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Abstract

During the development of long lifespan software systems, specification docu-
ments can become outdated or can even disappear due to the turnover of soft-
ware developers. Implementing new software releases or checking whether some
user requirements are still valid thus becomes challenging. The only reliable de-
velopment artifact in this context is source code but understanding source code of
large projects is a time- and effort- consuming activity. This challenging problem
can be addressed by extracting high-level (observable) capabilities of software
systems. By automatically mining the source code and the available source-level
documentation, it becomes possible to provide a significant help to the software
developer in his/her program comprehension task.

This thesis proposes a new method and a tool, called FEAT (FEature As Topoi),
to address this problem. Our approach automatically extracts program topoi from
source code analysis by using a three steps process: First, FEAT creates a model of
a software system capturing both structural and semantic elements of the source
code, augmented with code-level comments; Second, it creates groups of closely
related functions through hierarchical agglomerative clustering; Third, within the
context of every cluster, functions are ranked and selected, according to some
structural properties, in order to form program topoi.

The contributions of the thesis is three-fold:

1. The notion of program topoi is introduced and discussed from a theoretical
standpoint with respect to other notions used in program comprehension ;

2. At the core of the clustering method used in FEAT, we propose a new hy-
brid distance combining both semantic and structural elements automati-
cally extracted from source code and comments. This distance is parametrized
and the impact of the parameter is strongly assessed through a deep exper-
imental evaluation ;

3. Our tool FEAT has been assessed in collaboration with Software Heritage
(SH), a large-scale ambitious initiative whose aim is to collect, preserve and,
share all publicly available source code on earth. We performed a large
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experimental evaluation of FEAT on 600 open source projects of SH, coming
from various domains and amounting to more than 25 MLOC (million lines
of code).

Our results show that FEAT can handle projects of size up to 4,000 functions and
several hundreds of files, which opens the door for its large-scale adoption for
program comprehension.



Résumé de la thèse

Introduction

Le développement de projets open source à grande échelle implique de nom-
breux développeurs distincts qui contribuent à la création de référentiels de code
volumineux. À titre d’exemple, la version de juillet 2017 du noyau Linux (version
4.12), qui représente près de 20 lignes MLOC (lignes de code), a demandé l’effort
de 329 développeurs, marquant une croissance de 1 MLOC par rapport à la ver-
sion précédente. Ces chiffres montrent que, lorsqu’un nouveau développeur sou-
haite devenir un contributeur, il fait face au problème de la compréhension d’une
énorme quantité de code, organisée sous la forme d’un ensemble non classifié de
fichiers et de fonctions.

Organiser le code de manière plus abstraite, plus proche de l’homme, est une
tentative qui a suscité l’intérêt de la communauté du génie logiciel. Malheureu-
sement, il n’existe pas de recette miracle ou bien d’outil connu pouvant apporter
une aide concrète dans la gestion de grands bases de code.

Nous proposons une approche efficace à ce problème en extrayant automatique-
ment des topoi de programmes, c’est à dire des listes ordonnées de noms de fonc-
tions associés à un index de mots pertinents. Comment se passe le tri? Notre
approche, nommée FEAT, ne considère pas toutes les fonctions comme égales:
certaines d’entre elles sont considérées comme une passerelle vers la compréhen-
sion de capacités de haut niveau observables d’un programme. Nous appelons
ces fonctions spéciales points d’entrée et le critère de tri est basé sur la distance
entre les fonctions du programme et les points d’entrée. Notre approche peut
être résumé selon ses trois étapes principales:

1. Preprocessing. Le code source, avec ses commentaires, est analysé pour gé-
nérer, pour chaque unité de code (un langage procédural ou une méthode
orientée objet), un document textuel correspondant. En outre, une représen-
tation graphique de la relation appelant-appelé (graphe d’appel) est égale-
ment créée à cette étape.
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2. Clustering. Les unités de code sont regroupées au moyen d’une classification
par clustering hiérarchique par agglomération (HAC).

3. Sélection du point d’entrée. Dans le contexte de chaque cluster, les unités de
code sont classées et celles placées à des positions plus élevées constitueront
un topos de programme.

La contribution de cette thèse est triple:

1. FEAT est une nouvelle approche entièrement automatisée pour l’extraction
de topoi de programme, basée sur le regroupement d’unités directement à
partir du code source. Pour exploiter HAC, nous proposons une distance
hybride originale combinant des éléments structurels et sémantiques du
code source. HAC requiert la sélection d’une partition parmi toutes celles
produites tout au long du processus de regroupement. Notre approche uti-
lise un critère hybride basé sur la graph modularity [17] et la cohérence tex-
tuelle [21] pour sélectionner automatiquement le paramètre approprié.

2. Des groupes d’unités de code doivent être analysés pour extraire le pro-
gramme topoi. Nous définissons un ensemble d’éléments structurels obte-
nus à partir du code source et les utilisons pour créer une représentation
alternative de clusters d’unités de code. L’analyse en composantes princi-
pales, qui permet de traiter des données multidimensionnelles, nous per-
met de mesurer la distance entre les unités de code et le point d’entrée idéal.
Cette distance est la base du classement des unités de code présenté aux uti-
lisateurs finaux.

3. Nous avons implémenté FEAT comme une plate-forme d’analyse logicielle
polyvalente et réalisé une étude expérimentale sur une base ouverte de 600
projets logiciels. Au cours de l’évaluation, nous avons analysé FEAT sous
plusieurs angles: l’étape de mise en grappe, l’efficacité de la découverte de
topoi et l’évolutivité de l’approche.

Travaux connexes

Nos travaux s’inscrivent dans le domaine de la compréhension de programmes
en se concentrant principalement sur l’extraction de fonctionnalités [68, 11, 45].
L’extraction de fonctionnalités vise à découvrir automatiquement les principales
fonctionnalités d’un logiciel en analysant son code source ainsi que d’autres ar-
tefacts. L’extraction de fonctionnalités est différente de la localisation de fonction-
nalités, dont l’objectif est de localiser où et comment des fonctionnalités données
sont implémentées [68]. La localisation nécessite que l’utilisateur fournisse une
requête d’entrée dans laquelle la fonctionnalité recherchée est déjà connue, tan-
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dis que l’extraction de la fonctionnalité tente de la découvrir automatiquement.
Depuis plusieurs années, l’extraction de fonctionnalités de logiciels est considé-
rée comme une activité dominante dans la compréghension de programmes. Ce-
pendant, nous pouvons faire la distinction entre les approches de compréhension
de programmes qui traitent la documentation des logiciels et celles qui traitent
directement le code source.

Compréhension de programmes basée sur la documentation de logiciel

Dans [18], les techniques d’exploration de texte et de clustering sont utilisées
pour extraire des descripteurs de fonctionnalités à partir des besoins de l’utili-
sateur conservés dans des référentiels de logiciels. En combinant l’extraction de
règles d’association et le k-plus proche-voisin, l’approche en question propose
des recommandations sur d’autres descripteurs afin de renforcer un profil initial.
McBurney et al. [48] ont récemment présenté quatre générateurs automatiques
de liste de fonctionnalités des projets logiciels. Ils sélectionnent des phrases en
anglais de la documentation du projet résumant les fonctionnalités.

Compréhension de programmes basée sur le Code source. [41] propose des mo-
dèles probabilistes basés sur l’analyse de code en utilisant Latent Dirichlet Alloca-
tion pour découvrir des fonctionnalités sous la forme de topics (fonctions princi-
pales dans le code). [50] présente un système de recommandation de code source
pour la réutilisation de logiciels. Basé sur un modèle de fonctionnalité (une no-
tion utilisée dans l’ingénierie de ligne de produit et la modélisation de la variabi-
lité logicielle), le système proposé tente de faire correspondre la description aux
fonctionnalités pertinentes afin de recommander la réutilisation du code source
existant à partir de référentiels de code source libre. [2] propose une analyse syn-
taxique en langage naturel pour extraire automatiquement une ontologie du code
source. Partant d’une ontologie légère ( it concept map), les auteurs développent
une ontologie plus formelle basée sur des axiomes.

A l’inverse, FEAT est entièrement automatisé et ne nécessite aucune forme de
d’entrainement de jeu de données ni aucune activité de modélisation supplémen-
taire. FEAT utilise une technique d’apprentissage automatique non supervisée,
ce qui simplifie grandement son utilisation et son application.

[37] utilise le clustering et le LSI (Latent Semantic Indexing) pour évaluer la si-
milarité entre des parties du code source. Les termes les plus pertinents extraits
de l’analyse LSI sont réutilisés pour l’étiquetage des clusters. FEAT exploite à
la place l’exploration de texte et l’analyse de la structure de code pour guider la
création de clusters.

Comparant à ces techniques, FEAT a deux éléments distinctifs. Premièrement,
FEAT traite à la fois la documentation du logiciel et le code source en appli-
quant simultanément des techniques d’analyse de code et de texte. Deuxième-
ment, FEAT utilise HAC en supposant que les fonctions logicielles sont organi-
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sées selon une certaine structure (cachée) pouvant être automatiquement décou-
verte.

Contexte

Clustering appliqué au logiciel

Les méthodologies de clustering appliquées au logiciel créent un groupe d’en-
tités, telles que des classes, des fonctions, etc. L’objectif de ces dernières est de
faciliter la compréhension de la structure d’un système logiciel large et complexe
[73].

Appliquer du clustering au logiciel nécessite l’identification des entités qui font
l’objet du groupement. Plusieurs artefacts peuvent être choisis, mais le plus popu-
laire est le code source [51]. La sélection des entités dépend fortement de l’objectif
de l’approche à utiliser en clustering. Pour la restructuration de programmes à un
niveau plus fin, les instructions d’appel de fonction sont choisies comme entités
[84], tandis que pour des problèmes de conception, les entités [6] sont souvent
des modules logiciels mais également des classes ou des routines.

L’extraction de faits à partir du code source peut s’effectuer selon deux approches
conceptuelles différentes: structural et sémantique. Les approches basées sur la
structure reposent sur des relations statiques entre entités: références de variable,
appels de procédure, héritage, etc. Les approches sémantiques prennent en compte
les informations tirées du domaine de connaissances lié au code source [36]. Les
recherches sur l’application du clustering au logiciel adopte largement les ap-
proches basées sur la structure, mais il convient de noter que le résultat produit
par les approches sémantiques tend à être plus significatif. C’est pourquoi cer-
tains essayent de combiner les deux méthodes [78].

La création de clusters est réalisée via un algorithme de classification. Le clus-
tering est la forme la plus courante d’apprentissage non supervisé et la clé de
ce type d’approches est la notion de distance entre les éléments à grouper et à
séparer. Différentes mesures de distance donnent lieu à différents regroupements

Il existe deux catégories d’algorithmes hiérarchiques: Ascendant (bottom-up) et
descendant (top-down). Dans le clustering appliqué au logiciel et selon [33], les
algorithmes descendants offrent un avantage par rapport aux algorithmes ascen-
dants car les utilisateurs s’intéressent principalement à la structure révélée par les
grands groupes créés au cours des premières étapes du processus. En revanche,
les décisions erronées prises au cours des premières étapes peuvent affecter la
manière dont les regroupements ascendants évoluent vers les grands regroupe-
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FIGURE 1 – FEAT aperçu du processus

ments. La classification hiérarchique ascendante est toutefois la plus utilisée [82].

Notre approche nommée FEAT

Au lieu d’utiliser uniquement du code source ou uniquement de la documenta-
tion d’un système logiciel, FEAT combine les deux dans une même perspective
grâce à une métrique de distance fusionnant la partie sémantique et les éléments
structurels contenus dans le code source.

Certaines méthodes nécessitent une assistance humaine. Pour ne citer que quelques
exemples: les méthodes basées sur les LDA nécessitent la saisie de paramètres
statistiques difficiles à définir à l’avance. Les utilisateurs finaux doivent sélec-
tionner une partition en clusters parmi d’autres. Les approches d’apprentissage
supervisé nécessitant l’étiquetage de la formation Des exemples qui demandent
beaucoup de temps et sont sujets aux problèmes de subjectivité. À la différence
de ces approches, FEAT est entièrement automatisé, il applique des critères défi-
nis formellement et sa sortie peut être directement utilisée pour l’extraction et/ou
la localisation de fonctionnalités. Pour résumer les caractéristiques de FEAT:

• Les topoi de programme sont des structures concrètes résultantes d’une dé-
finition formelle, utiles pour relever les défis de la compréhension automa-
tisée de programmes.

• En compréhension de programme, il existe une distinction entre les ap-
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proches d’extraction et les approches de la localisation des fonctionnalités.
FEAT ne fait aucune distinction et permet de répondre aux deux tâches.

• FEAT est basé sur un modèle de systèmes logiciels indépendant de tout
langage de programmation.

• FEAT ne nécessite aucune entrée supplémentaire autre que le code source.

• FEAT est entièrement automatisé.

Un aperçu général de FEAT

La compréhension d’un logiciel à travers son code source peut être abordée par
deux approches conceptuelles: structurelle ou sémantique. Les approches basées
sur la structure se concentrent sur les relations statiques entre les entités tandis
que les approches sémantiques incluent tous les aspects de la connaissance du
domaine d’un système qui peuvent être obtenus à partir des commentaires et
des noms des identifiants [73]. L’extraction des principales fonctionnalités d’un
logiciel peut tirer parti d’informations structurelles permettant d’identifier une
fonctionnalité en tant qu’ensemble de unités de code contribuant à son implé-
mentation. D’un point de vue sémantique, les parties d’un système présentant
des points communs en termes de mots en langage naturel peuvent également
être considérées comme faisant partie d’une même fonctionnalité d’un système.

En d’autres termes, les approches structurelles et sémantiques véhiculent deux
perspectives différentes et de valeurs inestimables. FEAT combine les deux pour
obtenir une image plus précise des fonctionnalités proposées par un système lo-
giciel. FEAT, dont les principaux éléments sont illustrés dans la Fig. 1, est basé
sur un processus en trois étapes : pré-traitement (case notée 2 dans la Fig. 1), clus-
tering (3 et 4 dans la Fig. 1) et sélection de points d’entrées (5 dans la Fig. 1).
L’entrée de FEAT est un système logiciel représenté par du code source et des
commentaires (1). À l’étape de prétraitement (2), FEAT analyse le code source et
les commentaires, créant ainsi une représentation du système qui prend en charge
la double hypothèse sous-jacente à l’approche.

Conclusion

FEAT automatise certaines pratiques courantes adoptées à la compréhension de
programme (Sec. 2.2), telles que l’utilisation d’informations sémantiques et struc-
turelles pour isoler les concepts sous la forme de clusters. Pour répondre au
contexte de la compréhension du programme, nous avons adapté l’algorithme
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de HAC en fournissant à la fois une nouvelle notion de distance (Sec. 4.5) et un
critère d’arrêt (Sec. 4.7). L’application de PCA (Principal Component Analysis)
à des unités de code a nécessité une étude approfondie des graphes d’appels
du point de vue statistique (Sec. 4.8.1), révélant des modèles intéressants. Enfin,
nous fournissons dans cette thèse une définition formelle de la notion nouvelle
de topoi de programme (Def. 4.4). Nous montrons également que l’identification
automatique de points d’entrée révélent certaines propriétés géométriques qui
pourraient conduire d’intéressant développements. Enfin, la thèse présente une
évaluation expérimentale approfondie incluant une expérience à grande échelle
sur l’archive Software Heritage, soutenue par l’UNESCO.
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Introduction

Context and Challenges

Software-systems are developed to satisfy an identified set of user requirements.
When the initial version of a system is developed, contractual documents are
produced to agree on its capabilities. However, when the system evolves over
a long period of time, the initial user requirements can become obsolete or even
disappear. This mainly happens because of evolution of systems, maintenance,
either corrective or adaptive, and personnel turn-over. When new business cases
are considered, software engineers face the challenge of recovering the main ca-
pabilities of a system from existing source code and low-level code documen-
tation. Unfortunately, recovering user-observable capabilities is extremely hard
since they are hidden behind the complexity of countless implementation details.

Our work focuses on finding a cost-effective solution to this challenging problem
by automatically extracting program topoi, which can be seen as summaries of the
main capabilities of a program. Program topoi are given under the form of collec-
tions of ordered code functions along with a set of words (index) characterizing
their purpose and a graph of their closer dependencies. Unlike requirements from
external repositories or documents, which may be outdated, vague or incomplete,
topoi extracted from source code are an actual and accurate representation of the
capabilities of a system.

Several disciplines in the context of program understanding make use of a similar
concept called feature. Wiegers in his book [81] provides the following definition:
“. . . a feature is a set of logically related functional requirements that provides a capabil-
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ity to the user and enables the satisfaction of a business objective”. This is a widely
adopted definition in the literature but it is too abstract. Instead, program topoi
are concrete objects targeted to source code, supported by a formal definition,
and then suitable for automated computation. Nevertheless, extracting program
topoi from source code is a complex task and to tackle this challenge we propose
FEAT an approach and a tool for the automatic extraction of program topoi. FEAT
acts in three steps:

1. Preprocessing. Creation of a model representing a software system. The
model considers both structural and semantic elements of the system.

2. Clustering. By mining the available source code, possibly augmented with
code-level comments, hierarchical agglomerative clustering (HAC) groups
similar code functions.

3. Entry-Point Selection. Functions within a cluster are then ranked and those
fulfilling some structural requirements will be selected as program topos’
elements and stored.

Our work differs from those belonging to either feature extraction or location ar-
eas (see a detailed overview in Sec.2.3) for the following reasons. First, FEAT
extracts topoi which are structured summaries of the main capabilities of the pro-
gram, while features are usually just informal description of software character-
istics. Second, in FEAT the difference between feature extraction and feature
location is not so urgent; one can employ topoi to discover system capabilities
but also for looking for those he/she already knows.

Contribution of the Thesis

FEAT is a novel, fully automated approach for program topoi creation based on
clustering and ranking code functions directly from source code. Along the path
which led us to the current definition of the approach, we devised some original
contributions which are listed as follows:

1. For an effective application of HAC to software systems, we propose an
original hybrid distance combining structural and semantic elements of source
code (Sec. 4.5). HAC requires the selection of a partition among all those
produced along the clustering process. FEAT makes use of a hybrid crite-
rion based on graph modularity [17] and textual coherence [21] to automatically
select the appropriate partition (Sec. 4.7).

2. Clusters of code functions need to be further analyzed to extract program
topoi. We define the concept of entry-point to accomplish this. Entry-points
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are an alternative way to look at functions, they are based on a set of struc-
tural properties coming from call graphs. Entry-points allow us: (i) to cre-
ate a space in which functions can be treated as geometric objects, and (ii)
to evaluate how representative they are in terms of a system’s capabilities.
We employ PCA (Principal Component Analysis) for entry-point selection
(Sec. 4.8). We published this results in a conference paper presented at IAAI
30th Innovative Application of Artificial Intelligence [30] and in a paper
published in IEEE Transactions on Reliability journal [31].

3. We implemented FEAT on top of a general-purpose software analysis plat-
form and performed an experimental study over many open-source soft-
ware projects. Software Heritage 1(SH) is an initiative owned by Inria whose
aim is to collect, preserve and, share all publicly available source code. We
processed 600 projects coming from various domains amounting to more
than 25 MLOC (lines of code). During the evaluation we analyzed FEAT
under several perspectives: the clustering step, effectiveness in topoi dis-
covery and search, and scalability of the approach.

Organization of the Thesis

The thesis is organized as follows. Chap. 2 presents the current state of the art in
the various disciplines touched by this thesis. Chap. 3 gives the necessary back-
ground on clustering, distance notions, PCA, call graphs, etc. Chap. 4 details the
three main steps of FEAT with all the aspects we needed to handle in order to ap-
ply techniques such as HAC, PCA, etc. to source code analysis. Chap. 5 describes
CRYSTAL the platform we designed to host FEAT. Chap. 6 gives the experimen-
tal results obtained with FEAT on several open-source software projects. Finally,
Chap. 7 draws conclusions and presents some perspectives to this work.

1. www.softwareheritage.org

www.softwareheritage.org




II

State of the Art

The chapter provides an overview of the state of the art of the main topics at the
basis of this work: machine learning, program comprehension and, the research
done so far in the domain located at their intersection.

2.1 Introduction on Machine Learning

Answering the question “what is machine learning (ML)?” can be tricky because
ML is a really vast subject. In 1959 Arthur Samuel, a pioneer in the field of artifi-
cial intelligence (AI), coined the term machine learning [70]. He focused on cogni-
tive computing 1 and, while he was working on a program capable of learning how
to play chess, he gave the following definition: “Machine Learning: Field of study
that gives computers the ability to learn without being explicitly programmed.”. Tom
Mitchell, another renowned researcher in ML, provided a more precise definition
of machine learning in 1998: “A computer program is said to learn from experience E
with respect to some task T and some performance measure P , if its performance on T , as
measured by P , improves with experience E.”

Hence, although machine learning is a field within computer science, it differs
from traditional computational approaches. In traditional computing, algorithms
are sets of explicitly programmed instructions used by computers to calculate
or solve problems while in ML algorithms allow for computers to train on data
inputs and build models to accomplish tasks.

1. Discipline that studies hardware platform and/or software systems that mimic the way the
human brain works.
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Both Samuel’s and Mitchell’s definitions clearly explain the goal for ML. The way
we reach this goal is through ML algorithms. Let us see the main categories into
which they are divided. The first category is (i) supervised learning, which trains
algorithms based on example input and output data that is labeled by humans,
and the second is (ii) unsupervised learning which provides the algorithm with
no labeled data in order to allow it to find a structure within its input data.

2.1.1 Supervised Learning

Supervised learning algorithms can be further divided according to the output
domain. If the output consists in one or more continuous variables we apply
regression predictive modeling that is the task of approximating a mapping func-
tion (f ) from input variables (X) to a continuous output variable (Y ). On the
other hand, a supervised learning problem where the answer to be learned is one
of finitely many possible values is called classification.

Bias-variance Tradeoff

There are challenging aspects related to supervised learning algorithms. Behind
any model there are some assumptions, but if they are too simplistic then the
model generalizes well but does not fit the data (underfitting). This makes the
model biased (see Fig. 2.1). On the other hand if the model fits the training data
really well this is obtained at the expense of generalization which is called over-
fitting (see Fig. 2.3). Overfitting occurs when a model corresponds too closely to
the training set but fails when classifies new, unseen data. The problem of satis-
fying both these two needs at the same time goes under the name of bias-variance
tradeoff [44].

The Curse of Dimensionality

Modeling a classifier requires the selection of features. Features, also called vari-
ables or attributes, are the basic elements of the training data and their selection is
needed for building the model representing a classifier. We can think of features
as descriptors for each object in our domain. If we selected too few features then
our classifier would perform poorly (i.e. classify animal species just by single ani-
mals’ color). An obvious solution to this problem is to add more features in order
to make our model more complex and flexible. But, we cannot add to the model
as many features as we wish while the training set remains the same. If they are
too many, we have to face the curse of dimensionality [7].
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Figure 2.1 – High bias Figure 2.2 – Good fit Figure 2.3 – High variance

One side effect of the curse of dimensionality is overfitting. This happens because
adding dimensions to our model will make the feature space grow exponentially
and consequently it becomes sparser and sparser. Because of this sparsity, it is
easier to find a hyperplane perfectly separating the training examples; our clas-
sifier is perfectly learning all the peculiarities of the training dataset even its ex-
ceptions but it will fail on real-world data because of overfitting.

Another side effect of the curse of dimensionality is that sparsity is not uniformly
distributed. This is a bit surprising, let us try to explain it through an example.
Imagine a unit square that represents a 2D feature space. The average of the
feature space is the center of this square, and all points within unit distance are
inside a unit circle inscribed into the square. In 2D the center of the search space
is ≈ 78% of the total. But, as we increase the number of dimensions, the center
becomes smaller and smaller; in 3D it is≈ 52% and in 8D it is≈ 2%. Fig. 2.4 shows
a graph of the volume of 5 hyperspheres, with increasing value of radius, and its
relationship with the number of dimensions. The graph clearly shows how fast
the volume goes to zero as the number of dimensions increases. Though it is hard
to be visualized, we can say that nearly all of the high-dimensional space is “far
away” from the centre or, in other words, the high-dimensional unit hypercube
can be said to consist almost entirely of the “corners” of the hypercube, with
almost no “middle”. In this scenario, where all the points are so distant from the
center, distance metrics like the Euclidean distance are useless because there is
not a significant difference between the maximum and minimum distance [3].

If we had an infinite number of training samples then we could use an infinite
number of features to train the perfect classifier and then avoid the curse of di-
mensionality. In reality a rule of thumb is: the smaller the size of the training dataset,
the fewer the features that should be used. It is important to highlight that the feature
space grows exponentially with the number of dimensions [7] and so the num-
ber of examples should do accordingly. Feature selection can be a hard task to
be accomplished. To tackle this challenge, techniques like Principal Component
Analysis (PCA), which finds a linear subspace of the feature space with lower
dimensionality (more on PCA in Chap. 3), can be used.
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Figure 2.4 – Volume of the hypersphere decreases when the dimensionality increases.

Cross-validation

Overfitting is clearly a main concern for several supervised learning techniques.
Another approach commonly adopted to overcome overfitting is cross-validation [52].
Basically, it splits the training dataset in two and the classifier is trained on just
one subset of the examples. When the training is completed the remaining part
is used for testing and evaluate the performance of the classifier. This approach
called holdout is the basis for more advanced models like: K-fold and, leave-one-out.

After this overview about supervised learning and its challenging aspects, let
us now see some practical examples of supervised learning methods through a
selection of the most representative ones.

Decision Trees

A most widely used method for approximating discrete-valued functions is de-
cision tree learning. Learned trees represent an approximation of an unknown
target function f : X 7→ Y . They belong to the family of inductive inference algo-
rithms (i.e. inferring the general from the specific). Training examples are pairs
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〈Xi, Yi〉where every Xi is a feature vector and Yi a discrete value. By walking the
tree from the root to the leaves, decision trees classify instances. At each node the
algorithm tests one attribute of the instance and selects the next branch to take on
the basis of the possible values for this attribute. This step is repeated until the
algorithm reaches a leaf indicating a Y value [52].

The basic algorithm for learning decision trees is ID3 [62], successively super-
seded by C4.5 [63]. ID3 builds a tree top-down by answering the question “which
is the best attribute to be tested ?”. The best attribute, that is the best one in sep-
arating the training examples according to their target classification, is selected
on the basis of a statistical measure called information gain. Then, the algorithm
moves down the tree and repeats the same question for each branch. This process
goes on until all data is classified perfectly or it runs out of attributes.

There are some issues related to the basic ID3 algorithm, first of all overfitting
which occurs with noisy data leading to the construction of more complex trees
perfectly fitting the wrong data. Random forest [29] is an algorithm derived from
decision trees and it is designed to address ID3 overfitting problem. Instead of
applying the ID3 algorithm on the whole dataset, dataset is separated into sub-
sets leading to the construction of several decision trees, decisions are made by
a voting mechanism. C4.5 algorithm, though sharing the basic mechanism of
ID3, brought some improvements to its ancestor like the capacity of dealing with
missing attributes values or attributes with continuous values.

Artificial Neural Networks

The development of artificial neural networks (ANNs) has been inspired by the
study of learning mechanisms in biological neural systems. These systems are
made of a web of interconnected units (neurons) interacting through connections
(axons and synapses) with other units.

The general structure of a ANN can be thought as made of three layers: input
layer, hidden layer and output layer. The input layer is connected to the source
which can be sensor data, symbolic data, feature vectors, etc. The units in the
hidden layer connect inputs with outputs and it is where the actual learning
happens. Each of these units computes a single real-valued value based on a
weighted combination of its inputs. Units’ interconnections in ANNs can form
several type of graphs: directed or undirected, cyclic or acyclic. If the connec-
tions in a neural network do not form any cycle they are called feedforward neural
network. In these networks the information flows from the input to the output
layer through the hidden layer(s). No cycle or loops are present which distin-
guish them from recurrent neural networks (RNN).

There are several alternatives for primitive units in ANNs such as: perceptron,
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linear unit and, sigmoid. Perceptron [49], which itself is a binary classifier, takes a
vector of real-valued inputs and calculates a linear combination of these inputs.
The output can be 1 or −1. Each input has an associated weight and learning a
perceptron is about choosing values for the weights. A perceptron can represent
only examples that can be linearly separated by a hyperplane in a n-dimensional
space (n input points).

To overcome the limit about linearly separable samples it is not enough to add
more layers; multiple layers of cascaded linear units still produce only linear
functions. We need a unit whose output is a non-linear function of its inputs. One
solution is the sigmoid unit (the name comes from the characteristic S-shaped
curve) whose output ranges between 0 and 1, increasing monotonically with its
input [52]. Sigmoid unit, like the perceptron, first computes a linear combination
of its inputs and then applies a threshold to the result but, differently from per-
ceptron, in sigmoid’s case the output is a continuous function of its input. The al-
gorithm to learn the weights in a multilayer network is backpropagation [8], based
on gradient descent optimization algorithm. It attempts to minimize the squared
error between the network output values and the target values for these outputs.
When there are multiple hidden layers between the input and the output layers
then we call the ANN a deep neural network (DNN).

One final remark about ANNs. The European Union recently introduced the Gen-
eral Data Protection Regulation (GDPR) that states the so-called right to explana-
tion. Some of the articles of GDPR can be interpreted as requiring explanation of
the decision made by a machine learning algorithm when it is applied to a human
subject. This can clearly affect the adoption of ANNs in certain domains; provide
an interpretation of the decisions made by neural networks it is very hard and
practically impossible in DNNs.

Naive Bayes Classifier

Bayesian learning belong to a family of techniques based on statistical infer-
ence. The assumptions lying at their basis is that the input data of the classifica-
tion problem follow some probability distribution. Bayesian learning estimates a
mapping function between input and output data by means of the Bayes theorem.
Its application can be challenging when dealing with many variables because of
the difficulty of both computing and having samples of all joint probability com-
binations. A solution to this problem comes from an approach, which is widely
used in the field of text classification, called naive Bayes (NB). It is called naive
because it assumes that all input variables are conditionally independent 2 [26]

2. Two random variables X and Y are conditionally independent given a third random vari-
able Z if and only if, given any value of Z, the probability distribution of X is the same for all
values of Y and the probability distribution of Y is the same for all values of X .
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hence dramatically simplifying the classification function (the number of needed
parameters is reduced from exponential to linear in the number of variables).

NB belongs to a category called generative classifiers which is in contrast with
those called discriminative classifiers. A generative classifier learns the model be-
hind the training data making assumptions about its distribution. On this basis,
it can even generate unseen data. Instead, discriminative classifiers make fewer
assumptions on the data and just learn boundary between classes. The choice
between the two categories is determined by the training set size. With a rich
training set, discriminative classifiers outperforms generative ones [60]. But, in
case of few data a generative model, with the addition of some domain knowl-
edge, can become the first choice.

In NB the training set is made of objects (which are feature vectors) and classes
to which the objects belong. The algorithm requires the prior probability of an
object occurring in a class P (C) and P (xk|C) that is the conditional probability
of attribute xk occurring in an object of class C. These probabilities are usually
unknown and then estimated from the training set. This way NB indicates which
class C best represents a given object x by the conditional probability P (C|x) [44].

Despite its simplicity, NB, in some domains, showed performance similar to ANNs
or decision trees.

K-nearest Neighbor

When it comes about making decisions on a ML approach it is really important to
have a sufficient understanding on the problem at hand. Is it a nonlinear problem
and its class boundaries cannot be approximated well with linear hyperplanes?
Then a nonlinear classifier will be more accurate than a linear one. If the problem
is linear, then it is best to use a simpler linear classifier. So far we have seen
a nonlinear classifier (decision trees), a linear classifier (NB) and a mixed one
depending on its structure (ANNs). The next two are nonlinear classifiers. Let us
start with the simplest one.

k-nearest neighbor (kNN) [5] is one of the simplest classification algorithms. It
is a non parametric classifier, meaning that it does not rely on any assumption
about the distribution of the underlying data. Put simply, it builds a model for
classification just from the data itself. This makes kNN a good candidate for a
preliminary classification study when there is little a priori knowledge about the
data distribution.

kNN is also defined a lazy algorithm because it does not have any training phase;
it does not try to infer any generalization from the data.
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kNN’s output is a class membership assigned to a test element by the majority
class of its k closest neighbors. We can have 1NN, but it is too sensitive to outliers
or misclassified elements, usually a value k > 1 is chosen [44].

Support Vector Machines

Support vector machines (SVM) [79] are binary, discriminative classifiers. They
learn an optimal hyperplane separating the training examples in two classes.
SVMs are known to be capable of classifying data which are not linearly sepa-
rable and they accomplish this through their key element: kernel functions [72].
Kernel functions take the input space and transform it into a higher dimensional
one. This transformation allows linear classifier to separate non linear problems.
The key aspects of the approach based on SVMs with kernel functions are:

• Data items are embedded into a vector space called the feature space.

• Linear relations are sought among the images of the data items in the feature
space.

• The algorithm for the computation of a separating hyperplane does not
need the coordinates of the embedded points, only the pairwise inner prod-
ucts.

• The pairwise inner products can be computed efficiently directly from the
original data items using a kernel function.

These aspects are illustrated in Fig. 2.5. The left side of the figure shows a non-
linear pattern but by applying a kernel like φ(x, y) = x2 + y2 the data becomes
linearly separable as it is shown on the right side plot. In the feature space,
where data can be linearly separated, SVM, of all possible decision boundaries
that could be chosen to separate the dataset for classification, chooses the deci-
sion boundary (separating hyperplane) which is the most distant from the points
(support vectors) nearest to the said decision boundary from both classes (see
Fig. 2.6).

In conclusion, SVM is a very effective tool; it uses only a small subset of training
points (support vectors) to classify data, it is versatile: different kernel functions
can be specified to fit domain specific problems.

2.1.2 Unsupervised Learning

In unsupervised learning, the training data consists of a set of input vectors with-
out any corresponding target values. The goal in such problems may be to dis-
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Figure 2.5 – The function φ = x2 + y2 embeds the data into a feature space where the
nonlinear pattern now becomes linearly separable.

cover underlying structures of a dataset like groups or create summaries of it.
Two representative tasks, achievable through unsupervised learning algorithms,
are clustering data into groups by similarity and dimensionality reduction which
compresses the data while revealing its latent structure.

It is not always easy to understand the output of unsupervised learning algo-
rithms; they can figure out on their own how to sort different classes of elements,
but they might also add unforeseen and undesired categories to deal with creat-
ing clutter instead of order.

Since there are no labeled examples, a challenging aspect of such approaches is

Figure 2.6 – SVM’s separating hyperplane maximizing margin among support vectors
belonging to the two classes.
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evaluating their performance; what is usually done is to create either ad-hoc met-
rics or exploiting some domain-specific knowledge.

Let us see an overview of some of the most widely adopted algorithms in unsu-
pervised learning.

K-means

Clustering is the most common form of unsupervised learning. It organizes data
instances into similarity groups, called clusters such that the data instances in
the same cluster are similar to each other and data instances in different clusters
are very different from each other [42, 44]. One might wonder whether there is
such a big difference between classification and clustering; after all, in both cases
we have a partition of data items into groups. But the difference between the
two problems lies at their foundation. In classification we want to replicate the
criterion a human used to distinguish elements of the data. In clustering there is
no such guidance and the key input is the distance measure.

Clustering algorithms are divided into two broad categories: flat clustering and
hierarchical clustering. The former algorithms do not create any structure among
clusters whereas the latter provide an informative hierarchy [44].

K-means [27] is the most important flat clustering algorithm. The goal of this al-
gorithm is to find K groups in the data. The algorithm works iteratively to assign
each data point to one of K groups based on the features that are provided. Data
points are clustered based on feature similarity. K-means aims at minimizing the
average squared Euclidean distance of data points from their cluster centers. A
cluster center is represented by the mean or centroid of the elements in a cluster.

The K in K-means indicates the number of clusters and it is an input parameter.
The algorithm (1) randomly chooses K data points (seeds) as centroids and (2)
iteratively reassigns data points to clusters and update centroids until a termina-
tion condition is met. Some drawbacks of this simple and effective algorithm are:
(1) a prespecified number of clusters that can be hard to be provided, (2) sensi-
tivity to outliers, (3) the selection of initial seeds affects the search which can get
stuck in a local minimum and, (4) the assumption about the shape of the clusters;
K-means works best with non-overlapping spherical clusters (see Fig. 2.7).

Hierarchical Clustering

Hierarchical clustering establishes a hierarchy among clusters which can be cre-
ated either with top-down or bottom-up algorithms. Top-down clustering re-



2.1. Introduction on Machine Learning 15

●
● ●

●

●

●
●●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●

●●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●●

● ●●

●

●

●

●
●

●

●
●● ●●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●●

● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

x

y

−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

x

y

Figure 2.7 – It is easy for a human to see the two clusters in the left plot. The right one
shows the clustering (red and black triangles) created by K-means. The algorithm fails
in finding the two clusters in this dataset because it tries to find two centers with non-
overlapping spheres around them.

quires a criterion to split clusters. It proceeds by splitting clusters recursively
until individual data points are reached. Bottom-up algorithms, also called Hier-
archical Agglomerative Clustering (HAC), start by considering each data point as a
singleton cluster and then incrementally merge pairs of clusters until either the
process is stopped or all clusters are merged into a single final cluster [44].

Unlike the K-means algorithm, which uses only the centroids in distance compu-
tation, hierarchical clustering may use anyone of several methods to determine
the distance between two clusters.

Hierarchical clustering has several advantages over K-means. It can take any
distance measure, can handle clusters of any shape, the resulting structure can
be really informative. Hierarchical clustering on the other hand are computation-
ally demanding both in terms of space and time. Also some criteria used to merge
clusters suffer from the presence of outliers. More details about hierarchical clus-
tering will be given in Chap. 3.

One-class SVM

In the supervised learning section we have seen SVMs. They train a classifier on
a training set so that examples belong to one of two classes. This is clearly a su-
pervised learning model but actually SVM can be used also in contexts where we
can have a large majority of positive examples and we want to find the negative
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ones. This peculiar application of SVMs is called one-class SVM [71].

In one-class SVM, the support vector model is trained on data that has only one
class, which is the normal class. It infers the properties of normal cases and from
these properties can predict which examples are unlike the normal examples.
This is useful for anomaly detection because the scarcity of training examples
is what defines anomalies: that is, typically there are very few examples of the
network intrusion, fraud, or other anomalous behavior. Then when new data are
encountered their position relative to the normal data (or inliers) from training
can be used to determine whether it is out of class or not; in other words, whether
it is unusual or not.

One-class SVM have been applied to several different contexts like: anomaly de-
tection, novelty detection, fraud detection, outlier detection, etc. proving that is a
very versatile and useful approach to unsupervised learning.

Autoencoder

An autoencoder is a neural network that has three layers: an input layer (x), a
hidden (encoding) layer (h), and a decoding layer (y). The network is trained
to reconstruct its inputs by minimizing the difference between input and output,
which forces the hidden layer to try to learn good representations of the inputs.
Autoencoders are designed to be unable to perfectly reproduce the input. They
are forced to learn an approximation, a representation that resembles the input
data. Being forced to set higher priority to some aspects of the input usually
leads autoencoders to learn useful properties of the data [28].

One way to obtain useful features from the autoencoder is to constrain h (hidden
layer) to have a smaller dimension than x (input layer). An autoencoder whose
code dimension is less than the input dimension is called undercomplete. Learn-
ing an undercomplete representation forces the autoencoder to capture the most
salient features of the training data.

Learning autoencoders proved to be difficult because the several encodings of
the input code compete to set the same small amount of dimensions. This has
been solved through sparse autoencoders [66]. In a sparse autoencoder, there are
actually more hidden units than inputs, but only a small number of the hidden
units are allowed to be active at the same time.

Traditionally, autoencoders have been used for dimensionality reduction, feature
learning and, noise removal. Autoencoders are quite similar to PCA (principal
component analysis) (see Chap. 3 for a more detailed discussion on PCA) in terms
of potential applications. One advantage of autoencoders over PCA is the capac-
ity of learning nonlinear transformations.
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Self Organizing Map

Self organizing map (SOM) are a ANN-based technique for dimensionality reduc-
tion. More specifically they are used for creating visual representation of high
dimensional data in 2D. Sometimes they are also called Kohonen maps or net-
works [35] according to the name of the Finnish professor who introduced them
in the 1980s. Teuvo Kohonen writes “The SOM is a new, effective software tool for
the visualization of high-dimensional data. It converts complex, nonlinear statistical re-
lationships between high-dimensional data items into simple geometric relationships on a
low-dimensional display. As it thereby compresses information while preserving the most
important topological and metric relationships of the primary data items on the display,
it may also be thought to produce some kind of abstractions.”

The visible part of a SOM is the map space, which is either a rectangular or hexag-
onal grid of nodes (neurons). Each node has an associated weight vector with the
same dimensionality of the input data and it represents node’s position in the
input space. After an initialization step, where weight vectors are initialized at
random, SOM algorithm picks an input vector and select the best matching unit
(BMU) that is the closest node to the input vector. Then, BMU and its neighbor-
hood is moved towards the input vector. The algorithm iterates until it meets a
stabilization criterion.

SOM are said to preserve the topological structure of the input data set which
simply means that if two input vectors are close together, then the neurons related
to those input vectors will also be close together. SOM can also act as classifier
for new data by looking for the node with the closest weight vector to the data
vector.

Finally, SOM can be considered as a nonlinear generalization of principal compo-
nent analysis (PCA).

2.2 Program Comprehension

Program comprehension (or program understanding) aims to recover high-level
information about a software system and it is an essential part of software evo-
lution and software maintenance disciplines. It is characterized by both the the-
ories about how programmers comprehend software as well as the tools that are
used to assist in comprehension tasks [75]. The earliest approaches to program
comprehension (PC) were based on two theories called: top-down and bottom-up.
Top-down theory explains PC as follows [9]: programmers when try to compre-
hend a program, make some hypothesis which can be confirmed by finding the
so-called beacons. Beacons are lines of code which serve as typical indicators of



18 Chapter 2. State of the Art

a particular structure or operation [80]. An example of a beacon, is a swap of
values, which is a beacon for a sort in an array, especially if it is embedded in
program loops. While rejected hypothesis are discarded, programmers retain the
confirmed one to build their program’s comprehension. The bottom-up theory is
based on chunking [40]. Chunks are pieces of code which are familiar to the pro-
grammer. They are associated to a meaning and a name. The programmer builds
his understanding of the program by assembling larger chunks through smaller
ones.

The underlying objective of those theories was to achieve a complete comprehen-
sion of programs but as they become larger and larger this is clearly an unfeasi-
ble target. Despite all the differences, there is one point shared among the vari-
ous theories: experienced programmers act very differently from novice ones; a
different view, based on how experienced programmers approach PC, was then
proposed. When given a task, experienced programmers focus on concepts and
how they are reflected in the source code [34]. They do not try to understand each
and every small detail of the program but they seek the minimum understanding
for the task at hand. Concepts play a key role in such context [65]. Requests to
change a program are formulated in terms of concepts, for example: “Add HTML
printing to the browser”. Hence, the main task is to find where and how the rel-
evant concepts are implemented in the code. Several definitions of concept have
been provided. One that can be directly applied to PC is: “Concepts are units of
human knowledge that can be processed by the human mind (short-term memory) in one
instance” [65].

The set of concepts related to a program is not fixed. We can have one set of
concepts during the specification phase. Others are added in the design and im-
plementation phases. New concepts may emerge during the maintenance when
unexpected usages of the system arise.

Concepts are a key element of human learning [61]. Learning is an active process
and humans extend their knowledge on the basis of some pre-existing knowl-
edge. We have assimilation when the new facts are incorporated without chang-
ing the pre-existing knowledge. Accommodation occurs when new facts are ac-
quired but they require a reorganization of the pre-existing knowledge. This the-
ory about learning has been directly applied to PC. Programming knowledge has
many aspects but in PC the most relevant one encompasses domain concepts and
their implementation in the code. PC’s objective is to bridge the gaps in that
knowledge [65].

Rajlich [64] represents a concept as a triple consisting of a name, intension and,
extension. The name is the label that identifies the concept, intension explains
the meaning of the concept and extension is a set of artifacts that realize the con-
cept. Concept location is then formalized as the function Location : intension 7→
extension.
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For programmers acquiring the knowledge of concepts is usually easier than lo-
cate them in the code. By using a word processor or reading the user manual,
a programmer can learn about copy-paste, print and other concepts of the do-
main but he/she knows nothing about their implementation. Concept location is
the process of finding the mapping between concepts and the fragments of code
implementing them.

Change requests are expressed in terms of domain’s concepts like:“The system
raises an exception when converting a file in PDF” then, to start fixing the issue,
a programmer needs first to locate the code where the concepts converting, file
and, PDF are located. This is how the change process actually starts. At this
point experienced programmers use their intuitions to find the code and if they
fail then they start looking for string correspondence of identifiers. If the search
succeeds then they start examining the surrounding code to decide whether this
is truly the location that implements the concept. Concept location, exemplified
before, is a common and frequent activity especially in software maintenance and
evolution.

Program comprehension is not an end goal, but rather a necessary step in achiev-
ing some other objective as we have already seen, such as fixing an error, reusing
code, or making changes to a program. In practice PC is employed in recovering
the following information of a software system:

• Structure (components and their interrelationships)

• Functionality (what operations are performed on what components)

• Dynamic behavior (how input is transformed to output)

• Rationale (how was the design process and what decisions have been taken)

• Construction, modules, documentation, and test suites

In many practical applications of PC we find the term feature which is related to
concepts. Features are associated with the behavior of a software system. They
represent the set of functionality. We would not say that bubble sort, though it
might belong to the set of domain’s concepts, is a specific feature of the system.
All features are concepts but not all concepts are features [46]. The notion of
feature is a very relevant one in this context and a widely adopted definition is:
“. . . a feature is a set of logically related functional requirements that provides a capability
to the user and enables the satisfaction of a business objective” [81].

Let us now give a closer look to the most common activities in PC: feature discovery
and feature location.
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Feature Discovery

Feature discovery (or extraction) 3 [2] is the task of identifying the key function-
ality that a program implements.

At present, feature discovery is mainly a manual process. There are three options
usually adopted by programmers [67]: (1) Read software documentation, such as
requirement documents, (2) read the source code and execute it, (3) communicate
directly with code’s authors.

Unfortunately, requirements are usually out-of-date or incomplete, communicat-
ing with the authors is often not realistic, because they can have left the company
or they are not even known. Therefore, programmers usually have to manually
read the source code and interact with the program.

Manual feature discovery process can be time consuming. That is why several
automatic approaches have been proposed. In order to automatically find the
main characteristics of a software system, several software resources are used,
such as documentation, bug reports, requirements documents, and source code
(some examples in Sec. 2.3).

Feature Location

Software maintenance and evolution involves adding new features to programs,
improving existing functionalities, and removing bugs. Identifying an initial lo-
cation in the source code that corresponds to a specific feature is called feature
location. It is one of the most frequent activity undertaken in software main-
tenance. Programmers use feature location to find where in the code the first
change to complete a task needs to be done. Then, impact analysis will guide
the process in order to cover the full extent of the change [16]; starting from the
source code found with feature location, the process will proceed by finding all
the code affected by the change.

Similarly to what happens in the context of feature discovery, also in feature lo-
cation, most of the time programmers have to run a manual search in the code
repository.

3. Here, and in the rest of the chapter, we refer to the program comprehension domain’s sense
of feature in software engineering that should not be confused with its meaning seen previously
in the context of machine learning.
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2.3 Program Comprehension via ML

This sections presents an organized review of the main works at the crossroad
between machine learning and program comprehension.

Since several years, software repository mining is considered mainstream in fea-
ture extraction. However, we can distinguish between software-repository min-
ing approaches dealing with software documentation only and, those dealing
with source code only.

Mining Software Documentation

Dumitru et al. [18] uses text-mining techniques and flat clustering to extract fea-
ture descriptors from user requirements kept in software repositories. By combin-
ing association-rules mining and k-Nearest-Neighbour, the proposed approach
makes recommendations on other feature descriptors to strengthen an initial pro-
file. More recently, McBurney et al. [48] presented four automatic generators of
list of features for software projects, which select English sentences that summa-
rize features from the project documentation.

Mining Source Code

Linstead et al. [41] propose dedicated probabilistic models based on code analy-
sis using Latent Dirichlet Allocation (LDA) to discover features under the form of
so-called topics (main functions in code). McMillan et al. [50] present a source-
code recommendation system for software reuse. Based on a feature model (a
notion used in product-line engineering and software variability modeling), the
proposed system tries to match the description with relevant features in order
to recommend the reuse of existing source code from open-source repositories.
Abebe et al. [2] propose to use natural language parsing to automatically extract
an ontology from source code. Starting from a lightweight ontology (a.k.a, concept
map), the authors develop a more formal ontology based on axioms. Using nat-
ural language dependencies in sentences which are constructed from identifier
names, the method allows for the identification of concepts and relations among
the sentences. Grant et al. [25] address the problem of determining the num-
ber of latent concepts (features) in a software system with an empirical method.
By constructing clusterings with different topics for a large number of software-
systems, the method uses a pair of measures based on source code locality and
similarity between topics to assess how well the topic structure identifies related
source code units.
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Kuhn et al. [37] use clustering and latent semantic indexing (LSI) to assess the
similarity between source artifacts and to create clusters according to their simi-
larity. The most relevant terms extracted from LSI analysis are reused for labeling
the clusters.

Zhao et al. [85] exploit a sequential combination of information retrieval (IR)
technologies to reveal the basic connections between features and elements of
the source code and then to refine afterwards these connections through the call
graph of the program.

Finally, Moreno et al. in [54] automatically extracts concepts from Java source
code under the form of stereotypes which are low-level patterns about the design
intent of a source code artefact. Moreno [53] proposes to generate summaries in
natural language of complex code artifacts (i.e., classes and change sets).

Related to the domain of source code driven program comprehension are the
works about reversing software product lines (SPLs) 4. SPLs are modeled through
feature models (FM) which are basically a AND-OR graph with some constraints.
A feature model represents the combinations of the common base and features
leading to the creation of allowed variants of the software system. Damasevicius
et al. [14] define an approach for the automated derivation of feature models from
existing software artifacts (components, libraries, etc.). Their approach accepts as
input as set of Java classes and extracts a basic FM. Instead of considering just
one project Al-Msie’deen et al. [4] propose an approach for the identification of
feature implementations from a collection of software product variants based on
formal concept analysis.

Conclusion

We presented in this chapter the state of the art of the disciplines touched in this
thesis, namely: machine learning, program comprehension and the combination
of the two. There are several challenging aspects in both supervised learning
(curse of dimensionality, overfitting, legal issues, etc.) and unsupervised learning
(evaluating performance when no labeled data are available, creation of unfore-
seen, even undesirable categories of data which are hard to interpret, etc.). But,
despite all these difficulties, machine learning algorithms, when appropriately
applied, proved to be capable of solving hard problems that would be impossible
to face with traditional computing approaches.

Program comprehension defines the theories and practices lying behind the ac-

4. SPLs encompass modeling, techniques and tools that, starting from a common and stable
base of characteristics, can create different versions of a software system called software product
variants.
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tivities of retrieving high-level information about a software-system. The chapter
presented some basic notions in PC like beacons, concepts, feature extraction, fea-
ture location and how experienced programmer deal with this challenging task.
This elements will be used further on in the thesis.

Finally, Sec.2.3 presented the current state of the art about the intersection of PC
and ML. This has been clearly a source of inspiration at the beginning of this the-
sis’ work. The main relevant approaches have been divided into two categories
according to the data they mine: documentation based approaches and source
code based approaches.





III

Background

This chapter presents the background behind the basic elements upon which
FEAT is built. The material will be presented starting from hierarchical cluster-
ing in general and then focusing on software clustering. The rest of the chapter
will introduce the notion of call graph and discuss some machine learning ap-
proaches used in FEAT to cluster functions under both a semantic and structural
perspective.

3.1 Clustering

Organizing data into sensible grouping is one of the most fundamental modes
of understanding and learning [32]. For example, classifying organisms into tax-
onomies has been a common scientific scheme to analyze: animals, peoples, dis-
eases, etc. Cluster analysis, or clustering, groups a set of elements such that those
in the same group (cluster) are more similar in some sense to each other than to
those in other groups. Cluster analysis has a long history in a wide variety of sci-
entific fields. The first references to one of the most popular algorithm, K-means,
come from the fifties. Successively, in 1967, James MacQueen [43] laid the ground
for the current version of the algorithm.

Clustering offers a viable approach to run exploratory analysis to find structure
in data especially when dealing with huge amount of data. Nowadays growth
in data production requires advances in methodology to automatically under-
stand, process and, summarize data. According to the latest published study
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(April 2014) from International Data Corporation (IDC) 1 on the size of the digital
universe, in 2013 4.4 ZB (ZB is zettabytes and 1ZB = 1021bytes) of digital data
have been produced; this means that the number of bits in the digital universe
is almost as the number of stars in the physical universe. The digital universe is
clearly huge and it is growing exponentially: they estimated a growth factor of
ten leading to a size of the data of 44 ZB in 2020.

When clustering is applied to software artifacts (i.e., source code elements, bi-
nary code, requirements,. . . ), it is called software clustering and it aims at learning
regularities or meaningful properties of a software system. Over the last decade,
a considerable amount of work has been carried out to solve various software-
related problems with clustering including: information retrieval [73, 47], software
evolution and maintenance [36], reflexion analysis [55, 12] and feature extraction [48].

Clustering can be mainly divided into two broad categories of algorithms: flat
and hierarchical clustering.

Flat Clustering Algorithms. In these algorithms, each cluster is represented by a
single center point. By updating iteratively the center of each cluster, these al-
gorithms can reach a convergence state. The absence of a structure, showing the
relationship among clusters, makes this approach flat. K-means is the most im-
portant flat clustering algorithm. There are some assumptions behind K-means
involving the shape of the data: the ideal cluster is a sphere (or a hyper-sphere in
dimensions higher than 3) and clusters do not overlap (more details in Sec. 2.1.2).

Hierarchical Clustering Algorithms. Hierarchical clustering establishes a hierarchy
among clusters which can be created either with top-down or bottom-up algo-
rithms. Top-down clustering requires a criterion to split clusters. It proceeds by
splitting clusters recursively until individual data points are reached. Bottom-
up algorithms, also called Hierarchical Agglomerative Clustering (HAC), start by
considering each data point as a singleton cluster and then incrementally merge
pairs of clusters until either the process is stopped or all clusters are merged into
a single final cluster (see Fig. 3.1) [44].

HAC builds iteratively a tree-like structure by adopting a bottom-up approach to
assemble the clusters. HAC results can be visualized through a diagram called
dendrogram. Fig.3.1 shows a dendrogram representing the clustering of a data set
of 5 elements (from a to e). From the 5 initial singleton-clusters to the final root-
cluster, which includes all points, HAC proceeds by merging points and clusters
according to a distance measure.

As shown on the dendrogram of Fig.3.1, without any stopping criterion, HAC
ends up with a single cluster. Defining how to merge clusters and an appropriate
stopping criterion, so that a meaningful partition can be selected, are challenging

1. Source www.idc.com/

www.idc.com/
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Figure 3.1 – Dendrogram showing the merging steps of HAC. The height of the branches
is proportional to the distance of the two merged elements. In the example the first merge
involves c and d because they are the closest data points.

aspects of HAC (Sec.4.6 and Sec.4.7 will explain how we handled these problems
in FEAT). A key notion in HAC is the distance between single data points and
clusters. Let’s provide some formal elements about distances. A function d over
two vectors a and b is called a distance if and only if it satisfies the following
properties:

1. (symmetry) d(a,b) = d(b, a)

2. (positive definiteness) d(a,b) ≥ 0, d(a,b) = 0⇔ a = b

3. (triangular inequality) ∀c, d(a,b) ≤ d(a, c) + d(c,b)

In cases where the third property (triangular inequality) needs to be relaxed, the
function d(a,b) is a dissimilarity [56].

3.1.1 Commonly Applied Distances to HAC

Before the actual clustering phase can take place the notion of distance between
data points needs to be defined. Several distances can be applied in the context
of clustering and choosing the right one is a key step in applying hierarchical
clustering since they can strongly affect clustering’s outcome. When working in
a vector space a commonly adopted way to measure distances is a Minkowski
distance, which is a family of metrics defined as:

Lp(a,b) =
(

n∑
i=1
|ai − bi|p

)1/p

; ∀p ≥ 1, p ∈ Z+

where Z+ is the set of positive integers. The Manhattan and Euclidean distances
are special cases of the Minkowski distance when correspondingly p = 1 and
p = 2. These distances suite very well to contexts where clusters should contain
data points on the basis of their geometric proximity.



28 Chapter 3. Background

Cosine similarity, which gives the angle between two vectors, is widely used in
text retrieval to match vector queries to the dataset. The smaller the angle (θ) be-
tween a query vector and a document vector, the closer a query is to a document.
The normalized cosine similarity is defined as follows:

d(a,b) = cos(θ) = a · b
‖a‖‖b‖

Cosine similarity can be transformed into a distance called angular distance (See
Eq. 4.3). One can apply angular distance in vector spaces when more than in the
magnitude he/she is interested in the direction of vectors (Sec.4.3 provides some
insights about the choice between angular distance and Euclidean distance when
dealing with natural text documents).

When the objective of clustering is creating groups of samples showing a simi-
lar behavior (that is if the greater values of one sample mainly correspond with
the greater values of the other sample, and the same holds for the lesser values)
then correlation-based distances can be applied. Pearson distance is based on the
coefficient of the same name:

ρa,b = cov(a,b)
σaσb

where cov is the covariance and σ is the standard deviation. Since from the ab-
sence of correlation to the total positive correlation the coefficient ranges between
[−1, 1], Pearson’s distance is defined as d(a,b) = 1− ρa,b. Closely related to Pear-
son’s distance there is the distance based on Spearman’s correlation coefficient.
Spearman correlation is also seen as the Pearson correlation of the ranked sample
values. The ranking is the relative position label of a sample’s value like: 1st, 2nd,
etc. Since the Spearman’s coefficient is calculated over rankings, it may allow the
computation of distances of variables whose values are described by qualitative
data.

3.1.2 How Merging Criteria Affect the Behavior of HAC

In HAC, the creation of clusters proceeds bottom-up treating every data point as
a cluster (singleton) and then progressively merging pairs of clusters until all of
them have been merged into a single cluster. This can involve not only two data
points but also a data point and a cluster or two clusters. Without any loss of
generality, let’s now consider only the case of a distance over two clusters. In
order to deal with this extended concept of distance that can involve two sets
of data points, several criteria have been developed. Some of them just select a
pair of data points, one for every cluster, and then the distance computed over
those two points is considered to be representative of the distance between the
two clusters.
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Single-link and complete-link are the most widely known notions of cluster distance
based on single data points. In single-link clustering, the distance between two
clusters is the distance of their most similar members. It’s a local merging criterion:
we pay attention just to the area where the two clusters come closest to each
other. Other, more distant parts of the cluster and the clusters’ overall structure
are not taken into account. In complete-link clustering the distance of two clusters
is the distance of their most dissimilar members. This is equivalent to choosing the
cluster pair whose merge has the smallest diameter. This criterion is not local: the
entire structure of the clustering can influence merge decisions. This results in a
preference for compact clusters with small diameters over long, straggly clusters,
but also causes sensitivity to outliers. A single data point far from the center can
increase the diameters of candidate merge clusters dramatically and completely
change the final clustering.

Single-link and complete-link clustering reduce the assessment of cluster quality
to a single distance between a pair of data points. But a measurement based
on one pair cannot fully reflect the distribution of data points in a cluster. The
obvious solution to this problem is to involve all data points in assessing clusters’
similarity.

Centroid clustering [76] is an approach which considers the centroid (center of
mass) of each cluster and computes the distance between clusters by considering
the distance between their centroids. Hence, centroids offer an adequate repre-
sentation for a set of points. The centroid of a set of points, denoted by µ, lies
at the average position of all points. In an n-dimensions space, the centroid of
C = {~v1, . . . , ~vk}, where each vector ~vi has coordinates (xi1 , xi2 , . . . , xin), can be

computed using the formula: µ(C) = 1
k

(
k∑
i=1

xi1 , . . . ,
k∑
i=1

xin

)
. It is worth noticing

that the centroid of a cluster is neither necessarily an element of the cluster nor an
element of the data set. The concept of medoid [19] has thus been proposed when
a central point must come from the data set. Note that in some cases, there may
be more than one medoid.

3.1.3 Software Clustering

Software clustering methodologies create group of entities, such as classes, func-
tions, etc. of a software system in order to ease the process of understanding the
high-level structure of a large and complex software system [73]. The basis for
any cluster analysis to group entities is their set of attributes.

The application of clustering to a software system requires the identification of
the entities which are the object of the grouping. Several artifacts can be chosen
but the most popular one is source code [51]. The selection of entities is affected
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by the objective of the method. For program restructuring at a fine-grained level,
function call statements are chosen as entities [84] while for design recovery prob-
lems [6] entities are often software modules but also classes or routines.

Extracting facts from source code can be done following two different conceptual
approaches: structural and semantic. Structure-based, approaches rely on static re-
lationships among entities: variable references, procedure calls, inheritance etc.
Semantic approaches take into account the domain knowledge information con-
tained in source code conveyed from comments and identifier names [36]. The
software clustering community widely adopts structure-based approaches but it
has to be noted that the output produced by semantic approaches tends to be
more meaningful. That is why some try to combine the strengths of both meth-
ods like Tzerpos et al. [78].

The actual cluster creation is accomplished through a clustering algorithm and
the key input to a clustering algorithm is the distance measure. Different distance
measures give rise to different clusterings.

We have already seen that there are two categories of hierarchical algorithms:
agglomerative (bottom-up) and divisive (top-down). In software clustering, ac-
cording to Kaufman et al. [33], divisive algorithms offer an advantage over ag-
glomerative ones because users are mostly interested in the structure revealed
by the large clusters created during the early stages of the process. On the other
hand, the way agglomerative clustering proceeds towards large clusters may be
affected by unfortunate decisions made in the first steps. Agglomerative hier-
archical clustering are most widely used however; it is infeasible to consider all
possible divisions of the first large clusters [82].

3.2 Principal Component Analysis

Principal Component Analysis (PCA) is a powerful technique from data analy-
sis world, and it has a very convenient capability for our own purposes: it can
highlight the most relevant dimensions in a given space. The notion of relevance
here relates to revealing dimensions where most of the variations (more precisely
variance) occur.

These dimensions (principal components) are not the original ones any more
but a linear combination (rotation and scaling) of them. This new space, usu-
ally called feature 2 space, has the ability of highlighting the differences among
the original data set in the best possible way by maximizing the variance along
any axis. As a result of the transformation, the first principal component has the

2. Not to be confused with the features previously mentioned in the context of program un-
derstanding.
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largest possible variance; each succeeding component has the highest possible
variance under the constraint that it is orthogonal to (i.e., uncorrelated with) the
preceding components.

The application of PCA requires a transformation of the input matrix trough the
Singular Value Decomposition (SVD). SVD is a linear algebra method for the fac-
torization of real (and complex) matrices. If we have a m × n matrix Xm×n, SVD
factorizes it into the product of three matrices X = UΣVT , where Um×m and
Vn×n are in column orthonormal form 3 and Σm×n is a diagonal matrix of singu-
lar values [24]. If X is of rank r, then Σ is also of rank r. An interesting application
of SVD, called low-rank approximation, consists in keeping only the first k < r com-
ponents of X. Truncated SVD is a key element of PCA. Let Σk, where k < r, be
the diagonal matrix formed from the top k singular values, and let Uk and Vk

be the matrices obtained by selecting the corresponding columns from U and V,
then the matrix Xk = UkΣkVT

k is the matrix of rank k that best approximates the
rank r original matrix X.

Keeping only the first k < r components of the SVD factors presents several
advantages: latent meaning discovery, noise reduction, sparsity reduction [77],
faster computation, ability of making data lying in high dimensional space dis-
playable in 2-D or 3-D, etc. In FEAT, PCA is a key ingredient for entry-point
selection (see Sec. 4.8).

3.3 Vector Space Model

Vector Space Model (VSM) represents natural language documents in a way that
can be understood by computers, it is part of a broad range of semantic technolo-
gies including Latent Semantic Analysis (LSA). The idea of VSM is to represent
each document in a corpus as a point in a space. Points that are close together in
this space are semantically similar and points that are far apart are semantically
distant.

There are several vector-based representations but we focus here on the term-
document matrix. In a term-document matrix rows correspond to terms and columns
correspond to documents.

VSM represents textual documents as bag of words. The term bag (also multiset)
comes from mathematics and identifies sets where multiple occurrences of ele-
ments are allowed. For example, {a, a, b, c, c, c} is a bag containing a, b, and c.
Order is not relevant in bags; the bags {a, a, b, c, c, c} and {c, a, c, b, a, c} are equiv-
alent. We can represent bags with vectors, by conventionally define that the first

3. In orthornormal form columns are orthogonal and have unit length i.e. UTU = VTV = I.
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element of the vector is the frequency of a in the bag, the second element is the
frequency of b in the bag, and the third element is the frequency of c in the bag.
Like in this example where the bag {a, a, b, c, c, c} becomes x = [2, 1, 3].

A set of bags can be represented as a matrix X where columns are vectors repre-
senting bags and rows are terms (words’ frequencies) so each element xij is the
frequency of the i-th term in the j-th bag.

The basis for applying VSM to information retrieval is the bag of word hypothesis
[69]. The belief expressed by the hypothesis is that a column vector in a term-
document matrix captures (to some extent) the meaning underlying the docu-
ment; what the document is about [77].

Vectors in a term-document matrix are obviously an over simplified representa-
tion of the original documents; they just tell us about the frequency of words
while their original order is lost. Sentences, paragraphs, chapters, the whole
structure of the document is lost as well. Nevertheless, there are countless ap-
plications of VSM that work surprisingly well. Despite their crudeness, vectors
seem to capture a relevant aspect of semantics.

Salton et al [69] provide an intuitive justification for the meaning of the term-
document matrix; the topic of a document will influence the author and it will be
reflected by his choice of words when writing the document. Put simply, when
two column vectors show similar patterns of numbers then the two documents
have similar topics.

3.4 Latent Semantic Analysis

In 1998 Dumais et al. published a paper [22] where they proposed latent seman-
tic analysis (LSA) as a new approach for dealing with the vocabulary problem in
human-computer interaction. The main objective of LSA is to address the limita-
tion of VSM-based approaches where the retrieval of textual documents depends
on a lexical match between words in users’ requests and the documents them-
selves. Synonymy and polysemy 4, which are classical problems arising when
dealing with natural language, cannot be handled through the vector space rep-
resentation because it assigns a separate dimension to each term (that is terms are
considered unrelated).

LSA overcomes these limitations by applying J.R. Firth’s notion about the mean-
ing of words [20] exemplified by his renowned sentence: “You shall know a word
by the company it keeps” or, in other words, a word’s meaning is given by the

4. Synonymy occurs when different words refer to the same meaning, polysemy when a word
can have multiple meanings.
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words that frequently appear close-by. Let us see how LSA implements this con-
cept about the meaning and similarity of words. LSA’s input is a term-document
matrix and, similarly to PCA, LSA employs truncated SVD to create a reduced
space approximating the term to document association data: X ≈ Xk = UkΣkVT

k .
Since the number of dimensions in the reduced model (k) is much smaller than
the number of unique words, minor differences in terminology are ignored. In
this reduced space, the closeness of documents is determined by the overall pat-
tern of term usage, so documents can be classified together regardless of the pre-
cise words that are used to describe them, and their description depends on a
kind of consensus of their term meanings. As a result, terms that did not actually
appear in a document may still end up close to it, if that is consistent with the major pat-
terns of association in the data [22]. Landauer et al. [38] describe truncated SVD as a
method for discovering high-order co-occurrence. Direct co-occurrence (first-order
co-occurrence) is when two words appear in identical contexts; they are typically
nearby each other. Indirect co-occurrence (high-order co-occurrence) is when two
words appear in similar contexts; they have similar neighbors. Similarity of con-
texts may be defined recursively in terms of lower-order co-occurrence. Lemaire
et al. [39] demonstrate that truncated SVD can discover high-order co-occurence.

After our introduction to PCA and LSA one might wonder whether PCA and
LSA are just the same thing. It is true that they share the same factorization tech-
nique and low-ranking step but the input data is different; in PCA we apply
SVD to either a covariance or a correlation matrix (in the next chapter we will
see more details about this through examples), while in LSA we apply SVD to a
term-document matrix. So, since the input matrix is different then PCA and LSA
compute different things.

3.5 Call Graph

A Call Graph (CG) is a convenient way of representing the function/method caller-
callee relation in a software program. Given a program Prg composed of a col-
lection of units of code 5 {ui}i∈1...n, the CG of Prg is a graph where each node is
associated with a unit ui. There can be an arc going from ui to uj if and only if
uj is called by ui at some location of the source code. If there is a loop then this
cycle represents a recursive call. CGs are in the general case multigraphs because
in addition to recursive calls they model also multiple calls. In this case we have
multiple arcs between ui and uj .

Call graphs can be created either dynamically or statically. A dynamic call graph
is created by tracing the execution of a program usually requiring some code
instrumentation. Dynamic CGs are exact but they describe only one run of exe-

5. Either function or methods.
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cution while static ones are an over-approximation of the real CG because they
can represent calls in the graph that might never occur during the execution of
the program.

A static call graph requires the analysis of source code. In languages like Java
or C++ the identification of the caller-callee relation can be difficult because of
polymorphism. Also in C programs the usage of function pointers makes the
creation of CG challenging. In such contexts, if a higher accuracy is required, one
can employ alias analysis 6 results.

Conclusion

This chapter provides a detailed introduction to the main basic elements of FEAT.
Hierarchical clustering algorithms’ outcome is strongly affected by both the dis-
tance metric and merging criterion driving the creation of clusters; this implies
that their choice should be determined by some domain knowledge of the prob-
lem at hand.

When clustering is applied to software systems is called software clustering. Soft-
ware clustering creates group of entities like: classes, modules, functions, etc.
Approaches to software clustering are mainly divided into two groups: semantic
and structural according to the kind of information they target to. FEAT uses
both approaches based correspondingly on natural text contained in source code
and the structure modeled through the call graph (Chap.4 will present this in
great details).

Measuring the semantic proximity of natural language texts in an automated way
can be achieved through the vector space model. One serious limitation of the
VSM-based approaches is related to the lexical match expected among words in
documents to evaluate them as similar. Latent semantic analysis can overcome
this limitation by the so-called high-order co-occurrence where dimensions are
not represented by single words anymore but by contexts of usage of words.

Call Graphs are graphs representing the caller-callee relationship in programs
and they can appropriately be used to represent the structure of a software sys-
tem. Several properties of functions can be obtained through the analysis of call
graphs but if one needs to retain just the most relevant ones in a given context
then principal component analysis can be helpful. PCA is a dimensionality re-
duction technique but at the same time can highlight the most relevant dimen-
sions in a multi-dimensional space and in the rest of the thesis (Chap.4) will be
showed its usage in FEAT.

6. Alias analysis helps to detect whether a given memory location can be accessed in more
than one way.
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FEAT Approach

In this chapter we provide a detailed explanation of our approach, FEAT, starting
from its origins then presenting a general overview and detailing each one of its
components.

4.1 Genesis of FEAT

At the very beginning of this thesis’ work we went through many papers ad-
dressing various challenges in the area of program comprehension and it can be
helpful to go through the main differences between FEAT and those approaches
(see Sec. 2.3) because it explains why we made certain decisions.

Instead of using either source code or source documentation, FEAT combines
them in a single perspective through a novel distance metric merging semantics
and structural elements contained in source code. Many approaches use just one
of them, entailing that some key information will be lost. In Chap. 6 we will see
through experiments on real projects what are the advantages of considering both
elements at the same time.

Some methods require human assistance under several respects. Just to mention
a couple of examples: LDA based methods require the input of statistical parame-
ters which are hard to define beforehand, end users have to select one partition of
clusters among many others in hierarchical clustering based methods, supervised
learning approaches require the labeling of training examples which is time de-
manding and prone to subjectivity issues. Differently to these approaches FEAT
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is fully automated, it applies criteria which are formally defined, and its output
can be directly used for discovering and locating features, tracing source code
back towards other artifacts like requirements, test cases, etc. FEAT makes use
of hierarchical clustering as well, but it solves the problem of selecting a partition
exploiting its hybrid perspective on source code.

To sum up the characteristic traits of FEAT:

• Program topoi are concrete structures, supported by a formal definition,
useful to address the challenges of automated program comprehension.

• Whereas in program understanding there is a distinction between approaches
either for feature discovery or feature location, FEAT removes this distinc-
tion offering one single approach for both tasks.

• It is based on a model of software systems that does not require a specific
programming language in order to be applied.

• It requires no additional input other than source code.

• It is fully automated.

let us now give a closer look to FEAT.

4.2 A General Overview of FEAT

Understanding a software system through its source code can be pursued fol-
lowing two conceptual approaches: structural and semantic. Structure-based
approaches focus on the static relationships among entities while semantic ones
include all aspects of a system’s domain knowledge that can be obtained from
comments and identifier names [73]. Discovering the main capabilities of a soft-
ware system can benefit from structural information that can be used to identify
a capability as a set of structurally close code units 1 contributing to its imple-
mentation. On the other hand, under the semantic view, those parts of a system
showing commonalities in terms of natural language words can be considered
part of a system’s capability as well.

In other words, structural and semantic approaches convey two different, both
valuable, perspectives of a system and FEAT combines them in order to achieve
a more accurate picture. FEAT, whose main elements are depicted in Fig.4.1,
is based on a three steps process: preprocessing (box noted 2), clustering (3, 4)

1. In the whole thesis we refer to both functions (in procedural languages) and methods (in
object oriented languages) with the generic term code unit.
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and, entry-point selection (5). The input to FEAT is a software system (noted Sw)
considered as its source code and comments (1). In the preprocessing step (2),
FEAT parses source code and comments creating a representation of the system
which supports the twofold assumption lying behind the approach. Hence, if
Sw is a software system counting n code units its representation can be defined
through the call graph of Sw and the set of unit-documents D as follows:

Definition 4.1. (FEAT model) Sw , 〈CG,D〉

The first element (structural) of the pair is the call graph CG = (U , E) where
U = {u1, u2, · · · , un} is the set of units and E the set of edges representing the
caller-callee relationship. The second one (semantic) is the set of unit-documents:
D = {d1,d2, · · · ,dn}.

4.3 Semantic Perspective over Code Units

The creation of the semantic part of FEAT requires that, for every unit, we extract
the following elements:

• Referenced code unit names.

• Variable names.

• String literals 2.

• Comments; both those immediately preceding and within the body of a
unit.

All these elements contribute to the creation of a set of textual documents; one for
each unit. This preliminary text, where the original words’ order is ignored (bag
of words), undergoes several transformations (tokenization, stop words removal,
stemming, weighting) producing a unit-document noted as du = [w1, w2, · · · , wm] ∈
IRm where wi is a real number representing the weight associated to the ith-word.

All words selected by scanning source code are used to create an alphabetically
sorted index V , which is the set of words of the analyzed system. So, given an
index V of size m, du ∈ IRm denotes the vector representing a unit-document u.
The process going from source code to unit-documents is detailed as follows:

1. Parsing. For every unit, FEAT parses the source code extracting comments

2. Literals are quoted sequences of characters representing string values i.e. x="foo".
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Figure 4.1 – FEAT process’s overview

preceding the unit (conventionally these remarks contains sentences about
the following unit’s purpose), comments within the unit, literals, variable
names and names of referenced (called) units.

2. Tokenization. Tokenization is the process of breaking up a given text into
units called tokens. Tokens may be words, numbers or punctuation marks.
Identifiers in source code usually follow some kind of convention (that is
camel case 3 and C-style), to deal with these compound symbols we added a
further step to the standard tokenization any time we reveal the occurrence
of these widespread conventions (e.g., MACOS_print is decomposed into

3. Camel case is a code writing convention where compound words are written capitalizing
each initial word in the middle of the sentence like in printFile, openHtmlDocument, etc.
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macos and print, saveFile into save and file). To avoid duplications
all words in the dictionary are in lowercase.

3. Stemming. Inflected words are brought back to their root (e.g., “cars”, “car’s”,
“cars”⇒ “car” or “fishing”, “fished”, and “fisher” to the root word “fish”).

4. Stop word removal. Useless tokens and language-specific keywords are re-
moved (e.g., “and”, “if”, “else”, “while”, etc) as they do not bring any value
in terms of units’ semantics.

5. Weighting. Basically a weighting scheme translates words into numbers.
The simplest scheme is counting the occurrences of a word in a document
(term frequency) but the drawback of such a simple approach is that highly
common, unspecific words will affect the ranking of a document. To coun-
teract this issue a composite weighting scheme is used, namely Term Fre-
quency Inverse / Document Frequency (tf-idf)[44]; the idf part of the scheme
diminishes the weight of terms that occur very frequently in the document
set and increases the weight of terms that occur rarely. For each extracted
word t into a given unit u, tf(t, u) counts the number of occurrences of t in
u, while idf(t,U) = log |U|

|{u∈U|t∈u}| is the logarithm of the inverse fraction of
the number of units in which the word t occurs. Then, using tf-idf(t, u,U) =
tf(t, u)idf(t,U), the vector for a unit-document is defined as follows:

du = [tf-idf(t1, u,U), . . . , tf-idf(tm, u,U)] (4.1)

Computing the Semantic Distance

The semantic distance between units is computed by means of LSA (see Sec. 3.4).
In order to apply LSA, we need to create the term-document matrix:

Cm,n =


d1,1 d1,2 · · · d1,n
d2,1 d2,2 · · · d2,n

...
... . . . ...

dm,1 dm,2 · · · dm,n


where each (i, j) element describes the occurrence (weighted according the afore-
mentioned process) of word i in unit-document j. Hence, every column of C is
a vector dj corresponding to the unit-document of the unit uj (see Eq.4.1) and
every row is a vector representing the relation of a term ti to each unit-document:
tTi = [di,1, . . . , di,n].

Through the application of SVD we obtain the following factorization: C = UΣVT .
Without going into deep mathematical details, we can say that U describes the
relationship between words (rows) and concepts (columns). Σ is a diagonal ma-
trix whose elements (σ1, σ2, · · · , σn) are sorted in decreasing order of values and
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they represent the relative strength of every concept with respect to the overall
space.

Σ =


σ1 0 · · · 0
0 σ2 · · · 0
...

... . . . ...
0 0 · · · σn


Finally, we have VT describing the relationship between concepts (rows) and
unit-documents (columns).

The last step is low-rank approximation. Let us assume that the rank of C is r
then shrinking it to a number of dimensions k < r will accomplish the step. The
choice of a value for k is key and it is done as follows. σ1 ≥ σ2 ≥ · · · ≥ σn
represents the relative relevance among concepts and we define the cumulative
concepts relevance (ccr) of the first k concepts as:

ccr(k) =
∑k
i=1 σi

tr(Σ)

K ∈ (0, 1) is the desired cumulative concepts relevance. Hence, we can now
compute k by fixing K and solving the constraint

minimize
k

ccr(k)

s.t. ccr(k) ≥ K,

k < r.

(4.2)

The solution of the constraint requires linear time on k. Hence the low rank ap-
proximation to C is: Ck = UkΣkVT

k .

The element of the truncated SVD factorization used for the computation of the
distance is:

VT
k =


d1,1 d1,2 · · · d1,n
d2,1 d2,2 · · · d2,n

...
... . . . ...

dk,1 dk,2 · · · dk,n


VT
k contains the unit-documents’ projections into the concept space. The se-

mantic distance between two code units can now be computed with the angular
distance[15]:

dD(ua, ub) = arccos(simc(ua, ub))
π

(4.3)

where simc(ua, ub) is the cosine similarity:

simc(ua, ub) = dua · dub

‖dua‖‖dub
‖
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and dua , dub
are column vectors of VT

k . Angular distance is a proper distance
metric bounded between 0 and 1 inclusive.

Many texts about information retrieval propose the Euclidean distance as a viable
metric for assessing documents’ similarity. The problem with Euclidean distance,
when working with documents having uneven lengths, is that it is affected by the
number of occurrences of words; documents sharing many words but differing
in terms of their occurrences would be classified as not similar by the Euclidean
distance. Cosine similarity overcomes this problem because it is not sensitive to
the magnitude of vectors since it depends only on the angle between them. A
simple working example will make the whole process more clear.

Example

Let us consider that we have extracted the following text from five units con-
tained in the source code of a software system.

1. u1: Open file through a modal window

2. u2: Print text file or save it as PDF

3. u3: Copy selected text into the clipboard

4. u4: Paste text into the editor

5. u5: Cut selected text and put it into the clipboard

The documents undergo the process described earlier (for the sake of simplicity
we run just stop word removal) producing the following dictionary:
V = {clipboard, copy, cut, editor,file,modal, open,paste,pdf,print,put, save, selected,
text,window} (|V| = 15).
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The term-document matrix is then:

C =

~u1 ~u2 ~u3 ~u4 ~u5



0 0 1 0 1 clipboard
0 0 1 0 0 copy
0 0 0 0 1 cut
0 0 0 1 0 editor
1 1 0 0 0 file
1 0 0 0 0 modal
1 0 0 0 0 open
0 0 0 1 0 paste
0 1 0 0 0 pdf
0 1 0 0 0 print
0 0 0 0 1 put
0 1 0 0 0 save
0 0 1 0 1 selected
0 1 1 1 1 text
1 0 0 0 0 window

we computed only term frequencies; again to keep the example more readable.
The next steps are: computing SVD factorization and low-rank approximation.
C has rank 5, let us directly fix k = 2 and compute the low-rank approximation
C ≈ C2 = U2Σ2VT

2 . Recall that VT represents the set of coordinates of unit-
documents in the concept space, which after the shrinking to two dimensions, has
now become:

VT
2 =

(
0.09 0.42 0.56 0.28 0.64
−0.61 −0.67 0.25 −0.04 0.33

)

Documents are now expressed as column vectors in VT
2 and they can also be

shown on a diagram as in Fig. 4.2. We can query the concept space with expres-
sions like “clipboard”. To accomplish this we first create a query document

q = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

and then we map it into the LSA space by the transformation [44]:

qk = Σ−1
k UT

k q

so that we can apply Eq.4.3.

Fig. 4.2 shows both unit-documents’ vectors (d1, . . . ,d5) and query’s one (q). One
can easily notice that vectors d3 and d5 are the closest ones to the query and,
indeed, their unit-documents contain a direct reference to “clipboard” but d4,
whose unit-document does not contain it, is quite close to the query as well. This
is the indirect co-occurrence capability of LSA; u3, u4 and, u5 have similar neigh-
borhood which is the word “text”. u2 contains the word “text” as well but its
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Figure 4.2 – Geometric representation of unit-documents’ vectors d1, . . . ,d5 and query
vector qk of the example in Sec.4.3

neighbors make it less similar to the query. This is something that a human user
would expect; u3, u4 and, u5 deal with clipboard management having, as it is
shown in Tab. 4.1, a lower distance with the query respect to u2 which imple-
ments file printing.

Document dD(qk, ·)
d5 0.068
d3 0.086
d4 0.268
d2 0.540
d1 0.673

Table 4.1 – Distances between unit-documents’ vectors d1, . . . ,d5 and query vector qk

The concept of similarity is not limited to documents. The words in the concept
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space are represented by the row vectors of Uk.

U2 =



0.41 0.26
0.19 0.11
0.22 0.15
0.10 −0.02
0.18 −0.57
0.03 −0.27
0.03 −0.27
0.10 −0.02
0.14 −0.30
0.14 −0.30
0.22 0.15
0.14 −0.30
0.41 0.26
0.65 −0.06
0.03 −0.27


LSA allows us to assess how close, in terms of meaning in a given context, words
are. We plotted the words in the concept space of our example in Fig. 4.3 and
it is interesting to notice how words like: “copy”, “cut”, “paste”, “clipboard”,
etc. even without providing any prior domain knowledge, but just on the ba-
sis of high-order co-occurrences are considered similar (recall that our notion of
distance is based on angles’ cosine not on Euclidean distance.).

4.4 Structural Perspective over Code Units

The semantic distance between unit-documents given in equation (4.3) can be
complemented by the addition of structural information available in the call graph
of a software system under examination. The key element for the computation of
the structural distance is the call graph. In FEAT we do not need all the charac-
teristics of the complete call graph then some of them have been removed. First,
the call graph is a multi-graph which means that between two nodes there can
be more than one edge in case of multiple calls. Since we want to assess only
whether a dependency between two units exists or not, in FEAT we consider at
most one edge between two units. Second, for reasons which are similar to the
preceding point, recursive calls are not represented in CG. The call graph is a
directed graph, this would prevent the fulfillment of the symmetry property (see
Sec. 3.1) of a distance metric then we transform the call graph into an undirected
graph. From now on all references to call graphs are related to our simplified
version described here.

Given a (undirected) call graph CG = (U , E), where U is the set of units and E is
the set of edges representing the caller-callee relationship, the distance between
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Figure 4.3 – Geometric representation of unit-documents’ words in the concept space of
the example in Sec.4.3

two units ua and ub can be computed by using the length of a shortest path be-
tween them. Let π(ua, ub) = 〈e1, . . . ek〉, where each ei is an edge, be a shortest
path between ua and ub, and |π(ua, ub)| = k be the length of that path then the
distance between ua and ub is:

d(ua, ub) = 1− λ
1− λD

k−1∑
i=0

λi

The factor before the summation 4 makes the distance ranging in [0, 1]. D is the
graph diameter or in other words the length of the longest shortest path, k is the
length of the shortest path between a and b and λ, under the constraint λ > 1, sets
how fast we want our distance to grow; the range of graph distances we expect,
even in large programs, is not so high thus we boost the distance by making it
grow exponentially. The distance has to span from 0 to 1 so we normalize it. This
is done by dividing it by the maximum distance in a given graph that is: 1−λD

1−λ . If
there is no path between ua and ub then |π(ua, ub)| = ∞. The complete definition

4. This is the reciprocal of the summation of a (slightly modified) geometric series.
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of the structural distance dCG, covering all cases, is as follows:

dCG(ua, ub) =


0 if ua = ub

1−λ
1−λD

k−1∑
i=0

λi if ua 6= ub and |π(ua, ub)| = k

1 if |π(ua, ub)| =∞

(4.4)

4.5 Hybrid Distance

Both dD and dCG are proper distance measures satisfying the three axioms: sym-
metry, positive definiteness and, triangular inequality. On their basis we present
a novel hybrid distance with the objective of producing clusters whose elements
show high internal cohesion under both perspectives: structural and semantic.
This combination can mitigate some unwanted effects that may occur if we use
only one distance. For instance, two units sharing many words, but not connected
in the call graph (or very far from each other), would be evaluated with high sim-
ilarity if only dD be used, while, without any kind of structural relationship, they
cannot belong to the same feature. Similarly, two close units in the call graph,
but without any word in common, should not be clustered together because we
assume that elements of a capability should share a common vocabulary.

The hybrid distance is defined as a linear combination of dD and dCG using a real
number α ranging in [0, 1]:

dFEAT(ua, ub) = αdD(ua, ub) + (1− α)dCG(ua, ub) (4.5)

The external parameter α is used to tune the impact of one distance value over
the other. The choice of a value for α depends on some characteristics of the
code under analysis like the quality of comments, naming conventions etc. More
details about this will be provided in the experimental evaluation chapter.

4.6 Distance over Clusters of Code Units

So far we have seen how to compute the distance between single units, but HAC,
in order to merge clusters of units, requires to compute the distance between
sets of units. In Sec. 3.1.1 we presented some of the most relevant approaches to
the merging of clusters, in FEAT we model a set of units as its centroid hence,
the distance between two clusters corresponds to the distance of their centroids.
Following the concept of a hybrid representation of structural and semantic ele-
ments we define a hybrid centroid distance. Unit-documents lie in a Euclidean
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Figure 4.4 – Graph for the example on graph medoids computation

space then the centroid of a cluster C is µD(C) = d1+d2+···+dn

|C| . Instead, the struc-
tural part of C is represented as a graph medoid. Medoids are representatives of a
discrete set of elements and in FEAT they are defined as:

Definition 4.2. (Graph Medoid) Let CG = (U , E) be a call graph, C =
{u1, u2, . . . , um} a cluster of units, |π(ua, ub)| a shortest path between ua and
ub, σC(u) = ∑

∀ui∈C
|π(ui, u)|,

M = {u | arg min
u∈U

{σC(u)}} and, s = 1
|C| min

u∈U
{σC(u)} then the graph medoid

of C is:

µCG(C) = arg min
u∈M

 ∑
∀ui∈C

(|π(ui, u)| − s)2



In other words, the graph medoid of C is the unit u ∈ U lying at the most central
position w.r.t. all units in C.
Finally, the hybrid distance between two clusters Ci and Cj is:

dFEAT(Ci, Cj) = αdD (µD(Ci), µD(Cj)) +
(1− α)dCG(µCG(Ci), µCG(Cj)) (4.6)

Eq. 4.5 can now be seen as a special case of the more general Eq. 4.6 occurring
when |Ci| = |Cj| = 1.
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Example

The computation of graph medoids is easier to understand with an example. Let
us consider the graph in Fig. 4.4 and its all shortest paths matrix:

S =

u1 u2 u3 u4 u5 u6 u7



0 1 1 3 2 2 3 u1
1 0 1 3 2 2 3 u2
1 1 0 2 1 1 2 u3
3 3 2 0 1 3 4 u4
2 2 1 1 0 2 3 u5
2 2 1 3 2 0 1 u6
3 3 2 4 3 1 0 u7

Assume that we want to compute the graph medoids of W = {u4, u7} then the
needed steps are the following:

1. σ(ui)∀i∈1..7 = {3 + 3, 3 + 3, 2 + 2, 0 + 4, 1 + 3, 3 + 1, 4 + 0}
σ(ui)∀i∈1..7 = {6, 6, 4, 4, 4, 4, 4}

2. M = {u3, u4, u5, u6, u7}

3. s = 1
2 · 4 = 2

4.
m∑
j=1

(|π(wj, ui)| − s)2
∀i∈{3,4,5,6,7} = {0, 8, 2, 2, 8}

5. µCG(W) = {u3}

Then the set of graph medoids of {u4, u7} is reduced to a singleton µ = {u3}
which, in this simple example, could have been guessed directly on the graph.

4.7 Selecting a Partition in HAC

HAC does not require a prespecified number of clusters, it creates a hierarchy of
them through an iterative process producing a new partition of clusters at every
merging step. The leaves of this hierachy are cluster singletons and the root is a
cluster including all data points. This structure is usually called dendrogram. A
dendrogram is a tree, every node in the tree is a merging point of either individual
data points or clusters. The length of the branches is proportional to the distance
of the two merged elements (see Fig. 3.1).

In our application of HAC we are mainly interested in one specific disjoint set of
clusters not in the whole hierarchy, hence we need a criterion to cut the hierarchy
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Figure 4.5 – Illustration of how a graph can be divided into clusters having inter-cluster
sparsity and intra-cluster density

at some point. The choice of a partition P = {C1, C2, . . . , Cm} among the n − 1
possible ones (where n is the number of data points) depends on the objectives of
the domain at hand [44]. Following the idea of a combination of structural and
semantic aspects of source code, we introduce our hybrid cutting criterion made
again by a structural and semantic part. Let us start with the structural part.

4.7.1 Modularity

In social sciences, biology, computer networks etc. there is a big interest around
the detection of modules (also called communities, groups or clusters). Modular-
ity is a measure of the division of a network into modules. By definition modules
are partitions showing exactly the two properties we are looking for in clusters of
units: inter-cluster sparsity and intra-cluster density. The modularity function of
Newman and Girvan [59] is:

Q(P) = 1
2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(Ci, Cj) (4.7)

where A is the adjacency matrix 5, ki (resp. kj) is the degree of node i (resp. j), Ci
(resp. Cj) is the cluster of i (resp. j), and m is the total number of edges. Function
δ is the Kronecker delta defined as:

δ(Ci, Cj) =

1 if nodes i,j are in the same cluster
0 otherwise

5. Aij = 1 if there exists an edge between vertices i and j and Aij = 0 otherwise.
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In other words, given a certain partition of the nodes of a graph in a number of
clusters, modularity is defined as the fraction of edges that falls within the given
clusters minus the expected fraction if edges were distributed at random.

The idea of modularity-based cluster detection, studied in the context of social
networks [17], is to find partitions that maximize Q. Indeed, high values of mod-
ularity (knowing that Q ∈ [−1

2 , 1]) correspond to interesting partitions of a net-
work into communities [1]. A potential strategy we can pursue is again related to
the informational content conveyed by the call graph. So, in our context we apply
modularity in order to obtain a clustering of densely connected sub-graphs of the
call graph.

After several experiments on modularity (see Fig. 4.6) over software systems we
observed the following behavior: at each iteration, modularity gradually grows
until it reaches a maximum. Any further merge leads to a significant decrease
of the modularity. Stopping HAC at the maximum value for modularity, while
driving the merging process through our dFEAT distance, provides us with a set
of clusters whose units show high structural regularities.

Higher values of the modularity function indicate a better community structure.
The idea of modularity-based cluster detection, applied to FEAT, therefore is to
find the partition P = {C1, C2, . . . , Cm} that maximizes Eq. 4.7. These clusters are
considered to represent the optimal community structure for the given software
system.

4.7.2 Textual Coherence

The semantic part of FEAT cutting criterion exploits a measure adopted in natu-
ral language processing (NLP): textual coherence [21]. This measure is used for
assessing how similar are the segments of a text. Coherence is based on the mea-
sure of words overlapping. We consider all unit-documents belonging to a cluster
as sections of a whole text. We expect developers, within the context of the units
participating in the implementation of a system capability, to use a consistent lan-
guage revealed through the choice of names for variables, the text in comments,
etc. So, while looking at clusters as they were textual documents, we want to find
the partition showing the highest coherence defined as:

H(P) =
∑
∀C∈P

1− 2
|C|(|C| − 1)

|C|∑
k=1

|C|∑
j=k+1

dD(uk, uj)
 (4.8)
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Figure 4.6 – Graphics showing modularity values over clustering iterations across several
projects.
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Figure 4.7 – Graphics showing coherence values over clustering iterations across several
projects.
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Fig. 4.7 shows the results obtained after running experiments on coherence over
the same set of projects used for the experiment on modularity. Here the behavior
does not always show the same pattern encountered with modularity. This might
be explained by the fact that some development teams may pay less attention to
text consistency in documenting code which leads to the observed trends.

4.7.3 FEAT Cutting Criterion

Finally, we can define a new hybrid measure as the combination of normalized
coherence and modularity:

TFEAT(P) = α
H(P)
|P|

+ (1− α)2Q(P) + 1
3 (4.9)

The cutting criterion is then determined as the HAC’s iteration where the max-
imum value of TFEAT is reached. The two measures are combined through the
same parameter α used in Eq. 4.6.

4.7.4 HAC Revised Algorithm

Algorithm 1 presents our clustering step with a hybrid representation of units.
We use the priority queue version of HAC having a time complexity of Θ(n2 log(n)).
Alg.1 starts by considering each unit as a cluster at lines 4-6. It computes the
pairwise distances between clusters at lines 7-8. Then, it iteratively merges pair
of clusters according to a minimal dFEAT distance value (lines 11-12) until either
a partition is reduced to one cluster or the cutting criterion is reached (i.e., TFEAT

value cannot be improved) (line 9). At each iteration, the algorithm updates the
pairwise distances ∆ of the new partition (lines 14-15). At the end, the algorithm
returns a partition P of m clusters.

4.8 Entry-Points Selection

The output of HAC is a set of disjoint clusters where every cluster is made of
a set of units. Recall that units are identified through their name, obtained from
source code, and have an associated unit-document (see Eq. 4.1). The units within
a cluster are also the nodes of the related induced subgraph of the call graph (see
Fig. 4.1 noted (4)).
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Algorithm 1: Priority Queue HAC with hybrid cutting criterion
1 In U = {u1, . . . , un}: n units; α ∈ [0, 1], τ < 0;
2 Out P = {C1, . . . , Cm}: partition of m clusters;

3 P ← ∅; ∆← ∅; 〈yp, yc〉 ← 〈1, 0〉;
4 foreach ui ∈ U do
5 Ci ← {ui};
6 P ← P ∪ Ci;
7 foreach Ci, Cj ∈ P : i < j do
8 ∆← ∆ ∪ dFEAT(Ci, Cj, α);
9 while (|P| 6= 1) ∧ (yc − yp > τ) do

10 pick Ci, Cj ∈ P s.t., dij = min(∆);
11 Ci ← Ci ∪ Cj ; P ← P \ Cj ;
12 ∆← ∆ \ di∗; ∆← ∆ \ d∗i;
13 yp ← yc; yc ← TFEAT(P);
14 foreach Cj ∈ P : j 6= i do
15 ∆← ∆ ∪ dFEAT(Ci, Cj, α);
16 return P

During the early stages of FEAT’s design, we tried to use directly the partition
provided right after the clustering step but what we observed through our ex-
periments is that clusters’ content is too rough to be used as program topoi. For
example, they contain units which are just very specific primitives which cannot
be used as main capabilities’ representatives. So, we developed the idea that not
all units are equal; some of them are special, more useful in terms of representa-
tiveness of a system and we called them entry-points. They can be considered re-
lated to the more general concept of beacon used in program comprehension (see
Sec. 2.2). Put simply, entry-points are units giving access to the implementation
of observable system functionalities, such as handlers for user visible characteris-
tics in desktop applications, public methods of a software library, etc. Identifying
entry-points among thousands of units is challenging. We present here some gen-
eral assumptions that allow us to define a formal procedure for the selection of
entry-points.

Let us provide some definitions. A cluster is defined as: C = {u1, u2, . . . , un} and
its induced subgraph 6 is: CGC = (C, EC) where EC is the set of edges of the call
graph connecting pairs of code units in C. Recall, here we look for code units
covering a special role in the call graph. Thinking to the examples mentioned
above, entry-points are expected to implement more complex (high level) capa-
bilities and, as such, they employ many other units generating deeper and wider
calling trees respect to usual units. Conversely, entry-points are expected neither

6. An induced sub graph is another graph made by a subset of the vertices of the original
graph and all the edges connecting pairs of vertices in that subset.
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to participate in many diverse calling paths nor to end long calling chains. This
properties of entry-points can be summarized as follows:

a) Entry-points are called only by a small number of units;

b) Entry-points call many units, either directly or indirectly;

c) Entry-points are called in short calling chains;

d) Entry-points calls originate long calling chains;

Based on the sub-graph associated to each cluster (see Fig.4.1 box noted (4)), these
considerations can be translated into the six following node attributes (letters in
parentheses show the relationship with the properties listed above) of the unit u:

1. Output degree (b) deg+(u): number of outgoing arcs of u;

2. Input Degree (a) deg−(u): number of incoming arcs of u;

3. Output Reachability (b) RO(u): number of paths having u as source;

4. Input Reachability (a) RI(u): number of paths having u as destination;

5. Output Path Length (d) SO(u): Sum of the lengths of all paths having u as
source;

6. Input Path Length (c) SI(u): Sum of the lengths of all paths having u as
destination;

Let’s take a closer look to all these attributes. Given a unit u, input and output
degrees represent correspondingly the number of incoming and outgoing arcs of
u. They tell us about the number of local paths involving u.

Reachability is the ability to reach a vertex uj from a vertex ui. In other words it
occurs when it exists a path from ui to uj . The two attributes, RI(u) and RO(u),
count the number of global paths passing by ui.

Let’s make it a bit more formal. Since we need to consider whether a unit is
a caller or a callee, from now on we remove the relaxation introduced for the
definition of the structural distance in Eq. 4.4 and consider the call graph CGC
as a directed graph. Given a (directed) call graph CGC = (V,E), the all-shortest-
paths matrix S := (si,j)n×n containing the graph distance from any vertex ui to
any vertex uj , and a cluster C we can define the following attributes:
Output degree:

deg+(ui) =
∑
uj∈C

δ(ui, uj); δ(ui, uj) =

1 if si,j = 1
0 otherwise

(4.10)
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Input degree:

deg−(ui) =
∑
uj∈C

δ(uj, ui); δ(ui, uj) =

1 if si,j = 1
0 otherwise

(4.11)

Output reachability:

RO(ui) =
∑
uj∈C

δ(ui, uj); δ(ui, uj) =

1 if si,j 6= 0 ∧ si,j 6=∞
0 otherwise

(4.12)

Input Reachability:

RI(ui) =
∑
uj∈C

δ(uj, ui); δ(ui, uj) =

1 if si,j 6= 0 ∧ si,j 6=∞
0 otherwise

(4.13)

The last two attributes deal with the length of paths passing by the vertex ui.
Output path length:

SO(ui) =
∑
uj∈C

d(ui, uj)δ(ui, uj); δ(ui, uj) =

1 if si,j 6= 0 ∧ si,j 6=∞
0 otherwise

(4.14)

where d(ui, uj) = si,j is the length of a shortest path from ui to uj .
Input path length:

SI(ui) =
∑
uj∈C

d(uj, ui)δ(uj, ui); δ(ui, uj) =

1 if si,j 6= 0 ∧ si,j 6=∞
0 otherwise

(4.15)

4.8.1 Ranking Units through PCA

The problem now is how to use these six attributes in order to produce a list
of entry-points starting from the units in a cluster. Should we look for vertices
with the highest output reachability or the lowest input reachability? How about
the other attributes? Should we combine them? Unfortunately, our experiments
showed that it does not exist a unique best attribute or subset of attributes capable
of identifying entry-points in all situations: in some cases input/output degree
are fine but in some others input/output reachability are better and so on.

Since it seems like all attributes can be useful in different situations, why don’t
we use all of them and delegate to PCA the selection of the most relevant compo-
nents? First we define the following vector:

vu =



deg+(u)
deg−(u)
RO(u)
RI(u)
SO(u)
SI(u)


(4.16)



4.8. Entry-Points Selection 57

whose elements are the attributes of unit u, included in cluster C, represented as
a node over the call graph CGC . Now, we can look at a cluster as a space of six
dimensions where every unit is a point in that space. More formally, a cluster
C ∈ P is represented by the matrix:

Φ
∀u∈C

= [vu] (4.17)

Before we move to the actual search for entry-points in a cluster, it is important to
provide some key elements about the content of PCA’s input matrix. The analysis
accomplished to extract the principal components of a data set is based on the
covariance matrix. Given two multi-variate random variables X and Y, covariance
provides a measure of their dependency; that is how much they vary together. A
large value indicates high redundancy while two independent random variables
have null covariance. Covariance is defined as cov(X,Y) = E[XY] − E[X] E[Y],
then the covariance matrix is the matrix whose (i, j) entry is the covariance Σij =
cov(Xi,Xj).

Scaling of the Data and PCA

PCA is sensitive to the scaling of the variables. For example, using variables with
different units (i.e. some expressed in meter and others in kilometer) can lead to
arbitrary results where principal components are strongly affected by the vari-
ables with higher variance. In these cases PCA should be based on the correlation
matrix instead, which can be seen as the covariance matrix of standardized ran-
dom vectors, defined as: corr(Zij) = cov(Zi,Zj) and zij = xij−µi

σi
where µi and

σi are correspondingly mean and standard deviation of the random variable Xi.
This way we transformed the original data set into one which is zero-centered
and with unitary variance.

So, now the question is: how is our data distributed? Do the six attributes de-
fined above follow some particular distribution? If it were a Gaussian distribu-
tion then we could simply compute the sample mean and sample variance but
unfortunately this is not the case.

Statistical Patterns in Call Graphs

By plotting histograms of some experiments, we noticed that the six attributes
described from Eq. 4.10 to Eq. 4.15 follow a common distribution law which at
first sight appear to be the power-law. Power laws are described by the follow-
ing probability distribution: p(x) ∝ x−α where α is a constant parameter of the
distribution known as the exponent or scaling parameter. They are exponential dis-
tributions showing a peak followed by a peculiar long tailed shape which make
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them easily recognizable. On the other hand, proving that a data sample follows
a power-law can be tricky. In practice, few empirical phenomena obey power
laws for all values of x. More often the power law applies only for values greater
than some minimum xmin. In such cases we say that the tail of the distribution
follows a power law and it is mathematically defined as:

p(x) = α− 1
xmin

(
x

xmin

)−α
.

Clauset et al. [13] provide a detailed analysis for the assessment of power-law
distributions. In short the procedure can be summarized as follows:

1. Estimate the parameters xmin and α of the power-law model.

2. Calculate the goodness-of-fit between the sample data and the power-law
model through the Kolmogorov-Smirnov test. If the test statistic D is less
than the critical value, the power-law is a plausible hypothesis for the data,
otherwise it is rejected.

Let us see in the next section how we applied the Kolmogorov-Smirnov test to
call graphs attributes and the outcome of the test.

Analysis of the Distribution of Units’ Graph Attributes

The Kolmogorov-Smirnov (K-S) test [10] is used to decide whether a sample
comes from a population with a specific distribution and is based on the empirical
cumulative distribution function (ECDF). It does not depend on the underlying
cumulative distribution function being tested and it simply measures the maxi-
mum distance between the ECDF of the data and the fitted model:

D = max
x≥xmin

|S(x)− P (x)| . (4.18)

Here S(x) is the ECDF of the data for the observations with value at least xmin, and
P (x) is the cumulative distribution function (CDF) for the power-law model that
best fits the data in the region x ≥ xmin. Our K-S test is summarized in Tab. 4.2
and the criterion is: Accept H0 (the null hypothesis) if D ≤ C. Let us see how we
estimate the parameters xmin and α of the power-law model. Clauset et al. [10]
mention several methods for the estimation of xmin and the simplest, and most
common one, is based on a visual approach: by looking at the ECDF on a log-log
plot identify the point beyond which the distribution becomes roughly straight.
In our case, since we deal with six different random variables whose distributions
have quite diverse variances, we need to identify a proper lower bound value for
each one of them. After a visual inspection of the several ECDFs, we realized that
for all six attributes we could have applied a simple criterion: cut the initial part
of the distribution as follows: letX = {x1, x2, . . . , xn} be the set of observations of
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H0 The data follow a power-law distribution
Ha The data do not follow a power-law distribution
D D = maxx≥xmin |S(x)− P (x)|
α 7 α = 0.05
n Number of samples in the region x ≥ xmin
C 8 For n > 35 and α = 0.05 C = 1.358√

n

Table 4.2 – KS-test definition for the units’ attributes in a call graph

a given attribute then xmin = 0.02 ·max(X). Finally, the coefficient α for a given
attribute is computed as [58]:

α = 1 + n

[
n∑
i=1

ln xi
xmin

]−1

We have now all needed elements to compute the power-law model cumulative
distribution whose formula is:

P (x ≤ X) = 1− x

xmin

(−α+1)
(4.19)

and run the K-S test.

We downloaded 50 open source projects from GitHub, they have been selected
without any special requirement other than the followings: written in C language
and created after January, 1st 2010. The empirical data of the six unit attributes
have been gathered through our tool CRYSTAL and the results are shown in
Tab. 4.3. The results show that the six attributes’ distributions can be approxi-

Attribute Acceptance [%]
deg+ 100.00%
deg− 100.00%
RO 68.29%
RI 68.29%
SO 43.90%
SI 60.98%

Table 4.3 – Results of the K-S test over 50 open source projects

mated by a power-law. SO and SI reach the lowest acceptance rate, nevertheless
looking at the shape of their empirical density and cumulative distribution one
can easily recognize the peculiar characteristics of a power-law: on the left side of
the density histogram we have few values that dominates the others and on the
right side a long tail. This is exemplified also in figures 4.8 and 4.9 showing the

7. Significance level. The significance level α defines the maximum probability of rejecting the
null hypothesis H0 when it is true.

8. Critical value. Obtained from tables available in literature.
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experimental results respectively for GEDIT and MOSAIC. In both projects SO and
SI null hypothesis have been rejected nevertheless their ECDFs still look a good
approximation of a power-law.

We believe that what we found is interesting and to some extent novel, at least in
the context of program understanding. A similar work has been done by Myers
[57], he examined six open-source software systems and he found them to possess
a scale-free 9 degree distribution. To verify the hypothesis he plotted the log-log
plot of the distributions and checked that they were straight lines. Our work
extends the one done by Myers under several respects: we (1) examined a larger
number of projects, (2) applied K-S test, which is an objective test compared to the
subjective one used by Myers (observe a straight line on a log-log plot) and, (3)
proved that also the distributions of the attributes RO, RI, SO and SI of a vertex
can be approximated through a power-law.

Going back to our initial questions about the distribution of the input data to
PCA, we can now draw the conclusion that our data does not follow a Gaussian
distribution and, instead of the standardization of data (subtracting the mean
and dividing by the standard deviation), which will squash the distribution too
much, hiding the massive difference between a value in the long tail and one near
the peak, we have to adopt normalization which simply rescales variables in the
range [0, 1] preserving the original distribution.

Hence, we apply PCA to the normalized matrix:

N = norm(Φ) =


n1,1 n1,2 · · · n1,n
n2,1 n2,2 · · · n2,n

...
... . . . ...

nm,1 nm,2 · · · nm,n


(see Eq. 4.17) whose generic element i, j is:

ni,j = φi,j −min(Φi)
max(Φi)−min(Φi)

where Φi is the i-th row vector of Φ.

Applying PCA to Entry-point Analysis

PCA, for the same reasons mentioned above (variables’ scaling), is sensitive to
outliers and then they have to be removed. We are not talking about the distri-
bution of single attributes anymore but here we refer to the set of observations
represented as 6-dimensions data points. The quantity we consider for outliers

9. Scale-free is a graph whose in-degree and out-degree distributions are power-laws.
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removal is the norm of vectors of units’ attributes. By looking at the empirical
densities of the norm of vectors we observed an exponential trend reminding the
characteristic shape of the power-law (some examples are shown in Fig. 4.10).
This has been proved by Wilke et al. [83] who stated that the summation of sev-
eral power-law random variables equals to a power-law variable again. Though
the norm of a vector is not a simple summation of elements, for our own purposes
we can consider it as having a power-law distribution. Power-law is clearly not
symmetric around the mean value and, since we do not want to discard elements
belonging to the peak, the criterion to define outliers is: ‖v‖ − µ ≥ c · σ where µ
and σ are respectively sample mean and standard deviation of the vectors’ norm
of a given cluster, the factor c is usually set either to 2 or 3. We prefer to privilege
the recall (for the definition of recall and an explanation of the reasons behind its
choice here see Sec.6.3) of FEAT so we set c = 3. This increases the chances of not
missing relevant items though it leads to a lower precision.
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Figure 4.10 – Histograms of the norm of attributes’ vectors of two projects (GEDIT and
MOSAIC, two clusters each).

Before moving on, let us sum up what we have seen of FEAT so far:
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• A whole software system is split into clusters which are highly cohesive sets
of units of code.

• Clusters’ elements (units) are represented as vectors of six attributes ex-
tracted from the call graph.

The next step is the identification of entry-points. We need a way to compare the
units in Φ to a reference in order to select entry-points. The solution we devised
is to create an artificial data point (a query vector) that can represent the ideal
entry-point in a specific cluster. The distance measured between the query vector
and units (vectors in Φ) is the basis to create a ranking of units where the first
positions are occupied by entry-points; in other words: the lower the distance the
higher the ranking.

The query vector q follows the same structure of every other unit’s vector (see
Eq. 4.16) but the values of its components have to be chosen following our basic
assumption for what an entry point is: a node having higher out-values and lower
in-values. Hence, given a cluster C = {u1, u2, . . . , un} the artificial query vector
representing an ideal entry-point is defined as:

q =



max
∀u∈C
{deg+(u)}

min
∀u∈C
{deg−(u)}

max
∀u∈C
{RO(u)}

min
∀u∈C
{RI(u)}

max
∀u∈C
{SO(u)}

min
∀u∈C
{SI(u)}


(4.20)

The application of PCA to entry-point analysis requires first the computation of
the SVD factorization of the matrix N = UΣVT . In our context, U describes the
relationship between attributes (rows) and features 10 (columns). Σ is a diagonal
matrix whose elements (σ1, σ2, · · · , σn) are sorted in decreasing order of values
and they represent the relative strength of every feature with respect to the overall
space. Finally, we have VT describing the relationship between features (rows)
and code units (columns).

Let be r = rank(N), we can shrink the original space to an adequate number of
dimensions k < r while keeping a suitable amount of variance defined as a factor

10. These features must not be confused with the concept of feature used in program under-
standing in branches like feature location or feature extraction. We refer here to the broader sense
adopted in PCA where a feature is a scaled, rotated linear combination of several input attributes.
Features are the elements of the orthonormal basis obtained through SVD. See Sec.3.2 for more
details.
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K ∈ (0, 1). Let’s call entry-points cumulative variance the following function:

ecv(k) =
∑k
i=1 σi

tr(Σ)
where σ1 ≥ σ2 ≥ · · · ≥ σn. Then, the solution of the constraint:

minimize
k

ecv(k)

s.t. ecv(k) ≥ K,

k < r.

(4.21)

gives us the factor k, allowing us to define the entry-points feature space as follows:
N ≈ Nk = UkΣkVT

k .

Finally, we can create the query vector (see Eq. 4.20), project it into the entry-
points feature space and compute its distance toward every cluster’s unit. The
projection of the query vector is computed as follows:

qk = qTUkΣ−1
k

while the projections of unit code vectors are the column vectors:

VT
k = [v1,v2, . . . ,vn]

The Euclidean distance d(qk,v) =
√∑k

i=1(qi − vi)2 between the query vector qk ∈
IRk and v ∈ IRk is the key element for ranking units defined as follows:

Definition 4.3. (Entry-Point Ranking) Let C be a cluster of n units and qk
its feature space query vector, the ranking over units is defined as:

KC = {e1, e2, · · · , en | d(qk,ve1) ≤ d(qk,ve2) ≤ · · · ≤ d(qk,ven)}

Example

Let’s consider the induced subgraph associated with a cluster C extracted from
an actual experiment and showed in Fig. 4.11. The all-shortest-paths matrix of
the graph is:

S7,7 =

u1 u2 u3 u4 u5 u6 u7



0 ∞ 1 1 ∞ ∞ 2 u1
1 0 2 2 ∞ ∞ 3 u2
∞ ∞ 0 ∞ ∞ ∞ ∞ u3
∞ ∞ ∞ 0 ∞ ∞ 1 u4
∞ ∞ ∞ 1 0 ∞ 2 u5
∞ ∞ ∞ ∞ ∞ 0 1 u6
∞ ∞ ∞ ∞ ∞ ∞ 0 u7
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u2 u1

u3

u4

u5 u6

u7

Figure 4.11 – Graph associated to the cluster of the example on PCA applied to entry-
point selection

and the matrix of attributes, obtained through Eq(s). 4.10 to 4.15 is:

Φ =

u1 u2 u3 u4 u5 u6 u7



2 1 0 1 1 1 0 deg+

1 0 1 2 0 0 2 deg−
3 4 0 1 2 1 0 RO
1 0 2 3 0 0 5 RI
4 8 0 1 3 1 0 SO
1 0 3 4 0 0 9 SI

By setting K to 0.85 and solving Eq. 4.21 we obtain k = 2, which means that the
fulfillment of the constraint requires us to keep the first two PCA components.
Hence, though reducing a six-dimensional space to a two-dimensional one, we
still cover at least 85% of the entire variance contained into the original space.
Below we have the VT

k matrix whose columns are the projections of the units in
C into the feature space.

VT
2 =

(
0.29 0.29 0.27 0.43 0.12 0.05 0.74
−0.38 −0.74 0.14 0.07 −0.31 −0.13 0.41

)

Then, we create the artificial query vector (see Eq. 4.20) q = [2, 0, 4, 0, 8, 0] and
project it into the feature space: qk = [0.28,−0.72]. Finally, by measuring the dis-
tance between units’ vector and the query vector we obtain the following ranking
(see Def. 4.3) KG = {2, 1, 5, 6, 4, 3, 7}. It is interesting to note the first and last ele-
ment of the list. Looking at the graph in Fig. 4.11 we see that unit 2 corresponds
exactly to our definition of entry point and indeed obtains the highest score while
unit 7, which is just a dead end in the graph, reaches the lowest one. The graph in
Fig. 4.12 shows the 2-dimensional feature space presenting also a geometric point
of view of the cluster. Here, again, we can see how close to unit 2 (its vector) is
the query vector (denoted by “q”) while unit 7 lays far away from it.

4.8.2 Geometric Aspects of Entry-points

Fig. 4.13 shows some entry-points taken from a program topos of GEDIT. We can
see two groups of units represented by the two blue dots. The interesting thing
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Table 4.4 – Ranking of the units in the example

Vertex Distance
2 0.026
1 0.342
5 0.441
6 0.637
4 0.808
3 0.864
7 1.216

Unit Name d(qk,vi)
1 _gedit_cmd_search_find_{prev,next} 0.209

2 _gedit_cmd_edit_{delete,copy,paste,
select_all,cut,redo,undo}

0.227

Table 4.5 – Extract of the rankings of a program topos with distances between entry
points and query vector (the suffixes to complete unit names are between curly braces)

is that the units in every group belong to the same functional area: in one group
we have clipboard management entry-points while the other contains those related
with find capability. This means that, from the geometric standpoint, semanti-
cally similar entry-points tend to position close to each other (see Tab. 4.5 for the
results). We believe that the reciprocal position of units into the feature space,
in addition to their distance with the query vector, can be profitably used for the
discovery of system’s capabilities.

4.9 Program Topoi

Up to this point we described all basic elements needed to rank the units in a clus-
ter. The ranking itself is not sufficient to extract entry-points, we need a criterion
to determine which units are to be considered entry-points and which are not.
Recall that the ranking of units in a cluster depends on the Euclidean distance
between them and the query vector, then we can classify as entry-points all units
whose position is sufficiently close to the query vector. More precisely a program
topos is defined as follows:
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Figure 4.12 – 2D representation of the example. The vector labeled as “q” is the query
vector.

Definition 4.4. (Program Topos) Let ∆C be the set of distances between the
units in a cluster C and the query vector qk, KC the entry point ranking and,
β a parameter ranging in (0, 1) then the program topos of C is the sub-list
ΘC ⊂ KC such that the distance between any unit of ΘC and qk is not greater
than a threshold value dβ which is the β-order percentile a of ∆C .

a. The τ -order percentile of a distribution X is the value (xτ ) below which the fraction
τ of elements in the ranking falls. Defined as: P (X ≤ xτ ) = τ .

The units in a program topos ΘC are the entry points of C (Fig. 4.1 box 6).

4.9.1 Entry-point Dictionary

In order to enrich the description of an entry-point we equip each unit of a pro-
gram topos with a textual content. This text, extracted in the first phase of the
process, is the union of words coming both from the entry-point itself and from
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Figure 4.13 – 2D representation of some entry-points (identified by their unit names)
extracted from GEDIT. The vector labeled as “q” is the query vector.

its neighborhood 11. By merging words from the entry-point and its neighbors we
create a richer index of words increasing the chances of retrieving entry-points
through free text queries. Table 4.6 shows some dictionaries of entry-points ex-
tracted from GEDIT.

Conclusion

This chapter presented FEAT in its entirety describing the three steps of the pro-
cess: preprocessing, clustering and, entry-point selection in details. The approach
evolved and became more complex taking inspiration from the experimental ev-
idences gathered along the way to the current version.

The chapter explained how FEAT tries to automate some common practices adopted
in program comprehension (Sec.2.2) like the usage of both semantic and struc-

11. The neighborhood of a vertex v in a graph G is the induced subgraph of G consisting of all
vertices adjacent to v.
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Unit Name Dictionary
_gedit_cmd_edit_copy edit, call, function, gedit, log, trace,

window, clipboard, file, line,
number, return, transfer, section
view, cmd, debug, copy, enable,
active, information

_gedit_cmd_search_replace dialog, function, gedit, log, time,
cmd, file, line, number, position,
debug, present, search, section,
inform, create, restore, replace,
trace, enable, data, call

_gedit_cmd_search_find_next enable, find, gedit, log, trace,
file, line, number, run, cmd,
inform, debug, forward, section,
function, search, call

_gedit_cmd_search_find_prev enable, find, gedit, log, trace, cmd,
file, line, number, previous,
inform, debug, function, run,
section, call, search, backward

Table 4.6 – Example of entry-points’ dictionaries enriched with their neighborhood

tural information to isolate concepts under the form of clusters. To better suit the
program understanding context we deeply customized HAC’s algorithm provid-
ing both a novel notion of distance (Sec.4.5) and a cutting criterion (Sec.4.7). Ap-
plying PCA to code units involved a thorough study of call graphs from the sta-
tistical standpoint (Sec.4.8.1) revealing interesting patterns. Finally, we reached
the point of providing a formal definition of program topoi (Def.4.4). It is also in-
teresting to note how entry-points showed some geometric properties that could
lead to future development.



V

FEAT Tooling Support

This chapter presents an overview of both the tool employed in the experimental
evaluation of FEAT and the platform on which the tool is based.

5.1 Crystal Platform

CRYSTAL is a software platform that we designed in the context of the Certus
SFI project hosted at Simula Research Laboratory. It is based on the micro-services
architectural style, and it encourages the adoption of a design strategy enhanc-
ing both self-documenting systems and share and reuse of software components.
The core of the platform is an OSGi (Open Services Gateway initiative) container
which hosts a set of services implementing basic functionalities.

The design of high level functionality, those directly used by users or external
systems, is realized through a model, a BPMN 2.0 (Business Process Modeling
and Notation) executable model which decouples the specific aspects related to
the implementation of an application from the primitive, reusable services. The
model, following the syntax of the BPMN visual language, provide a clear and
formal specification of an application use cases implementation.

5.1.1 OSGi

The OSGi technology is a set of specifications that define a dynamic component
system for Java. These specifications enable a development model where ap-
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plications are (dynamically) composed of many different (reusable) components.
The OSGi specifications enable components to hide their implementations from
other components while communicating through services, which are objects that
are specifically shared between components. This surprisingly simple model has
far reaching effects for almost any aspect of the software development process.
The OSGi component system is actually used to build highly complex applica-
tions like IDEs (Eclipse), application servers (GlassFish, IBM Websphere, Ora-
cle/BEA Weblogic, Jonas, JBoss), application frameworks (Spring, Guice), indus-
trial automation, residential gateways, phones, and so much more. 1

OSGi model makes an application to emerge from putting together different reusable
components that had no a-priori knowledge of each other. Applications are built
by dynamically assembling a set of components. For example, you have a home
server that is capable of managing your lights and appliances. A component
could allow you to turn on and off the light over a web page. Another compo-
nent could allow you to control the appliances via a mobile text message. The
goal was to allow these other functions to be added without requiring that the
developers had intricate knowledge of each other and let these components be
added independently.

5.1.2 Business Process Modeling and Notation

The Business Process Modeling Notation (BPMN) is a graphical notation that de-
picts the steps in a business process. BPMN depicts the end to end flow of a
business process. The notation has been specifically designed to coordinate the
sequence of processes and the messages that flow between different process par-
ticipants in a related set of activities.

BPMN is targeted at a high level for business users and at a lower level for process
implementers. The business users should be able to easily read and understand a
BPMN business process diagram. The process implementer should be able to
integrate a business process diagram with further detail in order to represent
the process in a physical implementation. BPMN is targeted at users, vendors
and service providers that need to communicate business processes in a standard
manner 2.

CRYSTAL makes an innovative usage of BPMN:

• Decoupling the logic, governing a use case, from its actual implementation.

• Easing the adoption of good design practices. Every component is a small

1. source www.osgi.org
2. source www.bpmn.org

www.osgi.org
www.bpmn.org
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service with a clear identity in terms of functionality.

• The main flow of an application is defined through a visual yet executable
diagram.

• Improve collaboration among different stakeholders: testers, engineers, busi-
ness users, researchers, etc.

• A BPMN diagram itself is a way of documenting a software application.

CRYSTAL is a versatile platform not targeted to any specific application and its
underlying model may be exploited in many different contexts. Let us now see
CRYSTAL.FEAT the tool, based on CRYSTAL, used for the whole experimental
evaluation presented in this thesis.

5.2 Crystal.FEAT

5.2.1 Architecture

The overall system architecture of the platform is illustrated in Fig. 5.1, there we
can see the three main blocks building the whole tool: (1) OSGi container, (2)
BPMN engine and, (3) RDBMS. The whole technological stack is open source and
more precisely the OSGi container is Apache Karaf v4.1.4 3, the BPMN engine
is Activiti v5.22 4 and the RDBMS (Relational Data Base Management System)
is MySQL v5.7.22 Community Edition 5. The current version of Crystal.FEAT
amounts to 45 KLOC.

CRYSTAL is based on the micro-services architectural pattern hence there is not
a monolithic executable containing all features but a set of small binary compo-
nents deployed into the OSGi container. The overall business logic implementing
FEAT process is not embedded into any of those components but provided as a
BPMN diagram. Put simply, the execution of a FEAT process does not start from
a usual main() procedure but from loading the BPMN model, providing it to the
BPMN engine and, making it run.

3. http://karaf.apache.org/
4. https://www.activiti.org/
5. https://www.mysql.com/

http://karaf.apache.org/
https://www.activiti.org/
https://www.mysql.com/
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engine

Figure 5.1 – Main components of CRYSTAL’s system architecture

5.2.2 FEAT Process

The BPMN workflow of FEAT is shown in Fig. 5.2. Just very few words about the
BPMN notation; every box represents a task and circles are events like: start (light
circle), stop (bold circle), error raise (bold circle with thunder) and, error catch
(dashed circle with thunder). We will skip many of the details about the syntax
of the BPMN language, nevertheless the diagram is self-explicable and its basic
understanding does not require any prior background in workflow automation.
Let us examine the main tasks involved in the process.

Preprocessing

The input to CRYSTAL.FEAT is a compressed (zip) file containing a software
project. Even though the theoretical approach does not depend on a specific lan-
guage, the current version of the tool can handle only C programs. The first step
is then specific for handling C programs by preprocessing source code to expand
macro definitions.

Creation of FEAT Model

According to Def.4.1, in the task “Create FEAT model” the process parses the C
code generating the call graph and the set of unit-documents. Parsing is accom-
plished by means of a parser whose code is automatically generated from the
grammar definition of the C language. The parser generator is ANTLR 6 which
comes with many available grammars. In our case we needed to add a couple
of lexer 7 rules to the standard grammar in order to properly handle comments in

6. www.antlr.org
7. The lexer scans the text and transforms individual characters into tokens.

www.antlr.org
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source code since usually they are just thrown away from parsers. In a second
phase the task resolves function calls and it creates the call graph. Beside the
call graph, a “All-Pairs Shortest Path” matrix is created according to the Floyd-
Warshall algorithm. It contains the shortest graph distance between each pair of
vertices in the call graph.

Batch of Experiments

CRYSTAL.FEAT can generate batches of experiments (task “Create Experiment
Batch” ) on the basis of an external configuration file containing the various op-
tions (i.e. values for α, β, cutting criterion, etc.) and for each combination of
the options’ values it creates an experiment instance. Each generated experiment
instance is the input for the successive, iterative block (identified by the big box
called “Experiment loop” in Fig. 5.2 containing several tasks).

Unit-documents Creation

The tasks “Function Documents Extraction” and “VSM Data Creation” take re-
spectively care of generating text files, corresponding to each unit found in the
source code, and pre-process them for tokenization, stop word removal, etc. (see
Sec. 4.3 for more details). Finally, a LSA factorization is created and ready to
be used to compute the semantic distance between units. The VSM model is per-
sisted on disk through the Weka v3.8.0 framework 8 and SVD factorization is done
through oj! Algorithms v44.0 library 9.

Clustering

FEAT model is now ready to be provided to the HAC algorithm which will use it
to compute both hybrid distances (see Eq. 4.6) and cutting criterion (see Eq. 4.9).
The HAC algorithm, more precisely is a priority queue HAC (see Alg. 1 for more
details) has been derived from Weka’s implementation and underwent through
an extensive refactoring. Main changes regarded the possibility of dynamically
provide a distance measure and cutting criterion whereas previously only the
Euclidean distance was allowed and no cutting criterion was present.

8. https://www.cs.waikato.ac.nz/~ml/weka/
9. http://ojalgo.org/

https://www.cs.waikato.ac.nz/~ml/weka/
http://ojalgo.org/
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Entry-point Analysis

This task computes on a cluster by cluster basis the similarity between units and
the query vector (see Sec. 4.8.1 for an example) producing a program topoi. A
copy of the all shortest path matrix is serialized on disk in order to provide the
neighborhood of entry-points. Also a dictionary of words of every entry-point is
stored into the database.

Report Generation

Finally, all information about process execution are stored and made available for
further analysis.

5.2.3 User Interface

CRYSTAL.FEAT allows three ways of interaction: web user interface, command
line and, RESTful web services. The first one is mainly intended for uploading
single projects (see the button “New Project” in Fig. 5.3) and for searching pro-
gram topoi (see Fig. 5.4). Searching program topoi requires the input of a free-text
query text. In the example shown in Fig. 5.4 all program topoi related with the
word “clipboard” are retrieved. In this version CRYSTAL.FEAT exploits the full-
text search capabilities of MySQL 10. The screen shot shows the entry-points found
with the query; by clicking on an entry-point the system will show the graph of
the entry-point neighborhood (Fig. 5.5). A running example of CRYSTAL.FEAT
is available on the web 11 and contains all 610 projects used in the experimental
evaluation (see Chap.6).

The second way of interacting with CRYSTAL.FEAT is by means of the Apache
Karaf console. It is a command line interface which can be accessed either lo-
cally and remotely through SSH. Table 5.1 lists the more relevant implemented
commands.

Finally, CRYSTAL.FEAT exposes few capabilities as RESTful Web services. REST
stands for REpresentational State Transfer and is used to build Web services that
are lightweight, maintainable, and scalable in nature. The underlying protocol
is HTTP and REST defines an architectural style allowing a uniform access to
stateless operations. RESTful web services are expected to follow the semantic of

10. For more details about the syntax of full-text search expressions in MySQL follow the link
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html

11. CRYSTAL.FEAT is available on line at the link http://ec2-18-185-125-11.
eu-central-1.compute.amazonaws.com:8181/crystal/feat/

https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
http://ec2-18-185-125-11.eu-central-1.compute.amazonaws.com:8181/crystal/feat/
http://ec2-18-185-125-11.eu-central-1.compute.amazonaws.com:8181/crystal/feat/
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Figure 5.3 – Screenshot of the web user interface of FEAT. List of currently loaded
projects.

the HTTP verbs GET, POST, PUT and DELETE.

CRYSTAL.FEAT RESTful API, accessed via HTTP, allows to manage projects,
run FEAT, run queries, etc., data is exchanged as JSON text and all API endpoints
are rooted at http://<web-server-url>:8101/cxf/crystal. For a list of
the more relevant APIs take a look at Tab. 5.2.

Conclusion

This chapter presented the tool implementation for FEAT. FEAT is heavily based
on the micro-services architectural pattern deployed on an OSGi container. To
further stress its distributed nature and enhance reuse, all main functionalities
are created through BPMN executable diagrams. There three ways of access-
ing FEAT namely through: a web user interface, a set of RESTful API and, a
command-line interface.
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Figure 5.4 – Screen shot of the web user interface of FEAT. Program topoi search.

Figure 5.5 – By clicking on an entry-point, found through the search capability, the system
will show its neighborhood
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Command Description
crystal:feat Run full FEAT process
crystal:bpe Run the Best Partition Experiment (see Sec. 6.2)
crystal:cgstat Create call graph statistics (see Sec. 4.8.1)
crystal:rndep Run random experiment (see Sec. 6.3.1)
crystal:tar-get-repo Extract projects in tar.gz files from a local folder

and creates projects
crystal:gh-mine Run a GitHub miner looking for

repositories matching some criteria like:
language, size, etc.
provided through a property file.
For every dowloaded GitHub repository
a project is created.

crystal:gh-get-repo Download a GitHub repository and
creates a project

crystal:get-zip Download the zipball file(s) of projects created
out of GitHub repositories

crystal:list-projects List of the currently loaded projects
Table 5.1 – CRYSTAL.FEAT commands’ list

Endpoint Description
/feat/manager/project/list Get the list of loaded projects
/feat/manager/query/units Full text unit query
/feat/manager/query/topos Graph neighborhood of a unit
/unit/neighborhood
/feat/manager/query/modules Full text module query
/feat/manager/query/topos Full text topos query
/feat/features/project Run FEAT
/cluster

Table 5.2 – CRYSTAL.FEAT RESTful API



VI

Experimental Evaluation

This chapter presents the experiments that we designed and executed for the
evaluation of the most relevant aspects of FEAT. The experiments have been ex-
ecuted on a software testing platform called CRYSTAL (more details in Chap. 5)
hosted on an Intel dual core i7-4510U CPU with 8GB RAM. In addition, for the
more demanding experiments described in Sec. 6.5.1 we used Amazon Web Ser-
vices (AWS) which is a platform providing virtual servers. The server we rented
has the following characteristics: 8 CPU (Intel Xeon E5-2686 2.3 GHz), 61 GB
RAM and 32 GB SSD hard disk.

The experiments show comparison with some baselines, quantitative evaluation
of FEAT’s ability of discovering program topoi, a scalability experiment and, fi-
nally an application of FEAT to a large scale source code repository.

6.1 Experimental Subjects

The experimental subjects that we used can be divided into three groups accord-
ing to the purpose of the experiments: (1) synthetic projects, (2) projects equipped
with oracles and, (3) projects downloaded from public repository. We employed
610 projects coming mainly from a large public repository called Software Her-
itage (more on this later in Sec. 6.5.1) and have been selected without any special
requirement a part from the following:

1. Written in C language.
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2. Size of the repository 1 between 5 and 50 MBytes.

For those experiments requiring a finer-grained analysis such as assessing the
accuracy of discovering capabilities, or evaluating feature location of FEAT, we
used the following projects:

• HEXDUMP 2. It is a hexadecimal viewer, it displays binary data contained in
files, as a readable sequence of codes.

• GEDIT. GNU Editor v3.20 is the default text editor of the GNOME desktop
environment.

• MOSAIC. NCSA Mosaic (National Center for Supercomputing Applications)
is a web browser, well-known for its extended support of Internet protocols.
It is used as a benchmark in research works similar to the present one (i.e.
Marcus et al. and Kuhn et al. for feature location approaches [47, 37]).

Finally, for some experiments we have created synthetic projects according to
the model (see Def. 4.1) used by FEAT and based on its hybrid perspective of
software systems.

6.2 Goodness of FEAT in Selecting Partitions

The main objective of the cutting criterion (Eq. 4.9) is the automatic selection of a
partition of clusters to be used in the entry-point analysis step. The question we
want to address here is:

RQ1: How effective is the hybrid perspective of FEAT, based on dFEAT and TFEAT,
about driving HAC to find optimal partitions in a controlled setting?

In this experiment we create instances of FEAT models (see Def.4.1) characterized
by the following input variables: number of units, density of the call graph and, a
range of values where the length of unit-documents can span. These parameters
are used to randomly generate both the call graph and the set of unit-documents.
For every instance, the experiment produces all partitions of the set of units, com-
putes modularity and coherence and, find the maximum TFEAT value. Let us call
this part of the experiment brute force. Then, we run FEAT and compare TFEAT

value of the chosen partition to those obtained through brute force.

1. With repository we identify a container including source code but also additional elements
like documents, scripts, etc. hence affecting repository’s size.

2. http://sourceforge.net/projects/hexdump

http://sourceforge.net/projects/hexdump
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From combinatorics we know that the number of partitions of a set grows ex-
tremely fast. Hence, we let cardinality (n = |U|) of sets of units U varies in
the range n ∈ {10, 11, 12}. Correspondingly, the number of partitions are B10 =
115, 975, B11 = 678, 570 and, B12 = 4, 213, 597 (Bn is the Bell number of n). Call
graph’s random creation follows Gilbert’s approach [23] and is ruled by a den-
sity value (ρ) corresponding in our context to the probability of having an edge
between any pair of vertices. Density’s range is ρ ∈ {0.1, 0.2, . . . , 0.9}.

Starting from a fixed alphabet (11 symbols) all words of a given size (4) are gen-
erated to form a dictionary of 14,641 words. Unit-documents’ lengths span at
random having between 5 and 20 words. Documents’ content is randomly cre-
ated as well and words’ distribution follow Zipf’s law [74].

The generation of any instance of the model is replicated 10 times and the results,
shown in Tab. 6.1, are averaged out. HAC merges units and clusters, driven by
dFEAT, producing partitions and, selects the partition where the maximum value
for TFEAT occurs. To compare FEAT’s values to brute force approach ones, we
provide an indicator called Tscore. Let us call T the set of TFEAT values of all
partitions of U generated through the brute force approach, then we define the
cutting criterion score as:

Tscore = TFEAT −min(T )
max(T )−min(T ) ∈ [0, 1]

representing how close is the partition found from FEAT to the optimal ones.

Every line in Tab.6.1 contains the average values of 10 tests with the same input
values (n, ρ, α = 0.5).

n ρ Tscore n ρ Tscore n ρ Tscore

10

0.1 0.887

11

0.1 0.880

12

0.1 0.903
0.2 0.811 0.2 0.893 0.2 0.801
0.3 0.759 0.3 0.822 0.3 0.848
0.4 0.740 0.4 0.792 0.4 0.738
0.5 0.731 0.5 0.750 0.5 0.671
0.6 0.762 0.6 0.766 0.6 0.795
0.7 0.780 0.7 0.817 0.7 0.778
0.8 0.872 0.8 0.849 0.8 0.828
0.9 0.973 0.9 0.908 0.9 0.977

0.813 0.831 0.815
Table 6.1 – Experimental results of the clustering step’s evaluation

There are two important restrictions that need to be taken into account when an-
alyzing the results of this experiment. First, the number of units (between 10
and 12) is small because, as mentioned above, exploring the whole search space
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made of all partitions of a set becomes rapidly infeasible when the number of ele-
ments goes above a given threshold. Second, the density of randomly generated
call graphs is higher than of those extracted from real programs (see Tab.6.8); the
choice for a range of values for the density is dictate by the number of nodes in
the random generated graphs: with a maximum value of 12 nodes, lower values
of density would lead to the creation of many disconnected graphs which would
be useless for our purposes. Nevertheless the experiments show very promising
performance both in terms of closeness to the optimal achievable value of the cut-
ting criterion and time. We observe that when HAC is driven by dFEAT and TFEAT

it shows an interesting performance in finding partitions with both high modu-
larity and coherence. With a very low number of iterations, which in the worst
case can be equal to n−1, FEAT shows an average Tscore > 0.8 in all combinations
that we experimented.

6.3 Program Topoi Discovery Experiments

The experiments reported in this section evaluate the ability of FEAT of retriev-
ing relevant informations from source code. In order to provide a numeric, com-
parable assessment we use the following metrics which are widely adopted in
machine learning classifiers’ systems namely precision, recall and, F-measure [44].
For HEXDUMP and GEDIT, we manually created an oracle with its list of entry
points according to the following procedure: (i) we looked at the user’s man-
ual and identified the topoi, (ii) we inspected the source code searching for the
entry points of those topoi (e.g., in desktop applications, we have usually event
handler functions of either menus or other kind of GUI elements) and, (iii) we
created the oracle which is a text file with the list of entry-point names. This is
clearly a time-consuming task requiring an experienced engineer in order to run
basically a fully manual program comprehension task. Using the topoi automat-
ically mined by FEAT and the topoi listed in the oracle, we define true positives
(tp) the units which are correctly classified as entry points, false positives (fp) the
units which are incorrectly classified as entry points, true negatives (tn) the units
which are correctly not classified as entry points and finally false negatives (fn) the
units which are incorrectly not classified as entry points. The definitions of the
aforementioned metrics are as follows:

1. Precision is the percentage of retrieved entry-points that are relevant:

P = tp

tp+ fp

2. Recall is the percentage of relevant entry-points that are retrieved:

R = tp

tp+ fn
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For these metrics, ranging between 0 and 1, the evaluation criterion is: the higher,
the better. They assess two different, orthogonal characteristics of a system: the
more the units classified as entry-points the higher the recall while for the pre-
cision happens exactly the opposite. Another measure which is commonly used
in judging a machine-learning classifier is its accuracy that is the fraction of its
classifications that are correct. Based on the same elements introduced above it
is defined as: A = tp+tn

tp+fp+fn+tn . Unfortunately, accuracy does not seem to be the
most suitable metric for FEAT; in our context the data are really skewed; the ma-
jority of units are not relevant and just few of them are entry-points. Hence, the
maximization of accuracy could be achieved by deeming all units as non-relevant
and this is clearly useless for program comprehension purposes.

Given all these premises we believe that recall (fraction of relevant entry-points
that are retrieved) is a more meaningful measure for FEAT’s effectiveness than
precision. Users who are looking for system capabilities always prefer to have
some results and can tolerate false positives especially if they come with some
additional information, like words’ index and entry-point’s neighborhood, help-
ing in the evaluation. The opposite, or in other words a system with higher pre-
cision, may incur in the risk of neglecting important entry-points and this is not
desirable.

A single measure that trades off precision versus recall is the F-measure, which is
the weighted harmonic mean of precision and recall:

Fβ = (β2 + 1)PR
β2P + R

When using β = 1 the formula equally weights precision and recall. Values of
β < 1 emphasize precision, whereas values of β > 1 emphasize recall. Hence,
since we value recall more than precision in our experiments we set β = 2 (F2
metric) 3 [44].

Oracles for HEXDUMP and GEDIT have been manually created according to the
following procedure: (i) we looked at the user’s manual and identified the topoi,
(ii) we inspected the source code searching for the entry-points of those topoi.
In desktop applications, like GEDIT and HEXDUMP, finding entry-points is quite
straightforward. These applications usually follow an event-driven pattern and
they have a central place where all event handlers related to menus and short-
cuts are declared. After having located this point, the task becomes simply the
collection of all involved unit names. The list of these units constitutes the oracle.
The oracle of GEDIT contains 36 entry-points while HEXDUMP’s one contains 12
entry-points.

First, we present experiments whose purpose is to compare FEAT with two base-

3. Parameter β here must not be confused with the one used in the definition of program topos
(see Def.4.4).
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lines: random classifier and FEAT without clustering. After the baselines’ exper-
iments a comprehensive experiment on FEAT will be presented. Evaluations are
made on the basis of F2, P and, R metrics computed against the two oracles.

6.3.1 Random Baseline Comparison

When we deal with a smart classifier the first question that needs to be addressed
is how it compares with a blind, random approach:

RQ2: How does FEAT compare with a classifier selecting entry-points at random?

The random classifier simply draws a given number of units from the set of units
of a software system. GEDIT and HEXDUMP are the subjects of this experiment
and the number of elements for each draw can range between 5% and 10% of the
total number of units. These numbers are close to the average size of clusters that
we observed in several experiments with the projects. The experiment took place
as follows:

1. Run 1,000 draws for both HEXDUMP and GEDIT. For each draw select at
random the number of units that will be drawn. Let be n the total number
of units then draw’s size s is s ∈ [0.05n, 0.1n].

2. Draw s units at random, check them with the oracle, compute the metrics
(A, F2, P, and R) for every draw, and finally average them out.

Experiment’s results are shown in Tab. 6.2. Accuracy values are surprisingly high
but it would be misleading if they were not evaluated considering precision and
recall as well. Despite the high accuracy, these two metrics show a poor perfor-
mance of the random classifier with F2 < 0.07 in both cases. This experiment
offers us the chance to stress the point about the meaning of accuracy related to
our domain. FEAT’s aim is to classify some, very few units as entry-points from
a larger number of units, then, using the terminology introduced before, we can
say that we look for few true positives in a large set of irrelevant items. In other
words, if the total number of units is n and tn ≈ n, then just by rejecting all units
would lead to an accuracy close to 1. The conclusion is that, in program com-
prehension, accuracy is not the right metric when it comes to evaluate machine
learning classifier and then we decided to adopt F2.

6.3.2 No-clustering Experiment

FEAT is a two steps process requiring first clustering and afterwards entry-point
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Project A F2 P R Units Oracle Draw
size size

HEXDUMP 0.887 0.068 0.048 0.076 253 12 [13, 25]
GEDIT 0.902 0.054 0.027 0.072 1294 36 [65, 129]
Table 6.2 – Results of the experiment on random selection of entry-points

selection. However, in order to run the second step, clustering is not strictly nec-
essary and one may wonder whether this computationally demanding step can
be skipped altogether considering the whole call graph as a unique, big cluster of
units. Hence, the next experiment addresses the question:

RQ3: How does FEAT perform running entry-point selection directly on the
whole call graph?

In practice the experiment, after the creation of the call graph, simply runs the
entry-point selection step on a fictitious cluster containing all units of the project.
The results, which for recall are quite interesting, are shown in Tab. 6.3. The
main issue with this approach is about usability; having a single large program
topos does not allow to benefit from a more selective view on the system like the
one produced through the clustering step. Entry-points in this approach have a
larger, less selective index of words and neighborhood that make the evaluation
and usage of program topoi harder from a user standpoint.

Project A F2 P R Units Oracle
size

HEXDUMP 0.775 0.273 0.097 0.500 253 12
GEDIT 0.772 0.305 0.089 0.778 1294 36

Table 6.3 – Results of the experiment running FEAT without the clustering step

6.3.3 Impact of α, β Parameters

The subject of the next experiments is the whole FEAT approach and focuses on
the choice of parameters α, β 4 and, the combination of textual elements available
in source code according to the following predefined subsets:

• Code: unit names, variable names and, literals.

• Comments: remarks preceding and contained in unit blocks.

4. This is the parameter related to program topos definition mentioned in Def.4.4.
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• All: union of code and comments.

All results shown in this section come from experiments ran on HEXDUMP and
GEDIT which are the projects with an associated oracle.

Recall that α parameter sets the relevance of the two elements of the hybrid dis-
tance (see Eq.4.6) whereas β determines how many units will be classified as
entry-points and then affecting the size of program topoi (see Def.4.4). The fol-
lowing experiment aims at evaluating how various combinations of α and β in-
fluence FEAT’s results.

RQ4: How does the parameter pair 〈α, β〉 affect FEAT’s performance?

For both HEXDUMP and GEDIT we let α vary between 0 and 1 (increments of
0.1) and β vary between 0.05 and 0.5 5 (increments of 0.05) amounting to 220 tests.
Textual elements correspond to the Comment subset (We show here just one subset
of source code elements for the sake of simplicity). In Fig.6.1 we see the graphs
showing the results of the experiment on the two projects. In order to pinpoint
tests reaching the best performance we created a ranking, shown through colors
in Fig.6.1, according to the following criterion: best tests are those whose F2 value
is within the 95th percentile of the observed set of F2 values (blue dots). Red
dots are maximum values whereas gray are the remaining ones. The experiment
shows that a balanced value of α gives better performance and for β we see that
the highest values are reached with the range β ∈ [0.15, 0.35].

The next research question is:

RQ5: Given a fixed β value, what is the impact of α and of the selection of textual
elements (identifier, comments, etc.) on FEAT’s performance ?

We evaluate F-measure, precision and, recall while α goes from 0 to 1 with incre-
ments of 0.1 and β = 0.3 (See previous experiment for explanation on the choice
of this value). At the same time we use several textual elements extracted from
source code The experiment generated 66 tests whose results are summarized
in Fig.6.2. Regarding RQ5 we notice that, regardless the combination of textual
elements, the highest values for F2 are reached with a balanced value of param-
eter α ≈ 0.5 with promising values for recall which in both cases is R ≈ 0.8.
More textual elements, as in the All combination, does not always imply better
performance, actually the red line in Fig.6.2 related to Comments shows similar
performance. This might indicate that, semantically speaking, the most relevant
content is usually conveyed by comments and not by source code elements such

5. We considered values of β higher than the 50th percentile not interesting because they would
create too large program topoi to be useful.
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Figure 6.1 – Experiments showing FEAT’s performance wrt. the combination of α and β
values. Parameter α varies between 0 and 1 (with steps of 0.1) and β between 0.05 and
0.5 (steps 0.05)
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as identifiers, literals, etc.

Although it is hard to draw any definite conclusion regarding the selection of α
with only a few number of analyzed projects, we can extract some rules of thumb
for this purpose. Before applying FEAT, we suggest to run a brief inspection on
the code and assess the quality of coding style, especially in terms of meaning-
fulness of comments and naming conventions. In case of good quality, we rec-
ommend to give a higher weight to the lexical analysis part of FEAT by selecting
α ∈ [0.50, 0.65]. Otherwise, we suggest to use lower values of α so that less weight
is given to the lexical part. Typically, one can start with a value for α ∈ [0.35, 0.50].
For instance, in GEDIT we found a strong, consistent naming convention accom-
panied by short and precise comments. In this case, our experiments have shown
that α = 0.65 gave a better result than α = 0.50. The choice of a value for β looks
easier and in this case we suggest to start with β = 0.3.

6.3.4 Applicability of Program Topoi

The objective of this experiment is described by the following research question:

RQ7: How helpful program topoi are when dealing with feature discovery and
feature location tasks?

Here we mimic applications of FEAT to a hypothetical setting. Let us assume
that we have been provided with the project GEDIT and that we want to dis-
cover which features are implemented and where precisely they are located in
the source code. First, we set the two parameters according to the previous ex-
periment’s findings that is α = 0.5 and β = 0.3 and we select all textual elements
from source code. Second, we run FEAT and go through the generated program
topoi. An excerpt of them is shown in Tab.6.4 that lists four entry points. Each
line of the table reports the name of the entry-point and part of its dictionary. In
addition to that, FEAT provides also the neighborhood of each entry-point as it is
shown in Figs.6.3-6.6. Though the names of the units are already self-explanatory
we added a brief description of the related capability under each unit. It is evi-
dent that the indexes of words and neighborhood graphs are helpful supports in
finding capabilities of an unknown system. It is also important to stress that the
discovery of capabilities does not require to examine a flat, long list of units but
it benefits from the program topoi representation where every program topos is a
sorted by relevance short list of entry-points which is easier to consult. In the case
of GEDIT without FEAT, we would have an unsorted list of 1,294 units whereas
the largest program topos has 97 ranked units and all the others have between 3
and 12 units.
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Unit Name Index of Words
(Feature)
_gedit_cmd_file_open chooser, command, dialog, document,
(File open) file, folder, open, ...
_gedit_cmd_file_print command, dialog, file, filename, find,
(File print) folder, preview, print, ...
_gedit_cmd_search_find command, document, dialog, find, goto,
(Find text) previous, search, syntax, text, ...
_gedit_cmd_edit_copy clipboard, command, copy, edit, text, ...
(Copy to clipboard)

Table 6.4 – Part of a program topos obtained from the analysis of GEDIT

Unit Name Module
1 ensure_user_config_dir gedit-app.c
2 save_accels gedit-app.c
3 gedit_app_shutdown gedit-app.c
4 _gedit_cmd_edit_copy gedit-commands-edit.c
5 _gedit_cmd_edit_cut gedit-commands-edit.c
6 _gedit_cmd_edit_paste gedit-commands-edit.c
7 gedit_tab_get_view gedit-tab.c
8 tab_switched gedit-window.c
9 setup_side_panel gedit-window.c

10 bottom_panel_item_added gedit-window.c
Table 6.5 – Searching clipboard capabilities in GEDIT

The second part of the experiment relates to finding the location (i.e. unit name
and module) where a capability is implemented. The only available information
is our generic notion of the capability we want to find. On the basis of the same
program topoi generated in the first part of this experiment we run a free text
query. Let us assume that we want to search where the clipboard management
capabilities are located in GEDIT. Then we provide the query “clipboard” and the
system provides us the ranking shown in Tab. 6.5. The table shows the first ten
results and in the positions 4, 5 and, 6 we have the entry-points corresponding to
the usual copy/cut/paste features of the clipboard management and the module
containing them. Again, we believe that this is a valuable asset to tackle a feature
location task.

Just a technical remarks regarding the last experiment. To accomplish the ac-
tual search we use the full-text indexing and searching capabilities of MySQL
(program topoi are persisted in a MySQL RDBMS. More architectural details in
Chap. 5) we believe that a more tailored approach to free-text search using all the
informations gathered by FEAT would provide even better performance.
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Figure 6.3 – File open Figure 6.4 – File print

Figure 6.5 – Find text Figure 6.6 – Copy to clipboard

This experiment has shown through a concrete example not only that FEAT can
be useful but also its duality; being able to deal with both feature extraction and
location tasks.

6.4 Benefits of FEAT’s Hybrid Distance

At the very core of FEAT there is the dual perspective explained in Chap. 4
equipped by the hybrid distance described in Eq. 4.6. This constitutes also the
main difference between FEAT and similar approaches. The last experiment eval-
uates whether the adoption of a hybrid distance in FEAT brings any added value
in comparisons with other existing, similar approaches.

RQ8: In locating software features, are there any benefits in combining structural
and semantic elements of source code?

Marcus et al. [47] applied LSI (latent semantic indexing) 6 to map concepts ex-

6. LSI is usually considered a synonym for LSA even though some tend to use the acronym



94 Chapter 6. Experimental Evaluation

Unit/Data File
wrapFont() gui-menubar.c
mo_set_fonts() gui-menubar.c
mo_get_font_size_from_res() gui.c
XtResources resources[] HTML.c
PSFont() HTML-PSformat.c

Table 6.6 – Oracle used in the feature location experiment with MOSAIC

pressed in natural language to relevant parts of the source code. In this approach,
users formulate queries and evaluate the results returned by the system. The sub-
ject used in this work is MOSAIC web browser. The case study aims at locating
features related to “font”-handling and, for this purpose, the authors created an
oracle (see Tab.6.6) made of four functions and one data type. They supplied
several queries to the system having an increasing complexity: starting from sim-
pler queries such that “font” and, successively adding more words. The query:
“font style bold italics large small regular” found fifteen functions involved in font
management including all the functions included in the oracle, while the query
using only the word “font”, did not find any relevant element. In order to com-
pare FEAT with this approach, we analyzed MOSAIC’s source code and using
the query language of the graph database (neo4j), we ran the first query (“font”)
to search all clusters having “font” as part of the entry-point index. FEAT, just
with this simple query, managed to identify all the functions of the oracle. The
results of this test are given in Tab.6.7. It is worth noticing that our approach
with α = 0.5, even with the simplest query, performed always better than the one
based on LSI. LSI never reaches a precision higher than 0.33.

But the most important point to highlight is that FEAT can automatically reveal
more than LSI about how units are related. Given a free text query, LSI cannot
detect the functional dependencies among units. It is only able to reveal similar-
ities among units on the basis of the usage of natural language, the drawback is
that its outcome is a flat list of unit names. Unlike LSI, FEAT splits font-related
units into two clusters as shown in Fig. 6.7 and Fig. 6.8. These figures display
the output produced by querying the system with query “font”, where orange
nodes represent clusters and blue nodes are units. By looking at the source code
of MOSAIC, we discovered that the font-related unit in the oracle (see Tab.6.6)
called PSfont(), shown in Fig.6.7, is part of the postscript printing feature.
The three remaining units of the oracle (wrapFont(), mo_set_fonts() and,
mo_get_font_size_from_res()), shown in Fig.6.8, are part of the user inter-
face feature (window creation). So, even though all functions in the oracle have
a high lexical similarity w.r.t. to the query “font”, they are not similar at all when
looking at them from the functional point of view. FEAT, unlike LSI, taking into
account both semantic and structural elements through its hybrid distance metric

LSI when LSA is applied to information retrieval applications.
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Figure 6.7 – NCSA Mosaic web browser. Clustering of postscript printing feature.

obtains a more accurate representation of a software system’s features.

FEAT LSI
P R P R

0.44 1.00 0.00 0.00
Table 6.7 – Comparison of FEAT with a LSI-based approach, while running query:
“font”.

6.5 Scalability Evaluation

The adoption of a new methodology is determined also by its scalability, then in
this section we address the following research question:

RQ9: What is the correlation between FEAT’s running time and memory usage
w.r.t. software projects characteristics such as: number of units, size of the dictio-
nary, LOC and, call graph density?

The results of this experiment, involving the projects listed in Tab.6.8, are re-
ported in Fig.6.9. On the left hand side we have graphs reporting the running
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Figure 6.8 – NCSA Mosaic web browser. Clustering of browser window creation feature.

time (RT [s]) of the experiment while α varies in {0, 0.5, 1}. For every value of α
we have two curves: the total time employed by FEAT (solid line) and the clus-
tering time (dashed line). The difference between the two curves is equal to the
time needed by the preprocessing step. In all cases the time of the entry point
selection step can be neglected.

The right hand side of Fig.6.9 contains the graphs about memory usage. In this
case we plot only one graph per characteristic because no meaningful differences
have been observed among the various values of α. Let us focus on the running
time graphs. The analysis of running time leads to two main observations. First,
for larger projects performance is negatively affected by values of α > 0 which
means that the computation of the textual distance (Eq.4.3) and the coherence
criterion (Eq.4.8) are demanding. Indeed the graph KUnit/Time shows a steep
increase for α = 1.0 and number of units higher than 2 KUnit. A similar behav-
ior can be observed in the KWords/Running Time graph where Running time
grows faster for values higher than ≈ 2.3 KWord. Second, the clustering step,
whose complexity is Θ(n2 log(n)), is the most costly one when α > 0 while for
α = 0 running time is dominated by the preprocessing step. Density shows a
negative correlation w.r.t. both time and memory. Regarding the memory usage
no clear patterns emerged, nevertheless we observe a fast growth in relationship
with KLOC ≥ 70.

In conclusion, FEAT shows acceptable performance with projects counting up
to 1.3 KUnit and dictionaries with size up to ≈ 2 KWords producing results in
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Project LOC #Unit #File Dict. ρ
1 Linux FS EXT2 8,445 180 14 748 0.0201
2 Hexadec. Viewer 12,053 254 13 764 0.0091

3 GNU bc
Calculator 1.06 12,851 215 20 723 0.0204

4 Intel Ethernet
Drivers and Util. 30,499 581 16 1,479 0.0062

5 Ultradefrag v7.0 34,637 1,112 74 1,874 0.0054

6 Zint Barcode
Generator v2.3.0 38,095 345 43 1,275 0.0134

7 GNU Editor v3.2 42,718 1,370 59 1,048 0.0021
8 bash v1.0 70,955 1,477 128 2,216 0.0027
9 Linux IPv4 84,606 2,216 127 3,211 0.0011

10 x3270 Terminal
Emulator v3.5 91,449 1,881 136 3,008 0.0025

Table 6.8 – Open Source software projects used in the scalability evaluation experiment

about 20 min, for greater values of these characteristics the full hybrid approach
becomes rapidly too costly.

6.5.1 FEAT at Software Heritage

Software Heritage 7(SH) is an initiative owned by Inria whose aim is to collect, pre-
serve and, share all publicly available source code. It is more than just providing
a central point for accessing source code, its main objective is the preservation of
an important artifact of human ingenuity: software.

At the moment, SH holds almost 84 million projects amounting to more than 4,4
billion files. It is evident how challenging it is to provide search capabilities over
such an enormous repository. Last year we began a collaboration with SH whose
objective is the adoption of FEAT as a searching tool.

The final experiment presented in this chapter is about a subset of projects down-
loaded from SH and processed with FEAT. We selected 600 projects coming from
various domains, written in C language whose (compressed) size is between 50
Mbytes and 150 Bytes. SH’s repository is organized as a Merkle tree and the
projects, which are nodes in this tree, are identified through their SHA1 code.

Thirty-two projects were discarded because they are too large to be processed,
this limitation does not come from FEAT but from the hosting platform CRYS-
TAL which interprets long running tasks (i.e. taking several hours) as system

7. www.softwareheritage.org

www.softwareheritage.org
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Figure 6.9 – Correlation between running time and memory usage w.r.t. LOC, number
of units, size of the dictionary and, density of CG
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[min,max]
Projects 448
Files 48,187
Units 428,480 [3, 4630]
LOC 25,594,995 [37, 1611756]
Dictionary [4, 5980]

Table 6.9 – Summary of FEAT’s experiment at Software Heritage

hangs. This needs a refactoring of the platform for such peculiar activities. Other
120 projects have been automatically discarded by FEAT because they are too
small to be analyzed (i.e. very few lines of code). Hence, the results we are going
to present come from 448 projects. Some key figures, summarizing the experi-
ment, are shown in Tab. 6.9.

The plot in Fig. 6.10 shows the same measures seen in the other scalability exper-
iment; running time and memory usage wrt. units, lines of code, dictionary size
and, density of the call graph. Having a larger sample of projects made emerge
how most of these measures are too chaotic to be used as an estimator for FEAT’s
performance. The only exception is for the number of units vs. running time
here we can recognize a polynomial trend at least until a threshold which can be
identified around 4,500 units. Indeed, in Fig. 6.11 we determined a third order
polynomial fitting (RT (u) ≈ au+ bu2 + cu3 + d) shown in red in the graph. After
that threshold, running time seems to grow much faster but, unfortunately, with
the current version of the tool it is not possible to run experiments on projects
with a higher amount of units.

It is clear that processing such huge amount of data is a major undertaken and it
requires a lot of work for improving the efficiency of the approach, nevertheless
this experiment has shown that FEAT, through program topoi, is a viable ap-
proach for the creation of smart, efficient indexes making semantic and structural
information available even on large code repository.

6.6 Threats to Validity

This section discusses some elements that can be considered a threat to the valid-
ity of our experimental evaluation.

• The value selected for α has a great impact on the accuracy, precision and
recall. Choosing an appropriate value for α is a key point of our approach
and, unfortunately, there is no theoretical result helping us deciding before-
hand the best value for this input parameter. An approach would have been
thus to run FEAT on more than two projects for which we had an oracle.
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Figure 6.10 – Correlation between running time and memory usage w.r.t. LOC, number
of units, size of the dictionary and, density of CG with FEAT



6.6. Threats to Validity 101

Then, it could have been possible to decide on an appropriate value of α
based on the experimental results. This was considered as a too demand-
ing effort which would have required to create an oracle for each additional
project.

• The creation of oracles needed for the automatic assessment of FEAT can be
biased by the author’s knowledge of the experimental evaluation. In order
to mitigate this risk, we have selected two software projects on which we
ignored everything beforehand and have manually extracted an oracle for
both of them. Of course, one could object that knowing that HEXDUMP is a
hexadecimal converter and that GEDIT was a text editor helped us deciding
of the extracted features, but it is important to stress that none of the authors
knew the code of the project or results of FEAT beforehand.

• The evaluation of FEAT is based on the comparison of runtime w.r.t. differ-
ent project characteristics. It would also have strengthened the evaluation
to perform a controlled experiment in order to evaluate the usefulness of
topoi in program comprehension. We could have set-up a controlled exper-
iment where half of the participants try to understand a software project
with FEAT and another half without FEAT. Some measurements on the
time needed to find software features could then have been reported and
analyzed.

Conclusion

In this chapter we presented the several experiments that we used to: compare
FEAT with some baselines, evaluate it from a quantitative standpoints, obtain
indications on its α and β parameters setting, create practical application in real
settings as Software Heritage.

Obviously, as we have already said, FEAT needs to be improved especially when
dealing with large repositories, nevertheless the results we obtained both in terms
of program topoi discovering and performance are encouraging and allow us to
conclude that FEAT could be deployed and applied in real settings.



102 Chapter 6. Experimental Evaluation

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●
●
●●
●●●●●●●●

●●
●●●●●●●●●

●●
●

●●●

●

●●
●

●

●
●●
●●●
●
●●●

●

●
●
●
●●●

●

●

●●

●

●
●
●●

●●

●●
●
●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●
●
●●●
●●

●●

●
●

●
●

●
●
●
●

●

●
●

●

●

●

●●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0 1 2 3 4 5

0
20

00
40

00
60

00

KUnit

R
un

ni
ng

 T
im

e 
(s

ec
.)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●●
●●●
●
●●●

●●●●●●●●●●●
●●
●●●●●●●

●
●
●
●●●● ●

●
●●
●●
●
●
●●●
●

●

●
●

●●
●●●
●●●
●
●●
●

●
●●● ●●●●

●●●●

●

●
●
●

●
●
●

●

●

●

●●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

Total time
HAC time
Polynomial fit of total time
Polynomial fit of HAC time

Figure 6.11 – Running time vs. number of units. The red lines represent the polynomial
fitted models



VII

Conclusions

Program topoi are concrete and useful representations of software systems’ fea-
tures. When a software system has evolved over a long period of time, topoi ex-
traction provides stakeholders an updated view on the system features which is a
valuable asset to get more maintainable, reliable and, better documented systems.
To address the challenge of topoi extraction, in this thesis we presented FEAT a
three-steps method based on the creation of a model of the system, hierarchical
agglomerative clustering (HAC) and, entry-points selection. In FEAT, HAC ex-
ploits a novel hybrid distance combining semantic and structural elements, and
graph medoids which extend the concept of centroid to set of graph nodes. We
addressed the so-called cutting criterion challenging aspect of HAC by maximiz-
ing modularity and textual coherence in order to achieve the best partition of
clusters in terms of elements’ cohesion. Finally, we defined a criterion based on
principal component analysis to select entry-points as topoi representatives.

By using FEAT on more than 600 open-source projects, amounting to more than
25M LOC in total, and by applying it to Software Heritage we showed that FEAT
is a feasible approach for automatically discovering program topoi directly from
source code. This thesis showed that FEAT can deal with medium-sized software
projects (more than 1,000,000 LOC) in a reasonable amount of time.

Perspectives

This thesis has shown how an automated approach to program comprehension
can benefit from a model based on both semantic and structural information con-



104 Chapter 7. Conclusions

tained in source code. The aim is to exploit some of the elements that experienced
programmers use when they look for concepts implementation in source code.
Clearly, program comprehension involves more than just the two elements of our
hybrid perspective; as we presented in Sec.2.2, experienced programmers think in
term of concepts and they project concepts on actual implementation when look-
ing for features in source code. FEAT models a software system as a combination
of semantics and structure information. Namely, it evaluates two units as similar
if they share both a common usage of the natural language and they are close to
each other in the caller-callee relationship represented in a call graph. Semantics
and structure contained in source code are not the only available elements when
approaching a more accurate representation of concepts in program comprehen-
sion. But there are also other meaningful representations of software systems like
data dependence graph which might be considered to enrich FEAT’s model. The in-
troduction of a third element to FEAT’s perspective would require a suitable way
to combine them; Could still a linear combination of the three elements work to
this aim? Would multidimensional arrays (tensors) provide a better representa-
tion of a software system’s model? These are interesting questions deserving to
be analyzed in the future.

In the course of this thesis we gathered several aspects that we would like to
deeper investigate in the future in order to improve FEAT. Some of them lie at
the ground of the approach, whereas others can be considered more technical
improvements aimed at enlarging the audience of potential users of FEAT. Let
us start with the more theoretical aspects.

• Entry-points are provided with a graph neighborhood and a list of alpha-
betically sorted words. Sometimes this list can be quite long and hard to
interpret. The problem with the text embedded in bodies of units is that it
does not follow any document structure. Nevertheless, applying summa-
rization techniques on comments can be helpful to address this issue and
provide a more understandable text to users.

• Program topoi can be exploited to automatically uncover links between
source code and test scripts by means of program topoi’s index of words.
Several approaches have been proposed to perform data mining on pro-
gram and test-execution traces but they usually require either the instru-
mentation of source code or the evaluation of execution traces. FEAT could
provide a static, fully automated approach to the creation of traceability
map between source code and test cases.

• In the line of work on the traceability map between source code and test
cases using FEAT, it would be interesting to model and to take into account
a set of preferences on tests given a set a features. The idea here is to be able
to start by testing the most important features w.r.t., user’s preferences. The
preferences can be also automatically elicited from test cases where a test
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case can dominate a set of test cases in terms of coverage testing criteria.

More on the technical side of FEAT, we foresee the following future works:

• Dealing with larger projects. In this thesis, with the prototypical version of
CRYSTAL.FEAT, we found a limitation in handling projects of size higher
than 4.5K units. Our approach could be improved by: (i) task parallelization
(ii) incremental build of the model in order to deal with new versions of
already processed projects.

• Incremental creation of FEAT’s model in order to take into account small
variations in already processed projects without requiring a new elabora-
tion from scratch.
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