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I also remember a remark of Albert Einstein, which
certainly applies to music. He said, in effect, that every-
thing should be as simple as it can be but not simpler!

—Roger Sessions
In The New York Times, January 8, 1950





Acknowledgments

À l’automne 2015, on parlait de la COP21, de la présence d’eau liquide sur Mars,
de Vigipirate et du Bataclan. Il y a trois ans déjà? Oui, cela fait déjà trois ans
que je me suis installé dans les nouveaux locaux du LMA, suite à l’obtention
de mon financement doctoral. À ce titre, je voudrais remercier le personnel de
l’école doctorale et du laboratoire qui a contribué à mon intégration dans mon
nouvel environnement de travail.

Courant 2014, un stage au LMA encadré par Bruno Lombard et Christophe
Vergez avait satisfait mon appétit naissant d’activités de recherche en acoustique.
Merci Bruno etChristophe dem’avoir donné le virus ! C’était évident pourmoi de
poursuivre dans cette voie. Bruno, je n’oublierai pas ton implication exemplaire
tout au long de cette thèse, tes bons conseils, et les débats variés qui ont jalonné
ce travail. La collaboration avec Guillaume Chiavassa et Nicolas Favrie a été
très précieuse. Merci Guillaume pour ton implication dans le développement de
schémas numériques qui marchent, et pour tout le reste. Merci Nicolas pour ta
contribution—et vive les systèmes hyperboliques d’ordre un ! Ce travail a aussi
fait l’objet d’un Défi Infiniti (avec Cédric Payan, Guillaume Renaud, Sylvain
Haupert et Stéphane Junca), et a bénéficié de la participation d’Emmanuelle
Sarrouy et de Marcel Rémillieux. Pendant ces trois années, j’ai eu la chance de
rencontrer de nombreux scientifiques qui m’ont fait avancer. Il serait indigeste de
les nommer tous, comme il serait injuste d’en nommer quelques-uns seulement.
Merci à vous tous.

En repensant au jour de la soutenance, il m’est impossible de ne pas men-
tionner le jury ; un grand merci aux rapporteurs (Jean-Jacques Marigo, William
Parnell) et aux examinateurs (Claude-Henri Lamarque, Sonia Fliss, Koen Van
Den Abeele). Je me souviendrai de votre bienveillance quand la qualité de la liai-
son par visioconférence avec Manchester s’est dégradée jusqu’au point de devoir
utiliser mon téléphone portable. En fin de soutenance, on m’avait soumis la ques-
tion « Si c’était à refaire, qu’aurais-tu fait différemment? »(N. Favrie). Si c’était
à refaire. . .Eh bien, j’aurais opté pour un système de conférence téléphonique !

Merci à ma famille qui me soutient depuis le début ; merci à mes amis qui
ont su être disponibles et me divertir de la plus belle façon, notamment ceux
avec qui j’ai partagé le plaisir de faire de la musique. Un chaleureux merci aux
doctorants et post-doctorants voisins qui m’ont supporté au quotidien, dans tous
les sens du terme.

Marseille, le 10 janvier 2019.





Contents

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Experimental observations 2

1.1. Quasistatic experiments 2
1.2. Dynamic experiments 2

2. Models 5
2.1. Nonlinear viscoelasticity 5
2.2. Hysteretic nonlinearity 7
2.3. Framework of continuum damage theories 9

3. Outline 12

Chapter 2. Longitudinal waves in hyperelastic material . . . . . . . . . . . . . . . . . . . 15
1. Governing equations 16

1.1. Lagrangian hyperelasticity 16
1.2. Longitudinal plane waves 18

2. Finite-volume methods 22
2.1. Basic principle 24
2.2. Classical finite-volume schemes 26
2.3. Higher-order methods 30

3. Conclusion 38
4. Appendix 39

4.1. Eulerian hyperelasticity 39
4.2. Shock wave generation 39
4.3. Complements on finite volumes 40

Chapter 3. The Riemann problem of longitudinal elastodynamics . . . . . . . . 45
1. Elementary solutions 46

1.1. Wave types 46
1.2. Graphical method 53

2. Solution of the Riemann problem 54
2.1. General strategy 54
2.2. Concave constitutive laws 55
2.3. Convex-concave constitutive laws 58

3. Conclusion 63
4. Appendix 65

4.1. Details on the Riemann solution 65



Chapter 4. Hyperelastic material with slow dynamics . . . . . . . . . . . . . . . . . . . . 69
1. Phenomenological material modeling 70

1.1. Construction of the model 70
1.2. Qualitative properties 74

2. Longitudinal waves 80
2.1. Governing equations 80
2.2. Numerical resolution 81
2.3. Numerical experiments 82

3. Plane-strain waves 84
3.1. Governing equations 84
3.2. Numerical resolution 88
3.3. Numerical experiments 90

4. Conclusion 93
5. Appendix 95

5.1. Other models 95
5.2. Complements on plane-strain finite volumes 98

Chapter 5. Slow dynamics of a viscoelastic bar . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1. Phenomenological material modeling 106

1.1. Construction of the model 106
1.2. Properties 110

2. Time-domain numerical method 112
2.1. Numerical resolution 112
2.2. Numerical experiments 115

3. Frequency-domain numerical method 120
3.1. Numerical resolution 120
3.2. Results 123

4. Conclusion 130
5. Appendix 132

5.1. Parameters of the viscoelastic model 132
5.2. Spectrum of the Roe’s matrix 134
5.3. First-order quadratic recast 134

Chapter 6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
1. Outcome 137
2. Perspectives 139

Appendix A. Résumé substantiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
1. Introduction 141
2. Ondes longitudinales dans les matériaux hyperélastiques 142
3. Le problème de Riemann de l’élastodynamique longitudinale 143
4. Matériaux hyperélastiques à dynamique lente 144



5. Dynamique lente d’une barre viscoélastique 145
6. Conclusion 146

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149





CHAPTER1
Introduction

1. Experimental observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Quasistatic experiments 2
1.2. Dynamic experiments 2

2. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Nonlinear viscoelasticity 5
2.2. Hysteretic nonlinearity 7
2.3. Framework of continuum damage theories 9

3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Rocks and concrete are solid materials encountered in many branches of
engineering, such as civil, mining or petroleum engineering. In construc-

tion engineering, they provide durable and long-lasting structures which don’t
rust, rot, or burn. Both sedimentary rocks and concrete enter the category of
consolidated granular solids. They are heterogeneous, made of grains embedded
in a matrix.

During its lifetime, the material is submitted to various external solicita-
tions, such as gravity, earthquakes, vibrations, fluid flow, impacts, temperature
variations, radiation, etc. Intense external solicitations may modify the material
by causing aging, e.g. the initiation and the propagation of cracks, which is
one of the core concerns of damage mechanics. The non-destructive evalua-
tion (NDE) of damage in concrete structures is an active research topic, with
many applications in civil engineering. In laboratory experiments, ultrasound
has shown to be a reliable inspection means to monitor damage. Developments
are undergoing to adapt the technology to real engineering structures. In this
context, the development of models and corresponding numerical methods is
needed to benchmark NDE techniques.

Many laboratory experiments show that the mechanical behavior of rocks
and concrete is complex and highly nonlinear. In this chapter, we present several
experimental results from the literature (Section 1). Then, we present various
models, which were introduced to reproduce the experiments (Section 2). The
scope of the present study is the phenomenological modeling of geomaterials
regarding wave propagation, in the framework of continuum thermomechanics
(Section 3). Particular efforts are dedicated to the development of numerical
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methods, suitable for making predictions about the mechanical response to
small-amplitude dynamic solicitations.

1. Experimental observations

As done in other literature reviews [43, 44, 101], we present a list of observa-
tions from quasistatic and dynamic experiments. Details on the experimental
conditions can be found in the corresponding bibliographical references.

1.1. Quasistatic experiments

In the early twentieth century, several quasistatic experiments have been made,
in order to measure the elastic constants of various types of rock (marble, granite,
sandstone). The following statements are made by H. Nagaoka in 1900 [9, 92]:

“Preliminary experiments with granite showed that Hooke’s law
does not hold even for very small flexure and tension, and that the
after-effect is very considerable when the prism is sufficiently loaded
or twisted; the deviation from the direct proportionality between
the strain and stress was incomparably great as compared with that
observed in common metals. [ . . . ] The deviation from Hooke’s law
was prominent in certain specimens of sandstone, and it was more
marked in tension than in flexure experiments. In certain rocks it
is indeed doubtful if anything like a proportionality between stress
and strain can be found even for extremely small change of shape.”

The results highlight such features as the nonlinearity of the material, its re-
laxation in time, and its memory of the loading history. In particular, loading-
unloading experiments reveal the phenomenon of hysteresis. That is to say, the
stress-strain curve for decreasing loads differs from that for increasing loads, and
forms a closed loop with it after a sufficient number of cycles has been applied
[9]. At small strains, these key features are also reported in later works using
various experimental setups [26, 28, 41, 48, 86], which suggest that the stress may
not only be a function of the strain, even a nonlinear one. Rock plasticity— i.e.,
non-reversible change of shape in response to applied forces [10, 120]—and
rock failure occur at larger strains, but such responses are beyond the scope of
the present document.

1.2. Dynamic experiments

Back to the early twentieth century, a dynamic experiment of resonance type has
been developed to measure elastic moduli [61]. However, the results for rocks
are hardly interpretable, partly due to the influence of experimental conditions
(temperature and moisture). In the present section, we show later experimental
results obtained with rock and concrete samples using dynamic solicitations.
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Figure 1.1. Resonance curves for (a) acrylic and for (b) Berea sandstone at different input voltages. Nonlin-
earity is evidenced in Berea sandstone by the shift of the resonance peak. The reference center frequency
is 2150 Hz for acrylic and 2765 Hz for Berea sandstone. Reproduced from [105] (Fig. 1), with permission of
AGU Publications.

1.2.a. Resonance experiments

Abarofmaterialwith length∼ 30 cm is suspendedon strings. Forced longitudinal
vibration is induced in the sample by a piezoelectric disk glued at one of its ends.
At the same time, the acceleration or the velocity of the free end is recorded [55,
115]. The first harmonic amplitude of the recorded signal is then converted into
strain. A sweep of the exciting signal’s frequency is performed, and the procedure
is repeated for several input voltages. Figure 1.1 compares the resonance curves
obtained with acrylic and with Berea sandstone. One observes a frequency-shift
of the resonance peak with increasing amplitudes of solicitation in the case
of Berea sandstone, which is a signature of nonlinearity. This phenomenon
occurs at small strains with magnitude ε ∼ 10−6. Since the resonance frequency
is proportional to the square root of the elastic modulus, this decrease of the
resonance frequency is interpreted as a softening of the material. Moreover, the
generation of higher-order harmonics has been reported [55]. Such resonance
experiments have also been conducted on concrete, and in non-longitudinal
setups [107].

� Slow dynamics. In these experiments, a high sensitivity to the sweep rates has
been found [73, 115]. A relaxation effect with long transients has been noted, and
has therefore been called slow dynamics [132, 135]. Indeed, when forcing the
sample at its fundamental resonance frequency, the softening of the material—
i.e., the shift of the resonance peak— is not instantaneous. Then, when the
forcing is turned off, the fundamental resonance frequency recovers gradually its
initial value (recovery). A logarithmic time-evolution of the resonance frequency
is in agreement with experimental results [133].

1.2.b. Dynamic acousto-elastic testing

Dynamic acousto-elastic testing (DAET) is based on the previous resonance
setup [117, 118]. The sample is a bar excited around a resonance frequency by
a piezoelectric device (low-frequency pump). Simultaneously, acoustic pulses
propagating over a short distance are used to probe the material locally by
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Figure 1.2. Dynamic acousto-elastic testing of Berea sandstone. (a) Evolution of the axial strain ε at the
location of the probe over time. (b) Relative variation ∆c/c of the sound speed with respect to its initial
value over time. (c) Hysteresis loop: ∆c/c versus ε in steady state. Reproduced from [118] (Fig. 12), with
permission of AIP Publishing.

recording their arrival times (high-frequency probe). The arrival times are then
converted into a measurement of the speed of sound in the material. Figure 1.2
shows experimental results so-obtained. In Fig. 1.2b, one observes the softening
of the material after the pump is switched on, which is consistent with the
measurements of the softening made in the resonance setup. A fast drop of the
speed of sound followed by a long-time relaxation is observed (slow dynamics).
In steady state, the evolution of the speed of sound with respect to the strain
has the shape of an hysteresis loop (Fig. 1.2c). When the pump is switched off,
the speed of sound recovers gradually its original value. The beginning of this
recovery phase is shown in Fig. 1.2b. An overview of more recent developments
can be found in [116].

1.2.c. Pulse propagation

A bar of material with length ∼ 2 m is used. Similarly to the resonance experi-
ments, a piezoelectric transducer is glued at one end of the sample. Here, the input
signal is a short sinusoidal pulse (tone burst with Gaussian-shaped envelope).
The acceleration or the particle velocity is recorded at several abscissas along
the sample [87, 116, 131]. In the recorded signals, the amplitude of higher-order
harmonics is shown to increase with the propagation distance, which is a typical
nonlinear feature. Moreover, the arrival of the pulse at one given abscissa is all
the more delayed as the amplitude of the pulse is large, which illustrates the
softening of the material with increasing amplitudes. The nonlinear distortion
leading to triangular signals and the delay of the pulse are both illustrated in
Fig. 1.3.

The section on experimental observations can be summarized as follows.
Even at low strain amplitudes, quasistatic experiments reveal nonlinear hysteretic
stress-strain relationships. Dynamic experiments highlight a nonlinear behavior
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Figure 1.3. Pulse propagation in Berea sandstone. Time histories of the axial component of the parti-
cle velocity measured at 500 mm from the source for several amplitudes of a pulse centered at 22.4 kHz.
Reproduced from [116] (Fig. 9), with permission of AGU Publications.

with long-time softening/recovery processes (slow dynamics). One should also
mention that dissipation occurs in the material.

2. Models

The characterization of geomaterials has been taken up using various modeling
approaches. In the present section, we review several types of models, aimed at
reproducing the experimental observations. As indicated in [116, 118], a model
which reproduces all these features is not known. The mechanical modeling of
geomaterials is still an open subject.

2.1. Nonlinear viscoelasticity

� Hyperelasticity. The observation of harmonic generation and wavefront distor-
tion in one-dimensional experiments suggests to develop nonlinear stress-strain
relationships. The simplest of such models is based on the assumption that the
axial stress σ is a polynomial function of the axial strain ε, e.g.

σ = M0 ε
(
1 − βε − δε2

)
, (1.1)

where M0 > 0 denotes the elastic modulus, and β, δ are higher-order elastic
constants. The stress (1.1) may be written as the derivative of the strain energy
density function W = (12 − 1

3 βε − 1
4δε

2)M0 ε
2 with respect to the strain. The

notion of hyperelastic material refers to the three-dimensional case, where a
similar definition holds. Instead of being a function of the scalar strain ε, the
strain energy W is a function of a strain tensor χ. The polynomial constitutive
law (1.1) and other models of hyperelasticity are discussed in the next chapter
(p. 15).

In hyperelasticity, the speeds of sound are modified when an external load
is applied, and their variations depend explicitly on the elastic constants. Called
acousto-elasticity, this effect enables the measurement of higher-order elastic
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constants, by measuring the speeds of sound in a statically loaded sample [51].
Under the assumption that geomaterials have a hyperelastic behavior, such ex-
periments have been conducted on rocks and concrete. Several sets of numerical
values can be found in the literature [15, 54, 71], which show that the effective
nonlinearity parameters β, δ in (1.1) are much larger in geomaterials than in
other solids.

� Viscoelastic dissipation. The relaxation in time observed in quasistatic experi-
ments evidences the viscoelastic behavior of geomaterials, i.e. they do not strain
instantaneously when a static load is applied. One consequence of such a dissi-
pative relaxation mechanism is the finite height of the resonance peaks obtained
in dynamic experiments. An extensive literature on viscoelastic behavior can be
found in relation with polymers and rubber-like materials [32, 47, 50, 66, 143].
In the uniaxial case, the simplest rheological model is the Kelvin–Voigt model

σ = M0 ε
(
1 − βε − δε2

)
+ ν Ûε , (1.2)

where ν > 0 is the viscosity and Ûε = ∂tε is the strain rate. This model has a
single characteristic relaxation time ν/M0.

To examine the ability of (1.2) to reproduce the dynamic experimental
features, we follow the steps in [18, 29]. A bar of length L with density ρ0 is
considered. A displacement forcing u|x=0 = U is applied at the abscissa x = 0.
A free end is located at the abscissa x = L, i.e. σ |x=L = 0. The displacement is
written u(x, t) = U(t)+q(t)Φ0(x),whereΦ0(x) = sin(k0x) is the firstmode shape
of the undamped linear system, corresponding to the wavenumber k0 = π/(2L).
This Ansatz is injected in the conservation of momentum ρ0∂ttu = ∂xσ, where σ
satisfies (1.2) and ε = ∂xu. Multiplication byΦ0 and integration over x ∈ [0, L]
gives the nonlinear oscillator equation

Üq + ω0
Q
Ûq + ω0

2
(
q − γ2q2 − γ3q3

)
= F , (1.3)

where ω0 = k0
√

M0/ρ0, Q ∝ ν−1, γ2 ∝ β, γ3 ∝ δ, and F ∝ ÜU. Eq. (1.3) amounts
to the Duffing equation if γ2 = 0, i.e. β = 0 [59].

In the harmonic regime where F = V cos(ωt) and q ' A cos(ωt + φ), the
Duffing oscillator reproduces the resonance curves in Fig. 1.1b at low strain
regime [105, 134]. The resonance angular frequency corresponding to Fig. 1.1b
is ω0

√
1 − (2Q2)−1 = 2π × 2765 rad/s and the quality factor is Q = 65. The

characteristic relaxation time 2Q/ω0 ≈ 7.5 ms of the oscillator (1.3) has the
same order of magnitude as the ring-up time of Fig. 1.2a (the experimental setups
of Figs. 1.1 and 1.2 are comparable). At the abscissa x = 0, the effective elastic
modulus M = ∂σ/∂ε equals

M |x=0 = M0

(
1 − 3δA2k0

2 cos2(ωt + φ)
)
, (1.4)

which periodically equals M0 (here, β = 0). Thus, the model (1.2) is not able to
reproduce the drop of the elastic modulus in Fig. 1.2b.
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2.2. Hysteretic nonlinearity

Several constitutive models incorporate explicitly the hysteresis observed in
quasistatic experiments (see e.g. [52, 70, 88, 144] for an overview). In the field of
solid mechanics, some models of hysteresis are used to describe plastic behavior.
The present section focuses on hysteresis models used in nonlinear acoustics.

� Preisach–Mayergoyz (PM). The Preisach model of hysteresis was introduced
to represent scalar ferromagnetism [144]. It belongs to a class of discontinuous
hysteresis models with internal variables, which is based on a population of
hysteretic elements. As such, its number of parameters is linked to the number
of hysteretic elements. For a sinusoidal strain excitation, the hysteretic elements
yield a constitutive law of the form [42, 140, 141]

σ = M0 ε
(
1 − βε − δε2

)
+ σH (1.5)

where
−σH

M0
=

∫
α (εm + ε sgn Ûε) dε . (1.6)

Here, the stress depends on the sign of the strain rate sgn Ûε, and on the maximum
strain excursion εm (i.e., the strain amplitude over one period of signal). The
constant α is the strength of the hysteresis. A stress-strain relationship deduced
from (1.5)-(1.6) is represented in Fig. 1.4a. A hysteresis curve is obtained, which
has sharp changes of slope at its extremities. A similar equation to (1.5)-(1.6) is
obtained in [88] for the Hogdon hysteresis model.

The phenomenological Preisach framework can represent real microscopic
features such as rough surfaces interacting via adhesion forces [13, 109]. An
extension of the model with random transitions can account for long-time re-
laxation (slow dynamics) as well [122]. A quantitative method to reproduce
stress-strain curves is proposed in [41]. However, later works point out several
issues with the model [26].

� Nazarov et al. Two kinds of models for hysteretic nonlinearity have been
proposed [70], which both write as

σ = M0 ε + σH + ν Ûε , (1.7)

when Kelvin–Voigt viscoelasticity with constant ν is taken into account. In the
case of a sinusoidal strain excitation, the first hysteretic model reads [95]

−σH

M0
= αεmε +




β1
2
ε2 − β1 + β2

4
εm

2 , Ûε > 0 ,

− β2
2
ε2 +

β1 + β2
4

εm
2 , Ûε < 0 ,

(1.8)

whereα, β1,2 arematerial parameters. The symbolεm denotes the strain amplitude
over one period of signal. The case β1 = β2 is discussed in [102]. The second
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(a)

ε

σ
(b)

ε

σ
(c)

ε

σ

Figure 1.4. (a) Typical stress-strain relationship obtained with the law (1.5)-(1.6) when the strain is a sinu-
soidal function of time. (b)-(c) Similar curves deduced from themodels (1.7)-(1.8) and (1.7)-(1.9) respectively,
where ν = 0. The arrows indicate how time increases along the curve.

hysteretic model reads [94]

−σH

M0
=

1
n




γ1ε
n , ε > 0, Ûε > 0 ,

−γ2ε
n + (γ1 + γ2)(εm)n−1ε , ε > 0, Ûε < 0 ,

−γ3ε
n , ε < 0, Ûε < 0 ,

γ4ε
n − (γ3 + γ4)(−εm)n−1ε , ε < 0, Ûε > 0 ,

(1.9)

where γ1,2,3,4 and n ∈ {2, 3} are material parameters1. Stress-strain relationships
deduced from (1.7)-(1.8) and (1.7)-(1.9) are represented in Fig. 1.4b and Fig. 1.4c,
respectively.

� Pecorari. Several constitutive laws have been proposed in [111], where the
strain is expressed in terms of the stress:

ε =
σ

M0
+ εH . (1.10)

For so-called “dislocations-glide point defects interaction”, the constitutive law
(1.10) is given by [110, 111]

εH = S1 H(σm − σc)




(−σm + σc)H(−σm + 2σc − σ)
+ (σ − σc)H(σ + σm − 2σc) , Ûσ > 0 ,
(σm − σc)H(σ − σm + 2σc)
+ (σ + σc)H(σm − 2σc − σ) , Ûσ < 0 ,

(1.11)

and H denotes the Heaviside step function. Here, S1 is a material parameter, σm
represents the stress amplitude, and σc is a critical stress which activates the
hysteresis. The latter follows a given distribution, and averaging of (1.11) over
the values of σc is performed. Then, [111] introduces micro-cracks with finite
stiffness, which constitutive law (1.10) is given by

εH = S1H(σ + σc) (σ + σc) . (1.12)

Again, an averaging procedure is applied. A composite model combining both
mechanisms (1.11)-(1.12) is presented in [110, 111], showing qualitative agree-
ment with experimental features (softening, hysteresis loops), except the slow
dynamics.

1A sign mistake has been found in Eq. (4) of [95], which corresponds to the case n = 2. For
n = 2, the case γ2 = γ4 = 0 is discussed in [93]. The case γ1 = · · · = γ4 , 0 is discussed in
[102].
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� Lebedev et al. A model was introduced to describe the hysteresis due to
adhesive intergrain contacts, and the long-time recovery (slow dynamics) [64].
Both effects are activated when a critical strain level is exceeded. Under this
barrier, the stress is a polynomial function of the strain. According to [64, 100],
the stress may be written as

σ = M0 ε
(
1 − βε − δε2

)
+ σH + Λ ln(a + Ûε) . (1.13)

The hysteretic stress σH is obtained by averaging,

σH =

∬
w(R, ξ) σ̃H(R, ξ) dR dξ , (1.14)

where σ̃H is the stress deduced from the adhesive force at an elementary contact
with curvature radius R and pre-compressed indentation depth ξ. The contact
parameters R, ξ are normally distributed with distribution w. The parameters Λ,
a in (1.13) control the slow dynamics.

In the case of penny-shaped adhesive cracks, a similar model has been
developed by another group to model the hysteresis [13]. In these works, the slow
dynamics is justified by the fact that “due to thermally induced creep motion the
internal roughness may slowly vary in time”, but is not included in the model.
By the same authors, similar work justifies the hysteresis using dry friction [12].

All these models have in common the hysteresis in the stress-strain relation-
ship, i.e. brutal changes of slopewith the sign of the strain rate. Thus, singularities
are introduced in the constitutive law, which must be handled with care when
solving the equations of motion. Almost all models involve the amplitude of a
sinusoidal signal, which restricts the use to periodic solicitations. In the dedi-
cated literature, well-posedness considerations are often discarded, which leads
to questioning the validity of the approach. Nevertheless, many of these models
have shown at least qualitative agreement with experiments, which is one reason
for their success in the communities of NDE and geophysics.

2.3. Framework of continuum damage theories

The study of cracked solids has lead to the development of damage mechanics
models [57, 58, 66, 67]. This type of approach does not incorporate explicitly
a hysteresis in the constitutive law. Instead, it is assumed that damage can be
accounted for by a set of variables of state (in the simplest case, a scalar variable g).
Whether related to micromechanics or of purely phenomenological nature, these
variables represent the effect of damage evolution on the material behavior. The
choice of a given constitutive damage model is guided by experiments and by the
principles of continuum thermomechanics, sometimes also by micromechanical
considerations.

In this section, we present several models of this type. They all introduce
a scalar variable g which modifies the elastic constants of the material. A
particularity of themodels presentedhereinafter is that they allow the variable g to
increase (destruction/softening process, Ûg > 0) or to decrease (healing/recovery
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process, Ûg 6 0), whereas classical continuum damage mechanics does only
consider destruction processes. This type of approach is the background of the
present study.

� Lyakhovsky et al. A continuum damage model is proposed, which has a
transition between two regimes [74]. The first regime is ductile (healing is
possible), whereas the second regime is brittle (irreversible damage). The model
is based on a specific free energy ψ which satisfies

ρ0ψ = W̃(ε, g) + φ(g) + β̂ tr(ε) (T − T0) , (1.15)

where ρ0 is the reference mass density. The parameter β̂ is the temperature
expansivity by unit of reference volume, while T is the absolute temperature and
T0 its reference value. The infinitesimal strain tensor ε = 1

2 (grad u + grad>u)
where u is the displacement field may be decomposed into an elastic part and
a viscoelastic part. The strain energy reads W̃ = 1

2λεI
2 + µεII − γεI√εII, where

εI = tr(ε), εII = tr(ε2) are the first two invariants of ε, and the elastic moduli
are linear in g:

λ = λ0 + gλ1 , µ = µ0 + gµ1 , γ = gγ1 . (1.16)

The potential φ reads φ = κ̂ (g − g1)2 (g − g2)2,where κ̂ > 0 and0 < g1 < g2 < 1
are material parameters. Based on thermodynamics, the two following model
equations are obtained. The Cauchy stress tensor is given by σ = ρ0∂ψ/∂ε, i.e.

σ =
(
λεI − γ

√
εII

)
I +

(
2µ − γεI/

√
εII

)
ε , (1.17)

where I = ε0 is the metric tensor. The evolution of the damage variable satisfies
Ûg = −C∂ψ/∂g where C > 0 is a constant:

Ûg = −C
(
λ1
2
εI

2 + µ1εII − γ1εI
√
εII

+ 4κ̂ (g − g1)
(
g − g1 + g2

2

)
(g − g2)

)
.

(1.18)

The evolution equation (1.18) has two stable equilibria, which are interpreted as
ductile (g ' g1) and brittle (g ' g2).

In later works [75], a related model is derived, which has superseded its
original version [74] since then. The free energy (1.15) is reduced to ρ0ψ =
W̃(ε, g), i.e. β̂ = 0 and κ̂ = 0. Moreover, the modulus λ is assumed independent
on g, i.e. λ1 = 0 in (1.16). Hence, the damage evolution equation (1.18) becomes
Ûg = Cd (ξ − ξ0) εII, where ξ = εI/√εII, ξ0 = µ1/γ1 and Cd = Cγ1. The strain
invariants ratio ξ reduces to ξ = ε/|ε | in the case of uniaxial strain. A given
critical value ξ0 ≈ −0.8 of the invariants ratio marks the transition between
destruction (ξ > ξ0) and healing (ξ < ξ0). In that respect, the authors make the
following statement:

“We note that (10) [ Ûg = −C∂ψ/∂g] describes not only damage
increase, but also a process of material recovery associated with
healing of microcracks, which is favored by high confining pressure,
low shear stress, and especially high temperature.”
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To avoid that the healing process is linear in time (which is not consistent with
experimental observations), the following damage evolution is introduced [75]:

Ûg =
{
Cd (ξ − ξ0) εII if ξ > ξ0 ,

C1 exp(g/C2) (ξ − ξ0) εII if ξ 6 ξ0 ,
(1.19)

where C1,2 > 0 are material parameters governing the healing process.
Later, several refinements have been introduced. The previous model [75]

has been generalized to poroelasticity [46], Maxwell viscoelasticity [45], non-
local damage [77], and solid-granular transitions [78–80]. In a related study, a
configuration with uniaxial strain and constant damage levels g is considered. A
Kelvin–Voigt rheology combined with damage-dependent bimodular elasticity
gives the constitutive law σ = M0

(
ε − 1

2g(ε + |ε |)
)
+ ν Ûε (Fig. 1.5a). Using the

spectral element method, qualitative agreement with resonance experiments has
been obtained [76].

� The soft-ratchet model of Vakhnenko et al. A continuum model is proposed,
by analogy with nonlinear resonant tunneling of electrons through a set of
potential barriers [137, 138]. Even if the construction of the model does not refer
explicitly to damage mechanics, the soft-ratchet model can be considered within
this perspective. The model introduces a concentration of defects g, playing
the role of a damage parameter in the constitutive law. This concentration of
defects does not exceed a given critical value gcr. A strain energy similar to the
Lennard–Jones potential and Kelvin–Voigt viscoelasticity with parameter ν are
used, so that one writes

σ = (1 − g/gcr) M0 d
r − a

(
(1 + ε/d)−(1+a) − (1 + ε/d)−(1+r)

)
+ ν Ûε , (1.20)

with the material parameters 0 < gcr 6 1, 0 < a < r , and 0 < d 6 1 (see
Fig. 1.5b where gcr = 1). Although the model equations are stated differently in
[137, 138], one can show that g satisfies the evolution equation

Ûg = (
µ1 H(g − geq(σ)) + µ2 H(geq(σ) − g)

) (geq(σ) − g) , (1.21)

where 0 < µ1 � µ2. The reason for choosing different rates µ1, µ2 in (1.21) is
the following [138]:

“Similarly, there are various ways for an already existing crack in
equilibrium to be further expanded when surplus tensile load is
applied. However, under compressive load a crack, once formed, has
only one spatial way to be annihilated or contracted.”

The equilibrium value of g in (1.21) follows Arrhenius’ equation geq(σ) =
g0 exp(σ/σ̃), with the material parameters g0 > 0 and σ̃ > 0.

Several modifications of the previous model are proposed in [38]. The
expression of the equilibrium value geq is fixed as

geq(σ) = gcr
2

(
1 + tanh

(
σ/σ̃ − tanh−1(1 − 2g0/gcr)

) )
, (1.22)
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(a)

ε

σ
(b)

ε

σ g = 0
g = 0.5
g = 1

Figure 1.5. (a) Typical stress-strain relationship obtained with the damage-dependent viscoelastic bimod-
ular law, for a sinusoidal strain evolution and constant damage [76]. (b) Similar curve deduced from the
soft-ratchet model (1.20) where gcr = 1. The arrows indicate how time increases along the curve.

in order to ensure g < gcr. Moreover, a polynomial constitutive law is used instead
of the Lennard–Jones potential, and a generalized Zener rheology is used instead
of the Kelvin–Voigt rheology above (1.20). Without loss of generality, [38]
assumes also that gcr = 1. Using first-order finite-volume methods, qualitative
agreement with dynamic acousto-elastic testing is obtained.

3. Outline

Let us summarize the literature overview by the fact that rocks and concrete
are nonlinear dissipative solids, which peculiarities already arise at low strain
levels ε ∼ 10−6. Quasistatic experiments show nonlinear hysteretic stress-strain
relationships. Dynamic experiments highlight the generation of higher-order har-
monics. Furthermore, the softening and the recovery of the material is observed,
which occurs over large time scales.

On the modeling side, classical nonlinear viscoelasticity theories are able
to reproduce many experimental observations besides the long-time relaxation.
Despite their agreement with experiments and their relation to microscopic
features (contacts at crack interfaces), hysteresis models raise practical questions.
Indeed, very few works illustrate their use in a computational framework [22,
70, 88]. In counterpart, studies related to damage modeling (Lyakhovsky et al.,
Vakhnenko et al.) have lead to several numerical studies. As such, damage-like
models provide a way to represent nonlinear softening and recovery processes in
a self-consistent way. However, this type of approach does not provide a detailed
look at the influence of the material’s microstructure for now.

The present thesis follows [38] and is a continuation of the phenomenologi-
cal approach resulting from continuum damage modeling. Since nonlinearity of
stress-strain relationships is an important experimental feature, nonlinear elastic-
ity is presented in the second chapter (p. 15). In particular, uniaxial constitutive
laws with polynomial expressions (1.1) are examined, and finite-volumemethods
are presented.

The third chapter (p. 45) is devoted to the computation of an analytical
solution. It has been obtained for a particular initial-value problem of nonlinear
elastodynamics, where the initial data is discontinuous (Riemann problem).
Moreover, the stress-strain relationship may have an inflection point, as is the
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case of the cubic polynomial (1.1). This constitutive law is used as an example
along the chapter, and the computation of the solution is detailed. This solution
is used in Chapter 2 to assess the performances of finite-volume methods.

The next chapters concern the modeling of the slow dynamics, and its cou-
pling with the previous numerical methods. The fourth chapter (p. 69) presents a
continuummodel, analogous to damage models. It is developed within the frame-
work of the finite-strain theory and of thermodynamics. The model is designed
to reproduce the slow dynamics observed in experiments, and is kept as simple
as possible. The coupling of the slow dynamics with finite-volume methods is
addressed, and the softening/recovery process is illustrated numerically.

Experimental evidence demonstrates the need of viscoelastic dissipation.
This behavior is added to the softening model in the fifth chapter (p. 105) in
the uniaxial case. Finite-volume methods are presented, as well as a numerical
continuation method in the frequency domain for the computation of periodic
vibrations. Qualitative agreement is obtained with the experimental observations.
The conclusions and perspectives are detailed in the sixth chapter (p. 137).
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Nonlinear elasticity is the simplest model of nonlinear mechanical be-
havior. It is widely used to assess the nonlinearity of geomaterials exper-

imentally, e.g. in nondestructive testing applications. In the present chapter, we
investigate nonlinear stress-strain relationships with polynomial expressions.

In Section 1, we introduce the constitutive equations of Murnaghan’s hy-
perelasticity, in the three-dimensional finite-strain framework (works published
in [4]). This material model leads to polynomial stress-strain relationships under
the uniaxial assumption. The equations of motion are rewritten as a nonlinear
system of conservation laws, which resembles the p-system of gas dynamics.

Section 2 introduces finite-volume methods for nonlinear elastodynamics,
such as the flux-limiter method. Based on Roe linearization [69], numerical
methods of order up to two and higher-order methods are developed. The ability
of the methods to capture discontinuous wave solutions is tested, as well as their
ability to compute smooth waves accurately. Parts of this study can be found in
the publication [4].
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1. Governing equations

1.1. Lagrangian hyperelasticity

Let us consider an homogeneous continuum. A particle initially located at some
position x0 of the reference configuration moves to a position xt of the current
deformed configuration. The deformation gradient is a second-order tensor
defined by [35, 50, 97, 98]

F = grad xt = I + grad u , (2.1)

where u = xt − x0 denotes the displacement field and grad is the gradient with
respect to the material coordinates x0 (Lagrangian gradient). In the reference
configuration, the deformation gradient (2.1) is equal to the metric tensor I .
Here, the Euclidean space is described by an orthonormal basis (e1, e2, e3) and
a Cartesian coordinate system (O, x, y, z), so that the matrix of the coordinates
of I is the identity matrix.

The choice of a representation of motion—Eulerian or Lagrangian—does
not affect the expressions of the constitutive laws and the evolution equations.
However, it affects the expression of the material derivative and of the spatial
differential operators. In particular, this choice affects the equations of motion.
Here, the Lagrangian representation of motion is used (see Sec. 4.1 of the
Appendix forelements ofEulerian hyperelasticity). Hence, thematerial derivative
Ûψ of any field ψ(x0, t) is Ûψ = ∂tψ. In particular, the material derivative of the
deformation gradient satisfies

ÛF = grad v , (2.2)

where v(x0, t) is the velocity field. The conservation of mass implies

ρ0/ρ = det F , (2.3)

where ρ denotes the mass density in the deformed configuration, and ρ0 denotes
the mass density in the reference configuration. The motion is also driven by the
conservation of momentum. If self gravitation is neglected, the latter writes

ρ0 Ûv = div P + f v , where P = (det F)σ · F−> (2.4)

is the first Piola–Kirchhoff tensor. The divergence with respect to the material
coordinates is denoted by div. The Cauchy stress tensor σ = (det F)−1P · F> =
σ> is specified later on, through a specification of P. The term f v is an external
volume force applied to the material.

In acoustics, the thermodynamic process is usually assumed to be adiabatic
(no heat transfer). The first principle of thermodynamics introduces the specific
internal energy e. The conservation of energy writes

ρ Ûe = σ : D , (2.5)

where D = 1
2 ( ÛF · F−1 + F−> · ÛF>) is the strain rate tensor, and the double-dot

product σ : D is the double-contraction of tensors. The second principle of
thermodynamics gives

ρ Ûη > 0 , (2.6)
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where η is the specific entropy. In hyperelasticity, the only variables of state are
the specific entropy η and a strain tensor χ. Hence, the Gibbs identity applied to
Ûe reads

Ûe = T Ûη + ∂e
∂χ

����
η

: Ûχ , (2.7)

where T = ∂e/∂η |χ > 0 is the absolute temperature. Multiplying (2.7) by ρ, the
local equations of thermodynamics (2.5) and (2.6) yield the Clausius–Duhem
inequality

D = σ : D − ρ ∂e
∂χ

����
η

: Ûχ > 0 , (2.8)

for all states {η, χ} and all evolutions { Ûη, Ûχ}. The left-hand term in (2.8) is the
dissipationD = ρT Ûη per unit volume of material (Wm−3). In hyperelasticity, the
dissipation in the material is zero, i.e. the thermodynamic process is isentropic
( Ûη = 0).

Here, the deformation of the material is represented by the Green–Lagrange
strain tensor χ = E. The Green–Lagrange strain tensor is defined as E =
1
2 (C − I ) where C = F> · F is the right Cauchy–Green strain tensor, or equiva-
lently as a function of the displacement gradient tensor:

E =
1
2

(
grad u + grad>u + grad>u · grad u

)
. (2.9)

The material derivative of the Green–Lagrange tensor is Ûχ = ÛE = F> · D · F,
where D is the strain rate tensor. For any second-order tensors T , F and D, we
recall that

T :
(
F> · D · F )

= (D · F) : (F · T )
= tr

(
D · F · (F · T )>)

= tr
(
D · (F · T · F>)>)

=
(
F · T · F>) : D .

(2.10)

Thus, defining the strain energy density function W = ρ0e, the dissipation (2.8)
rewrites as

D = σ : D − ρ ∂e
∂E

����
η

: ÛE

= σ : D − ρ

ρ0

∂W
∂E

����
η

:
(
F> · D · F )

=

(
σ − ρ

ρ0
F · ∂W

∂E

����
η

· F>
)

: D .

(2.11)

Since the dissipation D in (2.11) is zero for all strain rate D, the Cauchy stress
tensor satisfies

σ =
1

det F
F · ∂W

∂E

����
η

· F>, (2.12)

where ρ/ρ0 = (det F)−1 follows from the conservation of mass (2.3). Therefore,
one substitutes the expression of the first Piola–Kirchhoff stress tensor

P = F · ∂W
∂E

����
η

(2.13)
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in the conservation of momentum (2.4).
In the isotropic case, the dependence on E can be replaced by a dependence

on the invariants EI = trE, EII =
1
2
((trE)2− tr(E2)) , and EIII = det E. Using the

invariants’ tensor derivatives ∂EI/∂E, ∂EII/∂E and ∂EIII/∂E [50], the tensor
derivative ∂W/∂E rewrites as

∂W
∂E
=
∂W
∂EI

I +
∂W
∂EII
(EII − E) + ∂W

∂EIII

(
EIII − EIE + E2) ,

= α0I + α1E + α2E
2,

(2.14)

where
α0 =

∂W
∂EI
+ EI

∂W
∂EII

+ EII
∂W
∂EIII

,

α1 = − ∂W
∂EII

− EI
∂W
∂EIII

,

α2 =
∂W
∂EIII

,

(2.15)

are functions of the invariants. An example of strain energy density in terms of
the invariants of E is Murnaghan’s law [91]

W =
λ + 2µ

2
EI

2 − 2µEII +
l + 2m

3
EI

3 − 2mEIEII + nEIII , (2.16)

where λ, µ are the Lamé parameters and l, m, n are the Murnaghan coefficients.
If the Murnaghan coefficients l, m, n are zero, then the Saint Venant–Kirchhoff
model is recovered. Another example is Landau’s law with parametersA, B, C,
and the relationship with Murnaghan’s law (2.16) is specified in [97].

Sometimes, the strain energy density function is expressed in terms of the
right Cauchy–Green strain tensor C = F> · F = 2E + I . An example of strain
energy density in terms of the invariants ofC is the compressibleMooney–Rivlin
model [119]

W = c1 (CICIII
−1/3 − 3) + c2 (CIICIII

−2/3 − 3) + d1 (CIII
1/2 − 1)2 , (2.17)

where (c1, c2, d1) are material parameters. This hyperelastic model (2.17) is clas-
sically used in mechanics of elastomers. For conversions, one has the following
relations between the invariants of E and C:

EI =
1
2
(CI − 3) CI = 3 + 2EI

EII =
1
4
(3 − 2CI + CII) ⇔ CII = 3 + 4EI + 4EII

EIII =
1
8
(CI − CII + CIII − 1) CIII = 1 + 2EI + 4EII + 8EIII .

(2.18)

1.2. Longitudinal plane waves

1.2.a. The uniaxial strain assumption

We assume that the displacement field u has no component along e2 and e3.
Moreover, its component u along e1 is independent on y and z. Therefore, the
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displacement gradient writes grad u = ε (e1 ⊗ e1), where ε = ∂xu > −1 is
the axial component of the displacement gradient. The invariants of the Green–
Lagrange strain tensor are EI = ε + 1

2ε
2 and EII = EIII = 0. Thus, the strain

energy W is now a function of ε only. In the longitudinal case, the 11-coordinate
of the first Piola–Kirchhoff tensor (2.13) is equal to the 11-coordinate σ of
the Cauchy stress tensor (2.12). Eqs. (2.14)-(2.15) and the expression of the
invariants provide the stress-strain relationship

σ = (1 + ε)(α0 + α1EI + α2EI
2) ,

=
∂EI
∂ε

∂W
∂EI

,

= W′(ε) ,

(2.19)

where W′ denotes the total derivative of W with respect to ε. Inversely, one can
write W =

∫ ε
0 σ(ε) dε .

� Constitutive laws. The Murnaghan model of hyperelasticity (2.16) with pa-
rameters λ, µ, l, m, n is widely used in the communities of geophysics and
nondestructive testing [25, 54, 85, 101, 106]. With this expression of the strain
energy (2.16), the axial component of the Cauchy stress (2.19) is

σ = M0 ε

(
1 +

(
3
2
+ κ

)
ε +

(
1
2
+ 2κ

)
ε2 +

5κ
4
ε3 +

κ

4
ε4

)
, (2.20)

where M0 = λ + 2µ > 0 is the elastic modulus, and κ = (l + 2m)/(λ + 2µ). If
the Murnaghan coefficients equal zero (κ = 0), only geometric nonlinearities
remain, and the Saint Venant–Kirchhoff model of hyperelasticity is recovered.
The later reduces to the classical Hooke’s law in the case of infinitesimal strain
ε ' 0.

When geometric nonlinearities are neglected (e.g., when the Murnaghan
coefficients are very large), the Green–Lagrange strain tensor is linearized with
respect to the components of grad u, so that the strain tensor (2.9) is replaced by
the infinitesimal strain tensor: E ' 1

2 (grad u+grad>u) = ε. Doing this, the first
invariant of the strain tensor is EI ' ε in the longitudinal case. Moreover, the first
Piola–Kirchhoff stress is linearized with respect to the components of grad u
as well, i.e. P ' ∂W/∂ε in (2.13). Doing this, the longitudinal constitutive law
(2.19) reduces to σ = α0 + α1ε + α2ε

2, and (2.20) becomes

σ = M0 ε (1 + κε) . (2.21)

This constitutive law corresponds to a quadratic polynomial σ = M0 ε (1 − βε),
with β = −κ.

As written in the introduction (Eq. (1.1) p. 5), a cubic polynomial constitutive
law

σ = M0 ε
(
1 − βε − δε2) (2.22)

is also widely used to describe nonlinear elasticity in solids [54, 70, 88, 139]. If
the geometric nonlinearities are negligible (2.21), then the parameters β = −κ
and δ = 0 correspond to Murnaghan’s law. If the geometric nonlinearities are
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taken into account (2.20), then the choice −β = 3
2 + κ and −δ = 1

2 +2κ makes the
two models coincide up to the third order. Contrary to (2.20), orders 4 and 5 are
not taken into account in (1.1), which shows that both models are not equivalent.

The major difference between the stress-strain relationships (2.20) and (2.22)
is the number of independent parameters. In (2.22), the cubic term can be set
independently of the quadratic term. In (2.20), the cubic term is not independent
on the quadratic term: if (2.20) and (2.22) are assimilated, then δ = 5

2 + 2β.
However, experimental evidence shows that δ is larger than β by several orders
of magnitude, so that a constitutive law of the Murnaghan type is not sufficient
to represent accurately elastic nonlinearity in geomaterials [117]. Therefore, the
polynomial law (2.22) is preferred in what follows.

1.2.b. System of conservation laws

The equations of motion (2.2)-(2.4) write as a non-homogeneous system of
conservation laws with respect to the variables q = (ε, v)>, where v is the
particle velocity component along e1:

∂tq + ∂x f (q) = s . (2.23)

The flux function is f (q) = −(v, σ(ε)/ρ0)>, and the source term is s =
(0, ( f v · e1)/ρ0)>. We assume that the stress σ is a smooth function of ε, which
is strictly increasing over an open interval ]εinf, εsup[ with εinf < 0 and εsup > 0.
These bounds εinf and εsup can be finite or infinite. Also, no prestress is applied,
i.e. σ(0) = 0.

The Jacobian matrix of the flux is

f ′(q) = −
(

0 1
σ′(ε)/ρ0 0

)
, (2.24)

where σ′ = W′′ is the derivative of σ with respect to ε. The eigenvalues of f ′(q)
are

λ1(q) = −c(q) , λ2(q) = c(q) , (2.25)

where
c(q) = c(ε) =

√
σ′(ε)/ρ0 (2.26)

is the speed of sound. The right eigenvectors rk and left eigenvectors lk satisfy
(k = 1 or k = 2)

f ′(q) rk(q) = λk(q) rk(q) ,
lk(q)> f ′(q) = λk(q) lk(q)>.

(2.27)

They can be normalized in such a way that lk(q)>rk(q) = 1:

r1(q) =
(

1
c(q)

)
, l1(q) = 1

2

(
1

1/c(q)
)
,

r2(q) =
(

1
−c(q)

)
, l2(q) = 1

2

(
1

−1/c(q)
)

.
(2.28)



2. Longitudinal waves in hyperelastic material 21

If the eigenvalues λk of a 2 × 2 system of conservation laws are real and distinct
over an open set Ω of R2, then the system is strictly hyperbolic over Ω [40].
Here, the system (2.23) is strictly hyperbolic for Ω =]εinf, εsup[×R.

If the kth characteristic field satisfies ∇λk · rk = 0 for all states q in Ω,
then it is linearly degenerate. Based on (2.25), linear degeneracy reduces to
σ(ε) = M0 ε, where M0 > 0 is Young’s modulus. Therefore, linear degeneracy
corresponds to the case of linear elasticity [8]. If linear degeneracy is not satisfied,
the classical case is obtained when ∇λk · rk , 0 for all states q in Ω. The kth
characteristic field is then genuinely nonlinear. Here, this is equivalent to state

σ′′(ε) , 0 , (2.29)

for all ε in ]εinf, εsup[. Therefore,σ is either a strictly convex function or a strictly
concave function. A less classical case is when both∇λk · rk = 0 and∇λk · rk , 0
can occur over Ω. This happens when σ′′ has isolated zeros, where σ has an
inflection point. The stress σ is therefore neither convex nor concave.

Remark 2.1. When setting f v = 0 and replacing ε by the specific volume v,
−σ/ρ0 by the pressure p and v by the particle velocity u in (2.23), the so-called
“p-system” of gas dynamics is recovered [40, 146].

� Example (Murnaghan). In the case of Murnaghan’s law (2.20), strict hyperbol-
icity of (2.23) is ensured if κ−2+6 (1 − κ) (1 + ε)2+5κ (1 + ε)4 > 0. Therefore,
one must have

ε ∈


]ε+, ε−[ if κ < 0 ,
]ε+,+∞[ if 0 6 κ < 2 ,
]−1, ε−[ ∪ ]ε+,+∞[ if 2 6 κ ,

(2.30)

where

ε± = −1 +

√√√
3 (κ − 1) ±

√
4 (κ − 1)2 + 5

5κ
. (2.31)

The constitutive law (2.20) is convex if σ′′(ε) > 0, i.e.

3 + 2κ + (3 + 12κ) ε + 15κ ε2 + 5κ ε3 > 0 . (2.32)

Hence, Murnaghan’s law is locally concave at small strains (ε ' 0) provided that
κ 6 −3/2, otherwise it is locally convex at small strains. The inflection point

ε0 = −1 +
√

3 (κ − 1)
5κ

(2.33)

where σ′′ vanishes is represented in Figure 2.1, as well as the hyperbolicity
domains (2.30) of Murnaghan’s law.

� Example (polynomial). The constitutive law σ = M0 ε
(
1 − βε − δε2) is a

cubic polynomial function (2.22), where M0 is Young’s modulus and (β, δ) are
positive. Figure 2.2 represents the constitutive law (2.22) and its sound speed

c(ε) = c0

√
1 − 2βε − 3δε2 . (2.34)
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Figure 2.1. Sketch of the hyperbolicity domains
(white) of Murnaghan’s law (2.20) with respect to the
parameter κ = (l + 2m)/(λ + 2µ).

In the particular case where the nonlinearity in (2.22) is quadratic (δ = 0), strict
hyperbolicity is ensured for ε in ]εinf, εsup[=]−∞, 1/(2β)[. If the nonlinearity is
cubic (δ , 0), strict hyperbolicity is satisfied when ε belongs to

]
εinf, εsup

[
=

]
1

β −
√
β2 + 3δ

,
1

β +
√
β2 + 3δ

[
. (2.35)

At the bounds εinf and εsup, σ has a zero slope, i.e. the speed of sound is zero.
The inflection point is defined by σ′′(ε0) = 0, which is satisfied at ε0 = −β/(3δ).
At the inflection point, the sound speed reaches its maximum value

c(ε0) = c0

√
1 +

β2

3δ
> c0 . (2.36)

This example is used in Chapter 3, where an analytical solution is detailed.

In general, no analytical solution is known for the previous equations of
motion. Thus, numerical methods are needed to compute wave solutions. The
next section presents various finite-volume schemes, which have been adapted
to the case of nonlinear elastodynamics. The performances of the methods
are compared with respect to particular analytical solutions. Contrary to linear
elastodynamics where a smooth acoustic perturbation remains smooth along
its propagation, shock waves can develop in nonlinear elastodynamics (see the
Appendix, Sec. 4.2). Therefore, it is important to test the ability of numerical
methods to approximate discontinuous solutions.

2. Finite-volume methods

In this section, we describe finite-volume methods for the system of elastody-
namics (2.23). We first present standard finite-volume methods of order up to
two [69]. Then, we introduce higher-order methods. The performances of the
methods are assessed on two test cases. The first test corresponds to a smooth
initial-value problem of linear elastodynamics. The second test corresponds to
a discontinuous initial-value problem—a Riemann problem—for a noncon-
vex constitutive law. The analytical solution of this problem is the subject of
Chapter 3. The physical parameters are set according to the values in Table 2.1,
which correspond to typical values in rocks. In all the numerical examples
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Figure 2.2. (a) Polynomial law (2.22) with a quadratic nonlinearity (δ = 0) and (b) corresponding speed
of sound (2.34). (c)-(d) Idem with a cubic nonlinearity (δ , 0), zoom.

Table 2.1. Physical parameters.

ρ0 (kg m−3) M0 (GPa) β δ

2600 10 102 106

of this chapter, computations are performed over the reduced spatial domain
x ∈ [x0, xNx ] = [−0.5, 0.5] m.

� Test 1 (linear elasticity). In this case, σ(ε) = M0 ε in (2.23) is linear, and
the sound speed c(ε) =

√
σ′(ε)/ρ0 is equal to the constant c0 =

√
M0/ρ0. The

solution to an initial value problem q(x, 0) = (
ε◦(x), v◦(x))>= q◦(x) is




ε(x, t) = 1
2

(
ε◦(x − c0t) + ε◦(x + c0t) + v

◦(x + c0t) − v◦(x − c0t)
c0

)
,

v(x, t) = 1
2

(
v◦(x − c0t) + v◦(x + c0t) + ε

◦(x + c0t) − ε◦(x − c0t)
1/c0

)
.

(2.37)

This result can be obtained by diagonalization of the Jacobian matrix f ′(q) [69].
Here, results are calculated for the case in which the initial particle velocity is
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v◦(x) = 0. The initial strain is a C6 wavelet with expression

ε◦(x) =



2V
3∑

i=0

ai

a
sin(−2i kc x) if 0 < −x <

2π
kc
,

0 elsewhere ,

(2.38)

where a0 = 1, a1 = −21/32, a2 = 63/768, a3 = −1/512, and a ≈ 1.507 is a
normalization coefficient. According to (2.37), the initial data (2.38) induces the
propagation of a left-going wave and a right-going wave at the absolute velocity
c0. The amplitude of each strain wave is V , and the amplitude of each velocity
wave is Vc0. In (2.38), the central frequency is fc = c0kc/(2π) = 20 kHz and the
strain amplitude is V = 10−5. The solution (2.37) is computed up to t = 0.15 ms
and displayed in Figure 2.3a.

� Test 2 (cubic polynomial). In this case, σ(ε) = M0 ε
(
1 − βε − δε2) is a cubic

polynomial function (2.22), and the sound speed c(ε) is not constant anymore.
We consider piecewise constant initial data, with a single discontinuity at the
abscissa x = 0, i.e. a Riemann problem. On the left side of the discontinuity,
the initial data is q◦(x < 0) = qL , where εL = 1.8 × 10−4 and vL = 0. On
the right side of the discontinuity, the initial data is q◦(x > 0) = qR, where
εR = −1.8 × 10−4 and vR = 0.4 m/s. The analytical solution to this initial-value
problem is detailed in Chapter 3, where the current configuration is denoted by
S1RS2. As shown in Fig. 2.3b, the left-going wave is a discontinuity (shock
wave S1). The right-going wave is a compound wave, also known as semi-shock,
made of a continuous part followed by a discontinuity (rarefaction-shock RS2).
Thus, the solution writes

q(x, t) =




qL if x < s1t ,
qM if s1t < x 6 c(εM) t ,
q̃2(x/t) if c(εM) t 6 x 6 c(ε∗R) t ,
qR if c(ε∗R) t 6 x ,

(2.39)

where εM ≈ 1.014× 10−4 and ε∗R = 0.4× 10−4. The shape of the rarefaction and
the shock speeds are specified in Chapter 3. The solution (2.39) is computed up
to t = 0.2 ms and is displayed in Fig. 2.3b.

2.1. Basic principle

In the examples studied here, the physical domain is infinite. We consider a finite
numerical domain [x0, xNx ]. It is discretized using a regular grid in space with
step ∆x = (xNx − x0)/Nx . Also, a variable time step ∆t = tn+1 − tn is introduced.
Therefore, q(xi, tn) denotes the solution to (2.23) at the abscissa xi = x0 + i ∆x
and the time tn.

A cell, or finite volume, is associated to each node of the grid xi. The cells
are defined by Ci =

[
xi−1/2, xi+1/2

]
, where xi±1/2 = xi ± ∆x/2 [69]. The system

of partial differential equations ∂tq + ∂x f (q) = s (2.23) is then integrated in
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Figure 2.3. (a) Analytical solution of Test 1 where the initial data is smooth and the constitutive law is linear.
(b) Analytical solution of Test 2 where a Riemann problem is solved. The constitutive law is nonlinear and
nonconvex.

space over a cell Ci:

d
dt

∫
Ci
q(x, t) dx + f (q(xi+1/2, t)) − f (q(xi−1/2, t)) =

∫
Ci
s(x, t) dx . (2.40)

Introducing the cell averages q̄i(t) = 1
∆x

∫
Ci q(x, t) dx, Eq. (2.40) rewrites as

d
dt
q̄i(t) +

fi+1/2(t) − fi−1/2(t)
∆x

= s̄i(t) , (2.41)

where fi+1/2(t) = f (q(xi+1/2, t)). Now, we introduce the average in time of the
physical flux over a time step: f

n
i+1/2 =

1
∆t

∫ tn+1
tn

fi+1/2(τ) dτ. Integrating (2.41)
over a time step [tn, tn+1] yields

q̄i(tn+1) = q̄i(tn) − ∆t
∆x

(
f

n
i+1/2 − f

n
i−1/2

)
+ ∆t s̄

n
i . (2.42)

This integrated version of (2.23) is the basis of finite volume methods.
In finite volumemethods, the computational variables are the approximations

qn
i ' q̄i(tn), f n

i+1/2 ' f
n
i+1/2 and sn

i ' s̄
n
i of the averaged quantities defined above.

Injecting these approximations in Eq. (2.42) yields

qn+1
i = qn

i −
∆t
∆x

(
f n
i+1/2 − f n

i−1/2
)
+ ∆t sn

i . (2.43)

The average in time of the physical flux at a cell interface f n
i+1/2 is usually

computed from the values of qn• in the 2S neighbor cells. Therefore, an iteration
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in time at one cell (2.43) requires 2S + 1 values. As we will see in the next
section, S = 1 for most of the methods (cf. Appendix, Sec. 4.3.c). A numerical
method of the form (2.43) is in conservation form, since it mimics the property
of the exact solution (2.42) [69].

In the linear elastic case, the stability analysis involves the Courant number
Co = c0∆t/∆x. TheCourant–Friedrichs–Lewy (CFL) condition imposes that this
dimensionless number does not exceed Comax, which depends on the numerical
method [69]. For a nonlinear hyperbolic system, no stability criterion is known
in general. A classical approach consists in assuming that the CFL condition
still holds with a modified Courant number:

Co =
∆t
∆x

cn
max 6 Comax , (2.44)

where
cn

max = max
ε∈[mini εni ,maxi εni ]

c(ε) (2.45)

is the maximum absolute wave speed that is encountered at the time tn (cf.
Section 13.1.3 in [69]). The time step ∆t = Co ∆x/cn

max must be actualized at
each iteration in time according to the value of cn

max. If the constitutive law
ε 7→ σ(ε) is convex or concave, (2.45) reduces to cn

max = maxi c(εn
i ). In the case

of linear elasticity, cn
max = c0 is constant, so that the time step ∆t is constant

too. Many numerical methods are stable under the CFL condition (2.44) with
Comax = 1. In practice, the Courant number is set to a value which is slightly
lower than Comax, so as to avoid instabilities due to round-off errors. If not
specified, the Courant number is set to Co = 0.95 in the numerical applications.

2.2. Classical finite-volume schemes

All the numerical methods presented hereinafter are in conservation form (2.43).
Therefore, the method is defined by the expression of the numerical flux f n

i+1/2. In
the present section, we detail the numerical flux of several finite-volume schemes
of order up to two, so that these methods are ready to implement.

2.2.a. Lax–Friedrichs

The classical Lax–Friedrichs method is associated to the numerical flux

f n
i+1/2 =

1
2

(
f (qn

i ) + f (qn
i+1)

) − ∆x
2 ∆t

(
qn

i+1 − qn
i
)

. (2.46)

For a linear system of conservation laws, this method is stable under the CFL
condition (2.44) with Comax = 1 [69]. Measurements of the L2-error illustrate
that the method (2.43)-(2.46) is first-order accurate (see Fig. 2.5). However, as
displayed on Fig. 2.4, the Lax–Friedrichs method is very diffusive.

2.2.b. Godunov

The solution to the Riemann problem may be used to construct numerical
schemes. Godunov’s method consists in computing the exact solution over a
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time step ∆t, when the initial data at time tn is piecewise constant. More precisely,
the initial data is equal to qn

i over each cell Ci. The numerical flux in (2.43) is
set to f n

i+1/2 = f (q?i+1/2), where q?i+1/2 is the solution to the Riemann problem
at the cell interface xi+1/2. Therefore, this method requires to know the value
of the solution to any Riemann problem at the time ∆t. For a linear system of
conservation laws, Godunov’s method reduces to the upwind scheme, which is
stable under the CFL condition (2.44) with Comax = 1 [69].

For a general constitutive law, solving the Riemann problem may be difficult
or expensive, as seen in Chapter 3. Often, it is not required to compute the
exact solution to the Riemann problem to get accurate results. A wide variety of
approximate Riemann solvers has been proposed that can be applied much more
cheaply than the exact Riemann solver [69]. One example is Roe’s linearized
Riemann solver. Here, the physical flux is approximated linearly at each cell
interface. Thus, if Ai+1/2 approximates the Jacobian matrix f ′(qn

i+1/2), one has

f (q) ' f ′(qn
i+1/2) q ' Ai+1/2 q , if x ' xi+1/2 . (2.47)

If Ai+1/2 is diagonalizable, then Ai+1/2 = R Λ R−1, where Λ and R denote respec-
tively the matrices of eigenvalues and right eigenvectors of Ai+1/2. Furthermore,
if Λ is real, then the linearized system (2.23)-(2.47) is hyperbolic. Locally, the
classical upwind method for linear hyperbolic systems can be applied:

f n
i+1/2 =

1
2

(
f (qn

i ) + f (qn
i+1)

) − 1
2

��Ai+1/2
�� (qn

i+1 − qn
i
)
, (2.48)

where
��Ai+1/2

�� = R |Λ | R−1.
The Jacobian matrix f ′(qn

i+1/2) in (2.47) can be approximated by using a
linear average, e.g. Ai+1/2 = f ′

( 1
2 (qn

i + qn
i+1)

)
or Ai+1/2 = 1

2
(
f ′(qn

i ) + f ′(qn
i+1)

)
.

In general, these approximations are not accurate near discontinuities, for which
‖qn

i+1 − qn
i ‖ may be large. This issue can be solved by using a Roe’s matrix such

that

1. Ai+1/2 is diagonalizable with real eigenvalues;

2. Ai+1/2
(
qn

i+1 − qn
i
)
= f (qn

i+1) − f (qn
i ) ;

3. lim
qn
i+1→qni

Ai+1/2 = f ′(qn
i ) .

According to Section 15.3.2 of [69], such a matrix may be expressed by the
formula

Ai+1/2 =
∫ 1

0
f ′

(
qn

i + ζ (qn
i+1 − qn

i )
)
dζ , (2.49)

which ensures that the properties 2 and 3 are satisfied. In the case of the system
(2.23), which corresponds to Exercise 15.1.(a) p. 349 of [69], the following
matrix is obtained:

Ai+1/2 = −©«
0 1

an
i+1/2 0

ª®¬
(2.50)
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where
an

i+1/2 =
σ(εn

i+1) − σ(εn
i )

ρ0 (εn
i+1 − εn

i )
. (2.51)

To avoid divisions by zero when εn
i = ε

n
i+1, one computes

an
i+1/2 =

σ′(εn
i )

ρ0
(2.52)

in this particular case. The eigenvalues of the matrix (2.50) are {−sn
i+1/2, s

n
i+1/2},

where sn
i+1/2 =

√
an

i+1/2, and the corresponding eigenvectors are

r1
i+1/2 =

(
1

sn
i+1/2

)
, l1i+1/2 =

1
2

(
1

1/sn
i+1/2

)
,

r2
i+1/2 =

(
1

−sn
i+1/2

)
, l2i+1/2 =

1
2

(
1

−1/sn
i+1/2

)
.

(2.53)

Since the stress σ(ε) is increasing over the hyperbolicity domain, the coefficient
an

i+1/2 is positive. Therefore, the eigenvalue sn
i+1/2 is real, and the property 1 is

satisfied. The matrix (2.50) is a Roe matrix. Here, R = (r1
i+1/2 |r2

i+1/2), |Λ| =
sn

i+1/2 diag(1, 1) and R−1 = (l1i+1/2 | l2i+1/2)>, so that the Roe flux (2.48) rewrites
as

f n
i+1/2 =

1
2

(
f (qn

i ) + f (qn
i+1)

) − 1
2

sn
i+1/2

(
qn

i+1 − qn
i
)

. (2.54)

As shown in Fig. 2.5, this method is first-order accurate too, but less diffusive
than the Lax–Friedrichs method (Fig. 2.4).

2.2.c. Lax–Wendroff

The Lax–Wendroff method is obtained through a second-order Taylor expansion
of the solution q(x, t) over a time step. Then the differential system (2.23) is
used to replace time derivatives by space derivatives which are approximated
by centered finite differences. The Lax–Wendroff finite difference method is
associated to the numerical flux [40]

f n
i+1/2 =

1
2

(
f (qn

i ) + f (qn
i+1)

) − ∆t
2 ∆x

Ai+1/2
(
f (qn

i+1) − f (qn
i )

)
, (2.55)

where Ai+1/2 is a local approximation of the Jacobian (2.47). If the Roe’s matrix
(2.50) is used, then (2.55) rewrites as

f n
i+1/2 =

1
2

(
f (qn

i ) + f (qn
i+1)

) − ∆t
2 ∆x

(sn
i+1/2)2

(
qn

i+1 − qn
i
)

. (2.56)

The Lax–Wendroffmethod (2.43)-(2.56) is stable under the CFL condition (2.44)
with Comax = 1 [69]. Measurements of the L2-error illustrate that this method is
second-order accurate (see Figure 2.5). However, as displayed on Figure 2.4, the
Lax–Wendroff method has numerical dispersion, i.e. the spectral components
of the solution do not propagate at the same speed c0. Also, the Lax–Wendroff
method introduces spurious oscillations near discontinuities (Fig. 2.6a1,2).
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2.2.d. Flux limiter

As displayed on Figure 2.5, the Lax–Wendroff method (2.43)-(2.56) gives much
better accuracy on smooth solutions than the Roe method (2.43)-(2.54). However,
both methods fail to resolve discontinuities accurately, either by smearing or
by introducing spurious oscillations in the numerical solution (Figure 2.6a1,2).
High-resolution methods such as the flux limiters, MUSCL, WAF, PPM and
high-resolution centered schemes are designed to increase the accuracy near
discontinuities. Here a flux-limiter method from [69] is implemented, and the
method is described hereinafter.

The Lax–Wendroff flux can be viewed as a correction of the Roe flux. Indeed,
substracting and adding 1

2 sn
i+1/2 (qn

i+1 − qn
i ) in the Lax–Wendroff flux (2.56), one

rewrites the latter as f n
i+1/2 = f L

i+1/2 + f C
i+1/2, where f L

i+1/2 is the Roe flux (2.54)
and

f C
i+1/2 =

1
2

sn
i+1/2

(
1 − ∆t

∆x
sn

i+1/2

)
(qn

i+1 − qn
i ) (2.57)

is a second-order correction. The flux-limiter method consists in adding a certain
amount f H

i+1/2 of the correction term f C
i+1/2 to the Roe flux, depending on the

jump qn
i+1 − qn

i in the numerical solution. Hence, the flux-limiter method reads

f n
i+1/2 = f L

i+1/2 + f H
i+1/2 , (2.58)

where f L
i+1/2 is the Roe flux (2.54) and f H

i+1/2 ' f C
i+1/2 is specified later on.

The classical high resolution method proposed in [69] consists in extending
the flux-limiter method for scalar conservation laws to systems. One way is to
decompose the correction term in the basis of right eigenvectors of Ai+1/2 (2.53):

qn
i+1 − qn

i =

2∑
k=1

Wk
i+1/2 , (2.59)

where

Wk
i+1/2 =

l k
i+1/2 · (qn

i+1 − qn
i )

l k
i+1/2 · r k

i+1/2
r k

i+1/2 . (2.60)

Then, a limiting procedure is applied. The jump qn
i+1 − qn

i (2.59) in the second-
order correction term (2.57) is replaced by

∑
k φ(θk

i+1/2)Wk
i+1/2:

f H
i+1/2 =

1
2

sn
i+1/2

(
1 − ∆t

∆x
sn

i+1/2

)
×

× (
φ(θ1

i+1/2)W1
i+1/2 + φ(θ2

i+1/2)W2
i+1/2

)
.

(2.61)

The function φ is a limiter function and θk
i+1/2 quantifies the variation ofW

k
i+1/2

over [xi, xi+1]. Here, θk
i+1/2 is defined by

θ1
i+1/2 =

W1
i+3/2 ·W1

i+1/2
W1

i+1/2 ·W1
i+1/2

and θ2
i+1/2 =

W2
i−1/2 ·W2

i+1/2
W2

i+1/2 ·W2
i+1/2

. (2.62)



30

The indices in θ1
i+1/2 and θ

2
i+1/2 are not the same since the variation of Wk

i+1/2
is computed in the upwind direction (2.62) [69].

If the solution is smooth in the kth characteristic field over [xi, xi+1], then
θk

i+1/2 ≈ 1. In this case, the Lax–Wendroff flux (2.56) has much better accuracy
than the Roe flux (2.54). Therefore, we set φ(1) = 1 in (2.61). If the solution has
a sharp discontinuity in the kth characteristic field over [xi, xi+1], then θk

i+1/2 ≈ 0.
In this case, the Roe flux (2.54) is preferred. Therefore, we set φ(0) = 0 in (2.61).
Many possible limiter functions can be found in the literature. A classical choice
is the MC limiter (monotonized central), defined by [69]

φ(θ) = max {0,min {(1 + θ)/2, 2θ, 2}} . (2.63)

The minmod limiter defined by

φ(θ) = max {0,min {1, θ}} (2.64)

introduces a bit more numerical diffusion than the MC limiter.
The flux-limiter method (2.43)-(2.58) is stable under the CFL condition

(2.44) with Comax = 1 [69]. For a linear system of conservation laws, the MC
limiter has shown higher accuracy than the minmod limiter. As displayed on
Figure 2.4, the flux-limiter method reduces the numerical dispersion of the Lax–
Wendroff method. However, the extrema of the solution have been clipped, since
the flux-limiter method is slightly more diffusive. Measurements of the L2-error
illustrate that the flux-limiter method is not far from being second-order accurate
(Fig. 2.5). As displayed on Figure 2.6b1, this method can catch discontinuities
more accurately than all the previous methods.

However, numerical methods with limiters may not converge towards the
entropic solution in the case of nonconvex Riemann problems [60, 69, 145]. This
is illustrated on Test 2. Indeed, the MC limiter (2.63) introduces a spurious step
in the numerical solution of Figure 2.6b2, which does not disappear when the
number of points Nx is increased. This step is diminished by reducing the Courant
number (Fig. 2.6c2), which increases the numerical viscosity. This can also be
viewed on the sharpness of the discontinuity from the Figures 2.6b1 and 2.6c1.
The minmod limiter (2.64) does not seem to suffer such a limitation. Indeed, even
for high Courant numbers (Co = 0.95), the numerical solution converges towards
the correct solution (Fig. 2.6b2). Therefore, the minmod limiter is preferred to
the MC limiter for the system of nonlinear elastodynamics.

2.3. Higher-order methods

The results obtained with classical finite-volume methods of order up to two
suggest that the flux-limiter method is a good compromise between first-order
and second-order methods. Indeed, if an adequate limiter function is chosen, the
flux-limiter method is more accurate than first-order and second-order methods
on both smooth and nonsmooth solutions (in the range of parameters tested).
Several higher-order finite-volume schemes can be found in the literature [69].
Here, we present two higher-order methods. The first one, from the ADER family
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Figure 2.4. Test 1, zoom on the right-going wave. Numerical solutions obtained with finite-volume methods
where Nx = 400. (a) Lax–Friedrichs, (b) Godunov, (c) Lax–Wendroff, (d) MC flux limiter.
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Figure 2.5. Test 1. Convergence measurement of finite-volume methods. The number of points varies from
Nx = 100 to Nx = 6400, i.e. ∆x varies in [0.16, 10] mm.
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Figure 2.6. Test 2, zoom. Numerical solution obtained with the flux-limiter method where Nx = 2000. The
first row (a1)-(a2) compares the Roe flux and the Lax–Wendroff flux. Then, the MC limiter and the minmod
limiter are used. In (b1)-(b2), the Courant number is Co = 0.95, whereas in (c1)-(c2), Co = 0.55.
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Table 2.2. CoefficientsΥjk in the numerical flux f n
i+1/2 of the ADER scheme (2.65).

j
k

0 1 2 3

−1 −1/12 −1/24 1/12 1/24
0 7/12 5/8 −1/12 −1/8
1 7/12 −5/8 −1/12 1/8
2 −1/12 1/24 1/12 −1/24

(arbitrary high-order derivatives) [36, 124], is a higher-order version of the Lax–
Wendroffmethod. The second one is aWENOfinite-difference scheme (weighted
essentially nonoscillatory) [128]. It is based on an interpolation procedure, and
on high-order time integration.

2.3.a. ADER

The numerical flux of the fourth-order ADER scheme is obtained similarly to
the flux of the Lax–Wendroff scheme (see Section 12.2 of [68] and (2.55)), but
higher-order spatial finite differences are used. Thus,

f n
i+1/2 =

2∑
j=−1

3∑
k=0

Υj k

(
∆t
∆x

Ai+1/2

) k

f (qn
i+ j) , (2.65)

where the coefficients Υj k are given in Table 2.2. In practice, the ADER scheme
(2.43)-(2.65) is stable under theCFLcondition (2.44)withComax = 1. Figure 2.7a
shows that the ADER scheme does not introduce visible artifacts in smooth
solutions. Measurements of the L2-error illustrate that this method is fourth-
order accurate on smooth solutions (Fig. 2.8). However, the method introduces
spurious oscillations near discontinuities, and is unable to capture compound
waves (Figs. 2.9a1,2).

2.3.b. The WENO-Roe scheme

In this subsection, we restrict ourselves to the homogeneous systems of con-
servation laws ∂tq + ∂x f (q) = 0, for which a high-order numerical method is
presented. It relies on WENO (weighted essentially nonoscillatory) interpola-
tion—a nonlinear polynomial interpolation technique which avoids spurious
oscillations—and on high-order explicit time-integration. This reconstruction
procedure provides an approximation of the cell interface value u(xi+1/2) of a
scalar function u from the average cell values ū j (see the Appendix, Sec. 4.3.a).
A review of such numerical methods can be found in [128].

Till now, the system of conservation laws has been discretized simultaneously
in space and time (2.43). Here, a method of lines dqi/dt = Li(q) is used, which
results from discretizing in space first. Then, a time discretization is introduced,
and explicit time-integration of the differential equation is performed. One can
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implement the fourth-order Runge–Kutta method

q∗i = qn
i +

1
2
∆t Li(qn) ,

q∗∗i = qn
i +

1
2
∆t Li(q∗) ,

q∗∗∗i = qn
i + ∆t Li(q∗∗) ,

qn+1
i = −1

3
qn

i +
1
3
q∗i +

2
3
q∗∗i +

1
3
q∗∗∗i +

1
6
∆t Li(q∗∗∗) ,

(2.66)

but other choices are possible. For instance, a third-order TVD (total variation
diminishing) Runge–Kutta method is sometimes preferred [24, 39, 53, 127, 128].
The Runge–Kutta method (2.66) is not TVD. It is stable under the condition

∆t 6 2/3 ∆tFE , (2.67)

where ∆tFE is the stability limit ∆t 6 ∆tFE of the forward Euler method qn+1
i =

qn
i + ∆t Li(qn) [126].
The difference between finite-difference and finite-volume WENO schemes

is subtle on one-dimensional regular meshes [128]. In finite-volume schemes,
WENO reconstruction is applied to the cell averages qn

i ' q̄i(tn) of the conserved
variables. Here, we present a finite-difference scheme, where WENO reconstruc-
tion is applied to the cell averages f n

i ' ( f ◦ q)i(tn) of the flux. The method of
lines reads

d
dt
qi = Li(q) '

fi−1/2 − fi+1/2
∆x

(2.68)

where fi±1/2 is obtained by WENO reconstruction.
The WENO reconstruction procedure in Sec. 4.3.a applies to scalar func-

tions. For systems of conservation laws, it provides better accuracy to perform
reconstruction in local characteristic variables rather than componentwise [128].
Therefore, fi+1/2 is computed as follows:

1. Compute an approximation Ai+1/2 of the Jacobian matrix at a cell interface
xi+1/2, here Roe’s matrix (2.50), and compute its left and right eigenvectors
l k
i+1/2, r

k
i+1/2 with k = 1, . . . , 2;

2. Transform the physical flux to local characteristic fluxes

ϑk
i+1/2(q) =

l k
i+1/2 · f (q)
l k
i+1/2 · r k

i+1/2
; (2.69)

3. Perform WENO reconstruction of each characteristic flux ϑk
i+1/2 to obtain

the corresponding component of the numerical fluxΘk
i+1/2 at a cell interface

xi+1/2;

4. Transform back into physical space by using

fi+1/2 =
2∑

k=1
Θk

i+1/2 r
k
i+1/2 . (2.70)
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These steps are performed at each stage of the time-stepping procedure (2.66).
For the stability of finite-differenceWENO schemes, the reconstruction proce-

dure in Sec. 4.3.a must be applied in an upwind fashion. Left-going characteristic
fluxes use a biased stencil with one more point to the right, whereas right-going
characteristic fluxes use a biased stencil with one more point to the left [128].
Here, the eigenvalues of the local Jacobian matrix are {−si+1/2, si+1/2}. Thus, we
computeΘ1

i+1/2 byWENO reconstruction of the characteristic flux ϑ1
i+1/2(q) over

the stencils S1 = {xi−2, xi−1, xi}, S2 = {xi−1, xi, xi+1} and S3 = {xi, xi+1, xi+2}.
Similarly, Θ2

i+1/2 is obtained by WENO reconstruction of the characteristic
flux ϑ2

i+1/2(q) over the stencils S1 = {xi−3, xi−2, xi−1}, S2 = {xi−2, xi−1, xi} and
S3 = {xi−1, xi, xi+1}.

Since WENO interpolation is nonlinear with respect to the data, one must
be careful to the orders of magnitude of the data, which must not be too large
or too small. Ideally, one would like that the numerical results do not depend on
the amplitude of the excitation. For this purpose, we apply the WENO scheme
to the dimensionless data

qℵ =
(
εℵ
vℵ

)
=

(
ε/εmax
v/vmax

)
, (2.71)

where εmax and vmax are constants. As shown in Appendix 4.3.b, the change
of variables (2.71) amounts to divide the characteristic fluxes ϑk

i+1/2 by εmax
in (2.69), and to multiply the numerical flux by εmax in (2.70). Thus, the local
characteristic fluxes are

ϑ1
i+1/2(q) = −

1
2

(
v +

σ(ε)
ρ0 si+1/2

) /
εmax ,

ϑ2
i+1/2(q) = −

1
2

(
v − σ(ε)

ρ0 si+1/2

) /
εmax ,

(2.72)

where si+1/2 =
√ai+1/2 (2.51) is positive, and the numerical flux in (2.68) is

given by

fi+1/2 =

(
Θ1

i+1/2 +Θ
2
i+1/2

si+1/2 (Θ1
i+1/2 −Θ2

i+1/2)

)
εmax . (2.73)

The variables εmax and vmax denote respectively the maximum absolute strain
and the maximum absolute particle velocity, such that the components of qℵ in
(2.71) have the order of magnitude of unity. Only the value of εmax is required
to perform WENO reconstruction in dimensionless variables (2.72)-(2.73). The
maximum absolute strain εmax can be estimated a priori by linearizing the stress-
strain relationship σ(ε) ' M0 ε. In this case, the maximum amplitude of the
analytical solution (2.37) can be deduced from the amplitude of the excitation.
For example, one obtains εmax = 10−5 in the case of Test 1, and εmax = 1.8×10−4

in the case of Test 2.
Figure 2.7 displays the results obtained with the WENO scheme on Test 1.

Numerical dissipation is very low and the order of convergence is higher than
four (Fig. 2.8). At the same Courant number Co = 0.66, the results obtained
with the WENO method are much better than those obtained with the MC flux
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Figure 2.7. Test 1, zoom on the right-going wave. Numerical solution obtained with high-order methods
where Nx = 400. (a) ADER scheme, where the Courant number is Co = 0.95; (b) WENO scheme, where
Co = 0.66.
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Figure 2.8. Test 1. Convergence measurement of high-order methods, compared to the second-order flux-
limiter method. The number of points varies from Nx = 100 to Nx = 6400, i.e. ∆x varies in [0.16, 10] mm.

limiter. Figure 2.9 compares the WENO method to the minmod flux limiter
on Test 2. Here too, the WENO method gives better results than the minmod
flux limiter when Co = 0.66. However, for Co = 0.95, the results obtained
with the flux-limiter method are similar to those obtained with the WENO
method at Co = 0.66. ModifiedWENOfinite-volume schemes and discontinuous
Galerkin finite element methods have been proposed in [19, 113] to increase the
performance of such methods in the case of nonconvex conservation laws.

� Discussion. The choice of a numerical method depends on the computational
time needed to solve a problem with a given accuracy. For this purpose, Fig-
ure 2.10 shows the time spent by a midrange laptop to compute the solution of
Test 1 (Intel Core i3-2370M, 2.4 GHz, 4 Go, 2012), with the discretizations from
Fig. 2.8. One observes that the flux-limiter method and the ADER scheme have
comparable computational times for a given discretization. Nevertheless, the
ADER scheme is muchmore accurate on smooth solutions, while the flux-limiter
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Figure 2.9. Test 2. Numerical solution obtained with high-order methods compared to the flux-limiter
method, where Nx = 2000 (zoom). (a1)-(a2) Minmod flux limiter and ADER, where Co = 0.95; (b1)-(b2)
Minmod flux limiter and WENO, where Co = 0.66.
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Figure 2.10. Test 1. Computational time needed to solve the problem with high-order methods and with
the flux-limiter method (configuration from Fig. 2.8).
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method is much more accurate on nonsmooth solutions (cf. Fig. 2.9). With the
same discretization, the WENO scheme requires approximately ten times more
computational time, but the WENO scheme is more flexible than the previous
methods. Therefore, the ADER scheme is best suited for the computation of
smooth solutions (high accuracy for a reasonable computational time). The flux-
limiter method is best suited for the computation of nonsmooth solutions (high
accuracy for a reasonable computational time). TheWENO scheme is best suited
for cases where the smoothness of the solution is not known (high accuracy, but
large computational time).

3. Conclusion

In this chapter, the propagation of longitudinal waves in hyperelastic material has
been investigated theoretically and numerically. The study concerns polynomial
stress-strain relationships. Particular features of nonlinear wave propagation are
illustrated numerically, and various finite-volume methods are presented.

The examples show that compound waves require particular attention when
using numerical methods. As a result, a rationale behind the choice of well-suited
numerical methods is given at the end of the chapter. The main benefit of using
the WENO scheme instead of the flux-limiter scheme or the ADER scheme is its
flexibility regarding the smoothness of the solution, but its computational costs
are significant.

The present chapter is a necessary step in the study of nonlinear waves
in geomaterials. Indeed, it is important to be aware of the peculiarities of
nonlinear wave propagation when performing numerical experiments related
to experimental observations. Chapter 3 details the analytical solution of the
Riemann problem (such as Test 2). Then, the following chapters are dedicated
to the modeling of slow dynamics and viscoelastic dissipation in solids. The
corresponding models enter the same theoretical framework as the hyperelastic
material model of Chapter 2. Also, the numerical methods presented in that
chapter—flux-limiter method, ADER scheme—are used in the case of solids
with slow dynamics, and in two space dimensions.
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4. Appendix

4.1. Eulerian hyperelasticity

The Lagrangian representation of motion is used along the thesis. In the Eulerian
representation of motion, the material derivative Ûψ of any field ψ(xt, t) is Ûψ =
gradψ · v + ∂tψ. Here, the gradient operator is defined with respect to the
current position xt (Eulerian gradient), as well as the other spatial differential
operators. Using the relationship between the Lagrangian and the Eulerian
gradient operators, the conservation of deformation gradient (2.2) becomes
ÛF = grad v · F. The conservation of mass implies Ûρ/ρ = −div v, where ρ
denotes the mass density in the deformed configuration. The motion is also
driven by the conservation of momentum, which writes ρ Ûv = divσ + f vE , where
σ is the Cauchy stress tensor. The force f vE is related to the force f v in (2.4)
through f v = f vE det F.

As such, the equations of motion are not written as a system of conservation
laws. Using the expression of thematerial derivative andvector calculus identities,
the conservation of mass rewrites as

∂tρ + div(ρv) = 0 , (2.74)

which is a scalar conservation laws. Similarly, the conservation of momentum
rewrites as

∂t(ρv) = div(σ − ρv ⊗ v) + f vE . (2.75)

In hyperelasticity, the stress tensor σ depends on a given strain tensor χ, which
is defined as a function of the deformation gradient tensor F. Following [37],
one can obtain a conservative formulation by introducing the vectors an, defined
as the nth column of the tensor F−>. These vectors satisfy

∂ta
n + grad(v · an) = 0 , curl an = 0 (2.76)

for n = 1, 2, 3, leading to a conservative formulation of the equations of motion.

4.2. Shock wave generation

In nonlinear acoustics, discontinuities may develop from smooth initial data
q(x, 0) = q◦(x) in finite time. The smallest such time is called breaking time.
For k = 1, 2, we introduce the k-Riemann invariants wk = v + (−1)kC(ε), where
C is an antiderivative of the speed of sound c (2.26). According to [62, 63], the
differential equation

D(ζ) + κζ2 = 0 , ζ(0) = ζ◦(x0) (2.77)

is satisfied by ζ = eh∂xw2,where h is defined as ∂w1 h = ∂w1c/(2c), e.g. h = 1
2 ln c.

The differential operator D = ∂t + c ∂x denotes the time derivative along the
2-characteristics. The Riemann invariant w2 is constant along 2-characteristics,



40

which are the curves of the x-t plane defined by d
dt x = c. The coefficient in (2.77)

is given by κ = e−h∂w2c. The solution of (2.77) blows up at the time t∗ such that
∫ t∗

0
κ(x(τ), τ) dτ = −1

ζ◦(x0) , (2.78)

where integration is performed along the 2-characteristic curve starting at x(0) =
x0 [63]. In practice, it is difficult to deduce the exact value of the breaking
time tB = infx0 t∗ from (2.78), but bounds and estimates can be found. If the
quadratic constitutive law σ = M0 ε

(
1 − βε) is used and the initial data is

ε◦(x) = 2V sin(kc x), v◦(x) = 0 where kc = ω/c0 is the wavenumber, one obtains
the estimate tB ' 1/(βVω) [62].

4.3. Complements on finite volumes

4.3.a. WENO reconstruction

We present the WENO reconstruction procedure used in the WENO scheme of
Sec. 2.3. Ifu denotes a function fromwhichwe know the averages ū j over the cells
Cj = [x j−1/2, x j+1/2], such a reconstruction procedure provides an approximation
of the value u(xi+1/2) at a cell interface. If U is a primitive function of u, then
the cell averages ū j depend on U(x j±1/2). Thus, the primitive function satisfies

U(xi+1/2) = ∆x
i∑

j=0
ū j , where ū j =

U(x j+1/2) −U(x j−1/2)
∆x

. (2.79)

Knowing all the values of U at the cell interfaces, one can obtain a polynomial
interpolation of U. An approximation of u is obtained by differentiating this
polynomial [128].

For example, there is a unique polynomial P1 of degree at most three that
interpolates U at the abscissas {xi−5/2, xi−3/2, xi−1/2, xi+1/2}. One can verify
that the cell averages over the cells Ci−2, Ci−1, Ci of its derivative P′1 are ex-
actly equal to ūi−2, ūi−1, ūi. Therefore, P′1 reconstructs the data over the stencil
S1 = {xi−2, xi−1, xi}. Similarly, one obtains the polynomials P′2 and P′3 that re-
construct the data over the stencils S2 = {xi−1, xi, xi+1} and S3 = {xi, xi+1, xi+2}
respectively [128]. All three approximations

P′1(xi+1/2) =
1
3

ūi−2 − 7
6

ūi−1 +
11
6

ūi ,

P′2(xi+1/2) = −
1
6

ūi−1 +
5
6

ūi +
1
3

ūi+1 ,

P′3(xi+1/2) =
1
3

ūi +
5
6

ūi+1 − 1
6

ūi+2 ,

(2.80)

of u(xi+1/2) are third-order accurate in ∆x, if u is smooth over [xi−5/2, xi+5/2].
Moreover, the convex linear combination

γ1 P′1(xi+1/2) + γ2 P′2(xi+1/2) + γ3 P′3(xi+1/2) (2.81)



2. Longitudinal waves in hyperelastic material 41

with γ1 = 1/10, γ2 = 3/5 and γ3 = 3/10 is a fifth-order approximation of
u(xi+1/2) [128].

If u is only piecewise smooth, we would like that the interpolation procedure
introduces no spurious oscillations in the vicinity of a discontinuity. The classical
ENO procedure consists in choosing one of the three approximations (2.80)
according to the smoothness of u. The smoothness is measured by divided
differences over the stencils S1, S2 and S3 [39, 128]. The WENO procedure
consists in constructing a convex linear combination

w1 P′1(xi+1/2) + w2 P′2(xi+1/2) + w3 P′3(xi+1/2) , (2.82)

of the three approximations (2.80), and in setting the nonlinear weights w j so
as to avoid oscillations. The choice of the nonlinear weights w j relies on a
smoothness indicator

β j =

2∑
`=1

∆x2`−1
∫ xi+1/2

xi−1/2

(
d`

dx`
P′j(x)

)2

dx , (2.83)

defined as a scaled sum of the squared L2-norm of the interpolation polynomial’s
derivatives (2.83). Here,

β1 =
13
12
(ūi−2 − 2ūi−1 + ūi)2 + 1

4
(ūi−2 − 4ūi−1 + 3ūi)2 ,

β2 =
13
12
(ūi−1 − 2ūi + ūi+1)2 + 1

4
(ūi−1 − ūi+1)2 ,

β3 =
13
12
(ūi − 2ūi+1 + ūi+2)2 + 1

4
(3ūi − 4ūi+1 + ūi+2)2 .

(2.84)

The nonlinear weights in (2.82) are computed according to

w j =
w̃ j

w̃1 + w̃2 + w̃3
, with w̃ j =

γ j

(10−6 + β j)2
. (2.85)

If U is smooth in the stencil Sj , then β j is small and w j ' γ j . Else, β j is large
and w j ' 0. Therefore, WENO reconstruction is at least as accurate as ENO
reconstruction, and higher-order accurate when u is smooth (2.81) [128].

If the stencils are S1 = {xi+1, xi+2, xi+3}, S2 = {xi, xi+1, xi+2} and S3 =
{xi−1, xi, xi+1}, then the corresponding polynomial approximations of u(xi+1/2)
are

P′1(xi+1/2) =
11
6

ūi+1 − 7
6

ūi+2 +
1
3

ūi+3 ,

P′2(xi+1/2) =
1
3

ūi +
5
6

ūi+1 − 1
6

ūi+2 ,

P′3(xi+1/2) = −
1
6

ūi−1 +
5
6

ūi +
1
3

ūi+1 .

(2.86)

Moreover, the convex linear combination (2.81) is a fifth-order approximation of
u(xi+1/2). The nonlinear weights in the WENO reconstruction (2.82) are given
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by (2.85), with the smoothness indicators

β1 =
13
12
(ūi+1 − 2ūi+2 + ūi+3)2 + 1

4
(3ūi+1 − 4ūi+2 + ūi+3)2 ,

β2 =
13
12
(ūi − 2ūi+1 + ūi+2)2 + 1

4
(ūi+2 − ūi)2 ,

β3 =
13
12
(ūi−1 − 2ūi + ūi+1)2 + 1

4
(ūi−1 − 4ūi + 3ūi+1)2 .

(2.87)

This reconstruction is very similar to those for the stencils S1 = {xi−2, xi−1, xi},
S2 = {xi−1, xi, xi+1} and S3 = {xi, xi+1, xi+2}, but it is biased with one more point
to the right of the cell interface.

4.3.b. Dimensionless variables

Let us do the change of variables (2.71). The physical variables q still satisfy
the system of conservation laws (2.23). The dimensionless variables (2.71) also
satisfy a system of conservation laws ∂tqℵ + ∂x fℵ(qℵ) = 0 with physical flux

fℵ(qℵ) =
(
1/εmax 0

0 1/vmax

)
f (q) . (2.88)

The corresponding Roe’s matrix is

(
Ai+1/2

)
ℵ =

©«
0 rmax

(si+1/2)2/rmax 0
ª®¬
, (2.89)

where rmax = vmax/εmax and si+1/2 =
√ai+1/2 satisfies (2.51). Roe’s matrix in

dimensionless variables (2.89) has the same eigenvalues than Roe’s Matrix in
physical variables (2.50). Its eigenvectors are

(
r1

i+1/2
)
ℵ
=

©«
1

si+1/2/rmax

ª®¬
,

(
l1i+1/2

)
ℵ
=

1
2

©«
1

rmax/si+1/2

ª®¬
,

(
r2

i+1/2
)
ℵ
=

©«
1

−si+1/2/rmax

ª®¬
,

(
l2i+1/2

)
ℵ
=

1
2

©«
1

−rmax/si+1/2

ª®¬
.

(2.90)

Then, ϑk
i+1/2(qℵ) =

(
l k
i+1/2

)
ℵ · fℵ(qℵ) yields the expression of the characteristic

fluxes in equation (2.69). When injecting (2.88) into the definition of Li(q)
(2.68), one has

fi+1/2 =

(
εmax 0

0 vmax

) (
fi+1/2

)
ℵ , (2.91)

where (
fi+1/2

)
ℵ =

K∑
k=1

Θk
i+1/2

(
r k

i+1/2
)
ℵ

. (2.92)

Thus, the numerical flux (2.73) is obtained.
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Table 2.3. Number of ghost cells S on both sides of the domain for each numerical method.

Lax-Friedrichs
Flux limiter

WENOGodunov
ADER

Lax–Wendroff

S 1 2 3

4.3.c. Boundary conditions

To compute qn+1
i when 0 6 i 6 Nx , the numerical methods presented here

require S values to the left and S values to the right of qn
i (see Table 2.3).

Therefore, S “ghost cells” are added to both sides of the domain, such that the
values {qn

−1, . . . , q
n
−S} and {qn

Nx+1, . . . , q
n
Nx+S} can be accessed. The content of

the ghost cells depends on which type of boundary condition is applied. When
the time-stepping procedure uses intermediate steps, e.g. when the fourth-order
Runge–Kutta method (2.66) is used for time-integration, ghost cells must be
added to the vectors of intermediate values. The boundary conditions must be
applied at each intermediate time step, for example respectively on q∗, q∗∗ and
q∗∗∗.

� Outflow boundary conditions. For instance, to represent an infinite physical
domain, one can set

qn
−i = qn

0 and qn
Nx+i = qn

Nx
for i = 1, . . . , S , (2.93)

at each iteration in time [69].

� Periodic boundary conditions. To represent a periodic physical domain, one
can set

qn
−i = qn

Nx+1−i and qn
Nx+i = qn

−1+i for i = 1, . . . , S , (2.94)

at each iteration in time [69].

� Free edges. A free edge is a boundary of the physical domain on which no
contact force is applied. Here, it is equivalent to impose that the stress, and so
the strain, is zero on the boundary. If the boundary x = x0 is a free edge, then εn

0
must be equal to zero for all n. One way to implement this boundary condition,
is to use symmetry. Let q◦(x) denote the initial data over [x0, xNx ]. It is extended
to the left by

ε◦(x0 − ξ) = −ε◦(x0 + ξ) and v◦(x0 − ξ) = v◦(x0 + ξ) , (2.95)

where ξ > 0. If we solve the Cauchy problem for a linear constitutive law (2.37),
then ε(x0, t) = 0, and v(x0, t) is not modified. Therefore, it is natural to set

εn
−i = −εn

i

vn
−i = v

n
i

and
εn

Nx+i = −εn
Nx−i

vn
Nx+i = v

n
Nx−i

for i = 1, . . . , S , (2.96)

so as to model a free edge at the abscissas x0 and xNx respectively (Section 7.3.3
in [69]).
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� Clamped edges. A clamped edge is a boundary of the physical domain on
which the displacement is zero, and so the particle velocity. If the boundary
x = x0 is a clamped edge, then vn

0 must be equal to zero for all n. Similarly to
the previous case of the free edge, it is natural to set

εn
−i = ε

n
i

vn
−i = −vn

i
and

εn
Nx+i = ε

n
Nx−i

vn
Nx+i = −vn

Nx−i
for i = 1, . . . , S , (2.97)

so as to model a clamped edge at the abscissas x0 and xNx respectively. This
boundary condition can be modified to represent an oscillating edge [69].
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4.1. Details on the Riemann solution 65

Analytical solutions are known in the case of linear elastodynamics,
where the stress is proportional to the strain. Indeed, the method of

characteristics provides the solution to many initial-value problems. Moreover,
Green’s function makes it possible to solve the non-homogeneous system (2.23)
analytically for various types of source terms s.

In the nonlinear case, no general analytical solution is known. The present
chapter is dedicated to the analytical solution of a particular initial-value problem:
the Riemann problem (i.e., piecewise constant initial data). We restrict ourselves
to the system of conservation laws (2.23) without any external volume force
( f v = 0):

∂tq + ∂x f (q) = 0 (3.1)

with q = (ε, v)> and f (q) = −(v, σ(ε)/ρ0)>. The Riemann problem for this
system is defined by the initial condition

q(x, 0) =
{
qL if x < 0 ,
qR elsewhere ,

(3.2)

with qL = (εL, vL)> and qR = (εR, vR)>. Solving (2.23)-(3.2) with s = 0 is the
goal of the present chapter. In this study, we restrict ourselves to at most one
inflection point ε0 in the domain of hyperbolicity ]εinf, εsup[, such thatσ′′(ε0) = 0.
The study has been published in [2].
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(a)

qRqL

qM

1-wave 2-
wa
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Figure 3.1. (a) Structure of the solution to the Riemann problem. (b) Structure of an elementary solution
in one characteristic field. If k = 1, then (q`, qr) = (qL, qM). If k = 2, then (q`, qr) = (qM, qR).

The solution to the Riemann problem involves two waves associated to each
characteristic field (Figure 3.1a). In the linearly degenerate case where the stress
is proportional to the strain, these elementary waves are contact discontinuities
propagating at speed ∓c0. In the genuinely nonlinear case (2.29) where σ is
either strictly convex or strictly concave, each wave can be either a shock or
a rarefaction wave [40, 129]. Thus, the resolution is similar to the case of the
p-system of gas dynamics. As illustrated in the previous chapter, this is no
longer true if the stress-strain relationship has an inflection point. Indeed, the
elementary waves can combine continuous and discontinuous parts (compound
waves). The underlying mathematical theory is well established [30, 65, 72, 146].
It has been applied to the previous system in [125], but for a constitutive law
which is not relevant here (negative Young’s modulus).

All these elementary solutions—discontinuities, rarefactions and compound
waves—are examined separately in the next section. For this purpose, we
study k-waves (k = 1 or k = 2) which connect a left state q` and a right
state qr (see Figure 3.1b). The next section concerns the resolution of the
Riemann problem (3.2), which involves two elementary waves. In particular,
we state a condition which ensures the existence of the solution. Also, we
show how to predict the nature of the physically admissible solution. Along the
chapter, the polynomial constitutive law σ = M0 ε

(
1 − βε − δε2) (2.22) with

the parameters given in Table 2.1 serves as an example, for which analytical
expressions are detailed. A dedicated software tool can be found at https:
//gchiavassa.perso.centrale-marseille.fr/RiemannElasto/. In the
publication [2], other constitutive laws are also considered.

1. Elementary solutions

1.1. Wave types

1.1.a. Discontinuities

We are looking for piecewise constant solutions to the Riemann problem (2.23)-
(3.2) in one characteristic field (k = 1 or k = 2). They satisfy the Rankine–
Hugoniot jump condition [40]

f (qr) − f (q`) = sk (qr − q`) , (3.3)

https://gchiavassa.perso.centrale-marseille.fr/RiemannElasto/
https://gchiavassa.perso.centrale-marseille.fr/RiemannElasto/
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from which one deduces vr = v` − sk (εr − ε`), with the shock speeds

s1 = −
√
σ(εr) − σ(ε`)
ρ0 (εr − ε`) , s2 =

√
σ(εr) − σ(ε`)
ρ0 (εr − ε`) . (3.4)

Hence, in the ε-σ plane, the quantity ρ0sk
2 is the slope of the line connect-

ing (ε`, σ(ε`)) and (εr, σ(εr)). A discontinuity wave is the piecewise constant
function defined by

q(x, t) =
{
q` if x < sk t ,
qr if x > sk t .

(3.5)

It is a weak solution of the Riemann problem (2.23)-(3.2) [40].
Weak solutions of the Riemann problem are not unique. Therefore, the

discontinuity (3.5) is not necessarily the physical (entropic) solution. To be
admissible, a k-discontinuity must satisfy the Liu entropy condition (Eq. (E) in
[72]). In the present case, the Liu entropy condition reads

s1 > −
√
σ(ε) − σ(ε`)
ρ0 (ε − ε`) if k = 1, s2 6

√
σ(ε) − σ(ε`)
ρ0 (ε − ε`) if k = 2, (3.6)

for all ε between ε` and εr . In (3.6), s1 and s2 are given by (3.4). A geometrical
interpretation of (3.6) can be stated as follows (Section 8.4 in [30]):

• if sk (εr − ε`) < 0, the k-discontinuity that joins q` and qr is admissible
if the graph of σ between ε` and εr lies below the chord that connects
(ε`, σ(ε`)) to (εr, σ(εr));

• if sk (εr − ε`) > 0, the k-discontinuity that joins q` and qr is admissible
if the graph of σ between ε` and εr lies above the chord that connects
(ε`, σ(ε`)) to (εr, σ(εr)).

Remark 3.1. Liu’s entropy condition [72] generalizes the classical Lax entropy
condition λk(q`) > sk > λk(qr) to nongenuinely nonlinear systems of conserva-
tion laws. Liu’s condition is stricter than the Lax entropy condition in the general
case, but both are equivalent in the genuinely nonlinear case (2.29). Indeed, if
σ is concave, the graph of σ always lies above the chord. Thus, Liu’s entropy
condition reduces to the condition sk (εR − εL) > 0, which is also a consequence
of the Lax entropy condition.

Remark 3.2. Liu’s entropy condition [72] generalizes the Oleinik entropy con-
dition to 2 × 2 hyperbolic systems of conservation laws. In the case of a scalar
conservation law with a flux function f (q), Oleinik’s entropy condition writes:

f (q) − f (qL)
q − qL

6
f (qR) − f (qL)

qR − qL
6

f (qR) − f (q)
qR − q

(3.7)

for all q between qL and qR (see Eq. (8.4.3) in [30]). In practice, the Rie-
mann problem of scalar conservation laws can be solved graphically by using a
geometrical interpretation of the Oleinik condition (3.7).
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Let us apply the previous graphical method. To do so, we introduce the
function F defined for a , b by

F : (a, b) 7→ σ′(a) − σ(a) − σ(b)
a − b

. (3.8)

Also, we denote by a† and b∗ the points such that

F(a, a†) = 0 and F(b∗, b) = 0 . (3.9)

By construction, one has (a†)∗ = (a∗)† = a. The geometrical interpretation of
Liu’s entropy condition (3.6) is illustrated on Figure 3.2, where σ is convex for
ε < ε0 and concave for ε > ε0. On this figure, ε` belongs to the concave part.

• When k = 1, then sk < 0 (3.4). If εr > ε`, the graph must lie below the
chord, which is not possible due to the concavity. If εr < ε`, the graph
must lie above the chord, which is only possible if εr > ε

∗
`
(3.9), such that

the chord is tangent to the curve at εr = ε
∗
`
.

• When k = 2, then sk > 0 (3.4). If εr > ε`, the graph must lie above the
chord, which is satisfied due to the concavity. If εr < ε`, the graph must
lie below the chord, which is only possible if εr 6 ε`

† (3.9), such that the
chord is tangent to the curve at ε`.

When ε` belongs to the convex part, one can carry out a similar analysis to
describe the admissibility of k-discontinuities. The result is the same, but in-
equalities are of opposite sense. Finally, after multiplication by (ε` − ε0), one
obtains the inequalities ensuring that a k-discontinuity is admissible:

if k = 1, (ε` − ε0) ε∗` 6 (ε` − ε0) εr < (ε` − ε0) ε` ,
if k = 2,

(ε` − ε0) ε` < (ε` − ε0) εr or (ε` − ε0) εr 6 (ε` − ε0) ε`†.
(3.10)

For more than one inflection point, contact discontinuities satisfying λk(q`) =
sk = λk(qr)may be admissible in the sense of Liu (3.6). Here, only one inflection
point is considered, so that no contact discontinuity is admissible.

Now, we put q` in the ε-v plane, and we construct the locus of right states
q which can be connected to q` through a k-discontinuity. The jump between
q` and q must satisfy the Rankine–Hugoniot condition (3.3). Thus, we obtain
the curves Sk(q`) called k-Hugoniot loci and denote these by S`k for the sake of
simplicity:

v = v` + sgn(ε − ε`)
√
(σ(ε) − σ(ε`))(ε − ε`)/ρ0 ≡ S`1(ε) ,

v = v` − sgn(ε − ε`)
√
(σ(ε) − σ(ε`))(ε − ε`)/ρ0 ≡ S`2(ε) .

(3.11)

A few properties of these curves are detailed in the Appendix (Section 4.1.a).

� Example (polynomial). If δ = 0 in (2.22),σ is concave. Therefore, a k-shock is
admissible if sk (εr−ε`) > 0. Otherwise (δ , 0),σ is neither convex nor concave.
The stress σ is convex if ε < ε0 and concave if ε > ε0, with ε0 = −β/(3δ).
Therefore, Liu’s entropy condition reduces to (3.10). An illustration is given on
Figure 3.2 for a similar constitutive law, where ε` = 10−3 > ε0.
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−4 −2 2
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ε0 ε`ε∗`ε`
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Pa
)

admissible 1-shock
admissible 2-shock

Figure 3.2. Admissibility of shocks in the sense of Liu (3.6). The admissibility regions mark the values of
εr such that a k-shock connecting (ε`, σ(ε`)) to (εr, σ(εr)) is admissible, where ε` = 10−3. Here,
a hyperbolic function σ = M0 × 10−3 tanh(ε/10−3) with the inflection point located at ε0 = 0 is used
instead of the cubic polynomial (2.22) for graphical reasons.

1.1.b. Rarefaction waves

We are looking for piecewise smooth continuous solutions of the Riemann
problem (2.23)-(3.2) which connect q` and qr . Since the system of conservation
laws is invariant under uniform stretching of space and time coordinates (x, t) 7→
(αx, αt), we restrict ourselves to self-similar solutions of the form q(x, t) = q̃(ξ),
where ξ = x/t. Injecting this Ansatz in (2.23) gives two equations satisfied
by q̃′(ξ). The trivial solution q̃′(ξ) = 0 is eliminated. Differentiating the other
equation implies that there exists k ∈ {1, 2}, such that (Section I.3.1 in [40])



λk(q̃(ξ)) = ξ ,

q̃′(ξ) = 1
∇λk(q̃(ξ)) · rk(q̃(ξ)) rk(q̃(ξ)) .

(3.12)

To connect left and right states, we impose that q̃(λk(q`)) = q` and q̃(λk(qr)) =
qr . The function

q(x, t) =


q` if x 6 λk(q`) t ,
q̃(x/t) if λk(q`) t 6 x 6 λk(qr) t ,
qr if λk(qr) t 6 x ,

(3.13)

is a self-similar weak solution of (2.23)-(3.2) connecting q` and qr [40]. Such a
solution is called simple wave or rarefaction wave.

Let us achieve the computation of q̃(ξ) by defining a primitive C : ε 7→∫ ε
c(ε) dε of the sound speed c over ]εinf, εsup[. The k-Riemann invariants wk

defined by
w1(q) = v − C(ε) , w2(q) = v + C(ε) , (3.14)

are constant on k-rarefaction waves [40]. In practice, this property is used to
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rewrite (3.12) as {
λk(q̃(ξ)) = ξ ,
wk(q̃(ξ)) = wk(q`) .

(3.15)

Finally, using the expressions of the eigenvalues (2.25) and the Riemann invari-
ants (3.14), one obtains

q̃(ξ) =
(

c−1(−ξ)
w1(q`) + C ◦ c−1(−ξ)

)
if k = 1,

q̃(ξ) =
(

c−1(ξ)
w2(q`) − C ◦ c−1(ξ)

)
if k = 2.

(3.16)

In (3.15)-(3.16), q` can be replaced by qr , or by any other state on the rarefaction
wave.

Let us examine the admissibility of the rarefaction wave (3.16). Firstly, the
eigenvalue λk(q̃(ξ)) must be increasing from ξ = λk(q`) to ξ = λk(qr). In
particular, we must have

λk(q`) 6 λk(qr) . (3.17)

Secondly, Eq. (3.12) requires that ∇λk · rk does not vanish along the curve
ξ 7→ q̃(ξ). This is never satisfied when the characteristic fields are linearly
degenerate, but it is always satisfied when the characteristic fields are genuinely
nonlinear. In the nonconvex case, it implies that a rarefaction cannot cross the
inflection point ε0, i.e. the condition

(ε` − ε0)(εr − ε0) > 0 (3.18)

must be satisfied by the left state and the right state.
Now, we put q` in the ε-v plane, and we construct the locus of right states q

which can be connected to q` through a k-rarefaction. The states q` and q must
satisfy wk(q) = wk(q`). Thus, we obtain the rarefaction curves Rk(q`) denoted
by R`k for the sake of simplicity:

v = v` − C(ε`) + C(ε) ≡ R`1(ε) ,
v = v` + C(ε`) − C(ε) ≡ R`2(ε) .

(3.19)

A few properties of these curves are detailed in the Appendix (Section 4.1.a).

� Example (polynomial). To compute rarefaction waves, one needs the expres-
sions of C and c−1 in (3.16). In the case of the quadratic nonlinearity (δ = 0), a
primitive of the sound speed (2.34) is

C(ε) = −c0
(1 − 2βε)3/2

3β
, (3.20)

and the inverse function of c is

c−1(ξ) = 1 − (ξ/c0)2
2β

. (3.21)
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In the case of the cubic nonlinearity (δ , 0), a primitive of the sound speed
(2.34) is

C(ε) = c(ε) β + 3δε
6δ

+ c0
β2 + 3δ
6δ
√

3δ
arcsin

(
β + 3δε√
β2 + 3δ

)
. (3.22)

Since c is not monotonous (Figure 2.2d), its inverse is not unique. The inverse
over the range [0, c(ε0)] is made of two branches:

c−1(ξ) ∈

− β

3δ
−

√
β2

9δ2 +
1 − (ξ/c0)2

3δ
,− β

3δ
+

√
β2

9δ2 +
1 − (ξ/c0)2

3δ




.
(3.23)

The choice of the inverse (3.23) in (3.16) depends on ε`. Indeed, q̃(ξ)must satisfy
q̃(λk(q`)) = q` and q̃(λk(qr)) = qr , i.e. ε` = c−1◦ c(ε`) and εr = c−1◦ c(εr).
Since ε` and εr are on the same side of the inflection point (3.18), the choice
of the inverse in (3.23) relies only on ε`. If ε` < ε0, the inverse (3.23) must
be smaller than ε0 = −β/(3δ) (first expression). Else, it must be larger (second
expression).

1.1.c. Compound waves

In this section, σ has an inflection point at ε0, i.e. σ′′(ε0) = 0. The char-
acteristic fields are thus not genuinely nonlinear over ]εinf, εsup[. On the one
hand, a k-discontinuity which crosses the line ε = ε0 is not always admissible
(3.10). On the other hand, a k-rarefaction cannot cross the line ε = ε0 (3.18).
When discontinuities and rarefactions are not admissible, one can start from
q` with an admissible k-discontinuity and connect it to qr with an admissible
k-rarefaction (shock-rarefaction). Alternatively, one can start from q` with an
admissible k-rarefaction and connect it to qr with an admissible k-discontinuity
(rarefaction-shock). These compound waves composed of one rarefaction and
one discontinuity are now examined separately.

� Shock-rarefactions.We consider a k-shock-rarefaction that connects q` and qr .
The rarefaction cannot cross the line ε = ε0. It breaks when reaching ε∗

`
[146]

such that F(ε∗
`
, ε`) = 0 (3.9). Therefore, a shock-rarefaction is defined by

q(x, t) =


q` if x < λk(ε∗` ) t ,
q̃(x/t) if λk(ε∗` ) t < x 6 λk(εr) t ,
qr if λk(εr) t 6 x .

(3.24)

The rarefaction part q̃(ξ) is given by (3.16) where q` has to be replaced by qr .
An illustration is given on Figure 3.3a, where the parameters are the same as
in Figure 3.9. If the shock-rarefaction (3.24) is a weak solution of (2.23)-(3.2),
then both parts are weak solutions. On the one hand, the discontinuous part must
satisfy the Rankine–Hugoniot condition (3.3) with left state q` and right state
q∗
`
= (ε∗

`
, v∗
`
)>:

v∗` = v` − sk (ε∗` − ε`) . (3.25)
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Due to the relation (3.9) between ε` and ε∗` , the shock speed sk (3.4) satisfies

s1 = −
√
σ(ε∗

`
) − σ(ε`)

ρ0 (ε∗` − ε`)
,

= −c(ε∗` ) ,
and

s2 =

√
σ(ε∗

`
) − σ(ε`)

ρ0 (ε∗` − ε`)
,

= c(ε∗` ) .
(3.26)

On the other hand, the Riemann invariants (3.14) must be constant on the
continuous part:

wk(q∗` ) = wk(qr) . (3.27)
Finally, equations (3.25) and (3.27) yield

vr = v` − (−1)k (
C(εr) − C(ε∗` ) + c(ε∗` )(ε∗` − ε`)

)
. (3.28)

Admissibility of shock-rarefactions is presented in Section 1.2.
Now, we put q` in the ε-v plane, and we construct the locus of right states q

which can be connected to q` through a k-shock-rarefaction. The states q` and q
must satisfy (3.28). Thus, we obtain the shock-rarefaction curves SRk(q`) and
denote these by SR`k for the sake of simplicity:

v = v` + c(ε∗` )(ε∗` − ε`) − C(ε∗` ) + C(ε) ≡ SR`1(ε) ,
v = v` − c(ε∗` )(ε∗` − ε`) + C(ε∗` ) − C(ε) ≡ SR`2(ε) .

(3.29)

A few properties of these curves are detailed in the Appendix (Section 4.1.a).

� Rarefaction-shocks. We consider a k-rarefaction-shock that connects q` and
qr . The rupture of the rarefaction wave occurs when reaching ε∗r [146] such that
F(ε∗r , εr) = 0 (3.9). Therefore, a rarefaction-shock is defined by

q(x, t) =


q` if x 6 λk(ε`) t ,
q̃(x/t) if λk(ε`) t 6 x < λk(ε∗r ) t ,
qr if λk(ε∗r ) t < x ,

(3.30)

where q̃(ξ) is given by (3.16). An illustration is given on Figure 3.3b, where the
parameters are the same as in Figure 3.9. With similar arguments than for (3.25)
and (3.27), one obtains

vr = v` + (−1)k (
C(ε`) − C(ε∗r ) + c(ε∗r )(ε∗r − εr)

)
. (3.31)

Admissibility of rarefaction-shocks is presented in Section 1.2, where the com-
putation of ε∗ is also examined.

Now, we put q` in the ε-v plane, and we construct the locus of right states q
which can be connected to q` through a k-rarefaction-shock. The states q` and q
must satisfy (3.31). Thus, we obtain the rarefaction-shock curves RSk(q`) and
denote these by RS`k for the sake of simplicity:

v = v` − C(ε`) + C(ε∗) − c(ε∗)(ε∗ − ε) ≡ RS`1(ε) ,
v = v` + C(ε`) − C(ε∗) + c(ε∗)(ε∗ − ε) ≡ RS`2(ε) .

(3.32)

Again, a few properties of these curves are detailed in the Appendix (Sec-
tion 4.1.a).
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Figure 3.3. Compound waves obtained with the cubic polynomial law (2.22). Snapshot of ε in the case of
(a) a 1-shock-rarefaction and (b) a 2-rarefaction-shock.

1.2. Graphical method

In practice, a graphical method can be applied to construct entropic elementary
solutions to (2.23)-(3.2) based on discontinuities, rarefactions and compound
waves. This method is very useful for nonconvex constitutive laws and can be
stated as follows (Section 9.5 in [30]):

For 1-waves,

• if εr < ε`, we construct the convex hull of σ over [εr, ε`], i.e. the largest
convex fonction which is smaller or equal to σ;

• if εr > ε`, we construct the concave hull of σ over [ε`, εr], i.e. the smallest
concave fonction which is larger or equal to σ.

For 2-waves,

• if εr < ε`, we construct the concave hull of σ over [εr, ε`];
• if εr > ε`, we construct the convex hull of σ over [ε`, εr].

Between ε` and εr , the intervals where the slope of the hull is constant correspond
to admissible discontinuities. The other intervals correspond to admissible
rarefactions.

� Example (polynomial). On Figure 3.4, we illustrate the method for the poly-
nomial constitutive law (2.22), where the inflection point is ε0 = −β/(3δ) (cf.
Chapter 2). The stress σ is convex for ε < ε0 and concave for ε > ε0. Here,
εr = −4×10−4 is smaller than ε` = 4.5×10−4. If k = 1, we construct the convex
hull of σ. If k = 2, we construct the concave hull of σ. The method predicts that
the solution is made of two compound waves: a 1-shock-rarefaction wave and a
2-rarefaction-shock wave. In agreement with the definitions of such waves in the
previous section, the 1-rarefaction breaks when reaching ε∗

`
and the 2-rarefaction
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Figure 3.4. Graphical construction of the solution for εr < ε` and the cubic polynomial law (2.22). Here,
we obtain a 1-shock-rarefaction (convex hull) and a 2-rarefaction-shock (concave hull).

Table 3.1. Admissible elementary waves for the cubic polynomial law (2.22) when ε` > ε0 and εr varies
inR (increasing values of εr from the left to the right).

εr εinf ε`
† ε∗` ε0 = − β

3δ ε` εsup

k = 1 SR1 SR1 S1 S1 R1

k = 2 S2 RS2 RS2 R2 S2

breaks when reaching ε∗r . Nevertheless, the reasoning on Fig. 3.4 was made for
a constant value of εr < ε` between ε†` and ε∗

`
. When εr varies, the hulls on

Fig. 3.4 vary. Depending on εr , one obtains different admissible waves. These
possibilities are listed in Table 3.1.

If δ = 0 in (2.22), σ is concave, and there are no compound waves. In
the case δ > 0, compound waves are possible. The computation of compound
wave solutions (3.30)-(3.24) requires to solve (3.9). Here, (3.9) can be solved
analytically: ε∗ = −1

2 (ε + β/δ), and inversely, ε† = −2ε − β/δ.

2. Solution of the Riemann problem

2.1. General strategy

If (2.23) is a strictly hyperbolic system, the solution to the Riemann problem
(2.23)-(3.2) has three constant states qL , qM and qR (see Figure 3.1a). Solving the
Riemann problem amounts to find the admissible k-waves, and to compute the
intermediate state qM . Here, every possible wave structure combining a 1-wave
and a 2-wave must be examined. Since σ has only one inflection point at ε0,
compound waves can only be composed of one rarefaction and one discontinuity.

In order to find the intermediate state qM , we construct the forward wave
curveΦL

p of right states q which can be connected to qL through an admissible
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k-wave (Sections 9.4-9.5 in [30]). It satisfies:

ΦL
k (ε) =




SL
k (ε) if admissible k-shock,

RL
k (ε) if admissible k-rarefaction,

RSL
k (ε) if admissible k-rarefaction-shock,

SRL
k (ε) if admissible k-shock-rarefaction.

(3.33)

According to equations (3.11), (3.19), (3.32) and (3.29), this curve is only
translated vertically when vL changes. Similarly, we construct the backward wave
curveΨ R

k of left states q which can be connected to qR through an admissible
k-wave:

Ψ R
k (ε) =




SR
k (ε) if admissible k-shock,

RR
k (ε) if admissible k-rarefaction,

SRR
k (ε) if admissible k-rarefaction-shock,

RSR
k (ε) if admissible k-shock-rarefaction.

(3.34)

Backward wave curves (3.34) are obtained by replacing the elementary forward
wave curves in (3.33) by elementary backwardwave curves. It amounts to replace
rarefaction-shock curves by shock-rarefaction curves, and vice versa. Here too,
the curveΨ R

k is only translated vertically when vR changes. Also, one can remark
that vR =Φ

L
k (εR) is equivalent to vL =Ψ

R
k (εL).

The intermediate state qM is connected to qL through an admissible 1-wave
and to qR through an admissible 2-wave. Thus, it satisfies

vM =Φ
L
1 (εM) =Ψ R

2 (εM) , (3.35)

or equivalently {
vM =Φ

L
1 (εM) ,

vR =Φ
M
2 (εR) .

(3.36)

The existence of the solution to (3.35) is discussed in the next subsections. If
the solution exists, one can find the intermediate state qM numerically. To do so,
the strain εM is computed by solving (3.35) with the Newton–Raphson method,
and the velocity vM is given by vM =Φ

L
1 (εM). The form of the solution q(x, t) is

then deduced from the corresponding elementary solutions (3.5), (3.13), (3.24)
or (3.30).

2.2. Concave constitutive laws

Let us assume that σ′′ is strictly negative over ]εinf, εsup[. Therefore, the char-
acteristic fields are genuinely nonlinear and σ is strictly concave. In this case,
compound waves are not admissible. Also, discontinuities and rarefactions have
to satisfy the admissibility conditions (3.6) and (3.17) respectively. Thus, forward
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and backward wave curves become

ΦL
1 (ε) =

{SL
1 (ε) if ε < εL ,

RL
1 (ε) if ε > εL ,

ΦL
2 (ε) =

{SL
2 (ε) if ε > εL ,

RL
2 (ε) if ε 6 εL ,

Ψ R
1 (ε) =

{SR
1 (ε) if ε > εR ,

RR
1 (ε) if ε 6 εR ,

Ψ R
2 (ε) =

{SR
2 (ε) if ε < εR ,

RR
2 (ε) if ε > εR .

(3.37)

Since the characteristic fields are genuinely nonlinear,ΦL
1 andΨ R

2 are of class
C2 (Section I.6 in [40]). From the properties of each elementary curve studied
before, we deduce thatΦL

1 is an increasing bijection over ]εinf, εsup[ and thatΨ R
2

is a decreasing bijection. Lastly, Theorem 6.1 in [40] states that for ‖qR − qL ‖
sufficiently small, the entropic solution of (2.23)-(3.2) is unique. Similarly to
Theorem 7.1 in [40], we get a condition on the initial data which ensures the
existence of the solution.

Theorem 3.1. If the characteristic fields are genuinely nonlinear (2.29), then
the entropic solution to the Riemann problem (2.23)-(3.2) exists and is unique,
provided that

lim
ε→εinf+

Ψ R
2 (ε) −ΦL

1 (ε) > 0 and lim
ε→εsup−

Ψ R
2 (ε) −ΦL

1 (ε) < 0 , (3.38)

withΦL
1 andΨ R

2 given in (3.37).

Proof. To ensure that the solution described above exists, the forward and
backward wave curvesΦL

1 andΨ R
2 must intersect at a strain εM satisfying (3.35).

The associated functions are continuous bijections over the interval ]εinf, εsup[.
Moreover,ΦL

1 is strictly increasing whileΨ R
2 is strictly decreasing. Therefore,

they intersect once over ]εinf, εsup[ if and only if their ranges intersect. The latter
are respectively]

lim
ε→εinf+

ΦL
1 (ε), lim

ε→εsup−
ΦL

1 (ε)
[

and
]

lim
ε→εsup−

Ψ R
2 (ε), lim

ε→εinf+
Ψ R

2 (ε)
[

.

A comparison between these bounds ends the proof (3.38). �

Theorem 3.1 can be written in terms of vR. Indeed, (3.38) is equivalent to

Φinf
2 (εR) < vR < Φ

sup
2 (εR) , (3.39)

where
Φinf

2 (εR) = lim
ε→εinf+

ΦL
1 (ε) + vR −Ψ R

2 (ε) ,

Φ
sup
2 (εR) = lim

ε→εsup−
ΦL

1 (ε) + vR −Ψ R
2 (ε) .

(3.40)

The functionsΦinf
2 andΦsup

2 in (3.39) are the forwardwave curves passing through
the states qinf and qsup respectively, such that

qinf = lim
ε→εinf+

(
ε,ΦL

1 (ε)
)> and qsup = lim

ε→εsup−
(
ε,ΦL

1 (ε)
)>. (3.41)
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Figure 3.5. (a) Construction of the solution to (3.36). (b) Admissibility regions and hyperbolicity domain
(white) for the polynomial law (2.22) with δ = 0 and εL = 10−4.

Graphically,Φinf
2 andΦsup

2 correspond to the dashed curve ΦM
2 on Figure 3.5a

when εM tends towards εinf or εsup respectively. Since the curve ΦL
1 is only

translated vertically when vL varies, the condition (3.39)-(3.41) can be written
in terms of the velocity jump vR − vL by substracting vL in (3.39). For analytical
expressions and remarks, see (3.53) in the Appendix (Section 4.1.b).

In (3.39),Φinf
2 (εR) is infinite if εinf = −∞ or if σ(ε) tends towards −∞ when

ε tends towards εinf+. The value ofΦsup
2 (εR) is infinite if C(ε) tends towards +∞

when ε tends towards εsup−. If both are infinite, then Theorem 3.1 is satisfied
for every initial data. Else, there exists a bound on vR − vL which ensures the
existence of the solution.

Now, we describe the admissibility regions, i.e. the regions of the ε-v plane
where a given wave structure is admissible given qL . This is similar to the
approach presented in Theorem 7.1 of [40]. Thus, we draw the forward wave
curvesΦL

1 andΦL
2 passing through qL . These curves divide the plane into four

regions (Figure 3.5a).When qM belongs toΦL
1 , (3.37) stateswhich kindof 1-wave

connects qM to qL . Then, we draw the forward wave curveΦM
2 passing through

qM . For any qR belonging to ΦM
2 , we know which kind of 2-wave connects

it to qM (3.37). Finally, we obtain a map of the admissible combinations of
1-waves and 2-waves (Figure 3.5b). If (3.39) is satisfied, then four regions are
distinguished:

• If vR > Φ
L
1 (εR) and vR > Φ

L
2 (εR), region R1R2,

• Else, if vR > Φ
L
1 (εR) and vR < Φ

L
2 (εR), region S1R2,

• Else, if vR > Φ
L
2 (εR) and vR < Φ

L
1 (εR), region R1S2,

• Else, region S1S2.

� Example (polynomial). In the case of the constitutive law (2.22) with δ = 0,
]εinf, εsup[=]−∞, 1/(2β)[. At the lower bound, εinf = −∞. But at the upper
bound, C(ε) vanishes when ε tends towards 1/(2β). Therefore, Theorem 3.1
is not satisfied for high values of the velocity jump. To illustrate, we take
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εL = −εR = 10−4 and the parameters issued from Table 2.1. Condition (3.53)
then becomes vR − vL 6 13.07 m/s, which is shown graphically in Figure 3.5b.

2.3. Convex-concave constitutive laws

Let us assume that σ′′ is strictly decreasing and equals zero at ε = ε0. Therefore,
the characteristic fields are neither linearly degenerate nor genuinely nonlinear.
The constitutive law is strictly convex for ε < ε0 and strictly concave for ε > ε0.
For any a and b, let us denote

a 6
L

b ⇔ (εL − ε0) a 6 (εL − ε0) b ,
a <

R
b ⇔ (εR − ε0) a < (εR − ε0) b .

Similar notations are used for other kinds of inequalities, such as a >
L

b, etc.
From the graphical method in Section 1.2 based on convex hull constructions,
forward and backward wave curves write

ΦL
1 (ε) =




SL
1 (ε) if ε∗L 6L

ε <
L
εL ,

RL
1 (ε) if ε >

L
εL ,

SRL
1 (ε) if ε <

L
ε∗L ,

ΦL
2 (ε) =




SL
2 (ε) if ε <

L
εL
† or ε >

L
εL ,

RL
2 (ε) if ε0 6

L
ε 6

L
εL ,

RSL
2 (ε) if εL

† 6
L
ε <

L
ε0 ,

Ψ R
1 (ε) =




SR
1 (ε) if ε <

R
εR
† or ε >

R
εR ,

RR
1 (ε) if ε0 6

R
ε 6

R
εR ,

RSR
1 (ε) if εR

† 6
R
ε <

R
ε0 ,

Ψ R
2 (ε) =




SR
2 (ε) if ε∗R 6R

ε <
R
εR ,

RR
2 (ε) if ε >

R
εR ,

SRR
2 (ε) if ε <

R
ε∗R .

(3.42)

When ε0 → −∞, the constitutive law becomes strictly concave. In this case, ε,
εL and εR are always larger than ε0. Thus, <L can be replaced by < in (3.42)
(idem for similar notations). Moreover, ε∗L , ε

∗
R, εL

† and εR
† tend towards −∞.

Therefore, we recover the wave curves (3.37).
Forward and backward wave curves are Lipschitz continuous and they are

C2 in the vicinity of the states qL or qR. Their regularity may be reduced to C1

after the first crossing with the line ε = ε0 (cf. Sections 9.3-9.5 of [30]). From
the properties of each elementary curve studied before, we deduce that ΦL

1 is
an increasing bijection over ]εinf, εsup[ and Ψ R

2 a decreasing bijection. Lastly,
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Figure 3.6. Case εL = ε0. (a) Construction of the solution to (3.36). (b) Admissibility regions and hyperbol-
icity domain (white) for the polynomial law (2.22) with a cubic nonlinearity and parameters from Table 2.1.

Theorem 9.5.1 in [30] states that for ‖qR − qL ‖ sufficiently small, the entropic
solution is unique. Similarly to Theorem 3.1, we deduce a condition which
ensures the existence of the entropic solution for any initial data.

Theorem 3.2. If the constitutive law is strictly convex for ε < ε0 and strictly
concave for ε > ε0, then the entropic solution to the Riemann problem (2.23)-
(3.2) exists and is unique, provided that

lim
ε→εinf+

Ψ R
2 (ε) −ΦL

1 (ε) > 0 and lim
ε→εsup−

Ψ R
2 (ε) −ΦL

1 (ε) < 0 , (3.43)

withΦL
1 andΨ R

2 given in (3.42).

Proof. Similarly to Theorem 3.1, we can reduce the existence criterion to a
comparison between the ranges ofΦL

1 andΨ R
2 . �

Theorem 3.2 can be written in terms of the velocity jump vR − vL . The
analytical expressions (3.54)-(3.57) are given in the Appendix (Section 4.1.b). If
both limits of C(ε) are infinite when ε tends towards εinf+ or εsup−, then (3.43)
is satisfied for every initial data. Else, there exists a bound on the velocity jump,
which ensures the existence of the solution.

� Case εL = ε0.We describe the admissibility regions when the left state is on
the inflection point. As we did for concave constitutive laws, we draw the forward
wave curveΦL

1 passing through qL (Figure 3.6a). Let us consider an intermediate
state qM belonging toΦL

1 . It is connected to qL through a 1-rarefaction (3.42).
Then, we draw the forward wave curve ΦM

2 passing through qM . For any qR
belonging to ΦM

2 , one knows which kind of 2-wave connects qM to qR (3.42).
On Figure 3.6a, εM > ε0. Therefore, we have a 2-shock if εR < εM

† or εR > εM ,
a 2-rarefaction if ε0 6 εR 6 εM and a 2-rarefaction-shock else. On Figure 3.6a,
the 2-wave is a rarefaction-shock.

To achieve the partition of the ε-v space into admissibility regions, we in-
troduce the curve ΛL

2 which marks the equality case in Liu’s entropy condition
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for 2-shocks (3.6). The curve ΛL
2 marks the frontier between the admissibility

regions of 2-shocks and 2-rarefaction-shocks. It is the set of right states q belong-
ing toΦM

2 such that ε = εM
†, or equivalently ε∗ = εM , when qM varies along

ΦL
1 (Figure 3.6a). Hence, q satisfies v = RSM

2 (ε), where qM = (ε∗,ΦL
1 (ε∗))>:

v =ΦL
1 (ε∗) + c(ε∗)(ε∗ − ε) ≡ ΛL

2 (ε) . (3.44)

Finally, we obtain a map of the admissible combinations of 1-waves and 2-
waves (Figure 3.6b). If (3.39) is satisfied and εL = ε0, then three regions are
distinguished:

• If vR >
R
ΦL

1 (εR), region R1R2,

• Else, if vR >
R
ΛL

2 (εR), region R1S2,

• Else, region R1RS2.

� Case εL , ε0. Figure 3.7 represents the admissibility regions for εL > ε0.
Similarly, Figure 3.8 shows the admissibility regions for εL < ε0. In both cases,
we draw the forward wave curves ΦL

1 and ΦL
2 passing through qL . For any

intermediate state qM belonging to ΦL
1 , Eq. (3.42) selects the 1-wave which

connects qM to qL: a 1-shock if ε∗L 6 εM < εL , a 1-rarefaction if εM > εL and
a 1-shock-rarefaction else. Then, we draw the curve ΛL

2 marking Liu’s condition
for 2-shocks. Thus, we can already qualify six admissibility regions.

To achieve the partition of the ε-v space, we introduce the curve ΛL
1 which

corresponds to the equality case in Liu’s entropy condition for 1-shocks (3.6).
The curve ΛL

1 marks the frontier between the admissibility regions of 1-shocks
and 1-shock-rarefactions. It is the locus of right states q belonging toΦM

2 , where
the intermediate state is qM = (ε∗L,ΦL

1 (ε∗L))>. Since (ε∗L − ε0)(εL − ε0) 6 0, the
inequalities depending on εM −ε0 inΦM

2 (ε) (3.42) can be changed in inequalities
depending on εL − ε0. Hence,

v =




SM
2 (ε) if ε >

L
εL or ε <

L
ε∗L

RM
2 (ε) if ε0 >

L
ε >

L
ε∗L

RSM
2 (ε) if εL >

L
ε >

L
ε0

≡ ΛL
1 (ε) . (3.45)

Finally, if (3.39) is satisfied and εL , ε0, then nine regions are distinguished:

• If vR >
L
ΦL

2 (εR), vR >
L
ΦL

1 (εR) and εR >
L
ε0, region R1R2,

• Else, if vR >
L
ΦL

2 (εR) and
[
vR <

L
ΦL

1 (εR) or vR 6
L
ΛL

2 (εR)
]
, region R1S2,

• Else, if vR >
L
ΦL

2 (εR), vR >
L
ΛL

2 (εR) and εR <
L
ε0, region R1RS2,

• Else, if vR <
L
ΦL

2 (εR), vR >
L
ΛL

1 (εR) and vR >
R
ΦL

1 (εR), region S1R2,
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Figure 3.7. Case εL > ε0. Admissibility regions and hyperbolicity domain (white) for the polynomial law
(2.22) with a cubic nonlinearity and the parameters from Table 2.1. Here, εL = 1.8 × 10−4.
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Figure 3.8. Case εL < ε0. Same as Figure 3.7, but with εL = −2.2 × 10−4.
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• Else, if vR 6
L
ΦL

2 (εR), vR >
L
ΛL

1 (εR) and vR <
R
ΛL

2 (εR), region S1RS2,

• Else, if vR 6
L
ΦL

1 (εR), vR 6
L
ΛL

1 (εR) and εR 6
L
ε0, region SR1R2,

• Else, if vR 6
L
ΛL

1 (εR) and
[
vR >

L
ΦL

1 (εR) or vR >
L
ΛL

2 (εR)
]
, regionSR1S2,

• Else, if vR <
L
ΛL

1 (εR), vR <
L
ΛL

2 (εR) and εR >
L
ε0, region SR1RS2,

• Else, region S1S2.

� Example (polynomial). In the case of the cubic polynomial law (2.22) where
δ > 0, ]εinf, εsup[ is bounded (2.35). The limit of C(ε) when ε tends towards
εsup or εinf is equal to ± π2 c0

β2+3δ
6δ
√

3δ
. Therefore, the velocity jump vR − vL is also

bounded, which is illustrated on Figure 3.6 and Figure 3.7. With the parameters
from Table 2.1, it must belong to [−1.91, 1.66] ms−1 if εL = −εR = 10−4.

Let us detail the Riemann solution for a configuration with two compound
waves and ε < ε0. On Figure 3.9, we display the solution with initial data
εL = −10−4, εR = −2× 10−4, vL = −0.6 ms−1 and vR = 0.6 ms−1. It consists of
two compound waves:

q(x, t) =




qL if x < −c(ε∗L) t ,
q̃1(x/t) if −c(ε∗L) t 6 x 6 −c(εM) t ,
qM if −c(εM) t 6 x 6 c(εM) t ,
q̃2(x/t) if c(εM) t 6 x < c(ε∗R) t ,
qR if c(ε∗R) t 6 x .

(3.46)

where q̃1(ξ) and q̃2(ξ) satisfy (3.16) with k = 1 and k = 2 respectively. Here,
εM ≈ 1.604 × 10−4. The rarefactions break at ε∗L = 0 and ε∗R = 0.5 × 10−4.

3. Conclusion

The analytical solution to the Riemann problem has been detailed for general
stress-strain relationships, which have at most one inflection point. If the stress-
strain relationship is convex or concave, then the study is similar to the p-system
of gas dynamics, i.e., the entropic solution is made of shockwaves and rarefaction
waves. However, if the stress-strain relationship has an inflection point, compound
waves must be considered.

For the polynomial law (2.22), an interactive application and a Matlab Tool-
box which solve the problem have been developed, cf. https://gchiavassa.
perso.centrale-marseille.fr/RiemannElasto. The previous analytical
solution has been used as a validation test case for the numericalmethods in Chap-
ter 2. It is a challenging test due to the non-smoothness and the non-uniqueness
of weak solutions, which is best highlighted in cases with compound waves. The
Riemann solution may be used for the validation of other numerical methods,
such as the methods used in seismology [114] or in NDE applications [25, 123].

https://gchiavassa.perso.centrale-marseille.fr/RiemannElasto
https://gchiavassa.perso.centrale-marseille.fr/RiemannElasto
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Figure 3.9. (a) Solution to the Riemann problem for the cubic polynomial law (2.22) with two compound
waves. (b) 1-shock-rarefaction and 2-rarefaction-shock curves. (c) Analytical solution at t = 0.05 ms. The
x-axis is broken from −0.08 to 0.08 m.

The mathematics and the approach presented here could be applied to more
complicated constitutive laws, e.g. with a disjoint union of inflection points.
Another prospect concerns the case of nonsmooth constitutive laws such as
bimodular elasticity. In the case of the Euler equations, this point is addressed
in [90].



3. The Riemann problem of longitudinal elastodynamics 65

4. Appendix

4.1. Details on the Riemann solution

4.1.a. Elementary wave curves

Here, we list some properties of the curves S`k , R`k , SR`k and RS`k .

� Discontinuities. Let us differentiate equation (3.11). We obtain

d
dε
S`1(ε) =

1
2

√
σ(ε) − σ(ε`)
ρ0 (ε − ε`)

(
1 + σ′(ε)

/
σ(ε) − σ(ε`)

ε − ε`

)

= − d
dε
S`2(ε) > 0 .

(3.47)

Therefore, S`1 is an increasing bijection and S`2 is a decreasing bijection.

� Rarefactions. SinceC is the primitive of a strictly positive continuous function,
C is strictly increasing and continuous. Therefore, R`1 is an increasing bijection
and R`2 is a decreasing bijection (3.19).

� Shock-rarefactions. Shock-rarefaction curves (3.29) have the same properties
as rarefaction curves (3.19). Indeed, they differ only by a constant, which equals
zero if ε` = ε∗` = ε0.

� Rarefaction-shocks. Let use differentiate equation (3.32). We obtain

d
dε
RS`1(ε) = c(ε∗) − dε∗

dε
c′(ε∗) (ε∗ − ε) = − d

dε
RS`2(ε) , (3.48)

where

c(ε∗) =
√
σ′(ε∗)
ρ0

and c′(ε∗) = σ′′(ε∗)
2
√
ρ0 σ′(ε∗)

. (3.49)

Applying the implicit functions theorem toF(ε∗, ε) in (3.9) requires ∂F/∂a(ε∗, ε) ,
0. Since ∂F/∂a(ε∗, ε) = σ′′(ε∗), the hypotheses of the theorem are satisfied if
ε∗ , ε0, where ε0 denotes the inflection point. Finally,

dε∗

dε
= −∂F/∂b

∂F/∂a
(ε∗, ε) = σ′(ε∗) − σ′(ε)

σ′′(ε∗)(ε∗ − ε) . (3.50)

Thus,
d
dε
RS`1(ε) =

σ′(ε∗) + σ′(ε)
2
√
ρ0 σ′(ε∗)

= − d
dε
RS`2(ε) > 0 . (3.51)

Therefore, RS`1 is an increasing bijection and RS`2 is a decreasing bijection.

4.1.b. Restriction on the velocity jump

In this section, we provide analytical expressions deduced from Theorem 3.1
and Theorem 3.2.
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�Concave constitutive laws.We go back to the condition thatmust be satisfied by
the initial data when the constitutive law is concave, i.e. Eq. (3.38) in Theorem 3.1.
According to the expressions ofΦL

1 andΨ R
2 in (3.37), one has

lim
ε→εinf+

SR
2 (ε) − SL

1 (ε) > 0 and lim
ε→εsup−

RR
2 (ε) − RL

1 (ε) < 0 . (3.52)

This can be expressed in terms of the velocity jump vR − vL . Based on (3.11) and
(3.19), condition (3.52) becomes



vR − vL > − lim

ε→εinf+

(√
σ(ε) − σ(εL)

ρ0
(ε − εL) +

√
σ(ε) − σ(εR)

ρ0
(ε − εR)

)
,

vR − vL < lim
ε→εsup−

2C(ε) − C(εL) − C(εR) .
(3.53)

� Convex-concave constitutive laws. The same condition (3.43) must be satisfied
by the initial data when the constitutive law is strictly convex for ε < ε0 and
strictly concave for ε > ε0 (Theorem 3.2). The expressions ofΦL

1 andΨ R
2 are

given by (3.42). For instance, when ε tends towards εinf inΦL
1 (ε), one needs a

comparison between ε∗L and εinf to choose the correct elementary wave curve.
Since σ′(ε∗L) > 0 = σ′(εinf), it is immediate that ε∗L > εinf. Similar comparisons
can be written to select the correct elementary curve inΨ R

2 (ε) or when ε tends
towards εsup. Finally, (3.43) writes

• if εL > ε0 and εR > ε0

lim
ε→εinf+

SRR
2 (ε)−SRL

1 (ε) > 0 and lim
ε→εsup−

RL
1 (ε)−RR

2 (ε) > 0 , (3.54)

• if εL > ε0 > εR

lim
ε→εinf+

RR
2 (ε)−SRL

1 (ε) > 0 and lim
ε→εsup−

RL
1 (ε)−SRR

2 (ε) > 0 , (3.55)

• if εR > ε0 > εL

lim
ε→εinf+

SRR
2 (ε)−RL

1 (ε) > 0 and lim
ε→εsup−

SRL
1 (ε)−RR

2 (ε) > 0 , (3.56)

• if εL < ε0 and εR < ε0

lim
ε→εinf+

RR
2 (ε)−RL

1 (ε) > 0 and lim
ε→εsup−

SRL
1 (ε)−SRR

2 (ε) > 0 . (3.57)

Based on the expressions of the elementary wave curves (3.11), (3.19), (3.32)
and (3.29), inequalities (3.54)-(3.57) become

• if εL > ε0 and εR > ε0




vR − vL > lim
ε→εinf+

2C(ε) − C(ε∗L) − c(ε∗L)(εL − ε∗L)
− C(ε∗R) − c(ε∗R)(εR − ε∗R) ,

vR − vL < lim
ε→εsup−

2C(ε) − C(εL) − C(εR) ,
(3.58)
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• if εL > ε0 > εR



vR − vL > lim

ε→εinf+
2C(ε) − C(ε∗L) − c(ε∗L)(εL − ε∗L) − C(εR) ,

vR − vL < lim
ε→εsup−

2C(ε) − C(εL) − C(ε∗R) − c(ε∗R)(εR − ε∗R) ,
(3.59)

• if εR > ε0 > εL



vR − vL > lim

ε→εinf+
2C(ε) − C(εL) − C(ε∗R) − c(ε∗R)(εR − ε∗R) ,

vR − vL < lim
ε→εsup−

2C(ε) − C(ε∗L) − c(ε∗L)(εL − ε∗L) − C(εR) ,
(3.60)

• if εL < ε0 and εR < ε0




vR − vL > lim
ε→εinf+

2C(ε) − C(εL) − C(εR) ,
vR − vL < lim

ε→εsup−
2C(ε) − C(ε∗L) − c(ε∗L)(εL − ε∗L)

− C(ε∗R) − c(ε∗R)(εR − ε∗R) .
(3.61)
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Slow dynamics, i.e. non-instantaneous material softening under dynamic
loadings, has been evidenced experimentally (cf. Chapter 1). This phe-

nomenon is not reproduced by the previous hyperelastic material models, where
the speed of sound is a function of the strain. Several models accounting for the
slow dynamics can be found in the literature. Among them, the phenomenologi-
cal model by Vakhnenko et al. [137, 138] is based on a variable that describes the
softening of the material (see Chapter 1 Sec. 2). Numerical simulations show that
the model is in qualitative agreement with dynamic acousto-elastic testing [38].
However, this model has been developed in a one-dimensional configuration,
and a three-dimensional version is not known. Furthermore, we proved that this
model is not thermodynamically admissible (see the Appendix, Section 5.1).

In Section 1, a three-dimensional phenomenological model is derived in
the framework of the finite-strain theory. The notations are the same as in
Sec. 1 of Chapter 2, where the equations of hyperelasticity are presented. Here,
a supplementary internal variable of state is considered, which describes the
softening of the material. A mechanical constitutive law is deduced from the
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Clausius–Duhem inequality. Moreover, a family of evolution equations for the
internal variable is proposed. This study has been published in [1].

Section 2 illustrates the propagation of longitudinal waves in nonlinear solids
with slow dynamics. We show how to adapt the numerical methods from Chap-
ter 2 to account for the slow dynamics. Then, numerical experiments in infinite
domain are presented, which show qualitative agreement with experimental
observations. The study is detailed in a publication [4].

Section 3 is devoted to the development of a similar numerical method in
the plane-strain case (2D). The case of hyperelastic material of Murnaghan type
is considered first. A numerical example illustrates the coupling between shear
waves and compressional waves. Then, the slow dynamics is added in a similar
fashion as in Section 2, and numerical experiments in unbounded domain are
presented. These works have lead to an article submission [7].

1. Phenomenological material modeling

1.1. Construction of the model

1.1.a. Preliminaries

We choose the following variables of state: the specific entropy η, the strain
tensor χ, and an additional scalar variable g, which is introduced to represent
the softening/recovery of the material. Consequently, the Gibbs identity (2.7)
becomes

Ûe = T Ûη + ∂e
∂χ

����
η,g

: Ûχ + ∂e
∂g

����
η,χ

Ûg . (4.1)

Multiplying (4.1) by ρ, the local equations of thermodynamics (2.5)-(2.6) yield
the Clausius–Duhem inequality

D = σ : D − ρ ∂e
∂χ

����
η,g

: Ûχ − ρ ∂e
∂g

����
η,χ

Ûg > 0 , (4.2)

for all state {η, χ, g} and all evolution { Ûη, Ûχ, Ûg}, where (4.2) is the dissipation D
per unit volume of material (W/m3). If g is constant over time, the hyperelastic
case (2.8) is recovered.

The main ingredient of the model is an expression of the internal energy per
unit volume of the form

ρ0e = φ1(g)W(χ) + φ2(g) , (4.3)

where W is the strain energy density function, expressed in terms of the strain
tensor χ. The function φ1 has dimensionless values, and φ2 is a storage energy.
If φ1(g) = 1 and φ2(g) = 0 for all g, then the classical case of hyperelasticity
is recovered, where ρ0e = W(χ) (cf. Chapter 2 Section 1). The expression of
the internal energy (4.3) is analogous to the Ogden–Roxburgh model of filled
rubber [99]. It is also formally analogous to a model of wet sticking fibers [112].
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These similarities are detailed in Section 5.1. With the assumption (4.3), the
following substitutions are made in the inequality (4.2):

ρ
∂e
∂χ

����
η,g

: Ûχ = φ1
ρ

ρ0

∂W
∂χ

: Ûχ ,

ρ
∂e
∂g

����
η,χ

Ûg = ρ

ρ0

(
φ′1W + φ′2

) Ûg ,
(4.4)

where φ′1 and φ′2 denote the derivatives of φ1 and φ2, respectively. The final
constitutive laws are obtained for a given choice of strain tensor χ. Similarly to
Chapter 2, the Green–Lagrange strain tensor E is used (2.9). For other strain
tensors, the constitutive laws can be deduced from E, and similar derivations
can be carried out.

1.1.b. Constitutive laws

We choose the Green–Lagrange strain tensor χ = E = 1
2
(
F> · F − I

)
. Similarly

to Chapter 2, the Clausius–Duhem inequality (4.2) with the substitutions (2.11)-
(4.4) reduces to

D = (σ − φ1σ̄) : D︸            ︷︷            ︸
Del

−ρ/ρ0
(
φ′1W + φ′2

) Ûg︸                    ︷︷                    ︸
Dinel

> 0 , (4.5)

where the hyperelastic Cauchy stress tensor

σ̄ =
1

det F
F · ∂W

∂E

����
η

· F> (4.6)

depends on F (2.12).
The stress σ is a state function: it does not dependent on D, which is not a

variable of state. Thus, the term Del in the dissipation (4.5) is a scalar product
between D and a tensor which does not depend on D. Moreover, the term Dinel
does not depend on D. Therefore, the Clausius–Duhem inequality (4.5) for all
D yields the constitutive law

σ = φ1(g) σ̄(F) , (4.7)

where the hyperelastic stress σ̄ is defined in (4.6).
Now, the Clausius–Duhem inequality (4.5) reduces to Dinel > 0, for all state

and all Ûg. Therefore, φ′1W + φ′2 is either dependent on Ûg or equal to zero. We
choose the simplest nontrivial dependence:

φ′1W + φ′2 = −α Ûg , (4.8)

where α > 0 is expressed in Jm−3 s. The parameter α may be variable, e.g.
dependent on the sign of Ûg, temperature, or any desired parameter. If α , 0,
Eq. (4.8) gives the evolution equation

Ûg = − 1
α

(
φ′1(g)W(χ) + φ′2(g)

)
. (4.9)
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Otherwise (α = 0), the internal variable g satisfies φ′1W +φ′2 = 0, i.e. g = geq(χ)
where

geq(χ) =
(
φ′2/φ′1

)−1 (−W(χ)) . (4.10)

In this case, the internal variable is instantaneously modified when the strain
varies: no slow dynamics occurs.

The previous choice ensures that the Clausius–Duhem inequality is satisfied,
independently of the sign of Ûg. Indeed, with the assumption (4.8), the dissipation
per unit volume in the material (4.5) is

0 6 D =




0 if α = 0 ,

ρ

ρ0

(
φ′1W + φ′2

)2

α
if α > 0 .

(4.11)

If α = 0 or α→ +∞, then no dissipation occurs: the thermodynamic process is
reversible. If 0 < α < +∞, the thermodynamic process is irreversible, which is
the origin of hysteresis curves under a dynamic loading.

The effect of g on the stress (4.7) is specified through φ1. If φ1(g) = 1 for all
g, then no stress softening occurs. Indeed, classical hyperelasticity is recovered.
If φ1(g) = 0 for all g, then the stress does not depend on the strain any more: the
material is destroyed. For the physical relevance of the constitutive law (4.7), we
assume that φ1 > 0. Moreover, we assume that g = 0 entails no stress softening:
φ1(0) = 1. A natural choice satisfying these requirements is

φ1(g) = 1 − g , (4.12)

where g < 1.
We require that g = 0 is an equilibrium point (4.10) if no strain is applied.

Hence, one must have φ′2(0) = 0. If the softening function (4.12) is chosen,
the convexity of φ2 ensures that the equilibrium point (4.10) is unique. Simple
choices for φ2 are

φ2(g) = 1
2
γg2 , (4.13)

φ2(g) = −1
2
γ ln(1 − g2) , (4.14)

where γ > 0 is an energy per unit volume. The model equations (4.12)-(4.14)
are chosen to avoid that g reaches 1. In the vicinity of g = 0, both expressions
(4.13) and (4.14) are equivalent.

To summarize, the Lagrangian equations of motion are given by the conser-
vation of deformation gradient (2.2), the conservation of momentum (2.4), and
the evolution equation of g (4.9):




ÛF = grad v ,

ρ0 Ûv = div P + f v ,

−α Ûg = φ′1 W + φ′2 .

(4.15)
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The functions φ1 and φ2 are specified by (4.12) and (4.13)-(4.14), respectively.
If the right Cauchy–Green tensor χ = E is used, then the first Piola–Kirchhoff
stress tensor P = (det F)σ · F−> in the conservation of momentum is deduced
from the constitutive law (4.6)-(4.7):

P = φ1(g)F · ∂W
∂E

����
η

. (4.16)

Otherwise, tensor algebra yields the expression of the Piola–Kirchhoff stress
tensor. In the next subsection, a few particular cases of (4.15)-(4.16) are detailed:
the isotropic case, the case of infinitesimal strain and the case of uniaxial strain.

1.1.c. Particular cases

� Isotropic case. The dependence to E of the internal energy can be replaced by
a dependence to the invariants EI, EII, EIII. In particular, the conservation of mass
(2.3) rewrites as ρ0/ρ = det F =

√
1 + 2EI + 4EII + 8EIII. The Piola–Kirchhoff

stress tensor P satisfies (4.16), where ∂W/∂E = α0I + α1E + α2E
2 is given in

(2.14). In the literature, several strain energy density functions W can be found.
In terms of the invariants of E, a classical example is Murnaghan’s law (2.16)
(see e.g. [97]). Murnaghan hyperelasticity is recovered if α→ +∞ in (4.9).

� Infinitesimal strain. The Green–Lagrange strain tensor E in (2.9) is linearized
with respect to the displacement gradient, i.e. E ' 1

2
(
grad u + grad>u

)
= ε

reduces to the infinitesimal strain tensor ε. The first Piola–Kirchhoff stress tensor
(4.16) is linearized with respect to the coordinates of the displacement gradient
too, i.e. F · ∂W/∂E ' ∂W/∂ε. In (4.15), the conservation of deformation
gradient ÛF = grad v is replaced by the conservation of infinitesimal strain
Ûε = 1

2
(
grad v + grad>v

)
. If the strain energy W is compatible with Hooke’s

law in the infinitesimal strain limit (e.g., the strain energy of Murnaghan’s law
(2.16) is used), then linear elastodynamics are recovered when passing to the
limit α→ +∞ in (4.9).

� Uniaxial strain. In this case, only the component of the displacement field
along e1 remains (cf. Sec. 1.2 of Chapter 2). Moreover, this coordinate u is
assumed to be invariant with respect to the other coordinates. The conservation
of momentum ρ0 Ûv = ∂xσ + f v · e1 involves the particle velocity v = Ûu, and
the 11-component σ of the first Piola–Kirchhoff tensor P. According to (2.19)
and (4.16), this stress component satisfies σ = φ1(g) σ̄(ε), where σ̄ = W′ is
the derivative of the strain energy density function with respect to ε = ∂xu.
In (4.15), the conservation of deformation gradient ÛF = grad v reduces to the
scalar conservation law Ûε = ∂xv, so that (4.15) becomes



Ûε = ∂x v ,

ρ0 Ûv = ∂xσ + f v · e1 ,

−α Ûg = φ′1 W + φ′2 .
(4.17)

An example of strain energy density function is issued from the cubic polynomial
law (2.22), where W =

( 1
2 − 1

3 β − 1
4δε

2)M0 ε
2 is expressed in terms of Young’s
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modulus M0 and the higher-order elastic constants β, δ. The relationship between
the polynomial law and Murnaghan’s law (2.16) is specified in Chapter 2. A
similar analysis can be performed with the Mooney–Rivlin model (2.17) using
Taylor series approximations.

1.2. Qualitative properties

In this subsection, some properties of the model related to the softening are
detailed. In particular, the effect of the model parameters is illustrated, which is
useful for quantitative validations.

1.2.a. Analytical results

From now on, the softening function (4.12) is used, i.e. φ1(g) = 1− g. If a strain
step is applied locally, then g is driven by (4.9), where the strain energy W is
a constant. With the quadratic expression (4.13) of φ2, the internal variable g
evolves exponentially in time towards geq(χ), which is defined in (4.10). The
corresponding relaxation time is τg = α/γ.

Now, the case of uniaxial strain is considered. A sinusoidal strain with
frequency fc = ωc/2π = 1 kHz and amplitude V is applied locally. With the
quadratic expression (4.13) of φ2, the evolution equation (4.9) writes

Ûg(t) + g(t)
τg
=

1
τε

W(Vsin(ωct))
M0V2 ,

=
1
τε

(
a0
2
+

+∞∑
n=1

an cos(nωct) + bn sin(nωct)
)
,

(4.18)

where τε = α/(M0V2) is a time constant and an, bn are the Fourier coefficients of
the normalized strain energyW/(M0V2). The solution of the ordinary differential
equation (4.18) is

g(t) =
(
g(0) − τg

τε

(
a0
2
+

+∞∑
n=1

an − nωcτgbn

1 + (nωcτg)2

))
exp(−t/τg)

+
τg

τε

(
a0
2
+

+∞∑
n=1

an − nωcτgbn

1 + (nωcτg)2
cos(nωct) + bn + nωcτgan

1 + (nωcτg)2
sin(nωct)

)
.

(4.19)

The first term in (4.19) decreases exponentially in time with constant τg. The
second term is the steady-state term, which oscillates at the frequency fc around
its average value

〈g〉t�τg =
τg

τε

a0
2
, (4.20)

where τg/τε = M0V2/γ. In the case of the polynomial law (2.22) with parameters
β and δ, the nonzero Fourier coefficients are given in Table 4.1. The average of
g (4.20) is

〈g〉t�τg =
M0
4γ

V2 +O(V4) . (4.21)
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Table 4.1. Nonzero Fourier coefficients (4.18) in the case of the cubic polynomial law (2.22).

n 0 1 2 3 4

an
1
2 − 3

16δV 2 − 1
4 +

1
8δV 2 − 1

32δV 2

bn − 1
4 βV 1

12 βV

Table 4.2. Physical parameters.

ρ0 (kg/m3) M0 (GPa) β δ γ (J/m3) α (J m−3 s)
2200 14 50 108 1.0 0.01

From a practical point of view, if the Young’s modulus M0 is known and the
constants τg and 〈g〉t�τg are deduced from measurements at small sinusoidal
loadings, then the parameters α and γ of the model can be estimated.

As shown later on (Section 2), the speed of sound c satisfies ρ0c2 = (1 −
g) σ̄′(ε) in the case of uniaxial strain (1D). If the material is linear-elastic without
slow dynamics, then g = 0 and σ̄′(ε) = M0, so that the speed of sound reduces
to c0 =

√
M0/ρ0. The relative variation of the effective elastic modulus ρ0c2

with respect to the linear elastic case writes

∆M
M
=
ρ0c2 − M0

M0
= (1 − g) σ̄

′(ε)
M0
− 1 . (4.22)

Sometimes, the relative variation of the speed of sound ∆c/c = (c − c0)/c0 is
introduced instead (as is the case in Figure 1.2). From Taylor series approxima-
tions, one shows that the latter is related to (4.22) through ∆c/c ' 1

2∆M/M . If
the cubic polynomial law (2.22) is used, then the relative variation of the elastic
modulus is

∆M
M
= (1 − g) (1 − 2βε − 3δε2) − 1 , (4.23)

which reduces to −g if β and δ equal zero. The average of ∆M/M over a period
of forcing is deduced from (4.19) and (4.23):〈

∆M
M

〉
t�τg
= −M0 + 6δγ

4γ
V2 +O(V4) . (4.24)

The diminution of the elastic modulus with the square of the strain amplitude is
similar to the Payne effect of filled rubber [23, 103, 108].

On Figure 4.1a, ∆M/M is represented in the case of Hooke’s law with the
parameters from Table 4.2. In this softening phase, ∆M/M decreases and reaches
the steady state. At t = 50 ms, the excitation is stopped. Thus, τε goes to infinity
in (4.19). During the recovery, ∆M/M increases exponentially in time towards
zero with time constant τg = 10 ms.

Figures 4.1b and 4.1c show the steady-state solution. On Figure 4.1b, ∆M/M
is represented with respect to the strain for several forcing amplitudes, according
to Equation (4.23)with β = δ = 0. A hysteretic behavior causedby the dissipation
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is observed. Figure 4.1c is an alternative representation of the phenomenon for
several strain amplitudes. Here, the effect of increasing strain levels on the
stress-strain relationship is outlined.

On Figure 4.2, the behavior of the model with the polynomial law (2.22) and
β = 50, δ = 108 is compared to the previous case of Hooke’s law. On Figure 4.2a,
the softening phases are compared. Figure 4.2b represents the hysteresis curves.
More important variations of ∆M/M are observed in the case of the cubic
polynomial law, as well as a loss of symmetry in the hysteresis curves. These
phenomena are due to the dependence (4.23) of ∆M/M with the strain, when β
and δ are nonzero. The contribution of β and δ in the Fourier coefficients is not
significant at strain amplitudes V ≈ 10−6 (Table 4.1).

Supplementary analytical results can be obtained in the case of Hooke’s law.
In this case, the relative variation of the elastic modulus (4.23) is ∆M/M = −g,
and the only nonzero Fourier coefficients in Table 4.1 are a0 and a2. The surface
area of the hysteresis loops in Figure 4.1b is

S./ =
2
3
τg

τε

2ωcτg

1 + (2ωcτg)2
V =

2
3

2ωcα

γ2 + (2ωcα)2
M0V3 , (4.25)

which vanishes at high γ, low and high frequency fc, and low and high α.
This result was obtained by piecewise integration of the hysteresis curves. The
maximum value reached by the steady-state solution is

gmax =
τg

4τε

©«
1 +

1√
1 + (2ωcτg)2

ª®®¬
. (4.26)

The strain amplitude Vmax for which the material is destroyed satisfies gmax = 1:

Vmax =

√
2γ
M0

√√√√√√ 2
√

1 + (2ωcτg)2

1 +
√

1 + (2ωcτg)2
. (4.27)

In the present configuration,Vmax ≈ 1.7×10−5. Thus, if the quadratic expression
(4.13) of the storage energy φ2 is chosen, the model is only valid for small strains.
Note that algebra mistakes have been found in the publication [1] and they are
corrected here (4.25)-(4.26).

1.2.b. Internal energy

According to Eq. (4.3), the internal energy per unit volume is separated into
two terms. One term corresponds to the strain energy φ1W , the other term
corresponds to the storage energy φ2. When g = 0, the internal energy is only
elastic. As g increases at constant strain, the strain energy decreases and the
storage energy increases. Therefore, the internal energy is transferred from the
strain to φ2 when g increases, and inversely.

Let us assume that α = 0. The internal variable satisfies g = geq(χ) (4.10).
With the quadratic expression (4.13) of φ2, the internal variable is equal to

geq(χ) = W(χ)
γ

. (4.28)
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Figure 4.1. Analytical computation in the case of Hooke’s law. (a) Evolution of the relative variation of the
elastic modulus ∆M/M = −g with respect to its initial value, when a sinusoidal strain ε = V sin(ωc t) is
applied until t = 50 ms (4.19). (b) Hysteresis curves ∆M/M versus ε in steady state (τg � t < 50 ms);
(c) Effect on the stress-strain relationship, where σ − σ̄ is represented with respect to the strain ε.
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Figure 4.2. Comparison of the analytical computations in the cases of Hooke’s law of linear elasticity
and the cubic polynomial law. (a) Evolution of the relative variation ∆M/M of the elastic modulus when a
sinusoidal strain with amplitude V = 1.4 × 10−6 is applied until t = 25 ms (4.19)-(4.23). (b) Hysteresis
curves ∆M/M versus ε in steady state.
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ε, for several values of the internal variable g.

The value g = 1, which corresponds to a destructed material, is reached for strain
energies W > γ. In the case of Hooke’s law with the parameters from Table 4.2,
the maximum admissible strain is

√
2γ/M0 ≈ 1.2×10−5. This value is recovered

by setting τg = 0 in Equation (4.27). The logarithmic expression (4.14) of φ2
yields

geq(χ) = 2W(χ)
γ +

√
γ2 + 4W(χ)2

, (4.29)

which is always between zero and one. Therefore, there is no strain limit in this
case.

Figure 4.3 represents the strain energy per unit volume φ1W when the
geometry is 1D. The strain energy density function is issued from Hooke’s law
and the softening function (4.12) is used (parameters from Table 4.2). One can
observe that the strain energy decreases as g increases. If g = 1, the strain energy
does not depend on the strain anymore, which illustrates the destruction of the
material.

On Figures 4.4a and 4.4b, the internal energy is represented with respect to
g, where the quadratic expression (4.13) of the storage energy φ2 is used. The
values of geq correspond to the abscissas of the local minima of the curves (4.28).
On Figure 4.4a, one can observe an increase in geq when the strain increases.
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Figure 4.5. View of the dissipationD in ε-g coordinates (4.11). The black line marks the curve g = geq(ε),
i.e. the locus α = 0 where no dissipation occurs (4.10).

No asymptote avoids to reach the value g = 1, which destroys the material. On
Figure 4.4b, one can observe an increase in geq when γ decreases. Again, no
asymptote avoids to reach the value g = 1, which destroys the material.

1.2.c. Dissipation

In one space dimension and small strain, D depends on ε and g. The dissipation
per unit volume (4.11) is a surface in ε-g coordinates (Fig. 4.5). The expression
of D is deduced from the softening function (4.12), the quadratic storage energy
(4.13), Hooke’s law and the conservation of mass ρ0/ρ = 1 + ε. This figure
illustrates that the dissipation is positive, in agreement with the Clausius–Duhem
inequality. Also, one can observe that no dissipation occurs if α = 0, which
corresponds to the curve g = geq(ε) = M0ε

2/(2γ).

A new model for the dynamic behavior of solids has been proposed. The
above analytical study shows that the model reproduces qualitatively the main
features of real experiments. However, these computations have been carried out
in a non-realistic configuration. To get closer to experimental configurations, we
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develop 1D finite-volume methods with flux limiters, in a similar fashion as in
Chapter 2.

2. Longitudinal waves

2.1. Governing equations

This section refers to the equations of motion in the uniaxial case (4.17). The
variable g is added to the vector of unknowns q, so that q = (ε, v, g)>. The
system of conservation laws (2.23) becomes a system of balance laws

∂tq + ∂x f (q) = r(q) + s , (4.30)

where
f (q) = − (

v, σ/ρ0, 0
)>
,

r(q) = − 1
α

(
0, 0, φ′1(g)W(ε) + φ′2(g)

)>
,

s =
1
ρ0

(
0, f v · e1, 0

)>
,

(4.31)

where the stress satisfies σ = φ1(g)W′(ε). The Jacobian matrix f ′(q) of f has
the eigenvalues {−c(q), c(q), 0}, where

c(q) =
√
φ1(g)W′′(ε)/ρ0 (4.32)

is the speed of sound. The speed of sound (4.32) is real and nonzero— in other
words, the system (4.30) is strictly hyperbolic—provided that φ1(g) > 0 and
W′′(ε) > 0. The first condition implies that g < 1 in the case φ1(g) = 1 − g
(4.12). The second condition is already required in the elastic case (2.23), where
the speed of sound (2.26) is equal to

√
W′′(ε)/ρ0.

Now let us examine the spectrum of the relaxation function in (4.30). The
Jacobian matrix r′(q) of r has the eigenvalues {0, 0,−(φ′′1 (g)W(ε) + φ′′2 (g))/α}.
Therefore, if we follow (4.12)-(4.14) by setting φ1(g) = 1 − g and by choosing
a convex function for φ2(g), then the Jacobian matrix r′(q) is negative semi-
definite. Moreover, its spectral radius is

Υ =

��φ′′1 (g)W(ε) + φ′′2 (g)��
α

, (4.33)

which reduces to Υ = γ/α +O(g2) in the case of (4.12)-(4.14). One recognizes
the inverse of the relaxation time τg = α/γ, which is characteristic of the slow
dynamics [1] (cf. Section 1.2).
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2.2. Numerical resolution

2.2.a. Finite-volume method

It is now assumed that φ1(g) = 1 − g (4.12). Applying the same explicit time-
stepping formula as (2.43) to (4.30) yields

qn+1
i = qn

i −
∆t
∆x

(
f n
i+1/2 − f n

i−1/2
)
+ ∆t

(
r(qn

i ) + sn
i
)
, (4.34)

where the numerical flux f n
i+1/2 is specified later on. Numerical stability imposes

a bound of the form
∆t 6 min

{
∆x

cn
max

,
2

Υn
max

}
, (4.35)

where cn
max is the maximum sound velocity (4.32) that is encountered at time

tn, and Υn
max is the maximum spectral radius of the relaxation function (4.33).

Since the relaxation time of the slow dynamics is much larger than the period
of exciting signals, the condition (4.35) reduces to the classical CFL condition
Co 6 1 (2.44) with the Courant number Co = cn

max∆t/∆x.
If the constitutive law ε 7→ W′(ε) is convex or concave, then the maximum

sound speed at time tn is given by cn
max = max06i6Nx c(qn

i ), with the sound speed
(4.32). If the constitutive law is neither convex nor concave, then the maximum
sound speed becomes

cn
max = max

06i<Nx

√
1 −min{gn

i , g
n
i+1}

ρ0
max
ε∈Di

W′′(ε) , (4.36)

where Di is the interval with bounds εn
i and εn

i+1. One can remark that the
expression (2.45) of the elastic case is recovered if g ≡ 0.

� Roe linearization. In this subsection, we derive the flux-limiter method with
Roe linearization, in a similar fashion as in Section 2 of Chapter 2. For the system
(4.30) with φ1(g) = 1 − g, the following matrix is obtained from (2.49):

Ai+1/2 =
©«

0 −1 0
−an

i+1/2 0 bn
i+1/2

0 0 0

ª®®¬
, (4.37)

where
an

i+1/2 =
σn

i+1 − σn
i

ρ0 (εn
i+1 − εn

i )
+
gn

i+1 − gn
i

εn
i+1 − εn

i
bn

i+1/2 ,

bn
i+1/2 =

W(εn
i+1) −W(εn

i )
ρ0 (εn

i+1 − εn
i )

,

(4.38)

and the stresses are σn
i = (1 − gn

i )W′(εn
i ). To avoid divisions by zero when

εn
i = ε

n
i+1, one computes

an
i+1/2 =

(
1 − g

n
i + g

n
i+1

2

)
W′′(εn

i )
ρ0

,

bn
i+1/2 =

W′(εn
i )

ρ0
,

(4.39)
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in this particular case.
The eigenvalues of the matrix (4.37) with the coefficients (4.38)-(4.39) are

{−sn
i+1/2, s

n
i+1/2, 0}, where sn

i+1/2 =
√

an
i+1/2. We rewrite the coefficient an

i+1/2
from (4.38) as

an
i+1/2 =

W′(εn
i+1) −W′(εn

i )
ρ0 (εn

i+1 − εn
i )
− gn

i

W(εn
i+1) −W(εn

i ) −W′(εn
i )(εn

i+1 − εn
i )

ρ0 (εn
i+1 − εn

i )2

− gn
i+1

W(εn
i ) −W(εn

i+1) −W′(εn
i+1)(εn

i − εn
i+1)

ρ0 (εn
i+1 − εn

i )2
.

(4.40)

One can note that the first term in (4.40) corresponds to the elastic case. Moreover,
the next terms vanish when gn

i = 0 = gn
i+1, i.e. when no softening occurs. Since

the strain energy function W is convex and g < 1 over the hyperbolicity domain,
the coefficient an

i+1/2 in (4.40) is positive. Finally, the eigenvalue sn
i+1/2 is real,

and the matrix (4.37) is a Roe matrix for the system (4.30).
Similarly to the elastic case (2.53),we introduce the left and right eigenvectors

of the matrix Ai+1/2

r1
i+1/2 =

©«
1

sn
i+1/2
0

ª®®¬
, l1i+1/2 =

1
2
©«

1
1/sn

i+1/2
−bn

i+1/2/an
i+1/2

ª®®¬
,

r2
i+1/2 =

©«
1

−sn
i+1/2
0

ª®®¬
, l2i+1/2 =

1
2
©«

1
−1/sn

i+1/2
−bn

i+1/2/an
i+1/2

ª®®¬
,

r3
i+1/2 =

©«
bn

i+1/2/an
i+1/2

0
1

ª®®¬
, l3i+1/2 =

©«
0
0
1

ª®®¬
.

(4.41)

Note that there may be numerical issues with the eigenvectors in [4] (divisions
by possibly small numbers), thus it is recommended to use (4.41). Now, the jump
qn

i+1 − qn
i is decomposed in the basis of right eigenvectors of the Roe matrix in

a similar manner as (2.59). Since the eigenvalue corresponding to k = 3 in the
decomposition is zero, the vectorW3

i+1/2 defined in (2.60) does not appear in the
numerical flux f n

i+1/2 of the flux-limiter method (2.58). Therefore, the formulas
(2.58) to (2.64) can be applied without modification to compute f n

i+1/2, using
the vectorsW1

i+1/2 andW
2
i+1/2 deduced from (2.60)-(4.41), and the eigenvalue

sn
i+1/2 deduced from (4.38)-(4.39). The data is then updated according to (4.34).

2.3. Numerical experiments

In the following examples, we have φ1(g) = 1 − g, φ2(g) = −1
2γ ln(1 − g2),

and W(ε) = ( 1
2 − 1

3 βε − 1
4δε

2) M0 ε
2. The Courant number is set to Co = 0.95.

The numerical domain is defined by [x0, xNx ] = [−0.5, 0.5] m. The physical
parameters of the model are given in Table 4.2.
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Figure 4.6. Assessment of the numerical method’s convergence on the propagation of a smooth pulse. (a)
Reference solution at t = 0.19 ms: strain, particle velocity, and softening variable. (b) Error measurement.

2.3.a. Pulse propagation

The initial data is zero, and a point load f v = δs(x)ϕ(t) e1 located at the abscissa
xs = 0 generates a smooth pulse with angular frequency ωc = 2π fc, with
fc = 6 kHz. The source signal in (4.30) satisfies

ϕ(t) = 2M0V
3∑

i=0

ai

a
sin(2iωct) , (4.42)

where V = 10−5, a0 = 1, a1 = −21/32, a2 = 63/768, a3 = −1/512, and
a ' 1.507 is a normalization coefficient. It is turned on from t = 0 to t = 1/ fc,
which corresponds to one fundamental period. Chosen for the smoothness of
its time-evolution (4.42), the point source generates left-going and right-going
waves with strain amplitude V .

The reference solution is an oversampled numerical solution (4.34) computed
at t = 0.19ms on a gridwith N ref

x = 215 points (Figure 4.6a). The pulse injected at
xs = 0 has propagated towards both increasing and decreasing x. By symmetry,
only the right-going part is displayed here. No shock wave is observed: the
waveform is slightly distorted but keeps smooth. Figure 4.6b illustrates the
convergence of the numerical method. For a given coarse spatial discretization
where Nx � N ref

x , the numerical solution is computed up to t ≈ 0.19 ms, and
is compared to the reference numerical solution at the same final time. The
evolution of the L2 global error between both strain waveforms is represented
in Figure 4.6b with respect to ∆x = 1/Nx . One can observe that the order of
convergence is between one and two.
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2.3.b. Dynamic acousto-elasticity

The setup is the same as in the previous section, but here, the point load generates
a sinusoidal strain with amplitude V ≈ 10−6 and angular frequency ωc = 2π fc,
with fc = 5 kHz:

ϕ(t) = 2M0V sin(ωct) . (4.43)

The source (4.43) is turned on from t = 0 to t = 40 ms, which corresponds to
200 periods of signal. A receiver records the numerical solution at the abscissa
xr = 0.3 m.

The numerical solution (4.34) is computed up to t = 80 ms on a grid with
Nx = 80 points, which corresponds to 40 points per wavelength at the angular
frequency ωc. The computations are performed in C++. Each simulation lasts
around 1.5 s, when a recent desktop computer is used (Intel Core i5-4690,
3.5 GHz, 16 Go, 2015). Figure 4.7a displays the strain ε and the variation of
the elastic modulus ∆M/M (4.22) deduced from the sound speed (4.32), which
are recorded at the position xr of the receiver. A slow decrease of the elastic
modulus combined with fast oscillations is observed until the source is stopped.
Simultaneously, the strain signals are smooth sinusoids, so that Nx = 80 is
sufficient. After the source is stopped, the elastic modulus recovers slowly its
initial value, while the strain is equal to zero.

Figure 4.7b focuses on the steady-state solution. Here, the last 80 numerical
values before t = 40ms are used,which corresponds to two periods of signal at the
frequency fc. When ∆M/M from (4.22) is represented with respect to the strain
recorded at the position of the receiver xr , a hysteresis curve is obtained. The
orders of magnitude of these phenomena—duration of the transients, magnitude
of the softening, size and shape of the hysteresis curves—are very similar to
those reported in [117] for Berea sandstone. In particular, one can note that the
average softening 〈∆M/M〉 is proportional to V2, as predicted in [1]. However,
only qualitative agreement with Figure 5a of [117] is obtained.

We have shown how to include the slow dynamics in finite-volume methods
under the uniaxial strain assumption (1D). The next section is devoted to the
plane-strain case (2D). Here, finite-volume methods are implemented dimension
by dimension using dimensional splitting. As in the one-dimensional case, the
numerical method is well-suited to the computation of nonlinear waves in the
Lagrangian framework. Moreover, it can be used for various hyperelasticmaterial
models (see e.g. the related study [17] and references therein).

3. Plane-strain waves

3.1. Governing equations

To derive the equations of plane-strain elastodynamics with softening, we go
back to the isotropic case detailed in Section 1. The equations of motion are
specified in (4.15), and the Piola–Kirchhoff stress tensor P = φ1(g)F · ∂W/∂E
is given in (4.16). Here, the strain energy density function of Murnaghan’s law
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Figure 4.7. (a) Strain signal and softening of the material, as recorded by the receiver at the abscissa
xr = 0.3 m. (b) Hysteresis curves in steady-state. The arrow indicates how time increases along the curve.

(2.16) is used [91], which is expressed as a function of the strain invariants
EI = trE, EII =

1
2
((trE)2 − tr(E2)) , EIII = det E of the Green–Lagrange strain

tensor E. The model has five elastic constants: the Lamé parameters λ, µ, and
the Murnaghan coefficients l, m, n.

3.1.a. The plane-strain assumption

The displacement field u is independent on z, and its component u3 along e3 is
zero. In the basis of unit tensors (ei ⊗ e j)16i, j63, the matrix of coordinates of the
displacement gradient grad u is therefore

(
ui, j

)
=

©«
u1,1 u1,2 0
u2,1 u2,2 0
0 0 0

ª®®¬
. (4.44)

Using the Einstein notation with indices in {1, 2}, the coordinates of the Green–
Lagrange tensor (2.9) write Ei j =

1
2
(
ui, j + u j,i + up,iup, j

)
. Its invariants are

EI = Enn, EII =
1
2
(
EI

2 − Ei j Ei j
)
= εi j E1iE2 j and EIII = 0, where εi j is the Levi-

Civita symbol of R2. The Cayley–Hamilton theorem applied to the restriction
of E to R2 ×R2 reads EimEmj − EIEi j + EIIδi j = 0, where δi j is the Kronecker
delta. Hence, the expression ∂W/∂E = α0I +α1E +α2E

2 of the strain energy’s
tensor derivative (2.14) becomes

∂W
∂Ei j

= α̃0δi j + α̃1Ei j (4.45)
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in the basis of unit tensors (ei ⊗ e j)16i, j62. The corresponding coefficients
deduced from (2.16) are

α̃0 = α0 − α2EII = λEI + lEI
2 − 2mEII ,

α̃1 = α1 + α2EI = 2 (µ +mEI) .
(4.46)

The coordinates Pi j of the first Piola–Kirchhoff stress tensor P in (4.16) are
therefore

Pi j = φ1(g)
(
δim + ui,m

) (
α̃0δmj + α̃1Emj

)
(4.47)

under the plane strain assumption, which does not depend upon the third Mur-
naghan coefficient n.

When the geometric nonlinearities are negligible, the coordinates Ei j of E
are replaced by the coordinates εi j =

1
2
(
ui, j + u j,i

)
of ε. Moreover, the first

Piola–Kirchhoff stress tensor P is linearized with respect to grad u too, i.e.
F · ∂W/∂E ' ∂W/∂ε. Hence, the equation Pi j = φ1(g)

(
α̃0δi j + α̃1εi j

)
replaces

(4.47). Under this assumption, linear elastodynamics is recovered if g ≡ 0 (i.e.,
α→ +∞ in the evolution of g (4.9)), and if the Murnaghan coefficients l, m in
(4.46) are zero (see Appendix, Sec. 5.2 for details).

3.1.b. System of balance laws

Under the plane-strain assumption, the equations of motion (4.15) write as a
two-dimensional system of balance laws

∂tq + ∂x f (q) + ∂yg(q) = r(q) + s , (4.48)

where q = (u1,1, u1,2, u2,1, u2,2, v1, v2, g)> is the vector of unknowns. The expres-
sions of the flux functions, the relaxation function and the source term are

f (q) = −
(
v1, 0, v2, 0, P11/ρ0, P21/ρ0, 0

)>
,

g(q) = −
(
0, v1, 0, v2, P12/ρ0, P22/ρ0, 0

)>
,

r(q) = − 1
α

(
0, 0, 0, 0, 0, 0, φ′1(g)W + φ′2(g)

)>
,

s =
1
ρ0

(
0, 0, 0, 0, f v · e1, f

v · e2, 0
)>

.

(4.49)

In (4.49), the Piola–Kirchhoffstress components (Pi j)16i, j62 dependon (ui, j)16i, j62
and g according to (4.47). The strain energyW depends on (ui, j)16i, j62 according
to (2.16).

The Jacobian matrix of the flux component f along the x-axis is

f ′(q) = −

©«

1 0 0
0 0 0
0 1 0
0 0 0

Q1111 Q1112 Q1121 Q1122 0 0 G11

Q2111 Q2112 Q2121 Q2122 0 0 G21

0 0 0 0 0 0 0

ª®®®®®®®®®®®®¬

, (4.50)
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Table 4.3. Physical parameters of concrete.

ρ0 (kg m−3) λ (GPa) µ (GPa) l (GPa) m (GPa) γ (J m −3) α (J m−3 s)
2400 12.7 17.5 −3007 −2283 4.0 × 10−2 2.0 × 10−6

where only three strips are displayed (everywhere else, the coefficients in the
matrix are zero). The expression of the coefficients Qi j k` in (4.50) defined by
ρ0Qi j k` = ∂Pi j/∂uk,` is detailed in the Appendix, Sec. 5.2, as well as the ex-
pression of the coefficients Gi j defined by ρ0Gi j = ∂Pi j/∂g. A similar Jacobian
matrix g′(q) is obtained for the flux component g along the y-axis. These ma-
trices are diagonalized in the Appendix 5.2. The spectrum of both matrices has
the form {−cP, cP,−cS, cS, 0, 0, 0}. In the case of Murnaghan hyperelasticity, the
eigenvalues cP, cS can be complex [4], so that the system (4.48)-(4.49) is only
conditionally hyperbolic (see e.g. [96] for discussions on hyperbolicity in hyper-
elasticity). Here, we restrict ourselves to configurations where the eigenvalues
cP > cS > 0 are real. Thus, cP and cS correspond to the velocities of compression
waves and shear waves, respectively.

� Plane waves. We assume furthermore that the displacement field is invariant
along a direction, say e2, so that u does not depend on y. In this case, the vector
of unknown reduces to q = (u1,1, u2,1, v1, v2, g)>—the second and fourth rows
of (4.48)-(4.49) are zero—and the flux g along y is zero. The Jacobian matrix
f ′(q) is obtained from (4.50) by removing the second and fourth rows, as well
as the second and fourth columns. Doing so, two zero eigenvalues are removed
from the spectrum, which reduces to {−cP, cP,−cS, cS, 0}.

We consider the case of Murnaghan material g ≡ 0, with the parameters
in Table 4.3. The latter, found in [106], have been measured on concrete. Let
us introduce the relative variation ∆c/c of the sound velocities cP and cS with
respect to the case of Hooke’s law, where cP =

√
(λ + 2µ)/ρ0 ≈ 4458 m/s and

cS =
√
µ/ρ0 ≈ 2700 m/s. Fig. 4.8 displays the evolution of ∆c/c with respect to

the compression strain u1,1, when the shear strain u2,1 is set to zero. One observes
that the variations of cP with respect to u1,1 are much larger than the variations
of cS. This is confirmed by the Taylor series approximations

(∆c/c)P =
(
3
2
+
l + 2m
λ + 2µ

)
u1,1 +O(u1,1

2) +O(u2,1
2) ≈ −157 u1,1 ,

(∆c/c)S =
(
λ + 2µ

2µ
+
m

2µ

)
u1,1 +O(u1,1

2) +O(u2,1
2) ≈ −63.8 u1,1 ,

(4.51)

represented as dotted lines in Fig. 4.8. These approximations show also that the
shear strain u2,1 has much less influence than the compression strain u1,1 on the
variations of the sound velocities.
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3.2. Numerical resolution

3.2.a. Numerical strategy

We consider a finite numerical domain [0, Lx] × [0, Ly]. It is discretized using
a regular grid in space with mesh size ∆x in the x direction, and ∆y in the
y direction. The coordinates of the nodes are (xi, y j) = (i ∆x, j ∆y), where
0 6 i 6 Nx and 0 6 j 6 Ny. The total number of nodes is (Nx + 1) × (Ny + 1),
where Nx = Lx/∆x and Ny = Ly/∆y. A variable time step ∆t = tn+1 − tn is
introduced. Therefore, q(xi, y j, tn) denotes the solution to (4.48) at the grid node
(i, j) and at the nth time step. Numerical approximations of the solution are
denoted by qn

i, j ' q(xi, y j, tn).
The non-homogeneous system of balance laws (4.48) is integrated explicitly

in time:
qn+1

i, j = qn
i, j + ∆q

n
FV + ∆t

(
r(qn

i, j) + sn
i, j

)
, (4.52)

where the approximation sn
i, j of the source term s is specified later on. The

increment ∆qn
FV is deduced from the integration of ∂tq + ∂x f (q) + ∂yg(q) = 0

over one time step. Usually, one has ∆qn
FV = (Hx + Hy − 2) qn

i, j , where the
discrete operators

Hxq
n
i, j = qn

i, j −
∆t
∆x

(
f n
i+1/2, j − f n

i−1/2, j
)
,

Hyq
n
i, j = qn

i, j −
∆t
∆y

(
gn

i, j+1/2 − gn
i, j−1/2

)
,

(4.53)

involve the fluxes f n
i+1/2, j , g

n
i+1/2, j of a 2D finite-volume scheme [69] (cf. Ap-

pendix, Sec. 5.2). Here, a second-order symmetric dimensional splitting [130]
is used instead. That is to say, Hx and Hy correspond to the integration of
∂tq + ∂x f (q) = 0 and ∂tq + ∂yg(q) = 0 over one time step, so that (4.53)
involves the fluxes f n

i+1/2, j , g
n
i+1/2, j of a 1D finite-volume scheme. The increment

∆qn
FV is computed according to

∆qn
FV =

1
2

(HxHy +HyHx − 2
)
qn

i, j , (4.54)

whereHxHy denotes the composition of the operatorsHx andHy.
The numerical fluxes in (4.53)-(4.54) are computed according to the flux-

limiter method [4, 69] described in the next subsection. This finite-volume
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scheme is well-suited for nonlinear wave propagation and second-order accurate.
The operatorsHx andHy are stable under the Courant–Friedrichs–Lewy (CFL)
condition

Co = max
06i6Nx
06 j6Ny

max
{
% f ′(qn

i, j)
∆t
∆x
, %g′(qn

i, j)
∆t
∆y

}
6 1 , (4.55)

where Co is the maximum Courant number in the x and y directions. The
spectral radius % f ′(q) of f ′(q) corresponds to cP (expression detailed in the
Appendix 5.2), ditto the spectral radius %g′(q) of g′(q). The stability of the
scheme (4.52) is also restricted by the spectral radius of the Jacobian matrix
r′(q). As in the uniaxial case (4.35) [4], the stability limits imply that the scheme
(4.52) is stable under the classical CFL condition (4.55). Hence, given a spatial
discretization and a Courant number Co 6 1, the value of the time step ∆t is
imposed by (4.55).

3.2.b. Flux-limiter scheme

We describe now the flux-limiter scheme [4, 69]. Since the computation of the
numerical fluxes in the x and y directions is similar, only the numerical flux
f n
i+1/2, j in the x direction is detailed here. To do so, we introduce the Jacobian

matrix
Ai+1/2, j = f ′

( 1
2 (qn

i, j + qn
i+1, j)

)
(4.56)

at the arithmetic mean of the grid node values in the x direction. The jump of
the numerical solution qn

i+1, j − qn
i, j along x is decomposed in the basis of right

eigenvectors {pk
i+1/2, j, k = 1, . . . , 7} of Ai+1/2, j ,

qn
i+1, j − qn

i, j =

7∑
k=1

αk
i+1/2, j p

k
i+1/2, j =

7∑
k=1

Wk
i+1/2, j , (4.57)

which correspond to the eigenvalues {−cP, cP,−cS, cS, 0, 0, 0} (cf. detailed ex-
pressions in the Appendix 5.2).

The numerical flux in (4.53) is the sum of a first-order flux and a second-order
limited correction, f n

i+1/2, j = f L
i+1/2, j + f H

i+1/2, j , where

f L
i+1/2, j =

1
2

(
f (qn

i, j) + f (qn
i+1, j)

)
− 1

2
cP

(
W1

i+1/2, j +W
2
i+1/2, j

)

− 1
2

cS

(
W3

i+1/2, j +W
4
i+1/2, j

)
,

f H
i+1/2, j =

1
2

cP

(
1 − ∆t

∆x
cP

) (
φ(θ1

i+1/2, j)W1
i+1/2, j + φ(θ2

i+1/2, j)W2
i+1/2, j

)

+
1
2

cS

(
1 − ∆t

∆x
cS

) (
φ(θ3

i+1/2, j)W3
i+1/2, j + φ(θ4

i+1/2, j)W4
i+1/2, j

)
.

(4.58)
The coefficients θk

i+1/2, j where k = 1, . . . , 4 express the upwind variation of the
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jump (4.57) in the kth characteristic field,

θ1,3
i+1/2, j =

W1,3
i+3/2, j ·W

1,3
i+1/2, j

W1,3
i+1/2, j ·W

1,3
i+1/2, j

, θ2,4
i+1/2, j =

W2,4
i−1/2, j ·W

2,4
i+1/2, j

W2,4
i+1/2, j ·W

2,4
i+1/2, j

, (4.59)

and φ denotes the minmod limiter function φ(θ) = max{0,min{1, θ}}. As such,
theweights φ(θk

i+1/2, j) are designed to avoid spurious oscillations in the numerical
solution. Since the eigenvalues indexed by k = 5, . . . , 7 in the decomposition of
the jump (4.57) are zero, the corresponding termsWk

i+1/2, j do not appear in the
numerical flux (4.58).

To carry out one iteration in time (4.52)-(4.54) at some grid node (i, j), the
numerical values of q at the grid nodes (i − 2, . . . , i + 2) × ( j − 2, . . . , j + 2) are
required (4.58). Therefore, two columns and two rows of “ghost cells” are added
on the left, the right, the top, and the bottom of the numerical domain. Then, a
zero-order extrapolation of the numerical values is used to update the ghost cell
values at each step of (4.54), similarly to the “outflow boundary condition” in
Sec. 4.3.c of Chapter 2. This procedure is detailed in Section 21.8 of [69], and
is used here to simulate an infinite physical domain.

3.3. Numerical experiments

In the following examples, the softening function is φ1(g) = 1 − g, and the
storage energy is φ2(g) = −1

2γ ln(1 − g2). The Courant number in (4.55) is set
to Co = 0.9. If not specified differently, the physical parameters are given in
Table 4.3. The parameters γ, α have been chosen so as to obtain significant
effects of the softening at the scale of the simulation. The numerical domain is
defined by Lx = Ly = 0.4 m, and is discretized using Nx = Ny = 800 points in
each direction.

3.3.a. Murnaghan hyperelasticity

The first example focuses on nonlinear elastodynamics, i.e., no softening occurs
in the material. In (4.48)-(4.49), the source term and the relaxation function are
removed (s = 0, α → +∞). We consider a Riemann problem with initial data
q(x, y, 0), where the material is initially undeformed and opposite transverse
velocities with amplitude V are applied:

q(x, y, 0) =
{

V
(
0, 0, 0, 0, sin ϕ,−cos ϕ, 0

)> if xϕ < 0 ,
V

(
0, 0, 0, 0,−sin ϕ, cos ϕ, 0

)> if xϕ > 0 .
(4.60)

The variable xϕ = (x − xs) cos ϕ + (y − ys) sin ϕ is the x-abscissa of a new
coordinate system, corresponding to a rotation by an angle ϕ and a translation
by (xs, ys) of the original one. Here, the origin is set at (xs, ys) = (Lx, Ly)/2,
the rotation angle is ϕ = 15◦, and the velocity amplitude is V = 1.0 m/s. To
reduce discretization artifacts due to the oblique discontinuity, the average value
of (4.60) over the cell [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2] is initially set at the grid
node (i, j).
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Figure 4.9. Generation of compression waves from pure shear initial data in Murnaghan hyperelasticity
(g ≡ 0). (a) Map of W 1/8 at t = 0.015 ms, where W is the strain energy density (J/m3). (b) Rotated
longitudinal and transverse velocities (v1)ϕ , (v2)ϕ along the horizontal line in the map, in the linear and
nonlinear cases.

Figure 4.9 illustrates the coupling between plane shear waves and plane
compression waves in hyperelasticity [37, 97], contrary to linear elasticity where
both types of waves are decoupled. Fig. 4.9a displays a map of W1/8 at t =
0.015 ms, where W is the strain energy (2.16) obtained numerically with the
abovemethod. Fig. 4.9b displays the evolution of the rotated longitudinal velocity
(v1)ϕ = v1 cos ϕ+ v2 sin ϕ and the rotated transverse velocity (v2)ϕ = −v1 sin ϕ+
v2 cos ϕ, along the solid line displayed in Fig. 4.9a. In the case of Hooke’s law
of linear elasticity, the solution to the initial-value problem (4.60) writes

q(x, y, t) =




V
(
0, 0, 0, 0, sin ϕ,−cos ϕ, 0

)> if xϕ < −cSt ,
V
cS

(−sin ϕ cos ϕ,−sin2ϕ, cos2ϕ, sin ϕ cos ϕ, 0, 0, 0
)>

if −cSt < xϕ < cSt ,

V
(
0, 0, 0, 0,−sin ϕ, cos ϕ, 0

)> if cSt < xϕ ,

(4.61)

with cS =
√
µ/ρ0 , and only shear waves propagate. In the hyperelastic case,

Fig. 4.9b shows that shear waves are generated from the initial data (4.60), but
faster compression waves are also generated. The small-amplitude perturba-
tions in the numerical solution are caused by the discretization of the oblique
discontinuity (4.60).

3.3.b. Softening

In this second example, we consider the full system (4.48)-(4.49). The material
is initially undeformed and at rest, q(x, y, 0) = 0, and a volume force f v is used
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Figure 4.10. Softening induced by an acoustic point source (4.62). (a) Map of the strain energy (1 − g)W
in J/m3 at t = 0.04 ms, where the forcing amplitude is Av = 1.0 kN/m. (b) Time histories of the velocity
component v1 at the position of the receiver (bullet point on the map) for several forcing amplitudes (top);
Same for the softening variable g (bottom).

for the forcing s. The volume force is an acoustic point source along x with
expression f v = Av sin(2π fct) δ(x − xs) δ(y − ys) e1, where δ is the Dirac delta
function, Av is the amplitude, and fc is the characteristic frequency. Usually,
the increment sn

i, j in (4.52) is obtained by averaging the source term s |t=tn of
(4.48)-(4.49) over the cell [xi−1/2, xi+1/2]×[y j−1/2, y j+1/2]. Here, we approximate
the Dirac deltas by a truncated Gaussian function to avoid strain concentration
at the source. Thus,

sn
i, j =

Av

ρ0
sin(2π fctn)

exp
(−(di j/σc)2

)
πσc

2 (
1 − exp

(−(R/σc)2
) ) 1di j6R (0, 0, 0, 0, 1, 0, 0)>,

(4.62)
where di j is the distance between (xi, y j) and (xs, ys). Denoted by the indicator
function 1di j6R, the function’s support is a disk with radius R = cP/(7.5 fc),
where cP =

√
(λ + 2µ)/ρ0 is the speed of linear compression waves. The width

parameter of the Gaussian function is chosen such that σc = R/2. The point
load has amplitude Av = 1.0 kN/m, frequency fc = 100 kHz, and it is located at
the nearest grid node of the domain’s center: (xs, ys) ' (Lx, Ly)/2. The source
(4.62) is switched on at t = 0, and switched off at t = 0.04 ms. A receiver located
at (xr, yr) = (0.2, 0.25) m records the numerical solution during the simulation.

Figure 4.10 illustrates the effect of the softening on the wave propagation.
Fig. 4.10a displays a map of the strain energy (1 − g)W at the time t = 0.04 ms,
which shows the propagation of cylindrical waves. Denoted by a bullet point,
the receiver is located in a region of the plane where mainly shear waves
propagate. Fig. 4.10b shows the effect of the softening at the position of the
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receiver for several forcing amplitudes Av . One observes that g increases while
the wave passes by the receiver, and that it relaxes towards zero afterwards. This
softening/recovery process is all the more important as the forcing amplitude
is large. The characteristic time of the slow dynamics τg = α/γ ≈ 0.05 ms
corresponds to the characteristic time of the recovery [1, 4]. In Fig. 4.10b, one
observes the delay of the velocity signal due to the increase of g. The recorded
signal is similar to experimental ones obtained in a longitudinal configuration
[116] (Fig. 1.3).

4. Conclusion

Anewmodel for the dynamic behavior of solids has been proposed. The following
features are common with the soft-ratchet model of Vakhnenko et al. [137, 138]:

• a variable g describes the softening of the material;

• an evolution equation for g with a relaxation time is given;

• a low number of extra parameters for the non-classical effects is required
(two parameters).

In comparison with the soft-ratchet model, several differences can be outlined.
The new model

(i) satisfies the second principle of thermodynamics;

(ii) does not require an expression of the equilibrium value geq(σ) of g, but an
expression of the storage energy φ2(g);

(iii) generalizes naturally to higher space dimensions.

Point (i) is a major difference with the soft-ratchet model (see the Appendix,
Sec. 5.1). As shown in Section 1, the model reproduces qualitatively the macro-
scopic behavior of real media. The effect of the parameters γ and α on the
softening is shown analytically.

In the present work, the modeling approach is purely phenomenological. No
physical interpretation of g at the microscopic scale is known. To go further,
some similarities to other materials are pointed out in Section 5.1, in particular
with filled rubber. It seems that the dynamic response of rocks is similar to the
Payne effect [108] and that the quasi-static response of rocks is similar to the
Mullins effect [33, 81]. In the mechanics of elastomers, existing quasi-static
models have a very similar structure to our dynamic model [34, 99]. By analogy,
the coupling of nonlinear viscoelasticity and heat conduction could be a key for
physical modeling [49]. Lastly, from a microscopic point of view, both materials
are made approximately of a matrix with particles inside. These similarities may
be used for future micromechanical modeling.

The model is well-adapted to finite-volume numerical methods, since the
equations of motion write as a nonlinear system of balance laws. In the longitudi-
nal case, the main features of dynamic acousto-elasticity have been reproduced
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numerically,using a numericalmethodwith flux limiters. This type ofmethod can
be generalized to higher space dimensions, as done here in the plane-strain case
(2D) by using dimensional splitting. Thus, similar methods could be developed
in the full 3D case.

Nevertheless, one limitation of the present study needs to be mentioned.
The model amounts to linear elasticity in the small perturbation limit, where
resonance peaks are of infinite height. This property is not in agreement with
resonance experiments. To explore more realistic configurations (dissipative
small perturbation limit), one should at least incorporate viscoelastic attenuation
in themodel. This aspect,which is crucial for prospective experimental validation,
is addressed in the next chapter.
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d

Lstick

L

Figure 4.11. Sketch of two sticking fibers of length L with ini-
tial spacing d, when withdrawn from a wetting liquid (grey). The
height of fluid between the fibers is Lstick.

5. Appendix

5.1. Other models

5.1.a. Analogies

� Quasistatic loading of filled rubber. In the case of a quasistatic process,
equilibrium is satisfied over the transformation. This is equivalent to have Ûg ' 0
in the model equation (4.9). The internal variable is then deduced from the
strain through g = geq(χ) (4.10). Due to the constitutive relation (4.7), the
stress depends explicitly on the strain. Therefore, no hysteresis occurs in the
stress-strain relationship.

Pseudo-elastic models are designed to incorporate hysteresis and memory
effects. Additional variables which are stored along the loading path can be
used in the storage energy φ2. For example, Wmax = maxt W(χ) is used in [99]
to describe the Mullins effect, which is an hysteresis phenomenon observed in
cyclic loading of filled rubber. An expression of the form

φ′2(g) = Wmax +
2γ√
π

erf−1(−g) , (4.63)

is proposed in [99]. From (4.10), one deduces the expression of the internal
variable

geq(χ) = erf
(
Wmax −W(χ)

2γ/√π

)
. (4.64)

This expression satisfies geq = 0 if W(χ) = Wmax. In particular, geq = 0 along
the primary loading path. In the case of the end-point memory phenomenon
which is observed in rocks [43], the pseudo-elastic model [99] can be adapted
as described in Section 4 of [34]. For further reading, constitutive models for
rubber can be found in [31, 33, 81, 104].

� System of wet fibers.A formal analogy with a system of two partially-immersed
fibers of length L can be made (Figure 4.11). Initially, their spacing is d. Then,
the fibers are immersed in a fluid with surface tension Υ. When withdrawn
quasi-statically, they stick together. The internal energy of this system is the sum
of the bending energy in the fibers and the energy due to the surface tension of
the fluid. Thus, [112]

Eint = φ1(g) Eel + φ2(g) , g =
Lstick

L
∈ [0, 1[ , (4.65)
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where Lstick is the wet length of the fibers. In the case of a system of cylindrical
elastic fibers with radius r and Young’s modulus M0, the expressions in (4.65)
are

φ1(g) = (1 − g)−3 ,

Eel = 3M0Id2

L3 with I =
πr4

4
,

φ2(g) = −4ΥrL
∫ g

0

(
θ −

(π
2
− θ

) (
1

cos θ
− 1

))
dζ ,

(4.66)

Due to the geometry of the meniscus and the law of hydrostatics, one has

cos θ =
ρf gnζrL

Υ + ρf gnζrL
with ζ =

z
L
, (4.67)

where z is the altitude in the fluid, ρf is the mass density of the fluid and gn is
the standard gravity. A sign mistake has been found in equation (2) of [112].
Equations (4.66)-(4.67) are taken from equations (3)-(4) of [112], where the sign
is correct. Formally, the energy (4.65) is similar to the energy (4.3).

5.1.b. Limitations of the soft-ratchet model

� Thermodynamical analysis. The soft-ratchet model by Vakhnenko et al. is
a particular case of 1D model with internal variable of state [137, 138] (see
Chapter 1). Thus, we carry out the thermodynamical analysis from Section 1.
The soft-ratchet model introduces a concentration of activated defects g, which
modifies the stress according to

σ = (1 − g) σ̄(ε) . (4.68)

This constitutive law is the same as (4.7) with the softening function (4.12). In
one space dimension, the strain rate satisfies D = Ûε/F, where F = 1 + ε. The
Clausius–Duhem inequality (4.2) rewrites as

D =

(
σ − ρ0

∂e
∂ε

)
D − ρ∂e

∂g
Ûg > 0 , (4.69)

for all state and all evolution. Due to the constitutive law (4.68), the specific
internal energy must satisfy

ρ0
∂e
∂ε
= (1 − g) σ̄(ε) . (4.70)

When integrating (4.70) with respect to the strain ε, an integration constant
appears, which we denote by φ2(g). Thus, the internal energy per unit volume
(4.3) is recovered, where W′(ε) = σ̄(ε). The Clausius–Duhem inequality (4.69)
implies (

W(ε) − φ′2(g)
) Ûg > 0 (4.71)

for all {ε, g} and all Ûg.
In the soft-ratchet model, the evolution equation for g has the form

Ûg = (
geq(σ) − g

)/τg , (4.72)



4. Hyperelastic material with slow dynamics 97

where τg > 0 is a variable relaxation time and geq(σ) is the value of g at
equilibrium for a given stress. Various expressions of geq are proposed in the
literature. In [137], geq reads

geq(σ) = g0 exp (σ/σ̃) , (4.73)

where σ̃ is a stress and g0 is the value of geq at zero stress. This expression is
modified in [38] to ensure geq < 1:

geq(σ) = 1
2

(
1 + tanh

(
σ/σ̃ − tanh−1(1 − 2g0)

))
. (4.74)

Injecting (4.72) in (4.71) yields the condition(
φ′2(g) −W(ε)) (

g − geq(σ)
)
> 0 with σ = (1 − g) σ̄(ε) , (4.75)

for all ε in ]−1,+∞[ and all g in [0, 1].
In particular, (4.75) must hold for all g when ε = 0. In this case, the condition

(4.75) reduces to g > g0 for all g such that φ′2(g) > 0. We deduce that g0 must
be negative or zero, i.e. g0 = 0. The expressions (4.73)-(4.74) of geq imply that
geq is always equal to zero, which is not physically relevant. Something must
be modified in the soft-ratchet model to satisfy Eq. (4.75). Here, we propose to
seek thermodynamically admissible expressions of geq.

�Modified model. Expressions of geq must be chosen carefully. The condition
(4.75) imposes that φ′2(g) − W(ε) and g − geq(σ) have the same sign. Both
functions of ε and g are smooth. Hence, they equal zero with a change in sign
or with a gradient equal to zero. Since the gradient of both functions is nonzero,
it implies that φ′2(g) −W(ε) and g − geq(σ) equal zero for the same values of ε
and g. Combining both equalities, the condition

φ′2(geq(σ)) = W
(
σ̄−1

(
σ

1 − geq(σ)

))
(4.76)

is deduced from the constitutive law (4.68). An expression of geq which satisfies
(4.76) is not necessarily thermodynamically admissible. Moreover, one can note
that such an expression depends on the strain energy densityW and on the storage
energy φ2.

Now,we examine the existence of a thermodynamically admissible expression
of geq in a particular case. To do so, the strain energy density from Hooke’s law
W : ε 7→ 1

2 M0 ε
2 is chosen. We select the quadratic expression (4.13) of the

storage energy φ2. The necessary condition (4.76) writes

γgeq(σ) = 1
2

M0

(
σ/M0

1 − geq(σ)

)2
. (4.77)

It rewrites as a cubic equation:
(
geq(σ) − 2

3

)3
− 1

3

(
geq(σ) − 2

3

)
+

2
27
− σ2

2M0γ
= 0 , (4.78)
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Figure 4.12. Graph of the equilibrium value geq(σ) in the soft-ratchet model. (a) Roots of (4.78). The
solid line corresponds to a thermodynamically admissible expression of geq. (b) Classical expressions “exp”
(4.73) and “tanh” (4.74) of geq.

which may have multiple solutions.
When using Cardano’s method, the discriminant

∆ =
27σ2

4M2
0γ

2

(
8M0γ

27
− σ2

)
(4.79)

of the cubic function in (4.78) is positive if |σ | <
√

8M0γ/27. In this case, the
three roots of (4.78) are real. On Figure 4.12a, the three real roots are represented,
where the parameters are issued from Table 4.2. For comparison, the classical
expressions (4.73) and (4.74) of geq(σ) are displayed in Figure 4.12b, where
g0 = 0.1 and σ̃ = 0.1 GPa. Among the three real roots of (4.78), only one
satisfies geq(0) = 0 (solid line on Figure 4.12a):

geq(σ) = 4
3

sin2
(
1
6

arccos
(
1 − 27σ2

4M0γ

))
. (4.80)

This thermodynamically admissible expression of geq is only defined when
the discriminant (4.79) is positive, i.e. for strains smaller than

√
8γ/(27M0) ≈

4.6 × 10−6. This bound has nearly the same order of magnitude as (4.27).
To summarize, we have shown that the soft-ratchet model is not thermo-

dynamically relevant. A modification of this model has been examined, which
results in an implicit definition of geq (4.76). The expression of geq is dependent
on the choice of a strain energy density function and a storage energy. Further-
more, Eq. (4.76) may be difficult to solve analytically in some cases. Lastly, the
domain of validity of the model is restricted.

5.2. Complements on plane-strain finite volumes

5.2.a. Coefficients of the Jacobian matrices

We use the Einstein summation convention with indices in {1, 2}. To encom-
pass both cases with and without geometric nonlinearity in a single equation,
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we introduce a parameter Θ ∈ {0, 1} such that Θ = 1 corresponds to finite
strain case and Θ = 0 corresponds to infinitesimal strain. Hence, the coor-
dinates of the strain tensor (2.9) are written Ei j = εi j +

1
2Θ up,iup, j , where

εi j =
1
2 (ui, j + u j,i) are the coordinates of the infinitesimal strain tensor. More-

over, the components of the Piola–Kirchhoff stress tensor (4.47) are written
Pi j = φ1(g)

(
δim +Θ ui,m

) (
α̃0δmj + α̃1Emj

)
, i.e.

Pi j = φ1(g)
(
α̃0δi j + α̃1Ei j +Θ

(
α̃0ui, j + α̃1ui,mEmj

) )
, (4.81)

where α̃0, α̃1 are given in (4.46). The coefficients (4.50) of the Jacobian matrices
f ′(q) and g′(q) satisfy ρ0Qi j k` = ∂Pi j/∂uk,` and ρ0Gi j = ∂Pi j/∂g. In the
present case of Murnaghan material with softening (4.81) with the softening
function φ1(g) = 1 − g, one has

ρ0Qi j k` = φ1(g)
(
δi j

∂α̃0
∂uk,`

+ Ei j
∂α̃1
∂uk,`

+ α̃1
∂Ei j

∂uk,`

)

+Θ φ1(g)
(
ui, j

∂α̃0
∂uk,`

+ α̃0δikδ j` + ui,mEmj
∂α̃1
∂uk,`

+ α̃1

(
δik E j` + ui,m

∂Emj

∂uk,`

))
,

ρ0Gi j = φ
′
1(g)

(
α̃0δi j + α̃1Ei j +Θ

(
α̃0ui, j + α̃1ui,mEmj

) )
,

(4.82)
where

∂Ei j

∂uk,`
=

1
2
(
δikδ j` + δ j kδi`

)
+

1
2
Θ

(
uk,iδ j` + uk, jδi`

)
,

∂Enn

∂uk,`
= δk` +Θ uk,` ,

∂α̃0
∂uk,`

= (λ + 2(l −m)Emm) ∂Enn

∂uk,`
+ 2mEi j

∂Ei j

∂uk,`
,

∂α̃1
∂uk,`

= 2m
∂Enn

∂uk,`
.

The case of Hookean solids is recovered if φ1(g) ≡ 1, geometric nonlinearity is
neglected (Θ = 0), and the Murnaghan coefficients l, m are zero. In this case,
Eq. (4.82) gives ρ0Qi j k` = λδi jδk` + µ(δikδ j` + δ j kδi`) and ρ0Gi j = 0.

5.2.b. Eigendecomposition of the Jacobian matrices

We provide an eigendecomposition of the Jacobian matrices f ′(q) and g′(q) of
the fluxes. The hyperelastic case without softening is recovered by removing the
last row and the last column of each matrix in the following paragraphs.

� Flux along the x-axis. The Jacobian matrix (4.50) of f at the linear average
(4.56) is diagonalized. Let us write Ai+1/2, j = RΛR−1 where R is an invertible
real matrix, and Λ is a diagonal real matrix. The matrix of eigenvalues Λ =
diag(−cP, cP,−cS, cS, 0, 0, 0) satisfies

cP,S =
1√
2

√
Q1111 +Q2121 ±

√
(Q1111 −Q2121)2 + 4 Q1121Q2111 , (4.83)
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where the plus sign gives the expression of cP (compressional waves), and
the minus sign gives the expression of cS (shear waves). The first four right
eigenvectors pk

i+1/2, j of Ai+1/2, j used in (4.57)-(4.58) are the first four columns
of R, where

R =

©«

p11 −p11 p13 −p13 p15 p16 p17

0 0 0 0 p25 p26 p27

p31 −p31 p33 −p33 1 0 0
0 0 0 0 0 1 0
1 1 p13/p33 p13/p33 0 0 0

p31/p11 p31/p11 1 1 0 0 0
0 0 0 0 0 0 1

ª®®®®®®®®®®®®¬

, (4.84)

with the coefficients

p11 = 1/cP , p31 =
Q2111/cP

(cP)2 −Q2121
,

p13 = − (cP)2 Q1121/cS((cP)2 −Q2121
)

Q1111 +Q1121Q2111
, p33 = 1/cS ,

p15 =
Q1112Q2121 −Q1121Q2112
Q1111Q2112 −Q1112Q2111

, p25 =
Q1121Q2111 −Q1111Q2121
Q1111Q2112 −Q1112Q2111

,

p16 =
Q1112Q2122 −Q1122Q2112
Q1111Q2112 −Q1112Q2111

, p26 =
Q1122Q2111 −Q1111Q2122
Q1111Q2112 −Q1112Q2111

,

p17 =
G21Q1112 − G11Q2112

Q1111Q2112 −Q1112Q2111
, p27 =

G11Q2111 − G21Q1111
Q1111Q2112 −Q1112Q2111

.

ThematrixR is invertible provided that its determinant is nonzero,which imposes
that Q1121Q2111 , Q1111Q2121 and Q1121Q2111 , −1

4 (Q1111 − Q2121)2. Let us
consider each equality case:

• if Q1121Q2111 = Q1111Q2121, then the eigenvalues of f ′(q) satisfy cS = 0.
Therefore, the reduced system of conservation laws for plane waves propa-
gating along x is not strictly hyperbolic (eigenvalues {−cP, cP,−cS, cS, 0});

• if Q1121Q2111 = −1
4 (Q1111 −Q2121)2, then the eigenvalues of f ′(q) satisfy

cP = cS, which is impossible for the same reason.

Therefore, the previous eigendecomposition is valid over the domain of strict
hyperbolicity. The first four left eigenvectors l k

i+1/2, j of Ai+1/2, j are the first four
rows of R−1, where

R−1 =

©«

q11 q12 q13 q14 q15 q16 q17

−q11 −q12 −q13 −q14 q15 q16 −q17

−q41 −q42 −q43 −q44 q45 q46 −q47

q41 q42 q43 q44 q45 q46 q47

0 1/p25 0 −p26/p25 0 0 −p27/p25

0 0 0 1 0 0 0
0 0 0 0 0 0 1

ª®®®®®®®®®®®®¬

, (4.85)
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with the coefficients

q11 =
1
2

p33
p11p33 − p13p31

, q41 =
1
2

p31
p11p33 − p13p31

,

q12 =
p13 − p15p33

2 p25 (p11p33 − p13p31) , q42 =
p11 − p15p31

2 p25 (p11p33 − p13p31) ,

q13 = −1
2

p13
p11p33 − p13p31

, q43 = −1
2

p11
p11p33 − p13p31

,

q14 =
(p15p26 − p16p25) p33 − p13p26

2 p25 (p11p33 − p13p31) , q44 =
(p15p26 − p16p25) p31 − p11p26

2 p25 (p11p33 − p13p31) ,

q15 =
1
2

p11p33
p11p33 − p13p31

, q45 = −1
2

p31p33
p11p33 − p13p31

,

q16 = −1
2

p13p11
p11p33 − p13p31

, q46 =
1
2

p11p33
p11p33 − p13p31

,

q17 =
(p15p27 − p17p25) p33 − p13p27

2 p25 (p11p33 − p13p31) , q47 =
(p15p27 − p17p25) p31 − p11p27

2 p25 (p11p33 − p13p31) .

The coefficients αk
i+1/2, j in (4.57) are equal to the scalar products αk

i+1/2, j =
l k
i+1/2, j ·

(
qn

i+1, j − qn
i, j

)
.

� Flux along the y-axis. Similarly to (4.56), we introduce the Jacobian matrix
g′(q) of g at the linear average Bi, j+1/2 = g′

( 1
2 (qn

i, j + qn
i, j+1)

)
, and provide

an eigendecomposition Bi, j+1/2 = RΛR−1. The matrix of eigenvalues Λ =
diag(−cP, cP,−cS, cS, 0, 0, 0) satisfies

cP,S =
1√
2

√
Q2222 +Q1212 ±

√
(Q2222 −Q1212)2 + 4 Q2212Q1222 , (4.86)

where the plus and minus signs give the expressions of cP and cS, respectively.
With similar notations as (4.84), we have

R =

©«

0 0 0 0 p15 p16 p17

p21 −p21 p23 −p23 p25 p26 p27

0 0 0 0 0 1 0
p41 −p41 p43 −p43 1 0 0

p21/p41 p21/p41 1 1 0 0 0
1 1 p43/p23 p43/p23 0 0 0
0 0 0 0 0 0 1

ª®®®®®®®®®®®®¬

, (4.87)

with the coefficients

p21 =
(cS)2 Q1222/cP((cP)2 −Q1212

)
Q1212 −Q1222Q2212

, p41 = 1/cP ,

p23 = 1/cS , p43 = − Q2212/cS

(cP)2 −Q1212
,

p15 =
Q1212Q2222 −Q1222Q2212
Q1211Q2212 −Q1212Q2211

, p25 =
Q1222Q2211 −Q1211Q2222
Q1211Q2212 −Q1212Q2211

,
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p16 =
Q1212Q2221 −Q1221Q2212
Q1211Q2212 −Q1212Q2211

, p26 =
Q1221Q2211 −Q1211Q2221
Q1211Q2212 −Q1212Q2211

,

p17 =
G22Q1212 − G12Q2212

Q1211Q2212 −Q1212Q2211
, p27 =

G12Q2211 − G22Q1211
Q1211Q2212 −Q1212Q2211

.

A similar analysis shows that R is invertible over the domain of strict hyperbol-
icity:

R−1 =

©«

q11 q12 q13 q14 q15 q16 q17

−q11 −q12 −q13 −q14 q15 q16 −q17

−q41 −q42 −q43 −q44 q45 q46 −q47

q41 q42 q43 q44 q45 q46 q47

1/p25 0 −p16/p15 0 0 0 −p17/p15

0 0 1 0 0 0 0
0 0 0 0 0 0 1

ª®®®®®®®®®®®®¬

, (4.88)

with the coefficients

q11 =
p23 − p25p43

2 p15 (p21p43 − p23p41) , q41 =
p21 − p25p41

2 p15 (p21p43 − p23p41) ,

q12 =
1
2

p43
p21p43 − p23p41

, q42 =
1
2

p41
p21p43 − p23p41

,

q13 =
(p16p25 − p15p26) p43 − p16p23

2 p15 (p21p43 − p23p41) , q43 =
(p16p25 − p15p26) p41 − p16p21

2 p15 (p21p43 − p23p41) ,

q14 = −1
2

p23
p21p43 − p23p41

, q44 = −1
2

p21
p21p43 − p23p41

,

q15 =
1
2

p43p41
p21p43 − p23p41

, q45 = −1
2

p41p23
p21p43 − p23p41

,

q16 = −1
2

p41p23
p21p43 − p23p41

, q46 =
1
2

p23p21
p21p43 − p23p41

,

q17 =
(p17p25 − p15p27) p43 − p17p23

2 p15 (p21p43 − p23p41) , q47 =
(p17p25 − p15p27) p41 − p17p21

2 p15 (p21p43 − p23p41) .

5.2.c. Classical (unsplit) 2D finite-volume methods

Here, we present briefly finite-volume methods for 2D systems of conservation
laws. The properties of these methods illustrate the benefits of implementing
dimensional splitting, which is used in the present chapter to construct a flux-
limiter scheme.

� Lax–Friedrichs. The numerical method is written in conservation form

qn+1
i, j = qn

i, j −
∆t
∆x

(
f n
i+1/2, j − f n

i−1/2, j
)
− ∆t
∆y

(
gn

i, j+1/2 − gn
i, j−1/2

)
. (4.89)
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The numerical fluxes f n
i+1/2, j and g

n
i, j+1/2 are deduced from the Lax–Friedrichs

method, which writes as follows in two space dimensions:

f n
i+1/2, j =

1
2

(
f (qn

i, j) + f (qn
i+1, j)

)
− ∆x

4 ∆t

(
qn

i+1, j − qn
i, j

)
,

gn
i, j+1/2 =

1
2

(
g(qn

i, j) + g(qn
i, j+1)

)
− ∆y

4 ∆t

(
qn

i, j+1 − qn
i, j

)
.

(4.90)

This method is table under the CFL condition Co < 1/
√

2 ≈ 0.707, where
Co is the Courant number. Note that this scheme does not amount to the one-
dimensional Lax–Friedrichs method when the data is invariant by translation
along x or y.

� Lax–Wendroff. We introduce the Jacobian matrices Ai+1/2, j , Bi, j+1/2 at the
arithmetic means of the grid node values in the x and y directions, respectively.
The numerical fluxes f n

i+1/2, j and g
n
i, j+1/2 are deduced from the Lax–Wendroff

method, which writes as follows in two space dimensions:

f n
i+1/2, j =

1
2

(
f (qn

i, j) + f (qn
i+1, j)

)
− ∆t

2 ∆x
Ai+1/2, j

(
f (qn

i+1, j) − f (qn
i, j)

)

− ∆t
8 ∆y

Ai+1/2, j
(
g(qn

i+1, j+1) + g(qn
i, j+1) − g(qn

i+1, j−1) − g(qn
i, j−1)

)
,

gn
i, j+1/2 =

1
2

(
g(qn

i, j) + g(qn
i, j+1)

)
− ∆t

2 ∆y
Bi, j+1/2

(
g(qn

i, j+1) − g(qn
i, j)

)

− ∆t
8 ∆x

Bi, j+1/2
(
f (qn

i+1, j+1) + f (qn
i+1, j) − f (qn

i−1, j+1) − f (qn
i−1, j)

)
.

(4.91)

This method is stable under the CFL condition Co < 1/
√

2 ≈ 0.707, where Co is
the Courant number. This scheme amounts to the one-dimensional Lax–Wendroff
method when the data is invariant by translation along x or y.
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Viscoelastic attenuation is a key feature to reproduce the vibrations
of real media. In particular, resonance experiments demonstrate the

need of attenuation to describe accurately forced periodic oscillations [55, 135].
In the framework of linear elasticity, several rheological models based on a
combination of springs and dashpots can be found in the literature. The standard
linear solid, also known as generalized Maxwell or Zener body, is commonly
used for the description of seismic wave propagation [16, 20, 89]. It consists in
the combination of Nv elementary Zener elements with 3Nv parameters in total.
The latter are obtained by optimization, so that a given quality factor is reached
over a frequency range of interests (cf. Sec. 5.1 of the Appendix and [16, 38]).

Section 1 shows how viscoelasticity of Zener type can be coupled with the
softening model from the previous chapter. In a first step, Zener viscoelasticity
is generalized to nonlinear constitutive laws as proposed in [38], using internal
variables of state (viscous strains) [83]. In a second step, the variable g accounting
for the softening is added to the list of variables of state. Finally, the constitutive
equations are chosen in agreement with the Clausius–Duhem inequality.

The equations of motion are written as a nonlinear system of balance laws.
Similarly to the previous chapter, finite-volume methods are developed to solve
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numerically the equations of motion (Section 2). Here, boundary conditions are
introduced to simulate the forced vibrations of a longitudinal sample. Themethod
is validated in the linear viscoelastic case. The full model shows qualitative
agreement with resonance experiments and with dynamic acousto-elasticity.
This study has been published in [3, 6].

Time-domain methods are useful to reproduce the material’s softening (tran-
sient regime), but are not well-suited for the computation of resonance curves.
The aim of Section 3 is to introduce a frequency-domain tool dedicated to res-
onance simulations. It is based on a finite-element semi-discretization of the
equations of motion, and on the harmonic balance method. The periodic solution
is followed while varying the exciting frequency by using a continuation method
[27]. This framework may be useful for prospective experimental validations.
Preliminary results have been communicated in [5].

1. Phenomenological material modeling

Let us consider a solid continuum in the Lagrangian representation of motion,
which length L along the x-axis is very large compared to its other dimensions.
No heat transfer occurs in the material, self-gravitation is neglected, and no
external body force is applied. Only longitudinal vibrations are considered, and
the displacement field is described by its component u(x, t) along the x-axis. On
one hand, kinematics reads ∂tε = ∂xv, where ε = ∂xu > −1 denotes the strain,
and v = ∂tu denotes the particle velocity. On the other hand, the conservation
of momentum writes ρ0∂tv = ∂xσ, where ρ0 is the density in the reference
configuration (2.23). According to the conservation of mass (2.3), the density
ρ in the deformed configuration satisfies ρ0/ρ = 1 + ε. The expression of the
stress σ is specified later on.

1.1. Construction of the model

1.1.a. Nonlinear viscoelasticity

Experimental evidence shows that elasticity is not sufficient to model geomate-
rials. In geophysics, the standard linear solid model is widely used to describe
viscoelastic attenuation [16, 20, 89]. It consists in the combination of Nv ele-
mentary Zener mechanisms with elastic constants M` > 0, K` > 0 and damping
constants ν` > 0, where ` = 1, . . . , Nv . Here, a generalization of the standard
linear solid to nonlinear constitutive laws proposed in [38] is used. The corre-
sponding schematic representation in terms of springs and dashpots is given in
Figure 5.1. In the infinitesimal strain limit, i.e. when the springs with constant
M` are linear, the standard linear solid model is recovered. Furthermore, inviscid
nonlinear elasticity is recovered when the viscous effects are null, in the sense
that ν` → +∞ for ` = 1, . . . , Nv .

The parameters of the model M`,K`, ν` are deduced from the quality factorQ
of the material over a frequency range of interest [16, 38]. To do so, the relaxation



5. Slow dynamics of a viscoelastic bar 107

M1 MNv

K1 KNv
ν1 νNv

σ

ε

ξ1

χ1

Figure 5.1. Rheological model of a nonlinear generalized Zener material.

times τσ`, τε` and the relaxed elastic modulus Mrel are introduced:

τσ` =
ν`

M` + K`
, τε` =

ν`
K`

,
Mrel
Nv
=

M`K`

M` + K`
. (5.1)

In the numerical experiments of Section 2, Nv = 5 Zener mechanisms are
used, and the quality factor is optimized over the frequency range [ fmin, fmax] =
[1, 100] kHz towards the value Q = 20. The relaxation times τσ`, τε` are deduced
from a nonlinear optimization procedure described in the Appendix, Sec. 5.1.

In the case of nonlinear Zenermaterials [38], the springs with constant M` are
nonlinear (Figure 5.1). Their state of deformation is described by the variables ξ`,
and their strain energy density W` is expressed by using a suitable strain energy
density function. For example, W` may be expressed as a polynomial function
of the strain ξ`:

W` : ξ` 7→
(
1
2
− β

3
ξ` − δ4ξ`

2
)

M` ξ`
2 . (5.2)

Hooke’s law W` =
1
2 M`ξ`

2 is recovered in the case of small strains ξ` → 0, and
also by setting the higher-order elastic constants β, δ to zero.

In counterpart, the parts with spring constant K` and damping constant ν`
are still considered as linear, but one could make different choices. Their state
of deformation is described by the variables χ` = ε − ξ`, which are internal
variables of state accounting for viscoelastic attenuation [83]. The strain energy
density in each mechanism is 1

2 K` χ`
2. Thus, the total strain energy W in the

material is the sum of the strain energies in all the springs:

W =
Nv∑
`=1

W`(ε − χ`) + 1
2

K` χ`
2 . (5.3)

According to the diagram in Figure 5.1, the stress σ` in the `th Zener mechanism
is expressed by σ` = W′

`
(ε − χ`) and σ` = K` χ` + ν`∂t χ`, where W′

`
is the

derivative of the function W`. Combining both expressions of σ`, the evolution
equations

∂t χ` =
1
ν`

(
W′`(ε − χ`) − K` χ`

)
(5.4)

are obtained. The relation σ =
Nv∑
`=1

σ` leads to the constitutive law

σ =

Nv∑
`=1

W′`(ε − χ`) . (5.5)
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1.1.b. Softening

To describe the softening of the nonlinear viscoelastic material, we introduce a
scalar variable g, which value in [0, 1[modifies the stiffness of the material. This
variable is modified along the time following an evolution equation. Similarly
to Chapter 4 [1], the derivation of a softening model is based on continuum
thermodynamics with internal variables [82, 84]. As usual in acoustics, the
process is assumed adiabatic. The first principle of thermodynamics introduces
the internal energy e per unit mass. The conservation of total energy (2.5) writes
ρ Ûe = σD, where D = Ûε/(1 + ε) is the strain rate. The second principle of
thermodynamics (2.6) gives ρ Ûη > 0, where η is the specific entropy. The system
is described by the variables of state {ε, η, χ1, . . . , χNv, g}, leading to the Gibbs
identity (4.1)

Ûe = T Ûη + ∂e
∂ε
Ûε + ∂e

∂ p
· Ûp , (5.6)

whereT = ∂e/∂η > 0 is the absolute temperature. The vector p = (χ1, . . . , χNv, g)>
is a vector of internal variables,which evolution Ûp depends only on the state of the
system. Combining the local equations of thermodynamics, the Gibbs equation
(5.6) and the conservation of mass ρ0/ρ = 1 + ε (2.3), the Clausius–Duhem
inequality is obtained:

D0 =

(
σ − ρ0

∂e
∂ε

)
Ûε − ρ0

∂e
∂ p
· Ûp > 0 , (5.7)

for all state {ε, p} and all evolution Ûε. The left-hand term in (5.7) is the dissipation
D0 per initial volume of material (Wm−3).

Similarly to Eq. (4.3) of Chapter 4, we assume an internal energy per unit of
initial volume of the following form:

ρ0e = φ1(g)W + φ2(g) , (5.8)

withW given in (5.3). The softening of the material is expressed by the functions
φ1 and φ2 of the previous chapter (4.12)-(4.14). Both the internal energy e and the
stress σ are state functions. Thus, the Clausius–Duhem inequality (5.7) rewrites
as A(ε, p) Ûε + B(ε, p) > 0, where A = σ − ρ0∂e/∂ε and B = −ρ0∂e/∂ p · Ûp.
To ensure a positive dissipation for all Ûε, one must have A = 0 and B > 0. The
condition A = 0 leads to the constitutive law σ = ρ0∂e/∂ε, i.e.

σ = φ1(g)
Nv∑
`=1

W′`(ε − χ`) . (5.9)

The expression of the stress is the same as in the viscoelastic case (5.5), but
multiplied by φ1(g). The condition B > 0 yields the possible choice

Ûp = − diag
(

1
φ1(g)ν1

, . . . ,
1

φ1(g)νNv
,

1
α

)
ρ0
∂e
∂ p

, (5.10)

where α > 0 is a constant expressed in Jm−3 s. Thus, the evolution equations
(5.4) of the viscous strains χ` are unchanged, and the evolution of the softening
variable g is governed by

−α Ûg = φ′1(g)W + φ′2(g) , (5.11)
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where φ′1, φ
′
2 are the derivatives of φ1, φ2, and the strain energyW is given in (5.3).

Finally, the dissipationD0 per unit of initial volume is equal to B = −ρ0∂e/∂ p · Ûp,
i.e.

D0 = α Ûg2 + φ1(g)
Nv∑
`=1

ν` ( Ûχ`)2 , (5.12)

which is positive. If α → +∞, then no softening occurs: the viscoelastic case
from Section 1.1.a is recovered. Conversely, if α → 0, the material softens
instantaneously. As shown in [1] and Chapter 4, the constant τg = α/γ is the
relaxation time of the slow dynamics.

To summarize, the equations ofmotion are the usual equations of longitudinal
elastodynamics with the constitutive law (5.9), and the evolution equations (5.10).
For convenience, we use now the relation χ` = ε − ξ` to eliminate the variables
χ`. The evolution of the variables ξ` is governed by Ûξ` = Ûε − Ûχ`, where Ûχ` is
specified in (5.4). Thus, a system of Nv + 3 partial differential equations in space
and time is obtained,




∂tε = ∂xv ,

ρ0∂tv = ∂xσ with σ = φ1(g)
Nv∑
`=1

W′`(ξ`) ,

∂tξ` = ∂xv +
1
ν`

(
K` (ε − ξ`) −W′`(ξ`)

)
, ` = 1, . . . , Nv ,

−α∂tg = φ
′
1(g)

(
Nv∑
`=1

W`(ξ`) + 1
2

K` (ε − ξ`)2
)
+ φ′2(g) ,

(5.13)

with Nv + 3 unknowns. The system (5.13) rewrites as a system of balance laws
∂tq + ∂x f (q) = r(q) similar to (4.30), where q =

(
ε, v, ξ1, . . . , ξNv, g

)> is the
vector of unknowns. The physical flux f (q) and the relaxation function r(q) are

f (q) = − (v, σ/ρ0, v, . . . , v, 0)> ,

r(q) =
(
0, 0,

K1 (ε − ξ1) −W′1(ξ1)
ν1

, . . . ,

. . . ,
KNv

(
ε − ξNv

) −W′Nv (ξNv )
νNv

,−φ
′
1(g)W + φ′2(g)

α

)>
,

(5.14)

where the stress σ is deduced from the constitutive law (5.9), and the strain
energy W is defined in (5.3).
Remark 5.1. In related works [76, 137, 138], a Kelvin–Voigt rheology is often
used instead of the standard linear solid model. This rheology is simpler than
the generalized Zener model, but is only valid on small frequency ranges. The
coupling of a nonlinear Kelvin–Voigt model with the softening is described by
the variables of state {η, ε, Ûε, g}. The strain energy W(ε) does not depend on Ûε,
and so does the internal energy (5.8). Therefore, the vector of internal variables
reduces to p = (g)> in the Clausius–Duhem inequality (5.7). By setting

σ = φ1(g) (W′(ε) + ν Ûε) ,
−α Ûg = φ′1(g)W(ε) + φ′2(g) ,

(5.15)



110

Table 5.1. Physical parameters.

ρ0 (kg m−3) M0 (GPa) β δ Q γ (J m−3) α (J m−3 s)
2.6 × 103 10 200 108 20 1.0 10−3

where ν > 0 is the viscosity, the dissipation D0 = α Ûg2 + φ1(g) ν Ûε2 is obtained,
which is analogous to (5.12).

1.2. Properties

1.2.a. Mathematical properties

� Hyperbolic system of conservation laws. Some properties of the system (5.13)
without relaxation are listed below without proof (cf. Chapter 2). The Jacobian
matrix f ′(q) of the physical flux has the eigenvalues {−c(q), 0, . . . , 0,+c(q)},
where the speed of sound c(q) satisfies

ρ0c(q)2 = φ1(g)
Nv∑
`=1

W′′` (ξ`) . (5.16)

The hyperbolicity of the system (5.13) amounts to the fact that c(q) is real and
positive. A sufficient condition is that φ1(g) is positive, and that ξ` satisfies
W′′
`
(ξ`) > 0 for all `.

� Relaxation spectrum.Now,we examine the spectrum of the relaxation function
r in (5.14). In the small perturbation limit,W`(ξ`) ' 1

2 M`ξ`
2 amounts to the strain

energy ofHooke’s law and φ2(g) ' 1
2γg

2. The eigenvalues of the Jacobian matrix
r′(q) are then {−1/τσNv, . . . ,−1/τσ1,−1/τg, 0, 0},where the relaxation times are
defined by (5.1) and τg = α/γ. As discussed in the Appendix (Section 5.1), the
relaxation frequencies 1/τσ` belong to a frequency range [ fmin, fmax] surrounding
the excitation frequency. If the relaxation times τσ` are sorted in descending
order, then fmin ≈ 1/τσ1 < 1/τσNv ≈ fmax. Using the numerical values in
Table 5.1, one shows that the characteristic frequency 1/τg of the slow dynamics
is smaller than the exciting frequency. Therefore, the spectral radius of r′(q) is
equal to 1/τσNv in this case.

1.2.b. Qualitative properties

� Sinusoidal strain forcing. To illustrate the decrease of the elastic modulus,
we consider that a sinusoidal strain with frequency fc = 2 kHz and amplitude
V ≈ 10−6 is applied locally to the material. The evolution equations (5.4) and
(5.11) for the variables χ1, . . . , χNv and g are now ordinary differential equations,
which parameters are given in the Tables 5.1 and 5.4. The softening function is
φ1(g) = 1−g and the storage energy is φ2(g) = −1

2γ ln(1−g2). TheMatlab solver
“ode15s” for stiff differential equations is used for the numerical integration of
(5.4)-(5.11), with at least 80 points per period at the frequency fc. The effective
elastic modulus is M = ρ0c2, where c is the speed of sound (5.16). In Figure 5.2a,
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Figure 5.2. Softening in the case of a sinusoidal strain forcing ε = V sin(2πfc t). (a) Time evolution of
the relative variation ∆M/M of the effective elastic modulus (5.17). (b) Hysteresis curves ∆M/M versus ε
in steady state (t � τg); (c) Effect of the hysteresis on the stress-strain relationship. The stress variation
∆σ defined in (5.18) is represented with respect to ε.

the time evolution of its relative variation

∆M
M
= ρ0c2

/ (
Nv∑
`=1

M`

)
− 1 (5.17)

is represented for increasing strain amplitudes V . A diminution of the effective
elastic modulus is observed, until a steady state is reached. Figure 5.2b represents
the relative variation of the effective elastic modulus with respect to the strain in
steady state (t � τg). Hysteresis curves are obtained, which size increases with
the strain amplitude. In Figure 5.2c, the hysteresis in the stress-strain relationship
(5.9) is displayed. Here, the variation of the stress

∆σ = σ −
Nv∑
`=1

M`ε (5.18)

is represented with respect to the strain. The hysteresis curves have the shape
of ellipses. The slope of their major axis diminishes with increasing strain
amplitudes, which illustrates the softening of the material.

� Strain step.Now,we consider that a strain step of amplitude ε is applied locally
to the material. The variable χ` evolves in time towards its equilibrium value
(χ`)eq, and the corresponding relaxation time is τσ`. The equilibrium value of
χ` is implicitly defined as a function of ε by the relation

W′`
(
ε − (χ`)eq

)
= K` (χ`)eq , (5.19)

i.e. (χ`)eq = M`

M`+K`
ε in the case of Hooke’s law (β = 0 and δ = 0). The variable

g evolves in time towards its equilibrium value

geq =
(
φ′2/φ′1

)−1 (−Weq), (5.20)
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where Weq is the strain energy (5.3) at equilibrium. Assuming the separation of
time scales τσ1 � τg, the corresponding relaxation time is τg. With the logarith-
mic expression φ2(g) = −1

2γ ln(1 − g2) of the storage energy, the equilibrium
value (5.20) is

geq =
2Weq

γ +
√
γ2 + 4Weq

, (5.21)

which is bounded by 1 for all Weq > 0. In the case of Hooke’s law, the strain
energy at equilibrium Weq =

1
2 Mrel ε

2 is deduced from the expression of (χ`)eq
and from the definition (5.1) of Mrel. Thus,

geq =
Mrel ε

2

γ +
√
γ2 + 2Mrel ε2

'
(ε→0)

Mrel ε
2

2γ
. (5.22)

Similar results have been obtained in the elastic case [1] (Chapter 4).

The addition of viscoelastic attenuation in the model changes its properties
significantly. In the elastic case from Chapter 4, the only nonzero eigenvalue
of r′(q) is related to the characteristic time τg = α/γ of the slow dynamics.
If attenuation is taken into account, then Nv characteristic times of the Zener
model belong to the spectrum of r′(q). Also, one observes that the dissipation
in the material is augmented by Nv positive terms. If we compare the hysteresis
loops from Fig. 5.2c with the hysteresis loops from Fig. 4.1c p. 77, one can see
notable differences. In particular, the curves in Fig. 4.1c pass through the origin
of the diagram, which is not the case of the ellipses in Fig. 5.2c. As shown in
the next section, the coupling with viscoelasticity has substantial implications
on the development of finite-volume methods.

2. Time-domain numerical method

2.1. Numerical resolution

2.1.a. Splitting strategy

As in the previous chapter, the softening function is φ1(g) = 1 − g. We consider
a finite domain [0, L]. It is discretized using a regular grid in space with mesh
size ∆x. The abscissas of the nodes are xi = i ∆x, where 0 6 i 6 Nx and the
number of nodes is Nx = L/∆x. A variable time step ∆t = tn+1− tn is introduced.
Therefore, q(xi, tn) is the solution to (5.13) at the ith grid node and at the nth time
step. Numerical approximations of the solution are denoted by qn

i ' q(xi, tn).
As discussed in [38], an efficient and flexible numerical strategy results from

splitting the system (5.13) in a propagation part (or hyperbolic part)

∂tq + ∂x f (q) = 0 (5.23)

and a relaxation part
∂tq = r(q) . (5.24)
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The discrete operators corresponding to the integration of (5.23) and (5.24)
are denotedHa andHb, respectively. Numerically, both parts are integrated in
time at each time step, with dedicated numerical methods. Here, a second-order
accurate Strang splitting scheme [69]

qn+1
i = H ∆t/2

b H ∆t
a H ∆t/2

b qn
i (5.25)

is used,whereHaHb denotes the composition ofHa andHb. Hence, one iteration
in time is obtained by integrating the relaxation part over a half time step, then
the propagation part over a full time step, and again the relaxation part over a
half time step.

As described in the next subsections, bothHa andHb are fourth-order accu-
rate operators. The operatorHa is stable under the CFL condition (2.44),whereas
the operator Hb is made unconditionally stable using an adaptive Rosenbrock
method. Thus, the coupled scheme (5.25) is stable under the CFL condition. A
second-order error is introduced by the splitting [69], which penalizes the fourth-
order accuracy of each operator. Nevertheless, the global accuracy observed
practically is much larger than with second-order schemes. This choice reduces
significantly numerical diffusion, which is crucial in the simulation of resonance
experiments.

2.1.b. Propagation part

As discussed in Chapter 2, the numerical resolution of nonlinear systems of
conservation laws (5.23) is usually performed using nonlinear conservative
schemes such as finite-volume schemes with flux limiters orWENO schemes [69,
128]. Suchmethods are designed to capture discontinuities arising in the solution
without introducing spurious oscillations. Here, the presence of viscoelasticity
prevents the occurence of shocks. Therefore, this approach would be either
too expensive from a computational point of view, or it would introduce too
much numerical diffusion. A fourth-order conservative ADER scheme [36, 124]
defined in Chapter 2 is preferred.

� ADER scheme. The homogeneous system of conservation laws (5.23) is
integrated numerically in space and time according to

H ∆t
a qn

i = qn
i −

∆t
∆x

(
f n
i+1/2 − f n

i−1/2
)
, (5.26)

where f n
i+1/2 is the ADER flux (2.65) computed from the data qn

i . The latter
is based on the linear approximation of the physical flux f (q) ' Ai+1/2 q at
each time step, where Ai+1/2 approximates the Jacobian f ′(q) at the midpoint
of [xi, xi+1] and the time tn.

In practice, the numerical scheme (5.26) with the numerical flux (2.65) is
stable under the classical CFL condition Co 6 1 (2.44), where Co = cn

max∆t/∆x
is the Courant number and cn

max denotes the maximum sound speed (5.16) that
is encountered at time tn. If the stress-strain relationship ξ` 7→ W′

`
(ξ`) is convex

or concave, then cn
max = maxi c(Un

i ). Otherwise, larger sound speeds may be
reached between grid nodes (see e.g. Section 16.1 in [69]). The more general



114

expression is

ρ0 (cn
max)2 = max

06i<Nx

{
(1 −min{gn

i , g
n
i+1})

Nv∑
`=1

max
ξ`∈(D`)i

W′′` (ξ`)
}
, (5.27)

where (D`)i is the interval with bounds (ξ`)ni and (ξ`)ni+1.

� Roe linearization. The matrix Ai+1/2 in the ADER flux (2.65) is obtained
by Roe linearization. The Roe matrix is defined by the three statements before
Eq. (2.49). In the case of the system (5.13), the following (Nv+3)×(Nv+3)-matrix
is obtained by using (2.49):

Ai+1/2 =

©«

0 −1 0 · · · 0 0
0 −a1 · · · −aNv aNv+1

... −1 0 · · · 0 0
... ... ... ... ...

0 −1 0 · · · 0 0
0 0 0 · · · 0 0

ª®®®®®®®®¬
. (5.28)

The coefficients deduced from (2.49) are for ` = 1, . . . , Nv ,

a` =
(1 − gn

i+1)W′`
((ξ`)ni+1

) − (1 − gn
i )W′`

((ξ`)ni )
ρ0

((ξ`)ni+1 − (ξ`)ni
)

+ (gn
i+1 − gn

i )
W`

((ξ`)ni+1
) −W`

((ξ`)ni )
ρ0

((ξ`)ni+1 − (ξ`)ni
)2 ,

aNv+1 =

Nv∑
`=1

W`

((ξ`)ni+1
) −W`

((ξ`)ni )
ρ0

((ξ`)ni+1 − (ξ`)ni
) .

(5.29)

To avoid divisions by zero when (ξ`?)ni = (ξ`?)ni+1 for some `? between 1 and Nv ,
the coefficients (5.29) are modified as follows (see Section 5.2):

a`? =
(
1 − g

n
i + g

n
i+1

2

) W′′
`?

((ξ`?)ni )
ρ0

,

aNv+1 =
W′
`?

((ξ`?)ni )
ρ0

+

Nv∑
`=1
`,`?

W`

((ξ`)ni+1
) −W`

((ξ`)ni )
ρ0

((ξ`)ni+1 − (ξ`)ni
) .

(5.30)

The eigenvalues of Ai+1/2 are {−sn
i+1/2, 0, . . . , 0,+sn

i+1/2}, where

sn
i+1/2 =

√√√ Nv∑
`=1

a` . (5.31)

In the Section 5.2, we prove that sn
i+1/2 is real in the hyperbolicity domain.

Therefore, the matrix (5.28) is a Roe matrix.
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2.1.c. Relaxation part

The relaxation equation (5.14)-(5.24) writes as a nonlinear system of first-order
differential equations in time:




∂tξ` =
1
ν`

(
K` (ε − ξ`) −W′`(ξ`)

)
, ` = 1, . . . , Nv ,

∂tg =
1
α

(
Nv∑
`=1

W`(ξ`) + 1
2

K` (ε − ξ`)2
)
− φ

′
2(g)
α

,

(5.32)

where ε is constant. Due to the various orders of magnitude of the time constants
τσ`,τg in the relaxation spectrum, this differential system is stiff. To avoid stability
and accuracy issues, the operator Hb in (5.25) is deduced from the adaptive
Rosenbrockmethod of the Odeint C++ library [11]. For the numerical integration
of (5.32) over a duration ∆t/2, the maximum time step of the Rosenbrockmethod
is set to ∆t/2, and the tolerances are 10−4 (relative) and 10−5 (absolute). Finally,
the numerical method (5.25) is stable under the CFL condition (2.44). Even if
nothing avoids the condition g < 1 to be broken numerically, this unwanted
event happens only at very high exciting amplitudes, where other phenomena
must be taken into account (plasticity, failure).

2.2. Numerical experiments

2.2.a. Configuration

In the upcoming examples, we assume that the material is initially undeformed
and at rest. Hence, the initial data q(x, 0) is zero for all x in the physical domain.
To carry out one iteration in time at some grid node i, the numerical values of q
at the grid nodes i − 2, . . . , i + 2 are required (the stencil of the ADER scheme
is S = 2). Therefore, two “ghost cells” must be added on the left and on the
right of the numerical domain, which can account for various types of boundary
conditions [69] (cf. Appendix of Chapter 2, Section 4.3). Here:

• A piston condition imposes a particle velocity Ûud(t) at the abscissa x = 0.
For compatibility with the initial conditions, one must have Ûud(0) = 0. By
construction of the rheological model, the same boundary conditions apply
to the variables ξ1, . . . , ξN as to the strain ε. Such a boundary condition is
represented numerically by setting for k in {1, 2} at each time step

εn
−k = ε

n
k ,

vn
−k = −vn

k + 2 Ûud(tn+1) ,
(ξ`)n−k = (ξ`)nk , ` = 1, . . . , Nv,

gn
−k = g

n
0 .

(5.33)

• A free edge is located at the abscissa x = L, which corresponds to a
zero-strain condition. Therefore, one has also ξ` = 0 for all ` at x = L.
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Such a condition is represented by setting for k in {1, 2} at each time step

εn
Nx+k = −εn

Nx−k ,

vn
Nx+k = v

n
Nx−k ,

(ξ`)nNx+k = −(ξ`)nNx−k , ` = 1, . . . , Nv,

gn
Nx+k = g

n
Nx

.

(5.34)

Now, several experiments are carried out with the numerical method described
above. The Courant number is set to Co = 0.95. If not specified differently, the
material parameters are given in Table 5.1 and Table 5.4. The physical domain
is bounded, with length L = 30 cm. A particle velocity Ûud(t) is imposed at the
abscissa x = 0 using the piston condition (5.33). A free edge (5.34) is located at
the abscissa x = L, as is the case in several experimental setups [117, 118].

2.2.b. Resonance

� Linear viscoelasticity.We consider a linear Zener material (β = 0, δ = 0, no
softening). By definition, the frequency-response function of a linear system is
the ratio of the output spectrum (x = L) to the input spectrum (x = 0), i.e.

FRF(ω) = û|x=L(ω)
ûd(ω) =

v̂ |x=L(ω)
Û̂ud(ω)

, (5.35)

where the hat denotes the Fourier transform in time. A Fourier transform in
space and time of (5.13) with α→ +∞ gives the following relation between the
wavenumber k and the angular frequency ω,

k = ω

(
Mrel
ρ0

1
Nv

Nv∑
`=1

1 + iωτε`
1 + iωτσ`

)−1/2

, (5.36)

where i denotes the imaginary unit. For a harmonic excitation ud(t) = exp(iωt),
we write the displacement field as a superposition of left-going and right-going
monochromatic plane waves. Thus, u(x, t) = (

A eik x + B e−ik x ) eiωt , where the
wavenumber k satisfies the dispersion relation (5.36). The coefficients A and
B are deduced from the boundary conditions u(0, t) = ud(t) and ∂xu (L, t) = 0.
Finally, the ratio of the spectra (5.35) at the frequency ω yields

FRF(ω) = 2
exp(ikL) + exp(−ikL) =

1
cos(kL) , (5.37)

where k is complex and frequency-dependent (5.36). Note that the expression
(5.37) is not restricted to the dispersion relation (5.36) of Zener material.

To assess the quality of the numerical method, the frequency response is
simulated numerically. For this purpose, a broadband chirp signal is used:

Ûud(t) = V sin

(
2π

(
finf +

fsup
2 − finf

2

4n
t

)
t

)
106t62n/( finf+ fsup) . (5.38)
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Figure 5.3. Computation of the frequency response of a linear Zener solid. (a) Time-domain signals at
the abscissas x = 0 and x = L. (b) Numerical estimation (5.35) of the frequency response compared
to the analytical expression (5.37), modulus (top) and phase (bottom). The vertical dotted lines mark the
bandwidth of the exciting signal (5.38).

Here, the bandwidth is [ finf, fsup] = [1, 15] kHz, the velocity amplitude is V =
0.1 m/s, and the number of arches is n = 50. The numerical solution is computed
up to t = 20 ms, on a grid with Nx = 100 points. During the simulation, the
particle velocity at the abscissas x = 0 and x = L is recorded (Figure 5.3a).
Then, a discrete time-domain Fourier transform of the signals is computed.
Figure 5.3b displays the ratio of the spectra (5.35) so-obtained. Since the spatial
discretization is fine enough— the signals have 43 points per wavelength at the
frequency fsup = 15 kHz— the numerical estimation of the frequency response
function is very close to the analytical result (5.37) over the frequency range of
the figure. The frequency response is made of resonance peaks, with a quasi-
constant quality factor Q (see Appendix, Section 5.1). In the viscoelastic case,
the resonance frequencies differ slightly from the elastic case, where they are
odd multiples of c/(4L).

� Full model. Let us focus on the first mode of vibration which resonance fre-
quency is 1585 Hz. The frequency range of interests reduces to [ finf, fsup] =
[1.4, 1.7] kHz. In the nonlinear case, defining the frequency response for broad-
band signals as (5.35) does notmake any sense,due to the generation ofharmonics.
However, one can still define the frequency response for monochromatic signals.
To do so, a sine function Ûud(t) = V sin (2π fct) of frequency fc is used. In the
linear case, the value of FRF(ω) is also given by the ratio

FRF(ω) = c1(v |x=L)
c1( Ûud) , (5.39)

where c1 denotes the first complex Fourier coefficient at the angular frequency
ω = 2π fc. This definition can still be used in the nonlinear case, where harmonic
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Figure 5.4. Computation of the frequency response (5.39) of nonlinear solids. (a) Validation on a linear
viscoelastic material, by comparison with the analytical expression (5.37). (b) Numerical estimation of the
output velocity amplitude (x = L) in the nonlinear case for increasing exciting amplitudes.

generation occurs. Since the frequency response is computed at the exciting
frequency, the lattermust be varied over the range [ finf, fsup] to obtain a resonance
curve.

For validation purposes, we compute the frequency response of the linear
viscoelastic solid from the previous paragraph, but according to the formula
(5.39). The numerical solution is computed on a grid with Nx = 30 points,
which corresponds to 115 points per wavelength at the frequency fsup. The input
velocity amplitude is V = 0.1 mm/s. The exciting frequency fc is increased
by ∆ fc = ( fsup − finf)/n every 50 ms, which is long enough to consider that
the solution has reached the steady state. This increase is performed n = 19
times during the simulation. Two receivers record the numerical solution at
the abscissas x = 0 and x = L. The Fourier coefficients c1 are computed by
numerical integration over the last period of signal at each exciting frequency fc.
To do so, the velocity signals are interpolated by a cubic spline over their last
period, and the midpoint rule is used for numerical integration. As illustrated
in Figure 5.4a, a large number of points per wavelength is required to compute
accurately the frequency response in the vicinity of the resonance peak, where
the modulus is slightly underestimated. This issue is due to the amplification of
numerical errors near the resonance, and to the duration of the simulation until
the steady-state is reached.

Now, the full model is considered. The forcing amplitude V is ranging
from 0.1 mm/s to 1 mm/s by steps of 0.1 mm/s, and the exciting frequency is
increased by ∆ fc every 100 ms. Figure 5.4b displays the frequency-evolution of
the output velocity amplitude 2 |c1(v |x=L)|. According to (5.39), this quantity is
equal to V |FRF(ω)| in the linear case. In the present nonlinear case, the velocity
amplitude is not proportional to V anymore. In particular, one can note the
frequency-shift of resonance peaks towards lower frequencies as V increases. At
low values of V , the linear frequency response from Figure 5.4a is recovered.
At high values of V , one can note the occurrence of a jump in the resonance
curve. These features are typical of the experimental observations made on rock
samples [55, 135].
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Figure 5.5. Dynamic acousto-elasticity. (a) Softening of the material, as recorded by the receiver at the
abscissa x = 0.1 m. (b) Hysteresis curves in steady-state (t ≈ 50 ms).

2.2.c. Dynamic acoustoelasticity

In dynamic acousto-elastic testing, the setup is similar. The parameters of the
discretization are the same as in the previous case. A resonance frequency is
chosen, so as to maximize the strain levels. The sinusoidal source with frequency
fc = 1585 Hz and velocity amplitude V is turned on from t = 0 to t ≈ 50.4 ms.
Now, the receiver records the numerical solution at the abscissa x = 0.1 m, up
to t = 80 ms.

Figure 5.5a displays the effective elastic modulus ρ0c2 (5.16), which is
recorded at the position of the receiver. A slow decrease of the elastic modulus
combined with fast oscillations is observed. The frequency of the fast oscillations
is the frequency fc of the source signal. When the source is stopped (t ≈
50.4ms), the amplitude of the fast oscillations diminishes, and the elasticmodulus
recovers gradually its initial value. The duration of the softening is related to the
characteristic time τg = α/γ of the slow dynamics, and to the quality factor Q.
As observed experimentally, the softening phenomenon is accentuated when the
amplitude of forcing V is increased.

Figure 5.5b focuses on the steady-state solution. Here, the last period of
signal before the end of excitation is used. When the effective elastic modulus is
represented with respect to the strain at the position of the receiver, a hysteresis
curve is obtained. The shape of the hysteresis curve is related to the coefficients
β and δ of the polynomial law (5.2), and to the dissipation in the material (see
Figure 5.2 and [1]).

Up to this point, we have adapted the works presented in Chapter 4 to
viscoelastic material with softening (1D) [4]. The finite-volume tool is now
able to perform more realistic simulations than in the elastic case. In particular,
resonance experiments are reproduced numerically with a qualitative agreement.
However, the computational time needed to produce the curves in Fig. 5.4b is
large, for a small number of points on the curve (20 frequencies). In facts, for each
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Figure 5.6. Mechanical model. The stress F s(t) is applied at one end of the bar, and a spring with stiffness
Ksp is attached at the other end.

forcing amplitude V , the computation lasts around 35 min on a recent desktop
computer (Intel Core i5-4690, 3.5 GHz, 16 Go, 2015). The next section is devoted
to the development of a frequency-domain tool, which reduces drastically the
computational time needed for resonance simulations.

3. Frequency-domain numerical method

In this section, a configuration related to real experiments is considered [115]. A
cylindrical sample of Berea sandstone is suspended on strings, and longitudinal
motion is induced by a piezoelectric disc glued onto one of its ends. The
piezoelectric disk is assumed to impose a uniform sinusoidal force by unit
surface Fs(t) on the forced end, say at x = 0. The specific contribution of the
transducer to the dynamics is neglected. The action of the strings is modeled by
a spring with stiffness Ksp, which is assumed to impose a small uniform force
by unit surface on the free edge of the sample (x = L). Including such a spring
in the model avoids the occurrence of rigid-body motion, and is consistent with
the action of suspending strings in the small perturbation limit. A schematic
representation of the configuration is shown in Fig. 5.6. The boundary conditions
are

σ(0, t) = Fs(t) , σ(L, t) = −Ksp

Ssp
u(L, t) , (5.40)

where u is the displacement field and Ssp denotes the cross-section area of
the cylinder. In [115], the latter is Ssp = 5.23 cm2, and the sample’s length is
L = 305.5 mm. In what follows, the spring’s stiffness is set to Ksp = 103 N/m.

3.1. Numerical resolution

3.1.a. Semidiscrete weak form

The material behavior is represented by the previous viscoelastic model with
softening (Section 1). The softening function is φ1(g) = 1 − g, and the storage
energy is φ2(g) = 1

2γg
2. Using the relation v = ∂tu, the conservation of momen-

tum ρ0∂tv = ∂xσ in (5.13) is rewritten as ρ0∂ttu = ∂xσ. The expression of σ
and the evolution equations of ξ`, g in (5.13) are unchanged, besides that ε, v
are replaced by ∂xu, ∂tu.

We follow the mixed finite element approach, in a displacement-stress formu-
lation [14, 21]. Thus, the conservation of momentum ρ0∂ttu = ∂xσ is multiplied
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by the test function ũ ∈ H1, while the expression of σ in (5.13) is multiplied
by the test function σ̃ ∈ L2. The evolution equations of ξ`, g are multiplied by
the test functions ξ̃`, g̃ from L2, respectively. Each equation is integrated over
x ∈ [0, L], leading to a weak formulation of the equations of motion. Integrating∫ L

0 ∂xσ ũ dx by parts, one obtains




ρ0〈∂ttu, ũ〉 = (σ ũ)|x=L − (σ ũ)|x=0 − 〈σ, ∂xũ〉 ,

〈σ, σ̃〉 =
Nv∑
`=1
〈(1 − g)W′`(ξ`), σ̃〉 ,

〈∂tξ`, ξ̃`〉 = 〈∂t xu, ξ̃`〉 + 1
ν`

(
K`〈(∂xu − ξ`), ξ̃`〉 − 〈W′`(ξ`), ξ̃`〉

)
,

α〈∂tg, g̃〉 =
(

Nv∑
`=1
〈W`(ξ`), g̃〉 + 1

2
K`〈(∂xu − ξ`)2, g̃〉

)
− γ〈g, g̃〉 ,

(5.41)

where 〈h1, h2〉 =
∫ L

0 h1 h2 dx for any functions h1, h2. These equations must be
satisfied by the unknown fields u, σ, ξ`, g for arbitrary test functions ũ, σ̃, ξ̃`, g̃.

Forcomputational purposes, the system (5.41) is rewritten in finite-dimensional
spaces. We denote by Pk the vector space of polynomials with degree k or less.
The displacements u, ũ are chosen in the polynomial space P1 while the variables
σ, σ̃, ξ`, ξ̃`, g, g̃ belong to the polynomial space P0, resulting in P1-P0 mixed
elements. The finite element discretization is carried out using the Galerkin
method based on Lagrange finite elements. For this purpose, a regular spatial
discretization xi = (i − 1) Le is introduced, where Le = L/Ne is the element
size and i = 1, . . . , Ne + 1. Interior nodes have abscissas xi+1/2 = (i − 1

2 ) Le for
i = 1, . . . , Ne.

According to the previous choices, both the unknown displacement fieldu and
the test function ũ belong to the span of the P1 basis functions {ψ1, . . . , ψNe+1}
defined by

ψi(x) =
{1 − ζi(x) if ζi(x) 6 1 ,
0 elsewhere,

(5.42)

where ζi(x) = |x − xi |/Le. The unknown fields σ, ξ`, g and the test functions σ̃,
ξ̃`, g̃ belong to the span of the P0 basis functions {ϕ1, . . . , ϕNe} defined by

ϕp(x) =
{1 if ζp+1/2(x) 6 1/2 ,
0 elsewhere.

(5.43)

Using Einstein’s convention, we decompose the unknown fields as u(x, t) =
u j(t)ψ j(x),σ(x, t) = σq(t) ϕq(x),etc.,whereu j(t),σq(t),etc.,are time-dependent
grid-node unknowns. The fact that (5.41) must hold for arbitrary test functions
amounts to test each basis function of the finite-dimensional spaces P1 and P0,
i.e. ũ = ψi, σ̃ = ϕp, etc. Thus, the following set of ordinary differential equations
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is obtained:




ρ0〈ψi, ψ j〉 Üu j = −
Ksp

Ssp
δNe+1

i δNe+1
j u j − Fsδ1

i − 〈ψ′i, ϕq〉σq ,

σq =

Nv∑
`=1

((1 − g)W′`(ξ`))q ,

( Ûξ`)q = Ûεq +
1
ν`

(
K` (ε − ξ`)q −W′`(ξ`)q

)
,

α Ûgq =

(
Nv∑
`=1

W`(ξ`)q + 1
2

K`

((ε − ξ`)2)q

)
− γgq ,

(5.44)

where δ•• denotes the Kronecker delta, the dot denotes the time derivative, and

εq = Tq j u j with (Tq j) = (〈ϕq, ϕp〉)−1 (〈ϕp, ψ
′
j〉) . (5.45)

The scalar products of the basis functions ψi, ψ′i , ϕp in (5.44)-(5.45) are detailed
in the Appendix, Sec. 5.3.

In time-domain finite-element methods, the differential system (5.44) is
integrated numerically using a finite-difference method [14]. Doing so, the
transient regime is captured, followed by the steady-state periodic solution
(similarly to the results obtained with the finite-volume method of Sec. 2). Here,
we follow a frequency-domain approach, aimed at computing long-time periodic
solutions. As described in the next subsection, the system (5.44) is solved
numerically using a Fourier series Ansatz.

3.1.b. Continuation method

We describe the numerical continuation method [27] hereinafter. The method
applies to generic first-order quadratic differential-algebraic systems

A · Ûq = c + L · q + Q : (q ⊗ q) , (5.46)

or Aab Ûqb = ca + Labqb +Qabcqbqc with index notation, which are dependent on
a parameter. This continuation parameter is the exciting angular frequency ω in
the case of resonance simulations. The formulation (5.46) can account for many
types of nonlinearity by introducing intermediate variables in the column vector
q of length Nq.

As such, the harmonic balancemethod (HBM) is aimed at computing periodic
solutions of (5.46) using truncated Fourier series with H harmonics. Thus, q is
expanded as truncated Fourier series with angular frequency ω, and this Ansatz
is injected in (5.46). An algebraic system of (2H+1)×Nq equations with respect
to the Fourier coefficients of q is obtained, which can be solved numerically
using Newton’s method. As shown later, resonance curves are deduced from the
set of Fourier coefficients so-obtained.

Computing the resonance curves using HBM and Newton’s method for
various frequencies is not convenient, in particular when solutions are not



5. Slow dynamics of a viscoelastic bar 123

Table 5.2. Linear viscoelastic parameters of Berea sandstone.

ρ0 (kg m−3) Mrel (GPa) Q fQ (kHz) τε (ms) τσ (ms)
2054 7.44 55 3.137 5.1666 × 10−2 4.9821 × 10−2

unique. Continuation methods provide an efficient way of following solutions
while varying the frequency [27, 121]. Based on a series expansion of the
solution with respect to a pseudo-arc length parameter, the asymptotic numerical
method (ANM) provides continuous branches of the resonance curve, which
length— frequency step— is adaptively set. The method is implemented in the
ManLab and Diamanlab software tools, of which a recent version is used here.

3.2. Results

3.2.a. Linear viscoelasticity

We consider a linear viscoelastic material (β = 0, δ = 0, no softening). Since the
present study is focused on a small frequency range, a single-degree-of-freedom
Zener rheology is assumed (Nv = 1), so that all indexes ` can be removed.
In such materials, the wavenumber k of a harmonic plane wave satisfies the
dispersion relation (5.36) (cf. Chapter 2 of [20]). The frequency-evolution of
the quality factor Q is given by (5.59). As illustrated in Figure 5.7, the quality
factor Q is minimum at the angular frequency ωQ = 2π fQ = (τετσ)−1/2. Given
the minimum value of the quality factor Q(ωQ), one deduces [20]

τε =

√
Q(ωQ)2 + 1 + 1

Q(ωQ)ωQ
, τσ =

√
Q(ωQ)2 + 1 − 1

Q(ωQ)ωQ
. (5.47)

One can note that τε > τσ, which is necessary for thermodynamical reasons. In
Table 5.2, the values of τε, τσ are deduced from Q(ωQ) according to (5.47).

The frequency-response function of the linear system is defined as the ratio
of the output spectrum (particle velocity at x = L) to the input spectrum (stress
at x = 0), i.e.

FRF(ω) = v̂ |x=L(ω)
σ̂ |x=0(ω) , (5.48)

where the hat denotes the Fourier transform in time. For a harmonic excitation
Fs(t) = exp(iωt), we write the displacement field as a superposition of left-
going and right-going monochromatic plane waves. Thus, u(x, t) = (

A eik x +

B e−ik x ) eiωt and σ(x, t) = ρ0(ω/k)2 ∂xu(x, t), where the wavenumber k satisfies
the dispersion relation (5.36). The coefficients A and B are deduced from the
boundary conditions (5.40). Finally, the following expression of the frequency-
response function (5.48) is obtained:

FRF(ω) = iω
ρ0

ω2

k sin(kL) − Ksp
Ssp

cos(kL)
, (5.49)

where the wavenumber k is complex and frequency-dependent. Note that the
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Figure 5.7. Hooke elasticity and Zener viscoelasticity (parameters in Table 5.2). Top: quality factor. The
vertical solid line marks the frequency fQ where Q = 55. Bottom: frequency-response function (5.49),
modulus and phase. The dotted lines mark the resonance frequencies of the elastic system without spring.

expression (5.49) is not restricted to the dispersion relation (5.36) of Zener
material.

Figure 5.7 shows the frequency-response function (5.49) in the viscoelastic
case and in the elastic case up to the third mode. The parameters are given
in Table 5.2 and in the description of the boundary conditions (5.40). Fig. 5.7
illustrates the finite height of the resonance peaks and their frequency shift due
to viscoelastic attenuation. If no spring is attached (Ksp = 0), then |FRF(ω)| =
k (ρ0ω sin(kL))−1. In this case, the resonance frequencies of the linear elastic
system are multiples of 1

2L

√
Mrel/ρ0 ≈ 3.115 kHz (vertical dotted lines in

Fig. 5.7). One notes that the influence of the spring constant Ksp = 103 N/m on
the resonance frequencies is negligible.

The semidiscreteweak formulation of the equations ofmotion (5.44) becomes



ρ0〈ψi, ψ j〉 Üu j = −

Ksp

Ssp
δNe+1

i δNe+1
j u j − Fsδ1

i − M 〈ψ′i, ϕq〉ξq ,

Ûξq = Ûεq +
K
ν
εq − M + K

ν
ξq .

(5.50)

The corresponding first-order DAE system (5.46) is linear (Q = 0), which arrays
A, c, L are given in the Appendix 5.3. The vector of unknowns

q = (u1, . . . , uNe+1, Ûu1, . . . , ÛuNe+1, ξ1, . . . , ξNe)> (5.51)

has lengthNq = 3Ne+2. In case of a time-periodic forcingwith angular frequency
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Figure 5.8. Convergence of the semidiscrete weak formulation (5.50) for linear Zener material. (a)
Frequency-response functions. (b) L∞ relative error of the HBM displacement ujψj |x=L with respect to the
exact long-time displacement u |x=L.

ω = 2π f , the frequency-response (5.48) is the ratio

FRF(ω) = c1(v |x=L)
c1(σ |x=0) , (5.52)

where c1 =
1
2 (a1− ib1) denotes the first complex Fourier coefficient at the angular

frequency ω, and (a1, b1) are the first real cosine and sine Fourier coefficients.
Since the ODE system (5.50) is linear, no harmonic generation occurs, and

one can set H = 1 in the harmonic balance. No continuation algorithm is used
here, and the HBM is applied straightforwardly. The forcing Fs(t) = V sin(2π f t)
has amplitudeV = 1N/m2 and frequency f = ω/(2π). With the same parameters
as in Figure 5.7, the frequency response of the discretized system deduced from
harmonic balance is computed according to (5.52) for various numbers of
elements Ne (Figure 5.8). The resonance curves are shown in Fig. 5.8a, which
illustrates the convergence of the method. Error measurements in uniform L∞

norm are shown in Fig. 5.8b, performed on the displacement field at the abscissa
x = L. The exciting frequency f belongs to the first three resonance frequencies
f1, f2, f3 of the forced system. Second-order accuracy is obtained as the grid is
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refined. Subsequently, we set Ne = 30 elements, which corresponds to twenty
P1-P0 mixed elements per wavelength at the frequency f3.

3.2.b. Nonlinear viscoelasticity

We consider a nonlinear Zener material (no softening). In the small strain limit, it
reduces to a linear Zener body, with the parameters in Table 5.2. The influence of
higher-order elastic constants β, δ accounting for material nonlinearity is exam-
ined here, around the first resonance peak. The semidiscrete weak formulation
of the equations of motion (5.44) reads




ρ0〈ψi, ψ j〉 Üu j = −
Ksp

Ssp
δNe+1

i δNe+1
j u j − Fsδ1

i − M 〈ψ′i, ϕq〉ξq

+ βM 〈ψ′i, ϕq〉ξq
2 + δM 〈ψ′i, ϕq〉ξq

3 ,

Ûξq = Ûεq +
K
ν
εq − M + K

ν
ξq + β

M
ν
ξq

2 + δ
M
ν
ξq

3 ,

(5.53)

where εq is defined in (5.45). The corresponding first-order DAE system (5.46) is
quadratic (Q , 0). If δ = 0, the vector of unknowns q is the same as in the linear
viscoelastic case (5.51), and the arrays A, c, L, Q are given in the Appendix 5.3.
If δ , 0, the vector of unknowns is augmented with intermediate variables

q =
(
u1, . . . , uNe+1, Ûu1, . . . , ÛuNe+1, ξ1, . . . , ξNe, ξ1

2, . . . , ξNe

2)>, (5.54)

reaching the size Nq = 4Ne + 2. Similarly to the case δ = 0, the system (5.53) is
rewritten as a first-order quadratic system (5.46).

The settings of the numerical method are the same for all the results presented
hereinafter. The equations of motion are discretized using Ne = 30 elements,
and harmonic balance with H = 3 harmonics is used. The continuation of the
solution with respect to the angular frequencyω = 2π f is started at the frequency
f = 3.495 kHz, where the variables are initialized according to the linear
viscoelastic case. New variables such as ξ1

2, . . . , ξNe
2 are initially set to zero.

Then, the frequency is decreased stepwise. The ANM threshold is 10−8, while
the correction threshold is 10−6. Since the numerical continuation algorithm is
adaptive, simulations do not take always the same amount of computational time.
With a recent desktop computer (Intel Core i5-4690, 3.5 GHz, 16 Go, 2015),
such simulations can last from ten seconds to two minutes.

Figure 5.9 displays the modulus and the phase of the frequency-response
function as defined in (5.52), in the vicinity of the first resonance peak. The
parameters β, δ in the simulations are given in Table 5.3. The amplitude V of the
forcing Fs(t) = V sin(2π f t) in Table 5.3 is varied from its half (curve denoted by
1
2V) to its double (curve denoted by 2V). At low forcing amplitudes, the frequency
response is superimposed to the one obtained in the linear case. At larger forcing
amplitudes, a frequency shift of the resonance peak with increasing amplitudes
is observed. At large forcing amplitudes, the curves are multi-valued functions of
the frequency. This is similar to the frequency response of the Duffing oscillator,
which shows hysteresis depending on the frequency sweep direction.

In Figure 5.10, the influence of the nonlinearity parameters β , 0 and δ , 0
with respect to the three first harmonic amplitudes of Ûu|x=L is shown. One can
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Table 5.3. Reference parameters for the nonlinear resonance simulations.

V (Nm−2) β δ γ (J m−3) α (J m−3 s)
244.75 5 × 103 2 × 1010 7 × 10−2 6 × 10−6
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Figure 5.9. Nonlinear viscoelasticity. Frequency response function (5.52) for several forcing amplitudes V ,
modulus (top) and phase (bottom).

observe that higher-order harmonics are not negligible. The first row of the figure
illustrates that β controls the amplitude of the second harmonic. In the second
row, one can observe that the parameter δ accounting for cubic nonlinearity
controls mainly the amplitude of the third harmonic, and the frequency shift of
the resonance peak.

3.2.c. Linear viscoelasticity with softening

We consider a linear Zener material with softening (β = δ = 0). The influence
of the parameters γ, α related to the softening is examined. The semidiscrete
weak formulation of the equations of motion (5.44) reads




ρ0〈ψi, ψ j〉 Üu j = −
Ksp

Ssp
δNe+1

i δNe+1
j u j − Fsδ1

i − M 〈ψ′i, ϕq〉ξq

+ M 〈ψ′i, ϕq〉(gξ)q,
Ûξq = Ûεq +

K
ν
εq − M + K

ν
ξq ,

Ûgq =
M
2α
ξq

2 +
K
2α
(εq − ξq)2 − γ

α
gq ,

(5.55)

where (gξ)q = gqξq for all q in 1, . . . , Ne, and εq is defined in (5.45). The
corresponding first-order DAE system (5.46) is quadratic (Q , 0). The vector
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Figure 5.10. Nonlinear viscoelasticity. Frequency-evolution of the first three harmonics of the particle ve-
locity

.
u |x=L for several values of β (top) and δ (bottom).

of unknowns q is augmented with intermediate variables

q =
(u1, . . . , uNe+1, Ûu1, . . . , ÛuNe+1, ξ1, . . . , ξNe,

g1, . . . , gNe, ε1, . . . , εNe)>,
(5.56)

reaching the size Nq = 5Ne + 2.
Figure 5.11 is analogous to Fig. 5.9. The parameters γ, α in the simulations

are given in Table 5.3. The amplitude V of the forcing Fs(t) = V sin(2π f t)
in Table 5.3 is varied from its half (curve denoted by 1

2V) to its double (curve
denoted by 2V). A frequency shift of the resonance peak with increasing forcing
amplitudes is observed, as well as multi-valued functions at large amplitudes.
However, one can observe that the height of the resonance peak is decreasing with
increasing forcing amplitudes. This feature is in agreement with experimental
observations reported in the literature [43, 55, 107, 135], and was not observed
in the nonlinear viscoelastic case (Fig. 5.9).

Figure 5.12 is analogous to Fig. 5.10. With the present model, no second-
harmonic generation occurs. The first row details the influence of the material
parameter γ accounting for the softening. The figure illustrates that γ controls
the frequency shift of the resonance peak. This observation is in agreement with
the calculus in [1], where the softening is shown to be inversely proportional to
γ. In the second row, one can observe that α controls mainly the height of the
peaks. The energy transfer from the first to the third harmonic decreases when
α increases.

Similarly to [105, 134], we introduce the strain amplitude ε deduced from
the displacement at the free edge x = L. Up to a factor π which is missing in
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Figure 5.11. Linear viscoelasticity with softening. Frequency response function (5.52) for several forcing
amplitudes V , modulus (top) and phase (bottom).
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Figure 5.13. Linear viscoelasticity with softening. (a) Strain amplitude resonance curve, where ε is defined
in (5.57). (b) Evolution of the resonance peak’s frequency shift with respect to the strain amplitude.

[105, 134], we define

ε ' 2 |c1(u|x=L)|
L

=
2 |c1( Üu|x=L)|
(2π f )2L

. (5.57)

A set of resonance curves is generated for the forcing amplitudes V (n+3)/10

where n = 1, . . . , 9, which are equally spaced on a logarithmic scale. For each
amplitude, the frequency-evolution of ε is displayed in Fig. 5.13a. The relative
frequency shift ∆ f / f of the resonance peak with respect to f1 = 3.143 kHz is
then reported in Fig. 5.13b. The curves so-obtained are similar to those reported
in the literature.

4. Conclusion

In this chapter, the coupling of nonlinear stress-strain relationships with vis-
coelastic behavior and with slow dynamics has been achieved using internal
variables of state. The stiff system of equations so-obtained requires particular
care when using numerical methods. Numerical simulations with finite-volume
schemes show qualitative agreement with experimental observations from dy-
namic acousto-elasticity (DAET) and resonance (NRUS) experiments. Using
a frequency-domain continuation method, the influence of several model pa-
rameters has been examined. A high sensitivity of the harmonic generation
with respect to several parameters has been shown. Therefore, the experimental
measurement of higher-order harmonics is crucial for fine tuning of the model.

Let us compare both numerical methods. For each forcing amplitude, the
computation lasts around 35 min with the finite-volume method, for a small
number of points on the curve (Intel Core i5-4690, 3.5 GHz, 16 Go, 2015). Using
the harmonic-based continuation method, the computation lasts around 20 s, and
a continuous resonance curve is obtained. With the prospects of experimental
validations, the drastic reduction of computational time providedby the frequency-
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domain method is interesting. However, the transient information is lost with this
method. Since the stress is not a conserved variable, it is difficult to impose an
arbitrary stress at a boundary of the domain when using finite-volume methods.
The finite-element method is much more flexible regarding boundary conditions.
Both imposed stress or imposed displacement are possible. A direct comparison
between both methods in the same configuration is under consideration.

Modifications and extensions of the present frequency-domain method are
currently examined. Firstly, it would be interesting to follow the resonance
frequency by performing numerical continuation with respect to the forcing
amplitude (backbone curves). Secondly, instead of using finite-element basis
functions, the solution could be decomposed on the basis of normal modes of
the linear undamped system [18, 56, 136]. Lastly, the equations of motion could
be rescaled using the characteristic times of the system.
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5. Appendix

5.1. Parameters of the viscoelastic model

Let us consider the case of linear Zener material, which dispersion relation is
given by (5.36). If the phase velocity ω/Re k is equal to cref =

√
M0/ρ0 at a

given angular frequency ωref , then the relaxed elastic modulus

Mrel = M0 Re ©«
(

1
N

N∑
`=1

1 + iωrefτε`
1 + iωrefτσ`

)−1/2ª®¬
2

(5.58)

is deduced from the expression of the wavenumber k at the angular frequency
ωref . The reciprocal of the quality factor Q = −Re(k2)/Im(k2) is given by [20,
38]

Q−1 = ω

(
N∑
`=1

τε` − τσ`
1 + ω2τσ`2

) / (
N∑
`=1

1 + ω2τε`τσ`

1 + ω2τσ`2

)
. (5.59)

The method to obtain the coefficients τσ`, τε` is described hereinafter.
One can note that the quality factor of the Zener model (5.59) depends only

on the angular frequency ω, the number of relaxation mechanisms Nv , and the
relaxation times τσ`, τε`. If a reference frequency-dependent quality factor is
known and a number Nv of relaxation mechanisms is chosen, then the distance
between the quality factor in (5.59) and the reference quality factor can be
minimized with respect to the parameters τσ`, τε`. In practice, the distance is
minimized over a set of 4Nv frequencies, which are logarithmically distributed
over a frequency range of interest [ fmin, fmax]. Optimization constraints are
imposed to ensure that τε` > τσ` > 0, which is necessary for positive spring and
dashpot constants

M` =
τε`
τσ`

Mrel
Nv

, K` =
τε`

τε` − τσ`
Mrel
Nv

, ν` =
τε`

2

τε` − τσ`
Mrel
Nv

(5.60)

in the rheological model (Figure 5.1). If the relaxation times τσ` are sorted in
descending order, then the constraint 1/τσNv < fmax is added to the optimization
procedure. The reader is referred to [16] for details about such an optimization.

The frequency evolution of the quality factor’s inverse Q−1 so-obtained is
represented in Figure 5.14b, where a constant reference quality factor Q = 20
is chosen, and Nv = 5 Zener mechanisms are considered. The corresponding
optimized coefficients are given in Table 5.4. In the Figure 5.14b, the reference
quality factor is reached by the optimized Zener model over the frequency range
[1, 100] kHz of the optimization procedure. The frequency evolution of the phase
velocity ω/Re k deduced from the dispersion relation (5.36) is represented in
Figure 5.14a as well as the attenuation −Im k. It can be verified that the phase
velocity is equal to cref at the angular frequency ωref .
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Figure 5.14. (a) Phase velocity (top) and attenuation (bottom) of the generalized Zener model, as a function
of the angular frequency. (b) Quality factor of the generalized Zener model (5.59) compared to the reference
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Table 5.4. Optimized coefficients of the Zener model.

` τσ` (ms) τε` (ms)

1 2.39556647121688 × 10−1 3.26820245620307 × 10−1

2 5.22532018808709 × 10−2 6.37792234728574 × 10−2

3 1.53966793063646 × 10−2 1.87515784083158 × 10−2

4 4.54569618004597 × 10−3 5.62759706637171 × 10−3

5 9.68524210724988 × 10−4 1.40683422528016 × 10−4
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5.2. Spectrum of the Roe’s matrix

The eigenvalues of the matrix Ai+1/2 are {−sn
i+1/2, 0, . . . , 0,+cn

i+1/2}, where sn
i+1/2

is given in (5.31). In order to show that sn
i+1/2 is real, one must show that the

sum of the coefficients (a`)16`6Nv is positive. The proof is based on the fact
that the variables ξ1, . . . , ξNv and g satisfy the hyperbolicity condition, i.e. the
strain energy ξ` 7→ W`(ξ`) is restricted to a domain where it is convex, and g is
bounded by 1 (cf. section 1.2).

If (ξ`?)ni = (ξ`?)ni+1 for some `? between 1 and N , then the convexity of W`?

and the bound g < 1 imply that a`? is positive (5.30). Otherwise, the coefficient
a` in (5.29) is rewritten as

a` =
W′
`

((ξ`)ni+1
) −W′

`

((ξ`)ni )
ρ0

((ξ`)ni+1 − (ξ`)ni
)

− gn
i

W`

((ξ`)ni+1
) −W`

((ξ`)ni ) −W′
`

((ξ`)ni ) ((ξ`)ni+1 − (ξ`)ni
)

ρ0
((ξ`)ni+1 − (ξ`)ni

)2

− gn
i+1

W`

((ξ`)ni ) −W`

((ξ`)ni+1
) −W′

`

((ξ`)ni+1
) ((ξ`)ni − (ξ`)ni+1

)
ρ0

((ξ`)ni+1 − (ξ`)ni
)2 .

(5.61)

Due to the convexity of W`, the first right-hand side term is positive, as well as
the ratios multiplied by −gn

i and −gn
i+1. The bound g < 1 implies

a` >
W′
`

((ξ`)ni+1
) −W′

`

((ξ`)ni )
ρ0

((ξ`)ni+1 − (ξ`)ni
)

− W`

((ξ`)ni+1
) −W`

((ξ`)ni ) −W′
`

((ξ`)ni ) ((ξ`)ni+1 − (ξ`)ni
)

ρ0
((ξ`)ni+1 − (ξ`)ni

)2

− W`

((ξ`)ni ) −W`

((ξ`)ni+1
) −W′

`

((ξ`)ni+1
) ((ξ`)ni − (ξ`)ni+1

)
ρ0

((ξ`)ni+1 − (ξ`)ni
)2 ,

(5.62)

and hence, a` > 0. This ends the proof: Ai+1/2 is a Roe matrix. Eq. (5.61) is also
useful to obtain (5.30) by taking the limit as (ξ`)ni+1 → (ξ`)ni .

5.3. First-order quadratic recast

We describe the first-order quadratic recast (5.46) in the viscoelastic case (5.53)
where δ = 0. The vector of unknowns q given in (5.51) is of size Nq = 3Ne + 2.
According to (5.50), the column vector c reads blockwise

c =

©«

(0)
−Fs (δ1

i )
(0)

ª®®®®®¬
, (5.63)
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and the matrices A, L read blockwise

A =

©«

(δ j
i ) (0) . . .

(0) ρ0 (〈ψi, ψ j〉) (0)
. . . (0) (δq

p)

ª®®®®®¬
, (5.64)

L =

©«

(0) (δ j
i ) (0)

−Ksp
Ssp
(δNe+1

i δNe+1
j ) (0) −M (〈ϕp, ψ

′
j〉)>

K
ν (Tpj) (Tpj) −M+K

ν (δ
q
p)

ª®®®®®¬
. (5.65)

The three-dimensional array Q is given blockwise by (Qa••) = (0) if a =
1, . . . , Ne + 1,

(Qa••) =
©«

(0) (0) (0)
(0) βM (δq

p 〈ϕq, ψ
′
j〉)> (0)

(0) (0) (0)

ª®®®®®¬
if

a = Ne + 1 + j,

j = 1, . . . , Ne + 1,

(Qa••) =
©«

(0) (0) (0)
(0) βM

ν (δr
pδ

r
q) (0)

(0) (0) (0)

ª®®®®®¬
if

a = 2Ne + 2 + r,

r = 1, . . . , Ne.

(5.66)

Given the definition of the basis functions (5.42)-(5.43) and of the strains (5.45),
one has

(〈ψi, ψ j〉) = Le

6

©«

2 1 0 . . .

1 4 1 0 . . .

. . . . . . . . . . . . . . .

. . . 0 1 4 1

. . . 0 1 2

ª®®®®®®®®®®®¬

, (〈ϕp, ϕq〉) = Le (δq
p) ,

(〈ϕp, ψ
′
j〉) =

©«

−1 1 0 . . .

0 −1 1 0 . . .

. . . . . . . . . . . .

. . . 0 −1 1 0

. . . 0 −1 1

ª®®®®®®®®®®®¬

, (Tpj) = 1
Le
(〈ϕp, ψ

′
j〉) .

(5.67)

The same procedure is applied to the other cases (5.54)-(5.56) of the study, where
the vector q has additional unknowns.
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Nonlinear viscoelasticity is not sufficient to reproduce the dynamic
behavior of geomaterials observed in laboratory experiments, in particular

the non-instantaneous evolution of the elasticmodulus (slow dynamics). Progress
in the modeling of such phenomena is crucial to be able to perform predictive
numerical simulations related to nondestructive evaluation (NDE). The present
thesis introduces a model accounting for slow dynamics, and numerical methods
to solve the equations of motion. Elastodynamics with polynomial constitutive
laws, widely used in nonlinear acoustics, is studied too. Dynamics of nonlinear
solids is addressed fromnumerous perspectives—continuummechanics,applied
mathematics, scientific computing—with a focus on wave propagation aspects.

1. Outcome

A first part of the dissertation is dedicated to nonlinear elastodynamics with
polynomial stress-strain relationships (1D), which is the simplest model of non-
linear solid. The contribution on this topic is twofold. Firstly, the solution to the
Riemann problem has been detailed (Chapter 3). In particular, the admissibility
of each wave solution—shock wave, rarefaction wave, compound wave—has
been examined. The classification of solutions so-obtained is represented in the
state space, allowing a graphical prediction of the solution. Secondly, numeri-
cal methods have been benchmarked using analytical solutions of initial-value
problems, such as the Riemann problem (Chapter 2). Classical finite-volume
methods and higher-order methods have been implemented. Their performances
have been compared, leading to a rationale behind the choice of a well-suited
numerical method. As long as the solution stays smooth, one can use an ADER
scheme, which is efficient and highly accurate. However, if the solution is dis-
continuous, one should rather consider using a finite-volume scheme with flux
limiter. Despite its flexibility with respect to the smoothness of the solution,
the WENO scheme requires much more computational time than the previous
methods to reach a given accuracy.
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A second part of the manuscript concerns the modeling of particular dis-
sipative behaviors. The modeling of slow dynamics is carried out within the
finite-strain theory (Chapter 4). The softening of a hyperelastic material is ac-
counted for by an internal variable of state g, which evolution is chosen as simple
as possible, but in agreement with the principles of thermodynamics. The model
is designed to reproduce the softening of the material when an acoustic loading is
applied, and the recovery to its initial stiffness after the loading is stopped. From
a numerical point of view, accounting for the slow dynamics amounts to add a
relaxation term in the time-stepping formula of the flux-limiter finite-volume
scheme. This has been implemented in longitudinal configurations (1D), where
the hyperelastic stress is a cubic polynomial of the strain. Using dimensional
splitting, a similar method has been developed in plane-strain configurations
(2D), where the hyperelastic stress is issued from the Murnaghan model.

Viscoelastic behavior is an important mechanical property of real materials.
The same theoretical framework is used to model the softening of a nonlinear
viscoelastic material of generalized Zener type (Chapter 5). The rheology is de-
scribed by Nv additional variables of state, where Nv is the number of elementary
Zener mechanisms. From a numerical point of view, the coupled equations of
slow dynamics and viscoelasticity require particular care, since the right-hand
side of this system of balance laws is stiff. Using Strang splitting, a high-order
finite-volumemethod has been developed. Themain features of dynamic acousto-
elastic testing and nonlinear resonance experiments are reproduced numerically
with a qualitative agreement. A frequency-domain numerical method has been
used to compute time-periodic solutions. The method combines a finite-element
semi-discretization, harmonic balance of the nodal values, and the ANM contin-
uation technique. Due to its efficiency, the software tool is useful to investigate
the influence of the model parameters on resonance curves, which is promising
for prospective experimental validations.

On the continuum mechanics side, a phenomenological model of nonlinear
solids has been proposed. In doing so, the concepts of finite strain and of thermo-
dynamics with internal variables have been transferred from rational mechanics
to nonlinear acoustics. The simplicity, the thermodynamical consistency and the
three-dimensional writing of the model is a step forward with respect to existing
models, in our opinion. Also, the flexibility of the modeling approach is valuable
for potential future developments. Indeed, more complex constitutive laws may
be inserted in the model if they provide a better fit in direct comparisons with
laboratory experiments. For instance, one could account for heat conduction,
plasticity, irreversible damage, and even material failure.

On the appliedmathematics side, the propagation of nonlinearwaves has been
investigated both analytically and numerically. An analytical solution has been
detailed in the hyperelastic case (1D). The developed software tool (available
online) could be useful for the validation of numerical methods, e.g. methods
used in seismology or in NDE applications. Concerning finite-volume schemes,
a variety of methods has been tested and their performances have been evaluated.
Analytical methods have been also used to analyze qualitative properties of
the developed internal-variable model. Nevertheless, computational methods
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can handle more realistic configurations, such as three-dimensional problems
issued from laboratory experiments. In a near future, the finite-volume methods
presented in this dissertation will be implemented in the PROSPERO code
http://prospero-software.science/. One can note that these methods
are generic. Indeed, they can be used for other nonlinear systems of balance laws,
for instance other nonlinear solid models. The frequency-domain method for the
computation of periodic solutions has the same advantage of being generic.

2. Perspectives

The present work introduces several nonlinear hyperbolic systems of balance
laws. Such systems of first-order partial differential equations raise mathematical
questions. Formost of them, the existence, uniqueness, and regularity of solutions
are still open questions. Theoretical investigations could also address problems
with boundary conditions, and non-homogeneous problems. Answers to these
questions serve as a guide for people who develop models. In facts, arbitrary
modeling choices can have important implications on themathematical properties
of a system of equations. In addition, the theoretical analysis of solutions has
practical consequences in numerical analysis.

Analytical methods of linear acoustics fail in the context of nonlinear solid
dynamics, but also several numericalmethods do not generalize straightforwardly
to nonlinear problems. To name a few, the Explicit Simplified Interface Method
(ESIM) is a high-order method to account for arbitrary interfaces in linear
acoustics. However, it is unclear if such a method can be adapted efficiently to the
nonlinear case. In the same line, PerfectlyMatched Layers (PMLs) which provide
optimal absorbing boundaries are frequently used in linear acoustics—e.g., in
seismology— to simulate unbounded domain. By construction, it seems difficult
to transpose the method to the nonlinear case without a loss of performance. The
development of similar methods adapted to nonlinear waves is required, so as to
make accurate predictions in complex configurations.

Models are useful if they lead to predictions or to explanations of a given
phenomenon. To test the predictive abilities of the model, quantitative compar-
isons with experiments need to be conducted. Experimental validations may
motivate further modeling developments, such as modifications and refinements.
Over twenty years, numerous experimental datasets have been obtained with the
same samples at Los Alamos National Laboratory. However, the experimental
conditions have varied from one measurement to another, so that the results of
one experiment may have changed over time. Fine tuning of the model is only
possible if a large number of measurements is performed under controlled exper-
imental conditions. The diversity of dynamic experiments (resonance, dynamic
acousto-elasticity, pulse propagation) allows to examine a sample of rock under
different perspectives, which is useful when performing experimental validations.
In particular, the experiment which shows a logarithmic time-evolution of the
resonance frequency [133] is not yet reproduced with this type of model.

One weakness of the phenomenological modeling approach is its poverty
in terms of explanations. Indeed, the developed model introduces a variable of

http://prospero-software.science/
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state g which is not related to any physical peculiarity of the material. To this
day, the phenomenon of slow dynamics is observed experimentally, described by
phenomenological models, but still not well-understood. An approach following
homogenization theorymay lead to a physics-basedmodel, provided that relevant
assumptions aremade at themicroscopic scale. Recent experimental observations
are potential steps forward in the understanding of slow dynamics. On the one
hand, it seems that resonance experiments induce a temperature increase of
∼ 0.1°C, which cannot be detected without a dedicated apparatus1. Preliminary
tests suggest that classical thermoelastic coupling is not sufficient to account for
this temperature elevation. This feature could be caused by internal friction at
interfaces with material heterogeneities (grains, cracks). This scenario would be
in agreement with ultrasonic thermography, which consists in measuring the heat
flux generated by a vibrating defect. On the other hand, it seems that moisture
plays an important role in the non-classical effects [142]. Indeed, dry samples
do not exhibit slow dynamics. Moreover, microscope images show that the water
embedded in the material flows into micro-pores when the sample is vibrated2.
Therefore, capillarity may be a cause of the phenomenon. It is worth noting
that a formal analogy between the internal-variable model and a model of wet
sticking fibers has been outlined. These remarks imply that the porosity of the
material should be taken into account in future models. A next step could be the
development of a water-unsaturated porous material model in the framework of
the finite-strain theory.

1Personal communication with C.M. Donahue (Los Alamos National Laboratory).
2Personal communication with J.A. Bittner (University of Illinois, Urbana-Champaign).
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Le contenu du présent manuscrit de thèse est détaillé ci-après. Le sujet de
l’étude porte sur le comportement mécanique des géomatériaux tels que le

grès et le béton lorsqu’ils sont soumis à un chargement dynamique. Les travaux
de thèse recouvrent la modélisation de milieux continus solides déformables, et
le développement de méthodes numériques associées.

1. Introduction

En s’appuyant sur la littérature expérimentale, on constate que les roches et le
béton sont des solides non linéaires dissipatifs, dont les particularités sont visibles
aux petites déformations. Les résultats d’expériences quasi-statiques mettent en
évidence l’hystérésis de la relation contrainte-déformation. Des expériences sous
chargement dynamique montrent une génération d’harmoniques. De plus, un
amollissement est observé, suivi d’un retour aux propriétés élastiques initiales
du matériau après l’arrêt de la sollicitation. Ce phénomène met en jeu de longs
temps de relaxation (dynamique lente).

Du point de vue de la modélisation, les modèles de viscoélasticité non li-
néaire permettent de reproduire plusieurs observations expérimentales, hormis
la dynamique lente. En dépit d’un accord expérimental et de liens aux propriétés
microscopiques du matériau, les modèles d’hystérésis soulèvent des questions
pratiques. Effectivement, peu de travaux les emploient dans le cadre de simu-
lations numériques [22, 70, 88]. Une autre classe de modèles en lien avec la
modélisation mécanique de l’endommagement a conduit à plusieurs études
numériques. En tant que telle, cette démarche constitue une façon cohérente
de représenter l’amollissement/raidissement. Cependant, une telle approche ne
permet pas d’analyser l’influence de la microstructure du matériau à ce jour.
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Les travaux présentés font suite à [38], et s’inscrivent dans le cadre de l’ap-
proche phénoménologique issue de la mécanique de l’endommagement. Étant
donnée la présence de non-linéarités dans les relations contrainte-déformation,
il est nécessaire de traiter l’élasticité non linéaire. Le 2e chapitre est consacré
à ce sujet (p. 15). En particulier, le cas de déformations uniaxiales et de lois
de comportement polynomiales est étudié, et des schémas volumes finis sont
étudiés.

Le 3e chapitre (p. 45) est consacré au calcul de la solution analytique
d’un problème de Cauchy particulier où les données initiales sont discontinues
(probème de Riemann). On considère des lois de comportement susceptibles de
comporter un point d’inflexion, comme c’est le cas de la loi poynomiale cubique.
Cette loi de comportement est utilisée comme exemple tout au long du chapitre,
et le calcul de la solution est détaillé. Cette solution est utilisée au 2e chapitre
pour évaluer les performances de méthodes volumes finis.

Le 4e chapitre (p. 69) présente un modèle de milieu continu à variable
interne, analogue à une variable d’endommagement. Ce dernier est construit
dans le cadre de la théorie des déformations finies, et satisfait les principes de la
thermodynamique. Visant à reproduire la dynamique lente observée expérimen-
talement, le modèle le plus simple est recherché. Le développement de méthodes
numériques de type volumes finis est abordé, et l’amollissement du matériau est
reproduit numériquement.

La nécessité d’incorporer de la dissipation viscoélastique est établie expé-
rimentalement. Un tel comportement est ajouté au modèle d’amollissement
dans le 5e chapitre (p. 105), dans le cas de déformations uniaxiales (1D). On
présente des méthodes volumes finis adaptées, ainsi qu’une méthode de conti-
nuation numérique en fréquence pour le calcul de vibrations périodiques. Les
résultats montrent un accord qualitatif avec les observations expérimentales. Les
conclusions et perspectives sont détaillées dans le 6e chapitre (p. 137).

2. Ondes longitudinales dans les matériaux hyperélastiques

Ce chapitre concerne la propagation d’ondes longitudinales dans un matériau
hyperélastique, c.-à-d. un matériau dont la loi de comportement exprime la
contrainte en fonction de la déformation. Ici, on s’intéresse à des lois de com-
portement polynomiales. Une première partie présente les équations de l’hy-
perélasticité dans un cadre tridimensionnel, duquel on déduit le cas uniaxial.
On compare le modèle de Murnaghan à une loi de comportement polynomiale
cubique, tous deux étant fréquemment utilisés en acoustique non linéaire. Les
équations du mouvement sont récrites sous la forme d’un système hyperbolique
de lois de conservation, permettant ainsi d’implémenter des schémas volumes
finis conservatifs.

Dans la partie suivante, on compare les performances et le coût de calcul de
plusieurs méthodes volumes finis. Les exemples numériques montrent que les
solutions discontinues requièrent une attention particulière. En effet, certains
schémas introduisent des oscillations dans la solution numérique au voisinage
des discontinuités. Les tests conduisent à favoriser les schémas ADER pour le
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calcul de solutions régulières, et les schémas à limiteur de flux pour le calcul de
solutions discontinues. Un tel schéma numérique a été utilisé dans la publication
[4]. Lorsque la régularité de la solution est inconnue, on peut se tourner vers un
schéma WENO, construit à partir d’interpolation d’ordre élevé.

Ce chapitre constitue une étude préliminaire de la propagation d’ondes non
linéaire dans les géomatériaux. En effet, il est important d’être conscient de
ses particularités lors du développement de méthodes numériques en lien avec
des observations expérimentales. Le chapitre suivant détaille le calcul d’une
solution analytique particulière dans le cas de l’élastodynamique non linéaire.
Les chapitres qui suivent sont dédiés à la modélisation de la dynamique lente
et de la viscoélasticité dans les solides. Ces modèles s’insèrent dans le même
cadre théorique que celui décrit dans le chapitre 2. Les méthodes numériques
présentées dans ce chapitre sont transposables au cas de solides à dynamique
lente, et aussi au cas multi-dimensionnel (2D).

3. Le problème de Riemann de l’élastodynamique longitudinale

De nombreuses solutions analytiques sont connues dans le cas de l’élasticité
linéaire, où la contrainte est proportionnelle à la déformation. En effet, laméthode
des caractéristiques permet de résoudre le problème de Cauchy. De plus, la
fonction de Green permet de résoudre le système non homogène (2.23) pour la
plupart des termes source.

Dans le cas de l’élasticité non linéaire, aucune solution générale n’est connue.
Ce chapitre traite de la résolution analytique d’un problèmedeCauchyparticulier :
le problème de Riemann (où les données initiales sont constantes par morceaux).
On restreint l’étude au système de lois de conservation (2.23) sans terme source.
Aussi, on s’intéresse à des lois de comportement qui possèdent au plus un
point d’inflexion dans le domaine d’hyperbolicité. Cette étude a donné lieu à la
publication [2].

La solution du problème de Riemann se compose de deux ondes : une onde
qui se propage selon les abscisses croissantes, et une onde qui se propage selon
les abscisses décroissantes. Lorsque la contrainte est une fonction strictement
convexe ou strictement concave de la déformation, l’étude est similaire à celle du
“p-system” de la dynamique des gaz. La solution entropique se compose d’ondes
de choc ou d’ondes de détente. En revanche, lorsque la relation contrainte-
déformation possède un point d’inflexion, la solution peut comporter des ondes
composites, qui combinent un choc et une détente.

Les aspectsmathématiques de ce problème sont bien établis dans la littérature.
La principale contribution de ce travail est de détailler complètement la résolution
du problème de Riemann dans le cas de lois de comportement polynomiales
cubiques. Dans cette optique, des outils informatiques ont été développés et mis à
disposition à l’adressehttps://gchiavassa.perso.centrale-marseille.
fr/RiemannElasto/. Ces outils ont été utilisés au chapitre précédent pour
valider des méthodes numériques. Le problème de Riemann est un cas test
exigeant à cause de la discontinuité et de la non-unicité des solutions faibles,
comme on peut le voir notamment en présence d’ondes composites.

https://gchiavassa.perso.centrale-marseille.fr/RiemannElasto/
https://gchiavassa.perso.centrale-marseille.fr/RiemannElasto/
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4. Matériaux hyperélastiques à dynamique lente

Dans ce chapitre, on aborde la modélisation de la dynamique lente par une
approche phénoménologique. Le phénomène observé consiste en un amollisse-
ment non permanent dumatériau sous chargement dynamique. Ce comportement
n’est pas reproduit par les modèles d’hyperélasticité, où la vitesse du son est une
fonction de la déformation.

Plusieurs modèles de la littérature prennent en compte cet aspect, notamment
le modèle phénoménologique de Vakhnenko et coll. [137, 138]. Ce modèle a les
caractéristiques suivants :

• une variable g traduit l’amollissement du matériau ;

• une équation décrivant l’évolution de g met en jeu un temps de relaxation ;

• la prise en compte des effets non classiques requiert peu de paramètres.

Des simulations numériques montrent qu’un tel modèle est en accord qualitatif
avec les expériences d’acoustoélasticité dynamique [38]. Cependant, ce modèle a
été construit dans un cadre unidimensionnel, et aucune version tridimensionnelle
n’est connue. De plus, on montre que ce modèle n’est pas thermodynamiquement
admissible (annexe du chapitre).

La première partie est consacrée à la construction d’un modèle phénoméno-
logique 3D, dans le cadre des déformations finies. Les notations sont les mêmes
que dans le chapitre 2, où on a présenté les équations de l’hyperélasticité. Par
rapport au cas hyperélastique, on ajoute ici une variable d’état interne g, qui
décrit l’amollissement du matériau. Une loi de comportement mécanique est
déduite de l’inégalité de Clausius–Duhem. De plus, on propose une famille
d’équations d’évolution pour la variable interne. Contrairement au modèle de
Vakhnenko, ce modèle est thermodynamiquement bien posé et tridimensionnel.
Ces travaux ont été publiés dans [1].

La partie suivante illustre la propagation d’ondes longitudinales dans des
solides non linéaires à dynamique lente. On montre ici comment adapter les
méthodes numériques du chapitre 2 afin de prendre en compte la dynamique
lente. Des simulations numériques en domaine non borné donnent un accord
qualitatif avec les observations expérimentales. Cette étude fait partie de la
publication [4].

La troisième partie est consacrée au cas des déformations planes (2D), où
une méthode numérique similaire est appliquée. Par splitting dimensionnel, le
schéma numérique est construit à partir du schéma volumes finis à limiteur de
flux 1D. D’abord, on applique la méthode dans le cas de l’hyperélasticité de
Murnaghan. Un exemple illustre le couplage entre les ondes de cisaillement et
les ondes de compression, phénomène absent en élasticité linéaire. Ensuite la
dynamique lente est incorporée au modèle, et on présente un exemple numérique
de propagation d’ondes dans un domaine non borné. Ces travaux ont conduit à
une soumission d’article [7].

On notera que l’approche est purement phénoménologique, étant donné que
la signification physique de g à l’échelle de la microstructure n’est pas connue.
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Pour aller plus loin, l’annexe du chapitre propose des analogies avec d’autres
modèles issus de la littérature. En effet, des travaux portant sur la modélisation
du comportement mécanique des élastomères chargés présentent une certaine
similarité. Dans ce contexte, on parle de l’effet Payne [108] et de l’effet Mullins
[33, 81] pour décrire la réponse mécanique du matériau.

On mentionne une limitation du présent travail. Dans la limite des petites dé-
formations, le modèle présenté dégénère vers l’élasticité linéaire. Cette propriété
n’est pas en accord avec les résultats d’expériences de résonance. Afin de traiter
des problèmes plus réalistes, on se doit d’incorporer a minima de la dissipation
viscoélastique dans le modèle. Cet aspect est l’objet du chapitre suivant.

5. Dynamique lente d’une barre viscoélastique

Le comportement viscoélastique est un aspect clé de la modélisation de ma-
tériaux réels, notamment en vue de reproduire les courbes de résonance [55,
135]. Dans le cadre de l’élasticité linéaire, la littérature comporte de nombreux
modèles rhéologiques constitués d’un ensemble de ressorts et d’amortisseurs.
Le modèle de solide linéaire standard, aussi appelé modèle de Maxwell ou de
Zener généralisé, est utilisé fréquemment pour décrire la propagation d’ondes
sismiques [20, 89]. Il est composé d’un ensemble d’éléments de Zener, dont les
paramètres sont obtenus par optimisation du facteur de qualité sur une bande de
fréquence [16].

Le couplage entre un comportement viscoélastique non linéaire et la dyna-
mique lente est réalisé par l’utilisation de variables internes adéquates. Ce-faisant,
un système raide est obtenu, ce qui nécessite une attention particulière lors du
recours aux méthodes numériques. Ici, une stratégie de splitting est adoptée,
combinant un schéma volumes finis ADER avec une méthode d’intégration adap-
tative d’ordre élevé. Les résultats numériques sont en accord qualitatif avec les
observations expérimentales de résonance non linéaire et d’acousto-élasticité dy-
namique (travaux publiés dans [3]). Parallèlement, une méthode fréquentielle est
développée, en combinant une discrétisation éléments finis mixte, la méthode de
l’équilibrage harmonique, et la méthode asymptotique numérique. Les résultats
montrent une forte sensibilité de la génération d’harmoniques aux paramètres du
modèle. Dès lors, la mesure expérimentale des harmoniques générés est cruciale
pour une calibration fine des paramètres.

Pour chaque amplitude de forçage, le calcul d’une courbe de résonance dure
environ 35 minutes avec la méthode des volumes finis, pour un faible nombre de
points sur la courbe. À titre de comparaison, le calcul dure environ 20 secondes
avec la méthode fréquentielle, pour obtenir une courbe de résonance continue.
Dans l’optique de calibrer lemodèle expérimentalement,cette réduction drastique
du temps de calcul est un avantage. Cependant, le régime transitoire n’est
pas calculé avec la méthode fréquentielle. Ces résultats préliminaires ont été
communiqués dans [5]. Étant donné que la contrainte n’est pas une variable
conservée, imposer une condition limite en contrainte est difficile avec les
volumes finis. La méthode des éléments finis est plus flexible en termes de
conditions limites. En effet, il est possible d’imposer des conditions limites en



146

déplacement ou en contrainte. Une comparaison directe entre les deux méthodes
sur le même cas est à l’étude.

Des modifications de la méthode fréquentielle sont envisagées. Tout d’abord,
il serait intéressant de suivre la fréquence de résonance continument par rapport
à l’amplitude de forçage (backbone curves). Ensuite, on pourrait envisager l’uti-
lisation de la base modale du système linéaire non amorti, au lieu des fonctions
de base des éléments finis [18, 56, 136]. Enfin, les équations du mouvement
pourraient être adimensionnées par rapport aux constantes caractéristiques du
système.

6. Conclusion

Ce manuscrit traite de la dynamique de solides non linéaires particuliers. Sur
le sujet de l’élastodynamique non linéaire, les principales contributions sont la
résolution du problème deRiemann (chapitre 3) et le développement deméthodes
volumes finis (chapitre 2). La suite du document traite de la modélisation
de comportements viscoélastiques et de la dynamique lente. La dynamique
lente est modélisée à l’aide d’une variable d’état interne, dans le cadre de la
théorie des déformations finies (chapitre 4). Des méthodes volumes finis ont été
développées (1D et 2D). Le même cadre théorique est employé pour décrire le
comportement viscoélastique de type Zener généralisé (chapitre 5). Du point
de vue numérique, la raideur des équations obtenues nécessite un traitement
particulier. Une méthode volumes finis a été développée, et les résultats sont en
accord avec la littérature expérimentale. Aussi, une méthode de continuation des
solutions périodiques a été utilisée. Son efficacité en fait un outil privilégié pour
des validations futures.

Sur le plan de lamécanique desmilieux continus, le principal apport concerne
la construction de modèles. Les concepts de déformations finies et de variable
d’état interne ont été transférés de lamécanique rationnelle à l’acoustique. La sim-
plicité, les bonnes propriétés thermodynamiques et l’écriture tri-dimensionnelle
du modèle constituent une avancée par rapport aux modèles existants. De plus,
l’approche permet d’envisager des améliorations du modèle (conduction de la
chaleur, plasticité, endommagement, etc.).

Sur le plan desmathématiques appliquées, la propagation d’ondes non linéaire
a été étudiée. Une solution analytique est détaillée dans le cas de l’élastody-
namique 1D, où les solutions analytiques sont rares. Cette solution a notam-
ment permis de tester un ensemble de méthodes volumes finis. Des méthodes
analytiques ont aussi été utilisées pour décrire les propriétés qualitatives du
modèle à variables internes proposé. Néanmoins, les méthodes numériques
permettent de traiter des configurations plus réalistes, telles que des problèmes
issus d’expériences de laboratoire. Dans un futur proche, les méthodes vo-
lumes finis de ce manuscrit seront implémentées dans le code PROSPERO
http://prospero-software.science/. On peut noter que ces méthodes
peuvent être utilisées pour d’autres systèmes similaires. La méthode fréquen-
tielle mise en œuvre pour le calcul de solutions périodiques a le même avantage
d’être générique.

http://prospero-software.science/
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Dans cette thèse,plusieurs systèmes hyperboliques de lois de conservation ont
été présentés. De tels systèmes soulèvent des questionsmathématiques théoriques
(existence, unicité, régularité des solutions). Répondre à ces questions serait une
aide à la construction de modèles et au développement de méthodes numériques.
De nombreuses méthodes numériques classiques en acoustique linéaire n’ont
pas leur équivalent dans le cas non linéaire. C’est le cas notamment de l’ESIM
(Explicit Simplified Interface Method) et des PMLs (Perfectly Matched Layers).
Le développement de telles méthodes pour les ondes non linéaires est important
dans l’optique d’avoir des outils prédictifs capables de traiter des situations
complexes.

L’utilité d’un modèle se mesure à sa capacité à donner des prédictions
correctes, ou bien à sa capacité à expliquer un phénomène. Afin de tester
les performances de prédiction du modèle, on doit mener des comparaisons
quantitatives avec des expériences. La diversité des expériences dynamiques (ré-
sonance, acousto-élasticité dynamique, propagation d’onde) permet d’examiner
un échantillon sous différents angles. En particulier, les expériences montrant
une évolution temporelle logarithmique de la fréquence de résonance [133] n’ont
pas encore été reproduites avec ce type de modélisation.

Une faiblesse de l’approche phénoménologique est le manque d’explications
physiques. Une approche multi-échelles pourrait conduire à un modèle justifié
par la physique, à condition que des hypothèses pertinentes soient faites à
l’échelle microscopique. De récents résultats expérimentaux indiquent deux
pistes. Un premier scénario, en accord avec la thermographie ultrasonore, stipule
que la friction aux interfaces avec des hétérogénéités (grains, fissures) génère
un échauffement local, responsable de la dynamique lente. Un second scénario
stipule que l’eau présente dans le matériau est aspirée par capillarité lors de la
mise en vibration, indiquant l’importance de prendre en compte la porosité du
matériau. Une prochaine étape pourrait être le développement d’un modèle de
matériau poreux partiellement imprégné d’eau, dans le cadre de la théorie des
déformations finies.
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Modeling wave propagation in nonlinear solids with slow dynamics

� Abstract. Geomaterials such as rocks and concrete are known to soften under a dynamic
loading, i.e., the speed of sound diminishes with forcing amplitudes. To reproduce this behavior,
an internal-variable model of continuum is proposed. It is composed of a constitutive law for the
stress and an evolution equation for the internal variable. Nonlinear viscoelasticity of Zener type is
accounted for by using additional internal variables. The equations of motion write as a nonlinear
and nonhomogeneous system of conservation laws. This system of partial differential equations is
solved numerically using finite-volume methods. An analytical solution to the Riemann problem
of nonlinear elastodynamics is provided, which is used to benchmark the performances of the
numerical methods. Numerical results are in qualitative agreement with experimental results from
resonance experiments (NRUS) and dynamic acousto-elastic testing (DAET). Similar methods are
developed in 2D to perform wave propagation simulations. In the framework of harmonic-based
continuation methods, a numerical method is developed for the computation of periodic solutions.
Based on a finite element discretization of the equations of motion, this frequency-domain method
provides fast resonance simulations, which is useful to carry out experimental validations.
Keywords : Nonlinear acoustics, Solid mechanics, Numerical methods.

Modélisation de la propagation d’ondes dans des solides
non linéaires à dynamique lente

� Résumé. Les géomatériaux tels les roches et le béton ont la particularité de s’amollir sous
chargement dynamique, c.-à-d. que la vitesse du son diminue avec l’amplitude de forçage. Afin
de reproduire ce comportement, un modèle de milieu continu à variables internes est proposé. Il
est composé d’une loi de comportement donnant l’expression de la contrainte, et d’une équation
d’évolution pour la variable interne. La viscoélasticité non linéaire de type Zener est prise en
compte par l’ajout de variables internes supplémentaires. Les équations du mouvement forment
un système de lois de conservation non linéaire et non homogène. Le système d’équations aux
dérivées partielles est résolu numériquement à l’aide de la méthode des volumes finis. Une
solution analytique du problème de Riemann de l’élastodynamique non linéaire est explicitée. Elle
est utilisée pour évaluer les performances des méthodes numériques. Les résultats numériques
sont en accord qualitatif avec les résultats expérimentaux d’expériences de résonance (NRUS) et
d’acousto-élasticité dynamique (DAET). Des méthodes similaires sont développées en 2D pour
réaliser des simulations de propagation d’ondes. Dans le cadre des méthodes de continuation
reposant sur la décomposition en harmoniques, une méthode numérique est développée pour le
calcul de solutions périodiques. Sur la base d’une discrétisation éléments finis des équations du
mouvement, cette méthode fréquentielle donne des simulations de résonance rapides, ce qui est
utile pour mener des validations expérimentales.
Mots-clés : Acoustique non linéaire, Mécanique du solide, Méthodes numériques.
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