
HAL Id: tel-01974316
https://theses.hal.science/tel-01974316v1

Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical simulation and rare events algorithms for the
study of extreme fluctuations of the drag force acting on

an obstacle immersed in a turbulent flow
Thibault Lestang

To cite this version:
Thibault Lestang. Numerical simulation and rare events algorithms for the study of extreme fluc-
tuations of the drag force acting on an obstacle immersed in a turbulent flow. Fluid Dynamics
[physics.flu-dyn]. Université de Lyon, 2018. English. �NNT : 2018LYSEN049�. �tel-01974316�

https://theses.hal.science/tel-01974316v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2018LYSEN049

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦52
École Doctorale de Physique et Astrophysique de Lyon (PHAST)

Spécialité de doctorat : Physique

Soutenue publiquement le 25/09/2018, par :

Thibault Lestang

Numerical simulation and rare events algorithms for the study of extreme
fluctuations o f the drag f orce acting on an object immersed i n a turbulent

flow

Simulation numérique et algorithmes d’échantillonnage d’événements rares pour l’étude
des fluctuations extrêmes de la force de traînée sur un obstacle immergé dans un

écoulement turbulent

Devant le jury composé de :

Dubrulle, Bérengère Directrice de recherche SPEC, CNRS Rapportrice
Noullez, Alain Directeur de recherche OCA, CNRS Rapporteur
Simonnet, Eric Chargé de recherche INPHYNI, CNRS Examinateur
Schneider, Kai Professeur I2M, Aix-Marseille Université Examinateur
Pumir, Alain Directeur de recherche ENS de Lyon, CNRS Examinateur
Lanotte, Alessandra S. Chargée de recherche ISAC, CNR Examinatrice
Bouchet, Freddy Directeur de recherche ENS de Lyon, CNRS Directeur
Lévêque, Emmanuel Directeur de recherche Ecole Centrale de Lyon, CNRS Co-encadrant

N U M E R I C A L S I M U L AT I O N A N D R A R E E V E N T S A L G O R I T H M S
F O R T H E S T U D Y O F E X T R E M E E V E N T S I N T U R B U L E N T F L O W S

thibault lestang

Freddy Bouchet & Emmanuel Lévêque

Application to extreme fluctuations of the drag force on an obstacle

Laboratoire de Physique de l’ENS de Lyon & LMFA, Ecole Centrale Lyon

Lyon, September 2018

Thibault Lestang: Numerical simulation and rare events algorithms for
the study of extreme events in turbulent flows, Application to extreme
fluctuations of the drag force on an obstacle, c⃝ September 2018

à Marité

A B S T R A C T

This thesis discusses the numerical simulation of extreme fluctuations
of the drag force acting on an object immersed in a turbulent medium.
Because such fluctuations are rare events, they are particularly difficult
to investigate by means of direct sampling. Indeed, such approach
requires to simulate the dynamics over extremely long durations. In
this work an alternative route is introduced, based on rare events
algorithms. The underlying idea of such algorithms is to modify the
sampling statistics so as to favour rare trajectories of the dynamical
system of interest. These techniques recently led to impressive results
for relatively simple dynamics. However, it is not clear yet if such
algorithms are useful for complex deterministic dynamics, such as
turbulent flows. This thesis focuses on the study of both the dynamics
and statistics of extreme fluctuations of the drag experienced by a
square cylinder mounted in a two-dimensional channel flow. This
simple framework allows for very long simulations of the dynam-
ics, thus leading to the sampling of a large number of events with
an amplitude large enough so as they can be considered extreme.
Subsequently, the application of two different rare events algorithms
is presented and discussed. In the first case, a drastic reduction of
the computational cost required to sample configurations resulting
in extreme fluctuations is achieved. Furthermore, several difficulties
related to the flow dynamics are highlighted, paving the way to novel
approaches specifically designed to turbulent flows.

v

R É S U M É

Cette thèse porte sur l’étude numérique des fluctuations extrêmes de
la force de traînée exercée par un écoulement turbulent sur un corps
immergé. Ce type d’événement, très rare, est difficile à caractériser
par le biais d’un échantillonage direct, puisqu’il est alors nécessaire
de simuler l’écoulement sur des durées extrêmement longues.

Cette thèse propose une approche différente, basée sur l’application
d’algorithmes d’échantillonnage d’événements rares. L’objectif de ces
algorithmes, issus de la physique statistique, est de modifier la statis-
tique d’échantillonnage des trajectoires d’un système dynamique, de
manière à favoriser l’occurrence d’événements rares. Si ces techniques
ont été appliquées avec succès dans le cas de dynamiques relativement
simples, l’intérêt de ces algorithmes n’est à ce jour pas clair pour des
dynamiques déterministes extrêmement complexes, comme c’est le
cas pour les écoulement turbulents.

Cette thèse présente tout d’abord une étude de la dynamique et de la
statistique associée aux fluctuations extrêmes de la force de traînée sur
un obstacle carré fixe immergé dans un écoulement turbulent à deux
dimensions. Ce cadre simplifié permet de simuler la dynamique sur
des durées très longues, permettant d’échantillonner un grand nombre
de fluctuations dont l’amplitude est assez élevée pour être qualifiée
d’extrême. Dans un second temps, l’application de deux algorithmes
d’échantillonage est présentée et discutée. Dans un premier cas, il est
illustré qu’une réduction significative du temps de calcul d’extrêmes
peut être obtenue. En outre, des difficultés liées à la dynamique de
l’écoulement sont mises en lumière, ouvrant la voie au développement
de nouveaux algorithmes spécifiques aux écoulements turbulents.

vi

Feelings don’t dictate outcomes.

— Gwen Jorgensen [72]

R E M E R C I E M E N T S

La rédaction d’un manuscrit de thèse est un travail de longue haleine.
Arrivé en bout de course, les yeux rivés sur la ligne d’arrivée, plus
grand chose ne compte que d’en terminer. En en oublierait presque
d’avoir une pensée pour ses parents. N’exagérons rien. Des parents
qui m’ont encouragé, assisté, écouté, accompagné. Souvent loin de
leurs mondes, mais toujours là où je voulais aller. Je pense ensuite aux
camarades “Lyonnais”. Ils étaient en première ligne, que l’on célèbre
ou que l’on se plaigne. Je pense regretter toujours ce SMS libérateur,
arrivant au terme d’une longue journée à n’y rien comprendre, an-
nonciateur d’une soirée en bonne compagnie: «Pinte Douce ?» —De
laquelle on ressort en ayant tout compris, ou pas, mais certainement
plus léger!.

Une thèse représente beaucoup d’énergie injectée dans une seule
chose. Il y a alors de très bon moments, et de très mauvais. Au Labo-
ratoire de Physique ou au LMFA, j’ai bénéficié d’un environnement
d’une qualité que j’estime exceptionnelle. Pendant presque 4 années,
j’y ai côtoyé, partagé, fraternisé avec des gens, certes brillants, mais
avant tout passionnés. Toujours prêts à partager leur énergie, donner
un coup de main, une suggestion. Mais aussi en recevoir, l’esprit
grand ouvert. Je remercie particulièrement Corentin Herbert, qui ne
mesure peut-être pas totalement l’impact qu’ont eu sa disponibilité,
son calme et sa gentillesse sur mon travail et mon moral. Merci aussi à
Francesco Ragone pour sa simplicité, son courage et, bien sûr, son ami-
tié. Sans oublier Takahiro Nemoto et Charles-Edouard Bréhier, avec
qui j’ai toujours un grand plaisir à discuter. Remerciements spéciaux
à Alessandro De Rosis, prophète du Lattice Boltzmann, qui m’a bien
formé.

Il fallait bien un paragraphe à part pour remercier Freddy et Em-
manuel. J’ai reçu de leur part une bienveillance manifeste, tantôt sous
forme de conseils, de critiques ou tout simplement d’une présence
attentive. Il me semble avoir mûri au cours de cette thèse. Sur le plan
scientifique bien sûr, mais pas que. Si le temps y est sans doute pour
quelque chose, Emmanuel et Freddy y sont aussi.

Je ne peux pas conclure ces remerciements sans rédiger quelques
mots pour Les Sacrées Tignasses. Quand on se lance dans une en-
treprise de longue haleine, ardue, le soutien indéfectible de bons
copains-copines est un atout précieux. Alors que dire de celui d’une
telle bande de macaques ! Ces amis de toujours qui, même sans com-
prendre grand chose au projet lui même, ont bien compris l’importance

vii

qu’il avait pour moi. Merci aussi aux Orcéens restés se battre contre le
RER B ou exilés au pieds des Alpes, j’ai toujours aimé aller vous voir
ou vous recevoir. Mention spéciale à Mathilde, qui a relu courageuse-
ment les chapitres 1 et 2 de cette thèse.

viii

C O N T E N T S

1 rare events , the poisson process and theoretical

approaches 9

1.1 The phenomenology of rare events 9

1.1.1 The Poisson approximation for rare events 10

1.1.2 How to access the return time numerically ? 12

1.2 Large Deviation Theory 12

1.2.1 Large deviations for trajectories in stochastic dy-
namics 13

1.2.2 Independent Identically Distributed variables
and the Donsker-Varadhan theory of large devi-
ations 15

i the phenomenology of extreme drag fluctua-
tions

2 test flows 21

2.1 The Lattice Boltzmann Method 23

2.2 Test flow (1): Channel flow with periodic boundary
conditions 25

2.2.1 Test flow (0): a single obstacle, pathological large
deviation behaviour 25

2.2.2 Test flow (1): flow in a periodic channel past a
tandem of square cylinders 33

2.3 Test flow (2): Grid-generated turbulence past a square
cylinder in a channel 38

2.3.1 Description of test flow (2) 39

2.3.2 Statistics for the drag on the obstacle 43

2.4 Conclusion 45

3 dynamics of extreme drag fluctuations 47

3.1 Sampling of extremes from a timeseries 50

3.2 Fluctuations of the instantaneous drag 52

3.2.1 Contribution of forebody and base pressure to
the drag fluctuation 53

3.2.2 Qualitative description of flow configurations
leading to extreme drag fluctuations 55

3.2.3 Conclusion 65

3.3 Fluctuations of the averaged drag 66

3.3.1 Examples of extreme fluctuations of the aver-
aged drag 68

3.3.2 Average extremes for some simple random pro-
cesses 70

3.4 Going further: the need for rare event algorithms 78

ix

x contents

ii rare events algorithms

4 the gktl algorithm 83

4.1 The Giardina–Kurchan–Tailleur–Lecomte (GKTL) algo-
rithm 83

4.1.1 Importance Sampling 85

4.1.2 The GKTL algorithm 88

4.1.3 The GKTL algorithm to compute large deviation
rate functions 90

4.1.4 Illustration on the Ornstein–Ulhenbeck process 92

4.1.5 Can the GKTL algorithm provide similar results
for turbulent flows ? 95

4.2 Application of the GKTL algorithm to a turbulent flow 96

4.2.1 Perturbation of the trajectories 97

4.3 Implementation of the GKTL algorithm for turbulent
flows 102

4.3.1 Separated implementation 104

4.3.2 Message-Passing implementation 105

4.3.3 Average walltime for the evolution and cloning
stages 108

5 importance sampling large drag fluctuations

with the gktl algorithm 113

5.1 Efficient computation of the large deviation rate func-
tion 115

5.1.1 Direct estimation of the rate function on the basis
of a finite timeseries 116

5.1.2 Estimation of the Scaled Cumulant Generating
Function (SCGF) using the GKTL algorithm 119

5.2 Analysing GKTL data 128

5.2.1 Discontinuous and reconstructed trajectories 129

5.2.2 Reconstruction of the continuous trajectories 131

5.2.3 Implementation(s) of the reconstruction in prac-
tice 132

5.2.4 Computation of expectation values over the re-
constructed ensemble 135

5.2.5 Importance sampling extreme drag fluctuations 137

5.3 Discussion 140

6 the adaptive multilevel splitting for the simu-
lation of extreme drag fluctuations 143

6.1 The Adaptive Multilevel Splitting (AMS) algorithm 146

6.2 The TAMS algorithm 148

6.2.1 Description of the Trajectory Adaptive Multilevel
Splitting (TAMS) algorithm 149

6.2.2 Connection with the AMS for time-dependent
observables 152

6.3 Application of the TAMS to the Ornstein–Ulhenbeck
process 154

contents xi

6.3.1 Efficient sampling of very rare trajectories 155

6.3.2 Estimation of the probabilities of rare fluctua-
tions 157

6.4 Application of the TAMS to extremes in turbulent flows 158

6.4.1 Plan of numerical experiments 161

6.4.2 TAMS for the instantaneous drag 162

6.4.3 TAMS for the time averaged drag 163

6.4.4 Discussion 163

7 computing return times for rare events 169

7.1 Introduction 170

7.2 Return Times: Definition and Sampling Methods 172

7.2.1 Computing return times from a timeseries 174

7.2.2 Computing return times from a rare event algo-
rithm 179

7.3 Return times sampled with the Adaptive Multilevel
Splitting algorithm 180

7.3.1 Computing return times with the TAMS 180

7.3.2 Return times for the Ornstein–Uhlenbeck pro-
cess from the Trajectory Adaptive Multilevel
Splitting algorithm 183

7.4 Return times sampled with the Giardina-Kurchan-Tailleur-
Lecomte algorithm 183

7.4.1 Return times for the time-averaged Ornstein–
Uhlenbeck process from the GKTL algorithm 184

7.5 Application: return times for extreme drag forces on an
object immersed in a turbulent flow 187

7.5.1 Computation of the reference solution for return
times 188

7.5.2 Computation of return times with the GKTL al-
gorithm and comparison with the reference so-
lution 188

7.6 Conclusion 189

iii appendix

a the pipelbm c++ library 201

a.1 A specific LBM implementation 201

a.2 Architecture of the pipeLBM library 202

a.2.1 The pipeLBM class 202

a.2.2 The Obstacle class 204

a.3 Example : flow past a square 204

a.4 Test cases 207

a.4.1 The Poiseuille flow 207

a.4.2 The laminar flow past a square cylinder 208

b the lattice boltzmann method 211

b.0.1 Lattice Gas Cellular Automaton 211

b.0.2 The Lattice Boltzmann Equation 211

xii acronyms

b.0.3 The Lattice Boltzmann Method (LBM) in prac-
tice 213

c perturbation of the flow state with the lbm 217

d the optimal score function 221

e the libtams library 225

e.0.1 Object-oriented modelling of the TAMS algorithm 226

e.1 A simple libTAMS code: rare excursions of an Ornstein–
Ulhenbeck 228

e.1.1 Initialisation 229

e.1.2 Iterations of the TAMS 230

e.1.3 General case 233

e.2 High dimensional dynamics 233

e.2.1 Writing the states on disk 234

e.2.2 Getting the restart state 235

e.3 TAMS for an integrated cost function 236

e.4 TAMS with rejection 237

bibliography 241

A C R O N Y M S

PDF Probability Density Function

i.i.d. Independent Identically Distributed

OU Ornstein–Ulhenbeck

AMS Adaptive Multilevel Splitting

TAMS Trajectory Adaptive Multilevel Splitting

SCGF Scaled Cumulant Generating Function

LBM Lattice Boltzmann Method

LBE Lattice Boltzmann Equation

LGCA Lattice Gas Cellular Automata

LBGK Lattice Bhatnagar–Gross–Krook

GKTL Giardina–Kurchan–Tailleur–Lecomte

DNS Direct Numerical Simulation

MD Molecular Dynamics

CFD Computational Fluid Dynamics

xiii

I N T R O D U C T I O N

A striking property of turbulent flows is the random occurrence of
strong coherent structures, emerging from the apparent disorder of
the flow. Such structures, for instance vortices, are linked to intense
fluctuations of the velocity gradients and pressure fields. Considering
extreme fluctuations, the typical return period of these events is very
long compared with the typical timescale of the turbulent fluctuations.
In this sense, such extreme fluctuations are rare events.

In spite of their scarcity, extreme fluctuations in turbulent flows
can have dramatic consequences on the structure of the flow itself,
as well as on immersed objects. Examples include the fluctuations
of turbulence intensity in wall-bounded flows near the transition
to turbulence [63, 119, 138] or rare transitions between attractors in
turbulent flows, for instance in zonal jet dynamics [12].

In addition, the formation of strong dynamical structures in the
vicinity of an immersed object can have an important mechanical
impact, such as extreme fluctuations of the drag and lift forces. An
example is the impact of extreme wind loads on tall structures, such
as buildings [91] or wind turbines [74, 87, 88]. In addition to the po-
tential wreckage of the system—as illustrated in figure 0.1—extreme
wind gusts can be held responsible for premature fatigue of the struc-
ture [87]. Other examples include vehicle aerodynamics [23, 67] or
marine biology [36].

Since the drawings of Da Vinci in the early 1500s, the physics of
turbulent flows remains poorly understood. Although the governing
equation, the Navier-Stokes equations, can be derived from elementary
conservation laws, they encode complex dynamics characterised by

Figure 0.1: Collapsed wind turbine in Bouin, France. It is attributed to ex-
treme winds that occurred during the Carmen storm that hit
western France in early January 2018. The turbine had been in
place for 15 years. It is worth noting that it resisted several similar
and even stronger storms, such as Xynthia in February 2010.

1

2 introduction

interactions across all scales. To this date, there exist no definitive
universal theory capable of predicting the statistics of fluctuations in
turbulent flows. The characterisation of the dynamics related to rare
events is therefore a step towards a more complete understanding of
the physics of turbulent flows.

numerical simulations of turbulent flows

Numerical experiments

Because of the extreme mathematical complexity of the equations de-
scribing fluid flows, analytical investigation of turbulence with pencil
and paper is out of the question. On the basis of a suitable mathe-
matical model, an alternative approach to experiments is numerical
simulation. With the advent of modern computers and High Perfor-
mance Computing, Computational Fluid Dynamics (CFD) has become
a major tool in the study of turbulent flows, for both fundamental
research and engineering problems, in both academic and industrial
contexts [46].

The large computational cost of simulating turbulence

However, the computational approach in hindered by the tremen-
dous computational cost associated with the numerical integration
of the Navier-Stokes equations. As a matter of fact, a dimensional
analysis shows that the amount of grid points N3 required to resolve
the small scales in three dimensional turbulent flows grows as a power
aw of the Reynolds number: N3 ∼ Re9/4. Numerical integration of
the Navier-Stokes equations, without any additional approximations,
is referred to as Direct Numerical Simulation (DNS). To fix ideas, the
largest DNS to date has been published in 2015 [178]. It solves the three
dimensional, incompressible Navier-Stokes equations in a periodic
box with a resolution of 8.1923 spatial mesh points.

When it comes to industrial or geological flows, DNS are out of
the question. Indeed, for the Reynolds numbers encountered in such
applications, the computing resources required by a DNS exceed the
capacity of the most powerful computers available. As a consequence,
practical applications must rely on computational approaches based
on approximations, such as Large Eddy Simulation (LES) [146] or
Reynolds Averaged Navier-Stokes (RANS) methods.

The need for rare event methods

In this context, the numerical simulation of rare events in turbulent
flows appears like a daunting task. Indeed, the common approach
relies on the simulation of the flow over very long durations, in

introduction 3

order to obtain a representative sample of extreme events [104, 147,
150]. In view of the previous discussion, this direct method involves
tremendous computational burden. Moreover, it is limited to simple
flows which numerical simulation require low computational effort.
In most cases however, rare events simply cannot be accessed.

There is thus a need for computational techniques decicated to the
simulation of extreme events in turbulence, in order to bypass the
requirement for long integration times. In this thesis we address the
numerical sampling of extremes in turbulent flows, based on computa-
tional methods originating from statistical physics. Such methods are
applied on top of the numerical simulation of the flow and alter the
statistics of extremes, so that they are sampled with a higher probabil-
ity;as opposed to a direct simulation of the flow over long durations.

rare event sampling

Systems at equilibrium

In computational statistical mechanics, equilibrium systems are
commonly simulated by means of Monte Carlo methods [10]. For
systems in static equilibrium, the fluctuating behaviour is simulated
by sampling states according to the stationary distribution. This distri-
bution has a Boltzmann-like form and can be sampled using classical
Markov Chain Monte Carlo strategies such as the Metropolis-Hastings
algorithm [34]. For systems in dynamic equilibrium, rare events sam-
pling is commonly achieved by means of Path Sampling. In this ap-
proach, rare transitions between different regions of phase space are
sampled using equilibrium Monte Carlo methods in trajectory space.
Path Sampling techniques emerged with the development of Transition
Path Sampling in 2001 [11]. Subsequently, a large body of methods
has been developed, such as Transition Interface Sampling [44] or
Milestoning[77]. Path Sampling methods are primarily applied to the
simulation of rare events in biomolecular systems [45]. Importantly,
this approach requires that the dynamics are reversible in time, with a
Boltzmann phase space stationary distribution [2, 45].

Rare event sampling in turbulent flows

By contrast, the dynamics of non-equilibrium systems is not re-
versible, and the stationary distribution is not known. It is for instance
the case for turbulent flows. Consequently, the sampling must be per-
formed at the level of the trajectories. To this date, the computational
investigation of rare events in turbulence have been primarily based
on simplified hydrodynamical models with stochastic forcing [64, 65,

4 introduction

69, 71]. An example is the random-forced Burgers equation [8]. In
this framework, it is possible to derive an action for trajectories, see
chapter 1, section 1.2.1. It plays a role analogous to the energy for
trajectories in phase space. As a result, it allows for a Monte Carlo
sampling of the path measure [111, 112]. A second approach is based
on the instanton method [65]. It also relies on the knowledge of an ac-
tion describing the landscape of the path measure. In the limit of weak
stochastic forcing, trajectories connecting two states in phase space
are expected to concentrate on the most probable path, referred to as
the minimum action path. This path can be computed by numerically
minimising the action [13, 32, 69, 101].

Methods based on the knowledge of the action, whether they per-
form Monte Carlo sampling or minimisation of the action, are limited
to stochastic dynamics. However, most turbulence problems are fully
deterministic. In addition, even in situations where a small noise is
present, it is expected to play little role in the physical mechanisms
responsible for extreme events.

As a consequence, more general methods are required in order
perform computational studies of extremes in turbulent flows, and
especially flows that are of interest for the engineer.

Rare event algorithms that work for non-equilibrium dynamics

In this thesis we address a different route to rare event sampling in
turbulent flows. We consider the application of rare event algorithms
that are not limited to stochastic dynamics and that have been proven
relevant in chaotic deterministic systems [177]. More importantly,
there are applicable to non-equilibrium, irreversible dynamics. Most
of these algorithms rely on the simulation of a population of copies
of the system. Along the simulation, copies are replicated according
to how well they perform with respect to the realisation of a rare
event. In this way, the ensemble of trajectories is enriched in trajecto-
ries corresponding to extreme events. In this thesis we focus on two
specific algorithms: the Adaptive Multilevel Splitting [27, 141] and the
Giardina–Kurchan–Tailleur–Lecomte algorithm [57, 120]. Although
both methods are relatively recent, the corresponding algorithms are
rooted in older ideas such as Diffusion Monte Carlo methods [89],
go-with-the-winners algorithms [68, 167] or splitting algorithms [61].
As an illustration, figure 0.2 depicts the procedure corresponding to
one iteration of the Adaptive Multilevel Splitting algorithm.

In this work we address the applicability of both the GKTL and AMS

algorithms to the numerical simulation of rare events in turbulent
flows. Although both algorithms are very general, to this date they
have never been applied to the numerical simulation of the Navier-

introduction 5

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

Figure 0.2: Illustration of an iteration of the AMS algorithm. In this example
we consider two regions of phase space A and B for which
transitions to one another are very rare. In this sketch, three
trajectories are computed from the initial condition x located
within the basin of attraction of A. They are computed until they
either reach B or fall to A. The levels {Q}1≤i≤3 correspond to
the maximum value of a score function over the corresponding
trajectory, that quantifies how close each trajectory got from B.
Having the lowest level among the ensemble, trajectory 1 (dashed)
is discarded from the ensemble of trajectories. Trajectory 2 is then
randomly selected and copied until it reaches the maximum of 1,
identified by a red dot. From there, dynamics are integrated until
it either reach A or B. In typical applications this procedure is
iterated many times until all trajectories reach B.

Stokes equations. Their relevance and practicality for very complex
dynamics such as turbulent flows is an open question.

a simple framework for a first study

Together with [12], the work described in this thesis is the first
attempt at sampling rare events in turbulent flows without relying
on the definition and minimisation of an action in trajectory space.
In addition, the flows considered in this work are fully deterministic.
The objective of the present work is to assess the relevance of rare
event algorithms to mitigate the computational cost associated with
the numerical simulation of extreme events in turbulence.

Two-dimensional turbulent flow past a square cylinder

As a first application of the AMS and GKTL algorithms, we consider
a simple geometry in which a square obstacle is embedded into a two-
dimensional channel flow. An example is given in figure 0.3. While the
relevance of two-dimensional turbulence is questionable for practical
applications, it provides a convenient framework for the study of
extremes, as well as first tests with rare events algorithms. Indeed, the
simulation of two-dimensional flows is much less demanding than

6 introduction

Figure 0.3: Snapshot of the velocity field surrounding a square obstacle. The
flow goes from left to right and upstream turbulence is generated
by means of a grid.

their three-dimensional counterparts. In this simplified framework,
extremes can be investigated on the basis of a very long simulation of
the flow.

Extreme fluctuations of the drag force

More precisely, we focus on extreme fluctuations of the longitudinal
force acting on the obstacle, referred to as the drag force. The study of
drag fluctuations on immersed obstacles is relevant to numerous con-
texts, such as ground vehicle aerodynamics [23, 67], astrophysics [82]
or civil engineering [91]. While the characterisation of the statistics
and dynamics of fluctuating drags have been addressed in previous
studies [7, 82, 162], the study of extreme events have been left aside.
Consequently, in the first part of this thesis we present a study of the
extreme drag fluctuations acting on a square cylinder, based on a very
long simulation of the flow. Extreme drag fluctuations are identified
and locally re-simulated in order to compute the physical quantities,
as well as visualise the corresponding flow fields. From the sampling
of roughly one hundred events, we are able to distinguish the common
properties of rare events of similar extreme amplitudes. Furthermore,
we propose a classification of extremes according to two dynamical
scenarios.

In a second part of the thesis the GKTL and AMS are applied to the
sampling of extreme drag fluctuations on a square cylinder. Thanks
to the relative simplicity of the flow, the results obtained from the
algorithms can be compared to the direct sampling based on a very
long simulation. Using the GKTL algorithm we compute the large
deviation rate function describing the tail statistics of the time-averaged
drag. We show that the GKTL algorithm yields an accurate estimate for
a much lower computational cost than direct sampling.

By contrast, we find that the AMS algorithm does not lead to a
significant computational gain. This result highlights the fact that
the application of the AMS to chaotic deterministic dynamics, such as
turbulent flows, is not straightforward. The reasons for this difficulties
are illustrated and perspectives of adaptation of the algorithm are
discussed.

introduction 7

The Lattice Boltzmann Method

Throughout this work, numerical simulations of turbulent flows
are based on the Lattice Boltzmann Method (LBM) [92, 155]. Since its
first appearance in the late 1990s, the LBM is attracting ever-growing in-
terest in numerous communities, as it offers a very simple algorithmic
procedure applicable to a wide variety of problems in fluid mechanics,
including turbulence. In this thesis we make use of a novel formu-
lation of the LBM, called the central-moments based lattice Boltzmann
scheme [144]. It is very well suited for the simulation of turbulent
flows.

Plan of the thesis

In chapter 1, general aspects of the statistics of rare events are pre-
sented. Basic results from large deviation theory are also introduced.

In chapter 2 we discuss two two-dimensional geometries in which a
square obstacle is immersed in a turbulent flow.

On the basis of these flows, extreme drag fluctuations are sampled
from the integration of the dynamics over very long durations. Chap-
ter 3 presents the characterisation of both the dynamics and statistics
corresponding to these extreme events.

In chapter 4 the GKTL algorithm is introduced. Its connection with
large deviation theory is highlighted. Moreover, its practical implemen-
tation for complex, chaotic deterministic dynamics is discussed.

The application of the GKTL algorithm to the sampling of extreme
drag fluctuations is presented in chapter 5

Finally, in chapter 7 we address the numerical computation of return
times for rare events, i.e the typical timescale of occurence of the
fluctuations. The estimation of return times—or return periods—is
discussed based on either long timeseries of the observable of interest,
or rare events algorithms such as the AMS or GKTL algorithms.

1
R A R E E V E N T S , T H E P O I S S O N P R O C E S S A N D
T H E O R E T I C A L A P P R O A C H E S

In many physical systems, the mean state and the typical fluctua-
tions about this state, usually studied in statistical physics, are not the
only quantities of interest. Indeed, fluctuations far away from the mean
state, although they are usually very rare, can play a crucial part in
the macroscopic behaviour of the system. For instance, they can drive
the system to a new metastable state, possibly with radically different
properties [90]. Such transitions arise in a wide variety of situations,
such as Josephson junctions [93], quantum oscillators [38], turbulent
flows [15], magneto-hydrodynamics dynamos [9], diffusion-controlled
chemical reactions [25], protein folding [124], climate dynamics [126].
Even if the system returns to its original state after undergoing the
large fluctuation, the impact of this event may be so large that it is
worth being studied on its own. One may think for instance about
heat waves [136] and tropical cyclones, rogue waves in the ocean [39],
strong dissipative events in turbulent flows [179], shocks in financial
markets [43]. Here, we are concerned with the study of such atypical
fluctuations starting from the equations (deterministic or stochastic)
that govern the system’s dynamics. This approach is different from
and complementary to the purely statistical methods which try to
extract the best possible information about the distribution of rare
events from an existing timeseries, such as, for instance, extreme value
statistics [48, 55, 107].

1.1 the phenomenology of rare events

In this thesis we discuss rare events in dynamical systems. Typi-
cally, we consider extreme fluctuations of a given observable A of the
dynamics beyond a threshold a. This situation is depicted in figure 1.1
for the example of an Ornstein–Ulhenbeck (OU) process. In this par-
ticular example, the dynamics is stochastic and one-dimensional. The
observable A is chosen as the state variable itself A(x) = x. The values
of A appear to randomly fluctuate around an average value, ⟨A⟩ = 0.
The typical timescale of these fluctuations is the correlation time of the
process, wich is denoted by τc in the following. It can be thought of
as the time it takes for the evolution of the process to become statisti-
cally independent of its previous values at earlier times. Furthermore,
the evolution of A displays typical fluctuations around the average,
having a typical timescale of occurrence close to the correlation time.
By contrast, the process also displays fluctuations to values far away

9

10 rare events , the poisson process and theoretical approaches

0 2× 102 4× 102 6× 102 8× 102 103

t

−4σ

−2σ

0

2σ

4σ

A
(t
)

Figure 1.1: An example of a random process associated to events reaching
a given threshold. (a): Sample timeseries (black line), generated
from an Ornstein–Uhlenbeck process (1.4); σ = 1/

√
2 is the stan-

dard deviation. We are interested in fluctuations which reach a
prescribed threshold a = 3.6σ (dashed red line). These events are
identified by the red dots.

from the average, identified by the red dots in figure 1.1. The typical
timescale of occurrence of these fluctuations is much larger than the
correlation time. In the example of figure 1.1 only 6 events above
the level denoted by the dashed red line are sampled in a timeseries
spanning 103 correlation times. These rare fluctuations are located
in the tails of the Probability Density Function (PDF) describing the
statistics of the values of A.

In the following we refer to the typical timescale of occurrence of a
fluctuation A ≥ a as its return time, denoted by r(a). More precisely,
we define the waiting time

τ(a, t) = min {τ ≥ t |A (τ) > a} − t. (1.1)

Then the return time r(a) for the threshold a is defined as

r(a) = E [τ(a, t)] . (1.2)

The return time therefore corresponds to the average duration one has
to wait in order to observe a given fluctuation A ≥ a.

1.1.1 The Poisson approximation for rare events

In practice, we must distinguish two kinds of events A(t) ≥ a. On
the one hand, there are correlated events corresponding to fluctuations
around the threshold a, on a timescale of the order of the correlation
time. On the other hand, there are successive events such as those
depicted in figure 1.1, which can be considered as statistically inde-
pendent events. Because the return time of rare events is much larger
than the correlation time of the process, we therefore consider the
fluctuations around the threshold a as the same event. In other words,

1.1 the phenomenology of rare events 11

we neglect the temporal strucutre of rare fluctuations A(t) ≥ a and
consider them as one-time events.

The random occurrence of statistically independent one-time rare
events can be modelled by a Poisson process [37, 43, 102]. A Poisson
process is described by a single parameter λ(a) which quantifies the
typical rate at which events A(t) ≥ a occur. Let τ be the intermediate
time interval between two consecutive events. For a Poisson process,
the distribution of intermediate times is:

P (τ) = λ(a) exp (−λ(a)τ) . (1.3)

0 300 600 900 1200

τ

10−4

10−2

100

lo
g
P
(τ
)

Poisson process
Numerics

(a)

0 300 600 900 1200

τ

10−4

10−3

10−2

lo
g
P
(τ
|τ

>
τ
c
)

Poisson process
Numerics

(b)

Figure 1.2: PDF of waiting times between two consecutive fluctuations of am-
plitude a = 2.5, estimated from a timeseries of length Td = 106

of the Ornstein–Uhlenbeck process (1.4) (blue triangles), and
assuming that the events follow a Poisson process with rate
λ(a) = 1/r(a), P(τ) = λ(a)e−λ(a)τ (black solid line), where r(a)
is computed from the timeseries. The correlation time of the
Ornstein–Uhlenbeck process is τc = 1. (a) Taking all intervals into
account, including those corresponding to oscillations around
the threshold. (b) Discarding small intervals (τ < τc) linked to
oscillations around the threshold.

Figure 1.2a shows the Probability Density Function (PDF) of the time
interval between two occurrences of an event x(t) ≥ a, drawn from a
sample timeseries {x(t)}0≤t≤T generated with an Ornstein–Uhlenbeck
process defined as

ẋ(t) = −x(t) +
√

2η(t), (1.4)

where η is a Gaussian white noise. One can see that most of the
contributions are indeed small intervals of the order of the correlation
time. Discarding all the time intervals below the correlation time,
one obtains the PDF displayed in Fig. 1.2b, which coincides with the
exponential distribution corresponding to a Poisson point process. The
rate of the process corresponds to the return time of the fluctuation:
r(a) = 1/λ(a).

12 rare events , the poisson process and theoretical approaches

1.1.2 How to access the return time numerically ?

Although the statistics of rare events can be described by a simple
Poisson process with a simgle parameter λ(a), the numerical estima-
tion of this parameter is a difficult task. Because rare events occur over
times much larger than the correlation time, the dynamical equations
describing the evolution of the system must be integrated over a very
large number of correlation times in order to sample a statistically
significant number of events. In many applications, the numerical
simulation of a few correlation times is a scientific and technological
challenge in itself. An example is the simulation of turbulent flows.
Therefore, there is a need for computational methods improving the
sampling of rare events. More precisely, statistical algorithms which,
coupled with the simulation of the dynamics, sample extreme fluctu-
ations with integration times accessible to state-of-the-art numerical
simulations.

1.2 large deviation theory

The theoretical framework which has been developed over the last
decades in statistical physics to tackle the investigation of rare events
is that of large deviation theory [35, 42, 49, 164, 174]. Large deviation
theory is concerned with the asymptotic decay of the probability of
rare events as a function of a small parameter ϵ. Let us consider a
PDF Pϵ. For instance it could be the PDF of the sample mean SN over
N Independent Identically Distributed (i.i.d.) variables {Xn}1≤n≤N :
SN = 1

N ∑N
n=1 Xn. In this case ϵ = 1/N. A PDF Pϵ is said to verify a

large deviation principle if there exist a so-called rate function I so that

lim
ϵ→0

ϵ lnPϵ(a) = I(a). (1.5)

The large deviation principle is commonly written as

Pϵ(a) ≍
ϵ→0

e−
I(a)

ϵ , (1.6)

where the symbol fϵ ≍
ϵ→0

gϵ denotes logarithmic equivalence as ϵ goes

to 0: ln(fϵ) ∼
ϵ→0

ln(gϵ). As I(a) can be shown to be convex, the large

deviation principle states that the probability of observing a fluctuation
a away from the typical value a⋆, for which I(a⋆) = min I(a)

a
, decays

exponentially with ϵ. The rate of the decay is I(a).
The term large deviation theory can actually refer to different theo-

ries, depending on the nature of the parameter ϵ. For instance, the
Donsker-Varadhan theory of large deviations describes the decay of
the probabilities of the fluctuation of the integral of a process x(t), in

1.2 large deviation theory 13

the limit of large integration times. The corresponding large-deviation
principle reads:

P
(

1
T

∫ T

0
f (t)dt = a

)
≍

T→∞
e−TI(a). (1.7)

Another example is Freidlin-Wentzell theory of large deviations. It
deals with the probabilities of trajectories in stochastic dynamical
systems in the limit of weak noise. It leads to large deviation results
that describe the exponential decay of the probability of trajectories
away from the most probable one.

In the following we briefly discuss Freidlin-Wentzell theory. We
illustrate that in stochastic systems with weak noise, the dynamics of
rare events can often be predicted. Then, we present the main ideas of
the Donsker-Varadhan theory of large deviations. We explain that it
can be understood as a generalisation of the central limit theorem that
goes beyond typical fluctuations.

1.2.1 Large deviations for trajectories in stochastic dynamics

Freidlin–Wentzell theory deals with dynamical systems perturbed
by a stochastic term of weak amplitude. The stochastic differential
equation that describes such a system writes

ẋ = b(x) +
√

2ϵσ(x)η(t), (1.8)

where the system x(t) has dimension N, b(x) is a M-dimensional
vector field, σ(x) is a N × M matrix and η(t) = (ηm(t))1≤m≤M is a M
dimensional white noise term

ηm(t)ηm′
(t′) = δmm′δ(t − t′).

We denote by Pϵ(x, T|x0, 0) the probability to find the system in
state x at time t = T given the initial condition x0 at time t = 0. At the
core of Freidlin–Wentzell theory is the derivation of a large deviation
principle, not only for the transition probability Pϵ(x, T|x0, 0) but
also for the probability Pϵ [x(t)] to observe any trajectory x(t) for the
system in the interval [0, T]. The probability density Pϵ [x(t)] is thus
a functional: it depends on the whole trajectory x(t) which is itself a
function of time.

For the sake of simplicity, we consider the case where x is a scalar
and σ(x) = 1. In this case the probability Pϵ [x(t)] verifies a large
deviation principle as follows:

Pϵ [x] ≍ e−
1
ϵA[x]. (1.9)

14 rare events , the poisson process and theoretical approaches

The functional A[x] is called the path action and writes

A[x] =
1
4

∫ T

0
(ẋ − b(x))2dt (1.10)

One can see that the action is always positive. It is consistent with
the fact that it is a large deviation functional, analogous to the large
deviation rate function I(a) in (1.5). More importantly, the minimum
of the action is zero and is always reached for the deterministic path
of equation ẋ = b(x).

So far, we did not specify the initial conditions for the path x(t).
The large deviation result (1.9) is valid for any path in the interval
[0, T]. In this section, we are concerned with the transition probability
Pϵ (xT, T|x0, 0) to reach a final state xT starting from x0. We thus
have to restrict ourselves to the paths that satisfy the two constraints
{x(T) = xT, x(0) = x0}. The large deviation result (1.9) is still valid
for this particular class of paths.

The probability Pϵ (xT, T|x0, 0) can actually be written as a path
integral

P (xT, T|x0, 0) =
∫

D [x]
{x(T)=xT ,x(0)=x0}

e−
1
4ϵ

∫ T
0 dt(ẋ(t)−b(x(t)))2

, (1.11)

where the integral runs over all trajectories starting from the initial
condition x0 at t = 0 and reaching xT at t = T. Equation (1.11)
indicates that the most probable trajectories with prescribed initial
and final states are minimizers of the action with prescribed initial
and final points. The optimal action is denoted

A(x0, xT, T) = min {A[x]|x(0) = x0, x(T) = xT} . (1.12)

Following the large deviation principle (1.9), the probability of transi-
tion paths from x0 to xT concentrates around the action minimizer for
ϵ → 0. Such a path is called an instanton.

1.2.1.1 Fluctuation paths

When the initial point x0 belongs to an attractor of the determin-
istic dynamics, it is expected that the action A(x0, xT, T) decreases
with time. The action minima starting from an attractor and having
an infinite duration will thus play an important role. Those action
minimizers starting from an attractor and with an infinite duration
are called fluctuation paths. They are defined as

A(x0, X) = min
{
A[x] lim

T→∞
x(−T) = x0, x(0) = X

}
(1.13)

1.2 large deviation theory 15

Freidlin-Wentzell theory therefore suggests that, in the limit of low
noise, the probability of trajectories of such fluctuations concentrate
on the fluctuation paths. As a consequence, in the limit of low noise,
the dynamics leading to extreme fluctuations is predictable, as it corre-
sponds to the minimisation of (1.13). One of the original motivations
of this work is to assess the validity of this result result for complex
chaotic dynamics such as turbulent flows. Indeed, from a modelling
perspective, turbulent flows can be viewed as a stochastic dynamics
with a weak noise, i.e. small scale turbulent fluctuations. Indeed, it
is not clear if the behaviour of the large scale motions can be well
described by a determinisic dynamics perturbed by a stochastic noise,
resulting from small scale turbulent fluctuations.

1.2.2 Independent Identically Distributed variables and the Donsker-Varadhan
theory of large deviations

We now turn to a different kind of large deviation theory which
plays a central role in this thesis. It describes the exponential decay
of the probability of fluctuations away from the average in the limit
where the average is computed over a large number of realisations
for random variables, or over long durations for random processes. In
particular we will illustrate that it generalises the central limit theorem.

1.2.2.1 Large deviation principle for a sum of i.i.d. variables

Let X be a random variable described by a PDF P . Furthermore we
note µ = E[X] and σ2 = E[X2]− µ2. In the following we consider the
sample mean over N realisations of X, defined as

SN =
1
N

N

∑
n=1

xn. (1.14)

We know from the law of large numbers that SN →
N→∞

µ. Furthermore,

the central limit theorem states that the PDF of SN converges in law
towards a Gaussian PDF with mean µ and standard deviation σ/

√
N.

Actually, it can be proved that the sample mean SN verifies a large
deviation principle1:

P(SN = s) ≍
N→∞

e−NI(s) (1.15)

1 This result is actually the first result of large deviation theory. It dates back to the
1930s and is due to the Swedish mathematician Harald Cramèr who first applied this
result in actuarial science and insurance mathematics. Accordingly, it is known as
Cramèr’s theorem.

16 rare events , the poisson process and theoretical approaches

0 0.1 0.2 0.3 0.4 0.5 0.6

x

0

2

4

6

8

10

P
N
(s
)

N = 5
N = 20
N = 50
N = 100

µ

(a) Probability density function

-0.2 -0.1 0 0.1 0.2

s− µ

0

0.05

0.1

0.15

0.2

I
N
(s
)

gaussian approximation

rate function I(s)

(b) Rate function

Figure 1.3: Illustration of the large deviation principle for the sample mean
over N Bernoulli variables with parameter µ. (a) Probability Den-
sity Function P(SN = s). One can see that the distributions are
more and more concentrated around the mean value µ of the
Bernoulli process as N is increased. In addition, the typical width
of the PDF decreases like 1/

√
N. (b) Estimates of the rate function

for finite N corresponding to the PDFs displayed in figure 1.3a.
As N is increased, the estimates converge towards the rate func-
tion I(s). In addition, the Gaussian approximation (1.20) is only
accurate over a 1/

√
N range around the mean value µ, i.e. the

minimum of the rate function. I thank Eric Woillez for these
figures.

As a matter of fact, this result contains both the law of large numbers
and the central limit theorem. Following (1.15), the expectation value
µ reads:

µ =
∫

ds sP(s) ≈
∫

ds se−NI(s). (1.16)

As N is increased, a saddle point approximation therefore yields µ =

I(s⋆) with s⋆ the minimizer of I(s) . This is illustrated in figure 1.3b.
As N grows, the distribution of SN therefore concentrates around the
average value of µ. This corresponds to the law of large numbers and
is illustrated in figure 1.3b. Let us now consider the reduced random
variable ZN = (SN − µ)/σ

√
N. A linear change of variable in the large

deviation principle (1.15) leads to

P(ZN = z) =
σ√
N

C
(

N, µ +
σ√
N

z
)

e−NI(µ+ zσ√
N
). (1.17)

where C is a prefactor. Considering small deviations from µ, a series
expansion at second order yields:

I(a) ≈ I(µ) + I′(µ) +
I′′(µ)

2
(a − µ)2 (1.18)

Recalling that I(µ) = I′(µ) = 0, one gets

P(ZN = z) ≈ σ√
N

C (N, µ) e−
1
2 I′′(µ)z2σ2

. (1.19)

1.2 large deviation theory 17

Because of the normalisation constraint
∫
P(z)dz = 1, the prefactor

1√
N

C (N, µ) must converge to the normalisation constant, with I′′(µ) =
1/σ2. As a result,

lim
N→∞

P(ZN = z) =

√
1

2π
e−

1
2 z2

(1.20)

which corresponds to the central limit theorem. We stress here that the
large deviation principle (1.15) goes beyond the central limit theorem.
Indeed, it states that, for a fixed s, the probability decays exponentially
as N is increased. In addition, the rate of decay is I(s). Figure 1.3b dis-
plays the quantity IN = − 1

N ln(P(s)/P(µ)) for the sum of N Bernoulli
variables, for different N. It illustrates that the different curves con-
verge towards the rate function I as N is increased. In addition, the
Gaussian approximation is also displayed, computed using (1.20). It
illustrates that P(s) is not Gaussian. Indeed, the central limit theorem
is only valid for fluctuations amplitude up to 1/

√
N. A fluctuation

further away from µ is always possible, but with exponentially small
probability. Such atypical fluctuations are called rare events.

1.2.2.2 Large-time large deviations (Donsker-Varadhan)

In the following we give a heuristic justification that the existence
of a large deviation principle for the sum of i.i.d. random variables
can be extended to the time integral over continuous-time processes.
Consider a random process f (t) with a correlation time τc. In the
following we consider time-integrals such as∫ T

0
f (t)dt. (1.21)

In addition, we assume that T is large enough so that the integral can
be split in a sequence of N integrals over a duration ∆T ≫ τc:

∫ T

0
f (t)dt =

T/∆T

∑
i=1

∫ i∆T

(i−1)∆T
f (t)dt. (1.22)

Under the assumption ∆T ≫ τc, equation (1.22) can be considered as
a sum over i.i.d. variables. As a result, we write the following large
deviation principle, based on the large deviation principle for i.i.d.

variables discussed in the previous section:

P
(

1
T

∫ T

0
f (t)dt = a

)
≍

T→∞
e−TI(a). (1.23)

This result is often referred to as large-time large deviations, or Donsker-
Varadhan large deviations. It plays in important role in this manuscript
as it is the cornerstone of the GKTL algorithm, that allows to numeri-
cally sample extreme fluctuations of large-time averaged observables.

Part I

T H E P H E N O M E N O L O G Y O F E X T R E M E D R A G
F L U C T UAT I O N S

Even though they are very rare, extreme events are worth
being studied on their own. First of all, because they of-
ten have a big impact on the dynamics. Furthermore, ex-
treme events often feature interesting physical mechanisms,
which understanding can provide new insights on the gen-
eral behaviour of the system under study. In the following
two chapters, we describe both the statistics and the dy-
namics of extreme fluctuations of the drag force acting on
a square cylinder mounted in a two-dimensional channel.
In chapter 2 we describe several simple flow configurations
for which the numerical investigation of extreme events
can be achieved by means of very long simulations. In
chapter 3, we investigate the physics of extreme fluctu-
ations of the drag acting on the obstacle, as well as the
time-averaged drag.

2
T E S T F L O W S

In this chapter, we describe the choice and design of flow geometries
that will serve as test cases throughout this thesis. First of all, the
corresponding dynamics will be simulated over very long durations in
order to investigate the statistics and dynamics of extreme fluctuations
of the drag force acting on an obstacle immersed in the flow. Second,
we will apply rare events algorithms on the basis of these test flows,
in order to assess the applicability of such approaches to rare event
sampling in turbulent flows. Rare event algorithms are usually not
very restrictive about the properties of the dynamics on which they
are applied. In addition, as far as most algorithms are concerned,
dynamics is often seen as a black box. As a consequence there are, a
priori, no restrictions over the choice of the flow dynamics.

In practice however, we would like to keep it simple. Clearly, testing
rare event algorithms on complex, three-dimensional turbulent flows
such as the flow past a turbine or a truck appears like an unreasonable
first step. Indeed, the numerical simulation of such flows involves
tremendous computational resources. This is especially true when con-
sidering the simulation of rare events, as we aim at computing the flow
dynamics over long times, in order to sample extreme fluctuations
directly. In addition to the study of extreme events, the integration of
the dynamics over long durations will provide a reference for the re-
sults of the algorithms to compare to. Rare events algorithms involved
in this work rely on the evolution and replication of a population of
clones of the flow. In practice, it requires the storage and manipulation
of information about the state of the clones in memory, for instance
the velocity and pressure fields. Therefore, we would like to work on
a test flow that can be simulated using a rather coarse grid, in order
to limit the volume of data and to be able to use a large number of
copies of the flow.

In summary, a suitable test flow must verify the following require-
ments :

• It must feature fully developed turbulence

• Simulation of long time series, say 1 million of characteristic
times, must be performed in a wallclock time of the order of the
week.

• Required spatial resolution must be low enough to mitigate
memory storage requirement, as well as computing time.

21

22 test flows

Natural candidates are two-dimensional flows. Nowadays, most
simulations of two-dimensional turbulence can be performed on a
laptop, as they involve much less computations and data storage
than their 3D counterparts. In addition, numerical simulations of
two-dimensional flows are easier to implement, analyse and visualise.
However, the physics of 2D turbulence differs from 3D turbulence. As
a result, two-dimensional flows are often regarded as unrealistic and
irrelevant to industrial purposes. Nonetheless, 2D turbulence embed
the key features that we believe make the application of rare event al-
gorithms to turbulence a challenging and worthy problem: long-range
spatio-temporal correlations that result in the chaotic occurrence of
flow structures, accountable for intense fluctuations of the macroscopic
fields such as the pressure or the velocity. This work is motivated by
the argument that, if it succeeds in establishing a proof-of-principle
for rare event algorithms on the basis of 2D flows, extension to 3D
turbulence should be straightforward, and only hindered by difficul-
ties linked to the numerical simulation of complex three-dimensional
turbulent flows, and not by the rare event algorithms themselves.

If the restriction to two-dimensional flows is a already a big step,
there still remain a great number of possible choices for the test flow
itself. In CFD, two iconic flows are the Lid-Driven Cavity Flow and the
flow in a channel, often referred to as the Hagen-Poiseuille flow in the
laminar regime. These two different geometries are classical bench-
marks on which numerical methods for flow simulation are commonly
tested. As a consequence, extensive literature and corresponding ex-
perimental and numerical results are available. The Lid-Driven Cavity
flow has the advantage of being ruled by the most simple possible
boundary conditions, namely no-slip boundaries on walls aligned
with the grid, except for a constant imposed velocity for the lid. How-
ever, such flow has been found to be exceptionally stable, meaning
that if a turbulent regime is ever to be reached, it is only for very
high Reynolds numbers. By contrast, the flow in a channel, in presence
of an obstacle at its centre, is known to reach turbulence for moderate
Reynolds number, thus involving moderate computational resources
for its numerical simulation.

In the following we discuss two geometries. Both are two-dimensional
channel flows with square cylinders at a fixed position along the axis
of the channel. The first test flow has periodic boundaries at the inlet
and outlet, and is forced through a force density following the channel
axis. The second test flow is imposed a parabolic velocity profile at
the inlet and an open boundary at the outlet. Turbulence is generated
by a grid, that is an array of short walls and holes positioned next to
the inlet. These two flows verify the criteria listed above.

2.1 the lattice boltzmann method 23

In this chapter we describe the numerical simulation of these two test
cases. The simulation are based on the Lattice Boltzmann Method [92,
155], a numerical method that solves the Navier-Stokes Equations.
Note that this method somewhat differs from conventional Compu-
tational Fluid Dynamics approaches. Indeed, it does not rely on the
discretisation of the Navier-Stokes Equations, but instead on the simu-
lation of the dynamics of an ensemble of fictitious particles evolving
along a discrete lattice according to the Lattice Boltzmann Equation. This
equation originates from the discretisation of the Boltzmann Equation,
that provides a statistical description of the physics of dilute gases.
The Lattice Boltzmann Method is discussed in section 2.1, which fo-
cuses on the practical aspects of the simulation of fluid flows using
the LBM. The discussion of the theoretical foundations and justification
of the method is left aside, and key references are given for interested
readers. Sections 2.2 and 2.3 discuss the numerical simulation as well
as the properties of both test flows, respectively. In each case, the
statistics of the drag acting on the obstacles are described on the basis
of a very long timeseries, resulting from a simulation of the flow over
a long duration.

2.1 the lattice boltzmann method

In this section we give a very brief presentation of the Lattice
Boltzmann Method. The method is further discussed in appendix B.
The Lattice Boltzmann Method (LBM) offers a computationally efficient
particle-based alternative to conventional continuum-based approaches
to simulate fluid dynamics [155]. The fluid is considered at a kinetic
level intermediate between the microscopic and the macroscopic. More
precisely, the fluid is viewed as populations of particles that collide,
redistribute and propagate along the different links of a discrete lattice.
The complexity of the flow emerges from the repeated application
of simple rules of collision and streaming of these populations at
each lattice node. The flow variables such as velocity and pressure
are obtained by averaging locally over the populations of particles
moving in the different directions (Fig. 2.1). This obviously refers to
a kinetic description of fluid dynamics and rigorous connections can
be established with the Boltzmann equation [31], under the so-called
LBGK approximation [129].

Formally, the LBM scheme reads as

fi(x + ci∆t, t + ∆t) = fi(x, t) + Ωi(x, t) for i = 0, ...8 (2.1)

where fi(x, t) represent the amount of mass (per unit volume) carried
by the particles moving (with speed ci) in the ith-direction at position
x and time t. Additionally, Ωi(x, t) is the collision operator, that can
encore many properties of the fluid, such as the viscosity.

24 test flows

1

2

3

4

56

7 8

0

Figure 2.1: Illustration of a particular node of the lattice. The velocity space
describing the motion of particles is descretised according to 9

velocities {ci}0≤i≤8. The velocity c0 correspond to particles at rest.
This particular discretisqtion is referred to as D2Q9: two spatial
dimensions and 9 velocities.

In its simplest form, the collision operator acts like a relaxation
towards equilibrium with a single timescale τ, referred to as the
Lattice Bhatnagar–Gross–Krook (LBGK) operator [129]:

Ωi(x, t) = − fi(x, t)− f eq
i (x, t)

τ
∆t for i = 0, ...8, (2.2)

where the { f eq
i (x, t)}0≤i≤8 denote the values of the populations corre-

sponding at thermodynamic equilibrium.
The macroscopic quantities are recovered locally by summing the

contributions

ρ = ∑
i

fi (2.3)

ρu = ∑
i

fici (2.4)

S = − 1
2τc2

s ρ ∑
i

cici(fi − f eq
i) (2.5)

(2.6)

Where ρ, u and S are the density, velocity and strain-rate on the lattice
node, respectively. The pressure is intrinsically given by p = c2

s ρ in
a weak-compressibility approximation, where cs may be interpreted
as the speed of sound. The relaxation parameter τ is related to the
kinematic viscosity of the fluid: τ = ∆t/2 + ν/c2

s .

Since its emergence in the early 90s [154, 155], the LBM evolved into
many variants [92], depending on the choice of the collision operator.
In this thesis, we make use of a specific LBM scheme referred to as the
central-moments based LBM [143, 144]. This particular LBM formulation
shows exceptional stability for highly turbulent flows.

2.2 test flow (1): channel flow with periodic boundary conditions 25

2.2 test flow (1): channel flow with periodic boundary

conditions

In this section we describe the first of the two test flows on which
this project is based, referred to as test flow (1). Its numerical simu-
lation is carried out with the Lattice Boltzmann Method, introduced
in the previous section. Test flow (1) consists in the flow in a two-
dimensional channel with periodic boundary conditions along the
channel axis. The flow is forced through a constant, homogeneous
force density acting on the whole domain.

In a first version, a single square cylinder is introduced at the
centre of the channel. This first version is referred to as test flow
(0). Due to the periodicity along the flow direction, turbulence is
triggered by the interaction of the obstacle with its own wake. In
section 2.2.1 we describe the flow in more detail and present results
for the computation of the drag acting on the obstacle. On the basis
of a long simulation of the flow, we observe that the autocorrelation
function of the drag has a zero valued integral, indicating that the
corresponding PDF does not verify a large-deviation principle. We
then explain this pathological behaviour through the conservation of
momentum across the computational domain.

In section 2.2.2 we present a modified version of test flow (0), re-
ferred to as test flow (1). In this version, two identical square cylinders
are introduced in the flow, along the channel axis line. In this setup,
the PDF describing the statistics of the drag on a single square does
verify a large-deviation principle. We first characterise the flow by dis-
cussing numerical parameters, as well as the corresponding Reynolds
numbers and average velocity profile along the channel axis. Then,
we illustrate the statistics of the drag acting on the obstacles, on the
basis of a very long simulation of the flow. We show that, for both ob-
stacles, the autocorrelation of the drag displays an exponential decay.
Furthermore, both drag timeseries display similar PDF, for which both
negative an positive tails are well described by an exponential PDF.

2.2.1 Test flow (0): a single obstacle, pathological large deviation behaviour

In this section we discuss a first version of test flow (1), in which
a single obstacle is introduced in the channel. In the following we
refer to this flow as test flow (0). The corresponding geometry is
sketched in figure 2.2. It consists in a two-dimensional channel with
periodic boundaries at the inlet and the outlet. In concrete terms, fluid
particles flowing through the outlet reappear at the inlet, such as the
flow in a torus. The fluid is set in motion by means of a constant
and homogeneous force density acting over the whole domain. The
walls of the channel correspond to no-slip boundaries, at which both
components of the velocity field vanish. Last but not least, a square

26 test flows

Figure 2.2: Sketch of the computational domain for test flow (0) with a single
obstacle. The computational domain is periodic along the channel
axis and the flow is forced through a constant, homogeneous
force density of amplitude F0. No-slip boundary conditions are
imposed on both the surface of the obstacle and the top and
bottom walls of the channel.

cylinder with no-splip boundaries is introduced at the centre of the
computational domain.

In the following we discuss the choice of the numerical parame-
ters for the numerical simulation of test flow (0) using the Lattice
Boltzmann Method. Namely, the lattice spacing δx, the force density
amplitude F0 and the relaxation parameter τ.

2.2.1.1 Choice of numerical parameters

The choice of numerical parameters follows three guidelines:

1. The resulting flow must have a high enough Reynolds number
so that the flow exhibits developed turbulence.

2. Strong stability of the simulation, as it will further be used to
sample extreme events.

3. Small computational burden for the simulation of the dynamics.
Typically, we expect the wallclock time for the simulation of one
characteristic time to be of the order of the second.

To begin with, space is discretised into a regular, isotropic lattice.
Denoting by R the diameter of the square cylinder, the lattice spacing
is set to δx = R/16. Following dimensions indicated in figure 2.2, the
computational domain therefore consists in a grid of 65 × 193 lattice
nodes.

As mentioned in section 2.1, the LBM solves the incompressible
Navier-Stokes Equations in the weakly compressible limit. As a result,
we choose the intensity of the force density F0 so that the typical
velocity remains small with respect to the speed of sound in the
fluid. More precisely, we denote by Ma(x, t) the local, instantaneous
Mach number Ma, denoting the ratio between the fluid velocity and
the speed of sound. Therefore, we choose F0 so that Ma(x) ≪ 1
everywhere in the computational domain, where Ma(x) denotes the

2.2 test flow (1): channel flow with periodic boundary conditions 27

time-average of Ma(x). In the absence of obstacle in the flow, the well-
known Hagen-Poiseuille equation [97] connects the pressure gradient
along the channel as a function of the flow velocity along the axis of
the channel. This relation does not hold in the presence of an obstacle,
as its interaction with the flow alters the momentum balance. In this
case, the average flow velocity in the channel can be directly related to
the forcing amplitude by integrating the momentum balance equation
over the whole computational domain, and averaging over time. As a
result, we set F0 = 1.2× 10−6, leading to Ma ≈ 4× 10−2 at the inlet, at
the centre of the channel. This value has been estimated by measuring
the longitudinal velocity over a duration 104T0, where T0 = R/U0

with R the diameter of the cylinder and U0 the estimated average
velocity of the upstream flow. We find U0 = 0.02. Furthermore, we
checked that this estimate is representative of the order of magnitude
of the average Mach number across the whole computational domain.

With F0 and δx fixed, the remaining parameter is the relaxation
parameter τ, determining the Reynolds number of the flow. As men-
tioned in section 2.1, this parameter is linked to the kinematic viscosity
of the fluid. In lattice units, i.e., ∆x = ∆t = 1, ν = 1

3 (τ − 1
2). However,

this parameter is critical with respect to the stability of the simulation.
Indeed, the Lattice Boltzmann Method is known to become highly un-
stable as τ → 1/2. In order to set τ, we therefore gradually decreased
τ from τ = 0.51—a value high enough so that stability makes no
doubt— until either the corresponding Reynolds number was consid-
ered high enough, or the stability limit was reached. In the following
we set τ = 0.50005, leading to ν = 1.67 × 10−5 in lattice units. For
this value, the flow features developed turbulence and typical Mach
number fluctuations E[Ma2] ≈ 10−2 ≪ 1. A simulation of the flow
over a duration 104T0 showed no sign of instability.

On the basis of the present geometry, illustrated in figure 2.2, we
define a Reynolds number based on the dimension of the obstacle:

ReR =
U0R

ν
≈ 2 × 104.

By construction, the Reynolds number based on the cross section of
the channel is ReH ≈ 4ReR = 8 × 104.

We define the turnover time τ0 as the typical timescale of advection
by the flow. It is defined based on the diameter of the obstacle and the
mean flow velocity as follows:

τ0 =
R

U0
. (2.7)

In addition, the simulation timestep ∆t is

∆t = 1.4 × 10−3 R
U0

.

28 test flows

Figure 2.3: Velocity field in the computational domain for test flow (0). Denot-
ing by R the diameter of the square cylinder, the lattice spacing
is δx = R/16. The forcing amplitude is set to F0 = 1.2 × 10−6,
leading to a mean flow velocity U0 = 0.0017. Finally, the relax-
ation pulsation w is set to ω = 1.9998. The Reynolds number
based on the mean flow velocity and the diameter of the square
is ReR = 2500. The zoom on the upper part of the figure displays
the underlying lattice on which space is discretised and meso-
scopic populations are advected following the Lattice Boltzmann
Method, described in section 2.1.

A typical velocity field is illustrated in figure 2.3, along with the
underlying lattice over which space is discretised.

2.2.1.2 The drag autocorrelation has a zero-valued integral

One of the main objective of this thesis is to establish a proof-
of-principle for the application of a large-deviation algorithm to the
computation of the statistics of rare fluctuations of the drag acting on
an obstacle. In this section we make an important observation: the
large-time integral of the autocorrelation function of the drag in test
flow (0) is zero. We then relate this observation to the large-deviation
properties of the large-time averaged drag and explain that the PDF of
the drag does not verify a large deviation principle in this specific case.
Please refer to chapters 1 and 4 for a discussion of the objectives of
this work and large-deviation rate functions, respectively.

In the following we note fd(t) the drag acting on the square cylinder
at a given time t. Let C(τ) be the autocorrelation function of the drag
defined as

C(τ) =
E[fd(t) fd(t + τ)]− E[fd]

2

σ2 , (2.8)

2.2 test flow (1): channel flow with periodic boundary conditions 29

(a) Autocorrelation of the drag force

(b) Finite time integral of the autocorrelation

Figure 2.4: (a) Autocorrelation function of the drag force fd acting on the
square obstacle immersed in the flow, as pictured in figure 2.3.
The unit of time is the turnover time τ0 = R/U0. On can see that
the autocorrelation does not decay towards 0 but instead oscillates
before vanishing at larger times. (b) Finite time-integral τ̂T as a
function of the integration time, as defined in (2.9).

where σ is the standard deviation defined as σ2 = E[fd(t)2] − E[fd]
2.

Furthermore, let us define τ̂T as the time integral of the autocorrelation
function:

τ̂T =
1
σ2

∫ T

0

(
E[fd(t) fd(t + τ)]− E[fd]

2)dt. (2.9)

This integral is expected to have a finite limit τ̂ = limt→∞ τ̂t. Indeed,
the autocorrelation is expected to decay rapidly towards zero due to
the effect of large-scale turbulent fluctuations. Therefore there exists a
mixing timescale, or correlation time τc, from which C(τ) ≈ 0, ∀τ ≥ τc.
This properties are discussed further in this section and in chapter 3.
The autocorrelation C(τ) is illustrated in figure 2.4a. It has been
estimated from a long simulation of the flow over 105T0, resulting
in a timeseries for the drag acting on the obstacle. It shows that
the autocorrelation displays oscillations before actually vanishing.
In addition, figure 2.4b illustrates the convergence of the integral τ̂t

in (2.9) as the integration time increases. Surprisingly, it suggests that
τ̂ = limT→∞ τ̂T = 0. In the following we illustrate that his property
leads to a pathological large deviation behaviour.

30 test flows

2.2.1.3 The link with large deviations

The large deviation principle for the time-averaged drag FT =∫ T
0 fd(t)dt writes:

P(FT = a) ≍
T→∞

e−TI(a), (2.10)

where I(a) denotes the rate function. See chapter 1 for a discussion of
Large Deviation Theory. Considering small fluctuations around the
average E[FT] = µ, we expand the rate function as follows:

I(a) ≈ I′′(µ)
2

(a − µ)2, (2.11)

where we used that I(µ) = I′(µ) = 0. The large deviation princi-
ple (2.10) turns to

P(FT = a) ≍
T→∞

exp
[
−T

(a − µ)2

2
I′′(µ)

]
, (2.12)

illustrating the Gaussian behaviour for small fluctuations around the
average. The variance of FT is therefore linked to the curvature of the
rate function as follows

σ2
T ∼

T→∞

1
TI′′(µ)

. (2.13)

In the following we connect the curvature I′′(µ) to the time-integral
of the autocorrelation τ̂. The variance σT can be written as

E[(FT − E(FT))
2] = E

[(
1
T

∫ T

0
(fd(t)− E(fd)dt

)2
]

= E

[
1

T2

∫ T

0
dt1

∫ T

0
dt2(fd(t1)− E[fd])(fd(t2)− E[fd])

]
(2.14)

With the change of variable (t1, t2) → (t, t + τ), (2.14) leads to

TσT = 2
∫ T

0
E[fd(t + τ) fd(t)]− E[fd]

2dτ =
τ̂Tσ2

2
. (2.15)

Therefore, assuming that limT→∞ τ̂T = 0, equation (2.13) leads to

I′′(µ) = +∞ (2.16)

2.2.1.4 Momentum balance in a channel with periodic boundaries

We now explain the observations made in the previous section,
based on the conservation of momentum in the computational domain.
We show that, with periodic boundaries at the inlet/outlet of the
channel, the total drag acting on the obstacle can be written as a linear

2.2 test flow (1): channel flow with periodic boundary conditions 31

function of the first derivative of the velocity average over the whole
computational domain. We then show that this entails that the integral
of the drag autocorrelation function τ̂ vanishes at large times.

We start by recalling the Navier-Stokes Equations for an incompress-
ible flow:

∂u
∂t

+ (u · ∇)u = ν∆u + F0ex −∇P (2.17a)

∇ · u = 0 (2.17b)

u(x) = 0, ∀x ∈ ∂D (2.17c)

where u denotes the velocity field, ν the kinematic viscosity and P the
pressure field. The solid boundaries are denoted by ∂D and consist of
the top and bottom walls of the channel as well as the surface of the
obstacle. See figure 2.2 for a sketch of the computational domain. Let
U(t) be the velocity integrated over the whole computational domain,
which we denote as Cd in the following:

U(t) =
∫
Cd

U(r, t)dr

We now write an equation for the evolution of U by integrating (2.17a)
over the whole computational domain. To begin with, we write the
integral of the viscous and pressure terms as a surface integral over
the boundaries:∫

Cd

(ν∆u −∇P)dr = ν
∫

∂D
∇u · n −

∫
∂D

P · n

where n is a unit vector tangential to ∂D. This integral represents the
total force applied by the fluid on the boundaries. It can therefore be
split into the contribution of the force applied on the channel walls
and the force applied on the obstacle. We denote by Fwalls and Fobs
these two contributions, respectively. As a result:

Fwalls + Fobs =
∫
Cd

(ν∆u −∇P)dr = ν
∫

∂D
∇u · n −

∫
∂D

P · n

Unless specified otherwise, the force density is constant and homoge-
neous across the whole domain. Its volume integral therefore simply
yields:∫

Cd

F0exdr = F0V

where V = H × L denotes the total volume of the computational
domain, see figure 2.2. Eventually, the integration of equation (2.17)
over the computational domain Cd leads to

dU
dt

= −Fwalls − Fobs + F0Vex (2.18)

32 test flows

which projection on the channel axis yields

dUx

dt
= −Fwalls · ex − fd + F0V (2.19)

The contribution Fwalls · ex results from viscous friction at the top
and bottom walls of the channel. In contrast, the drag fd acting on
the square is largely dominated by the pressure difference between
the front and the back of the obstacle. Based on the relatively high
Reynolds number, ReR = 2500, we make the approximation:

Fwalls · ex ≪ fd

The relative contribution of pressure effects versus viscous effects to
the overall drag is discussed in chapter 3. Under this approximation,
the drag fd can be written as

fd = F0V − dUx

dt
(2.20)

We now show that (2.20) entails that the large-time limit of the
integral of the drag autocorrelation is zero. Note that, through time-
averaging (2.20), one gets

E[fd] = lim
T→∞

1
T

∫ T

0
fd(t)dt = F0V.

The integral of the autocorrelation function C(τ) therefore reads

τ̂T = 1
σ2

∫ T
0

(
E[fd(t) fd(t + τ)]− (F0V)2)dt

= −F0VE
∫ T

0 U̇x(t)dt − F0VE
∫ T

0 U̇x(0)dt + E
∫ T

0 U̇x(t)U̇x(0)dt
(2.21)

The first two terms are actually zero, invoking statistical stationarity
of the flow:

E

∫ T

0
U̇x(t)dt = E[U(T)− U(0)] = 0

and

E

∫ T

0
U̇x(0)dt = E[U̇x(0)] = lim

T→∞

1
T

∫ T

0
U̇x(t)dt = 0

The third term corresponds to the temporal correlation of the longitu-
dinal velocity with its derivative. It reads

E

∫ T

0
U̇x(t)U̇x(0)dt = E[Ux(T)U̇x(0)]−E[Ux(0)U̇x(0)] →

T→∞
0 (2.22)

2.2 test flow (1): channel flow with periodic boundary conditions 33

This last limit entails

lim
T→∞

τ̂T = 0 (2.23)

2.2.1.5 Conclusion: a pathological case

As far as large-deviation theory is concerned, the drag acting on a
single obstacle immersed in a channel flow with periodic boundaries is
a pathological case. Indeed, we showed in this section that the integral
of the autocorrelation function has a zero value. In section 2.2.1.2
we showed that in this case, the PDF describing the statistics of the
drag acting on the obstacle displays a pathological large deviation
behaviour. We stress that the calculations presented in this section rely
on two ingredients. First, the periodic boundaries at the inlet/outlet
of the channel lead to equation (2.19), which states that the interaction
of the flow with the boundaries is solely balanced by the forcing term.
Second, we neglected the interaction with the top and bottom walls of
the channel compared to the interaction with the obstacle. The reason
for that is twofold. First, the Reynolds number is high, indicating that
pressure effects dominate viscous effects. Second, we assume that the
obstacle is bluff. It means that its drag is dominated by the pressure
difference between its upstream section and its downstream section.
In contrast, this approximation is not justified for streamlined bodies,
for which the pressure difference is very small, even at relatively high
Reynolds numbers, and the drag has an important viscous contribution
with respect to the pressure contribution. See the introduction of
chapter 3 for a discussion of bluff and streamlined bodies.

As a result, the geometry discussed in this section, illustrated in
figure 2.2, is clearly not appropriate for the test of a large-deviation
algorithm. A workaround is to introduce a second obstacle in the
channel. In this case, the reasoning presented in this section holds true
for the system consisting of the two obstacle. As a consequence, the PDF

for the drag acting on an individual obstacle will verify a large-deviation
principle. This configuration is presented in the next section.

2.2.2 Test flow (1): flow in a periodic channel past a tandem of square
cylinders

In the previous section we showed that the flow past a single square
cylinder in a periodic channel is a very special case in which the PDF

of the drag acting on the obstacle does not verify a large-deviation
principle. In this section we describe a simple modified version of
the flow presented in the previous section, in which two obstacles
are introduced in the channel. In this way, the PDF of the drag for a

34 test flows

Figure 2.5: Sketch of the computational domain for test flow (1). The com-
putational domain is periodic along the channel axis and the
flow is forced through a constant, homogeneous force density of
amplitude F0. No-slip boundary conditions are imposed on both
the surface of the obstacles and the walls of the channel.

single obstacle verifies a large-deviation principle. Throughout this
manuscript, this flow will be referred to as test flow (1).

2.2.2.1 Description of test flow (1)

The corresponding geometry is illustrated in figure 2.5. The com-
putational domain is periodic along the channel axis and the flow
is forced through a constant, homogeneous force density F0ex acting
across the whole domain, where ex is a unit vector which direction is
parallel to the channel axis. Note that the two square cylinders have
the same diameter R.

The numerical parameters for test flow (1) are kept the same as
for the flow presented in the previous section. That is δx = R/16,
F0 = 1.2 × 10−6 and τ = 0.50005. Following figure 2.5, the computa-
tional domain consists in a grid of 129 × 513 grid points. Figure 2.6a
illustrates the average longitudinal velocity profile along the channel
axis. It results from the time-average over a simulation of the flow
in stationary regime over a duration 500τ0, in which the longitudinal
velocity was measured along the channel axis.

In addition, figure 2.6b displays the turbulence intensity profile along
the channel axis. The turbulence intensity I is defined as the ratio
between the root mean square fluctuations of the velocity and the
average velocity. That is:

I(x) =

√
(ux(x)− ux(x))2 + uy(x)2

u(x)
(2.24)

Where ui(x) = limT→∞
1
T

∫ T
0 ui(x, t)dt denotes the average veloc-

ity at position x, and u refers to the velocity magnitude u(x) =√
u2

x(x) + u2
y(x). We define the mean flow velocity U0 as the max-

2.2 test flow (1): channel flow with periodic boundary conditions 35

(a) Average velocity profile along the channel axis

(b) Average turbulence intensity profile along the channel axis

Figure 2.6: Average longitudinal velocity ux and turbulent intensity I profiles
along the centre of the channel for test flow (1). The velocity was
measured and averaged in stationary regime over 500τ0. The x
axis is the position along the centre of the channel with respect to
the inlet. The unit of length is the length L of the computational
domain.

36 test flows

(a) Velocity magnitude

(b) Vorticity

Figure 2.7: Typical velocity and vorticity fields for test flow (1)

imum average velocity along the channel axis. From 2.6a, it reads
U0 ≈ 1.6 × 10−2 in lattice units. The Reynolds number based on the
diameter of the square R is therefore

ReR =
U0R

ν
≈ 16000

The corresponding velocity and vorticity fields are illustrated in fig-
ure 2.7.

Finally, the simulation timestep is

∆t = 10−3 R
U0

(2.25)

The numerical simulation is implemented with the help of the pipeLBM

C++ library developed for this thesis project. See appendix A for more
details about the pipeLBM library. Simulation of one eddy turn-over
time τ0 is achieved in roughly 1.5 seconds on a single Intel Core
i7-4800MQ CPU processor core with a 2.70 GHz clock rate.

2.2.2.2 Statistics for the drag acting on the square cylinders

We now describe the statistical properties of the drag acting on
both square cylinders embedded in the channel. This description is
based on a very long simulation of the flow over Ttot = 4 × 106τ0,
that results in a drag timeseries for both obstacles: { f (1)d }0≤t≤Ttot and

{ f (2)d }0≤t≤Ttot where the superscripts (1) and (2) denote the upstream
obstacle and downstream obstacle, respectively.

Figure 2.8 displays the resulting estimate of the PDF for the drag
fluctuations for both the upstream and downstream obstacles. It illus-
trates that both PDF are strongly non-Gaussian. Furthermore, they look
very similar for positive fluctuations. Remarkably, extreme positive

2.2 test flow (1): channel flow with periodic boundary conditions 37

Figure 2.8: Estimate of the Probability Density Function for the fluctuations
of the drag acting on both upstream and downstream square
cylinders embedded in test flow (1), illustrated in figures 2.5
and 2.7. Both estimates have been computed over a timeseries
spanning Ttot = 4 × 106τ0. Note that this figure describes the PDF

of the fluctuations fd − fd where fd is the average computed over
the whole timeseries.

fluctuations seem to be well described by an exponential PDF. The mea-
sured variance in both cases lead to very similar values, indicating that
both obstacles feature typical drag fluctuations with similar amplitude.
Extreme negative fluctuations for the downstream square seem to be
described by an exponential PDF as well, although it is less clear for
the upstream obstacle, for which extreme negative fluctuations are less
likely. In addition, both PDF are skewed toward positive fluctuations
with a skewness coefficient γ

(1)
1 = 0.14 and γ

(2)
1 = 0.035.

Furthermore, we find that the average drag on the upstream square
is greater than on the downstream square. Note that this cannot be
seen on figure 2.8 as it shows the PDF of fluctuations around the
average value. This difference is significant: the average drag acting
the the downstream obstacle is 35% lower than the one acting on the
upstream square. Such a difference is explained by the fact that the
downstream obstacle sits in the wake of the upstream one, which
corresponds to a region of lower pressure.

Figure 2.9 displays the estimate for the correlation function C(τ)
based on the timeseries for both obstacles. It shows that in both cases
the drag decorrelates exponentially in time, a property that will be
useful to describe extremes of the averaged drag in chapter 3. Based
on figure 2.9, we define the correlation time τc as the zero crossing time
of the autocorrelation function. We find τc ≈ 4τ0.

38 test flows

Figure 2.9: Estimate of the correlation function C(τ) for both drag acting
the squares cylinders embedded in test flow (1), illustrated in
figures 2.5 and 2.7. The autocorrelation is defined as C(τ) =
(E[fd(t) fd(t + τ)]− E2[fd(t)])/σ2 where σ2 = E[f 2

d]− E[fd]
2 is

the standard deviation. The correlation time τc is defined as the
zero-crossing time of the autocorrelation. Both autocorrelation
functions have been computed over a timeseries spanning Ttot =
106τc.

2.3 test flow (2): grid-generated turbulence past a square

cylinder in a channel

In the previous section, we described test flow (1), designed to serve
as a test case for the investigation of rare drag fluctuations and the
use of rare event algorithms. In test flow (1), turbulence is triggered
through the interaction of the square cylinders with their own wake.
This geometry is very practical with respect to its numerical simulation.
Indeed, it consists in flat walls modelled by no-slip boundaries and
periodic inflow and outflow. However, test flow (1) is far from any
realistic industrial or environmental configurations.

In this section we describe a second test-case for the application of
rare events algorithms to the simulation of extreme drag fluctuations.
Similarly to test flow (1), it consists of the two-dimensional flow past a
square cylinder in a channel. This time however, there is no periodicity
along the channel direction. A steady parabolic velocity profile is
imposed at the inlet, and the channel is open at the outlet. Turbulence
is generated by means of a grid following the inlet of the channel.
Throughout this manuscript, we refer to this flow as test flow (2).

In section 2.3.1 we describe test flow (2) in more details. We first
describe the boundary conditions at the inlet and outlet, as well
as numerical parameters. Then, flow parameters such as Reynolds
numbers, mean flow velocity and turbulence intensity are discussed.
In section 2.3.2, the statistics of the drag acting on the square cylinder
are described by means of a very long simulation of the flow. We

2.3 test flow (2): grid-generated turbulence past a square cylinder in a channel 39

Figure 2.10: Sketch of the computational domain for test flow (2). A steady,
Poiseuille velocity profile is imposed at the inlet (left-hand side
of the domain). It is followed by a grid consisting of small no-
slip boundaries which longitudinal extent is one grid spacing
δx. The upstream side of the obstacle is positioned at one half
of the channel length. At the outlet (right-hand side of the
domain), an open boundary is implemented, based on a linear
interpolation of the longitudinal velocity along the channel axis.
Additionally, a sponge layer is introduced in the vicinity of the
outlet in order to damp spurious density waves emitted at the
outlet boundary [168]. In this region the viscosity of the fluid is
artificially increased from its original value ν to a higher value
ν̃ ≈ 103ν. It is represented by the red area.

illustrate that the autocorrelation function and PDF have properties
similar to test flow (1). The autocorrelation displays an exponential
decay and both tails of the PDF are well described by an exponential
PDF. In addition, we highlight the asymmetry of the PDF and show
that it is related to the interaction between the flow and the obstacle.
More precisely, we compute the PDF for the drag acting on the surface
of the obstacle, without actually introducing the obstacle. We illustrate
that it results in a symmetric, algebraic PDF.

2.3.1 Description of test flow (2)

The computational domain for test flow (2) is sketched in figure 2.10.
Similarly to test flow (1), it consists in a two-dimensional channel
in which a square obstacle is introduced. However, the flow is not
periodic along the channel axis. Instead, a parabolic velocity profile
uin(y) is imposed at the inlet:

uin(y) = −4u0

H
(y − H)yex (2.26)

where ex is a unit vector aligned with the channel axis. Therefore, the
velocity u0 is imposed at the centre of the channel.

At the outlet, an open boundary condition is implemented. That
is, we impose the velocity and pressure at the outlet in a way that is
consistent with the incoming flow from the bulk of the computational
domain. More precisely, let x denote the distance from the inlet, located
at x = 0. Furthermore, let us denote by uout(y) the velocity field at

40 test flows

the outlet, corresponding to the right-hand side of 2.10, located in
x = L. The velocity field at the outlet is computed by means of a first
order linear extrapolation based on the nearest neighbours and second
nearest neighbours lattice nodes at L − δx and L − 2δx:

uout(y) = 2u(x = L − δx, y)− u(x = L − 2δx, y). (2.27)

where δx is the distance between two adjacent lattice nodes. The value
of this distance is discussed below. The extrapolated velocity is then
imposed using finite-difference regularised boundary conditions [100].
Please refer to section 2.1 for a discussion of regularised boundary
conditions. Furthermore, see the chapter 5 of [92] and references
therein for a discussion of open boundaries in the LBM.

Because the LBM recovers the incompressible Navier-Stokes equa-
tions in the weakly compressible limit, open boundaries are known
to be responsible for the reflection of density waves generated follow-
ing the initial timesteps [84, 148]. The persistence of these spurious
density waves in the domain can significantly alter the accuracy of
the simulation and generate numerical instabilities. A common way
to mitigate the reflection of such density waves at an open boundary
is to introduce a sponge layer [168, 169]. It is a region in the vicinity
of the boundary where the viscosity is artificially increased, so as to
damp the waves. In practice, the relaxation pulsation is decreased
quadratically to a fraction of its value from a given distance L − xspge

of the outlet [168]. We denote by ωspge the relaxation pulsation inside
the sponge layer. It is defined as

wspge(x) =

(
1 − 0.999

(x − xspge)2

(L − xspge)2

)
ω, xspge ≤ x ≤ L. (2.28)

2.3.1.1 Numerical parameters

We now briefly discuss the choice of the numerical parameters for
test flow (2),i.e. the lattice spacing δx, the inlet velocity U0 and the
relaxation parameter τ. The choice of numerical parameters for test
flow (2) follows the same guidelines as for test flow (1), described on
page 26. Similarly to test flow (1), space is discretised on a regular,
isotropic lattice. The lattice spacing is set to δx = R/16, where R
denotes the diameter of the square cylinder. Following figure 2.10, the
computational domain consists in a grid of 129 × 513 points.

The characteristic inlet velocity u0 is chosen small enough so that
Ma ≪ 1, where the inlet Mach number Ma = u0/cs is the ratio
between the inlet velocity and the speed of sound. As mentioned in
section 2.2.1.1, the reason for this choice is twofold. First of all, the
incompressible limit is achieved for Ma ≪ 1. Second, the LBM can be
shown to recover the incompressible Navier-Stokes equations with

2.3 test flow (2): grid-generated turbulence past a square cylinder in a channel 41

(a) Velocity magnitude

(b) Vorticity

Figure 2.11: Snapshots for the velocity and vorticity fields in the computa-
tional domain for test flow (2). The Reynolds number based
on the mean upstream flow velocity and the diameter of the
cylinder is Re ≈ 1700. The flow is computed using the central-
moments based Lattice Boltzmann Method [143, 144]. Denoting
by R the diameter of the square, the lattice spacing is δx = R/16.
At the inlet a steady parabolic profile is imposed with charac-
teristic velocity u0 = 0.05. Finally the relaxation parameter ω is
set to 1.996. Please refer to section 2.1 for more details about the
Lattice Boltzmann Method.

errors scaling like Ma2. In the following, we set U0 = 5 × 10−2 in
lattice units.

Lastly, the relaxation parameter is set to τ = 0.501. As pointed out
in section 2.1, values of τ too close to 1/2 can cause numerical instabili-
ties. More precisely, recall that τ = 1/2+ ν

c2
s ∆t , and ∆x =

√
3cs∆t. With

∆x and cs fixed, the value of τ directly sets the value of the kinematic
viscosity of the fluid. Therefore, with ∆x and U0 fixed, we set τ so
that the flow displays developed turbulence without instabilities. In
a way similar to section 2.2.2, we progressively decreased τ until the
flow displayed a satisfactory turbulence intensity. Figure 2.11 illustrate
the corresponding velocity and vorticity fields in the computational
domain.

The Reynolds number for test flow (2) can be defined in several
ways, depending on which typical length and velocity it is based on.
To be consistent with test flow (1), we define the Reynolds number
based on the diameter of the square and the mean flow velocity past
the grid.

Re =
U0R

ν
≈ 1700 (2.29)

42 test flows

(a) Average velocity profile along the channel axis

(b) Average turbulence intensity profile along the channel axis

Figure 2.12: Average velocity ux and turbulent intensity I profiles along the
centre of the channel for test flow (2). The velocity was measured
and averaged in stationary regime over 450τ0. The x axis is the
position along the centre of the channel with respect to the inlet.
The unit of length is the length L of the computational domain.
The red shaded area denotes the start of the sponge layer, that
extends until x = 1. In this region the viscosity is gradually
increased in order to damp density waves reflected at the outlet
boundary. The grey shaded area denotes the obstacle.

2.3 test flow (2): grid-generated turbulence past a square cylinder in a channel 43

where U0 is the average velocity along the channel axis, at equal
distance of the grid and the upstream side of the obstacle. We find
U0 ≈ 0.036.

In addition we explicit the simulation timestep ∆t in units of the
turnover time τ0 = R/U0:

∆t = 2.2 × 10−4 R
U0

(2.30)

The numerical simulation is implemented with the help of the pipeLBM

C++ library developed for this thesis project. See appendix A for more
details about the pipeLBM library. Simulation of one eddy turn-over
time τ0 is achieved in roughly 16 seconds on a single Intel Core i7-
4800MQ CPU processor core with a 2.70 GHz clock rate. Figure 2.11

illustrates typical realisations of both velocity and vorticity fields in
the computational domain.

Figure 2.12a illustrates the average velocity profile along the channel
axis. It results from the time-average over a simulation of the flow
in stationary regime over a duration 450τ0, in which the longitudinal
velocity was measured at different locations along the channel axis.
In addition, figure 2.12b displays the turbulence intensity profile along
the channel axis, which represents the relative importance of velocity
fluctuations with respect to the mean flow velocity. Its definition is
given in equation (2.24) on page 34.

2.3.2 Statistics for the drag on the obstacle

In the previous section we described the numerical simulation of
test flow (2), which geometry is illustrated in figure 2.10, as well as
several aspects of the flow itself. We now turn to a description of
the statistics for the fluctuations of the drag fd acting on the square
cylinder embedded in test flow (2). This description is based on a very
long simulation of the flow over Ttot = 4.5 × 106τ0, leading to a long
timeseries { fd(t)}0≤t≤Ttot of the drag acting on the obstacle.

The corresponding estimate of the PDF is shown in figure 2.13. It
is found to be asymmetric and skewed towards positive fluctuations.
Additionally, figure 2.13a clearly illustrates that both negative and pos-
itive tails are remarkably well described by an exponential PDF. Recall
that similar observations were made for test flow (1) in section 2.2.2.2.

2.3.2.1 The influence of the flow-obstacle interaction on the statistics of the
drag

In order to further investigate the properties of the PDF describing
the drag fluctuations, we perform the following experiment. We per-
form a similar simulation of test flow (2) over the same duration Ttot,
however without embedding the obstacle in the channel. We therefore

44 test flows

(a)

(b)

Figure 2.13: Estimate of the Probability Density Function describing the statis-
tics of the fluctuations of the drag fd acting on the obstacle em-
bedded in test flow (2). This estimate has been computed from a
very long simulation of the flow resulting in a drag timeseries
spanning 4.5 × 106τ0. (a) Illustration of the asymmetry of the
distribution, which is skewed towards positive fluctuations. It
compares both negative and positive tails of the PDF, where the
negative tail is represented for positive values by means of a
symmetry operation with respect to the Y-axis. Furthermore,
it shows that both tails are very well described by an expo-
nential PDF. The quantity represented along the X-axis is the
reduced-centred drag fluctuation: f ′d = (fd − fd)/σ where fd
and σ are the average drag and standard deviations, respectively,
computed over the whole timeseries. (b) Comparison of the PDF
describing the fluctuations of the drag with the PDF describing
the drag acting on a square cylinder that does not interact with
the flow. One can see that the statistics are dramatically modified.
The PDF in the case of the virtual obstacle is symmetric and its
tails are well described by a power-law PDF.

2.4 conclusion 45

Figure 2.14: Numerical simulation of test flow (2) in which the obstacle does
not interact with the surrounding flow. In this case the drag
is simply computed over the surface represented by the white
square. We stress that in this case no conditions are imposed on
the velocity on the surface. Figure 2.13b shows that the statistics
for this quantity are very different from the statistics describing
the drag on a square that actually interacts with the flow, i.e.
with no-slip boundary conditions for the velocity on the surface.

compute the drag acting on the surface of a virtual obstacle, that does
not interact with the surrounding flow. This experiment is illustrated
in figure 2.14.

The resulting estimate of the PDF is shown in figure 2.13b. It is
compared with the estimate resulting from the simulation of test flow
(2). A striking difference is that the PDF describing the drag on the
virtual square cylinder is symmetric. As a result, drag fluctuations
of a given amplitude below the average are as much as likely as
fluctuations of the same amplitude above the average. Moreover, the
probability of extreme drag fluctuations decays faster in the case of the
non-interacting obstacle. As a matter of fact, it is illustrated in 2.13b
that the corresponding PDF is well described by an algebraic PDF.

2.4 conclusion

In this chapter we introduced two test cases for the investigation
of extreme fluctuations of the drag force acting on a square cylinder
immersed in a turbulent flow. The geometry of both test flow (1) and
test flow (2) was deliberately chosen as simple as possible. The reason
for this choice is twofold. First, both test flows must be computed over
very long durations. As a result, a simple geometry is required for the
simulation to be performed in a reasonable amount of time. Second,
we will use the test flows as test cases for rare events algorithms.
However, both test flow (1) and test flow (2) show enough complexity
to provide a solid base for the assessment of the relevance of rare
algorithms based approaches in CFD problems. We believe that the
application of rare event techniques to these simple flows will lay the
groundwork for future complex applications.

At the heart of the numerical simulations discussed in this section—
and throughout this manuscript— is the Lattice Boltzmann Method.
This relatively recent approach to Computational Fluid Dynamics
receives increasing interest from scientists in a wide variety of fields,

46 test flows

and therefore benefits from an ever-growing community of users. The
research activity around the Lattice Boltzmann Method is intense, as
the method is particularly attractive for a large range of applications.
Among them is the simulation of flows with simple geometries aligned
with the lattice. For such flows, the algorithmic simplicity of the LBM

leads to minimal implementation efforts with respect to conventional
CFD methods. In this project we make use of an enhanced formula-
tion of the LBM, called the central-moments based Lattice Boltzmann
Method [143]. It yields exceptional stability, and therefore allows for
the simulation of flows with high Reynolds numbers.

During the early stages of this thesis, test flow (1) was first im-
plemented using the conventional LBGK [31] scheme, see section 2.1.
Because of constraints on the stability of the simulation, only rather
low Reynolds number could be achieved. For such low Reynolds
numbers, around Re ≈ 700, the evolution remains correlated for long
times, as a result of the periodicity of the domain. Because of the
difficulties associated with a large correlation time—mostly the large
computational burden of simulating a large number of correlation
times—test flow (2) was introduced, using the central-moments based
LBM method. Test flow (1), as presented in this chapter, was only
designed at a later stage of this work. As a result, extreme events
in test flow (1) have not been addressed yet. In the remainder of this
manuscript, we therefore concentrate on test flow (2.)

In the following chapter we describe the study of extreme drag
fluctuations of the drag acting on the square cylinder embedded in
test flow (2), on the basis of a very long simulation of the flow dy-
namics. In the subsequent chapters we describe the application of
both the Giardina–Kurchan–Tailleur–Lecomte and Adaptive Multi-
level Splitting to test flow (2) and discuss the corresponding results.
More precisely, we will use them to sample extreme fluctuations of the
instantaneous drag fd, as well as the averaged drag, acting the square
cylinders embedded in test flow (2). In particular we will investigate
how efficiently both algorithms are capable of sampling and simulat-
ing flow dynamics leading to extremes, compared to a direct approach
consisting in brute force sampling based on a very long simulation.

3
D Y N A M I C S O F E X T R E M E F L U C T UAT I O N S O F T H E
D R A G A C T I N G O N A B L U F F B O D Y I M M E R S E D I N A
T W O - D I M E N S I O N A L T U R B U L E N T F L O W

Solid bodies can be classified into two categories, depending on
their shape, as illustrated in figure 3.1. On the one hand, for streamlined
bodies, the boundary layer remains attached to the surface of the body.
Consequently, the wake is characterised by a rather small spatial extent.
Therefore, a high pressure is recovered near the downstream extremity
of the object, referred to as the base. As a result, the force resulting
from the pressure difference between the forebody—the upstream point
of the body— and the base is small and drag essentially originates
from the viscous friction induced by the flow in the boundary layer.
Examples of streamlined bodies include aerofoils, race cars and aero
bike helmets. On the other hand, bluff bodies are bodies which shape
favours boundary layer separation, often simply mentioned as flow
separation, that prevents the re-compression of the flow in the vicinity
of the base. As a consequence, the base pressure is much lower than
the forebody pressure, which leads to high levels of pressure drag, also
referred to as form drag, due to its connection with the shape of the
body. Roughly speaking, flow separation is favoured by large cross-
sectional areas, as well as sharp corners. Typical examples of bluff and
streamlined bodies are pictured in figure 3.1.

As a matter of fact, most bodies are bluff bodies. Therefore accurate
characterisation of flows past bluff bodies is of major importance in a
wide variety of fields. Examples include wind loading on tall buildings,
bridges [85, 91, 159] or wind turbines [74, 87, 114]. In ground vehicle
aerodynamics, one of the major objective is reduction of the pressure
drag induced by the detached flow in the rear of a car or a truck. It is
motivated by the important energy savings that can be achieved by
designing more aerodynamic vehicles [23, 157].

In most of these studies however, the description is limited to the
average behaviour of the flow and typical fluctuations. Even though
they are rare, extreme fluctuations of the drag can be expected to have
a strong impact, both on the immersed body and on the structure of the
flow. In bluff body aerodynamics, a key question is the description and
quantification of the respective contribution of the coherent structures
forming in the vicinity of the body to the overall drag [47, 142]. We
believe the study of flow configurations leading to extreme values of
the drag can provide useful information that will help deepen our

47

48 dynamics of extreme drag fluctuations

Figure 3.1: Typical examples of streamlined and bluff bodies. Blue lines
represent the trajectory of fluid particles, referred to as streamlines
(see note 3). In the case of the streamlined body, streamlines stay
attached to the surface of the obstacle. A a result, the spatial
extent of the wake is diminished, and a high pressure is recovered
at the downstream point of the body. By contrast, the important
cross flow section of bluff bodies entails a flow separation, as the
trajectory of fluid particles detach from the surface of the body. A
a result, the pressure near the downstream surface of the obstacle
is considerably lower than the pressure near the upstream surface,
resulting in a large drag.

understanding of the physical mechanisms underlying strong drag
forces on bluff bodies.

In this chapter we propose a description of flow dynamics result-
ing in extreme fluctuations of the drag acting on a square cylinder
immersed in a turbulent flow. We first investigate fluctuations of the
instantaneous drag, denoted as fd and defined as the total contribution
of the pressure and viscous efforts over the surface Sb of the body:

fd(t) =
∫
Sb

(−pI + τ) · exdS , (3.1)

where Iij = δij, τ is the viscous stress tensor, ex a unit vector aligned
with the mean flow direction and dS a surface element.

Additionally, we also provide a description of extremes of the time-
averaged drag, denoted as FT and defined as

FT(t) =
1
T

∫ t+T

t
fd(τ)dτ. (3.2)

In the following the averaging window T will always be chosen signif-
icantly greater than the correlation time of the instantaneous drag τc,
typically T = 10τc.

Extreme fluctuations of the instantaneous drag fd must be associated
with atypical flow configurations, resulting in a very high, or low, value
of the pressure difference between the forebody and the afterbody. In
many applications, the reliability of immersed structures is guaranteed
up to a fixed threshold for the drag, or related mechanical efforts. On
the other hand, the characterisation of fluctuations of the averaged
drag FT is useful in cases where the structure of interest exhibits a
typical response time, of the order of magnitude of T. In the following,

dynamics of extreme drag fluctuations 49

we focus on positive extreme fluctuations, i.e., very large values of the
drag force.

Note 1. The correlation time τc

In the following, we denote by τc the correlation time of the instantaneous drag
fd. It refers to the typical time over which the drag de-correlates from its previous
values, under the effect of large scale turbulent velocity fluctuations. In practice,
we define this correlation time as the time over which the autocorrelation vanishes,
i.e. E[X(t)X(t + τc)]− E[X]2 ≈ 0. The autocorrelation is computed over the
whole control simulation by means of the Wiener-Khintchine theorem. In practice,
we find for test flow (2) that τc ≈ 4 × U0/L where U0 is the mean flow velocity
and L the cross-section of the obstacle. Please refer to chapter 2, section 2.2.2.2
for more details about the correlation time and its computation for both test flows.

We sampled extreme fluctuations based on a very long numerical
simulation of the test flows presented in chapter 2. Due to the two-
dimensional nature of the flows and their relative simplicity, hundreds
of thousands of correlation times could be simulated in roughly a
weektime. Because the return period of typical fluctuations is close to
the correlation time, the simulation of the flow over such very long
durations allowed to sample very rare events with respect to typical
events. In section 3.1, the sampling of extreme drag fluctuations from a
long drag timeseries is described. Then, section 3.2 describes the study
of instantaneous fluctuations. In section 3.2.1, it is shown that the ma-
jor contribution to the extreme drag fluctuations is due to exceptional
pressure drops in the vicinity of the base of the cylinder. By contrast,
the pressure fluctuations near the forebody due to the upstream turbu-
lence plays a lesser role. The flow dynamics leading to such extreme
pressure drops—and therefore extreme drag fluctuations— are then
described in section 3.2.2. In the present chapter, we concentrate on
extremes for test flow (2). The flow fields for the four highest sampled
fluctuations are shown to display very similar features, suggesting
a common dynamical scenario for the formation of extreme drag
configurations. A deeper analysis then reveals that extremes can be
described in terms of two scenarii, in both of which a low pressure
region is constrained in the vicinity of the base by the surrounding
flow. A discussion of the temporal aspects of such dynamics is also
provided.

Section 3.3 focuses on fluctuations of the averaged drag over 10τc.
To begin with, section 3.3.1 illustrates that extreme values of the
average drag result either from a few number of intense fluctuations
of the instantaneous drag, or from a series of a greater number of
fluctuations occurring in a sequence. However, it is not clear from
the data if one scenario is dominating. Section 3.3.2 describes an
analogy based on simple stochastic dynamics with a fast decay of
the correlations. It is shown that for an algebraic and Gaussian PDF,

50 dynamics of extreme drag fluctuations

fluctuations of the average are dominated by a single fluctuation or a
sequence of independent fluctuations, respectively. More importantly,
the case of an exponential PDF is shown to be a marginal case for
which both contributions are equally likely. The connection with the
drag fluctuations then lies in the statistics of rare drag fluctuations
observed in chapter 2, that are well described by an exponential PDF.

3.1 sampling of extremes from a timeseries

An extreme fluctuation of the drag, whether it is instantaneous or
averaged, refers to an atypical excursion from values close to the aver-
age or typical fluctuations, to regions located above a given threshold.
The higher the threshold, the rarer the event. In this section, we define
precisely what we consider as rare events and how we sample them
from a simulation of the dynamics over long durations.

Let {X(t)}0≤t≤Ttot be a timeseries describing the evolution of an
observable X over time. In the context of this work, X denotes either
the instantaneous drag, e.g. X(t) ≡ fd(t), defined by (3.1), or the
drag averaged over a duration T, e.g. X(t) ≡ FT(t), defined by (3.2).
Furthermore, let τc be the correlation time of X, see note 1 on page
49. We then set a threshold a and define extremes of X as the local
maxima over regions for which X ≥ a. More precisely, we denote by
{(t⋆i , X⋆

i)}1≤i≤N the set of the N extremes sampled in the timeseries,
where t⋆i denotes the time at which the maximum is attained and
X⋆

i its value. Let τf be the typical timescale for the formation of an
extreme fluctuation of X. Roughly speaking, this is the time it takes
to depart from typical values and attain the peak value, and then fall
back to the typical region. Therefore, we expect τf to be of the order
of magnitude of the correlation time τc. Extreme fluctuations of X a
then defined as follows:⎧⎪⎨⎪⎩

t⋆i = max
ti≤t≤ti+τf

X(t)

X⋆
i = X(t⋆i)

(3.3)

with ti defined as

ti =

⎧⎨⎩min(t ≥ 0 | X(t) ≥ a), if i = 1

min(t ≥ ti−1 + τf | X(t) ≥ a) otherwise
(3.4)

Figure 3.2 illustrates the sampling of extremes in the case of the
instantaneous drag, with a = 3σ and τf = 2τc with σ the standard
deviation computed over the timeseries.

3.1 sampling of extremes from a timeseries 51

Figure 3.2: Sample timeseries for the instantaneous drag acting on the square
cylinder in test flow (2). In this example the threshold is set to
a = 3σ and the corresponding sampled extreme fluctuations are
marked by red stars. The sampling of these events is based on
equations (3.3) and (3.4) with τf = 2τc.

As the length Ttot of the timeseries is fixed, increasing the threshold
a will naturally lead to fewer and fewer events. Let Ne(a) be the num-
ber of events resulting from the sampling of extremes with a threshold
a. In practice, we would like to choose a so that the fluctuation is ex-
tremely rare. However, the timeseries must contain a statistically signif-
icant number of extreme fluctuations, say Ne(a) = 100 events. In order
to choose a value for a, it is useful to recall the notion of return time,
introduced in chapter 1. The return time r(a) associated with an ampli-
tude a is the typical timescale of occurrence of a fluctuation X ≥ a. It is
defined as r(a) = E[τ(a, t)] where τ(a, t) is the waiting time for a fluc-
tuation of amplitude a from time t: τ(a, t) = min{τ ≥ t|A(τ) ≥ a}− t.
The return time is therefore the average time one must wait to observe
fluctuations of amplitude above a. As a result, the number of events
Ne(a) sampled from a timeseries of duration Ttot with a threshold a is

Ne(a) ≈ Ttot

r(a)
(3.5)

In order for the sampled fluctuations to be extreme, we must set a
so that r(a) ≫ τc. In practice, test flow (2) has been simulated over
Ttot = 106τc. In the following, we refer to this simulation as the control
run. In order to sample roughly Ne(a) = 100 events, the threshold a
must then be set so that r(a) ≈ 104τc. Figure 3.3 illustrates the return
time plot associated with fluctuations of the instantaneous drag for test
flow (2). It displays the amplitude of the fluctuations as a function of
the return time, and has been computed on the basis of a timeseries for
fd spanning 105τc. The computation of return times from a timeseries
is described in chapter 7.

52 dynamics of extreme drag fluctuations

Figure 3.3: Return time plot for the instantaneous drag fluctuations based
on a timeseries of duration Ttot = 105τc for test flow (2). The
fluctuation is defined as f ′d = (fd − f̄d)/σ with f̄d the average and
σ the standard deviation computed over the timeseries. It illus-
trates that a return time r(a) = 104τc corresponds to fluctuations
of order a ≈ 7.6σ. The computation of such plot is described in
chapter 7.

3.2 fluctuations of the instantaneous drag

Section 3.1 described the sampling of extreme fluctuations of an
observable X from a timeseries {X(t)}0≤t≤Ttot . In this section, we
focus on the instantaneous drag: X(t) ≡ fd(t). test flow (2), described
in 2, have been simulated over Ttot = 106τc. Following figure 3.3, the
threshold was set to a = 7.6σ in order to sample roughly 100 events
having a return time of at least 104τc. This resulted in a set of 104 events.
These extreme events were then re-simulated in order to compute the
corresponding velocity and pressure fields, as well as other relevant
observables, as explained in note 2 on page 52. Figure 3.4 displays
both the PDF of fd computed on the basis of the timeseries and the
amplitude of the sampled events. It illustrates that these fluctuations
are indeed located in the far tail of the PDF.

Note 2. Re-simulation of the sampled extreme fluctuations
The state of the flow, e.g. the ensemble of Lattice Boltzmann populations at
each computational node, as well as the velocity and pressure fields could not
be stored at each LBM timestep along the simulation of the flow over 106τc,
which represent roughly 2 × 109 timesteps. Indeed, doing so would have entailed
tremendous memory storage, not to mention the potential computational overhead
of constantly writing large amount of data on disk. As a consequence, during the
control run, the state of the flow was only periodically written on disk. This allows
to re-simulate each identified fluctuations from the nearest saved state so as to
compute the velocity and pressure fields, and any other observable of interest over
this particular event. This approach is actually crucial to the investigation of the
physical mechanisms underlying extreme drag fluctuations, as the hydrodynamic
quantities of interest were not known at the time the control run was carried out.

3.2 fluctuations of the instantaneous drag 53

Figure 3.4: Continuous blue line: Estimate of the PDF for the fluctuations
of the instantaneous drag f ′d in test flow (2), computed over a
timeseries of duration Ttot = 106τc. The fluctuation is defined
as f ′d = (fd − f̄d)/σ with f̄d and σ the average and standard
deviation computed over the timeseries. Red stars: Sampled fluc-
tuations above the threshold a = 7.6σ.

This section provides a description of extreme fluctuations of the
instantaneous drag acting on the square cylinder in test flows 1, on
the basis of the events sampled from the simulation of the flow over
106τc. First, section 3.2.1 discusses the respective role of the forebody
pressure fluctuations due to the turbulent upstream flow and pressure
fluctuations in the vicinity of the base of the cylinder. It shows that, in
all sampled extreme fluctuations, drag fluctuations are dominated by
the effect of exceptional pressure drops at the base. Then, section 3.2.2
describes the flow fields associated with several extreme events sam-
pled from the timeseries. It leads to the classification of extremes
in two categories, according to the physical scenario leading to the
extreme pressure drop causing the drag fluctuation.

3.2.1 Contribution of forebody and base pressure to the drag fluctuation

For bluff bodies in high-Re flows, the total drag force is dominated
by the pressure difference between the forebody, the solid surface in
contact with the upstream flow, and the base in contact with the low
pressure region resulting from the flow separation induced by the
obstacle. For instance, in both test flow (1) and test flow (2), it was
verified that the contribution of the viscous stress tensor to the integral
in (3.1) accounts for less than 0.01%. Consequently, we neglect the
contribution of viscous effects to the drag and solely retain the inertial
effects, i.e. the difference between the forebody pressure and the base
pressure.

In the case of a laminar upstream flow, drag fluctuations can be
expected to result from flow structures forming near the base of the

54 dynamics of extreme drag fluctuations

obstacle. In [47], Fabiane et al proposed a decomposition of the flow
past a cylinder, in order to quantify the relative contribution of two
different areas:

• The external flow region, accounting for both the viscous stress
and the pressure difference resulting from flow separation

• The back flow region, accounting for vorticity generated near
the base

For moderate Reynolds numbers, for which the wake exhibits periodic
vortex roll-up, it is shown that most of the fluctuations originate from
the back flow region, and are strongly correlated with the vortex roll-
up dynamics. In addition, drag fluctuations are reported to increase
with the Reynolds number, as vortices are emitted closer and closer to
the base.

The influence of upstream turbulence on the drag acting on a par-
ticle has been investigated in [82]. It is shown that an increasing
upstream turbulent intensity leads to a shortening of the wake, and
therefore to a decreasing of the averaged base pressure due to steeper
averaged velocity gradients along the mean flow axis. In addition, it
is reported that the averaged forebody pressure remains unchanged
as the upstream turbulence intensity is increased, therefore leading to
an overall increase of the drag. Turbulence intensity is also shown to
increase the intensity of typical drag fluctuations, indicating that they
are mainly connected with large scale fluctuations of the upstream
flow. However, extreme fluctuations have not been addressed.

For a turbulent upstream flow, it is not clear whether extreme drag
fluctuations are caused by strong pressure drops related to vorticity in-
teractions occurring at the base of the obstacle, or exceptional forebody
pressure resulting from the upstream turbulence. In the following we
address this question based on the extreme events sampled from the
control simulations of test flow (2).

For each of the sampled events, the drag fluctuation f ′d is split
into the contribution of the forebody pressure fluctuation p′f and base

pressure fluctuation p′base. Respectively denoting by fd, p f and pbase the
average drag, forebody pressure and base pressure, this decomposition
writes

f ′d = fd − f̄d = (p f − p f)− (pbase − pbase) = p′f − p′base (3.6)

where p f and pbase denote the instantaneous forebody and base pres-
sure, computed by integration of the pressure over the upstream or
downstream surface of the square, respectively. Average quantities
are computed as time averages over the whole control timeseries.
Figure 3.5 displays both the relative contribution of the forebody pres-
sure fluctuation p′f and base pressure fluctuation p′base to the total

3.2 fluctuations of the instantaneous drag 55

Figure 3.5: Contribution of the forebody and base pressure fluctuation to
the overall drag fluctuation for the 104 events extracted from the
control run for test flow (2). Both contributions are computed as
p′base/ f ′d and p′f / f ′d where the prime indicates fluctuations with
respect to the average value computed over the timeseries. To
each value of the drag corresponds a value for the base pressure
fluctuation (blue dots) and for the forebody pressure fluctuation
(red triangles). Note that the sum of these two values is 1 and
that a negative contribution from the forebody pressure indicates
events for which an extreme fluctuation occurs even though the
forebody pressure is lower than its average. This type of event has
been been only observed once among the 104 events. This figure
illustrates that drag fluctuations are mostly caused by fluctuations
of the base pressure. In contrast, the forebody pressure does not
deviate as far from its average value. In addition, both thick
continuous lines result from a least-squares fit of the data to a
second order polynomial. They highlight that the segregation
between the two contributions seems to increase as the amplitude
of the fluctuation increases.

fluctuation f ′d, for the 104 extreme events extracted from the control
simulation of test flow (2). One can see that, in each and every case,
the major contribution to the drag fluctuation originates from the
base pressure fluctuation. Furthermore, figure 3.5 shows that, as the
amplitude of the fluctuation increases, the contribution from the base
pressure fluctuation also increases, with respect to the contribution
from the forebody pressure. This indicates that, similarly to the case of
a laminar flow impacting an obstacle, drag reduction can efficiently be
achieved by mitigating pressure fluctuations at the base of the obstacle.

3.2.2 Qualitative description of flow configurations leading to extreme drag
fluctuations

In section 3.2.1, it was observed that, despite the turbulent nature of
the upstream flow, pressure fluctuations in the vicinity of the forebody

56 dynamics of extreme drag fluctuations

(a) Density field and streamlines (b) Vorticity field

Figure 3.6: Flow fields corresponding to a typical value of the drag acting on
the square cylinder: fd ≈ f̄d where f̄d denotes the average drag
computed over the control timeseries for test flow (2).

play little role in the extreme drag fluctuations sampled from the
control simulation. In contrast, the majority of the fluctuations were
shown to originate from exceptional pressure drops near the base of
the cylinder.

In this section, we investigate the flow dynamics leading to such
pressure drops. The starting point of this study is the visualisation
of the flow fields corresponding to a few extremes. Remarkably, we
illustrate that they all display very similar configurations. From these
observations, we draw up hypothesis regarding the dynamical sce-
nario leading to such extremely low values of the base pressure and
confront them with the whole ensemble of sampled extremes. Eventu-
ally, we will propose a classification of extremes into two categories,
depending on the corresponding flow dynamics.

3.2.2.1 Illustration of a typical event

Before we describe the case of extreme fluctuations, we begin by
characterising a flow configuration corresponding to a typical event.
Figure 3.6 displays the vorticity field and density field for a flow con-
figuration resulting in a drag close to the average value. Recall that the
density field is related to the pressure field through the state equation
p(x) = c2

s ρ(x) where p denotes the pressure, ρ the density and c2
s the

speed of sound in the fluid. See chapter 2, section 2.1 for more details
about this relation. In addition, figure 3.6a displays the velocity stream-
lines. These lines are tangential to the velocity vector field in each
point of the domain, and gives a graphical representation of advection
by the flow at a given time. Streamlines are further discussed in note 3.
As can be seen in figure 3.6b, the vicinity of the base is surrounded by
irrotational flow. As a consequence, the pressure difference between
the forebody and the base must solely result from the contribution
of the flow separation induced by the obstacle. Recall that viscous
effects are neglected with respect to pressure effects. As a matter of
fact, vorticity produced by shear alongside the boundaries of the cylin-
der is advected downstream by the mean flow. This can be seen in

3.2 fluctuations of the instantaneous drag 57

figure 3.6. Positive vorticity—coloured in red— is produced along the
bottom boundary layer, resulting in a positive vortex. However, this
vortex forms far enough from the base so that is does not perturb the
irrotational flow surrounding the base of the obstacle. Therefore, it
does not lead to any pressure drop and, consequently, to any increase
of the drag.

Note 3. Streamlines
Streamlines are a useful tool when it comes to visualising a vector field, for instance
the velocity field describing the flow of a fluid at a given moment in time. A
velocity streamline is a curve that is tangential to the velocity field at each point
in space. For a stationary flow, streamlines correspond to the trajectory of fluid
particles. Even though flows concerned in this work are unstationary, visualisation
of streamlines is useful to provide a graphical representation of advection by the
flow at a given moment in time. Let dr(x) = (dx(x), dy(x)) be an infinitesimally
small displacement along the streamline at position x. The line is defined by

u × dr = 0 ⇔ dx
dy

=
ux

uy
(3.7)

In practice, a streamline is computed by integrating equation (3.7) from an initial
seed point r0. In this work, we used Paraview [1] for flow visualisation. Streamlines
are computed by specifying an ensemble of seed points from which (3.7) is
integrated both forward and backward in time.

3.2.2.2 Extreme events

In the following we illustrate that extreme fluctuations actually
result from vorticity being trapped in the vicinity of the base of the
cylinder, in contrast with typical fluctuations where it is advected
downstream by the mean flow. We denote by t⋆ the time correspond-
ing to the peak drag for a given extreme. Following note 2, the events
sampled from the control simulations for test flow (2) have been
re-simulated from t⋆ − 2τc to t⋆ + 2τc. As an illustration, figure 3.7
displays the evolution of the drag over time for the four events hav-
ing the highest amplitude in the control simulation for test flow (2).
Figures 3.8 and 3.9 illustrate the corresponding configuration of the
flow for the same fluctuations. More precisely, figure 3.8 displays the
vorticity field in the vicinity of the square cylinder, at t = t⋆. One can
see that, in each case, vorticity is produced very close to the base of
the obstacle. In addition, its amplitude is significantly higher than the
vorticity fluctuations displayed in figure 3.6 for a typical event. This
vorticity originates from the interaction of the flow with the obstacle.
In the examples of figure 3.8, vorticity is produced through viscous
interactions at the bottom boundary of the obstacle. Note that the four
greatest fluctuations in the control simulation for test flow (2) result
from the production of positive vorticity along the bottom boundary.
We stress here that this is a mere coincidence as the geometry, as
well as its discretisation, is symmetric with respect to the pipe axis.

58 dynamics of extreme drag fluctuations

Figure 3.7: Drag timeseries for the four extreme fluctuations having the high-
est amplitude in the control simulation for test flow (2). Timeseries
are centred around t = t⋆, denoting the instant for which the max-
imum drag is attained. The duration τc denotes the correlation
time of the drag, see note 1 on page 49. Extreme fluctuations, i.e.
excursions to atypical values followed by a relaxation to typical
values, happens over roughly a correlation time. Vorticity and
pressure fields at t = t⋆ for the four events can be found in fig-
ures 3.8 and 3.9. Flow dynamics for event (a) are illustrated in
figure 3.10.

Figure 3.9 displays the density field at t = t⋆ as well as the streamlines
for the velocity field, see note 3. Figure 3.9 highlights that the pressure
drop responsible for the drag fluctuation results from the formation
of a strong vortex localised very close to the obstacle. In addition, a
vortex pair is localised further downstream, consisting of two vortices
with a sign opposite to the vortex in the vicinity of the base, as shown
in figure 3.8. Visualisation of streamlines in figure 3.9 suggests that
this downstream vortical region shields the strong vorticity located at
the base from advection by the mean flow.

Remarkably, the four extreme events featured in figures 3.8 and 3.9
display very similar flow configurations in which strong vorticity is
produced through viscous shear along a boundary of the obstacle
tangential the to flow direction. In contrast with the typical event
depicted in figure 3.6, this vorticity is not advected by the mean flow
and develops very close to the base, leading to a strong pressure drop.

In order to understand better the development of such a configu-
ration, we now describe an example of flow dynamics leading to an
extreme fluctuation. This example is based on the event featured in
figures 3.8 and 3.9. Figure 3.10 illustrates the evolution of the vorticity
field from one half of a correlation time before the peak drag. It shows
that from roughly t⋆ − τc/2 to t⋆ − τc/3, the top boundary layer is
perturbed by a vortex advected by the flow above the obstacle. This
can be seen in frames 3.10a trough 3.10g. The interaction of this vortex
with the top boundary layer results in a boundary layer separation

3.2 fluctuations of the instantaneous drag 59

(a) f ′d = 11.6σ (b) f ′d = 11.2σ

(c) f ′d = 10.6σ (d) 10σ

Figure 3.8: Vorticity field at t = t⋆ for the four highest drag fluctuations
in the control simulation for test flow (2). The corresponding
drag timeseries can be found in figure 3.7. The high value for
the drag results from the formation of a strong negative (red)
vortex inducing a pressure drop at the base of the obstacle. The
formation of such a structure is aided by important vorticity
production at the bottom boundary of the obstacle coupled with
the influence of positive vorticity in the vicinity of the base.

that eventually leads to the formation of a large—of the scale of the
obstacle—negative vorticity region further downstream of the cylinder,
visible in frame 3.10k. This vortex does not have a direct impact on the
pressure at the base of the obstacle. However, it interacts with vorticity
produced along the bottom boundary of the cylinder, as illustrated by
frames 3.10k to 3.10p. Indeed, by contrast with the typical event de-
picted in figure 3.6, vorticity produced along the bottom boundary is
not advected downstream. Instead, it is transported in the close vicin-
ity of the base by the downstream negative vorticity region resulting
from the separation of the top boundary layer.

3.2.2.3 Type 1 events

The description of the flow for the four highest fluctuations in the
control simulation leads to the following hypothesis: extreme drag
fluctuations are caused by intense vorticity localised very close to the
base of the obstacle, generated by a strong shear layer on either the top
or bottom boundary, as well as the action of a large opposite vorticity
region originating from a boundary layer separation on the opposite
boundary.

We now test the validity of this scenario on the basis of the 104

events extracted from the control simulation of test flow (2). To do so,
we highlight the correlation between an increase of the shear along
either the top or the bottom boundary of the cylinder and an increase

60 dynamics of extreme drag fluctuations

(a) f ′d = 11.6σ (b) f ′d = 11.2σ

(c) f ′d = 10.6σ (d) f ′d = 10σ

Figure 3.9: Density field at t = t⋆ for the four highest drag fluctuations in
the control simulation for test flow (2). Recall that the density ρ
is proportional to the pressure p, following the ideal gas state
equation p = c2

s ρ. See chapter 2 and appendix B. Additionally,
velocity streamlines are depicted, representing advection by the
flow at t = t⋆, see note 3. Blue areas indicate areas of lower
pressure while red regions indicate regions of higher pressure.
The formation of a vortex very close to the base boundary leads
to a strong pressure drop. The downstream vortices originating
from the top boundary layer separation are clearly visible and
constrain the formation of the base vortex to a region very close
to the base boundary.

3.2 fluctuations of the instantaneous drag 61

(a) t = t⋆ −
0.54τc

(b) t = t⋆ − 0.5τc (c) t = t⋆ −
0.46τc

(d) t = t⋆ −
0.44τc

(e) t = t⋆ − 0.4τc (f) t = t⋆ −
0.36τc

(g) t = t⋆ −
0.34τc

(h) t = t⋆ − 0.3τc

(i) t = t⋆ −
0.26τc

(j) t = t⋆− 0.24τc (k) t = t⋆ − 0.2τc (l) t = t⋆ −
0.16τc

(m) t = t⋆ −
0.12τc

(n) t = t⋆ −
0.08τc

(o) t = t⋆ −
0.04τc

(p) t = t⋆

Figure 3.10: Flow dynamics corresponding to a particular type 1 event, which
drag timeseries and flow fields at t = t⋆ are displayed in fig-
ures 3.7, 3.8 and 3.9, respectively. In each frame the vorticity field
is displayed, as well as the velocity streamlines, representing
advection by the flow at each instant. See note 3 for a discus-
sion of streamlines. The maximum of the drag is attained for
t = t⋆ and corresponds to frame 3.10p. The sequence starts
with a shear boundary layer forming over the top boundary of
the obstacle (frames 3.10a to 3.10d). This boundary layer sep-
arates (frames 3.10e to 3.10j) and results in the formation of a
large positive eddy in the vicinity of the base of the obstacle
(frames 3.10k and 3.10l). In the meantime, frames 3.10j to 3.10m
depict the formation of an attached strong shear layer at the bot-
tom boundary. Eventually, frames 3.10n to 3.10p illustrate that
this results in vorticity production very close to the base, aided
by the large positive eddy originating from the top boundary
layer separation.

62 dynamics of extreme drag fluctuations

-0.1 0 0.1 0.2 0.3 0.4 0.5

fd

-0.05

0

0.05

0.1

0.15

γ̄

mean path

Figure 3.11: Averaged shear on either the top or bottom boundary of the ob-
stacle as a function of the drag. Grey lines denote the trajectories
in the (fd, σ) for the 86 type 1 events. The thick blue line repre-
sent the mean path. It was verified that every event results from
a clockwise excursion away from the region of typical events,
indicating that drag fluctuations are preceded by an increase of
the shear on either the top or bottom boundary.

of the drag. More precisely, we consider the averaged shear γ along
the top or the bottom boundary:

γ =
1
L

∫
Sb

∂ux(x)
∂y

dx (3.8)

where L denotes the diameter of the cylinder, ux the longitudinal
component of the velocity field and Sb the surface of either the top
or the bottom boundary, depending on the event. For each extreme
fluctuation in the control run, γ is plotted as a function of the instan-
taneous drag fd, for t⋆ − 2τc ≤ t ≤ t⋆ + 2τc. Each extreme event in
the control simulation can therefore be associated to a path in the
space (fd, γ̄). The resulting plots are displayed in figure 3.11. For
t⋆ − 2τc ≤ t ≤ t⋆ − τc and t⋆ + τc ≤ t ≤ t⋆ + 2τc, paths concentrate in
the region describing typical values for both γ and fd. As illustrated
in figure 3.7, the drag abruptly varies for t⋆ − τc ≤ t ≤ t⋆ + τc. Corre-
spondingly, paths in the (fd, γ̄) space display excursions to atypical
values for both γ̄ and fd. Interestingly, these excursions always go
clockwise, that is, γ attains its maximum value before fd does. This
confirms that the increase of γ acts as a precursor for extreme drag
fluctuations.

As a matter of fact, this correlation between γ̄ and fd was observed
for roughly 80% of the extreme events sampled from the control
simulation. Figure 3.11, as well as visualisation of the corresponding
flow indicate that these events can all be described by dynamics very
close to the ones described in figure 3.10. In the following we refer to
this events as type 1 events.

3.2 fluctuations of the instantaneous drag 63

3.2.2.4 Type 2 events

The remaining 20% of the extracted extreme fluctuations must
be ruled by different dynamics. Visualisation of the corresponding
flow field suggests that these can actually be described by a common
alternative scenario, and in the following we will refer to these events
as type 2 events.

Figure 3.12 illustrates the dynamics of one of the type 2 events
sampled from the control simulation. It displays the vorticity field
and velocity streamlines at several instants from t ≈ t⋆ − τc/2 until
t = t⋆, where t⋆ denotes the time at which the peak fluctuation is
attained. In addition, figure 3.12m illustrates the corresponding drag
timeseries, for t⋆ − 2τc ≤ t ≤ t⋆ + 2τc. In this scenario, vorticity is still
produced by shear on the top or bottom boundary, but at a much
earlier stage. Figure 3.12a shows that a strong shear layer forms over
the top boundary for t ≈ t − τc/2. It results in a large recirculation
bubble in the vicinity of the base, that forms over a timescale of
roughly τc/2. Eventually, figure 3.12l shows the vorticity field and
streamlines at t = t⋆. The recirculation bubble is detached from the
base and forms a large area of negative vorticity. This results in a strong
upward transverse velocity, as illustrated by the concentration of the
streamlines along the base of the obstacle, leading to a local pressure
drop. The corresponding velocity field is shown in figure 3.13b.

In order to test this scenario, we proceed in a similar way as for
type 1 events, characterised by figure 3.11. For the 20% of sampled
fluctuations that do not correspond to type 1 events, we wish to
assess if the base transverse velocity fluctuations can be considered a
signature of the drag fluctuations. More precisely, for each event we
measure the transverse velocity uy over a region close to the base of
the obstacle and compute the average:

uy
base =

1
A
∫
S

uy(x)dx (3.9)

where S denotes the integration region, and A the corresponding
area. The integration region S is pictured in figure 3.13b. The average
base transverse velocity uy

base is then plotted as a function of the drag
for each event, for t⋆ − 2τc ≤ t ≤ t⋆ + 2τc. Similarly to figure 3.11,
figure 3.13a displays the corresponding paths in the two dimensional
space (fd, uy

base). For t ∈ [t⋆ − 2τc; t⋆ − τc/2]U[t⋆ + τc/2; t⋆ + 2τc],
paths concentrate in the region describing typical values for uy

base

and fd. However, we verified that for t⋆ − τc/2 ≤ t ≤ t⋆ + τc/2, each
path consists in an excursion far away from this region. Furthermore,
these excursions go clockwise, suggesting that an increase of uy

base

acts as a precursor for a increase of the drag fd.

Even though all the 104 sampled events can be considered rare—
they all have a return time of at least 104 correlation times—they span a

64 dynamics of extreme drag fluctuations

(a) t = t⋆ −
0.44τc

(b) t = t⋆ − 0.4τc (c) t = t⋆ −
0.36τc

(d) t = t⋆ −
0.34τc

(e) t = t⋆ − 0.3τc (f) t = t⋆ −
0.26τc

(g) t = t⋆ −
0.24τc

(h) t = t⋆ − 0.2τc

(i) t = t⋆ −
0.16τc

(j) t = t⋆− 0.08τc (k) t = t⋆ −
0.04τc

(l) t = t⋆

(m) Evolution of the drag fd over time, centred on the extreme fluctuation at t = t⋆

Figure 3.12: Formation of a type 2 drag fluctuation over time. Streamlines
are coloured according to the transverse velocity uy. Red ar-
eas indicate regions of upward transverse velocity while blue
areas indicate regions of downward transverse velocity. The
maximum of the drag is attained for t = t⋆ and corresponds
to frame 3.10l. The sequence illustrates the formation of a large
eddy in the vicinity of the base of the obstacle, resulting from
vorticity produced by a shear layer forming at the top boundary
(frames 3.10a to 3.10e). The eddy is then detached from the base
as flow separation occurs at the top boundary. As illustrated in
frame 3.10l, the detached eddy lead to a strong upward velocity
at the base of the obstacle, leading to a low pressure.

3.2 fluctuations of the instantaneous drag 65

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

fd

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

|ū
y
|

mean path

(a) Base transverse velocity as a function of the drag.

(b) Spatial integra-
tion of uy. Blue
indicates down-
ward velocity.
Red indicates
upward velocity.

Figure 3.13: Base averaged transverse velocity uy
base as a function of the

drag, for the 18 type 2 events. The velocity uy
base refers to the

transverse velocity magnitude uy averaged over a small region
of space in the vicinity of the base of the obstacle. This region
is depicted by the red rectangle in figure 3.13b. Grey lines in
figure 3.13a represent the trajectories for each type 2 events. The
thick blue line represents the mean path. In the space (fd, uy

base),
the 18 type 2 events result from a clockwise excursion away
from the region describing typical values. This indicates that
drag fluctuations are preceded by an increase of the transverse
velocity magnitude.

wide range of fluctuation amplitudes. Having segregated the ensemble
of events into two different scenarii, we would like to assess if one
particular scenario leads to higher fluctuations than the other one.
Figure 3.14 shows the intensity of the fluctuations corresponding to
each of the 104 extracted events. Events are sorted according to their
intensity. It shows that, among the ensemble of sampled events, higher
fluctuations are only achieved through type 1 events.

3.2.3 Conclusion

From a long control simulation of the flow, roughly one hundred
extreme fluctuations have been extracted. They all have a return time
greater than 104 correlation times of the instantaneous drag. The anal-
ysis of the respective contribution of the forebody and base pressure
to the overall drag fluctuation leads to the conclusion that, even with a
turbulent incoming flow, fluctuations of the base pressure play a major
role in the occurrence of unusually large drag events. Visualisation of
the flow dynamics for the sampled events resulted into the ensemble
being split into two different types of events. Type 1 events represent
80% of the sampled events and correspond to the formation of a small,
intense vortex very close to the base of the obstacle. This vortex results
from vorticity production by a strong shear layer along either the top
or bottom boundary of the obstacle, as well as the influence of a large
downstream vortical region resulting from a boundary layer separa-
tion over the boundary which is opposite to the one of the previously

66 dynamics of extreme drag fluctuations

Figure 3.14: Classification of the 104 events sampled from the control simula-
tion of test flow (2), according to the corresponding fluctuation
amplitude. The highest fluctuations in the set of sampled events
result from type 1 events.

mentioned shear layer. This second vortex forces the smaller vortex to
form very close to the base. One could wonder about the persistence of
such an event. Can the base vortex be blocked for duration of the cor-
relation time ? Actually, it is never observed. Indeed, the downstream
vortex is rapidly advected by the mean flow, therefore freeing the
base vortex which is, in turn, advected downstream. Such fluctuations
therefore happens on a relatively short timescale with respect to the
correlation time, as illustrated by figure 3.7. Instead, what makes this
type of event unusual is that vorticity generated by viscous shear on
the top or bottom surface is not directly advected downstream, but
concentrates near the base. Type 2 events represent the remaining 20%
of the sampled events. In this scenario, the pressure drop results from
an intense transverse velocity in the vicinity of the base, generated by
a detached vortex resulting from flow separation at either the top or
bottom boundary of the obstacle.

3.3 fluctuations of the averaged drag

In section 3.2, we presented a qualitative study of the mechanics
underlying extreme fluctuations of the instantaneous drag. We showed
that they correspond to excursions to very high values of the drag,
with the overall fluctuation—the excursion followed by the relaxation—
lasting roughly one correlation time. In this section we turn to extreme
fluctuations of the averaged drag over a macroscopic duration, that
is a duration several times bigger than the typical timescale of the
large scales of the upstream turbulence. Considering the interaction of
turbulence with a structure, atypical values of the averaged drag are
expected to have a high impact for systems having a large response
time with respect to the timescale of the surrounding turbulence.
Examples of responses are the deformation of structures such as wind

3.3 fluctuations of the averaged drag 67

turbine blades, or oscillations of tall building under fluctuating wind
loads.

Following a strategy similar to section 3.2, we sample extreme
averaged drag fluctuations from the control simulation for test flow
(2), spanning Ttot = 106τc. Let FT be the drag averaged over T. From
the control timeseries for the instantaneous drag fd, we deduce the
control timeseries {FT}T≤t≤Ttot by integration over time:

FT(t) =
1
T

∫ t

t−T
fd(τ)dτ, for T ≤ t ≤ Ttot (3.10)

In the following, the time-average is performed over a duration T =

10τc. Note that τc is of the order of the typical timescale of the large
scale velocity and pressure fluctuations of the upstream flow, see note 1.
Therefore, T = 10τc can be considered a macroscopic duration with
respect to the flow past the obstacle. As mentioned in section 3.1—and
observed in figure 3.7— extreme fluctuations of the instantaneous drag
fd are expected to develop over roughly a correlation time. Let τT

c be
the correlation time for the averaged drag FT. Because of the correlation
induced by the integration, we expect τT

c ≈ T. With the length of the
control timeseries fixed, larger integration times T therefore leads to
the sampling of fewer events. In a way of conclusion, the choice of
T = 10τc results from the balance between a time that is long enough
to be considered larger than the timescale of large-scale turbulent
fluctuations and small enough so that enough fluctuations can be
sampled from the control timeseries. In the following, FT denotes the
averaged drag over T = 10τc, unless specified otherwise.

Furthermore, we denote by σT the standard deviation computed
over the control timeseries for FT. Note that the control timeseries for
FT has a total duration Ttot − T ≈ Ttot ≈ 106τc ≈ 105τT

c . Similarly to
section 3.2, the choice of the threshold a for the sampling of extreme
fluctuations is based on the return time plot for the fluctuations of
FT, computed over the control timeseries (not shown). This leads
to a = 3.7σT, corresponding to a return time of 103τT

c in order to
sample roughly 100 events from the control timeseries, resulting in 85

independent extreme fluctuations for FT.

The main question we address in this section concerns the structure
of the fluctuations of the averaged drag. Do extreme values of the
averaged drag over a macroscopic duration result from a series of
statistically independent low-amplitude fluctuations ? Or from a few
number of very large fluctuations ? In section 3.3.1 we describe several
extreme fluctuations of FT sampled from the control timeseries. More
precisely, the instantaneous drag timeseries corresponding to these
extreme values of FT are displayed. Their analysis suggests that both
very large fluctuations and unusual series of independent positive

68 dynamics of extreme drag fluctuations

typical fluctuations equally participate in the extreme values of the av-
eraged drag. In oreder to better understand this property, we propose
an analogy with simple stochastic systems with a fast decay of the
correlation time in section 3.3.2. We illustrate that this property may
result from the exponential tail statistics of the instantaneous drag,
observed in chapter 2

3.3.1 Examples of extreme fluctuations of the averaged drag

Examples of timeseries of the instantaneous drag fd corresponding
to extreme fluctuations of the average drag, with T = 10τc, are given
in figure 3.15. In each case, several timeseries corresponding to typical
events are displayed for comparison. Figure 3.15 illustrates that the
occurrence of extremes for the average drag cannot easily be reduced
to a few numbers of well-defined scenarii. Indeed, the featured time-
series display very different structures, even though their respective
average all lead to fluctuations between 4.4σ and 5.1σ. For instance, in
figure 3.15c the exceptionally large value of the average results from
two very intense fluctuations, as well as a large number of positive
typical fluctuations of order σ. In figure 3.15b, the extreme value for
the overall average results from the succession of approximately 7

independent fluctuations around 3σ, while negative fluctuations never
go beyond −σ. In general, it can be seen in figure 3.15 that extreme
fluctuations of the averaged drag over 10τc result from timeseries in
which fluctuations are almost always positive. Furthermore, both very
large fluctuations, fd ≥ 5σ, as well as more typical values, σ ≤ fd ≤ 2σ,
seem to play a role in the extreme values of the average. On the one
hand, very large fluctuations are much less likely to occur, but have a
strong impact of the average. On the other hand, typical fluctuations
have a lesser impact, but they are more likely. Therefore, they can
occur a greater number of times in the timeseries.

From the qualitative study of the 85 sampled events, we define two
contributions to extreme values of the averaged drag:

1. The contribution of very large fluctuations, typically occurring
once or twice in the timeseries.

2. The contribution of series of typical positive independent fluctu-
ations.

However, on the basis of the 85 events sampled from the control run,
it is not clear if contribution (1) or (2) dominates.

In the following, we consider a drag timeseries over several cor-
relation times τc as a sequence of several independent fluctuations
over a timescale τc. We motivate this approach by observing that the
instantaneous drag fd has rapidly decaying temporal correlations. In
the next section, we describe the analysis of extreme fluctuations for

3.3 fluctuations of the averaged drag 69

0 1 2 3 4 5 6 7 8 9 10

t==c

!<

0

<

3<

5<
f d

(a) FT = 5.1σT

0 1 2 3 4 5 6 7 8 9 10

t==c

!<

0

<

3<

5<

f d

(b) FT = 4.7σT

0 1 2 3 4 5 6 7 8 9 10

t==c

!<

0

<

3<

5<

f d

(c) FT = 4.5σT

0 1 2 3 4 5 6 7 8 9 10

t==c

!<

0

<

3<

5<

f d

(d) FT = 4.4σT

Figure 3.15: Instantaneous timeseries corresponding to the four highest fluc-
tuations of the averaged drag on the control run (thick blue line).
The grey lines in the background represents timeseries for which
the overall average is typical.

70 dynamics of extreme drag fluctuations

one-dimensional stochastic processes with a fast decay of temporal
correlations.

3.3.2 Average extremes for some simple random processes

Recall from chapter 2 that rare fluctuations of the instantaneous
drag fd are well described by an exponential PDF. That is:

P(f ≤ fd ≤ f + ϵ) ∼
f→∞

e−α f dϵ

This is illustrated in figure 3.16a on page 71. In addition, figure 3.16b
illustrates that the dynamical process defined by the time evolution
of the drag fd over time has exponentially decaying temporal corre-
lations. This property is illustrated in figure 3.17 in which a process
having short-range, exponential, temporal correlations is compared to
a process with long-range, algebraic correlations.

In this section, we describe some statistical properties of extremes for
one dimensional stochastic dynamics, with different stationary PDFs.
Accordingly, these dynamics all present a fast decay of the temporal
correlations. For such dynamics, the evolution over several correlation
times can therefore be described as a sequence of independent fluc-
tuations. Section 3.3.2.1 shows that, for a sequence of i.i.d. variables,
an extreme value of the average over the sequence originates from
different scenarii depending on the underlying PDF. More importantly,
we show that the case of an exponential PDF is a marginal case.

Finally, we illustrate these results by sampling extreme values of
the time-average of one dimensional stochastic dynamics with rapidly
decaying temporal correlations. It confirms that a process with an
exponential PDF is a marginal case, in which neither large fluctuations
nor series of positive typical fluctuations preferentially contribute to
a very large value of the average. This results are consistent with the
observations of section 3.3.1 and figure 3.15 concerning the structure
of extreme fluctuations of the average drag.

3.3.2.1 Extremes of a sequence of i.i.d. variables

In the previous paragraph, we stressed that the evolution of the
drag over time can be viewed as a temporal process with a very fast
decay of the correlations over time. Accordingly, a fluctuation of the
averaged drag FT, with T = 10τc, may be considered as the result of a
sequence of statistically independent fluctuations. Motivated by this
observation, we propose in this section a study of the typical extremes
for a finite sequence of independent, i.i.d. random variables.

3.3 fluctuations of the averaged drag 71

(a) PDF for the drag fluctuations f ′d

(b) Autocorrelation function of the the instantaneous drag fd

Figure 3.16: (a) PDF describing the statistics of the instantaneous drag fluc-
tuations f ′d = (fd − f̄d)/σ. This PDF has been estimated on
the basis of a timeseries spanning Ttot = 106τc. f̄d and σ de-
note the average and the standard deviation computed over
the whole timeseries, respectively. The linear fits highlight the
exponential behaviour of the the PDF for rare events. (b) Auto-
correlation function for the instantaneous drag fd, defined as
(E[fd(t + τ) fd(t)]− E[fd]

2)/σ2 and estimated from a timeseries
spanning Ttot = 106τc. This figure shows the exponential decay
of the correlations over time.

72 dynamics of extreme drag fluctuations

(a) Exponential decay of the correla-
tions

(b) Algebraic decay of the correlations

(c) Potentials V1(x) and V2(x)

Figure 3.17: Temporal correlations for two stochastic processes described
by (3.15) with a PDF P(x) ∼

x→∞
1/|x|5. The difference lies in

the choice for the potential term in (3.15). Figure 3.17b illus-
trates the autocorrelation function of x for V(x) ≡ V2(x) =
5 ln(x tanh(βx) + ϵ) ∼

|x|→∞
5 ln(|x|) with β = 100 and ϵ = 10−2.

Figure 3.17a illustrates the autocorrelation function for V(x) ≡
V1(x) = x2/2. One can see that the choice of the potential term
has a drastic impact on the range of the temporal correlations. In
the first case (figure 3.17b), correlation display an algebraic decay.
In the second (figure 3.17b), correlations decay exponentially.

3.3 fluctuations of the averaged drag 73

Let {Xn}1≤n≤N be a sequence of N independent realisations of a
R-valued random process described by a PDF P . Furthermore, let a be
the sum over the sequence:

a =
N

∑
n=1

Xn.

In the following we consider two limit cases:

1. The value of the average a/N results from a single extreme reali-
sation of the order of Xn ≈ a. The (N − 1) remaining realisations
take typical values.

2. The value of the average a/N results from all N realisations in
the sequence having roughly the value a/N.

As an illustration, case (1) models extremes such as the one pictured in
figure 3.15, in which the high value of the averaged drag results from
only two very large fluctuations. In contrast, case (2) is illustrated by
figure 3.15, in which the high value of the overall drag results from a
sequence of more typical fluctuations.

Let us denote by p1 the probability that an extreme value of the
average over the sequence {Xn}1≤n≤N results from case (1), and p2

the probability that it results instead from case (2). Assuming inde-
pendence of the realisations, one can check that:

p1(
N

∑
1

Xn = a) ≈ P
(a

N

)N
and p2(

N

∑
1

Xn = a) ≈ P(a) (3.11)

The ratio p1(a)/p2(a) thus describes the respective contribution of
both cases to the extreme value of the average over the sequence of
realisations. In the following we consider the case of three different
PDFs from which the sequence {Xn}1≤n≤N is drawn. We illustrate that,
in the limit of rare events, this ratio depends on the behaviour of the
tail of P .

gaussian PDF In this case we choose P(x) ∼
x→∞

Ce
x2
2 , with C a

prefactor independent of x. As a result,

p1

p2
∼

a→∞
Ce−

a2
2 (1− 1

N2) →
a→∞

0 (3.12)

Consider a sequence of N Gaussian distributed random variables
which overall average is a large value a/N. Equation (3.12) illustrates
that it is very likely that the large average results from all the realisa-
tions having roughly the same value close to a/N. By contrast, it is
very unlikely that the average is due to a single realisation having a
value close to a.

74 dynamics of extreme drag fluctuations

algebraic PDF In this case we chose P(x) ∼
x→∞

C/xα. As a result,

p2(a) ≈
(

Nα

aα

)N

∼
a→∞

CNNαa−Nα

The ratio can therefore be expressed as

p2

p1
∼

a→∞
CNNα × aα−Nα →

a→∞
0 (3.13)

Consider a sequence of N power law distributed random variables
which overall average is a large value a/N. Equation (3.13) illustrates
that it is very likely that the large average is due to a single realisation
having a value close to a. The other realisations take typical values
distributed around the average. By contrast, it is very unlikely that
the average results from all the realisations having roughly the same
value close to a/N.

exponential PDF In this case we chose P(x) ∼
x→∞

Ce−αx. As a
result,

p2

p1
∼

a→∞
C
(

e−α a
N

)N
e−αa = 1 (3.14)

This case is therefore marginal. Consider a sequence of N i.i.d. variables
distributed according to a PDF with an exponential tail. Say the average
over a realisation of the sequence is a large value a/N. This value of
the average can result from the realisation of a single variable having a
value close to a. Additionally, it can also result from all the realisations
having roughly the same value close to a/N. Equation (3.13) suggests
that these two scenarii are equally likely.

3.3.2.2 Illustration of extremes for 1D random dynamics with a fast decay
of the correlations

For a finite sequence of i.i.d. variables, we computed in the previous
section the probabilities that an unusually high average over the
realisations result from either a single very large fluctuation, or from
the succession of independent lower amplitude fluctuations. These
probabilities depend on the underlying PDF.

In this section we consider simple random processes for which
temporal correlations decay very rapidly over time. Recall that this
is the case of the temporal process defined by the evolution of the
drag over time. For this process, the autocorrelation function was
shown to decay exponentially as the lag increases. This is illustrated
in figure 3.16b. When a dynamical process displays a fast decay of
temporal correlations, a given realisation over several correlation times

3.3 fluctuations of the averaged drag 75

can therefore be interpreted as a sequence of independent realisations
over one correlation time.

Let x(t) be a R-valued random process defined by the following
stochastic differential equation:

ẋ =
dV
dx

+
√

2a(x)η(t) (3.15)

where the potential term V(x) describes the deterministic part of the
dynamics and η is a Gaussian white noise. Furthermore, the amplitude
of the stochastic part is allowed to vary with x through the term a(x).
The stationary distribution for equation (3.15) can be shown to be of
the form [ref1]

PS(x) ∝
1

a(x)
exp

(
−
∫ x

0

1
a(u)

dV
du

du
)

. (3.16)

The rate of decay of the temporal correlations of x is linked to the
potential V(x). As an example, consider the process defined by (3.15)
and:

V(x) ∼
|x|→∞

α ln(|x|) (3.17)

a(x) = 1 (3.18)

From equation (3.16), the corresponding stationary PDF in the limit of
rare events is algebraic, that is: P(x) ∼

|x|→∞
|x|−α. Figure 3.17b illus-

trates that the corresponding correlation function decays slowly over
time. This is connected to the logarithmic structure of the potential.

As a second example, let us now consider the process defined by
equation (3.15) and

V(x) =
x2

2
(3.19)

a(x) = (1 + x2)/α (3.20)

One can check from (3.16) that this choice also leads to an algebraic
PDF: P(x) ∼

|x|→∞
|x|−α. However, in contrast with the first example,

figure 3.17a shows that this process displays an exponential decay of
temporal correlations.

In the following, we numerically integrate (3.15) over long durations
in order to sample extreme fluctuations of the time-average of x. To
illustrate the results of section 3.3.2.1, we consider three cases :

gaussian PDF V(x) = x2/2 and a(x) = 1, leading to P(x) ∝ e−x2/2.

algebraic PDF V(x) = x2/2 and a(x) ∼
x→∞

x2/α, leading to

P(x) ∝
x→∞

1/|x|α

76 dynamics of extreme drag fluctuations

exponential PDF V(x) ∼
|x|→∞

|x|, leading to P(x) ∝
x→∞

e−α|x|

The corresponding autocorrelation functions all display an exponential
decay of the correlations.

Given a timeseries for the instantaneous process {x(t)}0≤t≤Ttot , we
are interested in extremes for the the time-averaged process defined
as

XT(t) =
∫ t

t−T
x(t)dt for T ≤ t ≤ Ttot (3.21)

In each case, the dynamics described by equation (3.15) has been com-
puted over Ttot = 106τc where τc denotes the correlation time of the
process estimated by the vanishing time of the autocorrelation func-
tion of the process. Following (3.21), the timeseries for the averaged
process has then been obtained by performing a moving average over
the timeseries for the instantaneous process {x(t)}0≤t≤Ttot .

Figure 3.18 illustrates extremes of the time-averaged process over
T = 10τc, for each of the three statistics. The averaging duration T was
set to mimic the averaging of the instantaneous drag in section 3.3.1. It
shows that extremes of the averaged process originate from different
behaviours, depending on the nature of the PDF for the underlying
process. In the case of the algebraic PDF, displayed in figure 3.18a,
the high value of the average results from a single, exceptionally
large fluctuation while the rest of the timeseries concentrates around
typical values. In contrast, for the Gaussian process displayed in
figure 3.18b, the extremely high value of the overall average results
from a large number of relatively typical positive fluctuations over
roughly a correlation time. Figure 3.18c illustrates that the exponential
PDF is a marginal case. Indeed, the large value of the average results
both from unusually large fluctuations of the instantaneous process
(around t = τc and t = 5τc) and a large number of independent positive
fluctuations of the order of 2σ.

Recall that the statistics of extreme positive fluctuations of the in-
stantaneous drag fd are well described by an exponential PDF, as
shown in figure 3.16a. Furthermore, the autocorrelation function
C(τ) = E[fd(t) fd(t + τ)]− E[fd]

2 was found to decay exponentially
as a function of the lag τ. As a consequence, the evolution of the drag
over time can be modelled by a stochastic process with short-range
temporal correlations, in which the perturbations from small-scale
turbulence fluctuations play the role of the noise.

In this context, the interpretation of figure 3.15 on page 69 is con-
sistent with the results from the analysis of the statistical properties
of the one-dimensional stochastic dynamics presented in this section.
Figure 3.15 illustrates that the temporal structure of the extreme fluc-

3.3 fluctuations of the averaged drag 77

(a) Power law process : one unique large fluctuation

(b) Gaussian process : long lasting excursions away from the average

(c) Exponential process : intermediate case

Figure 3.18: Sample timeseries related to extreme fluctuations of the time-
average of the process x(t) defined by (3.15) for three stochastic
dynamics: a process with a power law stationary PDF(3.18a),
a Gaussian process(3.18b) and a process with an exponential
PDF(3.18c). The averaging window has been set to T = 10τc. The
three timeseries displayed in this figure correspond to the highest
fluctuations in the averaged timeseries. This figure illustrates that
fluctuations for the averaged process originate from different
mechanisms depending on the stationary distribution of the
process. In all three cases, the average is 0 and materialised by a
red straight line.

78 dynamics of extreme drag fluctuations

tuations of the averaged drag could not easily be reduced to either
one of the two following configurations:

1. The extreme value of the average results from only a few number
of very large fluctuations, while the major part of the timeseries
concentrates around typical values. See for instance figure 3.15c.

2. The extreme value of the average results from a unusually large
number of independent positive fluctuations, relatively typical
with respect to case (1). See for instance figure 3.15a

As a matter of fact, in this section we showed that a process with
short-range temporal correlations for which rare events are described
by an exponential PDF is a marginal case. As a consequence, extreme
fluctuations of averaged drag do not preferentially originate from
either scenario (1) or (2).

3.4 going further : the need for rare event algorithms

Extreme fluctuations of the drag force, whether it is instantaneous
or time-averaged, correspond to events in which it departs from typ-
ical values to reach a given threshold of very high amplitude. The
characterisation of the mechanical processes that lead to such extreme
events is crucial for application. Indeed, it leads to a better under-
standing and/or control on the behaviour of systems immersed in
turbulent flows.

3.4.0.1 Summary of the main results

In this chapter, we investigated the dynamics of very rare fluctu-
ations of the drag acting on a square cylinder embedded in a two-
dimensional channel flow, in which upstream turbulence is generated
by a grid. We showed that extreme fluctuations of the instantaneous
drag are related to violent pressure drops occurring in the vicinity
of the base of the cylinder. By contrast, the upstream pressure does
not vary as much. Furthermore, the study of 100 events with a return
period larger than 104 correlation times suggested that extreme fluctu-
ations result from only two scenarii. The dominant scenario features
the interaction of two vortical structures that result in a strong concen-
tration of vorticity near the base of the obstacle. This scenario describes
the majority of the events, and in particular the most extreme.

In section 3.3, we illustrated the timeseries corresponding to very
high values of the time-averaged drag over 10 correlation times. It
suggested that such extreme values can result from two mechanisms.
On the one hand, the occurrence of a small number of extreme fluc-
tuations of the instantaneous drag, while the rest of the timeseries
displays typical, relatively small positive fluctuations. On the other
hand, a larger number of fluctuations of moderate amplitude which

3.4 going further : the need for rare event algorithms 79

sum eventually leads to a very high value of the averaged drag. In-
terestingly, these two scenarii have been found to play an equal role
in the sampled extremes. In section 3.3.2, we illustrated the relative
importance of these two scenarii for extreme values of the average of
three different one-dimensional stochastic processes. We showed that,
for a process with an exponential tail, the two scenarii are equally
likely.

3.4.0.2 Rare event algorithms

In this chapter, extreme events have been sampled by means of di-
rect sampling. That is, we simulated the flow over very long durations
in order to sample a significant number of events that we considered
as rare. We stress that this approach is made possible by the relative
simplicity of the flow, which allows us to compute very long timeseries
in a reasonable amount of time. Naturally, such a direct sampling is
impossible for more complex flows, such as three-dimensional flows
around complex geometries at very-high Reynolds numbers. Addition-
ally, the study presented in this chapter is limited. Indeed, to sample a
larger number of fluctuations, or rarer fluctuations, longer simulations
are required. For instance, to perform an analysis over 10 times more
events with similar amplitudes, the dynamics must be simulated over
a duration 10 times longer. The control simulations involved in this
study have been performed in a wallclock time of the order of the
week. Ten times longer timeseries therefore lead to a wallclock time of
several months. In addition, it would generate a tremendous amount
of data, most of which would be irrelevant to the study of extremes.

In this thesis we propose a novel route for the computational
study of extremes in turbulent flows. Instead of relying over very
long simulations, we consider the application of rare events algorithms,
originating from statistical physics. The objective of these algorithms
is to modify the statistics of the sampling in a controlled way, so as to
favour the occurrence of rare events. To this date, such algorithms have
been successfully applied to relatively simple dynamics, compared to
turbulent flows [21, 54, 158]. Their relevance for complex deterministic
dynamics, such as turbulent flows, remains unclear. This question is
addressed in the following chapters.

Part II

R A R E E V E N T S A L G O R I T H M S

The study of rare events by means of direct sampling, i.e.
very long simulations, is limited. Indeed, targeting events
with a specific probability, the dynamics must be simu-
lated on a duration that grows like the inverse square-root
of this probability. For turbulent flows, which numerical
simulation often require important computing time, such
direct approach is simply unfeasible. In the subsequent
chapters we assess the applicability and efficiency of two
different rare events algorithms for rare event sampling in
turbulent flows. The underlying idea of these algorithms
is to modify the sampling of trajectory space by following
an ensemble of weighted copies of the dynamics. Even
though such techniques have been successfully applied
to rather simplified stochastic dynamics, it is not clear if
they are useful for complex deterministic systems, such as
turbulent flows.

4
T H E G I A R D I N A – K U R C H A N – TA I L L E U R – L E C O M T E
A L G O R I T H M

The previous chapter illustrated the study of extremes drag events,
on the basis of a very long numerical simulation of test flow (2). This
could only be achieved thanks to the relative simplicity of the flow,
allowing for the integration of the dynamics over a long duration.
However, such an approach is hopeless for more complex flows in an
industrial or environmental context, such as high Reynolds flows past
cars or wind turbines. Indeed, such long simulation would require
tremendous computational resources and computation time, if even
technically feasible. In such cases, performing highly-resolved sim-
ulation of the flow over a few turnover times is already a challenge
in itself. How to optimise computational effort to capture dynamical
events with a return time much larger than the typical timescale of
the flow ?

This chapter introduces the GKTL algorithm, a rare event algorithm
designed to compute large deviation rate functions by means of im-
portance sampling. Roughly speaking, the GKTL algorithm allows for a
biased sampling of trajectories, selecting preferentially rare trajecto-
ries considered as more important. Eventually, it results in sampling
flow trajectories according to a biased probability measure, for which
typical events are rare events with respect to the original dynamical
measure of the flow. In contrast, directly simulating the flow over long
durations amounts to unbiased sampling, often referred to as direct
sampling or direct simulation.

In section 4.1.1, we give a brief introduction to importance sampling,
a general statistical method at the basis of the GKTL algorithm. Then,
section 4.1.2 describes the algorithm itself, as well as how importance
sampling is effectively achieved in order to sample rare trajectories.
The relation between the GKTL algorithm and large deviation theory
is highlighted in section 4.1.3. As an illustration, the GKTL algorithm
is applied on the OU process in section 4.1.4. In section 4.2, we specifi-
cally discuss the implementation of the GKTL algorithm for turbulent
dynamics.

4.1 the GKTL algorithm

Over the past few decades, there has been an intense renewal of
interest in large deviation theory. Indeed, it offers an insightful and pow-

83

84 the gktl algorithm

erful description of both equilibrium and non-equilibrium statistical
physics [165]. Accordingly, important research effort has been made
towards the development of computational tools capable of computing
large deviation rate functions, that are analogous to free energies in non-
equilibrium systems. Such quantity encodes the statistical properties
of the fluctuations, including rare events.

Among these numerical methods is the cloning algorithm [57, 59,
103], introduced in 2006 by Giardina, Kurchan and Peliti [59] to com-
pute large deviations of time averaged quantities in discrete Markov
processes. A year later, similar ideas were applied to the simulation of
trajectories of atypical chaoticity in nonlinear deterministic systems,
such as the Fermi-Pasta-Ulam-Tsinguou chain [158]. Note that the
algorithmic procedure is actually rooted in older ideas, introduced
in Diffusion Monte Carlo [89] and Go with the Winners algorithms [68,
167].

The algorithms rely on the parallel evolution of an ensemble of
independent copies of the system. At a fixed period τ, copies are either
discarded from the ensemble or duplicated, at a rate that depends on
their history over the period. In this way, the population is dynamically
enriched with copies exhibiting large fluctuations of a given observable
of the dynamics. This leads to importance sampling in trajectory space,
i.e. the generation of an ensemble of trajectories in phase space that
is drawn for a biased path measure that favours the rare events of
interest. The cloning algorithm has been given different names in the
literature: the Giardina–Kurchan–Tailleur–Lecomte (GKTL) algorithm,
the cloning algorithm or simply the Diffusion Monte Carlo algorithm.
In the following, it is referred to as the GKTL algorithm. Note that a
very similar method is the Del-Moral-Garnier algorithm [118].

Because it works directly in trajectory space, the GKTL algorithm
does not rely on the a priori knowledge of the stationary distribution.
It is therefore directly applicable to non-equilibrium dynamics. The
GKTL outputs an ensemble of trajectories of the dynamical system
that are associated to large fluctuations of a time-averaged observable
of interest. In addition, a statistical weight is attributed to each sam-
pled trajectory, allowing for the computation of expectation values
according to the unbiased probability.

In the following section we give a brief introduction to the concept
of importance sampling, at the basis of the GKTL algorithm.

4.1 the GKTL algorithm 85

4.1.1 Importance Sampling

Importance sampling [22, 163] is a general strategy for reducing
the variance of statistical estimators:

E[f]ρ =
∫

dX f (X)ρ(X) ≈ 1
N

N

∑
n=1

f (Xn). (4.1)

Where f denotes the value of an observable. The expectation value
of f with respect to ρ, i.e. Eρ[f], is estimated on the basis of a sample
mean over a set {Xn}1≤n≤N of independent realisations drawn from
ρ. This follows from the law of large numbers. For a fixed N, the
statistical error affecting the sample mean in (4.1) can be reduced by
sampling realisations from a different PDF, which we denote by ρ̃. This
probability distribution is chosen so that it is centred on realisations
that contribute the most the average in (4.1).

The very general idea of importance sampling appears in numerous
fields. An example is the numerical estimation of thermal averages in
equilibrium systems, such as

⟨O⟩β =

∫
dre−βU(r)O(r)∫

dre−βU(r)
=
∫

drP (G)
β (r)O(r), (4.2)

where P (G)
β denotes the Gibbs measure associated to the inverse tem-

perature β = 1/kbT . The integrals runs over a space of states denoted
by r. The weight of these states depends on the temperature of the sys-
tem and are given by the Boltzmann factor e−βU(r) where U(r) is the
energy of the system in state r. In order to compute the average (4.2),
one could think of generating states r uniformly and accept or reject
them with a probability proportional to P (G)

β . This direct sampling
approach is however unpractical. Indeed, in practice the state space
contains an extremely large number of states, and only a small subset
actually contributes to the average in (4.2). As a result, virtually all
proposed states would end up rejected, resulting in a very inefficient
sampling. Instead, a common approach to the computation of thermal
averages is Markov Chain Monte Carlo (MCMC) sampling. In this
approach a sequence of correlated realisations is constructed, which
stationary distribution is P (G)

β . This process is commonly referred
to as importance sampling in the statistical physics community. The
most famous MCMC sampling algorithm is the Metropolis-Hastings
algorithm [34, 122].

In the context of rare event sampling, the tails of a distribution
ρ can be efficiently sampled using a biased distribution ρ̃ for which
rare events of ρ are typical. In the following we describe importance
sampling in the context of rare event sampling. We first motivate the
method by illustrating the inefficiency of a direct approach in which

86 the gktl algorithm

X

Figure 4.1: Illustration of importance sampling. Sampling of rare events in
the set A coloured in red is made efficient by sampling a biased
distribution ρ̃, for which such events are typical.

realisations are drawn from the original PDF ρ. We then discuss the
variance reduction resulting from the sampling from an alternative
distribution. In particular, we show that there exist an optimal choice
of this distribution for which zero variance is achieved.

4.1.1.1 Importance sampling for rare events

Let X be a realisation of a random process described by the probability
density ρ. Furthermore, let A be a region in the tails of ρ, such that
pA = P(X ∈ A) ≪ 1. In the following we address the numerical
computation of the probability that a realisation falls into the region
A:

pA = Eρ[1A] =
∫

dXρ(X)1A(X), (4.3)

with 1A = 1 if X ∈ A and 1A = 0 otherwise. A most straightforward
way of computing such probability is to draw an ensemble of inde-
pendent realisations {Xn}1≤n≤N and to count how many fall into the
region A. This results in a direct estimator of (4.3), analog to (4.1):

p̂A =
1
N

N

∑
n=1

1A(Xn). (4.4)

Denoting the standard deviation of p̂A by σ(p̂A), the relative error on
the estimate is given by err(p̂A) = σ(p̂A)/ p̂A. For small probabilities
pA, the relative error reads

err(p̂A) ≈
1√
pAN

, (4.5)

with N the number of independent realisations. In order to maintain
the relative error constant as pA becomes smaller and smaller, the

4.1 the GKTL algorithm 87

sample size must then grow as 1/pA. Direct sampling of rare events
thus involves tremendous computational effort and is prohibitive for
computationally demanding dynamics such as turbulent flows.

Importance sampling instead consists in drawing realisations from
a different PDF ρ̃, and to rewrite (4.3) as

pA =
∫

dXρ̃(X)
ρ(X)

ρ̃(x)
1A(X) = Ẽ[L(X)1A(X)], (4.6)

where Ẽ[·] denotes the expectation value with respect to ρ̃ and L(X) =

ρ(X)/ρ̃(X). The corresponding importance sampling estimator for pA is

p̃A =
1
N

N

∑
n=1

L(X̃n)1A(X̃n). (4.7)

where the {X̃n}1≤n≤N are drawn from ρ̃. One can check that p̃A
is also an unbiased estimator of pA, i.e. Ẽ[p̃A] = E[p̂A]. Why bother
introducing ρ̃ ? This can be understood by considering the variance of
p̃A:

σ2(p̃A) =
Ẽ[L2(X)1A(X)]− Ẽ2[L(X)1A(X)]

N

=
1
N

(∫
dXρ(X)L(X)1A(X)− p2

A

)
.

(4.8)

One can see that, choosing L(X) = L(opt)(X) = pA1A(X), the variance
vanishes. This amounts to choose ρ̃(X) = ρ(X)

pA
1A(X), a PDF in which

all the mass is located in the region A. Naturally, such a ratio L(opt)(X)

cannot be chosen in practice, as it is based on the quantity one wants
to compute, i.e. pA. The underlying idea of importance sampling is
that significant variance reduction can still be achieved by choosing
ρ̃ so that L is close to L(opt). In other words, this means choosing L
so that the rare events of interest are typical for ρ̃, thus significantly
reducing statistical errors.

In the remaining of this section we explain how importance sam-
pling can be achieved at the level of the trajectories of a dynamical
system, such as a turbulent flow. The choice of the biased measure
relies on an exponential change of measure, which is motivated by large
deviation theory related to the asymptotics for the probability of a
large-time averaged observable of the dynamics.

4.1.1.2 Importance sampling extremes of dynamical observables

For dynamical systems, importance sampling must be implemented
at the level of trajectories. A trajectory {X(t)}0≤t≤Ta refers to a dynam-
ical solution of the numerical model over a time-interval [0; Ta]. Let o

88 the gktl algorithm

be an observable over the trajectories and OTa its time-integral over a
duration Ta

OTa [{X(t)}0≤t≤Ta] =
∫ Ta

0
o[X(t)]dt.

The GKTL algorithm is a procedure to sample trajectories according to
an importance ratio Lk[{X(t)}0≤t≤Ta], that gives a heavier weight to
trajectories having a higher value of OTa .

More precisely, let P0 ({X(t)}0≤t≤Ta = {x(t)}0≤t≤Ta) denote the sta-
tionary path measure of the system. It is the probability density that a
trajectory {X(t)}0≤t≤Ta corresponds to a given trajectory {x(t)}0≤t≤Ta .
For the sake of convenience, in the following we write P0 ({x(t)}0≤t≤Ta)
as a shorthand notation for P0 ({X(t)}0≤t≤Ta = {x(t)}0≤t≤Ta). The
GKTL algorithm samples trajectories according to [120, 130]

Pk ({x(t)}0≤t≤Ta) =
exp

(
k
∫ Ta

0 o[x(t)]dt
)

EP0

[
exp

(
k
∫ Ta

0 o[x(t)]dt
)]

Lk [{X(t)}0≤t≤Ta]

P0 ({x(t)}0≤t≤Ta)

(4.9)

where EP0 [.] denotes the ensemble average with respect to the path
measure P0. The distribution Pk is thus analogous to the biased dis-
tribution ρ̃ featured in figure 4.1, and P0 to ρ. The importance ratio
Lk[{X(t)}0≤t≤Ta] depends on a free parameter k, that rules how much
weight is given to trajectories having larger values of OTa . The form of
the importance ratio originates from the large deviation behaviour of
the probability for the averaged observable 1

Ta

∫ Ta
0 o[x(t)]dt, in the limit

of large Ta. The link between the GKTL algorithm and large deviation
theory is highlighted in section 4.1.3.

4.1.2 The GKTL algorithm

This section describes the algorithm that results in the sampling of
trajectories according to the biased measure Pk, defined in (4.9). The
algorithm relies on the simulation of an ensemble of copies in parallel,
from an initial time t = 0 to a final time t = Ta. For a turbulent flow,
this means carrying out an ensemble of simulations, starting on inde-
pendent initial conditions. Along their evolution in time, copies are
either cloned or discarded from the ensemble with a period τ < Ta,
according to their history. More precisely, trajectories are selected ac-
cording to the value the time average of a given observable o. In out
application, o will be the instantaneous drag acting on an obstacle im-
mersed in a turbulent flow. The algorithm thus consists in M = Ta/τ

consecutive stages, each one consisting of the independent evolution
of the copies from nτ to (n + 1)τ, followed by a selection procedure.

4.1 the GKTL algorithm 89

The algorithm is designed so that, at a time tn = nτ, a copy j is given
a weight

Wj =
exp

(
k
∫ (n+1)τ

nτ oj[x(t)]dt
)

1
Nc

∑Nc
l=1 exp

(
k
∫ (n+1)τ

nτ ol [x(t)]dt
) (4.10)

As a result, in average, copy j is replaced by Wj clones1. It will be
checked further that this amounts to sample trajectories of duration
Ta according to the biased measure Pk, see equation (4.9).

4.1.2.1 Description of the algorithm

Let there be Nc copies of a dynamical system of interest. The
corresponding trajectories over the interval [0; Ta] are denoted by
{x(j)(t)}0≤t≤Ta . Additionally, let us partition the interval [0; Ta] into
sub-intervals of length τ. The GKTL algorithm can be outlined as
follows :

• Initialisation : x(j)(t = 0) = x(j)
0 , 1 ≤ j ≤ Nc

• FOR n from 1 to M = Ta
τ

– FOR j from 1 to Nc

∗ Compute dynamics from t = nτ to t = (n + 1)τ for
clone j

∗ Give clone j a weight wj = exp
(

k
∫ (n+1)τ

nτ o[x(j)(t)]dt
)

– Compute the sum of the weights over the j copies :

Zn =
1

Nc

Nc

∑
j=1

exp
(

k
∫ (n+1)τ

nτ
o[x(j)(t)]dt

)

– FOR j from 1 to Nc, copy j is replicated into mj clones with

mj = E[
wj

Zn
+ ϵ]

where E[·] represent the integer part and ϵ is a random
number drawn uniformly in [0; 1[. If mj = 0, the copy is
discarded.

The procedure described above leads to effectively sampling trajec-
tories according to the biased measure P (k). Indeed, the selection stage
acts like a bias that modifies the probability of observing a trajectory
in the ensemble.

1 The precision in average is required because Wj is not necessarily an integer. See the
full description of the algorithm further down.

90 the gktl algorithm

To illustrate this, let us compute the probability of observing a given
trajectory {x(t)}0≤t≤τ in the ensemble after the first selection stage, at
time t = τ. It can be done by considering how the selection modifies
the original probability P0. In the limit of large Nc,

Z1 =
1

Nc

Nc

∑
j=1

ek
∫ τ

0 o[x(j)(t)]dt ∼
Nc→∞

EP0

[
ek
∫ τ

0 o[X(j)(t)]dt
]

, (4.11)

where the empirical average over the Nc independent and identically
distributed random variables {ek

∫ τ
0 o(X(j)(t))dt}1≤j≤Nc approximates the

expectation value. Using the definition of the weights (4.10), one finds

P (1)
k ({x(t)}0≤t≤τ) ∼

Nc→∞

ek
∫ τ

0 o[x(t)]dt

E
[
ek
∫ τ

0 o[x(t)]dt
]
P0

P0 ({x(t)}0≤t≤τ) (4.12)

The procedure is then iterated over the second evolution and selection
stage, and Pk thus becomes

P (2)
k ({x(t)}0≤t≤2τ) ∼

Nc→∞

ek
∫ 2τ

0 o[x(t)]dt

E
[
ek
∫ τ

0 o[X(t)]dt
]
P0

E
[
ek
∫ 2τ

τ o[x(t)]dt
]
P (1)

k

P0 ({x(t)}0≤t≤2τ) (4.13)

Furthermore, one can see that from (4.13):

E
[
ek
∫ τ

0 o[x(t)]dt
]
P0

E
[
ek
∫ 2τ

τ o[x(t)]dt
]
P (1)

k

= E
[
ek
∫ 2τ

0 o[x(t)]dt
]
P0

. (4.14)

Equation (4.9) then follows by induction, in the limit Nc → ∞.
At this point, an important subtlety must be stressed. Relation (4.11)

holds true after the first selection stage, if the Nc trajectories start on
independent initial conditions. However, in general, trajectories in the
ensemble are not mutually independent and the law of large numbers
does not apply. Still, it can be shown [117] that (4.11) holds true for
subsequent iterations. This has been assessed for a whole family of
genealogical algorithms, including this one. An additional result is
that the typical relative error entailed by this approximation is of order
of 1/

√
Nc.

4.1.3 The GKTL algorithm to compute large deviation rate functions

The cloning algorithm was first designed to compute large devi-
ations rate functions numerically. In the limit of large observation
times, the tail statistics of additive observables can be described by
large deviation theory. The central object of large deviation theory is

4.1 the GKTL algorithm 91

the large deviation rate function, which describes the rate of decay
of the probability as fluctuations from the typical value gets more
and more rare. Let OT be an observable defined as a time-integral as
such OT =

∫ T
0 o(t)dt. It can be shown that the probability distribution

verifies a large deviation principle, that is:

P
(

1
T

∫ T

0
o(t)dt = a

)
≍

T→∞
e−TI(a) (4.15)

where the symbol fT ≍
T→∞

gT denotes logarithmic equivalence as T

goes to infinity: ln(fT) ∼
T→∞

ln(gT). The large deviation principle can

be interpreted as the distribution of OT/T getting more peaked as T
grows, and asymptotically described by a unique rate function I(a).
See chapter 1 for a brief introduction to large deviation theory.

As a matter of fact, the GKTL algorithm does not directly compute
the rate function. Instead, it yields its Legendre transform, which
corresponds to the SCGF for the observable OT. The SCGF is a useful
object when working with large deviations. It is discussed in the next
section.

4.1.3.1 The Gartner-Ellis theorem

When working with a probability distribution, say P(x), it often
proves useful to introduce the cumulant generating function defined as
ln E[ekx]. In view of (4.15), large deviation theory makes extensive use
of the scaled cumulant generating function defined as

λ(k) = lim
T→∞

1
T

ln E[eTkx]. (4.16)

This definition can be written as

E[eTkx] ≍
T→∞

eTλ(k).

Therefore, the large deviation principle (4.15) leads to∫
eT(ka−I(a))da ≍

T→∞
eTλ(k).

In the limit T → ∞, a saddle point approximation writes

λ(k) = sup
a
[ka − I(a)]. (4.17)

The scaled cumulant generating function is often easier to compute
than the rate function. For instance in equilibrium statistical physics,
numerous methods are available to compute free energies, which
corresponds to the cumulant generating function of minus the entropy.
An important theoretical question is then to determine under which
hypothesis relation (4.17) can be inverted.

92 the gktl algorithm

The Gärtner-Ellis theorem states that, if λ is differentiable on R, then
the rate function I exists and is the Legendre transform of λ :

I(a) = sup
k
[ka − λ(k)|k ∈ R] (4.18)

Therefore, a common strategy to compute rate function is to first
compute the SCGF, and deduce the rate function from (4.18). To that
end, the GKTL algorithm yields the SCGF.

4.1.3.2 The SCGF from the GKTL algorithm

Looking back at the definition of the biased measure P (k)(4.9), one
notices that the denominator of the importance ratio can be linked
to the SCGF λ(k). It can be seen from equations (4.13) and (4.14) that
it corresponds to the product of the normalisation factors for each
selection/mutation procedure, defined in relation (4.11)

Z(k, T) = Z1Z2...Zn−1Zn ∼
Nc→∞

E
[
ek
∫ Ta

0 o[X(t)]dt
]
P0

∼
Ta→∞

eTλ(k). (4.19)

The SCGF can thus be computed from the normalizers Zn as

λ(k) ≈ 1
T

ln
N

∏
n=1

Zn, (4.20)

in the limit of large number of copies Nc and integration time Ta.

Results from convexity analysis yield that if λ is differentiable, e.g.
the Gärtner-Ellis theorem applies, then the rate function is convex.
Equation (4.18) then translates into

I(a) = k(a)a − λ(k(a)), whith k(a) defined by λ′(k(a))− a = 0,

(4.21)

which can be used to compute the rate function.
In the limit T → ∞, one can show from (4.16) that the expectation

value of the time-average OT/T with respect to the biased distribution
Pk ∝ ekOTP0 verifies

E[OT/T]Pk →
T→∞

λ′(k). (4.22)

4.1.4 Illustration on the Ornstein–Ulhenbeck process

As an illustration of the GKTL algorithm, we now present its appli-
cation to a simple one-dimensional stochastic process for which the
large deviation rate function and corresponding SCGF can be derived

4.1 the GKTL algorithm 93

analytically. In the following we consider an OU process x(t) defined
by the following stochastic differential equation:

ẋ(t) = −x(t) +
√

2η(t), (4.23)

where η is a Gaussian white noise. In this case the autocorrelation
function is

C(τ) =
E[x(t)x(t + τ)]

σ2 = e−τ, (4.24)

where σ2 = E[x2]. Note that E[x] = 0. We now write the rate function
explicitly. Let us consider the time-averaged process XT defined as

XT(t) =
1
T

∫ t+T

t
x(t)dt. (4.25)

The PDF for XT can be shown to be Gaussian with mean µ = 0 and
standard deviation σT. Furthermore, one can show that, in the limit of
large integration times:

σ2
T ∼

T→∞

2
T

(4.26)

As a result, the PDF of XT writes:

lim
T→∞

P(XT = a) =

√
T

4π
exp

(
−T

a2

4

)
(4.27)

The rate function I(a) describing the decay of the probability for the
fluctuations of XT in the limit of large T is thus:

I(a) =
a2

4
(4.28)

and the corresponding SCGF is given by (4.17):

λ(k) = sup
a
[ka − I(a)] = k2 (4.29)

In order to illustrate the GKTL algorithm, we first compute λ(k)
from a direct sampling approach. More precisely, we generate a very
long timeseries {x(t)}0≤t≤Ttot by simulating the process (4.23) over
Ttot = 106. An estimate of λ(k) is then computed on the basis of this
timeseries. The estimation of a SCGF from a timeseries is discussed in
chapter 5. We refer to this estimate as the direct estimate. this estimate
can only accurately estimate λ(k) on a finite range k ∈ [kmin; kmax].
Indeed, for values k > kmax, or equivalently k < kmin, the fluctuations
having a major contribution in the average in (4.16) are too rare to
be sampled in statistically significant numbers. We now compute

94 the gktl algorithm

Figure 4.2: Estimation of the Scaled Cumulant Generating Function (SCGF)
from a direct estimation and from the GKTL algorithm. A first
estimate is computed from a timeseries {x(t)}0≤t≤Ttot with Ttot =

104 (continuous line). The blue stars represent the result (4.20) of
1000 independent runs of the GKTL algorithm for various values of
k. Each run ha a computational cost of 104. This figure illustrate
that the GKTL algorithm is capable of computing the SCGF for
values of k, unreachable from a direct sampling approach, for a
fixed computational cost. The rate function I(a) can be deduced
from the estimate of the SCGF using (4.21)

an estimate of λ with the GKTL algorithm. We use Nc = 256 copies.
The total length of the trajectories is set to Ta = 40, and the cloning
period is set to τ = 1. As a result, the evolution/cloning sequence
is repeated M = 40 times. We define the computational cost of this
experiment as the total time over the process (4.23) has been simulated:
Nc × Ta ≈ 104. Importantly, it corresponds to the computational cost
of the direct estimate: Ttot = 104.

Figure 4.2 shows that, for a similar computational cost, the GKTL algo-
rithm provides a far better estimate of the rate function. For values in
the vicinity of k = 0, both the direct estimation and the GKTL algorithm
provide reliable estimates. In this region, roughly −0.002 ≤ k ≤ 0.002,
typical fluctuations largely contribute to the average in (4.16). For
values further away from k = 0 however, the direct estimate is unable
to yield an accurate estimate, as too few fluctuations are sampled. By
contrast, the GKTL algorithm biases the sampling of these fluctuations
through the cloning mechanism, and therefore provides a much better
estimate. The GKTL algorithms preferentially selects copies that display
short-lived fluctuations over the cloning period τ. As a results, it sam-
ples trajectories for which the succession of short lived fluctuations
over τ results in a long-lived fluctuation over Ta = Mτ. to illustrate
this, we consider the time-averaged process XT defined in (4.25) with
T = 40, a value large enough so that the large deviation limit T → ∞
can be considered valid.

4.1 the GKTL algorithm 95

Figure 4.3: Average value of the moving average XT over the Nc = 256
trajectories sampled by the GKTL algorithm for three different
values of the bias k. The value of the averaging window is set
to T = 40, a value large enough so that the large deviation
limit T → ∞ can be considered valid. As a matter of fact, the
consistency of this approximation is verified by the typical values
of XT along the trajectories, which verifies equation (4.22). The
duration of the trajectories sampled by the algorithm is Ta = 280.

Figure 4.3 displays the average of XT along the trajectories sampled
by the GKTL algorithm with Ta = 280. The average is computed as an
empirical mean over the Nc trajectories:

E[XT]Pk(t) ≈
1

Nc

Nc

∑
j=1

X(j)
T (t)dt t ∈ [T; Ta] (4.30)

Where X(j)
T (t) denotes the moving average over a duration T computed

over the trajectory {x(j)(t)}0≤t≤Ta for copy j, defined over [T; Ta]. The
subscript Pk denotes the ensemble average with respect to the biased
measure Pk, see equation (4.9) for a definition of Pk. Figure 4.3 illus-
trates the property (4.22). Indeed, in the large time limit, the average
value with respect to Pk is λ′(k). In this example, it follows from (4.29)
that λ′(k) = k.

4.1.5 Can the GKTL algorithm provide similar results for turbulent flows ?

The GKTL algorithm achieves importance sampling at the level of
trajectories in dynamical systems. Trajectories are sampled according
to the biased measure Pk (4.9), instead of the stationary measure P0.
In this way, trajectories corresponding to long-lived fluctuations of
the observable of interest are sampled with a higher probability. Fur-
thermore, the importance ratio Pk/P0 is computed by the algorithm.
Indeed, the GKTL algorithm yields the SCGF, from which statistics with
respect to P0 can be computed over a set of trajectories sampled from
the biased measure Pk. Finally, the knowledge of the SCGF in the vicin-
ity of a given value k = k⋆ allows for the computation of the rate

96 the gktl algorithm

function I(a⋆), with a⋆ = λ′(k⋆). It describes the decay of the proba-
bility of rare fluctuations of the averaged observable of amplitude a⋆,
as the average duration is increased, in the large-duration limit. The
rate function can then be used to recover the PDF through the large
deviation principle (4.15).

We stress here that the dynamics are not modified, as importance
sampling is only achieved through the selection procedure. This makes
the GKTL algorithm very general, as it is independent of the underlying
dynamics. More specifically, there are a priori no restrictions to the
application of the algorithm to turbulent dynamics. In the following
section, as well as in chapter 5, we assess the practicality and efficiency
of the GKTL algorithm for rare event sampling in turbulent flows.
The study is based on test flow (2), presented in chapter 2. It is
motivated by the fact that rare events in most turbulent flows are
not accessible through a direct sampling approach, because of the
large computational effort required to compute the dynamics. The
GKTL algorithm therefore appears like a promising tool to perform
computational studies of extreme events, simulating the dynamics of
the flow over durations that are accessible to numerical simulations. In
the following section, we discuss several practical and general aspects
of the application of the GKTL algorithm to turbulence. To begin with,
we explain that randomness must be artificially introduced in the
dynamics of the copies and discuss several solutions. In a second part,
we describe several implementation strategies, with a focus on parallel
computing. The actual application of the GKTL algorithm to the test
flows is presented in chapter 5. Several experiments are described and
the corresponding results are analysed and discussed.

4.2 application of the GKTL algorithm to a turbulent

flow

The previous section described the GKTL algorithm in its general
form, unregarding of implementation issues. In spite of the relative
simplicity of the algorithm, its implementation for complex, determin-
istic dynamics deserves discussion.

The randomness of turbulent dynamics results from the strong
variations of the macroscopic quantities describing the flow, as well
as extreme sensibility to initial conditions. However, turbulent flows
are described by the Navier-Stokes equations, which corresponding
dynamics is deterministic. The deterministic nature of the dynamics is
a hindrance to the application of rare events algorithms. For instance,
in the GKTL algorithm, this entails that descendants of a given copy
created at time nτ will follow the exact same path from nτ to (n + 1)τ,
resulting in a poor sampling of trajectory space.

4.2 application of the GKTL algorithm to a turbulent flow 97

A workaround is to introduce small perturbations in the dynamics,
exploiting the sensibility to initial conditions in order to separate
trajectories. Naturally, this breaks one of the key feature of the GKTL

algorithm: the fact that only statistics, and not dynamics, are modified.
However, for highly chaotic systems for which sensibility to initial
conditions is extreme, the amplitude of the perturbation can be chosen
small enough so that it does not impact the statistics of the dynamics.
Still, the perturbation will cause trajectories to separate over a finite
time TL, related to the Lyapunov time of the dynamics. This duration
can be thought of as the time it takes for two trajectories starting on
very close initial conditions to decorrelate. These aspects are illustrated
and discussed in section 4.2.1.

The number of spatial mesh points needed to fully resolve a tur-
bulent flow can be expected to grow as a power of the Reynolds
number [51]. In practice, this implies that saving a state of the flow
at a given time in memory comes at an important storage cost. The
GKTL algorithm is based on the parallel simulation of a great num-
ber of flows, which means that at a given time, not only one state
must be stored in memory, but Nc states. Being intrinsically parallel,
the GKTL algorithm benefits from modern computer architectures. In
particular, on computer clusters, the copies can be distributed across
several computing nodes. Not only it allows for faster simulation—in
terms of wallclock time)—but it also mitigates the memory load on
one single node. However, the cloning stage entails communications
between the nodes, involving transfers of a large amount of data from
one to another. In section 4.3, we discuss the parallel implementa-
tion of the GKTL algorithm. In addition, the question of the impact of
the communications on the overall performance of the algorithm is
addressed.

4.2.1 Perturbation of the trajectories

For clones of a copy to separate over time, randomness must be
introduced at the level of the dynamics. It can be achieved using a
perturbation acting all along the dynamics, that is, adding a random
component to the dynamics varying at each timestep of the numerical
model. For instance, the inlet velocity in test flow (2) could be affected
by a Brownian perturbation at all times. An alternative is to introduce
an instantaneous perturbations after the cloning stage, perturbing the
restart states of descendant clones.

The two options have been used in different previous works, see for
instance [158] and [177]. On the one hand, adding a constant small
noise to the dynamics provides a clearer theoretical framework. In-
deed, the effect of noise can be studied considering the corresponding
stochastic differential equation in the weak noise limit. Note that the

98 the gktl algorithm

noise can also model an external perturbation with a physical reality,
for instance a fluctuating upstream volumetric flow rate. However
this approach results in a modification of the dynamics itself, and
not only the initial conditions of the clones. In practice this can lead
to difficulties, for instance if the dynamics is computed through ex-
ternal software which code cannot be modified to implement such a
perturbation. In the second approach, the effect of the instantaneous
perturbation introduced following the cloning stage is harder to anal-
yse. However, we do not conduct a precise analysis of the effect of the
perturbation in this work. As a result, we opt for the latter approach.

The state of the flow at time t is characterised by the pressure2 field
ρ(x) and velocity field u(x). A natural way of perturbing such a state is
to introduce a perturbation velocity field δu(x) and its corresponding
density field δρ(x). Let us give an example: say copy j is cloned twice,
yielding j1 and j2, following the cloning stage at iteration n. For the
dynamics of j1 and j2 to separate over time, the state of one of the
two clones, say j2, is perturbed. More precisely, the initial state for
iteration n + 1 for copy j2 becomes Xj2(t = nτ) = (uj + δu, pj + δp).
Because the flow is turbulent, the perturbation is expected to result
in an exponential divergence of the trajectories of j1 and j2 over time.
More precisely, the trajectories for j1 and j2 are expected to decorrelate
over a timescale τL like

||u1(t)− u2(t)|| ∼ ||δu||et/τL (4.31)

where

||u||(t) =
(∫

|u(x, t)|2dx
)1/2

with |u(x, t)| =
√

u2
x + u2

y

The case of the Lattice Boltzmann Method is somewhat special.
Indeed, it differs from conventional CFD methods as it does not di-
rectly compute the dynamics of the macroscopic fields such as the
velocity or pressure. Instead, it computes the dynamics of an ensem-
ble of mesoscopic degrees of freedom—referred to as populations in
section 2.1—from which macroscopic observables can be computed by
simple averaging over the mesoscopic populations sitting on a given
computational node. However, populations are not easily deduced
from a given macroscopic state, for instance prescribed values for the
initial velocity and pressure (u0, p0) [152]. For incompressible flows, a
common practice is to initialise the populations at equilibrium:

fi(x, t = 0) = f eq(ρ0, u0(x)), (4.32)

2 Within the LBM context, it is often more convenient to work with the density ρ. Recall
that, following the weak compressibility approximation, the density is proportianal
to the pressure through the ideal gas state equation p = csρ. See appendix B for a
description of the LBM.

4.2 application of the GKTL algorithm to a turbulent flow 99

with ρ0 a uniform density field. However, the resulting pressure field
is not consistent with the Navier-Stokes equations as it does not solves
the Poisson equation corresponding to the initial velocity field u0 [110].
Furthermore, discarding the non-equilibrium part of the populations
makes the initial populations inconsistent with derivatives of the
velocity field, and especially strain rate tensors. As a consequence,
the simulation suffers from initial layers [24]. Therefore, a common
practice is to first simulate the flow over a transient regime, following
initialisation, before any measurements are performed.

The issue of the initialisation of the LBM has been addressed in
several works, following two different routes. The first approach is to
solve the Poisson equation directly, and then approximate the non equi-
librium part of the populations using a regularisation procedure [99,
152]. A more recent approach consists in an iterative scheme that both
solves the Poisson equation and provides the initial values for the
non-equilibrium populations [110]. This method was then enhanced
in subsequent works [24, 83].

In the context of the GKTL algorithm, populations must be initialised
on the perturbed macroscopic state (u + δu, ρ + δρ) at each iteration.
In order to avoid the resolution of the Poisson equation for each clone,
after each cloning stage, two alternative perturbation methods were
explored:

1. A spatio-temporal perturbation of the forcing field over a short
period of time following the initial condition.

2. The addition of a random perturbation on the restart state itself,
however acting at the level of the mesoscopic Lattice Boltzmann
populations, instead of the velocity and pressure fields.

4.2.1.1 Perturbation of the forcing field

If a perturbation cannot be applied directly on the state of the flow,
one can act on its external parameters, such as the forcing field for
test flow (1) or the inlet velocity for test flow (2). See chapter 2 for
a presentation of test flow (1) and test flow (2). To illustrate this, we
focus on test flow (1), in which a perturbation is added to the external
forcing driving the flow downstream. In this context, the constant and
homogeneous forcing field F0ex is replaced by

F(x) = F0 × (1 + ϵη(x, t))ex with η(x, t) = ηx(x)ηt(t),

where ϵ is a scaling parameter so that ϵη(x, t) ≪ 1 and ex a unit
vector aligned with the channel axis. In the following we denote by
τp the timescale of the perturbation. Furthermore, we require that the
perturbation occur on a timescale much shorter than the cloning period
of the GKTL algorithm, i.e. τp ≪ τ. As a consequence, we restrict the

100 the gktl algorithm

choice of η so that ηt(t) →
t→τp

0. Such perturbation is then characterised

by the corresponding added momentum per unit volume ϵτpF0.
A first choice for η is to keep the homogeneous structure of the

forcing, i.e. ηx(x) = 1, while abruptly varying its intensity over a
timescale τp. The simplest form for ηt(t) is a step function with unit
value over [0, τp]. For the perturbation to be successful we also require
that the timescale over which trajectories separate is much smaller
than the cloning period τ.

However, we observed in numerical experiments that an abrupt
increase of the forcing amplitude generates density waves propagating
over the whole domain, as illustrated in figure 4.4. The greater the
value of ϵ, the greater the amplitude of the waves. Unfortunately, we
observed that the order of magnitude for the amplitude ϵ necessary
for a rapid separation of the trajectories result in the emission of
waves with a drastic effect on the drag force acting on the obstacle.
Modulating the perturbation by a smoother function of time such
a Gaussian pulse, keeping the added momentum constant, did not
mitigate the amplitude of the density waves. It is also possible to
give the perturbation η a spatial structure. For instance, ηx(x) was
set to be a realisation of a Gaussian random field with Gaussian
covariance function ⟨ηx(x + r)ηx(x)⟩ ∝ exp(−r2/2L2

corr) where Lcorr

was set to match the typical size of the large scale eddies. Numerical
experiments indicated that such forcing does not lead to a significantly
faster separation oh the trajectories, and still requires high values for
ϵ, causing density waves to alter the flow dynamics.

The practicality of the perturbation depends on two properties.
First, it must occur on a timescale shorter than the cloning period,
i.e. τp ≪ τ. Second, the resulting separation of trajectories must take
place over the timescale of the cloning period, i.e. τL ≈ τ.

In the next chapter, we justify that a good choice of τ is τ ≈ τc,
with τc the correlation time of the drag acting on the obstacle, see sec-
tion 5.1.2.1. The correlation time is the timescale over which the value
of the drag decorrelates from its previous values. For a discussion of
the correlation time, see chapter 3, page 49 Choosing τ of the order of
the correlation time τc, we concluded that the design of the perturba-
tion acting on the force density driving test flow (1) is very difficult,
as it results in spurious density waves polluting the simulation. In
addition, we made similar observations in the case of the perturbation
of the inlet velocity for test flow (2). Note that this limitation origi-
nates from the intrinsic compressible nature of the Lattice Boltzmann
Method, allowing density waves to propagate in the computational
domain.

4.2 application of the GKTL algorithm to a turbulent flow 101

0 5 10 15 20 25 30 35

t

-5

0

5

10

f
(t
)

Instantaneous drag signal

no perturb

ǫ = 1

0 5 10 15 20 25 30 35

t

-5

0

5

10

f
(t
)

Instantaneous drag signal

no perturb
ǫ = 20

Figure 4.4: Drag timeseries illustrating the separation of two trajectories over
time, subject to a small perturbation at time t = 0. The pertur-
bation corresponds to abrupt increase of the forcing amplitude
over τp = 0.1. The top panel illustrates the case where the am-
plitude of the perturbation is limited so that no density waves
are emitted due to the perturbation. The bottom panel pictures
the propagation of density waves through the fluid domain as
the amplitude of the perturbation is increased so that the two
trajectories separate over a few correlation times. In this case the
measurement of the drag strongly suffers from the emission of
density waves.

4.2.1.2 Perturbing a the level of the populations

As stated in the introduction of section 4.2.1, it is difficult to ini-
tialise a LBM simulation on the basis of prescribed macroscopic fields
such as the velocity or pressure. An alternative is to introduce the
perturbation directly at the level of the mesoscopic populations ma-
nipulated by the LBM. See section 2.1 for a discussion of the LBM. In
this section we address the design of such a perturbation. To start off
with, we note that the Lattice Boltzmann Equation (B.1) is linear, up
to nonlinear terms located in the collision operator. As explained in
appendix C, under the LBGK approximation, these terms are of order
one in the Mach number, O(u/cs). See section 2.1 and appendix B for
a description of the Lattice Boltzmann Equation (LBE) and the LBGK

approximation.
Such observation suggests that a linear combination of solutions of

the lattice BGK equation can itself be considered as a solution, up to
errors scaling like u/cs. In the following we denote by { fi(x)}1≤i≤8

the set of populations on the lattice node x. A perturbation is designed

102 the gktl algorithm

as a random linear combination of solutions { f (n)i (x)}1≤n≤N , pre-
computed before hand through a simulation of the flow in stationary
regime. At each lattice node x, populations are then replaced as

fi(x) −→ fi(x) + ϵ
N

∑
n=1

αn f n
i (x), 1 ≤ i ≤ 9, (4.33)

with the set {αn}1≤m≤N drawn uniformly from [0, 1] and ϵ the ampli-
tude of the perturbation. The perturbed populations are then rescaled
so that no mass is added in the system. For more details concerning
this procedure, see appendix C.

Figure 4.5 illustrates the separation of two trajectories following
a perturbation computed as (4.33). It displays the time evolution of
the drag force corresponding to each trajectories. By contrast with a
perturbation affecting the external forcing—see section 4.2.1.1—the
amplitude of the emitted density waves is greatly reduced, for a similar
separation timescale.

0 0.5 1 1.5 2 2.5 3

t/τc

-0.1

-0.05

0

0.05

0.1

0.15

f d
(t
)

ǫ =0
ǫ =0.002
ǫ =0.02

Figure 4.5: Separation of trajectories after the introduction of a small pertur-
bation at t = 0, for two values of the amplitude of the perturbation
ϵ. Each curve represent the drag timeseries corresponding to each
trajectory. Each one of them results from the integration of the
dynamics from the same initial condition. The dashed timeseries
denoted by ϵ = 0 was obtained by integrating the dynamics with-
out introducing any perturbation. The perturbation is introduced
at the level of the mesoscopic populations involved in the LBM
simulation of the flow, according to equation (4.33). By contrast
with figure 4.4, the drag force is not polluted by spurious density
waves propagating in the domain.

4.3 implementation of the GKTL algorithm for turbu-
lent flows

In the previous section we described an important aspect of the
application of the GKTL algorithm to turbulent flows. Indeed, random-
ness must be artificially introduced in the dynamics as the trajectories
are cloned, so that copies can separate over time. In this section we
turn to practical aspects concerning the implementation of the GKTL

algorithm for complex dynamics such as turbulent flows. More pre-

4.3 implementation of the GKTL algorithm for turbulent flows 103

cisely, we discuss the interplay between the simulation of the flow
on the one hand, and the sampling algorithm on the other hand. For
simple, one dimensional dynamics such as the OU process discussed in
section 4.1.4, implementation of the GKTL algorithm is straightforward.
The state for each copy, i.e one real number, can be stored in mem-
ory at all times, for instance in an array which values are exchanged
following the cloning stage. During iteration n, copies can simply be
simulated from t = (n − 1)τ to nτ in a sequence.

Note that the evolution of a copy over [(i − 1)τ; τ] is independent
from the evolution of the other copies. Therefore, there is no reason to
perform the corresponding computations in a sequence: they could
very well be carried out in parallel. For simple systems such as the
OU process, using hundreds of copies, parallelization of the evolution
stages is certainly not worth the additional implementation effort.
However, the situation is drastically different for complex dynamics
such as turbulent flows, for which the computation of the dynamics
involves a lot more computations. In this case, parallelisation of the
algorithm is required for a practical use of the algorithm.

An attractive property of the GKTL algorithm is its embarrassingly
parallel nature. An algorithm is said to be embarrassingly parallel
when it can easily be decomposed into parallel tasks, with very little
or no coordination needed between them. This class of algorithms
greatly benefit from modern computer architectures, that are able
to run many concurrent independent tasks at the same time. At a
larger scale, such algorithms are a great fit for computer clusters, i.e.
aggregates of interconnected computers, or nodes. Such architectures
usually allow programs to perform faster, due to the high level of
parallelism available. However, in general, nodes do not share the
same pool of memory, and if data produced on a given node is needed
on another, it must travel through the links of the network, therefore
resulting in an overhead time. On the one hand, no matter how efficient
it is in theory, an algorithm that requires frequent communications
between distant nodes may perform very badly on a computer cluster,
its efficiency decreasing with the number of involved computing nodes.
Such algorithm is said to have poor scalability. On the other hand,
because they are composed of independent tasks, embarrassingly
parallel offer very good scalability. In the GKTL algorithm, coordination
is required between the different copies during the cloning stage. It
will thus offer very good scalability if the cost of simulating the
dynamics during the evolution stage greatly exceeds the overhead
entailed by the cloning stage. It is expected for turbulent flows, as the
simulation of the dynamics is computationally expensive.

In this section we discuss several parallel implementations of the
GKTL algorithm. On the basis of the test flows presented in section 2,
we illustrate that the overall time spent on communications between
nodes in the cloning stage account for less that 5% of the time required

104 the gktl algorithm

to simulated the dynamics over the evolution stage. In the following
we start by discussing an implementation in which the computation
of the dynamics and the cloning stage are performed by two different
programs. Then we present a message-passing implementation in which
nodes communicate their state to each other.

4.3.1 Separated implementation

The GKTL algorithm can be decomposed into two independent steps.
During the iteration i, the copies first evolve from (n − 1)τ to nτ: this
is referred to as the evolution stage. Next, each copy is attributed a
weight which value depends on the evolution of all the copies. Then,
copies are either cloned or discarded from the ensemble depending
on the value of their relative weight (4.10). Finally, the final state of
the discarded copies for t = iτ is erased and replaced by a the final
state of a cloned copy. These last three points are grouped into one
single step: the cloning stage. See section 4.1.2.1 for a description of the
algorithm. The evolution stage can easily be performed in parallel, as
the simulation of the dynamics of a copy does not require information
from other copies. By contrast, the cloning stage is a global operation. In
order to compute the weight of a copy, information must be gathered
from all the copies.

A way to implement the GKTL algorithm is to separate the two
stages into two different programs. This allows for a straightforward
parallelisation as several independent instances of the program com-
puting the dynamics can be run in parallel on different nodes. This
program must write the final state of the copy on disk, as well as the
corresponding weight wj, where j denotes the index of the copy, see
page 89. When all the instances are done, another program reads in
the weights and compute the relative weights (4.10) for each copy. It
then computes the number of clones for each copy and assigns the
different final states at iteration i to the corresponding copies. They
will then serve as initial conditions for iteration i + 1. In practice a
third program can be used to effectively perform the algorithm, that
is scheduling the execution of the cloning and execution stages.

This implementation is the most straightforward way of performing
the GKTL algorithm when the dynamics are computed by external
software. By external software we denote a program which code is
not accessible or too complex to be embedded in a unified GKTL

code. For instance, this would be the case for applications of the GKTL

algorithm with industrial CFD packages such as ANSYS Fluent [4],
openFOAM [86] or proLB [79]. The main advantage of this imple-
mentation is its simplicity. However, it leads to reading and writing
large amount of data on disk. We stress that file input/output are
relatively slow operations with respect to accessing data in memory.
However, for highly turbulent flows in complex geometries, the cost

4.3 implementation of the GKTL algorithm for turbulent flows 105

of performing the simulation of the copies over the evolution stage is
expected to always greatly exceed the cost of the cloning stage.

For simpler systems, such as the test flows involved in this works—
see chapter 2— we describe in the next section an alternative imple-
mentation. In this implementation the GKTL algorithm is performed
by a single program in which simulation of copies is performed by
processes communicating with each other through message-passing.

4.3.2 Message-Passing implementation

In this thesis we apply the GKTL algorithm on the simple test flows
presented in chapter 2. As mentioned in chapter 2 and detailed in
appendix A, the simulation of the flow is accessible through simple
library calls within a C++ program. As a consequence, it can easily be
embedded in a unified code that perform the GKTL algorithm. This
implementation makes use of distributed parallelism. In the following, it
is assumed that the Nc copies of the flow are evenly distributed across
a set of {Pi}0≤i≤Np−1 processes, that reside on separate computing
nodes, with separate memory. Note that the current state of each copy
is stored in memory. This is made possible by the two-dimensional
geometry of the test flows, as well as their relatively coarse mesh. More
precisely, the state of a copy corresponds to the set of lattice Boltzmann
populations { fi}0≤i≤8 at each lattice nodes. For instance, for test flow
(2), it represents 513 × 129 × 9 reals numbers. In double precision, this
amounts to roughly 4MB of data. We stress that the state of the Nc

copies do not reside in the same pool of memory, but instead are
dispatched among the Np nodes. On the HPC facilities involved in this
work [128] (Tier-2 facility), the typical available memory per process is
15GB. Therefore, the upper limit for the number copies Nc does not
originate from memory limitations, but rather from computing time.

Because each copy resides in a separate memory pool, processes ex-
change information during the cloning stage through message-passing.
Message-passing parallelism introduces a programming model in
which computing nodes are viewed as processes, and functions are
used to explicitly transmit data to one process to another. Message
passing parallelism was developed by the Message-Passing Interface
(MPI) Forum in 1993 and is without contest the most widely used
method for writing distributed parallel programs. Note that mpi is
not a programming language, but rather a standard describing a set
of functions that can serve as building blocks for parallel programs.
Many implementations of mpi are available. This works makes use of
the open source library openMPI [52].

4.3.2.1 Centralised implementation

In practice, a process computes the dynamics of Nc/Np copies in a
sequence, and the corresponding node hosts the corresponding states

106 the gktl algorithm

Figure 4.6: Parallel, centralised implementation of the GKTL algorithm. In this
example we assume that each one of the processes {Pi}0≤i≤Np−1
hosts one copy, i.e. Np = Nc. The evolution of the copies is com-
puted locally within each process, as well as the corresponding
weight wj, see page 89. Then, the master process P0 gathers the
weights and compute the relative weight Wj (4.10) for each copy
j. On the basis of these weights, the master process P0 computes
the number of clones for each copy and decides of the communi-
cations between the processes in order to distributes the states of
cloned copies to discarded ones. Finally, it sends the correspond-
ing information, denoted by {cj}0≤j≤5, to the other processes
{Pi}1≤i≤Np−1. Note that the master process is a process like any
other, i.e., it hosts a copy and participates in the communications.

in memory. As mentioned above, the cloning stage is a global operation.
To compute the relative weights (4.10), information must be gathered
from all the processes. We therefore define a master process, denoted by
P0, in which the weights of each copies will be centralised. As a result,
P0 is in charge of computing the relative weights of each copies. It then
compute the number of clones for each copy and then performs the
cloning. Finally, it elaborates a communication plan, which describes the
communication of states across the processes. For instance, a process
hosting a discarded copy is ordered to receive a state from a process
hosting a cloned copy. By contrast, a process hosting a cloned copy
is ordered to send the corresponding state to a process hosting a
discarded copy. This communication plan is then communicated to all
the processes {Pi}1≤i≤Np−1, as illustrated in figure 4.6.

In practice, for each duplicate of a cloned copy, the master process
P0 cycles through the processes {Pi}1≤i≤Np−1, looking for a discarded
copy to replace. Note that the amount of communications between
distant nodes can be reduced by preferentially distributing states of
cloned copies among copies within the same process. This is illustrated
in figure 4.7.

4.3.2.2 Decentralised implementation

In a very recent work [21], an alternative to the above centralised
implementation is proposed. It was published shortly after the above
implementation was designed. This implementation does not involve a
master process. The relative weight Wj for each copy j is computed in

4.3 implementation of the GKTL algorithm for turbulent flows 107

2

0

0

1

0

0

1

3

1

0

1

32

1

0

1

(a) Basic redistribution of cloned copies

2

0

0

1

0

0

1

3

1

0

1

32

1

0

1

(b) Preferential redistribution within the
process

Figure 4.7: Schematic representation of two communication patterns between
processes during the cloning stage. In this example, each four
processes host four copies of the flow, represented by red boxes.
The number of clones produced by each copy is indicated to the
left side of the box. Ticked boxes indicate copies discarded from
the ensemble. Processes holding copies producing more than
one clone must redistribute the clones among processes. Data
transfers between different process are represented by a continu-
ous red arrow, while data transfers involving copies within the
same process are pictured by dashed blue arrows. In the second
implementation (fig. 4.7b), communications are planned so that
clones are redistributed among the same process preferentially,
thus greatly reduced to amount of data transfer between different
processes.

108 the gktl algorithm

parallel by each process through a collective communication, referred
to as MPI_AllReduce. Furthermore, the cloning stage is implemented
in a different way than the one presented in section 4.1.2.1, which al-
lows each individual processes to determine its own communications.
The index of the required clones are then exchanged among process
through a second collective communication of type MPI_AllGather.
An important reduction of the number of communications is achieved
by packing every communications from process A to process B into
one single message, and to plan communications ensuring that they
always go one way: either from process A to process B or from B to A.

The optimisation of the cloning stage in [21] is motivated by the
fact that the simulation of the underlying dynamics requires relatively
low computational effort. In this case, the computational cost of per-
forming the communications during the cloning stage may not be
negligible with respect to the cost of simulating the dynamics over the
evolution stage. As a result, a reduction of the number of communica-
tions can provide a significant increase in performance. The situation
is different with the simulation of turbulent flows, for which the com-
puting time required to simulate the dynamics over the evolution time
greatly exceed the computing time associated with the cloning stage.
Therefore, we do not expect a significant increase in performance from
the reduction of the communications. In the following we illustrate
this remark on the basis of test flow (2). We show that the overall
computational effort for the cloning stage represents less than 5% of
the overall computational effort for the evolution stage.

4.3.3 Average walltime for the evolution and cloning stages

In this section we compare the computational cost of the dynamics
of evolution stage with the computational cost of the cloning stage.
Moreover, the cloning stage is decomposed into:

• The transfer of the individual weights wj from the processes
{Pi}1≤i≤Np−1 to P0, the calculation of the relative weights Wj as
well as the elaboration of the communication plan, as well as its
broadcast to the processes {Pi}1≤i≤Np−1

• The ensemble of point-to-point communications through which
processes send and receive states.

To illustrate the relative weight of both the evolution and cloning
stages, we perform three GKTL experiments with three different values
of the bias k. These experiments are based on test flow (2), described
in chapter 2. The number of copies is set to Nc = 128. The cloning
period is τ = τc, with τc the typical correlation time of the drag acting
on the obstacle. The evolution/cloning sequence is repeated M = 40
times, leading to an total length of the trajectories Ta = 40τc. Note that

4.3 implementation of the GKTL algorithm for turbulent flows 109

the algorithm terminates by a cloning step. In practice the number of
processes Np is chosen close to the number of copies Nc. The reason for
that is the high computational cost of the evolution stage. Therefore,
piling up several copies into one process leads to large computing
times. In these experiments we set Np = Nc = 128.

The computational effort for each step is quantified through its
average elapsed real time, referred to as walltime in the following. The
average is computed over the Nc copies. For instance, the average
walltime for the evolution stage is:

wevo(n) =
1

Nc

Nc

∑
j=1

w(j)
evo(n) (4.34)

where w(j)
evo(n) denotes the measured walltime for the simulation of

the dynamics of copy j over the cloning period τ at iteration n. Simi-
larly, we denote by wcl(n) the average walltime for the computations
performed by the master process during the cloning stage. Finally,
wcomms(n) denote the average walltime for the communications in
which states are distributed across the Np processes. Figure 4.8a illus-
trates the ratios wcomms(n)/wevo(n) and wcl(n)/wevo(n) as a function
of the iteration n for three different values of the bias k. Addition-
ally, figure 4.8b displays the percentage of discarded copies that is
discarded along the iterations of the algorithm. It illustrates that, as k
is increased, more copies are discarded. It therefore results in a larger
number of communications. As a result, figure 4.8a illustrates that the
cost of the communication stage increases with k. Figure 4.8a shows
that the walltime for the communications amounts for less than 5%
of the walltime for the simulation of the dynamics over the cloning
period τ.

In a way of conclusion, the optimisation of the cloning stage can-
not be expected to yield significant performance gains. For complex
systems, the bottleneck resides in the simulation of the dynamics over
the cloning period. Note that the impact of the computations and
communications associated with the cloning stage increases as the
cloning period τ is decreased. However, the cloning period should not
be chosen much shorter than the correlation time of the underlying
dynamics. This is justified in chapter 5.

In the following the GKTL algorithm is implemented following
the message-passing centralised implementation discussed in section 4.3.2.
The simulation of the dynamics is encapsulated in the pipeLBM C++
library developed for this thesis, described in appendix A. Finally, the
perturbation of the copies following the cloning stage is implemented
at the level of the Lattice Boltzmann populations, as discussed in
section 4.2.1.2 and appendix C. In the following chapter we present
the application of the GKTL algorithm to the sampling of extreme drag

110 the gktl algorithm

(a) (Continuous) Ratio of the average walltime for the communica-
tion following the cloning stage and the average walltime for the
evolution stage. (Dashed) Ratio of the average walltime for the
cloning and the average walltime for the evolution stage

(b) Number of clonings normalised by the total number of copies

Figure 4.8: (a) Comparison of the average walltime for the communications
between processes following the cloning stage (continuous) and
cloning stage (dashed) with the average walltime for the evolution
stage. The average walltimes are computed over the Nc = 128
copies and represented as a function of the index m of the M = 40
iterations of the evolution/cloning procedure. The continuous
lines represent W ≡ wcomm(n)/wevo(n) where wcomm denotes the
average measured walltime for the point-to-point communications
in which states are received and sent across the processes. This
walltime is normalised by the average time of the evolution time
wevo. The dashed lines represent W ≡ wcl(n)/wevo(n) where wcl
denotes the average walltime for the computations performed by
the master process for the cloning stage. (b) Number of created
clones, or equivalently, number of discarded copies Nclonings, as a
function of the iterations of the algorithm. One can see that, as
k is increased, a larger part of the population is discarded. As a
result, a larger number of communications is observed.

4.3 implementation of the GKTL algorithm for turbulent flows 111

fluctuations in turbulent flows. In section 4.1.4, the algorithm was
shown to significantly reduce the computational cost of the sampling
of extreme fluctuations for the OU process However, it is not clear if
similar gains can be achieved on the basis of turbulent flows.

5
I M P O RTA N C E S A M P L I N G L A R G E D R A G
F L U C T UAT I O N S W I T H T H E
G I A R D I N A – K U R C H A N – TA I L L E U R – L E C O M T E
A L G O R I T H M

Chapter 4 introduced importance sampling, a widely used statis-
tical method to sample rare events at a much lower computational
cost than brute force sampling [22]. The underlying idea is to gener-
ate realisations of the process according to a biased PDF, from which
extreme events are sampled with a higher probability—importance—
than from the original PDF of the process. See figure 4.1 on page 86 for
an illustration. The construction of the biased distribution depends
on the application. When the PDF of the process of interest verifies a
large deviation principle, a common method for designing the biased
distribution is to perform an exponential change of measure [166]. In the
case of the time-averaged drag, it reads:

Pk ({x(t)}0≤t≤Ta) =
1

Z(k, Ta)
exp

(
k
∫ Ta

0
fd[x(t)]dt

)
P0 ({x(t)}0≤t≤Ta)

(5.1)

where fd denotes the instantaneous drag, and Ta the duration of the
average. In addition, {X(t)}0≤t≤Ta is a formal notation for a trajec-
tory of the flow, in phase space. The distribution P0 ({X(t)}0≤t≤Ta)
is the stationary PDF of the dynamics, or stationary measure, and
Pk ({X(t)}0≤t≤Ta) is the biased distribution resulting from the ex-
ponential change of measure with parameter k. Finally, Z(k, Ta) is
a normalisation constant ensuring that Pk ({X(t)}0≤t≤Ta) is a nor-
malised PDF. From the biased PDF Pk, high values of

∫ Ta
0 fd[X(t)]dt

are more likely to occur than from the original PDF P0. Because of
the large deviation behaviour of the PDF of 1

Ta

∫ Ta
0 fd[X(t)]dt described

in the previous chapter, importance sampling based on (5.1) can be
shown to be optimal in the limit Ta → ∞. Furthermore, in this limit,
Z(k, Ta) →

Ta→∞
eTaλ(k) with λ(k) the Scaled Cumulant Generating Func-

tion (SCGF) defined by λ(k) = limTa→∞
1
T ln EP0 [exp(k

∫ Ta
0 fd[X(t)]dt)].

The GKTL algorithm described in chapter 4 is a numerical method
to sample realisations of a dynamical process according to the biased
measure Pk. It implements importance sampling at the level of trajec-
tories, based on the simulation of an ensemble of copies of the system.
The algorithm was successfully applied for relatively simple chaotic
dynamics [57, 94, 158], involving only a few degrees of freedom. Re-

113

114 importance sampling large drag fluctuations with the gktl algorithm

cently, it has been successfully applied to the computation of heat
waves using a simplified climate model [130].

This chapter describes the application of the GKTL algorithm to the
importance sampling of dynamical trajectories in the DNS of a 2D
turbulent flow past an obstacle. In general, numerical simulations
of fluid flows comes at a great computational cost, especially in in-
dustrial or geological contexts. In this case, direct sampling of rare
events by means of the simulation of the flow over very long times is
simply unthinkable. Therefore, numerical simulations are limited to
the average behaviour of the system, as well as typical fluctuations.
A successful application of the GKTL algorithm to the simulation of
extreme events in turbulent flows could therefore pave the way to a
whole new range of computational studies, providing numerical esti-
mates for the statistics of extreme fluctuations as well as simulations of
the flow patterns corresponding to such rare events. Such information
would certainly prove useful in many applied domains, such as wind
energy, car aerodynamics, or civil engineering. From a fundamental
point of view, it could provide a deeper insight into the physics of
turbulent flows, of which little is understood.

However, the practicality of rare event algorithms for actual complex
systems is still an open question. The objective of this chapter is to
establish of proof of principle for the application of the GKTL algorithm
to turbulent flows. In this chapter we show that the GKTL algorithm
is able to provide a reliable estimate for the tails of the PDF of the
averaged drag acting on a an obstacle in a two-dimensional turbulent
flow, in the limit where the average is taken over long durations.
We also show that it allows for an improved sampling of extreme
fluctuations of the averaged drag.

In the following we use the GKTL algorithm to generate trajectories
of duration Ta according to the biased PDF (5.1). We are interested in
sampling extreme fluctuations for the averaged drag over a duration
T ≤ Ta, computed as a moving average over the trajectories:

FT(t) =
1
T

∫ T

t−T
fd(t)dt with T ≤ t ≤ Ta (5.2)

where fd denotes the instantaneous drag over the trajectories sampled
by the algorithm.

The practicality of a rare event algorithm can be assessed based
on how efficiently it samples extremes, and how accurately it com-
putes their probability with respect to crude direct sampling. For
the comparison to be fair, both must be compared on the basis of
their computational cost, measured in terms of the overall duration over
which the dynamics have been computed. A direct simulation of the
flow over a duration T has a computational cost of T, and a GKTL run

5.1 efficient computation of the large deviation rate function 115

involving the simulation of Nc copies over a duration Ta has a cost of
Nc × Ta.

The structure of this chapter is as follows. First, section 5.1 shows
that the GKTL algorithm is able to efficiently compute the large de-
viation rate function for the time-averaged drag. The rate function
describes the rate of decay of the probability of fluctuations of the
averaged drag over long durations. As a result, we provide an estimate
of the tails of the PDF describing the statistics of the fluctuations of
the averaged drag. First, Section 5.1.1 describes the construction of a
reference estimate for the rate function, based on a timeseries of finite
duration. Secondly, section 5.1.2 discusses the parameters of the GKTL

algorithm and illustrates that the rate function can be computed with
the GKTL algorithm, involving a much lower computational cost than
what would be required by a direct sampling approach.

In addition to the probability of rare events, the GKTL algorithm
gives access to the corresponding dynamics. Section 5.2.2 describes
how the GKTL can be used to study the flow dynamics leading to
extreme drag fluctuations. As a matter of fact, the algorithm leads to
an ensemble of discontinuous paths, resulting from copies being dis-
carded and replaced by clones of others. Section 5.2.2 gives a technical
account on how the continuous paths—those effectively distributed
as Pk—can be obtained. This can be done either on-the-fly over the
course of the algorithm, or as a post processing step. The construction
of the continuous paths is actually essential to compute their probabil-
ity, as shown in section 5.2.4 Finally, section 5.2.5 illustrates that the
GKTL is capable of sampling extremes of the averaged drag at a much
reduced computational cost.

5.1 efficient computation of the large deviation rate

function

The GKTL algorithm has originally been designed to compute large
deviations rate functions. Indeed, it outputs the SCGF, from which the
rate function can be computed through a Legendre transform. See
chapter 1 and section 4.1.3, as well as references therein for a discussion
of large deviation rate functions. To this date, the GKTL algorithm
have been mostly applied to rather simplified dynamics. One of the
objectives of this work is to assess its relevance for turbulent flows. In
this section, we compute the large deviation rate function describing
the exponential decay of the probability of extreme fluctuations of the
averaged drag. More importantly, we show that, with the help of the
GKTL algorithm, we are able to compute the statistics of rare events at
a much reduced computational cost, compared with direct sampling.

In order to validate the computation, a reference estimate of the
SCGF is first computed on the basis of a drag timeseries obtained

116 importance sampling large drag fluctuations with the gktl algorithm

from a brute force simulation of the dynamics over a duration Ttot.
This computation is described in section 5.1.1. A second estimate
of the SCGF is then computed using the GKTL algorithm with a lower
computational cost. It is finally compared to a third estimate, directly
computed from a timeseries involving the same computational cost
as the latter estimate. It is shown in section 5.1.2.2 that the estimate
from the algorithm correctly recovers the reference solution, while the
direct estimate fails.

5.1.1 Direct estimation of the rate function on the basis of a finite timeseries

In the following we describe the construction of a reference estimate
for the SCGF, describing the large deviation statistics for the time-
averaged drag. This work is based on the methodology proposed by
Rohwer et. al in [137].

Let { fd(t)}0≤t≤T be a drag timeseries over a duration T. Recall the
definition of the SCGF:

λ(k) = lim
T→∞

1
T

ln E[ek
∫ T

0 fd(t)dt] (5.3)

An estimator for (5.3) can be constructed using a block-averaging
method. In order to evaluate the ensemble average in (5.3), the time-
series is split into blocks of equal length ∆T and the average is com-
puted as an empirical mean over the blocks. The length of the blocks
∆T is chosen long enough so that blocks can be considered statistically
independent. The resulting estimator for the SCGF is

λ̂∆T(k) =
1
T

ln
1
M

M

∑
m=1

exp
(

k
∫ m∆T

(m−1)∆T
fd(t)dt

)
, M =

T
∆T

(5.4)

The SCGF being defined in the limit where the integration window
goes to infinity, e.g. T → ∞ in (5.3), the length ∆T must be taken
much larger than the typical correlation time of the timeseries, that is :
∆T ≫ τc. However, the larger ∆T, the fewer terms are involved in the
empirical mean in (5.4), resulting in a poor estimate.

Additionally, for a fixed ∆T, the domain of validity of the esti-
mate (5.4) is bounded. Indeed, as |k| is increased, the estimate suffers
from the so-called linearization effect [137], that originates from the
finiteness of the timeseries. Because λ̂∆T consists in a sum of exponen-
tials, as k is increased it is dominated by the largest term in the sum.
More precisely,

λ̂∆T(k) ∼
k≫1

kFmax with Fmax = max
1≤m≤M

{
∫ m∆T

(m−1)∆T
fd(t)dt} (5.5)

There is thus a threshold k(+)
c past which the estimate λ̂ cannot be

trusted. Similarly, as k decreases away from 0, the sum is dominated by

5.1 efficient computation of the large deviation rate function 117

0 5 10 15 20

∆T/τc

0

0.2

0.4

0.6

0.8

1

1.2

λ̂
∆
T
(k
)/
λ

k =0.01
k =0.015
k =0.02

Figure 5.1: Convergence of the estimator of the SCGF defined in (5.4) as
the block length ∆T is increased, for three different values of
k. Each estimate is normalised by its average value over the
range ∆T ∈ [10τc; 20τc], denoted as λ. Convergence is achieved
as the block length approaches the large-time limit involved in
the definition of the SCGF. As ∆T is increased, the number of
blocks M decreases due to the finiteness of the timeseries. As a
result, fewer terms contribute to the empirical average in (5.4)
and the corresponding statistical error increases. In the following
we choose ∆T⋆ = 6τc as the value for which the estimate is
converged, up to relative errors of the order of 5%.

the term involving the minimum over the timeseries. As a result, there
is also a negative threshold k(−)

c past which the estimate λ̂ cannot be
trusted. In the following, we only focus on positive fluctuations and
therefore only refer to k(+)

c as kc. Moreover, it was shown in [137] that
the empirical sum involved in (5.4) is normally distributed around
its expectation value only for 0 ≤ k ≤ kc/2. Over this range, error
bars can therefore be computed on the basis of the standard deviation
computed over the set {exp

(
k
∫ m∆T
(m−1)∆T fd(t)

)
}1≤m≤M. For kc/2 ≤

k ≤ kc, even though λ̂(k) converges towards λ(k), this convergence
is non-Gaussian and error bars must be computed on the basis of
independent repetitions of the estimate, thus requiring much more
data.

To find a suitable block length one must therefore operate a trade-
off between a large value of ∆T that guarantees the large-time limit
T → ∞ in (5.3) and a sufficient number of blocks that mitigates the
linearization effect. An important issue is thus the estimation of the
minimum block length ∆T⋆ for which one can consider the limit
λ(k, T) →

T→∞
λ(k) as attained, up to a given a error tolerance.

Figure 5.1 illustrates the convergence of λ̂∆T as the block length
is increased. The minimal block length ∆T⋆ is chosen so that the
estimates are converged up to relative errors of 5%, leading to ∆T⋆ ≈

118 importance sampling large drag fluctuations with the gktl algorithm

Figure 5.2: Contribution of the largest term in the sum in (5.4) for blocks
of length ∆T⋆ = 6τc, as a function of k. Because it is a sum of
exponentials, the largest terms quickly dominates, resulting in
artificial linear tails for the SCGF. In this work, we consider the
estimate λ̂ valid as long as r(k) < 15%, that is, for k ≲ 0.02.

6τc. This criterion is arbitrary. On the one hand, it is strict enough to
ensure satisfactory convergence of the estimate. On the the other hand,
it is lax enough so that a statistically significant number of blocks
is involved in the sum in (5.4). This criterion is actually validated a
posteriori by the computation of the SCGF from the GKTL algorithm.

With the block length fixed, the region of validity of the estimate
λ̂(k) can now be assessed. That is the critical value kc corresponding
to the inset of the linearization effect must be estimated. To do so we
quantify the contribution of the largest term in the sum in (5.4). We
therefore define the ratio r(k) as follows:

r(k) =
ekFmax

∑M
m=1 ek

∫ m∆T
(m−1)∆T fd(t)dt

with Fmax = max
1≤m≤M

{
∫ m∆T

(m−1)∆T
fd(t)dt}.

(5.6)

Figure 5.2 displays the evolution of r(k) as k is increased. It illus-
trates that the contribution of the largest term in the sum of exponen-
tials in (5.4) progressively increases as k in increased. As a result, it
gives rise to an artificially linear estimate of the SCGF (5.5). The thresh-
old kc then is chosen as the value of k past which r(k) is above 15%,
leading to kc ≈ 0.02. Again, this criterion is arbitrary and justified a
posteriori through the comparison of the direct estimate with respect
to the estimate computed from the GKTL algorithm, see section 5.1.2.
Note that the value of kc depends on the total duration of the time-
series Ttot: as Ttot increases, so does kc. Furthermore, we stress that
the value of kc is not strictly fixed. Indeed, it must only be interpreted
as a rough estimate of the upper bound of the range over which the
estimate (5.4) can be trusted.

5.1 efficient computation of the large deviation rate function 119

Eventually, figure 5.3a displays the direct estimate of the SCGF based
on equation (5.4). The corresponding timeseries spans T = 106τc and
∆T = ∆T⋆ = 6τc. Additionally, figure 5.3a displays the estimate of the
SCGF, assuming that the PDF of the averaged drag is Gaussian. It is
defined as [160]:

λ(g)(k) = 2τ̂k2 with τ̂ = lim
t→∞

1
σ2

∫ t

0

(
E[fd(t̃) fd(t̃ + τ)]− E[fd]

2)dt̃

(5.7)

where σ denotes the standard deviation of the drag fd. Figure 5.3b
displays the corresponding rate functions, computed using the Gartner-
Ellis theorem (4.21).

Figure 5.3 shows that, for small fluctuations, the statistics of the
averaged drag FT can be considered Gaussian. However, for a ≥
0.02, the departure from Gaussian statistics is clear. More precisely,
figure 5.3a illustrates that the Gaussian estimate of the SCGF is below
the direct estimate. As explained in note 1, this entails that a given
fluctuation of the averaged drag FT ≥ a is more probable than if the
statistics were Gaussian: the PDF of FT has fat tails.

The direct estimate shown in figure 5.3a will now serve as a reference
solution for the estimation of λ(k) using the GKTL algorithm.

Note 1. The PDF of the averaged drag has fat tails
In the large time limit, the large deviation principle writes:

P(FT = a) ≍
T→∞

e−TI(a). (5.8)

The rate function can be written as a Legendre-Fenchel transform of the SCGF:⎧⎨⎩I(a) = kaa − λ(ka)

λ′(ka) = a.
(5.9)

As a consequence, the tangent to the SCGF in k = ka is defined by

ya(k) = ak − I(a), (5.10)

and its intersection with the Y-axis gives the value of the rate function I(a).
Therefore, the direct estimate of the rate function, Î∆T, takes values below the
Gaussian estimate I(g)(a). This can be seen in figure 5.3b. Following the large
deviation principle (5.8), the probability that the averaged drag FT takes a given
value a is underestimated by the Gaussian approximation.

5.1.2 Estimation of the SCGF using the GKTL algorithm

In the previous section, we computed the SCGF out of a very long
timeseries of the drag. We showed that the resulting estimate suffers
from the finite size of the timeseries, and that its validity is limited to

120 importance sampling large drag fluctuations with the gktl algorithm

(a) (b)

Figure 5.3: Reference estimates for the SCGF and rate function for the drag
force acting on the square cylinder embedded in test flow (2).
(a) Estimate of the SCGF λ̂∆T(k), based on a timeseries spanning
T = 106τc, using the estimator (5.4) with blocks of length ∆T =
∆T⋆ = 6τc. Following figure 5.2, this estimate is only relevant
until k ≤ kc ≈ 0.02. This is due to the linearization effect (5.5). In
addition, the Gaussian estimate (5.7) is displayed. As explained
in note 1, the value of the rate function I(a) for a particular ka can
be graphically deduced from the SCGF. (b) Estimate of the rate
function, computed from λ̂∆T(k) as a Legendre transform. More
precisely, for each value of k we compute Î∆T(a) = ka − λ̂∆T(k),
where a = λ̂′

∆T(k). This relation results from the Gartner-Ellis
theorem (4.18).

5.1 efficient computation of the large deviation rate function 121

a critical value kc. Indeed, the computation of the SCGF involves the
estimation of the average

E
[
ek
∫ T

0 fd(t)dt
]

.

As k is increased, extreme values of
∫ T

0 fd(t)dt have an increasing
contribution to the average. For k ≥ kc, not enough samples are
available in the timeseries for an accurate computation of the average.
The objective of the GKTL algorithm, described in the previous chapter,
is to sample preferentially these extreme values, leading to a better
estimation of the SCGF.

In this section, we describe the computation of the SCGF using the
GKTL algorithm for the statistics for the time-averaged drag. To begin
with, we discuss the choice of the different parameters of the algorithm.
Then, we compare the estimation of the SCGF resulting from the GKTL

algorithm to the reference estimate obtained in the previous section.
We show that the GKTL algorithm yields an accurate estimate of the
SCGF in the region where the reference estimate is valid. In addition,
the GKTL estimate is compared to a second direct estimate obtained
with a similar computational cost as the GKTL run. It shows that the
GKTL algorithm allows for the estimation of the SCGF over a larger
range. However, we illustrate that, similarly to the direct estimates
computed as (5.4), the validity of the GKTL estimate is limited to values
k ≤ kalg

c , where kalg
c is a critical value of the bias k past which the GKTL

estimate becomes linear.

5.1.2.1 Setting the parameters

The GKTL algorithm depends on four parameters: the duration of
the trajectories Ta, the cloning period τ, the number of trajectories Nc

and, for deterministic systems, the perturbation amplitude ϵ required
for clones to separate over time, see 4.2.1. Recall that the algorithm
can be shown to yields the value of the SCGF λ(k) in the double
limit Ta → ∞ and Nc → ∞. See chapter 4 for more details about the
algorithm.

the duration of the trajectories Ta At first sight, a natural
value for Ta is the estimate of the large time limit found in the previous
section, ∆T⋆. As a matter of fact, the algorithm first undergoes an
equilibration period Teq before the series of cloning stages effectively
results in importance sampling the biased distribution Pk. Only when
this stationary regime is attained is the estimate of the SCGF converged.
This transient regime is illustrated in figure 5.4, where it can be seen
that Teq is actually much longer that the large-time limit ∆T⋆ estimated
in the previous section. For an accurate computation of the SCGF, one
must therefore set Ta ≳ Teq.

122 importance sampling large drag fluctuations with the gktl algorithm

the number of copies Nc With Ta fixed, Nc determines the
overall computational cost of the algorithm. The objective of this
section is to compare the results from the algorithm to a reference
solution computed by means of direct sampling. In this case, such
reference solution was computed from a timeseries spanning 106τc.
The number of copies is then chosen so that Nc × Ta ≪ 106τc. More
precisely, we perform an experiment with Nc = 256. As a comparison,
a second experiment is carried out with Nc = 1536.

the cloning period τ It determines the frequency at which
selection is imposed over the ensemble of copies. Recall from chapter
3 that fluctuations of the averaged drag over long durations result
from independent short-lived fluctuations, occurring over roughly one
correlation time τc of the drag. The role of the GKTL algorithm is to
capture these short-lived fluctuations, in order to sample trajectories
with an unusually high, or low, average over Ta. In addition, recall that
the correlation time τc can be thought of as the timescale over which
the drag decorrelates from its previous values, and is therefore close to
the time over which two clones decorrelate, following the introduction
of a perturbation in the flow. These aspects are discussed in more
details in chapter 4, on page 101. In order to guide the choice of τ, we
describe two limit cases. First, let us choose τ such that τ ≪ τc. In this
case, clones do not separate before the selection stage is performed.
This actually result in loss of information, as good candidates can be
discarded from the ensemble before they achieve a large fluctuation
over an interval τc. On the other hand, choosing τc ≫ τc leads to a
poor sampling of fluctuations over durations of the order of τc, and
therefore to a poor sampling of extreme fluctuations of the averaged
drag FT. A rule of thumb for the choice of the cloning period τ is
therefore τ ≈ τc [59].

Following the cloning stage, a small perturbation is introduced for
each clone that has been discarded and that restarts on the state of
another copy. This is required so that they explore different regions of
phase space over time. Choosing a perturbation with a large amplitude
can however result in spurious fluctuations that would not occur in
unperturbed dynamics. On the other hand, a perturbation of very
small amplitude results in an increased separation time of the clones.
The perturbation amplitude ϵ should therefore be chosen so that clones
separate over a duration close to the cloning period τ. A way to check
that the perturbation does not significantly alters the statistics is to
perform a control simulation of the flow, introducing a perturbation
with a period τ. Statistics computed over this perturbed control run
must not differ from statistics computed over unperturbed dynamics.

5.1 efficient computation of the large deviation rate function 123

(a) ϵ = 0.002

(b) ϵ = 0.02

(c) ϵ = 0.06

Figure 5.4: Convergence of the estimate of the SCGF from the GKTL algorithm
as the length of the trajectories Ta in increased, for several choice
of the cloning period τ and perturbation amplitude ϵ. These plots
illustrates the equilibration period the algorithm goes through
before converging towards a stationary regime. As ϵ is increased,
the estimates based on a low cloning period ∆T provide less
accurate results.

124 importance sampling large drag fluctuations with the gktl algorithm

5.1.2.2 Description of the numerical experiment

The objective of the present experiment is to assess the validity and
efficiency of the estimation of the SCGF from the GKTL algorithm. To
do so, the GKTL estimate will be compared to the reference solution
computed on the basis of a very long timeseries. This computation is
described in section 5.1.1. Recall that this reference estimate is only
valid for 0 ≤ k ≤ 0.02, and that its computational cost is Cre f = 106τc.

We perform 50 independent GKTL runs for 50 equally spaced values
of the bias k in the interval [0.005; 0.02]. For k ≤ 0.005, the SCGF is
very well approximated by the Gaussian estimate—see figure 5.3—
and its estimation poses no challenge. With the exception of k, the
different parameters are equal among the GKTL runs. Consistently with
figure 5.4, the total duration of the trajectories is set to Ta = 40τc. In
addition, the number of copies is set to Nc = 256. The computational
cost of each GKTL run is therefore Calg = Nc × Ta ≈ Cre f /100. The
cloning period τ is set to τ = τc/2. The amplitude of the perturbation
introduced for new copies is ϵ = 0.002.

In order to assess the efficiency of the GKTL algorithm, we also esti-
mated the SCGF from a timeseries of duration Calg = Cre f /100, using
the direct estimator (4.4). This computation is identical to the com-
putation of the reference estimate presented in the previous section,
except for the total duration of the timeseries, that is 100 times shorter.
In practice the control timeseries, spanning Ttot = 106τc, can be split
into 100 independent shorter timeseries of duration 104τc, on the basis
of which a direct estimate of the SCGF can be computed.

Figure 5.5 displays the estimates λ̂(k) for the 50 GKTL runs, as a
function of k, in the domain of validity of the reference estimate.
Each GKTL estimate has a computational cost Calg. The accuracy of
such estimates can be assessed by comparison with the reference
estimate, computed with a computational cost Cre f = 100 × Calg. Last
but not least, figure 5.5 displays two independent direct estimates
from shorter timeseries, with a computational cost Calg = Cre f /100.
The latter estimates clearly illustrate the linearization effect, discussed
in section 5.1.1. The linear behaviour of the estimate as k in increased
is an artefact resulting from the finiteness of the timeseries. The slope
of this tail varies from one estimate to another, as its value correspond
to the highest fluctuation sampled in the underlying timeseries. See
section 5.1.1 for a discussion of direct estimates of the SCGF and
the linearization effect. Figure 5.5 illustrates that the GKTL algorithm
allows for an estimation of the SCGF over a much larger range, with
respect to a direct estimation with the same computational cost.

important remark One could argue that, because we performed
50 independent runs, the computation of the GKTL estimate over
the whole domain k ∈ [0.005; 0.02] has a computational cost of 50 ×
Calg ≈ Cre f . While this is true, we stress that, in order to compute

5.1 efficient computation of the large deviation rate function 125

0 0.005 0.01 0.015 0.02

k

0

1

2

3

λ̂
(k
)

×10−4

Control run 106τc
Control run 104τc
GKTL 104τc
GKTL (Therm. integration)

Figure 5.5: Comparison of the estimation of the SCGF from either the GKTL
algorithm or a direct estimation from a timeseries of similar com-
putational cost. The parameters for the GKTL experiments are
Nc = 256, Ta = 40τc, τ = τc/2 and ϵ = 2 × 10−3. Each orange
star correspond to a single GKTL run for a specific value of the
bias k. Each run has a computational cost Calg = Nc × Ta ≈ 104τc.
The continuous blue line represents the reference solution, com-
puted from a time series of computational cost Cre f = 106τc. The
dashed blue lines correspond to two independent realisations
of the direct estimation of the SCGF with a cost Calg = 104τc.
They are computed on the basis of two independent chunks of
duration 104τc extracted from the reference timeseries of dura-
tion 106τc. The continuous orange line corresponds to estimate
of the SCGF based on the GKTL runs, computed through thermo-
dynamic integration, see note 2. This figure illustrates that, for a
similar computational cost, the GKTL algorithm yields an accurate
estimate of the SCGF over a larger range compared with direct
estimation from a timeseries.

a direct estimate for a particular value k = k⋆, the SCGF must also
be estimated for k ≤ k⋆. By contrast, the GKTL algorithm directly
targets k = k⋆, yielding a single estimate λ̂(k = k⋆). As an example,
consider the estimation of the SCGF for k⋆ = 0.02. As discussed in
section 5.1.1, the minimum duration of the timeseries on which a
reliable direct estimate can be computed is Ttot = 106τc, so as to
avoid the linearization effect. By contrast, figure 5.5 illustrates that this
value can be approached—up to errors of roughly 10%— by the GKTL

algorithm with a computational cost 100 times lower.

Note 2. Thermodynamic integration
Let FTa be the time averaged drag over a duration Ta. Recall from page 92 the
following property of the SCGF:

EPk [FT] ≈
T→∞

λ′(k), (5.11)

where EPk [.] denotes the expectation value with respect to the biased path
measure resulting from the GKTL algorithm. The SCGF can therefore be written as

126 importance sampling large drag fluctuations with the gktl algorithm

an integral over previous runs for lower values of k. In particular, taking T = Ta
on can write

λ(k⋆) =
∫ k⋆

0

1
Nc

Nc

∑
j=1

F(j,k)
Ta

dk, (5.12)

where the expectation value EPk [FTa] is approximated as the empirical average

over the trajectories sampled by the algorithm. More precisely, F(j,k)
Ta

denotes the
time average over the whole trajectory j in a GKTL run with bias k. Provided
that one has performed several GKTL runs for values k ≤ k⋆ with a relatively
small spacing dk, equation (5.12) provides a less noisy estimator for the SCGF

at k = k⋆ [94, 103]. Note that this approach, referred to as thermodynamic
integration, is a common tool for computing thermodynamic quantities, such as
free energies, in molecular dynamics simulations [34].

5.1.2.3 How far can the GKTL algorithm go ? Limit of the GKTL estimate

In the previous discussion we concluded that the GKTL algorithm
leads to a better estimate of the SCGF with respect to a direct estimation
from a timeseries. However, it can be seen in figure 5.5 that the GKTL

estimate slightly departs from the reference estimate for k ≳ 0.015.
Figure 5.6a illustrates the GKTL estimate displayed in figure 5.5 on a
wider range of values of the bias k (continuous orange line). It shows
that, similarly with direct estimates from timeseries, the GKTL estimate
becomes linear as k in increased. Recall from chapter 4, equation (4.22)
that the derivative of the SCGF can be written as:

EPk [FT] ≈
T→∞

λ′(k) (5.13)

where FT denotes the time average over a timeseries of duration T
and EPk [FT] the expectation value of FT with respect to the biased
measure Pk sampled by the algorithm. From figure 5.6a there exists
a critical value of kc past which λ̂′(k) ≈ C, ∀k ≥ kc with C a constant
independent of k. As a result, the value of E[FT]Pk saturates as k is
increased: EPk [FT] ≈ C, ∀k ≥ kc. Such a behaviour could be explained
by the existence of an upper bound C to the values of FT. However,
this hypothesis is ruled out by a second GKTL experiment in which
the number of copies is increased to Nc = 1536. Figure 5.6a illustrates
that, for this experiment, the GKTL estimate of the SCGF also displays
linear tails. However, the corresponding slope has a different value.
Furthermore, the onset of linearity is attained for further values of
the bias k. This result suggests that the linear behaviour of the GKTL

estimates for high values of k is artificial: it is due to the algorithm,
instead of the physics of the flow.

Both estimates displayed in figure 5.6a have been computed from
100 independent GKTL runs at equally spaced values of the bias k in

5.1 efficient computation of the large deviation rate function 127

(a) GKTL estimate for λ(k) for different Nc

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

k

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

E
[F

T
a
] k

Nc = 1536

Nc = 256

(b)

Figure 5.6: (a) Estimation of the SCGF over a large range of values for the
bias k. The direct estimate (dashed) is only valid for k ≤ 0.02.
Past this value, its linear behaviour is an artefact resulting from
the finiteness of the timeseries. The continuous lines represent
two estimates of the SCGF using the GKTL algorithm with 256
copies and 1536 copies, respectively, other parameters being equal.
The total duration of the trajectories is Ta = 40τc, τ = τc/2
and ϵ = 0.002. both estimates result from the thermodynamic
integration of 100 GKTL runs for equally spaced values of the
bias k in the interval [0.005; 0.04]. One can see that both esti-
mates become linear as k is increased. (b) Average value of the
time-averaged drag over the Nc sampled trajectories, for each
GKTL run. The time average is computed over the whole trajec-
tories: F(j,k)

Ta
= 1

Ta

∫ Ta
0 f (j,k)

d (t)dt where { f (j,k⋆)
d (t)}0≤t≤Ta denotes

the drag timeseries for copy j of the GKTL run with k = k⋆. The
expectation value is approximated by an empirical mean over the
Nc trajectories, i.e. E[FTa]k ≈ 1

Nc
∑Nc

j=1 F(j,k)
Ta

. This approximation is
discussed in section 5.2.4 further below.

128 importance sampling large drag fluctuations with the gktl algorithm

the interval [0.005; 0.04]. The continuous lines result from a thermo-
dynamic integration based on those 100 runs. See note 2 for a dis-
cussion of thermodynamic integration. Figure 5.6b displays the value
of EPk [FT] as a function of k, where T is chosen as the total duration
of the trajectories, i.e. T = Ta. In the following we therefore use the
notation EPk [FTa]. It is displayed in figure 5.6b for each of the 100 inde-
pendent runs, for the two experiments with Nc = 256 and Nc = 1536,
respectively. For each run, the value of EPk [FTa] is approximated by
the empirical average of FTa over the Nc trajectories, see the caption
of figure 5.6b. As can be seen in figure 5.6b, the estimate of EPk [FTa]

fluctuate from one run to another, as each run is independent from
the other. However, it shows a clear tendency: for lower value of k, the
value of EPk [FTa] increases as a function of k. This is expected, as the
algorithm imposes a stronger selection, sampling higher values of the
averaged drag with a higher importance. By contrast, for higher values
of the bias k, figure 5.6b illustrates that the value of EPk [FTa] saturates
and fluctuates around a limit value independent of k. Moreover, this
limit value, which we called C in the above, depends on the number
of copies Nc.

To sum up, figure 5.6 suggests that, for a given GKTL experiment
with Nc and Ta, there exist a critical value of the bias kc = kc(Nc) past
which the amplitude if the averaged drag fluctuations sampled by
the algorithm saturates. Moreover, this limit amplitude depend on
the choice of the number of copies: C = C(Nc). The higher Nc, the
further the GKTL can go. We stress that this behaviour is systematic,
as opposed to statistical. Note that this limit amplitude C may also
bear dependence on the other parameters of the algorithm, such as
the duration Ta, the cloning period τ or the perturbation amplitude
ϵ. This dependence was not investigated in this work and is left to
further studies.

5.2 analysing gktl data

In the previous section, we applied the GKTL algorithm to the eval-
uation of the large deviation rate function describing the probability
of rare drag fluctuations on the square cylinder embedded in test flow
(2). By comparison with a direct evaluation of similar computational
cost, we illustrated that the GKTL algorithm leads to a far more efficient
estimation of the rate function. Large deviations rate functions, as well
as Scaled Cumulant Generating Functions and Probability Density
Functions are useful tools to describe the statistics of observables. In-
deed, they tell us how frequent a typical fluctuation can be expected
to be, or how unlikely is an extreme fluctuation with respect to typical
events. However, such statistical quantities do not provide insight
into the dynamics leading these fluctuations. Yet, understanding of the

5.2 analysing gktl data 129

physical mechanisms underlying extreme fluctuations in turbulent
flows is of just as much interest as the description of their statistics.
In this section we discuss the study of the dynamics behind extreme
drag fluctuations using the GKTL algorithm.

As described in 4, the GKTL algorithm relies on the effective simu-
lation of the underlying dynamical process. In the case of this work,
this corresponds to solving the Lattice Boltzmann Equation in the
computational domain, see section 2.1. In addition to the estimation
of the SCGF, it results in an ensemble of Nc simulations of the flow,
where Nc denotes the number of copies involved in the algorithm. In
principle, each one of these simulation correspond to the simulation of
an extreme event, that can be visualised and analysed like any other
numerical simulation of fluid flows. The GKTL algorithm therefore
appears like a formidable tool to investigate the physics of extremes
in turbulent flows.

5.2.1 Discontinuous and reconstructed trajectories

We now make an important remark. The algorithm does not directly
outputs the sampled trajectories corresponding to rare events. Instead,
it leads to discontinuous paths that result from the branchings resulting
from the cloning stages along the course of the algorithm. This aspect is
better understood through the visualisation of the algorithm presented
in figure 5.7.

Following a cloning stage, discarded copies—marked by a cross
in figure 5.7—continue their evolution through the next evolution
stage starting from the final state of another copy. In order to compute
expectation values over the original stationary PDF P0, based on the
biased sampling introduced by the algorithm, one must compute the
integral of the observable over the continuous trajectories effectively
sampled from Pk. This can be seen from equation (5.1), and will be
explained in more details in section 5.2.4 below. The continuous paths
are sketched by red lines with arrows in figure 5.7. In the following
we refer to the computation of the continuous trajectories from the
discontinuous paths as the reconstruction of trajectories. Continuous
trajectories are referred to as reconstructed trajectories. In section 5.2.2,
we give a precise definition of the reconstruction procedure, for any
observable of the dynamics.

Naturally, the reconstruction of the continuous trajectories is cru-
cial to the study of atypical trajectories sampled through the GKTL

algorithm. In practice, it can take many different forms, depending
on the data that is required. For instance, one could only need the
values of the average drag over the continuous trajectories, so as to
compute expectation values as will be explained in section 5.2.4. One

130 importance sampling large drag fluctuations with the gktl algorithm

(a) Green lines: discontinuous path for
copy 4

(b) Red lines: Continuous recon-
structed trajectories

Figure 5.7: Visualisation of the GKTL algorithm in terms of discontinuous
and continuous paths in phase space. The M iterations of the
evolution/cloning procedure are separated by vertical dashed
lines. Within a particular iteration m, continuous lines denote the
evolution of the four copies over [tm−1; tm]. Dots mark the cloning
stages. Therefore, to each iteration m correspond Nc = 4 partial
trajectories {X(j)(t)}tm−1≤t≤tm , 1 ≤ j ≤ 4. The starting point of the
algorithm is t0 = 0 from which copies evolve until t1 = τ. At
this point, copies j = 2 and j = 4 are discarded and branched on
copies j = 1 and j = 5 that result in two clones. This procedure
is repeated M − 1 = 5 times until the last evolution step from
t5 = 5τ to t6 = 6τ after which the algorithm terminates. Fig-
ure 5.7a displays the discontinuous paths for copy j = 4 as green
lines. Discontinuities result from the different cloning stages. In
contrast, figure 5.7b displays the continuous reconstructed trajec-
tories (red lines with arrows) for all four copies. As a consequence
of the various cloning stages, all reconstructed trajectories orig-
inate from j = 1 and strongly overlap over a significant part of
their history. To each trajectories, either discontinuous or continu-
ous, can be associated a timeseries for a given observable O. In
section 5.2.3, we discuss different methods of obtaining the recon-
structed trajectories in figure 5.7b from the discontinuous paths
shown in 5.7b. In a first method, the whole discontinuous paths
are written on disk. This approach is straightforward to imple-
ment but leads to unnecessary storage. For instance, one can see
in figure 5.7a that the whole branch originating from copy j = 5
is not involved in any of the reconstructed trajectories. A straight-
forward alternative is not to write the partial timeseries for clones
that are discarded. However, some timeseries will be written even
though they are irrelevant to the reconstructed trajectories. This
the case for example of the dashed partial timeseries coloured
in blue in both figures above. A solution for automatically erase
irrelevant partial timeseries is reference counting, see note 3. A third
method consists in saving the trajectories in memory along the
iterations, and overwrite partial trajectories for discarded copies.
In this way reconstruction is achieved on-the-fly.

5.2 analysing gktl data 131

could also want to compute the timeseries for an observable along the
reconstructed trajectories, for instance the drag acting on the obstacle,
or visualise the dynamics of the flow fields. In section 5.2.3 we discuss
several ways of performing the reconstruction in practice, depending
on the situation.

Finally, in section 5.2.5 we illustrate the efficiency of the GKTL algo-
rithm based on the sampling of trajectories leading to extreme drag
fluctuations. We show that, for equal computational costs, the GKTL

algorithm provides a greater number of realisations of extreme events
with respect to direct sampling. Moreover, we illustrate that it allows
for the study of the dynamics of extreme events that would be unreach-
able by a direct approach. This is complementary to the illustration
of the efficient evaluation of the large deviation rate function in sec-
tion 5.1.2. However, we point out that most trajectories overlap at early
times

5.2.2 Reconstruction of the continuous trajectories

In the following we denote by Ta = Mτ the total length of the
trajectories generated by the algorithm, with M the number of stages
and τ the cloning period. Recall that an iteration refers to the parallel
temporal evolution of all the copies over a duration τ, followed by a
cloning stage in which some are discarded an others duplicated. In
this section, we consider that the algorithm terminates by an evolution
stage, that is, the Mth cloning stage is not actually performed. By
omitting the last cloning step, we assure that trajectories at least differ
over the interval [Ta − τ; Ta], see figure 5.7. Please refer to chapter 4

for further details about the algorithm itself.
Let X(t) denote the state of the flow, corresponding to the solution

of the numerical model, at time t. In the case of the Lattice Boltzmann
Method, X(t) represents the ensemble of mesoscopic populations
at each node of the lattice, see chapter 2, section 2.1 for a discus-
sion of the Lattice Boltzmann Method. Furthermore, let us denote
by {X̃j(t)}0≤t≤Ta the discontinuous path for copy j over the course
of the algorithm. An example is given in figure 5.7a. In addition, let
{Xj(t)}0≤t≤Ta be the continuous trajectory corresponding to copy j. In
the following we label by i the iterations of the algorithms, so that
the cloning times are {ti}0≤i≤M−1 with ti = iτ. Note that we view the
t0 = 0 as a cloning time, even though no actual cloning occurs. Finally,
let us denote by p(i)j the parent of the copy j at iteration i. The parent
refers to the copy from which the copy j pulled its initial condition
following cloning stage i. As the algorithm terminates by an evolution
stage, there is actually no cloning stage M and we define p(M)

j = j.

132 importance sampling large drag fluctuations with the gktl algorithm

The reconstruction consists in tracing back the history of the copies
from the last evolution stage for i = M to the first, for i = 0. More
precisely, it reads

{Xj(t)}ti≤t≤ti+1 = {X̃
p(i)j

(t)}ti≤t≤ti+1 , 0 ≤ i ≤ M − 1, 1 ≤ j ≤ Nc

(5.14)

The reconstruction is illustrated in figure 5.7. In practice, we are not
interested in the states X themselves, but on physical observables
that depend on the current state visited by the flow. For instance,
the velocity field in the computational domain, or the drag acting
on an obstacle. In the following section we discuss several ways of
implementing the reconstruction, either on-the-fly over the course of
the algorithm, or as a post-processing step.

5.2.3 Implementation(s) of the reconstruction in practice

In this section we discuss several ways of performing the reconstruc-
tion (5.14), depending on the observable(s) of interest. Let O denote
a given observable. For instance it could be the drag acting on the
obstacle (O ≡ fd) or the velocity field on the computational domain:
O ≡ u. In the following we refer to a timeseries as any sequence of
measurements of O at equally spaced points in time, whether O is a
scalar or a scalar field.

5.2.3.1 Method 1: Writing the full discontinuous timeseries on disk

We begin by discussing the most straightforward way, implementation-
wise, of carrying out the reconstruction (5.14). It consist in a brute
force approach in which the observable of interest is written on disk
during the evolution stages. The reconstruction is performed as a
post-processing step, after the algorithm is terminated.

Recall from chapter 4 that the simulation of each copy during
the evolution stages is carried out by Np processes over which the
Nc copies are dispatched. In this first method the current value of
O along the evolution of each copy is periodically written on disk
by each process. This corresponds to directly writing O on disk
along the discontinuous paths, of which one example is given in
figure 5.7a. A second ingredient is to keep track of the label p(i)j
of the parent copy for each copy after the cloning stage. In this
way, the timeseries for O can be reconstructed by tracing backwards
the algorithm: first {O[Xj(t)]}T−τ≤t≤Ta = {O[X̃j(t)]}}Ta−τ≤t≤Ta , then
{O[Xj(t)]}T−2τ≤t≤Ta−τ = {O[X̃

p(i)j
(t)]}(t)}Ta−2τ≤t≤Ta−τ ... and so on.

Clearly, this method is not optimal, neither in terms of memory
management nor in terms of the time spent writing data on disk. In
addition, it entails that the whole Nc discontinuous timeseries for O

5.2 analysing gktl data 133

must be written on disk, leading to unnecessary data storage. Indeed,
only a small part of this data is actually involved in the reconstructed
timeseries. However, it has the advantage of being straightforward to
implement, as processes perform the same operations and do no not
have to communicate with one another. Furthermore, debugging is
facilitated as the reconstruction procedure is totally separated from
the algorithm itself. In the following we discuss a variant of the
reconstruction procedure in which the timeseries for O is temporarily
saved in memory before being written on disk. Note that in the case
where O is a observable consisting of a large number of real numbers,
such as the velocity field with a high spatial resolution, it might not
be possible to store the timeseries of the field in memory. In this case
there may be no choice but to write fields directly on disk. We stress
however that it is not the case of this work. For instance, a snapshot of
the velocity field for test flow (2) amounts to roughly 500KB of data.

5.2.3.2 Method 2: On-the-fly reconstruction

A different way of obtaining the reconstructed timeseries is to per-
form the reconstruction on-the-fly over the course of the algorithm. In
this approach the whole timeseries {Oj(t)}0≤t≤Ta is stored in memory.
As an example, consider the case say in which copy j is discarded
and replaced by a clone of copy l, following cloning at stage i. As a
consequence, the timeseries for copy j up to time ti = iτ, {Oj(t)}0≤t≤ti ,
is overwritten by the timeseries for copy l. The obvious advantage of
this method is that the GKTL directly yields the reconstructed time-
series, bypassing the need for an additional reconstruction step. It
also mitigates the number of disk writings as timeseries are stored in
memory and are written on disk only once the algorithm terminates.
However, it does not mitigate disk usage as, in the end, just as much
data is written on disk as in the case of the previous method. As
illustrated in figure 5.7, trajectories overlap over a significant part of
their history. As a result, most reconstructed timeseries will contain
the same data.

This method is actually most useful when computing the time
integral of O along the reconstructed trajectories, without having to
actually store the reconstructed timeseries for O. Along evolution
stage i, from ti to ti+1, the time-integral of O is updated as follows:∫ t

0
O[X̃(τ)]dτ =

∫ ti

0
O[X̃(τ)]dτ +

∫ t

ti

O[X̃(τ)]dτ (5.15)

If copy i is discarded and replaced by a clone of copy l, the final value
of the integral after stage j,

∫ ti
0 Oj[X̃(τ)]dτ, is overwritten by the value

for copy l.

134 importance sampling large drag fluctuations with the gktl algorithm

5.2.3.3 Method 3: Minimum file I/O

We finally present a third way of performing the reconstruction,
that minimises data storage and file Input/Output. Method 1 relies
on continuously writing the timeseries for O on disk over the course
of the algorithm and perform the reconstruction as a post-processing
step. In contrast, in method 2 the whole timeseries for O is saved in
memory and each time a copy is discarded from the ensemble, its
timeseries is overwritten.

Method 3 sits in between method 1 and 2. In this approach, the
partial timeseries {Oj(t)}0≤t≤ti is saved in memory along evolution
stage i. Following the corresponding cloning stage at iteration i, this
partial timeseries is written on disk only if copy j is not discarded.
Reconstruction is performed as a post-processing step, similarly to
method 1. Note that this indeed mitigates the amount of data written
on disk, but does not reduces it to its minimum. Indeed, when a copy
is discarded, its whole trajectory becomes irrelevant to the reconstruc-
tion procedure. This can be seen on figure 5.7: the partial timeseries
corresponding to the dashed blue lines are written on disk, although
they are not involved in any of the reconstructed trajectories, depicted
by red lines in figure 5.7b. A way to reduce the amount of disk usage
to its minimum is to employ reference counting, described in note 3.
Its use has been mentioned in the application of the AMS algorithm
(see chapter 6) to molecular dynamics simulations, facing the same
kind of memory management issue [5]. In this way the partial time-
series {O(j)(t)}0≤t≤ti that are no longer relevant to the reconstructed
timeseries are automatically erased from disk.

Note 3. Reference counting
In computer science, reference counting is a common approach to implementing
garbage collection [175], that is automatic reclaiming of memory allocated for
objects that are no longer needed by the program. The situation of the GKTL

algorithm is analogous, as one wants to automatically get rid of partial timeseries
irrelevant to the reconstructed timeseries. The GKTL algorithm can be visualised as
an array of N × Nc partial timeseries, illustrated in figure 5.7. A partial timeseries
is label by a couple (i, j), where i denotes the current iteration and j the index
of the copy. Reference counting consists in associating to each partial timeseries
the number of reconstructed trajectories in which it is involved, referred to as the
reference count. This can be done on the fly over the course of the algorithm.
Indeed, if a copy is discarded after cloning stage i, its history is traced back
through stages i − 1, i − 2.. following the corresponding parent labels p(i)j and
decrementing the reference count of the corresponding partial timeseries. If the
reference count of a partial timeseries reaches 0, it is erased.

5.2.3.4 Flexible reconstruction

In the previous paragraphs we presented three different methods
for computing the reconstructed timeseries for an observable O, on

5.2 analysing gktl data 135

the basis on the discontinuous path effectively computed by the algo-
rithm. As a matter of fact, one may be interested in several different
observables. Furthermore, the observables of interest must be chosen
before the algorithm is performed.

In order to gain flexibility in the post-processing, the algorithm can
be implemented in a way that the state X of each copy is written on
disk before each evolution stage. Because the dynamics are determin-
istic, the reconstruction procedure described above can be adapted to
re-simulate the dynamics, in a piece-wise manner, over the evolution
stages [Ta − τ; Ta], [Ta − 2τ; Ta − τ], [Ta − 3τ; Ta − 2τ], etc.. In this way
one is able to compute any observable along the reconstructed trajec-
tories, as a post-processing step. This can be useful, for instance, if
one is just interested in visualising the flow fields for only a subset
of trajectories. Consistently with method 3, states at iteration i can
be saved in memory and written only if the copy is not discarded.
Additionally, reference counting can be applied to erase irrelevant
states over the course of the algorithm.

5.2.4 Computation of expectation values over the reconstructed ensemble

Reconstructed trajectories are sampled according to the biased
measure Pk. Because the importance ratio between Pk and the original
dynamical measure P0 is known, statistics for P0 can be computed
from the knowledge of events sampled according to Pk.

Following (5.1), each sampled trajectory is attributed a weight

Z(k, Ta)e−k
∫ Ta

0 fd(x(t))dt

with Z(k, Ta) computed as (4.19) on page 92. For any dynamical ob-
servable depending on a trajectory of the model, OTa({X(t)}0≤t≤Ta),
an expectation value can be computed as an empirical average over
the reconstructed trajectories

EP0

[
OTa

(
{X(t)}0≤t≤Ta

)]
∼

Nc→∞

1
Nc

Nc

∑
n=1

OTa

(
{Xn(t)}0≤t≤Ta

)
e−k

∫ Ta
0 fd(Xn(t))dtZ(k, Ta),

(5.16)

where the {Xn}1≤n≤Nc are the reconstructed trajectories. Recall that
reconstructed trajectories are not independent, and therefore the pre-
vious result does not simply results from the law of large numbers.
However, it can be shown that (5.16) holds true as Nc → ∞ [117].

136 importance sampling large drag fluctuations with the gktl algorithm

(a) Illustration of importance sampling

(b) Independence of trajectories

Figure 5.8: (a): Importance sampling for the time-averaged drag acting on
the obstacle embedded in test flow (2). The drag is averaged
over T = 10τc. The GKTL algorithm is used with Nc = 16384
copies and Ta = T = 10τc for three increasing values of the
bias k. Additionally, the cloning period is τ = τc/2, resulting
in M = 20 iterations of the evolution/selection procedure. Note
that in this particular example the last cloning stage at t19 is not
performed. As k is increased, the sampled PDF is shifted towards
extreme values. Along the X-axis we display the fluctuation F′

T =

FT − FT , where the average FT and standard deviation σT have
been computed over a timeseries spanning 106τc. One can see that
the distribution for k = 0.03 is peaked for a particular value of the
fluctuation. This indicates that a significant part of the sampled
trajectories actually overlap over the major part if their history.
A a result, the average drag only differ by a small amount. (b):
Number of independent copies among the ensemble of sampled
trajectories as a function of the stage n. This illustrates that a
major part of the trajectories overlap. This effect is illustrated in a
different way in figure 5.7b.

5.2 analysing gktl data 137

5.2.5 Importance sampling extreme drag fluctuations

In section 5.1.2.2 we computed the rate function describing the
statistics of extreme fluctuations of the time-averaged drag. However,
it does not give information concerning the dynamics corresponding to
rare events. In this section we address the question of the applicability
of the GKTL algorithm to the investigation of the dynamical aspects of
extreme events in turbulent flows.

We first make an important remark. Recall that the GKTL algorithm
samples trajectories according to a biased path measure defined as

Pk ({x(t)}0<t<Ta) =
1

Z(k, Ta)
exp

(
k
∫ Ta

0
fd[x(t)]dt

)
P0 ({x(t)}0<t<Ta)

(5.17)

We stress that relation (5.17) is valid for any choice of Ta. Technically,
the large time limit Ta → ∞ is only required if one is interested in
computing the large deviation properties of the observable, such as
the SCGF or the rate function. In this section, we are only interested
in sampling trajectories {X(t)}0≤t≤Ta that exhibit large values of the
averaged drag FT, with T ≤ Ta. As a result, in the following we
consider durations that are shorter than the time Teq it takes for the
algorithm to yield a converged estimate of the SCGF. See figure 5.4 for
an illustration of this convergence.

During each cloning stage of the GKTL algorithm, several trajectories
are discarded from the ensemble and replaced by clones of other
trajectories. As a result, most trajectories in the reconstructed ensemble
are not independent, and overlap over a significant part of their history.
This effect is illustrated in figure 5.7b on page 130. In this context,
it is not clear if the reconstructed ensemble of trajectories sampled by
the GKTL algorithm is useful to the investigation of the dynamics of
rare events. Indeed, one has to check that the reconstructed ensemble
contains more independent events than the number of fluctuations
sampled in a long simulation of the flow with the same computational
cost.

We therefore performed three GKTL experiments, corresponding
to three different values of the bias k, all other parameters being
equal. On the one hand, as k is increased, we expect the algorithm
to sample rarer events. On the other hand, we expect the number of
independent trajectories to decrease. In order to illustrate that the
algorithm can be used with shorter durations Ta ≲ Teq, we set Ta =

10τc. Note that choosing smaller durations Ta may lead to difficulties.
Indeed, as pointed in the previous chapter, the cloning period τ should
be set to a value of the order of the correlation time, in order for
cloned trajectories to separate over time. As a consequence, choosing
a duration Ta too close to the correlation time would result in a

138 importance sampling large drag fluctuations with the gktl algorithm

small number of cloning stages, and therefore a poor sampling of
rare trajectories. In addition we consider the time-averaged drag FT

defined in (5.2) with T = Ta = 10τc. Therefore, equation (5.2) becomes

FT = FTa =
1
Ta

∫ Ta

0
fd(t)dt. (5.18)

In the following experiments we apply the GKTL the algorithm with a
high number of copies: we set Nc = 16384. Each experiment therefore
has a computational cost of Nc × Ta = O(105τc). Finally, we set the
cloning period τ = τc/2 and the perturbation amplitude ϵ = 0.02.

Figure 5.8a illustrates the amplitude of the fluctuations of FTa corre-
sponding to the sampled trajectories for each three experiments. More
precisely, it illustrates the estimate of the biased drag PDF ρk in each
case:

ρk(F) = EPk [δ(FTa [{x}0≤t≤Ta]− F)]

≈ 1
Nc

Nc

∑
j=1

δ(F(j)
Ta
[{x}0≤t≤Ta]− F). (5.19)

Moreover, figure 5.8a displays an estimate of the unbiased drag PDF

ρ0(F) = EP0 [δ(FTa − F)]. Note that this figure is analogous to figure 4.1
on page 86. One can see that, as k is increased, the biased PDF is shifted
towards extreme values. However, the experiment with k = 0.03 does
not seem to increase the sampling of rare event with respect to the
experiment with k = 0.025. Actually, the shape of the estimate of the bi-
ased PDF shows that the reconstructed trajectories concentrate around
a single value of the fluctuation F′

Ta
= FTa − FTa ≈ 5σTa , where FTa and

σTa denote the average and standard deviation of FTa , respectively. This
suggests a strong overlap of trajectories in the reconstructed ensemble,
which we address next.

Figure 5.8b illustrates the overlap of trajectories in the reconstructed
ensemble. Along the X-axis, we represent the M = Ta/τ iterations
of the evolution/selection procedure. For each iteration m we plot
the number of independent trajectories, i.e. the number of trajectories
that exhibit different paths {X(t)}(m−1)τ≤t≤mτ over the interval t ∈
[(m − 1)τ; mτ]. In practice we trace back the history of the trajectories
backward in time starting from the final time Ta = Mτ, in a way
very similar to the Method 1 presented in section 5.2.3. Figure 5.8b
illustrates that, at early times, the vast majority of the trajectories
in the reconstructed ensemble overlap. This is also illustrated, in a
different way, by the red trajectories in figure 5.7b. Say N trajectories
of the reconstructed ensemble overlap over the interval [0; mτ], with
1 ≤ m ≤ M. Among these N trajectories, only one trajectory j actually

5.2 analysing gktl data 139

Overlap σ 2σ 3σ 4σ 5σ

0% 759 258 32 5 0

25% 942 372 62 9 0

50% 1594 799 155 22 0

N(gauss)
Nc

2599.408 372.738 22.117 0.519 0.005

(a) k = 0.02

Overlap σ 2σ 3σ 4σ 5σ

0% 305 179 52 5 0

25% 451 310 144 39 4

50% 1019 834 521 198 27

N(gauss)
Nc

2599.408 372.738 22.117 0.519 0.005

(b) k = 0.025

Overlap σ 2σ 3σ 4σ 5σ

0% 100 80 33 8 1

25% 186 166 110 46 7

50% 539 510 391 205 36

N(gauss)
Nc

2599.408 372.738 22.117 0.519 0.005

(c) k = 0.03

Table 5.1: Number of independent trajectories corresponding to fluctuations
F′

Ta
≥ a with a=σ, 2σ... in the reconstructed ensemble, for the

three experiments k = 0.02, 0.025, 0.03. Parameters of the GKTL
experiments are Nc = 16384, Ta = 10τc, τ = τc/2 and ϵ = 0.02. In
each case we count as independent trajectories with an overlap of
0% (zero overlap), 25% and 50%, respectively. In addition, N(gauss)

Nc
is the average number of fluctuations F′

Ta
≥ a on can expect from

Nc realisations obtained from a direct sampling approach. This
number is based on the fact that the PDF of FTa is Gaussian. It is
defined in (5.20).

originates from t = 0. Indeed, the N − 1 others have been discarded
following the selection stage of a given iteration m̃ ≥ m, and replaced
by a clone of trajectory j over the interval [0; m̃τ]. In the following
we call fully independent trajectories the trajectories that do not overlap
at all over [0; Ta], i.e. trajectories that do not overlap over the first
period [0; τ]. From figure 5.8b one can see that the number of fully
independent trajectories is very small compared to the total number
of trajectories Nc.

In this context, can the GKTL yield more independent events than
a direct sampling based on a long simulation ? If yes, how much
more ? Table 5.1 displays the number of independent trajectories
that correspond to fluctuations F′

Ta
≥ a with a = σTa , 2σTa , 3σTa ..., for

140 importance sampling large drag fluctuations with the gktl algorithm

each of the three experiments. In each case, we count the number of
trajectories according to the allowed degree of overlap. For instance,
allowing a 25% overlap, we consider trajectories that overlap over
[0; Ta/4] as independent. In order to compare with a direct sampling
approach, we could perform a very long simulation of computational
cost Nc × Ta, divide it into Nc realisations FTa and count the number
of fluctuations F′

Ta
≥ a above a given threshold value a. However, we

found that the PDF describing the statistics of fluctuations F′
Ta

—with
Ta = 10τc— is very close to a Gaussian PDF. As a result, the expected
number of fluctuations F′

Ta
≥ a among Nc realisations is

N(gauss)
Nc

≈ Nc ×P(F′
Ta

≥ a) = Nc ×
1√

2πσTa

∫ ∞

a
e−x2/2σ2

Ta dx. (5.20)

Considering small fluctuations F′
Ta

≥ a with a = σ and a = 2σ, one can
see in table 5.1 that the number of sampled independent trajectories
actually decreases as k is increased. This results from the fact that the
overall number of independent trajectories decreases as k is increased,
as illustrated in figure 5.8b. More importantly, considering fluctuations
above 3σ, the GKTL experiments for k = 0.025 and k = 0.03 provide a
larger number of fluctuations than a direct sampling approach with
similar computational cost. For instance, table 5.1b shows that the
experiment with k = 0.025 provides 5 fully independent trajectories
corresponding to fluctuations F′

Ta
≥ 3σ. This is ten times more than

what can be expected from a direct sampling. Notice however how
drastic is the reduction of the number of independent trajectories as the
allowed degree of overlap is diminished. Allowing for a 50% overlap,
the reconstructed ensemble for the experiment k = 0.025 contains
roughly 200 independent trajectories corresponding to fluctuations
F′

Ta
≥ 3σ. Generally speaking, we observe in all three experiments that

the number of independent trajectories is very small compared to the
total number of trajectories Nc = 16384. For instance, table 5.1c shows
that, allowing a 50% overlap between independent trajectories, 521
trajectories can be used to study the dynamics leading to fluctuations
F′

Ta
≥ 3σ. This represents 521/Nc ≈ 3% of the overall computational

cost of the experiment. We stress that, in spite of this rather poor yield,
the GKTL still results in a larger amount of extreme fluctuations, with
respect to a direct sampling approach. However, there is clearly room
from improvement.

5.3 discussion

In this chapter, the use of the GKTL algorithm was illustrated in
two ways. First, the computation of the SCGF describing the large-time
large deviations of the averaged drag was presented. More precisely,
using the GKTL algorithm—following the implementation discussed
in the previous chapter—we were able to compute the large deviation

5.3 discussion 141

rate function describing the probability of observing rare drag force
fluctuations, far above the average drag level acting on the obstacle.
We showed in figure 5.5 that for a similar computational cost, the
GKTL algorithm allows for the estimation of the rate function over
a wide range of fluctuations, that could not be computed from a direct
sampling approach. However, we highlighted in figure 5.6b that the
computational gain from the GKTL is limited by the number of copies.
Indeed, we observed that, past a given value of k, the estimate of the
SCGF becomes linear. Furthermore figure 5.6b illustrates that, for two
different values of the number of copies, the slope of the linear tail
of the SCGF is different, and that statistical errors do not overlap. As
a result, we conclude that this linearization is an systematic artefact
resulting from the algorithm.

In a second part, we addressed the practicality of the GKTL algo-
rithm for the study of the dynamics corresponding to extreme fluctua-
tions of the drag force acting on the obstacle embedded in test flow
(2). As a matter of fact, the GKTL algorithm has seldom be used to
study the dynamical aspects of rare events, as the majority of previous
works using the algorithm mostly address the computation of statis-
tical quantities, such as large deviation rate functions. However, in
the context of the study of turbulent flows, the investigation of the
dynamics of rare events is particularly useful to gain insight into the
physical mechanisms leading to extreme fluctuations of the quantity
of interest. We performed three GKTL experiments for different values
of the bias k, with a high number of copies. First of all, we illustrated
that the GKTL algorithm does sample a higher number of extreme
events than a direct approach of similar computational cost. However,
because trajectories in reconstructed ensemble overlap, the number
of actually independent trajectories sampled by the algorithm is very
low with respect to the total number of trajectories Nc. As a result, a
very high number of copies is required to sample extreme events. This
requirement can potentially hinder the application of the GKTL to the
simulation of more computationally demanding flows.

In a way of conclusion, we find that the GKTL algorithm significantly
increase the sampling of extreme fluctuations of the drag force acting
on the obstacle immersed in test flow (2) . However, we observe
that, for a fixed number of copies, there is a critical value of the
bias k past which the majority of trajectories in the reconstructed
ensemble overlap over a significant part of their history. Furthermore,
the experiments discussed in this chapter suggest that a rather large
number of copies is required to sample extremes using the GKTL

algorithm. Is is not clear whether similar sampling performance can
be achieved by performing several independent experiments with a
reduced number of copies.

142 importance sampling large drag fluctuations with the gktl algorithm

Generally speaking, we observe that the efficiency of the sampling
of extreme drag fluctuations is limited in a way that have not been
reported in previous applications such as [57, 130]. The precise reasons
for these limitations is not clear yet.

In this work we considered the flow past a square cylinder in
channel. Notice that this flow is convective, i.e. the fluid structures
responsible for the extreme drag fluctuations are advected by a mean
flow. In our application of the GKTL algorithm we based the sampling
on the value of the drag acting on the square, that is depending on the
flow configuration in the vicinity of the obstacle. However, because
fluid structures are advected downstream, a high value of the drag
does not last more than a few turnover times. In other words, a high
value of the drag at a given instant t cannot be considered a precursor
of high drag fluctuations in the future. By contrast, consider the case
of an OU process defined as

ẋ(t) = −x(t) +
√

2η(t), (5.21)

for which we showed in chapter 4 that the GKTL algorithm yields
significant efficiency. Starting from a rare value x⋆, a copy can actually
persist in taking rare values in the vicinity of x⋆ with suitable realisa-
tions of the noise η(t). Trajectories with such realisations of the noise
can be sampled by the GKTL algorithm.

By contrast, the phenomenology of the fluctuations of the drag
acting on the obstacle immersed in test flow (2) is different. Indeed,
there is not such idea of persistence. Starting from a state corresponding
to an unusually large value of the drag f ⋆d , the system will rapidly
relax towards common drag values, as the fluid structures responsible
for the fluctuations will be swept by the mean flow.

These remarks pave the way to further improvement of the GKTL

algorithm. For instance, an alternative approach could rely on a sam-
pling based on the occurrence of flow structures at a given distance of
the obstacle.

6
T H E A D A P T I V E M U LT I L E V E L S P L I T T I N G F O R T H E
S I M U L AT I O N O F E X T R E M E D R A G F L U C T UAT I O N S

So far in this thesis, rare events leading to extreme values for the
drag around the obstacle have been sampled by means of importance
sampling. It has been implemented at the level of the trajectories, in
order to favour the occurrence of paths associated with an atypically
high (or low) value of the average drag on the obstacle over the
trajectory. The choice of the importance ratio was inspired from large
deviation theory related to the asymptotics for the probability of the
large-time averaged drag. We illustrated that the resulting biased
measure could be numerically sampled using a population dynamics
algorithm. Note that this case is rather exceptional: in general it is very
difficult to sample numerically a good importance ratio that favours
the rare events of interest.

The GKTL algorithm [57, 120] allows for the estimation of the statis-
tics of extreme fluctuations of an averaged observable of the dynamics,
thanks to large-deviation theory. Furthermore, the sampled trajecto-
ries also yield the detailed dynamics of the system leading to the
large fluctuations of the observable. In addition to fluctuations of the
time-averaged drag, fluctuations of the instantaneous drag certainly
are of interest. That is, we would like to numerically sample flow
trajectories over which the drag acting on the obstacle goes beyond a
given threshold. However, there is no general result for the asymptotic
form of the probability for the instantaneous drag. In this chapter
we introduce the Adaptive Multilevel Splitting (AMS), a rare event
sampling method that is not restricted to time-averaged observables.

An alternative approach to importance sampling is multilevel split-
ting. It does not rely on sampling a modified distribution, but instead
in decomposing a rare event into a sequence of consecutive events.
As such, intermediate events are much less rare, conditioned on the
realisation of the previous events in the sequence.

To clarify this idea, let us consider the example in figure 6.1. Let Xt

be a Markovian R-valued stochastic process with typical value x0, and
a ≥ 0 a given threshold for which a fluctuation X ≥ a is very rare. Say
we are interested in computing the probability q = Px0(X ≥ a) that
the random process is larger than a, starting from the initial condition
x0. A multilevel splitting approach consists in decomposing the event
X ≥ a into a sequence of J events X ≥ Qj with

x0 = Q1 < Q2 < ... < QJ−1 < QJ = a

143

144 the AMS for the simulation of extreme drag fluctuations

Figure 6.1: Illustration of the multilevel splitting strategy. From initial condi-
tion x0, there is a very little probability that the process Xt will
reach the level a before falling back to the typical region around
x0. A straightforward way of computing such a probability is to
compute many realisations and count how many succeed to reach
a. Naturally, as the event X ≥ a is very rare, this would require
a tremendous amount of realisations. Instead, splitting methods
suggest to decompose the fluctuation into a finite number of in-
termediate fluctuations. First X ≥ Q1, then X ≥ Q2|X ≥ Q1 and
finally X ≥ Q3|X ≥ Q2, where A|B denote the realisation of A
conditioned on the realisation of B. In this way, each intermediate
event is much more likely to occur and its probability easier to
compute. Generally, the process is duplicated upon reaching a
given level Qi. The choice of the levels and the number of replicas
depends on the specific splitting method in use.

and to compute p as

P(X ≥ a) = P(X ≥ Q1)
J−1

∏
j=1

P(X ≥ Qj+1|X ≥ Qj) (6.1)

In this way, each intermediate conditional probability is expected to be
much greater than the target probability q = P(X ≥ a). The splitting
approach is sketched in figure 6.1. Similarly to the GKTL algorithm, the
numerical computation of each conditional probabilities relies on the
simulation of an ensemble of copies of system. Copies that successfully
reach a given threshold are duplicated, while the others are discarded
from the ensemble.

The original idea of splitting can be traced back to Kahn and
Harris in 1951 [73]. It was somewhat forgotten until the 90s when it
underwent a revival initiated by the publication of the restart method,
to compute probabilities of failure in communication systems [171–
173]. The main incentive for the application of splitting methods in this
field was the apparent simplicity compared to importance sampling,
for which it often proves difficult to sample a modified probability.
The multilevel splitting strategy was first studied theoretically, in a
simplified framework, by Glasserman et al [60, 61] and a few years
later by Lagnoux [95]. Both works result in expressions for the variance
of the estimator for the target probability depending on the choice

the AMS for the simulation of extreme drag fluctuations 145

of the thresholds {Qj}1≤j≤J , and the number of duplicates that are
spawned at each steps.

However, the biggest drawback of multilevel splitting is that good
knowledge of the system is required to set the thresholds and the
number of duplicates in order to reduce the variance. In its original
form, multilevel splitting is therefore unsuitable for complex systems,
for which analytical computations cannot be carried out. In response
to this, Cerou and Guyader proposed a splitting algorithm [27] in
which the thresholds are not set beforehand, but rather set in an
adaptive manner over the course of the algorithm. As a consequence,
the method is referred to as Adaptive Multilevel Splitting (AMS) and
is now the state-of-the-art approach for rare event sampling by means
of splitting.

The objective of the work presented in this chapter is to assess the
efficiency and practicality of the AMS for rare event sampling in the
context of turbulent flows. More precisely, we address the sampling
of trajectories resulting in extreme fluctuations of the instantaneous
drag fd acting on an obstacle surrounded by a turbulent flow. In fact,
we will use a modified version of the AMS: the Trajectory Adaptive
Multilevel Splitting (TAMS). We developed this variant in order to
compute the probability that a trajectory of fixed duration results in
a observable of the dynamics going beyond a given level. As will be
discussed in chapter 7, this probability is useful to compute return
times of rare events, that is the typical timescale at which they occur.
A return time is a very useful quantity for applications.

In this chapter we do not compute return times but rather apply the
TAMS with the aim of generating rare trajectories of the flow resulting
in a very large drag. This study will be based in test flow (2) presented
in chapter 2.

The structure of this chapter is as follows. First, the AMS is presented
in section 6.1. We outline the algorithm and describe the main theoret-
ical results concerning the resulting estimator for the probability of
the rare event of interest. The TAMS is then discussed in section 6.2.1.
We first give a practical outline of the algorithm in section 6.2.1, before
we highlight its connection with the classical AMS in section 6.2.2.
The TAMS is illustrated on a simple on case in section 6.3. We show
that for a one-dimensional stochastic process the algorithm leads to
a tremendous improvement of the sampling of rare fluctuations. In
section 6.4, we present the application of the TAMS to the sampling of
extreme drag fluctuations in test flow (2). We show that the sampling
suffers from a naive definition of the score function, that quantifies
the performance of the replicas with respect to the realisation of the
fluctuation.

146 the AMS for the simulation of extreme drag fluctuations

6.1 the AMS algorithm

The Adaptive Multilevel Splitting (AMS) algorithm has originally
been designed [27] to efficiently and accurately estimate probabilities
of rare events of the type Px0,t0(τB < τA) ∈ (0, 1): the probability that
a Markov process

(
Xt
)

t≥t0
, initialised with Xt0 = x0, hits a set B before

hitting a set A (with A ∩ B = ∅), where τC = inf {t > t0; Xt ∈ C} is
the hitting time of a set C. In typical applications sets A and B are
metastable states, from which the dynamics can transition to the other
one under the effect of random perturbations.

In addition to the sets A and B, a crucial ingredient of the AMS

algorithm is a score function ξ that quantifies the distance from a state
of the system to either A or B. In many application, it is designed so
that ξ(x) = 0 if x ∈ A and ξ(x) = 1 if x ∈ B.

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

Figure 6.2: Illustration of an iteration of the AMS algorithm. In this sketch,
three trajectories are computed from the initial condition x located
within the basin of attraction of A. They are computed until they
either reach B or fall to A. The levels {Q}1≤i≤3 correspond to the
maximum value of the score function ξ(x) over the corresponding
trajectory. They quantify how close each trajectory got from B.
Having the lowest level among the ensemble, trajectory 1 (dashed)
is discarded from the ensemble of trajectories. Trajectory 2 is then
randomly selected and copied until it reaches the maximum of 1.
This point is referred to as the branching point and is represented
by a red dot in the figure. From there, dynamics are integrated
until it either reach A or B.

The AMS algorithm is illustrated in figure 6.2 and can be outlined as
follows. First, Nc trajectories are simulated starting from x = x0 with
x0 located in the basin of attraction of A. Each trajectory is computed
independently from the others until it either reaches B or falls back to
A. Next, the performance of the trajectories is assessed by computing
their level Qn, that is the maximum of the score function over the

6.1 the AMS algorithm 147

trajectory, see figure 6.2. Then, we compute the lowest level Q⋆ among
the trajectories:

Q⋆ = min
1≤1≤Nc

Qn (6.2)

The corresponding trajectory is discarded from the ensemble. It can be
seen as the copy that went the least far away from A. Then, a trajectory
is uniformly chosen among the Nc − 1 remaining and duplicated
until the point where it goes beyond Q. This is referred to as the
branching point and is identified by a red dot in figure 6.2. In practice
the discarded trajectory is overwritten by the selected trajectory until it
reaches Q. From that point on, it is freely simulated until it reaches B
or falls back to A. This procedure is referred to as a selection-mutation
step.

In typical AMS applications, it is repeated until the Nc trajecto-
ries reach B. If it is repeated J times, the AMS estimator q̂ for q =

Px0,t0(τB < τA) is [27]

q̂Nc =

(
1 − 1

Nc

)J

(6.3)

One of the main properties of the AMS algorithm is the following
unbiasedness result. For every Nc, for every score function ξ, p̂Nc is an
unbiased estimator of q:

E[p̂Nc] = p. (6.4)

Thus only the statistical error Var(p̂Nc) depends on the choice of Nc.
For a proof, as well as more general statements and a discussion
on the influence of the time discretisation of the Markov dynamics,
see [17, 18]. This result has an important practical consequence [17]
: instead of performing a single AMS experiment with M copies, one
can perform K independent realisations with Nc = M/K copies and
compute the resulting estimator as an empirical mean over of the
realisations. Because their are independent, the K realisations can be
performed in parallel. Additionally, the choice of the score function can
be shown to have an important impact on the statistical error, see [17,
141]. Moreover, it has been proved, in different contexts, see [19, 28],
that q̂Nc is a consistent estimator of q: the convergence q̂Nc →

Nc→∞
q

holds true, in probability. More precisely, it is proved in [28], that the
estimator q̂Nc satisfies a Central Limit Theorem,

√
Nc
(
q̂Nc − q

)
→

Nc→∞
N (0, σ2(ξ, q)), (6.5)

148 the AMS for the simulation of extreme drag fluctuations

with an asymptotic variance σ2(ξ, q) ∈ [−q2 ln q, 2q(1 − q)]. The mini-
mal variance −q2 ln q is obtained when choosing

ξ(x) = ξ(x) ≡ Px,t0(τB < τA). (6.6)

The optimal score function ξ, is referred to as the committor function.
In practice, it is of course not known, as it is what the algorithm aims
at estimating: p = ξ(x0). Nevertheless, a crucial point to implement
the AMS algorithm is to choose a score function that provides a good
approximation of the committor.

The AMS was first applied in the probability and statistical physics
communities to rather simple systems, the subject of investigation
being the algorithm itself more than the dynamics[17, 27, 141]. In 2015,
the AMS was applied to compute reactive trajectories of the stochastic
1D Allen-Cahn equations, showing that the AMS is able to provide
good results for stochastic dynamics with a large number of degrees
of freedom [139]. Recently, the AMS was introduced in the fields of
biophysics and biochemistry. It was coupled with Molecular Dynam-
ics (MD) simulations and was reported to yield satisfying results both
for a simple test case [5] and the simulation of a more complex bio-
chemical process: the dissociation of a protein-ligand complex [161].
In fluid mechanics, the AMS was used to investigate multi-stability
in stochastic models of transitional wall flows [138]. The common
point between these works is that they all aim at computing transition
pathways between meta-stable states. Here we are instead interested
in computing the probability that a trajectory with a fixed duration
Ta goes beyond a given level. This is motivated by the computation
of return times, discussed in chapter 7. To do so, we introduce a
modified AMS algorithm, called the Trajectory Adaptive Multilevel
Splitting (TAMS) algorithm, presented next.

6.2 the Trajectory Adaptive Multilevel Splitting algo-
rithm

In the previous section, we presented the AMS algorithm. It in-
troduces a modified sampling based on the splitting of trajectories
according to a score function that quantifies the performance of the tra-
jectories with respect to realisation of a rare event. The AMS eventually
yields the probability that trajectory reaches a target set B before a set
A, which we denoted by P(τB < τA). Additionally, it yields an ensem-
ble of trajectories that effectively reach the target B. Note that these
trajectories have different durations. The AMS was originally designed
in order to compute rare transition rates between metastable states.
In the following we are interested in rare events in which a given
observable reaches a threshold a. In this context a natural quantity
is the probability P(τB < Ta) that the fluctuation is achieved before

6.2 the tams algorithm 149

a finite time Ta. For instance it is useful to compute return times of
rare events, that is the average waiting time for a the realisation of
a given event. In chapter 7, we show that return times can be easily
deduced from the probability P(τB < Ta). However, this probability
is different from the one that is computed by the AMS, and additional
computations are required to deduce P(τB < Ta) from P(τB < τA).

In this section we propose a novel version of the AMS, that yields
directly the probability P(τB < Ta). We call this variant the Trajectory
Adaptive Multilevel Splitting (TAMS). It is a special case of the AMS.
In the TAMS, trajectories all have the same duration Ta. This greatly
simplifies the algorithm as well as its application.

We start by outlining the algorithm in section 6.2.1. Then, in sec-
tion 6.2.2 we discuss its connection with the original AMS algorithm.
We show that the TAMS can be expressed within the original AMS

framework by defining the sets A and B for an auxiliary process. This
allows the TAMS to directly benefit from the mathematical properties
of the AMS presented in section 6.1.

6.2.1 Description of the TAMS algorithm

We consider a continuous time Markov model x(t) able to generate
trajectories. It can be either a stochastic process, for instance a diffusion,
or a chaotic deterministic dynamical system. Let us now describe the
algorithmic procedure.

We start by simulating Nc independent trajectories, denoted by
{x(0)n (t)}1≤n≤Nc , for a fixed duration Ta. To each of these trajectories,
we associate a weight w0 = 1. The iteration j ≥ 1 of the algorithm starts
with the evaluation of the performance of all replicas {x(j−1)

n (t)}1≤n≤Nc

at the previous iteration j − 1, measured by the maximum of the score
function ξ over the whole trajectory:

Q(j)
n = sup

0≤t≤Ta

ξ(t, x(j−1)
n (t)). (6.7)

We select the trajectories corresponding to the lowest Q(j)
n : let us

denote Q⋆
j = min1≤n≤Nc Q

(j)
n and n⋆

j,1, . . . , n⋆
j,ℓj

the indices such that:

Q(j)
n⋆

j,1
= · · · = Q(j)

n⋆
j,ℓj

= Q⋆
j . (6.8)

One might expect intuitively that ℓj = 1. This is not necessarily the
case, as explained in [17]: because of the discretisation of the dynamical
equations in the numerical model, two or more trajectories may yield
the same level Q(j)

n . This effect is illustrated in figure 6.4.
We then proceed to the mutation step. For each trajectory x(j−1)

n⋆
j,ℓ

(1 ≤ ℓ ≤ ℓj), we choose a trajectory x(j−1)
nℓ

(nℓ ̸= nj,1, . . . nj,ℓj) randomly

150 the AMS for the simulation of extreme drag fluctuations

Figure 6.3: Illustration of one selection-mutation step in the AMS algorithm
for the computation of the probability that an observable A :
Rd → R reaches values larger than Q over a trajectory of duration
Ta.

among the Nc − ℓj remaining trajectories, and define the time tj,ℓ

defined as the smallest time t such that ξ(t, x(j−1)
nℓ

(t)) > Q⋆
j . Finally,

we define the new replica x(j)
n⋆

j,ℓ
by copying the trajectory x(j−1)

nℓ
from

t0 to tj,ℓ, and simulating the rest of the trajectory, from tj,ℓ to Ta. For
a Markov process, for instance a diffusion, a new realisation of the
noise is used in order to simulate the new trajectory from tj to Ta. For
a chaotic deterministic system, a small amplitude noise is added to
the initial condition at time tj. The other trajectories are not modified:

x(j)
n = x(j−1)

n for n ̸= n⋆
j,1, . . . , n⋆

j,ℓ. The selection-mutation process is

illustrated on figure 6.3. We associate to the trajectories x(j)
n forming

the ensemble at step j the weight wj given by [17, 27, 29]:

wj =
j

∏
i=1

(
1 − ℓi

Nc

)
=

(
1 − ℓj

Nc

)
wj−1. (6.9)

Note that we could mutate more replicas at each step by selecting an
arbitrary number of levels Q(j)

n , instead of just the minimum Q⋆
j as

described above. The particular case described above is sometimes
referred to as the last particle method [151].

The selection-mutation process is iterated J times (two possible defi-
nitions of J are given below). The number of resampled trajectories is
given by J̃ = ∑J

j=1 ℓj. Note that J̃ ≥ J, but the two need not necessarily
coincide. In the end, the algorithm generates M = Nc + J̃ trajecto-
ries, given explicitly by the set {x(0)n }1≤n≤Nc ∪ {x(j)

n⋆
j,ℓ
}1≤ℓ≤ℓj,1≤j≤J , or

equivalently, the set {x(J)
n }1≤n≤Nc ∪ {x(j−1)

n⋆
j,ℓ

}1≤ℓ≤ℓj,1≤j≤J . Each trajec-

tory has an associated weight, given by the iteration until which it was

6.2 the tams algorithm 151

a member of the ensemble: wJ for the final trajectories {x(J)
n }1≤n≤Nc ,

and wj−1 for the trajectories {x(j−1)
n⋆

j,ℓ
}1≤ℓ≤ℓj,1≤j≤J mutated at iteration

1 ≤ j ≤ J. Let us relabel these trajectories and their associated weights
as {(xm, wm)}1≤m≤M. Normalising the weight with W = ∑M

m=1 wm, we
obtain the probabilities pm = wm/W associated with the trajectories.

Note that instead of just one realisation of the algorithm, one may
carry out K independent realisations, thus yielding M = ∑K

k=1(N(k)
c +

J̃k) trajectories with the associated weights, where N(k)
c and J̃k denote

the number of initial trajectories and resampled trajectories for realisa-
tion k, respectively. The probabilities for the trajectories are computed
following equation (6.3).

In addition, for any observable O[x(t)], we can define an estimator
based on our sampling of trajectory space:

ÔM =
M

∑
m=1

pmO[xm(t)]. (6.10)

6.2.1.1 Computational cost of an TAMS run

The number of iterations J can be set to be a prescribed integer.
In that case, the stopping criterion for the algorithm is simply j = J.
Alternatively, it can be a random number such that all the trajectories
in the ensemble reach a threshold level Q. The stopping criterion is
then Q(j)

n > Q for all 1 ≤ n ≤ Nc. The latter case is more common in
existing AMS implementations, however both cases are covered by the
general framework developed in [17], and give consistent results. The
two possible choices are further discussed in the case of the application
of the TAMS for the computation of return times in chapter 7.

Let us now estimate the computational cost of a TAMS run. The
number of trajectories generated by a TAMS run is M = Nc + J̃, as
pointed out above. Each resampled trajectory is not simulated over
the whole duration Ta, but over τ < Ta, with τ a random number
depending on the branching point. We thus define γ ∈ [0, 1] so that
E[τ] = γTa is the average duration of the resampled part of a mutated
trajectory. Performing K identical and independent realisations of the
TAMS algorithm, the average computational cost associated with a
given experiment is then approximately

C = K × (Nc + γJ)Ta. (6.11)

6.2.1.2 Extinction

As mentioned in [17], and illustrated in figure 6.4, several trajecto-
ries can yield the same level, due to the discreteness of the numerical
model. As a matter of fact, both the parent and the resampled tra-
jectory are likely to end up with the same level as the threshold Q⋆

j
increases. Indeed, for high thresholds, the resampled trajectory is very

152 the AMS for the simulation of extreme drag fluctuations

Figure 6.4: Sketch of a resampling step resulting in two trajectories having
the same level. At iteration j, the resampled trajectory is overwrit-
ten by the parent trajectory until the first point for which it is
above the threshold Q⋆

j . From this point, the resampled trajectory
quickly falls back below the threshold. However, from the point
of view of the discretised dynamics, the blue and red trajectories
now have the same level. Both must therefore be resampled at
iteration j + 1.

likely to fall back right after the branching point. If this branching
point is the maximum of the parent trajectory, as it is likely the case
for high values of Q⋆

j , then both trajectories must be resampled at the
iteration j + 1. This situation is illustrated in figure 6.4. If the threshold
Q⋆

j is very high, there is a good chance that the resampling of the
two trajectories will fail in the same way, resulting in the resampling
of three trajectories, and so on and so forth. In the event that the
resampling fails Nc times, no parent trajectory is available, and the
algorithm stops. This is referred to as extinction. The exact critical
value of Q⋆

j for which extinction happens varies from one realisation
of the TAMS to the other. However, its order of magnitude depends on
the number of trajectories as well as their duration.

6.2.2 Connection with the AMS for time-dependent observables

In this section, we describe the connection between the Trajectory
Adaptive Multilevel Splitting (TAMS) algorithm and the classical AMS

algorithm. The aim is to deduce the mathematical properties of the
TAMS algorithm from the known ones for the AMS algorithm. For in-
stance, a conclusion is that the optimal score function is the committor
function (6.14).

As stated in section 6.1, the Adaptive Multilevel Splitting (AMS)
algorithm was originally designed [27] to estimate probabilities of rare
events of the form Px0,t0(τB < τA). In this section, we show how the
problem of estimating the probability that the maximum value of a
time-dependent observable over a trajectory is higher than a given
threshold falls within the scope of the AMS algorithm. In this way, the

6.2 the tams algorithm 153

TAMS algorithm directly benefits from the theoretical properties of the
AMS algorithm outlined in section 6.1.

We consider a Rd-valued Markov process
(
Xt
)

t∈[0,Ta]
, with contin-

uous trajectories, for some fixed final time Ta, and a time-dependent
observable O[X, t]: this is a time-dependent functional of the process
X, taking value in R. It may be defined for times belonging to a sub-
set of [0, Ta], but for simplicity we shall still denote Ta the final time.
The aim is to estimate the probability that the observable reaches a
threshold a at some point of the trajectory, i.e.

q(a) = Px0,0

[
max

0≤t≤Ta
O[X, t] > a

]
. (6.12)

The notation Px0,t0 refers to the probability over realisations of the
Markov process with initial condition Xt0 = x0. The AMS algorithm
provides an estimator q̂(a) for this quantity. Indeed, the event{

max
0≤t≤Ta

O[X, t] > a
}

can be identified with the event {τB < τA} for an auxiliary Markov
process Yt, with an appropriate definition of the sets A and B, as
follows:

Yt = (t, O[X, t]) ∈ [0, Ta]× R,

A = {(Ta, z); z ≤ a} ,

B = {(t, z); t ∈ [0, Ta], z > a} .

(6.13)

Note that Y is not necessarily a time-homogeneous process. In
section 6.2.1, we described the TAMS algorithm that gives a procedure
to sample the process Y to provide a good estimate of q(a), based on
a score function ξ, which measures the distance between A and B (in
many implementations of the AMS, ξ(∂A) = 0 and ξ(∂B) = 1). In the
specific case of the TAMS algorithm, the optimal score function (the
committor P[τB < τA]) depends on time and takes the form:

ξ̄(t, x; Ta, a) = Px,t

[
max

t≤s≤Ta
O[X, s] > a

]
, (6.14)

The corresponding estimator q̂(a) will be very useful to compute
return times of rare events, and is described in chapter 7, section 7.3.1.

It then follows from the above discussion that the convergence
properties of the TAMS algorithm are a direct consequence of the
known results for the AMS algorithm, described in section 6.1.

154 the AMS for the simulation of extreme drag fluctuations

6.3 application of the TAMS to the Ornstein–Ulhenbeck

process

In the previous section, we introduced a modified version of the
Adaptive Multilevel Splitting (AMS) algorithm, referred to as the Tra-
jectory Adaptive Multilevel Splitting (TAMS) algorithm. Its definition
is motivated by the estimation of probabilities of trajectories with a
fixed duration Ta, from which return times of extreme fluctuations can
easily be deduced. The computation of return times is discussed in
chapter 7.

In this section, we illustrate the TAMS algorithm by addressing the
sampling of extreme fluctuations of a random variable x following an
Ornstein–Ulhenbeck (OU) process:

ẋ(t) = −αx(t) +
√

2ϵη(t) (6.15)

where α and ϵ are numeric constants and η a Gaussian white noise.
The Probability Density Function (PDF) describing the fluctuations of x
can be shown to be Gaussian, with a standard deviation σ =

√
ϵ/α. In

this case, using trajectories of length Ta, the TAMS algorithm ultimately
yields the probability that x reaches a threshold a at some point of the
trajectory:

q(a) = Px0

[
max

0≤t≤Ta
x(t) > a

]
(6.16)

where Px0 indicates the probability over realisations of the OU process
with initial condition Xt0 = x0. In the following x0 is always drawn
from the stationary distribution of the process. Furthermore, the TAMS

also yields an ensemble of M = Nc + J̃ trajectories where Nc in the
number of initial trajectories and J̃ the number of resampled trajec-
tories. Recall that the last Nc resampled trajectories all correspond to
fluctuations x > a. We choose the score function ξ as the observable
itself: ξ ≡ x. This is motivated by the fact that the dynamics is one-
dimensional. See appendix D for further discussion of the choice of
the score function. In the following we show that the TAMS is capable
of sampling very rare trajectories with a computational cost much
lower than the one required by a direct sapling approach. To do so, we
discuss the computational cost associated with the sampling of fluctu-
ations of a given amplitude with the TAMS algorithm. We compare it
with the typical return time of such a fluctuation and illustrate that
the computational gain induced by the TAMS with respect to direct
sampling grows rapidly with the amplitude of the fluctuation. We
then illustrate the estimation of the probability q(a) and show that
the TAMS algorithm is capable of computing accurate estimates of the
probability for very rare fluctuations.

6.3 application of the TAMS to the Ornstein–Ulhenbeck process 155

6.3.1 Efficient sampling of very rare trajectories

The TAMS is described by two parameters: the number of initial
trajectories Nc and their duration Ta. As mentioned in section 6.1, the
AMS estimator for the probability q(a) is unbiased, i.e., E[q̂(a)] = q(a).
As a consequence, it was suggested in [17] that a good practice is to
use a relatively low number of initial trajectories, and perform several
independent realisations of the algorithm. In the following we set
Nc = 32.

The duration of the trajectories Ta must be set larger than the corre-
lation time τc of the process, so that an excursion far from the typical
value has sufficient time to occur. On the other hand, setting Ta ≫ τc

may not provide a significant advantage. Indeed, resampling long
trajectories can lead to new fluctuations, however decorrelated from
the one the resampling is based on. These fluctuations would therefore
occur independently from the TAMS, a situation that is tantamount to
direct sampling. In the following we set Ta = 5τc.

The efficiency of the TAMS algorithm is analysed as follows. To
each iteration j of the algorithm, we associate a computational cost Cj
corresponding to the cumulative duration of the resampled trajectories
for iterations 1 ≤ l ≤ j. It reads

Cj = (Nc +
j

∑
l=1

lj

∑
m=1

αlm)× Ta (6.17)

where lj is the number of resampled trajectories at iteration j and
αlmTa is the duration over which the resampled trajectory is effectively
simulated. Recall that for 0 ≤ t ≤ αlmTa, it is simply copied from
its parent trajectory. The computational cost Cj corresponds the the
overall computational effort spent computing the dynamics up to
iteration j.

Following the notations of section 6.2.1, let Q⋆
j be the level at itera-

tion j, that is the maximum value of x(t) over the selected trajectory be-
fore it is resampled. Recall that, by definition, Q(j)

n ≥ Q⋆
j , 1 ≤ n ≤ Nc,

where Q(j)
n is the maximum of x(t) over the trajectory n at iteration j.

At iteration j, each member of the ensemble of Nc trajectories dis-
plays a fluctuation of amplitude a ≥ Q⋆

j . This ensemble of trajectories
has been computed with a cost Cj. In the following, we compare Cj to
the typical computational cost required to sample fluctuations a ≥ Q⋆

j
from a direct simulation of the process (6.15), without algorithm.
Roughly speaking, this cost corresponds to the typical return time of
the fluctuations. That is the timescale of occurrence of fluctuations
having an amplitude at least equal to Q⋆

j . Proper definition and sam-
pling of return times is addressed in chapter 7. The efficiency of the
algorithm can be quantified by comparing the cost of the TAMS algo-

156 the AMS for the simulation of extreme drag fluctuations

Figure 6.5: Illustration of the efficiency of the TAMS algorithm with respect
to direct sampling. The amplitude of fluctuations for the OU
process (6.15) are represented along the Y-axis. Along the X-axis
is represented the typical computational cost required to sample
fluctuations of the corresponding amplitude in both the TAMS and
direct sampling. In the latter, the typical computational cost is
simply the return time r(a). The computational cost associated to
a level a is the TAMS is denoted by C(a). The orange line represents
the evolution of the level Q⋆

j as a function of the cost C(a). The
blue stars represent the maximum of x(t) over the resampled
trajectory after it is resampled, that is at iteration j + 1. Finally,
the solid black line is the analytical solution for the return time
of amplitude a [105].

rithm at iteration j to the return time of the corresponding fluctuations
Q⋆

j .
We perform a numerical experiment with the TAMS algorithm with

Nc = 32 and Ta = 5. The initial condition for the Nc initial trajectories
is drawn from the stationary PDF of the process (6.15). The stopping
criterion for the algorithm is chosen based on the value of the level:
Q⋆

j ≥ Q with Q = 10σ. At each iteration j we record the current
level Q⋆

j . Additionally, we record the simulation time of the resam-
pled trajectories αlmTa in order to compute the computational cost
Cj following (6.11). In the following we drop the dependence in the
iteration j and simply call C(a) the computational cost associated to a
level Q⋆

j = a in the TAMS.
Figure 6.5 displays the fluctuation amplitude a as a function of

the computational cost C(a). In addition, it also features the corre-
sponding return time r(a), that can be computed analytically [105].
It clearly illustrates the gain from the TAMS algorithm: from a ≥ 4σ,
extreme fluctuations are sampled within the TAMS at a much lower
computational cost. As an example, figure 6.5 shows that the typical
return time of fluctuations a ≥ 10σ is roughly 1021τc. This means
that, in order to sample typically one of such fluctuations, the process
must be simulated over a duration of the order of 1021τc. In contrast,

6.3 application of the TAMS to the Ornstein–Ulhenbeck process 157

Figure 6.6: Ensemble of Nc = 32 trajectories at four different iterations j, for
which Q⋆

j > a with a = 4σ, 6σ, 8σ and 10σ.

fluctuations a ≥ 10σ are sampled by the TAMS for an overall cost of
roughly 5 × 103τc.

Figure 6.6 illustrates the ensemble of Nc = 32 trajectories at the first
iterations j for which Q⋆

j > a with a = 4σ, 6σ, 8σ and 10σ.

6.3.2 Estimation of the probabilities of rare fluctuations

In the previous section, we illustrated that the TAMS successfully
samples very rare fluctuations of the OU process defined in (6.15). We
showed that it allows for the simulation of the dynamics leading to
such fluctuations for a computational cost much smaller than the one
required by a direct simulation of the process. In the following, we
briefly illustrate the estimation of the probability of such fluctuations.

Following the strategy suggested in [17], we divide the computation
into K independent realisations. Each one of them correspond to a
TAMS run in which the initial trajectories are drawn in the stationary
PDF of the OU process (6.15). Consistently with the experiment de-
scribed above, these runs are based on Nc = 32 trajectories simulated
over a duration Ta = 5τc. Each one of them is iterated until all trajecto-
ries reach a prescribed threshold a, that is until the first iteration j for
which Q⋆

j > a. This therefore results in a set of {q̂k(a)}1≤k≤K of reali-
sations of the estimate of the probability q(a) that the process reaches
a at some point over [0; Ta]. The final estimate is then computed as an
empirical mean over the realisations:

q̂ =
1
K

K

∑
k=1

q̂k (6.18)

Figure 6.7 illustrates the convergence of the empirical mean (6.18) as
a function of the number of independent realisations K. In addition, it
displays the confidence interval [q̂K − ∆q̂K; q̂K − ∆q̂K] associated with

158 the AMS for the simulation of extreme drag fluctuations

Figure 6.7: Convergence of the TAMS estimate q̂K(a) as a function of the
number of realisations of the algorithm. Each individual TAMS
run is based on Nc = 32 trajectories with duration Ta = 5τc. The
threshold a is set to 6σ, where σ is the standard deviation of
the OU process (6.15), is this case σ = 1/

√
2. The dashed lines

represent the bounds of the confidence interval on the estimate,
defined by (6.19).

the estimate. It is computed based on the empirical variance over the
realisations:

∆q̂K =
1√
K

√ 1
K − 1

K

∑
k=1

(q̂k − q̂K)2 (6.19)

remark The definition of a symmetric confidence interval is dis-
cutable. Indeed, as the individual estimates q̂k are lower bounded
by 0, their distribution is not symmetric. A more rigorous approach
requires the definition of asymmetric error bars, that can be obtained
for instance by modelling the distribution of the q̂k by a log-normal
distribution or another type of asymmetric distribution.

6.4 application of the TAMS to extremes in turbulent

flows

In the previous section, the TAMS algorithm has been tested on
one-dimensional Markovian dynamics: the Ornstein–Ulhenbeck (OU)
process, defined by (6.15). We illustrated that in this case the TAMS

leads to a tremendous improvement in the sampling of very rare
trajectories associated with extreme fluctuations of the process. The
TAMS therefore appears like a promising tool to investigate extreme
fluctuations in dynamical systems. In this sections we discuss the
application of the TAMS to turbulent flows. More precisely, we aim
at sampling dynamical paths leading to extreme values for the drag
acting on the square cylinder embedded in test flow (2).

6.4 application of the TAMS to extremes in turbulent flows 159

A crucial step in any application of the AMS is the choice of the score
function ξ. In the simplified case of Markovian stochastic dynamics
x(t) with one unique attractor, the optimal score function can be
shown to be almost independent of time, when the trajectories are
much shorter than the typical period of occurrence of the rare event
of interest. See appendix D for a discussion of the optimal score
function. In this case, the optimal score function is very close to the
static committor ξ0(a) = Px,0(τB < τA). See section 6.2.2 above for
the definition of the sets A and B. In one dimension, this motivates
the choice of the score function as ξ(x, t) = x. Indeed, an increase of
x certainly leads to an increase of the static committor and vice-versa,
provided that the probability is monotonic. However, this context is
rather exceptional. When the dynamics involves more than one degree
of freedom, this is not necessarily the case. For practical applications
of the AMS and TAMS algorithms on complex dynamics, the choice of
the score function should rely on prior knowledge of the system and
heuristic considerations about the dynamics of rare events. However,
as a result of the complexity of the dynamics, finding an efficient score
function close to the committor (6.14) is very difficult.

In this section we assess the application of the TAMS algorithm to
turbulent dynamics based on the most naive choice for the score
function: it is simply chosen as the observable of interest itself. More
precisely, we address the numerical sampling of extreme fluctuations
of the drag fd acting on an obstacle in a turbulent flow, using the drag
itself as the cost function. In what follows, the TAMS is applied to test
flow (2). Note that, in contrast with the GKTL algorithm, the TAMS is
not limited to time-averaged observables. In this section we therefore
discuss the application of the TAMS in the two following cases:

• Instantaneous drag: fd[X(t)], where {X(t)}0≤t≤Ta denotes a tra-
jectory of the numerical model and fd the corresponding drag
timeseries. In this case the score function is defined as ξ(X) = fd.

• Time-averaged drag: FT[X(t)] = 1
T

∫ t
t−T fd[X(t)]dt with a pre-

scribed duration T for the averaging window. Note that, in this
case, the time-averaged drag timeseries is defined on a different
interval than the underlying timeseries, here [T, Ta]. In this case
the score function is defined as ξ(X) = FT

We stress that, within this setup, there is a priori no reasons for the
drag itself to be close to the optimal score function. The objective of
the work presented is this section is twofold. First, we want to describe
qualitatively the behaviour of the TAMS in this setup. Second, we want
to assess the ability of the TAMS to sample trajectories associated to
rare fluctuations of the drag for a lower computational cost than the
one required by a direct sampling.

160 the AMS for the simulation of extreme drag fluctuations

In this section we discuss the results of several TAMS experiments
with varying trajectories duration Ta and number of trajectories Nc.
The efficiency of the TAMS is analysed in a way very similar to sec-
tion 6.3. To each iteration of the algorithm, we associate a computa-
tional cost based on the overall computational effort spent in simulat-
ing the flow from the beginning of the algorithm. The computational
cost is computed in the same way as in section 6.3, i.e. following
equation (6.17). See page 151 for a discussion of the computational
cost of the TAMS. Note that, in the case of the average drag, resampled
trajectories are never re-simulated over [0; T], as the average drag FT

is defined on the interval [T; Ta]. Therefore the computation of the
computational cost in (6.17) must be slightly modified, considering
trajectories with a duration Ta − T instead of Ta.

Let f̃d
(j)

(resp. F̃(j)
T) be the maximum of the drag (resp. averaged

drag) along the resampled trajectory following iteration j. In the
following, we compare the cost of the TAMS algorithm up to iteration

j to the typical return time of fluctuation of amplitude a ≥ f̃d
(j)

, or
a ≥ F̃(j)

T . This is very similar to section 6.3, except that, in this case, we
consider the maximum over the resampled trajectory, instead of the
threshold Q⋆

j . The two approaches are equivalent. In theses cases the
return time cannot be computed analytically and is computed on the
basis of a very long timeseries of the observable. The computation of
return times based on long timeseries is discussed in chapter 7.

6.4.0.1 Implementation of the TAMS for turbulent flows: the libTAMS li-
brary

Despite its apparent algorithmic simplicity, the implementation of
the TAMS for deterministic complex systems can be rather tricky. For
instance, for turbulent flows, trajectories cannot be stored in memory.
Selected trajectories must therefore be recomputed up to the branching
point starting from restart states periodically saved along the dynam-
ics. In addition, prior to the resampling step, the branching state of
the resampled copy must be slightly perturbed, in order for the re-
sampled trajectory to separate from its parent. In what follows the
perturbation is applied in the same way as for the GKTL algorithm. See
chapter 4, section 4.2.1 for more details about the perturbation of the
trajectories. Additionally, considering an averaged cost function, such
as the averaged drag FT, the selection step must be done according to
the moving average of the instantaneous observable.

As a consequence, the implementation of the TAMS very specific
to a given problem, depending on the properties of the dynamics.
Even though the structure of the algorithm does not change from a
one-dimensional stochastic system to a DNS of a turbulent flows, data
structures and implementation of the steps of the algorithm must be
modified accordingly. Consequently, code-reuse is error-prone.

6.4 application of the TAMS to extremes in turbulent flows 161

Motivated by these observations, we proposed a general object-
oriented modelling of a TAMS simulation, independent of the underly-
ing dynamics. This resulted in the development of the libTAMS C++
library which aims at facilitating the implementation and analysis of
the TAMS applications. Using libTAMS, it is possible to write a TAMS

code applicable to any kind of dynamics and choice for the choice
function, whether it is time-integrated or not. This greatly helps de-
bugging and analysis, as the code can be validated and tested on
simple stochastic systems for which computations and post processing
are much easier. The libTAMS library is presented in appendix E.

6.4.1 Plan of numerical experiments

In order to test the TAMS for turbulent flows, we performed several
numerical experiments based on test flow (2). The total duration of the
trajectories Ta and the number of copies Nc have been chosen follow-
ing the same remarks as in section 6.3. Recall that the unbiasedness
property of the AMS estimator (6.4) suggests to divide a run into K
independent realisations, involving a lower number of copies. Consis-
tently with the experiments presented in section 6.3, we first perform
tests with Nc = 32 trajectories. As a comparison, we perform the same
experiments with a number of trajectories that is four times larger,
i.e. Nc = 256. The duration of the trajectories Ta must be set larger
than the typical correlation time of the drag, so that an excursion far
the typical value has the time to occur. In the following we denote
by τc the typical correlation time of the drag. It corresponds to the
timescale over which the autocorrelation function of the drag vanishes.
See chapter 2 for a discussion of the estimation of τc for test flow (2).
We stress that in the case of the averaged drag, the relevant correlation
timescale is not τc, but the correlation time of the averaged process.
In the following we denote by τT

c the correlation time of the averaged
drag over a duration T, FT. The correlation time of the averaged drag
is close to the duration of the integration: τT

c ≈ T. As explained in
section 6.3, setting Ta ≫ τc or Ta − T ≫ τT

c is not expected to provide
better results. In what follows we run experiments for the instanta-
neous drag with Ta = 5τc, as well as Ta = 20τc for comparison. In
addition, we perform similar experiments for the averaged drag over
5τc. In this case τT

c ≈ 5τc. As a consequence, we run two experiments
with Ta − T = 5τT

c and Ta − T = 20τT
c , respectively.

The Nc trajectories are initialised at t = 0 on random initial con-
ditions from which the flow dynamics is computed until t = Ta. At
each iteration of the algorithm, we record the maximum drag f̃ (j)

d , or

maximum averaged drag F̃(j)
d , over the resampled trajectory. In con-

trast with the experiment presented in section 6.3, we do not prescribe
a stopping criterion for the algorithm. Instead, the selection/muta-
tion procedure is iterated until all trajectories have reached the same

162 the AMS for the simulation of extreme drag fluctuations

level. This limit is known as extinction and is discussed above in sec-
tion 6.2.1.2. The objective of this series of experiments is to estimate
the maximum gain from the TAMS algorithm with respect to direct
sampling, before extinction is reached. It is expected to depend on
the values of Nc and Ta. In the following we discuss the results of the
experiments for both instantaneous and averaged drag. We illustrate
that extinction is reached before significant gain is achieved with re-
spect to direct sampling. Furthermore, for Ta = 5τc we show that at
extinction all the trajectories concentrate on the trajectory having the
highest maximum in the initial set of trajectory. In addition, we show
that for Ta = 20τc too few fluctuations are sampled before extinction
to improve the sampling. We illustrate that they are actually unrelated
to the branching procedure.

6.4.2 TAMS for the instantaneous drag

The TAMS was first applied with ξ(X) = fd(X), that is, resampling
trajectories based on their maximum for the instantaneous drag fd.
In a way similar to figure 6.5, figure 6.8 displays the maximum f̃ (j)

d
over the resampled trajectories as a function of the computational cost
Cj of the algorithm at iteration j, computed as (6.17). The difference
between the two figures 6.5 and 6.8 is striking. Figure 6.8 illustrates
the the TAMS does not lead to any computational gain with respect to
direct sampling, unregarding the duration of the trajectories or the
number of trajectories. In fact, the TAMS does not lead to new drag
events with an amplitude higher that the maximum event among
the initial trajectories. As a consequence, iterations of the algorithm
are pointless, as resampled trajectories eventually concentrate on a
common parent, that was already sampled during the initialisation
step. Figure 6.9 illustrates this concentration of resampled trajectories
along iterations, until extinction. It clearly shows that the trajectory
ultimately responsible for the extinction is present in the ensemble
of trajectories from the initialisation step. Increasing the number of
copies to Nc = 256 and the length of the trajectories to Ta = 20τc leads
to similar conclusions.

The early extinction displayed in figure 6.9 can be interpreted as
follows. Because the dynamics is deterministic, the resampled tra-
jectory separates from the parent over a timescale of the order of a
few correlation times τc, resulting from the perturbation introduced
at the branching point. We denote by τL the separation timescale.
Let τm be the time at which the maximum of the parent trajectory
is attained. Furthermore, let tb be the time at which the branching
occurs. If τm − tb ≪ τL the resampled trajectory will follow the parent
trajectory and fall back to typical values of the drag before it later
separate. This is well verified in practice, and illustrated in figure 6.9c.

6.4 application of the TAMS to extremes in turbulent flows 163

As a result, the selection/mutation procedure introduced by the TAMS

does not lead to trajectories with higher fluctuations.

6.4.3 TAMS for the time averaged drag

In this case, the TAMS is applied with ξ(X) = FT(X). More precisely,

ξ(X(t)) =
1
T

∫ t

t−T
fd[X(t)]dt for T ≤ t ≤ Ta (6.20)

The selection is then done according to the maximum values of ξ for
each trajectory for T ≤ t ≤ Ta. The TAMS was used with Nc = 32 and
Nc = 256, for trajectories of length Ta = 5τT

c + T, and Ta = 20τT
c + T,

with τT
c the correlation time of the averaged drag. In practice, τT

c ≈ T.
Therefore, the duration of the time-averaged drag timeseries over the
trajectories is 5τT

c and 20τT
c , respectively. In a way similar to figure 6.8,

figure 6.10 displays the maximum drag over the resampled trajectories
F̃(j)

d at iteration j as a function of the computational cost Cj, defined

in (6.11). The maximum over the initial trajectories {F̃(0)
d,n }1≤n≤Nc is

also displayed.
Similarly to figure 6.8, figure 6.10 illustrates that most of the it-

erations of the TAMS result in fluctuations already sampled in the
ensemble of trajectories. This effect can be explained in the same way
as in the case of the instantaneous drag. The resampled and the parent
trajectories do not separate before the maximum of the parent trajec-
tory is reached. As a consequence, the resampling cannot lead to a
higher fluctuation close to the branching point. As a matter of fact, the
resampling procedure can lead to higher fluctuations if the trajectories
are long enough so that the resampled trajectories have time to fully
decorrelate from their parent. Is this case their is a probability that
the resampled trajectory exhibits a rare fluctuation. Naturally, this
probability is very small as it corresponds to the original probability
of the fluctuation. An example is illustrated in figure 6.11, in which
one can see that a second fluctuation occurs well after the one the
resampling step is based upon. As a result, this second fluctuation is
uncorrelated from the first one. As in the case of the instantaneous
drag, we conclude that the TAMS, using the averaged drag itself as a score
function, is unable to improve the sampling of rare drag fluctuations.

6.4.4 Discussion

The failure of the TAMS can be imputed to the poor choice for the
score function, here defined as the observable itself. Let us explain
why. A new trajectory is resampled from the threshold a and at a
branching time tb, determined by the TAMS algorithm. The resampling

164 the AMS for the simulation of extreme drag fluctuations

(a) Nc = 32, Ta = 5τc

(b) Nc = 256, Ta = 20τc

Figure 6.8: Maximum of the instantaneous drag along the resampled trajec-
tories, denoted by f̃ (j)

d , as a function of the corresponding com-
putational cost Cj, defined in (6.17). In both figures, the TAMS is
iterated until extinction. The solid black line indicates the typical
fluctuation amplitude a as a function of the corresponding return
time r(a). It is the typical timescale of occurrence of fluctuations
above a. Furthermore, the square markers depict the maximum
f̃ (0)d,n , 1 ≤ n ≤ Nc over the initial trajectories. This figure illustrates
that in both experiments the TAMS does not improve the sampling
of rare fluctuations. On can see that the maximum values among
the resampled trajectories concentrates on values already sam-
pled over the initial trajectories. Eventually, extinction is reached
as the algorithm is unable to generate a fluctuation higher than
the maximum fluctuation in the initial ensemble of trajectories.
This behaviour is illustrated in figure 6.9 on the basis of the drag
timeseries involved in the experiment of figure 6.8a.

6.4 application of the TAMS to extremes in turbulent flows 165

0 1 2 3 4 5
t

-0.05

0

0.05

0.1

f d

(a) Initialisation

0 1 2 3 4 5
t

-0.05

0

0.05

0.1

f d

(b) Iteration 50

0 1 2 3 4 5
t

-0.05

0

0.05

0.1

f d

(c) Iteration 100

0 1 2 3 4 5
t

-0.05

0

0.05

0.1

f d

(d) Iteration 181

Figure 6.9: Visualisation of the drag timeseries corresponding to the set of
trajectories in the ensemble, at different iterations along the algo-
rithm. In this experiment, the TAMS is used with the instantaneous
drag fd as a score function. Trajectories have a duration Ta = 5τc
and their number is Nc = 32. One can see that, as the number of
iterations increases, the number of independent resampled trajec-
tories drastically decreases until extinction at iteration 181. The
timeseries corresponding to the two initial trajectories exhibiting
the highest fluctuations are displayed in colour. In all four figures,
colour is inherited from the parent trajectory. It illustrates that
the two strongest initial trajectories quickly become predominant
in the ensemble, as the other are discarded. As can be seen in
figure 6.9c, trajectories only separate well after the maximum is
reached. Therefore, resampling the blue trajectories based on the
red trajectories can only change the overall maximum by a very
small amount. Consequently, blue trajectories are discarded one
after the other, each time resampled into another instance of the
red trajectory. This new instance has roughly the same maximum
as the others.

166 the AMS for the simulation of extreme drag fluctuations

Figure 6.10: Maximum of the instantaneous drag along the resampled tra-
jectories, denoted by F̃(j)

T , as a function of the corresponding
computational cost Cj, defined in (6.17). In both figures, the
TAMS is iterated until extinction. In this experiment Nc = 32 and
the trajectories are computed over Ta = 105τc. The score function
is the averaged drag FT with T = 5τc. Therefore, averaged drag
timeseries have a duration Ta − T = 100τc ≈ 20τT

c where τT
c de-

notes the correlation time of the averaged drag. The solid black
line indicates the typical fluctuation amplitude a as a function
of the corresponding return time r(a). It is the typical timescale
of occurrence of fluctuations above a. Furthermore, the square
markers depict the set of maximum values {F̃(0)

T,n}1≤n≤Nc over
the initial trajectories. This figure is similar to both figures 6.8a
and 6.8b. It illustrates that, in this experiment, the TAMS does
not improve the sampling of rare fluctuations. One can see that
the maximum values among the resampled trajectories concen-
trates on values already sampled in the ensemble. The maximum
value over the set of initial trajectory, i.e. max

n
F̃(0)

T,n, is marked by

a dashed straight line. As illustrated in figure 6.11, fluctuations
above this value originate from the long duration of the trajec-
tories, which allows resampled trajectories to fully decorrelate
from their parent in between the branching point and t = Ta.
However this does not help in improving the sampling as these
fluctuations are sampled according to natural probability, that
is very small. In fact, the whole point of using the TAMS is to
sample such fluctuations with a higher probability. An example
is the resampling step associated to the iteration marked by
the blue star in the figure. The timeseries for the parent and
resampled trajectories are illustrated in figure 6.11. Eventually,
extinction is reached when the branching point is too close from
t = Ta so that the resampled trajectory does not have the time to
fully separate.

6.4 application of the TAMS to extremes in turbulent flows 167

Fi
gu

re
6
.1

1
:I

llu
st

ra
ti

on
of

th
e

re
sa

m
pl

in
g

st
ep

fo
r

a
pa

rt
ic

ul
ar

it
er

at
io

n
of

th
e

TA
M

S.
In

th
is

pa
rt

ic
ul

ar
ca

se
,t

he
re

sa
m

pl
ed

tr
aj

ec
to

ry
(o

ra
ng

e)
di

sp
la

y
a

se
co

nd
,h

ig
he

r
flu

ct
ua

ti
on

.T
he

TA
M

S
is

us
ed

w
it

h
N

c
=

32
co

pi
es

si
m

ul
at

ed
ov

er
T a

=
10

5τ
c.

Th
e

sc
or

e
fu

nc
ti

on
is

ch
os

en
as

th
e

av
er

ag
ed

dr
ag

(6
.2

0
)w

ith
an

av
er

ag
in

g
w

in
do

w
T
=

5τ
c.

A
s

a
co

ns
eq

ue
nc

e,
av

er
ag

ed
tim

es
er

ie
s

ha
ve

a
du

ra
tio

n
of

ro
ug

hl
y

20
τ

T c
(t

he
co

rr
el

at
io

n
tim

e
fo

r
th

e
av

er
ag

ed
tim

es
er

ie
s

is
ta

ke
n

eq
ua

lt
o

th
e

av
er

ag
in

g
w

in
do

w
).

O
ne

ca
n

se
e

th
at

th
e

hi
gh

es
t

flu
ct

ua
tio

ns
fo

r
th

e
re

sa
m

pl
ed

tr
aj

ec
to

ry
ha

pp
en

s
w

el
la

ft
er

it
ha

s
de

co
rr

el
at

ed
fr

om
it

s
pa

re
nt

.I
t

th
er

ef
or

e
oc

cu
rr

in
g

in
de

pe
nd

en
tl

y
fr

om
th

e
TA

M
S,

w
it

h
a

ve
ry

sm
al

lp
ro

ba
bi

lit
y.

168 the AMS for the simulation of extreme drag fluctuations

is initiated by adding a small noise at time tb (or by resampling over
the interval [tb, Ta] for stochastic dynamics). Let us assume that the
parent trajectory reaches an extremum of the observable am attained at
a time tmax > tb. Because the dynamics reduced to the score function
is not Markovian, it is very unlikely that a resampling at time tb is
enough to change significantly the dynamics afterwards: changing
significantly the dynamics afterwards may require to change part of
the history of the trajectory including times that are prior to tb. A
drastic example of this is obtained when tmax − tb is much smaller
than the decorrelation timescale of the dynamics, that is close to
the correlation time τc, or τT

c . In this case, a small change at time tb
produces nearly no effect at time tmax, and the resampled trajectory is
nearly the same as the parent trajectory. Consequently, the maximum
am is only changed by a small amount.

These results confirm that the efficiency of the TAMS highly depends
on the choice of the score function. The design of an efficient score
function must rely on a priori knowledge of the dynamics leading
to the rare events of interest. For complex systems systems such as
turbulent flows, it is therefore very difficult to find a good score
function.

Generally speaking, the AMS algorithm have been reported to signif-
icantly improve the sampling of extreme events in several systems [5,
138, 139]. However, in all these studies, the dynamical equations are
intrinsically stochastic. By contrast, the dynamics considered in the
present work is deterministic. Moreover, is it extremely complex, with
respect to previous applications of the AMS. In this case, it is very
difficult to design a score function that is well suited to the particular
problem at hand. Indeed, it would require to have a priori knowledge
of the dynamics of the system, and more specifically about extreme
events. Paradoxically, it is precisely because we do not have such
knowledge that we want to apply rare event algorithms.

As a consequence, we tested the TAMS algorithm with the most
straightforward score function possible: the drag itself. The study
presented in this chapter illustrates that, with such a choice of score
function, the TAMS cannot improve the sampling of extreme events.

Further studies must be performed in order to identify the reasons
of the limitations of the TAMS for complex deterministic dynamics, as
well as highlight the difference with previous successful applications
of the AMS algorithm. The precise understanding of these limitations
will then be useful to address the construction of novel algorithms
based on the AMS and the TAMS, suited for complex deterministic
dynamics, such as turbulent flows.

7
C O M P U T I N G R E T U R N T I M E S F R O M T I M E S E R I E S
A N A LY S I S A N D R A R E E V E N T A L G O R I T H M S

In the previous chapters, we presented the application of two rare
event algorithms, the Giardina–Kurchan–Tailleur–Lecomte and the
Adaptive Multilevel Splitting, to the sampling of extreme fluctuations
of the drag acting on an obstacle immersed in a turbulent flow. In
chapter 5, we focused on extreme fluctuations of the drag averaged
over several correlation times. We showed that the application of the
GKTL algorithm allows for a significant improvement in the sampling
of extremes, with respect to brute force sampling by means of a
simulation of the flow over a long duration. A consequence of this
better sampling is better estimation of the probability of rare events.
For instance, we showed in chapter 5 that the GKTL algorithm leads to
a much improved estimate of the tails of the SCGF describing extreme
fluctuations of the drag averaged over several correlation times.

In this chapter we are interested in the average waiting time be-
tween for the occurrence of a rare event, referred to as its return time.
It is a useful statistical concept for practical applications. For instance,
insurances or public agency may be interested by the return time of
a 10 m flood of the Seine river in Paris. However, the computation
of return times for extreme fluctuations cannot be addressed with
the sole knowledge of the stationary PDF of the underlying process,
as justified in section 7.1. Furthermore, due to their scarcity, reliably
estimating return times for rare events is very difficult using either
observational data or direct numerical simulations.

For rare events, an estimator for return times can be built from the
extrema of the observable on trajectory blocks. In this chapter, we show
that this estimator can be improved to remain accurate for return times
of the order of the block size. More importantly, we show that this
approach can be generalised to estimate return times from numerical
algorithms specifically designed to sample rare events. So far, those
algorithms often compute probabilities, rather than return times. The
approach we propose provides a computationally efficient way to
estimate numerically the return times of rare events for a dynamical
system, gaining several orders of magnitude of computational costs.
We illustrate the method on two kinds of observables, instantaneous
and time-averaged, using two different rare event algorithms, for
a simple stochastic process, the Ornstein–Uhlenbeck process. As an
example of realistic applications to complex systems, we finally discuss
extreme values of the drag on an object in a turbulent flow.

169

170 computing return times for rare events

7.1 introduction

The theoretical framework which has been developed over the
last decades in statistical physics to tackle the investigation of rare
events is that of large deviation theory [35, 42, 49, 165, 174]. Numerical
methods have also been developed to efficiently sample rare events,
which are not amenable to classical Monte-Carlo methods [6, 96, 106];
see [22, 145] for general references on rare event simulation. Those
algorithms can be roughly divided into two main classes: those which
work in state space, and evolve a population of clones of the system
according to selection rules biased to favour the appearance of the
desired rare event [27, 56, 68, 118, 139], and those which try to sample
directly in path space the histories of the system which exhibit the
phenomenon of interest [11, 40, 41, 66, 69, 101]. In chapters 4, 5 and 6

we discussed the application of algorithms of the former class to the
study of rare events in fluid mechanics problems. Note that most
of those algorithms ultimately compute one-time statistics. Typically,
they yield the stationary probability distribution of the system, for
which they sample efficiently the tails, or alternatively, large deviation
rate functions or scale cumulant generating functions. They can also
compute reactive trajectories corresponding to the transition between
two metastable states.

For many practical applications however, the most useful informa-
tion about a rare event is its return time: it is the typical time between
two occurrences of the same event. For instance, this is how hydrolo-
gists measure the amplitude of floods [156]. As a matter of fact, one
of the motivations of Gumbel, a founding father of extreme value
theory, was exactly this problem [70]. Other natural hazards, such as
earthquakes [33] and landslides [127], are also ranked according to
their return time. Similarly, climatologists seek to determine how the
frequency of given heat waves [109, 131] or cold spells [26] evolves
in a changing climate [149]. Public policies rely heavily on a correct
estimate of return times: for instance, in the United States, floodplains
were defined in the National Flood Insurance Program in 1968 as areas
vulnerable to events with a 100-year return time. Such definitions are
then used to determine insurance policies for home owners. In the
industry as well, return times are the metric used by engineers to
design systems withstanding a given class of events. Another prop-
erty describing rare events is the average time between successive
records [62]; here, because of its importance in practical applications,
we focus on the return time, i.e. the average time between events of a
given amplitude. Just like the extreme values of any observable, the
return time of a rare event is very difficult to estimate directly from
observational or numerical data, because extremely long timeseries
are necessary.

7.1 introduction 171

The return time may be estimated heuristically by interpreting it
as a first-passage time. The first-passage time (sometimes also called first
exit time) is defined as the time it takes for a stochastic process to
reach the boundary of a given domain for the first time; the properties
of this random variable have been studied extensively in statistical
physics [16, 133]. Then, the return time r(a) for an event of amplitude a
may be at first sight related to the inverse of the stationary probability
ps: r(a) = τc(a)/ps(a). We stress that the correlation time τc(a) usually
depends on a, but remains bounded when ps(a) goes to zero. This
is true for instance for a system perturbed by a small-noise ϵ at the
level of large deviations: r(a) ≍

ϵ→0
eU(a)/ϵ, where the quasi-potential U

is defined by ps(a) ≍
ϵ→0

e−U(a)/ϵ [49]. However, the return time is only

roughly proportional to the inverse of the stationary probability [123].
In order to compute τc(a) one has to go beyond large deviation theory.
For instance for gradient dynamics and for first exit time problems,
exact formulas exists [53, 98, 134], valid at leading order in ϵ. We
stress that different formulas are obtained depending on the hypoth-
esis made on the domain that the particle exits. Generalisations to
irreversible non gradient dynamics also exist, see [14] and references
therein. From these computations, it appears clearly that τc(a) is not
simply related to ps(a) and that the return time r(a) is a trajectory
property, not amenable to a one-point statistics like ps(a).

From a modelling perspective, it is natural to assume that successive
occurrences of a rare event are independent from one another [37, 43,
102]. Then, the average number of events occurring in a time interval
is proportional to the length of that interval. This is the definition
of a Poisson process. In this case, all the statistics are encoded in a
single parameter, the rate of the Poisson process. In the following,
we will assume that we are dealing with the simple case of a well
identified process that can be described by a single return time or rate.
This is often a sufficient framework; indeed the long time behaviour
of many systems can be described phenomenologically, or exactly in
some limits, as Markov processes described by a set of transition rates
describing independent processes, see for instance [49] for systems
driven by a weak noise. We note however that many other physical
systems are not amenable to such a simple effective Markov processes,
for instance structural glasses or amorphous media.

There is thus a need to develop rare event algorithms specifically
designed for computing return times, valid also when large deviation
estimates are not relevant. This is the aim of this chapter. The approach
developed in this work relies on the combination of two observations.
First, if one assumes that rare events are described by a Poisson process,
then return times can be related to the probability of observing extrema
over pieces of trajectories, which are of duration much larger than the
correlation time of the system, but typically much smaller than the
computed return times. Second, several classes of rare event algorithms

172 computing return times for rare events

can be easily generalised to compute the probability of extrema over
pieces of trajectories, rather than to compute single point statistics.
We show that combining these two remarks enables us to build a
powerful tool to compute return times in an elementary way with
simple and robust algorithms. As a side remark, we also discuss a new
way to construct return time plots from a timeseries, which provides
an important improvement for return times moderately larger than
the sampling time, even when we are not using a rare event algorithm.

We illustrate the method by computing return times, first for an
instantaneous observable (one-point statistics) using the Adaptive
Multilevel Splitting (AMS) algorithm [27, 29], and second for a time-
averaged observable, using both the AMS algorithm and the GKTL

algorithm [58]. The computation of return times with the AMS algo-
rithm actually makes use of a generalisation called the Trajectory
Adaptive Multilevel Splitting (TAMS) algorithm, introduced in chap-
ter 6, that is more appropriate to this problem. As a matter of fact, we
first formulated the TAMS algorithm motivated by the computation of
return times. This generalisation has several practical advantages: it
computes directly return times r(a) for a full range of return level a
rather than a single one, and it avoids the tricky estimation of time
scale on an auxiliary ensemble, and the sampling from this auxiliary
ensemble. As a test, we first carry out these computations for a simple
stochastic process, the Ornstein–Ulhenbeck (OU) process, for which
analytical results are available and the accuracy and efficiency of the
algorithm can be tested thoroughly. Then, to demonstrate the useful-
ness of the method in realistic applications, we briefly showcase a
problem involving a complex dynamical system: extreme values of
the drag on an object immersed in a turbulent flow.

The structure of this chapter is as follows: in section 7.2, we in-
troduce the method to compute return times from a timeseries and
from rare event algorithms. We apply the method to compute return
times for the instantaneous and time-averaged observables for an
Ornstein–Uhlenbeck process using both the GKTL and AMS algorithms
introduced in chapters 4 and 6, respectively. In section 7.3 we discuss
and illustrate the use of the AMS for return times for fluctuations of
instantaneous observables. In section 7.4 we address the computa-
tion of return times for time-averaged observables using both GKTL

and AMS algorithms. Eventually, we discuss the application to com-
plex dynamical systems in section 7.5. Conclusions are presented in
section 7.6.

7.2 return times : definition and sampling methods

We consider a statistically time homogeneous ergodic process (a
stationary timeseries) {A(t)}t≥t0

. Typically, A : Rd → R is an observ-
able on a system of interest, considered here as a Rd-valued stochastic

7.2 return times : definition and sampling methods 173

0 2× 102 4× 102 6× 102 8× 102 103

t

−4σ

−2σ

0

2σ

4σ

A
(t
)

(a) Sample timeseries from an OU process

0 2× 102 4× 102 6× 102 8× 102 103

t

0

50

150

250

τ
(a
,
t)

(b) Waiting time τ(a, t)

Figure 7.1: An example of a random process (a) and the waiting time (b) asso-
ciated to events reaching a given threshold. (a): Sample timeseries
(black line), generated from an Ornstein–Uhlenbeck process (7.1)
(α = 1, ϵ = 1/2; σ = 1/

√
2 is the standard deviation). We are

interested in fluctuations which reach a prescribed threshold a
(red dashed line). These events are identified by the red dots. (b):
Time evolution of the waiting time τ(a, t) (see (7.2)) associated to
the above timeseries: it is a succession of affine parts with slope
−1. Note that in principle, there should be small time intervals
such that τ(a, t) = 0, corresponding to the duration of the event
with A(t) > a, separating the triangles. Here, the duration of the
events is too small for such intervals to be visible.

process
(
Xt
)

t≥t0
, and we shall denote A(t) = A(Xt). We are interested

in the statistical distribution of events in which the observable reaches
a prescribed threshold a. The occurrence of such events is illustrated
for a sample Ornstein–Ulhenbeck (OU) process, on Fig. 7.1a. The OU

process is defined as follows:

ẋ(t) = −αx(t) +
√

2ϵη(t) (7.1)

where α and ϵ are numeric constants and η a Gaussian white noise.
Note that α and ϵ can be absorbed by a change of timescale.

In a first section we give a precise definition for the return time of a
rare event. Based on this definition, we describe an efficient approach
to the computation of return times from a timeseries of the process
of interest in section 7.2.1. In a second part, we extend this approach
to the computation of return times based on the output of rare event
algorithms.

174 computing return times for rare events

7.2.1 Computing return times from a timeseries

7.2.1.1 Definition of return times

We define the return time for a given threshold a as the average
time one has to wait before observing the next event with A(t) > a.
More precisely, we define the waiting time

τ(a, t) = min {τ ≥ t |A (τ) > a} − t. (7.2)

As an illustration, the waiting time τ(a, t) is shown for our sample
Ornstein–Uhlenbeck process on Fig. 7.1b. Then, the return time r(a)
for the threshold a is defined as

r(a) = Ex0,t0 [τ(a, t)] , (7.3)

where E is the average with respect to realisations of the process X
with initial condition Xt0 = x0 (hence the notation E ≡ Ex0,t0 in that
case), or is a time average for an ergodic process. From now on, we
shall omit the indices when there is no ambiguity. The return time
r(a) is independent of time because the process is homogeneous.

The problem we consider in this section is that of estimating r(a)
from a sample timeseries of duration Td : {A(t)}0≤t≤Td

. The definition
leads to an obvious estimator for r(a), the direct estimator r̂D defined
by

r̂D(a) =
1
Td

∫ Td

0
τ(a, t)dt =

1
Td

Nd

∑
n=1

τ2
n
2

, (7.4)

where τn is the duration of the successive intervals over which A(t) ≤
a, and Nd is the number of such intervals. The last identity in (7.4) is
illustrated graphically in Fig. 7.1b: the integral of τ(a, t) is given by
computing the total area beneath the triangles.

In the limit of rare events, the return time will also be the average
time between two successive independent events. However the defini-
tion (7.3) for the return time has the big advantage of not having to
deal with the definition of independent events, which is cumbersome
when time correlations are not negligible. We explain this further in
the following section.

7.2.1.2 Return times and the distribution of successive events

Estimating return times using (7.4) implies computing the time
intervals τn between successive events with A(t) > a. When a is large
enough, most of the times A(t) < a and very rarely A(t) > a. Then
we can distinguish two kinds of contributions to the time intervals
τn. On the one hand, we have correlated events corresponding to
fluctuations around the threshold value a, on a timescale of the order

7.2 return times : definition and sampling methods 175

of the correlation time. From our point of view, these correspond to
the same event, with a finite duration. On the other hand, there are
successive events such as those depicted in Fig. 7.1a, which can be
considered as statistically independent events. Therefore, we expect
those events to form a Poisson point process, and the corresponding
time intervals τn should be distributed according to the distribution of
time intervals of a Poisson process: P (τ) = λ exp (−λτ) [37, 43, 102].

0 300 600 900 1200

τ

10−4

10−2

100

lo
g
P
(τ
)

Poisson process
Numerics

(a)

0 300 600 900 1200

τ

10−4

10−3

10−2

lo
g
P
(τ
|τ

>
τ
c
)

Poisson process
Numerics

(b)

Figure 7.2: PDF of waiting times between two consecutive fluctuations of am-
plitude a = 2.5, estimated from a timeseries of length Td = 106

of the Ornstein–Uhlenbeck process (7.1) with α = 1 and ϵ = 1/2
(blue triangles), and assuming the events follow a Poisson process
with rate 1/r(a), P(τ) = e−τ/r(a)/r(a) (black solid line), where
r(a) is computed from the timeseries. The correlation time of
the Ornstein–Uhlenbeck process is τc = 1/α = 1. (a) Taking all
intervals into account, including those corresponding to oscilla-
tions around the threshold. (b) Discarding small intervals (τ < τc)
linked to oscillations around the threshold.

Figure 7.2a shows the Probability Density Function (PDF) of the time
interval between two occurrences of an event A(t) > a, drawn from
a sample timeseries generated with an Ornstein–Uhlenbeck process.
One can see that most of the contributions are indeed small intervals
of the order of the correlation time. Discarding all the time intervals
below the correlation time, one obtains the PDF displayed in Fig. 7.2b,
which coincides with the exponential distribution corresponding to a
Poisson point process.

When a is large, r(a) ≫ τc where τc is the correlation time of the pro-
cess. Then the contribution of intervals τn of duration comparable to
τc in the formula (7.4) becomes asymptotically negligible compared to
the contribution of the time intervals τn ≫ τc. Graphically, this may be
seen as the fact that the sum in (7.4) is dominated by the contribution
of very big triangles, while for small a all the triangles have roughly
the same area. Then, the return time r(a) coincides with the average
time between two statistically independent events exceeding the value
a. In other words, rare fluctuations can be considered as independent
from one another, their duration can be neglected compared to their
return time, and the distribution of such events is well approximated
by a Poisson process of rate λ(a) = 1/r(a).

176 computing return times for rare events

Neglecting the duration of the extreme events yields ∑Nd
n=1 τn ≈ Td.

As a result, one can check that

1
Td

Nd

∑
n=1

τ2
n
2

≈ Nd

∑Nd
n=1 τn

1
Nd

Nd

∑
n=1

τ2
n
2

→
Nd→∞

1
2

E
[
τ2]

E [τ]
=

1
λ(a)

= r(a), (7.5)

where the average in this computation is taken with respect to the
Poisson process interval PDF P (τ) = λ exp (−λτ).

One may be tempted to use the estimator r̂′D(a) = 1
Nd

∑Nd
n=1 τn instead

of the estimator r̂D defined by (7.4). For an actual Poisson process,
that would just give the same result. However this estimator would be
more sensitive to the effect of a finite correlation time, since the con-
tributions from time intervals τn ≈ τc between successive events will
only become negligible linearly in τc/r(a), as opposed to quadratically
in formula (7.4).

From now on, we shall assume that the statistics of rare events is
Poissonian. This is a reasonable approximation for many dynamical
systems as long as there is a well-defined mixing time after which
the initial conditions are forgotten. Of course, it would not hold for
systems with long-term memory. Note that this assumption is similar
to the Independent Interval Approximation used in the context of persis-
tence [16]. In the next paragraph, we use this assumption to derive
new expressions that allow for accurate and efficient sampling of the
return times.

7.2.1.3 Sampling return times for rare events

In this section we present an alternative way to compute return
times, that provides an easier and more efficient way to draw return
time plots for rare events than using the direct estimator (7.4). Let us
divide the timeseries {A(t)}0≤t≤Td

in M blocks of duration ∆T ≫ τc,
so that Td = M∆T, and let us define the block maximum

am = max {A(t) |(m − 1)∆T ≤ t ≤ m∆T } , (7.6)

and sm(a) = 1 if am > a and 0 otherwise, for 1 ≤ m ≤ M. This
procedure is illustrated in figure 7.3.

For rare events, i.e. r(a) ≫ τc, the number of events

N(t) = ∑
m≤⌈t/∆T⌉

sm(a)

is well approximated by a Poisson process with density λ(a) = 1/r(a).
Then, assuming τc ≪ ∆T ≪ r(a), the probability qm(a) that am be
larger than a is well approximated by qm(a) ≃ ∆T/r(a). As qm(a)

7.2 return times : definition and sampling methods 177

0 5 10 15 20 25 30

t/τc

-3

-1

0

1

3

A

T

a2
a3

∆T = T/M , M = 3

a1

Figure 7.3: Illustration of the computation of return times from a timeseries
based on the block-maxima method. The total timeseries is di-
vided into M blocks, which individual duration is long enough
so that they can be considered independent realisations of the
process. For each of these blocks, the block-maximum (7.6) is com-
puted, depicted as red stars in this figure. In the present example,
this result in a set of M = 3 maxima, which values will be used
to compute return times based on (7.8). We stress that this figure
is a pedagogical illustration: in practice we use a much longer
timeseries, typically of length Ttot = 106τc and therefore a much
greater number of blocks. The timeseries displayed in this figure
originates from a realisation of the OU process (7.1) with α = 1
and ϵ = 1/2.

can be estimated by 1
M ∑M

m=1 sm(a), an estimator of r(a) is the block
maximum estimator:

r̂B(a) =
Td

∑M
m=1 sm(a)

. (7.7)

This is the classical method for computing the return time of rare
events, valid when ∆T ≪ r(a) [125].

We now introduce a new, more precise estimator, also valid when
∆T/r(a) is of order one. It is obtained by using qm(a) = 1 − e−∆T/r(a).
Then, a better estimator of r(a) is the modified block maximum estimator:

r̂′B(a) = − ∆T

ln
(

1 − 1
M ∑M

m=1 sm(a)
) . (7.8)

To compute these estimators in practice, we sort the sequence
{am}1≤m≤M in decreasing order and denote the sorted sequence

{ãm}1≤m≤M

such that ã1 ≥ ã2 ≥ ... ≥ ãM. Based on (7.7), we then associate to the
threshold ãm the return time r(ãm) = M∆T/m. Indeed, ∑M

ℓ=1 sℓ(ãm) =

m, which means that m events with amplitude larger than ãm have

178 computing return times for rare events

100 102 104 106 108

r(a)

1

1.5

2

2.5

3

3.5

4

a

Theory
Direct estimator
Block maximum estimator
Modified block maximum estimator

Figure 7.4: Return time plots for the Ornstein–Uhlenbeck process (7.1) with
ϵ = 1/2, α = 1, estimated from a timeseries of length Td =
106τc using the direct estimator r̂D (7.4) (pentagrams), the block
maximum estimator r̂B (7.7) (∆T = 100, solid blue line), and the
enhanced block maximum estimator r̂′B (7.8) (∆T = 100, solid red
line and white triangles). These estimates are compared to the
analytical solution [105](dashed black line).

been observed over a duration M∆T. Alternatively, using the more
precise estimator r̂′B (7.8) we associate to the threshold ãm the return
time r (ãm) = − ∆T

log(1− m
M)

. The return time plot represents ãm as a

function of r (ãm), as illustrated for instance on Fig. 7.4. Let us stress
again that formulas (7.7) and (7.8) and this method of plotting the
return time are meaningful only if doing block maxima, and for ranges
of parameters such that τc ≪ ∆T ≪ r(a) for (7.7) or τc ≪ ∆T for (7.8).

Figure 7.4 illustrates the three methods for computing return times
from a timeseries: from the definition (7.4) and the two formulas (7.7)
and (7.8). The sample timeseries used in this figure is extracted from
an Ornstein–Uhlenbeck process, for which the return time curve can
also be computed analytically [105]. One can see that both formu-
las (7.7) and (7.8) lead to the same estimate for events with r(a) ≫ ∆T.
However, formula (7.7) fails to yield a correct estimate as soon as
r(a) ≃ ∆T.

For rare events, plotting return times using (7.7), as is classically
done, proves itself much more convenient and efficient than the naive
sampling using (7.4). It is important to note however, that the use
of (7.7) is valid only after computing maxima over an interval of
duration ∆T much larger than τc, a remark that not been considered
in many previous publications. Moreover, the generalisation (7.8) we
propose in this paper is much more accurate for events with a return
time of order of ∆T. This procedure to compute return time plots
can also be generalised in combination with the use of rare event
algorithms, as we shall see in the next section.

7.2 return times : definition and sampling methods 179

7.2.2 Computing return times from a rare event algorithm

In section 7.2.1, we defined the return time for a time-homogeneous
stochastic process and explained how to efficiently compute it for rare
events from a timeseries. However, a major difficulty remains. Indeed,
we still have to generate numerically the rare events in the timeseries,
which comes at a large computational cost. In the present section,
we explain how to apply the above method to the data produced by
algorithms designed to sample efficiently rare events instead of direct
simulations.

As illustrated in chapters 4, 5 and 6, rare event algorithms provide
an effective ensemble of M trajectories {Xm(t)}0≤t≤Ta (1 ≤ m ≤ M).
Note that the length Ta of the trajectories generated by the algorithm
does not necessarily coincide with the length Td of the trajectory
generated by direct sampling: in practice, as we shall see, Ta ≪ Td.
For each of these trajectories, we compute the maximum of the ob-
servable over the time evolution am = max0≤t≤Ta (A(Xm(t))). This is
similar to the block maximum method described in section 7.2.1.3,
with each trajectory playing the role of a block. There is however a
major difference: unlike in the block maximum method, the different
trajectories sampled by the rare event algorithm do not have identical
statistical weight. To each trajectory Xm(t), and thus to each maximum
am, is associated a probability pm computed by the algorithm. Hence,
rather than just a sequence {am}1≤m≤M, rare event algorithms yield a
sequence {am, pm}1≤m≤M. The generalisation of the block maximum
formula (7.8) to non-equiprobable blocks is straightforward and leads
to the estimator

r̂A(a) = − Ta

ln
(

1 − ∑M
m=1 pmsm(a)

) . (7.9)

Of course, we could construct similarly an estimator generalising (7.7),
but as we have seen in the previous section, the estimator (7.8) yields
better performance.

In practice, to plot the return time curve, we sort the sequence
{am, pm}1≤m≤M in decreasing order with respect to the am, and denote
the sorted sequence {ãm, p̃m}1≤m≤M such that ã1 ≥ ã2 ≥ ... ≥ ãM. We
then associate to the threshold ãm the return time

r̂A(ãm) = − Ta

ln (1 − ∑m
ℓ=1 p̃ℓ)

. (7.10)

Indeed, the sum of the weights of the events with amplitude larger
than ãm is ∑m

ℓ=1 p̃ℓ. Again, the return time plot represents a as a
function of r (a).

We stress that the method described here does not depend on
the observable of interest, or on the details of the algorithm itself.

180 computing return times for rare events

In the remainder of this chapter, we provide a proof-of-principle for
this method, by considering two kinds of observables, sampled by
two different algorithms. In section 7.3.1 we first study the return
times for instantaneous observables using the Adaptive Multilevel
Splitting (AMS) algorithm. Second, in section 7.4 we turn to time-
averaged observables using both the AMS and the Giardina–Kurchan–
Tailleur–Lecomte (GKTL) algorithm. We show that the method allows to
accurately compute return times at a much smaller computational cost
than direct simulation. In both cases, we apply the technique to the
simple case of an Ornstein–Uhlenbeck process, for which the results
are easily compared with direct simulation and theoretical predictions,
before illustrating the potential of the method for applications in
complex systems in section 7.5.

7.3 return times sampled with the adaptive multilevel

splitting algorithm

In this section, we present the computation of return times by ap-
plying the method presented in section 7.2.2 to the Adaptive Multilevel
Splitting, introduced in chapter 6. This algorithm follows the strat-
egy of splitting methods for the estimation of rare event probabilities,
which dates back to the 1950s [73]. Many variants have been proposed
since then. The AMS algorithm can be interpreted as simulating a
system {xi(t)} of interacting replicas (instead of independent replicas
in a crude Monte Carlo simulation), with some selection and mutation
mechanism. In chapter 6 we described a modified version of the AMS,
referred to as TAMS, specifically designed to compute the probability
of trajectories of finite durations that go beyond a fixed threshold.
The main motivation for the formulation of the TAMS algorithm is
actually the computation of return times through relation (7.9). In
section 7.3.1, we show how the algorithm enables us to estimate return
times, under the Poisson statistics assumption made in section 7.2.
Finally, we illustrate in section 7.3.2 the method by computing the
return times for an Ornstein–Uhlenbeck process.

7.3.1 Computing return times with the TAMS

Recall that the TAMS algorithm generates an ensemble of M trajec-
tories xm(t) with associated probability pm, as explained in chapter 6

on page 151. Additionally, recall that for any observable O[x(t)], we
can define an estimator based on our sampling of trajectory space:

ÔM =
M

∑
m=1

pmO[xm(t)]. (7.11)

7.3 return times sampled with the adaptive multilevel splitting algorithm 181

It follows directly from (7.11) that an estimator of q(a) is:

q̂M(a) =
M

∑
m=1

pmsm(a), (7.12)

where am = max0≤t≤Ta A(xm(t)) is the maximum value for the observ-
able over the trajectory m, pm the associated probability, see 6, page
151, and sm(a) = 1 if am > a, 0 otherwise (7.2.1.3).

As explained in 7.2.1.3, the return time is related to q(a) by the hy-
pothesis that these events are Poissonian, and we obtain the estimator
for the return time r̂M(a) = Ta

ln(1−q̂M(a)) given by (7.9) (alternatively,

we could use r̂M(a) = Ta
q̂M(a)). In essence, to draw return time plots,

it suffices to sort the set {(am, pm)}1≤m≤M according to the am and
use (7.10), as described in 7.2.2. Note that in practice, with the particu-
lar choice of score function ξ(t, x) = A(x), storing the levels Q(j)

n for
the killed trajectories directly provides the corresponding values am.

By definition, the estimators q̂M(a) and r̂M(a) are random variables.
In chapter 6, section 6.1, we describe their statistical properties, and
how to interpret them in terms of consistency and efficiency of the AMS

algorithm. In particular, we show that q̂M(a) is an unbiased estimator
of q(a), study the variance, and show the existence of a Central Limit
Theorem.

The total number of generated trajectories is M = Nc + J̃, where Nc

is the number of trajectories in the initial ensemble and J̃ = ∑J
j=1 lj is

the total number of resampled trajectories along the J iterations of the
algorithms. The number of resampled trajectories at iteration j is lj. In
the following we discuss two choices for the number of iterations J.
First, the TAMS can be used with a fixed number of iterations. Alterna-
tively, as is often seen in the AMS literature, one may decide to iterate
the algorithm until all trajectories reach a prescribed threshold a. Then
J is a random number. In that case, the threshold a becomes the control
parameter for the stopping criterion. Under those circumstances, the
estimator q̂M can be expressed as

q̂M(a) =
J

∏
j=1

(
1 − ℓj

Nc

)
. (7.13)

This formula remains valid in the case where the number of iterations
J is prescribed: it suffices to define the threshold a a posteriori, by
choosing a = min1≤n≤Nc a(J)

n the minimum value of the am among the
final trajectories. The formula could also be used to compute q̂M(b)
with b < a, simply by changing the number of iterations required to
meet the stopping criterion. In practice, the most convenient approach
is to use the expression given in (7.12).

In the above, we have defined the AMS estimators q̂M and r̂M based
only on the number of trajectories generated by the algorithm. In fact,

182 computing return times for rare events

the Nc initial trajectories and the J̃ resampled trajectories (generated
during the J iterations) are qualitatively different. In practice, the user
does not choose the parameter M directly, but rather the number of
ensemble members Nc on the one hand, and either the threshold a or
the number of iterations J on the other hand. Recall from chapter 6

that the number of initial trajectories Nc governs the convergence of
the estimators. Another practical constraint on the choice of Nc is
the problem of extinction: for some systems, if Nc is too small, all the
members of the ensemble become identical after a number of itera-
tions. Extinction is discussed in chapter 6, in section 6.2.1.2. The other
parameter (the threshold a or the number of iterations J) selects the
type of events we are interested in. Indeed, from (7.13), we obtain an
approximate relation between the number of resampled trajectories J̃
and the target return times: we write ln q̂M(a) = ∑J

j=1 ln
(

1 − ℓj
Nc

)
. For

large Nc, this leads to ln q̂M(a) ≈ −∑J
j=1 ℓj/Nc ≈ − J̃/Nc. Targeting

rare events with probability 10−β, i.e. return times of order 10βTa, J̃ is
then O(Ncβ). This indicates how to choose the number of iterations
J in practice. In particular, for rare events, we should often be in the
regime J = Ncβ.

To sum up, to compute return time plots r(a), one may either fix
the target amplitude a, and run the algorithm for a random number
of iterations, until the observable reaches a for all the trajectories.
Alternatively, one can fix the target return time r(a), and iterate the
algorithm a fixed number of times by choosing J = Nc ln(r(a)/Ta). In
the former case, the prescribed amplitude a needs not correspond to
the largest event for which we should estimate the return time, but
it will approximately be the case as soon as Nc ≪ J, i.e. if a is large
enough for fixed Nc. Similarly, in the latter case, the largest return
time computed by the algorithm will approximately be equal to the
prescribed target return time when Nc ≪ J.

Please note that this method computes the probability to exceed a
threshold a, by averaging over trajectories or over K algorithm realisa-
tions the sampled value of q(a). This gives an unbiased estimator of
q(a), as explained in chapter 6. The standard deviation of this estima-
tor is of order 1/

√
KNc. When computing r(a) through the nonlinear

relation r̂(a) = −Ta/ ln (1 − q̂(a)), we thus obtain an estimator of r(a)
with a bias of order of 1/(KNc) and a standard deviation of order
1/

√
KNc. If however we had made averages over return times among

algorithm realisations, then the estimator for each realisation would
have been biased with a bias of order 1/Nc, and the final estimator af-
ter K realisations would still be biased with a bias of order 1/Nc [105].
Please refer to chapter 6, section 6.1 for a discussion of statistical
properties of the AMS and TAMS algorithms.

7.4 return times sampled with the giardina-kurchan-tailleur-lecomte algorithm 183

7.3.2 Return times for the Ornstein–Uhlenbeck process from the Trajectory
Adaptive Multilevel Splitting algorithm

In this section we consider the Ornstein–Ulhenbeck process x(t) de-
fined in (7.1). Additionally, we define the correlation time τc as

τc = lim
T→∞

∫ T

0
(E[x(0)x(T)]− E[x]2)dt (7.14)

Choosing α = 1 and ϵ = 1/2, the correlation time is τc = 1 and the
variance is σ2 = 1/2. We now illustrate the use of the TAMS algorithm
for computing the return times r(a) for the variable Xt being larger
than a threshold a. This amounts to choose the observable as A(x) = x.
We use the TAMS algorithm described in chapter 6 with a score function
ξ(x, t) = x. This choice of score function is motivated by the fact that
the optimal score function is nearly independent of time, except on a
small boundary layer, as explained on appendix D. Additionally, in
one dimension, the level set of x will be the same as the level set of
the static committor function.

The algorithm relies on three numerical parameters : the length of
the generated trajectories Ta, the maximum threshold value amax and
the number of replicas Nc. As explained in chapter 6, section 6.1, the
relative error depends on Nc. Additionally, one has to choose Ta ≫ τc,
as explained in section 7.2.1.3. We see empirically that a good trade-
off between this requirement and computational burden is to choose
trajectories of length Ta equal to a few correlation times.

Figure 7.5 shows the return time plot computed using Nc = 100
replicas, Ta = 5τc and a = 7σ, using the TAMS in conjunction with the
methodology described in section 7.3.1. For comparison, figure 7.5
also features the theoretical value, estimated by computing the mean
first-passage time [105], as well as the estimate obtained from a direct
sampling with the same computational cost as the TAMS run. We
see that return times are very well recovered by the TAMS algorithm.
Furthermore, figure 7.5 clearly illustrates the computational gain from
the TAMS algorithm. Indeed, for the same computational cost as direct
sampling, the use of the TAMS algorithm gives access to return times
for much rarer events: we can now accurately compute return times
on the order of 1013, about seven orders of magnitude larger than
direct sampling.

7.4 return times sampled with the giardina-kurchan-
tailleur-lecomte algorithm

In the previous section, we illustrated the use of the TAMS algorithm
in conjunction with formula (7.9) to compute return times of large
fluctuations of the Ornstein–Ulhenbeck process defined in (7.1). We
showed in figure 7.5 that it leads to a significant computational gain

184 computing return times for rare events

100 105 1010 1015

r(a)

0

2σ

4σ

6σ

a

AMS
Theory
Direct sampling

Figure 7.5: Return time plot for a random variable following an Ornstein–
Uhlenbeck process (7.1) with α = 1 and ϵ = 1/2 (σ = 1/

√
2 is

the standard deviation). The solid red line represents the esti-
mate obtained using the TAMS with Nc = 100 replica, Ta = 5τc
and a = 7σ. The total number of trajectories (both initial and
resampled) is M ≈ 2 × 103 so that the total computational cost is
O(106τc). It is compared to the modified block maximum estima-
tor r̂′B applied to a sample timeseries of length Td = 106τc (blue
stars) and to the analytical result, explicited in [105]. The shaded
area represents the confidence interval on the estimation of the
fluctuation amplitude a, for a fixed value for the return time r(a).
It is computed as the empirical mean over the 100 interpolated re-
turn time plots originating from the 100 independent realisations
of the algorithm.

with respect to the computation of return times based on a long
timeseries of the process.

In the present section, we illustrate the computation of return times
using the method described in section 7.2.2 for a time-averaged ob-
servable. Even though it could be done using the TAMS algorithm
presented in chapter 6, we instead illustrate the use of a different rare-
event algorithm, namely the GKTL algorithm introduced in chapter 4. It
is specifically designed to compute large deviations of time-averaged
dynamical observables.

7.4.1 Return times for the time-averaged Ornstein–Uhlenbeck process from
the GKTL algorithm

On the basis of the OU process defined in (7.1), we consider the time
averaged position

XT(t) =
1
T

∫ t

t−T
x(s)ds, t ∈ [T, Ta] (7.15)

where the position x follows an Ornstein–Uhlenbeck process (7.1)
between times 0 and Ta. We denote by σ2

T the variance of XT and
τc,T the correlation time. In this section we illustrate the application
of the GKTL algorithm to the computation of the return times r(a)

7.4 return times sampled with the giardina-kurchan-tailleur-lecomte algorithm 185

100 105 1010 1015

r(a)

0

2σ

4σ

6σ

8σ

a
GKTL
AMS
Direct sampling

Figure 7.6: Return time plot for the time-averaged Ornstein–Uhlenbeck pro-
cess XT (7.15) with α = 1 and ϵ = 1/2 (σ = 1/

√
2 is the standard

deviation), estimated from the GKTL algorithm (solid red line) and
AMS algorithm (solid blue line). The GKTL algorithm was used
with Nc = 500 replica, Ta = 20τc and k = 0.9. It was repeated
K = 100 times. The TAMS algorithm was used with Nc = 100
replicas, Ta = 50 and a = 6.5σT . It was repeated K = 10 times.
Finally, the dashed black line represents the result of a direct
sampling over a timeseries of length Td = 109τc. Parameters of
both the GKTL and AMS algorithms were chosen so that 100 re-
alisations of the algorithms amount to a computational cost of
O(106τc). The cost of the direct sampling is 109τc.The shaded
area represents the confidence interval on the estimation of the
fluctuation amplitude a, for a fixed value for the return time r(a).
It is computed as the empirical mean over the 100 interpolated re-
turn time plots originating from the 100 independent realisations
of the algorithm.

for X̄T being larger then a. We make use of the GKTL algorithm with
trajectories of duration Ta > T, computing the time-averaged position
X̄T(t) for T ≤ t ≤ Ta as a moving average.

Similarly to the case of the TAMS (see section 7.3.2), the application
of the GKTL algorithm depends on three numerical parameters: the
number of trajectories Nc, the length of the trajectories Ta and the bias
parameter k. The number of trajectories Nc governs the relative error, as
explained in chapter 4, and one should use Ta so that Ta − T ≫ τc,T, as
explained in section 7.2.1.3. Finally, as for the strength of the selection
k, its relation with the amplitude of the generated fluctuations is not
known beforehand, and one has to set its value empirically 1.

In Fig. 7.6, we show the return times r(a) for XT, with T = 10τc,
computed from the GKTL algorithm described in chapter 4, following
the methodology described in 7.2.2. In order to validate the compu-
tation, the estimate obtained from the algorithm is compared to the
direct sampling method (7.8). For rare events (r(a) ≫ τc,T), the results
from the GKTL algorithm agree well with direct sampling. Further-

1 When the duration of the average is long enough so that a large deviation regime
is attained, the relation between the value of k and the typical amplitude of the
fluctuations generated by the algorithm is known from the Gartner-Ellis theorem. See
chapters 1 and 4, as well as Ref. [165] for further details.

186 computing return times for rare events

−2σ 0 2σ 4σ

X̄T

0

0.2

0.4

0.6

P
(X̄

T
=

X
)

O.U.
GKTL

Figure 7.7: PDF of the time-averaged observable X̄T , with T = 10τc, for the
Ornstein–Uhlenbeck process with α = 1 and ϵ = 1/2 (σ = 1/

√
2

is the standard deviation): computed from a direct simulation
of length Td = 106 (black line), and based on the trajectories
generated by the GKTL algorithm with 500 replicas, Ta = 20τc and
k = 0.9 (blue line).

more, the comparison of the computational costs for the two different
methods shows the efficiency of the algorithm. Indeed, for direct sam-
pling, the length of the sample trajectory, 109τc in the case of Fig. 7.6,
naturally sets an upper bound on the return times one is able to
compute. By contrast, the total cost of the GKTL estimate is 106τc and
one can see in Fig. 7.6 that it allows to reach return times larger by
many orders of magnitude. Figure 7.7 shows an estimate of the PDF

for X̄T along the trajectories generated using the GKTL algorithm. Even
though importance sampling is performed for the observable X̄Ta , the
observable averaged over the whole trajectory of length Ta, it better
samples the tail of the PDF for X̄T, resulting in better estimation of the
corresponding return times.

Figure 7.6 also shows the return time for X̄T(t) being larger than
a computed using the TAMS algorithm, as described in section 7.3.2.
We use as a score function the time-averaged observable itself ξ(t) =
X̄T(t), for T ≤ t ≤ Ta. The selection is then done according to the
maximum value of X̄T(t) for each trajectory for T ≤ t ≤ Ta. More
precisely, following the notations of section 7.3.2, for iteration j we
denote by Q⋆

j the lowest maximum of X̄T over the trajectories in the

set {x(j)
n (t)}0≤t≤Ta,1≤n≤N . Following the TAMS algorithm described in

chapter 6, the lj new replica are defined by copying the trajectories

x(j−1)
nℓ

from 0 to the smallest time t such that X̄(j−1)
T,nℓ

(t) > Q⋆
j and

simulating the rest of the trajectory from this time to Ta.
The agreement between the two estimates illustrates that the method

to compute return times from rare event algorithms proposed in 7.2.2
can be applied to any rare event algorithm suitable for the type of
observable under study. Here, while the AMS algorithm allows for
computing return times for both the instantaneous and time-averaged
observables, the GKTL algorithm is not suited for instantaneous ob-
servables.

7.5 application : return times for extreme drag forces on an object immersed in a turbulent flow 187

7.5 application : return times for extreme drag forces

on an object immersed in a turbulent flow

In sections 7.3.1 and 7.4, the AMS and GKTL algorithms were shown
to greatly mitigate the amount of computational effort required to the
computation of return times of rare events for simple one-dimensional
stochastic dynamics. A key issue with rare event algorithms is to
understand if they are actually useful to compute rare events and
their return time for actual complex dynamical systems. In this sec-
tion, we give a brief illustration that more complex dynamics can be
studied. We illustrate the computation of return times using rare event
algorithms for a turbulent flow. The possible limitations of rare event
algorithms are further discussed in the conclusion.

Unlike simple low-dimensional models, such as the OU process,
numerical simulations of turbulent flows of interest for physicists
and/or engineers require tremendous computational efforts. As a
consequence, direct sampling of rare events based on a long time
series is simply unthinkable for such systems. A common practice in
the engineering community is to generate synthetic turbulent flows,
without resolving explicitly the small scales, to study numerically
the physical phenomena of interest [116, 153]. However, the main
difficulty is to capture synthetically the correct long-range spatio-
temporal correlations of turbulence and such approaches can not
capture the essential effects of coherent structures. We suggest here
that rare event methods such as the GKTL and the AMS algorithms can
be used in order to study extremes in turbulent flows without having
to rely on such modelling.

In this section we address the computation of the return time of
extreme fluctuations of the drag force applied by a turbulent flow on a
immersed obstacle. As explained in chapter 1 and 3, the computation
of flow trajectories associated to such extremes is of great interest
both for fundamental issues and applied problems, such as reliability
assessment for industrial structures. More specifically, we focus here
on the averaged drag FT(t) = 1

T

∫ t+T
t fd(τ)dτ, which corresponds to

the averaged sum of the efforts from the flow, projected along the flow
direction. See chapter for a mathematical definition of the drag fd.
The length of the averaging window depends on the nature of the
application. For instance, it could be related to the typical response
time of a material, in order to average out high frequency excitations
that have a minor impact on the deformation of the structure. Note
that the choice of the observable is arbitrary. For instance, one could
choose to study other related physical quantities, such as the lift or
torque.

In order to establish a proof-of-principle for the computation of return
times using rare event algorithms for fluid mechanics problems, we
here focus on test flow (2). Recall that this configuration consists in the

188 computing return times for rare events

flow past a square cylinder in a two-dimensional channel, in which
upstream turbulence is generated by the interaction of an incoming
steady laminar flow with a grid. Please refer to chapter 2 for a detailed
discussion of test flow (2), as well as several illustrations of the flow
fields for this configuration. In the following, we used the correlation
time, denoted as τc, as the unit of time. It is defined as the zero-crossing
time of the autocorrelation function of the drag acting on the obstacle.
See chapter 2 for a definition and discussion of the correlation time.

7.5.1 Computation of the reference solution for return times

As a preliminary step, we compute an estimate of the return times
for the fluctuations of the averaged drag FT acting on the square em-
bedded in test flow (2) from a very long timeseries. This timeseries
is computed by mean of a very long simulation of the flow over
Td = 106τc. The resulting estimate for the return times will serve as a
reference solution. We refer to this estimate as the direct estimate. Note
that this step is analogous to the computation of a reference solution
for the large deviation rate function in chapter 5. The direct estimate
is computed based on the method described in section 7.2.1. Note that
the maximum return time accessible from a direct estimation, related
to the rarest event in the timeseries, is bounded. Indeed, following for-
mula (7.9), the maximum return time accessible by the direct estimate
cannot exceed the total duration of the timeseries, here denoted as Td.

7.5.2 Computation of return times with the GKTL algorithm and compari-
son with the reference solution

Figure 7.8 illustrates the computation of the return times for the drag
averaged over 5τc, using the GKTL algorithm. It shows that the use
of the algorithm makes possible the computation of rare events at a
much lower computational cost than direct sampling.

More precisely, the algorithm has been applied using Nc = 128
replicas simulated over 10 correlation times. The return time plot
presented in Fig. 7.8 is based on the data from K = 10 repetitions of
the algorithm, leading to an overall computational cost of, roughly, 104

correlation times. From a direct sampling of similar computational cost,
the rarest accessible event has a return time close to the computational
cost itself, in this case is 104τc. Figure 7.8 shows that the use of the
GKTL algorithm allows for the computation of return times of much
rarer events. The reference estimate has been computed from a time
series spanning 106 correlation times. For events having a return time
close to 5 × 105 correlation times, the computational cost of estimating
the return times using the GKTL algorithm is 50 times lower than direct
sampling.

7.6 conclusion 189

3σ

4σ

5σ

6σ

a

103 104 105

r(a)

Figure 7.8: Illustration of the computation of return times for the averaged
drag over the square obstacle in test flow (2). The averaging
window is 5 correlation times. The dashed black line represents
the reference return times computed from a timeseries spanning
106 correlation times, using (7.8). The solid blue line represents
the return times obtained using the GKTL algorithm.

The occurrence of plateaus in Fig. 7.8 is due to the increasing mul-
tiplicity of trajectories as the amplitude a increases. Indeed, because
of the selection procedure involved in the GKTL algorithm, a subset of
trajectories can share the same ancestor. Henceforth, they are likely to
differ only by a small time-interval at the end of their whole duration.
In such cases, it is common that the maximum over the trajectory is
attained in earlier times. As a consequence, this subset of trajectories
will contribute the same value to the set of maxima from which return
times are computed. This effect is accentuated in the present case of
a deterministic system, as it takes some time for copies to separate
after being perturbed at a branching point. A straightforward way of
mitigating the occurrence of such plateaus is to increase the number
of trajectories or/and the number of repetitions of the algorithm. As
an illustration, Fig. 7.9 shows the return time plot obtained using 50
repetitions instead of 10 in Fig. 7.8.

7.6 conclusion

In this chapter, we have considered the question of estimating the
return time of rare events in dynamical systems. We have compared
several estimators, using usual timeseries, generated with direct nu-
merical simulations, as opposed to rare event algorithms. To do so,
we generalised the approach relating the return times to the extrema
over trajectory blocks. This approach relies on the fact that rare events
behave, to a good approximation, like a Poisson process: this allows
for the derivation of a simple formula (see (7.7)) for estimating the
return times based on block maxima. We slightly improved this for-

190 computing return times for rare events

3σ

4σ

5σ

6σ

a

103 104 105

r(a)

Figure 7.9: Illustration of the computation of return times for the averaged
drag over the square obstacle pictured in test flow (2), using 50
repetitions of the GKTL algorithm. The parameters are the same as
in Fig. 7.8. This figure illustrates the reduction in the occurrence
of plateaus for the return time curve obtained using the GKTL
algorithm. The dashed black line represents the reference return
times. The solid blue line represents the return times obtained
using the GKTL algorithm.

mula (see (7.8)) and further showed that it is possible, provided only
minor modifications, to evaluate it with data produced by rare event
algorithms. Indeed, the traditional block maximum method consists
in dividing a given trajectory in blocks with arbitrary length, larger
than the correlation time of the system, and smaller than the return
time one seeks to estimate. Moreover, we stressed that there is actually
a class of rare event algorithms which yields precisely an ensemble
of trajectories exhibiting the rare event more often than direct simula-
tion, together with the probability of observing each member of the
ensemble.

Hence, we have generalised the block maximum formula to non-
equiprobable trajectory blocks; this allowed us to use directly rare
event algorithms, such as the AMS and the GKTL algorithm, to estimate
return times for rare events. Using the Ornstein–Uhlenbeck process as
an illustration, we showed that the method is easy to use and accu-
rately computes return times in a computationally efficient manner.
Indeed, compared to direct sampling, combining the generalised block
maximum approach to rare event algorithms allowed for computing
return times many orders of magnitude larger, at fixed computational
cost. This method does not depend on the dynamics of the system or
on the type of observable, as long as a suitable rare event algorithm is
selected. This approach paves the way to numerical computation of
return times in complex dynamical systems. To showcase the potential
of the method, we discussed briefly an application of practical interest:
extreme values of the drag force on an object immersed in turbulent

7.6 conclusion 191

flows. Another example of application given very recently is the study
of heat waves [130].

C O N C L U S I O N

Objects immersed in turbulence are subject to randomly varying
forces, resulting from their interaction with the surrounding flow.
Moreover, such forces can undergo extreme fluctuations, linked to
violent variations in the flow, such as abrupt changes of the pressure or
velocity. Even though these fluctuations are rare events, their potential
impact on the immersed structure make such fluctuations worth be
studied.

In this thesis we addressed the numerical simulation of extreme
fluctuations of the drag force acting on an immersed object. Although
the characterisation of typical drag fluctuations have been addressed
in previous works [3, 23, 67, 82, 170], extreme events have rarely been
studied.

Direct sampling of extreme drag fluctuations

In a fist part, we applied a direct sampling approach. That is, we
carried out very long simulations of the interaction of a turbulent
upstream flow with a square cylinder, in order to sample extreme
fluctuations of the drag force. The flow geometry, introduced in chap-
ter 2, was chosen so that the dynamics could be integrated over a very
large number of characteristic times, thus allowing the sampling of a
significant number of extreme events.

Extreme fluctuations of the instantaneous drag

From the resulting timeseries, we focused on rare events for which
the instantaneous drag fd reached a given threshold. In practice, we
chose the value of the threshold so that the return period of the
sampled events is much bigger than the timescale of the typical fluctu-
ations, while still sampling a large number of extreme fluctuations. The
simulation and the analysis procedure were implemented so that each
fluctuations could be individually re-simulated as a post-processing
step, therefore allowing us to look into the details of the corresponding
dynamics. We showed that extreme fluctuations of the instantaneous
drag are linked to very specific flow configurations, in which vorticity
concentrates very close to the downstream side of the square. Such
atypical configuration results from the interaction of a large vortical
structure with vorticity generated through strong shear along either
the top or bottom boundary of the square. The large vortex results
from the interaction at earlier times of the upstream turbulent struc-
tures with the boundary layer opposite to the boundary where the
vorticity is later generated.

193

194 conclusion

Extreme fluctuations of the time-averaged drag

In addition, we also sampled extreme fluctuations of the time-
averaged drag

FT(t) =
∫ t+T

t
fd(τ)dτ

. Such fluctuations are relevant to many applications, especially when
the behaviour of the system under study exhibits a typical response
timescale close to T. By contrast with the extremes of the instantaneous
drag, we found that the timeseries { fd(τ)}t≤τ≤t+T corresponding
to extreme values of FT(t) do not display a common structure. In
chapter 2, we illustrated that the statistics of the extreme fluctuations
of the instantaneous drag fd are well described by an exponential PDF.
Motivated by this observation, in chapter 3 we investigated extreme
fluctuations of the time-average for three different stochastic process
with different PDF: a Gaussian PDF, a power law PDF and finally an
exponential PDF. Furthermore, we designed each process so that it
displays a fast decay of the correlation over time. We showed that, for
the process with the Gaussian PDF, extreme positive fluctuations of
the time average over 10τc primarily result from a series of positive
independent fluctuations, and very few negative fluctuations. The
extreme value of the overall average results from the accumulation of
these independent fluctuations. By contrast, we showed that extremes
of the time average of the process with the power law PDF exhibit
radically different behaviour. Indeed, they mostly result from a few
(typically one or two) very high fluctuations of the instantaneous drag
fd, while the rest of the timeseries exhibits typical fluctuations. More
importantly, we illustrated that the process with the exponential PDF

is a marginal case. For this process, we found that extremes of the
time-averaged process over 10τc can both result from few very high
fluctuations or a large number of positive smaller fluctuations.

When investigating extreme events, the direct sampling approach
based on very long simulations is limited. Indeed, longer timeseries
are necessary to sample a larger number or fluctuations of a fixed
amplitude, or rarer events. Moreover, very long integration of the flow
dynamics is restricted to simple flows.

Rare events algorithms

In this thesis we explored an alternative approach to rare event
sampling in turbulent flows, based on rare-events algorithms. We con-
sidered the application of two algorithms, the Giardina–Kurchan–
Tailleur–Lecomte algorithm [57, 120] and the Adaptive Multilevel
Splitting algorithm [27, 140], that are suited to both non-equilibrium

conclusion 195

and deterministic dynamics. Both rely on the evolution of a population
of trajectories, that can either be replicated or discarded in order to
foster the sampling of extreme events. These algorithms have been
successfully applied in previous works to various problems involving
rather simplified dynamics [21, 54, 57, 158]. In this thesis we addressed
their application to turbulent flows, thus representing a great leap
in complexity from previous studies. More precisely, we applied the
GKTL and AMS algorithms on the basis of the two-dimensional flow for
which we studied extreme drag fluctuations from a direct sampling
approach. In this way, the results obtained using the algorithms could
be compared to very long simulations of the flow.

The Giardina–Kurchan–Tailleur–Lecomte algorithm

In chapter 4, we discussed the implementation of the GKTL algo-
rithm for complex dynamics such as turbulent flows. In addition to
its efficiency, the practicality of a rare event algorithm in terms of
actual implementation is an important element for applications. In
particular, we highlighted that, in the case of complex dynamics, the
optimisation of the cloning stage does not lead to a significant in-
crease in performance. Indeed, for cloning periods of the order of the
correlation time, the computational cost of simulating the dynamics
of the clones overwhelms the computational cost associated with the
message passing during the cloning stage.

Using the GKTL algorithm, we computed the large-deviation rate func-
tion for the drag force acting on a square obstacle. Large deviation rate
functions are notoriously difficult to compute with direct approaches,
as very long timeseries are required. We showed the GKTL algorithm
provides an accurate estimate of the rate function for rare events that
otherwise could not be addressed with a direct sampling approach
of similar computational cost. However, we highlighted that the effi-
ciency of the algorithm is limited. Indeed, the GKTL estimate of the
Scaled Cumulant Generating Function displays linear tails, similarly
to direct estimates obtained from finite timeseries. The slope of the tail
increases with the number of copies. As a matter of fact, we showed
that, as the bias k is increased for a fixed number of copies, the am-
plitude of the fluctuations sampled by the GKTL algorithm saturates.
Moreover, we showed that this limit value increases with the number
of copies.

In a last part, we showed that the GKTL algorithm effectively yields a
greater number of independent trajectories corresponding to extreme
fluctuations of the time-averaged drag, with respect to direct sampling.
However, we illustrated that the number of independent trajectories
is very small with respect to the total number of trajectories in the
population. Furthermore, the number of copies required for sampling
a statistically significant amount of independent trajectories grows
very rapidly with the bias k. In a way of conclusion, even though the

196 conclusion

GKTL algorithm can sample extreme events inaccessible from a direct
sampling of similar computational cost, its yield is rather poor.

The Trajectory Adaptive Multilevel Splitting algorithm

The GKTL is restricted to time-averaged observables. In chapter 6,
we considered the Adaptive Multilevel Splitting algorithm, in order to
sample extreme fluctuations of the instantaneous drag. More precisely,
we aimed at sampling rare trajectories in which the instantaneous
drag fd reaches a given threshold. As a matter of fact, we developed
the Trajectory Adaptive Multilevel Splitting, a modified version of
the AMS in which all trajectories have the same fixed duration. As a
consequence, the TAMS algorithm is particularly easy to use. Its main
interest is the computation of return times, described in chapter 7,
which is considerably simplified with respect to the original AMS

algorithm. It yields the probability that an observable reaches a given
threshold during a fixed time. On the basis of the Ornstein–Ulhenbeck
process, we illustrated that the TAMS is able to probe very rare events
for one-dimensional stochastic dynamics. By contrast, we provided
evidence that the application of the AMS and TAMS is difficult for
complex deterministic dynamics.

Indeed, we showed that choosing the score function as the drag force
itself prevents the algorithm to sample new, rarer trajectories. More
precisely, duplicated trajectories do not lead to higher fluctuations.
Indeed, because the dynamics is deterministic, duplicated trajectories
separate from their parent after a finite time of roughly a few correla-
tion time. As a result, when duplicated trajectories are restarted close
to a drag maximum, they simply follow the parent trajectory and do
not lead to higher fluctuations. Consequently, in this case, the TAMS is
unable to generate a diverse ensemble of trajectories that exhibit large
fluctuations.

Although the AMS and TAMS algorithms can lead to a significant
improvement in the sampling of extremes for stochastic dynamics [5,
138, 139], we showed that its application to complex deterministic
dynamics is not straightforward.

The computation of return times

In the last chapter, we addressed the computation of return times
for rare events, a useful concept for applications. Considering an ob-
servable x(t), the return time r(a) was defined in chapter 7 as the
the average waiting time for a fluctuation x ≥ a. We stressed that
computing return times cannot be done from the sole knowledge of
the probability. As a consequence, we described a methodology to
compute return times from long timeseries, based on the block-maxima
method and the Poisson statistics of rare events. More importantly,
we showed that this procedure can straightforwardly be extended to

conclusion 197

rare event algorithms such as the GKTL algorithm or the AMS algo-
rithm. Therefore, we illustrated the computation of return times of
both instantaneous and time-averaged observables based on the two
algorithms and on the Ornstein–Ulhenbeck process. Furthermore, we
computed return times for extreme fluctuations of the time-averaged
drag acting on a square cylinder using the GKTL algorithm, illustrating
that return can be computed for a lower computational cost. However,
due to the very few number of independent trajectories, the return
time plot obtained with the GKTL estimate displays spurious plateaus.
This effect can be reduced by using a larger number of copies, therefore
leading to a larger number of independent trajectories.

Perspectives

In this work we laid the groundwork for the development and
implementation of rare event algorithms designed for turbulent flows.
Using the GKTL algorithm, we computed the statistics and dynamics
for extreme fluctuations of the time-averaged drag at a much lower
computational cost than the one required by a direct sampling ap-
proach. However, our experiments highlight that the efficiency of the
sampling might be limited in some cases. Even for values of the bias
k for which the algorithm outputs a fairly accurate estimation of the
SCGF, we observe that the ensemble of sampled trajectories contains
very few independent trajectories, typically less than 5% of the total
number of copies. Furthermore, our experiments suggest that a rela-
tively high number of copies is required, with respect for example to
the number of copies used in [130].

Even though these limitations have been reported in several ap-
plications and analysis of the GKTL algorithm [21, 78, 121, 132], we
observed that they particularly alter the performance of the GKTL in
our case. By contrast, such limitations have not been reported in [130],
which addresses the application of the GKTL algorithm with a sim-
plified model of climate dynamics. The reasons for the difference in
efficiency of the algorithm are not clear yet, and will be addressed in
further studies. Nonetheless, a possible direction is as follows. The
GKTL algorithm can be expected to be efficient for systems in which
extreme events are related to the persistence of the system in states for
which the observable of interest exhibit an extreme value. In this way,
once the system have reached such a state, the GKTL algorithm can
select the short lived fluctuations over a cloning period for which the
observable of interest persists in taking an extreme value. For instance,
this corresponds to the phenomenology in [130]. As a matter of fact,
we illustrated in chapter 2 that the qualitative dynamics of the flows
concerned in this work is very different. Indeed, flow configurations
responsible for extreme values of the drag are swept away by the mean
flow. Starting from a flow state in which the drag is extreme, it will

198 conclusion

quickly return to typical values. As a result, the flow configuration
in a sole region of the computational domain cannot be considered
a precursor of extreme fluctuations at future times. consequently, the
selection of the trajectories based on the past value of the drag is not a
relevant choice.

We believe this is actually why the TAMS fails to sample new trajec-
tories leading to higher fluctuation. The value of the drag force itself
at a given instant is a very poor choice of score function. A better score
function should probably be a non local function of space, taking both
the flow configuration in the vicinity of square and the structure of
the upstream turbulence into account. Naturally, the design of such of
cost function is very difficult. An alternative route would be to alter
the algorithm itself, keeping the drag as a cost function For instance,
one could restart resampled trajectories a few correlation times before
the actual branching point, so that it has time to partially separate
until the branching point. If the resampled trajectory actually achieves
a higher fluctuations, it is accepted and simulated until the final time.
It it does not, it is rejected and another parent trajectory is selected
instead. If such a procedure can potentially sample rare trajectories, it
probably does not conserve the mathematical properties of the AMS,
and further work is necessary in order to design a method which
properties can be related to the ones of the AMS.

Part III

A P P E N D I X

A
T H E P I P E L B M C + + L I B R A RY

This appendix briefly describes the implementation of the numer-
ical simulations for the flow dynamics involved in this work, intro-
duced in chapter 2. It is achieved using a C++ library developed
specifically for this project. This appendix does not discuss the details
of the implementation. Rather, it describes the motivations behind the
development of such a library, its architecture and its main features.

a.1 a specific LBM implementation

The numerical simulation of the test flows presented in chapter 2 is
the backbone of this thesis. Throughout this manuscript, it is coupled
with rare event algorithms that rely on the integration of the flow
over time, as well as the computation of specific observables. Exam-
ples include the drag acting on an obstacle immersed in the flow, the
velocity, pressure, or vorticity fields at given locations in the computa-
tional domain, or the different contributions to the mechanical stresses
on the surface of the obstacle. The numerical simulation of the two-
dimensional flow in a pipe is an academic problem in computational
fluid dynamics, that can surely be solved with the help of available
CFD codes.

However, we chose to base the numerical simulations on a code
specifically developed for this project. It is specific to the simulation
of a two-dimensional flow past obstacle in a channel. The main rea-
son for this choice is the interaction of the simulation of the flow
with rare event algorithms. Indeed, this interaction was expected to
result in unnecessary difficulties, using complex CFD software. By
contrast, the LBM code developed for this work, referred to as pipeLBM,
was specifically designed to ease the implementation of rare events
algorithms.

More precisely, the implementation is object-oriented. Object-oriented
programming is a programming paradigm which relies on the defini-
tion of objects that interact with one another [113, 115]. Objects possess
both attributes, representing data, and methods which describe opera-
tions on this data. For instance, obstacles in the flow can be described
as objects. Examples of possible attributes include the dimension of
the obstacle and its position. Furthermore, possible methods are the
application of the corresponding boundary conditions for the velocity
or the computation of mechanical stresses over the corresponding
surface.

201

202 the pipelbm c++ library

Object-oriented programming is particularly adapted to this project,
as it leads to the encapsulation of the LBM code into objects. From the
point of view of the rare event code (or any other code that uses
the pipeLBM library), the simulation of the flow can be achieved by
interacting with objects without having to temper with the actual
LBM code. A direct consequence of encapsulation is a clear separation
between the code that performs the rare event algorithm and the code
that performs the simulation of the dynamics. This leads to better
code maintenance, reuse and debugging.

In section A.3, the use of pipeLBM is illustrated on a simple example.
Then, a validation is presented in two different contexts. First, a
convergence analysis is carried out on the basis of the Poiseuille
flow. Then, the drag coefficient on a 2D square obstacle is computed
and compared to reference values.

a.2 architecture of the pipelbm library

The pipeLBM library consists of two types of objects, referred to as
classes. First the pipeLBM class is responsible for the implementation
of the method, i.e the streaming and collision algorithm introduced in
chapter 2, section 2.1. Second, the Obstacle class describes the imple-
mentation of obstacles in the flow, such as square cylinders or grids.
It implements the corresponding boundary conditions and provides
methods to compute physical observables linked to the obstacle, such
as the drag.

a.2.1 The pipeLBM class

The pipeLBM class describes a particular Lattice Boltzmann model.
Is is defined by

• The dimensions of the lattice (or equivalently the lattice spacing).

• The relaxation parameter τ.

• The boundary conditions at the inlet and outlet.

• The forcing amplitude.

The main role of the pipeLBM class is to implement the correspond-
ing Lattice Boltzmann algorithm, i.e. streaming and collision of the
populations. Instances of the pipeLBM class provide methods to per-
form initialisation of the simulation in different contexts, iterations of
the dynamics and boundary conditions, as well as several diagnostics
on the current state of the flow. The main features of the pipeLBM class
are outlined below.

A.2 architecture of the pipelbm library 203

a.2.1.1 Boundary Conditions

A pipeLBM object is responsible for applying the boundary condi-
tions describing the behaviour of the flow along the top and bottom
boundaries of the domain, and at both the inlet and outlet. The top and
bottom boundaries are modelled as rigid walls with a no-slip bound-
ary condition and are implemented through the halfway bounce-back
rule for the boundary populations. Boundary conditions for the in-
let and outlet can be set by the user through interaction with the
corresponding pipeLBM object. By default, the pipeLBM class is instan-
tiated with periodic boundaries for the inlet and outlet. For the inlet, a
parabolic velocity profile can be chosen instead. It is simply imposed
by setting the boundary populations to the corresponding equilibrium
value. For the outlet, an open boundary can be setup, based on a linear
extrapolation of the velocity filed along the pipe axis (see chapter 2,
section 2.3). Additionally, a sponge layer can be defined in order to
damp spurious density waves reflected at the boundary and smoothen
the flow. It is based on quadratic increase of the viscosity in the vicinity
of the outlet.

a.2.1.2 Initialisation

A pipeLBM simulation can be initialised as follows in several ways :

• Fluid at rest. In this case all populations are set to equilibrium
with u = 0 and ρ = 1.

• From a binary file describing a given state. This file contains the
Dx × Dy × 9 populations describing the state of the flow.

• From a randomised initial condition. In this case an initial state
is generated based on the random superposition of several pre-
computed states, using the method described in appendix C.
In practice, a pipeLBM object must be provided the path to a
directory containing a series of binary files corresponding to
pre-computed states of the flow.

In addition, a pipeLBM object provides a method to perturb the current
flow state, based on the method described in chapter 2, section 4.2.1.2,
as well as in appendix C. Similarly to the initialisation on a random
state, the corresponding method must be given a set of binary files
containing pre-computed states of the flow.

a.2.1.3 Streaming and Collision

From a user point of view, the streaming/collision/boundary con-
ditions sequence at the core of the Lattice Boltzmann algorithm is
encapsulated in a single pipeLBM method performing one or several
Lattice Boltzmann timesteps. The pipeLBM class implements both the

204 the pipelbm c++ library

classical Lattice BGK scheme [31] and the central-moment cascaded
scheme [143, 144].

a.2.1.4 Flow diagnostics

The pipeLBM class provides methods to get information on the
current state of the flow. Examples include longitudinal and transverse
velocities at point, vorticity and stress tensor on obstacles in the flow,
see section A.2.2. Flow fields such as velocity and pressure can be
written on disk at any time, either in the form of raw binary files or
VTK files for visualisation with Paraview.

a.2.2 The Obstacle class

This work is concerned about flows past obstacles. In addition to
pipeLBM, a second class, referred to as Obstacle, has been introduced
to deal with the definition and interaction of obstacles in the channel
with the flow. Its main tasks are :

• Definition of the corresponding solid boundaries

• Application of the boundary schemes

• Computation of efforts applied by the flow on the obstacle, such
as the drag or lift.

Naturally, these tasks depend on the nature of the obstacle. As a
consequence, Obstacle is an abstract class that cannot be instantiated
as such. However, it provides a structure for further specifications.
For instance, classes like squareObstacle or gridObstacle are inher-
ited from the abstract Obstacle class and properly define their own
implementation of the boundary conditions or computation of the me-
chanical stresses. The Obstacle and derived classes are independent
of the pipeLBM class. However, the pipeLBM class handles Obstacle

objects to take the corresponding boundary into account in the LBM

scheme. This interaction makes use of polymorphism, as pipeLBM meth-
ods deal with references to Obstacle objects, whether they actually are
a square, a grid, or any user-defined shape.

a.3 example : flow past a square

This section describes a simple example of an application of the
pipeLBM library to the computation of the flow around a square obsta-
cle. A parabolic velocity profile is imposed at the inlet and an open
boundary condition is implemented at the outlet.

To begin with, the following header must be specified:

A.3 example : flow past a square 205

1 # include " libpipeLBM . h"

A pipeLBM object is created, providing the lattice dimension along
both space directions:

1 i n t Dx = 2 5 7 ; // Number of l a t t i c e points along the pipe
a x i s

i n t Dy = 6 5 ; // Number of l a t t i c e points along the
t r a n s v e r s e a x i s

3 pipeLBM ∗myLB = new pipeLBM (Dx , Dy) ; // I n s t a n c a t i o n of the
pipeLBM c l a s s

By default, the pipeLBM class is instantiated with periodic bound-
aries at the inlet and outlet and parameters leading the a flow with
Re = 10. This can be changed as follows

1 myLB−>s e t I n l e t B C (" p o i s e u i l l e ") ; // P a r a b o l i c v e l o c i t y
p r o f i l e a t the i n l e t

myLB−>setOutletBC (" open ") ; // Open boundary at the o u t l e t
3

double U0 = 0 . 0 5 ; // C h a r a c t e r i s t i c v e l o c i t y , in t h i s case
maximum v e l o c i t y f o r the i n l e t p r o f i l e

5 dobule tau = 0 . 5 0 1 ; // Relaxat ion parameter
double F0 = 0 . 0 ; // No volumic f o r c i n g in t h i s example

7 myLB−>setParameters (tau , U0 , F0) ;

Additionally, a sponge layer can be defined. Its definition calls for two
values. The first one is the abscissa from which viscosity is progres-
sively increased to a maximum value (typically 10 times the original
viscosity of the fluid). From the second value, the viscosity is kept
constant at its maximum value until the outlet.

i n t spongeOrigin = (i n t) 3∗ (Dx−1)/4+1 ;
2 myLB−>setSpongeLayer (spongeOrign , Dx) ; // v i s c o s i t y i s

q u a d r a t i c a l l y increased from x=spongeOrigin to the o u t l e t
a t x=Dx−1.

206 the pipelbm c++ library

Next, the square cylinder must be defined :

i n t R = 8 ; // Dimension of the o b s t a c l e
2 i n t x0 = (Dx−1) /2 ; // x−coordinate f o r the lower− l e f t corner

of the square
i n t y0 = (Dy−1)/2 − R/2 ; // y−coordinate f o r the lower− l e f t

corner of the square
4 squareObstacle ∗mySquare = new squareObstacle (x0 , y0 , L) ;

An important step is to define the corresponding geometry in the
pipeLBM object.

myLB−>s e t O b s t a c l e s (mySquare) ;

Prior to the simulation, the fluid is initialised at rest :

1 myLB−>i n i t i a l i z e T o E q u i l i b r i u m () ;

Finally, the flow dynamics is integrated. In the following, the drag
acting on the square cylinder is computed at each time step and
gathered into an array. Additionally, flow fields are periodically written
on disk as VTK files for visualisation with Paraview.

1 i n t T0 = R/U0 ; // Defines the turnover time in u n i t s of
t imesteps

i n t Tf = 10∗T0 // Compute the dynamics over roughly 10

turnover times
3

double ∗drag_t imeser ies = new double [Tf] ;
5 f o r (i n t t =0 ; t <Tf ; t ++)

{
7 myLB−>advanceOneTimestep (mySquare) ; // Performs one LB

i t e r a t i o n
myLB−>computeStress (mySquare) ; // Compute various
mechanical e f f o r t s on the square

9 drag_t imeser ies [t] = mySquare . getDrag () ; // Gathers the
current value f o r the drag on the square

11 i f (t %100==0)
{

13 myLB−>writeVTK (t) ; // Writes VTK f i l e s descr ib ing
v e l o c i t y and pressure f i e l d a t i t e r a t i o n t .

}
15

}

A.4 test cases 207

a.4 test cases

This section illustrates the application of the pipeLBM library to two
different academic test cases: the Poiseuille flow and the flow past a
square obstacle. Results for those configurations can be compared to
analytical and experimental solutions, respectively.

a.4.1 The Poiseuille flow

The Poiseuille flow denotes the flow in a pipe with periodic bound-
aries at the inlet and outlet as well as no-slip boundary conditions
on the pipe walls. In the laminar regime, the Navier-Stokes equations
can be solved exactly. The analytical velocity field is the well-known
parabolic profile

uth(y) = −4
U0

H2 (y − H)y ex, (A.1)

with H the diameter of the pipe and ex a unit vector aligned with the
pipe axis.

The Poiseuille flow was simulated using the pipeLBM library for
comparison with (A.1) along a section of the pipe. More precisely, we
define the error over N grid points as

E =
1√
N

√ N

∑
i=1

(ũ(y)− ũth)2. (A.2)

The error can be decomposed into 3 different contributions. First, the
lattice Boltzmann method is affected by the usual error coming from
the discretisation of time and space: it is second order accurate in
both. Second, an additional error term arises from the discretisation
of velocity space in the Boltzmann equation. This term scales as the
square of the Mach number, defined as the ratio between the typical
velocity of the flow and the speed of sound. The Mach number scales
like ∆x/∆t, where ∆t and ∆x denote the simulation timestep and
lattice spacing, respectively. It leads to

E = O(∆x2) +O(∆t2) +O(∆x2/∆t2). (A.3)

Please refer to appendix B for a discussion of errors in the LBM.
A convergence analysis can then be carried out by refining the grid
several times, each time comparing the numerical results to the ana-
lytical solution. On order to exhibit the second order convergence in
space, the lattice spacing is varied keeping the relaxation time constant
(or equivalently, the viscosity in units of the lattice constants ∆x and
∆t). This approach is often referred to as diffusive scaling [92]. Indeed,

208 the pipelbm c++ library

when doing so, the timestep scales like ∆x2, and therefore the error
in (A.3) reduces to E = O(∆x2). Figure A.1 displays the results from
the convergence analysis. The flow was simulated using the Lattice
BGK scheme[31]. The length of the computational domain was set to
3H and the relaxation parameter was set to τ = 0.55.

Figure A.1: Error (A.2) computed over a cross section of the channel, for x =
L/2. The numerical estimate for the velocity field is compared to
the analytical profile (A.1).
The error was computed for different numbers of lattice nodes
along the transverse direction : Dy = 17, Dy = 33, Dy = 65,
Dy = 129. As expected, it scales like the square of the inverse of
the number of grid points.

a.4.2 The laminar flow past a square cylinder

The second test case is the numerical simulation of the laminar flow
past a square cylinder immersed in the pipe. For this fairly simple flow,
reference values for the drag coefficient of the square are available
in the literature []. The flow is solved using the pipeLBM library with
a parabolic velocity profile imposed at the inlet and open boundary
at the outlet. The dimension of the square is denoted as R and the
blockage ratio Bl = H/L is set to Bl = 8. See figure 2.2 on page
26 for a sketch of the computational domain. Note that in the case
of figure 2.2 the boundary conditions at the inlet and outlet of the
domain are periodic, which is not the case here. The central-moment
cascaded LBM scheme is employed. Finally, the section of the channel
is discretised using 129 lattice nodes. The flow is simulated until the
stationary regime for several values of the Reynolds number. The
velocity is kept constant to u = 10−2 (lattice units) and the relaxation
parameter τ is varied accordingly.

A.4 test cases 209

Figure A.2: Drag coefficient as a function of the Reynolds number. The esti-
mate from pipeLBM is compared to reference values from[],
showing good agreement. Re = 50, U0 = 0.01, Dy = 129,
Dx = 385, R = 16.

The drag coefficient for the square is a function of the Reynolds
number only and is defined as

Cd =
fd

1
2 ρRU2

0

with fd the drag force acting on the square, ρ the density of the fluid,
R the dimension of the square and U0 the typical velocity of the fluid
impacting the obstacle (in this case the inlet velocity). Comparison
between the reference values presented in [20] and the result from
the pipeLBM implementation is displayed in figure A.2, showing good
agreement.

B
T H E L AT T I C E B O LT Z M A N N M E T H O D

In this appendix extends section 2.1. We give a brief introduction the
the Lattice Boltzmann Method (LBM), with a focus on its practical
application. In section B.0.1 we give an overview of the genesis of
the LBM. Then, in section B.0.2 we introduce the Lattice Boltzmann
Equation (LBE), a discrete analog to the Boltzmann equation that
describes the dynamics of dilute gases. The main properties of the LBM

are then outlined. Finally, in section B.0.3 we discuss practical aspects
of LBM simulations: algorithmic procedure, boundary conditions and
choice of parameters.

b.0.1 Lattice Gas Cellular Automaton

The LBM originates from Lattice Gas Cellular Automata [75, 76].
A Lattice Gas Cellular Automata describes the dynamics of an en-
semble of particles evolving on a discrete lattice according to a set of
rules. Typically, these rules describe the propagation of the particles
from their current location to neighbouring nodes. Additionally, this
propagation is constrained by rules describing collisions, i.e. configura-
tions for which two or more particles are located on the same node.
The motivation driving the development of Lattice Gas models was
the description of the macroscopic behaviour of fluid on the basis of
very simplified models, which simple microscopic rules verify basic
properties [50, 135]. Although Lattice Gas Cellular Automata (LGCA)
were regarded with great enthusiasm at first, they revealed to be hin-
dered by several limitations and spurious effects, that prevented them
from being useful in concrete applications. Nonetheless, the LGCA

laid the groundwork for the formulation of the LBM, which emerged
from LGCA in the early 90s [80, 81, 108]. For a review of the early
developments of the LBM from LGCA, see [154, 155].

b.0.2 The Lattice Boltzmann Equation

The LBE can be thought of as a discrete analog of the Boltzmann
equation, that describes the dynamics of a dilute gas from a statistical
approach. More precisely, time, space as well as velocity space are
discretised. In this way, the gas particles propagate on the nodes of the
lattice along a discrete set of velocities, illustrated in figure 2.1. More
precisely, we denotes by fi(x, t) the amount of mass (per unit volume)

211

212 the lattice boltzmann method

carried by the particles moving (with speed ci) in the its-direction at
position x and time t. The LBE writes

fi(x + ci∆t, t + ∆t) = fi(x, t) + Ωi(x, t) for i = 0, ...8. (B.1)

where Ωi(x, t) is the collision operator, sometimes referred to as the
collision kernel. The left-hand side of equation (B.1) describes the prop-
agation of particles across the lattice, often referred to as steaming. The
right-hand side describes the effect of collisions between particles.

Using the LBM terminology, the fi’s are referred to as populations. For
two-dimensional flows, the most common choice for the discretisation
of velocity space is the so-called D2Q9 lattice, illustrated in figure 2.1.
In this representation, the state of each lattice node x at time t is
represented by a set of 9 populations { fi(x, t)}0≤t≤8 that correspond to
9 possible velocity directions. Note that we included the null velocity
as i = 0, which describes particles that do not move. Similarly to
kinetic theory [30], macroscopic quantities such as the velocity field or
density field can be recovered as moments over the populations:

ρ = ∑
i

fi (B.2)

ρu = ∑
i

fici (B.3)

S = − 1
2τc2

s ρ ∑
i

cici(fi − f eq
i) (B.4)

(B.5)

Where ρ, u and S are the density, velocity and strain-rate on the lattice
node, respectively.

Importantly, the mesoscopic behaviour of the LBE can be shown to
yield the Navier-Stokes equations at a macroscopic level. This can be
achieved through a Chapman-Enskog analysis1 [31, 92], a multiscale
method based on the expansion of the populations fi around local
equilibrium. The pressure field p(x, t) can be computed from, the
density field ρ(x, t) through the ideal equation of state

p = c2
s ρ (B.6)

where cs may be interpreted as the speed of sound. The Chapman-
Enskog analysis recovers the Navier-Stokes equations in the weak-
compressibility regime, i.e. Ma = u/cs ≪ 1 where Ma denotes the
Mach number defined as the ratio between the typical velocity and
the speed of sound. In this regime, the incompressible Navier-Stokes
equation are recovered up to compressibility errors scaling like Ma2.

Note that the weak-compressibility approximation has an important
practical impact: the pressure can be computed locally by summing

1 The Chapman-Enskog analysis was originally published in 1917 [30] as a way to
derive macroscopic equations from Boltzmann’s equation.

the lattice boltzmann method 213

the contribution of the populations { fi}0≤i≤8 on a given lattice node.
As a result, there is no need for the resolution of a Poisson equation, as
in conventional methods [46]. Additionally, the Chapman-Enskog anal-
ysis yields an expression for the kinematic viscosity ν, as a function of
the properties of the collision operator Ω.

b.0.3 The LBM in practice

b.0.3.1 Lattice Bhatnagar–Gross–Krook

There are actually many variants of the LBM, depending on the
choice for the collision operator in (B.1) Its simplest formulation is
referred to as the LBGK operator [129]:

Ωi = − fi − f eq
i

τ
∆t, (B.7)

where τ is a timescale that describes the relaxation towards equilib-
rium. This equilibrium is described by the equilibrium populations f eq

i

f eq
i = wiρ

(
1 +

u · ci

c2
s

+
(u · ci)

2

2c4
s

− u · u
2c2

s

)
, (B.8)

where the {wi}0≤i≤8 are a set of weights which value depending the
choice of the lattice geometry [155, 176].

In this context, the kinematic viscosity ν can be related to the relax-
ation time τ [155]:

ν =
1
3
(τ − ∆/2) (B.9)

b.0.3.2 The Lattice Boltzmann algorithm: streaming and collision

Under the LBGK approximation, the LBE reads

fi(x+ ci∆t, t+∆t) = fi(x, t)+
∆t
τ
(fi(x, t)− f eq

i (x, t)) for i = 0, ...8.

(B.10)

The algorithmic procedure of the LBM is very simple. Indeed, it consists
of two distinct parts, described as follows.

collision On each node of the lattice, the collision operator is
applied on the populations:

f coll
i (x, t) = fi(x, t)+

∆t
τ
(fi(x, t)− f eq

i (x, t)) for i = 0, ...8, (B.11)

214 the lattice boltzmann method

Figure B.1: Illustration of bounce-back rule for no-slip boundaries. Incoming
populations are streamed outside the fluid domain, before being
streamed back from the direction they came from.

where { f coll
i (x, t)}0≤i≤8 denote the post-collision populations on the

node x at time t. Note that this operation is local, indeed, it does not
require information from the other node. As such, the collision step is
particularly well-suited for parallel architectures.

streaming The second step of the LBM is the streaming of the
post-collision populations to neighbouring nodes, according to (B.10):

fi(x + ci∆t, t + ∆t) = f coll
i (x, t). (B.12)

Iterations of the Lattice Boltzmann Method are therefore amenable to
the collision step, followed by the streaming of the population on the
lattice.

b.0.3.3 Boundary conditions

Within the Lattice Boltzmann framework, boundary conditions
can be imposed through specific collision rules for the populations
at boundary nodes. For instance, no-slip boundaries are commonly
achieved by means of the so-called Bounce-Back rule, that is the reflec-
tion of a subset of the populations in order to ensure a zero momentum.
It is illustrated in figure B.1. Velocity or pressure boundary conditions
can be imposed in many ways [100]. However, the different methods
are not equal in terms of stability and/or accuracy, and the choice of
the boundary schemes therefore depend on the application.

In this work, no-slip boundaries are imposed following the halfway
bounce-back rule [155], illustrated in figure B.1. In addition, velocity
boundaries are imposed by computing the strain-rate tensor on the
boundary nodes, using finite differences. From the knowledge of the
strain rate tensor, it is possible to compute a set of regularised popula-
tions { f̃i}0≤i≤8 that are consistent with the macroscopic dynamics of
the flow [99, 100]. This specific approach is known in the literature as
the Finite-Difference regularised boundary conditions [100, 152].

the lattice boltzmann method 215

b.0.3.4 Simulation parameters and lattice units

A Lattice Boltzmann simulation relies on three parameters: the
lattice spacing ∆x, the simulation timestep ∆t and the relaxation
parameter τ̃. These three parameters are not independent, indeed,
relation (B.9) can equivalently be written as

ν =
1
3

(
τ̃ − 1

2

)
∆x2

∆t
, (B.13)

where we used that c2
s = (1/3)(∆x2/∆t2) [155] and defined the non-

dimensional relaxation parameter τ̃ = τ/∆t.
In most cases, it is convenient to work in the system of units in which

∆x = 1 and ∆t = 1. This is motivated by the similarity principle in fluid
dynamics, which states that two flow having the same geometry and
Reynolds number

Re =
u0L

ν
(B.14)

have similar dynamics. In the above u0 and L denote the character-
istic velocity and length of the problem, respectively. In lattice units,
equation (B.13) reduces to

ν̃ =
1
3

(
τ̃ − 1

2

)
. (B.15)

In many applications the velocity u0 can be considered an additional
parameter of the simulation.

What happens if one chooses τ̃ = 1/2 ? Infinite Reynolds number
? As the viscosity is decreased, the lattice Reynolds number u∆x/ν

is increased, where u denote the typical velocity fluctuations at the
scale ∆x. As a result, important numerical errors result from the fact
large gradients at the lattice scale at not well resolved. Note that this
is not specific to the LBM, but is a cross-cutting issue in all numerical
simulations of turbulent flows. In the limit τ → 1/2 the LBM scheme
because highly unstable. In practice, this means that small errors can
rapidly diverge, i.e. the simulation “explodes”.

In addition, because of the weak-compressibility approximation, one
must ensure that the typical velocity u0 in the computational domain
is small with respect to the Mach number. In lattice units, it writes

ũ0 ≪ 1/
√
(3) (B.16)

errors In the incompressible flow limit, the compressibility error
grows like O(Ma2) = O(ũ0). For a fixed physical velocity u0, the
lattice viscosity ũ0 = u0(∆t/∆x) increases with ∆t/∆x. Therefore, the
compressibility error grow like O(∆t2/∆x2).

216 the lattice boltzmann method

In addition, it can be shown that the spatial discretisation error
is O(∆x2) and that the time discretisation error is O(∆t2) [92]. As a
result, the choice of parameters can be difficult. For instance, reducing
the lattice spacing ∆x does not necessarily decrease the overall error.
Indeed, even though the spatial discretisation error is reduced, the
compressibility error is increased.

There are various ways of setting the parameters for a LBM simula-
tion. For instance, one could set the lattice velocity ũ0 first, ensuring
that Ma ≪ 1. For a given target Reynolds number ũ0 L̃/ν̃, the choice
of ∆x (or equivalently the size N of the lattice) constrains the choice
of the relaxation parameter τ̃ = 3ν + 1/2. Indeed,

Re =
ũ0(N − 1)
3ν + 1/2

, (B.17)

where N is the number of lattice nodes along the relevant dimension.
Equivalently, fixing τ̃ constrains the choice of ∆x (or N). Additionally,
the timestep ∆t can be expressed in units of the turnover time L/u0:

∆t =
ũ0

L̃
(B.18)

C
I N T R O D U C T I O N O F A P E RT U R B AT I O N I N T H E
F L O W S TAT E W I T H I N T H E L AT T I C E B O LT Z M A N N
M E T H O D

In this appendix we explicit the construction of the perturbation
introduced within the GKTL and GKTL algorithms, so that cloned tra-
jectories separate over time. The application of this perturbation is
described in chapter 4, section 4.2.1.2.

The numerical model for the flow dynamics is the Lattice BGK
equation, presented in chapter 2, section 2.1:

fi(x + ci∆t, t + ∆t) = fi(x, t)− 1
τ

[
fi(x, t)− f eq

i (x, t)
]

for i = 0, ...8.(C.1)

For the sake of simplicity and without loss of generality, we do not
introduce any forcing term in (C.1). The equilibrium populations f eq

i
are derived from a second order truncation of the Maxwell-Boltzmann
equilibrium distribution. It reads

f eq
i = wiρ + wiρ

u · ci

c2
s

+
(u · ci)

2

2c4
s

− u2

2c2
s

for i = 0, ...8. (C.2)

The lattice weights wi are numerical constants and ci stands for the ith

lattice vector, as pictured in figure 2.1. The macroscopic fields ρ and u
are computed as a local average over the populations:

ρ =
8

∑
i=1

fi (C.3)

ρu =
8

∑
i=1

ci fi (C.4)

Formally, (C.1) rewrites as

1

2

3

4

56

7 8

0

Figure C.1: Sketch of a lattice node

217

218 perturbation of the flow state with the lbm

fi(x+ ci∆t, t+∆t)−
(

1 − 1
τ

)
fi(x, t)− wi

τ

8

∑
k=1

fk = O
(

u
cs

)
. (C.5)

The left hand side of (C.5) is linear, which entails that a linear com-
bination of solutions is itself solution. The nonlinear part is located
in the order one part of the equilibrium populations (C.2) and its
amplitude is of the order of Ma. In order to construct a perturbation,
the non-linear part of the LBGK equation (C.1) is neglected and the
perturbation is built from the linear combination of N pre-computed
solutions { f (n)i , 1 ≤ i ≤ 8}1≤n≤N of (C.1).

f ′i =
N

∑
n=1

an f (n)i , (C.6)

where {an}1≤n≤N is a collection of random weights drawn uniformly
in [0; 1[. This is motivated y the fact that, throughout this work, we
are interested in incompressible flow for which Ma ≪ 1. As a result,
the error on the perturbed state is expected to be of order one in the
Mach number, that is, to scale as u/cs.

In order to tune the intensity of the perturbation, we introduce the
norm || · ||

|| f || =
(∫

| f (x, t)|2dx
)1/2

with | f | =
(

9

∑
k=1

f 2
k

)1/2

.

A perturbed state { f̃i(x, t)}1≤i≤8 is created from a state { f (0)i (x, t)}1≤i≤8

as follows

f̃i = f (0)i + ϵ
f ′i

|| f ′|| for i = 0, ...8. (C.7)

Note that we then have by construction || f̃ − f (0)||(t = 0) = ϵ, where
we took the origin of time as the instant at which the perturbation was
introduced.

The last step consists in renormalizing the populations so that no
mass is added in the system. Indeed, at each lattice node, the density
perturbation is

ρ′(x) =
8

∑
i=0

ϵ
f ′i (x)

|| f ′i (x)||
=

ϵ

|| f ′||
N

∑
n=1

8

∑
i=0

f (n)i (x).

perturbation of the flow state with the lbm 219

The total added mass is therefore

M′ =
∫

ρ′(x, t)dx =
ϵ

|| f ′||
N

∑
n=1

∫ 8

∑
i=0

f n
i (x)

ρ(n)(x)

dx

= NM(0) ϵ

|| f ′|| .

(C.8)

The sum under the integral in (C.8) is the density at the lattice node
x corresponding to the flow state { f (n)i (x)}0≤i≤8. By conservation of
the mass, the mass corresponding to such states must be equal to the
mass of the system, as they are solution of the numerical model (2.1).
After the perturbation, the total mass of the system is then

M̃ =

(
1 + N

ϵ

|| f ′||

)
M(0). (C.9)

To guarantee mass conservation, the { f̃i(x)}0≤i≤8 must therefore be
re-scaled as follows

f̃i(x) −→
1(

1 + N ϵ
|| f ′||

) f̃i(x) for i = 0, ...8. (C.10)

D
T H E O P T I M A L S C O R E F U N C T I O N

This section is a theoretical discussion of the properties of the optimal
score function; it may be skipped by readers who are only interested
in the application of the TAMS algorithm for computing return times.

As mentioned in section 6.1, the statistical properties, and in partic-
ular the variance of the AMS estimator q̂(a), depend on the choice of
the score function ξ. The variance is minimal for a particular choice of
the score function, sometimes referred to as the committor. In a very
generic manner, for the AMS algorithm, it is given by ξ̄ = P[τB < τA].
In the specific case of the TAMS algorithm, the optimal score function
takes the form:

ξ̄(t, x; Ta, a) = Px,t

[
max

t≤s≤Ta
O[X, s] > a

]
, (D.1)

for all (t, x) ∈ [0, Ta]× Rd, where we denote Px,t the probability over
the process initialised at position x at time t, and the threshold a and
trajectory duration Ta are fixed parameters. Note that the optimal
score function depends both on time and space. Of course, we cannot
use this score function in practice, because it is exactly what we
are trying to compute. Indeed, as mentioned above, the algorithm
ultimately provides an estimate of the probability q(a) = ξ̄(0, x0; Ta, a).
Nevertheless, a crucial point to implement the AMS algorithm is to
choose a score function that provides a good approximation of the
committor. In practical applications, constructing the score function
will often be based on heuristic considerations, but it may also be
useful to have theoretical results about the optimal score function.

Here, we want to explain the qualitative properties of the time-
dependent committor (D.1) specific to the TAMS algorithm. For sim-
plicity, we shall only discuss the case of an instantaneous observable:
O[X, t] = A(Xt). Moreover, for the precision of the discussion, we
assume that the stochastic process X solves the stochastic differential
equation dXt = b(Xt)dt +

√
2ϵdWt, where b is a vector field with a sin-

gle fixed-point x⋆. We further assume that the basin of attraction of x⋆
is the full phase space. With this hypothesis, the invariant measure of
the diffusion is concentrated close to the attractor x⋆ when ϵ ≪ 1. Let
us assume that the set C = {x | A(x) ≤ 0} is a neighbourhood of x⋆
on which most of the invariant measure mass is concentrated. We call
C the attractor. The target set D = {x | A(x) ≥ a} is similarly defined.
The hitting times for the sets C and D are the random variables given
by τ⋆ = inf{t > 0 | A(Xt) ≤ 0} and τa = inf{t > 0 | A(Xt) ≥ a},
respectively, where the process is started from a point x at time t = 0,

221

222 the optimal score function

such that 0 ≤ A(x) ≤ a. We finally define the static committor
ξ0(x, a) ≡ Px,0[τa < τ⋆]. The aim of the following discussion is to
explain the relation between the time-dependent committor (D.1) and
the static committor ξ0(x, a).

On the one hand, the time-dependent committor ξ̄ satisfies a back-
ward Fokker-Planck equation

∂ξ̄

∂t
= −L[ξ̄], with L = bi

∂

∂xi
+ ϵ

∂2

∂x2
i

, (D.2)

in the domain A−1([0, a]) ⊂ Rd with boundary condition ξ̄(t, x; Ta, a) =
1 for x ∈ ∂D, and final condition ξ̄(Ta, x; Ta, a) = 0. This follows di-
rectly from the backward Fokker-Planck equation for the transition
probability P(y, s|x, t), and the fact that, with an absorbing boundary
condition on ∂D, ξ̄(t, x; Ta, a) = 1 −

∫
dyP(y, Ta|x, t). Note that when

Ta − t ≫ r(a), ξ̄(t, x; Ta, a) ≈ 1 everywhere (ξ̄ converges to 1). On the
other hand, ξ0(x, a) satisfies L[ξ0] = 0, but with different boundary
conditions: ξ0(x, a) = 1 if x ∈ ∂D and ξ0(x, a) = 0 if x ∈ ∂C. In the
next paragraph, we argue that when Ta − t is much smaller than r(a),
the time-dependent committor ξ̄(t, x; Ta, a) given by (D.1) is well ap-
proximated by the static committor ξ0(x, a), except in two boundary
layers: a spatial one of size ϵ for x close to the attractor, and a temporal
one of size τc for t close to Ta.

Using the notations of chapter 6, the events {τB < τA} can be decom-
posed into the disjoint union of events for which the observable reaches
the threshold a before or after hitting 0. The typical time for X to reach
C is the correlation time τc. If we assume that Ta − t ≫ τc, we have
the approximation ξ̄(t, x; Ta, a) ≃ ξ0(x, a) + [1 − ξ0(x, a)]ξ̄(t, x⋆; Ta, a)
(we have used here the approximations ξ̄(τ⋆, y; Ta, a) ≃ ξ̄(τ⋆, x⋆; Ta, a)
for any y ∈ ∂C, and ξ̄(τ⋆, x⋆; Ta, a) ≃ ξ̄(t, x⋆; Ta, a)). Moreover, when
Ta − t ≪ r(a), the Poisson approximation ξ̄(t, x⋆; Ta, a) ≃ (Ta − t)/r(a)
holds. To sum up, in the limit τc ≪ Ta − t ≪ r(a),

ξ̄(t, x; Ta, a) ≃ ξ0(x, a) +
Ta − t
r(a)

[1 − ξ0(x, a)]. (D.3)

Let us now introduce the quasipotential V. We note that

ξ0(x, a) ≍
ϵ→0

exp(−(inf
y∈A−1({a})

V(y)− V(x))/ϵ),

while
r(a) ≍

ϵ→0
exp((inf

y∈A−1({a})
V(y))/ϵ).

We can thus conclude that ξ0(x, a) dominates this expression for all x
except in a region of size ϵ around the attractor x⋆.

As a conclusion, when Ta − t is much smaller than r(a), the time-
dependent committor ξ̄(t, x; Ta, a) (D.1) is well approximated by the

the optimal score function 223

0 1 2 3 4 5
t/ c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x

= 0.5

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

(t,
x;

T a
,a

)

Figure D.1: Contour lines of the time-dependent committor ξ̄(t, x; Ta, a) for
the Ornstein–Uhlenbeck process (with α = 1, ϵ = 1/2; in par-
ticular τc = 1), obtained by solving numerically the backward
Fokker-Planck equation (D.2), with a = 4, Ta = 5.

static committor ξ0(x, a), except in two boundary layers: a spatial one
of size ϵ for x close to the attractor, and a temporal one of size τc for t
close to Ta. This is illustrated in Fig. D.1, representing the committor
ξ̄(t, x; Ta, a) for the Ornstein–Uhlenbeck process (with α = 1, ϵ =

1/2), obtained by solving numerically the backward Fokker-Planck
equation (D.2), with a = 4, Ta = 5. Courtesy of Corentin Herbert.

E
T H E L I B TA M S L I B R A RY

This appendix provides a brief description of the libTAMS C++
library, that I developed in the context of this thesis. As of June 2018,
the libTAMS library is a work in progress, and is in the alpha-test phase.
As such, the source code has not been released yet, and the estimated
release date of the first beta version is early 2019. Nonetheless, all the
TAMS experiments presented in chapter 6 are based on code written
using early versions of the libTAMS library.

The objective of the libTAMS library is to facilitate both the design
and writing of codes implementing the TAMS algorithm, introduced in
chapter 6. It provides an object oriented framework, articulated around
several classes. These classes provide an ensemble of methods that
can be used to implement TAMS code with any type of dynamics,
wether the score function defined as an instantaneous observable or
as a time-average. We stress that libTAMS is not an implementation
of the TAMS algorithm, but rather a framework in which a user can
easily write a TAMS code with the dynamics of its own choice.

The development of the libTAMS library is motivated by two re-
marks:

• The TAMS algorithm, described in section 6.2.1 is is completely
independent of the dynamics under study. Moreover, it is very
simple, and its structure is not changed whether the cost function
is based on an instantaneous observable or a time-average.

• Paradoxically, the implementation of TAMS code is specific to
the dynamics under study. For instance, for a cost function
defined as a time-average of an observable, the parts of the code
that perform the computation of the cost function, the selection
step, as well as the duplication of the parent trajectory must
be modified. In addition, although the implementation of the
TAMS algorithm can be straightforward for simple dynamics, its
implementation for complex deterministic dynamics is tricky.

As a result, in spite of the great simplicity and generality of the
TAMS algorithm, it is very difficult to write a single TAMS code that
can be used for different dynamics with different level of complexity.
Among other aspects, that is a serious hindrance to validation of TAMS.
For instance, a code implementing the TAMS algorithm for a turbulent
flow should be easily transposable to the case of an one-dimensional
system, for which analytical results are available.

225

226 the libtams library

The libTAMS library provides a single framework to implement
TAMS codes with any type of dynamics, whether it is stochastic, deter-
ministic, low-dimensional or high-dimensional. In addition, it handles
both instantaneous and time-averaged score functions. The different
steps of the TAMS algorithm, as well as the related data, are encap-
sulated into objects that can be manipulated in order to write very
general TAMS codes. Put differently, the libTAMS library is designed
in such a way that, from a user point of view, the code is only (very)
slightly modified depending on the properties of the dynamics under
study.

e.0.1 Object-oriented modelling of the TAMS algorithm

The simplicity and and general formulation of the TAMS algorithm
makes it very well suite for an object-oriented implementation. Object-
oriented programming is a programming paradigm which relies on the
definition of objects that interact with one another [113, 115]. Objects
possess both attributes, representing data, and methods which describe
operations on this data.

Recall from chapter 6 that an iteration j of the TAMS algorithm
consists of the following steps:

1. Selection of the lj resampled trajectories which maximum over
the score function is Q⋆

j .

2. For each lj resampled trajectories:

a) Selection of a parent trajectories among the Nc − lj remain-
ing trajectories.

b) Overwriting of the resampled trajectory by the parent, until
the branching point where the score function goes beyond
Q⋆

j .

c) Simulation of the dynamics from the branching point to the
final time Ta.

3. Computation of the threshold Q⋆
j

As of June 2018, the libTAMS consists of three different classes:

• TAMS This is the base class, from which others are derived (in-
herited). It provides a framework for implementing the TAMS

algorithm for a score function defined as an instantaneous inte-
gral.

• TAMSAVG This class overloads several of TAMS’s methods to imple-
ment the TAMS algorithm with a cost function being defined as
the time-integral of some dynamical observable.

the libtams library 227

TA
M
S
<
T
>

#
N
c
:

i
n
t

#
N
t
:

i
n
t

#
j
j
:

i
n
t

#
p
a
r
e
n
t
:

i
n
t

#
t
B
r
a
n
c
h
:

i
n
t

#
Z
:

d
o
u
b
l
e

#
K
:

i
n
t

#
c
o
s
t
F
u
n
c
t
i
o
n
:

d
o
u
b
l
e
*
*

#
i
d
x
:

i
n
t
*

#
a
m
a
x
:

d
o
u
b
l
e

#
s
t
a
t
e
A
r
r
a
y
:

T
*
*

#
s
t
a
t
e
:

T
*

#
n
d
o
f
:

i
n
t

#
t
i
m
e
S
t
a
m
p
s
:

v
e
c
t
o
r
<

v
e
c
t
o
r
<
i
n
t
>

>

#
s
t
a
t
e
F
i
l
e
:

o
f
s
t
r
e
a
m

+
T
A
M
S
(
N
c
:
i
n
t
,
N
t
:
i
n
t
)

+
T
A
M
S
(
N
c
:
i
n
t
,
N
t
:
i
n
t
,
n
d
o
f
:
i
n
t
)

+
~
T
A
M
S
(
)

+
m
a
k
e
S
e
l
e
c
t
i
o
n
(
)
:

i
n
t

+
d
r
a
w
P
a
r
e
n
t
(
)

+
c
o
p
y
T
r
a
j
T
o
B
r
a
n
c
h
i
n
g
P
o
i
n
t
(
)
:

i
n
t

+
g
e
t
R
e
s
t
a
r
t
(
)
:

T

+
g
e
t
R
e
s
t
a
r
t
(
p
t
T
o
S
t
e
:
T
*
)
:

i
n
t

+
c
o
m
p
u
t
e
M
a
x
i
m
a
(
)

+
u
p
d
a
t
e
M
a
x
i
m
a
(
)
:

d
o
u
b
l
e

+
s
e
t
A
c
t
i
v
e
T
r
a
j
(
j
:
i
n
t
)

+
s
e
t
C
o
s
t
F
u
n
c
t
i
o
n
(
C
f
:
d
o
u
b
l
e
,
t
:
i
n
t
,
)

+
s
e
t
S
t
a
t
e
(
s
t
e
:
T
,
t
:
i
n
t
)

+
o
p
e
n
S
t
a
t
e
F
i
l
e
(
)
:

b
o
o
l

+
w
r
i
t
e
S
t
a
t
e
(
p
t
e
r
T
o
S
t
a
t
e
:
T
*
,
t
:
i
n
t
)
:

b
o
o
l

+
w
r
i
t
e
C
o
s
t
F
u
n
c
t
i
o
n
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,

i
t
e
r
:
i
n
t
)

+
w
r
i
t
e
C
o
s
t
F
u
n
c
t
i
o
n
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,

i
t
e
r
:
i
n
t
,
k
:
i
n
t
)

+
r
e
a
d
C
o
s
t
F
u
n
c
t
i
o
n
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,
i
t
e
r
:
i
n
t
)

+
w
r
i
t
e
T
r
a
j
e
c
t
o
r
i
e
s
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,

i
t
e
r
:
i
n
t
)

+
r
e
a
d
T
r
a
j
e
c
t
o
r
i
e
s
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,
i
t
e
r
:
i
n
t
)

+
w
r
i
t
e
T
i
m
e
S
t
a
m
p
s
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,
i
t
e
r
:
i
n
t
)

+
r
e
a
d
T
i
m
e
S
t
a
m
p
s
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,
i
t
e
r
:
i
n
t
)

+
g
e
t
M
a
x
(
)
:

d
o
u
b
l
e

c
o
n
s
t

+
g
e
t
M
a
x
(
j
:
i
n
t
)
:

d
o
u
b
l
e

c
o
n
s
t

+
g
e
t
P
a
r
e
n
t
T
r
a
j
(
)
:

i
n
t

c
o
n
s
t

+
g
e
t
A
c
t
i
v
e
T
r
a
j
(
)
:

i
n
t

c
o
n
s
t

+
g
e
t
Z
(
)
:

d
o
u
b
l
e

c
o
n
s
t

+
s
e
t
P
a
r
e
n
t
(
p
a
r
e
n
t
I
d
x
:
i
n
t
)

+
s
e
t
T
B
r
a
n
c
h
(
t
B
r
a
n
c
h
:
i
n
t
)

TA
M
S
A
V
G
<
T
>

#
N
t
A
V
G
:

i
n
t

#
c
o
n
s
t
F
u
n
c
t
i
o
n
I
n
t
:

d
o
u
b
l
e
*
*

+
T
A
M
S
A
V
G
(
N
c
:
i
n
t
,
N
t
:
i
n
t
,
N
t
A
V
G
:
i
n
t
,
)

+
T
A
M
S
A
V
G
(
N
c
:
i
n
t
,
N
t
:
i
n
t
,
N
t
A
V
G
:
i
n
t
,
n
d
o
f
:
i
n
t
)

+
~
T
A
M
S
A
V
G
(
)

+
c
o
p
y
T
r
a
j
T
o
B
r
a
n
c
h
i
n
g
P
o
i
n
t
(
)
:

i
n
t

+
c
o
m
p
u
t
e
M
a
x
i
m
a
(
)

+
u
p
d
a
t
e
M
a
x
i
m
a
(
)
:

d
o
u
b
l
e

+
s
e
t
C
o
s
t
F
u
n
c
t
i
o
n
(
C
f
:
d
o
u
b
l
e
,
t
:
i
n
t
)

+
w
r
i
t
e
C
o
s
t
F
u
n
c
t
i
o
n
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,

i
t
e
r
:
i
n
t
)

+
r
e
a
d
C
o
s
t
F
u
n
c
t
i
o
n
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,
i
t
e
r
:
i
n
t
)

re
je
cT
A
M
S
<
T
>

#
d
Z
:

d
o
u
b
l
e

#
t
r
i
a
l
C
o
s
t
F
u
n
c
t
i
o
n
:

d
o
u
b
l
e
*

#
t
r
i
a
l
S
t
a
t
e
A
r
r
a
y
:

T
*

+
r
e
j
e
c
T
A
M
S
(
N
c
:
i
n
t
,
N
t
:
i
n
t
,
d
Z
:
d
o
u
b
l
e
)

+
r
e
j
e
c
T
A
M
S
(
N
c
:
i
n
t
,
N
t
:
i
n
t
,
d
Z
:
d
o
u
b
l
e
,
n
d
o
f
:
i
n
t
)

+
~
r
e
j
e
c
T
A
M
S
(
)

+
c
o
p
y
T
r
a
j
T
o
B
r
a
n
c
h
i
n
g
P
o
i
n
t
(
)
:

i
n
t

+
m
a
k
e
R
e
j
e
c
t
i
o
n
(
)
:

b
o
o
l

+
s
e
t
C
o
s
t
F
u
n
c
t
i
o
n
(
C
f
:
d
o
u
b
l
e
,
t
:
i
n
t
)

+
s
e
t
S
t
a
t
e
(
s
t
e
:
T
,
t
:
i
n
t
)

+
w
r
i
t
e
T
r
i
a
l
C
o
s
t
F
u
n
c
t
i
o
n
(
d
i
r
e
c
t
o
r
y
N
a
m
e
:
s
t
r
i
n
g
,

i
t
e
r
:
i
n
t
)

Fi
gu

re
E.

1
:C

la
ss

di
ag

ra
m

of
th

e
l
i
b
T
A
M
S

pr
oj

ec
t.

228 the libtams library

• rejecTAMS This class can be used to implement a modified TAMS
algorithm in which resampled trajectories are branched from
a shifted threshold and accepted/rejected depending on their
maximum.

In the following we describe a simple example of application of the
libTAMS library. In this example we consider the computation of the
probability of rare excursions of a simple one-dimensional stochastic
process. In section E.2 we discuss the application of the libTAMS to
complex deterministic dynamics, such as turbulent flows. In this case,
the main difficulty originates from the fact that the trajectories cannot
be stored in memory. Then, in section E.3 we describe the application of
the libTAMS library to problems in which the score function is defined
as a time-average observable of an observable. Finally, section E.4
addresses the implementation of a modified TAMS algorithm, in which
resampled trajectories are simulated from a an earlier time. As of June
2018, this modified TAMS scheme is still under study.

e.1 a simple libtams code : rare excursions of an Ornstein–
Ulhenbeck

This first section introduces the core libTAMS routines on a sim-
ple example. We consider a one-dimensional, real valued variable x
following an OU process defined as

dXt = −αXtdt +
√

2ϵdWt (E.1)

In the following we assume that simulation of such dynamics is man-
aged by a separate code. More precisely, we assume that the simulation
of (E.1) is encapsulated in an object myOU. As such, this object provides
methods such as advanceOneTimeStep(), setInitialCondition() or
getState().

Say we are interested in using the TAMS algorithm to compute
the probability q(a) that x goes over a threshold a over a duration Ta.
Formally, this probability writes

q(a) = P
(

max
0≤t≤Ta

x(t) ≥ a
)

(E.2)

First things first, one must include the libTAMS.h header :

include " libTAMS . h"

.
In order to use the libTAMS methods, one must first declare a lib-

TAMS object. In our case, we instantiate the class TAMS. That provides

E.1 a simple libtams code : rare excursions of an Ornstein–Ulhenbeck 229

a framework for the implementation of the TAMS algorithm based on
a cost function defined as an instantaneous dynamical observable.

1 TAMS<double > myTAMS(Nc , Nt) ;

The use of TAMS<double> declares a TAMS object for which the state of
the dynamical system is represented by a single double. The parame-
ters Nc and Nt represent the number of running trajectories and the
number of timesteps they consist in, respectively.

e.1.1 Initialisation

The first step of the TAMS algorithm consists in simulating the Nc

trajectories from 0 to Ta, starting from independent initial conditions.
Let’s initialise the Nc trajectories by drawing a random state in the
stationary measure :

1 f o r (i n t j =0 ; j <Nc ; j ++)
{

3 x0 = randNormal (0 . 0 , 1 . / s q r t (2)) ; //Draw random i n i t i a l cond .
in s t a t . measure

myOU−>s e t I n i t i a l C o n d i t i o n (x0) ; // Set i n i t i a l s t a t e to x0

5 //

A trajectory is said to be active if it is currently being computed,
whether it is during initialisation or during a resampling process. To
set trajectory j as active, we use setActiveTraj.

1 myTAMS−>s e t A c t i v e T r a j (j) ;

remark Most libTAMS methods require that a trajectory is set as active.

The next step is to compute the dynamics, in order to record the
evolution of the cost function along the trajectories. In this simple
case, the cost function is the dynamical variable itself. To set the value
for the cost function, setCostFunction(double Cf, int t) must be
called at each timestep :

1 f o r (i n t t =0 ; t <Nt ; t ++)
{

3 myOU−>advanceOneTimestep () ; // Compute s t a t e a t next
t imestep
x = myOU−>g e t S t a t e () ; // Gathers value of the c o s t
funct ion (in t h i s case the s t a t e)

5 myTAMS−>setCostFunct ion (x , t) ; // Set the c o s t funct ion at
time t to be x

230 the libtams library

//

For low dimensional systems, it is possible to keep the full ensemble
of running trajectories in memory. This is needed since we do not
before hand which trajectory will act as parent, and which one of its Nt
states will be the branching state. To record the states composing the
trajectory, we use setState in a similar way we used setCostFunction

:

myTAMS−>s e t S t a t e (x , t) ;

Once the Nc trajectories have been computed, one must compute
the corresponding maxima. A way to do this is to use the method
myTAMS->computeMaxima(), that computes the maximum over each
running trajectory, and updates the threshold Z.

1 myTAMS−>computeMaxima () ;

To sum up, a full implementation for the initialisation step using
the libTAMS library is

1 f o r (i n t j =0 ; j <Nc ; j ++)
{

3 x0 = randNormal (0 . 0 , 1 . / s q r t (2)) ;
myOU−>s e t S t a t e (x0) ;

5 myTAMS−>s e t A c t i v e T r a j (j) ;
f o r (i n t t =0 ; t <Nt ; t ++)

7 {
myOU−>advanceOneTimestep () ;

9 x = myOU−>g e t S t a t e () ;
myTAMS−>setCostFunct ion (x , t) ;

11 myTAMS−>s e t S t a t e (x , t) ;
}

13 }
myTAMS−>computeMaxima () ;

e.1.2 Iterations of the TAMS

Now that the Nc trajectories have been computed, the cost function
an states recorded, as well as the maxima, it is time to implement
the core of the TAMS algorithm. In this example we are interested in
computing the probability that x goes over a threshold a between 0
and Ta. The stopping criterion will therefore be that all Nc running
trajectories go over a.

E.1 a simple libtams code : rare excursions of an Ornstein–Ulhenbeck 231

In TAMS terminology, the threshold, noted Z, refers to the current
minimum of the Nc maxima over each trajectory. An iteration of
the TAMS begins with the selection of the trajectories for which the
maximum coincide with Z.

while (myTAMS−>getZ () <=a)
2 {

K = myTAMS−>makeSelect ion () ;

The simple query getZ returns the current threshold, that is the mini-
mum of the set of maxima over the running trajectories. The method
makeSelection computes Z and selects the K trajectories for which the
maximum is equal to Z.

remark Most of the time K=1 but it can be that K>1, as mentioned in
chapter 6.

For each selected trajectories, a parent trajectory must be drawn
among the Nc − K non selected trajectories. This is achieved using
drawParent()

1 f o r (i n t k =0 ; k<K; k++)
{

3 myTAMS−>drawParent () ;

Next, the parent trajectory is copied until it reaches the threshold Z :

1 f o r (i n t k =0 ; k<K; k++)
{

3 myTAMS−>drawParent () ;

5 myTAMS−>s e t A c t i v e T r a j (k) ;
tBranch = myTAMS−>copyTrajToBranchingPoint () ;

7 // . . .

The method copyTrajToBranchingPoint() returns in integer, repre-
senting the branching time. It is defined as the first time the parent’s
cost function is strictly above to the current threshold.

We must now simulate the dynamics from tBranch to Nt, using
the state of the parent trajectory at t=tBranch as an initial condition.
This particular state is referred to as the branching state. To get the
branching state, we use the method getRestartState :

1 x0 = myTAMS−>g e t R e s t a r t () ; // Get r e s t a r t s t a t e i n t o x0

myOU−>s e t S t a t e (x0) ;

232 the libtams library

The last two steps are the computation of the dynamics and the
computation of the new maximum over the resampled trajectory. This
is similar to the initialisation step.

f o r (i n t t =tBranch ; t <Nt ; t ++)
2 {

myOU−>advanceOneTimestep () ;
4 x = myOU−>g e t S t a t e () ;

myTAMS−>setCostFunct ion (x , t) ;
6 myTAMS−>s e t S t a t e (x , t) ;

}
8 myTAMS−>updateMaxima () ;

The value of the maximum over the (resampled) trajectory j is updated
using updateMaxima. It computes and sets the maximum over the
active trajectory. It also updates the threshold Z.

Last but not least, let’s not forget to update the current threshold Z :

myTAMS−>updateZ () ;

A full libTAMS implementation for the iterations of the TAMS
algotihm is

1 while (Z<=a)
{

3 K = myTAMS−>makeSelect ion () ;
f o r (i n t k =0 ; k<K; k++)

5 {
myTAMS−>drawParent () ;

7 myTAMS−>s e t A c t i v e T r a j (k) ;

9 tBranch = myTAMS−>copyTrajToBranchingPoint () ;

11 x0 = myTAMS−>g e t R e s t a r t () ;
myOU−>s e t S t a t e (x0) ;

13 f o r (i n t t =tBranch +1 ; t <Nt ; t ++)
{

15 myOU−>advanceOneTimestep () ;
x = myOU−>g e t S t a t e () ;

17 myTAMS−>setCostFunct ion (x , t) ;
myTAMS−>s e t S t a t e (x , t) ;

19 }
myTAMS−>updateMaxima () ;

21 }
}

E.2 high dimensional dynamics 233

e.1.3 General case

The previous example illustrated most of the machinery provided by
libTAMS. In general, to use the class TAMS, one should call

TAMS<T> myTAMS(Nc , Nt) ;

The symbol T denotes a given data type that represents a state of the
system under study. It could be an int, double, or even a structure.
For instance, the state of a system evolving in 3D space could be
represented by a structure containing 3 double values :

1 s t r u c t 3Dpoint {
double m_x ;

3 double m_y ;
double m_z ;

5 } ;

7 TAMS< s t r u c t 3Dpoint >(Nc , Nt) ;

e.2 high dimensional dynamics

For dynamics with a large number of degrees of freedom, it is
often very inefficient (if even possible) to store the whole ensemble
of trajectories in memory. In this case, libTAMS provides solutions to
read/write states on disk from the running trajectories. In particular,
this allows to re-simulate the system, starting from one of these saved
states, up to the the branching time, so as to obtain the branching
state.

The states written on disk in this way are referred to as saved states
and the corresponding time is called a timestamp.

To enable this feature, the TAMS class must be instantiated using two
additional parameters :

1. The number of degrees of freedom representing a state of the
system : ndof In other words, a state of the system can then be
represented by an array of size ndof*sizeof(T).

2. The minimal duration between consecutive saved states (in units
of model timesteps) : savingStatePeriod

1 TAMS<T>∗ myTAMS = new TAMS<double >(Nc , Nt , ndof ,
sav ingSta tePer iod) ;

234 the libtams library

Along the simulation of the dynamics, states are recorded through
TAMS::<T>setCostFunction(double costFunctionValue, int time, T*
pointerToState). The third additional argument is a pointer to the
block of memory hosting the current state of the system.

remark To mitigate disk usage, only new global maxima are written,
always with a minimal spacing of savingStatePeriod timesteps.

Implementation of the TAMS algorithm for high dimensional sys-
tems requires to add one additional step to the usual TAMS procedure.
Having computed the branching point, one must then find the closest
timestamp and re-simulate the dynamics up to the branching point,
starting from the corresponding saved state. The saved states are writ-
ten in a binary file. There is one of file per running trajectory. The
modified procedure then reads

1. Select the K trajectories whose maximum is Z

2. For each selected trajectories do

a) Draw a parent at random

b) Copy its cost function up to tBranch

c) Browse the recored timestamps for current active trajectory
to find the nearest before tBranch

d) Simulate dynamics from the corresponding saved state up
to tBranch

e) Free simulation from tBranch to Nt

e.2.1 Writing the states on disk

First of all, a file must be opened. It is specific to the current active
trajectory :

1 myTAMS−>s e t A c t i v e T r a j (k) ;
myTAMS−>o p e n S t a t e F i l e () ;

If a state file was currently opened, openStateFile closes it first. The
method openStateFile() opens the binary file corresponding to the
currently active trajectory. If the file exists, it is overwritten.

Next, at some point during the simulation of the dynamics, it is pos-
sible to write the current state of the system on disk using writeState.
It takes two arguments :

• A pointer to an array of size ndof*sizeof(T) containing the the
current state of the system to be written.

• An integer representing the correspond time

E.2 high dimensional dynamics 235

Say one is using an object Dynamics myDynamics and that class Dynamics
provides a method Dynamics::getState() to get the current state,
writeState can be used as follows :

myTAMS−>s e t A c t i v e T r a j (k) ;
2 myTAMS−>o p e n S t a t e F i l e () ;

4 T∗ pointerToSta te ;
f o r (i n t t =<tMin ; t <tMax ; t ++)

6 {
//Compute dynamics and do a l l s o r t of s t u f f

8 pointerToSta te = myDynamics . g e t S t a t e () ;
myTAMS−>w r i t e S t a t e (po in terToSta te , t) ;

10 //
}

e.2.2 Getting the restart state

After computing the branching time tBranch, one must simulate the
dynamics starting from the nearest landmark available. This particular
state is reffered to as the restart state. To get the restart state and time,
libTAMS provides several methods :

• int getRestartTime() Computes and returns the restart time

• T* getRestartState() Returns a pointer to an array containing
the restart state

• int getRetstart(T* pointerToState) Computes and returns
the restart times, as well as copy the restart state to the location
in memory pointed to by pointerToState.

To illustrate the use of these methods, let us consider to examples

e.2.2.1 Example 1 : Using getRestart

Consider again the case where the dynamics is implemented through
an object Dynamics myDynamics. Suppose that myDynamics has its state
as an attribute, and that the corresponding array is allocated in its
constructor. A typical use of getRestart would be

1 Dynamics myDynamics ;
// . . .

3

tBranch = myTAMS−>copyTrajToBranchingPoint () ; // Compute
branching time

5 ptToState = myDynamics−>g e t S t a t e () ; // Dynamics : : g e t S t a t e ()
re turns a pointer to the array in memory

t R e s t a r t = myTAMS−>g e t R e s t a r t (ptToState) ; // Then g e t R e s t a r t
f i l l s the array with the r e s t a r t s t a t e and return the
corresponding timestamp .

236 the libtams library

e.2.2.2 Example 2 : Using getRestartTime in conjunction with getRestart-
State

Consider again the case where the dynamics is implemented through
an object Dynamics myDynamics. Suppose that myDynamics has a method
setInitialCondition(T* pointerToInitCondition) that takes a pointer
to an array of T as a parameter. A typical use of getRestartTime and
getRestartState would then be

Dynamics myDynamics ;
2 // . . .

4 tBranch = myTAMS−>copyTrajToBranchingPoint () ; // Compute
branching time

t R e s t a r t = myTAMS−>getRestartTime () ;
6

T∗ p o i n t e r T o R e s t a r t S t a t e = myTAMS−>g e t R e s t a r t S t a t e () ;
8 myDynamics . s e t I n i t i a l C o n d i t i o n (p o i n t e r T o R e s t a r t S t a t e) ;

e.3 tams for an integrated cost function

The libTAMS library allows for the implementation of the TAMS
algorithm, based on a cost function that is defined as a time-integral
of an observable of the dynamics under study. If the instantaneous
variable of interest is x(t), then the integrated cost function is defined
as

ξ(t) =
∫ t

t−T
x(t′)dt′ T ≤ t ≤ Ta (E.3)

Use of integrated cost functions is implemented in the TAMSAVG class.
It is initialised as follows :

TAMSAVG<T> myTAMS(Nc , Nt , Nint) ;

Where Nc and Nt stand for the number of trajectories and timesteps,
respectively. The third parameter is the number of timesteps over
which the integration is performed. For high dimensional system, it
is possible to enable the writing and reading of states from disk, by
adding the parameter ndof as described in the previous section

1 TAMSAVG<T> myTAMS(Nc , Nt , Nint , ndof) ;

E.4 tams with rejection 237

Apart from its definition, a TAMSAVG object is to be use in the same
way as TAMS. For instance, the cost function is set passing the instanta-
neous observable and the corresponding timestep to setCostFunction.

1 double instantObs ;
f o r (i n t t =tmin ; t <tmax ; t ++)

3 {
// . . .

5 myDynamics . computeOneTimeStep () ;
instantObs = myDynamics . computeSomeDynamicalObservable () ;

7

myTAMS−>setCostFunct ion (instantObs , t) ;
9

// . . .
11 }

Times returned by TAMSAVG methods are defined with respect with
respect to t = 0 and not t = T which is the time origin of the integrated
cost function.

e.4 tams with rejection

For some problems it can be useful to implement a modified TAMS
algorithm, in which resampled trajectories result in a branching at an
earlier time than the first time the parent’s cost function reach Z. This
is for example useful for deterministic dynamics, in which case two
trajectories starting from very close initial conditions fully separate
over a finite time.

Using libTAMS it is possible to implement a TAMS algorithm in
which active trajectories are branched at the time when the selected
parent reaches $Z-δZ, instead of Z, thus branching at an earlier time
t∗. The resulting resampled trajectory can then either be accepted or
rejected :

• If it reaches any point above Z in between t∗ and Ta, then it is
accepted.

• Else, it is rejected.

Methods to implement such modified TAMS algorithm can be used
using objects rejecTAMS. Such objects can be defined as follows :

1 rejecTAMS myTAMS(Nc , Nt , dZ) ;

where Nt and Nc are the number of running trajectories and Nt the
number of timesteps. The parameter dZ is a double representing the
threshold shift. Again, for high dimensional systems, it is always
possible to enable reading/writing on disk by specifying the number
of degrees of freedom of the dynamics :

238 the libtams library

1 rejecTAMS myTAMS(Nc , Nt , dZ , ndof) ;

Using libTAMS to implement a TAMS algorithm wit rejection is
very similar to implementing a regular TAMS algorithm. The only to
differences are :

• The parent trajectory is copied until it reaches Z − δZ

• A resampled trajectory can be rejected if it do not reach Z over
its history.

Using rejecTAMS, the method copyTrajToBranchingPoint only copies
the selected parent up to the point when its cost function gets strictly
above Z − δZ. This defines the shifted branching time. After simulat-
ing the trajectory from tBranch to Nt, one must call the method
makeRejection(), that decides whether the resampled trajectory is
kept as part of the ensemble of running trajectories or not. If not, the
selected active trajectory is not modified.

A typical code using rejecTAMS is very similar to one using a regular
TAMS object

1 i n t Nt ;
i n t Nc ;

3 double dZ ;

5 /∗ I n i t i a l i z e parameters
. . .

7 ∗/
/∗Create rejecTAMS o b j e c t ∗/

9 rejecTAMS<T> myTAMS(Nc , Nt , dZ) ;

11 /∗ I n i t i a l i z a t i o n :
Simulate the Nc t r a j e c t o r y from 0 to Nt−1 and records c o s t
funct ion or s t a t e

13 . . .
∗/

15

i n t K, tBranch ;
17 bool isAccepted ;

T x ;
19 f o r (i n t i =0 ; i <Niter ; i ++)

{
21 K = myTAMS−>makeSelect ion () ;

f o r (i n t k =0 ; k<K; k++)
23 {

myTAMS−>drawParent () ;
25 myTAMS−>s e t A c t i v e T r a j (k) ;

27 tBranch = myTAMS−>copyTrajToBranchingPoint () ;

29 x = myTAMS. g e t R e s t a r t () ;
myDynamics . s e t I n i t i a l C o n d i t i o n (x) ;

E.4 tams with rejection 239

31 f o r (i n t t =tBranch ; t <Nt ; t ++)
{

33 myDynamics . advanceOneTimestep () ;
x = myDynamics . g e t S t a t e () ;

35 myTAMS. s e t S t a t e (x , t) ;
Cf = myDynamics . getSomeObservable () ;

37 myTAMS. setCostFunct ion (Cf , t) ;
}

39 isAccepted=myTAMS. makeRejection () ;
}

41 }

B I B L I O G R A P H Y

[1] J Ahrens, Berk Geveci, and Charles Law. “ParaView: An End-
User Tool for Large Data Visualization.” In: Visualization Hand-
book (Jan. 2005).

[2] Rosalind J. Allen, Chantal Valeriani, and Pieter Rein ten Wolde.
“Forward flux sampling for rare event simulations.” en. In:
Journal of Physics: Condensed Matter 21.46 (2009), p. 463102. issn:
0953-8984. doi: 10.1088/0953-8984/21/46/463102.

[3] Mohammad Amir, Vladimir I. Nikora, and Mark T. Stew-
art. “Pressure forces on sediment particles in turbulent open-
channel flow: a laboratory study.” en. In: Journal of Fluid Me-
chanics 757 (Oct. 2014), pp. 458–497. issn: 0022-1120, 1469-7645.
doi: 10.1017/jfm.2014.498. (Visited on 06/04/2018).

[4] ANSYS Fluent. (Visited on 06/14/2018).

[5] David Aristoff, Tony Lelièvre, Christopher G. Mayne, and Ivan
Teo. “Adaptive Multilevel Splitting in Molecular Dynamics Sim-
ulations.” en. In: ESAIM: Proceedings and Surveys 48 (Jan. 2015),
pp. 215–225. issn: 2267-3059. doi: 10.1051/proc/201448009.
(Visited on 06/06/2018).

[6] S. Asmussen and P.W. Glynn. Stochastic simulation: algorithms
and analysis. Vol. 57. Stochastic Modelling and Applied Proba-
bility. Springer, New York, 2007, pp. xiv+476. isbn: 978-0-387-
30679-7.

[7] P. Bagchi and S. Balachandar. “Effect of turbulence on the drag
and lift of a particle.” In: Physics of Fluids 15.11 (Oct. 2003),
pp. 3496–3513. issn: 1070-6631. doi: 10.1063/1.1616031.

[8] Jeremie Bec and Konstantin Khanin. “Burgers Turbulence.” In:
Physics Reports 447.1-2 (Aug. 2007). arXiv: 0704.1611, pp. 1–66.
issn: 03701573. doi: 10.1016/j.physrep.2007.04.002.

[9] M. Berhanu et al. “Magnetic field reversals in an experimental
turbulent dynamo.” In: EPL 77.5 (2007), p. 59001. doi: 10.1209/
0295-5075/77/59001.

[10] Kurt Binder and Dieter Heermann. Monte Carlo Simulation in
Statistical Physics: An Introduction. en. 5th ed. Graduate Texts
in Physics. Berlin Heidelberg: Springer-Verlag, 2010. isbn: 978-
3-642-03162-5. (Visited on 06/04/2018).

241

https://doi.org/10.1088/0953-8984/21/46/463102
https://doi.org/10.1017/jfm.2014.498
https://doi.org/10.1051/proc/201448009
https://doi.org/10.1063/1.1616031
https://doi.org/10.1016/j.physrep.2007.04.002
https://doi.org/10.1209/0295-5075/77/59001
https://doi.org/10.1209/0295-5075/77/59001

242 bibliography

[11] Peter G. Bolhuis, David Chandler, Christoph Dellago, and
Phillip L. Geissler. “TRANSITION PATH SAMPLING: Throw-
ing Ropes Over Rough Mountain Passes, in the Dark.” In:
Annual Review of Physical Chemistry 53.1 (Oct. 2002), pp. 291–
318. issn: 0066-426X. doi: 10.1146/annurev.physchem.53.
082301.113146.

[12] Freddy Bouchet, Tobias Grafke, Tomás Tangarife, and Eric
Vanden-Eijnden. “Large Deviations in Fast–Slow Systems.” en.
In: Journal of Statistical Physics 162.4 (Feb. 2016), pp. 793–812.
issn: 0022-4715, 1572-9613. doi: 10.1007/s10955-016-1449-4.
(Visited on 05/30/2018).

[13] Freddy Bouchet, Jason Laurie, and Oleg Zaboronski. “Langevin
Dynamics, Large Deviations and Instantons for the Quasi-
Geostrophic Model and Two-Dimensional Euler Equations.” en.
In: Journal of Statistical Physics 156.6 (Sept. 2014), pp. 1066–1092.
issn: 0022-4715, 1572-9613. doi: 10.1007/s10955-014-1052-5.
(Visited on 05/30/2018).

[14] Freddy Bouchet and Julien Reygner. “Generalisation of the
Eyring–Kramers transition rate formula to irreversible diffusion
processes.” In: Annales Henri Poincaré 17.12 (2016), pp. 3499–
3532. doi: 10.1007/s00023-016-0507-4.

[15] Freddy Bouchet and Eric Simonnet. “Random Changes of
Flow Topology in Two-Dimensional and Geophysical Turbu-
lence.” In: Phys. Rev. Lett. 102.9 (2009), p. 094504. doi: 10.1103/
PhysRevLett.102.094504.

[16] Alan J Bray, Satya N Majumdar, and Grégory Schehr. “Persis-
tence and first-passage properties in nonequilibrium systems.”
In: Adv. Phys. 62.3 (2013), pp. 225–361. doi: 10.1103/PhysRevE.
87.022118.

[17] Charles-Edouard Bréhier, Maxime Gazeau, Ludovic Goudenège,
Tony Lelièvre, and Mathias Rousset. “Unbiasedness of some
generalized adaptive multilevel splitting algorithms.” In: Ann.
Appl. Probab. 26.6 (2016), pp. 3559–3601. issn: 1050-5164. doi:
10.1214/16-AAP1185.

[18] Charles-Edouard Bréhier, Ludovic Goudenège, and Loïc Tudela.
“Central limit theorem for adaptive multilevel splitting estima-
tors in an idealized setting.” In: Monte Carlo and quasi-Monte
Carlo methods. Vol. 163. Springer Proc. Math. Stat. Springer,
[Cham], 2016, pp. 245–260. doi: 10.1007/978-3-319-33507-
0_10.

[19] Charles-Edouard Bréhier, Tony Lelièvre, and Mathias Rousset.
“Analysis of adaptive multilevel splitting algorithms in an
idealized case.” In: ESAIM Probab. Stat. 19 (2015), pp. 361–394.
issn: 1292-8100. doi: 10.1051/ps/2014029.

https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1146/annurev.physchem.53.082301.113146
https://doi.org/10.1007/s10955-016-1449-4
https://doi.org/10.1007/s10955-014-1052-5
https://doi.org/10.1007/s00023-016-0507-4
https://doi.org/10.1103/PhysRevLett.102.094504
https://doi.org/10.1103/PhysRevLett.102.094504
https://doi.org/10.1103/PhysRevE.87.022118
https://doi.org/10.1103/PhysRevE.87.022118
https://doi.org/10.1214/16-AAP1185
https://doi.org/10.1007/978-3-319-33507-0_10
https://doi.org/10.1007/978-3-319-33507-0_10
https://doi.org/10.1051/ps/2014029

bibliography 243

[20] M. Breuer, J. Bernsdorf, T. Zeiser, and F. Durst. “Accurate com-
putations of the laminar flow past a square cylinder based on
two different methods: lattice-Boltzmann and finite-volume.”
In: International Journal of Heat and Fluid Flow 21.2 (Apr. 2000),
pp. 186–196. issn: 0142-727X. doi: 10.1016/S0142-727X(99)
00081-8.

[21] Tobias Brewer, Stephen R. Clark, Russell Bradford, and Robert
L. Jack. “Efficient characterisation of large deviations using
population dynamics.” en. In: Journal of Statistical Mechanics:
Theory and Experiment 2018.5 (2018), p. 053204. issn: 1742-5468.
doi: 10.1088/1742-5468/aab3ef.

[22] James Bucklew. Introduction to Rare Event Simulation. en. Springer
Series in Statistics. New York: Springer-Verlag, 2004. isbn: 978-
0-387-20078-1. (Visited on 06/11/2018).

[23] Olivier Cadot, A. Courbois, D. Ricot, Tony Ruiz, F. Harambat, V.
Herbert, R. Vigneron, and J. Délery. “Characterizations of force
and pressure fluctuations on real vehicles.” en. In: International
Journal of Engineering Systems Modelling and Simulation 8.2 (Feb.
2016), pp. 99–105. (Visited on 06/04/2018).

[24] Alfonso Caiazzo. “Analysis of Lattice Boltzmann Initialization
Routines.” en. In: Journal of Statistical Physics 121.1-2 (Oct. 2005),
pp. 37–48. issn: 0022-4715, 1572-9613. doi: 10.1007/s10955-
005-7010-5. (Visited on 06/11/2018).

[25] Daniel F. Calef and J. M. Deutch. “Diffusion-Controlled Reac-
tions.” In: Ann. Rev. Phys. Chem. 34 (1983), pp. 493–524. doi:
10.1146/annurev.pc.34.100183.002425.

[26] Julien Cattiaux, Robert Vautard, Christophe Cassou, Pascal
Yiou, Valérie Masson-Delmotte, and Francis Codron. “Winter
2010 in Europe: A cold extreme in a warming climate.” In:
Geophys. Res. Lett. 37 (2010), p. L20704.

[27] Florent Cérou and Arnaud Guyader. “Adaptive multilevel
splitting for rare event analysis.” In: Stoch. Anal. Appl. 25 (2007),
pp. 417–443. doi: 10.1080/07362990601139628.

[28] Frederic Cerou, Bernard Delyon, Arnaud Guyader, and Math-
ias Rousset. “A Central Limit Theorem for Fleming-Viot Particle
Systems with Soft Killing.” arXiv:1611.00515. 2016.

[29] Frédéric Cérou, Arnaud Guyader, Tony Lelièvre, and David
Pommier. “A multiple replica approach to simulate reactive
trajectories.” In: J. Chem. Phys. 134.5 (2011), p. 054108. doi:
10.1063/1.3518708.

[30] Sydney Chapman. The Mathematical Theory of Non-uniform Gases:
An Account of the Kinetic Theory of Viscosity, Thermal Conduction
and Diffusion in Gases. Anglais. 3rd ed. Cambridge ; New York:
Cambridge University Press, 1991. isbn: 978-0-521-40844-8.

https://doi.org/10.1016/S0142-727X(99)00081-8
https://doi.org/10.1016/S0142-727X(99)00081-8
https://doi.org/10.1088/1742-5468/aab3ef
https://doi.org/10.1007/s10955-005-7010-5
https://doi.org/10.1007/s10955-005-7010-5
https://doi.org/10.1146/annurev.pc.34.100183.002425
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1063/1.3518708

244 bibliography

[31] Hudong Chen, Shiyi Chen, and William H. Matthaeus. “Re-
covery of the Navier-Stokes equations using a lattice-gas Boltz-
mann method.” In: Physical Review A 45.8 (Apr. 1992), R5339–
R5342. doi: 10.1103/PhysRevA.45.R5339.

[32] A. I. Chernykh and M. G. Stepanov. “Large negative velocity
gradients in Burgers turbulence.” In: Physical Review E 64.2
(July 2001), p. 026306. doi: 10.1103/PhysRevE.64.026306.

[33] Alvaro Corral. “Time-decreasing hazard and increasing time
until the next earhtquake.” In: Phys. Rev. E 71 (2005), p. 017101.
doi: 10.1103/PhysRevE.71.017101.

[34] Daan Frenkel, Berend Smit. Understanding Molecular Simulation.
en. Elsevier, 2002. isbn: 978-0-12-267351-1. doi: 10.1016/B978-
0-12-267351-1.X5000-7.

[35] Frank Den Hollander. Large Deviations. Vol. 14. American Math-
ematical Society, 2008.

[36] M. Denny. “Extreme Drag Forces and the Survival of Wind-
and Water-Swept Organisms.” en. In: Journal of Experimental
Biology 194.1 (Sept. 1994), pp. 97–115. issn: 0022-0949, 1477-
9145. (Visited on 06/04/2018).

[37] Arnaud Doucet, Nando De Freitas, and Neil Gordon. Sequential
Monte Carlo methods in practice. English. New York: Springer,
2001. isbn: 0-387-95146-6 978-0-387-95146-1 1-4419-2887-1 978-
1-4419-2887-0.

[38] Mark Dykman. “Periodically modulated quantum nonlinear
oscillators.” In: Fluctuating Nonlinear Oscillators: From Nanome-
chanics to Quantum Superconducting Circuits. Ed. by Mark Dyk-
man. Oxford University Press, 2012. isbn: 9780199691388. doi:
10.1093/acprof:oso/9780199691388.001.0001.

[39] Kristian Dysthe, Harald E Krogstad, and Peter Muller. “Oceanic
Rogue Waves.” In: Ann. Rev. Fluid Mech. 40.1 (2008), pp. 287–
310. doi: 10.1146/annurev.fluid.40.111406.102203.

[40] W. E, W. Ren, and Eric Vanden-Eijnden. “Minimum action
method for the study of rare events.” In: Comm. Pure Appl.
Math. 52 (2004), pp. 637–656. doi: 10.1002/cpa.20005.

[41] Weinan E, Weiqing Ren, and Eric Vanden-Eijnden. “String
method for the study of rare events.” In: Phys. Rev. B 66.5
(2002), p. 052301. doi: 10.1103/PhysRevB.66.052301.

[42] Richard S. Ellis. Entropy, Large Deviations, and Statistical Me-
chanics. Springer, New-York, 1985.

[43] Paul Embrechts, Claudia Klüppelberg, and Thomas Mikosch.
Modelling Extremal Events: for Insurance and Finance. Vol. 33.
Stochastic Modelling and Applied Probability. Springer, 2013.
isbn: 9783540609315.

https://doi.org/10.1103/PhysRevA.45.R5339
https://doi.org/10.1103/PhysRevE.64.026306
https://doi.org/10.1103/PhysRevE.71.017101
https://doi.org/10.1016/B978-0-12-267351-1.X5000-7
https://doi.org/10.1016/B978-0-12-267351-1.X5000-7
https://doi.org/10.1093/acprof:oso/9780199691388.001.0001
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1002/cpa.20005
https://doi.org/10.1103/PhysRevB.66.052301

bibliography 245

[44] Titus S. van Erp and Peter G. Bolhuis. “Elaborating transi-
tion interface sampling methods.” In: Journal of Computational
Physics 205.1 (May 2005), pp. 157–181. issn: 0021-9991. doi:
10.1016/j.jcp.2004.11.003.

[45] Fernando A. Escobedo, Ernesto E. Borrero, and Juan C. Araque.
“Transition path sampling and forward flux sampling. Applica-
tions to biological systems.” en. In: Journal of Physics: Condensed
Matter 21.33 (2009), p. 333101. issn: 0953-8984. doi: 10.1088/
0953-8984/21/33/333101.

[46] Joel H. Ferziger and Milovan Peric. Computational Methods for
Fluid Dynamics. en. 3rd ed. Berlin Heidelberg: Springer-Verlag,
2002. isbn: 978-3-540-42074-3. (Visited on 06/04/2018).

[47] L. Fiabane, M. Gohlke, and Olivier Cadot. “Characterization of
flow contributions to drag and lift of a circular cylinder using a
volume expression of the fluid force.” en. In: European Journal
of Mechanics - B/Fluids 30.3 (2010), pp. 311–315. doi: 10.1016/j.
euromechflu.2010.12.001. (Visited on 06/13/2018).

[48] Jean-Yves Fortin and Maxime Clusel. “Applications of extreme
value statistics in physics.” In: J. Phys. A 48.18 (2015), pp. 1–35.
doi: 10.1088/1751-8113/48/18/183001.

[49] M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dy-
namical Systems. 2nd edition. Springer, New-York, 1998.

[50] U. Frisch, B. Hasslacher, and Y. Pomeau. “Lattice-Gas Automata
for the Navier-Stokes Equation.” In: Physical Review Letters
56.14 (Apr. 1986), pp. 1505–1508. doi: 10.1103/PhysRevLett.
56.1505.

[51] Uriel Frisch. Turbulence: The Legacy of A. N. Kolmogorov. Anglais.
Cambridge, Eng. ; New York: Cambridge University Press, Jan.
2010. isbn: 978-0-521-45713-2.

[52] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of
a Next Generation MPI Implementation.” In: Proceedings, 11th
European PVM/MPI Users’ Group Meeting. Budapest, Hungary,
Sept. 2004, pp. 97–104.

[53] C W Gardiner. Handbook of Stochastic Methods for physics, chem-
istry, and the natural sciences. 4th edition. Springer, Berlin, 2009.

[54] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van Dui-
jvendijk, and F. van Wijland. “First-order dynamical phase tran-
sition in models of glasses: an approach based on ensembles of
histories.” In: Journal of Physics A: Mathematical and Theoretical
42.7 (Feb. 2009). arXiv: 0810.5298, p. 075007. issn: 1751-8113,
1751-8121. doi: 10.1088/1751-8113/42/7/075007.

[55] Michael Ghil et al. “Extreme events: dynamics, statistics and
prediction.” In: Nonlin. Proc. Geophys. 18.3 (2011), pp. 295–350.

https://doi.org/10.1016/j.jcp.2004.11.003
https://doi.org/10.1088/0953-8984/21/33/333101
https://doi.org/10.1088/0953-8984/21/33/333101
https://doi.org/10.1016/j.euromechflu.2010.12.001
https://doi.org/10.1016/j.euromechflu.2010.12.001
https://doi.org/10.1088/1751-8113/48/18/183001
https://doi.org/10.1103/PhysRevLett.56.1505
https://doi.org/10.1103/PhysRevLett.56.1505
https://doi.org/10.1088/1751-8113/42/7/075007

246 bibliography

[56] C Giardina, J Kurchan, V Lecomte, and J Tailleur. “Simulating
Rare Events in Dynamical Processes.” In: J. Stat. Phys. 145

(2011), pp. 787–811. doi: 10.1007/s10955-011-0350-4.

[57] Cristian Giardina, Jorge Kurchan, Vivien Lecomte, and Julien
Tailleur. “Simulating Rare Events in Dynamical Processes.” en.
In: Journal of Statistical Physics 145.4 (Nov. 2011), pp. 787–811.
issn: 0022-4715, 1572-9613. doi: 10.1007/s10955-011-0350-4.
(Visited on 05/31/2018).

[58] Cristian Giardina, Jorge Kurchan, and Luca Peliti. “Direct Eval-
uation of Large-Deviation Functions.” English. In: Phys. Rev.
Lett. 96.12 (2006), p. 120603. doi: 10.1103/PhysRevLett.96.
120603.

[59] Cristian Giardinà, Jorge Kurchan, and Luca Peliti. “Direct Eval-
uation of Large-Deviation Functions.” In: Physical Review Letters
96.12 (Mar. 2006), p. 120603. doi: 10.1103/PhysRevLett.96.
120603.

[60] Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin,
and Tim Zajic. “A Look At Multilevel Splitting.” en. In: Monte
Carlo and Quasi-Monte Carlo Methods 1996. Lecture Notes in
Statistics. Springer, New York, NY, 1998, pp. 98–108. isbn: 978-
0-387-98335-6 978-1-4612-1690-2. doi: 10.1007/978-1-4612-
1690-2_5. (Visited on 06/13/2018).

[61] Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin,
and Tim Zajic. “Multilevel Splitting for Estimating Rare Event
Probabilities.” In: Operations Research 47.4 (Aug. 1999), pp. 585–
600. issn: 0030-364X. doi: 10.1287/opre.47.4.585.

[62] Claude Godrèche, Satya N Majumdar, and Grégory Schehr.
“Record statistics of a strongly correlated time series: random
walks and Lévy flights.” In: Journal of Physics A: Mathematical
and Theoretical 50.33 (2017), p. 333001. doi: 10.1088/1751-
8121/aa71c1.

[63] Nigel Goldenfeld, Nicholas Guttenberg, and Gustavo Gioia.
“Extreme fluctuations and the finite lifetime of the turbulent
state.” In: Physical review. E, Statistical, nonlinear, and soft matter
physics 81 (Mar. 2010), p. 035304. doi: 10.1103/PhysRevE.81.
035304.

[64] T. Grafke, R. Grauer, T. Schäfer, and E. Vanden-Eijnden. “Rel-
evance of instantons in Burgers turbulence.” en. In: EPL (Eu-
rophysics Letters) 109.3 (2015), p. 34003. issn: 0295-5075. doi:
10.1209/0295-5075/109/34003.

[65] Tobias Grafke, Rainer Grauer, and Tobias Schäfer. “Instanton
filtering for the stochastic Burgers equation.” en. In: Journal
of Physics A: Mathematical and Theoretical 46.6 (2013), p. 062002.
issn: 1751-8121. doi: 10.1088/1751-8113/46/6/062002.

https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1007/s10955-011-0350-4
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1103/PhysRevLett.96.120603
https://doi.org/10.1007/978-1-4612-1690-2_5
https://doi.org/10.1007/978-1-4612-1690-2_5
https://doi.org/10.1287/opre.47.4.585
https://doi.org/10.1088/1751-8121/aa71c1
https://doi.org/10.1088/1751-8121/aa71c1
https://doi.org/10.1103/PhysRevE.81.035304
https://doi.org/10.1103/PhysRevE.81.035304
https://doi.org/10.1209/0295-5075/109/34003
https://doi.org/10.1088/1751-8113/46/6/062002

bibliography 247

[66] Tobias Grafke, Rainer Grauer, and Tobias Schäfer. “The in-
stanton method and its numerical implementation in fluid
mechanics.” English. In: J. Phys. A 48.33 (2015), pp. 1–39. doi:
10.1088/1751-8113/48/33/333001.

[67] M. Grandemange, O. Cadot, A. Courbois, V. Herbert, D. Ricot,
T. Ruiz, and R. Vigneron. “A study of wake effects on the
drag of Ahmed’s squareback model at the industrial scale.”
In: Journal of Wind Engineering and Industrial Aerodynamics 145

(Oct. 2015), pp. 282–291. issn: 0167-6105. doi: 10.1016/j.jweia.
2015.03.004.

[68] Peter Grassberger and Walter Nadler. “‘Go with the Winners’
Simulations.” en. In: Computational Statistical Physics. Springer,
Berlin, Heidelberg, 2002, pp. 169–190. isbn: 978-3-642-07571-
1 978-3-662-04804-7. doi: 10.1007/978-3-662-04804-7_11.
(Visited on 06/11/2018).

[69] L. S. Grigorio, F. Bouchet, R. M. Pereira, and L. Chevillard. “In-
stantons in a Lagrangian model of turbulence.” en. In: Journal
of Physics A: Mathematical and Theoretical 50.5 (2017), p. 055501.
issn: 1751-8121. doi: 10.1088/1751-8121/aa51a3.

[70] E J Gumbel. “The return period of flood flows.” English. In:
Annals of Mathematical Statistics 12 (1941), pp. 163–190.

[71] Victor Gurarie and Alexander Migdal. “Instantons in the Burg-
ers equation.” In: Physical Review E 54.5 (Nov. 1996), pp. 4908–
4914. doi: 10.1103/PhysRevE.54.4908.

[72] Gwen Jorgensen. http://www.gwenjorgensen.com. [Online; ac-
cessed 28-August-2018].

[73] H. Kahn and T. E. Harris. “Estimation of Particle Transmis-
sion by Random Sampling.” In: National Bureau of Standards.
Applied Mathematics Series 12 (1951), pp. 27–30.

[74] Ásta Hannesdóttir, Mark Kelly, and Nikolay Dimitrov. “Ex-
treme fluctuations of wind speed for a coastal/offshore climate:
statistics and impact on wind turbine loads.” English. In: Wind
Energy Science Discussions (Feb. 2018), pp. 1–21. issn: 2366-7443.
doi: https://doi.org/10.5194/wes-2018-12. (Visited on
06/04/2018).

[75] J. Hardy, O. de Pazzis, and Y. Pomeau. “Molecular dynamics of
a classical lattice gas: Transport properties and time correlation
functions.” In: Physical Review A 13.5 (May 1976), pp. 1949–1961.
doi: 10.1103/PhysRevA.13.1949.

[76] J. Hardy, Y. Pomeau, and O. de Pazzis. “Time Evolution of a
Two-Dimensional Classical Lattice System.” In: Physical Review
Letters 31.5 (July 1973), pp. 276–279. doi: 10.1103/PhysRevLett.
31.276.

https://doi.org/10.1088/1751-8113/48/33/333001
https://doi.org/10.1016/j.jweia.2015.03.004
https://doi.org/10.1016/j.jweia.2015.03.004
https://doi.org/10.1007/978-3-662-04804-7_11
https://doi.org/10.1088/1751-8121/aa51a3
https://doi.org/10.1103/PhysRevE.54.4908
http://www.gwenjorgensen.com
https://doi.org/https://doi.org/10.5194/wes-2018-12
https://doi.org/10.1103/PhysRevA.13.1949
https://doi.org/10.1103/PhysRevLett.31.276
https://doi.org/10.1103/PhysRevLett.31.276

248 bibliography

[77] Alexander T. Hawk. “Milestoning with coarse memory.” In:
The Journal of Chemical Physics 138.15 (Apr. 2013), p. 154105.
issn: 0021-9606. doi: 10.1063/1.4795838.

[78] Esteban Guevara Hidalgo, Takahiro Nemoto, and Vivien Lecomte.
“Finite-Time and -Size Scalings in the Evaluation of Large De-
viation Functions: Numerical Approach in Continuous Time.”
In: Physical Review E 95.6 (June 2017). arXiv: 1607.08804. issn:
2470-0045, 2470-0053. doi: 10.1103/PhysRevE.95.062134.

[79] High-fidelity lattice Boltzmann CFD simulations. en-US. url: http:
//www.prolb-cfd.com/ (visited on 06/14/2018).

[80] F. J. Higuera and J. Jiménez. “Boltzmann Approach to Lattice
Gas Simulations.” en. In: EPL (Europhysics Letters) 9.7 (1989),
p. 663. issn: 0295-5075. doi: 10.1209/0295-5075/9/7/009.

[81] F. J. Higuera, S. Succi, and R. Benzi. “Lattice Gas Dynamics
with Enhanced Collisions.” en. In: EPL (Europhysics Letters) 9.4
(1989), p. 345. issn: 0295-5075. doi: 10.1209/0295-5075/9/4/
008.

[82] Holger Homann, Jérémie Bec, and Rainer Grauer. “Effect of
turbulent fluctuations on the drag and lift forces on a towed
sphere and its boundary layer.” en. In: Journal of Fluid Mechanics
721 (Apr. 2013), pp. 155–179. issn: 0022-1120, 1469-7645. doi:
10.1017/jfm.2013.66. (Visited on 06/04/2018).

[83] Juntao Huang, Hao Wu, and Wen-An Yong. “On Initial Con-
ditions for the Lattice Boltzmann Method.” en. In: Commu-
nications in Computational Physics 18.2 (Aug. 2015), pp. 450–
468. issn: 1815-2406, 1991-7120. doi: 10.4208/cicp.040913.
220115a. (Visited on 06/11/2018).

[84] Salvador Izquierdo, Paula Martínez-Lera, and Norberto Fueyo.
“Analysis of open boundary effects in unsteady lattice Boltz-
mann simulations.” In: Computers & Mathematics with Applica-
tions. Mesoscopic Methods in Engineering and Science 58.5
(Sept. 2009), pp. 914–921. issn: 0898-1221. doi: 10.1016/j.
camwa.2009.02.014.

[85] Anurag Jain, Mukund Srinivasan, and Gary C. Hart. “Perfor-
mance based design extreme wind loads on a tall building.” en.
In: The Structural Design of Tall Buildings 10.1 (), pp. 9–26. issn:
1099-1794. doi: 10.1002/tal.165.

[86] Hrvoje Jasak. “OpenFOAM: Open source CFD in research
and industry.” In: International Journal of Naval Architecture and
Ocean Engineering 1.2 (Dec. 2009), pp. 89–94. issn: 2092-6782.
doi: 10.2478/IJNAOE-2013-0011.

https://doi.org/10.1063/1.4795838
https://doi.org/10.1103/PhysRevE.95.062134
http://www.prolb-cfd.com/
http://www.prolb-cfd.com/
https://doi.org/10.1209/0295-5075/9/7/009
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.1209/0295-5075/9/4/008
https://doi.org/10.1017/jfm.2013.66
https://doi.org/10.4208/cicp.040913.220115a
https://doi.org/10.4208/cicp.040913.220115a
https://doi.org/10.1016/j.camwa.2009.02.014
https://doi.org/10.1016/j.camwa.2009.02.014
https://doi.org/10.1002/tal.165
https://doi.org/10.2478/IJNAOE-2013-0011

bibliography 249

[87] Christopher Jung, Dirk Schindler, Alexander Buchholz, and Jes-
sica Laible. “Global Gust Climate Evaluation and Its Influence
on Wind Turbines.” en. In: Energies 10.10 (Sept. 2017), p. 1474.
doi: 10.3390/en10101474. (Visited on 06/04/2018).

[88] Peter C. Kalverla, Gert-Jan Steeneveld, Reinder J. Ronda, and
Albert A. M. Holtslag. “An observational climatology of anoma-
lous wind events at offshore meteomast IJmuiden (North Sea).”
In: Journal of Wind Engineering and Industrial Aerodynamics 165

(June 2017), pp. 86–99. issn: 0167-6105. doi: 10.1016/j.jweia.
2017.03.008.

[89] Ioan Kosztin, Byron Faber, and Klaus Schulten. “Introduction
to the Diffusion Monte Carlo Method.” In: American Journal of
Physics 64.5 (May 1996). arXiv: physics/9702023, pp. 633–644.
issn: 0002-9505, 1943-2909. doi: 10.1119/1.18168.

[90] H A Kramers. “Brownian motion in a field of force and the
diffusion model of chemical reactions.” In: Physica 7 (1940),
pp. 284–304. doi: 10.1016/S0031-8914(40)90098-2.

[91] I. Krönke and H. Sockel. “Measurement of extreme drag coeffi-
cients of building models.” In: Journal of Wind Engineering and
Industrial Aerodynamics. Special Issue 6th Colloquium on In-
dustrial Aerodynamics Building Aerodynamics 23 (Jan. 1986),
pp. 149–163. issn: 0167-6105. doi: 10.1016/0167- 6105(86)
90039-5.

[92] Timm Krüger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest
Shardt, Goncalo Silva, and Erlend Magnus Viggen. The Lattice
Boltzmann Method: Principles and Practice. en. Graduate Texts in
Physics. Springer International Publishing, 2017. isbn: 978-3-
319-44647-9. (Visited on 06/10/2018).

[93] Juhani Kurkijärvi. “Intrinsic Fluctuations in a Superconducting
Ring Closed with a Josephson Junction.” English. In: Phys. Rev.
B 6.3 (1972), p. 832. doi: 10.1103/PhysRevB.6.832.

[94] Tanguy Laffargue. “Grandes déviations d’exposants de Lya-
punov dans les systèmes étendus.” fr. PhD thesis. Université
Paris Diderot (Paris 7), Jan. 2015. (Visited on 06/12/2018).

[95] Agnes Lagnoux. “Rare event simulation.” In: Probability in the
Engineering and Informational Sciences 20.1 (2006), pp. 45–66. doi:
10.1017/S0269964806060025.

[96] David P. Landau and Kurt Binder. A guide to Monte Carlo simu-
lations in statistical physics. Fourth. Cambridge University Press,
Cambridge, 2015, pp. xvii+519. isbn: 978-1-107-07402-6.

[97] Lev Davidovich Landau and Evgeny Mikhailovich Lifshitz.
“Fluid Mechanics, Volume 6 of course of theoretical physics.”
In: Course of theoretical physics/by LD Landau and EM Lifshitz 6

(1987).

https://doi.org/10.3390/en10101474
https://doi.org/10.1016/j.jweia.2017.03.008
https://doi.org/10.1016/j.jweia.2017.03.008
https://doi.org/10.1119/1.18168
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/0167-6105(86)90039-5
https://doi.org/10.1016/0167-6105(86)90039-5
https://doi.org/10.1103/PhysRevB.6.832
https://doi.org/10.1017/S0269964806060025

250 bibliography

[98] J S Langer. “Statistical theory of the decay of metastable states.”
In: Annals of Physics 54 (1969), pp. 258–275.

[99] Jonas Latt and Bastien Chopard. “Lattice Boltzmann Method
with regularized non-equilibrium distribution functions.” In:
arXiv:physics/0506157 (June 2005). arXiv: physics/0506157.

[100] Jonas Latt, Bastien Chopard, Orestis Malaspinas, Michel Dev-
ille, and Andreas Michler. “Straight velocity boundaries in the
lattice Boltzmann method.” In: Physical Review E 77.5 (May
2008), p. 056703. doi: 10.1103/PhysRevE.77.056703.

[101] Jason Laurie and Freddy Bouchet. “Computation of rare tran-
sitions in the barotropic quasi-geostrophic equations.” en. In:
New Journal of Physics 17.1 (2015), p. 015009. issn: 1367-2630.
doi: 10.1088/1367-2630/17/1/015009.

[102] M. R. Leadbetter. Extremes and related properties of random se-
quences and processes. Springer series in statistics. New York:
Springer-Verlag, 1983. isbn: 0-387-90731-9.

[103] Vivien Lecomte and Julien Tailleur. “A numerical approach to
large deviations in continuous time.” en. In: Journal of Statistical
Mechanics: Theory and Experiment 2007.03 (2007), P03004. issn:
1742-5468. doi: 10.1088/1742-5468/2007/03/P03004.

[104] Peter Lenaers, Qiang Li, Geert Brethouwer, Philipp Schlatter,
and Ramis Örlü. “Rare backflow and extreme wall-normal
velocity fluctuations in near-wall turbulence.” In: Physics of
Fluids 24.3 (Mar. 2012), p. 035110. issn: 1070-6631. doi: 10.
1063/1.3696304.

[105] Thibault Lestang, Francesco Ragone, Charles-Edouard Bréhier,
Corentin Herbert, and Freddy Bouchet. “Computing return
times or return periods with rare event algorithms.” en. In: Jour-
nal of Statistical Mechanics: Theory and Experiment 2018.4 (2018),
p. 043213. issn: 1742-5468. doi: 10.1088/1742-5468/aab856.

[106] Jun S. Liu. Monte Carlo strategies in scientific computing. Springer
Series in Statistics. Springer, New York, 2008, pp. xvi+343. isbn:
978-0-387-76369-9; 0-387-95230-6.

[107] Valerio Lucarini, Ana Cristina Moreira Freitas, Davide Faranda,
Jorge Milhazes Freitas, Mark Holland, Tobias Kuna, Matthew
Nicol, Mike Todd, and Sandro Vaienti. Extremes and Recurrence
in Dynamical Systems. English. New-York: Wiley, 2016. isbn:
1118632192.

[108] Guy R. McNamara and Gianluigi Zanetti. “Use of the Boltz-
mann Equation to Simulate Lattice-Gas Automata.” In: Physical
Review Letters 61.20 (Nov. 1988), pp. 2332–2335. doi: 10.1103/
PhysRevLett.61.2332.

https://doi.org/10.1103/PhysRevE.77.056703
https://doi.org/10.1088/1367-2630/17/1/015009
https://doi.org/10.1088/1742-5468/2007/03/P03004
https://doi.org/10.1063/1.3696304
https://doi.org/10.1063/1.3696304
https://doi.org/10.1088/1742-5468/aab856
https://doi.org/10.1103/PhysRevLett.61.2332
https://doi.org/10.1103/PhysRevLett.61.2332

bibliography 251

[109] Gerald A Meehl and C Tebaldi. “More intense, more frequent,
and longer lasting heat waves in the 21st century.” English. In:
Science 305 (2004), pp. 994–997.

[110] Renwei Mei, Li-Shi Luo, Pierre Lallemand, and Dominique
d’Humières. “Consistent initial conditions for lattice Boltzmann
simulations.” In: Computers & Fluids. Proceedings of the First
International Conference for Mesoscopic Methods in Engineer-
ing and Science 35.8 (Sept. 2006), pp. 855–862. issn: 0045-7930.
doi: 10.1016/j.compfluid.2005.08.008.

[111] D. Mesterházy and K. Jansen. “Anomalous scaling in the
random-force-driven Burgers’ equation: a Monte Carlo study.”
en. In: New Journal of Physics 13.10 (2011), p. 103028. issn: 1367-
2630. doi: 10.1088/1367-2630/13/10/103028.

[112] David Mesterházy, Luca Biferale, Karl Jansen, and Raffaele
Tripiccione. “Lattice Monte Carlo methods for systems far
from equilibrium.” In: arXiv:1311.4386 [cond-mat, physics:hep-
lat, physics:nlin] (Nov. 2013). arXiv: 1311.4386.

[113] Bertrand Meyer. Object-Oriented Software Construction. English.
2 edition. Upper Saddle River, N.J: Prentice Hall, Apr. 1997.
isbn: 978-0-13-629155-8.

[114] Patrick Milan, Matthias Wächter, and Joachim Peinke. “Tur-
bulent Character of Wind Energy.” In: Physical Review Letters
110.13 (Mar. 2013), p. 138701. doi: 10.1103/PhysRevLett.110.
138701.

[115] John C. Mitchell. Concepts in Programming Languages. English.
1 edition. Cambridge, UK ; New York: Cambridge University
Press, Oct. 2002. isbn: 978-0-521-78098-8.

[116] Parviz Moin. “Advances in large eddy simulation methodology
for complex flows.” In: Int. J. Heat Fluid Flow 23 (2002), pp. 710–
720.

[117] Pierre Del Moral. Feynman-Kac Formulae: Genealogical and Inter-
acting Particle Systems with Applications. en. Probability and Its
Applications. New York: Springer-Verlag, 2004. isbn: 978-0-387-
20268-6. (Visited on 06/11/2018).

[118] Pierre Del Moral and Josselin Garnier. “Genealogical particle
analysis of rare events.” en. In: The Annals of Applied Probability
15.4 (Nov. 2005), pp. 2496–2534. issn: 1050-5164, 2168-8737. doi:
10.1214/105051605000000566. (Visited on 06/11/2018).

[119] Takahiro Nemoto and Alexandros Alexakis. “Method to mea-
sure efficiently rare fluctuations of turbulence intensity for
turbulent-laminar transitions in pipe flows.” In: Physical Review
E 97.2 (Feb. 2018). arXiv: 1707.04819. issn: 2470-0045, 2470-0053.
doi: 10.1103/PhysRevE.97.022207.

https://doi.org/10.1016/j.compfluid.2005.08.008
https://doi.org/10.1088/1367-2630/13/10/103028
https://doi.org/10.1103/PhysRevLett.110.138701
https://doi.org/10.1103/PhysRevLett.110.138701
https://doi.org/10.1214/105051605000000566
https://doi.org/10.1103/PhysRevE.97.022207

252 bibliography

[120] Takahiro Nemoto, Freddy Bouchet, Robert L. Jack, and Vivien
Lecomte. “Population-dynamics method with a multicanon-
ical feedback control.” In: Physical Review E 93.6 (June 2016),
p. 062123. doi: 10.1103/PhysRevE.93.062123.

[121] Takahiro Nemoto, Esteban Guevara Hidalgo, and Vivien Lecomte.
“Finite-time and finite-size scalings in the evaluation of large-
deviation functions: Analytical study using a birth-death pro-
cess.” In: Physical Review E 95.1 (Jan. 2017), p. 012102. doi:
10.1103/PhysRevE.95.012102.

[122] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in
Statistical Physics. Anglais. Oxford : New York: Clarendon Press,
1999. isbn: 978-0-19-851797-9.

[123] C. Nicolis and S.C. Nicolis. “Return time statistics of extreme
events in deterministic dynamical systems.” In: EPL 80 (2007),
p. 40003.

[124] F Noé, C Schütte, and E Vanden-Eijnden. “Constructing the
equilibrium ensemble of folding pathways from short off-
equilibrium simulations.” In: Proc. Natl. Acad. Sci. U.S.A. 106

(2009), pp. 19011–19016.

[125] F.E.L. Otto, N. Massey, G.J. van Oldenborgh, R.G. Jones, and
M.R. Allen. “Reconciling two approaches to attribution of
the 2010 Russian heat wave.” In: Geophys. Res. Lett. 39 (2012),
p. L04702.

[126] Didier Paillard. “The timing of Pleistocene glaciations from
a simple multiple-state climate model.” In: Nature 391 (1998),
pp. 378–381. doi: 10.1038/34891.

[127] D J Peres and A Cancelliere. “Estimating return period of
landslide triggering by Monte Carlo simulation.” English. In:
Journal of Hydrology 541 (2016), pp. 256–271. doi: 10.1016/j.
jhydrol.2016.03.036.

[128] Pôle Scientifique de Modélisation Numérique. http://www.ens-
lyon.fr/PSMN/doku.php. [Online; accessed 11-June-2018].

[129] Y. H. Qian, D. D’Humières, and P. Lallemand. “Lattice BGK
Models for Navier-Stokes Equation.” en. In: EPL (Europhysics
Letters) 17.6 (1992), p. 479. issn: 0295-5075. doi: 10.1209/0295-
5075/17/6/001.

[130] Francesco Ragone, Jeroen Wouters, and Freddy Bouchet. “Com-
putation of extreme heat waves in climate models using a large
deviation algorithm.” en. In: Proceedings of the National Academy
of Sciences 115.1 (Jan. 2018), pp. 24–29. issn: 0027-8424, 1091-
6490. doi: 10.1073/pnas.1712645115. (Visited on 05/30/2018).

https://doi.org/10.1103/PhysRevE.93.062123
https://doi.org/10.1103/PhysRevE.95.012102
https://doi.org/10.1038/34891
https://doi.org/10.1016/j.jhydrol.2016.03.036
https://doi.org/10.1016/j.jhydrol.2016.03.036
http://www.ens-lyon.fr/PSMN/doku.php
http://www.ens-lyon.fr/PSMN/doku.php
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1209/0295-5075/17/6/001
https://doi.org/10.1073/pnas.1712645115

bibliography 253

[131] Stefan Rahmstorf and Dim Coumou. “Increase of extreme
events in a warming world.” English. In: Proc. Natl. Acad. Sci.
U.S.A. 108.44 (2011), pp. 17905–17909. doi: 10.1073/pnas.

1101766108.

[132] Ushnish Ray, Garnet Kin-Lic Chan, and David T. Limmer. “Im-
portance sampling large deviations in nonequilibrium steady
states. I.” In: The Journal of Chemical Physics 148.12 (Mar. 2018).
arXiv: 1708.00459, p. 124120. issn: 0021-9606, 1089-7690. doi:
10.1063/1.5003151.

[133] Sidney Redner. A Guide to First-Passage Processes. Cambridge
University Press, 2001. doi: 10.1017/CBO9780511606014.

[134] H Risken. The Fokker-Planck Equation. 2nd edition. Springer,
1989.

[135] J.-P. Rivet and J. P. Boon. Lattice Gas Hydrodynamics. English.
Cambridge; New York: Cambridge University Press, Sept. 2005.
isbn: 978-0-521-01971-2.

[136] Jean-Marie Robine, Siu Lan K Cheung, Sophie Le Roy, Herman
Van Oyen, Clare Griffiths, Jean-Pierre Michel, and François
Richard Herrmann. “Death toll exceeded 70,000 in Europe
during the summer of 2003.” In: Comptes Rendus Biologies 331.2
(2008), pp. 171–178.

[137] Christian M. Rohwer, Florian Angeletti, and Hugo Touchette.
“Convergence of large deviation estimators.” In: Physical Review
E 92.5 (Nov. 2015). arXiv: 1409.8531. issn: 1539-3755, 1550-2376.
doi: 10.1103/PhysRevE.92.052104.

[138] Joran Rolland. “Extremely rare collapse and build-up of tur-
bulence in stochastic models of transitional wall flows.” In:
Physical Review E 97.2 (Feb. 2018), p. 023109. doi: 10.1103/
PhysRevE.97.023109.

[139] Joran Rolland, Freddy Bouchet, and Eric Simonnet. “Comput-
ing Transition Rates for the 1-D Stochastic Ginzburg–Landau–Allen–Cahn
Equation for Finite-Amplitude Noise with a Rare Event Algo-
rithm.” en. In: Journal of Statistical Physics 162.2 (Jan. 2016),
pp. 277–311. issn: 0022-4715, 1572-9613. doi: 10.1007/s10955-
015-1417-4. (Visited on 05/30/2018).

[140] Joran Rolland and Eric Simonnet. “Statistical behavior of adap-
tive multilevel splitting algorithms in simple models.” In: Jour-
nal of Computational Physics 283 (Feb. 2015). arXiv: 1412.3362,
pp. 541–558. issn: 00219991. doi: 10.1016/j.jcp.2014.12.009.

[141] Joran Rolland and Eric Simonnet. “Statistical behaviour of
adaptive multilevel splitting algorithms in simple models.”
English. In: J. Comput. Phys. 283 (2015), pp. 541–558. doi: 10.
1016/j.jcp.2014.12.009.

https://doi.org/10.1073/pnas.1101766108
https://doi.org/10.1073/pnas.1101766108
https://doi.org/10.1063/1.5003151
https://doi.org/10.1017/CBO9780511606014
https://doi.org/10.1103/PhysRevE.92.052104
https://doi.org/10.1103/PhysRevE.97.023109
https://doi.org/10.1103/PhysRevE.97.023109
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1016/j.jcp.2014.12.009
https://doi.org/10.1016/j.jcp.2014.12.009
https://doi.org/10.1016/j.jcp.2014.12.009

254 bibliography

[142] A. Roshko. “Perspectives on bluff body aerodynamics.” In:
Journal of Wind Engineering and Industrial Aerodynamics 49.1 (Dec.
1993), pp. 79–100. issn: 0167-6105. doi: 10.1016/0167-6105(93)
90007-B.

[143] Alessandro De Rosis. “Non-orthogonal central moments re-
laxing to a discrete equilibrium: A D2Q9 lattice Boltzmann
model.” en. In: EPL (Europhysics Letters) 116.4 (2016), p. 44003.
issn: 0295-5075. doi: 10.1209/0295-5075/116/44003.

[144] Alessandro De Rosis. “Central-moments–based lattice Boltz-
mann schemes with force-enriched equilibria.” en. In: EPL
(Europhysics Letters) 117.3 (2017), p. 34003. issn: 0295-5075. doi:
10.1209/0295-5075/117/34003.

[145] G. Rubino and B. Tuffin. “Introduction to rare event simula-
tion.” In: Rare event simulation using Monte Carlo methods. Wiley,
Chichester, 2009, pp. 1–13. doi: 10.1002/9780470745403.ch1.

[146] P. Sagaut. Large Eddy Simulation for Incompressible Flows: An
Introduction. en. 3rd ed. Scientific Computation. Berlin Heidel-
berg: Springer-Verlag, 2006. isbn: 978-3-540-26344-9. (Visited
on 06/13/2018).

[147] Ewe-Wei Saw, Gregory P. Bewley, Eberhard Bodenschatz, Sam-
riddhi Sankar Ray, and Jérémie Bec. “Extreme fluctuations of
the relative velocities between droplets in turbulent airflow.” In:
Physics of Fluids 26.11 (Nov. 2014). arXiv: 1407.1766, p. 111702.
issn: 1070-6631, 1089-7666. doi: 10.1063/1.4900848.

[148] Martin B. Schlaffer. “Non-reflecting boundary conditions for
the lattice Boltzmann method.” PhD Thesis. Technische Univer-
sität München, 2013.

[149] Theodore G. Shepherd. “A Common Framework for Approaches
to Extreme Event Attribution.” In: Current Climate Change Re-
ports 2.1 (2016), pp. 28–38. issn: 2198-6061. doi: 10 . 1007 /

s40641-016-0033-y.

[150] Sujeet Kumar Shukla, Prashant Shukla, and Pradyumna Ghosh.
“The effect of modeling of velocity fluctuations on prediction
of collection efficiency of cyclone separators.” In: Applied Math-
ematical Modelling 37.8 (Apr. 2013), pp. 5774–5789. issn: 0307-
904X. doi: 10.1016/j.apm.2012.11.019.

[151] Eric Simonnet. “Combinatorial analysis of the adaptive last
particle method.” In: Stat. Comput. 26 (2016), pp. 211–230. doi:
10.1007/s11222-014-9489-6.

[152] P. A. Skordos. “Initial and boundary conditions for the lattice
Boltzmann method.” In: Physical Review E 48.6 (Dec. 1993),
pp. 4823–4842. doi: 10.1103/PhysRevE.48.4823.

https://doi.org/10.1016/0167-6105(93)90007-B
https://doi.org/10.1016/0167-6105(93)90007-B
https://doi.org/10.1209/0295-5075/116/44003
https://doi.org/10.1209/0295-5075/117/34003
https://doi.org/10.1002/9780470745403.ch1
https://doi.org/10.1063/1.4900848
https://doi.org/10.1007/s40641-016-0033-y
https://doi.org/10.1007/s40641-016-0033-y
https://doi.org/10.1016/j.apm.2012.11.019
https://doi.org/10.1007/s11222-014-9489-6
https://doi.org/10.1103/PhysRevE.48.4823

bibliography 255

[153] P R Spalart. “Strategies for turbulence modelling and simula-
tions.” In: Int. J. Heat Fluid Flow 21.3 (2000), pp. 252–263. doi:
10.1016/S0142-727X(00)00007-2.

[154] S. Succi, R. Benzi, and F. Massaioli. “A review of the lattice
boltzmann method.” In: International Journal of Modern Physics
C 04.02 (Apr. 1993), pp. 409–415. issn: 0129-1831. doi: 10.1142/
S0129183193000446.

[155] Sauro Succi. The Lattice Boltzmann Equation: For Fluid Dynamics
and Beyond. Numerical Mathematics and Scientific Computa-
tion. Oxford, New York: Oxford University Press, June 2001.
isbn: 978-0-19-850398-9.

[156] OGB Sveinsson, J D Salas, and C D Boes. “Regional frequency
analysis of extreme precipitation in Northeastern Colorado and
Fort Collins flood of 1997.” English. In: Journal of Hydrologic
Engineering 7.1 (2002), pp. 49–63.

[157] Mathieu Szmigiel. “Etude du flux de soubassement sur la
dynamique du sillage d’un corps non profilé à culot droit
: Application du contrôle actif pour la réduction de traînée
de véhicule industriel.” 2017LYSEC016. PhD thesis. 2017. url:
http://www.theses.fr/2017LYSEC016/document.

[158] Julien Tailleur and Jorge Kurchan. “Probing rare physical tra-
jectories with Lyapunov weighted dynamics.” en. In: Nature
Physics 3.3 (Mar. 2007), pp. 203–207. issn: 1745-2481. doi: 10.
1038/nphys515. (Visited on 05/31/2018).

[159] Y Tamura, H Kikuchi, and K Hibi. “Extreme wind pressure dis-
tributions on low-rise building models.” In: Journal of Wind En-
gineering and Industrial Aerodynamics. Bluff Body Aerodynamics
and Applications 89.14 (Dec. 2001), pp. 1635–1646. issn: 0167-
6105. doi: 10.1016/S0167-6105(01)00153-2.

[160] Tomás Tangarife. “Théorie cinétique et grandes déviations en
dynamique des fluides géophysiques.” 2015ENSL1037. PhD
thesis. 2015. url: http://www.theses.fr/2015ENSL1037.

[161] Ivan Teo, Christopher G. Mayne, Klaus Schulten, and Tony
Lelièvre. “Adaptive Multilevel Splitting Method for Molecular
Dynamics Calculation of Benzamidine-Trypsin Dissociation
Time.” In: Journal of Chemical Theory and Computation 12.6 (June
2016), pp. 2983–2989. doi: 10.1021/acs.jctc.6b00277.

[162] B. Thiria, O. Cadot, and J.-F. Beaudoin. “Drag fluctuations of
a disk in a turbulent jet: Effect of turbulent scales averaging.”
en. In: EPL (Europhysics Letters) 87.4 (2009), p. 44007. issn: 0295-
5075. doi: 10.1209/0295-5075/87/44007.

https://doi.org/10.1016/S0142-727X(00)00007-2
https://doi.org/10.1142/S0129183193000446
https://doi.org/10.1142/S0129183193000446
http://www.theses.fr/2017LYSEC016/document
https://doi.org/10.1038/nphys515
https://doi.org/10.1038/nphys515
https://doi.org/10.1016/S0167-6105(01)00153-2
http://www.theses.fr/2015ENSL1037
https://doi.org/10.1021/acs.jctc.6b00277
https://doi.org/10.1209/0295-5075/87/44007

256 bibliography

[163] Raùl Toral and Pere Colet. Stochastic Numerical Methods: An
Introduction for Students and Scientists. en. Google-Books-ID:
N2vsAwAAQBAJ. John Wiley & Sons, June 2014. isbn: 978-
3-527-68312-3.

[164] Hugo Touchette. “The large deviation approach to statistical
mechanics.” In: Phys. Rep. 478 (2009), pp. 1–69. doi: 10.1016/j.
physrep.2009.05.002.

[165] Hugo Touchette. “The large deviation approach to statisti-
cal mechanics.” In: Physics Reports 478.1-3 (July 2009). arXiv:
0804.0327, pp. 1–69. issn: 03701573. doi: 10.1016/j.physrep.
2009.05.002.

[166] Hugo Touchette. “A basic introduction to large deviations:
Theory, applications, simulations.” In: arXiv:1106.4146 [cond-
mat, physics:math-ph] (June 2011). arXiv: 1106.4146.

[167] Umesh V. Vazirani. “Go-With-The-Winners Heuristic.” en. In:
Algorithms and Data Structures. Lecture Notes in Computer Sci-
ence. Springer, Berlin, Heidelberg, Aug. 1999, pp. 217–218. isbn:
978-3-540-66279-2 978-3-540-48447-9. doi: 10 . 1007 / 3 - 540 -

48447-7_22. (Visited on 06/11/2018).

[168] E. Vergnault, O. Malaspinas, and P. Sagaut. “A lattice Boltz-
mann method for nonlinear disturbances around an arbitrary
base flow.” In: Journal of Computational Physics 231.24 (Oct.
2012), pp. 8070–8082. issn: 0021-9991. doi: 10.1016/j.jcp.
2012.07.021.

[169] Etienne Vergnault, Orestis Malaspinas, and Pierre Sagaut. “Noise
source identification with the lattice Boltzmann method.” In:
The Journal of the Acoustical Society of America 133.3 (Mar. 2013),
pp. 1293–1305. issn: 0001-4966. doi: 10.1121/1.4776181.

[170] B. J. Vickery. “Fluctuating lift and drag on a long cylinder of
square cross-section in a smooth and in a turbulent stream.”
en. In: Journal of Fluid Mechanics 25.3 (July 1966), pp. 481–494.
issn: 1469-7645, 0022-1120. doi: 10.1017/S002211206600020X.
(Visited on 06/13/2018).

[171] M. Villen-Altamirano and J. Villen-Altamirano. “RESTART: a
straightforward method for fast simulation of rare events.” In:
Proceedings of Winter Simulation Conference. Dec. 1994, pp. 282–
289. doi: 10.1109/WSC.1994.717150.

[172] Manuel Villén-Altamirano and José Villén-Altamirano. “RESTART:
A method for accelerating rare event simulations.” In: 3 (Jan.
1991).

https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1007/3-540-48447-7_22
https://doi.org/10.1007/3-540-48447-7_22
https://doi.org/10.1016/j.jcp.2012.07.021
https://doi.org/10.1016/j.jcp.2012.07.021
https://doi.org/10.1121/1.4776181
https://doi.org/10.1017/S002211206600020X
https://doi.org/10.1109/WSC.1994.717150

bibliography 257

[173] Manuel Villén-Altamirano and José Villén-Altamirano. “The
Rare Event Simulation Method RESTART: Efficiency Analysis
and Guidelines for Its Application.” en. In: Network Performance
Engineering. Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2011, pp. 509–547. isbn: 978-3-642-02741-3 978-3-
642-02742-0. doi: 10.1007/978-3-642-02742-0_22. (Visited on
06/13/2018).

[174] Angelo Vulpiani, Fabio Cecconi, Massimo Cencini, Andrea
Puglisi, and Davide Vergni. Large Deviations in Physics. English.
The Legacy of the Law of Large Numbers. Springer, 2014. isbn:
3642542514.

[175] Wikibooks. Memory Management/Garbage Collection — Wikibooks,
The Free Textbook Project. [Online; accessed 19-August-2018].
2015. url: https://en.wikibooks.org/w/index.php?title=
Memory_Management/Garbage_Collection&oldid=3023861.

[176] Dieter A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lat-
tice Boltzmann Models: An Introduction. en. Lecture Notes in
Mathematics. Berlin Heidelberg: Springer-Verlag, 2000. isbn:
978-3-540-66973-9. (Visited on 06/13/2018).

[177] J. Wouters and F. Bouchet. “Rare event computation in de-
terministic chaotic systems using genealogical particle anal-
ysis.” en. In: Journal of Physics A: Mathematical and Theoretical
49.37 (2016), p. 374002. issn: 1751-8121. doi: 10.1088/1751-
8113/49/37/374002.

[178] P. K. Yeung, X. M. Zhai, and Katepalli R. Sreenivasan. “Ex-
treme events in computational turbulence.” In: Proceedings of
the National Academy of Sciences of the United States of Amer-
ica 112.41 (Oct. 2015), pp. 12633–12638. issn: 0027-8424. doi:
10.1073/pnas.1517368112.

[179] P K Yeung, X M Zhai, and Katepalli R Sreenivasan. “Extreme
events in computational turbulence.” English. In: Proc. Natl.
Acad. Sci. U.S.A. 112.41 (2015), pp. 12633–12638. doi: 10.1073/
pnas.1517368112.

https://doi.org/10.1007/978-3-642-02742-0_22
https://en.wikibooks.org/w/index.php?title=Memory_Management/Garbage_Collection&oldid=3023861
https://en.wikibooks.org/w/index.php?title=Memory_Management/Garbage_Collection&oldid=3023861
https://doi.org/10.1088/1751-8113/49/37/374002
https://doi.org/10.1088/1751-8113/49/37/374002
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1073/pnas.1517368112

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede and Ivo Pletikosić. The
style was inspired by Robert Bringhurst’s seminal book on typography
“The Elements of Typographic Style”. classicthesis is available for both
LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Thank you very much for your feedback and contribution.

Final Version as of December 17, 2018 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Dedication
	Abstract
	Résumé
	Acknowledgments
	Contents
	Acronyms
	1 Rare events, the Poisson process and theoretical approaches
	1.1 The phenomenology of rare events
	1.1.1 The Poisson approximation for rare events
	1.1.2 How to access the return time numerically ?

	1.2 Large Deviation Theory
	1.2.1 Large deviations for trajectories in stochastic dynamics
	1.2.2 Independent Identically Distributed variables and the Donsker-Varadhan theory of large deviations

	 The phenomenology of extreme drag fluctuations
	2 Test flows
	2.1 The Lattice Boltzmann Method
	2.2 Test flow (1): Channel flow with periodic boundary conditions
	2.2.1 Test flow (0): a single obstacle, pathological large deviation behaviour
	2.2.2 Test flow (1): flow in a periodic channel past a tandem of square cylinders

	2.3 Test flow (2): Grid-generated turbulence past a square cylinder in a channel
	2.3.1 Description of test flow (2)
	2.3.2 Statistics for the drag on the obstacle

	2.4 Conclusion

	3 Dynamics of extreme drag fluctuations
	3.1 Sampling of extremes from a timeseries
	3.2 Fluctuations of the instantaneous drag
	3.2.1 Contribution of forebody and base pressure to the drag fluctuation
	3.2.2 Qualitative description of flow configurations leading to extreme drag fluctuations
	3.2.3 Conclusion

	3.3 Fluctuations of the averaged drag
	3.3.1 Examples of extreme fluctuations of the averaged drag
	3.3.2 Average extremes for some simple random processes

	3.4 Going further: the need for rare event algorithms

	 Rare events algorithms
	4 The GKTL algorithm
	4.1 The GKTL algorithm
	4.1.1 Importance Sampling
	4.1.2 The GKTL algorithm
	4.1.3 The GKTL algorithm to compute large deviation rate functions
	4.1.4 Illustration on the Ornstein–Ulhenbeck process
	4.1.5 Can the GKTL algorithm provide similar results for turbulent flows ?

	4.2 Application of the GKTL algorithm to a turbulent flow
	4.2.1 Perturbation of the trajectories

	4.3 Implementation of the GKTL algorithm for turbulent flows
	4.3.1 Separated implementation
	4.3.2 Message-Passing implementation
	4.3.3 Average walltime for the evolution and cloning stages

	5 Importance sampling large drag fluctuations with the GKTL algorithm
	5.1 Efficient computation of the large deviation rate function
	5.1.1 Direct estimation of the rate function on the basis of a finite timeseries
	5.1.2 Estimation of the SCGF using the GKTL algorithm

	5.2 Analysing GKTL data
	5.2.1 Discontinuous and reconstructed trajectories
	5.2.2 Reconstruction of the continuous trajectories
	5.2.3 Implementation(s) of the reconstruction in practice
	5.2.4 Computation of expectation values over the reconstructed ensemble
	5.2.5 Importance sampling extreme drag fluctuations

	5.3 Discussion

	6 The Adaptive Multilevel Splitting for the simulation of extreme drag fluctuations
	6.1 The AMS algorithm
	6.2 The TAMS algorithm
	6.2.1 Description of the TAMS algorithm
	6.2.2 Connection with the AMS for time-dependent observables

	6.3 Application of the TAMS to the Ornstein–Ulhenbeck process
	6.3.1 Efficient sampling of very rare trajectories
	6.3.2 Estimation of the probabilities of rare fluctuations

	6.4 Application of the TAMS to extremes in turbulent flows
	6.4.1 Plan of numerical experiments
	6.4.2 TAMS for the instantaneous drag
	6.4.3 TAMS for the time averaged drag
	6.4.4 Discussion

	7 Computing return times for rare events
	7.1 Introduction
	7.2 Return Times: Definition and Sampling Methods
	7.2.1 Computing return times from a timeseries
	7.2.2 Computing return times from a rare event algorithm

	7.3 Return times sampled with the Adaptive Multilevel Splitting algorithm
	7.3.1 Computing return times with the TAMS
	7.3.2 Return times for the Ornstein–Uhlenbeck process from the Trajectory Adaptive Multilevel Splitting algorithm

	7.4 Return times sampled with the Giardina-Kurchan-Tailleur-Lecomte algorithm
	7.4.1 Return times for the time-averaged Ornstein–Uhlenbeck process from the GKTL algorithm

	7.5 Application: return times for extreme drag forces on an object immersed in a turbulent flow
	7.5.1 Computation of the reference solution for return times
	7.5.2 Computation of return times with the GKTL algorithm and comparison with the reference solution

	7.6 Conclusion

	 Appendix
	A The pipeLBM C++ library
	A.1 A specific LBM implementation
	A.2 Architecture of the pipeLBM library
	A.2.1 The pipeLBM class
	A.2.2 The Obstacle class

	A.3 Example : flow past a square
	A.4 Test cases
	A.4.1 The Poiseuille flow
	A.4.2 The laminar flow past a square cylinder

	B The Lattice Boltzmann Method
	B.0.1 Lattice Gas Cellular Automaton
	B.0.2 The Lattice Boltzmann Equation
	B.0.3 The LBM in practice

	C Perturbation of the flow state with the LBM
	D The optimal score function
	E The libTAMS library
	E.0.1 Object-oriented modelling of the TAMS algorithm
	E.1 A simple libTAMS code: rare excursions of an Ornstein–Ulhenbeck
	E.1.1 Initialisation
	E.1.2 Iterations of the TAMS
	E.1.3 General case

	E.2 High dimensional dynamics
	E.2.1 Writing the states on disk
	E.2.2 Getting the restart state

	E.3 TAMS for an integrated cost function
	E.4 TAMS with rejection

	 Bibliography
	Colophon

