, On désignera par R n (v) le n-ième parent du sommet v. Soit u un sommet et v 1 , v 2 , v 3 , v 4 ses quatre voisins, où v 1 est le père de u dans le recouvrement R. Alors, le nombre de grains de u est le nombre d'arêtes parmi uv 2 , uv 3 et uv 4 qui sont traitées après uv 1. Les autres arêtes incidentes à v dans le recouvrement sont traitées après. On s'intéresse donc aux arêtes externes. Dans le cas fini, le recouvrement est un arbre, alors, uv 1 est traitée avant uv 2 si et seulement si l'arête minimale du cycle p. .. v 1 uv 2. .. p est sur le chemin p. .. v 2 u où p est le premier ancêtre commun de v 1 et v 2. Dans le cas infini, soit les extrémités v 1 et v i des deux arêtes comparées ont un ancêtre commun, et on peut les comparer de la même manière

. Bibliographie,

O. Bernardi, Tutte Polynomial, Subgraphs, Orientations and Sandpile Model: New Connections via Embeddings, vol.15, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00117268

N. L. Biggs, Chip-Firing and the Critical Group of a Graph, vol.9, pp.25-45, 1999.

B. Bond and . Levine, Abelian Networks I. Foundations and Examples, SIAM J. Discrete Math, vol.30, pp.856-874, 2016.

A. Björner, L. Lovász, W. Peter, and . Shor, Chip-firing Games on Graphs, vol.12, pp.283-291, 1991.

M. Bousquet-mélou, Families of prudent self-avoiding walks, Journal of Combinatorial Theory, Series A, vol.117, issue.3, pp.313-344, 2010.

M. Baker and . Sergey-norin,

. Abel-jacobi, , vol.215, pp.766-788, 2007.

J. E. Bresenham, Algorithm for Computer Control of a Digital Plotter, IBM Syst. J, vol.4, issue.1, pp.25-30, 1965.

D. Borwein, S. Rankin, and L. Renner, Enumeration of injective partial transformations, vol.73, pp.291-296, 1989.

P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticalityAn explanation of 1/f noise, Physical Review Letters, vol.59, pp.381-384, 1987.

A. Björner, L. Michelle, and . Wachs, q-Hook length formulas for forests, Journal of Combinatorial Theory, Series A, vol.52, issue.2, pp.165-187, 1989.

R. Cori-et-yvan-le-borgne, The sand-pile model and Tutte polynomials, vol.30, pp.44-52, 2003.

S. Caracciolo, G. Paoletti, and A. Sportiello, Multiple and inverse topplings in the Abelian Sandpile Model, vol.212, pp.23-44, 2011.

S. Caracciolo, G. Paoletti, and A. Sportiello, Deterministic Abelian Sandpile and square-triangle tilings

M. Dukes-et-yvan-le-borgne, Parallelogram polyominoes, the sandpile model on a complete bipartite graph, and a q,t-Narayana polynomial, Journal of Combinatorial Theory, Series A, vol.120, issue.4, pp.816-842, 2013.

D. Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett, vol.64, pp.1613-1616, 1990.

D. Dhar and T. Sadhu, A sandpile model for proportionate growth, vol.10, p.2013, 2013.

D. Dhar, Tridib Sadhu et Samarth Chandra : Pattern formation in growing sandpiles, vol.85, 2008.

P. Sergi-elizalde and . Winkler, Sorting by Placement and Shift, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.68-75, 2009.

D. Foata and M. Schützenberger, Major Index and Inversion Number of Permutations, vol.83, pp.143-159, 1978.

S. Gamlin, Boundary conditions in Abelian sandpiles, 2016.

A. M. Garsia and J. Haglund, A Proof of the Q, t-Catalan Positivity Conjecture, Discrete Math, vol.256, issue.3, pp.677-717, 2002.

J. Gravner and A. E. Holroyd, Local Bootstrap Percolation. Electronic Journal of Probability, pp.385-399, 2008.

S. Gamlin, Anchored burning bijections on finite and infinite graphs, Electron. J. Probab, vol.19, p.23, 2014.

J. Haglund, The q , t-Catalan Numbers and the Space of Diagonal Harmonics with an Appendix on the Combinatorics of Macdonald Polynomials, 2007.

B. Hough, D. Jerison, and L. Levine, Sandpiles on the square lattice. ArXiv e-prints, 2017.

E. Hlm-+-08]-alexander, L. Holroyd, K. Levine, Y. Mészáros, J. Peres et al., Chip-Firing and Rotor-Routing on Directed Graphs, pp.331-364, 2008.

A. A. Járai, ArXiv e-prints, Sandpile models, 2014.

A. Antal, R. Járai, and . Lyons, Ladder sandpiles, pp.493-518, 2007.

P. W. Kasteleyn, The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice, vol.27, p.1961

R. Kenyon, Spanning forests and the vector bundle Laplacian, Ann. Probab, vol.39, issue.5, pp.1983-2017, 2011.

R. Kenyon, Determinantal spanning forests on planar graphs. ArXiv e-prints, 2017.

S. Kitaev, Patterns in permutations and words, 2011.

D. E. Knuth, The Art of Computer Programming, vol.1, 1997.

N. Kalinin and M. Shkolnikov, Tropical curves in sandpiles. Comptes Rendus Mathematique, vol.354, pp.125-130, 2016.

N. L. Biggs, Algebraic Potential Theory on Graphs, vol.29, pp.641-682, 1997.

Y. Le-borgne and D. Rossin, On the identity of the sandpile group, vol.256, pp.775-790, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00016377

L. Levine, Parallel Chip-Firing on the Complete Graph: Devil's Staircase and Poincare Rotation Number, vol.31, pp.891-910, 2011.

L. Criel-merino, Chip firing and the tutte polynomial, Annals of Combinatorics, vol.1, issue.1, pp.253-259, 1997.

L. Levine and . Peres, Strong Spherical Asymptotics for Rotor-Router Aggregation and the Divisible Sandpile. Potential Analysis, vol.30, p.1, 2008.

L. Levine, W. Pegden, and C. K. Smart, Apollonian Structure in the Abelian Sandpile, vol.26, p.2012

L. Levine, W. Pegden, and C. K. Smart, The Apollonian structure of integer superharmonic matrices, vol.186, p.2013

P. A. Macmahon, Combinatory Analysis, 1915.

S. N. Majumdar and D. Dhar, Equivalence between the Abelian sandpile model and the q->0 limit of the Potts model. Physica A: Statistical Mechanics and its Applications, vol.185, pp.129-145, 1992.

C. Maes, F. Redig, and E. Saada, The Infinite Volume Limit of Dissipative Abelian Sandpiles, vol.244, pp.395-417, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311648

S. Ostojic, Patterns formed by addition of grains to only one site of an abelian sandpile, Physica A: Statistical Mechanics and its Applications, vol.318, issue.1, pp.187-199, 2003.

. Paoletti, Deterministic Abelian Sandpile Models and Patterns, 2012.

W. Pegden, K. Charles, and . Smart, Convergence of the Abelian sandpile, vol.162, 2011.

W. Pegden and C. Smart, Stability of patterns in the Abelian sandpile. ArXiv e-prints, 2017.

P. Ruelle, Logarithmic conformal invariance in the Abelian sandpile model, Journal of Physics A Mathematical General, vol.46, p.494014

N. J. Sloane, The On-Line Encyclopedia of Integer Sequences

D. V. Ktitarev and V. Priezzhev, Expansion and contraction of avalanches in the two-dimensional Abelian sandpile, vol.58, 1998.

K. W. , Weighted inversion numbers, restricted growth functions, and standard young tableaux, vol.40, pp.22-44, 1985.