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RESUME 
 

De par les centaines de milliers de données qui les caractérisent, les bases de données 

épigénétiques représentent actuellement un défi majeur. L’objectif principal de cette thèse 

est d’évaluer la performance d’outils statistiques développés pour les données de grande 

dimension, en explorant l’association entre facteurs alimentaires reliés au cancer du sein 

(CS) et méthylation de l’ADN dans la cohorte EPIC. 

Afin d’étudier les caractéristiques des données de méthylation, l’identification des sources 

systématiques de variabilité des mesures de méthylation a été effectuée par la méthode de 

la PC-PR2. Ainsi la performance de trois techniques de normalisation, très répandues pour 

corriger la part de variabilité non désirée, a été évaluée en quantifiant l’entendu de variabilité 

attribuée aux facteurs de laboratoire avant et après chaque méthode de correction. 

Une fois la méthode de normalisation la plus appropriée identifiée, la relation entre le folate, 

l’alcool et la méthylation de l’ADN a été analysée par le biais de trois approches : une 

analyse individuelle des sites CpG, une analyse de DMR et la régression fused lasso. Les 

deux dernières méthodes visent à identifier des régions spécifiques de l’épigénome grâce 

aux corrélations possibles entre les sites proches. La méthylation globale a aussi été utilisée 

pour étudier la relation entre méthylation et risque de CS. 

Grâce à une évaluation exhaustive d’outils statistiques révélant la complexité des données 

de méthylation de l’ADN, cette thèse offre un aperçu instructif de connaissances pour les 

études épigénétiques, avec une possibilité d’application de méthodologie similaire aux 

analyses d’autres types de données -omiques. 

Mots-clés : Epigénétique, PC-PR2, méthylation, DMR, fused lasso, cancer du sein, EPIC. 

 

Institut de préparation de la thèse : 

Centre International de Recherche sur le Cancer (CIRC),  
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ABSTRACT 
 

Epigenetics data are challenging sets characterized by hundreds of thousands of features. 

The main objective of this thesis was to evaluate the performance of some of the existing 

statistical methods to handle sets of large dimension data, exploring the association between 

dietary factors related to breast cancer (BC) and DNA methylation within the EPIC study. 

In order to investigate the characteristics of epigenetics data, the identification of random and 

systematic sources of variability of methylation measurements was attempted, via the 

principal component partial R-square (PC-PR2) method. Using this technique, the 

performance of three popular normalization techniques to correct for unwanted sources of 

variability was evaluated by quantifying epigenetics variability attributed to laboratory factors 

before and after the application of each correction method. 

Once a suitable normalization procedure was identified, the association between alcohol 

intake, dietary folate and methylation levels was examined by means of three approaches: 

an analysis of individual CpG sites, of differentially methylated regions (DMRs) and using 

fused lasso regression. The last two methods aim at the identification of specific regions of 

the epigenome using the potential correlation between neighboring CpG sites. Global 

methylation levels were used to investigate the relationship between methylation and BC 

risk. 

By performing an exhaustive evaluation of the statistical tools used to disclose complexity of 

DNA methylation data, this thesis provides informative insights for studies focusing on 

epigenetics, with promising potentials to apply similar methodology to the analysis of other    

-omics data. 

Keywords: Epigenetics, PC-PR2, methylation, DMR, fused lasso, breast cancer, EPIC. 

 

Institute hosting the thesis candidate: 
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RESUME SUBSTANTIEL  
 

Les nouvelles avancées technologiques dans le domaine -omiques rendent possible 

l’acquisition de plus en plus de données par individu, allant de quelques centaines jusqu’à 

plusieurs milliers. Un des défis les plus importants actuellement engendré par ces données 

est de surmonter les contraintes liées à leur très grande dimension. Habituellement, en 

épidémiologie, le nombre de facteurs étudiés est inférieur au nombre de participants de la 

population d’étude. Cependant, en présence de données -omiques, telles que les données 

épigénétiques caractérisées par des centaines de milliers de mesures par individu, le 

nombre de facteurs étudiés est nettement supérieur au nombre de participants dans la 

population. Les méthodes statistiques usuellement utilisées en épidémiologie ne sont alors 

plus nécessairement adaptées à ces données. L’objectif principal de cette thèse est 

d’évaluer la performance d’outils statistiques développés pour les données de grande 

dimension, en utilisant comme exemple, l’association entre certains facteurs alimentaires 

reliés au cancer du sein (CS) et la méthylation de l’ADN dans la cohorte européenne 

prospective EPIC (European Prospective Investigation into Cancer and nutrition).  

La méthylation de l’ADN est altérée par de nombreux facteurs incluant l’âge et des facteurs 

environnementaux tels que la consommation d’alcool et de tabac. En plus de ces facteurs, 

des variabilités systématiques et aléatoires peuvent aussi être introduites lors du traitement 

technique des échantillons biologiques tels que le "batch" (i.e. groupe d’échantillons traités 

en même temps) ou la position des échantillons à l’intérieur du "batch". De plus dans le cas 

d’une cohorte multicentrique comme EPIC, le centre dont sont issues les données peut 

également engendrer de la variabilité due à une collecte et un traitement des échantillons 

pouvant varier entre les centres. Toutes ces variabilités peuvent compromettre la justesse du 

procédé de mesure de la méthylation et biaiser l’estimation des associations investiguées. 

Afin de mieux appréhender la complexité des données de méthylation de l’ADN, 

l’identification des sources systématiques et aléatoires de variabilité introduites pendant 

l’acquisition des mesures de méthylation est nécessaire. En se servant de la méthode 

"principal component partial R-square" (PC-PR2) qui combine une technique de réduction de 

dimensions (analyse en composantes principales) avec une modélisation de régression 

linéaire, trois techniques déjà existantes, développées pour corriger les données de 

méthylation pour des facteurs de variabilité, ont été comparées : ComBat, SVA et une 

méthode de régression pour le calcul de résidus. Avant et après application de chacune des 

trois techniques de normalisation, la méthode de la PC-PR2 a été utilisée afin de quantifier la 

part de variabilité de chaque facteur lié au traitement des échantillons. Les trois méthodes 

ont réussi à enlever la part de variabilité attribuée au traitement des échantillons. Parmi les 
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trois méthodes testées, SVA s’est avérée être la méthode produisant les résultats les plus 

conservatifs dans une application visant à comparer l’association entre le statut tabagique et 

la méthylation de l’ADN. 

L’alcool et le folate sont connus pour être, respectivement, positivement et inversement 

associés au risque de CS. Leurs effets antagonistes sont également reconnus dans le 

métabolisme monocarboné (OCM) qui est essentiel pour la réplication et la réparation de 

l’ADN. En diminuant l’absorption de folate, en augmentant son excrétion par les reins et en 

inhibant la synthase de la méthionine, l’alcool peut entrainer un dysfonctionnement de 

l’OCM, ce qui pourrait amener à une synthèse anormale de l’ADN et donc impacter sur le 

risque de CS. Afin d’étudier l’association entre l’apport alimentaire en folate et la 

consommation d’alcool avec la méthylation de l’ADN, trois méthodes statistiques ont été 

utilisées. La première méthode a analysé l’association du folate et de l’alcool sur la 

méthylation de l’ADN séparément pour chaque site CpG, alors que les analyses de DMR 

(differentially methylated region) et de fused lasso (FL) avaient pour but d’identifier des 

régions spécifiques de l’épigénome. Une faible association entre la consommation d’alcool et 

le niveau de méthylation de deux sites CpG a été observée. Les résultats des analyses de 

DMRs et de FL ont montré que le folate et l’alcool étaient associés avec des altérations du 

niveau de méthylation dans certaines régions de l’épigénome, dont certaines sont associées 

avec des gènes connus pour leur rôle de suppresseurs de tumeurs tels que les gènes 

GSDMD et HOXA5. Ces résultats sont en accord avec l’hypothèse supportant l’idée que des 

mécanismes épigénétiques pourraient avoir un rôle dans l’association entre folate, alcool et 

le risque de CS. 

La méthylation de l’ADN est suspectée d’être impliquée dans le développement du CS par le 

biais de dysfonctionnements de mécanismes cellulaires. Cependant, pour le moment aucune 

association entre méthylation individuelle de site CpG et risque de CS n’a été validée. Seule 

une association positive entre hypo-méthylation globale et CS a été observée de façon 

récurrente au sein des études prospectives d'association à l'échelle de l'épigénome (EWAS). 

La méthylation globale de l’ADN, définie comme la moyenne des niveaux de méthylation de 

l’ensemble des sites CpG, a été évaluée au sein d’une étude coordonnée par le groupe 

d’Epigénétique du CIRC par rapport au risque de CS. Les résultats des analyses statistiques 

ont révélé une faible association positive entre la méthylation moyenne des sites 

appartement à un îlot de CpG sites et le risque de CS.  

Grâce à une évaluation exhaustive d’outils statistiques révélant la complexité des données 

de méthylation de l’ADN, cette thèse offre un aperçu instructif de connaissances pour les 

études des données épigénétiques. La méthodologie présentée dans cette thèse ouvre aussi 



6 
 

la possibilité à des applications similaires adaptées aux analyses statistiques d’autres types 

de données -omiques.   
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INTRODUCTION 
  
In the era of -omics, large amount of data are generated in epidemiological investigations by 

new generation of high-throughput acquisition platforms on large number of biological 

features, such as epigenetics, metabolomics, transcriptomics, proteomics, etc. This novel 

context generates a number of new issues related to the management, the characterization 

and the analysis of very complex sets of data. Traditionally in epidemiological studies, the 

numbers of exposure variables ( ) is lower than the sample size ( ). Classical statistical 

methods typically require the size of the study population to be large and a multiple of the 

number of variables. In -omics, high-throughput datasets characterized by large number of 

variables, the number of subjects might be limited due to technical and economical 

limitations of the experiment. In this case, the number of features can be way larger than the 

sample size, a situation classically known as . 

Standard methods to analyze -omics data generally involve the use of specific statistical 

techniques, such as regression modeling, complemented by methods to account for multiple 

testing, such as the false discovery rate (FDR) or Bonferroni corrections. The method is 

relatively straightforward to implement but, as for -omics data,  may reach the range of 

hundreds of thousands variables, and FDR and Bonferroni solutions are very demanding in 

terms of statistical power to preserve a nominal level of statistical significance. This 

increases the likelihood of capturing medium-to-large associations, but leaves little margin to 

focus the investigation effort on numerous, potentially relevant, weak associations. In 

addition, -omics data reflects the complexity of biological systems expressing a multitude of 

features related to metabolism, genetic and protein profiles, changes in gene expression, 

acquired from biological samples (urine, blood, saliva, tissues). As a results, datasets often 

have unknown structures, and the little is known on the way these features interact in 

response to environmental exposures. The high dimensionality of this data, coupled with 

their biological complexity make the application of classical statistical tools for research 

purposes not straightforward. Novel statistical tools have been recently proposed in the 

scientific literature to fully exploit the potential of a wealth of new data, either by conceiving 

new statistical techniques or by re-adapting existing tools to -omics analyses (1-3).  

Statistical methods for large dimension data 

Recent progress in technology made it possible the acquisition of thousands of features for 

relatively sizeable amount of study participants’ samples, typically from few tens to several 

hundreds. This situation generated the need of conceiving solutions for the process of 

numerous samples in sequence. A standard way to handle large volumes of samples with a 
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limited number of machines (very often just one) is to allocate samples in laboratory batches, 

which allows the process of a group of samples at same time (4). Within a batch, samples 

might be separated into several chips, also referred as arrays. Due to technical limitations of 

the machines, only a limited number of samples can be handled in a same batch; thus 

several batches are usually needed to process all the samples. It is unlikely that all the 

batches were processed with the exact same experimental conditions: several technicians 

may handle or prepare the samples; the room temperature during samples processing may 

also change, etc. These differences may introduce variability in the features measurement. 

The ‘batch effect’, has been documented in the scientific literature (4, 5), and it is not the only 

source of systematic variability introduced by technical processing of samples. A ‘positional 

effect’, i.e. the physical position of samples on the chip, has also been observed (6). 

Unwanted biological variation can be a problem as well. Some factors may introduce 

systematic variation i.e. that affects all samples from a group in a similar manner whereas 

others introduce variation, which can be assumed to be random, namely caused by 

unpredictable or uncertain factors. As a result, technical management of samples likely 

introduces unwanted technical variability in -omics measurements that might compromise the 

accuracy of the measurement process and introduce bias in the estimation process of the 

association of interest. Careful random allocation of samples over chips (7, 8) is essential to 

make it independent from specific characteristics of the samples, i.e. country of origin, BMI, 

age. As a result, random and systematic technical variability need to be addressed. Some 

correction methods suggested in the literature require an a priori identification of factors 

potentially influencing variation (9-11). The large dimension of -omics data makes it difficult 

to quantify the amount of variability attributable to sources of systematic and random 

variation. The principal component partial R-square (PC-PR2) method was developed to 

quantify systematic and random variation in metabolomics data (3). The method is based on 

the combination of principal component analysis (PCA), which summarized the information 

given by a set of features in a reduced number of components that maximize the variance in 

the feature matrix, with the concept of the partial R2 statistics in multivariable linear 

regression. A particularly appealing feature of the method is the capacity of successfully 

performing PCA in presence of hundreds to thousands of features. The technique could be 

extended to other -omics data.  

Once major sources of systematic and random variability have been identified, another 

challenge is the treatment of unwanted variability data among a wealth of normalization 

techniques proposed in the literature. A popular way to tackle this would involve the 

computation of residuals from regression model where the outcome is, in turn, each feature 

from the dataset and the predictors covariates are the factors identified as expressing the 
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major sources of variability. Normalization techniques are usually specific to the -omics set 

under investigation. For example, the most popular techniques for DNA methylation data are 

the Surrogate Variables Analysis (SVA) (12, 13) and the ComBat technique (9). SVA is a 

method developed to remove variability originating from pre-identified factors but also 

unknown sources, through the estimation of surrogate variables potentially influencing overall 

variability. The ComBat method is a procedure based on an empirical Bayes approach with 

an additive and a multiplicative component, the latter contributing to shrink the feature-

specific variability, thus also handling outlier values.  

After accounting for unwanted variability, the data can be analyzed following diverse 

approaches. Standard analyses, involving the evaluation of each feature separately, can be 

complemented by techniques to handle several independent covariates in the linear 

predictor. The ordinary least square (OLS) method estimates coefficients from a linear 

multivariable regression model by minimizing the sum of the squares of the error terms. In 

regression analyses, over-fitting may occur when the number of predictors exceeds 10% of 

the number of observations. In addition, collinearity that inflates parameter estimates’ 

variability may occur when there are many predictors and the model may also be difficult to 

interpret. Moreover the model is no longer identifiable when the number of predictors 

exceeds the number of observations, as for -omics analyses. A first solution would be to use 

a penalized approach such as Ridge regression (14), the Lasso (15) or elastic net (16), 

which introduce penalties in the OLS fit function to control the trade-off between goodness of 

fit and the number of predictors, an element referred to as model complexity. The penalty 

introduced in Ridge regression improves prediction error by shrinking large regression 

coefficients, but it does not reduce the model complexity. The Lasso imposes a penalty to 

encourage sparsity of coefficients, i.e. by setting to null coefficients, thus achieving shrinkage 

of parameter estimates and variable selection simultaneously. However, it can only select at 

most  variables out of  candidates. Elastic net combines Ridge and Lasso penalties, and it 

can be viewed as a compromise between the two approaches. Elastic net is particularly 

useful when the number of predictors ( ) is much larger than the number of observations ( ).  

Instead of performing features selection, other statistical methods aim at reducing the 

dimension of the features set while keeping most of its variability. Principal component 

analysis (PCA) is a dimension reduction technique that constructs orthogonal principal 

components (PC) defined as linear combinations of the original features with maximal 

variance. The original set of correlated features is converted into a set of linearly 

independent variables. The PCs can be used as predictors in standard regression models. 

This two-step method is referred as the principal component regression (PCR) (17). PCR is a 

dimension reduction method, which handles multicollinearity between features and reduces 
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overfitting of the regression model. Other approaches include the partial least squares (PLS), 

which uses a dimension reduction technique to investigate the association between two sets 

of variables (18, 19). Given a vector of predictors,  and a (potentially multivariate) outcome 

variable, , PLS looks for linear combinations of the components of  that maximize the 

covariance with  (or linear combinations of  if the outcome is multivariate). 

Statistical methods have been developed or adapted to suite the characteristics specific to 

each -omics data. For example in epigenetics dataset, each feature has a physical position 

on the chromosome, so that the features can be ordered in each chromosome. Instead of 

studying each feature independently, it is thus possible to investigate regions of interest 

using the hypothesis that neighboring features may share similar information. Statistical 

methods specific to epigenetics data such as the differentially methylated regions (DMRs) 

analyses have been developed to that end. The DMRs analysis rationale is to identify 

regions by combining results from feature-specific analysis for a specific chromosome and 

using distances between features as weights (20). Other methods such as the fused lasso 

(FL) regression can be adapted to suite epigenetics data. FL is a generalization of the Lasso, 

which is well suited when features are naturally ordered (Tibshirani et al., 2005). FL is a 

multivariable regression method which combines two penalties: (i) the Lasso penalty, which 

encourages sparsity, i.e. many elements of the estimated vector are encouraged to be set to 

zero, and (ii) the fused penalty, which encourages sparsity of the difference between two 

consecutive features, thus introducing smoothness in the parameter vector. 

DNA methylation 

With hundreds of thousands features measured, epigenetics is the -omics set with the 

highest numbers of variables. It was first introduced by Conrad Waddington in the 1940s. He 

defined epigenetics as “the branch of biology which studies the causal interactions between 

genes and their products, which bring the phenotype into being” (21). Several other 

definitions were then proposed following the new understanding of the mechanisms 

underlying gene regulation and cell specification (22). In 2008, a new consensus definition of 

epigenetics term as “stably heritable phenotypes resulting from changes in a chromosome 

without changes in gene sequence” has been proposed (23), and it is now widely accepted. 

In other words, epigenetics aims at investigating changes in gene activity not attributable to 

changes in the DNA sequence. Epigenetics regulates gene transcription, determining where 

and when a gene is switched on, together with its level of activity. For example, during 

female embryogenesis, mammalian females randomly inactivate one of their two X-

chromosomes via an epigenetic mechanism called X-chromosome inactivation, which 

causes the transcriptional silencing of one of the two X chromosomes in each female cell 
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(24). Although every cell in the organism contains the same genetic information, epigenetics 

can be responsible for different levels of expression of genes in different cells types, i.e. not 

all genes are expressed simultaneously by all cell types. The study of epigenetic 

mechanisms encompasses the study of different markers such as chromatin and histone 

modifications and non-coding RNAs and DNA methylation, which are the most studied 

epigenetic markers. 

DNA methylation is a mechanism of epigenetic regulation that involves the addition of methyl 

groups (-CH3), most commonly, to the cytosine of a cytosine-guanine (CpG) DNA sequence 

to form a 5-methylcytosine (5mC) (Figure 1). Even if the role of DNA methylation in gene 

expression is not fully understood yet (25), it is an important component in numerous cellular 

processes, including regulation of tissue-specific gene expression, embryonic development, 

genomic imprinting and preservation of chromosome stability. Moreover, DNA methylation is 

suspected to play different roles in gene activity based on its genomic location (26). For 

example methylated CpG sites located in an island region, i.e. region with a high density of 

CpG sites (Figure 2), are generally associated with gene repression, especially if the island is 

located in a promoter gene. Methylated CpG sites located in a gene body region, i.e. 

between the ATG and stop codons, are more likely to be associated with a higher level of 

gene expression in dividing cells (27). DNA methylation levels at one CpG site are frequently 

expressed as the percentage of cells that are methylated at that specific site. The Illumina 

Infinium HumanMethylation450K BeadChip (HM450K) quantifies DNA methylation at more 

than 450,000 interrogated CpG sites, expressing methylation levels as the ratio of the 

methylated probe intensity to the overall intensity, which is the sum of the methylated and 

unmethylated probe intensities (28). In mammals, around 70% to 80% of CpG sites are 

methylated in somatic cells (29, 30).  
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Figure 1. Mechanisms of inheritable epigenetics. (31) 

 

Figure 2. Schematic diagram of gene regions and CpG island regions (28). 

 

Unlike the DNA sequence, which is stable over time, DNA methylation may fluctuate over an 

individual’s lifetime. Embryogenesis and early postnatal life are especially sensitive to DNA 

methylation changes. Methylation alterations are amplified during these periods, as a 

consequence of the importance of cell division and somatic maintenance that might affect a 

high proportion of cells in the development of the organism. During early fetal development, 

parental methylation profiles or exposures in utero, including mother’s level of obesity or 

dietary exposures, are also involved in the embryo methylation changes (32). During 

embryogenesis abnormal methylation may occur and conduct to abnormal expression or 
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silence of certain genes, which may affect growth and development, and increase the risk of 

chronic diseases later in life, such as the development of cancer. During life-course, age and 

specific environmental exposures contribute to changes in DNA methylation, which, in turn, 

might have long-term effects on development, metabolism and health (33, 34). In this 

respect, there is increasing evidence supporting an effect of smoking (35, 36), obesity (37, 

38) and specific dietary factors (39, 40) on DNA methylation changes. 

Due to the important role of DNA methylation in the regulation of many cellular processes, 

abnormal DNA methylation has been associated with a growing number of human diseases 

(41). In particular, DNA methylation is suspected to be involved in the development of 

autoimmune diseases including type I diabetes (42), inflammations associated with 

cardiovascular disease (43), hypertension (44), respiratory diseases such as asthma and 

chronic obstructive pulmonary disease (COPD) (45). The role of epigenetic changes in the 

dysregulation of a wide range of key cellular processes has emerged in many cancer types 

(46, 47), including breast cancer (48), colorectal cancer (49) and lung cancer (50). Cancer 

cells are characterized by global hypo-methylation and regional hyper-methylation of CpG 

islands, which may inactivate fundamental cellular processes such as DNA repair, cell cycle, 

cell invasion and cell adherence (51). More specifically, DNA hypo-methylation is associated 

in particular with unusual gene reactivation leading to a potential overexpression of some 

normally silenced genes such as oncogenes, which might for example increase proliferation 

of cancerous cells. DNA hyper-methylation is frequently associated with gene repression and 

genomic instability (through silencing of DNA repair genes) and may result in silencing of 

important genes, such as tumor-suppressor genes. 

Breast cancer 

With 1,677,000 newly diagnosed cases in 2012, breast cancer (BC) is the most frequent 

cancer among women worldwide (52). Before the age of 75 years, 1 in 22 women will be 

diagnosed with BC. Even if the incidence rates vary nearly four-fold across world regions, BC 

represents about 25% of all cancers in women (Figure 3). BC is the most frequent cause of 

cancer death in women in less developed countries and the second cause of cancer death in 

more developed regions after lung cancer. It is the fifth most common cause of death from 

cancer overall (522,000 deaths in 2012). Age standardized incidence and mortality rates 

were respectively 43.3 and 12.9 per 100,000 in 2012. A quarter of BC cases and deaths in 

the world occurred in Europe where the 5-year relative survival rate ranged between 71% in 

Latvia and 87% in Finland (53). 
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Figure 3. Age standardized breast cancer incidence rates in the world in 2012.

 
Source: http://globocan.iarc.fr 

The most common BC type is the invasive breast adenocarcinoma, for which cancer cells 

start growing in the breast ducts or glands and then spread into the surrounding breast 

tissues. Different treatment protocols exist for invasive BC, including chemotherapy, 

hormone or targeted therapies, radiation and surgery. In order to determine the appropriate 

treatment options, it is important to know the status of the hormone receptor for estrogen 

(ER), progesterone (PR) and human epidermal growth factor 2 (HER2). Hormone receptor-

positive BC cells have either estrogen-positive (ER+) or progesterone-positive (PR+) 

receptors. These two cancers respond to hormone therapy drugs that lower estrogen levels 

or block estrogen receptors, preventing the cancer cells from getting the hormones levels 

they need to further grow. ER+ receptor is expressed in approximately 80% of invasive BC 

and has a more favorable initial prognosis than ER-. Hormone receptor-negative cancers 

have neither estrogen nor progesterone receptors and tend to grow faster than hormone 

receptor-positive cancers. HER2-negative BC (HER2-) have little or no HER2 protein, while 

this protein is over-expressed in HER2-positive (HER2+) cancers. HER2 protein is involved 

in the pathway for cell growth and survival. Triple-positive cancers (ER+, PR+ and HER2+) 

can be treated with hormone drugs, as well as drugs that target HER2 whereas 

chemotherapy is needed for triple-negative cancers (ER-, PR- and HER2-) as hormone 

therapy is not helpful in treating these cancers because of the absence of hormonal 

receptors and low levels of HER2. Hormone receptors and HER2 expression inform on the 

choice of the treatment once invasive cancer has been diagnosed as part of a second 

prevention scheme.  
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BC is a multifactorial disease with several well identified risk factors (54-56), including 

hormonal and reproductive factors such as age at menarche and menopause, parity, 

breastfeeding, use of oral contraceptives and hormonal menopausal therapy. Known non-

modifiable factors of BC include height, age, ionizing radiation and genetic factors including 

family history. BC has very few well established modifiable risk factors. Lifestyle and 

environmental factors, such as alcohol consumption (57), obesity and physical activity (58), 

are suspected to contribute to BC risk (59) but results are still scarce and inconsistent. The 

identification of modifiable risk factors is a current research topic aiming to strengthen 

primary prevention. 

Numerous studies suggested an association between specific nutrients and BC, particularly 

fatty acids, carbohydrates, vitamins B, vitamin D, carotenoids, phytoestrogens, and dietary 

fibers (60). The WCRF review panel concluded that the epidemiological data for an 

association between folate and BC risk was too limited to allow for conclusions (59). 

However recent epidemiological studies supported evidence of a protective effect of folate on 

BC risk (61), even if the mechanisms through which folate operates are yet not fully 

understood. Specific subtypes of fatty acids have been also posited to affect BC risk. In 

particular, high levels of palmitoleic acid, used as a biomarker of endogenous lipogenesis, 

have been associated with an increased risk of BC (62), so were an increased levels of 

trans-fatty acids for ER-negative tumors.  

The role of DNA methylation in breast cancer occurrence 

Dietary factors may change epigenetics profiles, which in turn may alter the susceptibility to 

BC. Based on a literature review, the potential role of specific dietary components, including 

micronutrients such as folate, macronutrients such as alcohol, and soya intake, in modifying 

BC risk via epigenetic mechanisms has been reviewed recently (63). In light of 

epidemiological, animal and clinical studies, the role of specific dietary factors to modulate 

BC risk were discussed, together with candidate underlying mechanisms related to the 

interaction of diet and the epigenome. Understanding the interplay between nutrition and 

epigenetics is particularly important as many nutrients have been described to have a 

potential impact on the mammary gland and its tumorigenesis (64). Specific nutrients may be 

capable of inducing permanent epigenetic modifications, such as gene repression.  

B-vitamins, particularly folate, are essential components of the one-carbon metabolism 

(OCM). The OCM is a network of interrelated biochemical reactions involved in the donation 

of methyl groups from nutrients to DNA methylation reactions in the cells, including the 

methylation of DNA, RNA and proteins (Figure 4). Modifications in OCM can significantly 
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impact gene expression via epigenetic mechanisms and thereby cellular function (65). Folate 

is the major source of methyl groups from food. A low folate intake results in a low methyl 

supply which may lead to a global DNA hypo-methylation caused by high homocysteine 

concentrations and low methionine regeneration (66). This may increase the susceptibility of 

genes to mutations or alter gene expression. Inadequate folate level may also result in 

abnormal DNA synthesis due to a reduced availability of S-adenosyl methionine (SAM) (67) 

and disrupted DNA repair and hence may influence cancer risk, including BC (68). Indeed, 

several epidemiological studies suggested a protective role of folate and related B vitamins 

on BC (69, 70). Folate has been inversely associated with BC risk, possibly reflecting a role 

of folate to modulate the expression of gene that regulates tumor development and 

progression. 

Figure 4. One-carbon metabolism pathway (67).  

 
CBS, cystathionine b-synthase; DHF, dihydrofolate; dNTP, deoxyribonucleotide triphosphate; 
DMG, dimethylglycine; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine 
monophosphate; Hcy, homocysteine; MS, methionine synthase; MTHFR, methylene THF 
reductase; 5-methylTHF, SAH, S-adenosyl homocysteine; SHMT, serine 
hydroxymethyltransferase. 

Beside folate, alcohol intake has also been shown to influence epigenetic profiles (71). 

Ethanol metabolism generates toxins that may reduce folate absorption, mainly by increasing 

renal excretion of folate and inhibiting methionine synthase, thus leading to OCM dysfunction 

(71, 72). The antagonist effect of alcohol on folate could increase the need of folate intake, 

thus indirectly increase BC risk. Recent epidemiological evidences indicated that high alcohol 
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consumption was positively associated with BC (57, 73), particularly for low levels of folate 

intake (74).  

Thesis objectives 

The overall objective of the thesis was to investigate the variability of epigenetics data, 

possibly separating out variation attributable to technical processing of samples from 

biological variation, i.e. due to epidemiological factors that are involved in the etiology of 

breast cancer, including age, smoking, dietary folate, alcohol and fatty acid profiles. The work 

entailed the use of novel statistical methods to quantify, correct and exploit the variability in 

methylation level data. Existing methodology was adapted to suite the analysis of large 

dimension data to progressively acquired novel information of important features of 

epigenetics data.  

DNA methylation measurements may be affected by systematic and random variation due to 

the processing of samples. The work focused primarily on statistical methodology aiming at 

identifying sources of random and systematic variability in methylation levels, either 

introduced by the technical treatment of samples after collection from study participants, or 

during the acquisition phase by allocation of samples into chips within laboratory batches. 

The PC-PR2 method was adapted to the analysis of epigenetics data, and that was possibly 

by exploiting a desirable property of PCA, which is invariant to transposition of the design 

matrix. The method lent itself as a very handy way to handle very cumbersome data in terms 

of size of features to process simultaneously. Once the sources of variation were identified 

and quantified, the thesis focused on the evaluation of the performance of the most popular 

methods to remove unwanted variability. In order to evaluate the performance of different 

normalization methods, three different techniques, i.e. ComBat, SVA and a method based on 

the computation of residuals were compared in terms of their ability to remove unwanted 

variation. For this purpose, the association between smoking status and DNA methylation 

within the CHARGE Consortium was used as an application. This work was described in an 

article that was published in Clinical Epigenetics (F. Perrier, 1st author). 

Once the evaluation phase was completed, the work focused on the estimation of the 

relationship between dietary factors related to BC and methylation levels, complementing 

standard statistical analysis with more advanced statistical techniques for the identification of 

specific features of epigenetics data. This objective was subdivided into three parts. First, the 

association between plasma concentrations of folate and vitamin B12 and BC risk was 

assessed within a nested case-control study in the EPIC cohort. This study was published on 

the International Journal of Cancer (F. Perrier, 4th author) by Dr. Marco Matejcic, a post-

doctoral epidemiologist. For this study, I participated to the development of the statistical 
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methodology used in the analysis. Second, the relationship between dietary folate and 

alcohol intake with DNA methylation patterns was investigated using three statistical 

approaches: the site-specific analysis, the DMRs analysis and the FL regression. The 

manuscript of this study has been recently submitted in Clinical Epigenetics (F. Perrier, 1st 

author). Third, the relationship between average methylation level and BC risk overall and in 

specific regions of the epigenome reflecting the physical location of CpG sites in relation to 

CpG islands, was explored using conditional logistic regression models. This work was part 

of a study coordinated by the IARC Epigenetics Group, in which I was involved for the 

development and implementation of statistical analyses. An article from Dr. Srikant 

Ambatipudi was published in the European Journal of Cancer (F. Perrier, 3rd author).  

EPIC study 

Data analyzed in this thesis were derived from the European Prospective Investigation into 

Cancer and nutrition (EPIC) cohort. The EPIC study is a multicentre study that recruited over 

521,000 study participants, between 1992 and 2000 in 23 regional or national centres in 10 

European countries (Denmark, France, Germany, Greece, Italy, Netherlands, Norway, Spain, 

Sweden and United Kingdom) (75). The main aim of the EPIC study is to investigate the 

etiology of cancers at many sites in relation to diet and lifestyle factors using prospective 

centre-specific data. Information was collected at recruitment via a lifestyle and health factors 

questionnaire and a validated centre- or country-specific dietary questionnaire to capture 

local dietary habits. Anthropometric measurements were performed for all participants and 

blood samples were taken at recruitment for approximately 400,000 EPIC participants. A 24-

hours dietary recall was implemented in a total of 36,900 participants from each centre in 

order to calibrate dietary measurements. From the recruitment of study participants from 

1992 to 1999 until the end of the follow-up in 2009, 47,000 EPIC participants were diagnosed 

with cancer (Table 1).  
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Table 1. Number of incident cancers and deaths in EPIC in 2010 

Country N Person-Years No. of incident 
cancers 

No. of incident 
deaths 

France 74 524 1 103 492 7313 4038 
Italy 47 745 582 716 3862 1708 
Spain 41 438 562 044 2887 1972 
United Kingdom 87 887 1 110 137 8301 9587 
Netherlands 40 011 509 852 3170 2386 
Greece 28 561 266 099 1137 2146 
Germany 53 088 595 857 4443 2836 
Sweden 53 823 742 397 6806 5780 
Denmark 57 053 664 510 7249 5549 
Norway 37 200 406 473 2357 975 

Total 521 330 6 543 577 47 525 36 977 

Source : http://epic.iarc.fr/about/cohortdescription.php  

Among the 367,903 women recruited in EPIC, 19,583 participants had prevalent cancers at 

recruitment (except non-melanoma skin cancer) and 2,892 women were lost during follow-

up. First malignant primary BC occurred for 10,713 women of the EPIC cohort during the 

follow-up time. A nested case-control study was designed among women who completed 

dietary and lifestyle questionnaires and provided blood samples at recruitment (baseline), 

which included 3,858 invasive BC cases. Each case was matched to a randomly selected 

control among cancer-free women by recruitment centre and the following baseline variables: 

age, menopausal status, fasting status, current use of oral contraceptive pill or hormone 

replacement therapy and time of blood collection (76). 

Within the BC nested case-control study, a subsample of 960 women (480 cases and 480 

matched controls) from Germany, Greece, Italy, Netherlands, Spain and United Kingdom 

was selected for the DNA methylation analysis (77).   
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PART I: Normalization approaches to correct for 
systematic sources of variation in DNA methylation 
measures 
Context 

DNA methylation is altered by many factors including age (34) and environmental factors 

(78) such as smoking (35, 36) and alcohol consumption (67, 71). But systematic and random 

variation introduced by the technical processing of biospecimens might also affected 

methylation measures. This may compromise the accuracy of the measurement process and 

contribute to bias the estimate of the association under investigation. It includes in particular 

variability attributed to batch (a group of 96 samples processed at the same time), chip 

position within batches (8 chips per batch) and the position of the samples within the chip (12 

samples per chip allocated into 2 columns and 6 rows) (4). The quantification of the 

contribution of the sources of systematic and random variation is challenging in datasets 

characterized by hundreds of thousands of features.   

Objectives 

 To identify and quantify the contribution of systematic and random sources of variation in 

methylation measurements. 

 To evaluate the performance of three normalization techniques accounting for unwanted 

variability in methylation measurement using the association between smoking and DNA 

methylation levels. 

Approach 

Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 

421,000 CpG sites for 902 buffy coat samples from study participants of a case-control study 

on BC nested within the EPIC cohort. Smoking status was categorized into never vs ever 

smokers based on lifestyle questionnaires. 

In this study, the principal component partial R-square (PC-PR2) analysis (3), a method 

previously developed for the analysis of metabolomics data was introduced to evaluate the 

performance of normalization techniques to correct for unwanted variation. The PC-PR2 

method was used to identify and quantify the contribution of laboratory factors and other 

characteristics of the samples variability, before and after each of the normalization 

technique. Three normalization techniques, namely ComBat (9), surrogate variables analysis 

(SVA) (12, 13) and a residuals approach based on the computation of residuals from 

regression model were performed on raw -values and M-values. Sites-specific analyses 
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evaluating the association between smoking status and DNA methylation levels after 

application of each of the three normalization methods were performed. Results were 

compared with findings from the CHARGE consortium, a large meta-analysis combining 

pooled data from 16 cohorts and including about 16,000 samples (36).   

Main findings 

For -values, a sizeable proportion of variability attributable to variables expressing batch 

and row sample position within chip was identified, with values of the partial R2 statistics 

equal to 9.5% and 11.4% of total variation, respectively. After application of ComBat or the 

residuals’ methods, the contribution was 1.3% and 0.2%, respectively. The SVA technique 

resulted in a reduced variability attributable to batch (1.3%) and row sample position (0.6%), 

and in a reduced variability attributable to chip within a batch (0.9%). Similar results were 

obtained for M-values. 

Using standard adjustment and FDR correction of p-values, i.e. models using the raw 

methylation values and adjusted for batch and row sample position, smoking status was 

significant associated with changes of methylation levels in 444 sites, 80% of which were 

overlapping results from the CHARGE consortium. After ComBat and the residuals’ 

normalizations, a larger number of significant sites (  = 600 and  = 427, respectively) were 

associated with smoking status than after SVA correction (  = 96). However, almost all the 

significant sites after SVA were overlapping results from the CHARGE consortium (96%) 

compare to ComBat and the residuals methods, 69% and 85% respectively. Similar results 

were obtained for M-values with a higher percentage of overlapping sites. 

Conclusion 

Our findings suggested that laboratory factors such as the position of the sample within the 

chip and the position of the chip within batches can add unwanted variability to DNA 

methylation in addition to the variability introduced by the batch. In an analysis of EPIC data, 

the PC-PR2 method lent itself as a very useful tool to explore the contribution to total 

variability of an a priori list of laboratory factors and sample characteristics. This step turned 

out to be essential to evaluate the performance of routinely used normalization methods, 

such as the regression-based residuals, ComBat and SVA, and to further appreciate the 

extent of these corrections. SVA produced more conservative findings than ComBat and the 

residuals’ methods in the association between smoking and DNA methylation. These steps 

should be part of the pre-processing analysis of any -omics data. 

Published article: Identifying and correcting epigenetics measurements 
for systematic sources of variation. 
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Additional file 1: Figure S1. Box plots of global methylation (M values) according to laboratory 
factors: batch (a), chip position within batches (b), sample position within chips (c). 
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Additional file 2: Figure S2. Quantile-quantile (QQ) plots for CpG site-specific analysis with 
respect to smoking using standard adjustment (a), residuals (b), ComBat (c) and SVA (d) 
correcting methods for the β values. The inflation factor λ is defined as the ratio of the 
median of the observed log10 transformed p values from the CpG site-specific analysis and 
the median of the expected log10 transformed p values. 
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Additional file 3: Figure S3. Quantile-quantile (QQ) plots for CpG site-specific analysis with 
respect to smoking using standard adjustment (a), residuals (b), ComBat (c) and SVA (d) 
correcting methods for the M values. The inflation factor λ is defined as the ratio of the 
median of the observed log10 transformed p values from the CpG site-specific analysis and 
the median of the expected log10 transformed p values. 
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PART II: Folate, DNA methylation and breast 
cancer association 

1- Association of biomarkers of folate and vitamin B12 with 
breast cancer risk 

Context 

Among dietary factors, deficiencies in B vitamins related to Western dietary patterns have 

been suggested to play a role in breast carcinogenesis (79, 80). Prospective studied, which 

investigated the effect of biomarkers of vitamin B9 (folate) and vitamin B12 (cobalamin) on 

BC risk have reported inconsistent findings (70, 81, 82). Blood folate has been inversely 

associated with BC risk, but a lack of association has also been observed. Similar mixed 

results have been reported for the association between biomarkers of vitamin B12 and BC 

risk. A number of factors have been suggested to influence the association between B 

vitamins and the risk of BC, including menopausal status, alcohol consumption, nutrient 

interactions and methylenetetrahydrofolate reductase (MTHFR). BC subgroups related to 

hormone receptor status have been associated with folate intake among premenopausal 

women. 

Objectives 

 To evaluate the association between plasma concentrations of folate and vitamin B12 

and BC risk overall and stratified by hormone receptor status and potential risk 

factors in the EPIC cohort. 

 To examine the interaction between the MTHFR 677C>T (rs1801133) and 1298A>C 

(rs1801131) polymorphisms and the two plasma B vitamins on the risk of BC. 

Approach 

Plasma concentrations of folate and vitamin B12 were determined in 2,491 BC cases 

individually matched to 2,521 controls among cancer-free women (except non melanoma 

skin cancer) who provided blood samples at recruitment. Matching criteria included study 

centre, age at blood donation, exogenous hormone use at blood collection, menopausal 

status, fasting status and phase of the menstrual cycle at recruitment.  

Multivariable logistic regression models were used to estimate odds ratios (OR) by quartiles 

of either plasma B vitamins. Models were adjusted for BMI, height, alcohol intake, total 

energy intake, educational attainment, physical activity, ever use of hormone replacement 

therapy, parity and age at first full-term birth combined and family history of BC. Subgroup 
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analyses by menopausal status, hormone receptor status of breast tumors (estrogen 

receptor, progesterone receptor and human epidermal growth factor receptor 2), alcohol 

intake and MTHFR polymorphisms (677C > T and 1298A > C) were also performed. In 

addition, the association between each plasma biomarker and the risk of BC was examined 

using four-knot restricted cubic splines with the midpoint of the fifth decile of plasma vitamin 

B12 as the reference category. Tests for interaction between each plasma biomarker as 

continuous variable and potential risk factors were computed by likelihood ratio test. 

Main findings 

Continuous and quartiles of plasma levels of folate and vitamin B12 were not significantly 

associated with the overall risk of BC. No further significant association emerged for folate 

and vitamin B12 after stratification by menopausal status, by hormone receptors status or 

adjustment for MTHFR polymorphisms.  

The interaction term between tertiles of plasma folate (<10.96, 10.96-17.85, >17.85 mol/L) 

and categories of alcohol intake (0-3, 3-12, >12 g/day) was not significantly associated with 

BC risk ( =0.69). Similarly, no significant association between plasma folate and 

BC risk was observed by median level of alcohol consumption.  

A borderline positive association was found between quartiles of vitamin B12 and BC risk in 

women consuming above the median level of alcohol, i.e. higher than 3.36 g/day, 

( =1.26; = [1.00–1.58]; =0.05). BC risk was also significantly increasing 

according to quartiles of vitamin B12 in women with plasma folate levels below the median 

value, i.e. lower than 13.56 mol/L, ( =1.29; =[1.02–1.62]; =0.03). 

Conclusion 

Overall, no clear support for an association between plasma levels of folate and BC risk was 

found in this large prospective study. However, potential interactions between vitamin B12 

and alcohol or folate on the risk of BC were observed. Our findings suggest a potential role of 

vitamin B12 in breast carcinogenesis and raise the possibility of important nutrient–nutrient 

and gene–nutrient interactions, such as changes in DNA methylation, in the etiology of BC. 

The potential deleterious effect of high vitamin B12 status in combination with other risk 

factors for BC deserves further investigation. Given the inconsistent findings to date and the 

possibility that associations between folate and BC could be influenced by some factors yet 

to be identified, further studies based on novel biomarkers that take into account the effect of 

potential risk factors and genetic polymorphisms are warranted. 

Published article: Biomarkers of folate and vitamin B12 and breast 
cancer risk: report from the EPIC cohort. 
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2- Dietary folate, alcohol consumption and DNA methylation  

Context 

The one-carbon metabolism (OCM) is a network of interrelated biochemical reaction in which 

a one-carbon unit is received from methyl donor nutrients and transferred into biochemical 

and molecular pathways essential for DNA replication and repair. Modifications in OCM can 

significantly impact gene expression and thereby cellular function (65). There is increasing 

evidence that folate, as one of the methyl donor nutrients, is a relevant candidate for 

modulation of the epigenome (83). Alcohol metabolites, involved in a dysfunction of the folate 

absorption, have also shown to affect the epigenome. This antagonist effect of alcohol on 

folate could plausibly increase the need of folate intake. Inadequate folate level may result in 

abnormal DNA synthesis and disrupted DNA repair and hence may influence cancer risk, 

including breast cancer (69). However the epidemiological evidence linking dietary folate, 

alcohol intake and epigenome modifications is not well documented. 

Objectives 

 To identify single CpG sites differentially methylated in relation to dietary folate and 

alcohol intake. 

 To investigated the association between dietary folate and alcohol intake with DNA 

methylation levels in regions of CpG sites. 

Approach 

Genome-wide DNA profiles on about 450,000 CpG sites were measured using Illumina 

Infinium HumanMethylation450K in 450 cancer-free women, part of a nested case-control 

study on BC within the EPIC cohort. SVA normalization technique was used to remove 

unwanted variation from DNA methylation introduced by samples processing during 

methylation acquisition such as the batch. Dietary folate and alcohol intake were assessed at 

recruitment through questionnaires.  

In this study the association of dietary folate and alcohol intake with DNA methylation was 

investigated via three different approaches. The site-specific analysis aimed at identifying 

single CpG site independently from each other, whereas Differentially Methylated Regions 

(DMRs) analysis (20) and fused lasso (FL) regressions (84) analyses aimed at identifying 

regions of CpG sites. The latter approaches use the hypothesis that neighboring CpG sites 

may share similar information, thus exploiting the potential of specific regions of the 

epigenome to show methylation activity related to lifestyle factors. FDR was used to control 

statistical tests for multiple testing.   
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Main findings 

After correction for multiple testing, site-specific analysis showed a lack of association 

between dietary folate and individual CpG sites. Alcohol intake was positively associated with 

methylation level in cg03199996, and inversely associated with methylation in cg07382687. 

These two associations were borderline significant (both =0.049). A total of 24 and 90 

differentially methylated regions (DMRs) were associated with dietary folate and alcohol 

intake, respectively. An inverse association was observed for 54% of the dietary folate DMRs 

and for 44% of the alcohol intake DMRs. FL regression identified 71 regions significant for 

dietary folate including 70% with an inverse association and 133 regions significant for 

alcohol intake including 47% with an inverse association. However, the overlap between the 

two methods was relatively low, i.e. three and 21 FL regions were overlapping dietary folate 

and alcohol intake DMRs, respectively. There was an especially high concentration of 

regions in chromosome 6 where 4 DMRs were overlapping FL regions and in chromosome 

22 counting 3 overlaps between the DMRs and FL regions.  

Conclusion 

A borderline association between alcohol intake and methylation levels in two CpG sites was 

observed. Evidence from DMRs an FL analysis indicated that both dietary folate and alcohol 

intake might be associated with alteration of DNA methylation levels in localized regions. 

Folate and alcohol are suspected to be associated with breast cancer risk but also to have 

antagonist roles in the one-carbon metabolism. In certain regions identified by DMRs or FL 

analysis, mapped genes are known to act as tumor suppressor such as the GSDMD and 

HOXA5 genes. These results were in line with the hypothesis that folate- and alcohol-

deregulated epigenetic mechanisms might have a role in the pathogenesis of cancer.  

Submitted article: Association of leukocyte DNA methylation changes 
with dietary folate and alcohol intake in the EPIC Study. 
The following draft has been recently submitted and is under consideration at Clinical 
Epigenetics.  
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3- Average methylation and breast cancer risk  

Context 

A vast majority of human malignancies are associated with ageing, and age is a strong 

predictor of cancer risk. In particular BC is an age-associated disease whose incidence rises 

sharply after menopause (85). This increased risk was hypothesized to be the consequence 

of accumulation of genetic mutations associated with deregulation of cellular processes and 

genomic instability. Recently, DNA methylation-based marker of ageing, known as 

‘epigenetic clock’ or ‘DNA methylation age’, can be used to accurately estimate the 

chronological age of all tissues and cell types (86). This composite biomarker of ageing, 

defined as a weighted average across 353 specific CpG sites, has been linked with several 

diseases including Alzheimer and Parkinson diseases (87, 88).  

Departures of methylation-estimated age from chronological age can be used to define 

intrinsic epigenetic age acceleration (IEAA) that measures cell-intrinsic ageing effects, which 

are independent of chronological age and blood cell composition. IEAA has been used to 

predict lung cancer risk in a recent study (89). However, it is not yet known whether IEAA 

lends itself for predicting BC susceptibility in a prospective case-control study. 

Objectives 

 To evaluate whether intrinsic epigenetic age acceleration is associated with BC risk 

susceptibility.  

 To investigate the association between global methylation and BC risk. 

Approach 

DNA methylation changes in 421,583 sites were profiled in 902 samples of a case-control 

study on BC nested within the EPIC cohort using the Illumina HumanMethylation 450K 

BeadChip arrays. One control participant was randomly assigned for each case based on: 

recruitment centre, length of follow-up, age at blood collection, time of blood collection, 

fasting status, menopausal status, menstrual cycle day and current use of contraceptive 

pill/hormone replacement therapy.  

Overall global DNA methylation, defined as the mean methylation in the 421,583 sites, was 

computed for all participants. Global DNA methylation on specific regions of CpG sites 

reflecting their physical location in relation to CpG islands or based on a functional criterion 

was also performed. A conditional logistic regression was used to estimate global 

methylation (overall and for each category) association with BC risk. 
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The Horvath age estimation method (86) was used to calculate epigenetic age for each 

samples, based on the methylation levels of 353 CpG sites. Intrinsic epigenetic age 

acceleration (IEAA) was estimated as the residuals from a linear regression where 

epigenetic age was regressed on chronological age, adjusted for blood cells counts. Logistic 

regression was used to assess IEAA association with BC risk adjusted for known BC risks, 

such as alcohol consumption, BMI, age at menarche and physical activity. Stratification by 

menopausal status was also performed. 

Main findings 

Overall global DNA methylation was not significantly associated with BC risk whereas global 

DNA methylation in CpG islands was positively associated with BC risk ( =1.20, 

=[1.03-1.40], =0.02).  

One unit increase in IEAA was significantly associated with a 4% increased risk of 

developing BC ( =1.04; =[1.007-1.076]) in univariate analysis. Stratified analysis 

based on menopausal status revealed that IEAA was positively associated with development 

of postmenopausal BC ( =1.06, =[1.019-1.110], =0.003). The results were not 

attenuated after adjusting for known BC factors. 

Conclusion 

Assessed in blood samples, global methylation in CpG island regions and epigenetic age 

acceleration had a weak, but statistically significant, positive association with BC 

susceptibility. With an increased BC risk of 6% by one unit increase of IEAA and a p-value at 

0.003, the association between epigenetic age acceleration and BC was more significant for 

postmenopausal women. Menopause has been known to accelerate age-related diseases 

including cancer. Age acceleration in postmenopausal BC may reflect differences in 

hormone exposure, which may explain why IEAA was only predictive of postmenopausal 

BC. 

 
Published article: DNA methylome analysis identifies accelerated 
epigenetic ageing associated with postmenopausal breast cancer 
susceptibility. 
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CONCLUSION AND PERSPECTIVES 
 
Conclusion 

Recent technical progress in the acquisition of biological features generated an exponential 

growth of the amount of data expressing a wealth of biological parameters. For example, 

methylation levels of 27K CpG sites were first measured in 2008 via the Illumina Infinium 

HumanMethylation27 BeadChip platform. Then in 2011, a new array was developed to 

target over 450K CpG sites. Currently, since 2015, the Illumina MethylationEPIC BeadChip 

array covers over 850K sites. We can easily imagine that these numbers will further increase 

in the near future. To analyze high-throughput datasets, there will be progressively 

demanding needs of statistical tools to fully exploit the potential of these data.  

In this thesis, the statistical tools used for the analysis of epigenetics data were instrumental 

to handle the high dimensionality and complexity of DNA methylation data. The focus 

embraced an evaluation of different phases of the statistical process. First, a methodological 

work to explore the pre-processing step of DNA methylation data was implemented. Its aim 

was to first identify the various sources of systematic and random variability, related to 

sample treatment, laboratory, as well as biological, and then to screen among the most 

popular normalization techniques. The PC-PR2 method proved a useful tool to explore the 

contribution of an a priori list of factors in large dimension datasets, such as epigenetics 

data. For the normalization phase, the SVA technique produced more conservative results 

than the two other methods investigated, i.e. Combat and a method based on residuals 

computation, possibly in light of the fact that SVA makes use of the notion of surrogate 

variables, thus correcting for what is known to affect variation, but also involving unknown 

sources of variability. 

Three statistical methods were described in this thesis to analyze methylation data in order 

to investigate the association between dietary folate, alcohol intake and DNA methylation. 

The site-specific analysis, where single CpG sites were independently related to, in turn, 

alcohol and folate, served as a basis to go beyond ‘univariate’ evaluations of the 

relationships. The DMRs and FL analyses provided evidence that specific regions of CpG 

sites were associated with lifestyle factors using the hypothesis that neighboring features 

may share similar information. DMRs and FL analyses indicated that dietary folate and 

alcohol intake might be associated with alteration of DNA methylation in localized regions, 

some of which are related to genes known to act as tumor suppressor. These results were in 

line with the hypothesis that epigenetic mechanisms might have a role in the association 

between folate and alcohol with BC. A fourth study investigating the relationship between 
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global methylation and the risk of BC was also presented, and showed that overall global 

methylation was not associated with BC risk, whereas a positive association was observed 

in CpG islands. It is important to stress that the associations observed in this thesis should 

be interpreted with caution, as our findings need confirmation in other study populations in 

similar research settings.  

Perspectives 

Many environmental exposure including smoking, obesity and specific dietary factors are 

suspected to contribute to methylation changes, which may entail the development of a 

range of chronic diseases such as cardiovascular disease, type-I diabetes and several 

cancer types, including colorectal and lung. By addressing the high dimensionality and 

complexity of DNA methylation, statistical tools introduced in this thesis may prove useful for 

future epigenetics studies focusing on the relationship between lifestyle exposures, DNA 

methylation and the occurrence of health outcomes.   

Among fatty acids profiles, positive associations have been recently observed between 

plasma palmitoleic acid, as a biomarker of endogenous lipogenesis, and BC risk, and also 

between industrial trans-fatty acids and ER-negative breast tumours (62). Fatty acids are 

suspected to alter BC risk through an hypo-methylation of specific CpG sites, possibly 

resulting from an alteration of the activities of the TET proteins and a reduced DNA 

methyltransferases activity (90).  

A study aiming at investigating the association between biomarkers of endogenous 

lipogenesis, DNA methylation and BC is currently ongoing. The rationale of this investigation 

is to use DMR analysis to identify CpG regions showing altered methylation levels altered by 

specific fatty acid biomarkers. In addition, the association between methylation levels and 

BC risk will be assessed in each CpG region, by summarizing methylation intensity of the 

CpG sites belonging to the region by reduction dimension techniques, and then relating the 

resulting components (or factors) to the risk of BC. Analyses for palmitoleic acid were 

performed, while analyses for industrial trans-fatty acids are currently ongoing. Plasma 

palmitoleic acid was associated with methylation changes in 48 DMRs (annex 1). 

Methylation levels from CpG sites in 11 DMRs were significantly associated with BC risk 

(annex 2). 

Statistical tools presented in this thesis may also be extended to other types of -omics data. 

Some of the statistical methods may need to be adapted to suite the specific setting of large 

dimension data. For example, as some of the -omics data are not ordered, analyses 

involving the concept of physical proximity of features, such DMR and FL regression, may 
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not find a straightforward application. A potential extension of DMR analysis may be adapted 

to identify cluster of features associated with an exposure, by using weights based on 

correlation between features instead of weights based on physical distance between CpG 

sites. For FL regression, a pre-step would be needed to order features, possibly using 

hierarchical clustering methods.    
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Annex 2. DMRs significantly associated with BC risk. 

DMR characteristics Model 11 Model 21 

# Associated genes Sites2 Sites 
sign3 # PC4 PC 

sign5 
1 PM20D1 9 0 1 PC1 
3 CAT 10 1 3 0 
6 TNXB 27 4 12 PC6 
9 L3MBTL 24 1 12 PC7 

14 PCDHGA cluster 6 8 1 3 PC2 
15 GPR75,LOC100302652 14 0 3 PC1 
16   7 1 3 0 

19   6 4 4 PC3, 
PC4 

20 PPT2 17 3 6 PC6 
22 WSCD1 3 1 2 0 
30 FAM171A2 5 2 1 0 
34 FAM38A 6 2 4 PC4 
35 ZNF232 3 1 2 0 

 
1 BC risk was regressed on methylation levels of all the CpG sites included in the DMRs for model 1 
and on PC scores keeping 80% of information for model 2. Adjustment covariates were alcohol intake, 
BMI and physical activity; 
2 Number of sites located in DMRs significant for palmitoleic acid; 
3 Number of CpG sites significantly associate with BC risk; 
4 Number of principal components (PC) needed to keep 80% of information in PCA; 
5 Principal components significantly associate with BC risk using model 2; 
6 PCDHGA cluster of genes including : PCDHGA4, PCDHGA11, PCDHGA12, PCDHGA9, PCDHGA1, 
PCDHGB1, PCDHGB6, PCDHGB3, PCDHGB7, PCDHGA6, PCDHGA8, PCDHGA10, PCDHGA5, 
PCDHGB4, PCDHGA3, PCDHGA2, PCDHGA7, PCDHGB2, PCDHGB5. 
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