streams proposed in the
ICDAR2015-TextSR dataset.

Low-resolution images generation To generate the low-resolution images, we chose

to use Matlab’s imresize function, with bicubic option, which applies an anti-aliased

bicubic kernel for resampling factor inferior to 1.0. This method was found to be the

Figure 4.24: Annotation software developed at Orange Labs, used to annotate the
dataset.
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Figure 4.25: Different resolution (top: LR, middle: SD, bottom: HD) for three types
of images. Left: a simple example with white text over a dark background, center:
complex background, right: severely degraded image. For reading purpose, all images

in this figure are upscaled to the same size. Better seen in digital form.

Table 4.6: Number of images and characters per set.

Number of images Number of characters

Train 567 12,565

Test 141 2,929

All 708 15,494

most representative to mimic the downsampling process in MPEG videos. We started

from the HD resolution images (called HD images) and downsampled them by factors

of 2 (SD images) and 4 (LR images). From a video standard perspective, SD images

roughly correspond to SD resolution and LR images to CIF resolution.

Ground truth Two types of ground truth are available. The first one is the high

resolution reference frames, which is the standard to evaluate SR methods: SR images

are compared with the original ideal HR image, which gives a reconstruction error, that

can be expressed in terms of pixel-wise or more advanced measures (see 4.5.3.1). The

second one is text annotation: since images contain text, each of them was manually

annotated, based on the draft automatic annotation (see 4.5.2).

Train and test The dataset is divided into two subsets: a training and a test set.

Each of them was randomly sampled from the whole set, with a 80/20 ratio, resulting

respectively in 567 and 141 images, for 12,565 and 2,929 characters (see table 4.6).

4.5.3 ICDAR2015 Competition on Text Image Super-Resolution

Competitions are common in many conferences, and allow to foster research on specific

subject, share datasets and provide common ground for evaluation. In particular, the
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International Conference on Document Analysis and Recognition (ICDAR) takes place

every other year, and hosts many competitions since its creation (e.g. robust reading

[KGBN+15]). However, no conference had seen a SR competition in the past, on any

kind of images. In order to promote SR approaches to the document community and,

the other way around, specific applications such as text image to the SR community, we

proposed a competition based on the dataset described in the previous subsection 4.5.2.

For this first competition, participants were only required to produce ×2 super-resolved

images (SR images) from a set of LR images, to recover SD images. During the com-

petition, participants had access to the fully annotated training set, and only to the

low-resolution images of the test set, without annotation. The full dataset was made

available after the competition, which contains all the images data (HD, SD and LR).

The perspective is to provide data to address higher upscaling factors.

4.5.3.1 Evaluation procedure

As previously, the SR results are evaluated using two different kinds of measures: re-

construction measures and OCR accuracy score.

Reconstruction measures The PSNR, RMSE and MSSIM measures (see previous

section, paragraph 4.4.2.2) were used to evaluate how close from the original images the

SR ones are.

OCR accuracy score The Character Recognition Rate (CRR) was used to determine

the OCR score of the different images, and evaluate the impact of the proposed SR

approaches on the Tesseract OCR 3.025 system.

4.5.3.2 Competitors proposed methods and results

Seven teams registered for the competition. A total of four sets of results were received,

from three different teams. A description is given for each of them.

ASRS - Wahla et al. The ASRS system [WDL+15] (Adaptive Sparse Representation

Selection based system) was submitted by RimWalha, Fadoua Drira, Franck Lebourgeois

and Adel M. Alimi, as a result of a collaborative work between the REGIM laboratory

(ENIS, Tunisia) and the LIRIS laboratory (INSA-Lyon, France). Sparse coding is the

5https://code.google.com/p/tesseract-ocr/
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core technique of the ASRS system proposed to enhance the spatial resolution of textual

images. The underlying idea of this technique is to represent an image patch as a sparse

linear combination of elements from a suitably chosen dictionary. Motivated by the key

role of the dictionary in sparse coding, the proposed resolution enhancement system

is based on the use of multiple learned dictionaries and is adapted to the specificities

of writing patterns. More precisely, it includes two phases: the learning phase and

the reconstruction phase. The key idea of the first phase is to find more appropriate

dictionaries adapted to the particular specificities of characters and learned from a well-

clustered training LR/HR patch-pair database. To improve the unsupervised clustering

of this database, an intelligent clustering method is applied and a new local feature

descriptor, referred to as Histogram of Structure Tensors (HoST), is introduced making

it possible to capture the local information of an image patch [WDL+15]. Via the

proposed descriptor, the clustering performance is improved and the learning phase

can provide more appropriate dictionaries representing each cluster. Given multiple

learned dictionaries, a reconstruction phase is designed in order to adaptively select the

appropriate dictionary that is useful for improved recovery of each local patch.

SRCNN - Dong et al. The SRCNN system [DLHT14] (Super-Resolution Convolu-

tional Neural Network) was submitted by Chao Dong, Ximei Zhu, Yubin Deng, Chen

Change Loy, and Yu Qiao from the Shenzhen Institutes of Advanced Technology Chi-

nese Academy of Sciences, the Chinese University of Hong Kong (SIAT-CUHK). The

method trains an end-to-end convolutional neural network, as described in [DLHT14].

It obtains state-of-the-art performances in natural images. The network takes the low-

resolution image (after interpolation and padding) as the input and directly output the

high-resolution one. According to the stochastic properties of text images, the authors

propose a four-layer network and investigate different network designs (e.g., filter size).

They also conduct model combination to further improve the performance.

The proposed network contains four convolutional layers. This ith layer contains ni fil-

ters of support fi×fi×n(i−1), where i = 1, 2, 3, 4 and n0 = 1. The max(0, x) function is

chosen as the activation function in the first three layers. The basic parameter settings

are f1 = 9, f2 = 7, f3 = 1, f4 = 5, n1 = 64, n2 = 32, n3 = 16, denoted as 9− 7− 1− 5.

Authors have also investigated structures 9 − 7 − 3 − 5, 9 − 7 − 5 − 5, 9 − 5 − 5 − 5,

11− 9− 7− 5, 11− 9− 9− 5, 13− 11− 9− 5 and 15− 13− 11− 5. 30 image pairs are

selected from the provided training set for validation, and the rest 537 image pairs for

training. All low-resolution images are upscaled by a factor of 2 using bicubic interpo-

lation in advance. 156,941 18x18 sub-images are cropped from the 537 image pairs as

the training set. All networks are trained with 5,000 iterations.

Authors found that combining the outputs of different networks can largely improve the
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performance. In total, they have successfully trained 11 networks of different structures

or initialization parameters. They use a greedy search to find the best model combi-

nation. First, they find the model that achieves the highest PSNR on the evaluation

set. Then, they combine its results with that of another model from 11 networks. The

combination with highest PSNR is saved as the best 2-model combination. Similarly,

they can identify the best 3 20-model combination. At last, they choose the best one

as their final submission. Two results were submitted: the first one with the best OCR

score, and the second one with the best reconstruction score, based on the validation

subset. The same evaluation is conducted with the OCR score. This leads to 2 sets

of results, one favouring the reconstruction score and a second one favouring the OCR

accuracy score.

Synchromedia Lab - Farrahi et al. The proposed system [MC10] was submitted

by Reza Farrahi Moghaddam and Mohamed Cheriet from the Synchromedia Lab, ETS,

University of Quebec. The proposed super-resolution method for text images is a gen-

eralization of the in-house super-resolution method developed for natural images, as

described in [MC10]. The method is built on top of three main components, among

other ones. The first component is the grid-based multi-scale approach to modelling in

development of a multi-scale binarization method. It is worth mentioning that the grid-

based approach is general and can be used in any type of modellingg. This approach was

used here in order to build a fast and multi-scale solution to super-resolution problem.

The second component is inpainting of undecided pixels. Finally, the third component

is a deblurring step using specially-designed point spread functions. In addition, other

processes are considered in order to control and contain the level of blur even before

the deblurring step. Furthermore, other binarization, segmentation, and text detection

techniques are used in order to adapt the method to text and non-text regions. Training

and model selection was performed for almost all the processes involved in the proposed

method in order to adapt them to the dataset provided in the competition.

4.5.3.3 Baseline Methods

To provide a full comparison basis, we proposed some results using basic upscaling

methods and publicly available approaches to SR among the best in the state-of-the-art,

that take advantage of training data.

Interpolation Methods Upscaling or interpolation methods are just ways to add

intermediate discrete values computed as a weighted combination of a neighbourhood,

and do not add any prior knowledge necessary to overcome the SR ill-posed problem but
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their simple, core equations. The baseline comprises two common interpolation methods

that give the best reconstruction results: bicubic and Lanczos3 (see paragraph 2.2.2.2

in chapter 2).

State-of-the-art methods We also present results using Zeyde et al. [ZEP10] and

A+ [TDSVG14] SR methods. We retrain the models using the public code and the

training data provided to the competitors.

Our method We also presented, on an indicative basis, the obtained results using the

approach proposed for document images in section 4.3. Similarly, we trained a CNN to

map between LR patches and HR high-frequency information. We utilise a light version

of the architectures described in paragraph 4.3.2.2, with NC1 = 4 maps in the first layer,

NC2 = 14 maps in the second layer, and a fully connected layer with 14 neurons, yielding

only 2, 076 parameters. 9 × 9 LR input patches are used to generate 2 × 2 output HR

pixels. The full training set is used for train and validation.

4.5.3.4 Results of the competition

In this subsection, we present for each SR method the score obtained on the ICDAR2015-

TextSR test set and give a short analysis.

Results for baseline, state-of-the-art, and submitted methods are reported in table 4.7.

We also report results for our method which was not submitted to the challenge, as we

organised it.

We can observe a general trend in favour of the submitted learning based approaches,

that give the best overall performances. The SRCNN method gives the best results,

in term of image reconstruction (set 2) and also OCR (set 1). Note that the original

SD images have an OCR score of 78.80. However, each method can perform differently

depending on the content of the LR images. Generally, to get a good and realistic recon-

struction, using learning based method will yield good results as it learns the mapping

between low and high resolution information. This competition being constrained to TV

text images, this specific mapping will benefit from specific training data, as provided

in this dataset. For OCR accuracy, the letters have to be well shaped. This of course

happens with a good HR reconstruction, but even a method that do not perform well

in terms of reconstruction can yield better results in terms of OCR accuracy. This is

one advantage of the double evaluation. A typical example is the method proposed by

[MC10]: while the reconstruction scores are lower in terms of PSNR, RMSE and SSIM
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Table 4.7: Results of the described methods (baseline, ours, state-of-the-art, and
submitted) on the ICDAR2015-TextSR dataset.

Method
Reconstruction measures

CRR
RMSE PSNR MSSIM

Bicubic 19.04 23.50 0.879 60.64

Lanczos3 16.97 24.65 0.902 64.36

Ours 11.27 28.25 0.953 74.12

Zeyde et al. [ZEP10] 13.05 27.21 0.941 69.72

A+ [TDSVG14] 10.03 29.50 0.966 73.10

Synchromedia Lab [MC10] 62.67 12.66 0.623 65.93

ASRS [WDA+14] 12.86 26.98 0.950 71.25

SRCNN-1 [DLHT14] 7.52 31.75 0.980 77.19

SRCNN-2 7.24 31.99 0.981 76.10

Original HR – – – 78.80

than the standard bicubic or Lanczos3 one, their SR scheme (locally adaptive) can lead

to better OCR score on some images (see table 4.8).

Table 4.8: A example of OCR results of the different submitted approaches in the
case of complex background.

Method
SR image

OCR results

Synchromedia Lab
Vofre peou vbus parle

ASRS
ya ’ WE

SRCNN
m 4? fix E

Groundtruth
Votre peau vous parle
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4.5.4 Conclusion regarding the competition

The organisation of this competition was a challenge on several levels. First of all, a per-

tinent dataset had to be constructed. Although many text datasets have been proposed

in the past for different purposes (detection, spotting, recognition, segmentation), the

need of finely selected example was obvious, as they include images which initial form

has poor resolution. They were therefore not suitable for SR task which requires HR

images as references. In the same logic, a good OCR score had to be obtained on the HR

images to clearly outline the interest of SR methods for LR text images. To match those

criterion, the original HR examples (called “HD”) were extracted from HD TV stream,

and poor candidates were removed. A second challenge was to attract researcher among

the SR community to this specific text-oriented task, and bring attention to the SR

approaches among the document community. Although the number of participant was

limited, figures of both community took part in the competition. The winners authors of

famous neural-based publications on SR [DLHT14, DLHT16] also published a technical

report [DZD+15].

The results of this competition indicate a general trend in favour of learning-based

methods. This also supports the claim that neural networks are highly relevant for SR,

even for non-natural images, and that they are now state of the art for such task. They

also indicate that SR could be used in conjunction with other approach such as taking

in consideration the foreground/background relationship to improve OCR performance

on text with complex background.

However, we can see the limit of the proposed task as the winner reach scores that are

very close to the original images. For a future competition, we would advise to further

reduce the resolution of the input images to foster new methods that address SR using

the context or relying on advanced models. Incorporating other tasks such as multiple

scales or scripts different from latin could also provide a stimulating challenge and a

good framework for experimenting novel approaches.

4.6 Analysis of the various learned priors

A last analysis that we propose to conclude this chapter is to observe the influence of

the different learned priors. We propose to cross the model presented with various test

data. This give a sense on how the model can generalize or handle new type of data.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI083/these.pdf 
© [C. Peyrard], [2017], INSA Lyon, tous droits réservés



Chapter 4. Text Single Image Super-Resolution 95

4.6.1 Document text image

The ULR-TextSISR-2013a dataset is composed of black text over a white background.

This bimodal nature has been illustrated in Figure 4.2. However, the text is generated

with an anti-aliasing filter, that provide smooth edges for letters and is used in most

digital displays to provide a nicer reading experience [GAF+87]. This means it contains

also grayscale intensities value. For the LR and bicubic images, similar statistics are

observed, but with more in-between values, as more black and white pixels have been

merged together.

If a model learns on such data to generate directly the intensity values, the obtained

images are expected to exhibit the statistical behaviour of the training data. To evaluate

the impact of the training data, we train a model on the ULR-TextSISR-2013a dataset,

and apply it to natural images and the ICDAR2015-TextSR dataset. An expectation

might be to obtain an increased readability of the textual data of these datasets, under

the condition that text characteristics (font family, size and style) lie close to the original

training data. However, the sharpened images displayed on Figure 4.26c hold many

artefacts as such data was not present during the training.

The differences are well outlined, notably by the difference in intensity. However, by

sticking to the scheme we have initially adopted i.e. compensation of the higher fre-

quency band by predicting the difference between the HR and the interpolated image,

we obtain images which low frequencies are less impacted. However, similar strong

responses on edges are observed and the “phantom noise” is still present.

4.6.2 Natural and TV Text Image

We can expect more subtle differences when comparing the priors learned on natural

images and the TV-based text images from ICDAR2015-TextSR dataset. Complex

backgrounds are present in the second, and they are from natural image content as

they belong to the different TV shows which falls in the category of natural images.

However, they do contain text from which we can expect to have a more specialised

prior, even though the texts are less specific than the ULR-TextSISR-2013a dataset as

they present a wider variety of fonts.

An illustration of the learned prior is to apply them to the ULR-TextSISR-2013a im-

ages. We observe in Figure 4.27 that different artefact appears. Results are much more

smooth, which is in coherence with the smoothness priors used in many image restora-

tion approaches. However, they tend to be oversmoothed, as sharp letters are expected

in this context. We also notice overshooting (especially with our result in ICDAR2015),
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(a) Text (ULR-TextSISR-2013a)

(b) Natural Image

(c) Caption Image (ICDAR2015-TextSR)

Figure 4.26: Effect of the prior obtained with the ulr-textsisr-2013a dataset for
graylevel prediction when applied to ULR-TextSISR-2013a dataset images, natural im-
ages and textual images datasets. While the ULR-TextSISR-2013a dataset test image
in 4.26a is well shaped, the two others are over-sharpened and tend to have dissimilar

dynamics compared with the expected high-resolution image.
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which can be viewed as a smoother version of the observed noise reported previously

(paragraph 4.4.3.2).

(a) Model trained on ICDAR2015 dataset
PSNR = 20.21dB, Accuracy= 91.28

(b) Model trained on natural images
PSNR = 19.47dB, Accuracy= 92.09

Figure 4.27: Results using the networks learned (A) on ICDAR2015 training data
and (B) on natural images. The respective results in PSNR and Accuracy for the whole

ULR-TextSISR-2013a testing dataset are displayed under each image.

4.7 Conclusion

We can draw several conclusions from this chapter on single image text super-resolution.

First is that neural networks are suitable for Super-Resolution, as presented in early

studies and widely explored in recent works. They provide an efficient framework to

learn end-to-end mapping between LR and HR images. In particular, CNN offer better

performance compared with MLP for the same complexity, due to improved non-linear

feature extraction and mapping.

Images containing texts such as document images are severely degraded when sampled

at low resolution. OCR engines performance on such images is decreased. However, they

may be well reconstructed if such neural models are trained with suitable data. This

data adaptation method allows to easily develop specialised SR systems. Moreover,

without modifying the internal behaviour of an automatic recognition system, it is pos-

sible to improve its performance by feeding it with better shaped images. The proposed
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ICDAR2015-TextSR dataset and competition also outline the interest of example-based

SR approaches for other kind of text images such as text extracted from televisual

streams. Very useful for multimedia indexation systems, they present a large diversity

of fonts, colours, shapes and orientation. This public dataset can be used for evalua-

tion of SR approaches, and provide an interesting double evaluation scheme based on

reconstruction and OCR accuracy.

Finally, we outline two challenges that emerge from our study:

1. Very low resolution text & Higher SR factors – While the resolution of text

images addressed in this study is already a lower bound of what can be usually

addressed by recognition systems and human eye, we can expect to run into lower

resolution in diverse situations. This already happens in some samples from the

proposed ICDAR dataset, in which the height of letters may no exceed 3 pixels

for the low-resolution versions. We have seen on the various proposed approaches

that none of them yield satisfactory results on such images.

2. Handle the variety of fonts & texts in the wild – Another noticeable chal-

lenge lies in the nature of the texts present in everyday life. We addressed SR

for text extracted from document images with the ULR-TextSISR-2013a dataset

and TV content with the ICDAR dataset. Although the ICDAR dataset contains

a good panel of fonts, they are still specific to typical TV news or advertisment.

However, the variety of font that may be encountered in “real-life” contexts. More-

over, we only address latin script while there are many other scripts with various

characteristics and different dependance on resolution. For instance, Arabic script

contains meaningful informations based on small punctuation.
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5.1 Introduction

Facial images are useful for visual data understanding and automatic indexation. Indeed,

the automated analysis can provide metadata about the people present in photos and

videos: identity, age, gender, rate of appearance. While addressed for many decades,

these research areas are still active today, as large-scale image datasets are available to

research groups or companies through social networks or video sharing platforms.

However, resolution is again a bottleneck for such technology, as it is based on feature

discrimination from a subject to another. Reduced resolution yields undistinguishable
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components confusing human or automatic systems, which explains the interest for face

super-resolution or face hallucination (see paragraph 3.4.2 of chapter 3). In a broader

scope of application, increasing face resolution can be helpful for surveillance or improved

customer and user experience.

For the multimedia indexing application we are interested in, face detection and recog-

nition can lead to enriched navigation through contents by mean of a search including

identity. Face clustering may be used to chapter a content or divide a scene into speaker

turn. In this work we will focus on face recognition, although other technologies may

benefit from improved resolution.

As shown in the literature review (paragraph 3.4.2 of chapter 3), two main SR approaches

are adopted – sometimes jointly – and incorporate priors about the facial image in

different ways:

1. global approaches in which the whole face is encoded in the LR space and recovered

in the HR space

2. local approaches in which fixed regions of the face are processed independently,

including adaptive approaches in which the face alignment is relaxed or included

in the SR problem

Given the context that we want to address, faces are more likely to appear in non-aligned

and uncommon modes. This leads us to present a method that falls in second category,

with an adaptive scheme.

This chapter presents a two-step approach using neural networks. The first step is

a generic local approach that improves the whole image resolution. The second step

focuses on facial components (eyes, nose, mouth), with dedicated SR models. Each of

these steps is described in section 5.2. Experimental results are presented in section 5.3,

including a description of the data used in this chapter, architectures selection and

experimentations that show the benefit of each step. Comments on the advantage and

the limitations of the proposed approach are given in the conclusion, section 5.4.

This approach is the result of a joint work with Guillaume Berger, conducted during his

5 months internship at Orange Labs.

5.2 A two-step approach for face Super-Resolution

We propose to tackle the problem of face SR by adopting a two-step approach. The

first step consists in improving the whole image resolution, with a similar data-driven
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philosophy as the methods employed in chapter 4 for Text SR. The second consists

in incorporating domain-specific knowledge about the data to further improve our SR

system. This is summarized in Figure 5.1, and we detail each step in the following

subsections.

Figure 5.1: The proposed two-step neural approach for face SR. The first SR step is
a generic one, that increases the resolution of the whole input image. The second step

focuses on facial components and produces better shaped eyes, nose and mouth.

5.2.1 Step 1: Generic Super-Resolution

The first step of the proposed method consists in performing a first SR pass to improve

the global image resolution. The objective is not to limit the resolution improvement to

pose-specific face images (e.g. front aligned), but to begin with a generic SR pass, only

specific to the nature of images it has been trained on.

Building on the proposed method for text, we have to adapt our data to the use-case and

define a suitable ANN model. As facial image databases are available online but often

for face recognition purposes, we propose to use one of those databases and adapt it to

our study case. In the same way, pairs of low and high resolution patches are extracted

to train the models. However, as facial images often have high resolution in their raw

format, higher downsampling factors are investigated to address non-trivial and perti-

nent cases. This is explained in more details in subsection 5.3.2. Given the successful

results obtained with the CNN presented in the previous chapter, similar models are

investigated. Models description and experiments are reported in subsection 5.3.3.

However, face recognition involves a priori knowledge on the face structure and compo-

nents (e.g. eyes, nose and mouth). As the present CNN is blind to these details, both

due to the variety of samples in the training set and the limited size of the input retina,

a second step is proposed to focus on these face components.
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5.2.2 Step 2: Specific SR for facial components

The second step of the proposed approach aims to incorporate a domain-specific knowl-

edge into the SR framework. Most low-level discriminative features between human

faces are contained into facial components such as mouth, nose, eyes. Other factors

might be taken into account such as hair, but are subject to higher variability within

the same class (person). Other important high-level features such as the general shape

of the face, proportions and components relative positions are also important but they

do not suffer much from the downsampling process. We rely on the first pass to recover

these features. However, given the importance of the first kind of features and the high

probability they hold to be highly degraded in low-resolution images, a dedicated model

is relevant.

Those features cannot be blindly sampled in face images, especially if they are taken in

the wild, as they appear in specific locations. Thus, to incorporate this prior knowledge,

we propose to exploit a facial landmarks detection algorithm (such as [BJKK13]). This

allows to precisely extract facial components from the output image given by the first

step, and train for each of them a specific model. The proposed architecture is described

in paragraph 5.3.4.1.

5.3 Experimental results

5.3.1 Evaluation protocol

Similarly to text, an evaluation scheme must be provided to take into account recon-

struction criterion and task-oriented evaluation. The standard PSNR measurement is

used to evaluate the reconstruction performance of the proposed approach, and a face

recognition score of an off-the-shelf recognition engine evaluates the impact of the SR

algorithm on the recognition task.

We use a face verification system inspired by the simile classifier described in [KBBN09].

This system is a binary classifier that takes two faces as an input, and outputs a score

characterising the similarity of the two input faces. Depending on the chosen threshold

for this output score, the two faces are classified as belonging to the same or different

person. Note that the performance of this off-the-shelf recognition engine is not com-

petitive with current state of the art approaches. However, our goal is to evaluate the

benefit of the proposed SR algorithm in terms of face recognition, which can be outlined

with the chosen method (and more generally, with any other reasonably performing

recognition engine).
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The performance of the engine is characterized by ROC curves and the mean accuracy.

ROC curves represent the true positive rate against the false positive rate, when varying

the discriminative threshold between the two classes of a binary classifier. The mean

accuracy is computed accordingly to a 10-fold validation: for each test fold, a threshold

corresponding to 10% of false positive rate of the classifier score is found on the nine

other folds and used to compute accuracy on the current one. The mean accuracy is

obtained by averaging over the ten scores.

5.3.2 Data: Adapting LFW for Super-Resolution

Many databases have been released through the years in the domain of facial analysis.

In the last years, database sizes have increased, with more and more available data

and teams around the world to collect them. However, these datasets contain uncon-

strained facial poses. Three reasons can be found for this: the difficulty to have a large

scale acquisition campaign with the same protocol, the availability of methods to align

and normalise faces to reproduce a similar acquisition, and the need for data that is

representative of real-world application.

Among those large-scale datasets, LFW [HRBLM07] (Labelled Faces in the Wild) has

been very popular since 2007 for the study of facial analysis in unconstrained environ-

ment. It is relevant for this work as we focus on real-world application in the multimedia

context.

Figure 5.2: Typical images from the LFW dataset. Faces are present in an un-
constrained environment, spanning different poses, expressions, gender, ethnicity, and

image quality.

Faces are present under different expressions, poses, expositions, illuminations and are

sometimes partially occulted. We generate the LR images by blurring the original ones

with a gaussian kernel of standard deviation σ = 1.6 and linearly downsampling them

by a factor of 4. The choice of σ = 1.6 for the Gaussian kernel is a commonly used value

[Sun08, YY13], and the use of linear downsamping is the simplest choice to reduce the
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sampling rate while conserving the subpixels aligned (see subsection 2.2.2 of chapter 3).

The downsampling factor is set to 4 as the images tend to have a large resolution in their

original format. With factors of 2 and 3, no severe degradation of the performances on

the dataset were observed. Starting from 240 × 240 cropped HR images, 60 × 60 LR

images are obtained. The training images are selected so that they are not present in

the testing subset, which gives 5, 233 images. 8, 000 images are used in the testing set, to

form 6, 000 pairs for face recognition under ten different folds. From the generated LR

and HR image pairs, we randomly extract 9×9 input patches with the corresponding 4×4

target ones and train the first step CNN. Then, for the second step, facial components

are automatically extracted from the generic SR and HR images with an algorithm based

on facial landmark detection [BJKK13].

5.3.3 First step

In the first step, we evaluate the impact of a generic SR based on CNN, simply adapted

to the facial image case.

The 2D patches are extracted from face images taken in the wild, which are very close to

natural images as they contain faces in various positions and a surrounding environment.

The low and high resolution pairs of patches are blindly sampled without any knowledge

on the location of the face. Therefore, the learned CNN is designed to be generic and

learn to remove natural interpolation artefacts, via a global optimisation over all example

pairs.

5.3.3.1 Architecture selection

To span a large scope of possible architectures, several experiments are conducted for the

first step. Based on the previous experiment, CNN architectures with 3 and 4-layered

networks are explored. As ×4 SR is addressed, it seems legitimate to employ deeper

architectures.

As with previous experiments, the CNN weights are learned with standard backpropaga-

tion and mean squared error loss function, taking as input 2D LR patches and targeting

pixel-wise difference between HR and bicubic patches (see Figure 5.3). The latter cor-

responds to the loss of visual information and aim to compensate for artefacts such as

blur or jagged edges. The variety of these artefacts, especially for high upscaling factors,

makes the problem difficult and highly non-linear.

Table 5.1 gathers five tested configurations, where the −a suffix indicates the connection

scheme presented in paragraph 4.3.2.2, the −1 suffix stands for one to one connectivity,
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and −f for fully connected. The reported PSNR corresponds to a subset of 700 test

images used to evaluate the performance of each configuration.

Table 5.1: Different deep architectures tested for the first, generic step. The −a suffix
indicates the connection scheme presented in section 4.3.2.2, the −1 suffix stands for

one to one connectivity, and −f for fully connected.

Configuration 1 2 3 4 5

Layer 1 (5× 5 filters) 20 20 32 20 20

Layer 2 (3× 3 filters) 230-a 230-a 560-a 230-a 230-a

Layer 3 (3× 3 filters) 230-1 64-f 560-1 230-1 64-f

Layer 4 (1× 1 filters) 64-f 64-f

Output Layer 16-f 16-f 16-f 16-f 16-f

Number of parameters 10,526 138,114 25,472 22,654 142,274

PSNR (dB) 35.162 35.324 35.169 35.473 35.504

Because configuration 4 has the second-best results but keeps the number of parameters

low, it is selected for the rest of the experiments.

Figure 5.3: Selected CNN Architecture for the Generic SR step. Parameters are set
to N1 = 20, N2 = 230, N3 = 64 after testing different configurations, and s = 4 for
the experiments. Note that the input image is still sampled on the LR grid, while the
output map is sampled on the HR grid using s× s linear output neurons, yielding a s2

times larger image.

5.3.3.2 Performance of the generic step

On the whole test set, an increase in the PSNR measurement is observed compared

with the bicubic interpolation, which means that SR images lie closer to their original

HR counterpart. The mean PSNR is 28.84dB for the bicubic interpolated images and

32.28dB for the SR images.

For recognition purpose, the selected architecture also leads to better results. The

bicubic interpolation already allows to improve the recognition over the low-resolution
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images score, in which faces are sometimes not even detected, and for which the features

of the simile classifier seem badly extracted. The obtained SR images allow to further

improve this score. By taking a false positive rate of 0.1, we obtain a mean accuracy of

81.61%.

In order to visualize the differences between the compared images, some samples from the

testing set are depicted in Figures 5.4 and 5.5. Images have finer edges and reduced LR

artefacts. Some textures are also well recovered. However, details of facial components

are sometimes lost completely (e.g. teeth in Figure 5.4).

The second step aims to compensate for this loss of details by mapping the obtained SR

facial features to an improved SR version using dedicated models.

5.3.4 Second step

5.3.4.1 Autoencoder architectures for component-specific models

For this second step, we aim to improve the blindly reconstructed facial features (eyes,

nose, mouth). To do so, four different networks are used – one for each facial feature –

with the same architecture, depicted in Figure 5.6.

For each facial component, a convolutional encoder projects the input patch into a ND-

dimensional hidden subspace, and the output patch is reconstructed from the obtained

code through a fully connected one-layer decoder with linear activation. The output

patch can then be written as a weighted linear combination of ND atoms cn:

o =

ND∑

n=1

wn · cn (5.1)

where o is the reconstructed output facial component, wn are the components of the

code in the hidden subspace, and cn are the weights of the decoder layer associated to

the nth code component. Each atom is directly associated to one direction of the hidden

subspace. In order to learn a meaningful representation, a sigmoid activation is added

on the encoder output to make the code positive, and a non-negativity constraint on

the decoder weights. As presented in Figure 5.6, this constraint makes atoms ck become

part-based and less noisy, similar to non-negative matrix factorization [LS99].

5.3.4.2 Evolution of the performance compared with the first step

Decreased performance for compliant reconstruction The PSNR suffers from

the second step as mean PSNR of 31.64dB is obtained, against 32.28dB for the first
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Figure 5.4: “Aaron Peirsol 0002” picture, from top to bottom: LR image, Bicubic
interpolation, Results of the first step, and original HR image. Edges are globally well
reconstructed, without blur or jaggy edges. Textures such as hair is also finer, but they
lack of realism compared with the original image. The facial features also exhibit severe

damages even if sharper.
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Figure 5.5: “Pedro Almodovar 0003” picture, from top to bottom: LR image, Bicu-
bic interpolation, Results of the first step, and original HR image. Again, edges are
well reconstructed (particularly sharp on the glasses border), demonstrating the ability
to address bigger upscaling factor with the proposed method. However, a fine recon-

struction of the facial features is lacking.
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Figure 5.6: Localized models for facial components. Left and right eyes, noses and
mouths are extracted and processed by distinct networks. For eyes and nose patches:
sx × sy = 36 × 36. For mouth patches: sx × sy = 48 × 24. Reported results were

obtained with N1 = 8, N2 = 64, ND = 128.

step. This diminution can be explained by the fact that positivity constraints added

on the code and decoder weights make the reconstruction goal harder to fulfil: second

step outputs have to be produced by adding a limited number of positive atoms. As a

consequence, facial components given by localized models tend to differ from HR targets

and make the PSNR drop slightly. However, even if they are different from the target,

facial components given by localized models contain less visual artefacts which were still

present after the first step. This is mainly explained by the fact that the second step

outputs are reconstructed by combining clean part-based atoms.

Better recognition While a PSNR decrease is observed, the specific models allow

to obtain a better recognition score, with an additional 1.24 points (82.85%) over the

test set compared with the first step (81.61%). The ROC curves reported in Figure 5.7

illustrates the recognition performance for a varying threshold in the recognition engine

for the LR, bicubic, SR (step 1), SR (step 1+2) and HR images. Table 5.2 and Figure 5.8

summarise the obtained score for the different category of images.

Table 5.2: Results of the proposed 2-step approach on the LFW corpus. The first
generic step allows to improve PSNR and accuracy by producing a ×4 SR image. The
second specific step on facial components slightly reduces the PSNR as the produced
image is not exactly compliant with the original HR image, but further improves the

accuracy.

PSNR (dB) accuracy (%)

LR - 74.70

Bicubic 28.84 78.91

SR - step 1 32.28 81.61

SR - step 2 31.64 82.85

HR - 86.55
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Figure 5.7: ROC curves illustrating the performance of recognition of the recognition
engine given the different image sets.

5.3.4.3 Other observations

Side effects can be noticed on the images produced by the second step. First of all,

it tends to hallucinate normalised facial components, which has good aspects outlined

in the samples of Figure 5.9 and the substantial increase in recognition score, but can

lack of compliance with the original images. For example in Figure 5.10, the make-

up around the eyes is sharp but too present after the first step, and removed by the

second step with more realistic but less accurate eyes contours. The second step may

also hallucinate components where they might not be present in the original image. In

Figure 5.10 “Pedro Almodovar 0003”, the eyes are revealed (“hallucinated”) and merged

with the sun glasses, which is not compliant with the original image.
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Figure 5.8: Summary of the obtained results. Both steps allow to improve recon-
struction and recognition over a simple bicubic interpolation. The first step is more
efficient for reconstruction (PSNR) as the facial component are not hallucinated but
reconstructed with the same a priori that the rest of the image. The second step has
a slightly lower reconstruction PSNR score, but its specific models that focus on fa-
cial components allow to produce more realistic characteristics and improve recognition
performance of the recognition engine. PSNR is not relevant for the LR (not the same

dimensions) and the HR (infinite) images performance.
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Figure 5.9: Results obtained with the proposed approach. from top to bottom: LR
image, Bicubic interpolation, Results of the first step, Results of the second step and

original HR image.
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(a) “Britney Spears 0012” (b) “Pedro Almodovar 0003”

Figure 5.10: Side effects: hallucinated facial components may lack of compliance with
the ideal HR image, even if improving the overall performance. From top to bottom:

LR, SR (step 1), SR (step2), and original HR image.
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(a) HR (b) Bicubic (×4)

(c) HR (d) Bicubic (×4)

Figure 5.11: Some images of the LFW dataset (here, “Abdoulaye Wade 0003” and
“Ahmed Ghazi 0001”) have low-resolution and contain compression artefacts. There is
not much difference between the original HR image and the ×4 bicubic interpolation.
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5.4 Conclusion

In this chapter, the method proposed for Text SR is extended to a new type of images

and with a similar objective: producing better shaped and more recognizable facial

images. However, due to the complexity of face geometry and the diversity present

in the large scale dataset, the proposed approach decomposes the SR problem in two

steps. The first one aims to produce SR images with recovered details, using a patch-

based approach similarly to the previous chapter. In the second step, the focus is set on

the facial features to train specific models for each of them. Using a facial landmarks

detector, the image is further transformed to produce better shaped eyes, mouth and

nose for each face. Even though the final image is not as close to the original image

as after the first step, it allows to produce realistic facial components and improve the

performance of the off-the-shelf recognition engine.

The proposed model could benefit from further improvement. First of all, a finer selection

of the training data could be beneficial. Indeed, some of the high-resolution images

from the LFW database already contain artefacts such as JPEG compression blocks, or

obtained themselves from interpolation of a lower resolution images. For those images,

there is no benefit from incorporating them into our learning set. This remark holds for

both steps of the method as they are cascaded with the same HR training data. Also,

our model requires several steps that are performed iteratively. Although they are fully

automated, a unified architecture that incorporate the facial detection at its first stage

might avoid having five separate neural models (1 for the generic step and 4 for the

components).
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6.1 Introduction

Recall the assumption so far that low-resolution images are generated from high-resolution

ones via a fixed observation model (see subsection 2.2.3 of chapter 3). However, this

may not hold in real-world situations, where the true observation model can vary and

where other factors may be involved, relative to the environment, objects or devices used

for image acquisition. This dependency is particularly hard to avoid for example-based

methods which rely on coherent examples in order to produce accurate images. If only

a fixed observation model is used to create the training images, such methods will be

very efficient on this particular kind of image but with lack of generalisation on others,

which occurs in real-world situations.

In this chapter, we investigate on making example-based SR approaches robust to the

variability of observation model, in a blind way ( i.e. without knowledge of the obser-

vation model). In particular, we want to provide robust solutions to the variability of

the blurring kernel used in the observation model.

In order to benefit from the potential of learning-based approaches, three main strategies

are considered in the literature for blind SR (see below, subsection 6.2.2): i) projecting

the LR images into the known LR space – or alternatively predicting the right model

to use from a collection – to fit the distribution of image seen during training ii) online

retuning a pre-trained model iii) designing a learning machine able to implicitly model

the projections into an end-to-end framework. The latter is a more relaxed problem for

constrained image category such as faces or text. Throughout this chapter, we investigate

the third strategy by using deeper CNN in order to try to absorb the different blurring

kernels. With large number of parameters and highly non-linear projections, such models

may have the potential to absorb the variability of the data and produce accurate SR

images. Recent work on blind deblurring [Cha16] show that neural networks can address

such problems. Moreover, experiments from [RSRB15] indicate that using a blind CNN

already brings a gain over a simple bicubic interpolation.

This chapter begins with a discussion on the relevance of image observation model

for real-world applications in section 6.2. A short review of example-based methods

that aim to overcome those limitations is also given. In section 6.3, to better state

the problem addressed by this contribution, measurement are made to better define

the limits between a deblurring and a SR problem. Preliminary experiments on three

different strategies to incorporate the variability of the observation model are presented

in section 6.4. In section 6.5, a deep CNN approach is proposed to tackle the blind

SR problem, with many blurring kernels added into the training set. The experimental
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results are reported in section 6.6 and show that the proposed blind model can have

similar performance as the non-blind models of the literature.

6.2 Discussion on the robustness of example-based approaches

6.2.1 Confronting the observation model with real-world conditions

This section discusses the relevance of the conducted work regarding real-world condi-

tions, where a single image observation model (i.e. how do we obtain a LR image from

a HR one) cannot represent the variety of cases (devices used, atmospheric conditions,

motion). Recall for SISR, the following model was used:

y = DBx+ e (6.1)

where D is a down-sampling operator, B is a blurring operator and e is a noise term.

Noise In the scope of this work, the considered images are most of the time subject

to low noise conditions. Therefore, we do not address nor expect high levels of noise.

Indeed, in the first contribution in chapter 4, two types of text images have been con-

sidered. The first one is typically obtained from digital low-resolution documents (e.g.

downsampled version of a digital document) or in good illumination conditions (such as

documents obtained using a scanner). For this type of images, the assumption of low

amount of noise is reasonable, unless images are highly compressed (e.g. JPEG arte-

facts) or inherent to the document (damaged or stained document). This was not the

case for the used document dataset, and the HR images in the proposed ICDAR2015-

TextSR dataset are obtained from downsampled HD ones which remove the potential

noise. The second type of text images are extracted from TV streams for which bicubic

downsampling was a sufficient approximation. For face images in chapter 5, the main

problem is the dimension of faces and the loss of detailed facial components. However,

even with those assumptions, these previous experimentations are not completely noise-

free, as the images undergo quantization processes during saving, in which a transformed

image (e.g. a newly synthesized LR image) with float pixel intensity values is mapped to

a discrete valued image with 8-bit (256) values per channel. The quantization function
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used in this work is:

iquantized =





floor(i+ 0.5) if i ∈ [0, 255]

0 if i < 0

255 if i > 255

(6.2)

Even if noise is not addressed here as we consider it negligible compared with the prob-

lem of low resolution, it is still relevant in certain contexts. Many works of the literature

handle noise, often as independently identically distributed Gaussian noise. Other com-

mon noise is compression and encoding artefacts, as most of images in the wild (web,

phones) are compressed. The approaches focussing on this kind of noise can be utilized

to first process the LR image before using the methods proposed so far.

Blur The approaches proposed in the previous chapters make use of two kinds of

image observation models. In chapter 4, antialised bicubic downsampling was used to

downsample the images by a factor of two. In chapter 5, a Gaussian blurring kernel

of standard deviation of 1.6 (see subsection 5.3.2) and linear downsampling are used to

downsample the facial image by a factor of four. These observation models are usual

regarding the literature. However, they indicate SR is not decorrelated from deblurring,

as a blurring kernel is part of the observation model. As a preliminary study, we will

review in section 6.3 the cases for which it is relevant to address the upsampling problem

as a SR problem rather than a deblurring one on a denser sampled grid. When looking

at the imaging model in deblurring and SR, the main difference is the presence of the

decimation operator. This means that depending on this operator, it may end up in

pure deblurring conditions if no information is lost during the downsampling. In the

frequency domain, sampling results in repeating the spectrum every ωs (see Figure 2.2

in chapter 2.2.2). If the signal being sampled is not compliant with Shannon conditions

[Sha49], aliasing will occur. Aliasing is a fundamental property in both MISR and SISR.

In MISR, it guaranties that a non-redundant information have been split in different

observations. For SISR, it ensures that the problem is actually different from a deblurring

one. Many works (including ours in chapter 5) use Gaussian blurring kernel. Strating

from this model, the limits between the SR and deblurring problematics ar evaluated in

section 6.3.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI083/these.pdf 
© [C. Peyrard], [2017], INSA Lyon, tous droits réservés



Chapter 6. Blind and Robust Super-Resolution 121

6.2.2 Short review of blind approaches in example-based SR

Blind SR refers to methods that have no a priori on the used image formation model,

especially the blurring kernel. Practically, a majority of the blind methods estimate the

most probable blurring kernel and/or use statistics about the desired SR images. In this

context, iterative and MAP approaches are often preferred, while direct example-based

methods are not the most popular approaches. Recent works [YMY14, EGA+13] show

the importance of knowing a precise blurring kernel in the learned prior by example-

based approaches. When evaluating such methods without retraining the models with

the right kernel, results exhibit over-smoothed or over-sharpened images: evaluating

on non-blind models gives much better results. In [EGA+13], the authors study the

influence of a Gaussian blur kernel with variable standard deviation applied before an

antialiased bicubic downsampling. They show that a simple prior on the SR image may

already produce good results as long as the exact image formation process is known. In

[YMY14] an extended study compares recent learning-based approaches. Both studies

show that retraining example-based approaches with the right kernel gives better results.

In [MI13], a joint estimation of the blurring kernel and the SR image is performed. Later

in [SE15], authors address both SR and deblurring, using the output of a learning-based

SR method as a constraint on the final image. A global MAP optimisation scheme

is then applied along with other deblurring constraints on SR and LR images. This

unified approach is very interesting as blur is one noticeable artifact in interpolated

images, along with jagged edges and other kind of noise. In [ZWTZ16], the authors

combine blur kernel estimation and per-image dictionary learning, which is more precise

but also slower. In [RSRB15], the authors proposed a richer collection of blurring kernels

using oriented bivariate gaussian ones. Although the main purpose is to propose adaptive

scheme in a non-blind fashion, they conduct the so-called blind experiments with several

example-based algorithms.

Another problem that can relate to blind SR is the unknown scale problem, in which the

scale factor is not known in advance. Cascading approaches have been proposed, like in

[WLY+15] where the same model can be used for ×2 and ×4 SR. In [WYW+15] and

[KLL15a], different scales are used for data augmentation that enhance the performance

of a neural network by learning more robust convolution kernels in [WYW+15] or being

blind across the scales for [KLL15a]. In [ZFC+15], the learned hallucinating CNN is also

blind and robust to several blur kernel and resolution. However, it is likely constrained

to aligned faces, which allows a strong prior on the type of output data.
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6.3 Blurry or Low-Resolution ? Preliminary reflection on

the observation model

Most of the observation models used in the literature include a low-pass filter (often

Gaussian, Box, Bicubic) followed by a decimation. In particular, Gaussian filters are

controlled by their standard deviation (or variance), which can be set to different values.

However, if the low-pass filtering is such that no level of aliasing is contained in the low-

resolution, the problem can be modelled as a deblurring one instead of a SR one. Indeed,

the increase in resolution could be achieved optimally with a perfect reconstruction from

the samples. In other words, the lack of definition (no high frequency content above the

Nyquist limit) is already present in the image before it is decimated, and the inverse

problem is well-posed.

To illustrate this, the impact of blur and downsampling on a set of 91 images is measured.

A Gaussian blurring kernel with a standard deviation σ between 0.3 and 8.0 (by 0.1 step)

is applied, followed by a bicubic downsampling operator. The impact of the different

observation models thus formed is evaluated using the PSNR between the interpolated

LR images and the original HR one. Figure 6.1 shows the mean PSNR for different

downsampling factors depending on the σ of the blurring kernel.

We can see that while the PSNR measurements of each downsampling factor are clearly

distinguished for small standard deviation σ, they get closer as the σ increases, i.e.

the blurring operator removes a lot of the high frequencies. At a certain level, there is

not much difference between the PSNR values, independently from the downsampling

factor. Based on this measure, a standard deviation as small as 1.2 for a downsampling

factor of 2 yields a problem as difficult as a decimation factor of 3 without a Gaussian

smoothing. Considering that a difference of 0.1dB between blurry and LR images is a

threshold under which they are subject to an equivalent level of degradation, each scale

can be attributed a “maximum” standard deviation (see Table 6.1).

Table 6.1: Maximum standard deviation σ for each scale above which mean PSNR
difference between LR and blurry images is less than 0.1db.

scale 2 3 4 5 6 7 8

SR limit for σ 2.4 3.4 4.4 5.4 6.4 7.4 8+

In conclusion, this short study allows to qualify the boundaries of the SR problem versus

a deblurring one. In the next sections, we explore ways to make neural-based approaches

more robust to various observation models that may occur in real-world situation. We

ensure that the spanned kernels are compliant with the previous study.
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Figure 6.1: Evolution of the mean PSNR of the image set with the Gaussian kernel
standard deviation for 7 different downsampling factors (2 to 8). The black curve is

the PSNR of the blurry images without downsampling.

6.4 Preliminary 2-kernels experiments

Based on the previous insights, we propose to conduct preliminary experiments to ex-

plore the possibility for the studied learning systems to gain robustness against the

different observation models that might be encounter in real world applications. To do

so, two different Gaussian blurring kernels are used to form distinct observation models

for a factor of 2, with standard deviation of σ1 = 1.0 and σ2 = 2.0, that match the range

proposed in the previous section (see Table 6.1). Figure 6.2 illustrates this process. It

aims to study the behaviour of the training process, and obtain insights on the behaviour

of a neural network addressing different blurring kernels in the same model. Later in

sections 6.5 and 6.6, we shall span a larger variety of kernels to address more realistic

cases. Three different strategies are evaluated. The first one called “exclusive” is to use

a model trained on single kernel generated data, and use it on different data. The second

one called “fine-tuning” consists in training on a first single kernel training set and fine

tuning on a second set with a different observation model. Finally, the third strategy

called “inclusive” is to mix the training datasets and train a single model indifferently

with the joint data.
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HR image

Blurry image (σ1) Blurry image (σ2)

Low-resolution image (σ1) Low-resolution image (σ2)

Super-resolution image (σ1) Super-resolution image (σ1)

σ1 σ2

downsampling downsampling

super-resolution super-resolution

Figure 6.2: Two different blurring kernels are used to generate two types of LR
images. A robust SR algorithm would be able to render the same SR image in both

cases.
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For evaluation, the PSNR criterion is used on a test set proposed in [YWMH08] com-

posed of two subsets of natural images (Set5 and Set14 ). Visual results are also exam-

ined. The reference is bicubic interpolation.

6.4.1 Exclusive training sets

In this first experiment, one model is trained for each dataset and evaluated on two

distinct test sets. It allows to evaluate how the models behave on unseen data, but also

illustrates the importance of the observation model for a learning-based system.

The results are reported in Table 6.2 and examples from the test set can be seen in

Figure 6.3. As expected, each model perform well on the images generated with the

same kernel as those in the training set. However, over-smooth or overshoot artefact are

observed in the images generated with the unseen kernel.

Table 6.2: Results with exclusive training sets.

PSNRσ=1.0(dB) PSNRσ=2.0(dB)

Bicubic 28.97 26.13

Trained with σ = 1.0 32.83 27.02

Trained with σ = 2.0 20.06 30.04

6.4.2 Fine-tuning

The second experiment consists in two steps for each model. First, a model is trained

on a set produced with a single imaging model. Then, the same model is fine tuned

using new data to see if the neural network can be taught a new kernel for SR without

forgetting the old one.

Those two steps are performed on the same data as before. The obtained results are

reported in Table 6.3.

Table 6.3: Results with the fine-tuning strategy

PSNRσ=1.0(dB) PSNRσ=2.0(dB)

Bicubic 28.97 26.13

Trained with σ = 1.0
fine-tuned with σ = 2.0

18.98 30.38

Trained with σ = 2.0
fine-tuned with σ = 1.0

32.83 27.03
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Figure 6.3: Test images and close-ups obtained with the first strategy (exclusive
training sets), applying models indifferently from their learning data. A–D: Results of
model trained with σ = 1.0, for LR images generated with σ = 1.0 (A, B) or σ = 2.0
(C, D). E–F: Results of model trained with σ = 2.0, for LR images generated with

σ = 1.0 (E, F) or σ = 2.0 (G, H).
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We can see that the strategy does not promote a consensus between both training sets,

and the performance is approximately the same. Taking a look at the produced images in

Figure 6.4, it is likely that the networks converge to a stable state which is uncorrelated

with the one reached after the first step.

6.4.3 Inclusive training set

The last experiment consists in a fusion of both training sets. While the previous

experiment (strategy 2, fine-tuning) aimed to capitalize on a memory of the learned

weights – which turned out to be hard to hold – here the weights are continuously

updated to minimise the prediction errors over the whole dataset, composed of LR

images obtained with σ = 1.0 and σ = 2.0. This is a straightforward approach in which

the network has no knowledge of which kernels are present in the training set. It must

be able to absorb those differences by learning a richer set of filters.

In Table 6.4, we observe improved scores over bicubic interpolation. However, the im-

provement is less important than the one observed when training or fine-tuning with the

σ = 1.0 dataset, yielding blurry images for the case of σ = 2.0 (see Figure 6.5).

Table 6.4: Results with inclusive training dataset.

PSNRσ=1.0(dB) PSNRσ=2.0(dB)

Bicubic 28.97 26.13

Trained with both σ = 1.0 and σ = 2.0 31.77 26.56

6.4.4 Conclusion of the preliminary experiments

This first study gives us several insights:

1. As stated in previous studies, learning-based approaches such as the one proposed

are limited to the nature of data they are learning from since they do not explicitly

represent the observation model. In the case of SR, if a single observation model

is used to synthesise a dataset, performance is limited to this kernel.

2. For our two-kernels case, the fine-tuning approach seems impractical: convergence

is hard to reach, and the balance between the base model and the fine-tuned one

is delicate to obtain.

3. The straightforward inclusive approach is more promising, but seems to sometimes

neglect parts of the data for the used model.
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Figure 6.4: Test images obtained with the fine-tuning strategy. The networks tend to
forget the state reached after the first stage and converge accordingly to the fine-tuning
data. A–D: Results of model trained with σ = 1.0 and fine-tuned with σ = 2.0, for LR
images generated with σ = 1.0 (A, B) or σ = 2.0 (C, D). E–F: Results of model trained
with σ = 2.0 and fine-tuned with σ = 1.0, for LR images generated with σ = 1.0 (E,

F) or σ = 2.0 (G, H).
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Figure 6.5: Test images obtained with the third strategy (inclusive training set),
where the two training sets with different blurring kernels (σ = 1.0 and σ = 2.0) are
fused into one to train the neural network. LR images were generated with σ = 1.0 for

(A, B) and σ = 2.0 for (C, D).

In the next section, a similar strategy to the inclusive one is adopted, but two main

aspects are investigated: a more continuous spanning of the Gaussian kernel space for

the observation model, and deeper neural networks to absorb the variability induced by

this new observation model.

6.5 Blind and robust Super-Resolution for oriented Gaus-

sian kernels

After this first experimental results, we propose to span a larger and more realistic scope

of models by using more than two blurring kernels in the observation model. To compare

with state-of-the-art methods, we use the data proposed in [RSRB15].
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6.5.1 Problem definition

As in the previous section, the aim of the proposed approach is to recover a SR image

x̃ from a LR image y obtain with the following variable observation model:

y = DB̄x (6.3)

where x is the HR image, B̄ is a variable blurring operator and D a decimation operator

that discard every other S pixel for a given scaling factor S. We use Gaussian blur

kernels with variable variance and orientation as proposed in [RSRB15]. Figure 6.6

illustrates the generation of different LR images from a single HR sample.

HR image 

LR image A LR image B LR image C LR image D 

Blind SR 

� Σ ,�  

                                                                   ↓ � Σ ,�  � Σ ,�  � Σ ,�  

                                                                   ↓ 
                                                                   ↓ 

                                                                   ↓ 

Figure 6.6: Generation of several LR images using various blurring kernels from a
single HR image and scale factor of 2. Each blurring kernel has different variances and

orientations, leading to different LR images.

6.5.2 Proposed approach

We propose to use a single deep CNN to recover a SR image as close as possible to

the HR image x. This means we expect it to absorb the different levels of blur and

be able to project different visual structures into a HR feature space decorrelated from

the applied blur. Figure 6.6 shows an example of such visually different structures that

should produce the same HR content. As an input, although other approaches generally

use upscaled LR patches, our network takes a LR patch, and performs upsampling at

the output layer by using S2 maps instead of one, rearranged to produce the correct

output size. This allows to have a bigger input retina with less 3× 3 layers, but requires

several output maps. The model can either target the HR patch in graylevel or the high

frequencies obtained by difference between the HR patch and upsampled LR patch.

Aside from the upsampling approach, the proposed network architecture (Figure 6.7)

is very similar to [KLL15a]. It has L layers of 3 × 3 convolutions, each of which is
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fully connected to the previous one; i.e. each convolutional kernel has M × 3 × 3 + 1

parameters including bias, except for the first layer which is directly connected to the

input image and the last one that holds S2 × 3 × 3 + 1. We use rectified linear units

(ReLU) activations after each convolution map. For simplicity, we use zero-padding on

borders to keep the feature maps of the same size from the first to the last layer. Using

large training patches diminishes the importance of this side effect. We train a CNN

with parameters θ and input y to output a full size image x̃i = Ψ(yi, θ), minimising

MSE between the output maps and the target sample.

…
 

…
 

…
 

…
 

… 

L layers of 3x3 convolutions 

LR image HR image 

Figure 6.7: Proposed Deep CNN for blind SR. The last layer is composed of S2 = 4
maps, rearranged on the HR grid to produce the details missing in the interpolated LR

image. Maps dynamic has been modified for visualisation.

In the next section, we provide more details about the experimental architectures and

the data used for training.

6.6 Experimental results

6.6.1 Data generation

The data is generated according to [RSRB15] for scale S = 2. The LR patches are used

as an input i.e. without bicubic upsampling. We sample 29, 026 pairs of patches from 91

images for each gaussian blurring kernel. These kernels vary in variance and orientation.

A total of 58 kernels are used: variances range from 0.75 to 3.0 with a 0.75 step in both

dimensions while orientation lies in [0, π] with a π
8 step. This gives a total amount of

1, 683, 508 example pairs. Input LR patch dimension is 18× 18 pixels and 36× 36 pixels
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for output size. For testing, we use the same procedure on 19 images from Set5 and

Set14. Comparative results are presented in subsection 6.6.3.

Given the preliminary study in 6.3, we see that the level of blur is compliant with the

limit as variance does not exceeds 3.0 (i.e. standard deviation is less than 1.732). 6

kernels were found redundant with the protocol issued by [RSRB15], but we keep the

58 kernels to be able to compare to their results (see Figure 6.8).

Figure 6.8: The different oriented Gaussian kernels used to create the LR images. A
total of 58 kernels are used: variances range from 0.75 to 3.0 with a 0.75 step in both

dimensions while orientation lies in [0, π] with a π
8
step.

6.6.2 Experiments

Each network is trained from scratch, with a random initialization. We set the global

learning rate to 10−4. Although different batch sizes have been tested (4, 16, 128,

256), the reported results were obtained with a pure stochastic gradient descent, which

converges faster than using mini-batch and lead to the same order of performance. An

hypothesis is that a “mini-batch effect” already takes place, as each target is composed

of a 36×36 patch in which each pixel contributes to the loss function. Using mini-batch

may therefore lead to more confusing parameter updates during the gradient descent.

We target the high frequencies components instead of the direct graylevel as in the

previous chapters 4 and 5. It is also used in [KLL15a]. In Table 6.5, we present the

experiments with variations in the number of kernels M and number of layers L. The

reported test loss allows to monitor the learning process and select the best models. Test

samples are extracted from Set5. Although this is not rigorous, it is a common practice

in recent SR publications [DLHT14]. In addition, another image set is used for objective

performance comparison. We can see that increasing the number of parameters of the

proposed model allows to decrease the global MSE. We choose model 7 with 7 layers

(comparable to 8) to evaluate on the full test images.
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Configuration L M #parameters Loss

1 4 16 5, 380 0.816

2 4 32 19, 970 0.766

3 4 64 76, 804 0.756

4 4 128 301, 060 0.751

5 5 64 113, 734 0.739

6 6 64 150, 660 0.737

7 7 64 187, 588 0 .731

8 8 64 224, 516 0.730

Table 6.5: 8 configurations with the number of layers L (including the 4-map output
layer), the number of kernels per layer M , the total number of parameters and the best

obtained test MSE.

Blind (AB) Non-blind (CAB)

Ours A+ SRCNN SRF A+ SRCNN SRF

Set5 34.24/34.52 33.21 33.58 33.50 33.76 33.92 34.43

Set14 30.82 30.00 30.27 30.11 30.35 30.50 30.73

Table 6.6: PSNR scores (dB) on Set5 and Set14. We report the blind and non-blind
results of three experiments of [RSRB15] as a comparison.

6.6.3 Comparison with state-of-the-art example-based SR

We have computed the PSNR for Set5 and Set14 for the best obtained model and

compared our results to those reported in [RSRB15], using the same protocol, especially

cropping 7 pixels at test time to avoid border effects. Results are reported in Table 6.6.

We can observe that our approach outperforms the others for the blind set-up. It is also

competitive with the non-blind approaches as the mean PSNR is higher than the non-

blind A+ and SRCNN methods on Set5 and the highest for Set14, while our approach

cannot take advantage of the a priori knowledge of the blurring kernel.

This is a very promising result, as it allows to have similar performance to non-blind

approaches which need to know or estimate the precise blurring kernel. For a real-world

application, this is an easier solution to implement (a single deep model produces SR

images from LR ones) and highly relevant for the variation in LR images.

Resulting images are presented in the next subsection.
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6.6.4 Qualitative visual results

SR Images obtained with the selected architecture can be seen in Figures 6.9, 6.10 and

6.11. In each figure, the bicubic interpolation of the LR image and the SR images are

displayed. For different Gaussian kernels (smallest variance, largest variance, −
π

4
and

π

4
orientations with largest variance), we can observe various effects. Note that we select

the more challenging kernels to outline the behaviour of the trained model for the most

extreme cases (very low and very high variance, orientation). First, the produced images

are clearly sharper, and edges, textures and objects are better shaped. For instance, hair

texture is more rich in Figure 6.10 – (I to P), and letters are more readable in Figure 6.11

– (I to P).

For the kernel with smallest variance, the networks does not produce overshooting arte-

facts like in 6.4, but still has a strong response on edges. For instance, repetitive artefacts

appears in Figure 6.10 – J, exaggerating the skin texture. For the largest variance kernel,

the network recovers sharp edges and texture details as can be seen on Figures 6.10 and

6.11 (last column of each figure: G,H,P,O)

With oriented kernels, the SR images are sharper but also exhibit oriented artefacts

that the deep model does not compensate. This is particularly visible on strong edges

such as close-ups N and P in Figure 6.9: when the edge has the same orientation as the

oriented kernel, it is accurately reconstructed (N, bottom left), but not when direction

are perpendicular (P, bottom left). A possible explanation of these remaining artefacts

is that the CNN often compromises by averaging the possible orientations, ending up in

an efficient but non-oriented high-frequency compensation.
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Figure 6.9: Results for the Butterfly test image, rich in edges in all orientations, with
four different blurring kernels used in the observation model. Compared with a bicubic
interpolation (A – H), the blur artefacts are well removed in the SR images (I – P).
Some overshooting is present for the directions with small variance (I-J, M-N and OP).
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Figure 6.10: Results for the Mandrilla test image. Compared with a bicubic interpo-
lation (A – H), the hair regions in the SR images (I – P) are more detailed, as well as
the eye glow. The skin texture of the nose is slightly exaggerated in close-up J, bottom
left. Strongly oriented kernels (E – H for bicubic and M – P for SR ) also present

oriented artefact that the network cannot compensate.
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Figure 6.11: Results for the Powerpoint test image. Compared with a bicubic in-
terpolation (A – H), the obtained SR images (I – P) allow a better readability of the
textual content, and sharp edges. Some blur artefacts are still present, particularly on

oriented kernels (M,N,O,P).
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6.7 Conclusion

We have presented a blind approach to Super-Resolution using a Deep Convolutional

Neural Network architecture. The network is trained with LR and HR image pairs where

LR images are produced with different blurring kernels. Although shallow networks

perform well for the non-blind set-up [DLHT14], the experiments show that by using

more parameters and deeper neural models than in previous work, we can improve the

robustness of CNN-based models for blind SR.

In particular, results show that the proposed method achieves better reconstruction

performance than the previous results reported on the same dataset in [RSRB15], for

the blind set-up and also the non-blind one, where the observation model is fed to the

reported SR approaches. By being robust to different observation models, the proposed

method can be deployed for real-world. For instance, it can be used to upscale images

taken with different devices that have different sensors and lenses that influence the

real observation model. It can also cope with small motion thanks to the improved

robustness on oriented kernels.
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In this last chapter, a conclusion on the work presented throughout this thesis is given in

section 7.1: the three contributions on text, face and blind SISR are summarised. Then,

the limitations of the proposed approaches are discussed in section 7.2: for each one, the

gaps that would allow to address the largest scope of images in the best conditions are

analysed. Finally, section 7.3 is composed of two parts. In section 7.3.1, comments on

trends and perspective in the SR field are given. Then, consistent with the course of this

document, a reflection on possible extension of this work is proposed in section 7.3.2.

With roots in the latest advances in SR, the proposed track aims to replace the hand-

crafted knowledge-based prior with an automatic one, coming from a recognition system

that inject its own prior on domain-specific high-resolution images. A list of associated

publications is provided in section 7.4.
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7.1 Summary of the contributions

This work has focused on SISR methods designed to improve not only the perceptual

quality of the images, but also the performances of automatic recognition systems.

The first core contribution of this work is a SR method based on artificial neural networks

(Multi-Layer Perceptrons or Convolutional Neural Networks) for text image resolution

enhancement. This example-based approach allows to improve both the image recon-

struction quality and the accuracy of an OCR system, on document images and text

images extracted from TV streams. For document images, the proposed method allows

to improve reconstruction by +7.23dB in PSNR and accuracy by +7.85 points com-

pared with a standard bicubic interpolation of the LR images, setting new state of the

art results on the ULR-textsisr-2013a dataset. An advanced analysis of the proposed

approach shows how the neural models allow to automatically learn relevant features

and mappings in an end-to-end fashion. The results indicate that CNN models reach

better performance by incorporating hierarchical, highly non-linear LR feature extrac-

tion and mapping. To address multimedia content, a special dataset on text images from

TV streams have been publicly released for the organisation of the first international

competition of text image super-resolution for the ICDAR2015 conference. Results show

that learning-based methods are highly relevant for this task. In particular, the best

results obtained on this new dataset make use of CNN ensembles with performance close

to the one obtained on the original HR image set. For this first study on text, the adap-

tation to the context is made solely by adapting the training data to the task, to obtain

dedicated systems.

To tackle the equivalent problem on unconstrained face SR, a second approach is pre-

sented. It capitalises on the first proposed model and extends it in a two step fashion.

The first step improves the resolution of the global image via a local model, using a CNN

trained on large-scale facial dataset. It allows to improve reconstruction and recognition

scores over the low-resolution images, respectively by +3.44dB (compared with bicubic

interpolation) and +6.91 points compared with the original LR images and +2.70 over

bicubic interpolation. The second step consists in detecting facial components (eyes,

nose, mouth) and improving them using dedicated models, that recover severe degraded

components. Based on autoencoder architectures, they transform the input components

into a non-negative, part-based representation from which the final SR components are

synthesised. The second step allows to further improve the recognition performance

reaching +8.15 points (+3.94 compared with bicubic interpolation), even though the

pixel-wise measures are slightly degraded.
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The third contribution is centred on real-world aspects and the relevance of the proposed

neural based approaches in such contexts. Indeed, real LR images may be obtained

through various devices and situations. This is modelled via a variation of the blurring

kernel of the observation model. To tackle these variations, a deep CNN is learned in

a blind fashion (i.e. without knowledge of the blurring kernel used in the observation

model). It is demonstrated that, contrary to the limits observed with a single observation

model, having deeper architectures improve performance over the whole dataset, even

surpassing kernel-aware methods proposed in the literature. The images obtained on

natural dataset do not exhibit overshooting artefacts as observed in preliminary study

with shallow models. The obtained results indicate promising real-world application

of such approach, due to the improved robustness and the accurate reconstructed SR

images.

7.2 Limitations of the proposed approaches

The methods described in the first contribution in chapter 4 rely on the choice of the

data. This provides specialised systems that are efficient when the conditions imposed by

the training examples are met. However, as reported in Figure 4.12 (section 4.4, chapter

4), the best obtained models may still face difficult and ambiguous local contexts in the

LR image, where they produce irrelevant or blurry predictions. Also, the models trained

on a specific kind of data (e.g. document images) can be required to function on new type

of images (e.g. text extracted from TV streams), and the performance increase observed

in the experimental set-up might be less noticeable if those new cases are too far from

the training data. Moreover, the data is generated following a fixed observation model,

which may not be compliant with real-world observations, subject to more variation

(moving objects, blurry or noisy conditions). Addressing such images would also require

more robust models, either by selecting adapted data or by incorporating mechanisms

such as noise reduction or outlier detection for uncommon samples.

For face SISR (chapter 5), the proposed method rely on two steps and is dependant

on external tools such as the facial landmarks detector. Having a unified network for

both the generic and the specific steps while conserving the strength of the approach

could be beneficial. Also, even if the reconstructed components by the second step are

more realistic than after the first step, they lack of high-frequency content to hallucinate

credible high-resolution regions. As mentioned at the end of the chapter, a finer selection

of the training images could be beneficial.

In chapter 6, although the proposed approach clearly improves the PSNR in the blind

set-up, strongly oriented kernels produce artefacts that are difficult to compensate. An
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alternative would be to predict the blurring kernel associated to a non-blind set-up

that would use the predicted kernel to compensate the right artefacts, such as those in

[RSRB15]. Such approaches have been recently proposed for blind deblurring [SCXP15,

Cha16] and seem promising. Another choice could be to force the neural network to

explicit its estimation of the underlying blurring kernel (e.g. by predicting it), in order

to have a control on whether the network interprets correctly the amount and orientation

of the blur contained in the LR image or not.

Another track of investigation is to force the abstraction in the CNN, to make it less

dependent on the input image and its potential artefacts. Even if more robust, the

proposed model is composed of fine grain 3 × 3 convolutions that allow to carry lo-

calized errors through the different layers until the output one. According to recent

work[BSL16], blind SR could profit from spatial abstraction via pooling layers. It might

constrain the encoding process of the CNN to extract meaningful internal representation

independently from the spatial inconvenience of the different blurring effects.

7.3 Future works

7.3.1 Perspectives for Super-Resolution

Recent successful approaches in automatic image synthesis suggest that Generative Ad-

versarial Networks (GANs) achieve unprecedented results. The adversarial training takes

place using two neural networks (one Generator and one Discriminator) that compete

with each other: while the generator learns to fool the discriminator better, the latter

benefits from more and more challenging generated examples. This training procedure

being paired with hierarchical representations, GANs produce relevant images on both

local (textures, image grain) and global scales (object parts,). Results on face halluci-

nation and natural image SR have been demonstrating how relevant these model are.

However, two points could be worth exploring. First, although the upscaling factors are

generally high, it is also unclear how such approaches are dependant on the observation

model, as they often use a single LR observation model (bicubic downsampling). Sec-

ond, it would be interesting to design an approach such as [LTH+16] based on different

criterion than photo realism (achieved via SR/HR image discrimination). A proposal is

presented in the next subsection to address this challenge.

Another challenge that was not addressed in this thesis involve multiple image SR using

neural networks. Indeed, some very low resolution content can only be reconstructed into

higher resolution images by gathering the data split in several images. Also, using SISR

methods to upscale videos is inefficient as the redundant information between frames on
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which compression methods are based is likely to have the same appearance in the HR

frames. Recent work have been proposed to tackle this problem using recurrent networks

or 3D convolutions in CNN [HWW15]. They manage to reduce the aliasing artefact of

HR images. However, the gain in PSNR and image quality does not set impressive gaps

(less than 1dB) compared with SISR methods, and the methods tend to use synthetic

data and MSE training, rather than taking profit of the technological shift proposed by

methods such as GANs.

7.3.2 A preliminary study on Task-Guided Super-Resolution

Recent trends in example-based Super-Resolution and image enhancement include perception-

based SR, where the optimisation criterion of a learning system is not based on a pixel-

wise cost with additive priors on the model parameters, but rather perception losses

where an intelligent system is able to score the quality of the obtained image, and more-

over give a feedback to contribute to the general optimisation of the learning system.

Although the trend is quite recent, the obtained results are really impressive and encour-

aging. Figure 7.1 depicts several results obtained by [JAFF16] and [LTH+16]. Although

their approach diverge in philosophy – [JAFF16] uses a style-transfer approach while

[LTH+16] explicit the perceptual mechanism using adversarial nets that compete on

a “SR or real image ?” task – they both aim to bring satisfactory image statistics

that comply with the realism that HVS is used to when confronted to the real world.

Throughout this work we have focus on a interesting mission: to perform SR on specific

(a) Bicubic (×4) (b) Result from
[JAFF16]

(c) Result from
[LTH+16]

(d) Original HR

Figure 7.1: Results from recent works, involving an automatic perception of the
produced SR images to make an image quality feedback available to the training process.

images that aim to be processed by recognition engines, texts and facial images. For

text images, we have shown in chapter 4 that SR can help to boost the performance

of recognition engines while giving pleasant visual results, simply by adapting the data
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HR

Bicubic

SR

SR

Lr

OCR

OCR

Locr

Figure 7.2: Proposed approach for Task-Guided Super-Resolution. The SR network
is trained with respect to two loss functions: Lr which is the usual regression loss and
the Locr one, which is given by the difference between internal OCR network activations

for SR and HR images.

to the nature of images. We have seen that even in one type of images – text – a

certain variety can occur and that specialisation can help (see chapter 4, section 4.4 on

document image and section 4.5 on TV content). In chapter 5 we observed that incorpo-

rating domain knowledge can also help recognition system, as we know the preference of

such systems. The natural path to take, in convergence with the trends we mentioned,

would be to connect the domain knowledge not by incorporating hand-crafted tricks but

using the preferences of the recognition engine itself. Indeed, the important low-level

and high-level features that a given engine extracts to perform its classification task

may provide feedback. If the derivative with respect to the SR engine parameters are

tractable through this recognition system, it is possible to incorporate this information

in the learning process.

7.3.2.1 Proposed track

In order to benefit from an automated feedback, we present the idea of a Task-Guided

Super-Resolution (TGSR) approach. Instead of updating the parameters of a network

using exclusively the residual between the SR output and the original HR image, the

images produced by the SR network are presented to a second static network, trained

for character recognition as described in [SG07]. The penultimate layer of this deep

neural network is selected to give a high dimensional vector of neural activations. The

activation vector obtained with the SR image can be compared with the one obtained

with the original HR image, making a new loss function available. This vector is still

correlated with the input image as different images give different activations. However,
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the network projects this input stimuli into an abstract space where images are discrim-

inable depending on their character class. Therefore, a large projection error implies a

higher likelihood to end up with a misclassified image. The squared difference between

the two feature vectors defines the following OCR Loss:

Locr =
1

K

K∑

k=1

Locr(xk, yk) (7.1)

=
1

K

K∑

k=1

[
OCR

(
SR (xk)

)
−OCR (yk)

]2

where OCR represent the OCR non-linear function, SR the one of the SR network being

trained, K is the number of training samples. To guide the network to produce relevant

images, a normal reconstruction loss Lr is used

Lr =
1

K

K∑

k=1

Lr(xk, yk) (7.2)

=
1

K

K∑

k=1

[
SR (xk)− yk

]2

The overall loss is:

L = α · LOCR + β · Lsr (7.3)

where α and β control the influence of each loss on the training process.

The aim is to minimise this loss over a training set, by tuning the parameters of the SR

net only, as theOCR network is static and only provides the loss and the useful gradients.

Using stochastic gradient descent, for a given training sample xk, each parameter θi of

the SR network is update following the gradient:

θti = θt−1
i + η

∂L(xk, yk)

∂θi
(7.4)

Note that even though the OCR network uses the global SR image to classify it, the SR

network only performs local processing, using a sliding 13× 13 retina. Therefore, all it

can learn is a local image prior and not an global transformation of the image into a

more recognisable object.

7.3.2.2 Preliminary experimental results

We use a training set composed of 15,000 segmented character images from various

literature datasets. A test set composed of another 15,000 images is used to evaluate
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the model. The downsampling factor is s = 3, to sufficiently degrade the original images.

For simplicity, α and β are set to 1, meaning that each loss contributes equally in the

parameter update. Setting α to zero gives divergent behaviour (pure task guided SR), as

there is no regularisation from the Lr loss. The same architecture is also trained using

a reconstruction criterion only, i.e. minimising the Lr loss. Figure 7.3 an interesting

behaviour during training, as it relates to previous observations made in chapter 5 on

the two step approach. Compared with the training using Lr only, the use of multiple

loss Lr and Locr gives a higher average loss for reconstruction, but a lower average loss

for the OCR.
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Lr (train with Locr and Lr)

Lr (train with Lr only )

(a) Evolution of the reconstruction loss Lr dur-
ing training, using the proposed multiple crite-

ria or only the reconstruction one.
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(b) Evolution of the reconstruction loss Lr dur-
ing training, using the proposed multiple crite-

ria or only the reconstruction one.

Figure 7.3: Training loss monitoring with or without the feedback from the OCR
network. A trade-off is observed between a better reconstruction (lower Lr) and a

more accurate OCR representation (lower Locr).

The OCR results obtained on the test set are reported on Table 7.1. We can see an

increase in the OCR accuracy, the same way face verification increased when injecting

knowledge about the recognition engine. However, while this knowledge was injected

using a hand-crafted architecture, it is now brought directly by the automatic recognition

system itself via backpropagation. Slight variations are observed between the resulting

images of the two SR approaches. As depicted in Figure 7.4, the images resulting from

the TGSR approach exhibit locally boosted edges, improving the global acuity and

sharpness. This corresponds to the local prior assumption, and gives the first insight on

how gathering automatic feedback from a recognition system may help to improve task-

specific SR system, without incorporating hand-crafted architectures or assumptions on

the recognition engine. These results could be improved in several aspects:
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Table 7.1: OCR results obtained on the test set.

Images OCR character accuracy

Bicubic 79.253

SR (Lr) 83.680

TGSR (Lr + Locr) 84.087

HR 92.260

1. a larger dataset with high-resolution character images could be used as the one

used for training contain some images with poor quality.

2. a fine-tuning of the update parameters could allow a more accurate prior to be

learned by the SR network: learning rates, optimisation schemes, dynamic balance

between the two loss functions.

3. the ultimate end-to-end approach would be to use the classification label instead

of the penultimate layer.
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(a) Bicubic (×4) (b) SR (c) TGSR (d) HR

Figure 7.4: Comparative results for the proposed approach. The SR method produces
cleaner images while the TGSR one generate overshoot artefacts that increase acuity,

and improves recognition performance of the OCR engine.
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(BR). Contrairement à un rééchantillonage par interpolation, elles restituent les hautes fréquences spatiales et compensent les
artéfacts  (flou,  crénelures).  Parmi  elles,  les  méthodes  d'apprentissage  automatique  telles  que  les  réseaux  de  neurones
artificiels permettent d'apprendre et de modéliser la relation entre les images BR et HR à partir d'exemples. 
Ce travail  démontre l'intérêt des méthodes de SR à base de réseaux de neurones pour les systèmes de reconnaissance
automatique. Les réseaux de neurones à convolutions sont particulièrement adaptés puisqu'ils peuvent être entraînés à extraire
des caractéristiques non-linéaires bidimensionnelles pertinentes tout en apprenant la correspondance entre les espaces BR et
HR.
Sur des images de type documents, la méthode proposée permet d’améliorer la précision en reconnaissance de caractère de
+7.85 points par rapport à une simple interpolation. La création d'une base d'images annotée et l'organisation d'une compétition
internationale  (ICDAR2015)  ont  souligné  l'intérêt  et  la  pertinence  de  telles  approches.  Pour  les  images  de  visages,  les
caractéristiques faciales sont cruciales pour la reconnaissance automatique. Une méthode en deux étapes est proposée dans
laquelle la qualité de l'image est d'abord globalement améliorée, pour ensuite se focaliser sur les caractéristiques essentielles
grâce à des modèles spécifiques. Les performances d'un système de vérification faciale se trouvent améliorées de +6.91 à
+8.15 points.
Enfin, pour le traitement d'images BR en conditions réelles, l'utilisation de réseaux de neurones profonds permet d'absorber la
variabilité des noyaux de flous caractérisant l’image BR, et produire des images HR ayant des statistiques naturelles sans
connaissance du modèle d'observation exact.
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