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Résumé 
 

Ce manuscrit étant complètement écrit en anglais, ces quelques pages résument en 

français les problématiques et les expériences menées ainsi que leurs résultats. 

 

Les nouvelles propriétés des nanofils semi-conducteurs ont conduit à son émergence en 

tant qu’éléments prometteurs pour les composants avancés. Ce travail porte sur l’ingénierie 

inter-sous-bande (ISB) des nanofils de GaN où nous insérons des hétérostructures 

GaN/(Al,Ga)N pour les rendre optiquement actives dans la région spectrale infrarouge (IR). 

Les transitions ISB sont des transitions d'énergie entre les niveaux confinés quantiques dans 

la bande de conduction des nanostructures. Toutes les structures analysées dans cette thèse 

ont été synthétisées par épitaxie par jets moléculaires assisté par plasma.  

Le chapitre 1 décrit la motivation et les objectifs, ainsi que l'organisation du manuscrit. 

L’objectif de ce travail était d'explorer la possibilité de développer une technologie inter-sous-

bande basée sur des nanofils de GaN. Dans ce but, d'une part, nous étudions des dopants 

alternatifs pour un meilleur contrôle de la morphologie des fils et de la distribution des 

porteurs, et d'autre part, nous essayons de décaler l'absorption inter-sous-bande des nanofils 

vers des longueurs d'ondes plus longues. Nous comparons systématiquement les structures à 

base de nanofils avec des structures planaires bien établies. Nous explorons également la 

fabrication de nanofils en utilisant une approche « top-down », c'est-à-dire par gravure. 

Le chapitre 2 commence par un bref résumé des propriétés générales des semi-

conducteurs à base de nitrure III, décrivant leur structure cristalline et leurs caractéristiques 

électroniques, mécaniques et optiques les plus pertinentes. Nous présentons ensuite diverses 

nanostructures de semi-conducteurs et leur structure de bande. Enfin, nous passons en revue 

la physique des transitions inter-sous-bandes et soulignons les règles de sélection qui 

régissent ces transitions et les effets à plusieurs corps à prendre en compte. 

Le chapitre 3 contient une description des méthodes expérimentales et des outils utilisés 

dans ce travail. Une attention particulière est accordée à la description de l'épitaxie par jets 

moléculaires assisté par plasma (PAMBE), la méthode de croissance utilisée pour synthétiser 

tous les échantillons décrits dans cette thèse. 

Un contrôle précis des niveaux élevés de dopage est crucial pour les composants inter-

sous-bande. Par conséquent, au chapitre 4, nous présentons une étude du Ge en tant que 

dopant alternatif de type N, à la place de Si, pour les films minces de GaN et d’AlGaN 

développés par PAMBE. Le silicium, le dopant de type n préféré pour GaN, contribue à générer 

des dislocations de type bord et à une augmentation de la contrainte. Le dopage avec Si à des 

niveaux supérieurs à 1019 cm–3 est connu pour provoquer une rugosité importante de la 

surface et éventuellement une propagation des fissures. Le germanium, comme le silicium, 
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est un donneur peu profond dans GaN, avec une énergie d'activation théorique de 31,1 meV. 

Le rayon ionique d'un atome de Ge est similaire à celui du Ga et la longueur de la liaison métal-

azote ne diminue que de 1,4% avec le Ge, contre 5,5% avec le Si. Par conséquent, Ge peut 

occuper le site du réseau Ga causant beaucoup moins de distorsion du réseau que les autres 

dopants. Tout comme Si, l'état DX de Ge est instable et n'affecte pas l'efficacité du dopage. 

Compte tenu des perspectives fondamentales et appliquées, il est important de mener des 

études approfondies sur le Ge en tant que dopant dans le GaN. Dans ce travail, nous montrons 

que l’utilisation de Ge comme dopant dans GaN pendant la croissance de PAMBE n’affecte 

pas la cinétique de croissance de GaN. Des couches minces de GaN dopées au Ge ont été 

développées avec des concentrations maximales de porteurs allant jusqu'à 6,7 × 1020 cm–3 à 

300 K, bien au-dessus de la densité de Mott. La concentration de Ge et la densité de porteurs 

libres varient linéairement avec le flux de Ge dans la gamme étudiée. Toutes les couches de 

GaN dopées au Ge ont une morphologie de surface lisse avec des terrasses atomiques, sans 

aucune preuve de fissuration, et la mosaïque des échantillons ne dépend pas de manière 

significative de la concentration de Ge. La variation de la bande interdite de GaN dopée au Ge 

avec la concentration de porteurs est compatible avec les calculs théoriques de la 

renormalisation de la bande interdite dus à l'interaction électron-électron-électron et à l'effet 

Burstein-Moss. Ces résultats valident l'utilisation de Ge dans GaN pour des applications 

nécessitant des niveaux de dopage élevés. 

Il y a aussi un intérêt à étudier Ge en tant que dopant dans l'AlGaN. Il y a des prédictions 

théoriques que le début de la transition DX pour Ge dans AlGaN à une teneur en Al de 52%. 

Cependant, pour le Si, les mesures de conductivité suggèrent une conductivité réduite à une 

teneur en Al aussi basse que 50%. In this work, nous avons réussi à développer des films 

minces AlxGa1-xN dopés au Ge avec x  0,66. Nous avons montré que Ge n'induit aucune 

dégradation structurelle ou optique dans les échantillons d'AlGaN avec x < 0,4. Pour des 

compositions plus élevées en Al, des clusters riches en Ge ont été observés. En maintenant la 

concentration de constante de Ge à 1×1021 cm3, les mesures à effet Hall à température 

ambiante ont montré une diminution progressive de la concentration de porteurs lors de 

l'augmentation de la fraction molaire Al, la diminution étant déjà visible dans x = 0,24. Les 

échantillons avec x = 0,64-0,66 restent conducteurs ( = 0,8-0,3 cm1), mais la 

concentration des porteurs chute à 1×1018 cm3, ce qui implique une activation du donneur 

de 0,1%. Du point de vue optique, la photoluminescence (PL) à basse température était 

dominée par des transitions bande à bande. En augmentant la concentration de dopage, la PL 

se déplace à une énergie plus élevée en raison du remplissage de la bande de conduction. De 

plus, à partir de l'évolution de la position du pic de PL avec la température, on observe 

l’écrantage de la localisation induite par les fluctuations de la composition de l'alliage. 

Dans la gamme des concentrations d'Al que nous avons abordées, le comportement du 

dopant Ge ne représente pas une amélioration drastique par rapport au Si dans les propriétés 

de transport. Cependant, nous devons garder à l'esprit que nous présentons le premier 

rapport sur l'AlGaN dopé au Ge, à notre connaissance, et qu'il existe une grande dispersion 

dans les données sur l'AlGaN dopé au Si. Les valeurs de conductivité varient considérablement 
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d'un rapport à l'autre, ce qui suggère une dépendance aux conditions de croissance. Par 

conséquent, il est difficile de comparer nos données sur l'AlGaN dopé au Ge avec la littérature 

sur l'AlGaN dopé au Si, mais notre observation de la conductivité jusqu'à 66% de la teneur en 

Al est extrêmement prometteuse. 

Le chapitre 5 décrit le développement des nanofils de GaN par PAMBE. L'insertion d'une 

couche tampon en AlN est nécessaire pour améliorer l'alignement vertical des fils. Cependant, 

la présence d’AlN se traduit par une énorme croissance bidimensionnelle. Pour résoudre ce 

problème, nous avons développé un procédé de croissance d’AlN à basse température. Nous 

avons également effectué une analyse de l'impact du flux de gallium et de la température du 

substrat sur la coalescence et le taux de croissance des nanofils. 

Le chapitre 6 présente une étude des hétérostructures GaN / AlN conçues pour absorber 

la gamme spectrale de l‘infrarouge à courte longueur d’onde (SWIR). Nous évaluons à la fois 

l'effet de la nature du dopant de type n, soit Ge ou Si, ainsi que la concentration en dopants 

sur les propriétés optiques. Nous comparons les nanofils auto-assemblés et les couches 

planaires, et nous introduisons également une approche de fabrication « top-down ». 

Bien que des composants ISB à base de GaN aient été démontrés, ils reposent 

principalement sur une géométrie plane et utilisent Si comme dopant. Sur la base des progrès 

du dopage Ge dans les couches minces de GaN, il est devenu intéressant d’évaluer les 

performances des structures ISB en fonction de la nature du dopant, soit Ge ou Si. Pour 

évaluer le potentiel d'utilisation de Ge en tant que dopant dans des composants ISB, nous 

avons réalisé une étude comparative d'hétérostructures GaN/AlN planes dopées Si et 

absorbant dans le SWIR. Les études de diffraction des rayons X ont montré que dans ces 

hétérostructures, avec un fort désaccord de maille, les échantillons fortement dopés au Si 

présentent un élargissement des diffractogrammes de rayons x (balayage en ) plus 

important par rapport aux échantillons dopés au Ge, ce qui indique une meilleure qualité 

structurelle des échantillons dopés au Ge. Les échantillons dopés au Ge et au Si ont tous 

présenté une absorption ISB dans la plage de 1,45 à 1,75 μm. L’élargissement de la transition 

est plus important dans le cas des échantillons dopés au Si, ce qui indique une rugosité de 

l’hétérointerface plus élevée dans ce cas. À notre connaissance, ces résultats constituent la 

première étude systématique des transitions ISB dans des structures à base de GaN planaires 

dopées au Ge. 

D'autre part, la première étude systématique de l'absorption d'ISB dans des nanofils avec 

des puits quantiques dopés utilisait Ge comme dopant de type n. Dans ce cas, les 

hétérostructures GaN/AlN (4–8 nm / 4 nm) dopées au Ge sur des nanofils de GaN présentaient 

une absorption ISB dans le domaine SWIR, dans la plage 1,3-1,95 µm avec des transitions 

larges (FWHM ≈ 400 meV). Au début de ce travail de thèse, il n'y avait aucun information sur 

l'absorption d'ISB dans les nanofils contenant des hétérostructures GaN/AlN avec des puits 

quantiques GaN dopés au Si. Nous avons donc réalisé une étude comparative des 

hétérostructures GaN/AlN à nanofils dopés au Si et au Ge absorbant dans le SWIR. Dans le 

cadre de ces travaux, nous avons publié la première observation de l’absorption ISB dans des 
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hétérostructures de nanofils GaN/AlN dopées au Si avec des niveaux de dopage différents, 

avec des performances comparables à celles de leurs homologues dopés au Ge. Sur la base de 

cette étude, nous concluons que les nanofils dopés au Si et au Ge conviennent 

potentiellement à la fabrication d’hétérostructures de nanofils GaN/AlN pour 

l’optoélectronique ISB. Dans les deux cas, nous avons obtenu une largeur de raie amélioré de 

200 meV pour l'absorption ISB à 1,55 μm, par rapport aux rapports précédents. Cependant, la 

largeur de raie de l’absorption ISB reste nettement supérieure à celle observée dans les 

structures planaires, en raison des inhomogénéités associées au processus de croissance auto-

assemblé. Cela signifie que l'homogénéité entre les nanofils individuels à travers la tranche 

d'échantillons est le facteur limitant plutôt que le dopant. 

Une autre approche pour surmonter les inhomogénéités dans les dimensions des puits 

quantiques dans les fils consiste à effectuer une gravure des hétérostructures planaires afin 

de créer des réseaux tridimensionnelles de micro- ou nano-piliers. Dans le cas des 

hétérostructures III-As, les réseaux de nano- et micro-piliers pour l'émission de THz ont été 

démontrés par une méthode « top-down » définie par lithographie. Un tel processus utilisant 

des hétérostructures GaN/AlN n'avait pas été tenté au début de ce travail de thèse. Nous 

avons présenté une analyse systématique de l'absorption ISB dans les micro- et nano-piliers 

contenant des hétérostructures GaN / AlN absorbant dans le domaine SWIR. Nous montrons 

que lorsque l'espacement du réseau de piliers est comparable aux longueurs d'ondes sondées, 

les résonances à cristaux photoniques dominent les spectres d'absorption. Cependant, 

lorsque ces résonances sont à des longueurs d'onde beaucoup plus courtes que l'absorption 

ISB, l'absorption est clairement observée, sans aucune dégradation de leur amplitude ou de 

leur largeur de raie. 

Le chapitre 7 décrit les hétérostructures GaN/(Al,Ga)N dans des nanofils de GaN 

structurellement conçus pour absorber dans la région infrarouge de moyenne longueur 

d'onde (MWIR). Au début de mon travail de thèse, les transitions ISB dans les nanofils de 

GaN/AlN n'avaient été observées que dans la gamme 1,3-1,95 µm, malgré l'utilisation de puits 

GaN aussi grands que 8 nm. Cela a été expliqué par la dispersion introduite par des 

irrégularités dans l'épaisseur et le diamètre du puits le long de l'axe de croissance. Ainsi, 

l'absorption s'élargit, ce qui réduit son intensité maximale. Dans une telle situation, des 

niveaux de dopage plus élevés sont nécessaires pour identifier l'absorption de l'ISB, ce qui 

entraîne un décalage de la transition dû aux effets à plusieurs corps. Il est donc important de 

s'efforcer d'améliorer l'homogénéité du nanofil dans le sens de la croissance en termes de 

diamètre. L'uniformité d'un nanofil à un autre le long du substrat est également importante. 

Cela garantirait des pics d'absorption plus nets et un contrôle des dimensions de 

l'hétérostructure. Ensuite, la transition ISB peut être déplacée vers des longueurs d’ondes plus 

longues, soit en utilisant des puits quantiques plus grands, soit en utilisant des alliages 

ternaires AlGaN comme barrières de puits quantiques, réduisant ainsi le champ électrique 

interne dans les puits. À cette fin, nous avons synthétisé des hétérostructures de nanofils 

auto-assemblées GaN/AlN et GaN/Al0.4Ga0.6N. Dans le cas des hétérostructures GaN/AlN dans 

les nanofils de GaN, nous avons fait varier la largeur des puits GaN de 1,5 à 5,7 nm. Les 



vii 

hétérostructures avec des puits de 1,5 à 4 nm présentent des interfaces GaN/AlN nettes. 

Cependant, dans les puits plus grands (5,7 nm), l’un des hétérointerfaces GaN / AlN était 

plutôt un alliage gradué, qui s’étend d’environ 1,5 à 2 nm et a une forte influence sur les 

fonctions d’onde électronique dans le puits. En augmentant la largeur du puits GaN dans les 

hétérostructures, on observe un décalage vers le rouge de l’absorption ISB de 1,4 à 3,4 µm à 

température ambiante. Les résultats correspondent bien aux modèles théoriques, en tenant 

compte des caractéristiques structurelles (y compris la netteté ou le mélange des interfaces) 

et des effets à plusieurs corps associés au niveau de dopage. Pour les hétérostructures 

GaN/Al0.4Ga0.6N, l’alliage ternaire représente une réduction de la polarisation, ce qui conduit 

au décalage vers le bleu des transitions bande à bande et au décalage vers le rouge des 

transitions ISB. En conséquence, nous avons obtenu une absorption ISB dans les longueurs 

d'onde de 4,5 à 6,4 µm. 

Dans le chapitre 8, nous évaluons la possibilité d'observer les transitions ISB dans la 

gamme de fréquences 1,5–9 THz dans les puits quantiques GaN/AlGaN non-polaires déposées 

sur le plan m. Nous étudions l'effet de la variation de la concentration en dopage de Si et nous 

explorons l'utilisation de Ge en tant que dopant. Pour étendre la technologie ISB basée sur 

GaN à l’infrarouge lointain (FIR), nous avons conçu une série de puits quantiques GaN/AlGaN 

plan m dont on fait varier les dimensions et les compositions Al pour séparer les deux niveaux 

électroniques confinés de 20–33 meV (correspondant à 4,8-8 THz), et découpler les transitions 

des puits voisins. Ces puits quantiques à faible composition d’Al (composition en Al dans 

l’alliage AlGaN inférieure à 10% et concentration moyenne en Al dans l’hétérostructure 

inférieure à 6%) présentent des couches plates et régulières dans les deux directions 

perpendiculaires a et c, et une très bonne qualité cristalline. Ces structures ont montré une 

absorption ISB à basse température dans la gamme de 6,3 à 37,4 meV (1,5 à 9 THz), fournissant 

une démonstration expérimentale de la possibilité pour GaN de couvrir une grande partie de 

la bande 7-10 THz interdite aux technologies à base de GaAs. Cependant, l'absorption ISB 

démontrée est spectralement large, avec une largeur de bande normalisée proche de 1, qui 

est attribuée à la densité élevée de dopage de Si (ns = 3×1012 cm-2). Sur la base de ce résultat, 

nous étudions plus avant l’effet de la densité de dopage sur ces structures FIR. Sur la base de 

ce résultat, nous avons étudié l’effet de la densité de dopage sur de telles structures FIR. 

L'augmentation du niveau de dopage entraîne une augmentation et un décalage vers le bleu 

du pic d'absorption, ainsi qu'une augmentation de la largeur de raie. Pour des niveaux de 

dopage élevés, il y a une amélioration systématique en utilisant Ge comme dopant, qui se 

manifeste dans des bandes d'absorption plus étroites. 

Au chapitre 9, nous présentons le premier photo-détecteur ISB dans un nanofil unique 

(NW-QWIP), utilisant des hétérostructures GaN/AlN présentant des transitions ISB autour de 

1,55 µm. L'observation de l'absorption de l'ISB dans des ensembles de nanofils nous a motivé 

pour le développement de QWIPs à base de nanofils. La première démonstration d'un tel 

dispositif est présentée dans ce manuscrit. En utilisant les dimensions extraites des mesures 

microscopie électronique en transmission, des simulations tridimensionnelles ont été 

effectuées pour expliquer l’absorption observée. Contrairement au photo-courant bande à 
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bande (dans le ultraviolet), le photo-courant infrarouge évolue linéairement avec la puissance 

d'éclairage incidente. Cette linéarité confirme que les photo-courants ultraviolet et infrarouge 

sont générés par différents mécanismes, les derniers étant moins sensibles aux phénomènes 

liés à la surface, comme prévu pour les transitions ISB dans une hétérostructure à nanofils. En 

conclusion, ce travail est une étude de preuve de principe des photo-détecteurs à nanofils ISB. 

D'autre part, nous avons fabriqué des photo-détecteurs UV à nanofil unique constitués 

d'un nanofil de GaN avec une hétérostructure AlN/GaN/AlN intégrée. L'influence de 

l'hétérostructure est confirmée par le comportement asymétrique des caractéristiques 

courant-tension dans l'obscurité et sur illumination. En polarisation inverse (tension négative 

sur le segment supérieur du fil), les détecteurs se comportent linéairement avec la puissance 

optique incidente lorsque le diamètre du nanofil reste inférieur à un certain seuil (autour de 

80 nm). Ceci s'explique par la linéarité du processus de photo-génération, la séparation des 

porteurs photo-générés induite par le champ électrique axial et le fait que l'illumination n'a 

pas d'effet significatif sur le champ électrique radial dans un nanofil déplété de porteurs de 

charge. Dans le cas de nanofils qui ne sont pas complètement déplétés (diamètre > 80 nm), le 

changement du niveau de Fermi au niveau des parois induit par la lumière entraîne une 

variation du diamètre du canal conducteur central dans le fils, ce qui conduit à une photo-

réponse non linéaire. 

Le chapitre 10 résume le travail accompli et les principales réalisations et présente 

certaines perspectives de ce travail. 

La technologie ISB des nanofils à base de GaN en est à ses débuts. Avec la démonstration 

de la détection ISB dans un nanofil unique, nous avons défini une orientation pour les 

dispositifs à nanofil unique en général. L’avenir devrait voir de nombreuses applications des 

nanofils dans l’électronique flexible, les dispositifs optoélectroniques à haut rendement, les 

dispositifs implantables, etc. La reproductibilité, le contrôle et le traitement des nanofils se 

sont considérablement développés au cours de la dernière décennie. Cependant, il est encore 

loin de la production industrielle de masse nécessaire à la majorité des applications. Des 

techniques de manipulation avancées pour des nano-objets uniques sont en cours de 

développement, ce qui contribuera au traitement et à la création de nouveaux périphériques 

plus performants. 
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1. Context and motivation 
1.1 A brief history of infrared technology 

The study of the distribution of radiant heat “across and outside” the visible solar 

spectrum with a set of thermometers by William Herschel almost 200 years ago resulted in 

the realization that there are rays invisible to the naked eye [1]. Since these rays were 

positioned outside the red part of the visible spectrum they were named infrared (IR) rays. 

The discovery of IR thermal emission at room temperature fueled the first applications as 

thermal imagers for the military. Night vision sensors, tank sight systems, heat seeking missiles 

were the immediate application of IR technology. At present, IR technology is widely used in 

many civil fields, such as remote temperature sensing, remote control, or short-range wireless 

communication. IR satellite images can now solve natural and economic problems. They can 

be used to understand the location of mineral deposits or the contents of forest or the state 

of a crop. IR imaging in medical diagnostics have also gained popularity recently.  

Particularly interesting IR regions from the application viewpoint include the 1.3-

1.55 µm wavelength window which is used for fiber optic communications [2], and the two 

atmospheric windows at 3-5 µm, for sensing hot objects (e.g. a flame or a jet engine), and at 

8-14 µm, for high-performance thermal imaging around ambient temperature. There is an 

interest in even longer wavelengths for space applications [3]. The Terahertz range which 

roughly corresponds to the spectral region from 30 to 1000 µm (0.3 THz to 10 THz) is a non-

ionizing radiation that appears as a harmless alternative to x-rays in medical, biological and 

security screening, and finds additional applications in high-speed wireless communication, 

industrial quality control, and spectroscopic imaging. There are various divisions for the IR 

spectrum depending upon applications. One of the most common is presented in Table 1.1.  

 

Classification Wavelength range 
Near IR 0.75 µm – 1.4 µm 

Short-wavelength IR 1.4 µm - 3 µm 

Mid-wavelength IR 3 µm - 8 µm 

Long-wavelength IR 8 µm -15 µm 

Far IR 15 µm – 1000 µm 

Table. 1.1: Classification of IR wavelength spectrum 

The most widely used IR device is the IR detector [4]. There are two classes of IR 

detectors, namely thermal detectors and photon detectors. In a thermal detector the incident 

radiation changes the temperature of the system, which results in a change in some 

measurable physical property. Examples of such detectors include the bolometer and the 

pyrometer. They have modest sensitivity and slow response. They are commercially successful 

because they are relatively cheap [3]. 
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The second class of detectors, namely photon detectors, is largely related to the 

progress in the semiconductor industry. They rely normally on band-to-band transitions in 

semiconducting materials. Narrow bandgap materials like InSb, PbTe and PbS were initially 

used to make IR detectors. Later ternary alloys like III−V (InAs1–xSbx), IV−VI (Pb1–xSnxTe), and 

II−VI (Hg1–xCdxTe) were also introduced with the purpose of tuning the bandgap to improve 

the spectral response [4]. The Hg1–xCdxTe (HgCdTe) alloys might be the most successful 

materials for commercial IR photon detectors. The technology of HgCdTe has matured and 

produced a wide variety of detectors in different ranges over fifty years since the early sixties 

[5]. Later InGaAs alloys were attempted, like the In0.53Ga0.47As (Eg = 0.73 eV), lattice-matched 

to InP, is an excellent detector material for the near−IR (1.0–1.7−μm) spectral range. However, 

the performance of InGaAs devices decreases rapidly if the alloy composition is varied due to 

lattice-mismatch-induced defects [4].  

The introduction of quantum systems like quantum wells, quantum dots and nanowires 

provided an alternative solution to these problems. Esaki and Sakaki suggested that quantum 

confinement in GaAs/AlxGa1-xAs quantum wells (QWs) can be tuned to obtain intersubband 

(ISB) transitions [6]. The first experimental evidence of ISB absorption in a  multi-QW (MQW) 

system was reported in 1985 by West and Eglash [7] followed by the fabrication of the first 

quantum well infrared photodetector (QWIP) in 1987 by Levine et al. [8]. In a QWIP, the 

quantum barrier height and quantum well width are crucial factors that decide the detectable 

wavelength band. In the last decade, QWIP cameras have undergone rapid development 

thanks to the standard manufacturing technology of GaAs, and they challenge HgCdTe alloy 

in the commercial scenario. QWIPs are characterized by fast response time and low power 

consumption. Current challenges in the QWIP technology include bringing up the operating 

temperature and extending their operation to shorter wavelength (less than 3 µm), which has 

been limited by material transparency and the available conduction band offset [2].  

 

1.2 III-Nitride semiconductors 

III-Nitride semiconductors (GaN, AlN, InN) are key materials for the development of 

optoelectronics and electronic devices in the 21st century thanks to their direct bandgap and 

doping capabilities. They are now extensively used in light emitting diodes (LEDs), which have 

revolutionized solid-state lightning. Nitride-based light emitters have also found applications 

in data storage, traffic lights, indoor agriculture etc. On the other hand, their high breakdown 

field and high electron mobility, combined with their mechanical and thermal robustness, 

makes them suitable candidates for high power electronics. AlGaN-based UV emitters for 

disinfection and water purification, and InGaN-based solar cells are currently under 

development.  

III-Nitrides have also become interesting materials for infrared optoelectronics using 

intersubband transitions. In the late 90s, Suzuki et al. studied about the feasibility of the 

application of GaN based ISB technology for the telecommunication spectral range [9]. But 

real experimental work in ISB technology with III-nitrides began with C F Gmachl at Bell 
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laboratories only in 1999 [10], where she demonstrated ISB transitions in the wavelength 

range 1.75 µm to 4.5 µm. She also made estimates of the ultrafast excited electron lifetime of 

GaN/AlN QWs [11]. It was not until 2003 that the first ISB photodetector based on III-nitrides 

was developed. Hofstetter et al. had fabricated a QWIP using GaN/AlN wells and they were 

able to measure the emission from a 1.55 µm superluminescent LED [12]. However, such a 

photoconductive QWIP displayed large dark current, originating from structural defects in the 

highly-mismatched GaN/AlN structures. The device was only able to operate up to 170 K.  

An alternative to circumvent the leakage problem was found exploiting the device 

photovoltaic response, associated to the intrinsic asymmetry of the potential profile in polar 

GaN wells. The photovoltaic operation of GaN/AlN QWIPs at telecommunication wavelengths 

and at room temperature was first studied in detail by Hofstetter et al. [13–17]. These 

photovoltaic ISB detectors were based on resonant optical rectification processes [15,18]. In 

a GaN/AlN superlattice, due to the asymmetry of the potential in the QWs, the excitation of 

an electron into the upper quantized level is accompanied by a charge displacement in the 

growth direction, so that an electrical dipole moment is created. For a high electron density 

and a large number of QWs, these microscopic dipole moments can be detected as an external 

photovoltage. A strong enhancement of the responsivity has been achieved by using quantum 

dots (QDs) instead of QWs in the active region [19].  

Another approach to reduce leakage is the quantum cascade detector (QCD), which 

consists of several periods of an active QW coupled to a short-period superlattice, which 

serves as extractor [20,21]. In contrast to QWIPs, they operate at zero bias. Under 

illumination, electrons from the ground state of the active QW, e1, are excited to the upper 

state, e2, and then transferred to the extractor region where they experience multiple 

relaxations towards the next active QW. Operated as photovoltaic detectors, their dark 

current is extremely low and the capacitance can be reduced by increasing the number of 

periods, which enables high frequency response. 

The polarization induced electric fields of III-nitrides were put to use to develop efficient 

GaN/AlGaN QCDs in the near-IR region. For example, Vardi et al. in 2008 [22] demonstrated 

devices that operated in the near IR spectral range with a room temperature zero-bias 

responsivity of 10 mA/W at 1.7 µm. More recently, in 2013, Sakr et al. demonstrated a 

GaN/AlGaN waveguide QCD at λ = 1.55 µm with 40 GHz frequency bandwidth for 10×10 µm2 

devices. They could obtain a peak response of 9.5±2 mA/W [23].  

 

1.3 Semiconducting nanowires 

In the last two decades, semiconducting nanowires have been widely studied due to the 

novel properties stemming from their low dimensionality. The first nanowire laser was 

demonstrated using ZnO [24] in 2001 and since then we have optically pumped coherent laser 

emission in nanowires who act as both waveguides for optical cavities and gain media for light 

amplification. Combining direct-gap III-V and II-VI nanowires with silicon nanowires and planar 
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silicon structures have produced multicolor electrically driven nanophotonic and integrated 

nanoelectronic-photonic systems [25]. Similar results were achieved using multi-quantum 

well (MQW) nanowire heterostructures, consisting of a GaN nanowire core that functions as 

the primary part of the optical cavity, and epitaxial InGaN/ GaN MQW shells that serve as the 

composition tunable gain medium [26]. 

In terms of photodetectors, the low electrical cross-section of nanowires implies low 

electrical capacitance, thus a larger operation bandwidth than planar devices. Owing to 

antenna effects, this comes without degradation of light absorption. Indeed, nanowire arrays 

can exhibit higher absorption than a thin film of the equivalent thickness [27]. The large 

surface-to-volume ratio allows misfit strain to be elastically released, which expands the 

possibilities for the active region design in terms of both size and composition. Also, the three-

dimensional (3D) confinement of carriers in nanowire heterostructures might open new 

possibilities to control the carrier relaxation time [28,29]. 

The feasibility of electron transport via quantized levels in the conduction band of 

GaN/AlN heterostructured nanowires has been demonstrated by the fabrication of resonant 

tunneling diodes [30,31]. However, the field of nanowire ISB transitions is still in the nascent 

phase. Tanaka et al. [32] reported ISB absorption centered at 1.77 µm (= 0.7 eV) with a full 

width at half maximum (FWHM) of about 230 meV in a GaN/AlN (1 nm/2.7 nm) periodic 

heterostructure in GaN nanowires with the AlN barriers doped with Si at 2×1019 cm–3. In this 

configuration, it is assumed that the electrons from the donor levels in the AlN barriers should 

be transferred to the GaN nanodisks. Studies in GaN/AlN planar heterostructures indicate an 

improvement of the ISB absorption linewidth if the doping is performed directly in the GaN 

wells [33]. However, at the beginning of this PhD work, there was no report on ISB absorption 

in GaN/AlN nanowire heterostructures with Si-doped GaN nanodisks. Difficulties were 

attributed to the fact that Si dopants tend to degrade nanowire morphology and migrate 

towards the nanowire sidewalls, resulting in inefficient doping [34]. Replacing Si by Ge, Beeler 

et al. [35] observed ISB absorption in GaN:Ge/AlN (4-8 nm /4 nm) heterostructures on GaN 

nanowires, in the short-wavelength infrared region. The transitions were broad though, with 

a FWHM of  400 meV.   

 

1.4 Motivation and targets 

Using nanowires instead of planar heterostructures in ISB devices can lead to better 

performance due to lower electrical cross-sections. Also nanowires have generally diameters 

smaller than the wavelengths associated to their ISB transitions, and exhibit a large dielectric 

mismatch with the environment. The target of this work was to explore the possibilities of 

intersubband engineering GaN nanowires. With this purpose, on the one hand, we study 

alternative dopants for better control of the morphology and carrier distribution, and on the 

other hand, we try to extend this technology towards longer wavelengths. We systematically 

compare well-established planar designs with nanowire structures. We also explore the 
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alternative top-down approach for nanowire fabrication. The following is a summary of our 

motivation for the various topics that are presented in this manuscript.  

a) Alternative dopants 

Silicon, the preferred n-type dopant for wurtzite GaN, contributes to edge type 

dislocation climb, leading to an increase in tensile stress [36–38]. Doping with Si in excess of 

1019 cm–3 is reported to cause surface roughening and eventually crack propagation  [37]. Ge, 

like Si, is a shallow donor in GaN, with a theoretical activation energy of 31.1 meV [39]. The 

ionic radius of a Ge atom is similar to that of Ga and the metal-nitrogen bond length changes 

by only 1.4% with Ge, compared to 5.5% with Si [40]. Hence Ge can occupy the Ga lattice site 

causing far less lattice distortion than other dopants. Also like Si, the DX- state of Ge is unstable 

and does not affect doping efficiency [40]. From both perspectives, fundamental and applied, 

it is important to perform extensive studies on Ge as a dopant in GaN.  

There is also an interest to study Ge as a dopant in AlGaN. Gordon et al. [41] predicted 

that the onset of DX transition for Ge in AlGaN is at an Al content of 52%. They theoretically 

predicted that the DX configuration of Ge is more stable than that of Si (≈ 1 eV deeper into the 

bandgap), which is predicted to occur at 94% of Al content. However for Si, conductivity 

measurements suggest decreased conductivity at an Al content as low as 50% [42], which was 

attributed to shallow hydrogen like donor states. Experimental data was non-existent to verify 

theoretical predictions for Ge doped AlGaN. 

To assess the interest of using Ge as a dopant in GaN intersubband devices, it is 

important to compare its performance in GaN/AlN heterostructures, both in the planar and in 

the nanowire geometry. While GaN based ISB devices have been demonstrated, they are 

primarily based on a planar geometry and utilize Si as a dopant. So based on the advancements 

in Ge doping in GaN thin films, it has become interesting to assess the performance of ISB 

structures as a function of the nature of the dopant, either Ge or Si. On the other hand, the 

first systematic study of ISB absorption in nanowires with doped quantum wells used Ge as n-

type dopant in the already mentioned study by Beeler et al [35]. In that case, Ge-doped 

GaN/AlN (4–8 nm / 4 nm) heterostructures on GaN nanowires displayed ISB absorption in the 

short-wavelength infrared (SWIR) domain in the 1.3-1.95 µm range with broad transitions 

(FWHM of ≈ 400 meV). At the start of my PhD, there was no report on ISB absorption in 

GaN/AlN nanowire heterostructures with Si-doped GaN quantum wells. 

b) Extension of the ISB transition in GaN/AlN nanowires towards longer wavelengths 

At the beginning of my thesis work, ISB transitions in GaN/AlN nanowires had only been 

observed in the 1.3-1.95 µm range, in spite of using GaN wells as large as 8 nm [35]. This is 

explained by the dispersion introduced by irregularities in the well thickness and diameter 

along the growth axis. Thus, the absorption broadens, which reduces its peak intensity. In such 

a situation, higher doping levels are required to identify the ISB absorption, which leads to a 

blueshift of the transition due to many-body effects. It is therefore important to make an 

effort to improve the homogeneity of the nanowire along the growth direction in terms of 

diameter. Also important is uniformity from one nanowire to another along the substrate. This 

would ensure sharper absorption peaks and control of the heterostructure dimensions. Then, 
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the ISB transition can be shifted to longer wavelengths either by using larger quantum wells 

or by using AlGaN ternary alloys as quantum well barriers, thus reducing the internal electric 

field in the wells. 

c) Top-down nanowires 

Another approach to overcome inhomogeneities in the heterostructure dimensions 

consists in carefully performing top-down etching on planar heterostructures to create 3D 

arrays of micro/nano pillars. With III-As heterostructures, nano- and micropillar arrays for THz 

emission were demonstrated by lithographically defined top-down etching [43–45]. Such a 

process using GaN/AlN heterostructures had not been attempted at the beginning of this 

work. 

d) Nonpolar orientations for far-infrared 

The extension of the study of ISB transitions in nanowires towards the far-IR (FIR) was 

not possible due to time constraints. However, I have participated in the evaluation of 

nonpolar crystallographic orientations, particularly the m-plane, as an alternative to obtain 

GaN/AlGaN QWs without internal electric field [46–48]. We have shown that such structures 

can cover most of the 7–10 THz band inaccessible to GaAs based technologies. 

e) Single nanowire photodetectors 

The observation of ISB absorption in nanowire ensembles motivated us for the 

development of nanowire-based QWIPs. The first demonstration of such a device is presented 

in this manuscript.  

 

1.5 Organization of the manuscript 

Following these introductory pages, Chapter 2 starts with a brief summary of the general 

properties of III-nitride semiconductors, describing their crystal structure and their most 

relevant electronic, mechanical and optical features. Then, we present various semiconductor 

nanostructures and the appearance of subbands. Finally, we review the physics of ISB 

transitions and highlight the selection rules that govern these transitions and many-body 

effects that are to be considered.  

Chapter 3 contains a description of the experimental methods and tools used in this 

work. Particular attention is paid to the description of plasma-assisted molecular beam epitaxy 

(PAMBE), the growth method used to synthesize all the samples described in this thesis.  

In chapter 4, we present a study of Ge as an alternate n-type dopant, in place of Si, for 

wurtzite GaN and AlGaN thin films grown by PAMBE. We first prove that Ge does not introduce 

any perturbation in the GaN growth. We then analyze the effect of doping on the structural 

quality and estimate the Ge incorporation. We systematically assess the effect of Ge in 

electrical properties complemented by observing optical properties for various Ge doping 

concentrations and Al content in AlGaN. 
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Chapter 5 describes the development of GaN nanowires grown by PAMBE. The insertion 

of a thin AlN buffer layer is necessary to improve the vertical alignment of the wires. However, 

the presence of AlN results in huge two-dimensional (2D) undergrowth. To solve this problem, 

we develop a low-temperature AlN growth process. We then make an analysis of the impact 

of the gallium flux and substrate temperature on the coalescence and growth rate of the 

nanowires. 

In chapter 6, we present a study of GaN/AlN heterostructures designed to absorb in the 

SWIR spectral range.  We assess both the effect of the nature of the n-type dopant, either Ge 

or Si, as well as the dopant concentration on the optical properties. We compare self-

assembled nanowires and planar layers, and we also introduce heterostructures contained in 

top-down nano/micropillar arrays, and we study the effect of patterning on their ISB 

absorption. 

Chapter 7 describes the GaN/(Al,Ga)N heterostructures in GaN nanowires structurally 

designed to absorb in the mid-wavelength infrared (MWIR) region. To shift the absorption to 

longer wavelengths, we follow two approaches, the first one increasing the GaN well width in 

GaN/AlN heterostructures from 1.5 to 5.7 nm, which leads to a redshift of the intersubband 

absorption from 1.4 to 3.4 µm. Through the second approach, we demonstrate intersubband 

absorption in GaN/Al0.4Ga0.6N heterostructures, thereby reducing the effects of polarization, 

which redshifts the intersubband transitions to cover the spectral range from 4.5 to 6.4 µm. 

In chapter 8, we assess the possibility to observe ISB transitions in the 1.5–9 THz 

frequency range in nonpolar m-plane GaN/AlGaN MQWs, covering most of the 7–10 THz band 

inaccessible to GaAs based technologies. Such nonpolar structures present inhomogeneities 

of the Al composition in the barriers along the growth axis, however we did not identify any 

extended structural defects introduced by the epitaxial process. We study the effect of varying 

the Si doping concentration and we explore the use of Ge as a dopant. 

In chapter 9, we present the first single-nanowire ISB photodetector (NW-QWIP), using 

GaN/AlN nanowire heterostructures that exhibit ISB transitions around 1.55 µm. In parallel, 

using band-to-band transitions, we report a single-nanowire UV photodetector incorporating 

an AlN/GaN/AlN heterostructure. Such a device presents a UV response that is linear with the 

optical power when the nanowire diameter is small enough to ensure a complete depletion 

of the wire. 

Chapter 10 summarizes the accomplished work and main achievements, and considers 

its relevance and impact for future developments. 
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2. Introduction 
 

2.1 Introduction to III-nitrides 

2.1.1 Crystal structure 

III-Nitride semiconductors like AlN, InN and GaN can appear in three crystalline 

configurations, namely wurtzite (α-phase), zinc blende (β-phase) and rock salt (-phase) 

structures. The wurtzite structure shows hexagonal symmetry with two hexagonal sublattices 

of metal (Al, Ga, In) and nitrogen (N) atoms which are shifted with respect to each other ideally 

by 3/8 [0001] (figure 2.1 (a)). The zinc-blende structure, also called sphalerite, shows a cubic 

symmetry, consisting of two interpenetrating face-centered cubic sublattices. One sublattice 

is shifted with respect to the other by ¼ [111] (figure 3.1 (b)). The rock salt structure, with a 

cubic symmetry where the two atom types form two interpenetrating face-centered cubic 

lattices, is the rarest configuration, appearing when crystals are synthesized under high 

pressure. 

 

Figure 2.1: Schematic representation of (a) the wurtzite and (b) zinc-blende structures. The pink and 
violet spheres indicate metal and N atoms, respectively. 

In this work, we focus on III-nitrides with wurtzite structure, which is the 

thermodynamically more stable configuration. I have used GaN as a reference for the 

discussion, unless described otherwise. Figure 2.1 (a) shows the a and c parameters of the 

hexagonal crystal structure of III-nitrides, and the anion-cation bond length u along the [0001] 

axis. A four index (h k i l) notation is used to refer to crystallographic planes or axis, which are 

described as a function of three base vectors a1, a2, a3 and the out-of-plane vector c, as 

presented in Figure 2.2. Note that i = -h-k, since the three base vectors are separated by an 

angle of 120°.  

The family of basal planes is termed as {0001} c-plane. The c-plane orientation is the 

most commonly used in opto- and microelectronics. There are two other families of planes 

which are of high importance, namely the {1-100} m-plane and {11-20} a-plane, both 

perpendicular to the c-plane and containing an equal number of Ga and N atoms. These main 

crystal plane orientations in GaN are illustrated in figure 2.2. 
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Figure 2.2: Hexagonal structure of GaN with representations of the base vectors and main 
crystallographic planes. 

Since the hexagonal lattice is not centrosymmetric, the [0001] and [000-1] directions are 

not equal. In the GaN bond perpendicular to the {0001} plane, the vector pointing from Ga to 

N is identified arbitrarily as the [0001] direction. If the material is grown along this direction 

then it is called Ga-polar if it is grown in the opposite direction then it is called N-polar.  

 In an ideal wurtzite crystal, the c/a and u/c ratios are 1.633 and 0.375, respectively. 

However, due to the difference in metal ions, the bond lengths and the resultant c/a ratios of 

AlN, GaN, and InN are different. Table 2.1 describes the lattice parameters of wurtzite III-

nitrides at 300 K.  

 InN GaN AlN 

c (Å) 5.703 5.185 4.982 

a (Å) 3.545 3.189 3.112 

c/a 1.608 1.626 1.6 

u/c 0.377 0.377 0.382 

References [49] [49,50] [49,50] 

Table 2.1: Lattice parameters of bulk InN, GaN and AlN. 

The knowledge of heteroepitaxy along the c-plane is well established. However, the 

growth in m- and a-plane orientations was not considered until recently due to the 

unavailability of suitable substrates. During the last decade, the realization of the importance 

of non-polar III-nitrides have first led to the fabrication of non-polar films/templates on 

foreign substrates. Few examples include a-plane GaN on r-plane sapphire substrates [51], or 

m-plane GaN on m-plane SiC [52]. However, the heteroepitaxial growth on a and m-plane 

layers is prone to high defect densities. More recently, halide vapor phase epitaxy (HVPE) has 

developed to the point of producing relatively thick (< 1 µm) GaN crystals along the [0001] 

direction [53], which can be diced into high-quality a- and m- plane platelets for epitaxy of 

nonpolar structures. The main drawback of this method, as of now, is the high cost involved 

and the limited surface area available for growth. 
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2.1.2 Band structure 

The band structure of a semiconductor emerges as a solution of the Schrödinger 

equation of non-interacting electrons in the periodic lattice. Visualization of the bandgap 

requires a plot of energy vs. wavevector k = (kx, ky, kz). It is common to plot band structures as 

curves of En(k) for values of k along straight lines connecting symmetry points in the k-space. 

These points of symmetry occur in the first Brillouin zone and are labelled as Γ, Δ, Λ, Σ. The 

bandgap is described as the energy difference between the bottom of the conduction band 

and the top of the valence band. If the bottom of the conduction band and top of the valence 

band occur at the same symmetry point, then the material is said to have a direct bandgap. In 

the case of wurtzite III-nitrides, the bandgap is direct, with the conduction band minimum and 

the valence band maximum located at the Γ point. Due to the asymmetric nature of the 

wurtzite structure the valence band degeneracy is lifted. Thus the heavy hole (HH), light hole 

(LH) and spin-orbit, crystal field splitting (CH) subbands are separated as shown in the figure 

2.3. The top of HH and LH subbands are higher than CH subband in energy for GaN. However, 

in the case of AlN the top of the CH subband is at higher energy than the HH or LH subbands. 

 

Figure 2.3: Electronic structure of the valance band of (a) GaN and (b) AlN near the Brillouin zone centre 
point Γ for unstrained wurtzite material. For simplicity, zero energy is assigned to the top of the valence 
band. 
 

The values of the bandgap of GaN, AlN and InN are summarized in table 2.2. An effective 

mass approximation can be utilized to describe the band structure at Γ(k=0) by assuming a 

parabolic band structure at this point. This means that the electron or hole behavior can be 

modelled as a free particle with an effective mass m* experiencing a fixed potential. Typical 

values of the effective masses for electrons and holes in III-nitrides are recorded in table 2.2.  

For ternary compounds like AlGaN or InGaN the bandgap is approximated by a quadratic 

equation:  

𝐸𝑔(𝐴𝐵) = 𝑥𝐸𝑔(𝐴) + (1 − 𝑥)𝐸𝑔(𝐵) − 𝑥(1 − 𝑥)𝑏            (equation 2.1) 

where b is the bowing parameter, which accounts for the deviation from a linear interpolation 

between the two binaries A and B. The bowing parameter has a value of 0.8-1.3 eV in the case 
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of AlGaN [54]. By changing the Al or In content in GaN it is hence possible to obtain alloys with 

desirable bandgap. 

 

 GaN AlN 

Eg (T = 0 K) (eV) 3.507 [55] 6.23 [55] 

αV (meV/K) 0.909 [55] 1.999 [55] 

βD (K) 830 [55] 1429 [55] 

m*
e 0.2 m0 [56] (0.32-0.40) m0 [55,57] 

m*
h 1.25 m0 [58] 1.44 m0 [59] 

Table 2.2: Band parameters of GaN and AlN: bandgap energy at T = 0 K; Varshni parameters; electron 
and hole effective masses (m0 being the nominal mass in vacuum). 
 

The bandgap of these materials is temperature dependent due to electron-lattice 

interactions and temperature dependence of the lattice parameters [60,61]. The temperature 

variation of the bandgap can be estimated by using the Varshni equation: 

Eg(T) = Eg(T = 0 K) −
αVT2

βD+T
               (equation 2.2) 

where αV and βD are the Varshni and Debye coefficients respectively, whose values for GaN 

and AlN are listed in Table 2.2. 

 

2.1.3 Elastic properties 

Strain is introduced during the epitaxial growth because of the mismatch of lattice 

constants and thermal expansion coefficients with the substrate. Strain affects the optical, 

electrical and bandgap properties of the III-nitrides.  

In the framework of linear elasticity, Hooke’s law describes the relation between the 

stress (σij) applied to a material and the strain (kl):  

 σij = ∑Cijkl  kl              (equation 2.3) 

where (Cijkl) is the fourth-order elastic tensor. For simplification, we introduce the indices 

{1,2,3,4,5,6}, which replace the pairs of indices {xx,yy,zz,yz,zx,xy}: 

1 = xx ;  2 = yy ;  3 = zz  

4 = yz , zy ;  5 = zx , xz ;  6 = xy , yx 

The elastic module can be represented by a matrix (a second-order tensor). For a crystal 

of hexagonal symmetry, this matrix contains six elastic modules, of which five are 

independent, as given in equation (2.4):  
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Cij          (equation 2.4) 

Calculated and experimental values of the parameters Cij for InN, GaN and AlN are 

summarized in table 2.3. 

 

 C11 C12 C13 C33 C44 References 

InN 
271 124 94 200 46 [62] theory 

223 115 92 224 48 [63] theory 

GaN 

374 106 70 379 101 [64] exp. 

390 145 106 398 105 [65] exp. 

365 135 114 381 109 [66] exp. 

370 145 110 390 90 [67] exp. 

396 144 100 392 91 [62] theory 

367 135 103 405 95 [63] theory 

AlN 

411 149 99 389 125 [68] exp. 

410 140 100 390 120 [67] exp. 

398 140 127 382 96 [62] theory 

396 137 108 373 116 [63] theory 

Table 2.3: Experimental and theoretical stiffness constants of InN, GaN and AlN in GPa. 

During heteroepitaxy of thin films of III-nitrides on the (0001) plane, the in-plane stress 

is uniform (σ11 = σ22 = σ) and there is no stress along the c axis or shear stress (biaxial stress 

configuration). In this case, the Hooke law is simplified as in equation (2.5). 
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 (equation 2.5) 

Therefore, in such a situation, the strain components 1 and 2 are equal and their value is 
given by: 

ε1 = ε2 = εxx  = - (aepi  - asub)/asub   (equation 2.6) 

where aepi and asub are the lattice constants of the epilayer and the substrate, respectively. 
The biaxial strain induces a strain ε3 of opposite sign along the [0001] axis perpendicular to 
the surface given by: 
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      ε3 = εzz = -2(C13/C33) εxx  (equation 2.7) 

 

2.1.4 Polarization effects in III-nitrides 

A prominent feature among III-nitrides is the presence of strong polarization in the 

crystal. Since nitrogen atoms are more electronegative than metal atoms, the cation-N bonds 

can be considered as an electrostatic dipole. Due to the lack of symmetry of the wurtzite 

structure, this charge distribution is not fully compensated along the [0001] direction, which 

leads to spontaneous polarization Psp.. The values of spontaneous polarization for III-nitride 

materials are described in table 2.4.  

 

 GaN AlN InN Ref. 

Psp (C/m2) -0.029 -0.081 -0.032 [69] 

Psp (C/m2) -0.032 -0.100 -0.041 [70] 

Table 2.4: Calculated spontaneous polarization for wurtzite type GaN, AlN and InN. 
 

If stress is applied to the III-nitride lattice, the lattice parameters c and a of the crystal 

structure will be changed to accommodate the stress. Thus, the polarization strength will be 

changed. This additional polarization in strained crystals is called piezoelectric polarization. 

The piezoelectric polarization in wurtzite III-nitrides can be calculated with the following 

equation:  
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                 (equation 2.8) 

where eij are the piezoelectric coefficient of the material and j is the stress tensor. The 

piezoelectric polarization constants for InN, GaN and AlN are indicated in table 2.5.  

 

 e33 (C/m2) e31 (C/m2) e15 (C/m2) 

InN 0.97 -0.57 - 

GaN 0.73 -0.49 -0.30 

AlN 1.46 -0.60 -0.48 

Ref. [69] [69] [71] 

Table 2.5:  Calculated piezoelectric constants for InN, GaN and AlN. 
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2.2 Introduction to semiconductor nanostructures 

The advancement in epitaxial deposition techniques allowed the fabrication of 

heterostructures. Figure 2.4 shows the three possibilities of alignment of bandgap minima 

along the growth direction depending on the band offsets, known as type I, II and III. The idea 

can be taken further to produce heterostructures like QWs (figure 2.5), where quantified 

electron levels appear as a result of the quantum confinement.   

 

Figure 2.4: Description of the band edge profile at heterojunctions. 
 

 

Figure 2.5: Simplified model of quantization of energy levels of a particle in a QW with finite barriers 
(modified from ref. [72]). 

In III-nitrides, heterostructures are always type I. The conduction band offset in the 

GaN/AlN system is around 1.8 eV [73]. The discontinuity of the polarization vector at a 

heterointerface results in a fixed charge sheet at the interface, which can induce accumulation 

or depletion of free carriers. This fixed charge sheet generates an internal electric field in 

nanostructures, which is maximum for growth along the <0001> axis, where it can reach 

several MV/cm. In (0001)-oriented QWs, the internal electric field generates a band bending 

as seen in figure 2.6 (a). This leads to a spatial separation of electron and hole wave functions 

along the growth axis, which results in the so-called quantum confined Stark effect (QCSE). 

This means that the band-to-band transition is shifted to lower energy and the radiative 

lifetime increases due to the reduced electron-hole wave function overlap.  
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Figure 2.6: Band edge profile for an InGaN QW with GaN barrier interface in (a) c-plane growth (b) m-
plane growth. 

In the case of heterostructures grown on the m-plane or on the a-plane, the polarization 

dipoles are perpendicular to the direction of growth. Therefore, there is no polarization 

discontinuity at the heterostructure interfaces along the growth direction. Hence these are 

called non-polar orientations or non-polar directions [74]. The band structure of a QW 

presents a square profile, as described in figure 2.6 (b). 

Various nanostructures like QWs, nanowires, or QDs have been widely studied. These 

are basically differentiated based on the number of dimensions in the volume of the object 

with nanoscale size. A detailed description of the calculation of their band structure can be 

found in ref. [75]. A simple description of the results is mentioned here to guide the reader to 

the difference between QW structures and nanowire-based QWs, which are essentially 

quantum dots if the nanowire radius is small enough to provide 3D confinement. 

Nevertheless, exact calculation of states needs the contribution of all 3 degrees of 

confinement even at large radius (typically 40-80 nm in our case). 

The energy of an electron in a QW with confinement in x-direction can be written as  

 𝐸2𝐷 = 𝐸𝑛𝑥 +
𝑝𝑦

2+𝑝𝑧
2

2𝑚∗                (equation 2.9) 

where 𝐸𝑛𝑥 is the energy of the nth level of quantized motion in the x-direction. The electrons 

in such nth state can have total energy 𝐸𝑛 ≤ 𝐸 < ∞. This set of quantum states for the given n 

is usually called the subband of dimensional quantization. 

In the case of the nanowire grown along the z-direction, with confinement in x- and y- 

direction, the energy of the electron can be written similarly as, 

𝐸1𝐷 = 𝐸𝑛𝑥,𝑛𝑦 +
𝑝𝑧

2

2𝑚∗            (equation 2.10) 

The nanowires also form similar subband quantization. The momentum dependence on the 

total energy of the electron is described in figure 2.7 (a, b) for 2D and 1D confinement. 

In the case of a cubic quantum dot with confinement in x-, y- and z- directions, the total 

energy is a constant depending on the quantum numbers nx, ny and nz.  
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𝐸0𝐷 = 𝐸𝑛𝑥,𝑛𝑦,𝑛𝑧            (equation 2.11) 

Note that for the case of quantum dots E111 is the ground state E(1) and E112 = E121 = E211 is the 

first excited state E(2). The energy levels in a quantum dot are shown in figure 2.7 (c).  

 

Figure 2.7: (a) Quantized energy levels, E1 and E2 for nx =1 and 2 in a QW, and the dependences of the 
electron energy, E2D, on the momentum. (b) Quantized energy levels, E11 and E12 for nxny =11 and 12 in 
a nanowire, and the dependences of the electron energy, E1D, on the momentum. (c) Energy levels in 
a quantum dot (modified from ref. [72]). 

 

 
Figure 2.8: Schematic illustration of the density of states (DOS) as a function of energy for (a) a 3D 
material, (b) a QW (2D), (c) a nanowire (1D) (modified from ref. [76]). 

 

Close to a band minimum, 𝐸𝑚𝑖𝑛, the electrons in a 3D semiconductor can be described 

as having a constant effective mass, 𝑚∗. Then the 3D density of states can be described as, 

   𝑔𝑐,3𝐷 =
𝑑𝑁3𝐷

𝑑𝐸
=

8𝜋√2

ℎ3 𝑚∗3 2⁄ √𝐸 − 𝐸𝑚𝑖𝑛 𝑓𝑜𝑟 𝐸 ≥ 𝐸𝑚𝑖𝑛       (equation 2.12) 

In contrast, for a 2D semiconductor such as a QW, where the electrons are confined to a 2D 

plane, the 2D density of states can be described as, 

𝑔𝑐,2𝐷 =
𝑑𝑁2𝐷

𝑑𝐸
=

4𝜋𝑚∗

ℎ2  𝑓𝑜𝑟 𝐸 ≥ 𝐸𝑚𝑖𝑛            (equation 2.13) 

And for a 1D semiconductor such as a nanowire, where the electrons have only 1 degree of 

freedom, the 1D density of states can be described as, 
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𝑔𝑐,1𝐷 =
𝑑𝑁1𝐷

𝑑𝐸
= √

2𝜋𝑚∗

ℎ2

1

√𝐸−𝐸𝑚𝑖𝑛
 for 𝐸 ≥ 𝐸𝑚𝑖𝑛         (equation 2.14) 

Finally, for a 0D semiconductor such as quantum dot with confinement in all directions, the 

0D density of state can be described as   

𝑔𝑐,0𝐷 = 2𝛿(𝐸 − 𝐸𝑚𝑖𝑛)           (equation 2.15) 

A schematic illustration of the density of states as a function of energy in the above 

mentioned cases is shown in figure 2.8. 

 

2.3 ISB transitions 

The terms “intersubband” (ISB) or “intraband” refer to electronic transitions between 

confined states in either the conduction band or the valence band of semiconductor 

heterostructures. Typically such transitions occur in the IR spectral range. As early as 1974, 

Kamgar recorded the first optical transitions between bound electronic levels [77] within the 

conduction band, which were associated to the surface band bending. ISB transitions between 

confined states within the conduction band or the valence band are possible in the engineered 

band structure of QWs. The first measurement of ISB absorption in GaAs QWs was performed 

by West and Eglash [78]. For an absorption from e1 to e2, the ground state and first excited 

state of the conduction band in a QW, it is necessary to have a large population of electrons 

available in e1 (figure 2.9 (a)). For emission of light, we need to have a transition from a higher 

energy state to a lower energy state. This could be possible if there are at least two confined 

states in the QW (figure 2.9 (b)). 

 

Figure 2.9: (a) ISB absorption resulting in transition from e1 to e2 (b) ISB emission due to electron 
transition from e2 to e1 (modified from ref. [79]) 
 
 

2.3.1 Review of the physics of ISB transitions in a QW 

For an extensive study of the physics of ISB transitions, we refer to the work of Liu and 

Capasso [80]. A QW can be treated as an approximation of the particle in a box problem. This 

leads to solutions containing subbands. Here electronic states are confined in the z-direction 

but free in the x-y plane. Optical transitions happen between such subband states. The 



19 

probability of an optical transition from an initial state |𝜓i) at energy Ei to another state |𝜓f) 

at energy Ef is given by Fermi’s golden rule:   

𝑊𝑖𝑓 =
2𝜋

ℏ
|⟨𝜓𝑖|𝐻′|𝜓𝑓⟩|

2
𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔)          (equation 2.16) 

where 𝐻′is the interaction Hamiltonian, ℏ𝜔 is the radiation energy with ℏ being the reduced 

Planck’s constant (
ℎ

2𝜋
). Since the radiation wavelength is much larger than lattice periodicity 

for ISB transitions, we can apply the dipolar approximation to explain 𝐻′:  

        𝐻′ =
𝑖𝑞𝐹0

2𝑚∗𝜔
(𝒆. 𝒑)            (equation 2.17) 

where  𝑞 is the elementary charge, 𝑚∗ is the effective mass of the electron, 𝐹0 is the amplitude 

of the electric field, 𝒆 is the polarization operator and 𝒑 is the momentum operator. The Bloch 

theorem states that the total electron wave function 𝜓(𝒓, 𝑡) is the product of the Bloch 

function and the envelope wave function, where 𝒓 is the position and 𝑡 is the time. The Bloch 

function (𝑢(𝒓)) depends on the material periodicity, while the envelop function is a slowly 

varying plane wave (𝑓(𝒓)).  The total wave function, hence takes the form 

𝜓(𝒓, 𝑡) = 𝑢(𝒓)𝑓(𝒓)𝑒−𝑖𝐸𝑛𝑡 ℎ⁄             (equation 2.18) 

where En is the energy of the nth quantized level. Substituting 2.17 and 2.18 in equation 2.16 

we obtain the transition rate as 

𝑊𝑖𝑓 =
𝜋𝑞2𝐹0

2

2ℏ𝑚∗2
𝜔2

|⟨𝑢𝑏𝑓𝑠|𝒆. 𝒑|𝑢𝑏′𝑓𝑠′⟩|2𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔)          (equation 2.19) 

where b and b’ are the band indices, s and s’ are the subband indices of the initial and final  

states, respectively. Following Liu and Capasso [80], the matrix elements can be written as 

⟨𝑢𝑏𝑓𝑠|𝒆. 𝒑|𝑢𝑏′𝑓𝑠′⟩ = 𝒆. ⟨𝑢𝑏|𝑝|𝑢𝑏′⟩⟨𝑓𝑠|𝑓𝑠′⟩ + 𝑒. ⟨𝑢𝑏|𝑢𝑏′⟩⟨𝑓𝑠|𝒑|𝑓𝑠′⟩ 

         (equation 2.20) 

If 𝑏 ≠ 𝑏′ then ⟨𝑢𝑏|𝑢𝑏′⟩  = 0, leaving only the first term which corresponds to interband 

transitions between  𝑏 and 𝑏′. If 𝑏 = 𝑏′, then the first term vanishes leaving only the ISB terms 

behind. Since ⟨𝑢𝑏|𝑢𝑏′⟩  = 1, the ISB transition can be described by the matrix element 

⟨𝑓𝑠|𝒑|𝑓𝑠′⟩.  

Now we separate the envelope function from the wave function as the Hamiltonian is 

considered time-invariant. The potential variation in the QW can be assumed to be in the z-

direction and the wave function is assumed to be free in the x and y directions. The normalized 

envelop function can be written of the form, 

𝑓𝑠(𝑟) =  
1

√𝐴
𝑒𝑖𝒌2𝑑𝒓𝜒𝑠(𝑧)           (equation 2.21) 

where 𝒌2𝑑 is the two-dimensional (2d) wave vector, r is the position vector, A is the area of 

the QW in x-y and 𝜒𝑠 is the component of the envelop function along z axis. Now we can use 

equation 2.18 to expand the ISB matrix element. ⟨𝑓𝑠|𝒆. 𝒑|𝑓𝑠′⟩ 
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⟨𝑓𝑠,𝒌2𝑑
|𝒆. 𝒑|𝑓𝑠′,𝒌′

2𝑑
⟩ =  

1

𝐴
∫ 𝑒−𝑖𝒌2𝑑𝒓𝜒∗

𝑠
(𝑧)[𝑒𝑥𝑝𝑥 + 𝑒𝑦𝑝𝑦 + 𝑒𝑧𝑝𝑧]𝑒𝑖𝒌′

2𝑑𝒓𝜒𝑠′(𝑧)𝑑3𝑟  

                               (equation 2.22) 

The terms containing 𝑒𝑥 and 𝑒𝑦 vanishes unless the initial and final states are identical. 

Hence, the new matrix element describes ISB absorption in a one band model. It is now clear 

that the electric field of the radiation must have a z component to be absorbed as an ISB 

transition. This accounts for the famous polarization selection rule in ISB transitions. The 

dipole matrix elements describing the ISB transitions could now be written as  

⟨𝑠|𝑝𝑧|𝑠′⟩ = ∫ 𝜒∗
𝑠

(𝑧)𝑝𝑧𝜒𝑠′(𝑧)𝑑𝑧           (equation 2.23) 

The transition rate from equation 2.16 can be now written as, 

𝑊 =  
𝜋𝑞2𝐹0

2

2ℏ
Δ|𝑒𝑧|2|⟨𝜒𝑠|𝑧|𝜒𝑠′⟩|2𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔)            (equation 2.24) 

where Δ is the Kronecker delta function to account for momentum conservation. Due to the 

presence of 𝒆𝒛, only the electric fields in z direction (direction of confinement in the QW) 

couple to the energy levels of QWs. In a symmetric potential well, the wave functions are 

symmetric and exhibit such parity selection rules. The dipole matrix will become zero for wave 

functions with same parity. Due to the presence of the QCSE in polar III-nitride 

heterostructures, which forms a triangular asymmetric potential, the parity selection rules are 

relaxed.  

Note that ℏ𝜔𝑊 is the energy absorbed per unit volume per unit time. Dividing this by 

the energy flux, we would obtain the absorption coefficient 𝛼.  

 

2.3.2 Doping and many-body effects 

For the characterization of the ISB absorption or the fabrication of photodetectors, n-

doping is an important parameter as the ground state of the conduction band needs to be 

populated with electrons. High doping density leads to the formation of a dense electron 

plasma and hence the effects of electron-electron interactions have to be considered to 

calculate ISB transition energy and broadening. Such many-body effects can be classified as:  

i) effects on the energy levels (namely the exchange interaction and direct Coulomb 

interaction), and 

ii) effects on the transition energy (namely the depolarization shift and exciton shift).  

Exchange interaction. It stems from the Pauli principle and accounts for the repulsion 

between electrons with parallel spin. It mainly affects the highly-populated ground state by 

lowering its energy, which ultimately results in a total blueshift of the ISB transition energy 

(and a redshift of the band-to-band transition). When the excited states can be considered 

unpopulated (at typical doping densities < 1019 cm-3), the exchange interaction effect is 

negligible. However at high doping levels, the exchange interaction between the ground state 

subband and the excited state subbands must be accounted for. According to [81,82], this 

exchange interaction in a QW can be approximated as 
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∆Eexch ≅ −
𝑞√2πns

4πϵRϵ0
 0.18√

2ns

 π
                                  (equation 2.25) 

where 𝑛𝑠 is the 2D density of charge, q is the electron charge, 𝜖0 is the electric permittivity, 𝜖𝑅 

is the dielectric constant in GaN. 

Direct Coulomb interaction. It accounts for electrostatic potential resulting from the 

difference between the spatial distribution of the charges and the spatial distribution of the 

ionized donors. It is relatively weak in our case, when doping the QWs but quite large when 

doping the barriers. Hence, the effect of direct Coulomb interactions are not taken into 

account in this work. 

Depolarization shift. As an external radiation excites the electron from the ground state to 

the excited state, the radiation interacts with the electron plasma. Each single electron feels 

an effective electric field that is thus different from the external electric field. The electron 

plasma literally screens the external electric field, resulting in a modulation of the carrier 

density and in the increase of the transition energy. This is also called plasmon shift [83]. The 

correction of the transition energy in a model with two electronic levels is described by the 

equation  

𝐸12
𝑑𝑒𝑝𝑜𝑙 = 𝐸12√1 + 𝛼    (equation 2.26) 

where the parameter   can be estimated (according to [84]) as  

α =
2q2ns

ϵRϵ0E12
∫ [∫ ϕ2(z′)ϕ1(z′)

z

−∞
dz′]

2
dz

+∞

−∞
                       (equation 2.27) 

where 𝜙𝑖  is the wave function of the state |𝑖⟩.  

The exciton shift. It accounts for the Coulomb interaction between the excited electron and 

the quasi-hole left in the ground state [85]. The exciton shift reduces the transition energy, 

which can be expressed (according to [86,87]) as 

𝐸12
𝑒𝑥𝑐𝑖𝑡 = 𝐸12√1 − 𝛽    (equation 2.28) 

with  

β = −
2ns

E12
∫ |ϕ1(z)|2|ϕ2(z)|2dz 

∂Uxc[n(z)]

∂n(z)

+∞

−∞
                 (equation 2.29) 

where 𝑈𝑥𝑐 is the exchange-correlation potential: 

Uxc = − (
9π

4
)

1

3 2

πrs

e2

8πϵRϵ0a∗ [1 +
B

A
rs ln (1 +

A

rs
)]               (equation 2.30) 

where a∗ =
ϵRaBm0

m∗
 is the exciton Bohr radius, rs = [

4π

3
 a∗3n(z)]

−1/3

 is dimensionless and 

characterizes the electron gas, 𝑎𝐵 is the Bohr radius, A = 21, B = 0.7734. 
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3. Methods 
 

In this chapter, we describe the simulation methodology and experimental techniques 

used in this work. We start with the simulation software and techniques used to model our 

samples. We then introduce the epitaxial growth process using PAMBE having a real-time in-

situ characterization technique namely reflection high-energy electron diffraction. We also 

present a summary of the different substrates used. We then make a short description of the 

various characterization techniques used in this work. In particular, we study the morphology 

and structure of our samples using x-ray diffraction, atomic force microscopy, scanning 

electron microscopy and transmission electron microscopy. The optical properties are 

assessed by photoluminescence techniques and Fourier transform IR spectroscopy. 

 

3.1 Simulations 

During this thesis, simulations of the strain distribution, band diagram, and electronic 

structure of various III-nitride nanostructures were performed using the nextnano3 software 

[88]. It is a versatile tool allowing users to define a material system with an arbitrary geometry 

having specified physical parameters. The software takes into account the presence of 

spontaneous and piezoelectric polarization. It calculates the strain distribution in the structure 

by minimizing the elastic energy. It does quantum mechanical and semi-classical treatments 

on the system and solves the Schrödinger and Poisson equations. The detailed description of 

the models used for calculations is beyond the scope of this manuscript, but can be found in 

the PhD thesis of Stefan Birner [89] at the Technische Universität München. 

The software allows the user to redefine the material parameters assigned to each 

binary semiconductor, as well as the bowing parameters that are applied for the second order 

extrapolation for ternary compounds. The set of material parameters used in this work were 

selected from the literature by a previous PhD student, Prem Kumar Kandaswamy, as those 

that provided a better description of our experimental results [33]. The values for GaN and 

AlN are recorded in table 3.1, and all the bowing parameters for AlGaN are set to zero for 

simplicity.  

During this work, we used a 1D approximation for modelling planar heterostructures 

both in c-plane (section 6.1) and m-plane (chapter 8). We generally model 3 QW/barrier 

periods in the middle of the heterostructure, and impose periodic boundary conditions at the 

edges of the simulation region. The simulation of three QWs instead of just one is useful to 

detect geometrical errors in the definition of the structure and to visualize the coupling of the 

QWs as the extension of the electron and hole wave functions into the neighboring wells. 

For nanowires, we generally used a 3D input model. For 3D calculations, all the 

nanowires discussed in this manuscript were defined as a hexagonal prism consisting of a long 

GaN section followed by a sequence of GaN/Al(Ga)N stacks and capped with GaN. The growth 
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axis was [000−1]. The structure was defined on a GaN substrate, to provide a reference in-

plane lattice parameter. The nanowire GaN base and the AlN/Al(Ga)N heterostructures were 

laterally enclosed by an AlN shell and the whole structure was embedded in a rectangular 

prism of air, which permits elastic deformation. The effect of surface states was modelled 

either by introducing a 2D charge density at the air/nanowire interface of value 

σ = −2×1012 cm−2 (which is a lower estimation for a chemically clean GaN m-surface according 

to ref. [90]) or by pinning the Fermi level 0.6 eV below the conduction band edge at the m-

plane GaN/air interfaces [91,92], and 2.1 eV below the conduction band edge at the m-plane 

AlN/air interfaces [93].  

In a first stage, the 3D strain distribution is calculated by minimization of the elastic 

energy assuming zero stress at the nanowire surface. Then, for the calculation of the band 

profiles, the piezoelectric fields resulting from the strain distribution are taken into account. 

nextnano3 calculates the band structure using the 8×8 k.p model. This model overcomes the 

limitations of the effective-mass approximation, where the assumption of parabolic bands 

leads to major deviations in the calculation of ISB transition energies, reported upto 25% [73]. 

Then the Poisson and Schrödinger equations are solved self-consistently.  

 

Parameters (units) [ref.]  GaN AlN 

Lattice constants (nm) [94] 
a 0.3189 0.3112 

c 0.5185 0.4982 

Spontaneous polarization (C.m-2) [95]  -0.029 -0.081 

Piezoelectric constants (C.m-2) [95] 
e13 -0.49 -0.60 

e33 0.73 1.46 

Elastic constants (GPa) [96,97] 

C11 390 396 

C12 145 140 

C13 106 108 

C33 398 373 

Dielectric constants [98]  10 8.5 

Luttinger parameters [99] 

A1 -5.947 -3.991 

A2 -0.528 -0.311 

A3 5.414 3.671 

A4 -2.512 -1.147 

A5 -2.510 -1.329 

A6 -3.202 -1.952 

A7 0 0 

EP
∥  (eV) 14 17.3 

EP
⊥ (eV) 14 16.3 

Deformation potentials (eV) [98] 

ac1 -4.6 -4.5 

ac2 -4.6 -4.5 

D1 -1.70 -2.89 

D2 6.30 4.89 

D3 8.00 7.78 

D4 -4.00 -3.89 

D5 -4.00 -3.34 

D6 -5.66 -3.94 
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Band offset (eV) [73]  1.8 

Table 3.1: Material parameters used in nextnano3. 

nextnano3 does not completely incorporate many-body effects. It only takes into 

account the screening of the internal electric fields for increasing dopant densities. In order to 

estimate the correct ISB transitions, we first calculate ISB transitions in low doped structures 

using 1D simulations with nextnano3.  We then numerically estimate the shift introduced by 

many-body effects namely depolarization shifts and exchange interactions.  

The magnitude of the exchange interaction Eexch was calculated using equation 2.25 

with ϵR = 10 as the dielectric constant in GaN [100]. The shift of the ISB energy induced by 

depolarization was calculated using equations 2.26 and 2.27 with the electron wave functions 

obtained from nextnano3 simulations of the structures with low doping levels. Note that the 

complexity of the problem does not allow 3D calculations of the many-body effects. Hence all 

related calculations are studied in 1D in this manuscript. 

 

3.2 Epitaxial growth 

Epitaxy at its simplest definition refers to the deposition or growth of a crystalline 

overlayer (called epitaxial film/layer) over a crystalline substrate, where the orientation of the 

epitaxial layer is influenced by the substrate. Its etymological origin from Greek can be 

translated as “arranged upon”. The epitaxy is defined as homoepitaxy if the substrate and the 

epitaxial layer are essentially the same material. It is defined as heteroepitaxy if they are 

different. 

 

 
Figure 3.1: Atomistic processes that can occur at the surface during the epitaxy (after ref. [101]). 

 

The process of growth also depends on the thermodynamic properties of the surface of 

epitaxy and kinetic parameters of the adatoms such as diffusion length and adsorption 

lifetime. The various atomistic processes that can occur on a growing surface are described in 

figure 3.1, namely adsorption, nucleation, diffusion, desorption, step incorporation etc. The 

resulting growth modes are described in figure 3.2, including  

(a)  Multi-layer growth: When the adatom diffusion length is short, it results in the 

nucleation of multi-layer-thick clusters, ultimately forming a rough surface. 
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(b, c)  Layer-by-layer growth: When the diffusion length is longer, the increased diffusion 

length results in the nucleation of monolayer (ML) clusters, with the atomic layers 

completed one by one. 

(d)  Step-flow growth: When diffusion length is even longer, the longer diffusion length 

gives the adatoms enough mobility to reach the step edges, which are often 

energetically favorable incorporation sites. 

 

Figure 3.2: Growth modes as a function of the adatom diffusion length: (a) multi-layer growth, 
(b) and (c) layer-by-layer growth, (d) step-flow growth (after ref. [101]). 

In the case of heteroepitaxy the atomistic processes described in figure 3.1 still hold, 

however the epitaxy is also largely influenced by other factors such as the lattice mismatch of 

the two materials, surface free energy, and dislocations formation energy. This results in the 

growth modes described in figure 3.3, which are: 

a) Volmer-Weber: For materials with a large lattice mismatch, the material tries to keep 

much of the surface uncovered without wetting.  

b) Franck van der Merwe: It is 2D growth. The misfit strain during the growth can be 

released by the formation of dislocations. 

c) Stranski-Krastanov: The material initially wets the surface, but eventually forms 3D 

islands over the 2D wetting layer after a critical height. 

 

Figure 3.3: Various heteroepitaxy growth modes: (a) Volmer-Weber (b) Franck van der Merwe 
(c) Stranski-Krastanov. 

 

3.2.2 Plasma-assisted molecular beam epitaxy 

Molecular beam epitaxy (MBE) was invented in the late 1960s at the Bell Telephone 

Laboratories by A. Y. Cho and J. R. Arthur [102]. During the growth, constituent adatoms or 

molecules to be deposited are thermally evaporated or sublimated from effusion cells that 

contain Knudsen-type crucibles. MBE requires high vacuum or ultra-high vacuum (UHV) (10−8–

10−12 mbar) to ensure the beam nature of the evaporated materials and prevent their 
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scattering in their path towards the substrate. The vacuum also ensures that the 

contamination of the growth surface remains as low as possible. 

A functional schematics of the MBE used in this study is displayed in figure 3.4.  All 

samples in this work were grown using this technique. Active nitrogen free radicals are 

obtained by cracking high-purity molecular nitrogen (6N5) with a radio frequency plasma 

source. This technique is known as plasma-assisted MBE (PAMBE) to differentiate between 

other sources of nitrogen like ammonia-based sources. Our MBE system was equipped with 

an automatic N plasma source HD25 supplied by Oxford Applied Research. The output power 

was varied to modify the flux of active nitrogen.  

 

Figure 3.4: Schematics of the PAMBE used in this study (modified from ref. [101]).  
 

The scheme also displays the various effusion cells used, including Ga, Al, Si and Ge. 

Accurate regulation of the cell temperatures is achieved through proportional-integral-

derivative controllers. A mechanical shutter in front of each cell is used to interrupt the atom 

beam. The Knudsen-type crucibles are made of pyrolytic boron nitride.  

The substrate is glued or fixed onto a molybdenum sample holder (molyblock). The 

molyblock is fixed on an axis manipulator which allows to automatically rotate and heat the 

substrate. The entire section with cells and substrate, where the growth happens is called the 

growth chamber, which is cooled down with liquid nitrogen to get a base pressure in the  

10-11 mbar range. The molyblock is loaded into the growth chamber through a load lock system 

consisting of an introduction chamber (base pressure in the 10-9 mbar range) and transfer 
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chamber (base pressure in the 10-10 mbar range). The introduction chamber is opened under 

nitrogen flux to exchange the molyblock.  

The rather low growth temperature in MBE (compared to hydride vapour phase epitaxy 

(HVPE) or metal organic vapour phase epitaxy (MOVPE)) and relatively low growth rate (less 

than 1 ML/s) results in a good control over layer thickness and reduced inter-diffusion effects. 

This leads to excellent interface and surface morphology, from which we profit to grow our 

heterostructures. The UHV environment in the MBE also offers the possibility to have in-situ 

control of the growth, with techniques like reflection high-energy electron diffraction (RHEED) 

and quadrupole mass spectrometry.  

 

 3.2.3 Reflection high-energy electron diffraction 

 Reflection high-energy electron diffraction (RHEED) is an in-situ and real-time 

characterization technique to study the morphology and crystal structure of the growing 

surface. Electrons are emitted from a hot filament, which is excited by a 1.5 A current, and 

accelerated under high-voltage of 32 kV (values from our setup). The electron beam strikes 

the sample at a grazing angle, and the diffracted beam then impinges on a fluorescent 

phosphor screen mounted in the direction opposite to the electron gun.  

 

 

Figure 3.5: Working principle of RHEED used in this study. 
 

A schematic description of the RHEED measurement principle is shown in figure 3.5. The 

obtained image displayed on the screen is the Fourier transform of the lattice interacting with 

the beam.  It corresponds to the intersection of the reciprocal lattice with the Ewald Sphere 

of radius 𝑘𝑖 = (2𝜋) 𝜆⁄  where 𝜆 is the wavelength of the electron. In an atomically smooth and 

single crystalline sample the crystal lattice would actually correspond to perpendicular rods 

as shown. That would lead to spots, but due to the Ewald sphere being larger, instrumental 

divergence and crystal imperfections a streaky pattern is usually observed.  Analysing the 

pattern one can obtain, the 2D or 3D nature of the growth front and a qualitative estimation 

of the crystal quality. 
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By studying the RHEED intensity we can measure the growth rate under layer-by-layer 

growth conditions. The time-dependent change in the density of atoms at the growth front 

during the growth process results in an oscillatory variation of the RHEED intensity with time. 

If we consider a flat surface, the coverage of atoms on the surface is defined as θ. When the 

layer is complete, the coverage can be minimum (nth layer, θ is 0) or maximum (n+1th layer, θ 

is 1) leading to a smooth surface.  In both the cases the RHEED intensity is maximum. Starting 

with a minimum coverage of θ = 0, we can describe the procedure to determine the growth 

rate, as illustrated in figure 3.6. For intermediate coverage, the intensity decreases with 

increase in coverage upto θ = 0.5. Here the roughness is maximum and the intensity is at its 

lowest. Further growth would increase the coverage but decrease the roughness as shown in 

figure 3.6. At θ = 0.75, the intensity recovers as the roughness is reduced as the growth front 

picks up more adatoms. The surface flattens at θ = 1, reaching again a maximum RHEED 

intensity and the process continues in a cyclic manner as the growth continues. A single RHEED 

intensity oscillation period corresponds to the growth of a single layer. During the operation 

of our PAMBE system, the calibration of the growth rate and the control of the alloy 

composition and thickness of the 2D layers were done observing such RHEED oscillatory 

behavior. 

 
Figure 3.6: Schematic description of the procedure to determine the growth rate from the variation of 
the RHEED intensity (modified from ref. [103]). 
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3.2.4 Growth of polar GaN, AlN and AlGaN 

 At the beginning of my PhD thesis, the PAMBE growth of 2D GaN structures was well 

developed, in particular for the c-plane growth front [104–106]. A well accepted model for 

explaining the GaN layer formation occurring during growth [107] is displayed as a schematic 

representation in figure 3.7. The impinging atomic nitrogen adheres to the growing surface 

and this is called adsorption. The impinging Ga atoms are also adsorbed but in a weakly bound 

physisorbed state. It could easily be desorbed from this surface. Some of the Ga adatoms can 

be moved from this state to a chemisorbed state through the formations of new chemical 

bonds at the surface. The reverse process can also occur: chemisorbed Ga atoms can be 

transferred back to a physisorbed state. In the chemisorbed state, when the Ga atom meets a 

N atom, a GaN layer is formed. 

 

Figure 3.7: Schematic representation of the process occurring during a GaN layer growth (modified 
from ref. [108]). 
 

The deposition of 2D GaN layers is performed under slight-Ga rich conditions. 

However, an excessive Ga flux would lead to the formation of metal droplets on the surface, 

which degrades the surface morphology. In order to obtain smooth GaN layers, the growth 

was shown to proceed with a Ga bilayer at the growth front as illustrated in figure 3.8. This 

slightly excess Ga adlayer minimizes the (0001) surface energy and delays potential plastic and 

elastic relaxations and hence allows obtaining smooth 2D GaN layer growth [106,109]. 
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Figure 3.8: Schematic representation of the laterally-contracted Ga bilayer model (modified from ref. 
[110]). The first Ga layer is aligned with the underlying substrate while the second layer is liquid. 

 

 To obtain such a bilayer, it is important to notice the correlation between the Ga flux 

and the Ga coverage on the c-plane surface at a fixed substrate temperature [104]. The 

amount of Ga adsorbed on the surface can be quantified using RHEED by looking at the 

desorption transients. The GaN surface is first exposed for a few seconds to a Ga and N flux 

simultaneously. Then both fluxes are stopped (shuttering the effusion cells) and the RHEED 

intensity is recorded during the Ga desorption from this GaN surface. The experiment is 

repeated for a constant temperature (780C) a fixed N flux (0.28 ML/s) and different Ga fluxes. 

Four regimes can be identified, as shown in figure 3.9:  

– Regime A: GaN growth rate Φ < 0.3 ML/s. A small quantity of Ga is present. 

– Regime B: 0.3 ML/s < Φ < 0.5 ML/s. Less than 1 ML of Ga at the growth front. 

– Regime C: 0.5 ML/s < Φ < 1 ML/s. A bilayer of Ga (2.4 ML) at the growth front. 

– Regime D: Ga flux > 1 ML/s. The Ga accumulation regime (much Ga excess), leading to 

the formation of metal droplets. 

 

Figure 3.9: Ga coverage on top of the GaN(0001) surface as a function of the Ga flux (modified from 
ref. [111]).  
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Similarly, the Ga coverage as a function of Ga flux over various substrate temperatures 

was also studied, as illustrated in figure 3.10. The AFM images shown in figure 3.10 also show 

that the bilayer growth process results in smooth GaN layers; corresponding to the regime C. 

In the case of 2D growth of smooth c-plane AlN layers, we also require metal-rich 

conditions. However, Al cannot be desorbed at the standard GaN growth temperatures 

(substrate temperature 700°C) and hence a growth interruption under N flux is needed to 

remove any accumulated Al. Smooth AlN can also be deposited under stoichiometric growth 

conditions with excess of Ga on the growing interface in order to minimize the surface energy. 

The Ga – N bond is weaker than the Al – N bond and hence Al is preferentially incorporated.  

 

 

 

Figure 3.10: Ga coverage regimes as a function of both substrate temperature and impinging Ga flux. 
Insets show AFM images obtained in the different growth regimes. z-scales are 5nm, 150 nm and 100 
nm (top to bottom) (modified from ref. [112]). 

 

To grow smooth 2D c-plane AlGaN layers, we require similar Ga-rich conditions 

[113,114]. All the Al atoms impinging on the surface should adsorb onto the surface (sticking 

coefficient =1). We fixed the Al/N ratio at the required Al content and Ga is used in excess, 

just as it is used in GaN 2D layers. But for Al contents > 40%, we have to decrease the substrate 

temperature to maintain a 2D growth. Reducing the growth temperature also allows balancing 

the different diffusion barriers of Al, Ga and N. 
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3.2.5 Growth of nanowires 

The growth of semiconductor nanowires in a controllable fashion has been challenging, 

yet many methodologies and techniques are being investigated. In general, all the growth or 

fabrication approaches can be classified as “bottom-up” or “top-down”. As the name suggests, 

a top-down approach focuses on simply carving out a structure from a large piece of material 

by means of various lithographic techniques and etching methods etc. On the contrary, the 

bottom-up approach constructs nanowires by simply combining constituent adatoms.  

In this work, we deal with bottom-up nanowires unless explicitly mentioned otherwise. 

The bottom-up approach itself has many subtypes: catalyst-assisted growth, self-catalyzed 

growth, catalyst free growth, oxide-assisted growth, selective area growth and template-

assisted growth. The catalyst-free growth technique utilized here has the advantage of not 

having to use any foreign material or impurity, hence producing nanowires of high quality 

from the chemical point of view. Regarding the growth mechanism, one widely accepted 

explanation is worth discussing, called the diffusion model, first postulated by Sears [115] and 

further developed by others [116,117]. The axial growth rate V can be given by, 

              𝑉 =
𝑑𝐿

𝑑𝑡
= Φ𝑖 +

2Φ𝑖𝜆𝑠

𝑟
𝑡𝑎𝑛ℎ

𝐿

𝜆𝑠
                                     (equation 3.1) 

where 𝐿 is the wire length, 𝑟 is the wire radius, Φ𝑖 is the impinging atom flux, 𝜆𝑠is the diffusion 

length of the adatoms. The first term describes the growth by direct impingement of atoms 

and the second term describes the diffusion on the substrate and side facets. Note that the 

model takes into account only one atomic species and does not take into account factors like 

the sticking coefficient or the decomposition rate.  

Such catalyst free, self-assembled nanowires of GaN have already been demonstrated 

in PAMBE, and when grown, they generally occur as a forest of highly dense nanowires [118–

122]. Various crystalline and amorphous substrates have been attempted, and in our study 

we will focus on the widely studied Si (111). Growth of such nanowires proceeds via a more 

nitrogen-rich environment than that required for planar growth. Figure 3.11 illustrates a 

growth diagram for various Ga impinging fluxes and substrate temperatures. The dotted line 

indicates the N flux, which is kept constant. The “no growth” regime is dominated by thermal 

decomposition and desorption of Ga from the surface. The regime (b) is where nanowire 

nucleation and growth occurs which is indeed a narrow window. Within such a narrow 

window, the growth of nanowires, in terms of the size of the nanowire, degree of coalescence, 

speed of the growth, have to be optimized to grow nanowires according to the design 

requirement. At lower temperature and higher Ga fluxes (regime (a)), the growth becomes 

highly planar with heavily coalesced nanowires at the boundary of the two regimes. The 

scanning electron microscopy (SEM) images in figure 3.10 are representatives of the regimes. 
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Figure 3.11: Nanowire growth window with substrate temperature and Ga flux (after ref. [123]). 
 

The nanowires hence grown with PAMBE on Si (111) have been found to have the 

wurtzite crystal structure with N-polarity in the nanowire growth direction [124]. Knowing the 

polarity of nanowires is important, just like in the case of planar layers, since it influences 

various physiochemical properties, like incorporation of dopants, polarization fields and 

formation of defects [95,125]. Furthermore, it determines the direction of the polarization-

related internal electric field when heterostructures are implemented within the nanowire. 

 

3.2.6 Substrates 

For the experiments described in this thesis, we used various substrates, which we 

classify here as sapphire-based, silicon-based and GaN-based substrates due to their different 

IR transmission properties. 

Sapphire-based substrates. Sapphire-based templates are transparent in the SWIR but have 

a cut-off at ≈ 6 µm, as shown in figure 3.12. In this work, planar samples for SWIR studies were 

grown on AlN-on-sapphire templates. These templates were deposited by MOVPE at Dowa 

Electronics Materials Co., Ltd. They consist of 1.0±0.1 µm-thick AlN(0001) on c-plane sapphire. 

The FWHM of the -scan measured by x-ray diffraction around the (0002) reflection is smaller 

than 150 arcsec, and the dislocation density is  109 cm-2.  

Silicon-based substrates. To ensure transparency in the IR spectral range, we used floating-

zone Si(111) substrates with a thickness of 500±25 µm and a resistivity >20 k/cm. The 

substrates were provided by BT Electronics. In this work we used these substrates for growing 

the nanowire samples. 
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Figure 3.12: (a) Transmittance spectra of Al-on-sapphire and Si(111) substrate measured by Fourier 
transform IR spectroscopy and (b) AFM image of the AlN-on-sapphire substrate used in this study. 

 

GaN-based substrates. These substrates were free-standing, semi-insulating (s.i.), Fe-doped 

m-GaN platelets sliced from (0001)-oriented GaN boules synthesized by HVPE (resistivity > 106 

cm, dislocation density < 5×106 cm-2) by Nanowin (Suzhou Nanowin Science and Technology 

Co. Ltd). We use s.i. substrates instead of non-intentionally doped (n.i.d.) GaN (n-type) due to 

their transparency in the FIR range. The transmission spectra of the substrates are shown in 

figure 3.13 (a) compared with n.i.d. substrates. AFM images of the m-plane substrates are 

shown in figure 3.13 (b), with root mean square (rms) surface roughness of 0.18 nm, 

respectively. 

 

Figure 3.13: (a) Transmission spectra of semi-insulated and n-type n.i.d free-standing GaN substrates. 
(b) Typical AFM images of the m-plane free-standing substrates used in this work. 

 

3.3 Characterization 

In this section, all the characterization techniques that I have used for the thesis are 

described. Those techniques where I have not performed the characterization but only the 

data analysis (e.g. high angle annular dark field scanning transmission electron microscopy 

(HAADF STEM)) are also mentioned for clarity. 
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3.3.1 Atomic force microscopy 

Atomic Force Microscopy (AFM) is a characterization technique that allows us to 

examine the surface morphology of the samples. We used a Veeco Dimension 3100 system 

for all the samples studied with AFM in this manuscript and the images were processed using 

WSXM free software.  

AFM belongs to the class of scanning probe microscopies (SPM), where a physical probe 

is used to scan the surface of the sample. The schematics of a typical AFM setup is described 

in figure 3.14. The probe of the AFM is a sharp tip on the end of a cantilever arrangement. It 

is usually made of silicon nitride or silicon. In contact mode, the tip is made to scan across the 

sample in all three directions by using piezoelectric actuators. A laser beam reflected from the 

top of the cantilever is analyzed with a set of photo detectors. 

 

   
Figure 3.14: Schematic diagram of a typical AFM setup. 

 

When the tip is brought close to the sample, the tip experiences various kinds of forces 

like electrostatic, capillary, van der Waals etc. The forces can be attractive and repulsive. The 

nature of the forces and tip sample distance can be understood from figure 3.15. Variations 

in the tip-sample distance change the force between them. This causes deflections in the 

cantilever and hence in the laser spot on the photo detectors. In short, the deflection in the 

laser spot is a function of the change in tip-sample distance. 
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Figure 3.15: Variation of force with tip-sample distance (modified from ref. [126]). 

 

In non-contact mode, the cantilever is kept a few tens or hundreds of angstroms away 

from the sample. The tip is made to oscillate at a large amplitude and frequency near or at the 

resonant frequency. The changes in the amplitude of the oscillation give information about 

the topography of the sample. The tapping mode is a combination of both the contact and 

non-contact mode. In this mode, the probe is made to oscillate at the resonant frequency or 

near resonant frequency. As the tip is brought closer to the sample, the interaction between 

the tip and the sample causes the frequency to change. The feedback system is employed to 

maintain the frequency constant working in a similar way to that of the contact mode. For our 

studies I used the AFM in the tapping mode. 

 

3.3.2 X-ray diffraction 

We used X-ray diffraction (XRD) to characterize the period of our MQWs in 2D layers 

and nanowires, to estimate the strain state of the layers, as well as to assess the crystalline 

quality of our samples from the broadening of the reflections. As x-ray excitation, we used the 

kα1 emission line of Cu (𝜆𝑋𝑅𝐷 = 0.154056 nm). In this work, we measured -2θ scans, -scans 

and reciprocal space maps.  

Primarily we used two XRD systems: 

a) PANalytical X’Pert PRO MRD system (samples of sections 4.1), operated in collaboration 

with J. Schörmann (Justus-Liebig-Universität Giessen, Germany), and  

b) Rigaku Smartlab x-ray diffractometer (CEA-INAC, Grenoble). 
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Figure 3.16: The Rigaku Smartlab system in the used configuration. 

 

The Rigaku Smartlab system which I used, is explained further (figure 3.16). The x-ray 

source is an evacuated tube in which electrons are emitted from a heated tungsten filament 

and accelerated by an electric potential (40 kV) to finally impinge on a Cu target. The x-ray 

beam coming out from the source is reflected and converted into a parallel beam by a 

parabolic mirror. A beam of parallel (0.01° divergence) and monochromatic x-rays is incident 

on a crystal at the angle i, which is the angle between the sample plane and the incident 

beam. A highly parallel and monochromatic incident x-ray beam is achieved by using one or 

two monochromators each consisting of two Ge (220) monocrystals. This results in an x-ray 

beam with a wavelength spread ΔλXRD/λXRD = 2.2 × 10−5 and divergence, ΔΘ = 0.0033°.  

The sample is placed on a monocrystalline Si plate to minimize the background noise. 

However, the sample surface may not correspond to the epitaxial planes due to the substrate 

miscut and hence we need to align the epitaxial plane with the optical axis of the setup by 

using possible angular rotation mechanisms of the sample stage and detectors available in the 

instrument. 

To obtain high-resolution XRD (HR-XRD), a 0.114° collimator or a Ge(220)x2 analyzer is 

placed between the sample and the detector. It improves the angular precision of the 

diffracted beam (<0.001°) and is used to measure all the planar samples. In this configuration, 

the direct beam intensity is higher than 106 counts per second (cps) and the noise is about 1 

cps. However for the nanowires, measurements were made with an open detector 

configuration; which means that the detectors were directly exposed. This was done because 

of the scattering induced by the nanowires leading to broadening of the beams, leaving the 

high resolution redundant. 
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The MQW period PMQW can be extracted from the angular separation of two MQW 

satellites in the -2θ scans: 

PMQW =
± nλXRD

2(sin θ±n−sin θ0)
                                              (equation 3.2) 

where θ0 and θn are the zero-order and n-order MQW satellites. Information on the 

mosaicity and crystalline quality of planar structures were extracted from the -scans (also 

called “rocking curves”), measured at a fixed value of θ. Finally, evaluation of the strain state 

of the layers required a combination of -2θ scans of symmetric reflections and reciprocal 

space maps of asymmetric reflections, to extract the various lattice parameters using Bragg’s 

law.  

 

3.3.3 Photoluminescence  

Photoluminescence (PL) is the light emission that occurs in a material due to absorption 

of photons. We have used this characterization technique for our samples to study band-to-

band transitions. Furthermore, the technique also lets us assess the elemental composition, 

the presence of impurities and the material quality. PL has been found to be very sensitive to 

defects [127]. 

In a typical PL setup the sample is illuminated by a laser light having energy higher than 

that of the bandgap. Using this energy, electrons are excited from the valence band to the 

conduction band. This generates electron-hole pairs. The electron hole pair can recombine 

through a radiative process, non-radiative process or a combination of the two. For PL studies, 

only radiative recombinations are directly detected. The figure 3.17 shows the possible 

radiative recombination paths. For each path, depending on the energy level difference 

between the electron and hole, the photon emitted (or observed) will have a different energy.  

 

 
Figure 3.17: Radiative recombination mechanisms occur between (a) free electron-free hole (b) 
excitonic recombination (c) donor electron-free hole (d) free electron-hole acceptor level (e) donor 
electron-acceptor hole (modified from ref. [128]). 
 

As represented in figure 3.17, the electron-hole pair can have a band-to-band 

recombination (a), which is rare at low temperatures, where the most common type of 

recombination is excitonic recombination (b), where the emission energy is reduced by the 
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the exciton binding energy. Such excitons can be free or bound to a donor or acceptor, which 

modify their energy. It is also possible to have recombination between an electron in a donor 

level and a free hole (c), a free electron and a hole in an acceptor level (d), or an electron in a 

donor level and a hole in an acceptor level, also called donor-acceptor recombination (e).  

  
Figure. 3.18. Schematics of the PL setup. 

 

Figure 3.18 shows the setup used to study PL. The light source was either a continuous-

wave frequency-doubled Ar+ laser (λ = 488/2 = 244 nm) or a pulsed Nd-YAG laser (λ = 266 nm, 

pulse width = 0.5 ns, repetition rate = 8 kHz). For the nanowires under study an excitation 

power of 5 µW was used unless mentioned otherwise. Typically, the planar samples were 

studied at higher power of 100 µW. The spot diameter was maintained approximately at 100 

µm. The photons emitted by the sample are studied using a Jobin Yvon HR460 monochromator 

coupled with a liquid nitrogen cooled UV-enhanced charge-coupled device (CCD) camera. This 

lets us understand the number of photons emitted for various frequencies of light. We will 

find a peak in intensity of light at the frequency corresponding to the energy of the 

recombination processes that occur.  

The samples were mounted on a cold finger of a He cryostat. Very low temperature (5K) 

was employed to minimize thermally activated non-radiative recombination processes and 

thermal line broadening. Temperature dependent PL measurements were taken by heating 

the sample in the same setup to the required temperature at reduced liquid He flow. The 

particular volume of the sample where PL can be studied depends upon the absorption depth 

of the exciting laser and diffusion length of the minority carriers. 
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Time-resolved PL (TRPL) was used to study carrier relaxation dynamics in nanowire and 

planar samples of chapter 6. The samples were excited by a laser pulse and we analyzed the 

evolution of the PL emission intensity as a function of time. The excitation source was a 

frequency-tripled Ti:sapphire laser (excitation λ = 270 nm) with a pulse width of 200 fs. The 

laser was augmented with a cavity damper section with a base pulse repetition rate of 54 MHz. 

This allowed the period between pulses to be varied from 20 ns to 500 ns. The excitation 

power was about 250 μW. The luminescence was dispersed by a Jobin Yvon Triax320 

monochromator and was detected by a Hamamatsu C−10910 streak camera. 

 

3.3.4 Fourier transform IR spectroscopy 

Fourier Transform IR (FTIR) spectroscopy was used to study transmitted or reflected IR 

light when incident on a sample. I have used a Bruker Vertex 70v FTIR interferometer for the 

measurements in this manuscript. All samples were studied in transmission mode unless 

mentioned otherwise.  

Traditionally IR spectroscopy instruments were dispersive. This means that they used a 

prism or grating to separate out an individual frequency from the IR source of the instrument. 

A detector then measures the amount of energy at each frequency. The data is compiled 

together to form a spectrum. The instrument has to scan through the entire range of 

frequencies to obtain the desired spectral range, thus making measurements highly time 

consuming. FTIR, on the contrary, uses an interferometer. The interferometer employs a beam 

splitter which splits an incoming IR beam (from a continuous IR source) into two beams of 

which one is reflected off a flat mirror and the other is reflected off a flat mirror which is 

moving. The optical path of the two beams are different as one of the mirrors is moving and 

when they recombine back at the beam splitter they produce an interference. The resulting 

signal is termed as an interferogram. The interferogram has information of all the frequencies 

emitted from the source. The interferogram is now the new source signal which goes into the 

sample and is detected after transmission. Fourier transformation is then employed by a 

computer to convert the detected interferogram into the spectrum. Hence the name Fourier 

transform IR spectroscopy.  

The schematics of the Bruker Vertex 70v FTIR spectrometer is displayed in figure 3.19. 

It has inbuilt sources, optics and detectors for SWIR, and for MWIR and long-wavelength IR 

(LWIR) wavelengths. For FIR measurements, we used an Hg-arc external source and He-cooled 

bolometer in addition to the inbuilt components, details of which are given in table 3.2.  We 

also used polarizers to obtain TM and TE polarized light.  

The fact that only electric fields in the direction of confinement give rise to ISB 

absorption leads to the use of non-standard sample geometries. In normal transition 

experiments, the light is incident perpendicular to the sample. In the situation of quantum 

wells growth by epitaxy, this means that the electric field of the perpendicularly incident light 

will always be in the plane of the QW and not along the direction of confinement. We use an 

oblique angle of incidence to solve this problem.  
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Figure 3.19: Description of the FTIR spectrometer (modified from Bruker manual). 
 

 

 SWIR MWIR-LWIR FIR 

Source Tungsten Globar (SiC) Hg-arc 

Beam-splitter CaF2 KBr Si 

Detector HgCdTe HgCdTe Bolometer 

Temperature of detector 77 K (Liquid Ni) 77 K (Liquid Ni) 5 K (Liquid He) 

Table 3.2: Description of experimental set up for various spectral ranges associated with the FTIR 
spectrometer. 

 

Therefore, planar samples were made into a multi-pass waveguide geometry by 

polishing them against a diamond surface. The angle of the facets depends on the refractive 

index of the material and is designed to allow maximum absorption from the sample.  Samples 

were polished at 45ᵒ when using bulk GaN or sapphire based substrates. This multi-pass 

waveguide configuration allows 4-5 interactions of the incident light with the active region. 

For characterization in the FIR range, two pieces of each sample were polished and placed 

face-to-face to increase the signal-to-noise ratio. In the case of SWIR-MWIR characterization, 

only one piece of each sample was polished and simply placed on the sample holder of the 

FTIR sample compartment. These configurations are described in figure 3.20 (a), (b). 

 



43 

 
Figure 3.20: Multipass waveguide configurations in the case of 45° polishing for measurements (a) in 
the SWIR-MWIR and (b) in the FIR (modified from ref. [101]). 
 

For the nanowire samples under study, a grazing angle of incidence is used as shown in 

figure 3.21.  

 

 

Figure 3.21: Sample configuration for the measurement of nanowire samples. 

 

3.3.5 Hall effect 

Hall effect is an efficient characterization technique to measure the concentration of 

free charge carriers, mobility and resistivity. Temperature dependent measurements were 

used to measure the activation energy of the carriers. It describes the production of a voltage 

difference in an electrical conductor when an electric current is passed through it in presence 

of a transverse magnetic field. The voltage will be developed transverse to both the magnetic 

field and electric current.  
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Figure 3.22: Illustration of Hall effect. 
 

Consider a semiconductor sample of thickness t, width W and length L as shown in figure 

3.22. An electric field is applied via current 𝐼𝑥 along x-direction and a magnetic field 𝐵𝑧 is 

applied along the z-direction. The charge carriers with density 𝑛 and charge 𝑞 in the sample 

would experience a Lorentz force. Due to the Lorentz force, a transverse voltage called the 

Hall voltage VH is developed in the semiconductor material, and this voltage is perpendicular 

to both the magnetic field and the current. 𝑉𝐻 is given by,  

𝑉𝐻 =
𝐼𝑥𝐵𝑧

𝑛𝑡𝑞
                                    (equation 3.5) 

The samples were prepared in the van der Pauw method. We made Ohmic contacts with 

Indium on the four corners of our samples which were in the shape of a square. The accuracy 

of the measurements is enhanced by using reversed polarity and reciprocal measurements 

with the four contacts. The resistivity of the samples can hence be obtained and as a result we 

would also obtain the mobility of the free carriers. Hall measurements were performed at 

various values of the magnetic field between -1 and 1 T. The value of the magnetic field was 

measured by a probe located next to the sample. The carrier activation energy could be 

estimated by performing temperature dependent measurements by using a closed-cycle He 

cryostat. 

 

3.3.6 Scanning electron microscopy 

Scanning electron microscopy (SEM) is a microscopy technique based on the interaction 

of a scanning electron beam and the surface of a sample. In this work, a Zeiss Ultra 55 or a 

Zeiss 55 microscope was utilized to study the samples. Contrary to conventional optical 

microscopy, a much higher resolution is obtained due to the smaller effective wavelength of 

electrons. We utilized a high energy electron beam with an acceleration potential of 3-5 keV 

during the operation. 
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Figure 3. 23: Illustration of the interaction volume 
(https://commons.wikimedia.org/wiki/File:Electron_Interaction_with_Matter.svg). 

 

When the electron beam interacts with the sample, the electron would loose energy by 

scattering and absorption in a volume that is in the shape of a tear as described in figure 3.23. 

This volume is called interaction volume and its penetration depth into the surface depends 

on the energy of the electron beam, atomic number and density of the sample. The interaction 

results in reflection of electrons by elastic scattering, emission of secondary electrons through 

inelastic scattering and emission of radiations like x-rays, characteristic to the sample. 

Interacted electrons are transmitted through the sample. The instrument is equipped with 

various detectors to quantify and detect the electrons and radiations generated by these 

various processes. 

In general, in our measurements, we utilize an in-lens detector for secondary electrons 

that is located inside the column of the microscope and leads to efficient electron collection. 

We obtain morphology related information in nanowires and surface topography for our 2D 

layers using this detector. 

 

3.3.7 Scanning transmission electron microscopy 

Transmission electron microscopy (TEM) is a microscopy technique based on the 

transmission of an electron beam through a sample. The measurements in this work were 

https://commons.wikimedia.org/wiki/File:Electron_Interaction_with_Matter.svg
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performed by C. Bougerol (images in chapter 8) or by M. I den Hertog and M. Spies (all other 

measurements) in an FEI Titan Themis and CM 300 microscope operated at 200 kV. They 

primarily used two techniques: 

– High angle annular dark field scanning transmission electron microscopy (HAADF-STEM). 

Here a focused electron beam is raster scanned over the sample and the intensity of 

electrons scattered over relatively large angles is collected on an annular detector. The 

contrast in the image is related to the chemical nature of the atoms (proportional to the 

atomic mass) and the sample thickness. The influence of diffraction contrast is strongly 

reduced and high resolution imaging of the atomic lattice is possible.  A qualitative 

interpretation of the images is much easier than using TEM techniques. 

– High-resolution TEM (HR-TEM). Here a parallel electron beam is used and the 

transmitted beam is imaged on a camera. Heavier atoms and thicker regions can appear 

darker due to absorption of the electrons. Imaging at the atomic scale is possible. 

However, no direct interpretation of the images can be done due to the influence of 

sample thickness, defocus and diffraction contrast. 

In this work, the planar samples were prepared by focused ion beam (FIB) and the 

nanowires were directly scratched/removed from the substrate and dispersed on electron-

transparent SiNx membranes for observation, most often using wet dispersion techniques. 
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4. Ge doping of III-nitrides 

In this chapter, we present Ge as an alternate n-type dopant, in place of Si, for wurtzite GaN 
and AlGaN thin films grown by PAMBE. We first prove that Ge does not introduce any 
perturbation in the GaN growth. We then study the effect of doping on the structural quality 
and estimate the Ge incorporation. We systematically assess the effect of Ge on the 
electrical properties, complemented by observing optical properties for various Ge doping 
concentrations and Al content. 

For the study of Ge doping in GaN (section 4.1), I performed the MBE growth, Hall effect 
measurements, PL measurements, IR reflectivity, UV transmission measurements and 
theoretical calculations. This work was done in close collaboration with the group of Prof. 
M. Eickoff at the University of Giessen (XRD, SIMS), where I worked as a visiting student for 
two weeks. I also collaborated with M. Jiménez-Rodriguez (AFM), C. B. Lim (XRD) and L. 
Amichi (APT). Results were published in “ Ge doping of GaN beyond the Mott transistion”, 

A. Ajay et al., J. Phys. D: Appl. Phys. 49, 445301 (2016) [129]. 

Regarding the study of Ge doping in AlGaN (section 4.2), I was in charge of XRD and worked 
in collaboration with R. Blasco for PL and Hall measurements, and with my PhD supervisor 
Dr. E.  Monroy for the MBE growth. The RBS/C and PIXE studies were performed by Dr. K. 
Lorenz, Dr. L. C. Alves at the Instituto Superior Tecnológico, Bobadela LRS, Portugal.  

 

4.1 Ge doping of GaN 

Silicon has been, so far, the preferred n-type dopant in wurtzite GaN even though it 

contributes to an increase in the density of edge type dislocations, leading to larger tensile 

stress [36–38]. In the case of GaN on silicon substrates, tensile strain is highly problematic 

since the mismatch of thermal expansion coefficients requires careful strain engineering to 

prevent crack propagation [130]. Si doping above the Mott transition1 density of GaN (≈1019 

cm-3) is also reported to cause surface roughening and crack propagation [37]. In nanowire 

structures, the radial distribution of Si is inhomogeneous with a tendency to migrate towards 

the side walls [34]. At high doping levels this tends to degrade the nanowire morphology [131]. 

Ge, like Si, is a shallow donor in GaN, with a theoretical activation energy of 31.1 meV 

[39]. Moreover, the ionic radius of a Ge atom is comparable to that of Ga and the metal-

nitrogen bond length changes by only 1.4% with Ge, while it changes 5.5% with Si [40]. Hence 

Ge can occupy the Ga lattice site causing far less lattice distortion than other dopants like Si 

and O. Also like Si, the DX-state of Ge is unstable in GaN and does not affect doping efficiency 

[40].  

Ge was recently reintroduced as a highly favorable dopant for GaN, and, at the beginning 

of this PhD work, several reports on Ge-doped GaN synthesized using HVPE [132,133] and 

MOVPE [134–137] already existed. On the contrary, using plasma assisted MBE, data was 

scarce. Thin films displaying carrier concentrations up to 4×1020 cm-3 were published 

[138,139], and Ge-doped nanowires with metallic conductivity were demonstrated [140–142]. 

                                                      
1 The Mott transition is a change in the material behavior from semiconducting to metallic.  
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These efforts also lead to the observation of ISB transitions in Ge-doped GaN/AlN nanowires 

[35,143]. However, there was still a large void regarding the effect of Ge doping on the PAMBE 

growth kinetics and properties of planar GaN:Ge. 

Here, we made extensive efforts in understanding the growth kinetics of Ga while using 

PAMBE for growing Ge-doped GaN. We expand on the existing literature of highly Ge-doped 

GaN thin films by combining studies on electrical properties with a comprehensive analysis on 

the optical properties. The dependence on the carrier concentration of the optical properties 

is specifically demonstrated.   

 

4.1.1 Effect of Ge on the growth kinetics of GaN 

As described in chapter 2, n.i.d. Ga-face GaN was grown by PAMBE under slightly Ga-

rich conditions, with a 2-ML-thick self-regulated Ga adlayer on the growing surface [104]. This 

Ga adlayer is known to be extremely sensitive to the presence of dopants, and this can be 

understood by studying the desorption process of the adlayer during a growth interruption. 

For example, it has been shown that Si does not introduce any perturbation in Ga kinetics, 

whereas Mg inhibits the formation of the Ga adlayer by segregating at the growth front [144–

146]. For Mg, this segregation drastically reduces the window of Ga fluxes that can be used 

for the growth of planar GaN.  

To analyze the effect of Ge on the adatom kinetics, we had studied the Ga desorption 

during a growth interruption after the deposition of 7 nm Ge-doped GaN for various Ge fluxes. 

For this experiment, the GaN growth rate was 0.5 ML/s at a substrate temperature of Ts= 

720ᵒC. The Ga flux was chosen to be 0.7 ML/s, so that the 2 ML Ga adlayer is dynamically 

stable during the growth of n.i.d. GaN, and an increase of the Ga flux by 7% leads to the 

accumulation of Ga on the growing surface. The Ge cell temperature was varied from 720ᵒC 

to 1000ᵒC.   

 

Figure 4.1 represents RHEED intensity transients generated by the Ga desorption after 

the growth of n.i.d GaN and Ge-doped GaN for Ge cell temperatures TGe = 800°C, 900°C, 950°C 

and 1000°C. The growth was interrupted at time t = 0 by closing the Ge, Ga and N cells 

simultaneously. Before each measurement of Ga desorption from GaN:Ge, we deposited 7 nm 

of n.i.d GaN and recorded the Ga desorption from the undoped surface as a reference.  

During the experiment, with time, there can be variations in the shape (Intensity) and 

desorption time (i.e. the duration of the transient) of the RHEED transient during Ga 

desorption. The variations in the shape can occur (see for instance the difference between the 

various transients recorded for n.i.d GaN in figure 4.1) due to a modification of the surface 

morphology during the growth, a change in the position of the sample, a change in the angle 

of incidence of the RHEED electron beam, or the choice of the section of the RHEED pattern 

that is analyzed. In contrast, variations of the desorption time, are due to changes in the 

sample temperature or in the amount of Ga accumulated on the surface as more and more 



49 

layers are added after each GaN deposition. Therefore, in our analysis, we included for each 

Ge cell temperature a measurement of the desorption transient after the growth of n.i.d. GaN 

and another one after the growth of GaN:Ge, recorded immediately after the former one, and 

we analyzed the same section of the RHEED pattern in both cases. Following this procedure, 

when comparing these two transients, the drifts due to substrate temperature and relative 

position of the RHEED and the surface are negligible, and the differences, if any, are only due 

to the surface morphology and amount of Ga on the surface. We observe in figure 4.1 that 

differences between the transients associated to different temperatures of the Ge cell can be 

present. Here, a difference in the desorption curve can be due to the required time interval 

between measurements, and can also be due to the difficulty to guarantee that the relative 

position of RHEED and surface remain stable over time (minutes).  

 

Figure 4.1: RHEED intensity transients during the desorption of Ga after the growth of n.i.d GaN and 
GaN:Ge for different Ge cell temperatures (modified from ref. [129]). 

On the basis of this analysis, we see that, in figure 4.1 the RHEED intensity increases 

sharply after the growth interruption, which indicates that there is no accumulation of Ga 

forming droplets or clusters. Then, in both cases (n.i.d. GaN and GaN:Ge), the evolution of the 

RHEED intensity after the growth interruption presents two distinct oscillations. The two 

transients do not overlap perfectly; however, the difference in the time to the first inflection 

point in the RHEED transient points to a difference in the Ga coverage during growth lower 

than 0.5 ML. Therefore, it can be concluded rightly that the RHEED intensity transients remain 

unaltered in presence of a Ge flux, i.e. Ge does not perturb the Ga kinetics on the GaN (0001) 

growth front.  
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4.1.2 Effect on the structural quality 

Following our demonstration that Ge does not perturb the Ga kinetics during the 

growth of GaN (0001), we grew Ge-doped GaN thin films with a thickness of 675 nm using the 

2 ML Ga-adlayer regime on 1 μm thick AlN-on-sapphire templates. A ≈ 40 nm AlN buffer layer 

was grown on the substrate prior to the growth of GaN. This was done to improve the quality 

of the AlN surface with respect to the commercial substrate, exposed to air. All the samples 

are listed in table 4.1. 

 

Sample 
name 

Sample 
code 

TGe 
(°C) 

Δω 
(arcsec) 

𝜺𝒛𝒛  
(%) 

n  
(cm-3) 

 ρ  
(Ωcm) 

EG at 
300 K 
(eV) 

EUrb at 
300 K 
(meV) 

E3495 A 720 133 0.25±0.02 7.8×1017 8.1×102 3.432 52.2 

E3496 B 760 392 0.211±0.003 1.0×1018 1.71×101 3.436 53.3 

E3482 C 800 120 0.084±0.008 2.4×1018 2.61×102 3.42 58.9 

E3483 D 850 60 0.166±0.003 1.3×1019 6.03×103 3.43 66.0 

E3484 E 875 100 0.207±0.008 3.1×1019 3.27×103 3.438 72.4 

E3480 F 900 287 0.29±0.01 6.8×1019 6.00×103 3.484 94.9 

E3485 G 925 115 0.244±0.003 1.5×1020 8.75×104 3.522 117 

E3481 H 950 296 0.242±0.003 2.6×1020 5.51×104 3.58 132 

E3487 I 1000 193 0.317±0.003 6.7×1020 6.90×104 3.671 198 

E3488 X n.i.d. 237 0.236±0.003 -- -- 3.443 46.9 

Table 4.1: Description of samples under study: Ge cell temperature (TGe), FWHM of the x-ray rocking 
curve (Δω), strain along the (0001) axis (𝜀𝑧𝑧), room-temperature carrier concentration (n) measured 
from Hall effect and resistivity (ρ), bandgap (EG) and Urbach’s tail energy (EUrb) extracted from 
transmission measurements at room temperature. 
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Figure 4.2: AFM images of samples X, F and I. (Top: 1×1 μm2 surface: z range 0–5 nm. Down: 5×5 μm2 
surface: z range 0–9 nm) (modified from ref. [129]).  

After the growth, the surface morphology was analyzed by AFM with the results 

presented in figure 4.2. Regardless of the doping level, all the samples present monoatomic 

terraces and hexagonally-shaped hillocks characteristic of PAMBE grown GaN, without the 

observation of cracks or pits. Looking at the top row in figure 4.2 one can have the feeling that 

there is a change of morphology. This is due to local variations since in the larger-range figures 

in the bottom row, the surfaces are indeed similar. The average number of hillocks in all the 

samples has been estimated to be approximately (1.0±0.6)×106 cm-2. The rms roughness of 

these surfaces in 5×5 μm2 images is measured to be 0.9±0.3 nm, for all the samples. These 

results demonstrate that there is no significant effect of Ge on the surface morphology. 

The structural quality was further examined by HRXRD. From ω−2θ scans of the  

(0002) GaN reflection, the average strain of the c-lattice parameter of GaN was estimated to 

zz = 0.22±0.07%. The value of zz for all the samples is listed in table 4.1, and it does not show 

any clear trend as a function of the Ge concentration. This tensile strain along c is the result 

of the compressive in-plane stress imposed by the AlN substrate, in good agreement with 

previous studies of the plastic relaxation of GaN on AlN when growing by PAMBE in the 2 ML 

Ga-adlayer regime [109]. Also the FWHM of the ω-scan of the (0002) reflection of GaN:Ge can 

be compared to the n.i.d reference sample in table 4.1. For all the layers, the FWHM remains 

in the range of 190 ± 110 arcsec without any systematic influence of the Ge incorporation. In 

fact, the variation in the FWHM from sample to sample correlates very well with the variation 

of the same parameter for their respective AlN templates, i.e. the influence of the substrate 

on the GaN mosaicity is more important than any effect related to Ge doping. 

 

4.1.3 Determination of Ge incorporation and carrier concentration  

To analyze the incorporation of Ge, all samples were studied by time-of-flight secondary 

ion mass spectrometry (ToF-SIMS). The depth profile of GaN:Ge sample H and the n.i.d. 

reference sample X are depicted in figures 4.3 (a) and 4.3 (b). The depth profiles were studied 

in negative ion mode with 25 keV Bi+ as primary ion species and 1 keV Cs+ ions for the sputter 

process. For the quantification of the Ge concentration, we used the method of relative 

sensitivity factors (RSFs) and we used three reference samples with different Ge 

concentrations, which were grown by MOVPE.  

A uniform Ge signal throughout the thickness of the GaN layers was found in the samples 

doped with Ge. Oxygen and trace amounts of silicon and carbon, seen in all samples including 

the reference, had no specific dependence on TGe and can be concluded to be almost constant 

from sample to sample. It should be noted that these unintentional n-type dopants (Si and O) 

are two and three orders of magnitude lower than Ge. 
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Figure 4.3: ToF-SIMS profiles of samples H (a) and X (b) (modified from ref. [129]). 

The Ge atom incorporation in the most heavily doped sample (I) was additionally studied 

by Atom Probe Tomography (APT) in a CAMECA Flextap system, operated in laser pulsing 

mode with a UV laser at a temperature of 40 K. Sample I was modified to be in the shape of a 

needle by using a focused ion beam (FIB), and APT was performed by sequential field effect 

evaporation of individual atoms located at the needle-shaped sample. The chemical nature of 

the evaporated atoms was obtained from time-of-flight mass spectrometry and the elemental 

composition of the material was computed from the proportion of atoms of each species. 

Distribution of Ge and Ga in sample I, computed from this analysis, is shown in figure 4.4. Ge 

is homogenously distributed, without any indication of clustering. The mass spectrum of 

sample I shows the presence of the various Ge isotopes in agreement with their natural 

abundance. After quantification, (9.4±0.5)×1020 cm−3 has been obtained as the concentration 

of Ge. The large error bar is due to the fact that the peaks attributed to Ge ions (Ge2+, Ge2X2+) 

are very close to those of Ga. 

 

Figure 4.4: Distribution of Ge and Ga in the needle-shaped sample I. 

Free carrier concentrations, n, were measured using Hall Effect technique at 300 K using 

Van der Pauw method. We recorded n of up to 6.7×1020 cm-3
 for the sample grown with the 

highest Ge cell temperature (1000ᵒC) as detailed in table 4.1. This corresponds to a Ge mole 
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fraction higher than 1.5% in the layer. As illustrated in figure 4.5 (a), n scales exponentially 

with TGe following, 

𝑛 ∝  exp (−
𝐸𝐺𝑒

𝑘𝑇𝐺𝑒
)               (equation 4.1) 

where EGe = 3.42 eV is the thermal evaporation energy of Ge [147] and k Is the Boltzmann 

constant. Our studies are in line with previously conducted studies for Si doped GaN, with ESi 

= 4.05 eV [147]. The free carrier concentration extracted from Hall effect measurements at 

room temperature scales linearly with the Ge signal obtained from ToF-SIMS, as shown in 

figure 4.5 (b), confirming that the variation in carrier concentration is indeed due to Ge 

incorporation.  

The resistivity at 300 K (in table 4.1) decreases over two orders of magnitude when 

increasing the free carrier concentration from 7.9×1017 cm−3 to 6.7×1020 cm−3, reaching a 

lowest value of 6.90×10−4 Ωcm (sample I). 

 

Figure 4.5: (a) Evolution of carrier concentration, n, with the Ge cell temperature. (b) Comparison of n 
and Ge ToF-SIMS concentration showing a linear relationship. (n is measured by Hall effect and IR 
reflectivity) (modified from ref. [129]). 

Reflectivity measurements were performed using FTIR to study bulk plasma oscillations. 

Plasma oscillations of the free electron gas density, similar to plasmon resonances in metals, 

can be observed for samples that are heavily doped. We utilized TM-polarized light at 70° 

incidence and the resulting spectrum was corrected for the system response by dividing it by 

the reflectivity measurement of an Au film using the same experimental conditions. The 

experiment was repeated for other incident angles to identify interference oscillations. 

Especially TE-polarized light showed interference fringes associated to the thickness of the 

GaN layer. The carrier concentration of the most heavily doped samples (samples F–I) was 

estimated from the plasma frequency, ωp, using MWIR reflectivity measurements with TM-

polarized light, see figure 4.6.  
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Figure 4.6: IR reflectance measured in samples F, G, H and I for TM-polarized light at an angle of 
incidence of 70°. The features associated to the free carrier plasma are marked by arrows. Other 
features are due to interference phenomena, as verified by changing the angle of the light (modified 
from ref. [129]). 

According to the Drude–Lorentz model, the plasma frequency of the free carrier plasma 

is given by 

𝜔𝑝
2 =

𝑛𝑞2

𝑚𝑒
∗𝜀𝑠𝜀0

                (equation 4.2) 

where q is the elementary charge, ε0 is the vacuum permittivity, εs = 9.38 is the static dielectric 

constant of GaN, and m*e = 0.231 m0 is the electron effective mass in GaN. The estimated free 

carrier concentrations are illustrated in figures 4.5 (a) and (b), and are similar to the data 

obtained from Hall effect measurements.  

Figures 4.7 (a) and (b) describe the variation of carrier concentration and resistivity with 

temperature, respectively, in samples with doping levels up to the density of the Mott 

transition (1–1.5×1019 cm−3 in GaN at room temperature [148,149]). We estimate an 

activation energy Ea from the Arrhenius equation, 

𝑛 ∝  exp (−
𝐸𝑎

𝑘𝑇𝐺𝑒
)              (equation 4.3) 

The activation energies extracted from figure 4.7 (a) decrease from 19.5 meV for the 

lowest doped sample A, to 12.4 meV for sample B, and 9.7 meV for sample C. The decrease in 

activation energy is in accordance with the decrease in average distance between the impurity 

atoms which results in the average potential as seen by an electron to decrease [150].  As a 

result, sample D (n = 1.3×1019 cm-3) starts to exhibit metallic behavior, marked clearly by 

almost zero activation energy and low resistivity at room temperature, indicating Mott 

transition. Mathematically, this effective activation energy can be described by  

𝐸𝑎 =  𝐸𝐼 − 𝛼(𝑛)
1

3⁄                            (equation 4.4) 

where EI is the activation energy of a single isolated Ge impurity atom in GaN (theoretically 

estimated at EI = 31.1 meV by Wang and Chen [39]), and α is a proportionality constant. The 



55 

value of α determined by the empirical fit is α = (1.6±0.3)×10−5 meV.cm, close to the 

α = (2.1±0.2)×10−5 meV.cm reported for Si donors in GaN [151].  

 

Figure 4.7: Variation of (a) free carrier concentration and (b) resistivity with temperature for various 
GaN:Ge samples with carrier densities up to the Mott transition. Dashed lines in (a) correspond to 
exponential fits leading to the activation energy (Ea) values as indicated in the figure. Inset: Variation 

of Ea as a function of the carrier concentration. The solid line is a fit to 𝐸𝑎 =  𝐸𝐼 − 𝛼(𝑛)
1

3⁄  (modified 
from ref. [129]). 
 

4.1.4 Effect on optical properties 

The normalized PL spectra at low temperature (T = 5 K) and room temperature are 

displayed in figures 4.8 (a) and (b), respectively. The PL spectra at 5 K of n.i.d. GaN (sample X) 

show excitonic emission near the band edge, around 3.515 eV. Regardless of the temperature, 

as the Ge concentration increases for samples A to C, a redshift is noticed which is consistent 

with bandgap renormalization [152] (BGR) due to electron-electron and electron-ion 

interaction. Further increase of carrier concentration (samples D to I) causes a blue-shift of 

the emission due to additional contributions from the Burstein-Moss effect [153] (BME), i.e. 

the lower energy states in the conduction band become significantly filled, and the Fermi level 

is positioned inside the conduction band. Also, the emission spectra of samples D to I are 

systematically broadened with the increase in carrier concentration. Their shape corresponds 

to the Kane density of states for the conduction band multiplied by the Fermi-Dirac 

distribution [154]. Our observations are similar to the description in ref. [155], which used 

GaN doped with Si in the range of 8.7×1017 cm-3 to 1.4×1019 cm-3 synthesized using HVPE, and 

Ge for dopant concentrations in the range of 3.4×1019 cm-3 to 1.6×1020 cm-3, synthesized using 

MOVPE.  

The PL transition energies are shifted with respect to their values for relaxed GaN due 

to the compressive in-plane stress resulting from the AlN substrate. From the strain estimated 

from the HRXRD in table 4.1, the bandgap should be larger by 28 meV on average with respect 

to its relaxed value (following ref. [156]). In the same note, the variation of the strain state 
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between the samples results in a shift of the excitonic transitions of the order of ±7 meV 

(standard deviation). 

 

Figure 4.8: Normalized PL spectra at (a) 5 K and (b) 300 K. The spectra are vertically shifted for clarity 
(modified from ref. [129]). 

The evolution of the bandgap, EG, at room temperature was studied by optical 

transmission in the range of 320 nm to 420 nm. Measurements were performed under normal 

incidence, using a 450 W Xe-arc lamp coupled to a Gemini-180 double monochromator. The 

apparent bandgap energy was determined from a Tauc’s plot2 which is displayed in the inset 

of figure 4.9 (a). The bandgap values thus extracted for each sample are provided in table 4.1 

and also in figure 4.9 (a). Similar to the low-temperature PL emission, the value of EG first 

redshifts (samples A to C) and then blue-shifts (samples D to I) with increasing carrier 

concentration, as illustrated in figure 4.9 (a).  

The increase in doping concentration affects the slope of the absorption edge that can 

be described by the introduction of an Urbach energy3 ΔEUrb in the expression for the optical 

absorption known as Urbachs’s empirical rule:  

 𝛼(𝜆) = 𝛼0exp[(ℎ𝑐/𝜆 − 𝐸0)/Δ𝐸𝑈𝑟𝑏]                      (equation 4.5) 

                                                      
2 A Tauc’s plot shows the quantity energy of the light (E) on the abscissa and the quantity (αE)1/r on the ordinate, 
where α is the absorption coefficient of the material. In the case of direct allowed transitions, r = ½. The resulting 
plot has a distinct linear regime which denotes the onset of absorption. Thus, extrapolating this linear region to 
the abscissa yields the energy of the optical band gap of the material. 
3 Urbach energy is the width of the absorption edge and it is an estimate of the degree of absorption edge 
smearing due to crystal lattice disordering 
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where ℎ𝑐/𝜆 is the photon energy, 𝛼0  and 𝐸0 are material-dependent fitting parameters. The 

values of ΔEUrb extracted from transmission measurements are summarized in table 4.1, 

showing a monotonous increase with the carrier concentration, as expected. 

 

 

Figure 4.9: (a) Variation of the bandgap energy obtained from Tauc’s plot as a function of the carrier 
concentration. The dashed line corresponds to the calculation of ∆𝐸𝐵𝐺𝑅 + 𝐸0 where 𝐸0 is the bandgap 
energy of the n.i.d sample X, and the solid line corresponds to the calculation of 𝐸𝐺 = ∆𝐸𝐵𝑀𝐸 +
∆𝐸𝐵𝐺𝑅 + 𝐸0. Inset: Tauc’s plot of selected samples. (b) Schematics describing BGR and BME (Modified 
from ref. [129]). 

The shift of the apparent bandgap with the free carrier concentration is given by the 

superposition of BGR and BME, i.e. ∆𝐸 = ∆𝐸𝐵𝑀𝐸 + ∆𝐸𝐵𝐺𝑅. We estimate individual 

contributions analytically similar to ref. [155]. The BGR shift itself has two contributions due 

to electron-electron and electron-ion interactions (∆Eee and ∆Eei, respectively), which can be 

approximated as 

∆𝐸𝑒𝑒 = −
𝑞2𝑘𝐹

2𝜋2𝜀𝑠𝜀0
−

𝑞2𝑘𝑇𝐹

8𝜋𝜀𝑠𝜀0
[1 −

4

𝜋
arctan (

𝑘𝐹

𝑘𝑇𝐹
)]                  (equation 4.6) 

∆𝐸𝑒𝑖 = −
𝑞2𝑛

𝜀𝑠𝜀0𝑎𝐵−
∗ 𝑘𝑇𝐹

3               (equation 4.7) 

where 𝑘𝐹 = (3𝜋2𝑛)
1

3⁄  is the Fermi vector,  𝑘𝑇𝐹 = 2√𝑘𝐹 (𝜋𝑎𝐵−
∗ )⁄  is the inverse Thomas-Fermi 

screening length, 𝑎𝐵−
∗ = 4𝜋𝜀𝑠𝜀0ℏ2/(𝑚𝑒

∗𝑞2) is the effective Bohr radius of the electron. On the 

other hand, the shift induced by the BME follows the equation 

∆𝐸𝐵𝑀𝑆 =
ℏ2𝑘𝐹

2

2𝜇∗
                                                   (equation 4.8) 

where 𝜇∗ is the reduced effective mass. 

The contribution of BME and BGR on the apparent bandgap are illustrated in figure 4.9 

(b). The contribution from excitonic effects, influenced by the carrier concentration, is weak 
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at high carrier densities and is hence neglected here. A plot of  𝐸𝐺 = ∆𝐸 + 𝐸0 versus n is 

displayed in figure 4.9 (a), showing good agreement with the bandgap values obtained from 

Tauc’s plot. 𝐸0 was taken as the bandgap of sample X. Therefore, the observed trends in 

optical properties both in absorption and emission can be directly correlated with the 

measured trend in carrier concentration, n and Ge incorporation.   

 

4.2 Ge doping of AlGaN 

AlGaN alloys are studied extensively as contact layers of UV LEDs and laser diodes. For 

these applications, conductive AlGaN alloys with high Al content are necessary. Hence the role 

of dopants, impurities and defects in such systems have to be understood. Silicon (Si) is used 

for the n-type doping, but achieving highly conductive n-type AlxGa1-xN for x > 0.70 is proven 

difficult. Beyond this threshold, a sharp increase in the donor activation energy [157–159] and 

resistivity [160] was observed. Carrier compensation by deep level defects, including deep Si 

DX centers, has often been speculated. DX centers are formed when a shallow donor impurity 

undergoes a large bond-rupturing displacement and becomes a deep acceptor by trapping 

electrons. This heavily drops the carriers available for conduction. Different calculations 

support that Si forms a deep DX center in AlxGa1-xN [40,41,161,162]. Thus, Park and Chadi 

[161] predicted the onset of DX behavior for Si to occur at x > 0.24, whereas Boguslawski and 

Bernholc [40] predicted that Si-related DX centers are stable at x > 0.60, and Gordon et al. [41] 

obtained an onset of DX transition for x = 0.94. Experimental results are also contradictory, 

e.g. some studies suggested Si to be a DX center in AlxGa1-xN for x > 0.5 [42], others for x ≥ 0.84 

[163], and some show indications of self-compensation for high doping levels ([Si] > 

3×1019 cm- 3) for x ≥ 0.42 [164]. 

Ge doping was possible in GaN as it was a shallow donor like Si. However, there is very 

little information about its behavior in AlxGa1-xN. Gordon et al. [41] predicted the onset of the 

DX transition for Ge in AlGaN at x = 0.52. However, at the beginning of my PhD, to our 

knowledge, there were no experimental studies of Ge doping of AlGaN. In view of the results 

obtained for GaN, it was interesting to explore its behavior in the ternarly alloy.  

 

4.2.1 Structural properties and Al content 

Ge-doped AlxGa1-xN thin films of thickness 675 nm were grown by PAMBE. The samples 

were grown, first for low Al content (<40%), for varying Ge concentrations in the range 1019 

to 1021 cm-3 (TGe = 840ᵒC, 928ᵒC, 1011ᵒC) for constant Al composition of 12%, 24%, and 36%. 

Then we varied the Al cell temperature to introduce more Al keeping a constant Ge cell 

temperature of 1011ᵒC.  A GaN reference sample was also made at the same Ge cell 

temperature. The list of samples and their properties are recorded in table 4.2. 

The Al content of selected samples was measured by using Rutherford backscattering 

spectroscopy (RBS) using 1.8 MeV He+ ions and a silicon surface barrier detector at a scattering 
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angle of 160ᵒ. As an example, the RBS spectrum of sample A7G3 is displayed in figure 4.10. 

The data is fitted using NDF code [165]. Based on these measurements, the estimation of Al 

content for all the samples is presented in table 4.2.  

Sample 
name 

Sample 
code 

Al content 
(%) 

TGe (°C) n (cm-3) ρ (Ωcm) 
PL peak  

at 5K (nm) 
xx  
(%) 

E3763 A0G3 0 1011 1.3×1021 2.1×10-4 341.5 0.12 

E3743 A1G1 12±1 (*) 840 1.0×1019 9.8×10-3 321.5 0.18 

E3745 A1G2 12±1 (*) 928 2.1×1020 1.1×10-3 332.0 0.11 

E3746 A1G3 12±1 (*) 1011 1.2×1021 2.9×10-4 332.0 0.11 

E3747 A2G1 24±1 (*) 840 6.2×1018 4.7×10-2 319.5 0.18 

E3751 A2G2 24±1 928 6.7×1019 6.4×10-3 319.8 0.11 

E3753 A2G3 24±1 (*) 1011 4.5×1020 8.4×10-4 316.1 0.14 

E3752 A3G1 36±1 (*) 840 2.8×1018 8.6×10-2 301.0 0.17 

E3750 A3G2 36±1 (*) 928 9.8×1018 3.7×10-2 302.0 0.28 

E3754 A3G3 36±1 1011 5.6×1019 5.8×10-3 302.0 0.22 

E3764 A4G3 47±1 1011 2.4×1020 6.2×10-3 283.0 0.31 

E3765 A5G3 53±1 1011 4.9×1019 3.4×10-2 280.0 0.15 

E3782 A6G3 64±1 1011 1.2×1018 1.4 275.0 0.33 

E3783 A7G3 66±1 1011 -- 3.8 272.0 0.35 
      (*) Estimation from RBS measurements in other samples. 

Table 4.2: Description of samples under study: Al content obtained from RBS, Ge cell temperature (TGe), 
room-temperature carrier concentration (n) and resistivity (ρ) from Hall effect measurements, PL peak 
energy of band-to-band transitions at 5 K.  

 

Figure 4.10: RBS spectrum of Ge doped AlGaN (66%) with fit generated by NDF code. 

The Ge distribution in samples A5G3, A5G3, A6G3 and A7G3 was studied by using 

particle-induced X-ray emission (PIXE), as illustrated by the 530×530 µm2 elemental maps in 

figure 4.11. The average Ge concentration extracted from the PIXE data is in the range of 0.12-

1.5×1021 cm3. The large error bar is due to the proximity of the signals from Ga and Ge. The 

images show that high Al mole fraction (> 40%) leads to inhomogeneous Ge incorporation 
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with tens-of-µm-sized areas with large clustering. In the Ge-rich regions, the Ge 

concentrations reaches values around 3×1021 cm3.  

 

Figure 4.11: Elemental (Al, Ga, Ge) PIXE maps from samples A5G3, A5G3, A6G3 and A7G3. All the 

images represent a 530×530 µm2 surface. Al and Ga appear homogeneously distributed in the samples, 

whatever the Ga/Al ratio. In contrast, the samples with higher Al mole fraction (A6G3 and A7G3) 

presents inhomogeneous Ge incorporation, with tens-of-µm-sized areas with large clustering. 

The structures were further analyzed by x-ray diffraction using symmetric  scans 

of the (0002) reflection for all the samples and the asymmetric (1015) reflection for selected 

samples. From the angular location of the symmetric reflection, it is possible to extract the 

lattice parameter c. From this value, and assuming that the strain is biaxial, we calculated the 

in-plane strain, xx, with the results summarized in table 4.2 and figure 4.12 (a). Let us remind 

here that the lattice mismatch between GaN and the AlN template is ≈ 2.6%. The AlGaN 

samples feel an important compressive stress at the beginning of the growth, and the 

mismatch relaxes progressively, as observed for binary compounds grown under metal excess 

[109]. The strain that remains after growth is around xx = 0.12±0.04% and increases with the 

Al mole fraction of the layers, as illustrated in figure 4.12 (a). The slow relaxation process of 

the AlGaN layer manifests in the elongation of the (1015) reflection towards more negative 

Qx and smaller Qz (Qx, Qz are the reciprocal space vectors) in figure 4.12 (b), which contrasts 

with the Qx symmetry of the reflection from the AlN substrate. These features (magnitude of 

the residual strain and asymmetry of the XRD reflections) do not depend on the Ge content of 

the layers, being present for both low and heavily doped samples. 
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Figure 4.12: (a) In-plane strain in the AlGaN:Ge layers extracted from  scans around the (0002) 

reflection. (b) Reciprocal space map of sample A3G3 showing the (1015) reflections of the Ge-doped 
AlGaN layer and the AlN template. 

 

4.2.2 Electrical properties 

The evolution of free carrier concentration, n and the resistivity , with increase in Al 

content was studied by the Hall effect technique at 300 K using the Van der Pauw method. 

The results are presented in table 4.2. For low Al content, x < 0.4, the data is plotted in figure 

4.13 (a) as a function of the temperature of the Ge cell. Results are compared with the case of 

GaN (dashed line taken from section 4.1 and sample A0G3), which is consistent with 

n ∝ exp(−EGe/kBTGe) where EGe = 3.58 eV is the thermal evaporation energy of Ge, and kB is the 

Boltzmann constant. For x = 0.12, results are approximately the same as for GaN. On the 

contrary, increasing the Al mole fraction to x = 0.24 leads to a decrease of the carrier 

concentration to 40% of the value for GaN, but maintains the slope of the trend, which points 

to the dopant level getting deeper into the bandgap. For x = 0.36, the carrier concentration 

decreases further and we observe that the variation with TGe starts to deviate from the trend 

for GaN. This is understood as a variation in the nature of the dopant, which is not only getting 

deeper in the bandgap but also self-compensating. This Al concentration is well below the 

predicted value for the onset of the DX configuration, but it could be related to the initiation 

of the clustering process that was described above.   

For the highest Ge cell temperature used in this study, TGe =1011ᵒC (leading to 

n = 1.3×1021 cm-3 in GaN, sample A0G3), the variation of n and  with the Al content is plotted 

in figure. 4.13 (b). A significant decrease in n is observed for x ≥ 0.24. At the highest Al 

composition of x = 0.66, we report a resistivity of 3.8 Ωcm. For this sample, reliable 

measurements of n were not possible due to the high resistance. 
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Figure 4.13:  (a) Variation of the carrier concentration at room temperature measured by Hall effect as 

a function of the temperature of the Ge cell. Experimental values for Ge-doped AlxGa1xN (x = 0, 0.12, 
0.24, and 0.36) are presented. The dashed line indicates the variation in the case of GaN. (b) Evolution 

of the carrier concentration and resistivity with the Al concentration in AlxGa1xN layers with 

[Ge] = 1×1021 cm3. 

Temperature dependent Hall effect (77 K to 300 K) measurements were carried out to 

determine the effective activation energy, Ea. The Ea of the samples are derived in a similar 

method to that in section 4.1.3 by using equation 4.3. The Ea value extracted is plotted against 

Al content in figure 4.14. For the same Al content, the activation energy is lower (5-10 meV) 

for the highest TGe than in more lightly doped samples. This is due to the increased Ge 

concentration, above Mott concentration, which readily places carriers in the conduction 

band. In the lightly doped samples, the carriers require a finite energy before being available 

for conduction. However as Al content is increased for the same Ge concentration, we find 

that Ea increases for both TGe, reaching 40 meV for the highest Al content.  

 

Figure 4.14: Ionization energy Ea as a function of Al content for the lowest and highest Ge cell 
temperatures TGE. 
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4.2.3 Optical properties 

The normalized low temperature (T = 5 K) PL spectra of the AlxGa1-xN samples with the 

highest doping level (TGe = 1011ᵒC) is displayed in figure 4.15 (a). The spectra are dominated 

by the band-to-band emission, which blueshifts with increasing Al content. The PL peak 

positions of all the samples are provided in table 4.2 from where we can infer that, for a 

constant Al content, we observe a blueshift with increasing Ge incorporation due to band 

filling. However, as Al content is increased, the blueshift with Ge incorporation becomes less 

significant due to the lower density of free carriers.  

 
Figure 4.15: (a) Normalized Low temperature (5 K) PL spectra of the highest doped samples 
(TGe = 1011ᵒC). (b) Temperature dependent PL peak positions of samples with 24% Al. 

 
Figure 4.16: (a) Illustration of carrier localization caused by alloy fluctuations and subsequent screening 
for increasing Fermi energy, (b) Variation of Eloc as a function of carrier concentration. 

Figure 4.15 (b) describes the variation of band-to-band emission energies (PL peak 

position EPL) with temperature for samples with x = 0.24.  For the lower doping levels, the 

evolution presents an S-shape behavior, with a blueshift between 70 K and 150 K. This is 

explained by the fact that the low-temperature emission is dominated by transitions of 

carriers localized in alloy fluctuations [114,166]. As temperature is increased beyond 150 K, 
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carriers get thermally delocalized, and EPL follows Varshni’s law (equation 2.2). For the highly 

doped sample, even at low temperatures, the potential fluctuations due to the alloy 

inhomogeneities are screened, as the Fermi level already lies further inside the conduction 

band. Here, the temperature variation of the PL peak energy readily follows the Varshni’s law. 

This process of screening of the fluctuations is described in figure 4.16 (a). For these samples, 

the shift in PL peak energy at 5K with respect to that described by Varshni’s law was used to 

calculate a localization energy, Eloc, obtaining the values that are plotted in figure 4.16 (b). For 

the samples with the lowest doping level, the estimated localization energy, Eloc = 23±3 meV.  

Such a localization energy can be justified by alloy fluctuations in the order of x ± 0.01. Similar 

PL data for samples with an Al content of x = 0.36 gave the same value of localization energy, 

indicating similar alloy fluctuations. 

The evolution of the PL Intensity IPL with temperature is represented in figure 4.17 for 

samples with the highest TGe. The intensity follows the equation [167] 

𝐼𝑃𝐿 =
𝐼0

1+𝐴 exp(−
𝐸𝑎
𝑘𝑇

)
                                              (equation 4.9) 

where 𝐼0 is the PL intensity at 0 K, 𝐴 is the ratio of the non radiative and radiative 

recombinations, and 𝐸𝑎 is the thermal activation energy of the non-radiative recombination 

process. With increasing Al content we see an increase in slope of the curve at high 

temperature, which is resulting from an increase in non-radiative processes. This is evident by 

the increase in 𝐴 with increase in Al content as displayed in table 4.3.  The onset of non-

radiative recombination remains at the same temperature for all samples, i.e. the thermal 

activation energy does not vary significantly as shown in the table 4.3. 
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Figure 4.17: Temperature variation of PL intensity in various Ge-doped AlxGa1-xN samples grown with 
TGe = 1011°C.  
Table 4.3: Variation of 𝐸𝑎 and 𝐴 with Al content, x, in AlxGa1-xN. 

 

x 𝑬𝒂 𝑨 

0 46±5 115±40 

0.36 50±21 1700±900 

0.66 65±16 1400±900 
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4.3 Conclusion 

From these studies we conclude that the presence of Ge flux (≤1000ᵒC) during the 

growth of wurtzite GaN does not perturb the Ga growth kinetics. We grew Ge-doped GaN thin 

films with carrier concentrations of up to 6.7 × 1020 cm−3 at 300 K, well beyond the Mott 

density. The Ge concentration and free carrier density were found to scale linearly with the 

Ge flux in the studied range. All the GaN:Ge layers presented smooth surface morphology with 

atomic terraces, without traces of pits or cracks, and the mosaicity of the samples has no 

noticeable dependence on the Ge concentration. The variation of the GaN:Ge bandgap with 

the carrier concentration is consistent with theoretical calculations of the bandgap 

renormalization due to electron-electron and electron-ion interaction, and the Burstein-Moss 

effect. 

We grew Ge-doped AlxGa1-xN thin films with Al mole fraction up to x = 0.64. We 

successfully demonstrated that Ge does not induce any structural or optical degradation in 

AlGaN samples with x < 0.4. For higher Al compositions, Ge rich clusters were observed. 

Keeping the Ge concentration constant to [Ge] = 1×1021 cm-3, Hall Effect measurements at 

room temperature show a gradual decrease of the carrier concentration when increasing the 

Al mole fraction. This decrease is already noticeable in samples with x = 0.24. Samples with 

x = 0.64-0.66 remain conductive ( = 0.8-0.3 -1cm-1), but the carrier concentration drops to 

1×1018 cm-3, which implies a donor activation of 0.1%. From the optical point of view, the low 

temperature PL is dominated by the band-to-band emission. When increasing the doping 

concentration, the PL blueshifts due to band filling. Furthermore, from the evolution of the PL 

peak position with temperature, we observe the screening of the localization induced by 

fluctuations of the alloy composition.  
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5. Growth of GaN nanowire by MBE 
 

In this chapter, we present the development of GaN nanowires grown by PAMBE on Si(111) 
substrates. The insertion of a thin AlN buffer layer is necessary to improve the vertical 
alignment of the wires. However, the presence of AlN results in huge 2D undergrowth. To 
solve this problem, we develop a low-temperature AlN growth process. We then make an 
analysis of the impact of the gallium flux and substrate temperature on the coalescence and 
growth rate of the nanowires. 

For this study, I performed the MBE growth and SEM measurements. Part of the work 
concerning the growth of the AlN pre-buffer was published in, “ISB Absorption in Si- and Ge-
Doped GaN/AlN Heterostructures in Self-Assembled Nanowire and 2D layers”, A. Ajay et al., 
Phys. Stat. Sol. B 254, 1600734 (2017) [168].   

 

5.1 Substrate preparation and buffer layer 

Self-assembled, N-polar GaN nanowires were synthesized on Si(111) using nitrogen-rich 

conditions in PAMBE. We used various shapes and sizes of the Si(111) substrate, including  

1.5×1.5 cm2 squares, quarters of 4” wafers, and 3×3 cm2 squares. First, the substrates were 

degreased with organic solvents, which included dichloromethane, acetone and methanol, in 

an ultrasound bath. Then, they were mounted in custom-designed molybdenum sample 

holders where samples are held between two plates by metal ‘fingers’. This allows direct 

heating of the substrate. A GaN nanowire sample and the corresponding sample holder front 

plate and back plates are shown in figure 5.1 (a), (b) and (c) respectively. Note that the areas 

marked by the four fingers of the front plate can be clearly seen on the sample. 

The extremities of the sample close to the finger were too cold for any nanowire growth 

to happen. From the center of the sample to a circle of ≈ 2 cm in diameter, the samples remain 

homogeneous in characteristics. Between this first circle and a second circle that is larger in 

radius by 0.5 cm, the temperature is ≈ 5ᵒC lower than at the center. This was estimated by 

comparing samples grown with substrate temperatures differing by 5ᵒC. Beyond the second 

circle, the temperature is largely inhomogeneous. 

 
Figure 5.1: (a) A sample containing GaN nanowires on Si(111) of dimension 3×3 cm2. (b) Front plate 
and (c) back plate of the corresponding sample holder. 
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The following describes the preparation of the substrate surface once it is placed inside 

the growth chamber. It is well known that oxide-free Si(111) exhibits surface reconstructions 

depending on the temperature. At temperatures above 850°C, a 1×1 structure is obtained, 

which converts to a 7×7 reconstruction when cooled down [169]. We have used this transition 

as temperature reference for all the substrate temperature values provided in this chapter. 

The growth process starts by baking the substrate for 5 min at high temperature (880ᵒC) to 

remove the native oxide. During the baking process we observed an unreconstructed 1×1 

pattern with strong Kikuchi lines using RHEED. It evolved slowly towards the 7×7 

reconstruction as the sample was cooled down to a temperature of 810°C, as depicted in Fig 

5.2(a).  

 

 
Figure 5.2: RHEED images of (a) 7×7 reconstruction of Si(111), (b) GaN nanowires grown directly on 
Si(111) at 810ᵒC. 
 

As a first approach, GaN nanowires were directly grown on the substrate by keeping the 

nitrogen flux fixed at the value required to produce planar GaN layers at a growth rate of 

0.50±0.01 ML/s under N-limited conditions. The Ga flux was kept below that value 

(Ga = 0.429 ML/s), to ensure nitrogen-rich conditions, and the substrate temperature was 

TS = 790°C.4 At these growth conditions, we observe a spotty RHEED pattern overlapping with 

a faint ring-like pattern. The resulting self-assembled GaN nanowires are described in the SEM 

image in figure 5.2(b) showing that the nanowires were slightly tilted, as reported in previous 

studies [170]. 

In order to improve the nanowire orientation, we added a 1.2-nm-thick AlN buffer layer 

prior to the GaN deposition at the same substrate temperature. The AlN buffer was expected 

to grow in a 2D regime (i.e. slightly Al-rich conditions) which was confirmed by a streaky RHEED 

pattern [171]. We grew three samples at different growth temperatures of 750ᵒC, 770ᵒC and 

790ᵒC with the same impinging Ga flux (Ga = 0.429 ML/s), to rule out any substrate 

                                                      
4 Note that the desorption of Ga is relevant (in comparison with the growth rate) for temperatures higher than 
700°C, to the point that at 720°C the Ga desorption flux is comparable to the growth rate. In this chapter, the 

value of Ga is given in terms of impinging flux, knowing that the density of adsorbed Ga is much lower (to be 

precise, Ga multiplied by the sticking coefficient, which depends on the substrate temperature). 
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temperature related uncertainty (samples listed in table 5.1). For all growth temperatures 

under investigation, the presence of such an AlN buffer layer leads to an improved 

perpendicularity of the nanowires with respect to the substrate surface, as shown in Figure 

5.3, but it results also in parasitic 2D growth of GaN between the nanowires and decreased 

nanowire density compared to samples grown at the same conditions without the buffer layer. 

This has been attributed to the fact that the AlN buffer presents mixed polarity [172,173]. 

 

Sample name Ts Ga Growth time 

E3545 750°C 0.429 ML/s 3 h 

E3544 770°C 0.429 ML/s  3 h 

E3550 790°C 0.429 ML/s  3 h 

Table 5.1. Samples with AlN buffer layer that is grown at the same temperature as the growth 

temperature where Ts is the temperature of the substrate and Ga is the impinging Ga flux. 

 

 
Figure 5.3: Tilted view SEM images (a) E3545 (Ts=750ᵒC), (b) E3550 (Ts=790ᵒC) and (c) E3544 Ts=770ᵒC). 
The GaN undergrowth is clearly visible. (d) Top view SEM images of E3544. The undergrowth is still 
visible, however note that the nanowires are well separated (modified from ref. [168]). 

In order to obtain GaN nanowires without GaN undergrowth, we used a two-step 

growth procedure for AlN similar to the works of Schenk, et al. [174] and Musolino, et al. [175]. 

After baking the substrate, it was cooled down to 200°C, and we deposit 1.2 nm of AlN at 

stoichiometric conditions at this low temperature. At this point, the RHEED pattern evolves 

from the 7×7 reconstruction to the pattern in figure 5.4(a). An 8-nm-thick AlN buffer layer was 

then grown at stoichiometric conditions at 670°C. This resulted in the characteristic 1×1 
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RHEED pattern of stoichiometric AlN, in figure 5.4(b). GaN nanowires were then grown at a 

substrate temperature around 780°C, for the same Ga flux as for the samples in table 5.1. The 

RHEED pattern during the growth was the spotty wurtzite pattern shown in figure 5.4(c). The 

resulting GaN nanowires are displayed in the SEM image in figure 5.4(d), which shows no 

parasitic 2D growth and nanowires oriented perpendicular to the substrate surface. All the 

nanowires discussed hereforth contain the AlN buffer layer grown using this two-step growth 

procedure. 

 
Figure 5.4: RHEED images of (a) 1.2-nm-thick AlN on Si(111) (the diffraction pattern of Si is still visible 
below the 1×1 reconstruction of AlN), (b) 1×1 pattern of stoichiometric AlN after deposition of the 
buffer layer, and (c) spotty wurtzite pattern during the growth of GaN nanowires on an AlN buffer 
layer. (d) SEM image (tilted at 45ᵒ) of GaN nanowires grown on Si(111) using an AlN buffer made using 
the two-step growth procedure described in this manuscript. (Modified from ref. [168]). 

 

5.2 Influence of growth temperature and Ga flux 

The effect of temperature and Ga flux on GaN nanowire growth has been widely 

addressed in the literature [123,170,176]. This section describes our study to find the right 

growth window to obtain well separated GaN nanowires. Figure 5.5 presents SEM images of 

nanowires grown under substrate temperatures and Ga fluxes as indicated. The total growth 

time is always 3 hours. The average height of the nanowires is mentioned on top of the 

respective SEM images. It can be noticed that for a fixed Ga flux, increasing the substrate 

temperature beyond a certain threshold leads to a decrease in the total height of the 

nanowires and increased variation in nanowire height. For example, for an impinging Ga flux 
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of 0.338 ML/s, the total height changes from 600-650 nm to 350-550 nm for a change in 

substrate temperature from 780ᵒC to 785ᵒC. Increasing the substrate temperature by 

approximately 10ᵒC, results in the absence of nanowires due to enhanced GaN decomposition. 

Increasing the maximum nanowire height, without coalescence, requires increasing the 

Ga impinging flux. In turn, for higher Ga fluxes, the growth of nanowires requires a higher 

substrate temperature to avoid coalescence, and there is a larger window of substrate 

temperatures between highly-coalesced nanowires and the absence of nanowires.  

Note that, in the investigated windows, the maximum nanowire growth rate is still far 

from the thickness of a planar GaN layer grown under N-limited conditions (≈ 1.3 µm) at 720°C 

(our standard planar growth conditions). This is due to the important GaN decomposition that 

takes place at the high growth temperatures used for nanowire growth.  

Figure 5.6 presents a more detailed analysis of nanowires grown at the same Ga flux of 

0.429ML/s, only varying the substrate temperature between 755°C and 795°C. Increasing the 

growth temperature resulted in thinner nanowires, decreased coalescence and decreased 

nanowire density. This is due to enhanced adatom diffusion and desorption, and increased 

GaN decomposition [118]. Even though the coalescence was sharply reduced at the highest 

growth temperature, there was still coalescence between a few wires, resulting in the 

formation of bundles [177]. The average distance between the wires for the sample grown at 

795°C was 33±10 nm, calculated by sampling the shortest distance between nearest 

nanowires that are not coalesced.  Such large interwire distances are highly valuable for 

growing GaN nanowires containing MQWs of Al(Ga)N, as an AlN shell forms around the 

nanowires, which increases the effective nanowire diameter.    
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5.3 Conclusion 

Here, we have presented a study on the synthesis of self-assembled GaN nanowires on 
Si(111) using PAMBE. We observed that a thin AlN buffer layer can be used to improve the 
nanowire alignment perpendicular to the substrate. However, we noticed the appearance of 
undesirable GaN undergrowth when the AlN buffer layer is grown at the same temperature 
as the nanowires. To overcome this issue, we developed a two-step low temperature AlN 
buffer growth process. We then analyzed the impact of the impinging gallium flux and 
substrate temperature on the coalescence and growth rate of the nanowires, on substrates 
prepared with such two-step AlN buffer layer. To increase the nanowire growth rate, we need 
to increase the impinging Ga flux, and to prevent coalescence at high Ga fluxes, we need to 
increase the substrate temperature. Growth at higher substrate temperature results in 
thinner, less densely packed nanowires due to the enhanced adatom diffusion, desorption and 
increased GaN decomposition.  
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6. GaN/AlN heterostructures for the short-

wavelength IR range 
In this chapter, we present a study of GaN/AlN heterostructures designed to absorb in the 
SWIR spectral range, considering both planar structures and nanowire heterostructures. In 
sections 6.1 and 6.2, we assess the effect of the nature of the n-type dopant, either Ge or Si, 
and the dopant concentration on the structure geometry and on the optical properties. In 
this work, I performed the MBE growth, HRXRD, SEM, TEM image analysis, Hall effect 
measurements, time-resolved/continuous-wave PL measurements, FTIR measurements and 
theoretical calculations. I worked together with C. B. Lim for the characterization of planar 
heterostructures (HRXRD, continuous-wave PL and FTIR). TEM images were obtained by Dr. 
M. I. den Hertog. The complete study was published in “Effect of doping on the ISB 
absorption in Si- and Ge-doped GaN/AlN heterostructures”, A. Ajay et al., Nanotechnol. 28 

405204  (2017) [178] and “Effect of Ge-doping on the short-wave, mid- and far-IR ISB 
transitions in GaN/AlGaN heterostructures”, C.B Lim et al., Semicond. Sci. Technol. 32 

125002 (2017) [179].  

Finally, in section 6.3 we introduce top-down nano/micropillar heterostructures, also 
absorbing in the SWIR. For this study, I performed theoretical calculations and XRD 
measurements, working in collaboration with Dr. D. A Browne and Dr. E. Monroy. The 
samples were grown by Dr. E. Monroy, and the top-down etching and optical 
characterization were performed by Dr. J. Lähnemann. The complete study has been 
submitted for publication [180]. 

 

 

6.1 Ge vs Si doping in planar GaN/AlN heterostructures 

N-type doping is a critical parameter in controlling the performance of ISB 

photodetectors or modulators because of the need to populate subbands in the conduction 

band. While a variety of GaN based ISB devices has been demonstrated, these devices are 

primarily based on a planar geometry and utilize Si as a dopant. For example, see the topical 

review ref. [181]. Based on the advancements in Ge doping in GaN thin films (discussed in 

chapter 4), it became interesting to assess the performance of planar ISB structures as a 

function of the nature of the dopant, either Ge or Si. 

 

6.1.1 Sample structure  

The planar samples under study contain 25 periods of GaN/AlN (≈ 1.8 nm / 3 nm), 

designed to present an ISB transition at 0.729 eV (1.70 µm) for low doping levels. The samples 

were grown using PAMBE on AlN-on-sapphire templates. A 340-nm-thick GaN buffer layer was 

deposited on the substrate before growing the heterostructure. This GaN buffer layer is 

partially strained on the AlN allowing the growth of heterostructures without cracking [109]. 

The GaN QWs in the samples were doped with Ge or Si with different doping densities as 

described in table 6.1. The dopant cell temperature to free carrier concentration ratio was 
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calibrated using Hall effect measurements on doped GaN thin films. The growth finishes with 

the deposition of a 30 nm AlN cap, to avoid the influence of surface charges. Figures 6.1 (a) 

and (b) describe the structure of the samples and the corresponding band structure simulated 

using 1D calculations in nextnano3, respectively.  

Figure 6.1 (c) presents XRD ω-2θ scans of exemplary samples PS3 and PG3, together with 

a simulation of sample PG3. The GaN/AlN MQW period of all the samples extracted from the 

intersatellite distance in ω-2θ scans is summarized in table 6.1. The deviations of the thickness 

from the nominal values are similar for both Si-and Ge-doped samples, i.e. they are not related 

to the nature of the dopant. Information on the mosaicity of the samples could be obtained 

from the FWHM of the ω scan of the zero-order reflection (MQW peak 0 in figure 6.1). The 

average FWHM of ω scans was 0.18±0.01ᵒ and 0.14±0.01ᵒ for Si-doped and Ge-doped MQWs, 

respectively, to be compared with 0.056±0.006ᵒ for the AlN substrate. The increased 

broadening of the heterostructures compared to the substrate is due to strain relaxation. 

Comparing the heterostructures, Ge-doped heterostructures systematically present 22% 

narrower rocking curves than their Si-doped counterparts on average for all doping levels. 

 

Sample Code Dopant 
n  

(cm-3) 
Period 
(nm) 

ωMQ

W 
(°) 

ωsubs 
(°) 

ISB 
FWHM 
(meV) 

Absorption 
per 

pass (%) 

PL 
(ns) 

E3515 PS0 Si 1×1018 4.8±0.1 0.163 0.057 - - 11.6 

E3517 PG0 Ge 1×1018 4.8±0.1 0.106 0.053 - - 7.9 

E3522 PS1 Si 3×1019 4.8±0.1 0.199 0.056 85 2.1 7.3 

E3523 PG1 Ge 3×1019 4.8±0.1 0.167 0.046 94 1.8 11.6 

E3524 PS2 Si 1×1020 4.8±0.1 0.180 0.061 108 8.9 3.2 

E3525 PG2 Ge 1×1020 4.7±0.1 0.154 0.058 90 6.6 5.6 

E3588 PS3 Si 3×1020 4.4±0.1 0.176 0.057 189 9.5 3.5 

E3587 PG3 Ge 3×1020 4.3±0.1 0.149 0.063 110 8.6 2.5 

Table 6.1: Description of samples under study: dopant nature, dopant concentration (n), MQW period 

from XRD, FWHM of ω-scan of the MQW (MQW) and the substrate (subs), FWHM of the ISB 

absorption, absorption per pass, and decay time of the PL (PL). 
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Figure 6.1: (a) Sketch of the GaN/AlN planar MQWs under study. (b) Band structure of a single quantum 
well, calculated using 1D nextnano3. (c) XRD ω-2θ scans of (0002) reflection of samples PS3 and PG3, 
and simulation of PG3 (modified from ref. [179]). 

 

6.1.2 Optical properties 

The band-to-band properties at 5 K of the MQWs were studied using PL spectroscopy, 

and the resulting spectra are displayed in figure 6.2. For both Ge- and Si- doping, the spectra 

present a multi-peak structure resulting from monolayer fluctuations of the well thickness 

[73]. When increasing the dopant density, a blueshift is clearly visible, which is assigned to the 

screening of the electric field by free carriers [182]. The broadening of the emission peak can 

be attributed to the Burstein-Moss effect (BME) [153]. We observe that the shift in emission 

energy and broadening is similar for both dopants.  

Simulations of the electronic structure as a function of the QW thickness and for the 

various doping levels were performed using the 1D nextnano3 Schrodinger-Poisson solver, 

with the results presented in figure 6.3. The solid lines describe the calculated emission 

wavelength (or energy) associated with the transition between the lowest electron energy 
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level, e1, in the conduction band and the highest hole level, h1, in the valence band of the QWs. 

For these calculations, the AlN barrier was chosen to be 3 nm in all the cases (the error in the 

e1–h1 transition associated with this choice is negligible). The impact of the screening of the 

electric field due to doping is significantly reduced in smaller QWs compared to large QWs. 

This is explained by the fact that free carrier screening effects scale with the ratio between 

the well thickness and the Debye length [182], the latter defined as  

 𝜆𝐷 = √ 
𝜀𝑟𝜀0𝑘𝐵𝑇

𝑞2𝑁𝐷
                                                (equation 6.1) 

where 𝜀𝑟𝜀0 is the dielectric constant times the vacuum permittivity, 𝑘𝐵𝑇 is the thermal energy, 

𝑞 is the electron charge and 𝑁𝐷 is the dopant density.  

Experimental data are also superimposed to the theoretical calculations in figure 6.3. 

These data are represented with a set of error bars where the horizontal error bar represents 

the uncertainty in the well thickness and the vertical error bar represents the spectral width 

at 90% intensity of PL peak wavelengths obtained for Si- and Ge- doping. The experimental 

blueshift shows the same trend as the theoretical expectations. 

 

Figure 6.2: Low temperature PL intensity of all the samples under investigation. Dotted line shows GaN 
bandgap energy at 5 K (modified from ref. [178]). 
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Figure 6.3: Theoretically calculated values of e1-h1 transitions (solid lines) and data points 
corresponding to PL peaks. Horizontal error bar represents the uncertainty in the well thickness and 
the vertical error bar represents the spectral width at 90% intensity (modified from ref. [178]). 

To study the effect of free carriers on the screening of the internal electric field in the 

QWs, we performed time-resolved PL studies at an excitation power of 250 μW, with pulse 

width of 200 fs. The laser was augmented with a cavity damper section with a base pulse 

repetition rate of 54 MHz, allowing the period between pulses to be varied from 20 to 500 ns. 

Further experimental details can be found in section 3.4.3. The PL decay time constants 

measured for the planar samples with different doping levels are recorded in table 6.1. We 

observe that with increase in doping concentration the decay time constants decrease 

consistently for both dopants. This is consistent with the onset of screening of the internal 

electric field by free carriers. 

The ISB properties of the samples were accessed using room temperature FTIR 

measurements. The measured absorption in the SWIR range, for TM-polarized light, is 

displayed in figure 6.4. ISB absorption is observed in samples with both Si as well as Ge doping 

and is well covering the 1.55 µm (0.799 eV) wavelength. As mentioned before, such 

heterostructures based on Si-doping had been extensively studied and are well documented 

in ref. [181]. For Ge-doped heterostructures we observe absorption covering 1.75 µm to 

1.45 µm. The absorption is due to transitions from the first to the second electronic level in 

the QWs (e1-e2). The observed multi-peak spectral profile arises from in-plane monolayer 

fluctuations in the QWs in line with previous observations [33,73]. The magnitude of 

absorption per pass is recorded in table 6.1, however the error associated with these 

calculations (error in waveguide length and incident angle) is as high as ±20%. The magnitude 

of absorption scales approximately linearly with doping densities except for PG3 and PS3, 

where we observe saturation. This is due to the fact that the Fermi level approaches the 

excited state e2 for such heavily doped samples.  
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Figure 6.4: Room-temperature absorption spectra for TM-polarized light. Black triangles mark the 
transition energies calculated using nextnano3 and corrected to account for the exchange interaction 
and depolarization shift. (modified from ref. [179]). 

With increasing doping concentration, the absorption is blueshifted for both dopants, 

which is due to the many-body effects, explained in section 2.3.2. In particular, we are 

concerned by exchange interactions and depolarization shift. 1D calculations using nextnano3 

were performed to find the transition energy, E21 = e2 – e1, considering a doping density of 

1×1017 cm−3. Based on equations 2.25-2.27 the magnitude of the exchange interaction Eexch 

and depolarization shift were calculated and used to correct E21. Corrected values are 

recorded as black triangles in figure 6.4. The error bar corresponds to ±1 ML fluctuations of 

the well thickness. We see that for both Si- and Ge- doped samples, the spectral shift agrees 

with theoretical expectations.  

 
Figure 6.5: Normalized broadening (ΔE/E) of the ISB absorption peak as a function of the doping density 
n.  (modified from ref. [179]). 

The FWHM (ΔE) of the ISB absorption of the samples are given in table 6.1. Figure 6.5 

represents the normalized broadening (ΔE/E) for various dopant concentrations. Si-doping 

clearly leads to a strong broadening of the absorption. This is most possibly arising from 



81 

interface roughness, and not due to scattering of ionized impurities or electron-electron 

interactions, which should be similar for both dopants. 

 

6.1.3 Conclusion for Ge vs Si doping in planar GaN/AlN 

heterostructures 

 We synthesized GaN/AlN planar heterostructures with similar periodicity, varying 

dopant type (Si and Ge) and dopant concentration in the GaN sections. It was clear from x-ray 

diffraction studies that in these strongly lattice-mismatched heterostructures (GaN/AlN), 

highly Si-doped samples exhibit a larger broadening of the ω scans with respect to Ge doped 

samples, which points to a better structural quality of the Ge-doped samples. With increasing 

dopant concentration, the heterostructures exhibited a blueshift of the PL peak emission due 

to the screening of the internal electric field by free carriers. However, we do not observe any 

dependence of the band-to-band properties on the dopant nature. Regarding ISB transitions, 

we present Ge-doped planar heterostructures exhibiting ISB absorption associated to the 

transition from first to second electronic level in the QWs, covering the range of 1.45–1.75 μm. 

Identical behavior was observed in the Si-doped heterostructures used as a reference. 

Blueshift and broadening of the ISB transitions associated to many-body effects, including the 

exchange interaction and depolarization shift, have been observed. The broadening of the 

transition is larger in the case of Si-doped samples, which points to a higher heterointerface 

roughness in this case. To the best of our knowledge, these results constitute the first 

systematic study of ISB transitions in Ge-doped planar GaN based structures.  

 

6.2 Ge vs. Si doping in GaN/AlN nanowire heterostructures  

On the other hand, using nanowires instead of planar heterostructures in ISB devices 

can lead to a better performance due to lower electrical cross-sections, and the design 

flexibility associated to the possibility of elastical release of misfit strain. However, the field of 

nanowire ISB transitions is still in the nascent phase. Tanaka et al. [32] reported ISB absorption 

centered at 1.77 µm (= 0.7 eV) with FWHM  230 meV in a GaN/AlN (1 nm/2.7 nm) nanowire 

heterostructure with the AlN barriers doped with Si at 2×1019 cm–3. In this configuration, it is 

assumed that the electrons from the donor levels in the AlN barriers should be transferred to 

the GaN wells. Studies in GaN/AlN planar heterostructures showed an improvement of the ISB 

absorption linewidth if the doping is performed directly in the GaN wells [33]. However, at the 

beginning of my PhD work, to the best of our knowledge, there was no report on ISB 

absorption in GaN/AlN nanowire heterostructures with Si-doped GaN wells. Difficulties were 

attributed to the fact that Si migrated towards the nanowire sidewalls and degraded the 

nanowire morphology. Replacing Si by Ge, Beeler et al, [35] demonstrated GaN:Ge/AlN (4-

8 nm /4 nm) nanowire heterostructures with ISB absorption in the SWIR, but with an 

absorption linewidth around 400 meV.  
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At the start of my PhD, there was no report on ISB absorption in GaN/AlN nanowire 

heterostructures with Si-doped GaN QWs. Here, we assess the optical properties (band-to-

band and ISB) of n-type doped GaN/AlN nanowire heterostructures, using the same 

concentration of Ge and Si dopants in the GaN sections as in section 6.1 for planar structures, 

i.e. varying the concentrations in the 1×1018 to 3×1020 cm-3 range. The structures are designed 

to display ISB transitions in the SWIR, around 1.55 µm. This work is, to our knowledge, the first 

observation of many-body effects on the ISB absorption of Si-doped GaN/AlN nanowire 

heterostructures. This observation is particularly relevant since it proves that, with our growth 

conditions, Si can efficiently dope the GaN nanowires without material degradation. 

 

6.2.1 Sample structure 

The nanowire heterostructures consisted of 30 periods of GaN/AlN (≈ 1.8 nm / 3 nm) 

MQWs on top of a GaN base, as described in Figure 6.6 (a). Self-assembled (000–1)-oriented 

GaN nanowires were synthesized on floating-zone Si(111) substrates using nitrogen-rich 

conditions. The growth started with the deposition of an AlN buffer using a two-step 

procedure, as described in section 5.1. Then, a 700 nm long GaN base was grown at a substrate 

temperature TS = 810°C and with a growth rate of 330 nm/h. The GaN/AlN MQW was then 

deposited. The GaN QWs were grown using the same nitrogen-rich conditions used to grow 

the GaN base and the AlN barriers were grown at stoichiometry. The GaN QWs were doped 

with Ge or Si following the same doping densities as of the planar heterostructures, as 

described in table 6.2. The heterostructure was then capped with 30 nm of GaN. This is 

necessary as the sample crystal structure is inverted with respect to the planar samples and 

the GaN cap has a lower polarization module than the heterostructure. This ensures the 

pinning of the Fermi level at the conduction band at the heterostructure/cap interface. The 

choice of pinning the Fermi level at the topmost heterointerface in both planar and nanowire 

heterostructures aims at reducing the sensitivity of the structures to {0001} surface states.  

 

Sample 
name 

Sample 
Code 

Dopant 
nature 

n (cm-3) 
Period 
thickne
ss (nm) 

PL peak 
position 

(nm) 

PL decay 
constant 

(ns) 

E3571 N0 - n.i.d. 4.4±0.2 345 14.0 

E3572 NG1 Ge 3×1019 4.6±0.2 336 16.0 

E3573 NS1 Si 3×1019 4.6±0.2 339 15.3 

E3592 NG2 Ge 1×1020 4.6±0.2 336 10.2 

E3593 NS2 Si 1×1020 4.3±0.2 338 8.9 

E3594 NG3 Ge 3×1020 4.1±0.2 336 3.3 

E3595 NS3 Si 3×1020 4.6±0.2 337 5.4 

Table 6.2: Description of nanowire samples under study: Dopant nature, Dopant concentration (n), 
heterostructure period from XRD, PL peak position and PL decay time constant. 
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Figure 6.6: (a) Schematic representation of the nanowire heterostructures, (b) SEM (c), (d) HAADF-
STEM observation in [1-100] direction of a nanowire from NG1 at two different magnifications with 
dark/bright contrast corresponding to AlN/GaN (modified from ref. [178]). 

 
Figure 6.7: (a) Profiled area for statistical analysis on a HAADF-STEM image using Gatan Microscopy 
suite, (b) Corresponding intensity of the selected area with the calculated QW thickness 
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The as-grown nanowires were studied using SEM (similar to figure 6.6 (b)), and 

nanowires dispersed on SiNx membranes were studied using HAADF-STEM (similar to figure 

6.6 (c), (d)). Based on SEM observations, it was confirmed that the coalescence of the wires, if 

present, generally occurs in the early stages of the growth, and is therefore away from the 

active region. The diameter of the wires were in the range of 40 nm to 60 nm. Both SEM and 

HAADF-STEM images did not show any morphological change (in terms of nanowire diameter, 

density or facet orientation) as a function of the doping level or the nature of the dopant.  

HAADF-STEM images of samples NS1 and NG2 (2 nanowires per sample), similar to 

figures 6.6(c), (d), were used for a statistical analysis of the well and barrier thickness using 

the Gatan Microscopy Suite software. Contrast variation between GaN (bright) and AlN (dark), 

due to the difference in atomic mass, is visualized in an intensity profile that was used to 

measure the thickness of the different layers in the heterostructure. An intensity profile of a 

selected region in figure 6.7 (a) is displayed in figure 6.7 (b). According to the analysis, the 

average thicknesses were 2.0±0.3 nm for GaN and 2.8±0.3 nm for AlN. The first two-three 

QWs are characterized by a higher irregularity in the thickness, which can deviate up to two 

monolayers (≈ 0.5 nm) from the average. Analysis also shows the presence of a ≈ 5 nm-thick 

AlN shell surrounding the nanowire heterostructures, which is known to introduce a uniaxial 

compressive strain in the wells [35]. The shell thickness was observed to gradually decrease 

as we move away from the substrate.  

 

Figure 6.8: ω-2θ scans around the (0002) reflection of samples with similar doping and similar 
heterostructure dimensions (modified from ref. [168]). 

Both nanowire and planar heterostructures were analyzed by HRXRD. Figure 6.8 

presents the ω-2θ scan of the (0002) reflection GaN/AlN heterostructures of the same dopant 

concentration (3×1019 cm-3), both nanowire and planar with both dopants. The average period 

extracted from the inter-satellite angular distance is presented in table 6.2. Comparing 

nanowires and planar heterostructures, nanowires clearly present broadened peaks resulting 

from increased inhomogeneity in heterostructure period along the growth axis from wire to 
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wire. The error bar in the period is calculated using extremities of the FWHM of the reflection 

peak. 

 

6.2.2 Optical properties 

The low temperature (5 K) PL of the samples is displayed in figure 6.9. In the spectrum 

of N0, the GaN stem of the nanowires contributes to a peak emission around 360 nm, which 

indicates that the stem is significantly strained due to the AlN shell, compared to the 

unstrained GaN (expected at ≈ 357 nm). For the same nanowire sample, the transition related 

to the heterostructure (at ≈ 345 nm) is blueshifted by 30 nm with respect to the lightly doped 

planar samples (PS0 and PG0, see figure 6.4 and table 6.1). The variation in thickness between 

the samples can only justify a blueshift of 10 nm, significantly smaller than what is observed. 

This additional blueshift arises from the uniaxial compressive strain along the growth axis 

which is imposed by the presence of the AlN shell in nanowire heterostructures, as previously 

observed and modeled [35,183,184]. 

 
Figure 6.9: PL emission peaks of the nanowire heterostructures at 5K. The dotted line indicates the 
emission wavelength expected for an unstrained GaN nanowire (modified from ref. [178]). 

For the doped nanowires, we observe a slight blueshift, which can be attributed to the 

screening of the internal electric field in the heterostructure that increases with doping. To 

understand the magnitude of this blueshift, we performed 3D simulations using nextnano3. 

We assumed an AlN barrier thickness of 3 nm, an AlN shell of 5 nm, and varied the GaN QW 

thickness and doping levels based on the details provided in section 3.1. The results of the 

simulations are presented in figure 6.10, in terms of wavelength associated with transitions 

between e1 and h1 in the QWs. The experimental PL peak positions are represented as data 

points in figure 6.10, in addition to the PL peaks from ref. [35]. The horizontal error bar 

represents the uncertainty in the well thickness and the vertical error bar represents the PL 

peak wavelengths obtained for Si- and Ge- doping. 
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Figure 6.10: Calculated values of e1-h1 transitions (solid lines) from 3D calculations using nextnano3 and 
data points corresponding to PL peaks. Horizontal error bars represents the uncertainty in the well 
thickness and vertical error bars represent the spectral width at 90% intensity. Dotted lines are 1D 
calculations from figure 6.3 for comparison. Colored squares are data points from reference [35] 
(modified from ref. [178]). 

We performed time-resolved PL studies with the same optical conditions as for the 

planar samples in section 6.1.2. The PL decay time constants measured for the nanowires with 

different doping levels are recorded in table 6.2, and displayed in figure 6.11, together with 

data from planar samples, from table 6.1. This representation allows us to study the effect of 

free carriers and geometry (nanowire and planar) on the screening of the internal electric field 

in the QWs. Very similar decay times were observed for Si- or Ge-doped samples with similar 

doping levels. Regardless of the geometry, the decay time constant decreases with increasing 

doping. This is consistent with the onset of screening of the internal electric field by free 

carriers. This can be illustrated by nextnano3 calculations provided in figure 6.12 (a) and (b). 

These show the axial conduction band and valence band profiles along the center of a 

nanowire. An increase in doping causes screening of the internal electric field that results in a 

better overlap of electron and hole wave functions.  

In addition, we observe that the decay time constant in the nanowires is systematically 

longer than in their planar counterparts. Note that this remains true in spite of the slightly 

smaller well width. The increased decay time constant for the nanowires is explained by the 

occurrence of lateral separation of the electron and hole wave functions due to the lateral 

electric field induced by the shear component of the strain in the GaN nanodisks, as discussed 

in [143] and also due a contribution from the Fermi level at the surface. The same effect is 

illustrated in figure 6.12 (c) and (d), showing electron and hole band profiles in the radial 

direction.  
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Figure 6.11: Decay time constant extracted from time-resolved PL as a function of doping density. The 
vertical error bar indicates the values obtained for Si- and Ge-doped samples for the same dopant 
concentration. Inset: normalized decay of the PL intensity as a function of time for NG1 and PG1. The 
laser pulse arrives at time t = 0  (modified from ref. [178]). 
 

 

Figure 6.12: (a)-(d) Calculation of conduction and valence band profiles. (a), (b) Profile along [000-1] 
taken at the center of the nanowire as indicated by arrows in the diagrams on the right side. The 
ground electron and hole levels are indicated by dashed lines. (c), (d) Radial profile. The squared wave 
functions of the ground electron and hole states are indicated (modified from ref. [143]). 
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The ISB properties of the doped nanowire samples were accessed using room 

temperature FTIR measurements. Measurements were made with identical conditions on 

sample N0 as a reference. The measured absorption spectra for TM-polarized light are 

displayed in figure 6.13. The recorded absorption corresponds to the transition between the 

ground electron level of the GaN QWs and the first excited electron level associated to 

confinement along the growth axis (namely s-pz transition). The absorption peak lies around 

1.39–1.55 μm for Si-doped sample NS1 and 1.37–1.53 μm for Ge-doped sample NG1. 3D 

calculations of the nanowire quantum confined ground and excited states were performed 

using nextnano3 using the k.p model. For a doping concentration of 3×1019 cm−3, the s-pz 

transition is calculated at 0.729 eV, which is indicated by arrows in figure 6.13. 

Further, in NS2 and NG2 samples, we observe a blueshift with respect to NS1, NG1, 

which can be attributed to many-body effects. Transitions from the highest doped nanowires 

(NG3 and NS3) of 3×1020 cm−3 could not be clearly discerned, probably due to the huge 

broadening of the transition. When considering 3D calculations, many-body effects due to 

doping could not be taken into account to calculate the ISB transitions for samples with higher 

doping levels. An approach similar to the planar samples taking into account the 3D 

calculations is beyond the scope of this work, but the results from the 1D calculations can be 

used as a guideline to the expected blueshift. 

 

Figure 6.13: Room-temperature absorption spectra for TM-polarized light. Arrows mark the transition 
energies estimated using 3D calculations in nextnano3 (modified from ref. [178]). 

 

Compared to the planar samples in section 6.1, the large, inhomogeneous broadening 

of these absorption peaks is due to thickness/diameter variations in the nanowire ensemble. 

This is amplified in the case of nanowires due to the measurement strategy, which uses light 

incident at nearly grazing angle of 5ᵒ, as explained in section 3.4.4. In contrast to planar 

structures, the existing thickness monolayer fluctuations along the nanowire growth axis 

cannot be resolved due to their overlap with fluctuations of the diameter of the disks. This is 
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similar to observations in GaN/ AlN quantum dots grown by the Stranski-Krastanov method 

[185]. 

As mentioned before, in the previous report of Ge-doped GaN nanowire 

heterostructures, the absorption was spread over a wider spectral region (1.58–1.95 μm) [35] 

with a FWHM around 400 meV. In our case, because of the smaller QWs, we were able to tune 

the absorption to the telecommunication spectral region, with a better FWHM of 200 meV. 

The large QWs used in ref. [35] (> 3 nm) require high doping levels to absorb at 1.55 µm (by 

blueshifting the fundamental transition with many-body effects). This inherently leads to 

broadening of the transitions. 

6.2.3 Conclusion for Ge vs Si doping in nanowire GaN/AlN 

heterostructures 

We synthesized GaN/AlN nanowire heterostructures, with active regions designed to 

absorb around 1.55 µm. The nanowire structures were comparable in design to the planar 

structures in section 6.1. We varied the dopant type (Si and Ge) and dopant concentration in 

the GaN QWs. The samples exhibit defect free active regions regardless of dopant nature. 

We found that for both nanowire and planar geometries, the PL peak energy, linewidth 

and decay time constant were not influenced by the choice of dopant (Si or Ge). However, it 

was observed that nanowire heterostructures consistently present longer PL decay times than 

their planar counterparts with identical active regions and doping level. This experimental 

evidence confirms the existence of an in-plane piezoelectric field in nanowires associated to 

the sheer component of the strain tensor, leading to lateral electron–hole separation. 

We reported the first observation of ISB absorption in Si-doped GaN/AlN nanowire 

heterostructures with varying doping levels, which also leads to an improved FWHM of 

200 meV for the ISB absorption at 1.55 μm, compared to previous reports of Ge-doped 

nanowires. Si-doped and Ge- doped nanowires behaved identical, indicating that the choice 

of dopant is not a hindrance for observing ISB transitions in nanowires. However, we observe 

an inhomogeneous broadening in the samples that was associated to geometry fluctuations, 

regardless of doping. This means that the homogeneity between individual nanowires across 

the sample wafer is the limiting factor rather than the dopant. Based on this study, we can 

conclude that both Si- and Ge-doped nanowires are potentially suitable for the fabrication of 

GaN/AlN heterostructures for the study of ISB optoelectronic phenomena. They are both 

promising for fabricating planarized nanowire based ISB devices.  

6.3 Top-down heterostructures 

Trying to keep the advantages of nanowire heterostructures while reducing the 

inhomogoneinity associated to self-assembled growth, we explored an alternative approach 

consisting in the fabrication of top-down micro/nanopillars. This procedure combines the 
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growth control of planar heterostructures and the optical advantages of the nanowire 

geometry, with the risk associated to damage during the etching process and the presence of 

dislocations in the initial planar structure. With III-As heterostructures, nano- and micropillar 

arrays for THz emission have already been demonstrated by lithographically defined top-down 

etching [43–45]. Such a process using GaN/AlN heterostructures has not been attempted so 

far. Here, we investigate top-down etched nano/micro-pillar arrays capable of having ISB 

absorption at the telecommunication wavelengths. The active region is similar to those 

discussed previously.  

6.3.1 Sample structure  

 The samples were derived from a planar heterostructure sample similar to those 

discussed in section 6.1. This parent sample, grown by PAMBE, consisted of an active region 

of 39 periods of GaN/AlN (1.5 nm / 2.8 nm). It was grown on a 1-µm-thick AlN-on-sapphire 

template followed by a 200-nm-thick GaN buffer layer, which is partially strained on the AlN 

template, thus allowing the growth of a crack-free active region. The active region was capped 

with 30 nm of AlN. The GaN QWs were doped with Si of concentration 2.6×1019 cm-3.  

 
Figure 6.14: SEM image of TD3 and an illustration of the layer stacks (modified from ref [180]). 

 

  
TD0 

(as grown) 
TD1 TD2 TD3 TD4 

Diameter (µm) - 1.5 0.4 0.2 0.1 

Pitch (µm) - 3.0 1.2 0.6 0.3 

Period (nm) 4.3 4.0 4.2 4.2 4.4 

cGaN (Å) 5.208 5.192 5.185 5.183 5.186 

εz (%) 0.46 0.15 0.03 -0.03 0.04 

Δωhe (ᵒ) 0.18 0.38 0.44 0.28 0.44 

ΔωAlN (ᵒ) 0.06 0.06 0.06 0.05 0.05 

ΔωGaN (ᵒ) 0.16 0.42 0.33 0.30 0.43 

IPL (10K) (normalized) 1 0.68 0.73 0.96 0.65 

IPL (300K) / IPL (10K) 0.1 0.08 0.07 0.03 0.05 

𝜆𝐹𝑇𝐼𝑅 (as grown) (µm) - - 1.43 1.54 1.51 

𝜆𝐹𝑇𝐼𝑅 (etched) (µm) - - 1.38 1.42 1.47 

𝐹𝑊𝐻𝑀𝐹𝑇𝐼𝑅 (as grown) (µm) - - 0.28 0.33 0.32 

𝐹𝑊𝐻𝑀𝐹𝑇𝐼𝑅 (etched) (µm) - - 0.28 0.31 0.4 
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Table 6.3: Description of nanowire samples under study: (From top to bottom) Diameter and pitch of 
the etched samples, period of the active region, out-of-plane lattice constant (cGaN) and strain (εz) 
extracted from ω-2θ scans around (0002) reflections, FWHM of various peaks (Δωhe, ΔωAlN and ΔωGaN) 
from ω scans around (0002) reflections, PL intensity (IPL) at various temperatures, absorption 
wavelength (λFTIR) and FHWM of the absorption.  

Pillars were etched using a top-down process to produce samples with various 

diameters and pitches that are summarized in table 6.3. A Ti/Ni (5/50 nm) etch mask of 

appropriate circular structures on a hexagonal grid was defined by lift-off. The pattern was 

written by laser lithography for pillars with a diameter d = 1.5 µm and electron beam 

lithography for diameters d = 0.4, 0.2 and 0.1 µm. A 3 min etch leads to an etch depth of 

approximately 1100 nm. The material around the pillars was removed with an inductively-

coupled plasma (ICP) etch. The metal mask was removed with FeCl3 and HF. An exemplary 

SEM image of a sample after etching is shown in figure 6.14, together with an illustration of 

the various layers in the sample.  

The influence of the top down processing on the sample structure and quality was 

analyzed using HRXRD. The heterostructure period extracted from ω-2θ scans like in figure 

6.15 (a) are summarized in table 6.3. The variation in the period is due to the gradient of the 

growth rate along the wafer surface, arising from radial variations of adatom influx. If we 

normalize the intensity of the diffractogram by the intensity of the reflection from the AlN 

substrate, we realize that the intensity of the reflections from the MQW and from the GaN 

buffer layer in the etched samples have decreased to about 10% of the as-grown value. This 

decrease is due to the decrease in the amount of material to 10% of the original after etching. 

On the other hand, if we look at the angular location, the reflections assigned to the 

heterostructure do not present any significant angular shift with etching. On the contrary, the 

reflection associated to GaN exhibits a clear, systematic shift towards larger angles in the 

etched structures, which is an indication of strain relaxation. 

The strain state of the GaN buffer is estimated by examining the out-of-plane 

deformation, which is εzz = (c-c0)/c0 where c is the measured out-of-plane lattice constant and 

c0 is 5.185 Å.  εzz is summarized in table 6.3. The GaN buffer is highly relaxed for samples with 

diameter ≤ 0.4 µm. The FWHM of the ω scans around the (0002) reflection of the 

heterostructure Δωhe, the AlN template ΔωAlN and the GaN buffer layer ΔωGaN are summarized 

in table 6.3. After etching, we observe an increase in ΔωGaN and Δωhe, which is an indication of 

strain relaxation towards the side walls of the pillars.  

 Reciprocal space maps (RSMs) around the (-2025) reflection of samples TD0 and TD4 

are displayed in figure 6.15 (b) and (c). The position of the GaN buffer layer shifts in the etched 

sample TD4, whereas the position of the heterostructure remains unchanged, consistent with 

the observation from ω-2θ scans. We also extracted the average in-plane lattice parameter 

from the RSM. Combining this with the out-of-plane lattice parameter extracted from ω-2θ 

scans, we estimate an average Al composition of 65±1% in the heterostructure, and that it is 

fully relaxed. This is consistent with the heterostructure period consisting of 1.5 nm of GaN 

and 2.8 nm AlN. This implies that the strain state of the heterostructure is practically 

insensitive to the strain state of the buffer layer. This in agreement with ref. [186], which 
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points at the fact that full relaxation of similar GaN/AlN superlattices can be achieved after 

the growth of about 10 GaN/AlN periods independent of the substrate. 

 

 

Figure 6.15: a) ω-2θ scans around the (0002) reflection of as-grown and etched samples with d = 0.4 
µm and 0.1 µm. Superimposed in a darker color are the simulated profiles. Reciprocal space maps 
around the (-2025) reflection are shown for (b) as-grown TD0 and (c) etched into nanopillars with d = 
0.1 µm TD4. The vertical dashed line indicates the in-plane wavevector of the heterostructure 
(modified from ref [180]). 

 

6.3.2 Optical properties 

To get a first idea about the impact of the top-down processing on the optical 

characteristics, we have studied the PL emission of the heterostructures both at low 

temperature (10 K) and room temperature. Selected measurements are displayed in figure 

6.16. The PL peaks for all the samples are at the same position (with an error bar of ±0.5 nm). 

The emission is centered around 343 nm at room temperature and around 339 nm at 10 K. In 
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comparison, 3D calculations using nextnano3 predict interband transitions at 342 nm at 300 K 

and 335 nm at 10 K, in good agreement with the experimental results, confirming the validity 

of our calculations (note that excitonic effects are not taken into account by the software). 

However, the attenuation of the peak intensities at 10K after etching amounts to less 

than a factor of 2. Note that with etching we have removed 80% to 90% of the sample material 

(depending on the diameter to etch ratio of the pillars). The fact that the attenuation is not 

consistent with the magnitude of material removal indicates increased coupling of light for 

the pillar array as compared to the planar layers. The PL intensity (IPL) at 300 K is decreased 

with respect to the intensity at 5K for both as grown and etched samples, as expected. The 

IPL(300 K) / IPL(10 K) ratio shows a trend to smaller values with decreasing feature size, with 

the reduction being limited to a factor of 3 in the case of the sample with a diameter of 0.2 µm. 

Apparently, the processing induces some nonradiative defects at or close to the surface, which 

are activated at room temperature. However, it is a notable result that, even for the smallest 

pillar diameter, the non-radiative recombination is only moderately enhanced. Note that no 

additional processing for defect removal or surface passivation has been applied after the ICP 

etching process.  

 
Figure 6.16: PL of selected samples (a) at 300K, (b) at 10K (modified from ref [180]). 

Room temperature FTIR spectroscopy measurements were carried out, using TM/TE 

polarized light, to study ISB transitions in the samples. Normalized transmittance with TM 

polarized light through the samples are displayed in figure 6.17. The reason why transmittance 

is discussed in this section to describe ISB transitions, contrary to absorption in other sections, 

is due to the enhanced photonic crystal effects and differences in absorption with respect to 

the as-grown reference sample due to strain relaxation.  

Figure 6.17 (a), for example, displays transmittance at various angles of incidence 

compared to a measurement of the corresponding as-grown sample piece before etching. The 
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as-grown sample exhibits a dip in intensity at 1.5 µm (0.8 eV) corresponding to ISB absorption. 

As a comparison, 3D calculations using nextnano3, and including many-body effects, put the 

theoretical value at 1.53 µm (0.81 eV). After the sample is etched down to micropillars with 

d = 1.5 µm, the spectra exhibit several absorption related dips in intensity, which shift with 

the measurement angle. These features in the spectra can be attributed to the fact that the 

micropillar array constitutes a two-dimensional photonic crystal with a lattice constant on the 

order of the investigated wavelength range [45]. 

 

 

Figure 6.17: FTIR transmittance of the as-grown compared with the top-down-processed samples for 
samples with diameter, (a) d = 1.5 µm, (b) d = 0.4, 0.2, and 0.1 µm (top to bottom) for the different 
panels. The incident angle θin is indicated for each curve. The black lines in (a) show the dependence 
of the effective lattice constant on the incident angle (modified from ref [180]). 

For samples with smaller diameters, the normalized transmittance spectrum of the 

samples, displayed for both as-grown and after etching in Figure 6.17, shows ISB absorption 

at 1.5 µm. The dip in intensity does not shift with increasing angles, confirming its origin from 

ISB transitions. In line with the PL intensity, we do not have a significant degradation of the 

ISB absorption FWHM (table 6.3). Furthermore, the magnitude of the absorption dip at an 

angle of 30-35° is 67±8% in the as-grown samples and 72±12% in the samples etched into 
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nanopillars, which means that there is no degradation of the total ISB absorption in spite of 

the fact that 80%-90% of the material is removed on etching.  

6.3.3 Conclusion for top-down heterostructures 

We fabricated micro- and nanopillars with various pillar diameters and pitch by top-

down processing of planar GaN/AlN MQW structures. The top-down processing resulted in a 

relaxation of the strain in the GaN buffer layer. However, analyzing the reciprocal space maps 

showed that the GaN/AlN heterostructures were already fully relaxed for the as-grown 

samples and the relaxation was retained on etching. The PL emission of the heterostructure 

does not show any spectral shift for the processed samples. We showed that the improved in- 

and outcoupling of light for the pillar arrays compensates for the removal of a large part of 

the active region material through etching as seen from the PL intensity variations at 10 K. 

Only at room temperature, the non-radiative recombination at the pillar sidewalls has a 

moderate effect on the PL intensity.  

Concerning the IR absorption, we showed that when the spacing of the pillar array is 

comparable to the probed wavelengths, photonic crystal resonances dominate the absorption 

spectra. For subwavelength pillar arrays, where these resonances are at much shorter 

wavelengths than the ISB absorption, the absorption is clearly observed. We have shown that 

the magnitude and linewidth of the ISB absorption is preserved in spite of the low filling factor 

even when 80% or 90% of the material is etched away.  

 

6.5 General conclusions 

In summary, we synthesized GaN/AlN planar heterostructures with similar periodicity, 

varying dopant type (Si and Ge) and dopant concentration in the GaN sections. The Ge-doped 

planar heterostructures showed ISB absorption associated to the transition from the first to 

second electronic level in the QWs, covering the range of 1.45–1.75 μm. Identical behavior 

was observed in the Si-doped heterostructures used as a reference. To the best of our 

knowledge, these results constitute the first systematic study of ISB transitions in Ge-doped 

planar GaN based structures.  

We reported the first observation of ISB absorption in Si-doped GaN/AlN nanowire 

heterostructures with varying doping levels, which also lead to an improved FWHM of 

200 meV for the ISB absorption at 1.55 μm, compared to previous reports of Ge-doped 

nanowires. Based on this study we can conclude that both Si- and Ge-doped nanowires are 

potentially suitable for the fabrication of GaN/AlN heterostructures for the study of ISB 

optoelectronic phenomena. They are both promising for fabricating planarized nanowire 

based ISB devices. However, the ISB absorption linewidth, in the order of 200 meV, is 

significantly larger than that observed in planar structures, due to the inhomogeneities 

associated to the self-assembled growth process. 
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Trying to reduce the inhomogeneities while keeping the advantages of the nanowire 

geometry, we also presented a systematic analysis of ISB absorption in group-III-nitride micro- 

and nanopillars for different pillar diameters. We showed that when the spacing of the pillar 

array is comparable to the probed wavelengths, photonic crystal resonances dominate the 

absorption spectra, but when these resonances are at much shorter wavelengths than the ISB 

absorption, the absorption is clearly observed. Therefore, this work is opening the pathway 

for a microstructured group-III-nitride quantum-well IR photodetector and can be seen as a 

motivation to pursue the investigation of group-III-nitride pillars also for ISB emitter 

structures. 
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7. GaN/Al(Ga)N heterostructures for the mid-

wavelength IR range 
In this chapter, we present a study on the ISB characteristics of GaN/AlN and 
GaN/Al0.4Ga0.6N nanowire heterostructures structurally designed to absorb in the MWIR 
region. To redshift the ISB absorption, we follow two approaches. First, we increase the GaN 
well width in GaN/AlN heterostructures from 1.5 to 5.7 nm, which leads to a redshift of the 
ISB absorption from 1.4 to 3.4 µm. Second, we replace the AlN barriers by an Al0.4Ga0.6N 
ternary alloy, thereby reducing the effects of polarization, which leads to a redshift of the 
ISB transition to the 4.5 to 6.4 µm range.  

In this work, I performed the MBE growth, HRXRD, PL, SEM and FTIR measurements. STEM 
analysis was performed by Dr M. I. den Hertog and M. Spies. Theoretical calculations were 
performed by me and Dr E. Monroy. I was assisted by R. Blasco and J. Polaczyński with PL 
and SEM measurements respectively. The complete study was accepted for publication as, 
“Intersubband absorption in GaN nanowire heterostructures at mid-infrared wavelengths”, 
Nanotechnology 29 385201 (2018) [187]. 

 

In the previous chapter, we reported about doping control and improved ISB transitions 

in nanowires. However, considering this work and ref. [35], the observation of ISB absorption 

in GaN/AlN nanowire heterostructures was still limited to 1.3-1.95 µm. It is hence important 

at this point to venture further to longer wavelengths, which can be attained either by using 

larger QWs or by using AlGaN ternary alloys as QW barriers, thus reducing the internal electric 

field in the wells. 

 

7.1 Sample design 

The samples under study, their dopant concentration, Al content in the barriers, and 

other structural/optical properties are listed in table 7.1. We consider three different nominal 

architectures for the nanowire heterostructures:  

i) samples A1 to A3 consisted of 30 periods of GaN/AlN (4 nm / 3 nm) QWs,  

ii) sample B1 contained 19 periods of GaN/AlN (6 nm / 3 nm) QWs, and  

iii) samples C1 to C3 consisted of 30 periods of GaN/Al0.4Ga0.6N (4 nm / 3 nm).  

The reduction in the number of periods in (ii) aimed at keeping the active region thickness 

approximately constant.  

For comparison purposes, table 7.1 contains also samples NS1 and NS2 from section 6.2 

containing a GaN/AlN superlattice with similar AlN barriers (≈ 2.7 nm) and thinner GaN wells 

(1.7 and 1.8 nm, respectively).  

The growth of the entire nanowire except for the heterostructure was kept consistent 

with the growth of nanowires from section 6.2.1. Hence, a similar growth procedure is 

detailed here. Self-assembled (000–1)-oriented GaN nanowires with the above mentioned 
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heterostructures were synthesized using PAMBE. They were grown on floating-zone Si(111) 

substrates using nitrogen-rich conditions. The growth started with the deposition of an AlN 

buffer using a two-step procedure, as described in section 5.1. Then, a 700 nm long GaN base 

was grown at a substrate temperature TS = 810°C and with a growth rate of 330 nm/h. The 

GaN/(Al,Ga)N MQW was then deposited. The GaN QWs were grown using the same nitrogen-

rich conditions used to grow the GaN base and the AlN barriers were grown at stoichiometry. 

A 2 nm section in the center of the GaN QWs was doped with Si at various concentrations. The 

calibration of the dopant density was performed by Hall effect characterization using the Van 

der Pauw method on Si-doped planar GaN layers. The entire heterostructure was then capped 

with 30 nm of GaN.  

Note that samples A1 to A3 present a similar geometry as S1-S4 in ref. [35], displaying 

ISB absorption in the 1.60-1.95 µm range. However, we have significantly reduced the doping 

level, in an attempt to reduce the spectral blueshift of the ISB absorption due to many-body 

effects. Note that the surface doping density in ref. [35],  was 3.6 and 12×1013 cm2 (using Ge 

as a dopant), to be compared with 0.2 to 2×1013 cm12 in this work (using Si as a dopant). 

 

Sample 
 

Al 
(%) 

[Si] 

(cm3) 
Period 
(nm) 

GaN 
width 
(nm) 

PL 
peak 
(nm) 

e1-h1 
3D 

(nm) 

IR absorption 
peak 
(µm) 

e1e2 
1D 

(µm) 

NS1 100 3×1019 4.6±0.2 1.8±0.2 339±4 325 1.55±0.11 1.72 

NS2 100 1×1020 4.3±0.2 1.7±0.2 338±3 323 1.41±0.11 1.63 

A1 100 1×1019 7.0±0.3 3.7±0.3 445±9 453 1.74±0.13 2.21 

A2 100 3×1019 6.3±0.2 3.3±0.2 412±5 422 1.87±0.13 2.18 

A3 100 1×1020 6.8±0.2 3.7±0.2 430±12 425 1.78±0.12 2.18 

B1 100 1×1019 8.6±0.2 5.7±0.3 490±19 562 
504(*) 

3.4±0.5, 1.45±0.13 2.6 
3.0(*) 

C1 40 1×1018 6.2±0.2 3.7±0.4 368±3 358 -- 4.9 

C2 40 1×1019 6.6±0.2 4.0±0.4 365±3 365 -- 4.8 

C3 40 1×1020 5.7±0.3 3.7±0.4 362±2 351 6.4-4.5 4.6 

(*) Introducing 2 nm of graded alloy at the bottom interface of the well. 

Table 7.1: Structural and optical characteristics of the nanowire heterostructures: Al concentration in 
the barriers, Si concentration in the 2 nm doped region in the QWs, superlattice period (GaN+AlN) 
measured by XRD, GaN width estimated from the XRD and TEM measurements, PL peak wavelength 
with error bar representing the spectral width at 90% of the maximum intensity, theoretical calculation 

of the e1h1 transition in the wells at 5 K using the nextnano3 software in 3D, IR absorption peak 
wavelength with error bar representing the spectral width at 90% of the maximum absorption, 

theoretical calculation of the e1e2 transition in the wells using the nextnano3 software in 1D. 

7.2 Structural properties 

The morphology of the as-grown nanowire ensemble was studied by SEM using a Zeiss 

Ultra 55 or a Zeiss 55 microscope. Figure 7.1 presents tilted (≈ 45ᵒ) SEM images of samples A1 

and C1, containing GaN/AlN and GaN/AlGaN superlattices, respectively. The images present 
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the typical morphology of self-assembled GaN wires grown by PAMBE, without bending or 

deformation of the nanowire shape due to the presence of the heterostructures.  

 
Figure 7.1 Tilted (45ᵒ) SEM images of samples (a) A1 and (b) C1 (modified from ref. [187]). 

The average thickness of one period of the GaN+(Al,Ga)N MQWs was extracted from the 

inter-satellite angular distance of the XRD θ-2θ scan around the (0002) reflection. The results 

are listed in table 7.1, and exemplary diffractograms of samples A1, C3, and B1 are show in 

figure 7.2, together with simulations using the Rigaku HRXRD plugin of the Smart Lab Studio II 

software. The simulations considered planar layers with the structural parameters of the 

MQWs in table 7.1, and their strain state was considered as the only fitting parameter.  
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Figure 7.2 XRD θ-2θ scan of samples A1, C3 and B1. The scans are vertically shifted for clarity. Lighter 
shades are simulated data. Labels indicate the (111) reflection of the Si substrate, the (0002) reflection 
of the GaN stem, and the (0002) reflection of the MQW with its satellites (modified from ref. [187]). 

Detailed structural studies were conducted using HAADF-STEM performed on a probe-

corrected FEI Titan Themis microscope operated at 200 kV. The GaN width indicated in the 
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table 7.1 is an estimation based on the statistical analysis of HAADF-STEM images of selected 

samples. HAADF-STEM images of the active region of sample A1 with GaN/AlN MQWs with 4-

nm-thick GaN wells are shown in figure 7.3 (a) and (b). The well/barrier interfaces are 

chemically sharp, and we observe the presence of a ≈ 5-nm-thick AlN shell surrounding the 

GaN/AlN heterostructure, see for example figure 7.3 (b), which has been commonly observed 

on such nanowire heterostructures before [184,188,189], and is due to the low mobility of Al 

atoms on the nanowire sidewalls at the growth temperature [30].  

 
Figure 7.3: HAADF-STEM images and corresponding intensity profiles of the active region of a nanowire 
from samples (a,b) A1, (c,d,e,f) C2 and (g,h) B1. Dark/bright contrast corresponds to Al-rich/Ga-rich 
areas. (f) The “*” symbol in (f) indicates a region of higher intensity corresponding to increased Ga 
content in the AlGaN barrier (modified from ref. [187]). 

 

The shell thickness gradually decreases as we move towards the cap. The first two or 

three QWs are characterized by a narrower width and higher irregularity in the thickness, 
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which can deviate up to two monolayers (±0.5 nm) from the average. The broadening of the 

disks occurs during the growth, in an attempt to partially relieve the strain induced by the 

lattice mismatch between AlN and GaN. The first QWs are grown under different misfit stress 

conditions: the GaN stem, which is originally relaxed, becomes compressively strained along 

the growth axis during the growth of the MQW, due to the formation of the AlN shell [190]. 

The strain stabilizes after the growth of about 3 MQW periods [35,191], which leads in turn to 

the stabilization of the well width and diameter. 

Similar HAADF-STEM images of the active region of sample C2 with GaN/AlGaN MQWs 

are displayed in figures 7.3 (c), (d), (e) and (f). The nanowires present an Al-rich shell that 

envelops the MQWs and the stem. This shell is thinner (about 3-nm at the stem/MQW 

interface) than in the case of the binary MQWs, and its Al composition is higher than that of 

the barriers, although difficult to determine precisely. The ternary compound represents a 

reduction of misfit in comparison to AlN. Therefore, the diameter and width of the GaN wells 

is more homogeneous along the structure. However, the image contrast reveals certain 

composition inhomogeneities in the barriers. In some barriers we observe a brighter region in 

the center indicating a more Ga-rich region (see the “*” labelled region in figure 7.3 (f)). 

Moreover, near the nanowire sidewall, we first find a darker contrast followed by a brighter 

contrast in the AlGaN barrier indicating radial composition inhomogeneities (see bottom 

region of figure 7.3 (d)).  

Figure 7.3 (g) and (h) present HAADF images of sample B1, the GaN/AlN heterostructure 

with ≈ 6 nm GaN wells. From the intensity profile in the inset of figure 7.3 (h) we see that the 

interface of AlN grown on GaN is sharper than the interface of GaN grown on AlN, which 

extends by around 1.5-2 nm. Note that this asymmetry can influence the confinement of 

carriers in the well, as it will be discussed later. Asymmetry at the interfaces, involving 

intermixing or alloying, is often found in GaN/AlN MQWs in nanowires with large wells, and it 

is explained by the strain evolution of GaN during the growth process [191]. Indications of 

graded GaN-AlN interfaces are also reported in Ga-polar GaN/AlN QWs grown by metalorganic 

vapor phase epitaxy [192], and are attributed to the instability of the GaN/AlN interface under 

strain [193]. In this latter case, it is possible to attenuate the interdiffusion by forcing a 

compressive strain in the layers [192] and reducing the growth temperature [194], which can 

be combined with a pulsed injection process [195]. However, in the case of nanowire growth, 

such tuning of the growth conditions leads also to modifications of the nanowire diameter 

and shape.  

 

7.3 Optical properties 

The band-to-band behavior of these samples was studied by low-temperature PL at 5K. 

The PL peak wavelengths are summarized in table 7.1. As an example, the inset of figure 7.4 

presents the PL spectra of samples NS1, A1 and B1, illustrating how the emission redshifts 

with increasing QW width in GaN/AlN heterostructures. In most of the samples, a weak PL 

emission from the GaN stem is visible at around 360 nm (3.44 eV), for example for sample A1 
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in the inset of figure 7.4. This indicates that the stem is significantly strained due to the AlN 

shell, as the unstrained GaN emits rather at 357 nm (3.47 eV) as observed in the PL studies in 

section 6.2.2.  

 
Figure 7.4: Theoretical value of the e1-h1 transition in GaN/AlN nanowires with varying well thickness, 
calculated using the nextnano3 software in 3D (solid lines) and 1D (dashed lines). Data points indicate 
the PL peak wavelength of the samples under study, with horizontal error bars representing the 
uncertainty in the well thickness and vertical error bars representing the spectral width at 90% of the 
maximum PL intensity (simulations and experimental data at 5 K). Inset: Normalized low temperature 
(5 K) PL spectra of samples NS1, A1 and B1. (Modified from ref. [187]). 

In figure 7.4, the peak emission wavelength of the GaN/AlN samples under study is 

compared with theoretical calculations. Note that the experimental points are plotted with a 

horizontal error bar that represents the error in the determination of the GaN well width, and 

a vertical error bar that indicates the spectral width at 90% of the maximum intensity. 

Theoretical calculations were performed in 1D (dashed lines) and 3D (solid lines) for various 

doping levels, indicated by different colors. In general, the result of 3D calculations deviates 

slightly from the 1D approximation due to the strain distribution in the wire, particularly the 

effect of the compressive stress along the nanowire axis imposed by the presence of the AlN 

shell. Increase in doping for the same QW dimensions results in blueshifting of the PL emission 

due to screening of the internal electric field. For higher doping levels, the deviation between 

1D and 3D calculations becomes more significant, since it is easier to screen the internal 

electric field in the nanowire geometry, as previously demonstrated [142,143]. 
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Figure 7.5: Calculations of the band diagram of a GaN/AlN multi-quantum-well structure with the 
dimensions of B1, presenting (a) sharp GaN/AlN interfaces, and (b) a 2-nm graded interface (first 
interface of the well along the [000-1] growth axis). The squared wave functions for the three first 
electron levels (e1, e2, e3) and the first hole level (h1) are also represented. The calculations were 

made in 1D using the self-consistent 8-band kp Schrödinger-Poisson solver of nextnano3 (modified 
from ref. [187]).  

The experimental points match the theoretical calculations within their error bars, with 

the exception of sample B1, emitting at 490±19 nm, which is far from the 562 nm theoretically 

predicted. The explanation to this discrepancy is found looking back at the structural 

characterization of the sample. Structural characterization had, in the previous section, 

showed that the first interface of the well along the growth axis presents a GaN-AlN 

intermixing area that can extend 1.5-2 nm. To visualize the effect of such an interface on the 

band diagram, figure 7.5 (a) and (b) presents 1D calculations of the band diagram of a GaN/AlN 

MQW structure with the dimensions of B1. We compare a structure (a) with sharp GaN/AlN 

interfaces and (b) with a 2-nm graded interface (first interface of the well along the growth 

axis, in agreement with our observations). The squared wave functions for the three first 

electron levels (e1, e2, e3) and the first hole level (h1) are also displayed in the figure 7.5. Due 

to the sign of the electric field in the wire, the graded interface corresponds to the area of 

highest probability of localization of the electrons within the well. Therefore, the shape of the 

electron wave functions is very sensitive to the interface quality. As the interface gets broader, 

the electron and hole wave functions get closer along the growth axis and the e1h1 transition 

energy blueshifts. Considering the geometry of B1, the theoretical wavelength associated to 

the e1h1 transition becomes 504 nm (see table 7.1), now within the error bar of the 

experimental value (490±19 nm). 

In the case of GaN/AlGaN heterostructures i.e., samples C1-C3, their emission spectra 

are clearly blueshifted with respect to GaN/AlN samples of similar dimensions (PL peak 

between 362-368 nm for samples C1-C3, to be compared with peaks between 430-445 nm for 
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samples A1-A3), due to the reduction in the internal electric field when lowering the Al 

content. The experimental emission wavelength shows good agreement with 3D calculations 

of the electronic levels, as shown in table 7.1. 

Room-temperature FTIR spectroscopy was used to study the ISB absorption in these 

heterostructures. Transmission dips assigned to ISB absorption appear only at grazing angles 

between 5-20° and for TM-polarized light. To correct the spectral variation of the light 

intensity and the effect of the substrate, spectra are divided by the transmittance of a 

reference sample containing undoped GaN nanowires with the same total length as the ISB 

samples. The transmittance of this reference sample is very similar to that of the samples with 

GaN/(Al,Ga)N heterostructures when measured at larger angles of incidence (≈ 30-50°), both 

for TE and TM polarized light.  This is explained by the decrease of the ISB absorption at large 

incidence angles, in agreement with the polarization selection rules [80]. 

The normalized absorption spectra for TM polarization are displayed in figure 7.6. The 

absorption bands are about 250-300 meV broad. Within the GaN/AlN samples (NS1-NS2, A1-

A3 and B1), the absorption shifts to lower energies (longer wavelengths) for increasing well 

width.  The longest peak absorption wavelength is 3.4±0.5 µm, obtained for B1, which is the 

longest intraband absorption wavelength reported in GaN/AlN nanowires, to the best of our 

knowledge. In the case of B1, a broader and less intense secondary absorption band appears 

at higher energies (peak absorption wavelength ≈ 1.45±0.13 µm). 

The ISB absorption bands presented here are significantly narrower than results in ref. 

[35], where a FWHM of about 400 meV was measured. This is explained by the higher 

uniformity of the heterostructure dimensions along the nanowire axis, in terms of both 

diameter and thickness. On the other hand, here the transitions appear redshifted in 

comparison to ref. [35]. The difference is particularly striking when comparing sample S6 in 

ref. [35] (6 nm GaN / 4 nm AlN, absorbing at 1.74 µm) with B1 (5.7 nm GaN / 2.9 nm AlN, 

absorbing at 3.4 µm). Interpretation of these results requires careful comparison with 

simulations taking into account the surface doping density (e.g. [Ge] = 5×1013 cm2 for S6 vs. 

[Si] = 2×1012 cm2 for B1) and the resulting many-body effects.  

The experimental peak absorption wavelengths are compared with 1D calculations in 

table 7.1. Unfortunately, the complexity of the problem did not allow a systematic calculation 

in 3D using the nextnano3 software, due to the high number of laterally-confined electron 

states located at energies between the ground electron state e1 and first vertically-confined 

state e2. However, given the proximity of 1D and 3D calculations, in figure 7.4 and section 6.2, 

1D calculations should provide a reasonable description of the intraband phenomena. The 

theoretical values presented in the table are corrected to account for the blueshift associated 

to the exchange interaction and plasmon screening or depolarization [80,82], as described in 

ref. [196]. 
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Figure 7.6: Normalized IR absorption for TM-polarized light measured at grazing incidence (≈ 10°). 
Spectra from samples with different doping levels are vertically shifted for clarity (modified from ref. 
[187]). 
  

The peak intraband absorption of samples NS1-NS2 and A1-A3 follows the theoretical 

trend for e2e1, keeping always slightly blueshifted with respect to the calculations. This 

deviation could be explained as due to the error associated to modelling the structure as 1D 

(see figure 9.8 in section 9.1.3 which compares results of 1D and 3D calculations in nanowires 

containing GaN/AlN heterostructures with and without AlN shell). On the contrary, sample B1 

appears strongly redshifted with respect to the theory (experimentally at 3.4±0.5 µm, 

expected at 2.6 µm). Looking back at figure 7.5, the location of the electron levels is very 

sensitive to the presence of the graded interface. Taking into account the results in figure 

7.5(b) with a 2-nm-thick linearly graded interface, the predicted e2e1 energy is 3.0 µm, within 

the error bar of the experimental result, whereas the secondary absorption at higher energy 

is assigned to transitions to higher electron states. Note that the energy difference between 

e3 and e1 would explain a transition at 1.7 µm. 

The optical behavior of B1, with a blueshift of the interband emission and a redshift of 

the intraband absorption with respect to theoretical calculations, could be misinterpreted as 

a decrease of the quantum confined Stark effect in the nominal structure, which has often 

been claimed in GaN/AlN nanowire heterostructures [183]. A decrease of the internal electric 

field could be justified by defect-assisted strain relaxation or by the compressive effect of the 

AlN shell (the latter was already taken into account in our model). Our results here show that 

it is important to perform advanced structural studies to assess the quality of the 

heterointerfaces in order to understand the origin of the optical features, and distinguish 

between interface-related and defect-related phenomena.  

In the case of nanowires containing GaN/Al0.4Ga0.6N heterostructures, FTIR transmission 

measurements did not reveal any indication of intraband absorption in samples C1 and C2. 
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However, C3, the most heavily doped sample, presents an absorption band at 6.4-4.5 µm that 

appears only for TM-polarized light and under grazing incidence. This band is slightly 

redshifted with respect to the expectations (4.6 µm obtained from 1D calculations), which can 

be justified by the strain distribution in the heterostructure due to the presence of the AlN 

shell. 

 

7.4 Conclusion 

In conclusion, we synthesized self-assembled GaN/AlN and GaN/Al0.4Ga0.6N nanowire 

heterostructures structurally designed to absorb in the MWIR wavelength region. In the case 

of GaN/AlN heterostructures in GaN nanowires, we varied the GaN well width from 1.5 to 

5.7 nm. Heterostructures with 1.5-4 nm wells present sharp GaN/AlN interfaces. However, in 

larger wells (5.7 nm), one of the GaN/AlN heterointerfaces was not sharp but rather a graded 

alloy, which extends by around 1.5-2 nm and has strong influence on the electron wave 

functions in the well. Increasing the GaN well width in the heterostructures, we observe a 

redshift of the PL emission and a redshift of the ISB absorption from 1.4 to 3.4 µm, at room 

temperature. The results agress well with theoretical models, taking into account the 

structural characteristics (including AlN shell and GaN/AlN interface sharpness or intermixing) 

and many-body effects associated to the doping level. For GaN/Al0.4Ga0.6N heterostructures, 

the ternary compound represents a reduced polarization, which leads to the blueshift of the 

band-to-band transitions and redshift of the ISB transitions. As a result, we obtained TM-

polarized absorption in the 4.5-6.4 µm wavelengths. 
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8. Nonpolar heterostructures for the far-IR range 
 

In this chapter, we assess the possibility to observe ISB transitions in the 1.5–9 THz frequency 
range in nonpolar m-plane GaN/AlGaN MQWs, covering most of the 7–10 THz band 
inaccessible to GaAs based technologies. Such nonpolar structures present inhomogeneities 
of the Al composition in the barriers along the growth axis, however we did not identify any 
extended structural defects introduced by the epitaxial process. We study the effect of 
varying the Si doping concentration and we explore the effect of using Ge as a dopant. 

For the study of ISB transitions using non-polar m-plane GaN/AlGaN, I performed the AFM, 
PL and FTIR measurements, in collaboration with C. B. Lim. XRD characterization was 
performed by J. Schörmann, and C. B. Lim was in charge of the MBE growth. STEM 
measurements were performed by C. Bougerol and B. Haas. Results were published in 
“Nonpolar m-plane GaN/AlGaN heterostructures with ISB transitions in the 5–10 THz band”, 
C. B. Lim et al., Nanotechnology 26,  435201 (2015) [47].  

Regarding the study of the effect of the doping concentration and the nature of the dopant 
on non-polar m-plane GaN/AlGaN, I performed the AFM and PL. I assisted C. B. Lim in FTIR 
measurements. C. B. Lim was in charge of the MBE growth. STEM measurements were 
performed by C. Bougerol. Results were published in “Effect of doping on the far-IR ISB 
transitions in nonpolar m-plane GaN/AlGaN heterostructures”, C. B. Lim et al., Nanotech. 
27, 145201 (2016) and “Effect of Ge-doping on the short-wave, mid and far-IR ISB transitions 
in GaN/AlGaN heterostructures”, Semicond. Sci. Technol. 32 125002 (2017) 

 

Using c-plane GaN/AlN QWs, the ISB absorption can be tuned in the 1.0–3.5 μm 

wavelength range by changing the QW thickness from 1 to 7 nm [73,194,197–199]. In addition 

to QWs, we have explored the use of nanowires in this spectral region. However, to shift the 

absorption towards longer wavelengths, it is necessary to reduce the polarization-induced 

internal electric field even further, which can be attained by using ternary AlGaN barriers with 

reduced Al mole fraction. Varying the geometry and composition of the barriers, the ISB 

absorption in AlGaN/GaN QWs can be tailored to cover the range up to 10 μm [200–205]. 

Reducing the ISB transition energy below 60 meV (wavelength > 20 μm) requires further band 

engineering to compensate the internal electric field in the QWs, which is only achieved by 

implementation of complex multi-layer QW designs [206–209]. The use of nonpolar 

crystallographic orientations, particularly the m-plane, is a promising alternative to obtain 

GaN/AlGaN QWs without internal electric field [46–48]. 

We have recently reported that the (1-100) m-plane is the best nonpolar 

crystallographic orientation for ISB applications, based on comparative results with the (11-

2̄0) a-plane [48]. MWIR ISB absorption in the 4.0 to 5.8 μm (310 to 214 meV) range has been 

observed on m-plane GaN/AlGaN MQWs [48,210], and photodetection at 7.5 and 9.3 μm (165 

and 133 meV, respectively) has been demonstrated at 14 K using m-InGaN/(Al)GaN MQWs 

[211]. ISB absorption in the 3.77–6.31 THz window (15.6–26.1 meV) using nonpolar m-

GaN/AlGaN MQWs was first shown by Edmunds et al. [46]. 
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High doping levels are known to significantly perturb the IR absorption spectrum. In the 

SWIR, the exchange interaction (dominant many-body mechanism) leads to a blueshift of the 

ISB transitions in c-plane GaN/AlN MQWs [14]. In the MWIR, using c- and m-plane GaN/AlGaN 

MQWs, high doping levels lead to the broadening of the ISB transition. Also, the expected 

redshift due to the screening of the internal electric field is over-compensated by the blueshift 

induced by exchange interaction and the now dominant depolarization [15, 16]. Moreover, 

results from section 6.1 have shown that Ge is a potential dopant for ISB technology.   

 In this chapter, we extend the study to cover the 1.5–9 THz frequency range with 

nonpolar m-plane GaN/AlGaN MQWs. We explore the effect of both Si and Ge doping on the 

low-temperature ISB absorption of nonpolar m-plane GaN/ AlGaN MQWs designed for ISB 

absorption in the THz range (FIR). 

 

8.1 Sample design and growth 

The samples under study consist of 40-period m-plane GaN/AlGaN MQWs grown by 

PAMBE. They were grown on free-standing semi-insulating (s.i.) Fe-doped m-GaN platelets 

sliced from (0001)-oriented GaN boules synthesized by hydride vapor phase epitaxy (resistivity 

> 106 cm, dislocation density < 5×106 cm-2). The samples were grown at a substrate 

temperature Ts = 720°C and with a nitrogen-limited growth rate of 0.5 ML/s (≈ 450 nm/h). 

Growth was performed under the optimum conditions for c-GaN, i.e. slightly Ga-rich 

conditions. 

 For ISB transitions in the FIR region, we used larger QWs than in the SWIR and MWIR 

region. The QW widths were varied so that we obtain ISB absorption in the range of 4.8-8 THz 

(19.7-33 meV) as indicated in table 8.1. The barriers were designed to be around 20 nm to 

avoid coupling between the wells. They were composed of AlGaN with Al content below 10%, 

which reduces the lattice mismatch in the structure. The GaN wells were homogeneously 

doped with silicon at a concentration of 3×1018 cm-3 and, to prevent surface effects, the MQW 

structures were capped with a 50 nm AlGaN layer with the same Al content as the barriers. 

Figure 8.1 shows (a) a sketch of the sample structure and (b) the band diagram of sample 

E3419m calculated using 1D nextnano3. 
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Figure 8.1: (a) Sketch of the sample structure. (b) Conduction band diagram with the three first 
electronic states and their square wave functions of a QW in the center of the active region of sample 
E3419m  (Modified from ref. [47]). 

 

Sample 
tQW 

(nm) 
tB 

(nm) 
xB 

(%) 
Period 
(nm) 

ωMQW 
(arcsec) 

ωGaN 
(arcsec) 

simulated e2-
e1 (meV) 

ISB central energy 
[window] (meV) 

E3420m 9.5 21.7 8 31.2 Δωc = 35 
Δωa = 34 

Δωc = 34 
Δωa = 39 

33 25.4 
[13.4-37.4] 

E3419m 10.0 18.5 7.5 28.5 Δωc = 38 
Δωa = 35 

Δωc = 35 
Δωa = 36 

30.5 27.1 
[18.1-36.1] 

E3424m 10.4 21.2 7.5 31.6 Δωc = 22 
Δωa = 31 

Δωc = 24 
Δωa = 39 

30.3 21.3 
[6.3‒36.3] 

E3423m 12.9 21.1 6 34.1 Δωc = 38 
Δωa = 28 

Δωc = 42 
Δωa = 29 

19.7 20.9 
[7.9‒33.9] 

Table 8.1: Structural and optical characteristics of the m-plane GaN/AlGaN MQWs: QW and barrier 
thickness (tQW and tB, respectively); Al composition of the barriers (xB); MQW period measured by HR-

XRD; FWHM of the -scan of the (3-300) x-ray reflection of the MQWs (MQW) and of the GaN 

substrate (GaN), measured in the c and a directions (c and a, respectively); simulated ISB 
transition energy; measured ISB transition energy window and central energy. 
 

The samples for studying the effect of doping consisted of a series of 40 periods of m-

plane GaN/AlGaN (10 nm GaN/18.5 nm Al0.075Ga0.925N) MQW structures where the doping 

densities in the GaN QW was varied using both Si and Ge as dopant. The list of samples are 

provided in table 8.2. The entire structure of the sample is identical to the sample E3419m but 

with different doping densities. They hence follow the structure described in figure 8.1 (a).  

 

Sample Dopant 
nS 

(cm-2) 
ωMQW 
(arcsec) 

ωGaN 
(arcsec) 

ISB central energy 
(meV) 

absorption per pass 
(%) 

E3445m Si 3×1012 23 22 35.5 9.1 

E3447m Si 1×1012 44 33 28.2 10.0 

E3448m Si 3×1011 20 19 31.0 7.3 

E3449m Si 1×1011 35 35 27.6 2.9 

E3643m Ge 5×1012 48 40 24.1 13 

E3541m Ge 2×1012 46 38 23.5 19 
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E3540m Ge 5×1011 52 42 25.1 19 

Table 8.2: Structural and optical characteristics of the m-plane GaN/AlGaN MQWs: doping 
concentration5; FWHM of the ω-scan of the (3-300) x-ray reflection of the MQWs and of the GaN 
substrate measured with the c direction in the diffraction plane; measured ISB transition energy; ISB 
absorption per pass. 

 

8.2 Structural characterization  

Figure 8.2 shows the surface of a typical sample measured by AFM. We observe surfaces 

with a smooth morphology down to the atomic scale, having an RMS roughness of 0.28 nm. 

We did not observe significant differences as a function of the doping level or the nature of 

the dopant. The systematic atomic steps are indicative of step flow growth. This is a convincing 

proof of not having very serious distortions in the QW structures. Similar structures with 

higher Al content in the barriers were reported to have a degraded morphology [212]. 

Indicating a significant improvement of the sample morphology when reducing the Al mole 

fraction in the barriers, i.e. when reducing the lattice mismatch in the structure.  However, a 

few cracks (between 1 and 5 cracks within an overall distance of 5 mm) propagating along the 

a direction were observed in nanostructures with a total MQW thickness above 1.2 µm and 

an average Al composition around 5%, which is in agreement with ref. [213]. This is consistent 

with the higher tensile stress along the c direction (GaN/AlN lattice mismatch = 3.9%) with 

respect to the in-plane a direction (GaN/AlN lattice mismatch = 2.4%).  

 

 
Figure 8.2: AFM image of sample E3540m showing smooth surface morphology (RMS = 0.28 nm), 
comparable to that observed on the Si-doped FIR structures (modified from ref. [179]). 

 

For the first set of samples, the varying well width, the periodicity and the average Al 

contents of the structures were measured by HRXRD. Figure 8.3 displays -2θ scans along the 

(3-300) reflection of samples E3420m and E3423m, together with simulations assuming that 

                                                      
5 Doping concentration is described here in cm-2 for ease of calculation and for comparison with 
literature. The conversion follows, nS (cm-2) = n(cm-3)×thickness of the quantum well.  
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the quantum structures are fully strained on the GaN substrate. The periods of the MQWs 

extracted from the inter-satellite distance are summarized in table 8.1. The FWHM of the -

scans were measured for the substrate and the MQW zero-order (3-300) reflection with the 

c-axis and the a-axis in the plane of diffraction (Δc and Δa, respectively). Both Δc and Δa 

remain in the 30±8 arcsec range for all the MQWs, and these values are similar to those 

measured for the substrate reflections. This is probably indicative for the absence of extended 

defects like dislocations or stacking faults. 

 

 
Figure 8.3: HR-XRD ω-2θ scans of the (3-300) reflection of samples E3420m and E3423m. Simulations 
assume the structures fully strained on the GaN substrate (Modified from ref.  [47]). 

We verified that there is no significant variation of the HR-XRD diffractograms for Ge- 

and Si-doped samples, as illustrated in figure 8.4, which displays the ω-2θ scans around the 

(3-300) reflection of E3643m (Ge-doped) and E3445m (Si-doped). 
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Figure 8:4: HR-XRD ω-2θ scans of the (3-300) reflection of samples E3643m (Ge-doped) and E3445m 
(Si-doped).  

The structures were further analyzed by HAADF-STEM and HRTEM. Figure 8.5 (a) and (b) 

show cross-section HAADF-STEM images covering the entire MQWs of sample E3419m, 

viewed along (a) <0001> and (b) <11-20> respectively. The QW interfaces are uniform along 

the two perpendicular directions, confirming the 2D nature. It is quite clear that no 

dislocations or stacking faults appear in the epitaxial layers, which was further confirmed by 

HRTEM measurements (not shown).  

 

Figure 8.5 Cross-section HAADF-STEM images of sample E3419m viewed (a) along <0001>, and (b) 
along <11-20>. Dark layers correspond to the AlGaN barriers/cap and bright layers correspond to GaN 
(Modified from ref. [47]). 

Figure 8.6 (a) presents a HAADF-STEM view of part of the heterostructure in the middle 

of the sample E3419m (same as in figure 8.5). We find that the AlGaN barriers have an 

inhomogeneous contrast with dark lines parallel to the QW interfaces. This contrast is 
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assigned to alloy inhomogeneity along the growth axis, as confirmed by the absence of 

extended defects in the high-resolution image in figure 8.6 (b). From the intensity profile 

extracted from figure 8.6 (a), the alloy fluctuations in the barriers reach ± 30% of the average 

concentration. This fluctuation has been qualitatively confirmed by EDX analysis. 

  

Figure 8.6: (a) Cross-section HAADF-STEM image of sample E3419m viewed along <11-20> and 
intensity profile along <10-10>. (b) High-resolution HAADF-STEM image of the barrier/QW interface 
showing that the variations of contrast in the image are not associated to structural defects. Layers 
with dark and bright contrast correspond to the AlGaN barriers and GaN QWs, respectively (Modified 
from ref. [47]). 
 

Similar STEM studies were performed on Ge-doped sample E3541m and the results are 

displayed in figure 8.7, similar to the Si-doped E3419m, alloy inhomogeneities are visible in 

the AlGaN barriers.  
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Figure 8.7: Cross-section HAADF-STEM images of (a), (b) Ge-doped sample E3541m viewed along 
<0001>. The images show two QWs in the middle of the stack. Clear areas correspond to GaN, darker 
contrast reveals the presence of aluminum. (Modified from ref. [196]) 
 

 

8.3 Optical characterization 

We performed temperature-dependent PL measurements on these samples. Figure 8.8 

(a) shows a typical PL spectrum of the series, obtained for E3423m as a function of 

temperature in the range 5 to 300 K. The low temperature spectrum (with the highest peak 

intensities) is dominated by the excitonic line associated to the MQWs (indicated as MQW 

peak), together with its LO-phonon replicas. At high energy, the emission from the AlGaN cap 

layer is visible, but it is rapidly quenched for increasing temperatures. The AlGaN cap layer 

peak position is consistent with the estimated AlGaN band gap. Figure 8.8 (b) shows the 

variation of the MQW peak intensity versus temperature. Two decay pathways can be 

distinguished. We can calculate the corresponding activation energies Ea and Eb extracted 

from,  

I =
I0

1+α1 exp(−
Ea
kT

)+β1 exp(−
Eb
kT

)
                                       (equation 8.1) 

where 𝐼 is the PL intensity, 𝐼0 the PL peak intensity, 𝛼1 and 𝛽1 are constant parameters, 𝑘 is 

the Boltzmann constant, and 𝑇 is the sample temperature during the measurement.  

The MQW line shows a low activation energy (𝐸𝑎 = 4.6±0.3 meV) at lower temperatures 

and a higher activation energy (𝐸𝑏 = 43±5 meV) at higher temperatures. The first activation 

energy is related to the thermal detrapping of donor bound states to free exitons [167], i.e. 
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the excitons that are trapped around donor impurities obtain energy to become free excitons. 

The higher activation is the energy required for the activation of non-radiative recombination, 

since the decrease in intensity is due to an increase in a non-radiative recombination process 

[214]. 

 

Figure 8.8 (a) Variation of the PL spectrum of sample E3423m as a function of temperature, from 5 to 
300 K. (b) Variation of the PL intensity of the MQW-related PL peak with temperature. Squares 
correspond to the experimental data and the red solid line corresponds to the fit to equation 8.1 (c) 
Temperature dependent energy of GaN and AlGaN interband transitions in sample E3423m and fit to 
the Varshni law (Modified from ref. [212]) 

 

The thermal shift of the GaN MQW transition is presented in figure 8.8 (c) and is well 

described by the Varshni law (equation 2.2), with the Varshni and Debye coefficients 

αV = 0.590 meV/K and βD = 600 K, respectively, which is in complete agreement with the 

temperature-induced bandgap quenching in c-GaN/AlN MQWs described by ref. [215].  

The high-energy line around 3.55 eV is associated to the emission from the AlGaN cap 

layer. Taking into account the penetration depth of the laser (excitation at 244 nm) and the 

geometry of the sample, the PL emission originates only from the cap layer and the two or 

three topmost QWs.  

On the other hand, the thermal shift of AlGaN presents a marked S-shaped behavior, 

characteristic of AlGaN alloys [114,166]. For temperatures above 100 K, the emission redshifts 

following the semiconductor band gap i.e.  the PL energy follows the Varshni law. However 

while increasing the temperature, the emission first blueshifts up to about 100 K and this is 

attributed to the transition from localized to extended bandtail states. Such localization could 

originate from variations of thickness, interface roughness, or alloy inhomogeneity. In our 

case, the STEM images revealed sharp interfaces and regular QWs. In addition, having such 

large QWs makes a variation of thickness unlikely to induce such localization. However the 
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STEM images have shown alloy fluctuations and the origin of the inhomogeneous potential 

distribution leading to exciton localization can be easily assigned to the alloy inhomogeneity.  

The effect of the doping density on the PL emission energy and broadening is negligible 

in the range under study. This is due to the fact that, first, in nonpolar QWs there is no electric 

field to be screened by carriers, and second, the surface dopant densities used should not 

have a large effect on the band-to-band transition (the shift due to band filling is < 60 meV, 

and it is partially compensated by bandgap renormalization [152]).  

The ISB absorption of the samples was characterized by FTIR spectroscopy performed at 

5 K. Using sample E3419m as an example, figure 8.9 (a) illustrates typical TE- and TM-polarized 

THz transmission measurements, and figure 8.9 (b) compares the same transmission spectrum 

for TM-polarized light with that of the substrate. The inset of figure 8.9 (a) shows a magnified 

view. The apparent noise superimposed on all the spectra is an oscillation with nearly-regular 

periodicity in energy, which is assigned to a Fabry-Pérot interference. Using the refractive 

index of GaN in the FIR range from ref. [216], the cavity length associated to the interference 

is ≈ 350 µm, corresponding to the overall thickness of the samples. The transmission spectra 

for TE-polarized light present additional Fabry-Pérot oscillations associated to the MQW 

layers. In contrast, the transmission spectrum for TM-polarized light exhibits an easily 

discernible broad dip, in the 3-8 THz range in the case of sample E3419m, which is assigned to 

ISB absorption, following the polarization selection rule. This is confirmed by comparing the 

TM-polarized spectra of the sample and substrate (figure 8.9 (b)). In the inset of figure 8.9 (b), 

we display the normalized broadening of the absorbance (energy broadening divided by the 

central energy) as a function of the doping density in the MQWs. Hollow square symbols are 

extracted from ref. [46], and the full round symbol corresponds to our work. 
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Figure 8.9: (a) Transmission spectra of TM and TE-polarized light of sample E3419m measured in the 
THz range at 5 K. Inset: Magnification of the transmission spectra showing Fabry-Pérot oscillations. (b) 
Transmission spectra of TM-polarized light of sample E3419m and of the substrate, measured in the 
THz range. Inset: Normalized broadening of the absorbance as a function of the doping density in the 
MQWs. Hollow square symbols are extracted from ref. [46], and the full round symbol corresponds to 
this work. (Modified from ref. [47]) 

 

We can define the normalized absorbance as 𝐴 = 1 − 𝑇𝑀𝑀𝑄𝑊 𝑇𝑀𝑠𝑢𝑏⁄ , where TMMQW 

and TMsub are the TM-polarized transmission of the MQWs and of the substrate, respectively. 

Figure 8.10 presents the normalized absorbance of the samples under study for TM-polarized 

light, extracted from the transmission measurements. TM-polarized absorption is observed 

over a broad spectral window, ranging from 6.3 to 37.4 meV (1.5 to 9 THz). The extreme values 

and the peak energy of the absorption band are summarized in table 8.1. The central energy 

decrease from 27.1 to 20.9 meV (6.5 to 5 THz) as the QW width increases is consistent with 

the trend of the simulations. The entire ISB absorption window ranging from 6.3 to 37.4 meV 

(1.5 to 9 THz), provides experimental evidence that ISB transitions in GaN MQWs can cover 

the THz spectral range forbidden to GaAs. These results complete the work of ref. [46], which 

demonstrated THz ISB absorption (15.6-26.1 meV) in m-plane GaN/AlGaN MQWs.  The broad 

absorption bands are consistent with the doping density in the QWs, i.e. at least three times 

higher than in Ref. [46], as illustrated in the inset of figure 8.9 (b).  
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Figure 8.10: Normalized absorbance of TM-polarized light for the samples under study in the THz range 
at 5 K. Data are vertically shifted for clarity. The striped and shadowed areas represent the phonon 
absorption bands of GaAs and GaN, respectively. (Modified from ref. [47]) 

The measured ISB transition energies for different doping densities and dopants are 

recorded in table 8.2 and the normalized absorbance is displayed in figure 8.11 (a) and (b). For 

the Si doped samples, with increase in doping densities, we observe an increase in transition 

energy. For equivalent doping densities, the Ge-doped structures show ISB absorption peaks 

with smaller energy broadening than for the Si-doped structures. When increasing the Ge 

doping density, we observe a slight widening of the ISB absorption peak and no shift of the 

ISB energy. However we have to note that high doping density results in higher absorption 

which saturates when the Fermi level approaches the first excited electron state e2 (the Fermi 

level is calculated to reach e2 for a doping concentration of 2.3×1012 cm−2).  
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Figure 8.11: Normalized absorbance of TM-polarized light of (a) Si-doped (b) Ge-doped samples at 
T = 5 K. Data are vertically shifted for clarity. The dashed line indicates the theoretical ISB transition 
energy. (c) Normalized linewidth of the absorbance as a function of the doping density in the MQWs. 
The dashed line indicates the theoretical trend, not taking into account the population of the first 
excited state. (Modified from ref. [196]) 

 

The normalized linewidths (energy broadening divided by the peak energy, E/E) of the 

absorbance spectra are plotted in figure 8.11 (c), and are compared to theoretical calculations. 

These calculations were based on the models in ref. [217,218], and we calculated the 

normalized linewidth at low doping density (1×1011 cm-2) taking into account the scattering by 

interface roughness (dominant at this low doping density), longitudinal acoustic and optic 

phonons and alloy disorder. In our estimation, we set the mean height of the roughness 

parameter to Δ = 0.2 nm and adjusted the correlation length to λ = 70 nm, values that are 

consistent with AFM measurements. When increasing the Si concentration, the scattering by 

ionized impurities becomes dominant and sets a linear dependence of the linewidth on the 

doping density. From our experiment, increasing the doping concentration by one order of 

magnitude increases the normalized linewidth by a factor of 4.4. 

With increase in dopants, the transition in figure 8.11 (a) of Si-doped samples presents 

a blueshift that is assigned to many-body effects as described in section 2.3.2, namely exciton 

shift, exchange interaction and plasmon screening. Note that, from our calculations, the 

exciton shift for the considered doping densities is of the order of 10-14 meV, i.e., negligible. 

The experimental results present a blueshift, as predicted by theory for the Si-doped samples 
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as shown in figure 8.12. However, the magnitude of the shift in the most heavily doped 

samples (E3445m and E3447m) is smaller than expected. The deviation might be attributed to 

the population of the excited electron state, consistent with the saturation of the absorption. 

Our study completes the recent work of ref. [218] on m-GaN/AlGaN MQWs showing ISB 

transitions in the MWIR region. They had developed a model that both calculates the blueshift 

caused by many-body effects on the transition energy, and quantifies the effect of scattering, 

mainly due to interface roughness, LO phonons, and ionized impurities, on the ISB absorption 

linewidth. 

 
Figure 8.12 ISB transition energy as a function of the doping density in the MQWs and theoretical 
evolution considering the exchange interaction (green) and both the exchange interaction and the 
depolarization shift (red). The error bars illustrate the absorption linewidth (Modified from ref. [196]). 

 

8.4 Conclusions 

In summary, we have designed a series of nonpolar m-plane GaN/AlGaN MQWs by 

varying the dimensions and Al compositions to separate the two confined electronic levels by 

20–33 meV (corresponding to 4.8–8 THz transitions), and decouple these transitions from the 

neighboring wells. These low-Al-composition MQWs (Al composition in the AlGaN alloy below 

10% and average Al concentration in the heterostructure below 6%) displayed flat and regular 

layers in the two perpendicular in-plane directions a and c, and a very good crystalline quality. 

Extended defects, like stacking faults or dislocations, were not present. Only when the total 

heterostructure thickness exceeded 1.2 µm, we observed cracks propagating along the a 

direction. Inhomogeneities of the Al composition in the barriers were observed along the 

growth axis m. Optically, the structures showed low-temperature ISB absorption in the 6.3 to 

37.4 meV (1.5 to 9 THz) range, providing an experimental demonstration of the possibility for 

GaN to cover a large part of the 7‒10 THz band forbidden to GaAs-based technologies. 

However, the demonstrated ISB absorption are spectrally broad, with a normalized bandwidth 

close to 1, which is attributed to the high Si doping density (ns = 3×1012 cm-2).  

Based on this result, we further study the effect of doping density on such FIR structures. 

We have designed a series of nonpolar m-plane GaN/AlGaN MQWs (10 nm GaN/18.5 nm 

Al0.075Ga0.925N) for ISB absorption at 30 meV (7.3 THz). To probe the effect of doping on the 

structural and optical properties of the nanostructures, the Si and Ge doping density in the 

wells was varied in the range of 1×1011 cm−2 to 5×1012 cm−2. Structurally, the QWs were 
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uniform with flat interfaces and no extended defects related to the epitaxial growth, but they 

showed nm-sized alloy inhomogeneities in the AlGaN barriers. All the structures display ISB 

absorption in the THz range at 5 K. However, a saturation of the absorption is observed at 

1×1012 cm−2, and the magnitude of the blueshift and broadening increases less than 

theoretically predicted for the samples with higher doping levels. This is explained by the 

presence of free carriers in the excited electron level due to the increase of the Fermi level 

energy. Results for low doping levels are comparable for MQWs doped with Si or Ge. However, 

for high doping levels, there is a systematic improvement when using Ge as a dopant, which 

manifests in narrower absorption bands independent of the spectral region, and this effect is 

therefore valid for different QW size, barrier composition and crystallographic orientations. 
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9. Single nanowire photodetectors 
 

In this chapter, we present the first single nanowire ISB photodetector (NW-QWIP), using 
GaN/AlN nanowire heterostructures that exhibit ISB transitions around 1.55 µm. In parallel, 
using band-to-band transitions, we report a single nanowire UV photodetector 
incorporating an AlN/GaN/AlN heterostructure. Such a device shows a UV response that is 
linear with the optical power when the nanowire diameter is small enough to ensure a 
complete depletion of the wire. 

For the study of the ISB photodetector (section 9.1), I performed the MBE growth, SEM 
measurements and theoretical calculations to understand the electronic structure of the 
nanowire. The STEM measurements were performed by my supervisor Dr. M. I. den Hertog. 
The single nanowire contacting, photo-response and I-V characteristics were studied by Dr. 
J. Lähnemann. Results were published in “Near-IR ISB Photodetection in GaN/AlN 

Nanowire”, J. Lähnemann et al., Nano Lett. 17, 6954-6960 (2017) [219].  

For the study of the single-nanowire UV photodetector (section 9.2), I performed the MBE 
growth, SEM measurements and was involved in the device design. The theoretical 
calculations were performed by M. Spies and Dr. E. Monroy. The STEM measurements and 
analysis were performed by M. Spies and my supervisor Dr. M. I. den Hertog. The single 
nanowire contacting was performed by M. A. Luong, M. Spies and J. Polaczyński. The photo-
response and I-V characteristics were studied by M. Spies, J. Lähnemann and J. Polaczyński. 
Results were published in “Effect of the nanowire diameter on the linearity of the response 
of GaN-based heterostructured nanowire photodetectors”, M. Spies et al., Nanotechnology 

29, 255204. (2018) [220]. 
 

9.1 Quantum well infrared photodetector 

The demonstration of ISB absorption in nanowire ensembles, described in chapter 6 and 

7 of this document, together with the demonstration of resonant tunneling transport 

[221,222] in single nanowires, highlight the possibility of using  GaN nanowires with GaN/AlN 

heterostructures as nanowire ISB photodetectors. The nanowire ensembles presented in 

section 6.2 are particularly interesting for this application, as they were shown to absorb 

around the telecommunication wavelength of 1.55 µm at room temperature. Based on 

current planar technologies, an obvious material choice for nanowire ISB devices would be 

GaAs/AlAs. However, the pronounced crystal polytypism in GaAs nanowires obtained through 

the bottom-up approach [223] impedes the application as ISB devices, and the top-down 

strategy (patterning and etching) appears as the only alternative for this material system so 

far [45]. In contrast, for GaN/AlN, the bottom-up method [224] yields the necessary low 

density of structural defects in spite of the lattice mismatch [225]. 

In this section, we demonstrate the feasibility of ISB photodetection in nanowire-based 

devices using GaN/AlN MQWs embedded in GaN nanowires. The active region is similar to 

that of the samples in section 6.2, having already demonstrated ISB absorption. We study 
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photocurrent characteristics of contacted nanowires under near-IR and SWIR illumination that 

allow us to unambiguously assign the observed signal to ISB transitions in the embedded QWs.  

9.1.1 Nanowire growth and device fabrication 

The nanowires investigated in this study were grown on floating-zone Si(111) substrates 

by PA MBE under N-rich conditions at a substrate temperature of TS = 782°C and with a growth 

rate of 330 nm/h. The sample was prepared following the cleaning procedure and the two-

step AlN buffer layer growth process as described in section 5.1. Following the nanowire 

nucleation and the growth of the 1200 nm long GaN stem, a 39-period GaN/AlN MQW was 

formed at the same growth temperature by periodic switching of Ga and Al fluxes. The GaN 

quantum disks were synthesized using the same nitrogen-rich conditions that apply to the 

GaN base, while the AlN sections were deposited with an impinging Al flux equivalent to the 

active nitrogen flux. Finally, the structure was capped with a 1000-nm-long GaN segment. To 

facilitate current collection, both the stem and cap, except the regions 25 nm below and 

100 nm above the MQWs, were doped n-type with Si to a concentration of 3×1018 cm−3. To 

populate the electron ground state in the quantum disks, the GaN disks were Si-doped to a 

concentration of 3×1019 cm−3.  

A SEM image of the as-grown nanowire ensemble and the schematics of the above 

described structure can be found in figure 9.1 (a) and (b).  

 
Figure 9.1: SEM image of the as-grown nanowire sample and (b) Sketch of the investigated nanowire 
heterostructures, depicting also the contact scheme for photocurrent measurements (modified from 
ref[219]) 

 

To allow photocurrent measurements and STEM imaging of the same nanowires, the as-

grown nanowires were dispersed on an array of custom-made Si3N4 membranes [226]. The 

nitride membranes have a window size of 200 μm and were fabricated from an n++ silicon 

(100) wafer covered on both sides with a SiO2 layer (200 nm) for additional electrical insulation 

and with a stoichiometric Si3N4 layer (40 nm). Both layers were deposited by low-pressure 

chemical vapor deposition. Using laser lithography and reactive ion etching, windows and 

cleavage lines were opened in the Si3N4 and SiO2 layers on one side of the wafer. The etching 

of the silicon and SiO2 was continued in a KOH bath, leaving only membranes of the top Si3N4 

layer. Another optical lithography step, combined with electron beam evaporation of Ti/Au 
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(10 nm/50 nm) and subsequent lift-off, was used to define contact pads and marker structures 

on the front side of the membrane chips. To disperse nanowires on such membranes, the as-

grown sample was sonicated in ethanol, and droplets of the solution were then deposited on 

the membranes. Multiple nanowires are contacted, and these single contacted nanowires will 

be referred to as NW1, NW2, NW3 and NW4. 

 

Figure 9.2: (a) Overview of a 200×200 µm2 TEM compatible membrane with four contacted nanowires. 
The dark violet square is the electron transparent Si3N4 membrane window, supported by a Si chip 
(light violet). The light blue areas are pre-deposited contact leads and marker structures defined by 
optical lithography, whereas the darker blue contact lines are defined by electron beam lithography. 
(b) Close-up view of a contacted nanowire (orange) (modified from ref[219](supporting information)) 

 

9.1.2 Characterization and modeling 

HAADF-STEM images of NW 1, presented in Figures 9.3 (a)-(c), demonstrate that the 

nanowire incorporates regular MQWs with a thickness of 1.6±0.3 nm for the GaN wells and 

3.1±0.4 nm for the AlN barriers. The AlN shell, generated by lateral growth when depositing 

the AlN barriers, exhibits a maximum thickness around 5 nm, which decreases toward the top 

of the MQWs. Shadow effects during the growth, due to the directionality of MBE, also lead 

to a reduction of the shell thickness along the nanowire base as we move away from the 

MQWs. The individual nanowires have a diameter of 30−50 nm. However, in the case of the 

structure in figure 9.3, due to the coalescence of the nanowire stems, two nanowires with 

well-separated MQWs are contacted in parallel. 

Using the dimensions of the wells and barriers extracted from the STEM images, we have 

performed calculations of the band structure and energy levels in the nanowire MQWs to 

determine the expected ISB transition energies. The band structure and transition energies in 

the nanowire heterostructures were calculated in 1D and 3D with the nextnano3 software 

employing the material parameters for GaN and AlN described in section 3. For 3D 

calculations, the nanowire was modeled as a hexahedral prism consisting of a 100 nm long 

GaN section followed by a 20-period AlN/GaN stack and capped with 125 nm of GaN. The 

geometrical dimensions were defined as follows: radius of the GaN stem of 30 nm, GaN well 

thickness of 1.6 nm, AlN barrier thickness of 3.1 nm, and AlN shell thickness of 2 nm. The n-
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type residual doping was fixed to 3×1017 cm−3. The stem and cap were n-type doped at a 

concentration of 3×1018 cm−3, except a region 25 nm below and 100 nm above the MQWs. The 

doping of the disks was set to 3×1019 cm−3. The structure was defined on a GaN substrate to 

provide a reference in-plane lattice parameter and was embedded in a rectangular prism of 

air, which allowed elastic strain relaxation. To simulate the effect of surface states, the Fermi 

level was pinned 0.6 eV below the GaN bandgap at the GaN cap-air interface [92] and 2.1 eV 

below the AlN band gap at the AlN shell-air interface [93]. Additionally, 1D calculations were 

performed by simulating a segment of the MQW containing three QWs with periodic 

boundary conditions. 

 
Figure 9.3: (a) Overview HAADF STEM image of NW 1 and (b) detail of the GaN (bright)/AlN (dark) 
MQWs. (c) Zoom HAADF STEM image of the region marked in (b) viewed along the [2-1-10] direction. 
Both the growth direction and the contacting convention are labeled in (a) (modified from ref[219]). 

 

Figure 9.4 (a) shows a cross-sectional view of the thus calculated energy of the 

conduction band edge. A profile of the conduction band energy taken along the central axis 

of the nanowire is depicted in figure 9.4 (b). It exhibits the polarization-induced sawtooth 

structure typical for III-nitride QWs. Whereas, for the lowermost well, the conduction band 

lies above the Fermi level, from the second well onward, doping pushes the conduction band 

below the Fermi level. Note that ISB absorption is only expected in QWs containing electrons 

in the ground state of the conduction band. We calculated the ISB transition energy and wave 

functions of the electron ground state (e1) and the first excited electron state associated with 

the vertical confinement (e2z) in the 10th QW. The (1-100) cross-sectional view of the squared 

wave functions |Ψ(x,z)|2 (with x = ⟨11-20⟩ and z = ⟨0001⟩) associated with e1 and e2z are given 

in figure 9.4 (c). Both wave functions show a maximum probability of finding the electron at 

the center of the nanowire. Note that this situation, which should facilitate the observation of 

ISB absorption, might not be given for other well dimensions or doping levels [35]. This 

situation emphasizes the importance of the 3D calculations in combination with a 

reconstruction of the exact structure by STEM imaging. The e1−e2z transition energy is 0.76 eV 

(1.64 μm). 
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Figure 9.4: (a) Color-coded cross-sectional view of the conduction band (CB) edge as obtained from 3D 
calculations of the strain and bands in the nanowire heterostructure. (b) Conduction band profile along 
the [000-1] direction in the center of the nanowire as marked by the dashed line in (a). The gray dashed 
line indicates the Fermi level (EF). (c) Cross-sectional view of the spatial extension of the wave functions 
(|Ψ(x,z)|2) for the electron ground state (e1) and the first excited electron state induced by the vertical 
confinement (e2z) as obtained from k·p calculations in the tenth QW. (d) 1D k·p calculations of the 
energy levels and wave functions in the QWs giving energies of 0.77, 1.4, and 1.71 eV for the e1−e2z, 
e1−e3z and e1−e4z transitions (as marked by the red arrows), respectively. The dotted profile shows the 
CB edge from the 3D calculation in (b) for comparison (modified from ref[219]). 

 

Using 3D calculations, the large number of laterally confined levels prevents us from 

calculating higher-order levels induced by the vertical confinement. Therefore, we turn to a 

1D approximation, as depicted in figure 9.4 (d). This approach is legitimate as the band profile 

does not deviate significantly from the one extracted from the 3D calculation for the center 

of the nanowire (dotted line in figure 9.4 (d)). The resulting transition energies for e1−e2z, 

e1−e3z and e1−e4z are 0.77, 1.48, and 1.71 eV (corresponding to wavelengths of 1.61, 0.84, and 

0.72 μm), respectively. For doped QWs, many-body corrections to these transition energies 

have to be taken into account [35,80]. However, for our thin QWs and moderate doping 

densities, the correction is smaller than 10 meV and will thus be considered as negligible.  
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Figure 9.5: FTIR transmittance of the nanowire ensemble measured for TE (solid) and TM (dashed) 
polarized light at two different positions on the sample (modified from ref. [219]). 

To probe the ISB absorption in the nanowire ensemble (as-grown), we employed room-

temperature FTIR spectroscopy at grazing incidence. The polarization dependent FTIR 

transmittance in figure 9.5 exhibits an absorption-related dip between 1.2 and 1.8 μm (or 

0.7−1 eV) for TM polarized light, while it is constant across the SWIR spectral range for the TE 

polarization. The energy range of this absorption feature agrees well with the predicted e1−e2z 

transition energy of 0.77 eV, with a relative line width ΔE/E = 20%. The broadening and 

Gaussian shape of the dip, comparable to results obtained in GaN/AlN QDs synthesized by the 

Stranski−Krastanov method, are attributed to the dispersion of the QW size in the nanowire 

ensemble. This is consistent with results obtained in section 6.2. 

 

9.1.3 Device characterization 

The current−voltage (I−V) characteristics of the nanowires were investigated with an 

Agilent 4155C semiconductor parameter analyzer directly connected to the nanowires. The 

positive bias is conventionally defined as to have a higher dark current in the forward 

direction. The end of the nanowire to which the positive bias was applied is indicated in figure 

9.6 (c). For the measurement of the photocurrent as a function of the optical power, the 

nanowires were connected to the 106 A/V transimpedance amplifier integrated in a lock-in 

amplifier (Stanford Research Systems SR830). The laser illumination was chopped at 647 Hz 

(unless indicated) and the nanowires biased at 1 V. The error bars correspond to three times 

the standard deviation for measurements averaged over 90 s.  

The dark and under illumination at 1.55 μm I−V characteristics of the nanowires are 

presented in figure 9.6 (a) and (b) in linear and logarithmic scales. All nanowires show a 

rectifying behavior for the dark current. In figure 9.6 (b) two major components can be 

distinguished: a linear (I ∝ V) regime for low bias (up to 0.1−0.5 V), followed by an increase 

with the third power of the voltage (I ∝ V3), which is an indication of space charge limited 

transport [227,228]. 

Note that the degree of rectification varies between the individual nanowires, but also 

the current levels and thus the conductivity changes from nanowire to nanowire. Following 

the convention of bias direction, the bias is applied to the stem for NW 1 and NW 2 and to the 

cap for NW 3 and NW 4 (see column (c) of figure 9.6) and hence the rectification cannot be 

linked to the asymmetry of the heterostructure resulting from the internal electric fields or 

the presence of the AlN shell. Instead, a Schottky-type barrier seems to be formed at the 

contacts, whose barrier height differs between the contacts of the different nanowires, in the 

dark and under continuous-wave IR laser illumination. 
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Figure 9.6: Each row corresponds to one nanowire as indicated. For the columns, current-voltage 
characteristics in the dark (black) and under continuous wave IR laser illumination at 1.55 µm (orange) 
for all four investigated in (a) linear scale and (b) logarithmic scale. (c) Overview of the contacted 
nanowires. The growth direction, as well as the contacting convention are marked. (d) Detail of the 
GaN (bright)/AlN (dark) MQW (modified from ref. [219]). 

Under illumination, the current increases both in the forward and reverse directions, 

though more pronounced in the forward direction. We can further correlate the photocurrent 

characteristics (column (a) and (b)) of the different nanowires with their STEM images (column 

(c) and (d)) in figure 9.6. The micrographs reveal that some of the nanowires exhibit an 

additional GaN shell around the AlN shell that envelops the MQW and part of the nanowire 

stem. Such an outer GaN shell creates a shunt conduction path [222,226] and most of the 

applied bias voltage drops across the AlN barrier between the GaN shell and the core of the 
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nanowire stem instead of across the MQWs. The reduced barrier width will increase the dark 

current, while the missing external potential across the MQWs hinders the collection of the 

electrons excited by ISB absorption in the quantum disks. As we always have more than one 

MQW per nanowire, we essentially have several conductors connected in parallel. Therefore, 

the photocurrent should largely originate from MQWs without continuous GaN shell. In turn, 

the dark current can be attributed to the MQWs with an additional GaN shell, where the 

resistance is determined only by the thickness of the AlN barrier between shell and stem and 

not by the full stack of barriers in the MQWs. Indeed, the strongest IR photoresponse can be 

seen for NW 1, the lowest for NW 2. While both of the MQWs in NW 2 are surrounded by 

significant GaN shells, the right MQWs in NW 1 do not have any outer GaN shell. At the same 

time, the left MQWs in NW 1 contain a much thinner AlN barrier between core and outer shell 

than for NW 2, which results in the higher dark current observed for NW 1. The STEM images 

of NW 3 and NW 4 give a less clear picture due to the superposition of several MQWs. 

However, NW 4, which does not appear to have any GaN shell, exhibits both a low dark current 

and a high photocurrent. 

To remove the contribution from the dark current, we measured the photocurrent 

under chopped illumination (647 Hz, unless mentioned otherwise) using a lock-in amplifier 

with a spot diameter of 2 mm. The photocurrent as a function of the incident laser power at 

1.55 μm and under 1 V bias is shown in figure 9.7 (a) for the four nanowires. Strikingly, the 

photocurrent shows a linear increase over more than 3 orders of magnitude. The result is 

confirmed at various laser wavelengths, as illustrated in Figure 9.7 (b). The values of β given 

in the legends of the graphs are the power law coefficients determined from fitting the 

relation I ∝ Pβ to the data, where I is the photocurrent and P is the laser power. Note that β = 1 

indicates that the photoresponse is linear. 
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Figure 9.7: Linearity of the ISB photocurrent for (a) four different nanowires (NWs 1−4) measured in 
vacuum at an illumination wavelength of 1.55 μm (b) NW 1 measured at different wavelengths, as well 
as (c) NW 1 measured at different chopping frequencies in vacuum and in air (laser chopped at 647 
Hz). For comparison, panel d gives the photoresponse under UV illumination for NWs 3 and 4 in 
vacuum (laser chopped at 86 Hz). All measurements are carried out at a bias of 1 V (modified from ref. 
[219]). 

 

The observed linear trend is usually not obtained in single nanowire interband 

photodetectors [228–232]. Indeed, the band-to-band photocurrent under UV illumination 

shows a sublinear dependence on the laser power also for our sample, as demonstrated in 

figure 9.7 (d) for NW 3 and NW 4. This sublinearity is generally attributed to the importance 

of surface states, either as nonradiative recombination centers, or as surface charges affecting 

the nanowire conductivity [228,229]. Therefore, the linear power dependence confirms, on 

the one hand, that IR illumination has no effect on the Fermi level pinning at the nanowire 

sidewall surfaces, and on the other hand, that the measured photocurrent originates from a 

mechanism different from the band-to-band photocurrent, with low sensitivity to surface 

states. Theoretical calculations using 3D nextnano3 simulations for various QW sizes were 

performed during a previous study [35]. The results displayed in figure 9.8 show the low 

sensitivity to surface states of ISB transitions. 
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Figure 9.8: Theoretical energy of the ISB transition energy as a function of the GaN nanowire QW 
(nanodisk) thickness. The transition energy in the case of GaN/AlN planar QWs is also shown (2D layers) 
for comparison (modified from ref. [35]). 

The linear behavior was reproduced for different chopping frequencies and with the 

nanowire in air, as shown in figure 9.7 (c). The photocurrent increases for lower chopping 

frequencies for all nanowires, which is attributed to the resistance × capacitance (RC) 

frequency response of the lock-in amplifier electronics. However, when measuring in air, there 

is an additional difference in surface state occupation, which modulates the conductivity of 

the nanowire. 

We have estimated the responsivity for NW 1 considering the nanowire surface exposed 

to the laser as the active photodetector area. Note that the detection cross-section of a 

nanowire is expected to be larger than this surface [233]. We obtain values of 0.6±0.1 A/W 

and 1.1±0.2 A/W at chopping frequencies of 647 and 162 Hz, respectively (the values are 

averaged over the different excitation levels in Figure 9.7 (c).  

The spectral response of the nanowire photodetectors has been obtained by measuring 

the photocurrent under illumination from laser diodes operating at various wavelengths 

across the near-IR and SWIR spectral range, as given in figure 9.9 (a) for NW 1 and NW 2. The 

shape of the spectral response is independent of the incident optical power as shown in the 

inset to figure 9.9 (a). The response reaches a maximum in the 1.3 to 1.55 μm range. It goes 

down around 1.0 μm but then increases again for shorter wavelengths, which can be 

attributed to transitions from e1 to higher excited states (e3z, e4z), for which also the extraction 

of the carriers from the quantum disks should be facilitated. The wavelengths corresponding 

to the e1−e3z and e1− e4z transitions were predicted to be 0.84 and 0.72 μm. Note that the 

restrictions for transitions between levels with the same parity, which is forbidden in square 

QWs, is waived in GaN/AlN due to the asymmetry introduced by the internal electric field. 
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Figure 9.9: Normalized spectral photocurrent response for two nanowires (NW 1 and NW 2) measured 
at 1 V bias. The response has been averaged over several different illumination powers. The inset 
shows the spectral response of NW 1 at different illumination levels on a semilogarithmic scale. The 
error bars account for the uncertainty in the calculation of the impinging irradiance due to the error in 
estimation of the spot size for the different laser diodes. (b) Evolution of the ISB photocurrent under 
additional continuous-wave bias illumination using an UV laser (as sketched in the inset) measured on 
NW 1. The trend is given for different values of impinging laser power and wavelength. The dashed 
lines serve as guides to the eye (modified from ref[219]). 

Finally, figure 9.9 (b) shows that the ISB photocurrent from the nanowire increases when 

adding a continuous-wave UV illumination to the chopped IR illumination, as sketched in the 

inset. UV illumination should lead to an enhancement of the ISB photocurrent due to the 

photo-generated carriers that increase the population of the ground electron level in the 

conduction band. However, a UV laser power of only 1 μW improves the measured ISB 

photocurrent by a factor 2−3, while further increasing the UV illumination power up to 100 μW 

only leads to a moderate additional increase of the photocurrent. Assuming a carrier lifetime 

around 10 ns (section 6.2.2) and assuming that the impinging laser power is fully absorbed in 

the QWs (unrealistic upper-bound scenario), the number of photo-generated carriers would 

be ≈ 4×1015 cm−3, which is several orders of magnitude lower than the doping level. Therefore, 

the increase of the photoresponse should be due to the effect of the UV illumination on 

surface states, which shifts the Fermi level higher toward the conduction band, and improves 

the conductivity of the stem/cap segments [228,229] and in turn enhances the carrier 

collection. Therefore, while providing further evidence that the photocurrent originates from 

ISB transitions, this experiment also indicates that a moderate increase of the stem/cap 

doping, as well as of the quantum disk doping, are pathways for a further improvement of the 

photoresponse. 

 

9.2 Single nanowire photodetectors for ultraviolet 

Band-to-band nanowire photoconductors are characterized by high photocurrent gains, 

which can reach 106, and strong spectral contrast above and below the bandgap. A general 
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feature in nanowire photoconductors is the fact that the photocurrent scales sublinearly with 

the impinging laser power, which has been shown for single GaN nanowires regardless of the 

presence of heterostructures [228,229,231,234,235], as well as for nanowires of other 

material systems such as ZnTe [236], ZnO [237,238], InP [239], CuO [240], and GaAs [241]. This 

sublinearity of the response hampers the use of such devices for the quantification of the 

radiant fluence, and restricts their application domain to digital detection. The high 

photocurrent gain and the sublinearity have been related to the light-induced reduction of 

the depletion layer at the nanowire sidewalls [228,231,232,237,242]. Indeed, the large surface 

to volume ratio in nanowires makes them very sensitive to surface effects (presence of charge 

traps or Fermi level pinning, which can be modified by adsorbed species). In the case of 

undoped GaN nanowires, Sanford et al. reported an improvement of the linearity in nanowires 

with small diameter (≈100 nm), which they attributed to the total depletion of the nanowires 

associated with the axial electric field generated by asymmetric Schottky-like contacts [231]. 

In this section, we study single-nanowire ultraviolet photodetectors incorporating an 

AlN/GaN/AlN heterostructure. The influence of the heterostructure is confirmed by the 

rectifying behavior of the current–voltage characteristics in the dark, and by the asymmetry 

of the photoresponse in magnitude and linearity. We analyze in detail the effect of diameter 

and doping on the bandstructure influencing the photoresponse of these single nanowire 

photodetectors. 

9.2.1 Nanowire design, growth and device fabrication 

The samples under study are GaN nanowires incorporating an AlN/GaN/AlN 

heterostructure (see figure 9.10 (a)) to enhance the responsivity at low bias, as a consequence 

of the internal electric field generated by the large difference in spontaneous and piezoelectric 

polarization between GaN and AlN. The heterostructure is surrounded by segments of 

undoped GaN (each 130 nm long), while the ends of the nanowires are doped at 8×1017 cm−3 

to facilitate Ohmic contacts. For the design of the heterostructure, we calculated the band 

profile using the nextnano3 8×8 k·p self-consistent Schrödinger–Poisson solver using the 

parameters listed in section 3.1. The result is illustrated in figure 9.10 (c). The heterostructure 

consists of two 10 nm thick AlN insertions, separated by 2.3 nm of GaN. As self-assembled 

nanowires grow along the [000-1] crystallographic axis [226], the polarization induced 

depletion region is located below the heterostructure. In turn, accumulation of free electrons 

occurs on top of the heterostructure. To avoid the risk of covering the depletion region when 

depositing the contacts, the wire is asymmetric, with the heterostructure located towards the 

top of the nanowire.  

Under illumination, the depletion region is expected to separate charge carriers, as 

illustrated in figure 9.10 (c). The presence of the GaN/AlN heterostructure favors the collection 

of photo-generated electrons, but it is an obstacle for hole transport. The field-emission 

transport through such a barrier should be negligible. However, transport through relatively 

large AlN barriers has been experimentally observed [243,244]. The strong band bending in 

the heterostructure favors a generation-recombination current that involves holes from the 
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stem and electrons from the cap region. In the case of a single barrier, transport proceeds via 

interband Zener tunneling [243]. In our case, where two barriers are involved, the states in 

the intermediate GaN section should play a role as intermediate states in the transport 

process. 

These GaN nanowires were synthesized by PAMBE on n-Si(111) substrates. The growth 

rate of the GaN nanowires was ≈0.11 nm s−1 and the substrate temperature was TS = 810°C. 

The sample was prepared following cleaning procedures and the two-step AlN buffer layer 

growth process as described in section 5.1. In the sample under study, the nanowire base 

consists of a 2.5-μm-long GaN stem doped with Ge ([Ge] = 8×1017 cm−3), and followed by a 130 

nm long undoped GaN segment. This was followed by the AlN/GaN/AlN (10 nm/2.3 nm/10 

nm) heterostructure and by a 130-nm-thick undoped GaN segment, which is finally capped 

with a Ge-doped ([Ge] = 8×1017 cm−3) GaN segment of about 410 nm length. During the growth 

of the AlN barriers, a thin AlN shell forms around the GaN stem and the AlN/GaN/AlN 

heterostructure, as indicated in the scheme in figure 9.10 (a). An SEM image of the as-grown 

nanowire ensemble can be seen in figure 9.10 (b), where the arrows on the side of the SEM 

image mark the location of the heterostructure. 

 

 
Figure 9.10: (a) Schematic of the nanowires under study. (b) SEM image of the as-grown nanowire 
ensemble. The position of the insertion can be identified on the top quarter of the nanowires as the 
growth of the strained GaN on the AlN insertion results in a slight reduction of the nanowire diameter. 
(c) 1D simulation of the photoactive part of the nanowire showing the band bending due to the AlN 
insertions. Electron-hole pairs photo-generated in the space charge region will get separated by the 
internal electric field, as depicted schematically (modified from ref[220]). 

The as-grown nanowire ensemble is sonicated in isopropanol and dispersed on sets of 

Si3N4 membranes fabricated on Si(100) where it is electrically contacted. The fabrication of 

the membrane and the contacting of the nanowires have been detailed in section 9.1.1. The 

example of a contacted nanowire can be seen in figure 9.11 (c). 
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The structural properties of the nanowires were probed both by HAADF STEM and TEM 

using a probe corrected FEI TITAN Themis working at 200 kV and a CM 300 working at 300 kV. 

TEM and STEM characterization of the contacted nanowires on the Si3N4 reveals that the 

nanowire diameters lie in the 40 to 160 nm range due to bundling of nanowires as commonly 

observed in GaN nanowires. In case of a bundle of nanowires the average diameter is 

measured with error bars representing the standard deviation. The Figure 9.11 (a) and (b) 

describes STEM images of a bundle and single nanowire.  

 

Figure 9.11: HAADF STEM images of (a) a bundle of nanowires and (b) a single nanowire, respectively. 
(c) SEM image of a contacted nanowire (modified from ref[220]). 

Note that the thickness of the layers in the AlN/GaN/AlN heterostructure is not critical, 

within certain limits. Increasing the size of the AlN barriers would have the positive impact of 

decreasing the dark current, but it would lead to problems for the collection of photo-

generated holes. Therefore, if a larger heterostructure were desired, it should be 

implemented as an AlN/GaN MQW structure. However, if several periods were added, the 

heterostructure would start showing its own contribution to the spectral response, 

particularly when positive bias is applied to the cap [245]. On the other hand, a thinner 

heterostructure would result in a reduction of the electric field in the stem. This would 

decrease the extension of the depletion region where the charge carrier separation takes 

place.  

9.2.3 Ultaviolet photoresponse 

The I–V characteristics in the dark exhibit a strongly rectifying behavior, as illustrated in 

figure 9.12 for two typical specimens. The asymmetry of the I–V curve is explained by the 

electronic asymmetry presented in figure 9.10 (c), which results from the polarization fields in 

wurtzite III-nitride heterostructures. The band profile resembles that of a Schottky diode, 

where the cap layer plays the role of the metal Schottky contact. Consistently, forward bias in 

figure 9.12 corresponds to a positive voltage being applied to the nanowire cap with respect 

to the stem. Following the interpretation for the case of a single AlN insertion [226], the 

reverse current is associated to a leakage path through the barriers, involving a GaN shell, 

surface conduction or the coalescence of multiple wires [229]. Under forward bias, among the 

set of nanowires under study, we observe a strong dispersion of the dark current, varying from 

a few nanoamperes to microamperes at +1 V bias.  
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Figure 9.12: I–V characteristics (in dark) of two typical nanowires, one with small diameter of 80 nm. 
Inset: dark current at +1 V bias as a function of the diameter of the nanowires measured by STEM in 
proximity of the AlN/GaN/AlN insertion. The error bars account for the different diameters of 
nanowires in a bundle. The dotted line is a guide to the eye. Nanowires with diameters ≥ 80 nm present 
a dark current in the μA range (group B) (modified from ref[220]). 

 
 

We studied STEM images of 10 nanowire bundles (19 nanowires) and they show no 

correlation of the dark current with the number of nanowires that are effectively contacted 

or with possible fluctuations in the thickness of the AlN barriers. However, there is a 

correlation between the dark current and the nanowire diameter, as illustrated in the inset of 

figure 9.12. For clarity, we have divided the studied nanowires into two groups: those with 

dark current in the nanoampere range at +1 V bias—we shall call them group A from here on 

and those that display microampere-ranged currents at the same bias—we shall call them 

group B. As shown in the inset of figure 9.12, the limit between the two groups is found for a 

diameter of ≈80 nm.  

The variation of the photocurrent as a function of the UV irradiance was studied at 325 

nm using an unfocused continuous-wave HeCd laser (spot diameter on the sample ≈ 1 mm), 

chopped at 33 Hz (unless indicated). The nanowire is biased and connected in series with a 

×106 V/A transimpedance amplifier, which is read out by a Stanford Research Systems SR830 

lock-in amplifier. Figures 9.13 (a) and (b) present typical results for specimens in groups A and 

B, respectively at zero and negative bias. The values of β given in the legends of the graphs 

are the power law coefficients determined from fitting the relation I ∝ Pβ to the data, where I 

is the photocurrent and P is the laser power. Note that β = 1 indicates that the photoresponse 

is linear. In both figures 9.13 (a) and (b), the photocurrent at zero bias scales sublinearly with 

the impinging irradiance, which is consistent with previous reports on samples containing 

GaN/AlN MQWs [245] and with the nanowires studied earlier in this chapter, in section 9.1. 

This behavior differs however from the observations in planar photodetectors [246]. Planar 

photovoltaic devices are systematically linear since the photocurrent is due to the linear 
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generation of electron–hole pairs separated by the internal electric field. The deviation from 

this behavior in the case of nanowires reveals the involvement of an additional mechanism in 

the zero-bias photoresponse, which remains unknown at this moment.  

Under −100 mV bias, nanowires in groups A and B exhibit different behaviors. Figure 

9.13(a) displays a linear photocurrent behavior for group A, whereas the photoresponse of 

group B in figure 9.13 (b) remains sublinear. Group A already shows a significant improvement 

of the linearity for bias voltages as low as −10 mV.  

 
Figure 9.13: Photocurrent measurements as a function of the irradiance (impinging laser power per 
unit of surface) at 325 nm for: (a) a typical group-A nanowire (diameter 80 nm). Bias is indicated in the 
legends. The values of β are indicated in the figure. (b) for a typical group B NW (diameter>80 nm). 

Lines are fits to  𝐼𝑝ℎ = 𝐴𝑃𝑜𝑝𝑡
𝛽

, where 𝐼𝑝ℎ is the photocurrent, 𝑃𝑜𝑝𝑡is the impinging optical power and A 

and β are proportionality constants. (c) Variation of β as a function of the dark current (measured at 
+1 V). The solid line is a guide to the eye. (d) Spectral response measurements for typical group-A and 
group-B nanowire. The dashed line marks the wavelength of the GaN band gap at room temperature 
(modified from ref. [220]). 

Figure 9.13(c) displays a summary of the values of β (at −100 mV) as a function of the 

dark current through the nanowire (at +1 V) for all the nanowires in this study. The nanowires 

in group A present β = 1.0±0.2, i.e. their photocurrent scales linearly with the optical power 

within the error bars of the measurement, whereas the nanowires in group B clearly show a 
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sublinear behavior, with β = 0.45±0.11. Note that, for these linearity measurements, the range 

of bias voltages applied to the nanowires was chosen to keep the maximum photocurrent 

lower than 10 μA, to prevent device failure. This implies that the maximum applied voltage 

was in the range of −1 V (lower for some of the specimens). In the devices where a linear 

behavior is observed (group A), the linearity improves with bias, without any indication of 

degradation at higher bias. 

To verify that the photocurrent induced by UV illumination stems from the GaN 

nanowires, we have recorded the spectral response for both sets of devices. The spectral 

response has been measured using the same read-out configuration, but exciting with light 

from a 450 W xenon lamp passed through a Gemini 180 Jobin-Yvon monochromator. In 

general, the bias was chosen to keep the maximum photocurrent lower than 10 μA to prevent 

device failure. All measurements were carried out at room temperature. The results are 

presented in figure 9.13(d). In both cases (groups A and B), the absorption exhibits a sharp 

cutoff around 365 nm, which corresponds well to the band gap of GaN at room temperature. 

This experiment confirms that in both cases a potential leakage photocurrent through the 

silicon substrate is negligible.  

If we approximate the exposed photodetector area by the in-plane cross-section of the 

contacted nanowire (on average, 1.5 μm × 80 nm), we can estimate that the typical 

responsivity (geometric mean) for an irradiance of 10 mW cm−2 is around 0.3 A/W at zero bias. 

At a bias of −100 mV, the typical responsivity, measured under the same conditions and 

calculated in the same manner, increases to around 20 A/W for nanowires in group A, and up 

to around 700 A/W for nanowires in group B. The increase of the responsivity with the 

nanowire diameter is consistent with previous reports on GaN nanowire photodetectors 

[230,231].  

To confirm the role of the heterostructure in the responsivity of the nanowires, we have 

compared the photocurrent under forward and reverse bias. Under reverse bias, the response 

is expected to be dominated by the presence of the space charge region, which separates 

photo-generated electrons and holes. The response is hence expected to resemble that of a 

Schottky diode (low dark current and linear response with the optical power) [247]. In 

contrast, under forward bias, the space charge region disappears and the nanowire resembles 

a photoresistor (high dark current and sublinear response).  

Figure 9.14 presents the variation of the photocurrent as a function of the UV irradiance 

in a specimen from group A measured at +1 and −1 V bias. As expected, the photoresponse 

scales linearly with the irradiance under reverse bias (β = 0.96±0.06) only, whereas forward 

bias results in a strongly sublinear behavior (β = 0.61±0.05). This asymmetric behavior is a 

confirmation of the role of the AlN/GaN/AlN heterostructure in the photoresponse.  
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Figure 9.14: Photocurrent measurements as a function of the irradiance at 325 nm for a typical group-
A nanowire measured under forward and reverse bias (modified from ref[220]). 

 
 

9.2.2 Simulations and discussions    

The drastic reduction of the dark current in nanowires with a diameter below ≈ 80 nm 

has been observed previously in GaN nanowires [30], and it was explained by the presence of 

a space charge layer extending inwards from the nanowire sidewalls. In the report by Calarco 

et al. [230], total depletion of the GaN nanowires was obtained for a diameter of 85 nm, when 

the residual doping level was 6.25×1017 cm−3. We performed 3D calculations of the band 

profile using the nextnano3 software using the parameters listed in section 3.1. The nanowire 

was modeled as a hexahedral prism consisting of a 150 nm long n-type GaN segment followed 

by 130 nm of undoped GaN, an AlN/GaN/AlN (10 nm/2.3 nm/10 nm) heterostructure, 130 nm 

of undoped GaN, and 50 nm of n-type GaN. The n-type doping density and residual doping 

were fixed to 8×1017 cm−3 and 1×1017 cm−3, respectively. The structure was defined on a GaN 

substrate to provide a reference in-plane lattice parameter, and was embedded in a 

rectangular prism of air to include elastic strain relaxation. Different diameters, namely 50, 

60, 80 and 120 nm, were considered.  

Regarding the treatment of the surface, we have fixed the Fermi level at the AlN 

sidewalls of the stem at 2.1 eV below the AlN conduction band [93]. On the contrary, in the 

cap region, we have fixed the Fermi level at the GaN/air interface at 0.6 eV below the 

conduction band [91,92]. However, this latter value has no critical influence on the results, 

since the area of the cap exposed to light is small and the polarization-induced accumulation 

of electrons at the upper AlN/GaN heterointerface screens the effect of the surface.  
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Figure 9.15: Cross-sectional view of the band structure in the doped stem region of the nanowire, 200 
nm below the undoped region (a) for nanowire diameters of 50, 60, 80, 120 nm, with the Fermi level 
pinned 2.1 eV below the conduction band edge of AlN. With decreasing diameter, the difference in 
energy between Fermi level and the lowest point in the conduction band increases from 38 to 140 
meV. In (b) and (c), the Fermi level pinning is varied between 2.0, 2.1 and 2.2 eV for nanowires with 
diameters of 50 nm and 120 nm, respectively. (modified from ref. [220]). 

 

The results of the simulations are summarized in figure 9.15 (a), which displays the cross-

sectional view of the conduction band structure in the doped stem region extracted 200 nm 

below the first GaN/AlN heterointerface (see dashed line in figure 9.10 (a)). For nanowires 

with a diameter of 60 nm, the space charge regions extending from opposite sidewalls touch 

each other, and the location of the conduction band edge in the center of the nanowire 

increases by about 100 meV when decreasing the nanowire diameter from 80 to 50 nm. This 

confirms the full depletion of the thin nanowires and justifies the drastic drop in the dark 

current.  

UV illumination is known to unpin the Fermi level at the nanowire sidewalls. This 

phenomenon has been experimentally studied by Pfüller et al [248], and it was attributed to 

photo-induced desorption of oxygen from the nanowire sidewalls. Therefore, to simulate the 

effect of ultraviolet illumination, we have analyzed the consequences of changing the position 

of the Fermi level at the surface in the range of 2.0–2.2 eV below the conduction band edge 

of the AlN shell. Taking a look at the simulations of a nanowire with a diameter of 50 nm (group 

A) (figure 15 (b)), we observe that changes to the Fermi level pinning shift the radial position 

of the conduction band as a whole across the nanowire, but the shape of the potential profile 

is not modified. In other words, the component of the electric field along the nanowire 
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diameter seen by photo-generated electrons is approximately the same in all cases, with its 

maximum value at the GaN/ AlN interface being 210 kV/cm (± 3%).  

In a nanowire with diameter of 120 nm (group B) (figure 9.15 (c)), we note a different 

behavior. When the location of the Fermi level pinning changes from 2.2 to 2.0 eV below the 

conduction band edge of the AlN shell, the maximum radial electric field varies from 360 to 

240 kV/cm (by more than 30%). At the same time, the space charge region at the sidewalls of 

the nanowire shrinks, increasing the extent of the central conducting channel in the nanowire. 

Therefore, in thick nanowires (group B), light induces not only a linear increase in the carrier 

concentration, but also a nonlinear variation in the diameter of the conducting channel that 

such carriers have to traverse to be collected. This explains also the enhancement of the 

responsivity with the nanowire diameter. The responsivity is linked to the total number of 

photo-generated carriers, i.e. it should increase with the square of the nanowire radius.  

To this dependence, we have to add the variation of the conductivity due to the change 

in the diameter of the central conducting channel in the stem. Both phenomena are relatively 

independent. In small, fully depleted nanowires, the variation of the responsivity with the 

diameter will be given by the change in the total amount of photo-generated carriers. In large, 

partially depleted wires, it is the modulation of the conductive section that dominates, which 

can lead to a huge photocurrent gain. A theoretical analysis of both contributions can be found 

in [249].  

 

9.3 Conclusion 

In this chapter, we have presented GaN/AlN nanowire MQW structures that show 

SWIR ISB detection around 1.55 µm. Using the dimensions extracted from STEM 

measurements, 3D simulations were carried out explaining the observed absorption. In 

general, unlike the UV band-to-band photocurrent, the IR photocurrent scales linearly with 

the incident illumination power. This linearity confirms that the UV and IR photocurrents are 

generated by different mechanisms, the latter being less sensitive to surface-related 

phenomena, as expected for ISB transitions in a nanowire heterostructure. We also observed 

an increase of the IR photoresponse under additional UV illumination due to the modification 

of surface states. In conclusion, this work is a proof-of-principle study of ISB nanowire 

photodetectors. 

On the other hand, we have demonstrated single-nanowire UV photodetectors 

consisting of a GaN nanowire with an embedded AlN/GaN/AlN heterostructure, which 

generates an electric field along the nanowire axis as a result of the difference in polarization 

between III-nitride compounds with wurtzite crystal structure. The influence of the 

heterostructure is confirmed by the rectifying behavior of the I-V characteristics in the dark, 

and by the asymmetry of the photoresponse in magnitude and linearity. Under reverse bias 

(negative bias on the cap segment), the detectors behave linearly with the impinging optical 

power when the nanowire diameter remains below a certain threshold (≈80 nm). This is 
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explained by the linearity of the photogeneration process, the separation of photo-generated 

carriers induced by the axial electric field, and the fact that illumination does not have a 

significant effect on the radial electric field. In the case of nanowires that are not fully depleted 

(diameter > 80 nm), the light-induced change in the Fermi level at the sidewalls results in a 

variation of the diameter of the central conducting channel in the stem, which leads to an 

overall nonlinear photoresponse. 
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10. Conclusions and perspectives 
 

10.1 Conclusions 

The purpose of this work was to explore the use of GaN nanowires for ISB applications.  

Therefore, we first developed a growth process for GaN nanowires using PAMBE trying to 

improve their morphology and vertical alignment. Thus, nanowires were grown on a low 

temperature AlN buffer layer, and we analyzed the impact of the impinging gallium flux and 

substrate temperature on their coalescence and growth rate. 

Doping is crucial to improve the ISB performance of our heterostructures. Therefore, 

our initial task was to study the feasibility of Ge as an alternative n-type dopant, and we 

performed a comparative analysis of Si- and Ge-doped GaN/AlN heterostructures in both 

planar and nanowire geometries, all of them absorbing in the SWIR region. Additionally, we 

fabricated nanowires via top-down patterning of planar layers, to reduce the linewidth of the 

ISB absorption in the SWIR. We then tried to extend the ISB absorption in GaN-based nanowire 

heterostructures towards the unexplored MWIR spectral region. Finally, to reach the FIR 

spectral region, we also investigated planar structures with alternative crystallographic 

orientations, namely the nonpolar m-plane of GaN. 

As an ultimate target, this PhD work also aimed at developing devices based on single 

nanowires, and we presented innovative approaches to the fabrication of nanowire IR and UV 

photodetectors.  

 

10.1.1 Conclusions for the study of Ge as n-type dopant 

We demonstrated that the use of Ge as a dopant in GaN during the growth in PAMBE 

does not affect the growth kinetics of GaN. We grew Ge-doped GaN thin films with maximum 

carrier concentrations of up to 6.7 × 1020 cm−3 at 300 K, well beyond the Mott density. The Ge 

concentration and free carrier density scale linearly with the Ge flux in the studied range. All 

the GaN:Ge layers present smooth surface morphology with atomic terraces, without trace of 

pits or cracks, and the mosaicity of the samples has no noticeable dependence on the Ge 

concentration. The variation of the GaN:Ge band gap with the carrier concentration is 

consistent with theoretical calculations of the band gap renormalization due to electron-

electron and electron-ion interaction, and the Burstein-Moss effect. These results validate the 

use of Ge in GaN for applications requiring high doping levels. 

We then successfully grew Ge-doped AlxGa1-xN thin films with x  0.66. We 

demonstrated that Ge does not induce any structural or optical degradation in AlGaN samples 

with x < 0.4. For higher Al compositions, Ge rich clusters were observed. Keeping the Ge 

concentration constant at 1×1021 cm-3, Hall effect measurements at room temperature 

showed a gradual decrease of the carrier concentration when increasing the Al mole fraction. 
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The decrease is already noticeable in samples with x = 0.24. Samples with x = 0.64-0.66 remain 

conductive ( = 0.8-0.3 -1cm-1), but the carrier concentration drops to 1×1018 cm-3, which 

implies a donor activation of 0.1%. From the optical point of view, the low temperature PL 

was dominated by the band-to-band emission. When increasing the doping concentration, the 

PL blueshifts due to band filling. Furthermore, from the evolution of the PL peak position with 

temperature, we observe the screening of the localization induced by fluctuations of the alloy 

composition. 

In the range of Al concentrations that we addressed, the behavior of Ge dopant does 

not represent a drastic improvement over Si in transport properties. However, we should keep 

in mind that we present the first report on Ge-doped AlGaN, to the best of our knowledge, 

and there is a huge dispersion in the data on Si-doped AlGaN in the literature. Conductivity 

values vary drastically across reports and this suggests a dependence on growth conditions. 

Therefore, it is difficult to compare our data on Ge doped AlGaN with literature on Si doped 

AlGaN, but our observation of conductivity up to 66% of Al content is extremely promising.  

To assess the potential of using Ge as a dopant in ISB devices, we peformed a 

comparative study of Si-doped and Ge-doped planar GaN/AlN heterostructures absorbing in 

the SWIR. X-ray diffraction studies showed that in these strongly lattice-mismatched 

heterostructures, highly Si-doped samples exhibit a larger broadening of the ω scans with 

respect to Ge doped samples, which points to a better structural quality of the Ge-doped 

samples. Both the Ge- and Si-doped samples displayed ISB absorption in the range of 1.45 to 

1.75 μm. The broadening of the transition is larger in the case of Si-doped samples, which 

points to a higher heterointerface roughness in this case. To the best of our knowledge, these 

results constitute the first systematic study of ISB transitions in Ge-doped planar GaN based 

structures.  

Additionally, we peformed a comparative study of Si-doped and Ge-doped nanowire 

GaN/AlN heterostructures absorbing in the SWIR. We reported the first observation of ISB 

absorption in Si-doped GaN/AlN nanowire heterostructures with varying doping levels, with 

comparable performance to their Ge-doped counterparts. Based on this study, we conclude 

that both Si- and Ge-doped nanowires are potentially suitable for the fabrication of GaN/AlN 

nanowire heterostructures. In both cases, we obtained an improved FWHM of 200 meV for 

the ISB absorption at 1.55 μm, compared to previous reports. However, the ISB absorption 

linewidth remains significantly larger than that observed in planar structures, due to the 

inhomogeneities associated to the self-assembled growth process. This means that the 

homogeneity between individual nanowires across the sample wafer is the limiting factor 

rather than the dopant.  
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10.1.2 Extension of ISB transition in GaN nanowires towards longer 

wavelengths 

We extend this technology towards longer wavelengths, to absorb in the MWIR spectral 

region. For this purpose, we synthesized self-assembled GaN/AlN and GaN/Al0.4Ga0.6N 

nanowire heterostructures. In the case of GaN/AlN heterostructures in GaN nanowires, we 

varied the GaN well width from 1.5 to 5.7 nm. Heterostructures with 1.5-4 nm wells present 

sharp GaN/AlN interfaces. However, in larger wells (5.7 nm) one of the GaN/AlN 

heterointerfaces was not sharp but rather a graded alloy, which extends by around 1.5-2 nm 

and has strong influence on the electron wave functions in the well. Increasing the GaN well 

width in the heterostructures, we observe a redshift of the PL emission and a redshift of ISB 

absorption from 1.4 to 3.4 µm, at room temperature. The results fit well with theoretical 

models, taking into account the structural characteristics (including AlN shell and GaN/AlN 

interface sharpness or intermixing) and many-body effects associated to the doping level. For 

GaN/Al0.4Ga0.6N heterostructures, the ternary compound represents a reduction of 

polarization, which leads to the blueshift of the band-to-band transitions and redshift of the 

ISB transitions. As a result we obtained TM-polarized absorption in the 4.5-6.4 µm 

wavelengths. 

 

10.1.3 Top-down nanowires 

Trying to reduce the inhomogeneities while keeping the advantages of the nanowire 

geometry, we also presented a systematic analysis of ISB absorption in top-down etched 

micro- and nanopillars containing GaN/AlN heterostructures absorbing in the SWIR domain. 

We show that when the spacing of the pillar array is comparable to the probed wavelengths, 

photonic crystal resonances dominate the absorption spectra. However, when these 

resonances are at much shorter wavelengths than the ISB absorption, the absorption is clearly 

observed, without any degradation of its magnitude or linewidth.  

 

10.1.4 Non-polar orientations to attain the FIR spectral region 

To extend the GaN-based ISB technology to the FIR, we have designed a series of 

nonpolar m-plane GaN/AlGaN MQWs by varying the dimensions and Al compositions to 

separate the two confined electronic levels by 20–33 meV (corresponding to 4.8–8 THz 

transitions), and decouple these transitions from the neighboring wells. These low-Al-

composition MQWs (Al composition in the AlGaN alloy below 10% and average Al 

concentration in the heterostructure below 6%) displayed flat and regular layers in the two 

perpendicular in-plane directions a and c, and a very good crystalline quality. These structures 

showed low-temperature ISB absorption in the 6.3 to 37.4 meV (1.5 to 9 THz) range, providing 

an experimental demonstration of the possibility for GaN to cover a large part of the 7‒10 THz 

band forbidden to GaAs-based technologies. However, the demonstrated ISB absorption is 
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spectrally broad, with a normalized bandwidth close to 1, which is attributed to the high Si 

doping density (ns = 3×1012 cm-2). Based on this result, we further study the effect of doping 

density on such FIR structures. We have designed a series of nonpolar m-plane GaN/AlGaN 

MQWs (10 nm GaN/18.5 nm Al0.075Ga0.925N) for ISB absorption at 30 meV (7.3 THz), where the 

Si and Ge doping density in the wells was varied in the range of 1×1011 cm−2 to 5×1012 cm−2. 

Increasing the doping level leads to an enhancement and blueshift of the absorption peak 

energy, together with an increase of the linewidth for Si, and also slightly for Ge doping. 

However, a saturation of the absorption is observed at 1×1012 cm−2, and the magnitude of the 

blueshift and broadening increases less than theoretically predicted for the samples with 

higher doping levels. This is explained by the presence of free carriers in the excited electron 

level due to the increase of the Fermi level energy. Results for low doping levels are 

comparable for MQWs doped with Si or Ge. However, for high doping levels, there is a 

systematic improvement when using Ge as a dopant, which manifests in narrower absorption 

bands independent of the spectral region, and this effect is therefore valid for different QW 

size, barrier composition and crystallographic orientations. 

 

10.1.5 Single nanowire photodetectors 

We presented GaN/AlN nanowire MQW structures that show SWIR ISB photodetection 

around 1.55 µm. Using the dimensions extracted from STEM measurements, 3D simulations 

were carried out explaining the observed absorption. Unlike the UV band-to-band 

photocurrent, the IR photocurrent scales linearly with the incident illumination power. This 

linearity confirms that the UV and IR photocurrents are generated by different mechanisms, 

the latter being less sensitive to surface-related phenomena, as expected for ISB transitions 

in a nanowire heterostructure. In conclusion, this work is a proof-of-principle study of ISB 

nanowire photodetectors. 

On the other hand, we have demonstrated single-nanowire UV photodetectors 

consisting of a GaN nanowire with an embedded AlN/GaN/AlN heterostructure. The influence 

of the heterostructure is confirmed by the rectifying behavior of the I-V characteristics in the 

dark, and by the asymmetry of the photoresponse in magnitude and linearity. Under reverse 

bias (negative bias on the cap segment), the detectors behave linearly with the impinging 

optical power when the nanowire diameter remains below a certain threshold (≈ 80 nm). This 

is explained by the linearity of the photogeneration process, the separation of photo-

generated carriers induced by the axial electric field, and the fact that illumination does not 

have a significant effect on the radial electric field in a depleted nanowire. In the case of 

nanowires that are not fully depleted (diameter > 80 nm), the light-induced change in the 

Fermi level at the sidewalls results in a variation of the diameter of the central conducting 

channel in the stem, which leads to an overall nonlinear photoresponse. 
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10.2 Perspectives 

The III-nitride nanowire ISB technology is at its nacent phase. With proof-of-concept 

demonstrations of ISB detection for a single nanowire, we have also set direction and 

standards for single nanowire devices in general.  The future is expected to see a lot of 

applications of nanowires, in flexible electronics, high efficient optoelectronic devices, 

implantable devices etc. The reproducibility, control and processing of nanowires has 

drastically developed over the last decade. However, it is still far-away from industrial mass 

production necessary for the majority of applications, although a few processes exist, like 

planarization. Advanced manipulation techniques for single nano-objects are being 

developed, and this will help in processing and building newer and better devices.  

In ISB nanowire devices, a main bottleneck is the large absorption linewidth due to 

inhomogenities in the nanowire dimensions along the length, and from nanowire to nanowire. 

The linewidth can be improved by better control of the growth rate from wire to wire across 

the ensemble. An idea would be to use alternative substrates that lead to more homogeneous 

and well separated self-assembled nanowires. There exist only few of such studies, using 

substrates like TiN; however, ISB transitions in nanowires grown on such substrates have not 

been studied, and the presence of pollutants and incorporation of dopants in such wires 

should be carefully analyzed. Another approach would be the use of patterned substrates or 

the various methods of localized growth that are under development, which could also 

provide an answer to the homogeneity problem. Then, we did suggest an alternative solution 

for better control of dimensions in this thesis, namely a top-down approach. This method 

should be brought further, to develop complete devices with nanowire ensembles.  

Regarding the distribution and efficiency of dopants in GaN nanowires, with and without 

heterostructures, there is still a lot to be understood. Such studies on doping are essential for 

a transition towards development of nanowire devices, and progress in characterization 

techniques like EDX or APT will shine new light on this topic.  

We have demonstrated ISB absorption in a single-nanowire QWIP operating in the SWIR. 

The next systematic development would be to extend the demonstration of single nanowire 

devices to MWIR and FIR. More importantly, it is necessary to fabricate planarized devices 

from self-assembled nanowire ensembles, to compare their performance with planar devices. 

Potential advantages are to be validated, and limitations are to be identified.  

In general, manipulating nanowires, nanobatteries and nanoelectromechanical systems 

open up possibilites to develop self sustainable devices at the nanoscale that could fuel 

quantum technologies of the future. The future also brings in an emergent and exotic 

phenomenon like mjorana fermions that could be observed at a semiconductor nanowire and 

superconductor interface. Due to immense possibilities, it is hard to guess the phenomena 

one would be studying with nanowires 20 years into the future from 2018. 
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Due to its novel properties nanowires have emerged as promising building blocks for various advanced device applications. This 
work focuses on Intersubband (ISB) engineering of nanowires where we custom design GaN/(Al,Ga)N heterostructures to be inserted 
in a GaN nanowire to render it optically active in the infrared (IR) spectral region. ISB transitions refer to energy transitions between 
quantum confined levels in the conduction band of the nanostructure. All the structures analyzed in this thesis were synthesized by 
plasma-assisted molecular beam epitaxy. 

Precise control of high doping levels is crucial for ISB devices. Therefore, we explored Ge as an alternative dopant for GaN and 
AlGaN, to replace commonly-used Si. We grew Ge-doped GaN thin films with carrier concentrations of up to 6.7 × 1020 cm−3 at 300 K, 
well beyond the Mott density, and we obtained conductive Ge-doped AlxGa1-xN thin films with an Al mole fraction up to x = 0.66. In 
the case of GaN, the presence of Ge does not affect the growth kinetics or structural properties of the samples. However, in Ge doped 
AlxGa1-xN samples with x > 0.4 the formation of Ge rich clusters was observed, together with a drop in the carrier concentration.  

Then, we performed a comparative study of Si vs. Ge doping in GaN/AlN heterostructures for ISB devices in the short-wavelength 
IR range. We considered both planar and nanowire architectures with identical doping levels and well dimensions. Based on this 
study, we concluded that both Si and Ge are suitable dopants for the fabrication of GaN/AlN heterostructures for the study of ISB 
optoelectronic phenomena, both in planar and nanowire heterostructures. Within this study, we reported the first observation of ISB 
absorption in Ge-doped GaN/AlN quantum wells and in Si-doped GaN/AlN nanowire heterostructures. In the case of nanowires, we 
obtained a record ISB absorption linewidth in the order of 200 meV. However, this value is still larger than that observed in planar 
structures, due to the inhomogeneities associated to the self-assembled growth process.  

Trying to reduce the inhomogeneities while keeping the advantages of the nanowire geometry, we also presented a systematic 
analysis of ISB absorption in micro- and nanopillars resulting from top-down processing GaN/AlN planar heterostructures. We showed 
that, when the spacing of the pillar array is comparable to the probed wavelengths, photonic crystal resonances dominate the 
absorption spectra. However, when these resonances are at much shorter wavelengths than the ISB absorption, the absorption is 
clearly observed, without any degradation of its magnitude or linewidth.  

We also explore the possibility to extend this nanowire technology towards longer wavelengths, to absorb in the mid-wavelength 
IR region. Using GaN/AlN nanowire heterostructures, we varied the GaN well width from 1.5 to 5.7 nm, which led to a red shift of the 
ISB absorption from 1.4 to 3.4 µm. Replacing the AlN barriers by Al0.4Ga0.6N, the reduction of polarization led to a further red shift of 
the ISB transitions to 4.5-6.4 µm.  

The observation of ISB absorption in nanowire ensembles motivated us for the development of a nanowire-based quantum well 
infrared photodetector (NW-QWIP). The first demonstration of such a device, incorporating a GaN/AlN nanowire heterostructure 
that absorbs at 1.55 µm, is presented in this manuscript. 

Keywords: GaN/AlGaN, nanowires, molecular beam epitaxy, n-doping, nanowire devices, intersubband. 
 

Les propriétés innovantes des nanofils semi-conducteurs en font des candidats très prometteurs pour le développement de 
dispositifs avancés dans de multiples domaines d’application. Ce travail se concentre sur l'ingénierie Inter-sous-bande (ISB) des 
nanofils. Nous avons conçu des hétérostructures GaN/(Al,Ga)N à insérer dans un nanofil GaN pour le rendre optiquement actif dans 
la région spectrale infrarouge (IR). Les transitions ISB se réfèrent aux transitions d'énergie entre les niveaux confinés quantiques dans 
la bande de conduction de la nanostructure. Toutes les structures analysées dans cette thèse ont été synthétisées par épitaxie par jet 
moléculaire assisté par plasma. 

Un contrôle précis des niveaux élevés de dopage est crucial pour les dispositifs ISB. Par conséquent, nous explorons Ge comme un 
dopant alternatif pour GaN et AlGaN, pour remplacer le Si couramment utilisé. Nous avons synthétisé des couches minces de GaN 
dopé Ge avec des concentrations de porteurs atteignant 6,7 × 1020 cm-3 à 300 K, bien au-delà de la densité de Mott, et nous avons 
obtenu des couches minces conductrices d’AlxGa1-xN dopées Ge avec une fraction molaire Al jusqu'à x = 0,66. Dans le cas du GaN, la 
présence de Ge n'affecte pas la cinétique de croissance ou les propriétés structurales des échantillons. Cependant, dans les 
échantillons AlxGa1-xN dopés Ge avec x> 0,4, la formation de clusters riches en Ge a été observée, avec une baisse de la concentration 
des porteurs de charges. 

Ensuite, nous avons réalisé une étude comparative du dopage Si et Ge dans des hétérostructures GaN/AlN pour des dispositifs ISB 
dans la gamme IR proche. Nous considérons les architectures planaire et nanofils avec des niveaux de dopage et des dimensions de 
puits identiques. Sur la base de cette étude, nous pouvons conclure que les deux Si et Ge sont des dopants appropriés pour la 
fabrication d'hétérostructures GaN/AlN pour l'étude des phénomènes ISB, à la fois dans les systèmes planaires et nanofils. Dans cette 
étude, nous rapportons la première observation de l'absorption ISB dans des puits quantiques GaN/AlN dopés au Ge et dans des 
hétérostructures de nanofils GaN/AlN dopés au Si. Dans le cas des nanofils, nous avons obtenu une largeur de ligne d'absorption ISB 
record de l'ordre de 200 meV. Cependant, cette valeur est encore plus grande que celle observée dans les structures planaires, en 
raison des inhomogénéités associées au processus de croissance auto-assemblé. 

En essayant de réduire les inhomogénéités tout en gardant les avantages de la géométrie des nanofils, nous présentons également 
une analyse systématique de l'absorption ISB dans les micro- et nano-piliers résultant d'un traitement top-down des hétérostructures 
planaires GaN/AlN. Nous montrons que lorsque l'espacement du réseau de piliers est comparable aux longueurs d'onde sondées, les 
résonances des cristaux photoniques dominent les spectres d'absorption. Cependant, lorsque ces résonances sont à des longueurs 
d'onde beaucoup plus courtes que l'absorption ISB, l'absorption est clairement observée, sans aucune dégradation de son amplitude 
ou de sa largeur de bande d’absorption. 

Nous explorons la possibilité d'étendre cette technologie de nanofils à des longueurs d'onde plus longues, pour les absorber dans 
l’IR moyen. En utilisant des nanofils incorporant des hétérostructures GaN/AlN, nous avons fait varier la largeur du puits GaN de 1,5 
à 5,7 nm, ce qui a conduit à un décalage vers le rouge de l'absorption ISB de 1,4 à 3,4 μm. Remplaçant les barrières AlN par Al0.4Ga0.6N, 
la réduction de la polarisation conduit à un nouveau décalage vers le rouge des transitions ISB à 4,5-6,4 um. 

L'observation de l'absorption ISB dans des ensembles de nanofils nous a motivé pour le développement d'un photodétecteur 
infrarouge à puits quantiques à base de nanofils (NW-QWIP). La première démonstration d'un tel dispositif, qui absorbe à 1,55 μm, 
est présentée dans ce manuscrit. 

Mots clés : GaN/AlGaN, nanofils, Épitaxie par jet moléculaire dopage n, composants à base de nanofils, inter-sous-band. 


