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0.1 PREAMBLE

0.1 PREAMBLE

Following global changes, species populations will disappear, grow
or move in space. The species composition and the functioning of
ecological communities will change. Anticipating these changes has
thus naturally taken a central place in ecology (Mouquet et al., 2015).

The task is daunting, however. While species abiotic requirements
can be reasonably used to predict where and when a species can dis-
appear (Devictor et al., 2008), community scale keeps being the realm
of contingency and sudden reorganizations (Lawton, 1999). Lakes can
shift from clear to turbid as a nutrient threshold is crossed (Scheffer
et al., 2003). The introduction of a predator or an invasive species
can suddenly dramatically reorganize a community (Ellis et al., 2011;
Estes et al., 2011). Arid ecosystems can turn into deserts as grazing
pressure crosses a threshold (Kéfi et al., 2007). Fish stocks can sud-
denly plummet (Vasilakopoulos & Marshall, 2015). Plant-pollinator
interactions can collapse following external disturbances (Lever et al.,
2014; Dakos & Bascompte, 2014).

These dramatic responses arise because ecological systems are not
simple but complex, i.e. composed of many interacting elements. Spe-
cies in a community do not live in a vacuum, but are bound together
by interactions. Because many ecological communities are diverse,
the web of interactions between species may be unfathomably intri-
cate and difficult to analyze — echoing Darwin’s vision of the eco-
logical community as an "entangled bank". This is very real issue
as, to date, the consequences of the loss or arrival of a species in a
given community remain extremely hard to predict: many species in-
troductions for pest control had and still have unpredicted negative
consequences (Carvalheiro ef al., 2008).

Despite their complexity, ecological interactions can exbhibit spe-
cific structural patterns, that determine the response of the whole
community to disturbance. For example, ecological systems can ex-
hibit positive feedback loops — in which a characteristic is amplified
because it feeds back on what causes it (Wilson & Agnew, 1992).
Where strong feedback loops are present, the effect of an external
pertubation, even if small, can be amplified. For example, the posi-
tive interactions between plants in arid ecosystems are known to play
a great role in their response to perturbations (Kéfi et al., 2007). Plants
facilitate each other by growing in tight clusters that raise the avail-
ability of water within them (Rietkerk et al., 2004), up to a certain
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INTRODUCTION

point in stress. Past this point, facilitation cannot counterbalance stres-
sors and an increase in stress, even small, can trigger an irreversible
desertification process.

Not all ecological communities are wired in such a way as to show
dramatic shifts. Other studies have also shown that ecological inter-
actions can have specific structures that confer robustness to species
extinctions (Lever ef al., 2014; Verdu & Valiente-Banuet, 2008, Mem-
mott et al., 2004) and allow them to persist in time despite external
disturbance (Stouffer & Bascompte, 2011; Thebault & Fontaine, 2010).

Much research has naturally been devoted to identifying where on
this spectrum a given ecological community falls i. e. identifying its
potential response to perturbations, and measure its resilience — its

capacity to recover after a perturbation.

A first approach has focused on the particular case of ecological
systems exhibiting "threshold" responses, where a change in environ-
mental conditions, even small, can produce a wide shift in one or
more coarse characteristic of the ecological system (e. g. total biomass).
These often arise when positive feedback loops are present in species
interactions (Kéfi et al., 2016). This body of research, to which this
thesis contributes, has produced generic methods and indicators of
degraded resilience for this specific case.

This approach is appealing by its simplicity, yet only applies to spe-
cific cases where a specific pattern in interactions is already known
(feedback loops). For many communities, interactions between species
are unknown and must be mapped. Since the early 2000’s and the rise
of network science (Barabasi & Poésfai, 2016), many tools and frame-
works have been created to do so and analyze ever-more complex
interaction networks (Morales-Castilla et al., 2015; van Borkulo et al.,
2015; Poisot et al., 2012; Delmas et al., 2017). Ecological interactions,
in the context of a network, are represented as links between nodes
(e.g. links representing trophic interactions between species or nodes
in a food web). Identifying specific patterns in these networks that
are known to affect the resilience of the community could be a way to
anticipate the effect of disturbance on a given ecological community.

However, this view has been criticized (de Ruiter, 2005) as too
simplistic, as the link between disturbance and interactions is, in
fact, a two-way street: ecological interactions may affect the response
of a given community to perturbations, but interactions themselves
change with perturbations (Figure o.1). Indeed, many striking reor-

ganizations of ecological communities entail a rewiring of ecological
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interactions on top of a change in species abundances. For example,
work on plant-pollinator interactions have shown that not only they
can determine the community response to disturbance (Memmott
et al., 2004) but also be affected by disturbance themselves (Mem-
mott ef al., 2007b). In plant ecology, decades of work have shown the
change of interaction strengths between plants along environmental
gradients (Callaway, 2007). Describing the response of communities
to disturbance thus requires monitoring species abundances as well

as interactions between species (Gray et al., 2014).

A tight, and two-way relationship thus exists between the structure
of ecological interactions, and the resilience and response to pertur-
bations of the community (Figure 0.1). The way these are studied is
quickly changing as new methods and increasingly-detailed datasets
become available to ecologists. This thesis aims at contributing to the

quickly-changing approaches to these topics.

Structural patterns in
interactions

Affect... 3 Resilience and stability
properties of the community
Modularity
Nestedness
Positive/negative
interaction balance Feedback loops
o~
Koo'
o) Ommumty
\ Species abundances
o .
R
S O
v, .
j;; | Determine...
Species interactions Dlstyrbance
Environmental changes

Figure 0.1: An ecological community is defined by a set of species and their
interactions. These interactions can show structural patterns that
determine the resilience and stability properties. The latter, com-
bined with the characteristics of disturbance events, affect back
the species abundances and interactions, effectively changing the
original ecological community.
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0.2 CONCEPTUAL CONTEXT AND STATE OF THE ART

0.2.1 Describing and measuring the response of communities to distur-

bance

Consumers

1 species

N

(a) Trophic interactions
/ e.g. predation

— (b) Non-trophic interactions among consumers
e.g. habitat creation

Producers

Soil

input
__> .
¢ Nutrients S

output

Litter

(d) Matter flows in ecosystem
e.g. nutrient cycling

Figure o.2: Interactions in ecological systems are present at several levels
and between elements of different nature. The classic notion of
interaction in a given ecological community involves two species,
and can be trophic (a) or non-trophic (b,c). However, interac-
tions can also occur between species and their environment (d)
as species often modify local abiotic conditions. For example, in
the diagram, a positive feedback loop is present between pro-
ducers and soil quality (litter, nutrients). Taken altogether, these
interactions form interaction networks, where nodes are species.

Ecological interactions between species, or between species and

s their abiotic environment (Figure 0.2), can determine the response

of a given ecological community to disturbance. To describe correctly

this response, it is required to introduce a set of useful concepts such

as stability and resilience.
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0.2 CONCEPTUAL CONTEXT AND STATE OF THE ART

0.2.1.1  Stability and resilience in ecological systems

The concept of stability is notorious for having multiple definitions
in ecology, which impedes comparison between studies (Table o0.1).
For example, a survey of the literature by Donohue et al. (2016) re-
vealed that in model systems, stability is most often considered to be
asymptotic stability, i.e. the rate of return to equilibrium of a system
subjected to an infinitesimal perturbation of its state. This definition
of stability is purely deterministic and does not involve any notion
of temporal variability, which is what is most often considered as
stability in empirical studies (Donohue et al., 2016). However, two
ecological systems could have the same asymptotic stability, but dif-
ferent temporal variabilities, for example because they are subject to
different pertubation regimes.

This discrepancy in the use of the stability concept is one example
among many, as pointed out by the multiple reviews about its use of
in ecology (Pimm, 1984; Ives & Carpenter, 2007; Borrelli et al., 2015;
Donohue et al., 2016; Grimm & Wissel, 1997). To help reduce mis-
understandings across studies, authors have suggested making more
precise stability statement (e.g. Grimm & Wissel, 1997), or includ-
ing multiple aspects of stability at the same time in a given study
(Donohue et al., 2013).

Because it is related enough to sometimes be considered a compo-
nent of stability (Donohue et al., 2016), the concept of resilience — put
simply, the capacity of a given system to recover after a perturbation
— has followed a similar path. Authors such as Holling (1996) have
pointed out the dual definition of resilience in the literature, separat-
ing out engineering resilience — how fast an ecosystem recovers after
a perturbation — from ecological resilience — the maximum amplitude
of disturbance that a system can absorb while maintaining its struc-
ture. More recently, authors have also sought to clarify further the
concept of resilience (Hodgson et al., 2015), and in particular define a
standardized way to measure it on data (Ingrisch & Bahn, 2018).

Despite this diversity of definitions, stability and resilience have
proven to be useful concepts to describe and understand the response
of ecological systems to perturbations. In particular, stability landscapes
(or resilience landscapes, Hodgson et al., 2015) underpin much work
aiming at measuring resilience in empirical systems, and describing

their response to perturbations.
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Stability measure

Aspect quantified

Domain of most fre-
quent application

Note

Constancy (inverse of
Variability)

Persistence,
Robustness
Resistance
Asymptotic stability

Engineering Resilience

Ecological Resilience

Table o.1: Diversity in the measures of stability and resilience: a non-exhaustive list of stability metrics, with their usual domain of application in

Magnitude of variation over
time/space
Appearance/extinction of
species over time.

Capacity to remain
unchanged under
disturbance

Rate of return to equilibrium
after infinitesimal
perturbation

Speed of return to
equilibrium after a realized
perturbation

Maximum perturbation
before a system exhibits
qualitatively different
functioning

ecological work (data from Donohue et al., 2013).

Empirical work

Variable

Empirical work

Theoretical work

Variable

Variable

Robustness often quantifies the number of ex-
tinctions after a species is removed from a sys-
tem, i.e. the number of secondary extinctions

This metric itself can be measured in different
ways on empirical data, Ingrisch & Bahn (2018)
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0.2.1.2  Measuring resilience

ECOLOGICAL SYSTEMS AS STOCHASTIC DYNAMICAL SYSTEMS

Approaches from dynamical systems theory have heavily influenced
the theoretical developments around the notion of stability. In this
framework, a system’s state is described by a set of state variables. For
an ecological system comprising a set of different species, the natural
state variables could be the set of abundances of every species. The
value of these variables is subject to changes because of internal prop-
erties of the ecological system — e.g. population growth — but also
because of external factors — e. g. environmental conditions.

Put more formally, in this framework, an ecological system is often

modelled mathematically by a differential equation of this form:

ax _ fo(X) (0.1)

at
where, X is the set of state variables defining the state of a sys-
tem. The function fg, which often depends on a set of parameters 6,
defines the intrinsic properties of the system. For example, the follow-
ing seminal overgrazing model (May, 1977; Noy-Meir, 1975) describes
vegetation growing under grazing pressure:

2
c%/ =rV(1— %) — CVZ‘ZVOZ (0.2)

The vegetation biomass V' (a state variable) here defines the state of
the system, while r (reproductive rate), K (carrying capacity), Vp (half
saturation of grazing rate) and c (grazing rate) are parameters.

In this framework, ecological systems can display stable states, which
are specific values X* of the state variables at which the state of the
system does not change over time (in the absence of noise). These
stable states depend on the values of the parameters 6 used in the
function fy, and for a given set of parameters, multiple stable states
can exist. The above overgrazing model displays such multiplicity of
stables states along a gradient of changing values of ¢ (Figure 0.3).

This modelled view of an ecological system is purely deterministic
and does not include stochasticity, i. e. chance events or fluctuations
that can happen in a given system. In practice, ecological systems

are never purely deterministic and stochasticity always contributes to
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Figure o.3: Bifurcation diagram of the overgrazing model (with r=1, K=10,
W=1), along a gradient of c¢ values. Continuous lines indicate
stable states, and the dashed line indicates the limit of the two
basin of attractions where multiple stable states are present for
the same grazing values. This line delineates two basins of at-
traction, which are the set of values from which a system will
converge to a particular stable state (grey arrows). White dots
indicate critical points, at which one of the multiple stable states
becomes unstable.

the observed state of a system at a given point in time, hence to its
apparent stability.

In a model system with a deterministic response fy, the parame-
ters 0 and the form of the function f define how a system will change
given in current state. Assuming a simple model where the state is de-
fined by a univariate continuous value X, the response of the system

can be visualized by defining a potential U:

au aX

de(G) =~ (0.3)

Tracing the values of U for different values of X yields a "stability
landscape", where stable states are represented by the bottom of val-
leys which are basins of attraction. Intuitively, the temporal evolution
of the system can be described by a ball rolling down this landscape,
i.e. towards stable states. For a given value of the system parameters
(e.g., grazing rate c in Figure 0.4), a system can have multiple states,
as manifested by several valleys in its stability landscape.

Using this landscape analogy, the engineering resilience (i.e. the
time of return to equilibrium) is captured by the slope of the potential.
The ecological resilience can be interpreted as the height of the basins
of attractions, i.e. how much the system needs to be perturbed to
switch to a different state. The shape of this landscape, and how it
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Figure 0.4: Potential curves of the overgrazing model (red curves). Stable
states in the bifurcation diagram correspond to the bottom of
valleys in the potential curves (black and grey dots). As the envi-
ronmental conditions change (here, the grazing c), the shape of
the curves change and the position and number of stable states
change.

varies as environmental conditions (parameters) change defines the
resilience of the system.

In particular, one central challenge in resilience ecology has been to
identify where and when multiple stable states (i. e. multiple valleys
in the potential) are present in empirical ecosystems. When they are,
irreversible shifts can occur as one of the stable states is lost (Figure
0.4), and stochastic perturbations can have long-term consequences
by making a system shift from one state to another. For this reason,
much research has sought to find methods that link the character-
istics of the stability landscape with empirical patterns (Scheffer &
Carpenter, 2003).

POTENTIAL ANALYSIS
Following the potential analogy, the state of a system will always
tend towards stable states (the ball rolls down into the valleys of the
stability landscape). As a result, it is more likely to be observed close
to its stable states than away from them. This intuition has been for-
malized for a system defined by a single state variable by Livina et al.

(2010).
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Considering a simple system defined by a single state variable X,
repeated observations of the same system will yield a set of values
whose empirical density P, can be computed (e.g. through kernel
density estimation). If the temporal response dX/dt of a system is
subject to white noise of amplitude o, then the potential U has a one-
to-one relationship with the above empirical density through:

2
U(x) = —%long (0-4)

This relationship implies that the stable states of a given system,
i.e. the bottom of valleys in the potential U, should correspond to
modes in the empirical distribution of observed states. In particular, if
a system has two well-separated stable states, then two modes should
be observed in the empirical distribution of states (Livina et al., 2010).

This formal link between observed state and potential has had great
success in ecology and many studies have used it to interpret multi-
modality as potential alternative stable states in ecological systems.
For example, Hirota et al. (2011) identified tropical forest and savanna
as alternative stable states that can coexist under similar levels of
rainfall, based on the presence of multimodality in the distribution
of tree cover. Similar studies have been carried out for a variety of
ecological systems such as boreal biomes (Scheffer et al., 2012b), fish
stocks (Vasilakopoulos & Marshall, 2015), arid systems (Berdugo et al.,
2017) or small rock pools (Buschke et al., 2013).

Yet the observation of multimodality in empirical systems only
weakly supports the presence of alternative stable states. The pres-
ence of the latter entails the presence of bimodality in data, but the
reverse is not necessarily true. Bimodality in data could be under-
pinned by the presence or absence of an unmeasured factor that has
not been taken into account. The presence of multi-modality, however,
remains useful as exploratory analysis to identify where potential al-
ternative stable states — i.e. non-linear responses to perturbations —
are present. We use this approach in Chapter 1 to identify potentially
fragile plant vegetation communities in the subalpine meadows of
Sierra Nevada (California, USA).

CRITICAL-SLOWING DOWN AND INDICATORS As a system gets
closer to a critical point, the potential landscape flattens. This is par-
ticularly apparent in the fold bifurcation (Figure 0.4). In this case, at
the critical point, one stable equilibrium disappears and the system
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may shift to a potentially very different state (i.e. a valley in the po-
tential "fills up" and disappears). In practice, this translates into a
phenomenon called critical slowing-down.

As a system slows down, s pecific aspects of the system are ex-
pected to arise in its temporal and spatial properties (Scheffer et al.,
2001). Namely, an increase in auto-correlation is expected to occur, be-
cause its state at a given time (or position) will tend to be more similar
to its state in the previous state (or nearby position). Small perturba-
tions will also have a larger effect as the system takes more time to
return to its equilibrium (decreased engineering resilience), producing
an increase in temporal and spatial variance. These two metrics were
the first suggested in the literature, but others have then been devel-
oped since (e. g. skewness (Guttal & Jayaprakash, 2008), information-
based metrics Dakos & Soler-Toscano (2017), etc.).

Measuring these indicators (or early-warning signals) of critical slo-
wing-down on empirical data could in principle inform on when
and where a given ecosystem has a decreased resilience, in partic-
ular when it happens because of an upcoming shift to another stable
state. For this reason, a large body of literature investigates empirical
data for such changes in critical slowing down. While they have been
observed with reasonable certainty in experiments (Veraart et al., 2011;
Drake & Griffen, 2010; Clements & Ozgul, 2016), their relevance for
empirical data remains controversed. Studies have found empirical
evidence showing an increase in these metrics before observed shifts
in temporal data (Dakos ef al., 2008) and spatial data (e.g. Eby et al.,
2017). Yet many of these cases identify shifts after the fact, which
questions whether indicators based on them can serve as accurate
forecasting tools (Boettiger & Hastings, 2013). Progress on these is-
sues could come from assessing the predictive capacity of these in-
dicators on more empirical datasets. Chapter 2 contributes to these
questions by implementing the computation of spatial indicators in
common statistical software (R). A more extensive review and sum-
mary of indicators is also available there.

Because they are only based on the generic properties of critical-
slowing down, the above indicators can potentially apply to a large
variety of ecological systems. For this reason, they have received much
exposure in the ecological literature. However, other indicators of re-
silience are based on spatial patterns that arise in specific systems,
where interactions between species in a given ecosystem have a spe-

cific effect on spatial structure.
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SPECIFIC INDICATORS  One of the main sources of the presence of
alternative stable states is the presence of positive feedbacks between
elements of a given system. For example, in some arid systems, veg-
etation tends to favor the local recruitement of new individuals (see
also Section 0.2.2.2). In other words, vegetation favors its own recruit-
ment, hence the positive feedback. This has been suggested as a ma-
jor mechanisms underlying the dynamics of arid systems (Kéfi ef al.,
2007), which are thought to show irreversible transitions associated
with the presence of alternative stable states. Because this positive
feedback between plant individuals at local scale has a spatial com-
ponent, it produces a spatial distribution of vegetation with specific
characteristics. Some of these characteristics have been shown to vary
as stress increases and when an irreversible transition is approaching.
For example, the shape of the distribution of vegetation patch sizes
has been suggested as a possible indicator of upcoming irreversible
transition, hence decreased resilience (see Chapter 2 and Kéfi et al.,
2007, 2012). Others have also suggested to use the shape of vegetation
patches as possible indicators of degradation (Rietkerk et al., 2004).

These metrics and indicators try to detect upcoming shifts in an
ecological system, for the cases where a particular pattern is present
in interactions: a feedback loop. This is an example of a structural
pattern in an ecological network that determines how the community
will respond to perturbations. However, for most ecosystems, the in-
teractions themselves — between species, or between species and their
local environment — are not known. It is thus often necessary to map

them in empirical systems.
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0.2.2  Mapping interactions in ecological systems

0.2.2.1 Inferring interactions in ecological communities

The study of interactions between organisms has always been at the
core of ecology, but it is only in the past several decades that research
has sought to map them systematically in empirical communities —
i.e. drawing a list of all pairwise interactions between species in a
given community. An advantage of doing so is that these interactions
can be viewed as elements of an interaction network, where nodes rep-
resent species and links interactions. By viewing them as networks, a
great number of visualisation and statistical tools become available.

Trophic interactions have been the first to be mapped as part of a
network (Proulx et al., 2005). This has changed in the past couple of
decades as ecologists have also focused on other types of interactions
such as interactions between plants and pollinators or between hosts
and parasites (Ings et al., 2009). Recent studies have also used net-
works including several types of interactions (Kéfi et al., 2015; Pocock
et al., 2012).

Mapping interactions can be straightforward when direct obser-
vation is possible (although measuring an interaction strength is of-
ten more difficult). For example, plant-pollinator interactions can be
mapped by direct observation of pollinators” visits to plants. When
direct observation is impossible, using proxies is required to reveal
where an interaction is present or not (Morales-Castilla et al., 2015).
Such a widely-used proxy is the spatial distribution of species. The
intuitive idea is that two species that interact in a negative way (e. g.
through competition or by producing hybrids with reduced fitness)
should be segregated in space. Conversely, two species that interact
positively should often co-occur in the same site.

This approach stems from investigations of the effect of compe-
tition on the biogeographical distribution of species. Cody and Di-
amond’s work in 1975 (Cody & Diamond, 1975) was not the first
to apply co-occurrence analyses ', but marked the beginning of a
heated debate on their computation and interpretation in empirical
data (Sanderson & Pimm, 2015). The authors interpreted "checker-
board distributions", where two species rarely ever co-occur on a
set of islands, as evidence for competition. This interpretation was
disputed by Connor & Simberloff (1979) on statistical grounds, and

Notable previous works include Pielou & Pielou (1968) (association of insects) or
Cole (1949) (methodological aspects of measuring associations)
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later rejoined by Diamond (Diamond & Gilpin, 1982). This debate
has spawned along the way a great body of research investigating
the link between the geographical distribution of species and their
interactions, much beyond the original, species-on-islands problem.

In particular, Connor & Simberloff (1979) pioneered the use of
null models. Null models are "pattern-generating models" (Gotelli
& Graves, 1996), that serve as a reference to produce the patterns
that would be expected given the absence of process of interest. For
example, in the absence of any interspecific interactions, one could
consider that individuals of a pair of species would distribute at ran-
dom in a set of sampled sites. To this day, null models are still widely
used to infer potential interactions from the spatial distribution of
species (Box 1).

Historical co-occurrence studies mostly focused on singling out
species from a regional pool that potentially competed with each
other. For example, Cody & Diamond (1975) mostly focused on com-
petition (among guilds of New Guinea pigeons). Recent co-ocurrence
approaches are based on the same principles, but differ in at least
two key aspects. First, emphasis is put on positive interactions as
well as negative interactions. Second, recent studies do not focus on
single interactions but rather view them as part of a network with a
given structure. This structure can be analyzed and described, and
ecologists have borrowed many tools from network science to do so
(Delmas et al., 2017). For example, both these aspects are present in
a recent co-occurrence framework suggested by Morueta-Holme et al.
(2016).

These methods produce sets of positive and negative associations
between species, i. e. association networks * (Figure o.5).

2 sometimes also named more explicitely "spatial association networks", (e.g. Saiz
et al., 2017)
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Box 1: An example null-model-based analysis of species co-occurrences

Classical co-occurrence analyses are done on occurrence (pres-
ence/absence) data, that is represented as a matrix of ones and
Zeros:

Sp.1 Sp.2 sSp.3 sp.4

site1 o 0 1 1
site2 1 1 e} 1
site3 o 1 0 1

First, a metric is used to describe how associated two species
are. For example, such a metric can simply be the count of co-
occurrences when sampling is discrete, a measure called the nat-
ural metric by Sanderson & Pimm (2015). Other metrics with
slightly different properties are also used in the literature (e.g.
the checkerboard score (Stone & Roberts, 1990), x>-statistic (So-
liveres & Maestre, 2014), (partial) correlation coefficient (Morueta-
Holme et al., 2016)). The metric can be most often computed pair-
wise between each species independently, yielding observed pair-
wise associations Ai]-. Here, using the number of co-occurrences
as our association metric, we get the following A;; for the data
above:

sp.1 sSp.2 sp.3 sp.4

sp-1 . 1 1 1
sp.2 1 . 0 2
sp-3 © 0 . 1
sp-4 1 2 1

Note that for occurrence data, intra-specific co-occurrence cannot
be computed, as this requires recording co-occurrence between
individuals of the same species (see Chapter 3).

The observed pairwise co-occurrence metric is then compared
to a null model. The goal of the null model is to produce a set
of null site x species matrices that correspond to the expected
spatial distribution of species in the absence of interactions. To
do so, many studies use constrained permutations of the original
site x species matrix to obtain expected null occurrences of
species, but recent approaches also use independent data (e.g.
from species distribution models, Morueta-Holme et al. (2016)).

Regardless of the chosen method, a set of N presence/absence
matrices are obtained, from which a distribution of N pairwise
association values Ej;1 ... Ejj y can be computed.

Significant pairwise number of co-occurrences are then retained
in the original association values A;;, depending on whether they
fall in one of the tails of the null distribution.

17
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Box 1: An example null-model-based analysis of species co-occurrences

(cont.)
200
<
>
S)
(©)
100
0 A o
300 350 400 450 500

Number of co—ocurrences
Box 2: Distribution of the null number of co-ocurrences for a pair

of species. If the observed number of co-occurrences is above
the 97.5% quantile of the null distribution of co-occurrences
(red line), a positive association is retained. A similar test
yields negative associations in the lower tail of the null dis-
tribution (blue line).

Because this method is akin to a carrying out a test (with x=0.05
in the above example) for each pair of species, correcting for mul-
tiple tests is often done using the e. g. Benjamini-Hochberg correc-
tion. A strength of association is sometimes also defined as the
SES (Standardized Effect Size) of the observed value compared to
the null distribution.

This process produces an association matrix which holds either
significant association strengths (which can be positive or nega-
tive), or qualitative values representing a positive or a negative
association between each pair of species (Figure o.5).
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Viewing interactions as part of a network has produced many new
methods for the inference of interactions from spatial patterns. Many
of them entail regressing a model of the whole interaction network
instead of relying on separate pairwise analyses. For example, some
statistical models aim at modelling the effect of the presence of a
given species on the probability of presence of another, on top of pos-
sible environmental covariates (Pollock ef al., 2014; Ovaskainen et al.,
2010). This method leads to coefficients potentially reflecting directed
species interactions (Figure 0.5). Other model-based methods include
Markov networks (Harris, 2016; van Borkulo et al., 2015) which pro-
duce undirected networks, or bayesian networks (Milns et al., 2010;
Delalandre & Montesinos-Navarro, 2018) which produces directed
networks.

Signed Weighted
Unsigned network network
network (qualitative) (quantitative)

a) O b) O c) O

Directed CD/ CD/_ C{ N
network / +/' %
lo olo olo

Undirected
network

Figure o.5: Types of networks found in co-occurrence analyses. Networks
can represent directional interactions (a,b,c, e.g. food-webs), or
undirectional interactions (d,e,f). The same classification applies
to association networks derived from co-occurrence analyses,
which represent associations as signed, qualitative directed or
undirected links (b, e). Weighted networks can be also obtained,
in which each association has a given strength (c,f). In most stud-
ies, the networks obtained through co-ocurrence analyses are
signed and undirected (i. e. of type e or f).

Despite ever-more refined methods, co-occurrence networks often
fail to accurately reflect interaction networks (Barner et al., 2018; Freilich

et al., 2018). This is due to a variety of possible reasons:

¢ The effect of interactions on co-occurrence patterns have been
shown to vary with the scale of sampling (McNickle et al., 2017;
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Araujo & Rozenfeld, 2013). Different sampling schemes may
thus yield different interaction strengths between species.

* Species often co-occur because they share a given habitat, re-
sulting in positive associations that do not reflect interactions.
When the habitat cannot be considered constant, typically when
working at biogeographical scale, controlling for this effect may
prove very difficult (Morueta-Holme et al., 2016).

¢ Other assembly processes such as dispersal limitation may also
blur the link between co-occurrence and interactions. Two species
may for example never co-occur, simply as a result of their in-
ability to colonize shared sites (Connor et al., 2013).

Many of these general limits apply to analyses carried out at scales
much above the size of the organisms. Working at local scales, where
patterns are more strongly driven by biotic processes, and where habi-
tat may be considered constant may yield co-occurrence networks
that reflect better ecological interactions between species. This is the
main reason why co-occurrence is often used as a proxy for interac-

tions in plant communities.

0.2.2.2 Plant-plant interaction networks and co-occurrence approaches

Because plants are sessile organisms, the potential effect they have
on other species and on their environment tends to be most intense
around their canopy. As a result, interactions tend to produce a spatial
pattern.

A typical example is the case of "nurse" plants in arid ecosystems.
In these systems, nurse plants are often bushes, which facilitate the
recruitement and/or the survival of other species by improving lo-
cal conditions under their canopy. For example, this improvement
can occur as a result of shading (which limits evapo-transpiration
Valiente-Banuet & Ezcurra, 1991) or making water from deep soil lay-
ers available to plants with shallow roots (Horton & Hart, 1998). In
this case, facilitation produces a pattern of spatial association between
the nurse plant and their facilitated species (their protégées), because
the latter have an increased performance and survival under the for-
mer’s canopy. It seems thus natural to adopt the inverse perspective
and use spatial associations between plants to infer facilitative inter-
actions3.

It is noteworthy that not all facilitation is the result of such an assymetric relation-
ship between a nurse plant and facilitated species. For example, improvement in



10

15

20

25

0.2 CONCEPTUAL CONTEXT AND STATE OF THE ART

The accuracy of such co-occurrence methods to infer interactions
between species have been challenged in the general case (Barner
et al., 2018; Freilich et al., 2018). Yet the sessile nature of plants, along
with experimental evidence of correlation between co-occurrence and
facilitation (Graff & Aguiar, 2011), suggests that they may be informa-
tive for the specific case of plant-plant interactions in the field.

Verdu & Valiente-Banuet (2008) stands out as a pioneering study in
this domain, in which the authors focused on the spatial distributions
of nurse plants in a Mexican desert. The authors actively surveyed
relationships between nurse plants and protégées and retained an
association between these two groups if one plant was found (at least
once) under the canopy of another species. The structural properties
of this bipartite, facilitation network were then analyzed and linked
with resilience properties of the community.

Most studies building association networks are based on data doc-
umenting the presence or absence of a set of species at different sites
(often different points along a transect). An observed metric of as-
sociation is computed (e.g. C-score, Lépez et al. (2013), x> Soliveres
et al. (2014), number of co-occurrence Saiz & Alados (2012)), then
compared to random expectation to retain significant associations.
This random expectation is derived from permutations of the origi-
nal dataset (Lopez et al., 2013) or an analytical approximation (Saiz &
Alados, 2012, 2011; Saiz et al., 2017; Alados et al., 2017).

This method yields a network with positive and negative links be-
tween species (nodes), which contrasts with Verdu & Valiente-Banuet
(2008) where a bipartite network was used. The network structure can

then be described, and its changes along space or in time analyzed.

pollination through a shared pollinator can result in facilitation and spatial associa-
tion between two plants with similar life forms (Johnson et al., 2003).
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0.2.3 Ecological networks and their response to disturbance

0.2.3.1  Structure of ecological networks and community stability

Several levels of description can be considered to describe networks,
either at the node level, at the whole-network level or an intermediate
scale.

We can first consider node-level — i.e., species-level — properties.
Species may have different patterns of interactions within a network.
Species can have variable degrees (numbers of links), and the strength
of these links may vary from species to species in weighted networks.
In co-occurrence networks, the degree and strength of the interactions
of a given species with others may characterize its role within a com-
munity. For example, a nurse species within a network would have
many positive links — because it is spatially aggregated with many
different species —, i. e. a high degree (high number of positive links).
A high degree here is correlated with a greater influence on the com-
munity dynamics. The role of species structuring communities has
been explored using such network descriptors (e. g., Stipa tenacissima
in arid systems, Saiz & Alados, 2011).

Intermediate-scale properties can also be considered in a network.
For example, small subgraphs, or motifs, describing interactions be-
tween triplets of species have been used to describe the local struc-
ture of interaction networks. The relative frequency of these differ-
ent motifs have been shown to determine network-level properties of
food-webs (Klaise & Johnson, 2017). In signed, undirected networks
such as association networks, a similar, triplet-based description has
been used to compute the structural balance of association networks.
Signed networks are expected to be balanced, i.e. have an excess
of specific triplets, which has been supported by recent evidence in
plant-plant association networks (Saiz et al., 2018). Feedback loops are
also a type of intermediate pattern which may have a strong influence
on the dynamics of the community.

Finally, many network-level characteristics have been shown to de-
viate from random expectation in empirical networks. In particular,
many empirical interaction networks have characteristics that could
increase the robustness of the ecological community — i. e. its ability
to maintain a high species diversity despite disturbance. In particu-
lar, mutualistic networks such as facilitation networks between plants
exhibit a higher amount of nestedness (how much specialist species

interact with a subset of those with whom generalist species interact),
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which confers the whole community a higher robustness against ran-
dom species extinctions (Verdu & Valiente-Banuet, 2008; Bascompte
et al., 2003). In food webs, modularity (how well a network can be
separated in different groups) is thought to have a similar stabilizing
effect (Thebault & Fontaine, 2010; Stouffer & Bascompte, 2011). High
nestedness have been found in plant facilitation networks (Verdua &
Valiente-Banuet, 2008), and it is thought to increase the robustness of
the community, but (to our knowledge) no other study explicitly link
network-level patterns in plant-plant interactions with the stability of
the community.

It is noteworthy that new ways of analyzing and describing net-
works appear at a quick pace, as evidenced by the rapid increase in
methodological papers on network analyses in the last decade (Pel-
lissier et al., 2017; Delmas et al., 2017; Wells & O’Hara, 2013; Graham
& Weinstein, 2018; Poisot et al., 2012). New structural patterns that
are relevant for ecology may thus be found in the future as methods
progress.

Regardless of the scale they describe in a network, many of these
metrics are related to the potential response to disturbance of ecolog-
ical communities (Table 0.2). However, in most cases, the relationship
between networks structural patterns and stability is only supported
by theoretical studies (an exception is the study by Gilarranz et al.
(2017), which shows experimentally the effect of modularity on ro-
bustness).

This view of interactions as fixed entities determining the response
to perturbations has received much criticism (e.g., de Ruiter, 2005).
Interactions themselves are known to vary in time, e.g. as a result
of annual cycles (Olesen et al., 2008), but also as the result of per-
turbations. It is thus necessary to understand how they change after
disturbance.

0.2.3.2 Changes of networks along gradients of stress

Current global changes will impact the abundance of extant species
as well as their interactions (Memmott et al., 2007b; Tylianakis et al.,
2008). To understand how ecological networks may respond to these
changes, it is necessary to know what drives their structure across
space and time. To this end, much work have thus focused on docu-

menting how interactions vary along environmental gradients (Tylianakis

& Morris, 2017), and developing statistical methods to do so (Poisot
et al., 2012; Pellissier et al., 2017).
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Level of
network
description

Structural pattern

Description

Ecological relevance

References in ecology

Q =~
0

Network level

Connectance

Modularity

Nestedness (bipartite
networks)

Distribution of
interaction strength

Structural balance
(signed networks)

Positive/negative
interaction balance
(signed networks)

Percentage of realized links in the network

How well a network can be subdivided
into compartments with few interactions
between them

Nestedness quantifies how well specialist
species interact with a subset of those with
whom generalists interact

Quantifies the sequence of interaction
strengths in the network

A balanced network can be well-devided
into groups with positive links within
them and negative links across groups.

Percentage of positive links vs. negative
links in a network

Linked with community stability and
robustness

Increases community persistence

Increases community persistence and
decreases the number of secondary
extinctions

Weak interactions increase community
persistence

Link with stability (? no ecological
evidence)

Positive interactions may favor coexistence
(evidence from plant networks)

May (1972)
Dunne et al. (2002)

Stouffer & Bascompte (2011)
Thebault & Fontaine (2010)

Thebault & Fontaine (2010)
Verda & Valiente-Banuet
(2008)

Neutel (2002)
Berlow et al. (2004)

Saiz et al. (2018)

Saiz et al. (2017)

DE?

Feedback loops A feedback loop occurs when a node has Can determine the community response Keéfi et al. (2016)
Intermediate (signed networks) a indirect positive effect on itself through to perturbations and underpin alternative
level one or more other nodes stable states
Motif distribution Motifs are types of three-way interaction May affect the persistence of the (Klaise & Johnson, 2017)
patterns in a network community
/?g\ Node degree May identify key species for community Linked with community dynamics e.g. Saiz & Alados (2011)
Node level dynamics

Node average
interaction strength
(signed network)

May identify role of a species in commu-
nity dynamics (e. g. competititor vs facilita-
tor)

Linked with community dynamics

e.g. Saiz & Alados (2012)

Table 0.2: Some structural patterns found in interaction networks and their link with community stability or dynamics.
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0.2 CONCEPTUAL CONTEXT AND STATE OF THE ART

Plant ecology has a long tradition of studying how interactions
vary along gradients of stress, which predates by a wide margin the
use of ecological networks. In plant communities, one of the outstand-
ing debate surrounds the prevalence of competition vs. facilitation
in plant communities (Callaway et al., 2002). Whether facilitation or
competition dominates in a given community is thought to strongly
determine the temporal dynamics of a community, by producing po-
tential sharp transitions (Kéfi et al., 2012) or dampening the effect
of stressors (Callaway, 2007, Wilby & Shachak, 2004). This balance
could thus have a central role in determining how the community
responds to external disturbance, and many studies have sought to
describe and predict how it varies along gradients of stress (Callaway
et al., 2002; Maestre et al., 2009; Smit et al., 2009; Holmgren & Scheffer,
2010).

With the use of co-occurrence networks in plant ecology, this topic
has benefited from a new, correlative approach to quantify the fa-
cilitation/competition balance in plant communities. Co-occurrence
networks in this context can be summarized into a ratio quantifying
the relative frequency of positive and negative links (Saiz & Alados,
2012, , Chapter 3). A positive ratio is most often interpreted as a dom-
inance of processes linked to facilitation over competition in the local
community. This new approach, because it does not depend on te-
dious pairwise experiments to infer plant-plant interactions, could
allow documenting a much increased variety of plant communities
along environmental gradients. It has been successfully carried out to
show that facilitation promotes diversity in arid systems (Saiz et al.,
2018), and that the competition/facilitation balance at the network
scale varies along gradients of grazing (Saiz & Alados, 2012) and arid-
ity (Alados et al., 2017).

Many of these studies based on co-occurrence networks focus on
arid ecosystems, where facilitation is known to have a strong effect
on community dynamics. Few studies concern more mesic systems,
despite an ongoing discussion as to whether facilitation should also
be important in those systems (Holmgren & Scheffer, 2010). Using an
approach based on co-occurrence networks, Chapter 3 contributes to
this debate by focusing on the relative importance of competition vs.
facilitation in plant communities along grazing gradients of La Crau
(France).
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0.2.3.3 Perturbations and temporal dynamics in networks

Few studies have focused on the temporal variations of interaction
networks. Most of this work has focused on plant-pollinator networks,
probably because of their ease of sampling when compared to other
types of networks, which makes them easily replicable in time. These
studies have shown that these networks do show temporal variations
in time throughout the year (CaraDonna et al., 2017; Olesen et al.,
2008), and respond favorably to restoration efforts (Kaiser-Bunbury
et al., 2017). In vegetation studies, despite the known existence of
year-to-year variations in interaction strengths (Tielborger & Kadmon,
2000), no study (to our knowledge) focuses on the temporal varia-
tions of interaction networks in plant communities. This is the object
of study of Chapter 4, which focuses on the recovery of potential
interaction networks in plant communities after disturbance.

Despite new methods (Blonder et al., 2012), understanding how
ecological networks vary in time, and how they recover from per-
turbations appears as a new challenge for network-based analyses of

ecological communities.
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0.3 OBJECTIVES AND RESEARCH QUESTIONS

0.3 OBJECTIVES AND RESEARCH QUESTIONS

As we have seen through this introduction, interaction networks in

ecological communities present specific structural patterns (feedback

loops, nestedness, etc.) which determine their response to disturbance.

However, disturbance itself may affect the abundance of species and
the strength of interactions. This thesis focuses on different aspects of
this loop, using plant communities as model systems.

The first chapters focus on a structural pattern which is specifically
relevant to ecosystem management and conservation: feedback loops.
When these are present in a community, possible large shifts may
occur despite small perturbations, leading to ranges of environmental
conditions where ecosystem resilience can be impaired.

Specifically, Chapter 1 asks Can active feedback loops be identified from
multimodality in diverse ecological communities ? To this end, we build
on theoretical approaches based on potential analyses and reveal frag-
ile areas where feedback loops may produce non-linear responses.
This work is based on the analysis of a dataset collected in 2011
and 2012 in California, USA (to which I participated), in collabora-
tion with USGS research teams (WERC). Chapter 2 is a synthesis
effort of the current state of the literature on empirical measures of
resilience — or early-warning signals — into a widely-distributed R
package. With this work, we aim at enabling users to assess the robust-
ness of early-warning signals on empirical data, by providing a standard
and reproducible workflow for future studies focusing on indicators

of resilience.

The two first chapters focus on detecting the effect of a particular
structural pattern — feedback loops — on the response to disturbance.
The two remaining chapters adopt the inverse perspective, and evalu-
ate the effect of perturbations on the structure of interaction networks.
In particular, they focus on the effect of perturbation on a specific
structural pattern that has been the object of a decade-long debate in
vegetation studies: the positive/negative interaction balance. These
two chapters are based on an extensive dataset that is the result of
tield work carried out — in collaboration with many assistants! — over
the course of this PhD program in La Crau, France.

Chapter 3 specifically aims at answering the following research
question: How does biotic stress alter community-scale positive/negative in-

teraction balance ?. We answer this question using a recent approach
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based on association networks, and apply it to a dataset document-
ing plant communities in 16 grazed sites in La Crau, France. Using
a chronosequence approach, a temporal perspective is adopted in
Chapter 4 to ask How resilient are plant-plant association networks ? How
does it compare to other facets of the community ?.

0.4 NOTE TO THE READER

This thesis comprises an introduction, four chapters, and multiple ap-
pendices. Chapter 1 and 2 can be read independently, but it is proba-
bly best to read Chapter 3 before Chapter 4 as the latter builds upon
methods explained in detail in the former. Appendices complement
individual chapters with background information about the study
sites (Appendix 2), or more extensive mathematical details about spe-
cific topics (Appendix 3). Before each chapter, a small transition re-
minds the reader of where the work is situated in the overarching
topic of the link between resilience and ecological interactions in ecologi-
cal communities, along with some details about the ecological system
under focus.



Part II

CHAPTERS






10

15

20

25

30

35

IDENTIFYING POSITIVE FEEDBACKS IN
VEGETATION COMMUNITIES OF REMOTE AREAS:
INSIGHT FROM SUBALPINE MEADOW
VEGETATION COMMUNITIES

CONTEXT OF THE WORK

It is essential for conservation to be able to anticipate how a given
ecological system will respond to pertubations. Where ecological sys-
tems are resilient, small perturbations in species densities and envi-
ronmental conditions produce small changes in the state of the sys-
tem. However, some systems can exhibit large changes in their state,
even after a small disturbance. This often occurs where a specific
structural pattern exists in the interactions of a given system: feed-
back loops. It can happen, for example, when two species enhance
each other’s recruitment (e. g. through facilitation, Kéfi et al. 2007).

Identifying feedback loops from ecological patterns may be chal-
lenging. Previous approaches have attempted at doing so based on
the criterion of multi-modality: where feedback loops are active, the
distribution of observations of a given ecological system may ex-
hibit multiple modes (Livina et al., 2010). This approach has been
carried out on simple, aggregated data (e.g. total forest cover, Hi-
rota et al. 2011), but it remains unclear how it could be extended to
multi-species assemblages. We suggest a way to do so in this chap-
ter, and apply it to iconic conservation areas: the national parks of
Sierra-Nevada, California.

The Sierra-Nevada is located in inner California (USA) and repre-
sents a the dominant mountain range of the state. In these areas, cov-
ered mostly by forests of mixed pine species, meadows occur locally
wherever topology favors the local accumulation of water (Weixel-
mann et al., 2011). These meadows, despite representing a small frac-
tion of the total protected areas, represent islands of essential habitat
with specific, endemic species of amphibians such as the Yosemite
toad (Anaxyrus canorus) and the Yellow-legged Frog (Rana muscosa).
Many accessible meadows are used for recreation, and others, in-
cluding remote ones are used to establish grazing camps. This use
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has been sparked a debate about the appropriate use of meadows in
wilderness areas, and called for an assessment of the impact of graz-

ing on subalpine meadows vegetation communities (Lee et al., 2017).

Figure 1.1: Subalpine meadow often appear as clearings within a continuous
pine forest. They occur where water accumulates and favors a
diverse herbaceaous community. Photo: Steven Lee (USGS)

These issues motivated the collection of an extensive survey of 47
meadows, spread out within Yosemite and Sequoia National Parks
in 2011 and 2012". This survey documented on a regular grid the
species composition within grazed and ungrazed meadows, along
with values of the main identified gradient — water content — and a
set of variables describing the local abiotic conditions.

Despite the effort to document the impact of short-term stressors
on meadow ecosystems, it remains unclear how they will respond
to long-term changes such as climate change. It is also unclear as to
whether stressors may have a large or irreversible effect on the species
composition of meadows.

To provide hypotheses on how these vegetation communities could
respond to stressors, we reused and extended previous approaches
that aim at identifying non-linear responses in ecological systems

(Livina et al., 2010).

1 I participated to this survey in spring 2012 as part of my Master’s degree.
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Figure 1.2: The species composition of meadow vegetation communities re-
sponds first and foremost to changes in local water availability.
The photo on top pictures a community of Carex in a regularly-
flooded meadow area, while the bottom photo shows a commu-
nity of Carex (a different species) in dry areas of meadows. Pho-
tos: Steven Lee (USGS)
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Figure 1.3: General view of a meadow (people for scale). The vegetation
turnover is visible in the variations of the shades of green, from
the stream to the edge of the meadow. Photo: Steven Lee (USGS)
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This chapter has been submitted as the article ‘Plant community
patterns reveal areas of low resilience in subalpine meadows’, A. Génin,
S. R. Lee, E. L. Berlow, S. M. Ostoja, and S. Kéfi. The work presented

here is a ongoing revision prior to resubmission.
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1.1 INTRODUCTION

It is essential for pro-active management to identify how ecological
systems respond to environmental changes (Suding & Hobbs, 2009).
In many ecosystems, small changes in environmental conditions or
small perturbations produce small changes in the observed state of
the ecosystem. However, in others, the same events can result in large
and/or irreversible changes in the ecosystem state. It is thus very
desirable to identify where and when a given ecological system has
such a decreased ability to recover by itself from perturbations, i.e., a
decreased resilience.

In principle, identifying precisely how a given ecosystem responds
to perturbations requires documenting its temporal response as ex-
ternal conditions are slowly changed, or perturbation events are per-
formed (Bestelmeyer et al., 2011; Petraitis, 2013). Such data could cor-
respond to time-series from either observations or experiments (Schef-
fer & Carpenter, 2003). However, in most natural ecosystems, obtain-
ing datasets or setting up experiments at the appropriate scales can
be both costly and difficult. Instead, researchers often adopt a “space-
for-time” substitution approach, where the state of a given ecological
system is recorded in multiple locations along an environmental gra-
dient, but at a single or several very close points in time (‘snapshot’
data).

Many studies have used this type of dataset to identify apparent
non-linear responses of ecological systems to changes in environmen-
tal drivers (Hirota et al., 2011; Scheffer et al., 2012a; Vasilakopoulos
& Marshall, 2015; Eby et al., 2017) by interpreting the changes in the
distribution of state values (e.g. distribution of measured tree cover)
along an environmental gradient. These studies assume that, on av-
erage, a given system is more often observed close to the states that
persist the most in time, i.e. its most stable states, than away from
them. As a result, at a given point along a gradient, the observed
distribution of states of a given system should be centered around
its stable states (Livina et al., 2010). For example, a system with one
stable state is expected to show a unimodal distribution centered on
a single average value — its stable state (Box 1.1).

When an ecological system exhibits a linear response along a gra-
dient, this average state changes proportionally to the change envi-
ronmental conditions along the gradient (panel a1 in Box 1.1, Rata-
jczak et al., 2018). In contrast, when the response is non-linear, small
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changes in conditions can result in a disproportionate changes in
the system’s average state, sometimes resulting in a sharp shift as
a threshold in environmental value is crossed (panel b1 in Box 1.1).
Some ecosystems can also exhibit multiple modes in their observed
distribution of states at a given point along the gradient, i.e. multiple
alternative states (panel c1 in Box 1.1). These may be underpinned
by external factors, such as an unmeasured variable, which controls
whether the observed value is closer to one state or the other. How-
ever, internal factors such as feedbacks may also maintain a given
ecosystem in one of these alternative states — they are then effectively
alternative stable states (Petraitis, 2013). In this case, even a short dis-
turbance event may have long-lasting consequences, by making an
ecosystem switch durably from one state to another. Large shifts can
also occur despite a small change in drivers” values, if the ecosystem
is pushed outside of the range where those multiple states exist.

For a given system, identifying changes in the number of modes
— the modality (Petraitis, 2013) — of the empirical distribution of state
values may thus identify where non-linear responses occur along a
gradient. These areas may be of special interest to carry out further
research or experiments, as perturbations or small changes in envi-
ronmental conditions may have there a larger effect than expected
(Box 1.1).

Using this modality criterion, we investigated where apparent non-
linear transitions occurred in vegetation communities of subalpine
meadows of Sierra Nevada (California, USA). Many of these mead-
ows are located in two major national parks, Yosemite and Sequoia/K-
ing’s canyon, and exemplify ecological systems under strong scrutiny,
where it is very valuable to anticipate the effect of stressors. However,
due to their remoteness, it is often impractical to monitor meadows
for temporal changes: using snapshot data to infer the potential effect
of stressors is thus very relevant in these ecosystems.

Meadows within the Sierra Nevada occupy a small portion of the
total area, but they stand out as highly productive riparian islands
within a rugged, semi-arid landscape (Barbour et al., 2007). In those
meadows, the species present in vegetation communities respond
very closely to changes in the moisture content of the soil (Allen-Diaz,
1991; Weixelmann et al., 2011), making it the dominant environmen-
tal gradient at the meadow scale (Lowry et al., 2011). This general
response to water content can compound locally with other factors
to determine the response of local vegetation communities, such as
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Box 1.1: The link between modality and non-linear responses
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To illustrate the link between multi-modality in the observed states and
the type of response of a system, we can consider the seminal model of
overgrazing by Noy-Meir (1975). This model is able to produce various
types of responses along a gradient of grazing (C values). Non-linear
transitions arise when strong positive feedbacks are present in the sys-
tem (b1, c1), which are visible in the deterministic response of the model
(red line). The black points indicate "snapshot" values, which would be
observed by sampling along the grazing gradient different instances of
this system (with added noise) at the same point in time.

Using a moving-window approach, we can characterize the modality of
the distribution of observations using component analysis (described in
Methods). When a distribution tends to be more bimodal, the frequency
of counts for two components increases, which arises in the vicinity of
non-linear responses (b2, c2). Identifying changes in modality in em-
pirical data could improve the understanding of where along an envi-
ronmental gradient a non-linear response of the system may occur. In
such cases, a small change in conditions can trigger a large change in
the system’s state (blue arrows). An acute disturbance event, such as
a reduction in plant biomass, may also trigger a durable change to an
alternative state when discontinuous responses are also present (green
arrow).

disturbance by animals (Klikoff, 1965; Lee et al., 2017), soil coarse-
ness (Ankenbauer & Loheide, 2017) or nutrient content (Ratliff, 1985).
These interactions have the potential to create non-linear responses of
the community along the water gradient. For example, the presence
of Carex filifolia sods has been correlated with increased soil nutrients

(Ratliff, 1985), suggesting a possible positive feedback between veg-
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etation and soil quality. Reducing vegetation cover in some commu-
nities could impair regrowth for a much longer time than elsewhere
in meadows. It is thus essential to identify where these occur and
their spatial extent in meadows in order to carry out informed man-
agement, in particular in the current context of recurrent disturbance
such as droughts (Belmecheri et al., 2015; Adams et al., 2015).

Using the example of meadows as a case study, we show how and
where non-linear responses of plant communities can be identified in
subalpine meadows. Combined with an extensive survey of local sur-
face characteristics, we identify possible drivers underpinning these
non-linear responses to guide future experiments and management
decisions.

1.2 METHODS
1.2.1  Analyzing changes in modality along a gradient

Characterizing the modality of a given set of observations can be
done by analyzing the distribution of mass of a kernel-estimated den-
sity (Miiller & Sawitzki, 1991). This approach essentially identifies
whether a density tends to be composed of multiple “Tumps” or com-
ponents (multimodal density) rather than a single component (uni-
modal density), and has been identified as more robust to outliers
compared to previous approaches (Silverman, 1981).

To analyze changes along the main environmental gradient, we
used a moving window approach. For each set of observations of the
dataset falling within the window, we first computed the empirical
density of the observations with a gaussian kernel of a given band-
width o (fixed for the whole analysis). We then rescaled the density so
that its maximum was one, and considered 7., thresholds regularly
spaced between zero and one. For each threshold, we considered a
"slice" of the density and counted the number of observed disjunct
components (Figure 1.4). For a given density, this process yields a set
of n¢y counts of components. A density that is better-described by a
given number of well-separated components will show this number
for a higher number of chosen thresholds. How these counts vary
along an environmental gradient can inform about changes in the
modality of the distribution of states. The typical example could be a
density switching from being unimodal to more bimodal (exhibiting
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then an increased number of counts with two components) around a
certain value of the environmental gradient.

This method can be applied to univariate densities (Figure 1, top;
Box 1), which is what is classically done when the state of the sys-
tem is defined by a single value (e. g. Hirota et al., 2011). However, it
can also be applied to multivariate densities, obtained through multi-
dimensional kernel density estimation (Figure 1b), which is very rel-
evant to cases where the state of the system is not well-defined by
a single value (e.g. total biomass) but several (e.g. abundances of
individual species).

neut should be set to a large value to identify differences in height of
the density (we used 512 here, which was enough to detect changes in
modality along the gradient). We refer to this process as "component
analysis" later in this work.
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Figure 1.4: Principle of component analysis on synthetic data with added
noise. On univariate data (a,c), slicing the density yields a single
component for a majority of chosen thresholds. On bimodal data,
the same procedure yields two components for most thresholds
chosen (b, d). Note that very low thresholds identify spurious
components because of outliers in the density, but this effect dis-
appears quickly as higher thresholds are used

1.2.2  Meadow sampling

Sampling in subalpine meadows was carried out as described in Lee
et al. (2017). Within each meadow, surveys were carried out in 2x2m
plots, regularly spaced within belt transects laid out every gom per-
pendicularly to the main meadow drainage. Ocular estimates of 28
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upper soil characteristics were measured (Appendix 2). We measured
volumetric moisture content in the soil top 12 cm, as averaged from
5 measurements of a TDR moisture probe. Ocular cover estimates of
each plant species was recorded in 8 25x25cm subplots and averaged
to obtain an estimation of the relative abundance of each species in
the plot. We then analyzed the response of vegetation communities
— in terms of species composition — along the natural moisture gradi-
ent in meadows. To attenuate the effect of year-to-year variations in
precipitation on the measure of the moisture gradient, we standard-
ized the measured water content within year. Hereafter, water content
values are given in standard deviations (s.d.).

1.2.3 Empirical data analyses

The state of meadow vegetation communities is defined by the rela-
tive abundances of all species. Because carrying kernel density estima-
tion cannot be done on data with many dimensions (typically, compu-
tational costs become too high after 5-10 dimensions (Blonder et al.,
2014), well below the total number of observed species), we had to
summarize the variations of vegetation species compositions to a few
axes using ordination. In principle, using Principal Coordinate Anal-
ysis (also named metric Multi-Dimensional Scaling) is the method of
choice as it preserves as much as possible the dissimilarities between
sites. However, it is often empirically found to produce strong arch
artifacts on vegetation data, in particular when species turnover is
high along a gradient (Legendre & Legendre, 2012). Non-metric di-
mensional scaling could be considered as an alternative but, because
it preserves only the ranks of the original dissimilarities between
sites, the resulting axes summarizing species turnover cannot be used
quantitatively. We therefore chose a Correspondence-analysis-based
method, Detrended-Correspondence Analysis, which, despite criti-
cisms (Jackson & Somers, 1991), (i) produces axes that can be used
as quantitative variables and (ii) is not subject to arch-like artifacts.
We carried out sensitivity analyses to confirm that our results are ro-
bust to the use of other dimensionality reduction methods?.

We used the two first axes of the DCA and carried out a component
analysis in a moving window along the moisture gradient (we set

the window size to 0.5). For the component analysis, we used the bi-
0.70 0

variate diagonal density estimation kernel [
0 0.62

}, as obtained from

2 Unfortunately not shown in this thesis.
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automatic bandwidth selection (bandwidth.nrd in package MASS). We
carried out the component analysis 100 times for each window subset,
using a random subsample of 150 of the observations falling within
the window to make sure sample size for density estimation was con-
stant along the water gradient.

Because the component analysis identified two ranges of water con-
tent with increased support for two components, dry areas and wet
areas, we extracted these subsets from the whole dataset and investi-
gated soil attributes that could underpin these bimodal distributions.
We refer to dry areas for sites where water content was below -1 s.d.
and to wet areas for those where water content was above 1 s.d. We
clustered each subset into two groups based on species composition,
using hierarchical clustering with a Ward distance on a Bray-Curtis
distance matrix. We contrasted the environmental covariates of each
group to discuss possible underlying mechanisms for the apparent
non-linear response along the water-content gradient. We used two-
sample Mann-Whitney tests (wilcox.test in R) to contrast the distribu-
tion of each plot characteristics across groups, adjusting the p-values
for multiple tests using the Benjamini-Hochberg correction. Because
sampling was regularly-spaced in meadows, we used the frequency
of each group as a proxy for its spatial extent in the meadows.

We carried out the analyses using R (version 3.5.0), along with the
R package 'vegan’ v2.5 (Oksanen ef al., 2018), 'ks’ v. 1.11.1 (Duong,
2018) and MASS (Venables ef al., 2002).

1.3 RESULTS

In a proof-of-concept model (Box 1.1), simulations show that multiple
components arise in cases of non-linear responses of the system, and
that they are well-identified by our approach. Empirical data anal-
ysis of DCA scores highlighted two ranges of water content along
the moisture gradient with an increased support for two components
in the species compositoin of the meadows (Figure 1.5): dry areas
and wet areas. At the two extremes of the water gradient, the com-
ponent analysis yielded an increased count of two components (from
nearly zero to 20-40%; Figure 1.6), highlighting a possible non-linear
response of species composition to changes in water content in the
corresponding areas.

In wet areas, the two groups defined based on species content
were contrasted. One was dominated by Carex vesicaria, code CARVES,
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Figure 1.5: Detrended Correspondence Analysis results on the subalpine

dataset (a). Species labels indicate where individual species are
dominant, with label size proportional to the overall abundance
of the species in the dataset. The bottom panels (b1-4) show the
same graphs, but only with points comprised within different
ranges of water content. Increased modality (i. e. multimodality)
can be observed for water contents below -1 s.d. and above +1
s.d.

43



44

10

15

20

IDENTIFYING POSITIVE FEEDBACKS

1.00

[%2]

*OC-J' 0.75
£5
g
>Q
g O 0.50
O) N
3.

° 3

I E
3025
0.00

-1 0 1
Standardized water content

Figure 1.6: Component analysis results on the subalpine meadow dataset.
The number of counts for two components in the density is
higher in dry and wet areas of meadows, highlighting the possi-
ble presence of non-linear responses in these areas.

while the other was a more mesic community that included Aster alpi-
genum, code ASTALP (Figure 1.7a, b-top). The C. vesicaria-dominated
group represented 25% of all plots done in wet areas and had differ-
ent water regime-related attributes: a more saturated and less moist
soil, as well as a higher observed cover of silt and bare ground (Figure
1.7b). The covers of dry and flooded soils were significantly different
between the two groups but the estimated difference was very close
to zero.

In dry areas (plots with water content below 1 s.d.), clustering
yielded a group dominated by Carex filifolia, CARFIL (10% of plots in
dry areas), contrasting with another dominated by more mesic plants
(e.g. Vaccinium caespitosum, VACCAE; Calmagrostis brewerii, CALBRE;
Figure 1.8a). The C. filifolia-dominated group had a higher ocular
cover of coarse particles (sand, pebble) and bareground (Figure 1.8b).
It also showed a significant difference in water-regime attributes (cover
of dry and moist soil), and disturbance attributes (stock prints, rodent
mounds), although they had a very small estimated cover difference
(below 1074).

1.4 DISCUSSION

Patterns suggested two ranges of the moisture gradient where multi-
modality of species composition highlighted apparent non-linear re-
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Figure 1.7: (a) Detrended Correspondence Analysis results on the wet
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meadow subset. Species labels indicate where individual species
are dominant, with label size proportional to the total abundance
of the species in the subset. A density estimate is added on top
of the points. (b) Species composition and differences in plot at-
tributes between the two groups, stars represent significance of a
Mann-Whitney test with P-values corrected for multiple tests us-
ing the Benjamini-Hochberg procedure (one star for P < 0.05 and
two for P < 0.01). The grey bars show the estimated difference in
(pseudo)medians between the two groups.
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Figure 1.8: (a) Detrended Correspondence Analysis results on the dry

meadow subset. Species labels indicate where individual species
are dominant, with label size proportional to the total abundance
of the species in the subset. (b) Species composition and differ-
ences in plot attributes between the two groups, stars represent
significance of a Mann-Whitney test with P-values corrected for
multiple tests using the Benjamini-Hochberg procedure (one star
for P < 0.05 and two for P < 0.01). The grey bars show the esti-
mated difference in (pseudo)medians between the two groups.
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sponses of vegetation to the moisture gradient. These two modes in
species composition are correlated to differences in local abiotic con-
ditions and animal disturbances. This pattern could be driven entirely
by independent abiotic differences, but at this scale, vegetation itself
is also likely to influence the local conditions through positive feed-
backs (Wilson & Agnew, 1992). Disentangling causal drivers of multi-
modality in these areas would require work beyond observational
analyses, but it is important to acknowledge this possibility in a con-
servation context. If vegetation-environment feedbacks are active, i. e.
the response of the local vegetation is linked to intrinsic, possibly non-
linear dynamics, and not entirely driven by external factors. A small
change in annual moisture, or a strong disturbance event could thus
lead to unexpected shifts in species composition and different ecosys-
tem functioning. We discuss this possibility in the next paragraphs.

1.4.1 Possible ecological mechanisms behind bimodality in meadows

In wet areas of meadows, our analysis identified a Carex-vesicaria-
dominated community contrasting with a more diverse community
of mesic species. The C. vesicaria-dominated community had a larger
amount of flooded or saturated soil and more silt, which are typi-
cal characteristics of streamside flooded pools with standing water
(Baldwin & Hickman, 2012). The mesic community occurring for sim-
ilar water contents was represented by a more diverse species com-
position that occurred outside of the areas with standing water. Here,
species composition maps well onto independent, external environ-
mental characteristics linked with the absence or presence of stand-
ing water. A possible transition from one community type to the other
would likely be the result of a major modification of the local water
regime.

In dry meadow areas, the analysis identified a Carex filifolia-domi-
nated community contrasting with a more diverse mesic community.
The C. filifolia community was observed to have coarser upper soil par-
ticles (sand, pebble), and a higher amount of bare ground. Significant
differences were also found in terms of disturbances by animals and
water regime. The presence and characteristics of dry communities
in meadows is known to respond to external parameters such as ro-
dent disturbance, erosion processes and soil nutrients (Klikoff, 1965).
Plants growing in these areas are known to also influence in turn

some of these parameters. For example, the sods formed by C.filifolia
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are known to interact with rodents (Klikoff, 1965), and can improve lo-
cal conditions by trapping smaller soil particles which hold more nu-
trients (Ratliff, 1985) and water (Wood, 1975, Ankenbauer & Loheide,
2017). The possible presence of this feedback means that acute dis-
turbance of these areas could have much longer-termed effects than
expected and possibly require restoration. Further work focusing on
identifying the type of dynamics at play in these dry areas would
yield a better understanding of their resilience to local degradations
and climate change.

In both wet and dry areas, water-related parameters stood out as
possible drivers of non-linear responses. With the increase of tem-
peratures associated with climate change, snow/rain ratios and total
spring snowpack are decreasing across the Sierra Nevada (Knowles
et al., 2006; Barnett et al., 2008). These long-term shifts have the po-
tential to extensively alter meadow hydrology, to which the identi-
fied wet and dry communities may be the most sensitive. Short but
acute events such as drought could produce persistent shifts of mesic
communities, which tend to be the most diverse, into less-diverse
dry communities. The Sierra Nevada has recently experienced one of
these events (Belmecheri et al., 2015), which included the four driest
years (2012-2015) of the last 2000 years (Adams et al., 2015). While the
repercussions of the drought have clearly manifested across Sierra
Nevada forest ecosystems (Potter, 2016), the impacts on meadow eco-
systems have yet to be thoroughly evaluated. Monitoring changes and
setting up experimental research in areas were non-linear responses

occur could inform us greatly about such impact.

1.4.2 Method discussion

In this work, we used a descriptive method to reveal where a com-
plex ecological system exhibits apparent non-linear responses, in the
absence of temporal monitoring. This method can be readily applied
to existing datasets provided that a measure, even noisy, of the main
environmental gradient is carried out. To differentiate whether ap-
parent non-linear responses are underpinned by potential positive
feedbacks, it remains essential to also have local, detailed data.

We chose to base our component analysis on the two first axes
of the ordination because visual inspection revealed the two clus-
ters (Figure 1.5 top), and because we focused on broad variations
in species composition (which are contained in the first few axes of
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the ordination). A similar analysis could be based on a multivari-
ate density estimation that uses more dimensions (in this case, more
axes of the ordination). This could in principle reveal more ranges
of the environmental gradient with multimodal distributions. How-
ever, observations become increasingly distant from each other (in a
multivariate space) as dimensions are added. As a result, the possible
increased power brought by added dimensions may come with an in-
creased amount of false positives — i.e. ranges of the gradient with
increased multimodality, which does not correspond to ecologically
relevant differences in the field. Using only one or two dimensions
is a conservative option when investigating multi-modality (Blonder,
2016). Further work investigating this trade-off, along with computa-
tionally efficient methods (Blonder et al., 2014) would certainly pro-
vide insights to guide the choice of the number of dimensions.

Future refinements of this work should also include sensitivity anal-
yses regarding the choice of ordination, the window sizes and density
bandwidths.

1.4.3 Conclusion

In the current context of rapid change and abundant data, a rising
number of methods and indicators aim at linking patterns with the
stability properties of a given ecosystem (Clements & Ozgul, 2018),
based on e.g. time-series properties (Dakos et al., 2014), spatial pat-
terns (Génin et al., 2018a) or in this case, the distribution of states.
Although they do not replace experiment-based ecological knowl-
edge (Boettiger & Hastings, 2013), they can provide valuable moni-
toring tools to anticipate the response of ecological systems to global
changes as well as local disturbances, allowing managers and re-
searchers to make more informed decisions in uncertain contexts.
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FOSTERING THE DETECTION OF ECOSYSTEM
SHIFTS BY IMPLEMENTING SPATIAL
EARLY-WARNING SIGNALS

CONTEXT

Some ecosystems show non-linear responses to gradual changes in
environmental conditions, once a threshold in conditions - or critical
point - is passed. This can lead to wide shifts in ecosystem states,
possibly with dramatic ecological and economic consequences. Such
behaviors have been reported in drylands, savannas, coral reefs or
shallow lakes for example, and often arise because of positive feed-
backs (Wilson & Agnew, 1992). Important research effort of the last
decade has been devoted to identify indicators that would help antic-
ipate such ecosystem shifts and avoid their negative consequences.

Theoretical and empirical research has shown that, as an ecosystem
approaches a critical point, specific signatures arise in its temporal
and spatial dynamics; these changes can be quantified using relatively
simple statistical metrics that have been referred to as ‘early warning
signals” (EWS) in the literature. Although tests of those EWS on ex-
periments are promising, empirical evidence from out-of-lab datasets
is still scarce, in particular for spatial EWS. The recent proliferation
of remote-sensing data provides an opportunity to improve this situ-
ation and evaluate the reliability of spatial EWS in many ecological
systems.

Despite the abundance of data and the interest of ecologists for test-
ing the accuracy and usefulness of these indicators (Burthe et al., 2016;
Gsell et al., 2016), no reference implementation exists. Yet it would
favor the reproducibility of results, lower the technical knowledge re-
quires to carry out these analyses, and as a result enable a much wider
audience to have access to indicator-based analyses. We created and
published such implementation as the R package "spatialwarnings’,
and describe it in this chapter.

This work is the result of a collaborative effort with the theoretical
ecology group at Indian Institute of Science (Bangalore), in particular
with Sabiha Majumder, Sumithra Sankaran and Vishwesha Guttal. It
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has been published in 2018 in Methods in Ecology and Evolution *, is
under continuous development at its homepage *. ‘spatialwarnings’
is also widely distributed to R users through CRAN 3.
The tools provided by this package were also used in modelling
s work, to investigate the role of different types of stressors on the pre-
dictive performance indicators. This has resulted in another publica-
tion in Ecological indicators#.

1 https://doi.org/10.1111/2041-210X.13058

2 https://github.com/spatial-ews/spatialwarnings

3 https://cran.r-project.org/package=spatialwarnings
4 https://doi.org/10.1016/j.ecolind.2017.10.071
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2.1 BACKGROUND

Many ecosystems appear to respond in a gradual way to changes
in environmental drivers. In contrast, in other ecosystems, once a
threshold in environmental condition - or critical point - is passed,
just a small additional change can provoke an abrupt shift (Scheffer
et al., 2001; Petraitis, 2013) (Box 2.1). Examples of ecosystem shifts
have been reported for a variety of ecosystems, such as drylands, sa-
vannas, coral reefs or shallow lakes (Scheffer et al., 2001).

Because abrupt ecosystem responses can have strong and irreversible
ecological and economical consequences (Scheffer et al., 2001), the
possibility of shifts has been accounted for in ecosystem manage-
ment (Stein et al., 2016; Briske et al., 2005; Suding et al., 2004), and
methods have been developed to try to anticipate them in empirical
systems (Scheffer et al., 2009). In particular, theoretical and empiri-
cal studies have shown that ecological systems close to critical points
should exhibit specific signatures in their temporal and spatial dy-
namics (Scheffer et al., 2009; Dakos et al., 2012; Kéfi et al., 2014), lead-
ing to the development of metrics, which have been referred to as
Early-Warning Signals (hereafter EWS) in the literature (Scheffer et al.,
2009). EWS provide a relative measure of the proximity to a critical
point, and therefore of a possible ecosystem transition to a different
state. Computing and monitoring them could therefore help detect-
ing upcoming critical transitions in ecological systems (Scheffer et al.,
2009).

Despite their promises, a number of studies have also stressed the
weaknesses of EWS. EWS provides information about whether as
system is degrading or not, but they do not inform on how far the
studied system is from a critical point (but see Majumder et al., 2017;
D’Souza et al., 2015). Evaluation of EWS on empirical data has also
proved to be challenging, and a number of studies have reported vari-
ous limitations of EWS when evaluated on out-of-lab data, sometimes
due to reasons such as a lack of sufficiently long and finely resolved
data sets, or underlying stochasticity (Gsell et al., 2016; Burthe et al.,
2016; Chen et al., 2018; Weerman et al., 2012; Moreno-de las Heras et al.,
2011; Ashwin et al., 2012). Successful tests on ecosystem data remain
rare — especially so for spatial EWS — which questions the usefulness
of these indicators as tools to assess ecosystem degradation. The re-

cent increase in the availability and extensiveness of remote sensing
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data provides a timely opportunity to test spatial EWS outside of
controlled experiments (e.g. Gsell et al., 2016; Burthe et al., 2016; Eby
et al., 2017; Butitta et al., 2017; Berdugo et al., 2017; Cline et al., 2014;
Ratajczak et al., 2017). In the context of the currently available and
upcoming spatially extensive data, spatial EWS have been suggested
to be particularly promising because they could allow the systematic
monitoring of ecosystems’ degradation level based on a few spatial
snapshots (Kéfi et al., 2014).

To help fuel investigations around spatial EWS, we suggest here
a workflow to guide users of a new package for R (R Core Team,
2018), ‘spatialwarnings’, to facilitate their application to spatial data
from ecological and other complex systems. The package can readily
compute the spatial indicators from data, assess their significance,
and display the results, all in a convenient format much similar to

other usual R tasks (e.g. linear regression).

In the following sections, we first give the required background
knowledge on spatial indicators. Using case-studies, we then describe
how they can be applied to real and model systems with ‘spatialwarn-
ings’ (version 1.1). For conciseness, we do not show all textual output
in the article, but Appendix 2 presents the code used here in more
details.

2.2 THE SPATIAL EWS AND THEIR EXPECTED TRENDS

Current spatial EWS available in the literature come mainly from two
different theoretical backgrounds: some are based on the changes of
dynamics before a critical point (namely ‘critical slowing down’; see
below), while others derive from the characteristics of the patchiness

of certain ecosystems.

As an ecological system approaches a critical point (Box 2.1), it
is expected to take more time to recover from small perturbations
(Scheftfer et al., 2009), a phenomenon known as Critical Slowing Down
(CSD). This is expected to yield an increase in spatial heterogeneity
(the spatial variance) of its state variables, as it stays longer away
from its average state (Guttal & Jayaprakash, 2009). This deviation
can sometimes be biased towards higher or lower values of the state
variable, resulting in an additional rise of spatial skewness (Guttal &

Jayaprakash, 2009). For example, a forest close to a transition towards
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a treeless state could exhibit higher spatial variance in tree cover and
a bias towards low cover values (higher skewness) as external stress
increases. In addition, because of CSD, a system close to a transition
should exhibit higher near-neighbor correlations (Dakos et al., 2010).
These three metrics — spatial variance, skewness and autocorrelation
— can, in principle, reflect an upcoming critical point in any dynam-
ical system, hence their reference as ‘generic EWS’ in the literature
(Scheffer et al., 2009).

Later work has produced EWS based on spectral properties (Car-
penter & Brock, 2010), hereafter referred to as ‘spectrum-based EWS'.
Because of the slowing down, two points at a given distance from
each other should be more similar in systems close to critical points
(Kéfi et al., 2014). This change in correlation length can be measured

by computing the r-spectrum of the data (Couteron, 2002). The r-spectrum

is based on the Discrete Fourier Transform and decomposes the spa-
tial data into series of periodic sines and cosines of given wavelengths
(the inverse of wave frequency) and amplitude. The amplitude co-
efficient associated to each wavelength characterizes the dominance
of this scale in the spatial data. Close to a critical point, a relative
increase in the amplitudes of long wavelengths (lower frequencies)
is expected compared to short wavelengths (higher frequencies). To
summarize this into a single value, one can use the ratio of the aver-
age amplitude of low frequencies over the average amplitude of high
frequencies (Biggs et al., 2009), the Spectral Density Ratio, which is
expected to increase along degradation trends.

Additional EWS have been suggested for ecosystems that exhibit a
clear spatial structure, such as drylands or savannas (Rietkerk et al.,
2004). Characteristics of these spatial patterns, and in particular the
distribution of their patch sizes (Kéfi ef al., 2007, 2011), have been sug-
gested to be promising indicators of degradation (Kéfi et al., 2007; Lin
et al., 2010; Berdugo et al., 2017), hereafter referred to as ‘patch-based
EWS’. In these ecosystems, when stress is low, density is typically
high and there can be a patch whose width or height equals the en-
tire area considered, i.e. a spanning cluster. As density decreases, this
spanning cluster breaks down into smaller ones until a barren ecosys-
tem state is reached (Kéfi et al., 2011; Van Den Berg, 2011; Corrado
et al., 2014; Sankaran et al., 2017b). When using spatio-temporal data,
this sequential process is reflected in changes of the patch size dis-
tribution (PSD) (Kéfi et al., 2011). More precisely, it is expected that,
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(i) under low or no stress, a spanning cluster of occupied (vegetated)
cells is present. (ii) As stress increases, this single patch breaks down
and the PSD resembles a power-law (x~%). (iii) As stress increases fur-
ther, vegetation patches break down and the PSD fits best to a trun-
cated power-law (x~%e~P¥). (iv) In the final stages before reaching a
fully empty state, only small patches persist and the patch size dis-
tribution is best-described by an exponential distribution (e~ P¥) with
presence of a spanning cluster of empty cells. Identifying where in
these four phases an ecological system lies could thus constitute an
indicator of degradation level (Kéfi et al. (2011), but see Schneider &
Kéfi (2016); Sankaran et al. (2017b)).

A recent study has further suggested that this gradual truncation of
the patch size distribution could be simplified into a single metric
(Berdugo et al., 2017). The idea relies on the fact that many empirical
distributions resemble power-laws only for patches above a certain
size Xpin. This power-law range (PLR) can be expressed as

PLR — log(Xmax) — 10g(Xmin)
log(xmﬂx) - log(xsmullest)

where Xg1105t TEpresents the smallest and x4, the largest patch size
observed in the dataset. This metric is expected to decrease as the
ecosystem becomes degraded.

It is noteworthy that the interpretation of the expected trends in
patch-based EWS depend on the underlying ecological mechanisms
generating the patterns; these have been particularly well studied in
drylands (Rietkerk et al., 2004; Kéfi et al., 2011; Manor & Shnerb, 2008).
Therefore, as for all the other EWS, their use without a good under-
standing of the ecological mechanisms driving spatial structure could
lead to misinterpretations of the trends, since altered or even oppo-
site trends can be observed, both in empirical (Weerman et al., 2012)
or model systems (Pascual & Guichard, 2005; Schneider & Kéfi, 2016).

2.3 WORKFLOW AND EWS COMPUTATION

Because working with spatial EWS can be challenging and error-
prone, we provide a workflow for the R package ‘spatialwarnings’
to make this type of analyses more accessible and reproducible. Our

workflow allows computing EWS from raster data, typically from re-
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A behavior of interest in ecological systems are discontinuous transi-
tions via Fold bifurcations (May, 1977, Noy-Meir, 1975), where the pre-
diction of the proximity to a critical point is particularly relevant. In this
case, the system of interest has alternative stable states over a range of
values of the control parameter (upper and lower solid lines in panel
a.1; e.g. high vs low vegetation cover in a rangeland), separated by an
unstable equilibrium (dashed line in panel a.1). If a change in the con-
trol parameter (e.g. grazing intensity) pushes the system state across
the critical point (black dot), the system exhibits a ‘catastrophic shift’
(black arrow) and collapses from its current state (e.g. high cover) to the
other one (e.g. low cover).

These transition arise because of the presence of strong positive feed-
backs. They can sometimes be present, driving the system close to Fold-
bifurcation-type dynamics and leading to a non-linear response, but not
strong enough to produce a discontinuity (panel a.2) (Kéfi et al., 2013).
Other types of critical points exist without wide shifts in ecosystem
states, such as in the case of transcritical bifurcation (panel b), for which
the typical example in ecology would be the extinction of a species
(Clements & Ozgul, 2016; Drake & Griffen, 2010).

In all these cases, EWS are expected to reflect the approach of criti-
cal points (panels a.1,c) or upcoming threshold of nonlinear response
(panel a.2). See (Boettiger ef al., 2013; Boettiger & Hastings, 2012; Boer-
lijst et al., 2013; Hastings & Wysham, 2010; Kéfi et al., 2013; Dakos et al.,
2012; Kéfi et al., 2014) for further discussions about the use and inter-
pretation of changes in EWS.

Box 2.1: Three examples of ecological system responses where EWS can
be useful

mote sensing imagery. All tools and example datasets are provided
by the associated package ‘spatialwarnings’.

The package can compute three types of EWS as earlier defined:
generic EWS, spectrum-based EWS, and patch-based EWS. For each
one, a high-level function returns a suite of spatial indicators. Usual
basic functions (plot (), summary (), etc.) can be used to display the re-
sults. Lower-level functions, prefixed by indicator_ are also offered
to compute raw values of individual indicators.

The workflow comprises four steps: (i) prepare the data and check for
periodicity, (ii) compute the EWS from a list of matrices, (iii) assess
their significance compared to a random spatial structure, and (iv)
display the results (Figure 2.1).
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Figure 2.1: ‘spatialwarnings” workflow. Black headers indicate the relevant
package functions for each step.

In R, ‘spatialwarnings’ can be installed from CRAN and loaded using

the following commands:

install.packages("spatialwarnings")

library(spatialwarnings)

2.3.1 Preparation of input data and periodicity checks

Typical raster data, e.g. from airborne or satellite-based remote sens-
ing imagery, often come as image files with multiple bands. These
images can be read in R using standard packages (e.g. ‘tiff’, ‘jpeg’) to
obtain an array (a three-dimensional set of values), or a more com-
plex raster object (package ‘raster’). Indicator functions of the pack-
age work on matrix objects, the common denominator of all these
data types. A conversion of a multi-band raster object to a matrix
object is often required before computing EWS, a procedure that de-
pends on the type of data, the system of interest and the questions
addressed (see Appendix 3 and e.g. Liu & Mason (2016) for a more
complete reference). In what follows, we assume that the data have
been transformed into a matrix object, i.e. a raster surface of a single

variable.
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As with many spatial analyses, the resolution of the raster data should
be such that it appropriately captures the scale of the changes in the
spatial structure. For example, if the scale of the spatial structure is
small, a coarse raster image may not be able to capture its variations.
In general, using prior knowledge or carrying out preliminary analy-
ses at different scales when the data is available (Lam & Quattrochi,
1992) can help guide the choice of resolution. In addition, the input
raster image must be large enough so that the spatial characteristics
measured by the indicators are accurate. Subsetting the input data,
where possible, could provide a way of estimating measurement er-
rofrs.

The indicator functions can also operate on lists of matrices to di-
rectly obtain trends. This can be the case when one does not only
have a single image of the system under study but several ones corre-
sponding to different moments in time or to different instances of a
given ecosystems along an environmental gradient. All indicators can
be computed on matrices containing binary (boolean, TRUE/FALSE)
data, but some of them can also be computed on continuous (numer-
ical) data (Figure 2.1). A continuous matrix can be transformed into
a binary matrix by thresholding or classification. However, this trans-
formation needs to be done carefully depending on the ecological
context of the data and is therefore left to the user.

Once a suitable matrix object is obtained, it is necessary to identify
whether the spatial structures in the matrix are periodic or not (Kéfi
et al., 2014). Some ecosystems, such as patterned bushes in the Sahel,
show characteristic changes in spatial periodicity along degradation
gradients (Rietkerk & van de Koppel, 2008), which mask the expected
increase in EWS before critical points (Dakos et al., 2011). To identify
whether an ecosystem shows periodic patterns, a solution is to detect
possible modes in the r-spectrum of the image (Appendix 2, Couteron
(2002)). The absence of strong modes in the r-spectrum of the input
matrices means that the patterns are not periodic and that EWS pro-
vided by ‘spatialwarnings’ can be computed (Kéfi et al., 2014). Spe-
cific indicators exist for periodic ecosystems (Deblauwe et al., 2011)

and may be part of a future ‘spatialwarnings’ release.

2.3.2  Generic EWNS

To illustrate the quantification of generic EWS using the ‘spatialwarn-

ings” package, we reproduce here an analysis performed by Eby et al.
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(2017) on remote sensing imagery. In this study, the authors used
remotely-sensed images along gradients of increasing annual rain-
fall. The aerial images, stored in the R object serengeti were pre-
liminarily classified so that TRUE values (pixels in the image) repre-
sent grassland areas and FALSE values represent woodland areas. The
transects document the shift of the ecosystem from a grassland to a
woodland state around an annual rainfall of 730mm/year. The object
serengeti.rain contains the rainfall values for each matrix.

Generic EWS - variance, skewness and near-neighbor correlation (as
measured by Moran’s I) — can be computed using the generic_sews ()
function. However, the computation of these indicators differs de-
pending on the data type.

When working with binary data (TRUE/FALSE values), variance
and skewness only reflect the proportion of TRUE values in the data
and do not depend on the spatial structure (Kéfi et al., 2014). Coarse-
graining has been shown to be a useful procedure to make these indi-
cators actually reflect the spatial patterns (Sankaran et al., 2017a). This
procedure divides the input matrix of size N x N (for a square ma-
trix) into submatrices of size s x s. The average of the pixels is taken
in each submatrix, thus producing a N/s x N/s matrix with continu-
ous values. Even when a matrix already contains continuous values,
in some cases, coarse-graining may nevertheless be required to cor-
rectly compute EWS, and is therefore provided optionally. Sankaran
et al. (2017a) provides more details on the procedure and on the choice
of coarse-graining length.

Note that, in the package, coarse-graining is only included by default
in the computation of spatial variance and spatial skewness. Near-
neighbor correlation can be forced to be computed on coarse-grained
data using the moranI_coarse_grain option.

Using a subsize s = 5 as per Eby et al. (2017), we can reproduce their
analysis using the following code:

serengeti.ic <- generic_sews(serengeti,
subsize = 5,
moranl_coarse_grain = TRUE)

summary (serengeti.ic)

The significance of generic EWS can be assessed by comparing the
observed indicator value to a distribution of values obtained from
matrices with a randomized spatial structure. The generic function
indictest () can perform this operation by permuting the position
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of the cells in the matrix a great number of times (999 by default).
To carry out this operation efficiently, much of the package is imple-
mented in compiled code, and the package will use the global option

mc . cores to carry out parallel processing.

serengeti.test <- indictest(serengeti.ic)

summary (serengeti.test)
y g

Calling the plot () function on serengeti.test displays the results of
the computation (Figure 2.2):

plot(serengeti.test, along = serengeti.rain)

uesp\
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Figure 2.2: Generic EWS trends for the serengeti dataset (Eby et al., 2017)
along an annual rainfall gradient. This figure is produced by call-
ing the plot () function on the output of indictest (). First row:
mean value of each input matrix (here average grassland cover).
2nd-4th rows: the three generic EWS - variance, skewness and
near-neighbor correlation (Moran’s I). Black lines represent the
observed values, and gray ribbons the 5%-95% quantiles of the
null values (obtained by randomizing the spatial structure). The
red line displays the value at which the ecosystem shifts from
savannah to forest (added using ggplot2; see Appendix 1). The
three indicators are found to increase prior to the shift.
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2.3.3 Spectrum-based EWS

Using the same Serengeti dataset, we can compute spectrum-based

EWS using the spectral_sews() function:

serengeti.spec <- spectral_sews(serengeti)

summary (serengeti.spec)

Similarly, the generic function indictest () can be used to test whether
the observed values depart significantly from the null expectation of
a matrix with random spatial structure. Calling the plot () method
on the result of indictest() displays the SDR trend with the null
expectation (Figure 2.3):

serengeti.test <- indictest(serengeti.spec)

plot(serengeti.spec, along = serengeti.rain)

800 -
600 -

400-

Spectral density ratio

200-

700 710 720 730
Annual rainfall

Figure 2.3: Spectral density ratio (SDR) trend along the gradient of annual
rainfall in the serengeti dataset. The null distribution of SDR
values is invisible because it falls within the width of the zero
grid line. The red dashed line indicates the value at which a shift
in vegetation cover occurs. SDR exhibits a sharp increase before
the threshold value in rainfall.

Additionally, individual r-spectra can be displayed for each input ma-

trix using plot_spectrum() (Supplementary figure 1):

serengeti.test <- indictest(serengeti.spec)

plot_spectrum(serengeti.test)

All observed r-spectra should show a near-monotonic decrease: a
spectrum with a non-zero mode implies the presence of a periodic
pattern in the matrix (Appendix 2), in which case the use of the
generic and spectrum-based EWS can be unreliable (Dakos et al., 2011;
Kéfi et al., 2014), while the shape and size of the patterns may provide

more valuable information (Kéfi ef al., 2014).
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2.3.4 Patch-based EWS

We showcase the use of the patch-based EWS on model data from a
Forest Gap model by Kubo et al. (1996). In this model of forest spa-
tial dynamics, spatial patterns emerge because of near-neighbor in-
teractions between trees. The dataset, forestgap, contains the model
outputs along several values of increasing stress, a list of a binary ma-
trices in which TRUE values identify cells with trees. The data frame
forestgap.pars contains the parameters used in the simulations (d,
delta and alpha).

EWS can be computed using the patchdistr_sews () high-level func-
tion, for example using BIC as criterion to select the best-fitting dis-

tribution:
forestgap.patch <- patchdistr_sews(forestgap, best_by = "BIC")

The percolation status, patch distribution type and PLR can be dis-
played as text using summary (), or as a graph using plot () (Figure

2.4):

summary (forestgap.patch)
plot(forestgap.patch, along = forestgap.pars[ ,"d"])

The individual distribution fits can be shown using plot_distr()

(Figure 2.5):

plot_distr(forestgap.patch, along = forestgap.pars[ ,"d"])

2.4 CONCLUSION

Remote-sensing imagery now provides outstanding data sets for eco-
logical analyses, both in terms of spatial and temporal coverage. Satel-
lite imaging archives extend back several decades (e.g. Landsat archive
since 1972), and newer programs bring improvements in spatial reso-
lution (e.g. 0.31cm for the commercial program WorldView), as well
as temporal frequency (e.g. every five days for the freely-available
Sentinel archive). This data proliferation makes EWS-based approaches
essentially applicable to any ecosystem on the planet. Combined with
a good understanding of the process scale and its ecological under-
pinnings, it could eventually allow mapping ecosystem degradation

or recovery trends across large spatial extents.
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PSD and shows whether there is percolation (presence of a span-
ning cluster) of full (TRUE) or empty cells. Mean cover is dis-
played as a continuous line. As stress increases, best-fit of PSD
switches from a power-law (pl) with percolation of full cells, fol-
lowed by a truncated power-law (tpl) and an exponential (exp)
with percolation of empty cells. The bottom panel shows PLR
decreasing along the stress gradient.
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Figure 2.5: Individual PSD fitted to each matrix of the forestgap dataset. As

stress increases (top to bottom and left to right), the truncation
of the PSD increases and the shape of the best-fitting distribu-
tion goes from a power-law (pl), to a truncated power-law (tpl)
and an exponential (exp). Along the same gradient, the PLR de-
creases (represented by the blue double-arrowed bar on top of
each panel).
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2.4 CONCLUSION

The ‘spatialwarnings” package lowers the threshold for conducting
state-of-the-art spatial pattern analysis from spatial ecological data
and enables a wide exploration of spatial metrics as predictive tools
for critical transitions. It is released under a permissive open-source
MIT license and invites new indicators, bug reports and other contri-
butions through its git repository https://github.com/spatial-ews/
spatialwarnings. We hope that its publication will motivate fur-
ther research to address the ground-truthing of spatial EWS and con-
tribute to the identification of robust measures of ecosystem degrada-

tion.
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THE RESPONSE OF HERBACEOUS PLANT-PLANT
ASSOCIATIONS ALONG A BIOTIC STRESS
GRADIENT

CONTEXT

Many interaction networks exhibit patterns that affect the resilience
of the whole community. For example, in some plant communities
(Verdu & Valiente-Banuet, 2008), the fact that interaction are nested
may prevent species extinctions and maintain a higher diversity. A
dominant role of facilitation in a given community has also been
identified as the potential source of sharp responses to increase in
stress, because they are a necessary condition for positive feedback
loops (Kéfi et al., 2016). Identifying whether the dynamics of a com-
munity are more dominated by competition or facilitation could thus
inform greatly about the potential response of a given vegetation com-
munity to perturbations (Callaway, 2007). This is one of the reasons
why, since the late 9o’s and early 2000’s, much work has focused on
measuring the relative importance of competition vs facilitation in
vegetation communities.

We contribute to this debate using a relatively new approach based
on co-occurrence networks, and describe the variations of the com-
petition/facilitation balance in vegetation communities of La Crau
(France) along grazing gradients.

This work is based on vegetation surveys carried yearly during
along the course of this PhD program (springs of 2016, 2017 and 2018,
and fall of 2017 for soil sampling), totalling an approximate amount
of 4 months of field work. It was carried out in collaboration with
Thierry Dutoit at IUT d’Avignon, along with Axel Wolff and Laurent

Tatin from the Réserve Naturelle des Coussouls de Crau.
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3.1 INTRODUCTION

In many plant communities, much work has shown the fundamental
effect of inter-specific interactions on the response of the community
to perturbations (Verda & Valiente-Banuet, 2008). This concerns not
only competitive interactions, but also positive interactions. For exam-
ple, in semi-arid communities, nurse effects are prevalent, in which
a bush promotes the recruitment of other herbaceaous species under
its canopy (Valiente-Banuet & Ezcurra, 1991; Horton & Hart, 1998).
Such facilitative effects have been suggested as the drivers of shift-
like and irreversible responses of plant communities to perturbations
(Kéfi et al., 2007). Knowing where and when facilitative interactions
are predominant in a community could inform greatly about its po-
tential response to perturbation.

Species interactions can change along environmental gradients, ei-
ther directly or as the result of species turnover. For example, a gen-
eral result seems to be that interactions between plant species tend to
be facilitative in abiotically-stressed environments, but switch to com-
petition in less-stressed environments. This result was coined as the
Stress-Gradient Hypothesis (SGH) two decades ago (Bertness & Call-
away, 1994; Callaway et al., 2002), then further refined by later studies
to include different type of stressors and plant strategies (Maestre
et al., 2009). For example, the net interaction between a pair of plants
can be altered by the presence of herbivores (Smit et al., 2009). As-
sociative protection can arise in grazed conditions, an interaction in
which a plant benefits from protection against herbivores due to the
repulsive effect of unpalatable neighbors (Baraza et al., 2006; Graff
& Aguiar, 2011; Le Bagousse-Pinguet et al., 2012). Typical functional
traits leading to decreased palatability are the presence of thorns
(Plate 5) or leathery leaves. Variations in a given interaction between
two species can thus arise as a result of changes in the nature and
strength of stressors, and the combination of their traits.

Because the dominance of positive or negative interactions in a
given plant community may determine strongly its performance and
dynamics (Callaway, 2007), many studies have aimed at evaluating
the relative importance of these interactions in natural communities
(Brooker et al., 2008). However, many only consider the variations of
pairwise interactions among a limited set of species (e. g., Holthuijzen
& Veblen, 2016; Graff & Aguiar, 2011), because the number of pair-

wise experiments required to measure interactions among a diverse
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set of species is very high. Yet even when they are carried out, pair-
wise experiments may be insufficient to characterize accurately inter-
actions that occur in a natural community (Engel & Weltzin, 2008), be-
cause of e.g. indirect effects (an interaction between a pair of species
is altered by the presence of another). Predictions from the SGH at the
community level have also not always matched what is observed at
the species-pair level (Soliveres et al., 2014), because a given stressor
may have different effects on each species in a community (Soliveres
et al., 2015). As a result, to date, no consensus exists on the main
drivers of positive and negative interactions in vegetation communi-
ties, despite its central role in community assembly and successional
dynamics (Cramer et al., 2008; Verdd et al., 2009).

Recent work has suggested that the observed co-ocurrence of a pair
of species in a given community could be used as a proxy for the ef-
fect they have on each other, i.e. their interaction (Saiz & Alados,
2011). The underlying assumption is that, given a constant abiotic en-
vironment, a positive interaction between two species should produce
a spatial pattern of aggregation between the individuals of these two
species. Conversely, a negative interaction is expected to produce a
pattern of segregation. Although co-occurrence-based analyses have
shown mixed success in accurately predicting pairwise interactions in
general (Barner et al., 2018; Freilich et al., 2018), they have been shown
to have some success in predicting community-level properties such
as the balance between negative and positive interactions (Barner
et al., 2018). Some studies have also suggested that associations could
highlight shifts in the processes driving community-assembly (Lyons
et al., 2016; Levy & Borenstein, 2013). In addition, the equivalence
between spatial aggregation and facilitation has been shown experi-
mentally in plant communities (Graff & Aguiar, 2011). Spatial pattern
analyses thus appear as a promising avenue to contribute to the de-
bate over the relative importance intensity of facilitation vs. competi-
tion in natural plant communities.

Previous work based on this approach has shown that associations
varied according to changes in grazing pressure. In grazed systems,
the balance between positive and negative associations can be driven
by associative protection, in which a plant’s mortality due to grazing
is reduced because of unpalatable neighbors. This is expected to pro-
duce a unimodal pattern of variation of positive associations (Graff &
Aguiar, 2011), where associative protection dominates at intermediate
levels of grazing, but is absent when grazing is either low (competi-

67



68

10

15

20

25

30

35

INTERACTION NETWORKS AND BIOTIC STRESS

tion between plants dominate) or very high (disturbance is too high
for interactions to be observed, or associative protection disappears).
This pattern has been observed in positive associations (Saiz & Ala-
dos, 2012), but given the fact that associations also tend to vary with
aridity (Holthuijzen & Veblen, 2016; Alados et al., 2017; Lopez et al.,
2013), its generality may be questioned. Other work has also shown
that interactions could switch from facilitative to competitive because
of grazing, as a result of morphological adaptation (Suzuki & Suzuki,
2012), diminishing the potential role of positive interactions in grazed
contexts.

No consensus exists yet on how the relative importance of compe-
tition and facilitation responds to grazing, leaving a general uncer-
tainty on the effect of stress on the organization of vegetation com-
munities, beyond the sole change in species composition. In addition,
despite authors suggesting that facilitation could also be strong in
more mesic environments (Holmgren & Scheffer, 2010), few studies
have focused on the latter. Yet such studies could help understand bet-
ter the prevalence of facilitation in communities, moving away from
nurse-plant asymmetric facilitation and more towards symmetric fa-
cilitation (where two plants facilitate each other but have similar life-
forms, Gallien et al., 2018), and set a reference for studies carried out
in stressed environments.

To contribute to filling this knowledge gap, we investigated the
variations of the positive/negative association balance, this time in a
more mesic, Mediterranean environment: La Crau, France (mean an-
nual rainfall: 540mm). Contrasting with many previous studies, our
work focuses on the variations of associations in herbaceous commu-
nities composed in majority of annuals (which are often ignored in as-
sociation studies, e. g. Soliveres et al., 2014). We investigated whether
the variations of positive and negative associations matched previous
expectations based on the importance of associative protection, i.e.
whether there was a unimodal relationship in positive associations
along the grazing gradient, and how the community-scale balance
between positive and negative associations varied along the gradi-
ent. We also investigated the species-level association balances (i.e.
whether species tend to engage in more negative or positive associa-

tions) to interpret the variations in community-scale trends.
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DESCRIPTION OF LA CRAU  La Crau is a Mediterranean semi-arid
grassland located in the south of France (Bouches-du-Rhone), whose
vegetation has been shaped by sheep grazing for at least 2000 years
(Henry et al., 2010). For this reason, a diverse community of herba-
ceous plants is maintained (on average 30+12 species/m? in this
study, mean+s.d.), with a species composition that varies depend-
ing on the grazing pressure. All vegetation is herbaceaous with very
few perennial higher shrubs, leading to a typical steppe-like visual
aspect (Plate 1).

Grazing in La Crau is centered around numerous sheepfolds (pens
for sheeps) spread out in the steppe, where sheeps are gathered at
night. Sheep activity is most intense around the sheepfold and de-
creases with the distance from the sheepfold. This results in local
changes in the identity and diversity of vegetation communities in an
otherwise continuous "Coussoul"-type community (Molinier & Tallon,
1950), dominated by the perennial grass Brachypodium retusum (Plate
4). Ruderal nitrophilous plants are most abundant close to sheepfolds,
and decrease in abundance as distance to the sheepfold entrance in-
creases. This very-well defined gradient constitutes an ideal setting
to test the influence of grazing (and other stresses associated with
grazing, such as trampling and redistribution of nutrients) on the as-

sociations of vegetation communities.

SURVEYS  We selected six sites, i.e. six sheepfolds, for sampling
that were spread out in the studied area (Figure 5.6), and displayed
typical vegetation turnover as a response to grazing.

We first carried out a quadrat-based survey to document the varia-
tions of species covers along the grazing gradient. Each quadrat had
an area of 1x1m and was subdivided into a grid of 25 subquadrats
(20x20cm each), in which the presence/absence of each species was
recorded. The first quadrat was placed as close as possible to the en-
trance of the sheepfold, avoiding any local disturbance not related to
grazing (e.g. presence of a dirt road). The spacing between quadrats
followed a geometric series, i.e. the second quadrat was placed at
dy=2m from the first in a general south-east direction (maximal di-
rection of extension of the gradient), then subsequent quadrats were
placed such that d,, ;1 = b*d, were b was between 1.2 and 1.5 depend-
ing on the site (Appendix 2). Adjustments in the quadrat spacing or
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in the general direction of the transect were made to avoid local dis-
turbances unrelated to grazing.

Computing species spatial associations requires measuring the spa-
tial structure of plant communities at different levels of grazing pres-
sure. In La Crau, the local grazing pressure (i. e. the number of sheeps-
time/ha) is known to decrease with the distance from the sheepfold,
although its exact value has not been determined for most sites. Pre-
vious studies (Dureau, 1997) suggest it decreases as the inverse of
distance. In the current absence of a quantitative measure of the graz-
ing pressure, we used an indicator-species-based approach to choose
the distances at which the spatial structure was documented. Because
previous work identified four vegetation "belts" that differ in species
composition around sheepfolds (Molinier & Tallon, 1950), we based
the spacing of our transects on this classification to make sure we doc-
umented a wide range of grazing levels. In a 5x3m area around the
quadrats described above, we considered the presence and absence
of 16 indicator species known to reflect each vegetation type (taken
from Molinier & Tallon (1950) and Gomila (1987)). This allowed us to
identify in space where each community type occurred. We then laid
out two replicate transects in each vegetation type, separated from
at least 1om but no more than 75m so that the local vegetation was
under similar levels of grazing pressure.

We documented the spatial structure of vegetation communities
using 5 meter-long transects. Each start point and direction of tran-
sects were chosen randomly by throwing a pen. For each transect, we
laid out a measuring tape, and recorded the length over which every
plant individual or part of an individual overlapped to a precision
of 2mm (Plate 9 and 10). Positions were determined with an accu-
racy of 2mm, as estimated from repeated measurements, mainly due
to parallax errors when recording plant intersections. For each plant
part surveyed, a class of height was also recorded, on a scale rang-
ing from 1 to 5 (classes bounds of 0/2/5/10/20/>20 cm). We also
recorded along transects the intersections of pebbles, which drive to
some extent the distribution of some species. For example, tillers of
Brachypodium retusum tend to resprout from under pebbles, leading
to a possible increased spatial association between them. However,
we did not include the pebbles in the following analyses as we were
interested in the associations between plant species.

We replicated this survey in the surroundings of 6 different sites
(each site comprised one sheepfold). Because in some sites, some veg-
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etation types ("belts") were absent or impossible to identify, not all
belts could be documented for every site. Surveys were carried out
during the plant growing season (Apr 15 - June 10) which is the time
of the year where 80% of species can be detectable and identified
s (Bourrely et al., 1983), during years 2016 and 2017. This period was
included within the grazing season (February - June). Because the
structure of plant communities can change along the grazing season,

we made sure to distribute the surveys randomly in time.
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Figure 3.1: Workflow of the association analysis for community metrics. For
each pair of transects, outlying associations are detected, which
produces an association matrix of S(S + 1)/2 coefficients for S
species, and three raw community-scale metrics K (percentage
of positive links), K~ (negative links) and R (association ratio, see
main text). The same analysis is carried out for 499 null transect
pairs obtained through the randomization of the original transect
pair. This creates a null distribution of community-level metrics,
which are used to obtain the deviation of observed metrics to
what is expected given the same species identities and covers
but random spatial structure.

MEASURING ASSOCIATIONS  We analyzed species associations us-

10 ing the transect data and a randomization-based approach. This ap-
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proach involves computing a pairwise metric between species on ob-
served data, and comparing it to a distribution obtained from the
randomization of the spatial structure.

We computed associations by combining the two replicate transects
within each vegetation belt, resulting in one set of associations for
each pair of replicate transect. We used the total overlap between all
individuals of a pair of species (or between individuals of the same
species) along the two replicate transects as a measure of pairwise
association. We then randomized the spatial structure by assigning to
each individual a new, random position along one of the two repli-
cate transects, and recomputed the overlap metric. By repeating this
process 1999 times, this produced, for each species pair, a distribution
of overlap metrics that depended only on the abundance of the two
species in the dataset (Fig. 3.1). The observed total overlap can then
be compared to this distribution.

Associations were classified into positive, negative or neutral by
using a cutoff value a applied to the distribution. More specifically, a
positive association was considered to occur within a pair of species
when 1 —a /2% of the null distribution was below the observed value.
Conversely, a negative association was retained when «/2% of the
null distribution was above the observed value (Fig. 3.1). For exam-
ple, using a classic threshold of 5% (« = 0.05), a positive association
would be retained if the observed overlap was above 97.5% of the
null distribution. In this study, we chose to display trends based on
a = 0.25, but as the choice of this cutoff may affect the results, we
carried out a sensitivity analysis to make sure results were robust
to a range of thresholds chosen. Given the abundance of all species
found in the community and a chosen cutoff value «, this provides in-
formation about species that are significantly more frequently found
close to each other than expected by chance (positive associations)
and species that are less frequently found close to each other than
expected by chance (negative associations).

COMMUNITY-SCALE METRICS  For each pair of transects, this method

yields a number of positive and negative associations, which can be
viewed as a network where nodes constitute species and positive and
negative associations are signed links between them. We summarized
these networks into three community-scale metrics commonly used
in association studies: (i) K*, the percentage of realized positive as-
sociations (out of all the S * (S + 1)/2 possible associations that may
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be realized for S species?), (ii) K~ the percentage of realized negative
associations and (iii) the relative importance of each association type
R = (K" —K7)/(K" + K™) (Saiz et al., 2017, Alados et al., 2017; Ar-
royo et al., 2015). R is zero when no positive nor negative associations
are detected, and is equal to +1 or -1 when interactions are all posi-
tive or negative. In the literature, R has a similar form to the relative
interaction index (RII), which has been shown to be a mathematically
correct index to measure neighbor-effects (Diaz-Sierra et al., 2017).

The probability of retaining a positive vs. a negative association for
a pair of species varies with the total cover of the two species in the
transect (Box 3.1), affecting the values of K, K~ and R. The varia-
tions of the raw values of these indexes along a gradient may thus
reflect variations in species abundances rather than true variations
in plant associations. Abundances-corrected values of K™, K~ and R
need thus to be obtained to correctly interpret the variations of asso-
ciations along a gradient (Pellissier et al., 2017; Tylianakis & Morris,
2017).

To do so, we devised a procedure to obtain a distribution of network
level metrics that reflected expected values given the same identity
and species total covers, but random spatial structure. For each pair of
transect, we created 199 'null’ transects, with randomized positions of
individuals along the transects (allowing mixing individuals between
replicate transects). These transect pairs have the same species compo-
sition and covers, but associations derived from them only reflect the
distribution of species covers. We then computed the standardized
effect sizes of K*, K~ and R compared to this network-level null dis-
tribution, K;’ES, Kgps and Rsgs as follows (i.e. Z-score; example given
for the latter) :

R — AuRnuIl

s
U-Rnull (3 )

Rsgs =
where p is the mean of the null distribution and ¢ is its standard
deviation.

This allowed us to build a null distribution of community-scale
metrics, and disentangle their variations due to changes in species
covers from the true effect of the gradient. In what follows, we only
present the raw variations of R along the grazing gradient for the

Note that this is not S(S — 1)/2, because our method also allows the detection of
intra-specific associations
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sake of conciseness, but show the variations of K;’ES, Kgps and Rsgs.

In addition to the variations along the grazing gradient, we investi-
gated the tendency of each species to engage in negative and positive
s associations. In a similar way to how we derived community-scale
metrics, we used, for each species, the percentage of realized positive
interactions S (number of positive associations / total possible num-
ber of associations for this species) and negative interactions S—. We
then computed the ratio between the two as (ST —S7)/(ST +S57).
10 As for community metrics, for each species, we corrected these val-
ues for species abundances by computing their standardized effect
size compared to what was obtained from the null dataset. We com-
pared the SES obtained for each species to the average height of the
species (using the midpoints of the height classes) and the average

15 total cover of the species in the transects where it was present.



3.2 METHODS

Box 3.1: Detection bias in plant-plant association analyses

The probability of detecting a significant association (positive or
negative) between two species varies with their abundances. To
illustrate this, we can consider the simple situation of a transect
containing two randomly-placed individuals of different species
and identical size s, and consider the association that is retained
between the two species depending on the observed overlap. This
figure below has been obtained by placing 10,000 time at random
two individuals of a given size along a transect, then computing
the quantiles of the obtained distribution of overlap.

No neﬁ. assoc. are,
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Figure 3.2 Type of association deduced from the observed overlap between
two individuals of a given size (for « = 0.05). Blue and red bands represent
the fraction of the overlap distribution below 2.5% and above the 97.5%
quantiles respectively. For a wide range of individual sizes, no negative
association can be retained.

In this simple example, negative associations cannot be detected
when the cover of the two species is moderately low (below 0.44%
of the transect length), regardless of the value of the observed
overlap. In other words, even if these two species do not overlap
at all, we cannot conclude to a negative association. This arises
because the 0.025 («/2) quantile of the null distribution intersects
zero, and the overlap metric cannot be negative (as noted by Saiz
& Alados (2012)).

As a result, in association networks, all negative associations be-
tween rare species are effectively "forbidden links", that can never
be derived from data. This has two important consequences on
association analyses.
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Box 3.1: Detection bias in plant-plant association analyses (cont.)

First, the expected association ratio (R) under random assembly
is not neutral (zero) but in fact biased towards positive associa-
tions (Figure 3.3), because most natural communities have few
abundant species and many rare ones (Harte, 2011; Bazzaz, 1975).
This could explain the oft-observed dominance of positive associ-
ations over negative ones in studies that do not correct for abun-
dance (e.g. Saiz et al., 2018, 2017; Alados et al., 2017, Morueta-
Holme et al., 2016; Lane et al., 2014)).

Second, because the distribution of abundances of species varies
along gradients, the null expectation of associations numbers and
ratios will vary accordingly, even in the absence of any biological
effect. For example, an increase in rare species along a gradient
can shift the association balance towards positive values, even
with random spatial structure. It is thus necessary to compare
the deviation of these aggregated metrics to what is expected
given the distribution of species abundances, rather than their
raw values (Pellissier ef al., 2017).
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3.2 METHODS

REGRESSION AND SENSITIVITY ANALYSES  We used mixed-effect
linear modeling to measure the variations of K*, K~ and R (and their
abundance-corrected counterparts) along the grazing gradient. We
modeled the response of one of the above variables as a linear func-
tion of the log of the distance with a normal error structure (e. g. for
R, R ~ a+bxlog(distf)+ €), and considered site-level random ef-
fects on the intercept and slope of the regression. We considered an
uncorrelated random effect on the slope and the intercept because
given the low number of data points, we could not obtain a relevant
estimate of their correlation this correlation was sometimes be 1 and
regression diagnostics could not be computed.

We carried out this regression procedure for different values of
the association cutoff « and used bootstrapping to derive confidence
intervals on the estimate of the slope.

All spatial analyses were carried out in R using custom procedures
and the package ‘Ime4’ (Bates et al., 2015) for regressions.
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Figure 3.3: Variations of the raw association ratios R and its expected value
given the species covers along the grazing gradient (measured
by the distance to the sheepfold). Each panel corresponds to one
surveyed site (along the rows). The raw association ratio showed
mostly flat variations along the gradient, with values close to
zero (same number of positive vs negative associations). The
expected values of the ratio given the species covers and abun-
dances were always positive.
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3.3 RESULTS

Raw variations of R along the grazing gradient were mostly flat and
close to zero, suggesting an apparent balance between negative and
positive associations (Figure 3.3). This absence of trend was robust to
the choice of interaction cutoff a (Figure 3.6) as the effect of distance
on the raw ratio was non-significant for a majority of a values. How-
ever, null distribution of R values were generally positive along the
gradient in all sites, and observed R values almost always below the
expected null trends (Figure 3.3, ribbons). In other words, there was
always relatively less positive associations than expected given the
species richness and covers in transects.

This deviation from random expectation, measured by Rgsgs, changed
with decreasing grazing intensity (Figure 3.4). Close to the sheepfold,
Rsgs values were close to the null expectation, while negative values
were observed further from the sheepfold. Mixed-effect modelling
showed that this decrease was significant for most of the cutoff val-
ues « selected (Figure 3.6).

This decrease in R with distance was underpinned by a decrease in
the fraction of realized positive associations K¢, combined with an
increase in negative associations K¢ (Figure 3.5). An excess of neg-
ative associations was always found, regardless of the grazing level
(Kgpg values were always positive). Positive associations were close
to random in highly-grazed zones, and a deficit was observed in less-
grazed zones (more negative values of Kg¢). These trends were ro-
bust for most choices of a cutoff, except for extreme values of a (<
0.10 and > 0.875).

Per-species analyses of associations revealed that most species had
a tendency to produce negative associations, as manifested by a neg-
ative SES in the association ratio (Figure 3.7). The association ratio of
a given species was not significantly correlated to its average height
(Kendall’s T = 0.041, P = 0.5) but was negatively correlated with its
cover when present in a transect (Kendall’s T = -0.44,P < 0.001)
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Figure 3.4: Variations in the SES of the association ratio R¢.¢ along the graz-
ing gradient. A value close to zero indicates that the ratio value
is fully explained by the species composition and covers of the
given pair of transect. Negative values indicate a lower associa-
tion ratio that what is expected given the species covers.
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Figure 3.5: Variations in the SES of percentage of realized positive associa-
tions (K{;¢) and negative associations (Kg.¢) along the grazing
gradient. A value close to zero indicates that the observed num-
ber of negative and positive associations is close to its expected
values given the species composition and covers. Negative (resp
positive) values indicate a deficit (resp an excess) in the given

type of interaction.
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Figure 3.6: Coefficient of regression of the slopes of K™, K~ and R (green)
and their abundance-corrected counterparts (K;ES, etc.) along
the grazing gradient (red), as a function of the association cutoff
«. Ribbons indicate 95% confidence intervals. The grey vertical
line indicates the chosen threshold for Figures 3.3, 3.4 and 3.5.
A value close to zero indicates that the distance (i.e., grazing)
has no effect on the pattern of association. Negative (resp. posi-
tive) values indicate that grazing increases the focal metric (resp.
decreases). For example, the raw association ratio R does not sig-
nificantly vary with grazing for almost all cutoff values («), but
its abundance-corrected version always increases with grazing.
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3.4 DISCUSSION

ASSOCIATION TRENDS  Using continuous transects documenting
the spatial associations of individuals, we found non-random trends
in spatial associations along a grazing gradient. Although an excess of
negative associations was observed at all grazing levels, very highly
grazed areas showed less associations between plants. In area with
less grazing, the association balance was highly negative, due to a
combined decrease in positive associations and an increase in nega-
tive associations.

The classical interpretation of plant-plant associations is that pos-
itive associations reflect facilitative processes between plants, while
negative associations reflect competitive processes. This hypothesis is
consistent with our results, as grazing is known to produce a shift
from competitive plant strategies to ruderal plant strategies (le Priol,
2017). Far from the sheepfold, competition processes dominate the
assembly of the communities, resulting in an increased number of
negative associations. Close to the sheepfold, very high stress due to
grazing favors ruderal plants with short lifespans (Chenopodium spp.)
or adapted to frequent disturbance (e. g. Malva sylvestris with a deep
taproot, pers. obs), resulting in a spatial structure that reflects less the
effect of interactions and more the disruption of spatial patterns by
recurrent disturbance.

How do these trends compare to other association-based studies
? We found no unimodal relationship of positive associations along
the grazing gradient (contrasting with e.g. Saiz & Alados (2012), al-
though the difference may be explained by methodological differ-
ences). This is probably due to the fact that our study is based on
the extremely grazed side of the gradient, thus only documenting the
collapse of positive and negative interactions under high stress (Graff
et al., 2013). Evidence of associative protection can be observed in the
tield (Plate 5), but it did not occur frequently enough to be sampled
by our systematic survey. The seemingly low presence of facilitative
interactions could also be explained by the identity and morpholog-
ical adaptation of species (Suzuki & Suzuki, 2012). Because of the
long-term grazing, plants in La Crau are mostly herbaceous species,
with no tall (> 30cm) woody shrubs engaging in assymetric facili-
tation (Callaway, 2007, e.g. nurse syndrome). As such, species may
show a different pattern of associations in communities where more

shrubs are present. For example, e. g. B. retusum produces mostly neg-
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ative associations in this study, but these are mainly positive in Saiz
& Alados (2012).

We found that the most competitive plants in term of associations
were also among the smallest (e. g. Trifolium subterraneum, Figure 3.7),
and there was no significant relationship between the average type of
association done by a species and its height. This suggests that the re-
source under competition in the less-grazed communities is not light
(which would be manifested in a tendency for competitive plants to
be higher), but rather space and/or local nutrients This interpretation
is reinforced by the fact that species with very low association ratios
included cespitose grasses (e.g. Dactilys glomerata, Brachypodium re-
tusum), or ground-covering species (e.g. Trifolium subterraneum, Med-
icago rigidula). Future analyses crossing trait data with association-
based observations would certainly provide insight into the under-
lying mechanisms driving associations. In addition, our study only
looks at above-ground processes, but underground processes could
also explain the patterns.

METHODOLOGICAL ASPECTS  In this chapter, we showed that strong
variations of the association balance along the gradient were masked
by variations of species abundances (Figure 3.3). This highlights the
need to have community-scale null expectations when interpreting
patterns of associations (Soliveres et al., 2015, e.g.). In fact, since sig-
nificance of patterns is only tested for the community-scale metrics
(R, K*, K7), any a cutoff could be considered at the species level,
even one i.e. all associations are included to compute community-
scale metrics).

Interestingly, the trends along the grazing gradient varied slightly
with the choice of cutoff (Figure 3.6). This calls for systematic testing
of the full range of a values (0-1) instead of focusing on a specific
values (typically 0.05). In fact, different interaction types may lead to
different strengths of associations. For example, using a modelling
approach, it can be shown that competition for space produces an
excess of weak negative associations (Box 3.2). Using different values
as cutoff (or different ranges) may select different types of underlying
interaction, whose trends along gradients could be different.

This work shows that association-based approaches can be useful
to understand the dominant processes occurring in a community (e. g.
competition, facilitation). Yet the link between pairwise interactions
and spatial patterns remains not fully understood, i.e. which kind of
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interactions give rise to which kind of spatial pattern. However, the re-

cent rise of interest around co-occurrence methods (Morueta-Holme

et al., 2016) and network analyses (Graham & Weinstein, 2018; Del-

mas et al., 2017), along with increasingly-exhaustive trait databases
s (Tavsanoglu & Pausas, 2018) may greatly enhance their potential.
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Box 3.2: What interactions are captured by associations ? A modelling
approach.

A quick look at the general distribution of association strengths in
empirical data reveals that it follows no well-known distribution
but has a complex shape.
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Figure 3.8 Empirical distribution of 1024 randomly-selected association
strengths (i.e. the deviation of the observed total overlap between pairs
of species to the mean of the random expectation, divided by the s.d. of
the random expectation) The y-scale is non-linear (square-root transforma-
tion).

A notable feature of this empirical distribution is the excess of
weakly negative association strengths. These associations could
possibly represent a widspread and common type of underlying
interactions. We used a modelling approach to investigate a pos-
sible mechanisms underpinning this pattern.

We devised an individual-based model, in which plant individ-
uals are represented as discs that interact on a 2D plane. The
details of this model are presented in Appendix 3. Each individ-
ual can affect the mortality and the probability of recruitment of
a new individual in its neighborhood. In this model, we also in-
cluded spatial preemption in part of the simulations. When it was
present, propagules cannot access the ground under the canopy
of other individuals, so no recruitment of new individuals is pos-
sible there. We ran a set of 100 simulations, with and without a
space preemption effect, in communities of 20 species until equi-
librium. At the end of the simulations, this model produces indi-
viduals distributed out in space.
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Box 3.2: What interactions are captured by associations ? A modelling
approach (cont.).

100

75

50

25

Figure 3.9 Example output of the model. Discs are individuals of different
species (color). x/y axes represent dimensions in space. A "virtual transect"
of length 100 is being represented with a black line.

Because this model is based on disc-like individuals in a continu-
ous space, we measured associations between species by carrying
out "virtual transects", which record the range over which indi-
viduals intersect a line. This provided us with the same type of
data than what was recorded in the field, so we could carry out
the same association-based analysis as what was done on empiri-
cal data. From these associations, we can then derive the general
distributions of associations with, and without space preemption.
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Box 3.2: What interactions are captured by associations ? A modelling
approach (cont.).
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Figure 3.10 Observed distribution of 4096 association strengths from
model data, with and without the effect of space preemption.

Adding the effect of space preemption produces a distribution
of association strengths that is strinkingly similar to what is ob-
served in empirical data (compare with Figure 3.2). This suggests
that competition for space appears — or another process limiting
recruitment or survival under the plant canopies — appears as
one of the main process explaining the distribution of observed
associations.
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THE RESILIENCE OF INTERACTION NETWORKS:
INSIGHT FROM PLANT-PLANT ASSOCIATIONS

CONTEXT

As shown in Chapter 3, interactions can vary along gradients of biotic
stress. In particular, we showed that strong disturbances produced a
decrease in competition for space. This chapter focuses on the long-
term temporal dynamics of interactions after the release of the biotic
stress, i.e. the resilience of interactions. Very few studies have de-
scribed the temporal variations of interactions (at local scale), and if
so it has often only be done for plant-pollinator networks (CaraDonna
et al., 2017; Olesen et al., 2008). This work contributes to filling this
gap by describing the temporal dynamics of plant-plant association
networks. We focus in particular on a specific structural pattern of
association networks: the positive/negative association ratio.

To do so, we adopt a chronosequence approach and document sites
that have been previously abandoned at known dates in time. La Crau
has a long history of grazing, which allowed us to survey vegeta-
tion communities up to approximately 1,600 years after abandonment.
Current sites show a strong, established gradient of grazing centered
on the sheepfold. After abandonment, the abandoned sites were still
grazed but at much lower levels than originally, and without grazing
intensity being spatially centered around the sheepfold. This leaves
place for a recovery process of vegetation communities that we doc-
ument here. This process is remarkably slow: Henry (2009) reports
that the vegetation was still significantly different from a reference,
"Coussoul" community (where B. retusum predominates) 2,000 years
after abandonment.

This work is based on vegetation surveys carried every year during
the course of this PhD (2016, 2017 and 2018, see also Chapter 3 and
Appendix 2), with the invaluable help from many field assistants, re-
searchers from the IUT d’Avignon, and staff from the Réserve Naturelle
des Coussouls de Crau. This chapter is still a work-in-progress, and we
describe here preliminary analyses of the data set that highlight the
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Figure 4.1: The sheepfold Guillaume Orcel, which has been abandoned be-
tween 1968 and 1971 (Henry, 2009).
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Figure 4.2: Artist depiction of a Roman sheepfold (image taken from a inter-
pretative sign in Peau de Meau). See also Plate 8.
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main variations of plant-plant associations and frame the chapter in

the relevant literature context.
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4.1 INTRODUCTION

Ecological systems are increasingly affected by anthropogenic im-
pacts, leaving many communities disturbed, possibly with very differ-
ent functioning than their pre-disturbance state. This is in particular
the case for an increasing number of vegetation communities located
in abandoned agricultural fields (Cramer et al., 2008). Predicting the
future trajectory of this type of communities requires understanding
the relative importance of multiple community assembly processes
(Meiners et al., 2015). These processes determine whether the com-
munity will be naturally resilient and recover towards its original,
pre-perturbation state (Ruprecht, 2006), or instead diverge and per-
sist in another state through time (Suding et al., 2004). For example,
old crops can show an absence of recovery following abandonment,
due to competitors impairing the recruitment of the original vege-
tation (Firn et al., 2010). Disentangling how and where such biotic
interactions alter the dynamics of vegetation communities — and their
importance relative to other assembly processes — is thus invaluable
to anticipate future changes.

Successional dynamics — understood here as the temporal trajecto-
ries of communities after a disturbance event (Hobbs & Walker, 2007)
- provide an ideal setting to estimate the relative importance of these
assembly processes through time after disturbance. A general expec-
tation is that abiotic processes dominate the assembly of the commu-
nity in the early stages after disturbance, while biotic processes such
as competitive exclusion increase in importance in the later stages
(Connell & Slatyer, 1977). However, many exceptions to this general
trend can be found (e.g. Verdu et al., 2009). For example, the recov-
ery of many old fields is often limited by the low dispersal ability of
native species (Fedriani et al., 2018).

To test the relative importance of different assembly processes, re-
cent correlative approaches have built on functional and phylogenetic
community patterns (Garnier et al., 2004; Meiners et al., 2015). Where
competitive processes are dominant, communities are expected to ex-
hibit overdispersion, i.e. species in the community should be more
distinct functionally and phylogenetically than expected through ran-
dom assembly (Webb et al., 2002; Macarthur & Levins, 1967). Func-
tional and phylogenetic overdispersion — hence a possible increased
role of inter-specific competition — has been found in late successional
stages (Purschke et al., 2013; Li et al., 2015). Yet these approaches have
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4.1 INTRODUCTION

been criticized because the mechanistic bases of overdispersion re-
main debated (Cadotte & Tucker, 2017). These approaches also often
ignore the possibility of plant-plant facilitation, which may change
the expected successional patterns. For example, Verdu et al. (2009)
documents a facilitation-based succession which shows phylogenetic
overdispersion only in middle successional stages, and not in late-
stages.

Progress towards a better mechanistic understanding of the drivers
of succession — and in particular of the role played by biotic interac-
tions — may come from applying new, independent approaches. In
this work, by using a new approach based on plant-plant association
networks (Saiz & Alados, 2011), we aim at describing how potential
interspecific interactions vary along succession in plant communities.
Association networks describe plant spatial relationships as part of
a signed network. When two plants species co-occur more than ex-
pected by chance, a positive link is drawn between the two species.
Conversely, a negative link is drawn whenever two species co-occur
less than expected by chance. Positive and negative links are thought
to reflect on average the sign of the interaction between the pair of
species. Thus, the relative proportion of negative and positive links
in a given association network could inform on the dominance of pos-
itive over negative interactions in a plant community. The variations
of this interaction balance during succession may shed a new light on
succession mechanisms, and in particular (i) provide an independent
alternative to approaches based on functional/phylogenetic related-
ness and (ii) include facilitation as well as competition in the relevant
processes ocurring along succession (Verdd et al., 2009).

Association-based approaches are not devoid of criticism (Barner
et al., 2018; Freilich et al., 2018). For example, some interactions may
produce counter-intuitive associations, such as parasitic interactions,
which are negative in essence yet produce a positive association. How-
ever, as far as plants are concerned, support for spatial aggregation
as the result of facilitation has been shown in experiments (Graff &
Aguiar, 2011; Valiente-Banuet & Ezcurra, 1991). Focusing on com-
munity-level properties instead of individual pairwise associations
may also average out errors at the species-pair level, and provide a
more reliable measure of the positive versus negative interaction bal-
ance in a given community (Saiz & Alados, 2012; Alados et al., 2017).

We applied the association network approach to a succession of
vegetation communities of the plain of La Crau, a locally semi-arid
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Stage a A Grazing pressure
Currently-used site i
Distance
B A B
Abandonment
Stage b A Grazing pressure
B A B
Stage ¢ A Grazing pressure
Distance
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Distance
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Figure 4.3: Response of vegetation communities at a currently-used site, re-
covery through time, and hypothesized spatial distribution of
grazing pressure. A currently-used site will show a strong local
variation of grazing pressure (Stage a), which results in a local
change of vegetation communities (colors). After abandonment,
a "rewinding" process occurs and the "Coussoul'-community
(grey) colonizes back the disturbed areas (Stages b-d). In the
early stages after abandonment, the grazing pressure is locally
a bit higher than elsewhere as the remains of the sheepfold are
still standing and provide shade, where the sheep tend to stay
longer (Stage b). We documented the variations of vegetation
communities along the line A-B in current and past sheepfolds.
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grassland in Mediterranean France. This grassland has been main-
tained open since the roman era due to a rich sheep husbandry activ-
ity (Badan et al., 1995; Henry et al., 2010). In this plain, current graz-
ing is organized around sheepfolds where sheep stay at night. This
results in a local gradient of sheep impact through grazing, nutri-
ent deposition and trampling, whose maximal extension is towards
the south-east (the direction under dominant winds). This gradient
leads to a local spatial turnover of the species composition. Ruderal
plants predominate locally around the sheepfold, within a matrix of
a "Coussoul'-type community, dominated by stress-tolerant perennial
species such as Brachypodium retusum, Thymus vulgaris and Asphodelus
ayardii (Molinier & Tallon, 1950). Through history, some sheepfolds
have been abandoned, which results in a locally decreased — but non-
zero — grazing pressure and the resorption of more nitrophilous veg-
etation communities, in favor of the original Coussoul community
(Figure 4.3). Since abandonment, a succession-like process has taken
place, although it is worth noting that despite abandonment, the veg-
etation of the sites remains grazed — albeit at much lower intensities.
Because many sheepfolds have a known date of abandonment, the
comparison of these sites today provides an ideal setting to adopt
a chronosequence approach by space-for-time substitution, allowing
us to document the recovery process of the vegetation community
through time.

Our study aims at investigating the long-term changes in plant-
plant associations following grazing abandonment, in an attempt to
quantify the resilience of the community, both in terms of species
composition and inter-specific interactions.

First, we assessed whether biotic interactions (as measured through
associations) varied on the same time scale as the species composition
of the community and the abiotic characteristics. To do so, we docu-
mented plant associations, species composition and soil attributes of
vegetation communities at currently-used and abandoned sites in La
Crau, and estimated their trajectory through time by comparing these
different sites.

We then focused on testing whether associations supported clas-
sic hypotheses regarding succession. Approaches based on functional
traits in La Crau (le Priol, 2017) have shown that undisturbed com-
munities tend to contain species with higher leaf dry matter con-
tent (LDMC) and lower specific leaf area (SLA), suggesting that the
species making up the undisturbed communities may adopt compet-
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itive strategies (Garnier & Navas, 2013). Given these variations, we
hypothesized that associations would switch from weak (low num-
ber of positive and negative associations) to strongly negative during

late successional stages (high number of negative associations).

4.2 METHODS
4.2.1  Surveys and soil sampling

We surveyed 6 currently used sites, 4 sites abandoned in the late
XX century, 3 sites abandoned in the XIX!* century and 3 roman
sites, abandoned between 88 A.D and 430 A.D (abandonment dates
were obtained from Henry, 2009; Badan et al., 1995). We describe here
broadly the survey protocol for the variables used in this chapter, but
more details are available in Appendix 2, along with a presentation
of the general ecological context of La Crau.

To compute species associations, we laid out transects using a mea-
suring tape, and recorded the beginning and the end of overlap of
each plant individual (or part of individual, Plate 9). Transects were
laid in pairs — 4 pairs in total per site — at different distances from
the sheepfold, separated by at least 1om but no more than 75m so
that grazing levels were similar. We placed one pair of transect in
each one of four community types identified using indicator species
(Appendix 2, Figure 5.9). These community types are known to corre-
spond broadly to a certain level of grazing pressure (Molinier & Tal-
lon, 1950), so by placing one pair of transect in each type, we made
sure that we surveyed a wide range of grazing levels.

We computed the average distance of placement of each transect
pair (excluding one site, "Terme Blanc", where the grazing gradient is
unusually long), and used this distance to place pairs of transects at
abandoned sites.

We merged each pair of transects together to produce one associ-
ation network per pair. This yielded 4 association networks for each
site, at increasing distances from the sheepfold. Because of local dis-
turbances unrelated to grazing, or because indicator species could not
be found in the field, some pairs of transects could not be placed, re-
sulting in sites with less than four documented association networks.

For each site, we sampled soil at the average distance of each pair
of transect, and complemented this first set of samples with samples
taken at quadrat positions. Each soil sample consisted in 200 g taken
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out of a homogeneous mix of 16 subsamples regularly spaced within
a 4 m radius circle (Appendix 2). This yielded between 4 and 6 soil
samples per site, which were dried for at least 48h at 40°C, then sent
for analyses. Soil analyses included pH (in water), cation total ex-
change capacity (Metson method), total CaCOj3, total organic matter,
total phosphorus (Olsen method), exchangeable K, Mg, Ca and Na
and total Nitrogen.

4.2.2  Selection and derivation of community statistics

We derived for each transect the total cover of each species, then av-
eraged them for each pair of replicate transect. We used this distribu-
tion of covers for the pair of transects to compute the number of ob-
served species and the Shannon diversity index. To obtain a univari-
ate value summarizing broad variations in species composition, we
tirst computed a Bray-Curtis dissimilarity matrix between the species
compositions of each pair of transects. We then summarized it into
a single univariate value by extracting the first axis of a principal co-
ordinate analysis ran on these dissimilarities. The R package 'vegan’
v2.5-2 (Oksanen et al., 2018) was used to compute dissimilarities.

We also computed for each pair of transects the average linear plant
volume, i.e. the sum of the size of each individual (or part of indi-
vidual, Plate 9) multiplied by its height, to obtain an estimation of
the above-ground plant community volume. The volume taken by
an individual was computed as follows: if individual i overlaps the
transect between a; and b;, and has a height h;, then its volume is
(b; — a;) * h;. Because we only recorded classes of heights (1/2/3/4/5)
rather than actual height in the field, we carried out the average us-
ing the midpoints of each height class (1/3.5/7.5/16cm and 25cm for
class 5).

For the sake of conciseness, we only show the spatial and temporal
variations of total nitrogen, which has been shown to be a key fac-
tor in driving the plant species composition along succession in La
Crau (Henry, 2009) and is very strongly correlated to current spatial
variations in grazing (Average spearman correlation with distance at
current sites: -0.90). We report the variations of other soil variables in
Appendix 4. It is worth noting that most soil variables are correlated
with each other and in particular with the total nitrogen content (av-
erage Pearson’s r=0.6740.2 s.d.), thus yielding similar trends in space
and time (Appendix 4, Figure 5.13 and 5.14).
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ASSOCIATION NETWORKS To obtain the association networks, we
computed the total overlap between each species within a pair of
transects, then compared this total overlap to what was obtained
by randomizing the position of every individual along the transects
(and across transects). We retained a positive association when the
observed total overlap was within the upper quartile of the null dis-
tribution, and a negative one when the total overlap was in the lower
quartile (this method is identical to what is described in Chapter 2).

This produced one association network for each pair of transects.
We then summarized these association networks into network-level
metrics. First, we computed the percentage of positive and negative
associations K™ and K~ (respectively). We then computed a ratio that
quantifies the relative importance of positive over negative associa-
tions in a network, R, as (K™ — K7)/(K" + K™) (Saiz et al., 2017;
Alados et al., 2017; Arroyo et al., 2015). This ration is equal to 1 when
all associations are positive, -1 when they are all negative and zero
when there is the same number of positive and negative associations
in a network.

These three network-level metrics depend on the number of species
and their total cover in a given pair of transects. Spatial and tempo-
ral variations of these raw numbers may thus reflect these variations
in species abundances rather than a true tendency of the community
to display a certain type and number of associations (Chapter 3, Box
3.1). To be able to compare these metrics across gradients, we created
199 'null” transects with a randomized position of each individual (al-
lowing the mixing of individuals across the transects in each pair).
These 'null’ transects have a randomized spatial structure, but the
same total cover of each species. For each 'null’ pair of transects, we
computed the network-level metrics, K™, K~ and R, which yielded a
distribution of 199 null values for each of these metrics. We then com-
puted the standardized effect size of the observed value, compared
to its null expectation as (example given for R):

R — nuRnuII

1
URnull (4 )

Rsgs =
where y is the mean of the null distribution and ¢ is its standard de-
viation. We obtained similarly the other network-level metrics K
and Kg,¢. This yields community-level metrics that are broadly in-
dependent from the variations of species abundances (Appendix 4,
Figure 5.12), and thus allows meaningful comparisons of SES values
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along gradients where the species abundance distribution changes. It
is worth noting that, in an association network, a link between two
species cannot be simultaneously positive and negative. The percent-
ages of negative and positive associations are thus (anti)correlated to
some extent (Pearson’s r=-0.63, ’<0.001).

4.2.3 Estimation of the spatial variations of vegetation communities

At each site, we documented the spatial variations in the vegetation
communities along the general south-east direction (line A-B in Fig-
ure 4.3). The change in some property of the community — e. g. species
richness — relative to the original "Coussouls" community is expected
to be maximal near the entrance of the sheepfold and to decrease
with the distance to the entrance (Figure 4.3). As a result, when mov-
ing along the general southeast direction, a site where the effect of the
past sheep activity is still present should show spatial variations in
some properties of the community. For example, a site whose species
composition has not completely recovered from the past sheep pres-
ence is expected to show spatial variations of the species composition
along the south-east direction. Conversely, a site that has fully recov-
ered should show no such spatial variation, i.e. a flat trend along
the A-B line: communities close to the sheepfold should be similar to
those far from it. The amplitude of the spatial variations of the vege-
tation community can thus be used as an informative measure of the
progress of recovery.

In the following paragraphs, we use y to refer to the property of
the community considered, such as species richness, association ra-
tio Rggs or the total N measured in a soil sample. We estimated the
spatial variations of y at each site by fitting the following saturating
function:

U yoxdip+ (yo+ Ay) +d
Y di+d

+e (4-2)

where y is the value of the property considered (e. g. species rich-
ness) and d the distance to the sheepfold entrance *. In this relation-

Why this relationship ? Although the evidence is scarce, grazing pressure P (mea-
sured in sheep per unit of area and unit of time) seems to be well approximated by
a relationship of the form P = a/(1+ b *d) (Figure 5.5), where a and b are constants
and d is the distance to the sheepfold. Assuming the property y of the community
under study follows a linear relationship with grazing pressure y = a x P 4 B, it
follows that the relationship between y and d has the form suggested above.

99



100

10

15

20

25

30

RESILIENCE OF INTERACTION NETWORKS

ship, yo represents the value of y next to the sheepfold entrance,
Ay represents the difference between yo and the value observed far
from the sheepfold (as d — o). dq,, quantifies the distance at which
y = A,/2,i.e. the spatial extent of the variations. € represents a nor-
mal error of standard deviation ¢.

We used a Bayesian framework to fit this model because it allowed
us to include prior information about the general shape of the spa-
tial variations of community properties, and thus maintain parame-
ter estimates within realistic bounds. The details of the model fitting
procedure are further described in Appendix 4.

We used "BayesianTools” vo.1.4 in R (R Core Team, 2018) to fit this
model (Hartig et al., 2017). We ran 4 chains for each fit with 100,000
iterations each, using a differential evolution markov chain sampler
(DE-MCMC, default sampler in BayesianTools, ter Braak & Vrugt,
2008). Convergence was assessed visually and by checking that the
Gelman-Rubin criterion (Gelman & Rubin, 1992) was under 1.1.

4.2.4 Description of temporal dynamics

To analyze the recovery of community properties over time, we an-
alyzed how the A, values changed with time of abandonment. The
value of A, is the amplitude of spatial variations of a given variable
around a site: it is expected to be zero when it shows no variation
around a site, i. e. a site has fully recovered from its past use for sheep
herding. We modelled the variations of A, as a function of time ¢ us-
ing the following exponential decay model:

log(2)t
t1/2

Ay(t) ~ Dy + (By g — Byeo) ¥ exp(— )+e (4-3)

In this equation A, ;; quantifies the amount of spatial variation ob-
served at current sites, A, quantifies the long-term spatial variation
observed around sheepfolds (it is zero when a site has fully recov-
ered). t;,, characterizes the time required for the observed spatial
variation Ay(t) to be equal to half of its value after infinite time has
passed, i.e. (A, + Ay)/2 — it is thus a measure of the speed of
recovery.

We carried out this fit 199 times, using values sampled from the
posterior predictive distribution of the previous model. Specifically,
we repeated the following process 199 times: for each site, we sam-
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pled one A, value from the prediction of the spatial variations model,
then used these 15 A, values (one per site) to fit the exponential de-
cay model. This allowed us to take into account the uncertainty on
spatial variations of community properties into the estimation of tem-
poral dynamics, and estimate confidence intervals around the overall
temporal trajectory.

4.2.5 Specific patterns in the variations of associations

Because associations did not show a recovery pattern similar to other
aspects of the community, we investigated their variations further. In
particular, we investigated two specific patterns: (i) the rapid increase
in negative associations close to recently-abandoned sites (abandoned
within 9-47.5 years) and (ii) the strong spatial decrease in negative
associations in roman sites (1587-1750 years).

We considered the first point by comparing estimates of the per-
centage of negative associations at the sheepfold (1o in equation 4.2)
across classes of time after abandonment (current sites, 0-49.5 years,
119-160 years, 1587-1750 years). We then addressed point two by fo-
cusing on the spatial variations of the association ratio, the total ni-
trogen, species richness, total vegetation cover and relative cover of B.
retusum at roman sites to interpret the long-term trends in plant-plant
associations.

4.2.6  Variations of associations with soil nitrogen content

Because patterns suggested a close relationship between nutrient con-
tent and the SES of the association ratio, we investigated its general
relationship with all sites considered at once. We carried out a piece-
wise linear regression using one breakpoint to investigate changes in
the slope of this relationship. The value of the breakpoint and the
coefficients of the linear model were estimated using maximum like-

lihood and the R package 'segmented’ vo.5 (Muggeo, 2003).
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4.3 RESULTS
4.3.1  Spatial variations of community characteristics

The species composition and total nitrogen in the soil showed clear
recovery patterns, such that their spatial variations around the sheep-

s folds decrease with the number of years after abandonment (Figure
4.5) — i.e. over time, assuming a space-for-time substitution.

The temporal trajectories of the amplitude of spatial variations A,
confirmed this trend, with species composition and nitrogen showing
convergent trajectories of A, towards zero - i.e. over time, the spatial

10 variation of these properties around the sheepfold decreases (Figure
4.4, a-b). This is a very slow process, however, as even after approx-
imately 1600 years after abandonment, a significant spatial variation
in species composition can be still observed.

Associations displayed a very different pattern of spatio-temporal

15 variations. The amplitude of variations around a site (A,) did not
converge towards zero, but diverged towards a significant non-zero
value (Figure 4.4, c). In other words, the spatial variations of associa-
tions followed more complex changes over time than a unidirectional
recovery pattern. For example, stronger spatial variations were ob-

20 served around roman sites than in sites of intermediate abandonment

(Figure 4.5, ).
a) Spe(c;%sé écilen)zi;;o?)ition b) % N (g/kg) C) Association ratio (SES)

1050 200 500 10001500 1050 200 500 10001500 1050 200 500 10001500

Spatial variation in attribute (A )

years since abandonment years since abandonment years since abandonment

Figure 4.4: Temporal trajectory of the spatial variations of species composi-
tion, the soil total Nitrogen and the SES of the association ratio.
The trend line corresponds to the exponential decay model de-
scribed in Equation 4.3, and the ribbon indicate 95% confidence
interval around the predicted mean value
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VARIATION OF ASSOCIATIONS AT RECENTLY-ABANDONED SITES

The spatial variations of associations exhibited rapid changes over

time. Most notably, although the association ratio was always nega-

s tive, its spatial variations around the sheepfold showed a rapid rever-

sal after abandonment (Figure 4.7, a-b). This reversal was the conse-

quence of a strong and significant increase in the dominance of neg-

ative associations close to the sheepfold (Figure 4.7, a-b, and Figure
4.6).
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Figure 4.6: Estimate of the SES of the % of negative associations at the sheep-
fold, for each class of abandonment. Letters on top indicate sig-
nificantly different groups, based on pairwise Wilcoxon tests and
a significance threshold of o.10.
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VARIATION OF ASSOCIATIONS AROUND ROMAN SITES
The strong spatial variations of the association ratio at roman sites
(+8.5%2.4 SES values, mean-+ts.d. averaged over the three sites, Fig-
ure 4.8) was associated with a slight decrease in total nitrogen (-
s 0.0051+0.001 g/kg), and a change of the species composition of the
community. In particular, species richness decreased (-10.44-4.6 species),
along with the total cover in the transect (-0.1140.17 % of transect
length). This was in favor of an increase of the relative cover of B.
retusum (+0.36+0.23 %), which underpinned an increase in the total

10 aerial volume taken by plants (+1164+277 cm?).

a) Association ratio (SES) b) Total Nitrogen (g/kg)
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Figure 4.8: Spatial variations, at roman sites, of the association ratio, total ni-
trogen, species richness, total cover of plants (in % of the transect
length), and relative cover of B. retusum.
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VARIATION OF ASSOCIATIONS WITH NITROGEN LEVELS

The SES of the association ratio was almost always negative regard-
less of the nitrogen level. However, the piecewise regression identified
a turning point (1.83+0.10, mean=+s.d., Figure 4.9). For nitrogen levels
above this turning point, a decrease in nitrogen yields a decrease in
the association ratio (positive slope of 9.8+3.4 SES unit/% Nitrogen).
The reverse was found below this point, as the decrease in nitrogen
was associated with an increase in the association ratio value (nega-
tive slope of -7.8+3.3 SES unit/% Nitrogen).
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Figure 4.9: Variations of the SES of the association ratio, as a function of
total nitrogen. The line and grey ribbons indicate the results of
a piecewise regression (ribbons represent confidence intervals).
The black, dashed line has been added by hand and shows a
possible expectation of the association ratio in the absence of
grazing.
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4.4 DISCUSSION

Observational data from plant communities in La Crau show that the
abiotic conditions as well as the species composition followed a recov-
ery trajectory over time after abandonment, although at a very slow
pace: 1,600 years after abandonment, these variables are still signifi-
cantly different near the sheepfold than in their surroundings. This
is consistent with previous studies describing the recovery of vegeta-
tion communities in La Crau (Henry, 2009). In contrast, plant-plant
associations showed a non-recovery pattern. For example, the spatial
variations of associations were stronger at the later stages after aban-
donment (roman sites) than during more recent time periods. This is
in stark contrast with our initial hypothesis of a gradual increase of
negative associations with time.

It is noteworthy that the spatial variations of associations were sim-
ilar across sampled sites and time periods. This supports the fact that
associations capture a real, information-rich aspect of the organiza-

tion of the vegetation communities.

4.4.1  Short-term and long-term variations of associations

A first notable pattern captured by associations in the decrease in
the association ratio in the early stages after abandonment. This is
most likely underpinned by a rebound of competition as grazing is
stopped or strongly reduced, while nutrient content remains high. At
historical scales however, this is a transient phase and the importance
of negative associations stabilizes at a lower level after approx. 100
years (Figure 4.7, g). This rebound of competition reflects fast, pos-
sibly annual changes in the organization of vegetation communities.
During spring, at current sites, the impact of sheep around sheep-
folds is extremely intense and produces a drastic reduction in cover
and vegetation height. However, in the first stages after grazing re-
lease, nutrient content is high and a strong and rapid regrowth is
often observed of ruderal species. A dominance of negative associa-
tions would thus certainly be observed during fall season, resulting
in likely strong variations of the ratio during the year (Plate 7).

The plant-plant associations displayed strong variations at roman
sites. In particular, these sites had a higher negative association ratio
near their entrance than in the nearby "Coussoul" community. The
latter was characterized by a dominance of B. retusum, which — de-
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spite being thought as a competitor — was dominant in a community
marked by the absence of negative associations.

This apparent contradiction may be resolved when we consider the
nitrogen levels, which were at their lowest in this community. These
comparatively low nutrient levels may be what drives the absence
of negative associations: in less productive environments, the likely
dominant origin of negative associations — competition for space — is
lacking and thus the association ratio becomes closer to zero or posi-
tive. This depletion in nitrogen could be attributable to the sustained
grazing since the roman era, which produces a depletion in nutrients
of areas far from sheepfolds, in favor of an enrichment of areas close
to them. It could also be a consequence of the larger development of
B. retusum, which may preempt nutrients and thus reduce their acces-
sibility to other plants, but this is poorly supported as there is only
a weak correlation between the association ratio and the total aerial
volume taken by B. retusum (Pearson’s r = 0.10, P = 0.58).

4.4.2 Variations of associations and nutrient levels

Be it at recently-abandoned sites or at roman sites, patterns high-
lighted the close relationship between the association ratio and the
nutrient levels available to the community. This relationship showed
dual trends. The decrease from very high nitrogen contents to aver-
age is associated with an increase in competition — this is because
highly nutrient-rich communities also suffer from very high physical
disturbance. Were there no grazing but solely nutrient enrichment,
the association ratio would have been probably observed as negative
(dashed line in Figure 4.9) — reflecting intense competition for space.

However, below a point in nitrogen levels, the association ratio in-
creases towards zero because of a collapse of negative associations,
which may be due to the overall decrease in nutrients available to
annual plants. It is in these communities that B. retusum increases in
biomass, as it may be less affected by the depletion in surface nutri-
ents because of its deeper roots (regularly reaching -g4ocm). This inter-
pretation remains to be tested, by showing that nutrient limitation is
effectively at play in those communities.
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4.4.3 Conclusion: the reorganization of communities as identified by asso-
ciations

To our knowledge, this is the first study applying an association net-
work approach to plant communities outside of arid ecosystems. We
show that associations display consistent trends given similar envi-
ronmental and historical conditions. They may thus be very valuable
to measure in situ the changes in the organization of plant commu-
nities, and complement previous approaches based on traits and/or
phylogenetic relatedness to infer the dominant processes present in a
community.

Association analyses confirm the peculiarity of the succession in
La Crau following the abandonment of sheepfolds, which converges
towards late-successional communities empoverished in species and
interactions as nutrient availability decreases. This contrasts with our
hypothesis of an increase in competition through time, but it is consis-
tent with the prediction of the stress gradient hypothesis that predicts
a decrease in the importance of competitive interactions as productiv-
ity decreases. We observed very few positive values of the association
ratio, suggesting a relative dominance of competitive processes over
facilitation at all stages (but see General Discussion). However, in this
study, we used community-level metrics (e. g. the total percentage of
negative associations), which may hide variations at the species or
species-pair level (Sanderson & Pimm, 2015). Future developments of
this work could extend the analysis down to these levels, along with
confirming that nitrogen levels are low enough to effectively produce

nutrient-limitation.
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Throughout this thesis, we investigated the link between the structure
of interaction networks and the response of ecological communities
to pertubations. In this section, we summarize and discuss the results
of this thesis, then suggest new research directions that have emerged
through the development of this work and the many fruitful discus-

sions with colleagues along these past three PhD years.

5.1 SUMMARY AND DISCUSSION OF RESEARCH QUESTIONS

Can active feedback loops be identified from multimodality in diverse ecolog-
ical communities ? (Chapter 1)

In Chapter 1, we asked whether we could identify vegetation com-
munities in which feedbacks were present, using only a single-time
snapshot of their state along a main environmental gradient — water
content. To do so, we used an extensive dataset documenting the com-
position of vegetation communities of subalpine meadows. We found
bimodal distributions of species composition in two main areas of the
dominant water gradient: dry and wet areas. By reviewing local soil
conditions and known previous results about vegetation dynamics in
meadows, we concluded that possible active feedbacks could impair
the resilience of dry areas in meadows, and provided possible mech-
anisms. In dry areas, a positive feedback between soil nutrients and
vegetation growth may thus exist and be responsible for the bimodal-
ity observed. This is a valuable result in a conservation context, where
the objective is to identify vegetation communities that may be more
vulnerable to disturbance. It is, however, insufficient to characterize
precisely the type of dynamics at hand in these fragile communities.
According to the theoretical literature, a strong positive feedback
may produce alternative stable states. This could mean that dry com-
munities of subalpine meadows, dominated by Carex filifolia and with
coarser soil could be, in fact, stable and persist in time. This stability
could be a consequence of erosion or run-off being strong enough in

Cilifolia communities to impair the trapping of fine sediments and

111



112

10

15

20

25

30

35

CONCLUSIONS AND PERSPECTIVES

the regrowth of a more diverse community. However, this cannot be
truly demonstrated based on the multi-modality criterion alone, as
the presence of multi-modality is not equivalent to the presence of
alternative stable states: continuous but sharp responses along an en-
vironmental gradient also show increased multi-modality (Box 1.1).
To go further and truly understand the processes behind the bi-
modal pattern, the most direct way would be to collect temporal data
or perform disturbance experiments (Petraitis, 2013). However, other
correlative approaches may also provide valuable information, such
as the analysis of spatial patterns, either through indicators (Chapter
2) or associations (Chapter 3). These spatial patterns help understand
the interactions at play in a given community, and could thus also be
used to confirm the presence of a feedback in vegetation communi-

ties.

How does biotic stress alter plant-plant associations ? (Chapter 3)

We described in Chapter 3 the variations of plant-plant association
networks along gradients of biotic stress (grazing). In particular, we
focused on an important structural patterns of plant-plant association
networks: the number of positive and negative associations, and the
ratio between the two. We found a consistent deficit of positive asso-
ciations, and thus a consistently negative association ratio. This sug-
gests that competition (most likely for space) is the dominant interac-
tion type in these grasslands. This is generally consistent with the fact
that the majority of the species surveyed are annuals (55% of the total
cover in the dataset), which tend to engage less in specific plant-plant
interactions (e. g. allelopathy), other than through the preemption of
resources. It is worth noting that this pattern may change in other
ecosystems, especially where there may be several different height
classes in plants, e. g. where a shrub layer coexist with a lower herba-
ceous stratum. In previous studies focusing on arid systems (Saiz
et al., 2014), Brachypodium retusum engages mostly in positive associ-
ations with other plants and higher shrubs in particular. However, it
was mostly present in negative associations in the fully-herbaceous
communities of La Crau, higlighting a very different behavior of the
same species in two different plant communities.

Biotic stress, and more specifically sheep trampling and grazing,
reduced the strength and number of associations between species. In-
terpreting this in terms of interactions, it suggests that under high
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levels of stress, the dynamics of the plants are governed by the resis-
tance to stress rather than by the interactions they may have with each
other. We did not observe any community-level importance of posi-
tive interactions such as associative protection, although the latter has
been observed in the field (Plate 5). It could play a bigger role in other
ecosystems, where differences in palatability between plants are more
important, and where grazing levels are not as intense (e. g. (Graff &
Aguiar, 2011; Saiz & Alados, 2012)). This may also be due to the fact
that this type of interaction is relatively rare compared to competitive
interactions, and thus may be poorly-detectable when considering
community-level metrics — such as the association ratio — that aver-
age species-specific variations. Extensions of this work would benefit
from analyzing these finer-grained variations of associations along
the stress gradient, e. g. at the species level or the species-pair level.
More generally, we looked at a single, specific aspect of the asso-
ciation networks we built: the ratio between positive and negative
associations. A more thorough analysis of the structure of networks,
possibly including the analysis of modularity, nestedness or other
structural patterns would probably reveal interesting changes in these

patterns.

How resilient are plant-plant association networks ? How do their temporal
dynamics compare to other facets of the community ? (Chapter 4)

In Chapter 4, we considered the temporal variations of association
networks, using abandoned sites as different snapshots of a given sys-
tem’s recovery process. In terms of network description, we focused
on the temporal variations of the balance between negative and posi-
tive associations. Interestingly, it proved to be very variable over long
time scales and did not show a simple, unidirectional recovery trend
such as others properties of the community (e.g. species composi-
tion). The resilience of association networks thus does not exhibit a
simple, direct return-to-equilibrium response, but rather shows com-
plex variations after a perturbation. These variations were nonethe-
less consistent across sites of similar historical and environmental
condition. This shows that associations describe a real pattern of eco-
logical communities, and contain a lot of information to understand
what governs the temporal dynamics of a vegetation community, and
in particular the importance of biotic interactions. The association
ratio was always mostly negative, highlighting that competition for
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space was present at every stage of the pseudo-succession. However,
variations in this ratio highlighted key phases in the dynamics of
the vegetation community — a rebound in competition in the first
stages after abandonment, and a decrease of competition in the late
successional stages. A general relationship was found between the
association ratio and the nutrient levels in the soil. This relationship
highlighted a critical nutrient level below which the association ratio
becomes closer to zero — i.e. the importance of positive and nega-
tive associations is equivalent. At low nutrient levels, competition for
space has a reduced importance in structuring the community. This
is well in line with predictions from the stress gradient hypothesis
(Chapter 3, Bertness & Callaway, 1994; Callaway et al., 2002), which
suggests a decrease of the importance of competition relative to facil-
itation in less productive environments. This interpretation requires
further work to be confirmed. In particular, it may be that these levels
of nutrients are low for our dataset, yet not low enough to produce
nutrient-limitation in plants.

Plant-plant associations have been mostly used in arid ecosystems.
In these areas, spatial patterns can sometimes be so evident that no
statistical analysis is required (e.g. Verdu & Valiente-Banuet, 2008),
and associations correlate with the already-known importance of fa-
cilitation (Saiz & Alados, 2011, 2012; Saiz et al., 2018). For this case,
using associations as good proxies for interactions is apparently well-
founded — or at least well-received in the literature.

A major contribution of this PhD is the demostration that asso-
ciations also show coherent variations in more mesic communities,
where facilitation may be less prevalent (Chapter 3 and 4). As such,
they appear as a valuable tool to investigate biotic interactions in
many vegetation communities. Despite this optimism, it is worth not-
ing that their use is only at its early stages and much work remains to
be done to properly understand exactly the information plant-plant

spatial associations bring.
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5.2.1 Towards a better link between interactions and plant-plant associa-
tions

The use of plant-plant associations is still in its infancy, as manifested
by the low number of publications on plant-plant association net-
works'. A clear upcoming challenge for association-based studies is
the lack of a well-established understanding of the link between as-
sociations and interactions. While the intuitive equivalence between
positive (resp. negative) interactions and spatial aggregation (resp.
segregation) seems well-founded, it still requires a ‘leap of faith” at
the time of interpreting patterns.

A possibly way forward could be to use independent data such
as measurement of traits to make sure the interpretation is correct.
For example, species with competitive strategies could tend to en-
gage more frequently in negative interactions. Some other interac-
tions such as associative protection depend on a specific trait: low
palatability, which could correlate with a tendency to produce posi-
tive associations. Verifying such hypotheses in the field could guide
the interpretation of associations.

Another, more methodological line of research could be to improve
the way we compute associations: at this time, they do not take into
account many of the complexities found in real-world systems. For ex-
ample, co-occurrence can only imperfectly detect aggregation. Here,
we considered that two individuals overlapped when they occupied
the same point along a linear transect (i.e. carrying out the contin-
uous equivalent of point-intersect sampling). In fact, the zone of in-
fluence of many plants extends beyond their exact location in space
and some plants can be spatially aggregated yet never totally over-
lap (Figure 5.1). For example, a plant can provide shade and improve
local conditions for another one, yet never occur at the same exact
position in space (Valiente-Banuet & Ezcurra, 1991): by using only
point co-occurrence, this type of interaction is missed. On the other
hand, other positive interactions such as protection against herbivory
should lead to an increase in point co-occurrence only, because facili-
tated plants have to occur below the canopy of the facilitator.

It is striking that most contributions on plant-plant association networks come from
a single author: Saiz & Alados (2011, 2012); Saiz et al. (2018, 2017), and only focus on
arid ecosystems
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These two examples highlight that interactions may have an effect
at different scales and distances to an individual. As a result, point
co-occurrence is a too simplistic measure of spatial association, and
probably misses interactions between plants. In particular, it may cap-
ture better spatial segregation due to competition for space compared
to other interactions, which may partially explain the dominance of
negative associations in the results presented in this thesis. A possi-
ble solution would be to increase the scale of sampling, and consider
that co-occurrence happens between two plants when they are closer
than a certain target distance (instead of counting co-occurrences only
when they overlap). However, this only moves the problem to the
choice of this cutoff distance, which is known to affect the results
of the analysis (Araujo & Rozenfeld, 2013; McNickle et al., 2017). A
better method to infer plant-plant interactions should solve this prob-
lem and describe aggregation at different scales — e.g. by using the
O-ring statistic at different distances. In the next paragaphs, I discuss
a possible way to infer better interaction coefficients from the spatial
structure of plants.

a. co-occurrence b. aggregation
e.g. associative protection e.g. shading

Figure 5.1: Co-occurrence occurs where two plants are located at the same
exact vertical point. A positive interaction can also give rise to
two plants being close to each other more often than expected
by chance — aggregation, yet never co-occur at the same position
in space. In this case, however, the positive interaction cannot be
inferred using only point co-occurrence.

By measuring the spatial distribution of plants, we can compute
the probability of observing an individual of a given species, at a
given distance from another individual with whom it interacts *. This
probability is the net result of multiple interaction types: preemption
for space, shading, competition for resources, etc. (Figure 5.2). The
statistical problem is to infer the magnitude and spatial scale of these

2 In fact, this is a simplification as individuals in the field are always under the influ-
ence of several other individuals and not only one
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interactions — in other words, infer the shape of curves b, ¢, d from
curve e in Figure 5.2.

A possible approach could come from individual-based modelling.
We built an individual-based model based on the zone-of-influence
principles presented in Figure 5.2 (Appendix 3). This model can pro-
duce spatial distributions of plant individuals, given known interac-
tion coefficients between plant species (see also Box 3.2). By 'fitting’
this model to data, we could obtain the interaction coefficients (that
define curves b, ¢, d in Figure 5.2) that best reproduce the observed
patterns. This is typically done using Approximate Bayesian Compu-
tation (ABC) methods (Csilléry et al., 2010; Hartig et al., 2011, 2012).
Such an approach has been applied to derive realistic parameters for
individual-based forest models (Hartig et al., 2014), but it could be
as useful for herbaceous communities. Finally, it is worth keeping
in mind that inferring interactions is likely to be a "messy business",
involving a synthesis of spatial patterns, trait data and ecological in-
tuition. Bayesian methods have the advantage of explicitely allowing
the use of prior, external knowledge, but more likely than not, sound
interaction estimations will require combining multiple, correlative
and experimental approaches.

5.2.2  Structural patterns in plant-plant interaction networks and the sta-
bility of plant communities

A rich body of literature has focused on the structural patterns that
determine the stability properties of a community. For example, much
work supports — although rarely by experimental means — that nest-
edness increases the stability of mutualistic networks and modular-
ity that of antagonistic networks3 (Thebault & Fontaine, 2010). Plant-
plant interactions networks, as inferred through associations, contain
by nature positive and negative links. As a result, it is yet unknown
how the structure of networks relates to the dynamics and stabil-
ity of the ecological community, as most network descriptors such
as nestedness and modularity are not directly applicable to signed
networks. Other specific structural patterns, could show interesting
patterns (e.g. structural balance, Saiz et al. 2018), but this has very
scarcely been explored so far in the ecological literature.

Beyond the sole theoretical interest, monitoring changes in inter-

actions in plant communities could be used as a useful indicator of

3 networks where links represent negative interactions, e. g. host-parasites networks
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Figure 5.2: The observed pattern of occurrence of a given species, at a given
distance from another individual depends on multiple, super-
imposed mechanisms of interaction. Some of these mechanisms
such as preemption of space only occur below the canopy of the
individual (b), while others may have an effect that extends fur-
ther (c, d). The net effect of these interactions is reflected in the
probability of occurrence of the target species (e) — which can be
measured on data.
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reorganization, and possibly degradation. In Chapter 2 of this work
(Génin et al., 2018a), we focused on indicators of ecosystem degrada-
tion. These often rely on the measurement of some kind of aggrega-
tion pattern (e. g. spatial autocorrelation), or the size and distribution
of vegetation patch sizes, which arise in plant communities because
of facilitation (Génin et al., 2018b; Schneider & Kéfi, 2016). In other
words, the spatial association of plants is the basis for indicators of
degradation. There is thus a natural connection between these indi-
cators and the use of plant-plant associations. So far, the indicators
only consider a binary state (vegetated or not vegetated) and do not
use species data. Typically, a single value of vegetation aggregation
is derived from the data (e.g. the Moran’s I). Association networks
could be a way to describe species-specific aggregation in a given
landscape. Because pairs of species may react differently to stress,
describing the aggregation of species at the species pair level could
lead to a more precise and useful indicator of degradation (Dakos &
Bascompte, 2014; Holmgren & Scheffer, 2010).

More generally, interaction networks are seldom used as practical
management tools, yet they may be very information-rich to identify
reorganizations of a community, beyond the sole changes in species
composition (Memmott, 2009; Gray et al., 2014). They remain still
costly to obtain and complex to analyze, which may be why research
has focused more on aggregated properties (biomass, total cover, etc.),
yet future research and developments could lower the cost of entry
to mapping interactions in empirical communities and increase their

use.

5.2.3 The conservation of complex communities

Multiple authors have called for a more holistic vision of what defines
an ecological community, that includes not only species but also their
interactions (e. g., Tylianakis et al., 2010; Memmott et al., 2007a; Gray
et al., 2014) — it is the definition we adopted in this thesis (Figure o.1).
However, the use of interaction networks in general remains limited:
while common in plant-pollinator studies and food-webs, many other
types of interactions lag behind — probably because of the high cost
of mapping them. The use of interactions as a unit of description is
thus still far from having permeated ecological research.

An interesting lead for interaction research is their use in conserva-

tion. In a moving and widely-quoted article, Janzen (1974) expressed
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the problem of the extinction of ecological interactions after deforesta-

tion:

« What escapes the eye, however, is a much more insidious kind of ex-
tinction: the extinction of ecological interactions. Many of the remaining
participants of these interactions will probably hold on for many years,
but they constitute little more than a haphazard, semi-self sustaining
zoo and botanical garden. Their complex behaviors, morphologies and
physiologies seem unnecessarily complex, even maladaptive in the de-
faunated fencerow-pasture-field habitats they now occupy. »

Decades after this call for the conservation of complex communi-
ties rather than just species lists, ecologists are now revisiting cen-
tral topics and tools of conservation research, but now including
interactions as a unit of study; e.g. diversity-area scaling (Valiente-
Banuet et al., 2015), biotic homogenization (Laliberté & Tylianakis,
2010), beta-diversity (Poisot et al., 2012), restoration (Kaiser-Bunbury
et al., 2017). However, this mostly concerns plant-pollinator interac-
tions and much work remains to be done for other types of interac-
tions — such as plant-plant interactions. Yet as this work shows, these
vary in space and time and some rare and desirable interactions may
occur in some places, while the species themselves may not be a con-
servation target. For example, in La Crau, Brachypodium retusum plays
a very original role akin to an "engineering species”, yet the species
itself is a common and widespread grass, and thus not a conservation
target in general. A more interaction-focused conservation could help
us not miss the protection of this important, if not essential, facet of

ecological communities.
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Plate 1: General view of the landscape in La Crau, with a sheepfold in the
background.

Plate 2: Grazed vegetation in La Crau, with a sheep herd in the background.
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Plate 3: A large sheep flock gathering near the sheepfold in the evening
(Peau de Meau).

Plate 4: Typical Coussoul community, which is present in less-graed areas
and dominated by the grass Brachypodium retusum.
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Plate 5: Close-up view of an individual of Onopordum illyricum displaying a
protective effect on a diverse set of annual species growing under
its canopy.

Plate 6: Typical state of vegetation during the grazing season in front of a
sheepfold (Peau de Meau): only few stress-tolerant species persist
through the intense trampling.
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Plate 7: Ruderal species close to the sheepfold (La Grosse du Couchant) dis-
play a strong regrowth soon after the grazing pressure is released
around sheepfolds (compare with Plate 6.

Plate 8: The remaining foundations of a roman sheepfold (Vergieres). The
white line materializes the walls of the past sheepfold.
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Plate 9: Ruling tape used to measure the length over which plant individu-
als (or parts of them) intersect the transect. In this picture, the grass
Brachypodium retusum and Carlina hispanica intersect the tape, inter-
spersed with leaves of Dactylis glomerata. Here, a leaf of C. hispanica
would be recorded as overlapping the transect from 44.0 cm to 46.5
cm (white arrows).
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Plate 10: Schematic representation of a pair of transects sampled in the field
(Peau de Meau, Coussoul-type vegetation). Each rectangle materi-
alizes one individual with its height class, and the color represents
the species (pebbles are in black). Full names of species are given
in Appendix 1.
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Species code
AEGNEG
AEGOVA
AEGTRI
AIRCUP
AJUIVA
ALYSIM
ANAGSP
ANCARV
ANTARV
* ASPAYA
ASPCYN
AVEBAR
BELSYL
BOTISC
BRADIS
*BRARET
BROHOR
BROMAD
BRORUB
BROSTE
BUFTEN
*CAMMON
CAPBUR
CARATA
*CARHIS
CARLAN
CARNIG
CARTEN
CATRIG
CERPUM
CHEALB
CHEMUR
CHEVUL
CLINEP
CONCAN
CRATIL
CREBUR
CREFOE
CREPSP
CRESAN
CRUANG
CYNDAC
CYNECH
DACGLO
DIPTEN
ECHASP
EROCIC
ERYCAM
EUPCYP
EUPEXI
EUPFAL
EUPSEG
FILGAL
FILGER
FILMIN
FILPYG
FILPYR
GALMUR
GALPAR
GASVEN
GERMOL
GERROT
HEDRHA
HELBRO
HIRINC
HORMUR
HYPGLA
LAMAMP
LEOTUB
*LEPGRA
LINARV
LINPEL
LINRIG

Species name

Aegilops neglecta
Aegilops geniculata
Aegilops triuncialis
Aira cupaniana

Ajuga iva

Alyssum simplex
Anagallis arvensis/foemina
Anchusa arvensis
Anthemis arvensis
Asphodelus ayardii
Asperula cynanchica
Avena barbata

Bellis sylvestris
Bothriochloa ischaemum
Brachypodium distachyon
Brachypodium retusum
Bromus hordeaceus
Bromus madritensis
Bromus rubens

Bromus sterilis

Bufonia tenuifolia
Camphorosma monspeliaca
Capsella bursa-pastoris
Carlina lanata

Carlina hispanica
Carthamus lanatus
Carduus nigrescens
Carduus tenuiflorus
Catapodium rigidum
Cerastium pumilum
Chenopodium album
Chenopodium murale
Chenopodium vulvaria
Clinopodium nepeta
Convolvulus cantabrica
Crassula tillaea

Crepis bursifolia

Crepis foetida

Crepis sp.

Crepis sancta
Crucianella angustifolia
Cynodon dactylon
Cynosurus echinatus
Dactylis glomerata
Diplotaxis tenuifolia
Echium asperrimum
Erodium cicutarium
Eryngium campestre
Euphorbia cyparissias
Euphorbia exigua
Euphorbia falcata
Euphorbia seguieriana
Logfia gallica

Filago germanica

Logfia minima

Filago pygmaea

Filago pyramidata
Galium murale

Galium parisiense
Gastridium ventricosum
Geranium molle
Geranium rotundifolium
Hedypnois rhagadioloides
Helictochloa bromoides
Hirschfeldia incana
Hordeum murinum
Hypochaeris glabra
Lamium amplexicaule
Leontodon tuberosus
Lepidium graminifolium
Linaria arvensis

Linaria pelisseriana
Linum rigidum

Species code
LINSTR
LINTRI
LOBMAR
LOLPER
LOLRIG
LYSARV
LYSFOE
LYSLIN
MALSYL
MARVUL
MEDCOR
MEDMIN
MEDMON
MEDRIG
MEDTRU
NEAAPU
*ONOILL
PETPRO
PHLLYC
PLABEL
PLACOR
PLALAG
PLALAN
PLASUB
POAANN
POABUL
POLTET
PSIINC
RANPAL
REIPIC
RESPHY
ROSCRI
RUMPUL
RUTMON
SAGAPE
SALVER
SANMIN
SCAATR
SCAAUS
SCOLAC
SENVUL
SHEARV
SIDROM
SILGAL
SONASP
SONOLE
STEMED
*STICAP
*SYLMAR
TAECAP
TARAUT
TEUCHA
THYVUL
TOLBAR
TORNOD
TRAPOR
TRIANG
TRICAM
TRICHE
TRIGLA
TRIGLO
TRISCA
TRISTE
*TRISUB
TRISUF
TRITOM
TYRLEU
URODAL
“URTURE
VERARV
VERSIN
VULCIL
VULMYU

Species name

Linum strictum

Linum trigynum
Lobularia maritima
Lolium perenne
Lolium rigidum
Lysimachia arvensis
Lysimachia foemina
Lysimachia linum-stellatum
Malva sylvestris
Marrubium vulgare
Medicago coronata
Medicago minima
Medicago monspeliaca
Medicago rigidula
Medicago truncatula
Neatostema apulum
Onopordum illyricum
Petrorhagia prolifera
Phlomis lychnitis
Plantago bellardii
Plantago coronopus
Plantago lagopus
Plantago lanceolata
Plantago subulata

Poa annua

Poa bulbosa
Polycarpon tetraphyllum
Psilurus incurvus
Ranunculus paludosus
Reichardia picroides
Reseda phyteuma
Rostraria cristata
Rumex pulcher

Ruta montana

Sagina apetala

Salvia verbenaca
Sanguisorba minor
Scabiosa atropurpurea
Scandix australis
Scorzonera laciniata
Senecio vulgaris
Sherardia arvensis
Sideritis romana

Silene gallica

Sonchus asper
Sonchus oleraceus
Stellaria media

Stipa capillata
Syllibum marianum
Taeniatherum caput-medusae
Taraxacum autumnale
Teucrium chamaedrys
Thymus vulgaris
Tolpis barbata

Torilis nodosa
Tragopogon porrifolius
Trifolium angustifolium
Trifolium campestre
Trifolium cherleri
Trinia glauca

Trifolium glomeratum
Trifolium scabrum
Trifolium stellatum
Trifolium subterraneum
Trifolium suffocatum
Trifolium tomentosum
Tyrimnus leucographus
Urospermum dalechampii
Urtica urens

Veronica arvensis
Verbascum sinuatum
Vulpia ciliata

Vulpia myuros
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APPENDIX 2: DESCRIPTION OF LA CRAU AND THE
SURVEY PROTOCOL

The plain of the Crau is located in the south of France, and its main
area is comprised in a triangle between Arles, Salon and Marseille
(Bouches-du-Rhone, 5.3). The Crau area is characterized by a flat land-
scape where vegetation is dominated by herbaceous species. For this
reason, it is often referred to as a steppe (Figure 1), despite not be-
ing as arid (average annual rainfall of 540 mm/year) as true steppe
biomes. The maintenance of such a landscape is due to the combi-
nation if several local factors that reduce water availability and en-

croachment by ligneous species.
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Figure 5.3: General situation of the Crau. The main area is located within
the dark triangle.

Most recent areas of La Crau appeared as the result of the accumu-
lation of pebbles in the former Durance river delta (now an affluent
of the Rhone river). Cementing of the pebbles produced a conglomer-
ate layer (puddingstone) that limits the groundwater accessbility by
plants to the first 50 centimeters of soil (Tatin ef al., 2013). This con-
tributes, along with strong and recurrent winds (the Mistral) and a
warm Mediterranean climate, to a local increased aridity compared
to surrounding areas.
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In addition, the openness of the area is maintained by a long his-
tory of grazing. Dozens of documented roman settlements compris-
ing sheepfolds, along with a rich artifactual and literary evidence
supports the presence of a vibrant economy based on sheep herding
around La Crau during the roman era (Badan et al., 1995; Motz, 2012).
Charcoal analyses suggest that sheep herding was already active dur-
ing the Late Neolithic/Bronze Age (approx. -2,000 B.C., Henry et al.,
2010) and remains of enclosures dating from 3,000 B.C. have been
found (Tatin et al., 2013). This use of the area for extensive herding
persists to this day, but because of historical changes in the sheep-
herding practices and sheep races, archeological evidence of grazing
practices is sparse for some historical periods. Remains of sheepfolds
with known abandonment times mostly date from the late roman em-
pire period (100-350 A.D. Badan et al., 1995), and the XIX* and XX
centurie) (Henry, 2009). Grazing during the middle ages is thought to
be the product of a less-specialized economy based on unimproved
sheep races that did not require permanent structures (Henry et al.,
2010).

a) b)

Figure 5.4: (a) Aerial view of a sheepfold (Nouveau-Carton); (b) shematical
illustration of the sheepfold within a grazing zone (b, continuous
lines indicate roads). Sheep station at night in enclosures laid by
the sheepfold (dark green patch in the aerial view), and driven
within the zone during the day by the shepherd (b, dotted lines).

In La Crau, flocks of sheep are not confined but driven by shep-
herds within delimited extensive zones ("Coussouls") of large size (most
of them above 70 ha, with a maximum of 540 ha, Tatin et al., 2013).
Most of these zones include a sheepfold built next to a shelter for the
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shepherd. Sheep are gathered in the sheepfold at night or, because
of the large size of the herds (typically 1,600 individuals Tatin et al.,
2013), in temporary enclosures next to it. As a result, sheep spend
more time near the sheepfold than elsewhere in the area, resulting in
a natural gradient of grazing pressure and other impacts related to
the presence of sheep (e. g. nutrient enrichement through dung depo-
sition or trampling). This gradient has the greater length towards the
south-east, which is the main direction of dominant winds.
Vegetation communities respond to this grazing gradient, resulting
in a strong species turnover with ruderal, nitrophilous communities
near the sheepfold, and typical "Coussouls"-type communities (dom-
inated by Brachypodium retusum and Asphodelus ayardii) were grazing
is at its lowest (Figure 5.9, Molinier & Tallon, 1950; Gomila, 1987).
Two other vegetation types (sometimes referred to as "belts"), corre-
sponding to intermediate levels of grazing have been described, one
defined by the presence of Onopordum illyricum, and another by the
dominance of Trifolium subterraneum. In the absence of accurate mea-
surement of the grazing pressure (but see Figure 5.5), we reused these
known vegetation types to guide our surveys and ensure that we doc-

umented a large range of grazing pressures.

50

25

Grazing pressure
(total number of sheep crossings in one season)

0 500 1000 1500
Distance to sheepfold

Figure 5.5: Grazing pressure as a function of distance to the sheepfold in
the S-E direction. Values are extracted from Dureau (1997) for his
study of the "Coussouls de 1'Opéra". With the exception of this
study, the spatial distribution of grazing pressure within grazing
areas remains (to my knowledge) undocumented. The fit is a
function of the form y = a/(1 + b *x).
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The chapters presented in this thesis are based on a sampling pro-
gram that spanned three years (2016-2018). Surveys were carried out
during spring which is the period where sheep are present (typically
from March to June Tatin et al., 2013), and when 80% of plants can
be identified to the species level (Bourrely et al., 1983). The surveys
comprised three different methods in order to document different
aspects of plant communities along the direction of maximum exten-
sion of the grazing gradient (south-east). This direction had to be
adjusted for some sites, where evidence of disturbance was present
in the south-east direction (e. g. abandoned fields).

We documented 16 sites spread out in La Crau: 6 which are cur-
rently in use, 4 that were abandoned in the second half on the XXh
century, 3 that were abandoned during the first half of the XX'h cen-
tury or XIX'h century and 3 roman sites (Table 5.1). Abandonment
dates were taken from Henry (2009) and Badan et al. (1995). Vegeta-
tion communities change in structure and taxonomic composition as
spring passes because of the effect of grazing and of the completion
of plant life cycles. To make sure this effect was not correlated with
any other characteristic of the sites, we randomized during spring the

date of survey of each site.

Poulggeres ! 2 1 X
\ Y. yldmouse T féuil!aumeorcel L

au dé‘M‘eau

Nouveau Carton

5o (¥ / Sites

*Grosse du Centre ,i 2 NAA A y L b * Current
= L N 5 A <50y aband
¢ = *rme blanc £ ) " ’
% T 1| *{Jne dArles Te ; | * 70-200y aband
> 3 3 L ¥ >1500y aband.
0 25 5km
|

Figure 5.6: Geographical distribution of the sampled sites in the Crau area.
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Year of usage starting

Year of aband.

Peau de Meau
La Grosse du Centre

La Grosse du couchant (ou Les
dominos)

Terme blanc
Ventillon (current)
Brune d’Arles
Negreiron
Limouse
Guillaume Orcel
Négron
Poulageres
Retour des aires
La Tapie
Vergieres
Nouveau Carton

Ventillon (roman)

<1857
1857
1780
1780
1780
88

60

220

Currently used

Currently used
Currently used

Currently used
Currently used
Currently used
2008

2008 (but enclosures are still set up near the entrance)
1968-1971
1975-1978
1857-1944
1857-1944
1857-1944

267

400

430

Table 5.1: Table of the surveyed sites, with abandonment dates. Most aban-
donment dates were extracted from Henry (2009) and some others
from Badan ef al. (1995). When a date range is provided, it means
that the real date is within the bounds. Dashes indicate unknown
dates. Note that Limouse, despite being abandoned in 2008 is still
being used to set up enclosures, and was thus removed from the

analyses of Chapter 4.



136

10

15

20

25

30

35

DESCRIPTION OF LA CRAU

We first carried a quadrat-based survey and recorded the pres-
ence/absence of all species in a grid of 5 by 5 20x20 cm subquadrats
(resulting in a quadrat size of 1m?, Figure 5.8). The first quadrat was
placed as close as possible to the sheepfold entrance. The spacing
between quadrats then followed a geometric series, i.e. the second
quadrat was placed at dy=2m from the first, then subsequent quadrats
were placed such that d,,;1 = b * d, were b was between 1.2 and 1.5.
Adjustments to this spacing rule were made to avoid local distur-
bances unrelated to grazing (Figure 5.7 and 5.9). We also recorded an
ocular estimate of vegetation cover and height within each quadrat.

Around each 1m? quadrats, we recorded in a 3x6 m area the pres-
ence of indicator species (Figure 5.8), which were known to be indica-
tors of the four identified vegetation communities (Molinier & Tallon,
1950; Gomila, 1987). These indicator species were then used to ensure
that we documented all vegetation types, hence a large range of graz-
ing pressures, and were used to stop the survey once we reached the

"Coussouls"-type community.

We recorded the spatial structure of the vegetation, which is re-
quired to compute species associations, using 5 meter-long continu-
ous transects. For current sites, we placed a pair of transects in each
of the four vegetation types identified by indicator species. Transects
were separated by at least 1om but no more than 75 m (to ensure
grazing pressure was similar for the two transects, Figure 5.9). This
resulted in 8 transects (4 pairs) per site, except when vegetation types
could not be observed, resulting in possible missing pairs of tran-
sects. We computed the average distance to the sheepfold for each
pair of transect, and used this number to place pairs of transects in
abandoned sites.

The start and direction of each transect was decided based on a pen
throw, avoiding local disturbances such as dirt roads. We then laid out
a measuring tape and recorded the length and position of overlap of
each part of plant individual on the transect, along with an index of
height ranging from one to five (classes bounds of 0/2/5/10/20/>20
cm, Plate 9 and Figure 10). We also recorded the intersection of peb-
bles along these transects as they can affect the distribution of plant
individuals in space.

It is worthy of note that we recorded the change in species compo-
sition along gradients twice: with 1m? quadrats, then with transects.

In this thesis, we did not use the quadrat data, because transects were
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found to detect more species and thus document more exhaustively

the species composition of vegetation communities.

Ventillon (actuel) @popfofk o o |[*]|o | * & o
Termeblanc eod¢{ofjo o o o0 o o % o o lo 4 ®
Peau de Meau 4| 000 o*o o * |o ®
La grosse du couchant/Les dominos  dlo ¢|o o ® o [* o
LaGrosseduCentre @op ¢ o o 4 ¢
Brune dArles  ®@@fmo g*o d¢x o o} ES)
Negron  dmmeo * &
Negreiron @0 o« 0% 0 0 * ®
Limouse  @oodg o 4o o o ®
Guillaume Orcel @b go o [ o o # ®
Retour des aires ~ ¢#lo6| o |4 o o [*p
Poulageres @000 0340 0 [¢] * @
LaTapie @ dfooo ¢ e o 0 Quadrat
Vergieres  @odf{o # (o] o || | ;réFseCt i
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Nouveau Carton  @oop 0 © o] ®
0 200 400 600

Distance to sheepfold

Figure 5.7: Distances of sampling for quadrats, transects and soil samples
for each site.

6m e S

25x species p/a f.‘ .\“
Veg. cover/height
Pebble cover im /

3m

e— Indicator species p/a B

One soil subsample

Figure 5.8: (a) Information recorded around each quadrat (p/a stands for
presence/absence) (b) Spatial distribution of the 16 sub-samples
for soil sampling.

In addition to quadrat and transects, soil samples were taken be-

tween Oct. 16 and Oct. 31 2017. One sample was taken at the average

s distance of each transect pair, and complemented by samples placed
at quadrat positions. This resulted in 4 to 6 soil samples per site.

Each soil sample was taken by mixing 16 sub-samples regularly

spaced around two circles with raddii of 1 m and 4 m around a center

point (Figure 5.8). All surface litter was scraped and approximately

10 125 cL of soil 4 was sampled at each point between o and 1ocm. All

subsamples were mixed in a bowl and a compound sample of 400g

4 the volume of an individual portion of yogurt
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was then taken from the mixed subsamples. This sample was dried
for at least 72h at 40°C, sieved to 2mm and sent for analyses (Labo-
ratoire Teyssier®). Soil analyses included pH (in water), cation total
exchange capacity (Metson method), total CaCOs, total organic mat-

s ter, total phosphorus (Olsen method), exchangeable K, Mg, Ca and
Na and total Nitrogen.

5 route des Junchas - 26460 Bourdeaux, France
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Belt A Ruderal species

Malva sylvetris
Chenopodium spp.
Urtica urens
Belt B Thorny species
Onopordum illyricum
Carduus sp.

@ Belt C Trifolium community

Trifolium subterraneum
Trifolium spp.
% Medicago spp.

Belt D "Coussouls" community

Grazing intensity Brachypodium retusum
Asphodelus ayardii

increases Q/ Sideritis romana

Q 1x1m quadrat \

5m transects
2 per vegetation belt

soil sampling
(16 subsamples within a 5m radius) @

Figure 5.9: Graphical summary of surveys carried out for a given site. Four
vegetation belts have been identified based on a set of indicator
species, as indicated by colors and labels. Labels indicate notable
species present in each belt. Quadrats were carried out at differ-
ent distances from the sheepfold entrance. In each belt, a pair of
5m transects was laid out to measure the spatial distribution of
species individuals. Soil was also sampled at least four times at
the average distance of each pair of transects.
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APPENDIX 3: UNDERSTANDING PLANT-PLANT
ASSOCIATIONS: A MODELLING APPROACH.

To investigate the link between interactions and spatial associations,
and to more specifically study the effect of space preemption on that
relationship (Box 3.2), we used a spatially explicit, individual-based
model.

In this model, plant individuals are represented as discs on a two-
dimensional square surface of size SxS. An individual k is defined
by the species it belongs to, sy, its size (radius) r; and its position in
space xi, Yk. Individuals interact with their neighborhood by affect-
ing the recruitment of new individuals and the mortality of nearby
individuals.

Interactions are defined at the species level i.e. all individuals of
the same species have the same effect on their neighborhood. An in-
teraction function B;,;(d) describes the effect of species i on species j
at a distance d from the center of the individual of species i.

This function is defined as follows:

Bi—sj(d) = aj; if d < r; (the center of the target individual of the
interaction is under the canopy of the interactor) or

Bisi(d) = ajj * exp(“;d) if d > r; i.e. the center of the target individ-

ual is outside the canopy.

6 here characterizes the distance at which interactions have an ef-
fect. The coefficients a;; describe the strength of the interaction be-
tween a pair of species and thus define a species-level interaction
network. These interactions are directional, i.e. there is no assump-
tion that a;; is equal to aj;, and intra-specific interactions a;; can be
included.

In what follows, we use the subscripts r and m on the B; ,; and a;;
to denote that an interaction affects recruitment (r) or mortality (m).

Temporal dynamics

The model is based on discrete time steps. At time step t, the number
and position of newly recruited individuals is determined, as well
as the number of dying individuals (removed from the system). The
changes are then applied to obtain the system state at time step ¢ + 1.
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MORTALITY At each time step, each individual j has a probability
of dying P(M;) (being removed from the system) that is affected by
its interactions with all the N other individuals present in the system:

N
P(M;) = logit™" [ 1+exp(Bg + ) Bes (dix)) (5.1)

k=1

k#j
where B is the log-odds ratio of the base probability pf' of dying,
log(pit/ (1 —pgt)). The By the ,Bgﬁs]_(dk) represent the effect of indi-

vidual k (of species sx) on the mortality of individual j at distance
djk.
]

RECRUITMENT OF NEW INDIVIDUALS At each time step, each
individual spreads f propagules randomly in the whole system. Be-
cause plants take physical space the recruitment process is divided in
two steps: (i) physical access of the propagule to the ground and (ii)
successful establishment of the new individual.

For each propagule spread by existing individuals, a random point
x,y in the system is chosen and the probability P(A,,) of the propag-
ule reaching the ground is computed. This probability depends on
the k individuals whose canopy intersects the chosen point, and the

‘permeability” as, of those individuals:

P(A.y) = I;szsk (5.2)

«s,, the permeability, is a coefficient between zero and one that char-
acterize the probability of a propagule going through the canopy of
a given species sr. A higher permeability means that propagule can
more easily go through the plant and access the ground. P(A,,) ef-
fectively quantifies the probability that a propagules goes through
all the canopies that intersect the position x,y — and thus access the
ground.

If the propagule accesses the ground at location x, y, its probability
of growing there P(R;|Ay,) depends on a base probability pp and is
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modulated by all the N individuals already present in the system at

distance dj from the propagule landing point:

N
P(Rj|Axy) = logit™ | 1+ exp(By+ Y Bl e (i) (53)
=
where B is the log-odds ratio of the base probability pj of recruit-
ment, log(py/ (1~ pp))-

s To model the fact that plants compete for ressources in addition
to space, we introduced a density-dependence on the successful re-
cruitment of new individuals. Each propagule trying to grow in the
system has this probability P(R;|Ay) further reduced depending of
the density d; (observed cover of species s;) of the species to which it

10 belongs:

P(R;’RJ‘, Ax,y) = P(R]"Ax,y)(l - ds]-) (5.4)

A random uniform number is taken between o and 1. If it is be-
low the probability P(R}|Rj, Ay,y) then a successful recruitment event
takes place (a new individual of species j is added into the system at

position x, ).

Parameter No permeability effect With perm. effect Description

S 50 50 Side length of the considered
space
re 1 forallk 1 for all k Size (radius) of individual k
aj; o0 0 Effect of species j on the recruit-
ment of species j
ag? 0 0 Effect of species j on the mortal-
ity of species j
py.  0.25 0.25 Base probability of individual
mortality
py 05 0.5 Base probability of propagule
recruitment
as, 1 for all species o for all species Permeability of species s
J 0.001 0.001 Spatial range of interactions.

Table 5.2: Parameters used in the model simulations
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indiv {
species i

indiv k&
species j

Effect size (8i—;) 4
Aij

Distance

>
>

v

Figure 5.10: Geometric representation of interactions between plants. An in-
teraction between two individuals is defined by a function f; ;
between the pair of species that depend on a pairwise coeffi-
cient a;;, the distance between the two individuals dj; and ¢ that
characterizes the distance of interaction. The interaction can in-
crease locally the focal process (mortality or recruitment, red)
or a decrease it (blue).

all all
overlapping interacting same-species interacting
individuals individuals individuals individuals

o

® 08 QO @ QO 08 O
propagule l l l living indiv. l
©

% > >
P(Azy) P(Rj) P(R;‘)

Access to Densjty- ;
grouné Growth depen ehee Mortality

Figure 5.11: Life cycle of a model individual and interactions at play in the
model.



10

MODELLING OF PLANT-PLANT ASSOCIATIONS

Simulations

At the start of the simulations, individuals of each species were ran-
domly added in the system until the density of each species reached
1/5 (were S is the number of species). At each time step, the varia-
tion of species densities were computed by regressing the density of
each species against time, using the last 1000 time steps. Simulations
were stopped when no species had a temporal variation of its density
above 1074,

For the results presented in Box 3.1, we considered two situations.
First, we modelled a situation with no interaction, i.e. all a;; were set
to zero. We then considered another situation, but with the physical
space occupied by plants taken into account, by setting the perme-
ability of all species «; to zero (where j is the species, Table 5.2).
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APPENDIX 4: ADDITIONAL MATERIAL FOR
CHAPTER 3 AND 4

5.3 CORRELATIONS BETWEEN SES OF ASSOCIATIONS AND TRAN-
SECT COVER/RICHNESS
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Association ratio (SES) Species number Total veg cover (%) Total bare soil (%) Total pebble cover (%)
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Figure 5.12: Pair plot of the SES of association ratio with vegetation species richness, total cover of vegetation, bare ground and cover pebble. The total
cover of vegetation is given in in % of the length of the transect, and can be above 1 as individuals can overlap.
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5.4 CORRELATIONS BETWEEN SOIL VARIABLES
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Figure 5.13: Temporal variations of soil spatial change around sites
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5.5 RATIONALE FOR THE CHOICE OF PRIORS IN CHAPTER 4

To estimate the amplitude of spatial variations at each site of commu-
nity characteristics (e.g. species richness), we fitted a model of the
form

Yoxdip+ (yo+ Ay) xd

Y~ i+ d +e (5.5)

To avoid overfitting and keep the parameters yo, di/, and A,, we
used a Bayesian framework with weakly informative priors. Because
each different community property has different units, the priors
could not be set using absolute values, but were set depending on
the observed y values at each site.

For each site, sampling yielded a set of values y; . ..y,, correspond-
ing to distances d; .. .d, to the sheepfold (n is the number of samples
taken at a site, typically 2-4 for transects and 4-6 for soil samples).
From this set of points, we extracted y;, y, and ¢y (the standard de-
viation of y values). We computed the distance at which the y values
are closest to their median x;,,, and the average value of y at dis-
tances greater than this midpoint y;,r. A graphical summary of these
variables is present in Figure 5.15.

The priors were then set as follow for the parameters:

Ay ~ N (Ying — y1,30y)

Yo ~ N(y1,30y)

d1/2 ~ N (x1/2,200) (truncated between 0 and d,,)

e ~N(0,30,)
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y A
Z1/2
dq da d3 dy o d
Y4
Y3-
3/2/
Y1
3oy

Figure 5.15: Graphical representation of the parameters used for priors.
Here, y represents the variable under study (e.g. species rich-
ness) and d represents the distance to the sheepfold.
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DESCRIPTION DE LA THESE EN FRANCAIS

Les changements globaux vont nécessairement produire une réorgan-
isation importante des systemes écologiques. L'aire de distribution de
nombreuses especes va changer, et le fonctionnement de nombreuses
communautés écologiques sera bouleversé. Prédire les conséquences
de ces changements, tant a I’échelle biogéographique qu’a l’échelle
d’une commaunauté est donc devenu une question centrale en écolo-
gie (Mouquet et al., 2015).

Si 'on peut raisonnablement identifier les changements d’aire de
répartition de chaque espece a partir de ses besoins abiotiques (e. g.
(Devictor et al., 2008)), il est difficile de prédire l'effet de perturba-
tions a I'échelle des communautés. En effet, de nombreux systemes
écologiques ne répondent pas linéairement aux pertubations et change-
ments de conditions environmentales, mais peuvent au contraire se
réorganiser brutalement, avec parfois des conséquences importantes
sur les populations qui dépendent de ces systemes (Scheffer et al.,
2003; Ellis et al., 2011; Estes et al., 2011; Vasilakopoulos & Marshall,
2015; Lever et al., 2014).

Ce type de réponses émerge du fait que les communautés écologiques
ne sont pas simples mais complexes, au sens qu’elles sont composées
de nombreux éléments en interactions. Les espéces composant une
communauté écologique sont liées entre elles par des interactions,
qui peuvent parfois étre extremement nombreuses et diverses. Cette
diversité d’interactions rend tres difficile la prédiction des effets des
perturbations dans les communautés écologiques: par exemple, il est
tres complexe de prédire les conséquences de l'arrivée d’une nou-
velle espece, comme 1’atteste les nombreux "dommages collatéraux”
de l'introduction d’espéces dans la lutte contre les ravageurs (e.g.,
Carvalheiro et al., 2008).

Malgré cette complexité, les réseaux d’interactions écologiques présen-
tent des patrons structurels qui déterminent la réponse de la com-
munauté entiere a des perturbations. Par exemple, certains réseaux
d’interactions peuvent présenter des boucles de rétroactions, qui am-
plifient I’effet des perturbations (Wilson & Agnew, 1992). Il a été mon-
tré que dans les écosystemes arides, les interactions facilitatrices en-
tre plantes peuvent conduire a des réorganisations abruptes suite a
un changement d’aridité, méme faible (Kéfi et al., 2007; Rietkerk et al.,
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2004). Dans ces systémes, les plantes poussent en ilots (patch), ce qui
permet de maintenir une certaine disponibilité en ressources locale-
ment. Lorsque le stress augmente, la présence des interactions facili-
tatrices et la structure en patch permet d’absorber I’augmentation du
stress, jusqu’a un certain point critique ot la communauté se dégrade
et devient désertique.

Les interactions présentes dans les systemes écologiques ne con-
duisent pas toujours a de telles réorganisations abruptes. D’autres
études montrent également que la structure de nombreux réseaux
d’interactions entre espéeces aurait tendance a augmenter la stabil-
ité de la communauté (Lever et al., 2014; Verdu & Valiente-Banuet,
2008; Memmott et al., 2004; Stouffer & Bascompte, 2011; Thebault &
Fontaine, 2010).

De nombreux travaux ont donc été dédiés a l'identification de la
capacité d'une communauté a répondre aux perturbations. Une pre-
miere approche, basée sur 1'usage d’indicateurs, a été utilisée pour
identifier les communautés susceptibles de répondre brutalement a
un changement de condition environmentale. Cependant, cette ap-
proche n’est applicable que lorsquun patron particulier est présent
dans le systeme écologique — une boucle de rétroaction. Dans la plu-
part des cas, les interactions entre les espéces sont peu connues et il
est donc nécessaire de les documenter afin de comprendre comment
elles peuvent affecter la stabilité de la communauté. Depuis le début
des années 2000 et le développement d’ouils permettant I’analyse de
réseaux (Morales-Castilla et al., 2015; van Borkulo et al., 2015; Poisot
et al., 2012; Delmas et al., 2017), de nombreuses études cherchent a
cartographier les interactions entre especes dans les communautés
et de comprendre comment leur structure détermine la résilience du
systeme en entier.

Cette vision unidirectionnelle d’interactions données et fixes, déter-
minant la stabilité et la résilience d’une communauté écologique, a
été cependant critiquée (de Ruiter, 2005). De fait, les interactions entre
espeéces sont variables, et affectées par les perturbations elles-mémes.
Les nombreux travaux portant sur les réseaux d’interactions plantes-
pollinisateurs ont montré que leur structure déterminait la réponse
de la communauté aux perturbations (Memmott et al., 2004), mais
l'intensité des interactions elles-mémes était également affectée par
les pertubations (Memmott et al., 2007b). Pour décrire la dynamique

d'une communauté suite a une perturbation, il est donc nécessaire
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de s’intéresser aux variations d’abondances des espéces, mais aussi a
celles des interactions.

II existe donc une relation a double sens entre la réponse d'une
communauté aux perturbations, et la structure des interactions qui la
composent (Figure 5.16). Le travail présenté ici s’attache a contribuer

a ces deux aspects.

Structural patterns in
interactions

Affect... 5 Resilience and stability
properties of the community
Modularity
Nestedness
Positive/negative
interaction ba]ance Feedback loops
+
O mmumty
\ Q;c, R Species abundances
3 O
(5] . .
s . — Determine...
Species interactions Dlst.urbance
Environmental changes

Figure 5.16: Un communauté écologique est définie par un ensemble
d’especes et leurs interactions. Ces interactions peuvent présen-
ter certains patrons structurels (par ex. des boucles de rétroac-
tion) qui détermine la résilience et la stabilité de la comm-
maunté — autrement dit sa réponse au perturbations. Cette
derniere, combinée avec les caractéristiques effectives des d'une
perturbation affecte en retour les abondances et les intensités
d’interaction entre espéces

5.6 OBJECTIFS DE LA THESE

Ce travail de these contribue a lier interactions écologiques et réponse
aux pertubations des systemes écologiques, en utilisant les commu-
nautés vegétales comme modeles d’étude.

Les deux premiers chapitres sont centrés sur un patron d’interaction
spécifique: les boucles de rétroactions. Quand elles sont présentes,
la communauté écologique est susceptible de répondre de maniere
abrupte a des changements environmentaux.

Plus spécifiquement, le premier Chapitre pose la question suivante:
peut-on identifier des boucles de rétroactions a partir de patrons de multi-
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modalité®?. Ce travail est basé sur des approches dites d”"analyse de
potentiel”, et révele, dans un ecosystéme subalpin protégé, certaines
communautés ou des boucles de rétroactions pourraient produire des
réorganisations importantes et potentiellement abrupte des commu-
nautés végétales a des perturbation a venir.

Le deuxieéme Chapitre représente un effort de synthese de 1’état de
I'art concernant les indicateurs de faible résilience (en anglais early-
warning signals) au sein d’'un paquet R. Le but de ce travail est de
permettre une dissémination plus ample de ce type de méthode afin

de tester leur pertinence dans des systéemes empiriques.

Les deux derniers chapitres sont centrés sur les variations des in-
teractions au sein des communautés végétales le long de gradient de
perturbation. Ils se basent sur un jeu de données collecté au cours des
trois ans de doctorat en plaine de Crau (Bouches-du-Rhone, France).

Le chapitre trois décrit l'effet du paturage sur les variations des
réseaux d’associations autour de sites actuellement utilisés. En partic-
ulier, il pose la question de savoir quel est I'effet d'un stress biotique sur
I'importance relative des interactions positives et négatives dans les commu-
nautés végétales ?.

Le quatrieme et dernier chapitre adopte une perspective temporelle
et étudie la dynamique temporelle des réseaux d’associations plante-
plante. En particulier, il pose la question suivante: quelle est la résilience
des réseaux d’associations ? Comment se compare-t'elle a d’autres aspects
de la communauté ? Pour ce faire, une approche par chronoséquence
est adoptée, en documentant les variations des réseaux d’associations

plante-plante autour de sites abandonnés a des dates connues.

6 La multimodalité fait référence au fait que des observations peuvent étre distribuées
en "paquets"”, produisant une distribution a plusieurs plusieurs modes
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5.7.1 Peut-on identifier des boucles de rétroactions a partir de patrons de
multimodalité ?

Dans le premier chapitre, nous avons identifié des zones ol une
boucle de rétroaction est potentiellement présente, sur la base d'une
multimodalité dans les observations de composition spécifique des
communautés végétales. En utilisant des données décrivant les con-
ditions environmentales locales ainsi que des résultats connus de la
littérature, nous avons pu identifier des méchanismes potentiels qui
sous-tendraient la présence d'une boucle de rétroaction. En partic-
ulier, dans les zones séches des clairiéres sub-alpines, il est possible
qu'une boucle de rétroaction positive entre végétation et qualité du
sol puisse diminuer la résilience de ces communautés aux perturba-
tions (Figure 5.17). Ce résultat est précieux dans le cadre de la con-
servation de ces espaces, mais il ne permet pas d’identifier complete-
ment la réponse possible des ces communautés a une perturbation.

Lorsqu’'une boucle de rétroaction positive est présente dans un sys-
teme, elle peut produire des états stables alternatifs. Dans le cas des
zones seches des clairiéres, les communautés dominées par C. filifo-
lia pourraient persister indéfinimient dans cet état s’il correspondait
effectivement a un état stable. Or, ceci ne peut étre démontré sur la
base de la multi-modalité seule, celle-ci pouvant aussi émerger de
situations sans états stables alternatifs (Encadré 1.1).

La maniere la plus directe de tester le type de dynamique présente
dans ces communautés serait via ’acquisition de données temporelles
ou expérimentales (Petraitis, 2013). Cependant, d’autres approches
corrélatives telles que celles proposées par les indicateurs de résilience
(Chapitre 2) ou l'utilisation d’associations plante-plante pourraient
étre envisagées.

5.7.2  Quel est I'effet d'un stress biotique sur l'importance relative des in-
teractions positives et négatives dans les communautés végétales ?

Dans le Chapitre 3, nous avons décrit les variations des interactions
plante-plante le long de gradients de stress biotique. L'étude s’est
concentrée sur un patron structurel important des réseaux plante-
plante: le ratio entre associations positive et négative. Ce patron est

fortement lié a la maniere dont les communautés de plantes peuvent
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Figure 5.17: La composition spécifique des communautés des zones seches
des clairieres subalpine est bimodale (a), avec une communauté
dominée par C. filifolia (2) contrastant avec une communauté
plus diverse (1). Ces deux groupes different principalement en
terme de granulométrie du sol (Gravier - pebble - et sable - sand)
et de pourcentage de sol nu (Bare ground). La présence d'une
bimodalité dans la composition spécifique a des niveaux hy-
driques similaires, et son lien avec la qualité du sol pourraient

suggérer une boucle de rétroaction positive entre végétation et
qualité du sol.
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répondre aux perturbations. Une dominance de la facilitation entre
plante a I'échelle de la communauté peut potentiellement produire
des boucles de rétroactions (Kéfi et al., 2016), ou encore permettre a
un nombre plus grand d’especes de coexister (Saiz et al., 2018).

Les communautés végétales étudiées présentent un déficit d’associations
positives, et par conséquent un ratio entre associations positives et
négatives toujours négatif. Cela suggere que la compétition est le
mécanisme le plus structurant dans ces communautés de plante. Le
stress biotique, et plus spécifiquement le paturage et le piétinement
par les moutons diminue la force et le nombre des associations entre
especes (Figure 5.18). Sous des niveaux importants de stress, les inter-
actions entre espéces jouent un role vraisemblablement mineur sur la
dynamique de la communauté végétale.

-2
Site
—o— Peau de Meau
—o— La Grosse du Centre
-4 —o— Terme blanc
—e— Ventillon (actuel)
—o— La Grosse du Couchant

. Brune d'Arles

Association ratio
(SES compared to null expectation)

-8

5 10 20 50 100 200 500
Distance to sheepfold

N

Figure 5.18: Variations du ratio d’association (taille d’effet comparé a
l'attendu aléatoire) en fonction de la distance a la bergerie. Le
ratio est proche de l’attendu aléatoire proche de la bergerie, ce
qui marque une diminution de l'importance des associations
dans la structuration de la communauté dans ces zones a forte
perturbation (paturage tres important). Ce ratio devient plus né-
gatif 8 mesure que le paturage diminue (la distance augmente),
mettant en évidence une importance accrue de processus de
compétition entre especes.

L’étude plus en détail de la tendance de chaque espece a réaliser
des associations négative ou positive révele que celle-ci est corrélée
principalement a son abondance totale dans un transect et non a la
hauteur moyenne de la plante. Cela suggere que la resource en com-

pétition est I’espace et non la lumiere (Figure 5.19).
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Figure 5.19: (a) Taille d’effet comparée a l'attendu aléatoire du ratio
d’association pour chaque espece (seulement les especes avec
au moins 200 associations potentielles sont inclues dans
ce graphe). (b,c) Relation entre la taille d’effet du ratio
d’association et la hauteur moyenne de la plante (b) ou la cou-
verture totale de la plante dans les transects o1 elle est présente

(©).
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5.7.3 Quelle est la résilience des réseaux d’associations plante-plante ?

Comment se compare t'elle a celle d’autres aspects de la communauté
?

Les réseaux d’association plante-plante montrent des variations im-
portantes dans le temps, mais ces variations sont corrélées entre sites.
Cela suggere que les associations entre espéces dans une commu-
nauté végétale contiennent beaucoup d’information sur les processus
qui déterminent sa dynamique temporelle. Le ratio d’associations
(importance des associations positive par rapport aux associations
négatives) est, dans le temps comme dans l'espace, principalement
négatif, suggérant que la compétition pour 1'espace est le mecan-
isme dominant a tous les stades de la pseudo-succession. Des vari-
ations plus fines sont cependant présentes dans ce ratio, correspon-
dant a des phases clés de la dynamique végétale. Les valeurs de ra-
tios d’associations les plus faibles ont été observées pour les berg-
eries récemment abandonnées, suggérant un rebond de compétition
pour l'espace lorsque le conditions abiotiques sont toujours favor-
ables (abondance en nutriments), mais que la pression de paturage
est relachée. Les sites romains montrent également des variations im-
portantes de valeurs d’associations, avec une augmentation de ce ra-
tio dans les communautés les plus éloignées de la bergerie.

Ces variations du ratio d’associations s’inscrivent dans un schéma
de variation plus général avec la quantité de nutriments présents dans
le sol (Figure 5.20), avec un changement de signe de la relation en-
tre variation en nutriments et variation en ratio d’associations. En
dessous de cette valeur seuil, une diminution de la quantité d’azote
produit une diminution de 'importance des associations négatives,
suggérant une diminution de l'importance des interactions avec la
diminution de productivité. Cette constatation est en accord avec a
I'hypothese du gradient de stress (Stress Gradient Hypothesis, SGH,
Callaway et al. 2002), mais il serait intéressant de confirmer que la
limitation en nutriment a bien lieu dans les communautés de plantes

pauvres en azote.
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ABSTRACT

Ecological systems are not simple but composed of many different elements
(species, for example) interacting with each other. These networks of interac-
tions exhibit structural properties that determine ecological systems” ability
to absorb and recover from perturbations. Mapping interactions along with
their changes in time and space is therefore key to understand and predict
empirical communities” response to global changes. In this thesis, we used
plant communities as model systems (i) to explore how spatial patterns may
help identify feedbacks loops which make communities more fragile to up-
coming changes and (ii) to map species interactions in empirical communi-
ties and describe how they change along stress gradients and recover from
perturbations. To do so, we used two datasets documenting plant commu-
nities in subalpine meadows (USA) and Mediterranean grasslands (France).
Our results show that feedback loops can be inferred to some extent from
the spatial patterns of plant communities and hence help identify commu-
nities that may respond more abruptly to perturbations. Going to a more
detailed level of description, plant-plant interactions (as measured through
spatial associations) were shown to respond strongly and consistently to
stress but exhibited a weak resilience to disturbances. This work shows that
plant-plant interactions — which are linked to the response of the community
to perturbations — can be uncovered using spatial patterns. It paves the way
towards a better understanding and a better anticipation capacity of how
ecological communities might reorganize when subject to disturbances.

RESUME

Les systemes écologiques sont complexes car composés d'une multitude
d’éléments en interaction. Ces interactions, entre especes par exemple, for-
ment des réseaux qui présentent des propriétés structurelles déterminantes
pour la réponse du systeme écologique entier aux perturbations. Pour mieux
identifier cette réponse, il est donc important de cartographier les interac-
tions présentes dans les communautés écologiques et de comprendre leurs
variations dans le temps et l’espace. Dans ce travail, nous avons utilisé
les communautés de plantes comme systéemes écologiques modeles afin
(i) d’identifier a partir de patrons spatiaux certains motifs présents dans
les réseaux d’interaction écologiques (les boucles de rétroaction) et (ii) de
cartographier les réseaux d’interactions (tels que mesurés par les associa-
tions spatiales entre plantes) le long de gradients de stress. Pour ce faire,
nous avons utilisé deux jeux de données documentant des communautés
de plantes de clairieres subalpines (Etats-Unis) et méditerranéeennes (La
Crau, France). Nos résultats montrent que les boucles de rétroaction peuvent
étre inferées a partir des patrons spatiaux présents dans les communautés
de plantes, permettant ainsi d’identifier des communautés pouvant répon-
dre de maniere abrupte aux perturbations. Les interactions entre plantes
(déduites de leurs associations spatiales) dépendent fortement du stress ap-
pliqué a la communauté, et présentent une résilience faible aux évenements
de perturbation. Ce travail montre que les interactions entre plantes peuvent
étre cartographiées in situ a partir des associations spatiales. Il ouvre la voie
vers une meilleure compréhension et capacité d’anticipation de la réponse
des communautés écologiques face aux perturbations.



