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besoin.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI040/these.pdf 
© [J. Nunez Ramirez], [2017], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI040/these.pdf 
© [J. Nunez Ramirez], [2017], INSA Lyon, tous droits réservés



Résumé

Dans le cadre de ce travail, une technique non-intrusive est proposée pour coupler

la méthode Smoothed Particle Hydrodynamics (SPH) à la méthode des Eléments Finis

afin de résoudre numériquement des problèmes dynamiques et non-linéaires d’interaction

fluide-structure en permettant l’utilisation des pas de temps différents dans les deux do-

maines de calcul (fluide et solide). Ces développements sont motivés par le besoin de

simuler numériquement des phénomènes rapides et très non-linéaires qui prennent en

compte des impacts en se servant des intégrateurs temporels explicites dans chaque sous-

domaine de calcul (Newmark explicite pour le solide et Runge-Kutta 2 pour le fluide).

De ce fait, le pas de temps de stabilité est limité par des caractéristiques intrinsèques

au modèle numérique du phénomène étudié et en conséquence, il devient important de

pouvoir intégrer chaque sous-domaine numérique avec un pas de temps proche de son pas

de temps de stabilité. Pour permettre d’utiliser un pas de temps proche du pas de temps

de stabilité pour chaque sous-domaine, des méthodes de décompisition de domaines dual-

Schur sont implémentées et validées pour des cas en 1-D, 2-D, et 3-D. Des simulations

numériques d’impacts de cailloux sur des aubes des turbines hydrauliques sont aussi ef-

fectuées afin de prédire le dommage que cet évènement peut engendrer. La méthode de

couplage fluide-structure proposée par ce travail sera utilisée à dans trois thèses ultérieures

pour prédire le dommage sur des aubes des turbines hydrauliques résultant de l’impact

répété des gouttes d’eau, l’érosion par cavitation ainsi que l’érosion hydro-abrasive pro-

voquée par les petits sediments présents dans l’écoulement.

KEYWORDS: COUPLAGE FLUIDE-STRUCTURE, ELEMENTS FINIS, SMOOTHED

PARTICLE HYDRODYNAMICS, IMPACTS, DECOMPOSITION DES DOMAINES
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Abstract

A method to couple smoothed particle hydrodynamics and finite elements methods

for nonlinear transient fluid-structure interaction simulations by adopting different time-

steps depending on the fluid or solid sub-domains is proposed. These developments were

motivated by the need to simulate highly non-linear and sudden phenomena that take into

account solid impacts and hence require the use of explicit time integrators on both sub-

domains (explicit Newmark for the solid and Runge-Kutta 2 for the fluid). However, due

to critical time-step required for the stability of the explicit time integrators in, it becomes

important to be able to integrate each sub-domain with a different time-step while respect-

ing the features that a previously developed mono time-step coupling algorithm offered.

For this matter, a dual-Schur decomposition method originally proposed for structural dy-

namics was considered, allowing to couple time integrators of the Newmark family with

different time-steps with the use of Lagrange multipliers.

KEYWORDS: FLUID-STRUCTURE INTERACTION, FINITE-ELEMENT ANA-

LYSIS, SMOOTHED PARTICLE HYDRODYNAMICS, IMPACTS, DOMAIN DECOM-

POSITION METHODS
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Introduction

Fluid-structure interaction phenomena occurring over extremely short time scales often

require expensive experiments, motivating the ongoing development of numerical tools

for reproducing such complex events. As an example, one may consider a case scenario

in which a rock engulfed in a water jet, flowing at a high velocity, impacts a function-

ing hydroelectric turbine’s steel bucket turning at full regime. In order to determine the

extent of the damage such a violent impact may produce, different approaches can be

considered. An experimental approach would certainly give the most realistic results but

would require costly experiments in which the damaged turbine model would become un-

suitable for further tests after a single run of experimental trials. A numerical approach,

although requiring high-end computing resources, seems to be a more economical option,

as numerous simulations of the rock, the bucket and the water jet can be performed using

established numerical tools giving deeper insight into the physical mechanisms involved

in this phenomenon. Robust and accurate coupling techniques are required to simulate

fluid-structure interaction problems in order to ensure the stability and accuracy of the

coupling algorithm dealing with the time integration of the two different media. The

event considered here is an example of fast dynamics phenomena for which the use of

explicit time integrators is advisable due to the short time lapse over which the impact

occurs and the strong non-linearities undergone by the involved parts.

The aim of the present work is to construct a tool capable of carrying out the

aforementioned type of simulations within the framework of the European project

PrEDHyMa, a Marie Sklodowska Curie action fostering the collaboration between two

French research institutions, INSA de Lyon and Ecole Centrale de Lyon, and a private

Austrian Swiss-based corporation, Andritz Hydro AG. The current thesis will focus on the

development of the multi time-step coupling tool using specialized fluid and solid solvers

and improving on previous doctoral work aimed at the simulation of fluid-structure

interaction phenomena. Calculations estimating the robustness and accuracy of the

coupling tool will be carried out to evaluate the applicability of the tool for the simulation

1
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Introduction

of rock projectile impacts on turbine blades as well as other research topics at which the

present project aims to shed light upon.

Hydroelectric power generation

Hydroelectricity remains one of the main sources for energy production of renewable

nature. As of today, among all renewable energy sources, energy produced through hydro-

electric stations represents 70% of energy generation and almost 17 % of the overall en-

ergy produced globally [REN 16]. For industrialised countries, the exploitable sources for

producing hydroelectricity have reached their peak, but among developing countries, the

hydroelectric presence in the energy production market is continuously rising. The total

energy output coming from hydroelectric sources in 2015 was estimated at 3 940 TWh

[REN 16].

The main advantages making hydroelectric energy generation an attractive and viable op-

tion are:

• Its flexibility, which stems out from the fact that a power station can be relatively

simply halted and restarted in a matter of minutes following output power demand.

• The relative low cost of the energy produced [REN 16]. Hydroelectric plants can

be relatively inexpensive to build, they require few personnel to operate and their

expected functional lifetime can span across multiple decades.

• The possibility to stock the energy producing resource for use during peak demand

periods. Additionally, water reservoirs put in place by the construction of hydro-

electric stations can provide other services to reinvigorate the economy of the region

such as aquaculture or by attracting visitors to the region.

Despite many of the interesting attributes that hydroelectric power generation provides,

some drawbacks exist that should also be considered, such as:

• A disruption to the initial habitat in the region where a hydroelectric power station

is built. Usually through the flooding of the regions to build a dam, many of the

flora and fauna as well as the local human inhabitants must be displaced. This can

have enduring consequences on the biological equilibrium of the region.

2
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• The accumulation of silt within the premises of the station and reservoir. Silt

particles transported downriver by the flow of rivers and streams can cause the sta-

tion to become non-operational if the reservoir eventually becomes saturated.

As with any source for energy generation, hydroelectricity production presents both

advantages and drawbacks. The goal of the work in the present study aims at providing a

reliable method for numerically simulating potential problems that might arise throughout

the exploitation of a hydroelectric power station thus contributing in the long run to

providing safer conditions for hydroelectric energy generation.

The Pelton wheel

The project behind the current works aims at characterizing erosion damage undergone by

hydraulic turbines of the Pelton type. These type of turbines have been around since their

inception by the American inventor and entrepreneur Lester Allan Pelton in the late 19th

century [WIL 74]. Opposed to the centuries old water wheel, where most of the energy

was transferred mainly by the dead weight of water on each of the partially submerged

blades or buckets, the design proposed by Pelton allowed to transfer the momentum en-

ergy from the water impinged at higher velocities on each of the buckets through a con-

verging nozzle. The design of the buckets has also evolved over time in order for water

to transfer as much momentum as possible to the turbine. In fact water in contact with

the bucket, performs a U-turn and exits the bucket at a much lower velocity, thus Pelton

turbine-based generators are single stage.

Compared to other hydroelectric turbines commonly used today, such as turbines of

the Francis or Kaplan type, Pelton turbines are mainly employed in contexts where a high

dynamic heads (greater than 100 m) exist with lower flow rates (discharges lower than

50 m3/s). Pelton turbines come in a variety of sizes ranging from, large ones capable of

outputting 440 MW to small ones that are just a few centimeters wide and handle low

flows.

In terms of design specifications, the magnitude of the tangential velocity of the tur-

bine is usually set to be half of the jet’s velocity impinging the bucket [WIL 74]

Vt =

√
2gh

2
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With g being the acceleration due to the gravity field and h is the dynamic head. For a

wheel with a diameter Dw, the angular velocity of the turbine is set at:

ω =
Vt

Dw/2

For the current study, a high dynamic head will be considered, h = 2000 m. Hence,

the velocity of impinging jet will be Vj = 200 m/s and the tangential velocity of the wheel

will be Vt = 100 m/s. Thus, the relative velocity at which the jet will be impacting the

turbine blade or bucket is V r
j = 100 m/s assuming the jet and tangential velocity vectors

to be collinear.

The PrEDHyMa project

The PrEDHyMa project, whose acronym stands for Predicion of Erosion Damage on

Hydraulic Machines, aims at studying four possible sources of damage that hydroelectric

turbines undergo during their functional lifetimes. The project is aimed particularly at

characterizing damage on Pelton turbines which are used to produce electricity when

high heads are available notably in mountainous regions. The four sources on which the

project focuses are:

• Gravels and stones impacts: The impact of gravels of stones found in streams dur-

ing the turbine’s operation can lead to strong damage in its buckets. The possibility

of this event happening is not very high since precautions are normally taken in or-

der to prevent its occurrence, nevertheless, the simulation of this event is important

since the violence of the impact can heavily damage the turbine.

• Droplet impacts: The impact of water droplets on the surface of the blades of a

hydroelectric turbine can lead to damage through repeated exposure to this type of

phenomenon. The damaging mechanism is not the same as in the previous case

since erosion on the surface doesn’t arrive suddenly but through prolonged expos-

ure.

• Hydro-abrasive erosion: The presence of small sediments in streams and rivers

provides a source of erosion that is often responsible for the damaging of Pelton

turbines. Due to the small size of the solid sediments, visible damage usually arrives

after prolonged exposure to this type of event.
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Figure 1: Erosion damage visible on a Pelton turbine bucket at the end of its functional

lifetime

• Cavitation erosion: The damaging of hydroelectric turbines due to cavitation is

commonplace among various type of turbines. Due to pressure changes in the flow

interacting with a turbine, cavitation pockets form and implode creating a high-

speed micro jet that can damage turbines in the long run through repeated exposure.

The phenomenon studied within the scope of the project take place over different

time scales. The first phenomenon, due to the size of the impacting body can cause

immediate visible damage on the bucket of a turbine whereas damage induced by the other

three phenomena might become apparent through repeated occurrences thus a fatigue

failure prediction tool is required to evaluate its extent. The current work is focusing

on the former type of phenomenon so only a fluid-solid solver coupling tool capable

of simulating impacts between two structures in a multi-time step configuration will be

developed. A tool capable of using the fluid-solid coupling capabilities of the current

work to estimate damage by repeated cycles will also be developed within this project but

not used in the current case [COU 15].

Fluid and solid solvers

The current thesis will focus entirely on building a numerical tool for coupling specialized

fluid and solid solvers in order to simulate the impact of gravels and stones on a Pelton

turbine bucket turning at full regime. These simulations will allow to evaluate the extent

of the damage sustained by the target structure if such event were ever to occur.

The specialized solver for the solid sub-domain is called Europlexus is developed by

5
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the French CEA (Commisariat à l’Energie Atomique ) and the European Commission’s

Joint Research Centre (JRC). This solver, mainly used to carry out non-linear transient

dynamic calculations, is mostly based on the Finite-Element Method and the use of a

second order time integration scheme [Com16]. Example applications of this solver in-

clude [FAU 03, CAS 03, PRO 16].

The specialized fluid solver that will be used for this study is called Asphodel and is

developed by Andritz Hydro. This code uses an explicit time integration scheme and

is based on the mesh-less technique known as the Smoothed Particle Hydrodynamics

(SPH) and allows to simulate free surface flows interacting with complex solid geo-

metries without the need of using sophisticated interface determination techniques. De-

tails on the development of this solver as well as example applications can be found in

[MAR 07, NEU 14, REN 15].

The coupling of the solvers described here will be the at the core of the research

proposed by the present work. As it will be explained in detail in the current text, the use

of explicit time-integrators for each sub-domain constraints greatly the time-step size of

each solver an thus the total duration of the simulations may be quite large. In order to give

a certain degree of independence to the choice of the time-step on each solver, a multi-

time step algorithm is proposed. The coupling of the solvers involved has been done using

different communication solutions between the solvers and a coupling software (FIFO

pipes, binary files). While interesting and somewhat complex, the details regarding these

technical aspects will be omitted in order to avoid misguiding the reader from the real

research subject proposed by the current work. More details regarding the communication

tools used to couple the solvers in this thesis can be found in [FOL 11, WIL 05, SNI 98].

Development of a multi-time step fluid-structure coupling strategy

The current work focuses on building upon a coupling strategy to simulate transient fluid-

structure interaction. A first approach of the method was developed by [ZHE 13], [LI 15]:

it couples a solid Finite-Element and a fluid SPH (Smoothed Particle Hydrodynamics)

solvers in a non-intrusive and synchronized manner. By imposing the normal velocity

continuity at the interface, this coupling method ensured that neither the energy produc-

tion nor dissipation occurred at the interface, thus guaranteeing the coupling simulation’s

stability over time. The codes use different time integrators for each sub-domain: 2nd

order Runge-Kutta scheme for the fluid and an explicit Newmark time integrator for the

solid. The method has been developed for applications using the same time-step in all sub-
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domains. This work presents a method capable of handling different time-steps in each

sub-domain. It is based on a dual Schur method, called GC method [GRA 01], which

extends the widely used FETI techniques [FAR 91]. The GC method, initially proposed

for structural dynamics, is able to couple any time integrators from the Newmark family

with their own time-step depending on the sub-domain under consideration. The method

is extended here to the coupling of a Newmark time integrator and a Runge Kutta scheme

with large interface displacements.

There are basically two ways regarding how FETI-based techniques can be used to

couple sub-domains with different time scales. In the first group of algorithms, the kin-

ematic condition at the interface is satisfied at the largest time-scale, such as in [PRA 04]

and [MAH 11]. The second type establishes that kinematic continuity should be pre-

scribed at the smallest of time scales, presented by [GRA 01]. More recently, Brun et al.

[BRU 15] proposed a general framework for building energy conserving methods at the

two time scales (kinematic continuity at the large or the fine time-steps), by cancelling

the interface pseudo-energy involved in the so-called energy method, this was originally

proposed by Hughes for proving the stability of hybrid explicit-implicit time integrators

[HUG 12]. In all these methods it has been proved through the energy method, that kin-

ematic continuity must be prescribed in terms of velocity to guarantee the stability of the

coupling algorithms.

The aforementioned coupling methods are endowed with advantages and drawbacks

as, for example, the macro based methods turned out to be more suited for parallel com-

puting. However, since the interface constraint condition is only verified at the macro

time-scale, an accurate tracking of the interface motion becomes more challenging. The

micro-based multi-time-step coupling techniques handle more easily strong geometrical

and material non-linearities at the fine time scale. However, some small amount of nu-

merical dissipation can occur at the interface, due to the required interpolations of quant-

ities at the large time scale. The present work targets the simulation of highly non-linear

phenomena, both from the geometrical and the material perspectives, occurring in fluid-

structure interaction problems. The GC method, due to its micro time-scale coupling

characteristics, has thus been chosen.

As previously explained, the sub-domain computations are performed with external

specialized solvers. These solvers are linked by an external coupling software, handling

only the interface computation derived from the normal velocity continuity at the interface

between the fluid and solid sub-domains. The unknowns of the interface problem are

the Lagrange multipliers, which represent the interface pressure. They are computed
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by the external coupling software and sent to the sub-domains so as to complete their

computations for a given time-step.

This thesis work is organized as follows: The first chapter provides a state of the

art regarding techniques to couple solvers, the different approaches to modelling fluid-

structure interaction, domain decomposition methods and solid contact modelling. The

second chapter presents the governing equations for each sub-domain and the continuity

equations at the interface as well as the discrete numerical schemes used to numerically

describe these equations in time and space. The third chapter introduces the multi time-

step coupling strategy, which is the main contribution proposed by this work. Finally

numerical examples allowing to validate the proposed technique and state its limits are

given in the last chapter along with impact simulations that give an insight to the damage

undergone by turbine buckets when hit by rock projectiles carried by fluid flows.
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Chapter 1

Domain decomposition methods for

fluid-structure interaction problems

The purpose of this chapter is to give the reader an overview of the numerical tools that

can be applied for fluid-structure interaction problems allowing for temporal and spatial

decomposition of the numerical domain
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1.1 Introduction

The simulation of the phenomenon presented in the introduction requires the use of tech-

niques allowing to numerically couple heterogeneous physical domains. Domain decom-

position methods exist that allow to carry out simulations with different spatial and tem-

poral decompositions and have been the subject of ongoing research since the dawn of the

development of numerical analysis tools [SCH 69, BEL 78].

In the present day, we can find a large number of techniques allowing to effectively

solve a large and complex problem as the superposition of smaller and simpler ones

[FAR 91, GRA 01, PRA 04]. Such techniques not only may take advantage of today’s

massively parallel computer architectures but allow to model a seemingly complex nu-

merical problem as a collection of simpler ones while more readily adapting to the spe-

cificities of each simulation.

In the current work we will focus on giving the reader an insight into the main types

of coupling tools that allowed us to numerically couple different physical domains using

heterogeneous time scales. To do so we will separately present:

1. Multiphysics coupling techniques aimed at fluid-structure interaction applications

2. Domain decomposition techniques aimed at the coupling of sub-domains with het-

erogeneous time integrators and different time scales

In general, for all of the coupling and domain decomposition methods that will be

presented in this section, when splitting a numerical domain Ω into, for example, two

smaller domains Ω1 and Ω2 sharing a common interface Γ, in order to obtain a perfect

link between the domains, one must ensure for the kinematic variable ui
Γ and the dynamic

variable Fi
Γ the following:

(i) Kinematic continuity between sub-domains : u1
Γ = u2

Γ

(ii) Dynamic equilibrium across the interface: F1
Γ +F2

Γ = 0

By meeting the above statements as best as numerically possible, one can produce

stable and accurate coupling algorithms allowing to link different physical media while

taking advantage of the calculators parallel architecture through efficient domain decom-

position.
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1. Domain decomposition methods for fluid-structure interaction problems

1.2 Coupling of fluid-structure solvers

Numerical tools used to simulate the interaction of different physical fields allow -in many

cases- to obtain more detailed and precise solutions to problems with respect to simula-

tions in which hypotheses and model reductions can lead to neglecting the interaction of a

physical system with surrounding physical fields. However, one should take into account

the very logical fact that by adding the influence of other physical fields to the initial

problem, the problem becomes increasingly more complex to solve as not only one must

ensure that the additional equations induced by the existence of new fields to be satisfied,

but a series of additional conditions must be met at the interface separating the physical

systems so as to ensure the accuracy of the solution and stability of the new problem .

This latter aspect is of utmost importance and can become a determinant factor when de-

ciding if a physical system should be modelled by taking into account the influence of

surrounding physical fields or not. If the former were the case, two major ways of dealing

with how the dynamic coupled problem can be envisaged [FEL 01]

1. Monolithic approach : The whole physical system is treated by a single solver

including the problem at the interface between sub-domains and all of its entities

are advanced in time synchronously (1.1 (a)).

2. Partitioned approach : Each physical entity is handled by a separate solver or solv-

ers, the problem at the interface may need to be solved in order for time to be

advanced separately (1.1 (b)).

As Figure 1.1 (a) broadly illustrates, a monolithic treatment to solve a numerical prob-

lem, involves generally a single solver - which can be running over a single or multiple

calculation cores - that handles all the sub-domains involved in the coupled calculation.

With this type of approach the equations governing each physical sub-domain (Ω1 and

Ω2) and the conditions at their shared interface (Γ) are discretized and the new config-

uration is obtained in a synchronous manner. In contrast, 1.1 (b) depicts the general

manner in which a partitioned approach handles the access to the updated configuration

for the physical system Ω(t +∆t). Using this type of treatment, each sub-domain present

is updated in time independently and continuity conditions at the interface may be treated

separately. In order for a partitioned approach to remain conservative, special care must

be taken when solving the coupled equations so as to ensure that the continuity conditions

are respected as best as numerically possible [FAR 91, GRA 01, PRA 04, LI 15].
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Γ

Ω1

Ω2 Ω2

Γ

Ω1

Ω(t) Ω(t+Δt)

(a)

Ω1

Ω2

Ω1

Ω2

Γ Γ

Ω(t) Ω(t+Δt)

(b)

Figure 1.1: Illustration of a numerical problem in which

physical domain Ω is decomposed into sub-domains Ω1 and Ω2 with boundary

Γ.Treatment of the numerical problem through a monolithic approach 1.1 (a) and a parti-

tioned approach 1.1

(b)

In general, when solving a problem through a partitioned approach, a prediction is

made on one of the fields’ variables which allows to find the solution of the whole physical

system in a staggered manner (Figure 1.2). The accuracy of the solution depends naturally

on the quality of the predicted quantities. On the other hand, when solving a problem

through a monolithic approach, the whole system of equations is solved directly (through

direct or iterative algorithms), allowing for all the fields’ variables to be updated at once.

Figure 1.2 shows a broad example in which a physical system is updated staggeringly

using a partitioned approach with synchronization at the interface. In this example, the

new configuration of sub-domain Ω1 is estimated and used to obtain (1) an estimated

solution of the interface continuity equations. Then the predicted interface status is sent

to sub-domain Ω2 (2) that uses it to find its new configuration (3). Next, Ω2 new config-

uration is used (4) to verify the continuity equations giving access to the updated config-

uration of the interface. A convergence test can be done at this state to make sure that the

continuity equations are satisfied at the interface which can lead to iterations between Ω2

and Γ. After satisfying the interface continuity equations, the updated interface status is

sent to sub-domain Ω1 (5). Using this information, Ω1 can be updated (6) and the process

can be repeated.

The advantage of one type of coupling treatment over another are dependent on the

nature of the problem as pointed out in [FEL 01, BEL 78]. One may be inclined to treat

the simulation of a physical system in a monolithic way if the simulated fields share com-

parable characteristic time lengths and time scales or if the interaction effects between the

physical fields are widespread within the domain. On the other hand, it can be advisable to
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Ω1 Ω1

Ω2 Ω2

Γ

1

2

3

4

5

6

Figure 1.2: Partitioned approach typical sequential algorithm with synchronization treat-

ment at the interface Γ between sub-domains Ω1 and Ω2

try a partitioned approach if the problem features localized interaction between physical

fields or the time-scales characterizing the involved fields are quite different.

Regarding implementation convenience, each kind of treatment has both its share of

advantages and inconveniences, as the monolithic approach allows to shorten develop-

ment times and can facilitate software maintenance, however, computational efficiency

can be greatly hampered as a result of the large linear systems the single solver might

need to handle by itself.

Partitioned approaches are desirable when external specialized solvers are available

and only the way in which they interact among them is to be added. This allows for a

higher degree of independence/flexibility for each specialized solver and foments software

modularity (e.g. addition of turbulence models for a fluid solver or erosion models for a

solid solver if considering fluid-structure interaction). Nevertheless, in order to main-

tain acceptable levels of accuracy and stability, the solution algorithm needs to be well

thought-out and implemented. This last statement branches out from the fact that when

solving a coupled system with a partitioned algorithm, a time lag might exist between

the actual moment in which each sub-domain is updated to a new configuration. If pre-

cautions are not taken to minimize the effect of this configuration delay between physical

fields, the algorithm might be non-conservative and might diverge or give spurious results.

For this reason, it is important to translate as best as possible the kinematic continuity and

dynamic equilibrium conditions brought-up in the introduction to the current section.

In our case, we are considering the use of specialized solvers for each sub-domain

and an external coupling software to be the link between them. From this description and

as Figure 1.1) conveys, we can advance that a partitioned approach seems as the most

convenient way to carry out our simulations. Thus a synchronized partitioned approach

14

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI040/these.pdf 
© [J. Nunez Ramirez], [2017], INSA Lyon, tous droits réservés



Fluid-structure interaction - the different approaches

is to be used allowing to make use of different time scales in each sub-domain. This

approach will be explained in more detail in the following sections, the essential thing

being that by synchronizing the way in which the kinematic quantities are obtained for

each solver, a stable and accurate solution algorithm can be established even if the time

integration is done separately for each sub-domain.

1.3 Fluid-structure interaction - the different approaches

After a brief introduction on the coupling approaches that can be used for simulating

physical systems, we will now focus on the core subject of the current thesis by taking a

look at some methods that exist for simulating physical systems where the effect of fluid-

structure interaction can be considered preponderant. Due to vastness of the subject, this

section cannot be exhaustive, but will focus on giving the main details regarding some of

the most well-known techniques currently in use and will attempt at justifying the choices

made for the simulations that were carried out within the scope of this work.

The approaches put forward in the current section can be regrouped into two larger

groups : Analytical methods and semi-discrete methods. The common point regarding all

of these methods is that they can all be used to solve FSI problems while respecting the

continuity conditions evoked earlier, however, as we will see, their suitability can vary

with respect to the different factors characterizing the FSI problem at hand such as the

size, the geometries and the nature of the fluid flow and the solid’s response.

1.3.1 Analytical Methods for fluid-structure interaction

Analytical methods have long been employed for solving fluid-structure interaction prob-

lems. In fact for cases where the solid and fluid geometries are quite simple and several

assumptions can be made about the flows and the amplitude of the structure’s response,

these methods can be second to none when considering their ease of implementation and

reliability. The works of [PAI 98] and [DEL 01, BEL 80] highlight the main aspects be-

hind these methods and the cases in which their use is advisable are put forward.

1.3.1.1 Boundary Integral Methods

Boundary integral methods allow to find the forces and the moments applied to completely

or partially immersed solid volumes within potential flows (inviscid and incompressible
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1. Domain decomposition methods for fluid-structure interaction problems

fluid) or acoustic flows (compressible fluid). By using simplification tools such as the

divergence theorem or the Reynolds transport theorem, the resolution of the partial dif-

ferential equations gives access to the induced forces on the boundary between the fluid

and solid. Furthermore, Green’s identities [STR 92] can be used and the FSI problems

can be further simplified for cases where Green functions exist which include potential or

acoustic flows (1.3). The greatest advantage of boundary integral methods, as the name

suggests is that the calculations are done on the boundary only, thus reducing the dimen-

sion of the problem by one.

ΩbSb

nb

Figure 1.3: Cylinder within an unbounded potential flow

For cases in which the potential function governing the fluid flow is known, the forces

and the moments on the immersed surface can be obtained by using formulas described

in [WAN 08]. Hence, for particular scenarios where the potential functions for the flow

are available the determination of forces and moments on the surface are straightforward.

Alternatively, for incompressible and acoustic flows, for which Green’s functions exist

as solutions to wave equations, using the divergence theorem to obtain Green’s identities,

the problem is once again solved only on the interface and not on the bulk. If two har-

monic scalar functions, φ and ψ, are considered, Green’s second identity can be written

as:

∫
S

φ ∇ψ ·n dS =

∫
S

ψ ∇φ ·n dS (1.1)

where n is the normal vector pointing outward from the volume surrounded by the

surface S.

Replacing ψ by the Green function which is a solution to the wave equation and φ by
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the pressure or velocity field, and applying the appropriate boundary conditions for the

pressure and the velocity at the interface S, the value of the pressure and velocity fields

can be found anywhere within the fluid sub-domain even in the presence of field sources

and sinks within the fluid sub-domain [WAN 08].

Furthermore, this method can be extended to complex geometries by discretizing the

whole fluid-structure interface [SIG 15]. This is the underlying idea behind the Boundary

Element Method which can be quite efficient for finding the solution of fluid-structure

problems with equal accuracy than the FEM method but with the advantage of being

solved on a support domain with a lower overall dimension than the original problem.

Nevertheless, flow configurations for which Green’s functions exist as solutions to the

governing differential equations are limited to cases of potential or acoustic flows, hence

for any other type of flow, other analytical or numerical techniques are more appropriate.

1.3.1.2 Dimensional Analysis for Fluid-Structure Interaction

Dimensional Analysis, which is a conventional technique to study problems in fluid

mechanics, can be extended to be applied in fluid-structure interaction problems as ex-

posed in the works by [DEL 01]. The underlying idea behind this method used to study

fluid-structure interaction problems is to reduce the total amount of parameters and vari-

ables involved the dimensionalized equations to the strict minimum using the Vaschy-

Buckingham-π theorem [MAC 71].

Using this method, the conservation equations in the solid and the fluid sub-domains

as well as continuity equations along the interface can be expressed as a function of di-

mensionless numbers.

Regarding commonly used dimensional parameters in analytical fluid-structure inter-

action we can list:

• For both domains, x is the position vector of the current point, t is the time para-

meter, L is a characteristic length of the domain under consideration and g is the

norm of the gravity vector

• For the fluid domain, µ is the dynamic viscosity, c0 is the reference sound speed, U0

is a reference velocity within the domain, p0 is the reference pressure and ρ0
F is the

reference density of the fluid

• For the solid domain, E is the material’s Young modulus, µ is the Poisson’s coef-

ficient, ξ0 is the reference displacement of the structure and ρ0
SgL is the reference
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1. Domain decomposition methods for fluid-structure interaction problems

density of the solid material.

Using the cited dimensional parameters, the following dimensionless quantities can

be derived for both the fluid and the solid:

• x/L is the dimensionless position

• t/Tf luid or t/Tsolid (with Tf luid = L/U0 and Tsolid = L/
√

E/ρ0
S) is the reduced velo-

city and is used to compare the time scale of the studied phenomenon with respect

to the time it takes for a point in the fluid continuum to travel or propagate through

the characteristic length L

• Π =
ρ0

FU2
0

p0
is the inverse Euler number and it is used to express the relationship

between a local pressure variation and the kinetic energy per volume

• Re =
ρ0

FU0L

µ
is the Reynolds numbers which quantifies the importance of convective

flows with respcect to viscous forces

• FR = U0√
Lg

is the Froude number which measures the importance of inertial and

gravitational forces

• M = U0

c0
is the Mach number which measures the compressibility effect

• D = ξ0/L is the reduced solid displacement and measures the effect of large dis-

placements

• G =
ρ0

SgL

E
measures deformation on the structure by the simple effect of gravity.

This number can be replaced by the reduced velocity U0/cs which compares the

fluid flow velocity U0 to the elastic wave propagation speed in the solid cs.

.

In order to couple both domains, one last dimensionless parameter, A, should be con-

sidered which takes account the coupled nature of the problem. According to the nature

of the fluid-structure interaction problem considered, A can take different forms such as:

a) M = ρ0
F/ρ0

S known as the mass number since it is the ratio of densities of the fluid

and the solid

b) CY =
ρ0

FU2
0

E
known as the Cauchy number which measures the magnitude of dynamic

pressure-induced deformations.
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From the description of the parameters , it can be seen that certain parameters describe

the fluid flow (Π, Re, FR, M) while others describe the solid motion and behavior (µ, D ,

G) and A (M , CY ) describes the interaction between the solid and fluid domains

By writing the conservation equations along with the interface continuity equations

in their dimensionless form, an analysis of the relevance or negligibility of certain di-

mensionless parameters can be carried out when knowing the fluid’s and solid’s physical

characteristics as well as the flow conditions and the nature of the solid response. This di-

mensional analysis can help to greatly simplify equations and allowing them to be solved

analytically.

Using dimensional analysis, different kinds of fluid-structure interaction problems can

be solved using hypotheses based on the physical conditions governing the problem. Fig-

ure 1.4 shows some examples of fluid-structure interactions scenarios for which this type

of technique can be used.

h

n

(a)

θ

(b)

Figure 1.4: Illustration of two case scenarios in which dimensional analysis can be used

to solve the fluid-structure interaction problems. A solid floats over a fluid at rest (a). An

airfoil inside an airflow (b)

For the case of the solid floating on a fluid at rest (Figure 1.4 (a)), the reference fluid

velocity can be neglected (U0 = 0) and the displacement of the solid (ξ = q(t)Φ(x)) can

be simplified to depend only on time (rigid body motion). These hypotheses can lead

to establishing a governing equation for the solid motion in which the effect of the fluid

appears only as an added stiffness:

q̈(t)+
M

F2
D

q(t) = 0 (1.2)

Regarding the case illustrated in Figure 1.4 (b), the flow velocity (U0) can be con-

sidered preponderant with respect to the motion or vibrations in solid. If we consider

only the rotation of the airfoil, after some simplifications, the following governing equa-

tion of motion can be established:
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1. Domain decomposition methods for fluid-structure interaction problems

θ̈(t)+(1−2πCY
x

L
)θ(t) = 0 (1.3)

Hence, once again, an added stiffness is applied to the system by means of the fluid-

structure interaction. For this case, however, the sign of the stiffness can be change as

a function of the flow velocity and the position of the barycentre of applied fluid forces

on the airfoil (x). By studying the sign of the added stiffness, configurations for which

the flow-induced vibrations grow exponentially can be found thus giving an insight to

flow-induced instabilities on the solid.

The interest of carrying out dimensional analysis for fluid-structure interaction prob-

lems comes mainly from the fact that a long range of problems can be treated if the appro-

priate hypotheses are taken in order to establish the governing equations. Nevertheless,

the existence of these simplifying assumptions many times requires an a-priori knowledge

of the flow conditions and the associated structure’s response. For cases in which fluid

flow has reached its steady-state regime, these hypotheses might be more easily obtained

and the use of this method can be straightforward. However, for transient, free surface,

fluid-structure interaction problems, the establishment of the governing equations can be

more delicate if at all possible.

1.3.1.3 Method of characteristics

The method of characteristics is somewhat similar to the method of the retarded integrals

for solving the boundary integral problem. For this method, the solution to hyperbolic

PDE’s is found along the characteristics of the wave-type solutions, allowing, on one

hand, to obtain a simpler system of equations to solve based on a ODE (since the problem

is only solved through the characteristics, a intrinsic relationship between the spatial and

temporal variables can be established), and on the other hand, to extrapolate the value

of certain fields from within the fluid sub-domain into the solid interface and vice-versa.

The method of characteristics is mostly applied of the simulation of compressible flows

where the presence of shocks is preponderant. However, its implementation can be a

obstacle when dealing with complex geometries and free-surface flows (as opposed to us-

ing discretization techniques such as FEM or FVM). The reader can find more information

regarding this technique by consulting [JOH 82].
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1.3.2 Semi-discretization methods for fluid-structure interaction

Semi-discretization methods offer the greatest versatility regarding the implementation

of solution algorithms for FSI problems. These methods allow, by discretizing in space

the governing PDE’s on each sub-domain, to obtain an approximate ODE, which can be

integrated in time. Semidscretization methods are the one of the most encountered tools

used for solving FSI problems nowadays. These methods include the Finite-Element

method, the Finite-Difference method, etc.. and can be coupled in such a way that the

optimal method for each sub-domain can be used independently of the semidiscretization

methods used for the neighbouring sub-domains. However, these methods might require,

in certain cases, the use of finely discritized zones, in order to increase the accuracy of the

solution. This causes a surge in the number of degrees of freedom (DOF) of the problem,

leading to a higher demand of computational resources in order to obtain the solution to

the coupled problem, particularly in the presence of implicit solution algorithms. Over

the past years, numerical techniques have been developed in order to allow obtain more

precise solutions, even when using a coarsely discretized meshes [ABG 03]. These and

the ongoing progress in computer science, allow for these type of methods to be among

the most popular choices when implementing an FSI solution algorithm. For these reas-

ons, running simulations using semidiscretized methods seems as the most logical choice

regarding the solving of the numerical problem aimed within the scope of this thesis. In

the next section, we will focus on giving some details regarding some of the families of

semidiscretized methods used today and a justification will be given regarding the choice

of the semi-discretized method used to carry out our simulations.

The main objective within the scope of this work is to carry out simulations using

semi-discretized methods for fluid-structure interaction. In this section, the main methods

used to solve the fluid and solid sub-domain equations will be introduced in a broad

manner. The mathematical formalism expliciting how to obtain the semi-discrete system

of equations from the governing equations for each sub-domain will not be explained for

each method introduced. This will only be done for the chosen methods in the following

chapter of this thesis.

1.3.2.1 Finite Difference Method

One of the first widely-spread discretization techniques used to analyse the behaviour

of structures and fluids among with their interaction was the Finite Difference Method

(FDM). This technique’s success relies on the simplicity of passing from a continuous
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PDE in its strong form to a system of discretized ODE’s through a Taylor expansion.

By using numerical enhancements such as multi-grid techniques [VEN 00, MOR 05], the

solution procedure can be sped-up even when dealing with many degrees of freedom

Ω Ω
d

Γ

u|Γ = u0
u(t=0) = ut0

i, ji-1, j i+1, j

i, j-1

i, j+1

hi

hj

x

y

x(i)

y(j)

PDE

Figure 1.5: Schematic illustration of the way in which a continous domain is approxim-

ated using finite differences

This type of method is simple to derive and to implement for the discretization of the

fluid and the solid conservation equations as well as for the continuity conditions along

the interface. Nevertheless, this method is aimed to discretize physical domains which

would follow ordered mesh topologies since the imposing of boundary conditions can

become difficult when dealing with geometrically complex domains. In order to use this

method with free-surface flows, this might require the use of complex numerical tools

in order to efficiently track the fluid-solid interface or the fluid’s free-surface topological

definition. For these reasons the Finite Difference method cannot be used to carry out the

free surface flow simulations that the current work necessitates. More information on this

method can be found in [GRO 07].

1.3.2.2 Finite Element Method

To overcome some of the drawbacks of the Finite Difference method, the Finite Element

Method (FEM) was introduced later on [HRE 41, ZIE 77]. A finite element method dis-

cretization is based upon a piecewise representation of the solution in terms of specified

basis functions. The computational domain is divided up into smaller domains (finite ele-

ments) and the solution in each element is constructed from the basis functions. The actual

equations that are solved are typically obtained by restating the conservation equation in

weak form: the field variables are written in terms of the basis functions, the equation is
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multiplied by appropriate test functions, and then integrated over an element. Since the

FEM solution is in terms of specific basis functions, a great deal more is known about the

solution than for either FDM. Thus, the choice of basis functions is very important and

boundary conditions may be more difficult to formulate. Again, a system of equations is

obtained (usually for nodal values) that must be solved to obtain a solution.

Ωs

Ωe

u

F

Figure 1.6: Domain Ωs

discritized with a FEM mesh under different types of boundary conditions

The Finite Element Method offers the possibility of numerically solving problems

with complicated meshes and boundary conditions. For this reason it becomes the nu-

merical tool of choice of a great number of researchers seeking to model the behaviour

of structures even when undergoing large displacements. For fluid mechanics problems,

the use of a Lagrangian mesh would be desirable in order to be able to track free surfaces

or fluid-structure interfaces. However this would prove to be quite a difficult task con-

sidering the large distortions such a mesh would undergo for certain types of fluid flows.

For the former reason we have chosen to carry out the numerical simulations within this

thesis work making use of the Finite Element for the solid sub-domain. Concerning the

fluid sub-domain, two numerical methods which can be considered better suited to be

used for numerical simulations will be briefly presented next.

1.3.2.3 Finite Volume Method

A finite volume method (FVM) [LEV 02] discretization is based upon an integral form

of the PDE to be solved (e.g. conservation of mass, momentum, or energy). The PDE is

written in a form which can be solved for a given finite volume (or cell). The computa-
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tional domain is discretized into finite volumes and then for every volume the governing

equations are solved. The resulting system of equations usually involves fluxes of the con-

served variable, and thus the calculation of fluxes is very important in FVM. The basic

advantage of this method over FDM is it does not require the use of structured grids, and

the effort to convert the given mesh into structured numerical grid internally is completely

avoided. As with FDM, the resulting approximate solution is a discrete, but the variables

are typically placed at cell centers rather than at nodal points. This is not always true,

as there are also vertex-centered finite volume methods. In any case, the values of field

variables at non-storage locations (e.g. vertices) are obtained using interpolation.

Ωfv

Figure 1.7: FVM cell Ω f v and the associated fluxes along the cell walls

are in

Due to its simplicity (implementation is similar to the FDM) and its adaptability when

it comes to the simulation of complex fluid flows with unstructured geometries, the Finite

Volume Method is one of the most widely used techniques for the numerical simulation of

fluids. Despite these advantages, the Finite Volume Method presents the same shortcom-

ings as all other mesh-based method which is mainly its inability to handle large mesh

deformations or the difficulty it represents to effectively track interfaces between the fluid

and other physical media. Hence, a meshless method will be introduced next, as we be-

lieve represents the best alternative for simulating the fluid flows considered within the

scope of this work.

1.3.2.4 Smoothed Particle Hydrodynamics method

The Smoothed Particle Hydrodynamics (SPH) [GIN 77, LUC 77, VIL 99] is a numerical

method used to solve partial differential equations on a cloud of calculation points xi in a

computational domain Ω ⊂ R
d . It is a meshfree method because there is no connectivity

between the calculation points. Traditionally, the SPH operators, that will be introduced

below, are used to discretize the Euler or Navier-Stokes equations in Lagrangian form.
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The calculation points are interpreted as particles that follow the flow in Lagrangian mo-

tion. Additionally this method holds several similarities with the Finite Volume method

presented previously. In fact, for Euler or Navier equations both methods need to com-

pute the time rate of change of the flow variables averaged over a control volume by

summing numerical fluxes over neighbouring cells or particles. However for the SPH

method, neighbours to a particle i change constantly and are located within a finite dis-

tance depending on the size of a weight or kernel function. Thus the numerical stencil of

the SPH method is much larger than that of the Finite Volume method which only takes

into account its adjacent neighbours.

i

Figure 1.8: SPH particle i, fluxes are integrated over the kernel support of the particle

The SPH method has been found to be specially well suited for capturing dynamic free

surface flows. The fluid particles follow the flow and they are able to capture the position

of the free surface. In addition, no mesh has to be created to connect the calculation points

that are displaced with the flow. Additionally, it is possible to use a variant of the SPH

method, named the SPH-ALE Method [VIL 99, MAR 07], which allows further flexibility

for imposing boundary conditions. For these reasons, the SPH method seems to be the

best suited choice for the carrying out the calculations targeted within this work. On the

one side, free surface flows are naturally taken into account by the method and on the other

hand, the method can be made compatible for interaction with complex solid geometries.

One last interesting feature regarding the simulation a fluid driven stone impacting a solid

target is that SPH particles can adapt easily to the relative motion of the projectile within

the flow while using a mesh-based technique this will be computationally expensive if at

all possible.
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1.3.2.5 Conclusion on the semi-discretization methods

Over the course of this subsection, a very succinct overview of some of the semi-

discretized methods that can be used for fluid-structure interaction has been given. For

each method, the most salient characteristics have been reviewed and a discussion about

the suitability of each method to handle the simulations that this work demands has been

done. As already pointed out, the Finite-Element method seems to be the best choice to

carry out simulations of the solid sub-domain due mainly to its robustness and compat-

ibility with the modelling of complex geometries undergoing large displacements. The

SPH method could also have been a possibility for the semi-discretization of the solid

domain since it offers interesting characteristics allowing to more readily simulate crack

propagation and solid fragmentation. Nevertheless, the finite-element method is far more

mature and provides a more stable and reliable numerical framework for the simula-

tion of solids and solid impacts with respect to what the SPH method currently offers

[SWE 95, BEL 98]. For these reasons it has been decided to exclusively use the former

method for the numerical representation of the solid structures in the current thesis.

On the fluid side, however, it has been discussed that the SPH method is the only

numerical method that can provide simultaneously with simple free surface tracking and

the ability to interact with complex solid geometries and motions. Hence, this will be the

method of choice for fluid simulation in the current work.

In the following sections, more details will be given regarding the SPH and the Fi-

nite Element method and the mathematical and numerical techniques allowing to make

coupled Fluid-Structure interaction calculations with these two numerical methods re-

gardless of their differences in spatial and temporal integration schemes.

1.3.3 Coupling of semi-discretized methods for fluid-structure inter-

action

FSI numerical coupling techniques exist to link the aforementioned numerical methods

for fluids and solids. For mesh-based numerical methods (FDM, FEM, FVM), when

using Lagrangian meshes for the simulation of both sub-domains, the distortion of the

mesh on the fluid sub-domain can lead to errors in accuracy as well as stability issues

coming from an extreme distortion of the fluid mesh in order to follow the fluid-solid

interface or to capture the motion of the free surface in a sloshing problem. This may

lead code developers and users to want to impose a fixed mesh (Eulerian mesh) for the
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discretization of the fluid sub-domain complemented with interface-tracking techniques to

follow the fluid-solid interface or the free surface position. Another solution might imply

using an Arbitrary-Lagrangian-Eulerian (ALE) mesh for the fluid sub-domain. Using this

type of mesh, fluid mesh nodes along the interfaces can move following the motion of

the solid interface nodes which don’t necessarily follow the exact motion of the fluid

material points. Hence, the motion of the fluid mesh is considered arbitrary with respect

to the motion of the fluid material points within the considered fluid domain. In case of

large solid motions, recursive remeshing of the fluid structure interface can be necessary

in order to provide stable calculation. In this brief sub-section, coupling techniques will

be presented based on the description that is adopted to describe the motion of the fluid

mesh within the coupled system (A Lagrangian mesh description will be considered as

the default choice for the solid). This classification will allow to better understand the

attributes offered by each type of mesh description and will highlight the shortcomings of

using a meshbased description for the fluid in the case of the FSI simulations carried out

within the scope of this work.

1.3.3.1 Eulerian mesh description for the fluid sub-domain

Eulerian mesh description for the fluid sub-domain can offer an efficient solution to simu-

lating phenomena involving fluid-structure interaction with negligible fluid-solid interface

displacement [COM 80]. As it is widely known, when adopting an Eulerian description,

the mesh elements are fixed in space while the continuum can flow freely through the

mesh.

In order to carry out fully coupled fluid-structure interaction simulations presenting

free surface flows, an Eulerian description of the fluid mesh can be employed but interface

tracking techniques need to be employed as well. One such interface tracking technique is

the one presented in [PES 02] and it is known as the Immersed Boundary Method (IBM).

Using this method, the fluid is discretized in space using an Eulerian Finite Difference

mesh. The solid is completely immersed and it is represented by a non-conforming (with

respect to the Eulerian fluid mesh) set of boundary points that are interconnected (only

the boundary is represented). The solid boundary points, which follow a Lagrangian de-

scription, apply local body forces to the fluid at their respective positions and kinematic

constraints involving the solid velocity and the interpolated value of the fluid velocity at

the same points in space allowing to establish a strong link between Eulerian and Lag-

rangian variables giving access to the calculation of fields within the fluid sub-domain and
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the updated configuration of the solid sub-domain. In a similar manner to the Immersed

Boundary method, the Ficticious Domain method [GLO 97] allows to replace the set of

points applying local forces by a full volume that can be a rigid solid or can represent a

solid continuum discretized using the Finite Element Method. In addition, the coupling

is done by using Lagrange multipliers in order to ensure dynamic and kinematic continu-

ity at the interface between the fluid and the solid sub-domains thus offering a way to

strongly couple both physical domains.

Finite volume and finite-element Eulerian meshes can be used as well to model free

surfaces in fluid flows and to keep track of the fluid-solid interface for fluid-structure in-

teraction simulations. In order to track the fluid interfaces, techniques such as the Volume

of Fluid (VOF) [HIR 81] or Level-Set [OSH 06] can be used. The former technique keeps

track of the volume fraction of fluid inside the different cells of the mesh in order to locate

the position of the free surface in question. The Level-Set technique replaces the volume

fractions by using a distance to the interface function. In [HAC 15], a monolithic fluid-

structure interaction technique is presented where the level-set method is used along with

a dynamic adaptive mesh algorithm in order to enhance the detection of discontinuities at

the fluid-solid boundary.

At a first glance, carrying out fluid-structure interaction simulations while using an

Eulerian mesh for the fluid can seem contradictory considering that the fluid-solid inter-

face can constantly change during a transient calculation of this nature. However, from

the preceding descriptions, it can be understood that it is actually possible to carry out this

type of simulations if appropriate interface tracking techniques are implemented. These

techniques can either rely on the overlapping of a solid Lagrangian mesh on the Eulerian

fluid mesh and imposing interface continuity with Lagrange multipliers or using volume

fractions or topological functions in order to estimate the position of the interfaces in or-

der to update the boundary conditions on the fluid mesh at each iteration. These type of

techniques can be of great interest for problems in which the structures are fully immersed

within the fluid and for which the movement of the solid within its fluid entourage does

not involve large displacement and rotations.

1.3.3.2 ALE mesh description for the fluid sub-domain

As stated in the introduction to this subsection, an ALE fluid mesh allows nodes or cells

within the mesh to move independently with respect to the fluid continuum. Using an

ALE mesh description for the fluid offers significant versatility regarding fluid-structure
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interaction applications. As an example one can consider a NACA-type airfoil within

an air flow with a given upstream flow velocity (Fig. 1.9). If the airfoil were to remain

stationary during the whole simulation, an Eulerian fluid mesh would be sufficient to carry

out a simulation of the flow around the structure. However if the airfoil were to change

its orientation by revolving around an axis of rotation midway through the simulation, an

ALE description of the fluid sub-domain’s mesh would allow the mesh points and cells

located near the moving interface to follow the solid wall’s motion which has no a-priori

reason to follow the flow of the fluid. Hence, the fluid mesh can accurately capture the

movement of the structure without requiring to practice the interface tracking techniques

discussed previously. Nevertheless, one major drawback concerning this description can

happen if the motion of the mesh following the free surface or the fluid-solid interface

induces a large distortion on the fluid mesh. If such is the case, there is necessity to

continually remesh after some iterations in order to produce a non-spurious mesh for the

continuation of the calculation. Evidently, this re-meshing process can be heavily time

consuming and complex thus the advantage of using an ALE mesh with respect to a

Lagrangian one can be partially lost.

U0
s

Figure 1.9: NACA airfoil within air flow. ALE fluid mesh can follow solid motion

Some examples of coupling problems where the fluid’s mesh follows an ALE descrip-

tion can be seen in [DON 82], where Finite Element Methods are used to discretize both

the fluid and solid sub-domains and the aim is to simulate explosive charges contained

within reservoirs with deformable walls. Within this study, the structure exhibits large

displacements as well as material non-linearity. In order for the fluid ALE mesh to cope

with the large displacements of the solid interface remeshing algorithms are employed to

increase the accuracy of the coupling method.

[VAN 07] carried out a comparative study of the ALE method applied to Finite Ele-

ment discretizations with respect to the Fictive Domain method presented earlier. The

results of this comparative study point to much more accurate simulations when the ALE

method was used (in fact the ALE solution is considered the reference solution to which

the Fictive Domain method solutions are compared). However, if active re-meshing is
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required, the ALE method loses some of its interest as the computational time is much

longer than for the Fictive Domain method.

In [SOU 00], Souli et al. demonstrated the interest of using an ALE approach to

fluid-structure interaction problems by showing academic and industrial examples where

a Lagrangian approaches failed to converge due to excessive mesh distortions.

1.3.3.3 Lagrangian description for the fluid sub-domain

As already stated for the ALE mesh description, the use of a Lagrangian mesh-based

method (FDM, FVM, FEM) would require complex numerical remeshing and mesh-

refinement techniques in order provide converged results. In the case of free-surface

flows, the complexity of accurately tracking all the interfaces in question along with their

possible fragmentations and reconnections would only complicate things further. For

these reasons, a mesh-less based method for the spatial discretization of the fluid seems

as the only plausible solution to overcome this challenge. By getting rid of the numer-

ical mesh, the interfaces are tracked in a natural way as the material points or particles

involved in the calculation spontaneously create the numerical support for spatial integ-

ration as the simulation goes along. Hence, no a-priori connectivity between particles is

required and, in turn, the connectivity between the material points is determined at each

new time-step.

Several types of mesh-free based methods exist [SUL 94, IDE 04, LUC 77, GIN 77],

however this work is focused around a coupling done using specifically the Smoothed

Particle Hydrodynamics method and the Finite-Element method. Hence, the SPH method

will be the only meshless method presented within the scope of this work. The SPH

method can also be used in and Eulerian and in an ALE framework as explained in

[VIL 99] and as it will be discussed in Section 2.1.3. However, considering the types

of fluid flow and the dynamics of the structure in the simulations that will be featured in

this work, only the expression of the SPH method in a Lagrangian framework will be of

interest.

1.3.3.4 Concluding remarks on the different coupling approaches of semi-discrete

numerical methods

During the present subsection, fluid-structure interaction coupling techniques have been

presented according to different mesh descriptions for the fluid sub-domain (consider-

ing a Lagrangian mesh description for the solid sub-domain). It has been observed that
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when using an Eulerian description for the fluid, the tracking of boundaries can be quite

complex if not impossible. Surface tracking can be made more approachable if an ALE

mesh description is adopted, however if mesh distortions are too high, its efficiency can

be hampered. This last statement is also applicable for mesh-based method expressed in a

Lagrangian framework. Hence, it was put forward that only a mesh-less method can give

the required versatility for carrying out the coupled simulations that will be carried out

within the scope of the current work.

1.4 Domain decomposition methods - application to

fluid-structure interaction problems

Techniques for breaking up large problems into collections of smaller and simpler to solve

problems have been in use since more than a century [SCH 69]. The basic domain decom-

position tools have been used in the past to couple problems which generally happen over

the same physical continua and the decomposition helps apply different characteristics to

different regions in the domain or to accelerate the solution process by superposing a col-

lection of simpler broken down problems. Regarding fluid-structure interaction problems,

these techniques can also be applied if the appropriate kinematic and dynamic conditions

are applied at the interface as initiated by [BEL 80, COM 80]. The purpose of the cur-

rent subsection is to present the basics behind the domain decomposition that inspired the

fluid-structure interaction technique that is used within the scope of this work. Only the

generalities of the domain decomposition methods will be given in the present section.

The specificities of how this technique is applied to couple a fluid and a solid domain,

each being discretized with different techniques for space and time, will be explained in

depth in the following chapter.

In general, when using domain decomposition techniques, the larger initial domain

Ω is broken down into smaller sub-domains Ωi such that Ω =
⋃

i Ωi. The treatment of

the interfaces between domains, Γi, can either contain areas where sub-domain overlap

exists (Γi is of the same dimension as the original problem) [SCH 69, DHI 98] or where

the interface exists just at the surface separating different domains (Γi is one dimension

inferior to the original problem) [FAR 91, FEL 01]. A diagram of these descriptions is

given on Figure 1.10.

Using the decomposition techniques in which the sub-domains overlap each other

(left case in Figure 1.10) represent the first type of decomposition methods employed
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Ω

Ω1
Ω2

12

Ω1
Ω2

Γ12

Figure 1.10: Decomposition possibilities for a domain Ω into smaller sub-domains Ω1

and Ω2 separated by interface Γ12. On the right decomposition, the interface’s dimension

is the same as the dimension of Ω. On the decomposition in the left, the dimension of the

interface is decreased by one

[SCH 69] and are less commonly applied when solving coupling problems with semi-

discritized methods since their implementation often calls for total control in the prob-

lem’s matrix numbering in order to isolate the degrees of freedom (DOF) on the interface

calculation points as a way to simplify the solution procedure of the resulting algebraic

system [HER 02].

Alternatively the Arlequin or Handshake method proposed by [DHI 98] can be used

to couple problems in which different mechanical models describing different zones of

the same domain are superimposed. Using this method, a duplication of mechanical

states takes place along the overlapping area. Hence, in order to avoid duplicating the

mechanical energy of the global system, the energy (virtual work associated to different

forces) in the overlapped area is distributed using weight functions. Finally, in order to

assure continuity of the mechanical state in the overlapping zone, bonding techniques

such as the penalty method or the Lagrange multiplier method can be used.

Considering solid mechanics static problem split into two sub-domains each with an iso-

tropic elastic material law, the Arlequin formulation allows to determine the displacement

fields u1 and u2 that are kinematically admissible and the Lagrange multiplier λ allowing

to minimise the functional in equation (1.4).
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





Warl = W1(u2)+W2(u2)+C (λ,u1 −u2)

Wi(ui) =
1

2

∫
Ωi

αiσ(ui) : ε(ui) dΩ−
∫

Ωi

βifi ·ui dΩ ∀i ∈ (1,2)

C (λ,u) =
1

2

∫
S

λ ·u+ l2ε(λ) : ε(u) dΩ

(1.4)

In equation 1.4,f represents the external forces, ε(u) is the strain tensor and σ(u) is the

stress tensor associated to the displacement field u, α and β are the two weight functions

(comprised between 0 and 1) associated to the internal and the external forces and l is a

strictly positive parameter homogeneous to a length.

As stated before, this method becomes interesting when dealing with overlapping do-

mains with different physical natures, such as the example put forward in [DHI 98] where

a cantilever beam is split into a global domain, where typical beam theory can be used,

and a smaller 2-D sub-domain for the region near the blocked boundary condition, where

more localized mechanical effects can be studied.

From a fluid-structure interaction point of view, the Arlequin method seems difficult to

put into practice since there is no overlapping zone for the fluid and solid sub-domains to

share during a fluid-structure interaction problem. In the following sub-section, domain

decomposition methods where no overlapping of sub-domains takes place will be presen-

ted and it will be seen how this type of coupling methods can be best suited to put into

use when dealing with fluid structure interaction problems.

Domain decomposition techniques in which no overlapping between sub-domains oc-

curs can be simpler to implement and hence much more utilized in today’s numerical

simulations. Furthermore, this type of decomposition allows, in some cases, for problems

in each sub-domain to be solved for independently, thus providing an ideal choice for

parallel implementations. In the current section two types of decomposition techniques

with no overlapping will be briefly presented : Schur’s primal method and Schur’s dual

method. For a full run-down on other types of domain decomposition methods with no

overlapping, the reader can consult: [DUR 97, CHA 14, FAR 91].

In order to facilitate the description of these two domain decomposition methods, the

reference problem represented in Figure 1.11 will be considered.

From Figure 1.11, the domain Ω = Ω1∪Ω2∪Γ12. Each decomposed sub-domain has

its own set of conditions acting on their respective boundaries: for i ∈ [1,2], ∂uΩi for kin-

ematic boundary conditions (Dirichlet-type) and ∂FΩi for dynamic boundary conditions

(Neumann-type).
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Ω1

Ω2

Γ12

Ω1∂u

Ω1∂F

Ω2∂u

Ω2∂F

Figure 1.11: Domain decomposition reference problem

According to [HER 02, DUR 97], for the whole system Ω in Figure 1.11, considering

a material with perfectly elastic behaviour, the variational form on displacement can be

expressed as:









∀δU ∈ UO

δ

[
1

2

∫
Ω

Tr[Kε(U)ε(U)]dΩ−
∫

Ω
fd ·UdΩ−

∫
∂F Ω

Fd ·UdS

]

= 0

U |∂uΩ= Ud

(1.5)

Where U is the unknown displacement vector and UO is the kinematically admissible

field for the solution vector. K is Hooke’s constant, since we are considering a perfectly

elastic solid material for the sake of simplicity. Fd are the boundary forces applied on

∂FΩ, fd are the body forces applied on Ω and Ud are the kinematic boundary conditions

applied on ∂uΩ.

For a static problem, finding the minima of (1.5) leads to the algebraic system of the

following sort:

KU= F (1.6)

with K being the stiffness tensor, U containing the nodal kinematic unknowns and F

representing the nodal applied forces on the system.

Remark: For the sake of simplicity in presenting domain decomposition methods, only

the static analysis of mechanical problems will be considered in the current section despite

the fact that the transient analysis implementation of these methods is the backbone of

the fluid-structure interaction method used in this work. Further details regarding the

implementation of the transient domain-decomposition methods will be covered in the
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next section and following chapters, where the fluid-structure interaction method will be

covered.

1.4.1 Schur’s primal method

Schur’s primal method is based on establishing kinematic continuity at the interface

between sub-domains. Hence, it’s referred to as primal since it only makes use of the

kinematic or primal variables to couple the different sub-domains involved. Dynamic

equilibrium is verified later on resulting as a consequence of kinematic continuity con-

ditions. Using the domain decomposition presented in Figure 1.11, the kinematic vector

U can be considered a superposition of U1, U2 and UΓ and by renumbering the DOF of

the initial problem in a way that each of the sub-domain’s internal DOF’s are listed first

followed by the interface’s DOF’s, (1.6) can be expressed as:






K11 0 K1Γ

0 K22 K2Γ

KΓ1 KΓ2 KΓΓ











U1

U2

UΓ




=






F1

F2

FΓ




 (1.7)

Using Gauss elimination’s method, System (1.7) can be solved by solving first for the

kinematic unknowns along the interface UΓ. This solution can then be found for the other

two components of the unknown kinematic vector by substituting the value found for UΓ

into the initial algebraic system (1.7). The full detail regarding the solution procedure of

such a system can be found in [DUR 97, CHA 14]

Since this domain decomposition technique calls for the renumbering of the DOF in

order to carry out the solution process of the algebraic system of equations (1.6), the im-

plementation of this technique might call for an intrusive handling of the solvers used by

the different sub-domains. Additionally for fluid-structure interaction problems, coupling

relationships generally involve the relationship between the pressure at the interface and

a kinematic variable (the velocity, in general). Thus a domain decomposition method in

which the dynamic variables at the interface are also taken into account can be prefer-

able. These latter type of decomposition techniques will be presented in the following

sub-section.
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1. Domain decomposition methods for fluid-structure interaction problems

1.4.2 Schur’s dual method

The dual method for Schur’s algorithm is one of the most widely used domain decompos-

ition methods in solid mechanics [GRA 01, FAR 91, PRA 04]. As its name implies, this

method makes use of a kinematic variable and dynamic variable (the kinematic’s dual

variable) in order to simultaneously enforce kinematic and dynamic equilibrium at the

interface between sub-domains.

To establish Schur’s dual method, once again, the initial domain Ω can be split into

two sub-domains Ω1 and Ω2 separated by interface Γ12 (Fig. 1.11). By following

[FAR 91], one can build a Lagrangian functional based on (1.5) for each subdomain,

J(v1) and J(v2) respectively, and by the imposure of a kinematic continuity condition at

the interface written in its dual formulation with the help of a Lagrangian multiplier µ:

(v1 − v2,µ) =

∫
Γ12

µ · (v1− v2)dS (1.8)

Hence giving :

J∗(v1,v2,µ) = J(v1)+ J(v2)+(v1 − v2,µ) (1.9)

The solution of the minimization problem for the functional in (1.9) implies finding

saddle point for J∗(v1,v2,µ). It can be shown that the solution to this problem gives

the two kinematic variables (u1 and u2) and the Lagrange multiplier (λ) guaranteeing

kinematic and dynamic equilibrium at the interface.

As in the previous section, a static solid mechanics problem with a perfectly elastic

constitutive law will be considered for the sake of simplicity. When using a semi-

discretization technique, the solution to the minimization of the functional in (1.9) can

be translated as the solution of the algebraic system (1.10). When this method is dis-

critized using the Finite-Element Method, it is known as the Finite-Element Tearing and

Interconnection method (FETI method).







K1U1 +LT
1 λ = F1

K2U2 +LT
2 λ = F2

L1U1 +L2U2 = 0

(1.10)

If one compares this system with the problem stated in the previous section, the differ-

ences include the addition of the Lagrange multiplier vector (λ) as well as the constraint

matrices (Li) which can be considered as geometrical operators allow to project the DOF
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of each sub-domain unto the more restricted sub-space where the interface problem is

solved.

In matrix terms, the system presented in (1.10) can be expressed as:






K1 0 LT
1

0 K2 LT
2

L1 L2 0











U1

U2

λ




=






F1

F2

0




 (1.11)

Following a bordered approach, the system in (1.11) can be solved by establishing the

solution as the superposition to a constrained (a problem where the only applied forces

on the domain come from the dynamic equilibrium at the interface) and unconstrained

problem (a problem where only the external boundary and body forces on each separate

sub-domain are considered). The details regarding the way system for this type of problem

(1.11) is solved can be found in [FAR 91, GRA 01] with an extension to mismatching

interface DOF’s given by [HER 02]. The extension of this method to solve fluid-structure

interaction method was developed in [ZHE 13] and was extended to be used with different

time scales in the current thesis.

In contrast to Schur’s primal decomposition method, the method exposed in this sub-

section does not require an intrusive manipulation of the degrees of freedom on each

sub-domain in order to provide an ideal way to find a solution for the algebraic system.

Thanks to the constraint matrices (Li), this method allows each sub-domain to be handled

independently and only the continuity condition at the interface and the projection of the

effect of the Lagrangian multipliers into each domain is made possible through the use

of these geometrical operators. Furthermore this method ensures dynamic and kinematic

continuity along the interface in a synchronous manner.

1.4.3 Multi-scale methods in time

The FETI methods, presented in the previous section, were introduced as powerful iter-

ative solvers and remain one of the most used domain decomposition methods for static

solid mechanics problems. These methods were later extended to dynamic problems in

[FAR 95]. In the FETI method, a given spatial domain is divided into non-overlapping

zones where an incomplete solution of the primal field (kinematic quantities) can be eval-

uated using a direct or iterative solver. Subsequently, field continuity is enforced via Lag-

range multipliers applied at the interfaces of the concerned domains. This domain linking

phase generates a symmetric dual problem where the unknowns are the Lagrange multi-
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pliers. It is clear how the interest behind the domain decomposition techniques presen-

ted in the previous section is amplified if these can be extended to the case of transient

analysis where each sub-domain involved can be potentially integrated with a different

time-scheme and time-step. Research in this sense has sprouted a vast domain where the

interface continuity equations can either be satisfied at the smaller of time-scales, as put

forward mainly by the GC method [GRA 01], or at the larger time-scale, as seen in the

methods proposed by the PH method[PRA 04] and the MGC method [MAH 11]. More

recently, Brun et al. [BRU 15] proposed a general framework for building energy con-

serving methods at the two time scales (kinematic continuity at the large or the fine time-

steps), by cancelling the interface pseudo-energy involved in the so-called energy method,

this was originally proposed by Hughes for proving the stability of hybrid explicit-implicit

time integrators [HUG 12].

Regarding a widely used micro-time scale coupling technique, Gravouil and

Combescure proved in [GRA 01, COM 02] that imposing velocity continuity at the inter-

face leads to a stable algorithm. In addition, they proposed a FETI-based multi-time-step

coupling technique, known the GC method, which allows to couple arbitrary Newmark

schemes with different time-steps in different subdomains. In this context, the GC method

is shown to be unconditionally stable as long as each of the involved sub-domains satisfy

their own stability requirements. However, for multi-time-step cases the GC method can

induce energy dissipation at the interface, in contrast to the case where a unique time-step

is used in all sub-domains, where the GC method is energy preserving. The details behind

the GC method will not be developed in the current section since they will be presented

in Chapter 3 of the current thesis.

Regarding a macro time-step based coupling algorithm, an interesting method has

been recently proposed by Mahjoubi, Gravouil and Combescure called the MGC method

[MAH 11]. The MGC method allows to couple sub-domain solvers with any time in-

tegrator even, for incompatible time-steps. This method is able to couple Simo, Krenk,

Verlet, HHT and Newmark time schemes, thus, one of the great advantages of the MGC

method is to be a general method able to couple a variety of time schemes. The MGC

method holds a great advantage over the GC method which is that there is no energy dis-

sipation at the interface and that it only requires one resolution of the condensed problem

in a macro time step in order to obtain the Lagrange multipliers. The MGC method is

a general but more complex method. It is solved not in velocity at a fixed time-step but

in velocity increments and, particularly, the calculations of condensation operator H and

of vector the right hand side operator b, deduced from the unconstrained quantities (not
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involving the influence of the sub-domain interface interactions) of both sub-domains are

more difficult to obtain than for the GC technique. Furthermore, its implementation gen-

erally demands a more intrusive approach within the sub-domain specific solvers with

respect to what can be achieved with the GC method. For this reason the MGC method

was initially tested for implementation in the current work, but despite some early results,

it was finally abandoned in favour of the GC technique whose micro time-scale coupling

nature allows to better capture the non-linear effects of a rapidly changing fluid-structure

interface.

One can add that the aforementioned transient dynamics coupling methods are en-

dowed with advantages and drawbacks as, for example, the macro-based methods turned

out to be more suited for parallel computing. However, since the interface constraint con-

dition is only verified at the macro time-scale, an accurate tracking of the interface motion

becomes more challenging. The micro-based multi-time-step coupling techniques handle

more easily strong geometrical and material non-linearities at the fine time scale. How-

ever, some small amount of numerical dissipation can occur at the interface, due to the

required interpolations of quantities at the large time scale. The present work targets the

simulation of highly non-linear phenomena, both from the geometrical and the material

perspectives, occurring in fluid-structure interaction problems. The GC method, due to its

micro time-scale coupling characteristics, has thus been chosen in the current work and

the details of its implementation will be presented and developed in Chapter 3 of the cur-

rent thesis. The reader can consult [GRA 01, FAR 91, PRA 04, MAH 11] to obtain more

information regarding these methods outside a fluid-structure interaction framework.

1.4.4 Conclusion on the domain decomposition methods and its ap-

plicability to fluid-structure interaction problems

The domain decomposition methods presented in the current subsection were originally

intended for their application in solid mechanics problems [DUR 97, FAR 91]. As pre-

viously discussed, these decomposition techniques allow to simplify the solution process

of a statics problem in which different constitutive models or boundary conditions can be

used in each sub-domain making part of the original problem. In transient solid dynamics,

this type of decomposition techniques can be shown to be applicable [GRA 01, PRA 04]

and their interest can be magnified if the different sub-domains that make-up the original

domain require different time-scales in order to capture different time depending charac-

teristics that each sub-domain may present.
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Hence, the extension of the domain decomposition techniques onto transient fluid-

structure interaction problems can be envisaged if the whole fluid-solid system is con-

sidered as an initial domain that is decomposed into a fluid and solid sub-domains. The

dual-Schur method offers greater flexibility within the large family of domain decompos-

ition techniques, as there is no need to interfere with the way in which the DOF of each

sub-domain are organized since especially built constraint matrices allow to extract the

fluid-solid boundary DOF from each sub-domain in order to solve the continuity equa-

tions at the interface and to project back the solution onto each sub-domain. Further-

more, the dual-Schur method, in contrast to the primal method, gives an insight into the

forces that operate at the interface linking both domains as well as other involved kin-

ematic quantities. Since in many cases boundary conditions at the fluid-solid interface for

transient fluid mechanics problems involve a relationship between the pressure and the

velocity at the interface, the fact that both dynamic and kinematic variables are present

in the dual-Schur method provides an entry point the coupling that can be developed for

both sub-domains [ZHE 13]. As already exposed in the current subsection, all the details

regarding the implementation of the dual-Schur domain decomposition method will be

presented during the following sections of the current work. An extension on applying

the method to problems featuring different time-scales in the solid and the fluid with the

presence of strong non-linearities will also be given.

1.5 Solid contact-impact modelling

Numerical modelling of impacts between solids is quite a vast research subject and sev-

eral techniques exist which attempt to recreate as accurately and inexpensively as possible

the complexity of this recurrent physical phenomenon [HAL 85, BEL 91]. For the current

work, an appropriate way of simulating solid impacts is necessary in order to be able to

predict the extent of the damage that can be caused on a functioning hydroelectric turbine

blade by an unexpected stone found within the jet stream. Besides being accurate and

reliable, this method must be made compatible with the fluid-structure interaction simula-

tion strategy that is used to link the fluid and solid sub-domains. The numerical methods

for simulating impacts using the finite-element method will be handled by a specialized

solver and the basic characteristics behind the algorithm taking care of this complex task

will be briefly presented in the current subsection. The implementation algorithm making

the impact modelling compatible with the sub-domain coupling technique will be given
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in the following sections.

1.5.1 Impenetrability conditions

For the sake of simplicity two solid bodies, Ω1 and Ω2 can be considered which can be

discterized using a Lagrangian mesh (mesh point motion is governed by the continuum’s

governing equations). In order to guarantee that there will be no interpenetration of the

two bodies, it must be ensured that neither body can occupy the same space at the same

time.

Ω1∩Ω2 = /0 (1.12)

Although it is impossible for Ω1 and Ω2 to occupy the same physical position at the

same time, the two domains can be in contact over a surface Γc as Figure 1.12 shows.

Ω1

Ω2

Γ

1

Figure 1.12: Solid domains Ω1 and Ω2 in contact over surface Γc

Over surface Γc, a mathematical condition to ensure impenetrability between the

nodes and elements of each domain must be established. In general, a condition involving

the normal velocities to the interface as well as a dynamic condition involving the normal

traction to the surface are considered. Conditions on the local tangential components of

the velocities and tractions can also be established in the case in which friction is con-

sidered for the contact. However, for the sake of simplicity, we will only consider the

local normal components for this conditions which read :
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{

γn = (v1 −v2) ·n1 ≤ 0

tn = t1
N(x, t) =−t2

N(x, t)≤ 0
(1.13)

The first condition in equation (1.13) guarantees velocity equilibrium along the nor-

mal to body Ω1 on contact domain Γc. The fact that this equation is expressed as an

inequality, emphasizes that when both bodies are in contact, they can either remain in

contact (γn = 0) or separate (γn < 0). For the second condition, t i
N(x, t), i ∈ [1,2] are the

normal tractions expressed on time t and on a point in space x lying on Γc. The normal

tractions are obtained through projections of the Cauchy stress tensor on the normals to

the interface. This latter condition is known as the traction equilibrium condition and

it only takes into account compressive tractions (adhesion between surfaces is not con-

sidered for simplicity). Both of these conditions can be combined in order to express a

unitary contact condition:

γn · tn = 0 (1.14)

Condition (1.14) expresses the fact that when the two bodies are in contact, they must

either remain in contact (γn = 0, tn < 0) or separate (γn < 0, tn = 0).

1.5.2 Contact detection and contact force determination using the

FEM

When using a Finite-Element method to simulate impacts between solids, several exist

techniques which are capable of detecting zones of contacts and subsequently providing

the contact forces acting on the solids and preventing interpenetration. Two of the most

widely employed algorithms used today are the sliding lines/surfaces algorithm and the

pinball algorithm [HAL 85, BEL 91].

The sliding lines/surfaces algorithm (Figure 1.13) is one of the first ones to be used

for simulating impacts between solids using the FEM method among others. It directly

uses the mesh elements and nodes in order to carry out geometrical operations allowing

to determine the existence of contact between solid bodies discretized in space using a

Lagrangian mesh. The method is based on a ”master” and ”slave” pre-determination of

bodies under potential contact in which the nodes of the master surface are tested for

proximity with nodes of the ”slave” surface at each time iteration. Interpenetration is

detected by checking each ”slave” node’s position against the surface or edge around
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Solid contact-impact modelling

each ”master” node. If interpenetration is detected, resulting forces can be calculated

using several methods such as the penalty method, or using Lagrangian multipliers. The

full details regarding the sliding lines algorithm can be found in [HAL 85].

Ωslave

Ωmaster

Figure 1.13: The sliding lines algorithm allows to determine contact using the mesh

elements and nodes

The pinball algorithm (Figure 1.14) was developed in order to provide a solution to

some of the shortcomings of the sliding lines/surfaces algorithm such as the complex

geometrical calculations it requires in order to detect contacts between domains or its

inability to detect certain types of contacts between edges and surfaces of the involved

meshes. This more recently developed algorithm relies on a pseudo re-meshing of the

surface elements in the contacting bodies with circles/spheres whose sole purpose is to

detect a contact through simple mathematical condition regarding their radii. The possib-

ility to refine the density of the pinballs without needing to change the original mesh is

one of its main advantages when compared to the sliding lines/surfaces algorithm. The

calculation of efforts at the interface following a contact between bodies can also be done

through the penalty method or using Lagrange multipliers. The full details regarding the

formulation and implementation of the pinball method can be found in [BEL 13, CAS 02].

Following contact detection using the techniques described in the previous section,

the contact force impeding solid interpenetration needs to be obtained in order to obtain

the external efforts acting on each solid and thus determine their new configuration. As

put forward in [HAL 85, BEL 91, CAS 02], several methods to determine contact forces

exist such as the penalty method and the Lagrange multiplier method. For the current

work, we will only focus on giving the details on the effort determination through the

use of Lagrange multipliers as it is the same method that is used for determining the

fluid-induced efforts on the structure.

For the current work, the use of precise algorithms for simulating contacts between

solid bodies is necessary. The solid solver, Europlexus, that will be used for the simula-

tions in this work, which is based on the Finite-Element method provides two algorithms

capable of calculating the contact forces between solids. These algorithms are known as
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1. Domain decomposition methods for fluid-structure interaction problems

Ω1

Ω2

Figure 1.14: The pinball algorithm uses circles or spheres created ad-hoc for contact

detection while minimizing domain interpenetration

the sliding lines algorithm and the pinball algorithm. The calculations of solid contacts

will be considered as part of a single solid calculation even in the presence of more than

one solid domain. Hence the external forces produced through contact will be part of

an monolithic calculation within the solid solver and the rest of the external efforts on

the solid sub-domains will come from the fluid-structure interaction through a partitioned

interaction with an external SPH-based fluid solver. Such an approach involving the de-

coupling of solid-solid calculations and the use of domain decomposition methods can

be seen in the works of [BOU 06, GRA 01] and provides an elegant solution to coupling

external solvers while taking into consideration impacts between solid sub-domains.

1.6 Conclusion

Over the course of the current chapter, several techniques to solve fluid-structure interac-

tion problems have been presented and their relevance with regards to the objectives of

the current work has been evaluated. Domain decomposition methods allowing to split a

mechanical problem into separate and simpler to solve entities have also been presented.

As it has been explained, these decomposition techniques, although initially conceived to

be used in solid mechanics statics problems, can be extended to be used in fluid-structure

interaction problems if considering the fluid and solid as separate sub-domains of a whole

initial problem. Finally, numerical methods to simulate contacts between solids have also

been introduced as their understanding is important in order to carry out the simulations
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Conclusion

within the scope of this work.

From all the information presented, the most convenient way of carrying out the sim-

ulations has been argued to be a coupling between the Finite Element Method for the

simulation of the solid and the SPH method for the fluid sub-domain using a domain de-

composition method in which both sub-domains are linked using a Dual-Schur-inspired

(FETI) method. Solid contact simulations will be handled as internal calculations within

the solid solver.

The following chapters in this text will focus on precisely describing the govern-

ing equations for each sub-domains along with the basic concepts around the semi-

discretization techniques used to solve them. The coupling technique will be described in

detail and validation examples will be given. Subsequently, using the numerical coupling

method described, calculations of the damage induced by a rock impact on a hydraulic

turbine blade will be carried out in order to show the robustness of the proposed method.

45

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI040/these.pdf 
© [J. Nunez Ramirez], [2017], INSA Lyon, tous droits réservés



1. Domain decomposition methods for fluid-structure interaction problems

46

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI040/these.pdf 
© [J. Nunez Ramirez], [2017], INSA Lyon, tous droits réservés



Chapter 2

Fluid-solid coupling strategy

In this chapter, the fluid and solid sub-domain governing equations will be presented

along with their respective semi-discretized forms providing the numerical framework

for the numerical simulations done within the scope of this work. Subsequently the

domain decomposition technique allowing to couple both discritized sub-domains will be

presented
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2.1 SPH method for fluid simulation . . . . . . . . . . . . . . . . . . . . . . 49

2.1.1 Governing equations for the fluid . . . . . . . . . . . . . . . . . . 49

2.1.2 Discretization using the SPH method . . . . . . . . . . . . . . . . 51

2.1.3 SPH-ALE method . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Governing equations for the solid sub-domain . . . . . . . . . . . . . . 62

2.2.1 Finite-Element method for the solid . . . . . . . . . . . . . . . . . 63

2.3 Coupling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4 Contact force modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.1 Discretization of the contact forces . . . . . . . . . . . . . . . . . . 72

47

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI040/these.pdf 
© [J. Nunez Ramirez], [2017], INSA Lyon, tous droits réservés



2.5 Conclusion on FSI couping with the SPH-FEM methods . . . . . . . . . 74

48

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI040/these.pdf 
© [J. Nunez Ramirez], [2017], INSA Lyon, tous droits réservés



SPH method for fluid simulation

2.1 SPH method for fluid simulation

In the current section, the equations governing the fluid sub-domain are presented first

along with the numerical mesh-less technique used to discretize the physical domain.

Special attention should be paid to the boundary condition treatment, which allows to set

up a system of coupled equations whose unknowns are the pressures and velocities at the

interface with the solid sub-domain.

2.1.1 Governing equations for the fluid

For the fluid sub-domain, water is the only liquid considered. Hence an equation model

capable of describing the behaviour of a Newtonian, weakly compressible fluid such as

the Navier-Stokes model [TEM 84] is to be applied. Furthermore, only isothermal flows

at high Reynolds numbers will be considered (inertial factors are thus considered prepon-

derant over viscous factors), giving way for the energy conservation equations as well as

all viscosity-related terms to be discarded from the Navier-Stokes model. In this manner,

the Euler model of the conservation equations is to be considered (2.1) for the description

of the behaviour of fluid flows in the current study.







∂Φ

∂t
+∇ ·Fc = Q

Φ=

(

ρ f

ρ f v f

)

, Fc =

(

ρ f v f

ρ f v f ⊗v f + p f I

)

, Q =

(

0

ρ f g

)
(2.1)

In equation (2.1), the Euler model of the conservation equations are expressed using the

vector Φ which is known as the vector of conservative variables ρ f , the fluid density,

and ρ f v f , the momentum , which is the product of the fluid’s density and the fluid’s

velocity v f . Fc is called the convective flux tensor and it can be expressed in terms of Φ

if considering a weakly compressible state equation allowing to express the fluid pressure

p f (I being the identity matrix) in terms of the fluid density ρ f . Finally, the vector Q

contains the source terms of the conservation equations, which in the current case, only

consider the gravitational induced body forces through the gravitational field from which

the gravity vector g is obtained.

The differential form of the Euler equations for fluid flows is valid for functions that are

at least C1 since the divergence of the convective flux tensor is needed to solve the system

of equations. For cases in which the conservative variables are piecewise differentiable, it
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2. Fluid-solid coupling strategy

is interesting to express system in the integral form over an infinitesimal fluid volume Ω f

and using the Reynolds Transport Theorem as presented in (2.2)

∂

∂t

∫
Ω f

Φ dΩ f +
∫

Ω f

∇ ·Fc dΩ f =
∫

Ω f

Q dΩ f (2.2)

Expression (2.2) is explicitly expressed in integral form as :







∂

∂t

∫
Ω f

ρ f +∇ ·
(
ρ f v f

)
dΩ f = 0

∂

∂t

∫
Ω f

ρ f v f dΩ f +
∫

Ω f

∇ ·
[
ρ f v f ⊗v f

]
dΩ f =

∫
Ω f

p f IdΩ f

(2.3)

The unknowns in (2.3) are ρ f , p f and v f . The third equation needed to close the

system comes from the weakly compressible equation of state giving the relationship

between the fluid pressure p f and the fluid density ρ f :

p f =
ρ0

f (c
0
f )

2

γ f

[(

ρ f

ρ0
f

)γ f

−1

]

(2.4)

Equation (2.4) is known as the Tait equation of state [MAC 66], where γ f ≈ 7 and the

0-superscripted terms are employed to denote the reference values of the pressure p0
f the

density ρ0
f and the sound speed c0

f .

The equations in (2.2) are expressed in an Eulerian framework since the reference

volume Ω f is fixed in space and the fluid material points move through this volume

serving as support for the evaluation of the integrals. In order to consider the concept of

the motion of the reference volume a new parameter v0 should be introduced allowing to

obtain the material time derivative of the points within the moving reference volume. In

such a case [HIR 74, NEU 14], the conservation equations can be expressed as :

∂Φ

∂t
+∇ · (v0⊗Φ)

︸ ︷︷ ︸
dΦ
dt

+∇ · (Fc−v0 ⊗Φ)
︸ ︷︷ ︸

F(Φ,v0)

= Q (2.5)

(2.5) can be expressed in integral form over the Lagrangian reference volume, ΩL
f ,

moving with velocity v0 as:
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SPH method for fluid simulation

rij

Figure 2.1: Allure of a kernel function used to weigh interactions between SPH particles

d

dt

∫
ΩL

f

Φ dΩL
f +

∫
ΩL

f

∇ ·F(Φ,v0) dΩL
f =

∫
ΩL

f

Q dΩL
f (2.6)

In expressions (2.5) and (2.6), the velocity of the reference volume v0 can take different

values in order to find the expression of the governing equations under different config-

urations. If v0 is set equal to zero, the governing equations are expressed in an Eulerian

framework. If v0 is set to be equal to fluid flow velocity, a Lagrangian configuration of

the governing equations is obtained. Finally, a third configuration in which, the velocity

of the reference volume v0 is set arbitrarily in order to suit some constraint inherent to

the calculation under consideration, allows to express the conservation equations in an

arbitrary Lagrangian-Eulerian (ALE) framework.

2.1.2 Discretization using the SPH method

The equations presented in (2.3) will be solved using a mesh-less technique known as

Smoothed Particle Hydrodynamics. This technique is based on the use of a compactly

supported Gaussian-like function W (r,h), called the kernel function, used to weigh inter-

actions between the unconnected numerical particles discretizing a physical domain.

Figure 2.1 shows the shape of a typical Gaussian-like kernel function used in SPH.

The kernel function W (r,h) is centered on a numerical particle i, where ri j represents the

distance separating it from another arbitrarily positioned particle j and h is a parameter
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2. Fluid-solid coupling strategy

used to find the radius of the function’s support domain Di bounded by ∂Di. Outside the

support domain of the function, its value is nil. For the current study, we will make use

of the Wedland C4 kernel function [SCH 06]. There are several families of SPH-based

techniques that can be employed to simulate different types of fluid flows.

The traditional formulation of the Smoothed Particles Hydrodynamics method as pro-

posed by [LUC 77, GIN 77] is written in a Lagrangian framework in a way guaranteeing

at least zero order consistency for the spatial approximation of the physical domain under

consideration and using an artificial viscosity term Πi j to stabilize the numerical scheme.

Using the original SPH formulation, the semi-discrete fluid conservation equations give :







dxi

dt
= vi

dρi

dt
= ρi ∑

j∈Di

(v j −vi) ·∇ jWi jω j

dvi

dt
= gi − ∑

j∈Di

m j

(

p j

ρ2
j

+
pi

ρ2
i

+Πi j

)

∇ jWi j

(2.7)

In system (2.7), an equation has been added to the conservation equations in order

to keep track of the position xi of a numerical particle i. The discretized conservation

equations, consider the interaction between a particle i and its neighbour j under the

support domain of Di. For simplicity, equations in system (2.7) only take into account

particle interactions far away from the boundaries of the discretized domain and no

truncation of the support of the kernel function ∂Di is considered. Notice that using the

SPH method, the calculation of spatial gradients is done on the weight functions and not

directly on the conservative variables mimicking the purpose of the shape functions used

in the finite-element method.

2.1.3 SPH-ALE method

Despite its ease of implementation and proven accuracy for certain cases [GIN 77,

DEL 11], the traditional Lagrangian SPH method will not be the one used to discretize the

fluid sub-domain in the current work. Instead, a derived ALE formulation proposed by

[VIL 99] will be used since it provides major flexibility as well as a numerical framework

for elegantly imposing boundary conditions which make the SPH-ALE method the proper

choice for dealing with complex solid geometries [MAR 07].
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SPH method for fluid simulation

Using the notations in (2.5) and the divergence theorem, the conservation equations

discretized using the SPH-ALE method are expressed in semi-discrete form for any

particle i within the computational domain as :

d(ωiΦi)

dt
+ωi ∑

j∈Di

ω j(Fi +F j) ·∇iWi j +ωi ∑
k∈∂Di

sk(Fi +Fk) ·nkWik = ωiQi (2.8)

where Fi and F j represent the convective fluxes evaluated at the positions of particles

i, xi, and j, x j, respectively, as well as the convective flux tensor of boundary element k

of surface sk and at position xk.

The sum of convective fluxes on different particles in equation (2.8) guarantees con-

servation of momentum between particles since the influence of particle i on particle j

can be shown to be the opposite of the influence of particle j on particle i [DEL 11].

Nevertheless the formulation in (2.8) doesn’t ensure mass conservation between particles

at a local scale even if mass is conserved at the global scale. Furthermore, as seen in

[VIL 99] the semi-discretization of the conservation equations in (2.8) is uncondition-

ally unstable. An artificial viscosity as shown in the original Lagrangian formulation of

the SPH method could be a possibility for providing stability to the numerical method.

Nevertheless, another approach was presented by Vila in [VIL 99], in which the summa-

tion of fluxes between particles, Fi +F j, is replaced by intermediate state between them,

2GE,i j = 2GE(Φi,Φ j), which is calculated as the solution to a Riemann problem between

the states of particles i and j. Using this new formulation, equation (2.8) can be expressed

as :

d(ωiΦi)

dt
+ωi ∑

j∈Di

ω j(2GE,i j) ·∇iWi j+= ωiQi (2.9)

where:

GE,i j =

{

ρEi j
(vE,i j −v0,i j)

ρEi j
vE,i j ⊗ (vE,i j −v0,i j)+ pE,i jI

(2.10)

and where the wall terms k ∈ ∂Di from (2.8) are excluded for the sake of simplicity.

In equation, (2.10), the top line is the numerical mass flux expressed from the solu-

tion of the Riemann problem for the mass conservation equation. The bottom line is the

numerical flux expression to the solution of the Riemann problem in the case of the mo-

mentum conservation equation. The former and latter expressions are in turn composed of
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2. Fluid-solid coupling strategy

the solution to the Riemann problem to the density ρEi j
, the velocity vE,i j and the pressure

pEi j
whose solution process will be explained in the following lines. One should notice

the arbitrary velocity v0,i j = v0(xi j, t) with xi j = (xi +x j)/2 which takes into account the

movement of the numerical particles independently from the flow velocity of the fluid

continuum (ALE-nature of the formulation).

In order to obtain the solution to the intermediate state between two particles i and j,

a local axis system is considered for a 2D problem in which the 1st direction is tangential

to the vector pointing from i towards j and the 2nd direction is orthogonal creating a 2D

direct local orthonormal system (O,~x′,~y′) as portrayed in Figure 2.2.

i

j

x'

y'

Figure 2.2: Local coordinate system to on which the solution to the Riemann problem

will be sought

By establishing the new coordinate system, the solution to the conservation equations

will only be sought on the direction parallel to ~x′ at half the distance between the xi and

x j by solving a Riemann problem [TOR 13] at the numerical discontinuity between the

two disjoint numerical entities. The contribution along the tangential direction~y′ will be

obtained when solving the Riemann problem between particle i and other surrounding

particles different than j. Thus, the conservation equations are projected on a 1D vector

subspace simplifying the solution process.

Following [MAR 07, ZHE 13, TOR 13], after some mathematical simplifications,

the algebraic system that must be solved for in order to find the value of the primitive

quantities (ρ,vx′,vy′) when the problem is projected on~x′ is :
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SPH method for fluid simulation







∂W

∂t
+A

∂W

∂x′
= Q

W =






ρ

vx′

vy′




 , A =






vx′ ρ 0

c2/ρ vx′ 0

0 0 vx′




 , Q =






0

gx′

gy′






(2.11)

In equation (2.11), c represents the speed of sound in the fluid, vx′ and vy′ represent the

components of the velocity vector v in directions ~x′ and ~y′, respectively. Similarly, for

the gravity vector g, gx′ and gy′ represent the components in their respective directions.

The solution for the non-linear hyperbolic PDE system in (2.11) is obtained by solving

a Riemann problem whose solution is a function of the known states of the primitive

variables in particle i and particle j. The pressure p variable, is obtained through the

state equation (2.4). To set up the Riemann problem between particle i and its neighbour

j, the characteristic waves associated to the eigenvalues of system (2.11) are needed.

These are associated to the eigenvalues of matrix A, hence, the roots of the characteristic

polynomial det(A−λI) = 0 are retrieved:







λ1 = vx′ − c

λ2 = vx′

λ3 = vx′ + c

(2.12)

The eigenvalues in (2.12) represent the speed of propagation of information given and

initial value in time and space. As presented in Figure 2.3, one can plot the eigenvalue

in a x′-t plane in order to see the different domains on which the sought solutions to the

Riemann problem may exist.

Figure 2.3 shows the solution space for the Riemann problem is divided into four

main regions: the left region WL, the right region WR, the left star region W∗
L and

the right star region W∗
R. The wave associated with the λ2 value can be considered

a contact discontinuity. along which the densities and the velocities in the normal

directions have the same values (ρ∗
L = ρ∗

R = ρ∗ and v∗
L,x′ = v∗

R,x′ = v∗
x′). The remaining two

waves associated to eigenvalues λ1 and λ3 can either be a shock-wave or a rarefaction

wave. The values of the conservation variables are known for WL and WR since they

represent the states of particles i and j or a linearization of these states. The value of

the conservative variables needs to be obtained for the ∗ zone in order to determine

the nature of the waves associated to the remaining eigenvalues. An algebraic relation
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2. Fluid-solid coupling strategy

t

x'

WL
WR

WR
WL
* *

*

x' + cvx' - c
vx' 

Figure 2.3: Riemann problem solution space in the x′-t plane.

between the unknown values of the conservative variables in the star region and the

known values of the conservative variables in the left and right regions needs to be

established. If the coefficients in the A matrix are constant, the hyperbolic equation

system is linear and the expression of vector W∗ can be expressed as a linear combination

of the eigenvectors associated to the eigenvalues of matrix A [TOR 13]. Nevertheless,

for the Euler equations, matrix A contains non-constant values and hence the hyperbolic

system of PDE in (2.11) is non-linear. In order to simplify the solution process, the

matrix A in system (2.11) can be linearized as follows:

A =






vx′ ρ 0

c2/ρ vx′ 0

0 0 vx′




 , where







ρ =
1

2
(ρL +ρR)

vx′ =
1

2
(vL,x′ + vR,x′)

c =
1

2
(cL + cR)

(2.13)

Using the approximation in (2.13), solving the approximate Riemann problem provides

the following relations between the known states of the conservative variables and the

states of these variables in the ∗ region:







ρ∗ =
1

2
(ρL +ρR)+

ρ

2c
(vL,x′ − vR,x′)

v∗x′ =
1

2
(vL,x′ + vR,x′)+

c

2ρ
(ρL −ρR)

(2.14)

Furthermore, since the tangential velocity component (vy′) does not change in through

the 1-D shockwave or a rarefaction wave associated to the eigenvalues λ1 and λ3, the
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SPH method for fluid simulation

values are conserved between the initial domains and the ∗ domain, hence :

{

v∗L,y′ = vL,y′

v∗R,y′ = vR,y′
(2.15)

The approximation allowing to find the expressions of the unknown variables in the

star-region is called the Primitive Variable Riemann Solver (PVRS) and for the applic-

ations in the current work it has been shown to provide sufficient accuracy as well as a

considerable time gain since there is no need to solve a non-linear problem between each

pair of particles within the considered fluid domain [MAR 07, NEU 14].

After obtaining the values over the whole x′−t domain, the nature of the waves associated

to eigenvalues λ1 and λ3 can be determined by comparing the density in the ∗ region to

the densities in the initial left and right states. Following this step, the final solution to

the Riemann problem can be found by comparing the projected velocity of the reference

volume v0 along the unitary vector directed form particle i to particle j to the value of

the eigenvalues inherent to the linearised Riemann problem between both particles. In

the current work, the type of flows that will be considered will take into account low

Mach numbers, hence the flow velocity will be considered much lower than the sound

speed. For this reason, the solution to the Riemann problem will be considered to be

found exclusively within the ∗ region of the x′− t domain [ZHE 13, NEU 14, REN 15].

As such, the solution to the Riemann problem can take the following form :







ρE,i j = ρ∗

vE,i j = v∗x′~x
′

pE,i j = p∗
(2.16)

Furthermore, the initial states ΦL and ΦR can be calculated in different ways. The

simplest and one of the earliest ways proposed to obtain the left and right states for the

Riemann problem is to consider the values of the conservative variables over the whole

domain up to the discontinuity xi j = (xi + x j)/2 as being piece-wise constant. Hence,

the initial left and right values for the Riemann problem are automatically obtained and

the solution of the problem is straightforward through (2.14) and (2.16). Despite the

simplicity in using this approach proposed by Godunov in [GOD 59], the influence of the

constant value field hypothesis can be rather strong and, as seen in [MAR 07, LED 10],

can add considerable numerical viscosity to the numerical scheme, thus leading to

spurious results. An alternative to overcome the drawbacks of the constant value field
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2. Fluid-solid coupling strategy

hypothesis, the Monotone Upstream-centered Scheme for Conservation Laws (MUSCL)

technique proposed by [VAN 79] suggests the reconstruction of the fields in the left and

right initial states by using a linear interpolation :

{

ΦL =Φi +α(Φi,Φ j,∇iΦ)∇iΦ ·xi j

ΦR =Φ j +α(Φi,Φ j,∇ jΦ)∇ jΦ ·xi j

(2.17)

where α(Φi,Φ j,∇iΦ) represents a non-linear limiter function added to the linearised

approximation in order to prevent spurious oscillations and ∇i and ∇ j represent the

gradients evaluated at xi and x j, respectively through the classical SPH approximations

[GIN 77, VIL 99].

Taking into account the wall terms, the full set of governing equations semi-discretized

through the SPH-ALE method becomes:







dxi

dt
= v0,i

dωi

dt
= ωi ∑

k∈∂Di

Wik(v0,k −v0,i) ·nksk +ωi ∑
i∈Di

∇iWi j · (v0, j −v0,i) ω j

d(ρiωi)

dt
=−ωi ∑

k∈∂Di

Wik2ρE,ik(vE,ik −v0,ik) ·nksk

−ωi ∑
j∈Di

2ρE,i j(vE,i j −v0,i j) ·∇iWi jω j

d(ρiωivi)

dt
= ρigωi

−ωi ∑
k∈∂Di

Wik2[ρE,ilvE,ik ⊗ (vE,ik −v0,ik)+ pE,ikI] ·nksk

−ωi ∑
j∈Di

2[ρE,i jvE,i j ⊗ (vE,i j −v0,i j)+ pE,i jI] ·∇iWi jω j

(2.18)

In (2.8), the arbitrary particle velocity vectors of particles i and its neighbour j, as well

as wall element k are represented by v0,i,v0, j and v0,k, respectively.

Although the SPH-ALE technique allows to impose a numerical particle velocity that can

be different from the fluid material velocity, we will use its Lagrangian version because

we are interested in having an accurate tracking of a constantly evolving fluid-solid

interface. Additionally, Vila’s formulation of the SPH equations provides a necessary

mathematical formalism that was subsequently exploited by Marongiu in order to find

the value of the pressure at the solid wall by solving a linearised partial Riemann problem
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SPH method for fluid simulation

[MAR 07]. In order to obtain system (2.18) under a Lagrangian formulation, the arbitrary

particle velocity vectors are set equal to the fluid velocity (v0,i = vi and v0, j = v j). Since

the velocity of the wall is always independent from the velocity of the fluid continuum,

the velocity wall terms ins 2.18 can be expressed as v0,k = vk. Furthermore, we will

consider exclusively the case where the boundary of the fluid domain is an impermeable

wall. We will consider vE,ik = v0,ik, thus no mass transfer exists between the fluid

sub-domain and the walls bounding it. Finally, we impose vi j = (vi + v j)/2, which

implies that the interface between two particles where the solution to the Riemann

problem will be sought, is imposed halfway between them. Let us observe that this point

is of ALE nature because its velocity is not the same of that of the corresponding material

point. Hence, the semi-discrete SPH-ALE system of equations expressed in a Lagrangian

framework gives:







dxi

dt
= vi

dωi

dt
= ωi ∑

k∈∂Di

Wik(vk −vi) ·nksk +ωi ∑
j∈Di

∇iWi j(v j −vi)ω j

d(ρiωi)

dt
=−ωi ∑

j∈Di

2ρE,i j(vE,i j −vi j) ·∇iWi jω j

d(ρiωivi)

dt
= ρigiωi −ωi ∑

k∈∂Di

Wik2pE,ik ·nksk

−ωi ∑
j∈Di

2[ρE,i jvE,i j ⊗ (vE,i j −vi j)pE,i jI] ·∇iWi jω j

(2.19)

Where xi is the position of a fluid particle i and ωi is its volume. The velocity vectors

of particles i and its neighbour j, as well as wall element k are represented by vi,v j and

vk, respectively. Additionally, ρi represents the density of particle i and pi represents

its pressure. In this formulation, the boundary terms for a particle i, ∂Di, are taken into

account as they will be subsequently used to properly treat boundary conditions.

In system (2.19), as it was previously stated, the terms ρE,i j, vE,i j and pE,i j represent

an intermediate status between two fluid particles that is obtained by solving a linearised

Riemann problem at the interface between the particles. System (2.19) is more convenient

for solving FSI problems since in a Lagrangian formulation, the interfaces - between the

fluid and any other media - are tracked in a natural way.
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2. Fluid-solid coupling strategy

2.1.3.1 Wall boundary conditions

The truncation of the support domain of the kernel function has always been a delicate

matter when seeking to properly impose boundary conditions on a finite-domain SPH

problem. In 2007, Marongiu proposed an original way to tackle the way boundary condi-

tions are imposed by writing them as a solution to a partial Riemann problem between a

solid boundary and the fluid particles whose kernel is sectioned by the former [MAR 07].

To achieve this, it was established that the term pE,ik in (2.19) represents the pressure

solution of a partial Riemann problem that can be expressed between a fluid particle i and

the boundary element k in its neighbourhood. When a solid boundary condition is im-

posed on the boundary element, the velocity solution vE,ik equals the physical boundary

condition (usually the velocity of the solid) and pE,ik results from the combination of this

imposed condition and the fluid state (pressure and velocity) of particle i. The method

has proven to be efficient at imposing boundary conditions even when confronted with

complicated solid geometries.

In order to obtain the expression of the value of the pressure on a solid wall element

k, the boundary term of momentum equation must be considered (2.19-d). Let us call it

bk:

bk = ∑
k∈∂Di

ωiWik2pE,ik ·nksk (2.20)

where we consider, for a solid wall element k, all the fluid particles i whose support

domain is truncated by k.

By writing that the opposite of the contribution to the change of momentum brought

by the wall element k to the fluid (2.20) is equal to the hydrodynamic force exerted by

fluid on element k we obtain:

pk = ∑
i∈∂Dk

ωiWik2pE,ik (2.21)

where the normal and surface terms nksk have disappeared since they are present on

both sides of the equation.

Using a linearised Riemann solver [TOR 13, DUB 01], we can find the solution for

the pressure pE,ik by considering a fluid particle i and a solid element k. The quantity

pE,ik is expressed as a function of the wall velocity vk:
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SPH method for fluid simulation

pE,ik = pi −ρici(vk −vi) ·nk (2.22)

Fluid boundary equations for fluid-structure interaction

Using the information given in the previous sub-section, the relation between the pressure

at the wall and the velocity of the wall can be established. This expression is obtained by

substitting (2.22) into expression (2.21) :

(

∑
i∈Dk

2ωiρiciWik

)

v fk
+ pk = ∑

i∈Dk

2ωi (pi +ρicivi ·nk)Wik (2.23)

where v fk
corresponds to the value of the solid element velocity in the outward-

pointing normal direction, v fk
= vk · nk. pk represents the value of the fluid pressure

on the solid wall-element.

Finally, equation (2.23) can be written in matrix form as:

M f v fk
+Λ= G f (2.24)

where M f denotes a square diagonal matrix of dimension (Nk ×Nk), Nk being the

total number of solid wall elements. For k ∈ (1,Nk), the coefficients along the diagonal

are:

M f (k,k) = ∑
i∈Dk

2ωiρiciWik (2.25)

the vectors v fk
, Λ and G f are of dimension (Nk × 1) and their coefficients for k ∈

(1,Nk) are given below:







v fk
(k) = v fk

= vk ·nk

Λ(k) = pk

G f (k) = ∑
i∈Dk

2ωi(pi +ρicivi ·nk)Wik

(2.26)

In order to integrate in time the fluid status, the 2nd-order accurate Runge-Kutta 2 mid-

point scheme will be employed. As this integration scheme requires the determination of

the fluid status at an intermediate stage (tn+1/2) to predict the corrected solution at the

final stage (tn+1), the system (2.24) must be expressed at both time stages:
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2. Fluid-solid coupling strategy

Ω
✶

Ω
✶

Ω
✶

Figure 2.4: Reference problem for establishing the solid sub-domain’s governing equa-

tions







M
n+1/2

f v
n+1/2

fk
+Λ

n+1/2 = G
n+1/2

f

Mn+1
f vn+1

fk
+Λ

n+1 = Gn+1
f

(2.27)

Equation (2.27) provides the relationship between the solid boundary velocity and the

pressure at the interface corresponding to the unknowns of the system for the fluid sub-

domain. The complete system of equations needed for the coupling between the fluid and

solid sub-domains will be completed with the solid and interface equations that will be

presented in the following sections.

2.2 Governing equations for the solid sub-domain

The reference problem from which the governing equations of the solid sub-domain can

be derived is shown in Figure 2.4. In the latter, a solid domain Ω whose frontier ∂Ω is

subject to kinematic boundary conditions on ∂uΩ and to dynamic boundary conditions on

∂FΩ is depicted. Ω is subject to a body force induced by a gravitational force field.

Using the principle of virtual power [ZIE 77, BEL 13] and basic principles from con-

tinuum mechanics, one can establish the governing equations for the solid sub-domain

depicted in Figure 2.4. To simplify this derivation, small displacements are considered,

meaning that the different solid configurations of the solid sub-domain are merged with

the initial configuration. The unknowns of the problem are the displacement u(X , t) and

the stress tensor σ(X , t) on every point of the domain, ∀X ∈ Ω at any t in time.
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Governing equations for the solid sub-domain

In order to solve the reference problem, one must find u(X , t) and σ(X , t) verifying in

each point and at every instant the following:







∀t, u(t) |∂uΩ=Ud

∀X ∈ Ω, u(X) |t=0=U0,
du

dt
(X) |t=0=V0

∀t, ∀û ∈ Û ,
∫

Ω
([ fd +ρ

d2u

dt2
] · û−Tr[σε(û)]) dΩ =

∫
∂F Ω

Fd · û dS

∀t, σ = Kε(u)

(2.28)

where Ud is the imposed kinematic boundary condition on ∂uΩ, U0 and V0 are the

initial displacement and velocity conditions respectively, û is the displacement test func-

tion that is kinematically admissible on Û , which is the subspace of test functions which

impose a zero displacement on ∂uΩ, ε(u) is the strain symmetrical tensor, σ is the stress

symmetrical tensor, K is the stiffness matrix obtained for a linear elastic material in small

displacements, ρ is the material’s density, fd are the body forces the gravity field applies

on the volume and Fd are the dynamic conditions applied on ∂FΩ.

2.2.1 Finite-Element method for the solid

In order to find a set of exact solutions for the conditions and equations presented in (2.28)

it would be necessary to analytically solve the system in question. However, analytical

solutions for hyperbolic problems such as the one presented previously rarely exist in

practice. One can attempt to find an approximate solution of system (2.28) by discretizing

the solid domain Ω into a domain of finite dimension Ωh where the solution u(X , t) can be

approximated by uh(X , t). This is the cornerstone idea behind the Finite Element method

which, as already announced several times, will be used for the simulation of the solid

domain in the current work. Only a brief overview of the main ideas behind the Finite-

Element method will be given in this work. For a full run-down of all the principles and

hypotheses that are behind this method the reader can consult [ZIE 77, BEL 13].

The approximate solution uh(X , t) can be expressed as the the sum over the n nodes

used to build the finite elements discretizing Ωh of the product of a shape function φ and

the discrete values of u at each of these nodes:

uh(X , t) =
n

∑
i=1

φi(X)ui(t) (2.29)
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2. Fluid-solid coupling strategy

Using this discretization, the solution vector uh is a member of a vector subspace of

finite dimension n () and thus an algebraic system can be constructed in order to attempt

to solve system (2.28) in a approximative way. The system to solve for reads:







∀t, uh(t) |∂h
uΩ= Uh

d

uh |t=0= Uh
0,

duh

dt
|t=0= Vh

0

∀t, ∀ûh ∈ Ûh, T ûh · (Msü
h +Fint −Fext) = 0

(2.30)

Where the h-superscripted variables and domains represent the discretized counter-

parts of the variables presented in (2.28) taking into consideration the restriction shown

in (2.29). The third line of equation, presents the Mass matrix Ms whose components on

a i-th line and j-th column (for any given finite element e with volume Ve) are given by:

Mi j = ∑
e

∫
Ve

ρeφe
i (X) ·φe

j(X) dΩ (2.31)

the external forces and internal forces vectors components are given by the following

relations:

Fexti = ∑
e

∫
Ve

fh
d ·φe

i (X) dΩ+

∫
∂h

FVe

Fh
d ·φe

i (X) dS (2.32)

and,

Finti = ∑
e

∫
Ve

Tr[σeεe(N
e
i (X))]dΩ (2.33)

In the case of small displacement one can introduce the stiffness matrix Ks giving

place to the calculation of internal forces through the product of the latter with the dis-

placement vector (2.34)

Fint = Ksu
h (2.34)

with,

Ki j = ∑
e

∫
Ve

Tr[Ksεe(N
e
i (X)) · εe(N

e
i (X))] dΩ (2.35)

In order to establish the numerical governing equations for the solid sub-domain, the

physical domain is discretized by using the finite-element method where us, vs and as,
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Governing equations for the solid sub-domain

are the displacement, velocity and acceleration vectors, respectively. In an explicit frame-

work, for the solid sub-domain, matrix Ms represents the positive diagonal mass matrix

whose components are related to all the DOF of the system. In the following, we assume

for simplicity a linear elastic behavior, allowing us to consider a positive definite stiff-

ness matrix Ks, which remains constant throughout the calculation. The purpose of the

latter assumption is to simplify the first step of the presentation of the solid sub-domain’s

equations.

Hamilton’s principle is used to prescribe equilibrium of the solid sub-domain over a

time-interval. Then, the governing equations are integrated in time according to an expli-

cit Central Difference scheme. The current section aims at describing how the coupled

solid equations are obtained and how they are made compatible with the formulation given

in the previous section.

Following [PRA 04], the equilibrium equations for the coupled solid sub-domain can

be obtained by expressing its augmented Lagrangian:

L̂ =
1

2
vT

s Msvs −
1

2
uT

s Ksus +λT Csvs + fextT

s us (2.36)

where fext
s are the external forces to the solid sub-domain. Multipliers λ are used in

order to impose the kinematic continuity condition at the interface between the fluid and

solid. This condition will be imposed here only onto the normal component of velocity at

the interface as it will be subsequently explained.

In (2.36), Cs is a constraint matrix that extracts the interface degrees of freedom from

the total velocity vector. In general, for matching meshes in geometrically linear structural

dynamics, this matrix is binary (containing only zeros and ones), constant and of dimen-

sion (NI ×NN), with NI being the number of DOF found at the interface and NN the

total number of solid DOF in the sub-domain. However, for fluid-structure sub-domain

coupling, we restrict our coupling to normal velocities to the interface. This will reduce

the number of DOF along the interface (NI) by a factor of 2 in 2-D and by a factor of 3

in 3-D. More details about this matrix will be given in the following section. In order to

distinguish the case where the constraint matrix is used for FSI coupling along the nor-

mal direction only, matrix Cs will be referred to as Ls. In addition, the interface forces

denoted usually by CT
s Λ in structural dynamics will be replaced here by LpΛ.

To complete the system of equations, we follow [ROU 90] and [GRA 01] to obtain

the definition of the interface energy over the time interval [t0, te]:
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2. Fluid-solid coupling strategy

Llink =

∫ te

t0

λT
Ns

∑
k=1

Lkvk dt (2.37)

Taking equation (2.37) and the variational of equation (2.36) to apply Hamilton’s prin-

ciple on the interval [t0, te] (for further details see [PRA 04]), one obtains in the end:

Msas +Ksus +LpΛ− fext
s = 0 (2.38)

and:

Ns

∑
k

Lkvk = 0 (2.39)

where we have introduced the Lagrange multipliers Λ. The quantity Λ is homogen-

eous to a pressure induced by the fluid on the solid sub-domain and it is found by solving

the coupled FSI problem.

It is important to note that matrix Lp has the same dimension as the matrix LT
k but

contains information about the surface area of each element along the interface such that

when the product LpΛ is performed, the generalized force vector related to the water

pressure on the solid is retrieved [LI 15]. It can be seen as an interface force acting on the

solid sub-domain.

Furthermore, using the same method, we obtain the velocity constraint at the inter-

face (2.39) expressed for any sub-domain k ∈ [1,Ns], Ns being the total number of sub-

domains. As explained previously, Lk are matrices that extract the interface velocity

degrees of freedom and project them along the normal direction.

Here we will focus on equation (2.38), which for any time t (with t ∈ [t0, te]), guaran-

tees dynamic equilibrium of the solid sub-domain with respect to external forces fext
s and

LpΛ.

In case of non-linear behaviour (large displacements and/or non-linear constitutive

laws), the internal forces can no longer be represented by Ksus. Instead, the internal

forces must be computed by using the following expression:

fint =
∫

Ωs

BT
s σsdΩs (2.40)

where Ωs represents the solid domain (which changes in time but is known at the

beginning of each time-step since explicit time- integrators are used), BT
s is the derivative

matrix of the shape-functions in the current configuration and σs is the Cauchy stress
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Governing equations for the solid sub-domain

tensor.

Taking into account the definitions of fint and fext
s , equation (2.38) can be expressed

as:

Msas+ fint = fext
s −LpΛ (2.41)

We will now focus on the time-stepping aspects so as to update the solid configuration

from the configuration known at the beginning of the time-step. Let us discretize the time

interval [t0, te] into equally spaced time-steps ∆t = tn+1− tn. We can write the equation of

motion in (2.41) at tn+1 as:

Msa
n+1
s + fintn+1

= fextn+1

s −Ln+1
p Λ

n+1 (2.42)

Discretisation of equation (2.42) with the central difference explicit Newmark al-

gorithm gives:







an+1
s = [Ms]

−1
(

fextn+1

s − fintn+1 −Ln+1
p Λ

n+1
)

vn+1
s = pvn+1

s +
1

2
∆tsa

n+1
s

un+1
s = pun+1

s

(2.43)

where pvn+1
s and pun+1

s are called the predictors for the velocity and displacement

vectors, respectively, since they depend exclusively on the expression of the kinematic

vectors from the known (initial) configuration. The main feature of the explicit time-

stepping lies in the fact that the new configuration in terms of displacement is known,

because it only depends on known quantities at the beginning of the time-step, providing

the advantage of being non iterative even in the non linear case contrary to the implicit

time-stepping schemes.

The expression of the predictors is given in (2.44).







pvn+1
s = vn

s +
1

2
∆tsa

n
s

pun+1
s = un

s +∆tsv
n
s +

1

2
∆t2

s an
s

(2.44)

Finally, equations (2.43) can easily be made compatible with the previously presented

fluid equations (2.27) by dividing the time-step by a factor of two in order to obtain the

solid configuration at t = n+1/2. This was previously presented in [ZHE 13].
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2. Fluid-solid coupling strategy

solid

fluid

nf

ns

solid

Figure 2.5: Illustration of the outward pointing normals, ns and n f , for each sub-domain

2.3 Coupling strategy

As stated in the previous section, the coupling strategy is based on a dual Schur approach,

along the lines of [ZHE 13, GRA 01], by prescribing the kinematic continuity at the in-

terface in terms of normal velocities.

For the present case, we only need to express equation (2.39) for the solid (subscripted

s) and the fluid (subscripted f ) as:

Lsvs +L f v f = 0 (2.45)

Equation (2.45) prescribes normal velocity equilibrium at the interface between the

fluid and the solid.

By guaranteeing that equation (2.45) will be enforced for any t ∈ [t0, te], from (2.37),

we have:

∫ te

t0

λT
[
Lsvs +L f v f

]
dt = 0 (2.46)

Considering that the outward-pointing normal vector ns(xk), for any solid element k,

such that xk is positioned at the geometrical barycenter of the interface element (mid-point

for a bar, centroid for a triangle), and that it is opposite in sign to the outward pointing

normal of the fluid sub-domain (Figure 2.5), the following assertion can be put forward:

nks
(xk) =−nk f

(xk) = nk (2.47)
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Coupling strategy

By applying condition (2.47), for an element k, condition (2.45) can be expressed as:

nk ·
[
vs(xk)−v f (xk)

]
= 0 (2.48)

Expressing equation (2.48) in matrix notation for the whole system and bearing in

mind that v fk
(k) = nk ·v f (k) for k ∈ (1,Nk), the following system is obtained:

[
Lsvs+v fk

]
= 0 (2.49)

As previously introduced, Ls is a geometrical operator enabling the sub-domain DOF

to be projected along the interface’s normal direction.

For example, in a 2-D configuration, for any interface element k we have:

Lsvs(k) = Nk
1vk

i j1
+Nk

2vk
i j2

(2.50)

where the normal vector to element k has been expressed as Nk = [Nk
1 ,N

k
2 ] assuming k

has connectivity to nodes i and j and we have expressed its components in a 2-D Cartesian

base (e1,e2). We consider from (2.50) that the average velocities of element k in directions

1 or 2 as vk
i j1

or vk
i j2

are defined by:

vk
i j1

=
vk

i1
+ vk

j1

2
, vk

i j2
=

vk
i2
+ vk

j2

2
(2.51)

Carrying out the operation described in (2.50) for all surface elements k makes the

formulation compatible with the information coming from the fluid side (vector v fk
). Ad-

ditionally, the dimension of the problem is reduced to (Nk ×1).

Remark: From equation (2.38) in the previous section, the product LpΛ allows to link

the fluid pressure field to a external nodal force vector fext
f of dimension (NN × 1). The

operator Lp is very similar to the transpose of operator Ls, but includes the value of the

surface area sk of element k multiplied to the coefficients of the corresponding column

k ∈ (1,Nk). Considering once again a 2-D example, for a single interface element k, after

carrying out the operation fext
f =−LpΛ, one gets for each DOF of element k the following

expression:

fext
f (I) =−1

2
Nk

αskΛ(k) (2.52)

where α = 1,2 denotes a principal direction in the 2-D Cartesian plane and I is one of

the DOF of the problem, I ∈ (1,NN). Hence, fext
f (I) is the value of the Ith DOF in the fext

f
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2. Fluid-solid coupling strategy

vector.

One must take now into consideration the time integration aspects of the velocity

coupling equation. Since for the fluid integration, we are making use of a two-step Runge-

Kutta scheme, we must consider equation (2.49) at times tn+1/2 and tn+1:







L
n+1/2
s v

n+1/2
s −v

n+1/2

fk
= 0

Ln+1
s vn+1

s −vn+1
fk

= 0
(2.53)

In geometrically non-linear cases, since we can no longer consider the reference geo-

metry for the whole duration of the simulation, operators Ls and Lp have to be updated

at each time-step. For 3-D cases and multi time-step calculations, in which the solid sub-

domain uses a much smaller time scale than the fluid, the updating of these quantities at

each micro time-step can be very taxing on the efficiency of the calculation. One seeks to

make the determination of these operators more efficient by choosing to update them at

a lower frequency or by storing them using sparse matrix structures and doing operations

involving them with dedicated sparse matrix calculation libraries [DEM 99]. In the cur-

rent work the operators are updated at each time-step since the problems are non-linear.

2.4 Contact force modelling

The numerical simulations within the scope of this work will rely on the modelling of

contacts between solids in order to predict the damage induced by a flow-driven stone on

a functioning hydroelectric turbine blade. Following the explanations put forward in the

introductory chapter, where the basic concepts regarding the definition of contacts in a

numerical framework and the algorithms for contact detection were discussed, the current

section will detail the way in which the contact reaction forces are calculated and how

are they made compatible with the fluid-structure coupling effects that were described

previously.

Following [BEL 91], we will us the principle of virtual power to express the conserva-

tion equation in its variational form. For the sake of simplicity, only two solid bodies will

be considered which will be represented by Ω = ΩA∪ΩB. The same notations previously

used will be used to denote their respective domain for imposed kinematic boundary con-

ditions, ∂uΩA and ∂uΩB, and the dynamic boundary conditions, ∂FΩA and ∂FΩB, hence

∂uΩ = ∂uΩA ∪ ∂uΩB and ∂F Ω = ∂F ΩA ∪ ∂FΩB. Using the principle of virtual power,

we can retrieve the variational formulation of the conservation equations for the system
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Contact force modelling

comprising both solids :

δP =
∫

Ω

∂(δvi)

∂x j
σ ji dΩ−

∫
Ω

δviρbi dΩ−
∫

∂F Ω
δvi fdi

dΓ+
∫

Ω
δviρ

∂vi

∂t
dΩ = 0

∀v ∈U =
{

v(X, t)|v ∈C0(Ω), v =U0 on ∂uΩ
}

∀δv ∈ Û =
{

δv(X)|δv ∈C0(Ω), δv = 0 on ∂uΩ
}

(2.54)

In equation (2.54), v is the trial velocity vector, δv is a test velocity function that is

kinematically admissible on ∂uΩ, σ is the strain rate tensor, ρ is the solid density and b is

the body force vector and fd .

In order to take into account the contact forces, Lagrange multipliers will be used to

enforce dynamic continuity along the contact frontier ∂cΩ between ΩA and ΩB. Following

[BEL 91], in order to define the contact problem under a variational form, the trial and

test function subspaces in relation with the Lagrange multipliers λ must be defined :

Λ =
{
∀λ|λ ∈C−1(∂cΩ),λ ≥ 0

}

Λ̂ =
{
∀δλ|δλ ∈C−1,δλ ≤ 0

} (2.55)

where the function in the trial space respect the hypothesis that the forces induced through

the contact (Lagrange multipliers λ) can only be of compressive nature (no inter-body

adherence). The variational formulation of the initial solid problem plus the variational

formulation of the contact problem gives:

δPc = δP+

∫
∂cΩ

δ(λγn) dΓ ≥ 0 (2.56)

where γn was previously defined in Chapter 1 as the normal velocity equilibrium condition

along the contact interface. From the weak form presented in (2.56), one can obtain the

momentum conservation equations equivalent to the equation presented in section 2.2 as

well as the inequalities presented in Chapter 1 (1.13) allowing to mathematically translate

contacts into the equation model. The demonstration of the equivalence of the weak form

in (2.56) with the semi-discrete governing equations is presented in [BEL 13].
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2. Fluid-solid coupling strategy

2.4.1 Discretization of the contact forces

In order to determine the discrete reaction forces induced by the contacts between the

solid domains modelled by Lagrangian FEM meshes, this subsection will describe how

the contact equation model can be integrated to the semi-discrete governing equation

system for the solid described in section 2.2.1.

The use of Lagrange multipliers in order to determine the imposed contact forces on

the solid system as well as to calculate the reaction forces of permanent boundary con-

ditions adds an extra unknown to the semi-discrete equations presented in the previous

section. This extra unknown calls for the inclusion of an additional algebraic relation

between the unknowns of the system. Similarly to the case of the fluid-structure inter-

action, the additional algebraic relation comes in the form of an added constraint on the

velocities. The set of all kinematic constraints (both permanent and contact induced)

provide an algebraic system of constraints which for simplicity will be presented as the

following equality:

Ln+1
c vn+1

s = bn+1 (2.57)

where Lc is a geometrical operator allowing to extract the DOF of the system on

which contact has been detected through one of the previously presented contact-detecting

algorithms and operator b is a vector of known coefficients. Since through the rigid

motion of the solid bodies the involved DOF in the contact problem change through time,

all of the operators in (2.57) must be recalculated with each new time step.

The Lagrange multiplier representing the reaction forces to the constraints coming

from contacts or from imposed boundary conditions appear in the equation of motion

(2.41) through an added term:

Msas + fint = fext
s −LpΛ+LT

c Λc (2.58)

Equation (2.58) is to be solved at each time-step in order to obtain the updated values

of the acceleration and thus determine the new solid configuration of the structure on

the following time-steps. In order to do so, the internal forces (fint ) and the external

forces (fext
s ) need to be obtained as well as the Lagrange multipliers coming from both the

constraints (Λc) as well as the fluid-structure interaction effects (Λ). In the current study,

different specialized solvers will be used to carry out the solid and fluid calculations.

Hence, in an approach mimicking the artificial skin method by Bourel et al. [BOU 06],
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Contact force modelling

the solid solver will retrieve the Lagrange multipliers coming from the contacts separately

from the Lagrange multipliers associated to fluid-structure interactions. For this matter,

the term related to the fluid-induced forces will be momentarily omitted from the solid

equilibrium equation:

Msas + fint = fext
s + fcons

s (2.59)

where fcons
s = LT

c Λc represents the forces coming from the contact and permanent con-

straints prescribed on the solid. Following [CAS 03], equations (2.57) and (2.59) can be

used to obtain the algebraic system allowing to retrieve the Lagrange multipliers associ-

ated to the constraints on the solid sub-domain:

Hn+1
c Λ

n+1
c = Wn+1 (2.60)

with :







Hn+1
c = Ln+1

c M−1
s LT

c

n+1

Wn+1 =
2

∆ts
(bn+1 −Ln+1

c vn+1/2)−Ln+1
c M−1

s (fext
s

n+1 − fintn+1
)

(2.61)

For equation (2.60), operators Hn+1
c and Wn+1 are calculated from known values at the

beginning of the time iteration. The iteration superscript has been explicitly added in

order to highlight the fact that when dealing with contacts, these operators have to be cal-

culated at each new iteration (which would not be the case if the only kinematic constraint

considered were permanent).

Remark: The fact that the right hand side of equation 2.60 includes a velocity term

calculated at n+ 1/2, implies that the total velocity should be known for the concerned

degrees of freedom in order to calculate the value of the contact Lagrange multipliers

correctly. However, if fluid-structure interaction effects are present on the same degrees

of freedom on which the contact is acting, there will be a time-step offset between the

effect of the fluid-structure interaction presence and the effect of the contact forces (due

to the decoupling-based solving procedure that will be explained in the next chapter).

In general, for the current work, there will rarely be cases where a concerned degree of

freedom is loaded by contact induced forces as well as by fluid pressure induced forces

since, in order for a contact to exist, the fluid separating two potentially contacting solid
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2. Fluid-solid coupling strategy

surfaces should be evacuated for the contact to be effectively established.

Following the retrieval of the contact Lagrange multipliersΛc, the contact force vector

fcons
s can be retrieved and the whole lot of forces acting on the solid system that do not

depend on fluid-structure interaction effects can be retrieved. The forces coming from the

constraints can be considered to be external factors to the solid sub-domain in question

and in turn, they can be regrouped along with the fext
s vector into a more general external

force vector fext
tot : As such the more general external force vector can be expressed by :

fext
tot = fext

s + fcons
s (2.62)

Using the more general expression the solid equilibrium equation becomes:

Msas + fint = fext
tot (2.63)

In order to take into account the forces induced by the fluid-structure interaction in the

solid, the solid discrete momentum conservation equation becomes:

Msas+ fint = fext
tot +LpΛ (2.64)

Hence, the retrieval of the contact forces is made compatible with the proposed fluid-

structure interaction technique that will be described in detail in the following chapter.

2.5 Conclusion on FSI couping with the SPH-FEM meth-

ods

Over the current chapter, a detailed description of the discretization techniques used to

solve and couple the governing equation for the fluid and solid sub-domains has been

given. As it was pointed out, the fluid sub-domain will be discretized in space using a

variant of the SPH method known as the SPH-ALE method. This technique, in addition

to allowing the transport velocity of numerical particles to be different from the velocity

of the material continuum, provides the necessary formalism to impose boundary condi-

tions as the solution to a partial Riemann problem. As for time discretization, a explicit

Runge-Kutta 2 (midpoint version) scheme is applied. For the solid sub-domain, regarding

the spatial discretization, a brief overview of the widely known Finite-Element method

has been provided. The time integration scheme used for this sub-domain is the expli-

cit Newmark Central Difference scheme. In order to couple both sub-domains, normal
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Conclusion on FSI couping with the SPH-FEM methods

velocity continuity is imposed at the interface with the use of Lagrange multipliers rep-

resenting the fluid pressure at the interface. This technique allows for the coupling of

different numerical schemes and, as it will be explained in the following chapter, even

if different time-steps are used for each sub-domain. Finally, by considering the contact

forces between solids to be exclusively a part of the calculations carried out internally

by the solid solver (without influence of the coupled calculation), the coupling technique

can be made compatible with the contact force modelling approaches present in the solid

solver. In the next chapter, the full description of the steps taken to carry out coupled cal-

culations will be elaborated as well as a technique enabling the use of different time-steps

in each sub-domain.
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Chapter 3

FSI Coupling with different time scales

and solid impacts

In this section, the fluid and solid coupling strategy presented in the last section will be

extended in order to handle different time scales in each sub-domain.

Contents

3.1 Incompatible time-step implementation . . . . . . . . . . . . . . . . . . 78

3.1.1 The GC method with smaller time-steps in the solid and large in-

terface displacements . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.1.2 Smaller time-steps in the fluid . . . . . . . . . . . . . . . . . . . . 87

3.2 Stability of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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3. FSI Coupling with different time scales and solid impacts

3.1 Incompatible time-step implementation

The use of explicit time integrators on both sub-domains allows for a simplification of

the system of equations to solve since the primary variables (displacements for the solid

and velocities for the fluid) at the end of the time-step only depend on previously known

quantities. This excludes the need for iterative procedures to update the solid and fluid

status.

However, explicit integration schemes are known to be prone to instabilities. When

using the same time-step in both sub-domains, the efficiency of the coupling algorithm

is governed by the size of the smallest time-step in the whole fluid-structure interaction

problem. In order to optimize the efficiency and stability of the algorithm, it becomes

important to be able to integrate each sub-domain with its own time-step, while respecting

the stability of the coupling scheme.

For this study, the use of a smaller time-step is investigated in both the solid and fluid

sub-domains. However, the implementation differs for each case. The details regarding

the implementation of each case will be elaborated in the current section followed by

validation examples given in the following section.

When working with explicit time-integrators, in order to ensure the stability of the

calculation, The CFL (Courant-Friedrich-Lewy) condition has to be considered for each

sub-domain:

∆t ≤ KCFL ×min

(
∆xi

C0

)

(3.1)

where ∆t is the required time-step, ∆xi is the characteristic size of the mesh element

or SPH particle, respectively, C0 is the speed of wave propagation in the domain and

KCFL ∈ (0,1). Considering a weakly-compressible fluid state law, for equally sized initial

meshes and particle sizes, the application of the CFL condition will require a smaller

time-step for the domain where the wave propagation is the fastest. Hence, if the domains

considered are water for the fluid and stiff and dense materials for the solid, the smaller

time-step is usually related to the solid.

The implementation of smaller time-steps on the fluid side is also an important aspect to

consider. Indeed, despite the lower magnitude of the sound speed in the fluid sub-domain,

it is important to consider case scenarios where the fluid particle size is much smaller than

the element size in the solid, thus producing a much stiffer (in time integration terms)

sub-domain. Therefore, work has also been carried out in order to implement a technique
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Incompatible time-step implementation

allowing to integrate the fluid sub-domain with smaller time-steps than in the solid.

3.1.1 The GC method with smaller time-steps in the solid and large

interface displacements

Let us consider first the case where the smaller time-step is in the solid sub-domain. Let

us now assume that the fluid sub-domain’s time-step is a multiple of the solid one:

∆Tf = m∆ts, m ∈ N
∗ (3.2)

In this paper, the incompatible GC time-step integration method [GRA 01] is used,

because its application to geometrically non-linear interfaces is rather simple to imple-

ment. This method enforces velocity continuity at the smallest time scale with the use of

Lagrange multipliers.

Remark 1: In the case of explicit time-stepping, the coupling GC method, based on

the fine time scale, is more appropriate than coupling techniques based on the coarse time

scale because the evolution of the interface geometry and operators is better captured.

If the linking of sub-domains were done at the macro time-scale, hypotheses about the

Lagrange multipliers and normal vectors to the interface need to be made, leading to a

reduced accuracy for the prediction of the interface configuration at the fine time scale.

Remark 2: Nevertheless, when using the GC technique, one must be aware of its in-

herent dissipative nature which stems out from the interpolation done on the kinematic

quantities coming from the sub-domain with the bigger time scale in order to solve the

interface problem at the micro time-scale. The fact that the GC method dissipates some

energy at the interface when coupling sub-domains with different time-steps can be con-

sidered as a drawback for this method. However, three points should be considered:

Firstly, it has been observed in many applications [GRA 01, PRA 04, BRU 15] that the

method only dissipates a small amount of energy at the interface. Moreover the amount of

numerical energy that is lost at the interface can be computed and compared to the over-

all energy balance as it is usually accepted for Hourglass energy [BEL 84], for example.

Secondly, the dissipative features of the GC algorithm have been highlighted when coup-

ling non-dissipative time integrators; the numerical dissipation has been also observed

when coupling dissipative time integrators but the amount of dissipation may be much

less than the one coming from the time integrator itself or from viscous terms introduced

into the formulations. Often, the SPH formulations add viscous terms to stabilize the spa-
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3. FSI Coupling with different time scales and solid impacts

tial integration [MAR 07]: the resulting dissipation is usually large. Lastly, the operators

needed for the interface calculation are much easier to obtain when compared to other

multi-time-step domain methods [MAH 11].

In this section, the main theoretical aspects behind the implementation of the multi-

step GC method are reviewed. An algorithm illustrating how the technique is used for

fluid-structure interaction simulations will follow.

Now let’s assume that the large time-step is discretized in m equal sub-steps ∆ts. A

typical micro sub-step is denoted j ∈ [1,m]. For the GC method, exact equilibrium is pre-

scribed through the interface at time-step ∆Tf =
[
ts
0, t

s
m

]
. Continuity of kinematic quantit-

ies is prescribed at any intermediate time j∆ts through an interpolation.

For the macro time-step ∆Tf = m∆ts, from (2.24), we have for the fluid sub-domain:

Mm
f vm

fk
+Λ

m = Gm
f (3.3)

For the solid, we have for each micro time-step j∆ts:

Msa
j
s + f

int j
s = f

ext j
s −L j

pΛ j (3.4)

By combining equation (2.43) with equation (2.49), we can express the velocity con-

straint condition for any micro-time-step t j as:

L j
s

(

pv j
s +

∆ts

2
a j

s

)

+v
j
fk
= 0 (3.5)

Equations (3.4) and (3.5) can be expressed in matrix form as:

∆ts

2

[

Ms L
j
p

L
j
s 0

] [

a
j
s

Λ j

]

=

[

G
j
s

W
j
s

]

(3.6)

where:

G j
s =

∆ts

2
(f

ext j
s − f

int j
s ) (3.7)

W j represents the constraint condition for any time j∆ts. As in the case featuring the

mono time-step coupling procedure [ZHE 13], this condition only involves the normal

component of the velocity. For the current case we have:

W j
s =−L j

s
pv j

s −v
j
fk

(3.8)
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Incompatible time-step implementation

where v
j
fk

is the linear interpolation of the boundary velocity from the fluid side known

at j = 0 and j = m:

v
j
fk
=

(

1− j

m

)

v0
fk
+

j

m
vm

fk
(3.9)

For the last micro time-step ∆ts (when j = m), we can write the same system of equa-

tions:

∆ts

2

[

Ms Lm
p

Lm
s 0

] [

am
s

Λ
m

]

=

[

Gm
s

Wm
s

]

(3.10)

where Wm
s is no longer an interpolated quantity. Thus exact equilibrium can be pre-

scribed at the macro time-scale.

Regarding the equations from the fluid side, there is no change to what was previously

presented since the only unknown needed to update the fluid state is the boundary velocity

in the normal direction, which is obtained at the macro-time scale, i.e:

[

Mm
f I

I 0

] [

vm
fk

Λ
m

]

=

[

Gm
f

Wm
f

]

(3.11)

with Wm
f =−Lm

s vm
s .

A bordered approach is used to solve this system of equations. This means that the

solution to the coupled problem is the superposition of the solution to an unconstrained

or free problem and to a constrained or linked problem.

For t = tm one has:

{

vm
s = v f reem

s +vlinkm
s

vm
fk
= v

f reem

fk
+v

linkm

fk

(3.12)

From (3.6) we can deduce the expressions for the free accelerations in the solid at any

time t = t j:

a
f ree j
s = [Ms]

−1
G j

s (3.13)

Using (3.13), the expression of the free solid velocity is:

v
f ree j
s = pv0

s +
∆ts

2
a

f ree j
s (3.14)

From system (3.11), the expressions of the boundary free velocities of the fluid are
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3. FSI Coupling with different time scales and solid impacts

directly obtained at t = t0 and t = tm:







v
f ree0

fk
=
[

M0
f

]−1

G0
f

v
f reem

fk
=
[

Mm
f

]−1

Gm
f

(3.15)

Finally, from (3.6) and (3.11), the following expressions concerning the linked velo-

cities in each sub-domain can be deduced:







v
link0

fk
=
[

M0
f

]−1

Λ
0

v
linkm

fk
=
[

Mm
f

]−1

Λ
m

v
link j
s =

∆ts

2
[Ms]

−1 L j
pΛ

j =
∆ts

2
a

link j
s

(3.16)

To obtain the constrained and unconstrained boundary velocities from the fluid at any

t j, we use a linear interpolation between the values at t0 and tm:







v
f ree j

fk
=

(

1− j

m

)

v
f ree0

fk
+

j

m
v

f reem

fk

v
link j

fk
=

(

1− j

m

)

v
link0

fk
+

j

m
v

linkm

fk

(3.17)

We can now express equation (2.49) at any t j in terms of its constrained and uncon-

strained values:

v
link j

fk
+L j

sv
link j
s =−v

f ree j

fk
−L j

sv
f ree j
s (3.18)

where the right-hand-side of equation (3.18) will be referred to as −b j. Notice that

vector b j exclusively depends on the unconstrained quantities coming from the fluid and

solid sub-domains. Hence, we express (3.18) as:

v
link j

fk
+L j

sv
link j
s =−b j (3.19)

Inserting the expressions (3.16) and (3.17) into (3.19), the following expression is

obtained:

−
{(

1− j

m

)[

M0
f

]−1

Λ
0 +

j

m

[

Mm
f

]−1

Λ
m

}

− ∆ts

2
L j

s [Ms]
−1

L j
pΛ

j =−b j (3.20)
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Incompatible time-step implementation

In order to apply the GC method, we approach our coupling formulation to what was

established in [GRA 01] for the coupling of solid sub-domains. To do this, we begin by

considering a constant M f matrix over the macro time-step:

M f ≡ M0
f ≡ Mm

f (3.21)

In practice, this matrix can be taken equal to its value at t = t0 or t = tm or to an

average value between both. Here, we have decided to use a constant value for the M f

matrix over the macro time-step, which we have taken equal to Mm
f .

Additionally, a hypothesis regarding the value of the Lagrange multipliers at the micro

time-steps is made by considering once again a linear interpolation between the values at

at t = t0 and at t = tm:

Λ j =

(

1− j

m

)

Λ0 +
j

m
Λm (3.22)

By inserting equations (3.21) and (3.22) and factoring out the Lagrange multiplier

expressed at t j, the following relationship is established:

{
[
M f

]−1
+

∆ts

2
L j

s [Ms]
−1 L j

p

}

Λ
j = b j (3.23)

The operator inside the brackets pre-multiplying Λ
j is called the condensed operator

H j.

The system becomes:

H j
Λ

j = b j (3.24)

and can be solved for at each micro-iteration j.

Remark: By retrieving the Lagrange multiplier, the value of the link velocities can

be obtained by using (3.16) and thus the updated configuration for the solid U
j
s for any

t = t j. If t = tm the value of the boundary velocity is sent back from the coupler to the

fluid solver and the new fluid configuration can be obtained (Um
f → U

2m
f ).

Figure 3.1 schematically presents the coupling procedure implemented for the integ-

ration of both the fluid and the solid sub-domains from t0 to tm. The multi-step coupling

strategy can easily be adapted to take into account the mid-point stage needed by the

fluid’s time integration. The macro time-step is divided in two and the procedure is done

twice.
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3. FSI Coupling with different time scales and solid impacts

s s s s s s s

C C C C C C C

F F F

tj=t0 tj+1 tj+2 tj=tm

Figure 3.1: Overview of the coupling procedure when the solid uses a smaller time-step

than the fluid, i.e. ∆t f = m∆ts

Finally, the procedure used over the macro time-step for the multi-step coupling al-

gorithm is detailed in Algorithm 1. The flowchart in Figure 3.2 describes the way in which

the algorithm is implemented. Colors and acronyms have been adopted to describe the

tasks done by the different solvers involved in the coupling procedure: SLS represents

the solid solver Europlexusr, FLS stands for the fluid solver ASPHODEL and CPL is

the internally developed coupling software.

In practice, the position of the solid interface at time t j = tm = tn+1/2 or t j = tm = tn

is not known exactly as it would be the case for m = 1 (same time-step in both domains).

Once the solid interface (position and normals) is known, the fluid solver determines the

interface elements under FSI. One must therefore first provide an approximative interface

status Ĩs to the fluid solver. For simplicity in the implementation of the current algorithm,

it has been decided to use the known position of the wall at the first micro time-step j = 1

as the estimated interface status Ĩs. This position is then sent to the fluid solver in order

to get back a list of wet surface solid elements. This choice was adopted because the

list of elements under FSI is nearly constant between two macro time-steps for the cases

performed up to now as the solid motion is rather slow. Hence, the interface geometry

change is very small. Moreover the fluid time-step is rather small and the fluid position

change is very limited within each macro time-step. Additionally, the time integration

within the fluid sub-domain is only performed at j = m, hence, the precise position of

solid interface at intermediate times is not used.
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Incompatible time-step implementation

FLS obtains U f
m

SLS estimates 

interface 

status Ĩs
m

  FSI

exists?

FLS waits

SLS sends Ĩs
m 

to FLS 

No

SLS  

updates 

status

 j = m ? No

Yes

Yes

SLS and CPL 

interact to

update SLS status

 j = m ? No

Yes

SLS obtains Us
m

calculates

interface 

status Is
m 

 t = tMax ?
Yes

Calculation

stops

No
SLS sends Is

m 

to FLS 

FLS obtains U f
2m

Figure 3.2: Flowchart broadly describing how the algorithm is implemented for the case

when smaller time-steps are used in the solid sub-domain
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3. FSI Coupling with different time scales and solid impacts

Algorithm 1 Multi time-step SPH-FEM coupling algorithm - smaller time-steps in the

solid
for n = 1, n ≤ nMax do

- FLS obtains Um
f from U

0
f and v0

f k

for j = 1, j ≤ m do

SLS computes u
j
s = pu

j
s → fint

j (u
j
s), fext

j

if j = 1 then

- SLS calculates predicted interface status Ĩs and sends it to FLS → FSI exists?

if FSI = true then

- FLS computes Mm
f and Gm

f and creates ID list of FSI elements, mID

- FLS sends Mm
f , Gm

f to CPL and mID to SLS, waits until j = m

- SLS calculates a
f ree1
s , v

f ree1
s , Ls1

and Lp1

- SLS sends Ls1
v

f ree1
s and Ls1

MsLp1
to CPL

- CPL estimates interpolations of M1
f and G1

f and uses them to estimate v
f ree1
f k

- CPL calculates H1 and b1 to obtain Λ1 and sends it to SLS

- SLS calculates a
link1
s and v

link1
s → obtains a1

s and v1
s → new configuration U

1
s

else

- SLS obtains a1
s and v1

s → new configuration U
1
s

end if

end if

if j > 1 and j < m then

if FSI = true then

- SLS calculates a
f ree j
s , v

f ree j
s , Ls j

and Lp j

- SLS sends Ls j
v

f ree j
s and Ls j

MsLp j
to CPL

- CPL calculates v
f ree j

f k through M0
f , G0

f , Mm
f , Gm

f

- CPL calculates H j and b j to obtain Λ j and sends it to SLS

- SLS calculates a
link j
s and v

link j
s → obtains a

j
s and v

j
s → new configuration U

j
s

else

- SLS obtains a
j
s and v

j
s → new configuration U

j
s

end if

end if

if j = m then

if FSI = true then

- SLS calculates a
f reem
s , v

f reem
s , Lsm and Lpm

- SLS sends Lsm v
f reem
s and Lsm MsLpm to CPL

- CPL calculates Hm and bm to obtain Λm and sends it to SLS

- CPL calculates v
linkm
fk

, hence vm
fk

- SLS calculates a
linkm
s and v

linkm
s → obtains am

s , vm
s → new configuration U

m
s

- SLS and CPL send real Is status to FLS

else

- SLS directly obtains Um
s , sends Is to FLS

end if

end if

end for

end for
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Incompatible time-step implementation

Notice that for Algorithm 1 is given for a general time macro time-step ∆Tf , regardless

of the fluid sub-stage considered, i.e. tm = tn+1/2 or tm = tn+1. One should nevertheless

recall that the solid kinematic quantities are not updated for the first stage of the calcula-

tion (tm = tn+1/2) as this stage only provides interface information that the fluid needs in

order to advance in time.

Remark: Several possibilities can be considered to estimate the interface position:

One could calculate an estimation of the position of the wall using only uncoupled kin-

ematic quantities and those known at j = 0. Alternatively, one could iterate with the fluid

solver in order to update the list of FSI elements at each micro time-step as the exact pos-

ition of the wall is known for the next micro time-step at the start of each micro time-step:

This last method is rather heavy and CPU time consuming.

3.1.2 Smaller time-steps in the fluid

Despite wave propagation being usually faster within the solid, cases concerning highly

dense liquids or of smaller particle size should be considered. These cases call for the

implementation of a smaller time-step within the fluid. The GC technique can be applied

as well, however the implementation slightly differs. Since the solid sub-domain is being

integrated with a larger time-step, the position of the wall at any instant t j can be directly

interpolated between the known positions at t0 and tm:

u
j
f k = (1− j

m
)u0

f k +
j

m
um

f k (3.25)

Knowing the solid wall’s position at each micro time-step, the fluid solver can determ-

ine the FSI element list at any time t j under consideration. The information regarding the

elements under FSI as well as the coefficients M
j
f and G

j
f needed for the coupling are then

transferred to the coupling software in order to determine the updated coupling constraint

matrices L
j
s and L

j
p.

For this coupling procedure, more information is transferred to the coupler in order to

reduce the tasks done by the solid solver and improve the efficiency of computation of the

coupled system.

With the implementation of Algorithm 2, the velocity at the interface for any t j can be

obtained:

v
j
f k = v

f ree j

f k +v
link j

f k (3.26)
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3. FSI Coupling with different time scales and solid impacts

Knowing the interface velocity at time t j (3.26), the fluid solver can complete its time

integration up to the next time-step, thus obtain the new fluid configuration U
j+1
f . The

Runge-Kutta 2 mid-point time-step is still used in the fluid to go from time t = t j to

t = t j+1. Since the explicit Newmark scheme used for the solid is second order accurate,

there is no need to carry out a solid calculation at the mid-step.

Finally when t = tm the coupling software sends back the result of the coupled calcu-

lation (the Lagrange multiplier vector), for the solid to complete its integration at the new

configuration U
m
s .

Figure 3.3 schematically shows how the integration procedure is carried out.

s s s

C C C C C C C

F F F F F F F

tj=t0 tj+1/2 tj+1 tj=tm

Figure 3.3: Overview of the coupling procedure when the fluid uses a smaller time-

step than the fluid, i.e. ∆ts = m∆t f and information from the interface comes only at the

beginning of each macro-time-step t0 = tn

Some tasks that were done previously by the solid solver when using smaller time-

steps in the solid, are now carried out by the coupling software in order to avoid the need

to make use of the solid solver at instants that are intermediate to the coarse time-scale.

For this purpose, the solid mass matrix Ms, which is diagonal and invariant, as well as the

connectivity information regarding the boundary elements is transferred at the beginning

of the calculation to the coupling software. Additionally, at the beginning of the large

time-step related to the solid, the position of the wall at times t0 and tm as well as the free

velocities of the solid at t0 and tm, v
f ree0
s and v

f reem
s , respectively, are transferred from the

solid solver to the coupling software.

The value of the unconstrained or free velocity from the solid side can be interpolated

to obtain its value at t = t j:

v
f ree j
s = (1− j

m
)v f ree0

s +
j

m
v f reem

s (3.27)

From equation (3.11), the free velocity at the fluid interface is:
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Incompatible time-step implementation

v
f ree j

f k =
[

M
j
f

]−1

G
j
f (3.28)

Using (3.28), the right hand-side vector b j of the interface equation can now be ob-

tained:

b j = v
f ree j

f k +Ls j
v

f ree j
s (3.29)

The interface equation can thus be written as:

−
[

M
j
f

]−1

Λ
j −L j

sv
link j
s =−b j (3.30)

By adapting equation (3.16) to the current case and by using a linear interpolation for

the solid link velocities at times t = t0 and t = tm to find its value at t = t j, equation (3.30)

can be expressed as:

−
[

M
j
f

]−1

Λ
j −L j

s

[

(1− j

m
)
∆ts

2
[Ms]

−1
L0

pΛ
0 +(

j

m
)
∆ts

2
[Ms]

−1
Lm

pΛ
m

]

=−b j (3.31)

where the operators L
j
s and L

j
p are obtained by the coupling software.

Finally in order to establish the interface equation for the case where the smaller time-

steps are found in the fluid sub-domain, the following hypothesis is considered

L j
pΛ

j = (1− j

m
)L0

pΛ
0 +(

j

m
)Lm

pΛ
m (3.32)

By using (3.32), (3.31) can be expressed as (3.24), with:

H j =
[

M
j
f

]−1

+
∆ts

2
L j

s [Ms]
−1

L j
p (3.33)

Finally, by solving (3.24), the Lagrange multipliers Λ j can be retrieved and the linked

fluid interface velocity at t j:

v
link j

f k =
[

M
j
f

]−1

Λ
j (3.34)

The flowchart given in Figure 3.4 gives an overview of how the algorithm is imple-

mented for the case when the fluid sub-domain is integrated using smaller time-steps.

For further details, Algorithm 2 is given to detail the implementation of the coupling

algorithm.
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3. FSI Coupling with different time scales and solid impacts

Remark: The approach described in this section has only been tested in 1-D and

provides accurate results when compared to results obtained when both sub-domains were

integrated with the same time-step. However, since the interface problem size is reduced

to a single DOF, the volume of information transferred from the solid solver to the coupler

and fluid solver is very small. Further testing in 2-D and 3-D should be carried out in or-

der to explore more deeply the quality of the described procedure by studying how the

additional data exchanges hinder the efficiency of the method.
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Incompatible time-step implementation

computes free & 

predictive boundary

status for t = tm

keeps free 

operators,

sends predictive 

boundary status to 

FSI

exists?

sends to 

No
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predictive boundary

status for t = t2m

Figure 3.4: Flowchart broadly describing how the algorithm is implemented for the case

when using smaller time-steps in the fluid sub-domain
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3. FSI Coupling with different time scales and solid impacts

Algorithm 2 Multi time-step SPH-FEM coupling algorithm - smaller time-steps in the

fluid
for n = 1, n ≤ nMax do

for j = 1, j ≤ m do

if j = 1 and stage = 1 then

- SLS sends [u0
f k, um

f k, v
f ree0
sk , v

f reem

sk ] to CPL

- CPL sends [v0
f k , u0

f k, um
f k] to FLS

- FLS determines if FSI exists

if FSI = true then

- FLS uses u0
f k and v0

f k to obtain U
j+ 1

2
f

else

- FLS directly obtains U
j+ 1

2
f

end if

end if

if [ j > 1 and j < m] or [ j = 1 and stage > 1] then

if stage = 1 then

- FLS obtains u
j
f k through interpolation and determines if FSI exists

if FSI = true then

- FLS sends M
j
f , G

j
f and list of FSI elements (mID) to CPL

- CPL interpolates um
f k ,v

f reem

sk → u
j
f k,v

f ree j

sk → estimates Ls j
, Lp j

- CPL calculates v
f ree j

f k , b j and H j

- CPL solves interface problem to obtain j → v
link j

f k → v
j
f k

- CPL sends v
j

f k to FLS → U
j+ 1

2
f

else

- FLS directly obtains U
j+ 1

2
f

end if

end if

if stage = 2 then

- FLS obtains u
j+ 1

2
f k → FSI exists?

if FSI = true then

- FLS sends M
j+ 1

2
f and G

j+ 1
2

f to CPL

- CPL obtains u
j+ 1

2
f k ,v̂

f ree j+
1
2

sk → Ls
j+ 1

2

, Lp
j+ 1

2

- CPL calculates v
f ree j+

1
2

f k , b j+ 1
2 and H j+ 1

2

- CPL solves interface problem to obtain j+ 1
2 → v

link j

f k → v
j+ 1

2
f k

- CPL sends v
j+ 1

2
f k to FLS → U

j+1
f

else

- FLS directly obtains U
j+1
f

end if

end if

end if

end for

- FLS sends Mm
f , Gm

f and mID to CPL

if FSI = true then

CPL and SLS interact to obtain U
m
s

else

SLS obtains directly U
m
s

end if

end for
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Stability of the algorithm

3.2 Stability of the algorithm

The current section will focus on studying the stability of the coupling algorithm when

applied to the case when the smaller time-step is used in the solid. Since the GC technique

is also used for the case when the smaller time-step is used in the fluid, a similar stability

study can be done for that case that will not be carried out here for the sake of brevity.

This study will be carried out by using the energy method [HUG 79] along with the

following notations:

〈〈x0〉〉=
(
xm −x0

)
(3.35)

and:

〈x j〉=
(
x j+1 −x j

)
(3.36)

where x can be any tensor quantity named in the present article. The total energy

expression associated with each sub-domain is given by the following expression:

〈〈T i(a0)〉〉+ 〈〈V i(v0)〉〉=−Di(〈〈a0〉〉)−E i
link(〈〈v0〉〉,〈〈Λ0〉〉) (3.37)

where i represents the different sub-domains under consideration with T i being the

term associated with the kinetic energy, V i the term associated with the internal energy,

Di the one associated with the numerical damping and E i
link, the term associated with the

interface forces which comes from the coupling algorithm. In order to produce a stable

algorithm, one must ensure that this last term is equal to zero or at least smaller than

zero. In the latter case, stability is ensured but numerical dissipation occurs, altering the

accuracy features of the coupling algorithm with respect to the different time integrators

involved in the co-simulation.

Since for the solid we use an explicit central difference scheme with the FEM tech-

nique, we can infer that the time and spatial integration of the solid sub-domain neither

produces nor dissipates numerical energy [COM 02].

On the fluid side, we use a Runge-Kutta 2 explicit time scheme which is widely known

to be stable provided that the time-step size conditions are met. However, as stated previ-

ously, numerical dissipation can occur through the spatial integration scheme used in this

domain.

Following [GRA 01], the last term in equation (3.37) can be expressed as:
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3. FSI Coupling with different time scales and solid impacts

E i
link(〈〈vi

0〉〉,〈〈Λi
0〉〉) =

1

m∆ts
〈〈v0

f k〉〉T 〈〈Λ0〉〉+
m

∑
j=1

1

∆ts
〈L j−1

s v j−1
s 〉T 〈Λ j−1〉 (3.38)

Using equation (3.12) to split the velocity values into their free and link components,

equation (3.38) can be rewritten as:

E i
link(〈〈vi

0〉〉,〈〈Λi
0〉〉) =

1

m∆ts
〈〈v f ree0

f k 〉〉T 〈〈Λ0〉〉+ 1

m∆ts
〈〈vlink0

f k 〉〉T 〈〈Λ0〉〉

+
m

∑
j=1

1

∆ts

[

〈L j−1
s v

f ree j−1
s 〉T + 〈L j−1

s v
link j−1
s 〉T

]

〈Λ j−1〉
(3.39)

By using:

〈〈Λ0〉〉=
m

∑
j=1

〈Λ j−1〉 (3.40)

and the following equation (obtained by expressing v
f ree j

f k as an interpolation of its

values at t = t0 and t = tm):

〈v f ree j−1

f k 〉= 1

m
〈〈v f ree0

f k 〉〉 (3.41)

equation (3.39) can be expressed as:

E i
link(〈〈vi

0〉〉,〈〈Λi
0〉〉) =

1

m∆ts
〈〈vlink0

f k 〉〉T 〈〈Λ0〉〉+
m

∑
j=1

1

∆ts
〈L j−1

s v
link j−1
s 〉T 〈Λ j−1〉

+
m

∑
j=1

1

∆ts

[

〈v f ree j−1

f k 〉T + 〈L j−1
s v

f ree j−1
s 〉T

]

〈Λ j−1〉
(3.42)

Using equation (3.18) we can rewrite equation (3.42) as:

E i
link(〈〈vi

0〉〉,〈〈Λi
0〉〉) =

1

m∆ts
〈〈vlink0

f k 〉〉T 〈〈Λ0〉〉+
m

∑
j=1

1

∆ts
〈L j−1

s v
link j−1
s 〉T 〈Λ j−1〉

−
m

∑
j=1

1

∆ts

[

〈vlink j−1

f k 〉T + 〈L j−1
s v

link j−1
s 〉T

]

〈Λ j−1〉
(3.43)
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Stability of the algorithm

where two terms cancel out to give in the end :

E i
link(〈〈vi

0〉〉,〈〈Λi
0〉〉) =

1

m∆ts
〈〈vlink0

f k 〉〉T 〈〈Λ0〉〉−
m

∑
j=1

1

∆ts
〈vlink j−1

f k 〉T 〈Λ j−1〉 (3.44)

Using equation (3.16), one can express (3.44) as:

E i
link(〈〈vi

0〉〉,〈〈Λi
0〉〉) =

1

m∆ts
〈〈vlink0

f k 〉〉T 〈〈M0
f v

link0

f k 〉〉−
m

∑
j=1

1

∆ts
〈vlink j−1

f k 〉T 〈M j−1
f v

link j−1

f k 〉

(3.45)

With (3.21) from section 3.1.1, equation (3.45) can be expressed as:

E i
link(〈〈vi

0〉〉,〈〈Λi
0〉〉) =

1

m∆ts
〈〈vlink0

f k 〉〉T M f 〈〈vlink0

f k 〉〉−
m

∑
j=1

1

∆ts
〈vlink j−1

f k 〉T M f 〈v
link j−1

f k 〉

(3.46)

Following the lines of [GRA 01] and [COM 02], it can be shown that expression (3.46)

can be written as a sum of negative squares by considering that M f is positive and definite.

These implications lead to conclude that the multi time-step coupling algorithm induces

dissipation at the interface, hence guaranteeing its stability.

Ẽ i
link = (αn+m −αn)

2 +m
m

∑
j=1

(αn+ j −αn+ j−1)
2 (3.47)

One can show that such an expression expands to a sum of negative squares [COM 02].

Through (2.25), M f is observed to be positive and definite and thus the interface velo-

city vectors are bounded quantities [BEL 73]. These implications lead to conclude that

the multi-time step coupling algorithm induces energy dissipation at the interface, hence

guaranteeing its stability.

Numerical dissipation at the interface depends mostly on the shape of the velocity

curve that is being linearly interpolated. If the shape of the curve differs largely from

a linear evolution, the quality of interpolations done will become worst and hence more

energy will be lost. There have been several studies done in the past [GRA 01, BRU 15]

where the amount of energy dissipated has been showed to be minimal compared to en-

ergy dissipated by the employed time integration and space integration schemes.
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3. FSI Coupling with different time scales and solid impacts

3.3 Conclusion

A heterogeneous time-step coupling technique has been proposed for fluid structure in-

teraction problems, allowing to carry out accurate and stable FSI simulations. If explicit

time integrators in both physical domains are used, the involved system of equations be-

come much simpler to solve. However, the dependence on the time-step size becomes a

major drawback when a solid fine mesh or a small fluid particle size were adopted. In

order to prevent the time-step size requirements of one sub-domain from being inherited

by the other sub-domain, one must be able to integrate each domain with a different time-

step. This objective was accomplished by adapting techniques coming from the coupling

of solid sub-domains in structural dynamics to fluid-structure interaction problems. Nu-

merical case-studies will be investigated in the following chapter in order to highlight the

validity and relevance of the implemented techniques.
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Chapter 4

Numerical Simulations

In this chapter, validation examples of the multi-step coupling strategy will be given. The

examples will feature 1-D, 2-D and 3-D cases, where the accuracy of the proposed

method will be assessed and, for some cases, comparisons with the results of other

authors will be established. Following the validation examples, full simulations of the

impacts of stones on turbine blades will be featured showing the coupling strategy’s

capacity to carry out such complex simulations and giving an insight to the extent of the

damage such as phenomenon can induce on a turbine blade.
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Numerical examples

4.1 Numerical examples

In this section, several numerical validation examples are presented most of which come

from [NUN 17].

The first examples will be simple validation FSI cases putting forward comparisons

between the multi-step coupling strategy and the previously developed coupling strategy

presented in [ZHE 13, LI 15]. The advantages and drawbacks of the multi-step coupling

strategy will be highlighted notably by showing the time gain and accuracy of using the

proposed strategy but also by showing convergence rate issues and slight dissipation at the

interface stemming from the hypotheses made to put the current strategy into use. Follow-

ing this initial validation examples, cases taking into account the impacts of projectiles

inside jet flows will be put forward in order to numerically characterize the damage in-

duced on turbine blades through these type of phenomena.

4.1.1 1-D propagation of shock wave across the fluid-structure inter-

face

For the first test case we couple cantilever 1-D linear bar to a water tube inside which a

strong pressure gradient induces a shock wave across the interface (Figure 4.1).

The initial length of the beam is L0
s
= 1 m, its initial solid density ρ0

s
= 2700 kg/m3,

and its initial section area A0
s
= 0.01 m2. Young’s modulus is E

s
= 67.5 GPa. The solid

bar is discretized with 100 linear truss finite-elements. The tube of water has also a length

of L0
f
= 1 m but contains ten times more particles than elements in the bar. A uniform

pressure step of 20 MPa is imposed at the time t = 0 s in the fluid cavity. We will make use

of the GC method to integrate the solid sub-domain and fluid sub-domains with different

time-steps. The results will be compared with those obtained by [ZHE 13] when using

the same time-step to carry out the coupling calculations.

x = -Ls
x = Lf

x =

x 

Figure 4.1: 1-D bar coupled with a column of water - propagation of shock wave across

the fluid-structure interface

We begin by testing the proposed multi-time-step coupling strategy when a smaller
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4. Numerical Simulations
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Figure 4.2: 1-D propagation of shock wave across the interface - Comparison between

the results obtained when integrating with same and different time-steps the two domains

(smaller time-step in the fluid)

time-step is used for the fluid. For this initial test case, we use a time-step of ∆ts =

10−6 s for the solid and ∆t f = 10−9 s for the fluid. Hence a time-step ratio m of 1000 in

considered between the two sub-domains.

Figure (4.2) shows the comparison between the results of the simulation using the

method described in the current paper and another one in which both sub-domains are

integrated with the same time-step, i.e. ∆t f = ∆ts = 10−9 s .

The results show good agreement when using a much finer discretization in the fluid

sub-domain leading to a much smaller time-step in the fluid than in the solid in order to

satisfy the CFL condition.

Next, for the same test case, we will make use of the GC method to integrate the

solid sub-domain with a smaller time-step than the fluid. To perform this simulation 500

truss elements are used to discretize the bar and 100 fluid particles for the tube. The ratio

between time-steps, m = ∆t f/∆ts, is equal to 100 with ∆ts = 10−8.

Figure 4.3 shows the result comparison between the proposed method and those ob-

tained from a uniform time-step simulation carried out by [ZHE 13] (∆ts = ∆t f = 10−8).

Once again, we see that good agreement also exists when using a smaller time-step to in-

tegrate the solid through the use of the GC method for time-steps that differ considerably.

However, it has to be noted that the interface remains quite small when compared to the

size of the whole problem (1 DOF for the interface compared to 500 solid elements + 100

fluid particles).

In order to verify that coupling on the normal component of the velocities is done at
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Figure 4.3: 1-D propagation of shock wave across the interface - Comparison between

the results obtained when integrating with same and different time-steps the two domains

(smaller time-step in the solid)

the micro-time scale, the boundary normal velocities have been plotted at the smallest of

time-scales in the fluid and solid for Figure 4.4. To make it more readable, the time-scale

ratio between the fluid and solid is m = 20 in this Figure.

Accuracy study of the proposed algorithm

For the current test-case, we will carry out a time convergence study of the multi time-

step coupling algorithm. The strategy proposed in [MIC 04] to study convergence in

time provides a simple yet effective way to carry out this study and we will apply it

here. The said strategy consists in choosing a starting time-step size τ and carrying out a

simulation. Then, simulations using time-step sizes corresponding to 2τ and 4τ are carried

out subsequently. To analyse convergence in time, we track the value of a field on a point

in the structure or in the fluid (referred to as Xnum) and calculate the relative error using

an Ln norm (with n = 2 in this case) between the simulations using the different time-step

sizes. To obtain the order of accuracy in time, denoted by Ω, we compare the natural

logarithm of the ratio of subsequent calculation errors to the natural logarithm of 2, i.e.:

Ω = ln

(‖X4τ
num −X2τ

num‖2

‖X2τ
num −X τ

num‖2

)/

ln(2) (4.1)

For this study, we track the displacement of the end of the bar that is in contact with the

fluid (us(L
0
s )). Two studies will be done using different reference time-steps τ, a coarser

one at τ
f
1 = 1.0×10−6 s and a finer one at τ

f
2 = 2.5×10−7 s (for the fluid sub-domain).
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4. Numerical Simulations
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Figure 4.4: Kinematic continuity is prescribed at the micro-time scale when using the GC

technique. Exact equilibrium is only prescribed at the macro time-scale (black circles),

an interpolation allows to prescribe equilibrium at the micro time-scale (red crosses)

A smaller time-step will be used in the solid with a ratio of m = 100 between both sub-

domains. Thus, for the solid we have τs
1 = 1.0×10−8 s and τs

2 = 2.5×10−9 s. Table 4.1

gives the results of the convergence study.

Table 4.1: Computed order of accuracy in time for the mono time-step algorithm and the

multi time-step algorithm with smaller time-steps in the solid

time-step ratio τ τ1 τ2

m = 1 Ω(us(L
0
s )) 1.949 2.044

m = 100 Ω(us(L
0
s )) 1.605 1.871

As it can be seen from Table 4.1, the order of accuracy of the multi time-step coupling

algorithm is not second order as it would have been the case when using a mono time-

step coupling strategy. As explained in section 3.2, the interpolations and hypotheses done

when using the multi time-step coupling strategy induce numerical energy dissipation at

the interface, hence the global order of convergence of the algorithm is degraded.

As for the case when the smaller time-steps are used in the fluid, numerical tests

carried out for τ
f
2 = 2.5×10−7 s using a time-step ratio of m = 10 showed once again a

drop in the convergence rate of the algorithm. The results of these latter numerical tests
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Numerical examples

are presented in Table 4.2.

Table 4.2: Compared observed order of accuracy in time for the mono time-step al-

gorithm and the multi time-step algorithm with smaller time-steps in the fluid

time-step ratio τ τ2

m = 1 Ω(us(L
0
s )) 2.044

m = 10 Ω(us(L
0
s )) 1.025

For the following applications, we have considered only the case where the smaller

time-step is used for the solid sub-domain as this case is the main target motivating this

study.

4.1.2 2-D hydrostatic water on a linear elastic plate

Next, we consider a simple 2-D test case in which we couple a linear elastic plate with

a column of water which is initially in hydrostatic equilibrium. Figure 4.5 shows the

configuration of this test case: a rigid water reservoir has a geometrically linear elastic

bottom which is clamped at both ends, a pressure gradient within the water reservoir is

present due to the gravity effect and the fluid pressure at the free surface is taken equal to

zero. The other simulation parameters are given in Table 4.3.

g

Figure 4.5: 2-D hydrostatic water interacting with a linear elastic plate

This test case is aimed at assessing the accuracy of the GC method in 2-D when

compared once again to the homogeneous time-step simulation described in [ZHE 13].

As stated in Table 4.3 the fluid and the solid sub-domains are discretized with the same
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4. Numerical Simulations

Table 4.3: Simulation parameter used in the 2-D hydrostatic test case.

Water width (L) 1 m

Water height (H) 2 m

Elastic wall thickness (e) 0.05 m

Fluid particle size 0.01 m

Rigid wall spacing 0.01 m

Elastic wall mesh spacing 0.01 m

Fluid reference density 1000 kg/m3

Fluid reference sound speed 50 m/s

Solid Young’s modulus 67.5 GPa

Solid density 2700 kg/m3

Poisson coefficient 0.34

Solid 2-D hypothesis plane strain

particle and mesh size. The speed of sound being roughly three to four times larger in

the structure than in the fluid, we will nevertheless use a time-step of ∆t f = 5×10−7 s to

integrate the fluid whereas the time-step in the solid will be ten times smaller (m = 10).

The results of the simulation are given in Figure 4.6 in which the displacement of a

node located at the middle of the plate predicted by the proposed multi time-step approach

is compared to the reference results obtained from an homogeneous time-step approach.

Once again, it can be seen that a good agreement is achieved between the two results.

When running simulations for multidimensional cases, integrating each sub-domain with

different time-steps, while ensuring a good accuracy, is crucial for reducing the compu-

tation times. Indeed, the fluid calculation is much more time-consuming than the solid

calculations. So being able to adopt a coarse time-step for the fluid computations leads to

an improved performance.

4.1.3 Breaking dam flow on an elastic wall

Next, another 2-D test case of a fluid-structure interaction problem is considered, whose

initial configuration is shown in Figure 4.7. In a rigid wall container, a column of water

is initially located at the left side of a container. The water column is in hydrostatic

equilibrium. An elastic wall is clamped placed to the right at the middle of the container.

The geometric and discretization parameters are given in Table 4.4.

The material properties of the solid are such that the initial solid density is ρ0
s =
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Figure 4.6: 2-D hydrostatic water on a linear elastic plate - Comparison between the

results obtained when integrating with same and different time-steps in both domains

2500 kg/m3, Young’s modulus is Es = 106 Pa and the Poisson’s ratio is taken as ν = 0.

As Walhorn et al. [WAL 05] did, we assume linear elastic behavior.

4L

a

b

g

Figure 4.7: Initial configuration of the test case: breaking dam flow on an elastic wall

At the beginning of the simulation, the water column at the left of the domain col-

lapses and breaks on the clamped plate to its right. The water impact being quite brutal,

geometrical non-linearities are consequent in this simulation. This test-case is aimed at

assessing how the multi-time-step coupling technique responds to the presence of strong

geometrical non-linearities.

Once again, due to the same spatial discretization used on both sub-domains, we use

a time-step of ∆t f = 2×10−5 s for the fluid whereas a time-step that is 10 times smaller
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4. Numerical Simulations

Table 4.4: Geometric and discretization parameters for the breaking dam flow on an

elastic wall test case

Water width (L) 0.146 m

Water height 2L

Initial distance L

Width of rigid container 4L

Elastic wall width (b) 0.012 m

Elastic wall height (a) 20b/3

Fluid particle size 0.002 m

Rigid wall spacing 0.002 m

Elastic wall mesh spacing 0.002 m

is adopted for the structure.

Figure 4.8 shows the results of the simulation at t = 0.30 s.
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Figure 4.8: Breaking dam flow on an elastic wall - results of the simulation at t = 0.30 s

In order to further assess the multi time-step technique proposed here, a comparison is

done in Figure 4.9 between the results of the simulation with the results obtained by other

authors [WAL 05],[IDE 08]. Additionally, a comparative analysis is also made between

the current results and those obtained previously using a different solid solver and a ho-

mogeneous time-step [LI 15]: Code Asterr, a finite-element implicit/explicit code de-
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veloped by EDF (Electricité de France).

As presented in [LI 15], there is still a discrepancy between the results obtained in

[WAL 05] and those obtained through the use of the present method. However, the

results obtained by [IDE 08] come quite close to what was obtained with the proposed

method, especially for the coupling done with the Europlexusr software. Good agree-

ment between the results obtained when integrating with same and different time-steps is

also found, despite the large displacements undergone by the structure. Thus, the interest

of the multi time-step GC algorithm for this case study is highlighted.

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.1  0.12  0.14  0.16  0.18  0.2  0.22  0.24  0.26  0.28  0.3

D
is

pl
ac

em
en

t (
m

)

time (s)

Horizontal displacement of the top-left node

Europlexus mono time-step
Europlexus multi-time step

Code Aster mono time-step
Walhorn et al.
Idelsohn et al.

Figure 4.9: Result comparison of the displacement of the top left node of the structure

until t = 0.3 s

4.1.4 Convergence study for symmetrical 2-D water jet impact on a

solid plate

For the last 2-D example, a water jet impacting a steel plate will be simulated. In the

current simulation, the water jet will impact the stationary plate with a downward velocity

of v f = −100 m/s. Three subsequent calculations will be carried out on which the solid

and fluid mesh density will evolve in order to asses the proposed strategy’s convergence

in time and space. Figure 4.10 presents the geometrical configuration of the numerical
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simulation currently being considered.

Lf

hf

Ls

hs

vf

Ωf

Ωs

M

Figure 4.10: Configuration for the 2-D jet impact on plate case study

Concerning the fluid parameters, liquid water values at room temperature will be used

for the simulation, hence the reference density ρ0
f is 1000 kg/m3 and the reference speed

of sound c0
f is 1500 m/s. The solid plate is considered to be made out of steel, hence the

typical material parameters for an isotropic elastic steel will be used. As such the solid

density ρs is 7800 kg/m3, the Young’s modulus Es is 200 GPa and Poisson’s ratio ν is

0.34. Table 4.5 contains the value of the geometrical parameters for the present study:

Table 4.5: Geometric and discretization 2-D jet and plate

Water width (L f ) 0.005 m

Plate width (Ls) 0.025 m

Plate height (hs) 0.015 m

Fluid particle size 5×10−4 m

Plate mesh spacing 5×10−4 m

The simulations will be carried out three times with three different sizes for the mesh

and particle discretizations. The time-step considered for the solid sub-domain will be

the one corresponding to the smallest spatial discretization obtained through the CFL
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condition. The fluid time step will be 5 times larger than the solid one. The subsequent

mesh and particle sizes along with the time-step use for each sub-domain are given in

Table 4.6.

Table 4.6: Simulation parameters for the mesh convergence analysis

Domain ∆x1 ∆x2 ∆x3 ∆t

fluid 0.5 mm 0.25 mm 0.1 mm 5×10−8 s

solid 0.5 mm 0.25 mm 0.1 mm 1×10−8 s
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Figure 4.11: 2-D jet impact on plate, mesh convergence study

Figure 4.11 presents the results of the convergence study for the case of the water jet

impacting a horizontal flat steel plate. In this figure, the vertical displacement of point

M whose location is shown in 4.10 is tracked for the three different degrees of mesh

refinement. As it can bee seen the curves in Figure 4.11, the displacement of point M

follows the same tendency as the mesh density is refined. The mesh convergence of the

multi-step coupling strategy is thus well represented in the current study and serves as a

preamble to the fluid-structure and impact simulations that will be presented next.
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4. Numerical Simulations

4.2 FSI simulations with impacts

In the current section, impacts of flow driven projectiles on stationary targets will be

carried out. Initially a 2-D parametrical study will aim to show the influence of the size

of the projectile on the potential damage that the stationary surface may go through after

the impact. Next, 3-D simulations using a stationary plate and followed by a real turbine

blade model as target will be studied.

4.2.1 2-D impact simulations, influence of the size of the projectile

For the first study involving impacts and fluid-structure interaction effects, we will con-

sider the case of a circular projectile impacting a flat 2-D plate that is simply supported on

its sides and bottom. The projectile engulfed in the water jet will hit the immobile plate

with a velocity of v f = −100 m/s. In fact the configuration of the current test case is

rather similar to the configuration of the case described in 4.1.4 but with the addition of

the contact problem and different material properties and geometrical parameters.

Concerning the simulation parameters for the projectile, some hypotheses will be made in

order to create a realistic but computationally efficient scenario. Firstly the material prop-

erties of the projectile will be considered to be homogeneous throughout its whole extent.

Since the composition of rocks and gravels found in streams can be quite heterogeneous

event within a single specimen, this hypothesis is rather strong but allows to lighten up the

computational cost of the whole simulation. Furthermore, in order to position the study

in a unfavourable situation for the target body, the projectile will be considered made of

quartz which is one of the hardest materials that can be found in river and streams usually

mixed into granite composites.

To model the quartz projectile, a Drucker-Prager [DRU 52] elasto-plastic material

model will be used which is a commonly used to model rock, concrete and other pressure-

dependent materials. This material model allows to establish different compression and

traction limit stresses after which the material reaches a plastic state. In the solid solver

used for the current work, one can even establish a stress limit triggering brittle fracture

once a certain stress state is surpassed. Finally in order to simplify simulation time and

avoid complicated mesh structures, the geometry of the projectile will be simply circular.

The steel target plate will be modelled using a von Mises elasto-plastic material model

which is commonplace for the simulation of metals and alloys. In order to simulate

erosion, a post-calculation criterion based on the total plastic strain will be used to determ-
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FSI simulations with impacts

ine the extent of the damage on the structure caused by ductile fracture [KIM 15, SEI 16].

The material parameters for the steel plates are taken from Andritz official documentation.

Figure 4.12 presents the geometrical configuration of the simulation and Table 4.7

presents the geometrical parameters taken into consideration for this simulation.

Lf

hf

Ls

hs

vf

Ωf

Ωs

s

M

Figure 4.12: 2-D jet and stone impact on plate

Table 4.7: Geometric and discretization parameters for the 2-D impact problem

Water width (L f ) 0.03 m

Plate width (Ls) 0.15 m

Plate height (hs) 0.1 m

Rock radius (rs) 5 mm, 7.5 mm, 10 mm

Fluid particle size 5×10−4 m

Plate mesh spacing 5×10−4 m

The material properties for the rock projectile are its density ρr = 2200 kg/m3, its

Young’s modulus Er = 75 GPa, its Poisson’s coefficient ν = 0.3, its traction stress limit

σT = 50MPa and its compression stress limit σC = 1.15 GPa.

For the steel plate, the basic material properties include its density ρp = 7800 kg/m3,

its Young’s modulus Ep = 200 GPa, Poisson’s coefficient ν = 0.33 and the elastic limit

σe = 200 MPa. After the elastic limit is reached, the non-linear relation between the stress
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4. Numerical Simulations

and the strain in the material follows a curve obtained experimentally for this material.

A maximum total plastic equivalent strain can be used to determine if erosion is present

within the impact zone. For this matter, elements surpassing 8% of total plastic will be

considered as eroded [KIM 15, SEI 16].

Finally, the fluid parameters include its reference density ρ0
f = 1000 kg/m3and its

reference speed of sound c0
f = 1000 m/s.

The results of the simulation are presented in the following Figures.

Figure 4.13: Impact of a quartz rock on a steel plate. Comparison of the damage induced

through a dry impact and through a fully coupled impact

Figure 4.13 presents a comparative result of the damage undergone by the steel plate

both in the case when the rock impact occurs in a ”dry” configuration (top row) as well

as in a fully coupled configuration (bottom row). The results presented in this Figure

correspond to the case when the radius of the rock is rs = 1 cm. Quantitatively, the
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damage can be analysed by looking at the total equivalent plastic strain variable given by

the solid solver for the target structure. Figure 4.13 exhibits how the damage undergone by

the steel plate in the dry configuration is significantly more pronounced than the damage

undergone by the plate in the fully coupled configuration. As it can be seen in the first

image of the coupled calculation on Figure 4.13, much of the stone’s kinetic energy is

absorbed by the water jet as the fluid gets trapped between the rock and the steel plate.

Hence, the impact velocity of the rock becomes much lower in the case of the coupled

calculation compared to the dry impact case. For the case of the coupled impact, the

velocity of impact has been recorded to be around vr ≈ −40 m/s as opposed to the dry

case were the velocity of the projectile is the same as the initial velocity of the water jet.

In order to take into account the influence of the size of the stone on the extent of the

impact damage, a parametric study using three different rock sizes has been carried out

where the radii of the circular stones will take the values given in Table 4.7.

Figure 4.14 presents a study of the influence of the size of the rock projectile on the

damage induced on the target steel plate. The top row corresponds to the case where

the projectile has a radius rs = 5 mm, the middle row corresponds to the case where

rs = 7.5 mm and finally the bottom row is for the case where rs = 1 cm. For the current

study, once again, the total equivalent plastic strain resulting after the impact is taken as

the measure of the extent of the damage the plate has gone through. As it is clear from

Figure 4.14, the damage induced on the plate is proportional to the size of the projectile.

The largest projectile has naturally the most momentum and the water ”cushion” forming

before impact between the projectile and the plate is less successful at slowing the rock

before impact. For the smallest rock, the impact velocity is vs ≈−19 m/s, for the medium

sized one the impact velocity is vs ≈−30 m/s and finally, as already stated, for the largest

rock, the impact velocity is vs ≈−40 m/s.
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Figure 4.14: Impact of a quartz rock on a steel plate. Influence on the size of the stone

on the damage undergone by the steel plate.
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Multi-time step coupling strategy gains

The simulations done in the current study were done with a time-step ratio of m = 10

between the fluid and solid sub-domain in order to satisfy the stability time step conditions

for each sub-domain. Thus, considering the spatial mesh spacing and the values of the

speed of sound inherent to each sub-domain, for the solid we used a time-step of ∆ts =

1.0×10−8 s and for the fluid a time step of ∆t f = 1.0×10−7 s. These simulations were

carried out for the case when the radius of the stone is rs = 1 cm. .

To highlight the accuracy of the proposed method even in such a non-linear case as

the present one, the vertical displacement of point M, whose position is shown in 4.12,

will be tracked in time in and compared to the calculation carried out when both of the

sub-domains used the same time-step. The comparative graph showing the results of the

mono-time step calculation to those of the multi time-step one are presented in Fig. 4.15.
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Figure 4.15: 2-D jet and stone impact on plate, comparison between mono time-step and

multi time-step calculations

As seen in Figure 4.15, there is good agreement between the calculation done with

the same time-step and the one done using a ratio of m = 10 which allowed each sub-

domain to be integrated with a time step close to its stability time step imposed by the

CFL condition. This example highlights the applicability of the proposed method even in

the event of large displacements, contacts and material non-linearities.

In order to quantify the time gain when using different time steps for each sub-domain,

the total elapsed time of calculations has been recorded for the mono time-step and the

multi time-step cases. The calculations presented here were all executed on the same
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server, composed of current generation CPUs clocked at 2.50 GHz. For these calculations,

a single CPU was attributed for each solver as well as for the coupling software. Table

4.8 compares the time elapsed for the coupled calculations using the same and different

time-steps.

Table 4.8: Elapsed calculation time for same time-step and multi time-step coupling

calculations

time-step ratio calculation time

m = 1 31 min

m = 10 12 min

As it can be seen from table 4.8, using the multi-time step strategy, allows to reduce

the calculation time considerably. For the present 2-D cases, the time-gain might not be

a determinant factor for opting to use the multi-step coupling strategy with regards to

using the same time step. However, for 3-D cases that will follow, the multi-time step

coupling strategy will prove to be crucial to providing results within a reasonable amount

of calculation time.

4.2.2 3-D impact simulation

For the first 3-D impact problem presented here, a similar configuration to the one used

for the 2-D impact problem will be employed, see Figure 4.12. The stone projectile is

naturally replaced by a spheric projectile with radius rs and the rectangular steel target

plate is replaced by a rectangular prism. The exact value of the geometrical parameters

for the current case study are given in Table 4.9.

The material properties of the projectile and the plate will be the same as the ones used

in the 2-D case. The same applies for the fluid reference parameters. The speed of the

water jet and projectile is once again v j = 100 m/s.

The results of the 3-D impact case are given in Figure 4.16.
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Table 4.9: Geometric and discretization parameters for the 3-D impact problem

Water width (L f ) 0.1 m

Plate width (Ls) 0.2 m

Plate height (hs) 0.05 m

Rock radius (rs) 20 mm

Fluid particle size 5×10−3 m

Figure 4.16: Impact of a quartz rock on a steel plate. Comparison of the damage induced

through a dry impact and through a fully coupled impact
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In Figure 4.16, once again the top row displays the case where the impact is done

without coupling and the bottom line the fully-coupled case. As in the 2-D case the

damage on the steel plate, quantified by the total elastic plastic strain rate, is higher for

the case where no fluid is present. For the coupled case, the fluid absorbs some of the

kinetic energy of the projectile with the impact speed being vs ≈−50m/s with respect to

the initial jet and rock velocity of v j = −100 m/s. It is also evident that in the present

coupled simulation the damage undergone by the plate is greater than in the 2-D case. The

reason for the increased impact velocity in the 3-D case can be explained in two ways.

Firstly the size of the projectile is twice as large than in the 2-D case. The reason for this

was mainly to see the effects of a larger projectile on the damage caused by the impact.

The second reason for this increased damage can likely come from the fact that in 3-D,

the water trapped between the rock and the plate is less constrained than in the 2-D case

as it has more direction in space along which it can evacuate. Actually, the simulations

done in the 2-D case are not really comparable to the simulations in 3-D presented here

since no axisymmetric conditions were used for the 2-D case.

4.2.3 3-D impact simulation on a Pelton bucket

For the last simulation presented in the current work, a more realistic geometric model for

the turbine blade as well as for the stone projectile will be used. The material properties

of the solid as well as the reference values for the fluid will remain the same as for the

case studies presented in subsections 4.1.4 and 4.2.2. The geometrical dimensions of the

Pelton turbine bucket are described in Figure 4.17.

In Table 4.10, we can see the detailed dimensions of the Pelton turbine bucket as well

as those regarding the water jet and the stone projectile. The particle size for the fluid SPH

mesh is given as well and the solid is meshed in a way that the elements that are in contact

with the fluid are at least of the same size. The rock projectile has an amorphous shape so

no radius can be given as in the precedent case study. Nevertheless, the maximum length

in every direction for the projectile is nearly the same and this parameter has been given

as the length of the projectile Lr.

Using the parameters given, the fluid domain is discritized using 90 000 SPH particles

and the solid mesh contains around 86 000 tetrahedron linear elements. The reason why

tetrahedron elements are being used is mainly for computational cost reduction. In terms

of boundary conditions, the right end of the Pelton bucket in Figure 4.17, is considered

fixed since the phenomenon studied here is quite localized to the impact area.
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B

Lp

hp

Figure 4.17: Pelton turbine bucket top and side views

Table 4.10: Geometric and discretization parameters for the Pelton turbine bucket and

stone impact simulation

Water jet radius (L f ) 12 mm

Pelton bucket width (B) 100 mm

Pelton bucket length (Ls) 98 mm

Rock length (Lr) 5 mm

Fluid particle size 1 mm

In order to account for the centrifugal forces undergone by the Pelton bucket before

the impact takes place, a static analysis of the bucket is carried out that precedes the im-

pact transient analysis will involve the impact of the rock and the water jet on the Pelton

bucket. Since the solid solver used for the impact calculations, Europlexus, is intended

for transient dynamic calculations and uses the explicit Newmark central difference time

scheme, no stiffness matrix or solver is available and hence no way to obtain the steady

state response of the rotating bucket is possible. Thus, in order to obtain the displace-

ment field of the bucket after reaching a steady state and just before the impact we carry

out a static analysis using Code Aster, a finite-element solver developed by Electricité

de France [EDF 00]. This solver, by default uses an implicit Newmark time-integration

scheme for transient calculations and is capable of carrying out static analysis of struc-
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tures. In addition, the results can be written on a file format that can be subsequently used

as an input file with Europlexus to launch the fluid-structure transient calculations that

are of interest in the scope of the current thesis. Taking a diameter of Dw = 0.40 m for

the Pelton wheel and using the equations linking the tangential velocity of the bucket to

the angular velocity of the turbine given in the Introduction, the angular velocity is set at

ω = 500 rad/s. The displacement field of the static analysis are presented in Fig. 4.18.

7e-6 1.4e-5 2.1e-50.0e+00 3.0e-05

Displacement X (m)

Figure 4.18: Steady state displacement field of the Pelton Bucket due to the centrifugal

forces induced by its rotation

Once the steady state analysis is carried out, the fluid-structure transient analysis is

launched using the displacement field of the static calculation as the initial configuration

of the FSI calculation. The FSI calculation is launched using 2 computational cores for

the fluid sub-domain, one core for the coupling software and one core for the solid solver.

Due to the complexity of the mesh of the solid sub-domain, the stability time-step for the

solid sub-domain is fixed at ∆ts = 1.0× 10−8 s and the fluid one at ∆t f = 1.0× 10−7 s,

hence a time-step ratio of m = 10 will be used for this calculation.

The results of the simulation are given in Figure 4.19.
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Figure 4.19: Impact of rock on Pelton turbine bucket
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In Figure 4.19, the left column shows the case where the rock impacts the Pelton

bucket in a dry configuration. The column on the right displays the fully coupled case.

The indicator for damage in the steel bucket is once again the total equivalent plastic

strain. In contrast to the case where a spheric projectile impacted a flat rectangular target

head on, the damage caused by the projectile in the current coupled case is more pro-

nounced than the damage caused by the dry impact. This phenomenon can be explained

by carefully analysing the way the impact takes place in each case. For the dry case, due

to the orientation of the rock at the beginning of the simulation, the actual surface of the

the stone coming into contact with the Pelton runner is quite small. Besides, the contact

time is rather short since, as shown in Figure 4.19, the stone immediately bounces off the

surface of the bucket upon contact.

In contrast, for the fully coupled case, the hydrodynamic shape of the bucket prevents

a thick water cushion to form between the two solid bodies and thus the speed of the

stone is barely reduced before impact with the structure (vs ≈ −98 m/s). Additionally,

the momentum of the water jet is transmitted to the stone and prevents it from quickly

bouncing off from the bucket as was the case in the dry impact case. As such, the impact

in the coupled case is extended both in time and space and thus the damage on the structure

is greater than for the non-coupled case for this particular configuration.

Erosion damage can be visualized if elements surpassing 10% of cumulated plastic

strain are considered as eroded. Figure 4.20 presents the comparison of the surfaces

eroded for both the dry and the fully-coupled case.

Figure 4.20: Erosion damage on the Pelton turbine bucket
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Figure 4.20 shows the extent of the damage dealt after the impact in both the dry and

the fully coupled case. As already explained, the extent of the damage is larger in the

latter case due to a more persistent and larger contact area induced by the presence of

the water jet which both guides the rock against the bucket and continues to transmit its

momentum unto it.

For the FSI calculation presented here, the rock carried by the water jet was randomly

placed near the extremity of the jet. Hence, the impact on the blade took place on a rather

sturdy area of the bucket where the impact, although violent, would cause limited damage

only. In order to consider a more unfavourable case scenario where the rock would impact

a more fragile zone of the bucket, another simulation has been carried out where the stone

is placed closer to the center of the jet. Due to the repositioning of the stone within the

jet, the impact will initially take place on the converging blade that divides the jet into two

halves known as the splitter. The results of this second simulation are presented in Fig.

4.21. Once again a comparison between the fully coupled case and a dry impact case are

shown.

As one would expect, the damage induced on the target structure is much more pro-

nounced this time around than in the previous case. In fact, by taking into account the

of total equivalent plastic strain as indication of the damage on the turbine’s bucket, an

increase of around 50% for the maximum value is observed for the fully coupled case and

there is around 100% increase for the maximum value in the dry impact case.

In contrast to the previous impact simulation, the dry impact case produced more

damage on the structure than the fully coupled case. This effect can be explained if the

way the impact takes place is analysed for each case. For the fully coupled scenario, there

is a pressure spike that forms as the water jet encounters the splitter and is suddenly slowed

down forming a water cushion that absorbs a bigger amount of the kinetic energy of the

rock projectile. Additionally, in contrast to the previous simulation, due to the orientation

of the splitter and the projectile upon impact, the surrounding water jet tends to drive the

projectile away from the impact zone instead of thrusting it into the structure as was the

case previously. As well, since the impact takes place before the water jet is split into

two halves, the effect of the flux conservation is not present and hence the velocity of the

water surrounding the jet is the same as the initial velocity of the jet. Hence, the impact

velocity is vr ≈ 75 m/s before impacting the splitter this time around. In contrast, for

the uncoupled simulation, the projectile hits the turbine on a weaker region at full speed

coming closer to the case scenario presented in the previous sections where a projectile

struck a flat plate head-on.
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Figure 4.21: Impact of rock on the splitter of a Pelton bucket
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In order to better appreciate the extent of the damage that such an impact would induce

on the bucket of the Pelton turbine, once again elements surpassing 10% damage will be

considered eroded. Fig. 4.22 presents the erosion extent for both the dry impact case as

well as the fully coupled case.

Figure 4.22: Erosion damage on the splitter section of the Pelton bucket

As shown in Fig. 4.22, the extent of the erosion is larger in the case where no water jet

is present in the calculations. However, for both cases, the extent of the damage is much

more important with respect to the case where the impact took place in a more sturdy

region of the bucket as was the case in the impact calculations presented earlier. By having

a visual representation of the damage the impact of a stone can produce after such a violent

impact without having to carry out costly experimental trails, the turbine manufacturer can

determine if the damage induced on the turbine comes from the presence of large stones

in the flow, which shouldn’t be the case when operators follow the established security

procedure.

Finally, the proposed multi-time step coupling technique allows to carry out fully

coupled FSI simulations within a reasonable amount of time even for complex three-

dimensional cases as the one featured here. The present simulations were carried out with

a time-step ratio of m = 10. In order to compare the duration of a simulation when using

a multi time-step approach to a mono time-step simulation, the latter type of simulation

has been carried out for the first 10% of the total duration of the simulation. Using this

information, the computational time of a mono time-step simulation has been estimated.

The total computational times for each a mono time-step and a multi time-step calcula-

tions are presented in Table 4.11.
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Table 4.11: Elapsed calculation time for same time-step and multi time-step coupling

calculations for the 3-D impact problem

time-step ratio calculation time

m = 1 43 hrs (estimated)

m = 10 9 hrs

The calculations presented here were launched using the same server as the one used

for the impact calculations in 2-D. Two CPUs were used for the fluid solver, and one

CPU each for the solid solver and the coupling program respectively. From Table 4.11,

the use of the multi time-step coupling technique allows to obtain results for the coupled

calculation around five times faster. Hence, the interest of using the proposed multi time-

step coupling strategy is highlighted for complex 3-D calculations like the present one.

4.3 Conclusion

Validation examples for the heterogeneous time-step fluid structure coupling technique

have been presented in the current chapter. The examples in 1-D show the basic properties

of the proposed method such as its accuracy and convergence when smaller time-steps

are used either in the fluid or in the solid. The 2-D examples focused on cases where

the smaller time-step is used in the solid and highlighted how the proposed method can

be applied even in cases of strong geometrical non-linearities. The validation examples

allowed to compare the results of coupled FSI cases using the proposed method to the

results obtained by other authors.

After the validation example phase, 2-D and 3-D examples of coupled calculations

with impacts between a rock projectile modelled with quartz material properties and a

steel target with the material properties of a Pelton bucket where carried out. For quantify-

ing the damage induced on the steel target, the total equivalent plastic strain was observed.

For 2-D and 3-D cases where the impact plane was perpendicular to the jet velocity vector

carrying the projectile, the amount of damage induced on the target plate was much less

pronounced when water jet was present as opposed to when the impact was done in a dry

configuration. The reason for this was observed to be the influence of the water cush-

ion formed between the projectile and the target, greatly absorbing much of the kinetic

energy of the rock before impact. However, in the last simulation, where more realistic

geometries where used, due to the configuration of the projectile and steel plate and to
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the hydrodynamic properties of the latter, the water cushion influence is less pronounced

and the velocity of the projectile is almost the same as in the configuration where no jet is

present. Additionally, the presence of the jet transfers its momentum and drags the pro-

jectile along the surface of the bucket, hence the damage observed on the latter is much

more spread-out and pronounced in the coupled case.
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General conclusion & perspectives

The work presented in the current thesis has focused in providing a tool to couple external

specialized solvers in order to carry out transient fluid-structure interaction simulations.

The coupling of the explicit solid solver Europlexus, developped jointly by the French

CEA and the European Commission’s JRC, and the fluid solver Asphodel, developed by

Andritz Hydro, was done by developing a coupling program handling the calculation of

the pressure at the interface in order to correct the velocities at the boundary separating the

fluid and the solid. The coupling of explicit solvers done in the current work adds a great

deal of flexibility since the time integration scheme and the time-step size can be different

and can be made compatible with calculations involving impacts between disjoint solid

structures.

The first chapter of this thesis gave an overview on the different ways to solve fluid-

structure interaction problems as well as on domain decomposition techniques and solid

contact detection models which are at the base of the coupling technique used in the

current work. From what was presented in this chapter, it was argued how the most

convenient way to carry out the targeted FSI simulations was by coupling a mesh-less fluid

solver, allowing to easily track the free surface and the fluid-solid interface to an explicit

Finite-Element solid solver capable of handling contacts between solids. To overcome the

time-step size constraints imposed by the explicit time integration schemes used by the

solid and fluid solvers, inspiration from FETI-based techniques would be drawn in order

to propose a multi-time step coupling strategy allowing to couple solvers using different

time-steps.

The second chapter presented the governing equations for each the fluid and solid

sub-domains and their discretization schemes in time and space. For the fluid, the basics

behind the SPH-ALE technique were presented, which compared to the traditional SPH

method, allows to impose a numerical particle transport velocity different than the actual

flow velocity as well as better estimate intermediate states between particles are found by

solving a one-dimensional Riemann problem, thus providing an appropriate framework
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to conveniently impose boundary conditions and normal velocity continuity in the case of

fluid-solid coupled calculations. The widely used finite-element method was then briefly

presented as the technique used for discretizing the solid governing equations in space.

Subsequently, the coupling between both discritized sub-domains was shown to be carried

out by ensuring normal velocity continuity at the interface by using Lagrange multipliers.

Regarding time integration, it was pointed out that the different time integration schemes

are used for each sub-domain. Hence, for the fluid sub-domain, a explicit Runge-Kutta 2

(midpoint version) was applied, while the explicit Newmark Central Difference scheme

was used in the solid sub-domain. Finally, the calculation of contact forces between

solid meshes were deemed compatible with the FSI coupling tool and a brief description

allowing to obtain them was also put forward.

The last two chapters of the current thesis focused on describing and validating the

multi-time step fluid-structure interaction coupling strategy used throughout this work.

The third chapter introduced and described how the multi-time step coupling strategy can

be used with smaller time steps in either the fluid or in the solid. The proposed coupling

technique was based on existing solid sub-domain coupling techniques allowing to couple

solid sub-domains using different time-steps and time integrators. Algorithms and flow-

charts detailing the implementation of each of the coupling techniques were given and a

stability proof was put forward in the case in which the smaller time-steps are found on

the solid. On the last chapter, validation numerical examples were given comparing the

results obtained with the proposed multi-step coupling technique to the results obtained

by other authors or using the mono time-step coupling technique that was previously

developed. Finally, coupled and uncoupled 2-D and 3-D problems aiming at quantifying

the damage undergone by a steel target structure struck by a quartz rock projectile found

within a water jet where carried out. The influence of the size of the jet as well as the

geometrical form of the target and the projectile were determined to be important factors

regarding the severity of the damage induced on the target structure after the impact took

place.

The outlook for further research stemming from the current work is rather vast. This

work shows that it is possible to couple fluid and solid sub-domains in highly non-linear

cases using different time-steps and time integrators while being compatible with the sim-

ulation of contacts and impacts. Although some insight is given regarding the influence

of the size of the projectile and the presence of a water jet on the damage undergone by

the target structure, more simulations aiming at reproduce this phenomenon as close as

possible to the real-life operating conditions of a Pelton turbine would be desirable. In
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order to do so, more ambitious simulations involving more than just a single bucket of the

turbine could prove to be interesting. However, the increasing number of degrees of free-

dom in the solid and the fluid sub-domains would call for larger computational resources

and development of algorithms capable of taking advantage of parallel computer architec-

tures. The fluid solver is currently capable of running on parallel architectures, however,

the solid solver, although capable of running in parallel as well, has not been rendered

compatible with the coupling procedure in the case of its use for coupled fluid-structure

calculations. Furthermore, the coupling software uses sparse matrices and direct solvers

in to simplify and speed up the retrieval of the Lagrange multipliers. If larger algebraic

systems are to be solved as a result of the larger numerical fluid and solid numerical mod-

els, the use of direct algorithms to solve the algebraic system becomes inefficient and the

use of iterative, parallel capable solving algorithms becomes a necessity.

Regarding the validity of the models used to obtain a numerical solution of the coupled

problems, as discussed over the course of this work, some simplifications have been con-

sidered in order to ease up the solution process. For example, the governing equations

for the fluid-sub-domain, do not take into account viscosity-related terms and as a res-

ult, the fluid-solid coupling is only done using the normal components of the velocity. It

would be thus interesting to develop a coupling algorithm allowing to take into account

the tangential components of the velocity at the interface as this would allow to have

some more insight into the effect of viscous induced forces on the outcome of the coupled

calculations.

Considering the solid sub-domain, a material model capable of simulating sudden

brittle fracture allowing the rock projectile to segment into tinier pieces would provide

a way to better assess the extent of the damage induced by the impacting rock on the

steel target structure. To carry out simulations with such a material model would be quite

challenging since the surfaces that can become potentially wet after fracture would be

changing continuously as the projectile sections into smaller pieces and thus the size of

the interface problem can become quite large very quickly without knowing a priori the

concerned degrees of freedom. A solid SPH model of the rock could also be used to ease

the FSI treatment in the case of rock fragmentation. However a coupling strategy should

be employed to link the domain discretized using the solid SPH to the domain discretized

by the fluid SPH formulation.

Finally, erosion models allowing to predict damage on the structure after impact can

be made compatible with the coupled calculations. For the proposed coupling technique,

post-treatment techniques based on the total equivalent plastic strain can give an insight
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to the mesh zones that are prone to be eroded after an impact. For less violent phenomena

in which no plastic state is reached or if it is negligible, an algorithm allowing to estim-

ate damage through cyclic loads can be envisaged based on the results of the coupled

calculation.
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Calcul multi-domaines et approches multi-échelles pour la simulation numérique de

crashs automobiles. PhD thesis, Villeurbanne, INSA, 2006.

[BRU 15] BRUN M., GRAVOUIL A., COMBESCURE A., LIMAM A.

Two FETI-based heterogeneous time step coupling methods for Newmark and α-

schemes derived from the energy method. Computer Methods in Applied Mechanics

and Engineering, vol. 283, 2015, p. 130–176, Elsevier.

[CAS 02] CASADEI F.

A hierarchic pinball method for contact-impact in fast transient dynamics. VI Con-
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