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RESUME

De par les centaines de milliers de données qui les caractérisent, les bases de données
épigénétiques représentent actuellement un défi majeur. L’objectif principal de cette thése
est d’évaluer la performance d’outils statistiques développés pour les données de grande
dimension, en explorant I'association entre facteurs alimentaires reliés au cancer du sein
(CS) et méthylation de 'ADN dans la cohorte EPIC.

Afin d’étudier les caractéristiques des données de méthylation, l'identification des sources
systématiques de variabilité des mesures de méthylation a été effectuée par la méthode de
la PC-PR2. Ainsi la performance de trois techniques de normalisation, trés répandues pour
corriger la part de variabilité non désirée, a été évaluée en quantifiant 'entendu de variabilité

attribuée aux facteurs de laboratoire avant et aprés chaque méthode de correction.

Une fois la méthode de normalisation la plus appropriée identifiée, la relation entre le folate,
l'alcool et la méthylation de 'ADN a été analysée par le biais de trois approches : une
analyse individuelle des sites CpG, une analyse de DMR et la régression fused lasso. Les
deux dernieres méthodes visent a identifier des régions spécifiques de I'épigénome grace
aux corrélations possibles entre les sites proches. La méthylation globale a aussi été utilisée

pour étudier la relation entre méthylation et risque de CS.

Grace a une évaluation exhaustive d’outils statistiques révélant la complexité des données
de méthylation de '’ADN, cette thése offre un apercu instructif de connaissances pour les
études épigénétiques, avec une possibilité d’application de méthodologie similaire aux

analyses d’autres types de données -omiques.

Mots-clés : Epigénétique, PC-PR2, méthylation, DMR, fused lasso, cancer du sein, EPIC.

Institut de préparation de la thése :

Centre International de Recherche sur le Cancer (CIRC),
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150 cours Albert Thomas 69372 Lyon Cedex 08, France.



ABSTRACT

Epigenetics data are challenging sets characterized by hundreds of thousands of features.
The main objective of this thesis was to evaluate the performance of some of the existing
statistical methods to handle sets of large dimension data, exploring the association between

dietary factors related to breast cancer (BC) and DNA methylation within the EPIC study.

In order to investigate the characteristics of epigenetics data, the identification of random and
systematic sources of variability of methylation measurements was attempted, via the
principal component partial R-square (PC-PR2) method. Using this technique, the
performance of three popular normalization techniques to correct for unwanted sources of
variability was evaluated by quantifying epigenetics variability attributed to laboratory factors

before and after the application of each correction method.

Once a suitable normalization procedure was identified, the association between alcohol
intake, dietary folate and methylation levels was examined by means of three approaches:
an analysis of individual CpG sites, of differentially methylated regions (DMRs) and using
fused lasso regression. The last two methods aim at the identification of specific regions of
the epigenome using the potential correlation between neighboring CpG sites. Global
methylation levels were used to investigate the relationship between methylation and BC
risk.

By performing an exhaustive evaluation of the statistical tools used to disclose complexity of
DNA methylation data, this thesis provides informative insights for studies focusing on
epigenetics, with promising potentials to apply similar methodology to the analysis of other

-omics data.

Keywords: Epigenetics, PC-PR2, methylation, DMR, fused lasso, breast cancer, EPIC.

Institute hosting the thesis candidate:

International Agency of Research on Cancer (IARC),
Nutritional Methodology and Biostatistics group, Nutrition and Metabolism section,
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RESUME SUBSTANTIEL

Les nouvelles avancées technologiques dans le domaine -omiques rendent possible
'acquisition de plus en plus de données par individu, allant de quelques centaines jusqu’a
plusieurs milliers. Un des défis les plus importants actuellement engendré par ces données
est de surmonter les contraintes liées a leur trés grande dimension. Habituellement, en
épidémiologie, le nombre de facteurs étudiés est inférieur au nombre de participants de la
population d’étude. Cependant, en présence de données -omiques, telles que les données
épigénétiques caractérisées par des centaines de milliers de mesures par individu, le
nombre de facteurs étudiés est nettement supérieur au nombre de participants dans la
population. Les méthodes statistiques usuellement utilisées en épidémiologie ne sont alors
plus nécessairement adaptées a ces données. L’objectif principal de cette thése est
d’évaluer la performance d’outils statistiques développés pour les données de grande
dimension, en utilisant comme exemple, I'association entre certains facteurs alimentaires
reliés au cancer du sein (CS) et la méthylation de 'ADN dans la cohorte européenne

prospective EPIC (European Prospective Investigation into Cancer and nutrition).

La méthylation de 'ADN est altérée par de nombreux facteurs incluant I'age et des facteurs
environnementaux tels que la consommation d’alcool et de tabac. En plus de ces facteurs,
des variabilités systématiques et aléatoires peuvent aussi étre introduites lors du traitement
technique des échantillons biologiques tels que le "batch" (i.e. groupe d’échantillons traités
en méme temps) ou la position des échantillons a l'intérieur du "batch". De plus dans le cas
d'une cohorte multicentrique comme EPIC, le centre dont sont issues les données peut
également engendrer de la variabilité due a une collecte et un traitement des échantillons
pouvant varier entre les centres. Toutes ces variabilités peuvent compromettre la justesse du
procédé de mesure de la méthylation et biaiser I'estimation des associations investiguées.
Afin de mieux appréhender la complexité des données de méthylation de I'ADN,
l'identification des sources systématiques et aléatoires de variabilité introduites pendant
'acquisition des mesures de méthylation est nécessaire. En se servant de la méthode
"principal component partial R-square" (PC-PR2) qui combine une technique de réduction de
dimensions (analyse en composantes principales) avec une modélisation de régression
linéaire, trois techniques déja existantes, développées pour corriger les données de
méthylation pour des facteurs de variabilité, ont été comparées : ComBat, SVA et une
méthode de régression pour le calcul de résidus. Avant et aprés application de chacune des
trois techniques de normalisation, la méthode de la PC-PR2 a été utilisée afin de quantifier la
part de variabilité de chaque facteur lié au traitement des échantillons. Les trois méthodes

ont réussi a enlever la part de variabilité attribuée au traitement des échantillons. Parmi les



trois méthodes testées, SVA s’est avérée étre la méthode produisant les résultats les plus
conservatifs dans une application visant a comparer I'association entre le statut tabagique et
la méthylation de ’ADN.

L’alcool et le folate sont connus pour étre, respectivement, positivement et inversement
associés au risque de CS. Leurs effets antagonistes sont également reconnus dans le
métabolisme monocarboné (OCM) qui est essentiel pour la réplication et la réparation de
I’ADN. En diminuant I'absorption de folate, en augmentant son excrétion par les reins et en
inhibant la synthase de la méthionine, I'alcool peut entrainer un dysfonctionnement de
'OCM, ce qui pourrait amener a une synthése anormale de 'ADN et donc impacter sur le
risque de CS. Afin détudier I'association entre l'apport alimentaire en folate et la
consommation d’alcool avec la méthylation de I'ADN, trois méthodes statistiques ont été
utilisées. La premiére méthode a analysé I'association du folate et de I'alcool sur la
méthylation de 'ADN séparément pour chaque site CpG, alors que les analyses de DMR
(differentially methylated region) et de fused lasso (FL) avaient pour but d’identifier des
régions spécifiques de I'épigénome. Une faible association entre la consommation d’alcool et
le niveau de méthylation de deux sites CpG a été observée. Les résultats des analyses de
DMRs et de FL ont montré que le folate et I'alcool étaient associés avec des altérations du
niveau de méthylation dans certaines régions de I'épigénome, dont certaines sont associées
avec des geénes connus pour leur réle de suppresseurs de tumeurs tels que les génes
GSDMD et HOXAS. Ces résultats sont en accord avec I'’hypothése supportant I'idée que des
mécanismes épigénétiques pourraient avoir un réle dans I'association entre folate, alcool et

le risque de CS.

La méthylation de 'ADN est suspectée d’étre impliquée dans le développement du CS par le
biais de dysfonctionnements de mécanismes cellulaires. Cependant, pour le moment aucune
association entre méthylation individuelle de site CpG et risque de CS n’a été validée. Seule
une association positive entre hypo-méthylation globale et CS a été observée de fagon
récurrente au sein des études prospectives d'association a I'échelle de I'épigénome (EWAS).
La méthylation globale de 'ADN, définie comme la moyenne des niveaux de méthylation de
'ensemble des sites CpG, a été évaluée au sein d’'une étude coordonnée par le groupe
d’Epigeénétique du CIRC par rapport au risque de CS. Les résultats des analyses statistiques
ont révélé une faible association positive entre la méthylation moyenne des sites

appartement a un ilot de CpG sites et le risque de CS.

Grace a une évaluation exhaustive d’outils statistiques révélant la complexité des données
de méthylation de 'ADN, cette thése offre un apercu instructif de connaissances pour les

études des données épigénétiques. La méthodologie présentée dans cette thése ouvre aussi



la possibilité a des applications similaires adaptées aux analyses statistiques d’autres types

de données -omiques.
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ABBREVIATIONS

BC: breast cancer;

BMI: body mass index;

Cl: confidence interval;

CpG: cytosine-phosphate-guanine;

DMR: differentially methylated region;

EPIC: European Prospective Investigation into Cancer and nutrition;
ER: estrogen receptor;

FDR: false discovery rate;

FL: fused lasso;

HER2: human epidermal growth factor 2;

HM450K: Illumina Infinium HumanMethylation450K BeadChip;
IEAA: intrinsic epigenetic age accelerating;

LASSO: least absolute shrinkage and selection operator;
OCM: one-carbon metabolism;

OLS: ordinary least squares;

OR: odd ratio;

PC: principal component;

PC-PR2: principal component partial R-square;

PCA: principal component analysis;

PCR: principal component regression;

PLS: partials least squares;

PR: progesterone receptor;

SAM: S-adenosyl methionine;

SD: standard deviation;

SVA: surrogate variable analysis;

WCREF: World Cancer Research Fund.
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INTRODUCTION

In the era of -omics, large amount of data are generated in epidemiological investigations by
new generation of high-throughput acquisition platforms on large number of biological
features, such as epigenetics, metabolomics, transcriptomics, proteomics, etc. This novel
context generates a number of new issues related to the management, the characterization
and the analysis of very complex sets of data. Traditionally in epidemiological studies, the
numbers of exposure variables (p) is lower than the sample size (n). Classical statistical
methods typically require the size of the study population to be large and a multiple of the
number of variables. In -omics, high-throughput datasets characterized by large number of
variables, the number of subjects might be limited due to technical and economical
limitations of the experiment. In this case, the number of features can be way larger than the

sample size, a situation classically known as p > n.

Standard methods to analyze -omics data generally involve the use of specific statistical
techniques, such as regression modeling, complemented by methods to account for multiple
testing, such as the false discovery rate (FDR) or Bonferroni corrections. The method is
relatively straightforward to implement but, as for -omics data, p may reach the range of
hundreds of thousands variables, and FDR and Bonferroni solutions are very demanding in
terms of statistical power to preserve a nominal level of statistical significance. This
increases the likelihood of capturing medium-to-large associations, but leaves little margin to
focus the investigation effort on numerous, potentially relevant, weak associations. In
addition, -omics data reflects the complexity of biological systems expressing a multitude of
features related to metabolism, genetic and protein profiles, changes in gene expression,
acquired from biological samples (urine, blood, saliva, tissues). As a results, datasets often
have unknown structures, and the little is known on the way these features interact in
response to environmental exposures. The high dimensionality of this data, coupled with
their biological complexity make the application of classical statistical tools for research
purposes not straightforward. Novel statistical tools have been recently proposed in the
scientific literature to fully exploit the potential of a wealth of new data, either by conceiving

new statistical techniques or by re-adapting existing tools to -omics analyses (1-3).

Statistical methods for large dimension data

Recent progress in technology made it possible the acquisition of thousands of features for
relatively sizeable amount of study participants’ samples, typically from few tens to several
hundreds. This situation generated the need of conceiving solutions for the process of

numerous samples in sequence. A standard way to handle large volumes of samples with a
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limited number of machines (very often just one) is to allocate samples in laboratory batches,
which allows the process of a group of samples at same time (4). Within a batch, samples
might be separated into several chips, also referred as arrays. Due to technical limitations of
the machines, only a limited number of samples can be handled in a same batch; thus
several batches are usually needed to process all the samples. It is unlikely that all the
batches were processed with the exact same experimental conditions: several technicians
may handle or prepare the samples; the room temperature during samples processing may
also change, etc. These differences may introduce variability in the features measurement.
The ‘batch effect’, has been documented in the scientific literature (4, 5), and it is not the only
source of systematic variability introduced by technical processing of samples. A ‘positional
effect’, i.e. the physical position of samples on the chip, has also been observed (6).
Unwanted biological variation can be a problem as well. Some factors may introduce
systematic variation i.e. that affects all samples from a group in a similar manner whereas
others introduce variation, which can be assumed to be random, namely caused by
unpredictable or uncertain factors. As a result, technical management of samples likely
introduces unwanted technical variability in -omics measurements that might compromise the
accuracy of the measurement process and introduce bias in the estimation process of the
association of interest. Careful random allocation of samples over chips (7, 8) is essential to
make it independent from specific characteristics of the samples, i.e. country of origin, BMI,
age. As a result, random and systematic technical variability need to be addressed. Some
correction methods suggested in the literature require an a priori identification of factors
potentially influencing variation (9-11). The large dimension of -omics data makes it difficult
to quantify the amount of variability attributable to sources of systematic and random
variation. The principal component partial R-square (PC-PR2) method was developed to
quantify systematic and random variation in metabolomics data (3). The method is based on
the combination of principal component analysis (PCA), which summarized the information
given by a set of features in a reduced number of components that maximize the variance in
the feature matrix, with the concept of the partial R? statistics in multivariable linear
regression. A particularly appealing feature of the method is the capacity of successfully
performing PCA in presence of hundreds to thousands of features. The technique could be

extended to other -omics data.

Once major sources of systematic and random variability have been identified, another
challenge is the treatment of unwanted variability data among a wealth of normalization
techniques proposed in the literature. A popular way to tackle this would involve the
computation of residuals from regression model where the outcome is, in turn, each feature

from the dataset and the predictors covariates are the factors identified as expressing the
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major sources of variability. Normalization techniques are usually specific to the -omics set
under investigation. For example, the most popular techniques for DNA methylation data are
the Surrogate Variables Analysis (SVA) (12, 13) and the ComBat technique (9). SVA is a
method developed to remove variability originating from pre-identified factors but also
unknown sources, through the estimation of surrogate variables potentially influencing overall
variability. The ComBat method is a procedure based on an empirical Bayes approach with
an additive and a multiplicative component, the latter contributing to shrink the feature-

specific variability, thus also handling outlier values.

After accounting for unwanted variability, the data can be analyzed following diverse
approaches. Standard analyses, involving the evaluation of each feature separately, can be
complemented by techniques to handle several independent covariates in the linear
predictor. The ordinary least square (OLS) method estimates coefficients from a linear
multivariable regression model by minimizing the sum of the squares of the error terms. In
regression analyses, over-fitting may occur when the number of predictors exceeds 10% of
the number of observations. In addition, collinearity that inflates parameter estimates’
variability may occur when there are many predictors and the model may also be difficult to
interpret. Moreover the model is no longer identifiable when the number of predictors
exceeds the number of observations, as for -omics analyses. A first solution would be to use
a penalized approach such as Ridge regression (14), the Lasso (15) or elastic net (16),
which introduce penalties in the OLS fit function to control the trade-off between goodness of
fit and the number of predictors, an element referred to as model complexity. The penalty
introduced in Ridge regression improves prediction error by shrinking large regression
coefficients, but it does not reduce the model complexity. The Lasso imposes a penalty to
encourage sparsity of coefficients, i.e. by setting to null coefficients, thus achieving shrinkage
of parameter estimates and variable selection simultaneously. However, it can only select at
most n variables out of p candidates. Elastic net combines Ridge and Lasso penalties, and it
can be viewed as a compromise between the two approaches. Elastic net is particularly

useful when the number of predictors (p) is much larger than the number of observations (n).

Instead of performing features selection, other statistical methods aim at reducing the
dimension of the features set while keeping most of its variability. Principal component
analysis (PCA) is a dimension reduction technique that constructs orthogonal principal
components (PC) defined as linear combinations of the original features with maximal
variance. The original set of correlated features is converted into a set of linearly
independent variables. The PCs can be used as predictors in standard regression models.
This two-step method is referred as the principal component regression (PCR) (17). PCR is a

dimension reduction method, which handles multicollinearity between features and reduces
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overfitting of the regression model. Other approaches include the partial least squares (PLS),
which uses a dimension reduction technique to investigate the association between two sets
of variables (18, 19). Given a vector of predictors, X, and a (potentially multivariate) outcome
variable, Y, PLS looks for linear combinations of the components of X that maximize the

covariance with Y (or linear combinations of Y if the outcome is multivariate).

Statistical methods have been developed or adapted to suite the characteristics specific to
each -omics data. For example in epigenetics dataset, each feature has a physical position
on the chromosome, so that the features can be ordered in each chromosome. Instead of
studying each feature independently, it is thus possible to investigate regions of interest
using the hypothesis that neighboring features may share similar information. Statistical
methods specific to epigenetics data such as the differentially methylated regions (DMRs)
analyses have been developed to that end. The DMRs analysis rationale is to identify
regions by combining results from feature-specific analysis for a specific chromosome and
using distances between features as weights (20). Other methods such as the fused lasso
(FL) regression can be adapted to suite epigenetics data. FL is a generalization of the Lasso,
which is well suited when features are naturally ordered (Tibshirani et al., 2005). FL is a
multivariable regression method which combines two penalties: (i) the Lasso penalty, which
encourages sparsity, i.e. many elements of the estimated vector are encouraged to be set to
zero, and (ii) the fused penalty, which encourages sparsity of the difference between two

consecutive features, thus introducing smoothness in the parameter vector.

DNA methylation

With hundreds of thousands features measured, epigenetics is the -omics set with the
highest numbers of variables. It was first introduced by Conrad Waddington in the 1940s. He
defined epigenetics as “the branch of biology which studies the causal interactions between
genes and their products, which bring the phenotype into being” (21). Several other
definitions were then proposed following the new understanding of the mechanisms
underlying gene regulation and cell specification (22). In 2008, a new consensus definition of
epigenetics term as “stably heritable phenotypes resulting from changes in a chromosome
without changes in gene sequence” has been proposed (23), and it is now widely accepted.
In other words, epigenetics aims at investigating changes in gene activity not attributable to
changes in the DNA sequence. Epigenetics regulates gene transcription, determining where
and when a gene is switched on, together with its level of activity. For example, during
female embryogenesis, mammalian females randomly inactivate one of their two X-
chromosomes via an epigenetic mechanism called X-chromosome inactivation, which

causes the transcriptional silencing of one of the two X chromosomes in each female cell
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(24). Although every cell in the organism contains the same genetic information, epigenetics
can be responsible for different levels of expression of genes in different cells types, i.e. not
all genes are expressed simultaneously by all cell types. The study of epigenetic
mechanisms encompasses the study of different markers such as chromatin and histone
modifications and non-coding RNAs and DNA methylation, which are the most studied
epigenetic markers.

DNA methylation is a mechanism of epigenetic regulation that involves the addition of methyl
groups (-CH3), most commonly, to the cytosine of a cytosine-guanine (CpG) DNA sequence
to form a 5-methylcytosine (5mC) (Figure 1). Even if the role of DNA methylation in gene
expression is not fully understood yet (25), it is an important component in numerous cellular
processes, including regulation of tissue-specific gene expression, embryonic development,
genomic imprinting and preservation of chromosome stability. Moreover, DNA methylation is
suspected to play different roles in gene activity based on its genomic location (26). For
example methylated CpG sites located in an island region, i.e. region with a high density of
CpG sites (Figure 2), are generally associated with gene repression, especially if the island is
located in a promoter gene. Methylated CpG sites located in a gene body region, i.e.
between the ATG and stop codons, are more likely to be associated with a higher level of
gene expression in dividing cells (27). DNA methylation levels at one CpG site are frequently
expressed as the percentage of cells that are methylated at that specific site. The lllumina
Infinium HumanMethylation450K BeadChip (HM450K) quantifies DNA methylation at more
than 450,000 interrogated CpG sites, expressing methylation levels as the ratio of the
methylated probe intensity to the overall intensity, which is the sum of the methylated and
unmethylated probe intensities (28). In mammals, around 70% to 80% of CpG sites are

methylated in somatic cells (29, 30).
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Figure 1. Mechanisms of inheritable epigenetics. (31)
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Figure 2. Schematic diagram of gene regions and CpG island regions (28).
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Unlike the DNA sequence, which is stable over time, DNA methylation may fluctuate over an

individual’s lifetime. Embryogenesis and early postnatal life are especially sensitive to DNA
methylation changes. Methylation alterations are amplified during these periods, as a
consequence of the importance of cell division and somatic maintenance that might affect a
high proportion of cells in the development of the organism. During early fetal development,
parental methylation profiles or exposures in utero, including mother’s level of obesity or
dietary exposures, are also involved in the embryo methylation changes (32). During

embryogenesis abnormal methylation may occur and conduct to abnormal expression or
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silence of certain genes, which may affect growth and development, and increase the risk of
chronic diseases later in life, such as the development of cancer. During life-course, age and
specific environmental exposures contribute to changes in DNA methylation, which, in turn,
might have long-term effects on development, metabolism and health (33, 34). In this
respect, there is increasing evidence supporting an effect of smoking (35, 36), obesity (37,

38) and specific dietary factors (39, 40) on DNA methylation changes.

Due to the important role of DNA methylation in the regulation of many cellular processes,
abnormal DNA methylation has been associated with a growing number of human diseases
(41). In particular, DNA methylation is suspected to be involved in the development of
autoimmune diseases including type | diabetes (42), inflammations associated with
cardiovascular disease (43), hypertension (44), respiratory diseases such as asthma and
chronic obstructive pulmonary disease (COPD) (45). The role of epigenetic changes in the
dysregulation of a wide range of key cellular processes has emerged in many cancer types
(46, 47), including breast cancer (48), colorectal cancer (49) and lung cancer (50). Cancer
cells are characterized by global hypo-methylation and regional hyper-methylation of CpG
islands, which may inactivate fundamental cellular processes such as DNA repair, cell cycle,
cell invasion and cell adherence (51). More specifically, DNA hypo-methylation is associated
in particular with unusual gene reactivation leading to a potential overexpression of some
normally silenced genes such as oncogenes, which might for example increase proliferation
of cancerous cells. DNA hyper-methylation is frequently associated with gene repression and
genomic instability (through silencing of DNA repair genes) and may result in silencing of

important genes, such as tumor-suppressor genes.

Breast cancer

With 1,677,000 newly diagnosed cases in 2012, breast cancer (BC) is the most frequent
cancer among women worldwide (52). Before the age of 75 years, 1 in 22 women will be
diagnosed with BC. Even if the incidence rates vary nearly four-fold across world regions, BC
represents about 25% of all cancers in women (Figure 3). BC is the most frequent cause of
cancer death in women in less developed countries and the second cause of cancer death in
more developed regions after lung cancer. It is the fifth most common cause of death from
cancer overall (522,000 deaths in 2012). Age standardized incidence and mortality rates
were respectively 43.3 and 12.9 per 100,000 in 2012. A quarter of BC cases and deaths in
the world occurred in Europe where the 5-year relative survival rate ranged between 71% in
Latvia and 87% in Finland (53).
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Figure 3. Age standardized breast cancer incidence rates in the world in 2012.
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The most common BC type is the invasive breast adenocarcinoma, for which cancer cells
start growing in the breast ducts or glands and then spread into the surrounding breast
tissues. Different treatment protocols exist for invasive BC, including chemotherapy,
hormone or targeted therapies, radiation and surgery. In order to determine the appropriate
treatment options, it is important to know the status of the hormone receptor for estrogen
(ER), progesterone (PR) and human epidermal growth factor 2 (HER2). Hormone receptor-
positive BC cells have either estrogen-positive (ER+) or progesterone-positive (PR+)
receptors. These two cancers respond to hormone therapy drugs that lower estrogen levels
or block estrogen receptors, preventing the cancer cells from getting the hormones levels
they need to further grow. ER+ receptor is expressed in approximately 80% of invasive BC
and has a more favorable initial prognosis than ER-. Hormone receptor-negative cancers
have neither estrogen nor progesterone receptors and tend to grow faster than hormone
receptor-positive cancers. HER2-negative BC (HER2-) have little or no HER2 protein, while
this protein is over-expressed in HER2-positive (HER2+) cancers. HER2 protein is involved
in the pathway for cell growth and survival. Triple-positive cancers (ER+, PR+ and HER2+)
can be treated with hormone drugs, as well as drugs that target HER2 whereas
chemotherapy is needed for triple-negative cancers (ER-, PR- and HER2-) as hormone
therapy is not helpful in treating these cancers because of the absence of hormonal
receptors and low levels of HER2. Hormone receptors and HER2 expression inform on the
choice of the treatment once invasive cancer has been diagnosed as part of a second

prevention scheme.
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BC is a multifactorial disease with several well identified risk factors (54-56), including
hormonal and reproductive factors such as age at menarche and menopause, parity,
breastfeeding, use of oral contraceptives and hormonal menopausal therapy. Known non-
modifiable factors of BC include height, age, ionizing radiation and genetic factors including
family history. BC has very few well established modifiable risk factors. Lifestyle and
environmental factors, such as alcohol consumption (57), obesity and physical activity (58),
are suspected to contribute to BC risk (59) but results are still scarce and inconsistent. The
identification of modifiable risk factors is a current research topic aiming to strengthen

primary prevention.

Numerous studies suggested an association between specific nutrients and BC, particularly
fatty acids, carbohydrates, vitamins B, vitamin D, carotenoids, phytoestrogens, and dietary
fibers (60). The WCRF review panel concluded that the epidemiological data for an
association between folate and BC risk was too limited to allow for conclusions (59).
However recent epidemiological studies supported evidence of a protective effect of folate on
BC risk (61), even if the mechanisms through which folate operates are yet not fully
understood. Specific subtypes of fatty acids have been also posited to affect BC risk. In
particular, high levels of palmitoleic acid, used as a biomarker of endogenous lipogenesis,
have been associated with an increased risk of BC (62), so were an increased levels of

trans-fatty acids for ER-negative tumors.

The role of DNA methylation in breast cancer occurrence

Dietary factors may change epigenetics profiles, which in turn may alter the susceptibility to
BC. Based on a literature review, the potential role of specific dietary components, including
micronutrients such as folate, macronutrients such as alcohol, and soya intake, in modifying
BC risk via epigenetic mechanisms has been reviewed recently (63). In light of
epidemiological, animal and clinical studies, the role of specific dietary factors to modulate
BC risk were discussed, together with candidate underlying mechanisms related to the
interaction of diet and the epigenome. Understanding the interplay between nutrition and
epigenetics is particularly important as many nutrients have been described to have a
potential impact on the mammary gland and its tumorigenesis (64). Specific nutrients may be

capable of inducing permanent epigenetic modifications, such as gene repression.

B-vitamins, particularly folate, are essential components of the one-carbon metabolism
(OCM). The OCM is a network of interrelated biochemical reactions involved in the donation
of methyl groups from nutrients to DNA methylation reactions in the cells, including the

methylation of DNA, RNA and proteins (Figure 4). Modifications in OCM can significantly
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impact gene expression via epigenetic mechanisms and thereby cellular function (65). Folate
is the major source of methyl groups from food. A low folate intake results in a low methyl
supply which may lead to a global DNA hypo-methylation caused by high homocysteine
concentrations and low methionine regeneration (66). This may increase the susceptibility of
genes to mutations or alter gene expression. Inadequate folate level may also result in
abnormal DNA synthesis due to a reduced availability of S-adenosyl methionine (SAM) (67)
and disrupted DNA repair and hence may influence cancer risk, including BC (68). Indeed,
several epidemiological studies suggested a protective role of folate and related B vitamins
on BC (69, 70). Folate has been inversely associated with BC risk, possibly reflecting a role

of folate to modulate the expression of gene that regulates tumor development and

progression.

Figure 4. One-carbon metabolism pathway (67).
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reductase; 5-methylTHF, SAH, S-adenosyl! homocysteine; SHMT, serine
hydroxymethyltransferase.

Beside folate, alcohol intake has also been shown to influence epigenetic profiles (71).
Ethanol metabolism generates toxins that may reduce folate absorption, mainly by increasing
renal excretion of folate and inhibiting methionine synthase, thus leading to OCM dysfunction
(71, 72). The antagonist effect of alcohol on folate could increase the need of folate intake,

thus indirectly increase BC risk. Recent epidemiological evidences indicated that high alcohol
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consumption was positively associated with BC (57, 73), particularly for low levels of folate
intake (74).

Thesis objectives

The overall objective of the thesis was to investigate the variability of epigenetics data,
possibly separating out variation attributable to technical processing of samples from
biological variation, i.e. due to epidemiological factors that are involved in the etiology of
breast cancer, including age, smoking, dietary folate, alcohol and fatty acid profiles. The work
entailed the use of novel statistical methods to quantify, correct and exploit the variability in
methylation level data. Existing methodology was adapted to suite the analysis of large
dimension data to progressively acquired novel information of important features of

epigenetics data.

DNA methylation measurements may be affected by systematic and random variation due to
the processing of samples. The work focused primarily on statistical methodology aiming at
identifying sources of random and systematic variability in methylation levels, either
introduced by the technical treatment of samples after collection from study participants, or
during the acquisition phase by allocation of samples into chips within laboratory batches.
The PC-PR2 method was adapted to the analysis of epigenetics data, and that was possibly
by exploiting a desirable property of PCA, which is invariant to transposition of the design
matrix. The method lent itself as a very handy way to handle very cumbersome data in terms
of size of features to process simultaneously. Once the sources of variation were identified
and quantified, the thesis focused on the evaluation of the performance of the most popular
methods to remove unwanted variability. In order to evaluate the performance of different
normalization methods, three different techniques, i.e. ComBat, SVA and a method based on
the computation of residuals were compared in terms of their ability to remove unwanted
variation. For this purpose, the association between smoking status and DNA methylation
within the CHARGE Consortium was used as an application. This work was described in an

article that was published in Clinical Epigenetics (F. Perrier, 1 author).

Once the evaluation phase was completed, the work focused on the estimation of the
relationship between dietary factors related to BC and methylation levels, complementing
standard statistical analysis with more advanced statistical techniques for the identification of
specific features of epigenetics data. This objective was subdivided into three parts. First, the
association between plasma concentrations of folate and vitamin B12 and BC risk was
assessed within a nested case-control study in the EPIC cohort. This study was published on
the International Journal of Cancer (F. Perrier, 4™ author) by Dr. Marco Matejcic, a post-

doctoral epidemiologist. For this study, | participated to the development of the statistical
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methodology used in the analysis. Second, the relationship between dietary folate and
alcohol intake with DNA methylation patterns was investigated using three statistical
approaches: the site-specific analysis, the DMRs analysis and the FL regression. The
manuscript of this study has been recently submitted in Clinical Epigenetics (F. Perrier, 1%
author). Third, the relationship between average methylation level and BC risk overall and in
specific regions of the epigenome reflecting the physical location of CpG sites in relation to
CpG islands, was explored using conditional logistic regression models. This work was part
of a study coordinated by the IARC Epigenetics Group, in which | was involved for the
development and implementation of statistical analyses. An article from Dr. Srikant

Ambatipudi was published in the European Journal of Cancer (F. Perrier, 3" author).

EPIC study

Data analyzed in this thesis were derived from the European Prospective Investigation into
Cancer and nutrition (EPIC) cohort. The EPIC study is a multicentre study that recruited over
521,000 study participants, between 1992 and 2000 in 23 regional or national centres in 10
European countries (Denmark, France, Germany, Greece, Italy, Netherlands, Norway, Spain,
Sweden and United Kingdom) (75). The main aim of the EPIC study is to investigate the
etiology of cancers at many sites in relation to diet and lifestyle factors using prospective
centre-specific data. Information was collected at recruitment via a lifestyle and health factors
questionnaire and a validated centre- or country-specific dietary questionnaire to capture
local dietary habits. Anthropometric measurements were performed for all participants and
blood samples were taken at recruitment for approximately 400,000 EPIC participants. A 24-
hours dietary recall was implemented in a total of 36,900 participants from each centre in
order to calibrate dietary measurements. From the recruitment of study participants from
1992 to 1999 until the end of the follow-up in 2009, 47,000 EPIC participants were diagnosed

with cancer (Table 1).
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Table 1. Number of incident cancers and deaths in EPIC in 2010

No. of incident  No. of incident

Country N Person-Years cancers deaths
France 74 524 1103492 7313 4038
Italy 47 745 582 716 3862 1708
Spain 41 438 562 044 2887 1972
United Kingdom 87 887 1110137 8301 9587
Netherlands 40011 509 852 3170 2386
Greece 28 561 266 099 1137 2146
Germany 53088 595 857 4443 2836
Sweden 53823 742 397 6806 5780
Denmark 57 053 664 510 7249 5549
Norway 37 200 406 473 2357 975

Total 521 330 6 543577 47 525 36 977

Source : http://epic.iarc.fr/about/cohortdescription.php

Among the 367,903 women recruited in EPIC, 19,583 participants had prevalent cancers at
recruitment (except non-melanoma skin cancer) and 2,892 women were lost during follow-
up. First malignant primary BC occurred for 10,713 women of the EPIC cohort during the
follow-up time. A nested case-control study was designed among women who completed
dietary and lifestyle questionnaires and provided blood samples at recruitment (baseline),
which included 3,858 invasive BC cases. Each case was matched to a randomly selected
control among cancer-free women by recruitment centre and the following baseline variables:
age, menopausal status, fasting status, current use of oral contraceptive pill or hormone

replacement therapy and time of blood collection (76).

Within the BC nested case-control study, a subsample of 960 women (480 cases and 480
matched controls) from Germany, Greece, Italy, Netherlands, Spain and United Kingdom

was selected for the DNA methylation analysis (77).
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PART I: Normalization approaches to correct for
systematic sources of variation in DNA methylation
measures

Context

DNA methylation is altered by many factors including age (34) and environmental factors
(78) such as smoking (35, 36) and alcohol consumption (67, 71). But systematic and random
variation introduced by the technical processing of biospecimens might also affected
methylation measures. This may compromise the accuracy of the measurement process and
contribute to bias the estimate of the association under investigation. It includes in particular
variability attributed to batch (a group of 96 samples processed at the same time), chip
position within batches (8 chips per batch) and the position of the samples within the chip (12
samples per chip allocated into 2 columns and 6 rows) (4). The quantification of the
contribution of the sources of systematic and random variation is challenging in datasets

characterized by hundreds of thousands of features.

Objectives

e To identify and quantify the contribution of systematic and random sources of variation in
methylation measurements.

e To evaluate the performance of three normalization techniques accounting for unwanted
variability in methylation measurement using the association between smoking and DNA

methylation levels.

Approach

lllumina Infinium HumanMethylation450K was used to acquire methylation levels in over
421,000 CpG sites for 902 buffy coat samples from study participants of a case-control study
on BC nested within the EPIC cohort. Smoking status was categorized into never vs ever

smokers based on lifestyle questionnaires.

In this study, the principal component partial R-square (PC-PR2) analysis (3), a method
previously developed for the analysis of metabolomics data was introduced to evaluate the
performance of normalization techniques to correct for unwanted variation. The PC-PR2
method was used to identify and quantify the contribution of laboratory factors and other
characteristics of the samples variability, before and after each of the normalization
technique. Three normalization techniques, namely ComBat (9), surrogate variables analysis
(SVA) (12, 13) and a residuals approach based on the computation of residuals from

regression model were performed on raw B-values and M-values. Sites-specific analyses
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evaluating the association between smoking status and DNA methylation levels after
application of each of the three normalization methods were performed. Results were
compared with findings from the CHARGE consortium, a large meta-analysis combining

pooled data from 16 cohorts and including about 16,000 samples (36).

Main findings

For B-values, a sizeable proportion of variability attributable to variables expressing batch
and row sample position within chip was identified, with values of the partial R2 statistics
equal to 9.5% and 11.4% of total variation, respectively. After application of ComBat or the
residuals’ methods, the contribution was 1.3% and 0.2%, respectively. The SVA technique
resulted in a reduced variability attributable to batch (1.3%) and row sample position (0.6%),
and in a reduced variability attributable to chip within a batch (0.9%). Similar results were

obtained for M-values.

Using standard adjustment and FDR correction of p-values, i.e. models using the raw
methylation values and adjusted for batch and row sample position, smoking status was
significant associated with changes of methylation levels in 444 sites, 80% of which were
overlapping results from the CHARGE consortium. After ComBat and the residuals’
normalizations, a larger number of significant sites (k = 600 and k = 427, respectively) were
associated with smoking status than after SVA correction (k = 96). However, almost all the
significant sites after SVA were overlapping results from the CHARGE consortium (96%)
compare to ComBat and the residuals methods, 69% and 85% respectively. Similar results

were obtained for M-values with a higher percentage of overlapping sites.
Conclusion

Our findings suggested that laboratory factors such as the position of the sample within the
chip and the position of the chip within batches can add unwanted variability to DNA
methylation in addition to the variability introduced by the batch. In an analysis of EPIC data,
the PC-PR2 method lent itself as a very useful tool to explore the contribution to total
variability of an a priori list of laboratory factors and sample characteristics. This step turned
out to be essential to evaluate the performance of routinely used normalization methods,
such as the regression-based residuals, ComBat and SVA, and to further appreciate the
extent of these corrections. SVA produced more conservative findings than ComBat and the
residuals’ methods in the association between smoking and DNA methylation. These steps

should be part of the pre-processing analysis of any -omics data.

Published article: Identifying and correcting epigenetics measurements
for systematic sources of variation.
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Abstract

Background: Methylation measures quantified by microarray techniques can be affected by systematic variation
due to the technical processing of samples, which may compromise the accuracy of the measurement process
and contribute to bias the estimate of the association under investigation. The quantification of the contribution
of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.

In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate
the performance of existing normalizing techniques to correct for unwanted variation. lllumina Infinium
HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a
case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2)
analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three
correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute
residuals were applied. The impact of each correcting method on the association between smoking status and DNA
methylation levels was evaluated, and results were compared with findings from a large meta-analysis.

Results: A sizeable proportion of systematic variability due to variables expressing ‘batch’ and ‘sample position” within
‘chip’ was identified, with values of the partial R? statistics equal to 9.5 and 11.4% of total variation, respectively. After
application of ComBat or the residuals’ methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique
resulted in a reduced variability due to ‘batch’ (1.3%) and ‘sample position’ (0.6%), and in a diminished variability
attributable to ‘chip’ within a batch (0.9%). After ComBat or the residuals’ corrections, a larger number of significant
sites (k=600 and k=427, respectively) were associated to smoking status than the SVA correction (k= 96).

Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the
PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative
findings than ComBat in the association between smoking and DNA methylation.

Keywords: Epigenetics, PC-PR2, Normalization, Methylation, Smoking status
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Background

Epigenetics aims at investigating changes in gene activity
not attributable to changes in the DNA sequence [1]. An
increasing number of studies analysed epigenetics in
relation to modifiable environmental exposures of epide-
miologic interest, such as smoking [2-4], alcohol
consumption [5], maternal plasma folate [6] and other
vitamin involved in the one carbon metabolism pathway
[7], as well as the role of epigenetic profiles on the risk
of developing chronic diseases, including cancer [8].
DNA methylation is a mechanism of epigenetic regula-
tion that involves the addition of methyl groups (—~CH3)
to the cytosine of a cytosine-guanine DNA sequence.
DNA methylation level at one CpG site is frequently
expressed as the percentage of cells that are methylated
at that specific site. The Illumina Infinium Human-
Methylation450K BeadChip (HM450K) quantifies DNA
methylation at more than 450,000 interrogated CpG
sites, expressing methylation level as the ratio of the
methylated probe intensity to the overall intensity, which
is the sum of the methylated and unmethylated probe
intensities [9].

Methylation levels are influenced by many factors
including aging [10] and environmental exposure [11,
12], but might also be affected by systematic variation
due to the processing of the biospecimens, e.g. variability
attributed to batch (a sub-group of samples processed at
the same time, 96 samples per batch in the HM450K),
chip position within batches (8 chips per batch in the
HM450K) and the position of the samples within the
chip [13]. Methods of correcting for the sources of
methylation variability include ComBat, based on an
empirical Bayes method [14] and the surrogate variables
analysis (SVA) [15, 16]. An alternative method consists
in the computation of residuals from a beta regression,
where methylation levels were regressed on the major
sources of methylation variability.

The large dimension of new generation methylation
arrays makes it difficult to quantify the amount of
variability attributable to systematic sources of variation.
The principal component partial R-square (PC-PR2)
method was developed to quantify the contribution of
sources of variation defined a priori in large dimensional
data [17].

Smoking exposure has been analysed in many studies
[2—4], which offers a large comparative pool of results.
Smoking has also been shown to have a major impact
on the epigenome and hence provides a large number of
significant CpGs to analyse. For these reasons, in this
work, we have chosen to evaluate the performance of
ComBat, SVA and the residuals’ method to correct for
potential systematic variability in methylation measure-
ments, in the association between smoking and DNA
methylation levels from DNA samples of subjects of a
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nested case-control study on breast cancer conducted
within the European Prospective Investigation into Cancer
and nutrition (EPIC) study. The PC-PR2 method was used
to quantify the extent of total epigenetics variability before
and after applying each correcting method.

Methods

Study population

The EPIC study [18, 19] is a multicentre study that
recruited over 521,000 study participants, between 1992
and 2000 in 23 regional or national centres in 10 European
countries (Denmark, France, Germany, Greece, Italy,
Netherlands, Norway, Spain, Sweden and the UK). Among
the 367,903 women recruited in EPIC, we excluded 19,583
participants with prevalent cancers at recruitment (except
non-melanoma skin cancer) and 2892 women that were
lost during follow-up. Malignant primary breast cancer
(BC) occurred for 10,713 of them from 1992 to 2010. A
nested case-control study was designed among women
who completed dietary and lifestyle questionnaires and
provided blood samples at recruitment (baseline), which
included 3858 invasive BC cases. Each case was matched
to a randomly selected control among cancer-free women
by recruitment centre and the following baseline variables:
age, menopausal status, fasting status, current use of oral
contraceptive pill or hormone replacement therapy and
time of blood collection [20].

Genome-wide DNA profiling assessment

Genome-wide DNA-methylation profiles in buffy coat
samples was quantified using the Illumina Infinium
HumanMethylation450K (HM450K) BeadChip assay [9]
in 960 biospecimens of women included in the BC
nested case-control study [21]. The 480 cases were
selected based on estrogen receptor status and by selecting
equal proportions of subjects with above or below median
level of dietary folate. Matched controls were the same than
those selected for the whole study. A total of 20 biospeci-
mens with replicates were used to compare technical inter-
and intra-assay batch effects and then excluded from the
main analysis. We also excluded 19 matched pairs where at
least one of the two samples had a low-quality bisulfite
conversion efficiency (intensity signal <4000) or which did
not pass all the Illumina GenomeStudio quality control
steps, which were based on built-in control probes for
staining, hybridization, extension, and specificity [22]. A
total of 451 completed matched pairs (7=902) were
retained for the main statistical analyses. In any given
sample, probes with detection p value higher than 0.05
were assigned ‘missing’ status. After the exclusion of 14,548
cross-reactive probes, 47,963 probes overlapping known
SNPs with minor allele frequency (MAF) of >5% in the
overall population (European ancestry) [23] and 1483 low-
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quality probes (missing in more than 5% of the samples),
421,583 probes were included in the statistical analyses.

For each probe, 8 value was calculated as the ratio of
methylated intensity and the overall intensity, defined as
the sum of methylated and unmethylated intensities.
The following preliminary adjustment steps were applied
to the S values: (i) color bias normalization using smooth
quantile normalization to correct for the two color chan-
nels; (ii) quantile normalization [24]; (iii) type I and type II
bias correction using the beta-mixture quantile
normalization (BMIQ) [25]. Then, M values, defined as

Misipes = logz(f ﬁ““;) were computed [26]. In this work,

the f and M values obtained after the preliminary
normalization steps were referred to as the raw  and M
values.

The amount of white blood cell counts (T cells (CD8"T
and CD4'T), natural killer (NK) cells, B cells, monocytes
and granulocytes) was quantified using Houseman’s esti-
mation method [27]. The percentage of granulocytes was
not included in this analysis as it is collinear with the five
other white blood cell counts: the total of the percentages
of the six leukocyte subtype counts is 1.

For the DNA methylation measurements with the
HM450K BeadChip, samples were aliquoted into 10 batches;
each batch was made of 8 chips, and each chip contained 12
samples (located in 2 columns of 6 rows). Chip position
represented the position of the chips within a batch, as illus-
trated in Fig. la, and sample position represented the
position of the samples within a chip, as in Fig. 1b.

Lifestyle exposures
Data on lifestyle exposures were collected at recruitment
through country- or centre-specific dietary and lifestyle

e N
a b
12 12
34 34
56 56
A B 78 78
9 10 9 10
1112 1112
12 172
34 34
56 56
C D 78 78
910 9 10
1112 1112
2:2 1:2
34 34
5 6 56
E F 7 1
9 10 9 10
112 1112
12 > B |
34 34
56 56
G H 7 -
9 10 9 10
112 112
Batch 1 Batch 1
Fig. 1 Description of laboratory variables. a Position of chips within
batches, each batch was made of 8 chips. b Sample position within
chips, each chip contains 12 samples

Page 3 of 12

questionnaires [18]. Smoking status was categorized into
ever (former/current) and never smokers and was not
associated to any of the technical covariates.

Statistical analyses

In order to inspect the variability of DNA methylation
levels, we first visually inspected, via box plots, global
DNA methylation levels by batch, chip and sample
positions. The principal component partial R-square
(PC-PR2) method was used to quantify the contribution
of laboratory factors and other characteristics of the
samples to the between-sample variability observed [17].
First, principal component analysis (PCA) was carried
out, by the PC-PR2, on the matrix X of epigenetics data
of dimension 7 xp (n=902: number of study samples
and p = 421,583: number of probes). In PCA, eigenvalues
and eigenvectors are usually obtained from the matrix X
‘X of dimension p x p. In this case, and in general with
-omics data, p is very large (p > n), and the decomposition
of X X can be cumbersome. A particularly appealing pro-
cedure consists in extracting eigenvalues and eigenvectors
from the matrix XX, of dimension 7 x n [28], which is
way easier to handle, being #» much smaller than p. Once
eigenvalues were extracted, the g first components
explained an amount of total variability in X greater than
a given threshold, i.e. 80% in this study. Then, each of the
q first PCA score components was, in turn, linearly
regressed on a list of independent covariates (Z), compris-
ing of laboratory factors and characteristics of the samples.
Values of the partial R? statistics were assessed for each Z
covariate, separately in each component-specific model
[29]. An overall partial R* was computed for each Z covar-
iate with a weighted average of their component-specific
partial R”> using the corresponding g eigenvalues as
weights, conditional to all other covariates in the model.
The covariates that we have entered into the regression
include batch, chip position, row sample position, recruit-
ment centre, proportions of leukocyte subtypes (CD8'T,
CD4'T, NK, B cells and monocytes), alcohol consumption
(g/day), age (year), BMI (kg/m?), menopausal status (post-
vs. pre-menopause), smoking (ever vs. never smokers), BC
status (case or control) and dietary folate intake (pg/day).

Removing unwanted variation

To remove the two most important sources of variation
identified with the PC-PR2 from DNA methylation
levels, three different correcting techniques were applied
to raw /8 and M values: residuals, ComBat and SVA. The
ComBat method [14] is a procedure based on an empir-
ical Bayes approach that can correct only for one covari-
ate at the time. Given the presence of multiple sources
of variation, we have applied two parametric ComBat in
multiple sequential steps: ComBat was first applied to
remove batch variability, and then a second ComBat step
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was run to remove variability due to row sample
position. Methylation S values that after the application
of ComBat were lower than 0 or larger than 1 were set
to 0 and 1 respectively. The surrogate variables analysis
(SVA) is a method developed to remove pre-identified
sources of variability but also non-known sources of
variability, i.e. variability which is not specified in the
SVA model, using surrogate variables [15, 16]. Once
surrogate variables were assessed by SVA, residuals from
a regression modeling methylation level according to the
surrogate variables were computed to remove the
unwanted variation.

As the f values are continuous in the [0,1] interval,
the calculation of the residuals for the residuals’ method
and SVA method were based on beta regression. To be
comparable to the ComBat and raw (i.e. uncorrected)
data, residuals computed with the residuals’ and the SVA
methods needed to be rescaled as follows:

reSpqy,j— Min(respy ;)

T€Sscaled,j = (' max (raw;)- min (raw;) )

max (resmw.,‘) — min (resmwj)

+ max (raw,)

where j=1...421,583, raw; represents the raw S values
measured in site j and res,,,, ; the residuals computed
for site j before transformation.

In order to check the efficacy of the three correcting
techniques, a second PC-PR2 analysis was used to quan-
tify the contribution of each laboratory factor to total
variability, after each of the normalization methods.

Same approach was used for M values using a linear
regression instead of beta regression to compute resid-
uals from the residuals’ and the SVA methods.

In order to compare sample individual values before
and after correction, raw and corrected S and M values
of the probe cg00000029 were visually inspected. In this
site, in addition to the three tested methods, a second
residuals’ method was also computed using random
effects instead of fixed affects to remove unwanted
variation, from a beta or linear mixed regression,
respectively for f and M values.

CpG site-specific models

The association between smoking status and each of the
421,583 CpG sites was carried out before and after appli-
cation of each normalization method. Beta regression
models were used for S values and linear regression
models for M values, with adjustment for chip position,
recruitment centre, percentages of five leukocyte
subtypes, age at recruitment, menopausal status and BC
status. The standard adjustment models, i.e. models
using the raw methylation values, were also adjusted for
batch and row sample position. In order to compare the
epigenome-wide distribution of p values with the
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expected null distribution of p values, the inflation factor
A was computed and the quantile-quantile (QQ) plots
were generated. The inflation factor was defined as the
ratio of the median of the observed log;, transformed p
values and the median of the expected log;, transformed
p values. False discovery rate (FDR) was used to control
for multiple testing. In order to compare the performance
of the different correction methods with a nominal
reference, the list of k significant CpG sites (g values < 0.05)
associated with smoking was compared to the results of a
large meta-analysis carried out in the CHARGE consor-
tium, a recent large meta-analysis on the link between the
epigenetic signature of cigarette smoking that pooled data
from 16 studies, and included about 16,000 individuals [4].
In CHARGE, smoking status was statistically significantly
associated with DNA methylation level (5 values) in 18,760
sites, after FDR correction of p values.

In order to compare the performance of the correction
methods, the relative sensitivity and specificity of each
correcting method were computed. We considered the
CpG sites significantly associated to smoking in the
CHARGE consortium as the true positives, ie. an
arbitrary gold standard, given that this is a well-powered
reference study and the largest to date.

Preprocessing steps and statistical analysis were carried
out using the R software (https://www.r-project.org/) and
Bioconductor packages [30], including ‘lumi’ and ‘wateR-
melon’ for the adjustment step, ‘sva’ [31] for ComBat and
SVA corrections, and ‘betareg’ for beta regression models.
The PC-PR2 method was computed using the R code
available in Fages et al.’s supplementary material [17].

Results

DNA measurements of the first and the last batches
were conducted roughly 3 months apart. DNA measure-
ment of two consecutive batches varied from 3 to
14 days. Box plots of global methylation (i.e. mean of
methylation levels in all the CpG sites) showed a
random variation of global methylation levels between
batches, as reported in Fig. 2a for S values. Global
methylation between chip positions did not present large
variation (Fig. 2b). Sample position within the chip
systematically influenced global methylation, with levels
by rows, showing a progressive constant increase in
methylation, a feature not observed by column, as
displayed in Fig. 2c. The impact of row sample position
on global methylation was even stronger when batches
were evaluated separately (Fig. 2d). Global methylation
computed with M values gave similar results
(Additional file 1: Figure S1).

Tables 1 and 2 show the results of PC-PR2 to quantify
the amount of total variability of DNA methylation
explained respectively by laboratory factors and charac-
teristics of the samples (recruitment centre, the five
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Table 1 Values of weighted partial R? (%) from PC-PR2 analysis
indicating the proportion of variability of methylation levels,
before and after normalization step, explained by a specific
set of laboratory factors

Values Methods®  Row sample  Batch  Chip Total®
position position

B values Raw 114 95 6.5 304
Residuals 02 13 59 179
ComBat 0.2 13 6.0 171
SVA 06 13 09 6.5

M values Raw 123 9.7 6.8 307
Residuals 02 1.2 58 165
ComBat 02 1.3 6.2 17.0
SVA 04 0.7 08 53

“Residuals, COMBAT and SVA methods used to correct effect due to batch and
row sample position (within the chips)

"Total variability explained by laboratory factors and characteristics of the samples
(recruitment centre, the five percentages of leukocyte subtypes, alcohol consumption,
age and BMI, menopausal status, smoking, BC status and dietary folate)

percentages of leukocyte subtypes, alcohol intake, age,
BMI, menopausal status, smoking, breast cancer status
and diet folate intake), for raw 8 and M values. Findings
were similar for raw  and M values; the largest contri-
bution to the overall variability came from row sample
position and batch explaining, respectively, 11.4 and
9.5% (B values), and 12.3 and 9.7% (M values) of overall
methylation variation. Chip position contributed to 6.5
and 6.8%, for raw 8 and M values respectively. The per-
centages of leukocyte subtypes and centre explained
most of the variation of DNA methylation due to sample
characteristics for raw S and M values. Each of the

Table 2 Values of weighted partial R? (%) from PC-PR2 analysis
indicating the proportion of variability of raw methylation levels
explained by a specific set of covariates

Characteristics of samples B values M values

Recruitment centre 30 29

Percentages of leukocyte subtypes

CD4T 32 32
CD8T 37 3.1
Natural killers 52 47
B cells 17 1.1
Monocytes 04 04
Alcohol intake at recruitment 0.2 0.1
Age at recruitment 04 04
BMI at recruitment 0.1 0.1
Menopausal status 0.2 0.2
Smoking status 0.1 0.2
Breast cancer status 0.1 0.1
Dietary folate 0.1 0.1
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remaining tested other sample characteristics explained
less than 0.5% of total variation.

Removing unwanted variation

All the three correcting methods decreased the contri-
bution of row position and batch to similar neglectable
levels, whereas only SVA appeared to reduce the contri-
bution to variability due to chip position (Table 1). The
amount of variability explained by laboratory factors and
sample characteristics for raw S values decreased from
30.4 to 17.9% and 17.1% using, respectively, the resid-
uals’ method and ComBat, and to 6.5% after SVA. The
PC-PR2 approach applied on M values estimated values
of partial R? for laboratory factors and sample character-
istics similar to those of 5 values.

Corrected methylation values of the probe cg00000029
were very similar using ComBat or the residuals’
methods for B values and M values (Fig. 3). SVA
corrected values were the corrected values most different
from the raw values. Using the residuals’ method with
fixed or random effects for batch and row sample position
gave similar results.

CpG site-specific models

The frequency k of sites associated with smoking status
is shown in Table 3, consistently for f and M values. For
p values adjusted by batch and row sample position
(standard adjustment), smoking status was significantly
associated to methylation levels in 444 sites. The
number of CpG sites significantly associated with smoking
status was equal to 427 for the residuals’ method, 600 for
ComBat and 96 for SVA after correction. According to the
inflation factors and QQ plots, there was no evidence of
inflation for any methods (Additional file 2: Figure S2).

These frequencies were compared to the list of 18,760
sites identified in the CHARGE meta-analysis (Joehanes
et al. [4]). A total of 77 sites overlapped across the standard
adjustment and the three correcting methods in this study
and the sites identified in the consortium, as shown in the
Venn diagram for f3 values in Fig. 4a. In addition to these
sites, the standard adjustment, the residuals’ method and
the ComBat method shared a list of 249 significant sites
with CHARGE. The ComBat method resulted in the
largest frequency of sites overlapping with results in
CHARGE (k=411), but also in the largest percentage of
sites not observed in CHARGE (31%). In contrast, SVA
identified the lowest number of significant sites (k= 96)
but the vast majority of them (92%) were also identified in
CHARGE.

As for M values, 322 sites were associated to smoking
using the standard adjustment, k=332 after the resid-
uals’ method, k=387 using ComBat, k=144 after SVA
correction. A total of 111 sites overlapped all the
methods and CHARGE, as shown in Fig. 4b. SVA was
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the method leading to the lowest number of significant
sites, but also to the largest percentage of sites also
identified by CHARGE (93%). This percentage ranged
between 85 and 90% for all the other methods. According
to the inflation factors and QQ plots, there was no
evidence of inflation for any methods for M values
(Additional file 3: Figure S3). SVA showed the least
inflation in both 5 values and M values.

Sensitivity was similar for the standard adjustment, the
residuals’ method and the ComBat method with a value
about 0.020 for S values and over 0.015 for M values
(Table 3). SVA sensitivity was four times less for /8 values
and twice less for M values. SVA was the most specific

Table 3 CpG site-specific regression models before and after
normalization step

Values  Methods Significant CHARGE®  Sensitivity 1-Specificity

sites”

Bvalues Standard 444 357 (80%) 19x1072 22x107*

adjustment’

Residuals 427 365 (85%) 1.9x107% 15x107*
ComBat 600 411 (69%) 22x107% 47x107*
SVA 9 89 (92%) 05x1072  02x107*

M values Standard 322 274 (85%) 15x1072  12x107*
adjustment®
Residuals 332 299 (90%) 16x1072  08x107*

ComBat 387 335 (87%) 18x1072 13x107*

SVA 144 134 (93%) 07x1072  02x107*

Models are adjusted for chip position, recruitment centre, the five percentages of
leukocyte subtypes and age at recruitment, menopausal status and BC status
?Also adjusted for batch and sample position

PNumber of significant sites for smoking status after p values FDR correction
“Number (and percentage) of significant sites identified by the CHARGE meta-analysis

method with 1-specificity equals to 0.2x10~* for f values
and M values whereas ComBat was the least specific
with 1-specificity equals to 4.7x10™* and 1.3x10™* for 8
values and M values, respectively.

Discussion

Batch effects on DNA methylation measurements have
already been documented [13]. Various correcting methods
have been recently used, including standard adjustment [3],
ComBat [6] and SVA [2]. Our findings suggested that batch
was not the only source of variation in the DNA methyla-
tion data from our EPIC study, as the position of the
sample within the chip and, to a lesser extent, chips within
batches, also contributed to total variability. Noteworthy,
while variation by batch was essentially random, the
position of the sample within the chip contributed systematic
variation, with methylation levels progressively increasing by
row, but not by column. This might be due to the washing
step which is done row by row in each chip during the
measurement of DNA methylation using HM450K.
Eventually, batch and row sample positions explained
cumulatively more than 20% of the methylation levels and
were the most important sources of variation. Further
replications are needed in others dataset from other labs to
validate our findings.

PC-PR2 is a powerful method to identify and quantify
random and systematic sources of variation in large-
scale datasets. Here, the method, initially developed for
metabolomics data [17], was successfully applied to
epigenetics data, a challenging set characterized by
hundreds of thousands of features, and can easily be
extendable to other -omics data. It is based on the
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Fig. 4 Venn diagram of significantly identified CpG sites for smoking status using each correcting methods and CHARGE. a 8 values. b M values.
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SVA

combination of a principal component analysis (PCA)
and the concept of partial R* in multivariable linear
regression. PC-PR2 quantifies the contribution of
variability of continuous and/or categorical covariates to
total variability in the outcome data, and in general
offers high level of flexibility to capture specific features
such as, say, non-linear effects and longitudinal data. A
particularly appealing feature is the possibility of
performing PCA by decomposing the matrix XX of

dimension # x n rather than X X of dimension p x p that
would be virtually untreatable in the -omics domain. The
PC-PR2 can also be extended to the Infinium Methyla-
tionEPIC BeadChip (850K), which is the updated version
of HM450K.

Identifying unwanted sources of variation in epigenetics
data is a crucial step prior to statistical analysis. Each of
the three tested methods succeeded to correct DNA
methylation levels for the pre-specified sources of variability.
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Percentages of variability due to batch and row sample
position diminished to marginal levels after the use of the
three methods. Other unknown or unmeasured experimen-
tal conditions are also likely to modify DNA methylation
measurements, such as differences in sample handling and
preparation and the room temperature during sample
processing. Overall, the procedures for sample treatment
are way more challenging to control, possibly because
detailed information on each sample are not always docu-
mented, and it is rather assumed that these are relatively
homogeneous across recruitment centres. Statistical adjust-
ment for centre is a standard practice in the analysis of
epigenetics data and of any laboratory measurements. In
this respect, SVA turned out to provide a correction on top
of the pre-specified sources of variability through the
estimation of surrogate variables possibly influencing overall
variability. It was remarkable that the variability attributed
to chip position, whose partial R* values was 6.5% in the
raw data, decreased to 0.9% after SVA, even if chip position
was not included in the list of covariates of which we want
to remove the variability, specified in the SVA model.
Indeed, the surrogate variables, computed by a PCA step in
the SVA algorithm, capture the variability in the methyla-
tion data which is not already explained by the a priori list
of covariates (batch and row sample position). A challenge
of DNA methylation data is the presence of outliers that
can generate spurious associations. Techniques have been
introduced to filter out outliers through preliminary quality
control checks globally on all CpG sites [32]. This was
achieved through the Illumina GenomeStudio quality in the
present study [22]. Nevertheless, outlier values passed the
GenomeStudio quality control screening and were detected
after applying the residuals or SVA methods. On the
contrary, ComBat is based on an empirical Bayesian
procedure with an additive and a multiplicative component,
the latter contributing to shrink all observations, including
outliers [14]. This makes ComBat an attractive solution to
control outlier values in large-dimension data. Another
interesting feature is that ComBat preserved the observed
variability of methylation data in the [0,1] interval for 8
values, unlike the residuals’ and SVA methods, for which
the corrected values could fall outside the [0, 1] range.

The performance of the various correction methods
was evaluated in this study through the comparison with
results of association between smoking and methylation
from the CHARGE consortium, one of the largest studies
available to date. This could be a debatable choice but
allowed a reference group to be established to compute
relative sensitivity and specificity of each normalizing
method. The low sensitivity across all methods in our
analysis might be explained by the lack of power due to
the sample size: over 16,000 samples were included in
CHARGE against 902 in our study. Some different charac-
teristics of our population and the one of the CHARGE
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consortium might also explain the difference in terms of
significant sites. For example, only women are included in
our analysis and half of them developed latter a breast
cancer. This makes more difficult the identification of false
positives based on the results from the CHARGE consor-
tium. The analysis showed that ComBat had the highest
level of relative sensitivity, i.e. relatively less false negative
CpG associated to smoking, compared to the residuals
and SVA, consistently for f or M values. On the other
hand, SVA came across as the method with, by far, the
highest specificity, possibly indicating lesser predisposition
to the commit of false positives. As SVA made a much
more aggressive correction of systematic variability, the
sites identified by SVA are more likely to be universal
disruption due to smoking which can explain its higher
specificity and its lower sensitivity. In order to avoid over-
adjustment using SVA, latent covariates related to sub-
groups such as the chip position should not be included
in the regression model. SVA outperformed both the
residuals and, in particular, ComBat, whose lack of specifi-
city turned out to be substantial. In research domains
characterized by the danger of populating the scientific
literature with false positive findings, like in the -omics
era, the performance of SVA towards conservative results
was deemed to be a valuable feature. Our results would
need to be replicated in another dataset.

The B values are approximations of the percentage of
methylation in a CpG site. Their distribution is often
skewed and ranged from 0 to 1. On the other hand, M
values approximate a normal distribution but are more
complex to interpret, as they do not have an obvious bio-
logical meaning. It has been recommended to use M
values for conducting methylation analysis and to use the
S values when reporting results due to their intuitive bio-
logical interpretation [26]. In our study, the PC-PR2
method identified the same sources of variability explaining
a similar amount of the total variability using M or 3 values.
This is likely a consequence on the fact that PC-PR2 is a
descriptive method that does not use statistical inference.
The association between smoking and DNA methylation
was slightly attenuated in terms of number of significant
sites using the M values, rather than f values, for the
standard adjustment, residuals’ correction and ComBat
correction. Only SVA identified more significant sites with
the M values. 3 values were more sensitive but less specific
than M values, i.e. more significant sites, including both
true and false positive sites.

Approaches for correcting batch effects have been
compared using microarray data of gene-expression
profiles [33]. In that study, a parametric prior ComBat
and a non-parametric ComBat were compared to SVA
and to three other methods, including distance-weighted
discrimination [34], mean-centering [35] and geometric
ratio-based [36] methods. Using two microarray datasets
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from brain RNA samples and two simulated datasets,
ComBat outperformed overall the other methods. In
particular, both parametric and non-parametric ComBat
algorithms allowed a better control of the variation
attributed to batch effect and a better increase of Pearson’s
correlation coefficient of the replicates in the microarray
data and determined the largest AUC in their assessment
of overall performance.

ComBat has also been compared to six other methods to
correct for batch effect in microarray data [37], including
Deming regression [38], Passing-Bablok regression [39],
linear mixed model, a third-grade polynomial regression,
the non-linear Qspline method [40] and the ReplicateRUV
approach [41]. The first five methods calculate residuals
based on different regression models. ReplicateRUV
removes unwanted variation based on negative control
genes and sample replicates. The combination of quantile
normalization and ComBat in large-scale gene expression
data in the Gutenberg Health Study removed batch effect
and preserved biological variability [37].

In this work, we chose to focus on the residuals,
ComBat and SVA approaches, because they are the
currently most common methods used to remove
unwanted variation in DNA methylation. This work can
also be applied to the newer methods which are recently
available such as the Bacon approach, a Bayesian method
to control bias and inflation in EWAS and TWAS based
on estimation of the empirical null distribution [42].

Conclusions

Our results suggest that in order to reduce the contribution
to systematic variation of DNA methylation, it is essential
to randomly allocate samples within chips and batches.
This is particularly relevant in nested studies for case-
control pairs, possibly within the same row position within
a chip. We have shown that the PC-PR2 method on DNA
methylation levels lent itself as a very useful tool to explore
an a priori list of laboratory factors and sample characteris-
tics and to identify the ones possibly determining unwanted
variability in large-scale dimension sets such as epigenetics
data. This step turned out to be essential to guide the
choice of correcting methods, such as the regression-
based residuals, ComBat or SVA, and to further appreciate
the extent of these corrections. These steps should be part
of the pre-processing analysis of any -omics data. SVA
should specifically be considered when sources of variabil-
ity are not known. ComBat and the residuals’ method
require that potential sources of variability are identified.
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Additional file 1: Figure S1. Box plots of global methylation (M values)
according to laboratory factors: batch (a), chip position within batches
(b), sample position within chips (c). (PDF 99 kb)
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Additional file 2: Figure S2. Quantile-quantile (QQ) plots for CpG site-
specific analysis with respect to smoking using standard adjustment (a),
residuals (b), ComBat (c) and SVA (d) correcting methods for the 8 values.
The inflation factor A is defined as the ratio of the median of the ob-
served log transformed p values from the CpG site-specific analysis and
the median of the expected logq transformed p values. (PDF 110 kb)

Additional file 3: Figure S3. Quantile-quantile (QQ) plots for CpG site-
specific analysis with respect to smoking using standard adjustment (a),
residuals (b), ComBat (c) and SVA (d) correcting methods for the M
values. The inflation factor A is defined as the ratio of the median of the
observed log, transformed p values from the CpG site-specific analysis
and the median of the expected log;, transformed p values. (PDF 110 kb)
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Additional file 1: Figure S1. Box plots of global methylation (M values) according to laboratory
factors: batch (a), chip position within batches (b), sample position within chips (c).
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Additional file 2: Figure S2. Quantile-quantile (QQ) plots for CpG site-specific analysis with
respect to smoking using standard adjustment (a), residuals (b), ComBat (c) and SVA (d)
correcting methods for the B values. The inflation factor A is defined as the ratio of the
median of the observed log10 transformed p values from the CpG site-specific analysis and

the median of the expected log10 transformed p values.
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Additional file 3: Figure S3. Quantile-quantile (QQ) plots for CpG site-specific analysis with
respect to smoking using standard adjustment (a), residuals (b), ComBat (c) and SVA (d)
correcting methods for the M values. The inflation factor A is defined as the ratio of the
median of the observed log10 transformed p values from the CpG site-specific analysis and
the median of the expected log10 transformed p values.

60
|

lambda = 1.121

60
I

lambda = 1.102

50

40
40

Observed -logyo(p)
20 30
| |
Observed - loga(p)
30

20
I

0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a) Expected —logo(p) (b) Expected —logso(p)
@ - lambda=1117 2 - lambda=1.020
o o
wn w
o) o)
=y o = o _|
o Y 7 E .
o o
I I
81 § 81
5 . ?
8 2 - . 8 Q H
= / 1 /
- -
S -
o — o -
T T T T T T T T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(c) Expected —l0g;0(p) (d) Expected —logyo(p)

40



PART II: Folate, DNA methylation and breast
cancer association

1- Association of biomarkers of folate and vitamin B12 with
breast cancer risk

Context

Among dietary factors, deficiencies in B vitamins related to Western dietary patterns have
been suggested to play a role in breast carcinogenesis (79, 80). Prospective studied, which
investigated the effect of biomarkers of vitamin B9 (folate) and vitamin B12 (cobalamin) on
BC risk have reported inconsistent findings (70, 81, 82). Blood folate has been inversely
associated with BC risk, but a lack of association has also been observed. Similar mixed
results have been reported for the association between biomarkers of vitamin B12 and BC
risk. A number of factors have been suggested to influence the association between B
vitamins and the risk of BC, including menopausal status, alcohol consumption, nutrient
interactions and methylenetetrahydrofolate reductase (MTHFR). BC subgroups related to
hormone receptor status have been associated with folate intake among premenopausal

women.

Objectives

e To evaluate the association between plasma concentrations of folate and vitamin B12
and BC risk overall and stratified by hormone receptor status and potential risk
factors in the EPIC cohort.

e To examine the interaction between the MTHFR 677C>T (rs1801133) and 1298A>C

(rs1801131) polymorphisms and the two plasma B vitamins on the risk of BC.

Approach

Plasma concentrations of folate and vitamin B12 were determined in 2,491 BC cases
individually matched to 2,521 controls among cancer-free women (except non melanoma
skin cancer) who provided blood samples at recruitment. Matching criteria included study
centre, age at blood donation, exogenous hormone use at blood collection, menopausal

status, fasting status and phase of the menstrual cycle at recruitment.

Multivariable logistic regression models were used to estimate odds ratios (OR) by quartiles
of either plasma B vitamins. Models were adjusted for BMI, height, alcohol intake, total
energy intake, educational attainment, physical activity, ever use of hormone replacement

therapy, parity and age at first full-term birth combined and family history of BC. Subgroup
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analyses by menopausal status, hormone receptor status of breast tumors (estrogen
receptor, progesterone receptor and human epidermal growth factor receptor 2), alcohol
intake and MTHFR polymorphisms (677C > T and 1298A > C) were also performed. In
addition, the association between each plasma biomarker and the risk of BC was examined
using four-knot restricted cubic splines with the midpoint of the fifth decile of plasma vitamin
B12 as the reference category. Tests for interaction between each plasma biomarker as

continuous variable and potential risk factors were computed by likelihood ratio test.

Main findings

Continuous and quartiles of plasma levels of folate and vitamin B12 were not significantly
associated with the overall risk of BC. No further significant association emerged for folate
and vitamin B12 after stratification by menopausal status, by hormone receptors status or

adjustment for MTHFR polymorphisms.

The interaction term between tertiles of plasma folate (<10.96, 10.96-17.85, >17.85 nmol/L)
and categories of alcohol intake (0-3, 3-12, >12 g/day) was not significantly associated with
BC risk (pinteraction=0.69). Similarly, no significant association between plasma folate and

BC risk was observed by median level of alcohol consumption.

A borderline positive association was found between quartiles of vitamin B12 and BC risk in
women consuming above the median level of alcohol, i.e. higher than 3.36 g/day,
(ORG4-q1=1.26; Clgs9,= [1.00-1.58]; pirenq=0.05). BC risk was also significantly increasing
according to quartiles of vitamin B12 in women with plasma folate levels below the median
value, i.e. lower than 13.56 nmol/L, (ORq4-q1=1.29; Clys0,=[1.02-1.62]; ptrena=0.03).

Conclusion

Overall, no clear support for an association between plasma levels of folate and BC risk was
found in this large prospective study. However, potential interactions between vitamin B12
and alcohol or folate on the risk of BC were observed. Our findings suggest a potential role of
vitamin B12 in breast carcinogenesis and raise the possibility of important nutrient—nutrient
and gene—nutrient interactions, such as changes in DNA methylation, in the etiology of BC.
The potential deleterious effect of high vitamin B12 status in combination with other risk
factors for BC deserves further investigation. Given the inconsistent findings to date and the
possibility that associations between folate and BC could be influenced by some factors yet
to be identified, further studies based on novel biomarkers that take into account the effect of

potential risk factors and genetic polymorphisms are warranted.

Published article: Biomarkers of folate and vitamin B12 and breast
cancer risk: report from the EPIC cohort.

42



e
—
S
.-
£
%)
A
(=
=
o
Y
9
=
<
@)

@ uicc IJ C

global cancer control

International Journal of Cancer

Biomarkers of folate and vitamin B12 and breast cancer risk:
report from the EPIC cohort

M. Matejcic?, J. de Batlle™?, C. Ricci®, C. Biessy', F. Perrier?, I. Huybrechts®, E. Weiderpass®>**¢, M.C. Boutron-Ruault>’,

C. Cadeau®’, M. His>’, D.G. Cox®, H. Boeing®, R.T. Fortner'®, R. Kaaks'®, P. Lagiou**>*3, A. Trichopoulou**?,

V. Benetou?, R. Tumino®®, S. Panico®®, S. Sieri*®, D. Palli'’, F. Ricceri*®!?, H.B(as) Bueno-de-Mesquita®®?*:?2, G. Skeie?,
P. Amiano?*?4, M.J. Sanchez®>?*, M.D. Chirlaque?*2%?7, A. Barricarte?>?%2°, | R. Quirés>°, G. Buckland®!, C.H. van Gils??,
P.H. Peeters®>33, T. Key?*, E. Riboli*?, B. Gylling®®, A. Zeleniuch-Jacquotte®®, M.J. Gunter’, I. Romieu® and V. Chajés®

*International Agency for Research on Cancer, Lyon, France

? Genetic Epidemiology Group, Folkhdlsan Research Center, Helsinki, Finland

3 Department of Community Medicine, University of Tromsg — The Arctic University of Norway, Tromsg, Norway

“Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway

®Institut Gustave Roussy, Villejuif, France

6 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

7Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France

8 Centre Léon Bérard, INSERM U1052, Cancer Research Center of Lyon, Lyon, France

? Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany

' Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

""Hellenic Health Foundation, Athens, Greece

2WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene,
Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece

3 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA

" Cancer Registry and Histopathology Unit, Civic - M.P. Arezzo Hospital, ASP Ragusa, Ragusa, Italy

> Dipartimento di Medicina Clinica e Chirurgia, Universita degli Studi di Napoli Federico I, Naples, Italy

1¢Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy

7 Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute — ISPO, Florence, Italy

'8 Unit of Cancer Epidemiology, Department of Medical Sciences, University of Turin, Turin, Italy

Key words: plasma biomarkers, folate, vitamin B12, alcohol, hormone receptor status, MTHFR polymorphism, breast cancer

Abbreviations: BC: breast cancer; BMI: body mass index; Cls: confidence intervals; ER: estrogen receptor; ENDB: EPIC nutrient data-
base; EPIC: European Prospective Investigation into Cancer and Nutrition; FCT: food composition tables; FFQs: food-frequency ques-
tionnaires; HER2: human epidermal growth factor receptor 2; ICD: Injuries and Causes of Death; ICC: intraclass correlation coefficient;
MTHER: methylenetetrahydrofolate reductase; ORs: odds ratios; PR: progesterone receptor; QC: quality control; SNPs: single nucleotide
polymorphisms; SD: standard deviation; THF: tetrahydrofolate; WCRF: World Cancer Research Fund

1.d.B. is a co-first author

Grant sponsor: International Agency for Research on Cancer; Grant sponsor: European Commission FP7 Marie Curie Actions-People-
Cofunding of regional, national, and international programs (COFUND); Grant sponsor: Ecumenical Project for International Cooperation;
Grant sponsor: Danish Cancer Society (Denmark); Grant sponsor: Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de
I’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); Grant sponsor: Deutsche Krebshilfe,
Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); Grant sponsor: Hellenic Health
Foundation (Greece); Grant sponsor: Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); Grant
sponsor: Dutch Ministry of Public Health, Welfare and Sports (VWS); Grant sponsor: Netherlands Cancer Registry (NKR); Grant
sponsor: LK Research Funds; Grant sponsor: Dutch Prevention Funds; Grant sponsor: Dutch ZON (Zorg Onderzoek Nederland); Grant
sponsor: World Cancer Research Fund (WCRF); Grant sponsor: Statistics Netherlands (The Netherlands); Grant sponsor: AGAUR,
Generalitat de Catalunya; Grant number: Exp. 2014 SGR 726; Grant sponsor: Health Research Funds; Grant number: RD12/0036/0018;
Grant sponsor: Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skine and Visterbotten (Sweden); Grant
sponsor: Cancer Research UK; Grant sponsor: Medical Research Council; Grant sponsor: Stroke Association; Grant sponsor: British
Heart Foundation; Grant sponsor: Department of Health, Food Standards Agency; Grant sponsor: Welcome Trust (United Kingdom);
Grant sponsor: World Cancer Research Funds; Grant sponsor: Institut National du Cancer (INCA); Grant sponsor: la Fondation de
France (FDF); Grant sponsor: La Ligue Nationale contre le Cancer (LNCC)

DOI: 10.1002/ijc.30536

History: Received 5 Aug 2016; Accepted 18 Oct 2016; Online 1 Dec 2016

Correspondence to: Marco Matejcic, International Agency for Research on Cancer, 150, Cours Albert-Thomas, 69372 Lyon CEDEX 08,
France, Tel.: +33-0-4-72-73-8029, E-mail: matejcicm@fellows.iarc.fr

Int. J. Cancer: 140, 1246-1259 (2017) © 2016 UICC

43



Matejcic et al. 1247

?Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, Italy

° Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

* Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

2 Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom

3 CIBER de Epidemiologia y Salud Pblica (CIBERESP), Madrid, Spain

*4Public Health Division of Gipuzkoa, BioDonostia Research Institute, San Sebastian, Spain

5 Escuela Andaluza de Salud Piblica, Instituto de Investigacion Biosanitaria ibs, GRANADA, Hospitales Universitarios de Granada/Universidad de Granada,
Granada, Spain

26 Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain

*7 Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain

8 Navarra Institute for Health Research (IdiSNA), Pamplona, Spain

*Navarra Public Health Institute, Pamplona, Spain

3°public Health Directorate, Asturias, Spain

3 Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain

32 Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands

* Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom

3 Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom

3 Department of Medical Biosciences, Pathology, Umea University, Umed, Sweden

3 Department of Population Health, NYU School of Medicine, New York, NY

Epidemiological studies have reported inconsistent findings for the association between B vitamins and breast cancer (BC)
risk. We investigated the relationship between biomarkers of folate and vitamin B12 and the risk of BC in the European Pro-
spective Investigation into Cancer and Nutrition (EPIC) cohort. Plasma concentrations of folate and vitamin B12 were deter-
mined in 2,491 BC cases individually matched to 2,521 controls among women who provided baseline blood samples.
Multivariable logistic regression models were used to estimate odds ratios by quartiles of either plasma B vitamin. Subgroup
analyses by menopausal status, hormone receptor status of breast tumors (estrogen receptor [ER], progesterone receptor [PR]
and human epidermal growth factor receptor 2 [HER2]), alcohol intake and MTHFR polymorphisms (677C>T and 1298A> ()
were also performed. Plasma levels of folate and vitamin B12 were not significantly associated with the overall risk of BC or
by hormone receptor status. A marginally positive association was found between vitamin B12 status and BC risk in women
consuming above the median level of alcohol (ORqs-q1 = 1.26; 95% Cl 1.00-1.58; Pyrena = 0.05). Vitamin B12 status was also
positively associated with BC risk in women with plasma folate levels below the median value (ORq4.q1 = 1.29; 95% Cl 1.02—
1.62; Pyreng = 0.03). Overall, folate and vitamin B12 status was not clearly associated with BC risk in this prospective cohort
study. However, potential interactions between vitamin B12 and alcohol or folate on the risk of BC deserve further
investigation.

What’s new?

Does B-vitamin intake play a role in breast cancer (BC) risk? Results have been inconsistent. In this analysis of data from a
large, prospective European study, the authors found that, overall, folate and vitamin B12 status were not clearly associated
with BC risk. However, the risk did seem to increase somewhat for women who had higher vitamin B12 levels and either low
plasma folate or increased alcohol consumption. The authors suggest that this may involve nutrient-nutrient or gene-nutrient
interactions, such as changes in DNA methylation, which require further investigation.

The etiology of breast cancer (BC) is complex and results
from the combination of lifetime reproductive events, genet-
ics, dietary and lifestyle factors.' According to the latest
breast cancer report from the World Cancer Research Fund
(WCRE), there is novel evidence that alcohol intake and fac-
tors that lead to a greater adult attained height are positively
associated with postmenopausal and probably also premeno-
pausal BC.> Among dietary factors, deficiencies of B vitamins
related to Western dietary patterns have been suggested to
play a role in breast carcinogenesis.>

Int. ). Cancer: 140, 1246-1259 (2017) © 2016 UICC

Vitamin B9 (folate) and vitamin B12 (cobalamin) are two
water soluble B vitamins involved in one-carbon metabo-
lism,” which generates substrates for DNA methylation and
DNA synthesis.® Thus, deficiencies of these micronutrients
may trigger both genetic and epigenetic procarcinogenic pro-
cesses.” Prospective studies that investigated the association
between biomarkers of folate and BC risk have reported
either an inverse association®” or no association'®'" overall.
The prospective investigation of the relationship between bio-
markers of vitamin B12 and BC risk has also produced mixed
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results.®'* While studies found no evidence for an associa-
tion between blood levels of vitamin B12 and BC risk in the
overall population,”!" an inverse association was indepen-
dently reported among either postmenopausal women'® or
premenopausal women.” However, a recent meta-analysis of
prospective studies revealed no significant association
between biomarkers of vitamin B12 and BC risk in the sub-
group analysis by menopausal status."

A number of factors have been suggested to influence the
association between B vitamins and the risk of BC, including
menopausal status,''*'® alcohol consumption,'™!” nutrient
interactions'® and methylenetetrahydrofolate reductase (MTHFR)
gene polymorphisms.'> MTHER is a key enzyme in one-carbon
metabolism where it balances the folate pool between synthesis
and methylation of DNA.'” Although a number of MTHER single
nucleotide polymorphisms (SNPs) have been reported in the liter-
ature, 222 only the C677T and A1298C SNPs have been consis-
tently associated with decreased enzyme activity and reduced
plasma folate levels compared with the wild-type genotypes.”***
A prospective study found a positive association between plasma
folate concentration and postmenopausal BC among carriers of
the MTHFR 6777 allele.'* Breast tumors are also subdivided into
subgroups according to the expression of sex hormone receptors
(estrogen receptor [ER], progesterone receptor [PR] and human
epidermal growth factor receptor 2 [HER2]), which have been dif-
ferentially associated with both folate intake'” and folate status'"
among premenopausal women only.

We conducted a large nested case-control study within
European Prospective Investigation into Cancer and Nutri-
tion (EPIC) to evaluate the association between plasma con-
centrations of folate and vitamin B12 and BC risk overall
and stratified by hormone receptor status and potential risk
factors. In addition, we examined the interaction between the
MTHFR 677C>T (rs1801133) and 1298A > C (rs1801131)
polymorphisms and the two plasma B vitamins on the risk of
BC using data from a subsample of this nested case-control
population.

Material and Methods

Study design

The EPIC study is an ongoing multicenter European cohort
study designed to investigate the role of dietary habits and
lifestyle factors on the incidence of cancer of various sites,
including BC.*® The cohort includes over 521,000 participants
recruited between 1992 and 2000 from 23 centers in 10 Euro-
pean countries (Denmark, France, Germany, Greece, Italy,
the Netherlands, Norway, Spain, Sweden and UK). Of
367,903 women (age 35-70 years) recruited into the EPIC
study, the present analysis excluded women with prevalent
cancers at recruitment (n = 19,853) and missing diagnosis or
censoring date (n=2,892). A total of 10,713 women with
malignant primary BC were identified after a median follow-
up of 11.5 years. The follow-up rate was very high (98.5%:
91.4% alive and 7.1% dead) and only 1.5% of women were
lost to follow-up.

Biomarkers of folate and vitamin B12 and BC risk

Details of the recruitment procedures and data collection
in the EPIC study have been previously described in details.”®
Briefly, sociodemographic, lifestyle and dietary data were col-
lected at baseline from all the cohort members by administra-
tion of country-specific questionnaires. Anthropometric
measurements and peripheral blood samples of the partici-
pants were also collected. Methods of blood collection, proc-
essing and storage are described in details elsewhere.”” All
participants signed an informed consent for the use of their
blood samples and data. The study was approved by the Ethi-
cal Review Board of the TARC and those of all national
recruiting centers.

Selection of study subjects

A nested case-control study was designed among women
who provided a blood sample and completed the lifestyle and
dietary questionnaires at recruitment. A total of 2,491 BC
cases with a confirmed first diagnosis of invasive BC were
identified between 1992 and 2010. Each case was individually
matched to at least one control subject chosen randomly
among cohort women with available blood samples and free
of cancer (except nonmelanoma skin cancer) at the time of
diagnosis of the corresponding case. Control subjects were
matched to cases for study center, age at blood donation (+3
months), exogenous hormone use at blood collection (yes;
no; unknown), menopausal status (pre; surgical post; natural
post), fasting status (<3, 3-6, >6 hr) and phase of the men-
strual cycle (early follicular, late follicular, periovulatory, mid
luteal, other luteal) at recruitment.

Dietary and lifestyle data collection

Dietary data were obtained at enrollment using validated
country-specific dietary history and food-frequency question-
naires (FFQs), designed to collect local dietary habits of the
participants over the preceding year.”® Dietary intakes of
folate and vitamin B12 were estimated using the updated
EPIC Nutrient Database (ENDB),*® following standardization
from country-specific food composition tables (FCT) accord-
ing to Bouckaert's recommendations.” Details on dietary
assessment have been discussed previously.'”

Participants also completed a baseline lifestyle question-
naire providing information on anthropometric and sociode-
mographic characteristics, reproductive history, family history
of cancer, physical activity, alcohol use, smoking habits, use
of oral contraceptives, hormone replacement therapy and
vitamin supplements in the year prior to enrollment date.

Outcome assessment

Participants were followed from the date of enrollment until
first cancer diagnosis, death, emigration or end of the follow-
up period, whichever occurred first. Incident cancer cases
were identified through population cancer registries (Den-
mark, Italy except Naples, the Netherlands, Norway, Spain,
Sweden and UK) or by a combination of methods including
health insurance, cancer and pathology registries and active
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follow-up through study subjects and their next-of-kin in
three countries (France, Germany, Greece and Naples). Data
on clinical and tumor characteristics were coded according to
the 10th Revision of the International Statistical Classification
of Diseases, Injuries and Causes of Death (ICD).

In the present study, 91% of BC cases were confirmed by
histological or cytological examination, whereas the remain-
ing 9% was diagnosed through clinical observation, ultra-
sound, autopsy or death certificate. The most frequent
subtype of BC was ductal carcinoma (71.5%), followed by
lobular carcinoma (14.1%) and tubular carcinoma (2.7%).
The remaining BC cases were classified as mixed (5.0%) or
other (6.7%) subtypes.

Hormone receptor status determination

Determination of ER, PR and HER2 status of BC cases was
performed within each EPIC center. Information on hormone
receptor status as well as on the methods for its determina-
tion was retrieved from each EPIC center using the same
approaches used for collection of incident cases. To standard-
ize the quantification of the receptor status collected across
centers, the following criteria were applied for a positive
receptor status: >10% cells stained, any “plus-system”
description, >20 fmol/mg, an Allred score of >3, an IRS >2
or an H-score >10.*° ER, PR and HER2 status was available
for 98, 84 and 44% of cases, respectively. For the remaining
cases, hormone receptor status was not determined because
of insufficient amount of tumor tissue available for histopath-
ological evaluation. Furthermore, HER2 status could not be
ascertained in the majority of cases because of the lack of a
specific test in the nineties.

Laboratory measurements

All biochemical analyses were performed at the Bevital AS
laboratory in Bergen, Norway (www.bevital.no). Microbiolog-
ical assays were used to determine plasma concentrations of
folate’ and vitamin B12.*> The assays were adapted to a
microtiter plate format and carried out by a robotic worksta-
tion. Throughout all steps of the biochemical analysis, sam-
ples from each case-control set were analyzed within the
same batch. The laboratory personnel were blinded to case-
control status. To assess the measurement precision, each
batch contained six quality control (QC) samples with known
biomarker concentrations and four samples without biomark-
er (blanks). The six QC samples were three samples in paral-
lels. The coefficient of variation calculated from the three
duplicate sets of identical QC samples was 8.6% for folate
and 5.0% for vitamin B12. Plasma concentrations of folate
and vitamin B12 were determined for all study participants.

Genotyping analysis

Determination of the genotype status was carried out only in
a subsample of 401 cases and 401 matched control individu-
als from this nested case-control population. DNA extraction
from white blood cells was carried out using Autopure LS kit
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(Gentra Systems, Minneapolis, MN). DNA concentration was
quantified with Quant-iT PicoGreen dsDNA reagent (Thermo
Fisher Scientific, Waltham, MA).

The MTHFR 677C>T (rs1801133) and 1298A>C
(rs1801131) single nucleotide polymorphisms (SNPs) were
genotyped by Kaspar allelic discrimination assay using allele-
specific probes and fluorescent reporters (LGC Group, UK).
Each reaction was carried out according to the manufac-
turer’s instructions using supplied kits. Amplifications and
end-point allele determination were performed in 96-well
plates using a StepOne Plus system (Applied Biosystems).
Each plate contained randomly placed case and control sam-
ples, while matched sets were analyzed within the same plate.
Genotyping success rates were 98.0 and 96.5% for rs1801131
and rs1801133, respectively. Samples not yielding genotypes
were removed from further analyses.

Statistical methods

Lifestyle and dietary baseline characteristics of study partici-
pants were described using mean * standard deviation (SD)
for continuous variables and percentages for categorical vari-
ables. Plasma concentrations of folate and vitamin B12 were
log natural transformed to normalize their distribution. The
paired t test and 7%’ test were used to assess differences
between cases and control individuals with regard to continu-
ous and categorical variables, respectively.

Multivariable conditional logistic regression models were
used to estimate odds ratios (ORs) and 95% confidence inter-
vals (95% ClIs) for overall BC and specific subgroups strati-
fied by menopausal status at recruitment (dichotomized as
natural/surgical postmenopausal and premenopausal) and by
hormone receptor status (ER+/ER—, PR+/PR—, HER2+/
HER2—). Crude ORs were also presented to observe the
effect of confounding on the risk estimates. In addition, the
association between each plasma biomarker and the risk of
BC was examined using four-knot restricted cubic splines
with the midpoint of the fifth decile of plasma vitamin B12
as the reference category.”®

Quartiles and tertiles of plasma levels of biomarkers for
the overall and hormone receptor-specific analyses, respec-
tively, were determined on the basis of the distribution
among control individuals. Tests for linear trends were per-
formed by entering the median value of each category as
continuous term in the multivariable models.

All multivariate models were adjusted by BMI, height,
alcohol intake, total energy intake, educational attainment
(primary school, technical/professional school, secondary
school, university degree, 4.2% unknown), physical activity
(inactive, moderately inactive, moderately active, active, 6.9%
unknown), ever use of hormone replacement therapy (never,
ever, 4.1% unknown), parity and age at first full-term birth
combined (nulliparous, <30 year and 1-2 children, <30 year
and >3 children, >21-30 year, >30 year, 3.6% unknown)
and family history of BC (yes, no, 53.1% unknown). These
confounders were previously related to BC risk or blood
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measurements and were chosen based on previous studies in
the literature. Unknown categories of the above mentioned
variables were included in the model using indicator
variables.

Multivariate unconditional logistic regression models were
used to investigate the association between plasma concentra-
tions of folate and vitamin B12 and BC risk by levels of alco-
hol intake or plasma folate (low and high levels based on
median values) and by MTHFR genotypes. The joint effect of
plasma folate (in tertiles) and categories of alcohol intake (0-
3, 3-12, >12 g/day) on BC risk was evaluated by using the
lowest tertile of plasma folate and highest category of alcohol
intake as reference category, as previously assessed.'”

Tests for interaction between each plasma biomarker as
continuous variable and potential risk factors were computed
by likelihood ratio test. Formal tests of heterogeneity between
ORs in menopausal and hormone receptor subgroups were
based on ¥ statistics, calculated as the deviations of logistic
beta-coefficients observed in each of the subgroups relative to
the overall beta-coefficient.

The association between the SNPs and overall BC risk was
evaluated by conditional logistic regression. Genotypic
(codominant) and dominant models were assumed for SNP
effects. A trend test was conducted by treating the genotypes
as equally spaced integer weights and entering the variable as
a continuous term in the model.

Specific sensitivity analyses were carried out by excluding
women consuming multivitamin supplements and cases diag-
nosed within the first 2 years of follow-up (to reduce the
chance of reverse causality).

Statistical tests were two-sided, and p values below 0.05
were considered statistically significant. All analyses were per-
formed using STATA 12.1 (StataCorp. 2011, Stata Statistical
Software: Release 11, College Station, TX).

Results

Table 1 summarizes the sociodemographic, reproductive and
lifestyle characteristics of study participants by case-control
status. Cases had slightly older age at menopause (p = 0.026)
and at first live birth (p =0.023) than control individuals. A
slightly higher BMI in cases compared with the control group
was found among postmenopausal women (p < 0.001), but not
among premenopausal women. Cases were also more likely to
have had a first-degree relative with BC (p = 0.009), and had
higher daily alcohol intake (p = 0.002). Both MTHFR SNPs
were in Hardy-Weinberg equilibrium (p = 0.298 for C677T;
p =0.823 for A1298C) and the frequency of the minor allele
among control individuals was 30.8% at locus C677T and
37.0% at locus A1298C (data not shown).

There was no significant association between plasma levels
of folate and vitamin B12 and the overall risk of BC (Table 2)
or by ER, PR and HER2 status (Table 3). No further association
emerged after adjustment by MTHFR polymorphisms for the
available subsample (data not shown).

Biomarkers of folate and vitamin B12 and BC risk

A nonlinear modeling of the association between plasma
concentrations of vitamin B12 and BC risk showed a border-
line significant trend (Pyeng = 0.07) in increased risk associat-
ed with plasma concentrations of vitamin B12 higher than
360 pmol/l, while the odds ratio plateaued at levels >500
pmol/l. No dose-dependent effect of plasma folate on the risk
of BC was observed (data not shown).

Because of the impaired folate absorption and altered one-
carbon metabolism due to chronic alcohol consumption,* we
reported risk estimates by tertiles of plasma folate and catego-
ries of alcohol consumption (Fig. 1). The association between
plasma folate concentration and BC risk was not significantly
modified by levels of alcohol intake (Piyeraction = 0.69). Similar-
ly, no significant association between plasma folate and BC risk
was observed by median level of alcohol consumption (data
not shown).

The association between plasma levels of vitamin B12 and
BC risk stratified by the median intake of alcohol is summa-
rized in Table 4. There was a borderline significant increase
in risk associated with the highest quartile of plasma vitamin
B12 in women consuming at least 3.36 g/day of alcohol
(ORqy.q1 = 1.26; 95% CI 1.00-1.58; Pyreng = 0.05), while no
significant association emerged in women drinking lower
amounts of alcohol (ORqsq=1.08; 95% CI 0.86-1.35;
Pirena = 0.56). However, no significant heterogeneity by alco-
hol intake was found (Ppeterogencity = 0-14). The multivariable
risk estimates did not change appreciably after further adjust-
ment by plasma folate concentration (data not shown).

A statistically significant interaction between plasma con-
centrations of folate and vitamin B12 on the risk of BC was
observed (Pjneraction = 0.04; data not shown). To further
explore this interaction, a stratification analysis by the median
level of plasma folate was carried out (Table 4). A marginally
increased risk of BC associated with increasing concentrations
of plasma vitamin B12 was found in women with plasma levels
of folate below 13.56 nmol/l (ORq4.q1 =1.29; 95% CI 1.02-
1.62; Pyrena = 0.03), while no significant association occurred in
women with higher levels of plasma folate (Pyenq = 0.68). A
borderline significant heterogeneity by plasma folate levels was
also found (Pheterogeneily = 005)

Exclusion from analyses of women who consumed multi-
vitamin supplements or cases diagnosed within the first two
years of follow-up did not change the risk estimates in our
study population (data not shown).

The MTHFR 677C>T and 1298A > C SNPs were in low
linkage disequilibrium among both the cases (+*=0.24) and
control individuals (+* = 0.25). There was no significant associ-
ation between either C677T (ORypryscc = 0.71; 95% CI 0.42-
1.19; Piena=0.38) or A1298C (ORccyean = 0.97; 95% CI
0.62-1.53; Pireng = 0.91) and the overall risk of BC. The inter-
action between plasma folate or vitamin B12 and MTHFR
SNPs was not statistically significant (Pjeraction > 0.05). Plasma
concentrations of the two B vitamins were not significantly
associated with BC risk in any of the genotypic classes (homo-
zygous wild-type, heterozygous, homozygous variant) of each
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Table 1. Characteristics of study population®

1251

Cases (n)

Controls (n)

p difference?

No. of individuals, n (%)

Mean age (year) at

Blood collection

Diagnosis

Menopause

Menarche

Age at first birth and parity, n (%)
Nulliparous

First birth before age 30 years, 1-2 children
First birth before age 30 years, >3 children
First birth after age 30 years
Unknown#

Menopausal status, n (%)
Premenopause

Postmenopause

Perimenopause

Ever use of menopausal hormones, n (%)
No

Yes

Unknown#

Ever use of contraceptive pill, n (%)
No

Yes

Unknown+#

Anthropometric measures

Adult weight (kg)

Adult height (cm)

BMI in premenopause

BMI in postmenopause

Waist/Hip Ratio (WHR)

Physical activity, n (%)

Inactive

Moderately inactive

Moderately active

Active

Unknown#

Alcohol intake, n (%)

Nondrinkers

>0-3 g/day

>3-12 g/day

>12 g/day

Family history of breast cancer, n (%)
No

Yes

2491 (49.7%)

54.1*+8.4
60.2 +8.8
49.1 47
131015

349 (14.5)
1,086 (45.2)
590 (24.6)
376 (15.7)
90 (3.6)

761 (30.6)
1,642 (65.9)
88 (3.5)

1,687 (70.6)
703 (29.4)
101 (4.0)

1,136 (46.2)
1,325 (53.8)
30 (1.2)

66151117
161:7+ 6.5
24.6 £ 4.0
26.0 £4.5
0.792 £ 0.068

333 (14.3)
736 (31.7)
1,073 (46.2)
180 (7.7)
169 (6.8)

440 (17.7)
716 (28.7)
658 (26.4)
573 (22.7)

998 (86.3)
159 (13.7)

2521 (50.3%)

54.1*8.4

48.7 5.0
131216

318 (13.1)
1,129 (46.5)
652 (26.8)
329 (13.5)
93 (3.7)

770 (30.5)
1,665 (66.1)
86 (3.4)

1,700 (70.4)
714 (29.6)
107 (4.2)

1,166 (46.8)
1,325 (53.2)
30 (1.2)

65.2:4 111
1613+65
246 4.1
25.4*4.1
0.791 £ 0.066

293 (12.5)
742 (31.6)
1,109 (47.3)
201 (8.6)
176 (7.0)

458 (18.2)
777 (30.8)
713 (28.3)
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0.567

<0.001
0.009
0.699
<0.001
0.552
0.260

0.002

0.009
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Table 1. Characteristics of study population (Continued)

Cases (n) Controls (n) p difference?
Unknown# 1,334 (53.5) 1,328 (52.7)
Smoking status, n (%) 0.752
Never 1,432 (58.8) 1,473 (59.5)
Former 580 (23.8) 571 (23.0)
Current 423 (17.4) 433 (17.5)
Unknown# 56 (2.2) 44 (1.8)
Level of education, n (%) 0.090
Low 852 (35.6) 883 (36.6)
Medium 998 (41.7) 1,049 (43.5)
High 541 (22.6) 479 (19.9)
a Unknowns# 100 (4.0) 110 (4.4)
% Dietary intake
E Energy intake (kcal) 1972.4 = 549.8 1953.4 = 555.0 0.210
= Dietary folate (ug) 295.6+112.1 296.5118.2 0.681
o=
F-% Dietary vitamin B12 (ug) 6:1.E3.5 6.2+37 0.306
5 Vitamin supplement use, n (%) 0.870
1 No 878 (77.0) 879 (77.3)
S Yes 262 (23.0) 258 (22.7)
Unknown# 1,351 (54.2) 1,384 (54.9)
Plasma concentrations
Folate (nmol/L)? 14.1+1.7 143+1.8 0.512
Vitamin B12 (pmol/L)? 374.2+1.5 370.0+1.5 0.242
MTHFR C677T 0.337
c/C 197 (49.1) 194 (48.4)
/T 163 (40.7) 160 (39.9)
T/T 29 (7.2) 42 (10.5)
Unknown# 12 (3.0) 5(1.2)
MTHFR A1298C 0.835
A/A 147 (36.7) 154 (38.4)
A/C 188 (46.8) 178 (44.4)
c/c 52 (13.0) 54 (13.5)
Unknowns£ 14 (3.5) 15 (3.7)

Data are presented as means (+SD) or percentages. Geometric means (SD) of plasma folate and vitamin B12 are presented. Missing values are
excluded from calculations.

“Statistical significance for differences between cases and controls was tested using paired t test for continuous variables and paired % test for cat-
egorical variables.

*Differences in plasma concentration of folate and vitamin B12 were assessed on log natural transformed data. For all other variables, differences
were assessed on crude data.

SNP (data not shown). No further association emerged in the and BC risk restricted to women with either high alcohol
dominant models, and adjustment for the alternative SNP did intake or low folate status. The MTHFR C677T and A1298C
not change the risk estimates. polymorphisms had no effect modification on the association

between either plasma B vitamin and BC risk in a subsample

Discussion of this nested case-control study.

In this large prospective European study, circulating levels of
folate and vitamin B12 were not significantly associated with
the overall risk of BC. However, we found borderline positive
associations between plasma concentrations of vitamin B12

A study was recently conducted to assess the reliability of
plasma biomarkers involved in one-carbon metabolism in a
subsample from the EPIC study (38 men and 35 women),
which was estimated over a period of 2-5 years using an

Int. J. Cancer: 140, 1246-1259 (2017) © 2016 UICC
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Table 2. Crude and multivariable odds ratios® for association of plasma folate and vitamin B12 with breast cancer risk overall and stratified
by menopausal status at recruitment?

Matched cases/

Multivariable OR*

Plasma concentration controls (n)? Crude OR (95% CI) Peena” Pricteroganeity.

Folate (nmol/l)

All women

Continuous® 2,491/2,521 0.96 0.93 (0.83, 1.05)

<9.82 624/631 1 (ref) 1 (ref) 0.80

9.82-13.56 595/630 0.95 0.97 (0.82, 1.15)

13.56-19.80 663/631 1.06 1.07 (0.90, 1.28)

>19.80 609/629 0.98 0.94 (0.79, 1.13)

Menopausal status at recruitment®

Premenopausal women 0.67

Continuous® 736/747 0.98 0.99 (0.79, 1.23)

<9.82 218/220 1 (ref) 1 (ref) 0.61 B
9.82-13.56 168/192 0.88 0.88 (0.65, 1.20) %
13.56-19.80 201/179 1.16 1.27 (0.93, 1.75) é
>19.80 149/156 0.97 1.00 (0.72, 1.41) 3
Postmenopausal women ;_S"
Continuous® 1,615/1,634 0.97 0.93 (0.81, 1.07) 5
<9.82 385/391 1 (ref) 1 (ref) 0.46 é
9.82-13.56 393/406 0.98 1.01 (0.81, 1.26) O
13.56-19.80 418/408 1.04 1.01 (0.81, 1.25)

>19.80 419/429 0.99 0.94 (0.75, 1.17)

Vitamin B12 (pmol/l)

All women

Continuous® 2,489/2,519 1.09 1.10 (0.94, 1.29)

<293.6 613/630 1 (ref) 1 (ref) 0.24

293.6-373:1 628/630 1.03 1.00 (0.85, 1.19)

373.1-460.0 578/630 0.95 0.95 (0.80, 1.13)

>460.0 670/629 1.13 1.14 (0.95, 1.36)

Menopausal status at recruitment® 0.68

Premenopausal women

Continuous® 735/746 1.01 1.06 (0.78, 1.45) 0.10

<293.6 181/195 1 (ref) 1 (ref)

293.6-373.1 176/191 1 0.98 (0.71, 1.35)

373.1-460.0 187/171 1.22 1.23 (0.90, 1.71)

>460.0 191/189 15 1.26 (0.90, 1.77)

Postmenopausal women

Continuous® 1,614/1,633 1.13 1.15 (0.95, 1.39) 0.46

<293.6 407/413 1 (ref) 1 (ref)

293.6-373.1 421/408 1.05 1.00 (0.81, 1.23)

373.1-460.0 356/412 0.88 0.88 (0.71, 1.09)

>460.0 430/400 1.12 1.11 (0.89, 1.39)

'Subjects were matched by study center, age, menopausal status, exogenous hormone use, fasting status and phase of the menstrual cycle. Models
were adjusted by date at blood collection, education, BMI, height, physical activity, ever use of hormone replacement therapy, alcohol intake, parity
and age at first full-term birth combined, total energy intake and family history of breast cancer.

2Menopausal status at recruitment dichotomized as natural/surgical postmenopausal and premenopausal.
3Cut points of quartiles determined on control individuals.

“Obtained by modeling the median value of tertiles as continuous term in the multivariable model.
*Tests of heterogeneity between ORs in menopausal subgroups based on ¥ statistics calculated as the deviations of logistic beta-coefficients
observed in each of the subgroups (premenopausal and postmenopausal women) relative to the overall beta-coefficient.

The OR (95% CI) in the continuous model corresponds to an increment of 2.7 units of folate (nmol/l) or vitamin B12 (pmol/l).
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1254 Biomarkers of folate and vitamin B12 and BC risk

Table 3. Crude and multivariable odds ratios® for association of plasma folate and vitamin B12 with breast cancer risk according to hormone
receptor status®

Matched cases/ Multivariable
Plasma concentration controls (n)? Crude OR OR' (95% CI) Pirend® Phéterogendity:
Folate (nmol/l)
ER+ 0.63
Continuous® 1,987/2,009 0.99 0.96 (0.85, 1.09)
<10.96 630/677 1 (ref) 1 (ref) 0.51
10.96-17.85 674/662 123 1.11 (0.93, 1.31)
>17.85 683/670 1.12 1.07 (0.90, 1.27)
ER—
Continuous® 455/463 0.86 0.89 (0.67, 1.18)
a <10.96 162/153 1 (ref) 1 (ref) 055
2 10.96-17.85 160/159 0.94 0.97 (0.68, 1.39)
g 1785 133/151 0.82 0.89 (0.62, 1.29)
,:45: PR+ 0.93
L& Continuous® 1,407/1,452 1.01 0.98 (0.84, 1.15)
s <10.96 482/509 1 (ref) 1 (ref) 0.67
E 10.96-17.85 482/486 1.06 1.05 (0.85, 1.28)
63 >17.85 443/430 il 1.05 (0.85, 1.30)
PR—
Continuous® 690/696 0.96 0.97 (0.77, 1.22)
<10.96 219/236 1 (ref) 1 (ref) 0.91
10.96-17.85 245/220 1.21 1.22 (0.91, 1.64)
>17.85 226/240 1.02 1.03 (0.76, 1.38)
HER2+ 0.71
Continuous® 250/252 1.01 1.07 (0.72, 1.60)
<10.96 66/80 1 (ref) 1 (ref) 0.63
10.96-17.85 98/78 1.54 1.38 (0.81, 2.35)
>17.85 86/94 1.13 1.16 (0.68, 1.99)
HER2—
Continuous® 854/862 1.04 0.98 (0.80, 1.20)
<10.96 294/314 1 (ref) 1 (ref) 0.43
10.96-17.85 287/298 1.05 1.10 (0.85, 1.43)
>17.85 273/250 1:2 1.12 (0.85, 1.47)
Vitamin B12 (pmol/l)
ER+ 0.40
Continuous® 1,986/2,008 1.05 1.06 (0.89, 1.26)
<3231 693/684 1 (ref) 1 (ref) 0.54
323.1-426.0 607/668 0.9 0.90 (0.76, 1.06)
>426.0 686/657 1.05 1.06 (0.89, 1.26)
ER—
Continuous® 454/462 1.22 1.26 (0.86, 1.86)
<323.1 140/147 1 (ref) 1 (ref) 0.26
323.1-426.0 150/154 1.05 1.16 (0.79, 1.68)
>426.0 164/162 1.09 1.26 (0.85, 1.86)

Int. J. Cancer: 140, 1246-1259 (2017) © 2016 UICC
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Table 3. Crude and multivariable odds ratios for association of plasma folate and vitamin B12 with breast cancer risk according to hormone

receptor status (Continued)

Matched cases/

Multivariable

Plasma concentration controls (n)? Crude OR OR? (95% Cl) Prrend” D e
PR+ 0.43
Continuous® 1,406/1,424 1.02 1.02 (0.82, 1.27)

<3231 493/475 1 (ref) 1 (ref) 0.89

323.1-426.0 434/485 0.86 0.88 (0.72, 1.07)

>426.0 479465 1.01 1.02 (0.83, 1.25)

PR—

Continuous® 689/695 1.13 1.18 (0.88, 1.60)

<323.1 212/223 1 (ref) 1 (ref) 0.30

323.1-426.0 225/231 1.05 0.97 (0.72, 1.32)

>426.0 252/242 1712 1.18 (0.86, 1.62)

HER2+ 0.98
Continuous® 249/251 115 1.13 (0.70, 1.83)

<3231 85/82 1 (ref) 1 (ref) 0.90

323.1-426.0 84/83 0.97 1.02 (0.60, 1.74)

>426.0 80/87 0.87 1.03 (0.59, 1.81)

HER2—

Continuous® 853/861 1.04 1.12 (0.84, 1.49)

<323.1 328/311 1 (ref) 1 (ref) 0.66

323.1-426.0 244/281 0.82 0.85 (0.66, 1.10)

>426.0 281/270 1 1.08 (0.82, 1.42)

'Subjects were matched by study center, age, menopausal status, exogenous hormone use, fasting status and phase of the menstrual cycle. Models
were adjusted by date at blood collection, education, BMI, height, physical activity, ever use of hormone replacement therapy, alcohol intake, parity
and age at first full-term birth combined, total energy intake and family history of breast cancer.

2Classes of hormone receptors investigated: estrogen receptor positive/negative (ER=), progesterone receptor positive/negative (PR+) and human

epidermal growth factor receptor 2 positive/negative (HER2=).
3Cut points of tertiles determined on all control individuals.

“Obtained by modeling the median value of tertiles as continuous term in the multivariable model.

*Tests of heterogeneity between ORs in hormone receptor subgroups based on 7 statistics calculated as the deviations of logistic beta-coefficients
observed in each of the subgroups (i.e., ER+ and ER— status) relative to the overall beta-coefficient.

The OR (95% Cl) in the continuous model corresponds to an increment of 2.7 units of folate (nmol/l) or vitamin B12 (pmol/l).

intraclass correlation coefficient (ICC).>* The study showed
that plasma vitamin B12 was a highly reliable biomarker
(ICC=10.75), while a modest reliability was observed for
plasma folate (ICC = 0.45). Because our study was performed
on a larger number of subjects and extended over 18 years of
follow-up, it is difficult to predict whether and to what extent
the single biomarker measurements may have led to attenua-
tion of the risk estimates in our study. However, when the
models were adjusted for the regression dilution using the
ICCs as adjustment coefficients, no significant change in risk
estimates was observed.

Consistent with our findings, a prospective study within
EPIC reported a lack of significant association between die-
tary folate intake and the overall risk of BC.'” Prospective
investigations based on biomarkers of nutrient status
reported inconsistent findings between folate and BC risk.*"'?
The mean plasma folate concentration in our study popula-
tion (14.2 nmol/l) was comparable to that reported in the

Int. J. Cancer: 140, 1246-1259 (2017) © 2016 UICC

Malmo Diet and Cancer cohort (12.8 nmol/l), which also
reported a null association between plasma levels of folate
and overall BC risk."> However, our highest category of plas-
ma folate (>19.8 nmol/l; 609 cases) was substantially lower
than that reported in the US population-based cohort from
the Nurses’ Health Study (>14.0 ng/ml=31.7 nmol/l; 120
cases) in which a higher consumption of folic-acid containing
foods and an inverse association between plasma folate levels
and BC risk were observed.” Thus, a minimal level of blood
folate might be required for observing a beneficial effect of
this nutrient on the risk of BC.

The high plasma folate concentrations reported in US-
based population studies is likely due to folic acid fortifica-
tion of flour and cereal-grain products, which became man-
datory in the United States since 1997 to prevent neural tube
defects.”®* On the other hand, no policy of folic acid fortifi-
cation of foods has been implemented in European countries.
Folic acid from fortified foods or supplementation is
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>12 g/d

3-12g/d Alcohol

<11 nmol/l
11-18 nmol/l
>18 nmol/l
Folate
Plasma folatet

Low Medium High
Alcohol intaket (<10.96 nmol/1) (10.96-17.85 nmol/l) (>17.85 nmol/l)
High (>12 g/day) OR (95% Cl1) 1 (ref) 1.14 (0.86; 1.53) 1.02 (0.76; 1.36)

BC cases 223 229 225
Medium (3-12 g/day) OR (95% ClI) 0.80(0.57; 1.11) 0.75 (0.54; 1.03) 0.80 (0.58; 1.11)

BC cases 185 242 231
Low (<3 g/day) OR (95% CI) 0.74 (0.54; 1.02) 0.86 (0.62; 1.19) 0.75 (0.54; 1.04)

BC cases 395 383 378

Pinteraction§

0.69

Figure 1. Multivariable odds ratios (ORs) and 95% confidence intervals (Cls) for association with breast cancer risk by levels of plasma
folate (nmol/l) and alcohol intake (g/day), including interaction test. Subjects were matched by study center, age, menopausal status,
exogenous hormone use, fasting status and phase of the menstrual cycle. Models were adjusted by date at blood collection, education,
BMI, height, physical activity, ever use of hormone replacement therapy, alcohol intake, parity and age at first full-term birth combined,
total energy intake and family history of breast cancer. "Tertiles of plasma folate. *Categories of alcohol intake (0-3, 3-12 and >12 g/d).
Sp interaction between plasma folate and alcohol intake as categorical variables. All statistical tests were two-sided.

estimated to be approximately 1.7 times more bioavailable
than natural folates.” Because most of the enzymes that use
folate as cofactor cannot use the synthetic form, there might
be important perturbations in one-carbon metabolism and
cellular processes that rely on this pathway. A recent dose-
response meta-analysis of 16 prospective studies including a
total of 26,205 BC patients identified a U-shaped relationship
between energy-adjusted dietary folate intake and BC risk,”
supporting prior evidence of an increased risk of BC associat-
ed with folic acid fortification.”® The lack of data on con-
sumption of folic acid-containing supplements within the
EPIC population prevented us from testing whether folic acid
intake might have been associated with high levels of plasma
folate and an increased BC risk. However, the proportion of
vitamin supplement users in our study population was only
23% among cases, suggesting that plasma levels of folate and
other B vitamins were primarily attributable to natural food
sources.

The lack of a significant interaction between plasma folate
levels and alcohol intake on BC risk in our analysis is consis-
tent with results from previous prospective studies that used
biomarkers of folate status.®'> However, a recent prospective
investigation within the EPIC study reported an inverse asso-
ciation between dietary folate intake and the risk of BC
among heavy alcohol drinkers.'” Since alcohol may impair
folate absorption,*** alcohol consumption behaviors are
more likely to modify the risk of BC associated with dietary
folate intake rather than plasma folate levels, which can be
affected by a variety of other factors including genetic poly-
morphisms.““ Thus, women with high intake of both folate
and alcohol may not necessarily have a high folate status and
consequently a reduced risk of BC.

The main sources of vitamin B12 are animal products,
including meat, fish, dairy products, eggs and liver. Our find-
ing of a positive association between plasma levels of vitamin
B12 and BC risk in subgroup analyses is in accordance with

Int. J. Cancer: 140, 1246-1259 (2017) © 2016 UICC
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Table 4. Crude and multivariable odds ratios' for association of plasma folate and vitamin B12 with breast cancer risk stratified by levels of

alcohol intake and plasma folate

Cases/ Multivariable
Plasma vitamin B12 (pmol/l) controls (n)? Crude OR OR* (95% CI) Pirend> P eraction’
Alcohol intake at recruitment® 0.14
Below median value (<3.36 g/day)
Continuous® 1,205/1,266 0.99 1.06 (0.87, 1.29)
<293.6 301/297 1 (ref) 1 (ref) 0.56
293.6-373.1 296/307 0.95 0.96 (0.76, 1.21)
373.1-460.0 264/319 0.82 0.85 (0.67, 1.07)
>460.0 344/343 0.99 1.08 (0.86, 1.35)
Above median value (>3.36 g/day)
Continuous® 1,284/1,255 1.2 1.21 (0.97, 1.51)
<293.6 312/334 1 (ref) 1 (ref) 0.05
293.6-373.1 332/323 1| 1.09 (0.87, 1.37)
373.1-460.0 312/311 1.07 1.07 (0.86, 1.35)
>460.0 328/287 1:22 1.26 (1.00, 1.58)
Plasma folate at blood collection® 0.05
Below median value (<13.56 nmol/l)
Continuous® 1,218/1,261 1.2 1.25 (1.02, 1.52)
<293.6 322/377 1 (ref) 1 (ref) 0.03
293.6-373.1 329/334 1315 1.15 (0.92, 1.42)
373.1-460.0 282/278 1:19 1.22 (0.97, 1.53)
>460.0 285/272 123 1.29 (1.02, 1.62)
Above median level (>13.56 nmol/l)
Continuous® 1,271/1,260 0.93 0.99 (0.79, 1.22)
<293.6 291/254 1 (ref) 1 (ref) 0.68
293.6-373.1 299/296 0.88 0.90 (0.71, 1.13)
373.1-460.0 294/352 0.73 0.75 (0.59, 0.95)
>460.0 387/358 0.94 1.02 (0.81, 1.28)

IModels were adjusted by matching factors (study center, age, menopausal status, exogenous hormone use, fasting status and phase of the men-
strual cycle), education, BMI, height, physical activity, ever use of hormone replacement therapy, alcohol intake, parity and age at first full-term birth

combined, total energy intake and family history of breast cancer.
2Cutpoints of quartiles determined on control individuals.

’0Obtained by modeling the median value of tertiles as continuous term in the multivariable model.
“Obtained by modeling the interaction term between plasma vitamin B12 in continuous and alcohol intake or plasma folate as dichotomous

variable.

®Alcohol intake and plasma folate dichotomized according to median value.

%The OR (95% Cl) in the continuous model corresponds to an increment of 2.7 units of folate (nmol/l) or vitamin B12 (pmol/l).

two previous prospective studies that measured either dietary
intake* or plasma levels'' of this nutrient. However, an
inverse association between biomarkers of vitamin B12 and
the risk of BC has also been reported.”'® The median value
of plasma vitamin B12 in our study population (377 =511
pg/ml in cases) was not substantially different from those
reported in other population-based prospective studies, rang-
ing between 421 and 467 pg/ml.°™"" Thus, several other fac-
tors might have contributed to the inconsistent findings,
including differences in alcohol consumption, genetic poly-
morphisms, and nutrient interactions in one-carbon
metabolism.****

Int. J. Cancer: 140, 1246-1259 (2017) © 2016 UICC

As a cofactor required for the generation of methyl
groups, a high vitamin B12 status could result in hyperme-
thylation of CpG island promoters for tumor suppressor
genes,** which may lead to reduced expression of these
cancer-related genes and ultimately promote breast carcino-
genesis.”” These DNA methylation changes may also impair
the proper expression and/or function of cell-cycle regulatory
genes and thus confer a selective growth advantage to neo-
plastic cells.*® A randomized crossover trial suggested that
moderate alcohol intake may diminish plasma vitamin B12
concentrations.”” In contrast, a case-control study found that
plasma levels of vitamin B12 in heavy alcohol drinkers were
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significantly higher than those in light alcohol drinkers.**
Further studies are needed to clarify the modifying effect of
alcohol on the association between vitamin B12 and BC risk.

The positive association between plasma levels of vitamin
B12 and BC risk among women with low folate status is
unexpected. Previous prospective studies found no evidence
of an interaction between these two nutrients on the risk of
BC.'**>%%%0 On the other hand, a prospective analysis within
the French E3N cohort reported a strong joint protective
effect of high intake of folate and vitamin B12 on BC risk.'®
The almost exclusive form of folate in plasma is 5-methyl
THF, which reflects the amount of folate available for DNA
methylation.”" 5-methyl THF is converted to tetrahydrofolate
(THF) via the vitamin Bl2-dependent enzyme methionine
synthase. A high vitamin B12 status indicates that methio-
nine synthase activity is increased, leading to depletion of 5-
methyl THF and thus plasma folate concentration if not
replaced by new 5-methyl THF from diet. In this situation,
cells lack the substrate needed for methionine synthesis and
DNA methylation is impaired. There is evidence that a low
folate status may induce carcinogenesis through alteration of
DNA methylation pathways.”> Thus, the possibility that low
plasma folate concentrations (mainly 5-methyl THF) as a
consequence of high vitamin B12 status would impair DNA
methylation might be suggested.

Epidemiological studies provide support that the association
between the MTHFR C677T polymorphism and BC risk is
modified by intakes of some B vitamins, including folate and
vitamin B12.*7*° We observed no significant effect modifica-
tion of MTHFR SNPs on the association between plasma folate
or vitamin B12 and BC risk. The low power of these subgroup
analyses prevented us from finding a potential interaction
between MTHFR genotypes and B vitamin status on the risk of
BC. Furthermore, the effect of MTHFR polymorphisms on
plasma levels of B vitamins is highly complex and may depend
on the interaction with other dietary and genetic factors.™

The present study is the largest prospective investigation
to date to have examined the association between biomarkers
of folate and vitamin B12 and the risk of BC. The high
follow-up rates and large number of cases provided sufficient
statistical power for most subgroup analyses. The major
strength of our study is, however, the collection of blood
samples prior to diagnosis and the use as biomarkers of
exposure as reflection of true vitamin status.
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Major limitations include the single collection of blood sam-
ples at baseline and the measurement of a single biomarker of
folate or vitamin B12 status. Folate concentration measured in
plasma is considered to be a sensitive biomarker of recent die-
tary intake, and thus is not very informative for the assessment
of long-term folate status.”” Plasma vitamin B12 is the most
widely used biomarker of total cobalamin status, but not the
most specific biomarker to characterize adequate vitamin con-
centrations.®® In order to obtain more reliable information on
vitamin status, multiple measurements of plasma biomarkers
should be taken over a period of time or a combination of dif-
ferent biomarkers should be used. Additional limitations
include (i) the large percentage of missing data for family histo-
ry of BC (53.1%) and supplement use (54.5%), (ii) the determi-
nation of menopausal status at recruitment and not at
diagnosis, (iii) the lack of complete hormone receptor status
data and (iv) the insufficient statistical power for gene-nutrient
interaction analyses. Because controlling for family history of
BC and supplement use had minimal effect on the risk esti-
mates, our results are unlikely to be explained by residual con-
founding by those factors.

In conclusion, no clear support for an association between
plasma levels of folate and BC risk was found in this large pro-
spective study. However, potential interactions between vitamin
B12 and alcohol or folate on the risk of BC were observed. Our
findings suggest a potential role of vitamin B12 in breast carci-
nogenesis and raise the possibility of important nutrient-nutri-
ent and gene-nutrient interactions in the etiology of BC. The
potential deleterious effect of high vitamin B12 status in combi-
nation with other risk factors for BC deserves further investiga-
tion. Given the inconsistent findings to date and the possibility
that associations between folate and BC could be influenced by
some factors yet to be identified, further studies based on novel
biomarkers that take into account the effect of potential risk fac-
tors and genetic polymorphisms are warranted.
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2- Dietary folate, alcohol consumption and DNA methylation

Context

The one-carbon metabolism (OCM) is a network of interrelated biochemical reaction in which
a one-carbon unit is received from methyl donor nutrients and transferred into biochemical
and molecular pathways essential for DNA replication and repair. Modifications in OCM can
significantly impact gene expression and thereby cellular function (65). There is increasing
evidence that folate, as one of the methyl donor nutrients, is a relevant candidate for
modulation of the epigenome (83). Alcohol metabolites, involved in a dysfunction of the folate
absorption, have also shown to affect the epigenome. This antagonist effect of alcohol on
folate could plausibly increase the need of folate intake. Inadequate folate level may result in
abnormal DNA synthesis and disrupted DNA repair and hence may influence cancer risk,
including breast cancer (69). However the epidemiological evidence linking dietary folate,

alcohol intake and epigenome modifications is not well documented.

Objectives

e To identify single CpG sites differentially methylated in relation to dietary folate and
alcohol intake.
e To investigated the association between dietary folate and alcohol intake with DNA

methylation levels in regions of CpG sites.

Approach

Genome-wide DNA profiles on about 450,000 CpG sites were measured using lllumina
Infinium HumanMethylation450K in 450 cancer-free women, part of a nested case-control
study on BC within the EPIC cohort. SVA normalization technique was used to remove
unwanted variation from DNA methylation introduced by samples processing during
methylation acquisition such as the batch. Dietary folate and alcohol intake were assessed at

recruitment through questionnaires.

In this study the association of dietary folate and alcohol intake with DNA methylation was
investigated via three different approaches. The site-specific analysis aimed at identifying
single CpG site independently from each other, whereas Differentially Methylated Regions
(DMRs) analysis (20) and fused lasso (FL) regressions (84) analyses aimed at identifying
regions of CpG sites. The latter approaches use the hypothesis that neighboring CpG sites
may share similar information, thus exploiting the potential of specific regions of the
epigenome to show methylation activity related to lifestyle factors. FDR was used to control

statistical tests for multiple testing.
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Main findings

After correction for multiple testing, site-specific analysis showed a lack of association
between dietary folate and individual CpG sites. Alcohol intake was positively associated with
methylation level in cg03199996, and inversely associated with methylation in cg07382687.
These two associations were borderline significant (both g,,;=0.049). A total of 24 and 90
differentially methylated regions (DMRs) were associated with dietary folate and alcohol
intake, respectively. An inverse association was observed for 54% of the dietary folate DMRs
and for 44% of the alcohol intake DMRs. FL regression identified 71 regions significant for
dietary folate including 70% with an inverse association and 133 regions significant for
alcohol intake including 47% with an inverse association. However, the overlap between the
two methods was relatively low, i.e. three and 21 FL regions were overlapping dietary folate
and alcohol intake DMRs, respectively. There was an especially high concentration of
regions in chromosome 6 where 4 DMRs were overlapping FL regions and in chromosome

22 counting 3 overlaps between the DMRs and FL regions.
Conclusion

A borderline association between alcohol intake and methylation levels in two CpG sites was
observed. Evidence from DMRs an FL analysis indicated that both dietary folate and alcohol
intake might be associated with alteration of DNA methylation levels in localized regions.
Folate and alcohol are suspected to be associated with breast cancer risk but also to have
antagonist roles in the one-carbon metabolism. In certain regions identified by DMRs or FL
analysis, mapped genes are known to act as tumor suppressor such as the GSDMD and
HOXA5 genes. These results were in line with the hypothesis that folate- and alcohol-

deregulated epigenetic mechanisms might have a role in the pathogenesis of cancer.

Submitted article: Association of leukocyte DNA methylation changes
with dietary folate and alcohol intake in the EPIC Study.

The following draft has been recently submitted and is under consideration at Clinical
Epigenetics.
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Abstract (Words=330)

Background: There is increasing evidence that folate, an important component of one-carbon
metabolism, modulates the epigenome. Alcohol, which can disrupt folate absorption, is also
known to affect the epigenome. We investigated the association of dietary folate and alcohol
intake on leukocyte DNA methylation levels in the European Prospective Investigation into
Cancer and nutrition (EPIC) study. Leukocyte genome-wide DNA methylation profiles on
approximately 450,000 CpG sites were acquired with Illumina HumanMethylation 450K
BeadChip measured among 450 women control participants of a case-control study on breast
cancer nested within the EPIC cohort. After data pre-processing using Surrogate Variables
Analysis to reduce systematic variation, associations of DNA methylation with dietary folate
and alcohol intake, assessed with dietary questionnaires, were investigated using CpG site-
specific linear models. Specific regions of the methylome were explored using Differentially
Methylated Regions (DMR) analysis and fused lasso (FL) regressions. The DMRs analysis
combined results from feature-specific analysis for a specific chromosome and using
distances between features as weights whereas FL regression combined two penalties to

encourage sparsity of single features and the difference between two consecutive features.

Results: After correction for multiple testing, intake of dietary folate was not associated with
methylation level at any DN A methylation site, while alcohol intake was positively associated
with methylation level at ¢g03199996 (q,,;=0.049), and inversely associated with
methylation level at cg07382687 (q,4;=0.049). Interestingly, the DMR analysis revealed a
total of 24 and 90 regions associated with dietary folate and alcohol, respectively. For alcohol

intake, 6 of the 15 most significant DMRs were identified through FL.

Conclusions: Alcohol intake was associated with methylation levels at two CpG sites.
Evidence from DMRs and FL analysis indicated that dietary folate and alcohol intake may be
associated with genomic regions with tumor suppressor activity such as the GSDMD and
HOXAS genes. These results were in line with the hypothesis that epigenetic mechanisms play
arole in the association between folate and alcohol, although further studies are warranted to

clarify the importance of these mechanisms in cancer.

Keywords: DNA methylation, dietary folate, alcohol intake, DMR, fused lasso, EPIC cohort.
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Introduction

DNA methylation is a crucial epigenetic mechanism involved in regulating important cellular
processes, including gene expression, cell differentiation, genomic imprinting and
preservation of chromosome stability. DNA methylation refers to the addition of methyl
groups (-CH3) to the carbon-5 position of cytosine residues in a cytosine-guanine DNA
sequence (CpG) by DNA methyltransferases. DNA methylation changes can be influenced by
many factors including aging (Heyn et al., 2012; Horvath & Raj, 2018) and environmental
exposure such as smoking (S. Ambatipudi et al., 2016; Joehanes et al., 2016) or specific
dietary factors (Niculescu & Haggarty, 2011). Experimental evidence suggests a link between
B-vitamins, including folate (vitamin B9), and epigenetics modifications (Ba et al., 2011). B-
vitamins, especially folate, are essential components of one-carbon metabolism (OCM), the
network of interrelated biochemical reaction in which a one-carbon unit is received from
methyl donor nutrients and transferred into biochemical and molecular pathways essential for
DNA replication and repair. Modifications in OCM can significantly impact gene expression

and thereby cellular function (Szyf, 2011).

Absorbed folate circulating in the bloodstream enters the OCM cycle in the liver where is
metabolize to 5-methyltetrahydrofolate (5-methylTHF) and converted into S-
adenosylmethyonine (SAM) after several successive transformation steps (Figure 1). SAM is
the methyl donor for numerus methylation reactions including the methylation of DNA, RNA
and proteins. The potential role of specific dietary factors including micronutrients such as
folate, alcohol, and soya intake, in modifying breast cancer risk via epigenetic mechanisms
has been proposed (Teegarden, Romieu, & Lelievre, 2012), although evidence is still scarce

and inconsistent.

Alcohol intake affects epigenetic profiles (Liu et al., 2016). Ethanol metabolism generates
toxins that may directly lead to OCM dysfunction by reducing folate absorption, increasing
renal excretion of folate and inhibiting methionine synthase, the key enzyme in the generation
of the methyl donor in the OCM (Liu et al., 2016; Mason & Choi, 2005). This antagonistic
effect of alcohol on folate could plausibly increase the need of folate intake. Inadequate folate
levels may result in abnormal DNA synthesis due to a reduced availability of SAM (Kruman
& Fowler, 2014) and disrupted DNA repair and may, hence, influence cancer risk, including

breast cancer (Baglietto, English, Gertig, Hopper, & Giles, 2005; Zhang et al., 1999).
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The epidemiological evidence linking dietary folate, alcohol intake and epigenome
modifications is, however, not well documented. Therefore, we investigated the relationships
between dietary folate and alcohol intake with leukocyte DNA methylation patterns in the
controls from the European Prospective Investigation into Cancer and nutrition (EPIC) study
on breast cancer. We complemented standard regression analysis with techniques for the

identification of relevant methylated regions.

Methods

Study population. EPIC is a multicentre study that recruited over 521,000 participants,
between 1992 and 2000 in 23 regional or national centres in 10 European countries (Denmark,
France, Germany, Greece, Italy, Netherlands, Norway, Spain, Sweden and United Kingdom)
(Riboli et al., 2002). Among the 367,903 women recruited in EPIC, and after exclusion of
19,583 participants with prevalent cancers at recruitment (except non-melanoma skin cancer),
first malignant primary BC occurred for 10,713 women during follow-up between 1992 and
2010. Within a nested case-control study that included 2,491 invasive BC cases (Matejcic et
al., 2017), a subsample of 960 women (480 cases and 480 matched controls) from Germany,
Greece, Italy, Netherlands, Spain and United Kingdom was selected for the DNA methylation
analyses (Srikant Ambatipudi et al., 2017). The present study included analysis of 450
controls only originally enrolled in this case-control study on breast cancer (BC) nested

within EPIC study.

Methylation acquisition. Genome-wide DNA-methylation profiles in buffy coat samples were
quantified using the Illumina Infinium HumanMethylation450K (HM450K) BeadChip assay
(Bibikova et al., 2011) in 960 biospecimens from women included in the BC nested case-
control study. A total of 20 biospecimens with replicates used to compare technical inter- and
intra-assay batch effects and then excluded from the main analysis together with 19 matched
pairs, i.e. 38 samples, where at least one of the two samples had a low-quality bisulfite
conversion efficiency (intensity signal<4000) or did not pass all of the Illumina
GenomeStudio quality control steps, which were based on built-in control probes for staining,
hybridization, extension, and specificity (Illumina, 2011). To prevent collider bias (Cole et al.,
2010), as both alcohol intake and folate intake and DNA-methylation profiles are all
potentially associated with causes of BC, among the 902 remaining samples from the original

case-control study on BC nested within EPIC study, only cancer-free women were selected
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for the present study. For the 451 controls sample, probes with detection p-values higher than
0.05 were assigned ‘missing’ value. After the exclusion of 14,548 cross-reactive probes (Y.
A. Chen et al., 2013), 47,963 probes overlapping known SNPs with minor allele frequency
(MAF) greater than 5% in the overall population (European ancestry) (Y. A. Chen et al.,
2013) and 1,483 low quality probes (i.e. missing in more than 5% of the samples), 421,583

probes were left for the statistical analyses (Srikant Ambatipudi et al., 2017).

For each probe, B-values were calculated as the ratio of methylated intensity over the overall
intensity, defined as the sum of methylated and unmethylated intensities. The following
preliminary adjustment steps were applied to p-values: (i) color bias normalization
using smooth quantile normalization (P. Du, Kibbe, & Lin, 2008); (ii) quantile normalization
(Bolstad, 2001); (iii) type I and type II bias correction using the Beta-Mixture Quantile
normalization (BMIQ) (Teschendorff et al., 2013). Then, M-values, defined as M, es =

log, (M), were computed (Pan Du et al., 2010). Surrogate Variables Analysis (SVA)

1-Byalues

(J. T. Leek & Storey, 2007, 2008) was used to remove systematic variation due to the
processing of the biospecimens during methylation acquisition such as batch, indicating
groups of samples processed at the same time, and the position of the samples within the chip

(Perrier et al., 2018).

The percentage of white blood cell counts, i.e. T cells (CD8'T and CD4'T), natural killer
(NK) cells, B cells, monocytes and granulocytes, was quantified using Houseman’s estimation

method (Houseman et al., 2012) and included as covariates in the analysis.

Lifestyle and dietary exposures. Data on dietary habits were collected at recruitment through
validated centre- or country-specific dietary questionnaires (DQ) (Riboli et al., 2002).
Northern Italy (Florence, Turin and Varese), United Kingdom, Germany and the Netherland
used self-administered extensive quantitative food-frequency questionnaires (FFQs), whereas
Southem Italy (Naples and Ragusa), Spain and Greece’s centres used interview methods.
Usual consumption of alcoholic beverages (number of glasses per day or week) per type of
alcoholic beverage (wine, beer, spirits and liquors) during the 12 months before the
administration of dietary questionnaires was collected at recruitment. Alcohol intake in g/day
was calculated combining all types of beverage for each country based on the estimated
average of glass volume and ethanol content for each type of beverages (Ferrari et al., 2007;
Slimani et al., 2000). Dietary folate intake (pg/day) was estimated using the updated EPIC

Nutrient Data Base (ENDB) (Slimani et al., 2007), obtained after standardization from
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country-specific food composition tables (Bouckaert et al., 2011). No specific information on

use of folate supplements was available.

Statistical analyses. After exclusion of one outlier value of dietary folate (value larger than
the third quartile plus 10 times the inter-quartile range of the distribution), a total of 450

observations from controls only were retained for statistical analyses.

The association between dietary folate, alcohol intake and methylation levels was evaluated
via (i) CpG site-specific analysis; (ii) identification of differentially methylated regions
(DMRs) (Peters et al., 2015); (iii) fused lasso (FL) regression (Tibshirani, Saunders, Rosset,
Zhu, & Knight, 2005).

(i) CpG site-specific models. M-values expressing methylation levels at each CpG were
linearly regressed on dietary folate (log-transformed to reduce skewness) and alcohol intake.
Models were adjusted for recruitment centre, age at recruitment (year), menopausal status
(pre- or post-menopause) and white blood cell counts (proportions of T cells, natural killer
cells, B cells and monocytes in blood). False discovery rate (FDR) was used to control

statistical tests for multiple testing.

(ii) DMRs models. Differentially methylated regions (DMRs) analyses were identified with
the DMRcate package (Peters et al., 2015). The rationale of this method is to use kernel
smoothing to replace the t-test statistics at a given CpG site by a weighted average of r-test
statistics across its neighboring sites on the same chromosome. More precisely, let p,. express
the number of sites located on a given chromosome ¢ with ¢ € {1,...,23} (the 23"
chromosome is chromosome X). For any site k on this chromosome, with k = 1, ..., p., the

term t;? indicates the square of the -test statistics obtained in site-specific analyses. For each

v : 58 s w3
site j on chromosome c, t;? is replaced by the term #;°, defined as §;” = Y., Kjyt)?

where the terms Kj express weights, with larger values for sites k closer to j. Let x; express

the position of site k on the chromosome, i.e. its chromosomal coordinate in base pairs, these

weights are defined using a Gaussian kernel, as

g =l

Ky = exp( 2(1/C)? )

where parameters A and C represent the bandwidth and the scaling factor, respectively. Here

we used A = 1,000 and C = 2, respectively, as recommended in (Peters et al., 2015).
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Under the null hypothesis of no association between site j and alcohol (or folate), the

2 25Pcy .
" T Kk

Srica can be approximated by a y* distribution (Peters et al., 2015) with
ke 2k

distribution of

(ch Kjk)z / Zz” Kjkz degrees of freedom (Satterthwaite, 1946). Accordingly, p-values were
obtained for each site separately in each chromosome and g-values were computed using FDR
correction on all the p-values to control for multiple-testing. Then, DMRs were defined as
regions with at least two significant sites separated by a maximal distance A of 1000 base
pairs. In line with (Peters et al., 2015), t-statistics t, were obtained from regression models
using an empirical Bayes method to shrink the CpG site variance (Smyth, 2004), as
implemented in the /imma package (Smyth, 2005). For each DMR, the minimum g-value and
the maximum coefficient (in absolute value) of the sites included in the region were presented

as qpyg and Bpyg.

(iii) Fused lasso regression. Multivariate penalized regression provides an alternative to
DMRs. We implemented a Fused Lasso (FL) regression (Tibshirani et al., 2005), which is
better suited than the standard lasso when covariates (CpGs) are naturally ordered and the
objective is to identify regions on the chromosome of differentially methylated CpG sites. FL
is particularly useful when the number of features (p) is way larger than the sample size (n), a

situation classically known as p > n.

FL is a multivariable regression method combining two penalties: (i) the lasso penalty, which
introduces sparsity of the parameter vector, i.e. many elements of the estimated vector are
encouraged to be set to zero, and (ii) the fused penalty, which encourages sparsity of the
difference between two consecutive components in the parameter vector, thus introducing

smoothness of parameter estimates in adjacent CpG sites (Tibshirani et al., 2005).

To mimic the DMR analysis, a FL analysis was implemented where dietary folate and alcohol
were, in turn, regressed on CpG methylation levels within each chromosome. The vector of

methylation coefficient estimates /2 obtained by fused lasso regression was defined as
%) = 2 ) c 7 c
p = argmin {Zi(J’i -XiMyBi —v'Z) + 1, 5-’:1 w;j|B;| + A2 ?:zl’jmj _Bj—ll}’

where y; indicate, in turn, alcohol and dietary folate values for sample i = 1, ...,n, M; j is the
methylation levels at CpG site j, f; is the associated regression coefficient, Z; is a vector of

confounding factors, consistently with linear regression and DMR analyses described above,
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y is the corresponding non-penalized vector of coefficients, w; and v; are the weights

associated with lasso penalty and fused penalty, respectively.

Following the rationale of the adaptive lasso (Zou, 2006) and the iterated lasso (Candes,

Wakin, & Boyd, 2008), the FL procedure was run a first time with weights wj and vj set to 1,
which returned Bo, an initial estimate of /? The final estimates 3 were obtained after running

1 .
and v, , with

a second FL procedure with weights defined as w; = B e T
p gh 1 J IBO,]"'BO,]'—I l+f

_r
IBO,]‘I"’ £

e=10"%

The FL procedure was implemented on a predefined grid of 50x50=2,500 values for the pair
of parameters (4;, A,). More precisely, the grid for A; consisted of 50 equally spaced values

Al,max

(on a log scale) between
1000

and Ay nqx, Where Ay ,,,, was the lowest A; value for which

FL returned a null ﬁ vector for 1,=0, a situation where FL reduces to a standard lasso. For

each value A;on this grid, the grid for A,consisted of 50 equally spaced values (on a log-scale)

Azmax (A1)
1000

between and Ay yax (A1), where A3,,4x(4;) was the lowest A, value for which FL

returned a vector  with all components equal. The optimal pair of tuning parameters (4, A,)
was selected as the one minimizing the prediction error estimated by 5-fold cross-validation
(Hastie, 2009), whose principle can be summarized as follows. The original sample is first
partitioned into 5 equally sized subsamples. One subsample is held as the test set while the
other 4 are used as a training set, on which FL estimates are computed for the 2,500 values for
(A4, A3). The prediction error is computed on the test set, and the process is repeated 5 times,
and for each of the 2,500 values of (4;, 4,). The prediction error is defined as the averaged
prediction error on the 5 test sets. FL analysis was implemented using the FusedLasso

package.

Preprocessing steps and statistical analyses were carried out using the R software

(https://www.r-project.org/) and the Bioconductor packages (Huber et al., 2015), including

lumi, wateRmelon and sva (Jeffrey T. Leek, Johnson, Parker, Jaffe, & Storey, 2012) for the

preprocessing steps. The nominal level of statistical significance was set to 5%.

Results

Study population characteristics. Detailed characteristics of the 450 women included in the

study are shown in Table 1. The average age at blood collection was 52 years (range: 26-73).
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Participants had an average body mass index (BMI) of 26 kg/m’ (range: 16-43), and were
mostly post-menopausal (59%), never-smokers (56%) and moderately physically inactive
(42%). The average daily intakes of dietary folate was 270 pg/day (range: 91-1012) and
alcohol daily intake was 8 g/day (range: 0-72). Non-alcohol consumers, defined as
participants consuming less than 0.1g/day of alcohol at recruitment, represented 15% of the
population. Most participants were from the Italian and the German EPIC centres (Additional
file 1, Figure S1).

CpG site-specific models. After FDR correction, dietary folate intake was not significantly
associated with methylation levels at any CpG sites (data not shown). Alcohol intake was
significantly inversely associated with the cg07382687 CpG site (g,q;=0.049) and positively
associated with the cg03199996 site (g, 4;=0.049) (Table 2). Both sites were located in an
open sea region, i.e. a genomic region of isolated CpGs. cg07382687 was within the body

region of gene CREB3L2, and cg03199996 was within the body region of gene FAM65C.

DMRs analysis. A total of 24 regions associated with dietary folate were identified, which
included 190 CpG sites over-represented in the TSS1500 and 1* exon regions and under-
represented in the body regions and regions outside any gene regions (Figure 2A). The 15
most significant regions are described in Table 3Error! Reference source not found. and the
whole list provided in Additional file 2, Table S1. Among the 24 DMRs, 54% showed an
inverse association with dietary folate, i.e had a Bpyr < 0. The DMR most significantly
associated with dietary folate (qpyr=1.3 E-13, Bpmr=0.054), was DMR.F1 in chromosome 7,
including 49 CpG sites, related to HOXAS5 and HOXA6 genes. DMR.F5, was associated with
HOXA4, another gene of the homeobox family, (gpyr=5.8 E-4, Bpmr=-0.047).

Alcohol intake was associated with methylation levels in 90 DMRs, including 550 CpG sites
over-represented in TSS200, 1% exon and 5> untranslated regions (5’UTR) and under-
represented in the body regions and the regions outside any gene regions (Figure 2B). The 15
most significant DMRs are detailed in Table 4 and the full list is described in Additional file
3, Table S2. Alcohol intake was positively associated with methylation levels in 66% of the
90 DMRs. The two sites associated with alcohol intake in the CpG site-specific analyses were
not included in any DMRs. The most significant DMR associated with alcohol consumption

was DMR.A1, 9 sites within the GSDMD gene, (qpyr=4.7 E-14, Bpmr=0.0017).

Methylation levels of each CpG site located in the DMR.Al, DMR.A2, DMR.F1 and
DMR .F2, the two most significant DMRs for folate and alcohol, are presented in Additional
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file 4, Figure S2 by tertiles of dietary folate and alcohol intake, respectively. Correlation
heatmaps of CpG sites in DMR.A1, DMR.A2, DMR.FI and DMR.F2 are displayed in
Additional file 5, Figure S3, showing high levels of correlation among methylation levels
within the DMR.F2 of dietary folate and the DMR.A2 of alcohol. Other regions showed less
correlation, including the DMRAT1 of alcohol intake.

Fused lasso regression. For dietary folate, we identified 71 FL regions, 50 presenting a
positive association and 21 an inverse association. Three FL regions were overlapping the 15
most significant DMRs (Table 3). Seven out of 8 sites from a FL region within the GDF7
gene were included in the DMR.F2 (Bg,=-0.0029). All sites from a FL region associated with
the PRSS50 gene were part of the DMR.F4 (Br =-0.0069). Six out of 7 sites from the FL
region within the GPR19 gene were within the DMR.F9 (B =0.0076). None of the 36 other

FL region were overlapping any folate-related DMRs.

For alcohol consumption, we identified 133 FL regions, 71 regions presenting a positive
association and 62 an inverse association. 21 regions were included in alcohol-related DMRs.
Among them, 9 were overlapping 6 of the 15 most significant DMRs (Table 4). The situation
where two close FL regions were part of the same DMR was observed 3 times in the 15 most
significant alcohol-related DMRs. In particular, four and three sites from two FL regions
located in chromosome 22 were included in DMR.A11, associated with genes SMCIB and

RIBC2. All the 9 sites from a FL region were included in DMR.A9 (fg;=-0.474).

Graphical representations of the DMRs, the FL regions and their overlap are illustrated for
each chromosome in Additional file 6, Figure S4 for dietary folate and Additional file 7,
Figure S5 for alcohol intake. For dietary folate, most of FL regions were located in
chromosome 3, 22 and chromosome X. A maximum of four DMRs located in the same
chromosome was observed for chromosome 2 and 3. As for alcohol intake, DMR and FL
showed overlap mostly in chromosomes 6 and 22, with, respectively, 4 and 3 DMRs

overlapping FL regions.

Discussion

In this study of women from a large prospective cohort, we investigated the association of
dietary folate and alcohol intake with leukocyte DNA methylation via three different

approaches. The site-specific analysis aimed at identifying single CpG sites independently
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from each other, whereas DMRs and FL analyses aimed at identifying regions of CpG sites
using the inter-correlation between methylation levels in close sites, thus exploiting the
potential of specific regions of the epigenome to show methylation activity related to lifestyle

factors.

While site-specific analysis showed a lack of association between individual CpG sites and
dietary folate, alcohol intake was positively associated with the site cg03199996 and inversely
associated with cg07382687. These two sites are located within the body region of the genes
FAMB65C and CREB3L2. The FAMB65C gene, also named ‘RIPOR3’, is a non-annotated
gene. The CREB3L2 gene encodes a transcriptional activator protein and plays a critical role
in cartilage development by activating the transcription of SEC23A (Hino et al., 2014).
Translocation of CREB3L2 gene, located on chromosome 7, and the FUS gene (fused in
sarcoma) located on the chromosome 16 has been found in some tumors, including skin

cancer and soft tissue sarcoma (Panagopoulos et al., 2004; Patel et al., 2011).

Alcohol is known to alter DNA methylation, mostly because it contributes to deregulation of
folate absorption, which can lead to an dysfunction of OCM (Kruman & Fowler, 2014). In our
study, alcohol intake was associated with 90 DMRs, some of which may have a role in
specific carcinogenesis processes. For example, alcohol intake was inversely associated with
methylation levels in DMR.A64 related to the MLHI gene, which is frequently mutated in
hereditary nonpolyposis colon cancer (HNPCC) (Peltomaki & de la Chapelle, 1997). A
positive association between alcohol intake and methylation in the DMR .A79 was related to
the TSPAN32 (tetraspanin 32) gene, also known as the 7SSC6 gene, which is one of the
several tumor suppressor genes located at locus 11p15.5 in the imprinted gene domain of
chromosome 11 (Lee et al., 1999). This locus has been associated with adrenocortical
carcinoma, lung, ovarian and breast cancers. Methylations within DMR.A1 was positively
associated with alcohol intake, and the related GSDMD gene has also been suggested to act as
a tumor suppressor (Saeki et al., 2009). Alcohol intake was also positively associated with
DMR.AG related to the gene ADAM32, which encodes a protein involved in diverse biological
processes, such as brain development, fertilization, tumor development and inflammation

(O'Leary et al., 2016).

Several genes, associated with the 24 DMRs identified in our study for dietary folate, were
possibly involved in biological processes leading to carcinogenesis. For example, dietary
folate was positively associated with methylation in DMR.F16 related to the RTKN (rhotekin)

gene, which interacts with GTP-bound Rho proteins. Rho proteins regulate many important
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cellular processes, including cell growth and transformation, cytokinesis, transcription, and
smooth muscle contraction. Dysregulation of the Rho signal transduction pathway has been
implicated in many forms of cancer such as bladder cancer, gastric cancer and breast cancer
(M. Chen, Bresnick, & O'Connor, 2012; Fan et al., 2005). Dietary folate was also associated
with methylation levels in DMR.F1 and DMR.F5 within the HOXA4, HOXAS and HOXA6
genes, members of the HOX family, known to be associated with cellular differentiation
(Seifert, Werheid, Knapp, & Tobiasch, 2015). Perturbed HOX gene expression has been
implicated in multiple cancer types (Shah & Sukumar, 2010). In addition, HOXA5 may also
regulate gene expression and morphogenesis. Methylation of this gene may result in the loss
of its expression and, since the encoded protein upregulates the tumor suppressor p53, may

play an important role in tumorigenesis (Teo et al., 2016).

Results from site-specific and DMR analyses were generated with different analytical
strategies: methylation levels in different sites were assumed independent in the former, with
linear regression models fitted separately in each CpG site, while in the latter the physical
proximity of CpGs was exploited to identify specific regions of the epigenome with similar
methylation activity, under the assumption that neighboring CpG sites may share relevant
epigenetics information. FL analysis revealed some overlaps with DMRs, particularly for
alcohol intake, where 9 FL regions were observed within the 15 most significant DMRs. Yet,
DMRs and FL analyses have differences, and their results deserve cautious interpretations.
Unlike DMRs, FL does not take into account the physical distance between consecutive sites,
and rather uses the order of CpG sites on a given chromosome. Methylation levels within a
chromosome were mutually adjusted in FL regression, while in DMR analysis t-test statistics

were based on independent associations of methylation levels with folate and alcohol.

The association between folate and DNA methylation has been investigated at different stage
of human life, in particular during fetal development and elderly, where folate is especially
needed. A meta-analysis of mother-offspring pairs estimated the association between maternal
plasma folate during pregnancy and DNA methylation in cord blood (Joubert et al., 2016).
After FDR correction, maternal plasma folate was positively associated with methylation
level at 27 CpG sites and inversely associated with methylation level at 416 CpG sites. None
of these sites was observed in any of the 24 DMRs related to dietary folate in the present
study. This might be explained by the lack of power to identify specific-sites due to the

sample size: over 2,000 samples were included in Joubert’ meta-analysis against 450 in our
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study. Then, different methods were used to assess folate intake, i.e. plasma folate against

dietary folate.

An intervention study was conducted to evaluate the effects of long-term supplementation
with folic acid and vitamin B12 on white blood cell DNA methylation in elderly subjects
(Kok et al.,, 2015). After the intervention of two years, 162 sites were significantly
differentially methylated compared to baseline, versus 6 sites only for the placebo group.
Folate and vitamin B12 were not significantly associated with methylation level in any CpG
sites. Within the same study, 173 and 425 DMRs were identified for folate and vitamin B12,
respectively. The gene HOX4, which was inversely associated with dietary folate in our study
in DMR #5, was the only region overlapping with the first 10 DMRs found in the intervention
study (Kok et al.,, 2015). However, a higher level of folic acid was observed in the
intervention study: averages blood folate of 52 and 23 nmol/L in the intervention and placebo
groups, respectively, compared to an average blood folate of 15 nmol/L in our study which

might partly explained the different findings.

Within a recent meta-analysis including 9643 participants of European ancestry, aged 42 to 76
years with 54% women (Liu et al., 2016), 363 CpGs sites were significantly associated with
alcohol consumption, with 87% of these sites showing inverse associations. In our study, site
cg02711608 was part of the 363 identified sites, and was also included in DMR #25
associated with gene SLCIAS. SLCIAS gene encodes a protein which is a sodium-dependent
amino acids transporter (Pochini, Scalise, Galluccio, & Indiveri, 2014). The important
difference in the number of significant sites between the meta-analysis and the present study
might mostly be explained by the larger study population size and the larger levels of alcohol
intake observed in the meta-analysis (Liu et al., 2016). Indeed, in the meta-analysis,
composed of 46% of men, the medians of alcohol intake ranged from O to 14 g/day in the 10
European cohorts; while with a median of 3.5 g/day, alcohol intake was quite low in our
study, which included only women. Lastly, cohort-specific approaches were used in the meta-
analysis to remove technical variability, while the SVA approach was used in our study,
which was shown to produce conservative findings compared to other normalizing techniques

(Perrier et al., 2018).

A major strength of this study was the use of a population of European women from United
Kingdom, Germany, Italy, Greece, Netherland and Spain, implying diversity of diet and
lifestyle habits. Three approaches were used to evaluate the relationship between dietary

folate, alcohol intake and DNA methylation. The comparison between DMR and FL analyses
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was particularly relevant to identify regions of the genome associated with dietary folate and
alcohol intake. Among the DMRs identified in this study for dietary folate or alcohol intake,
several regions were associated with genes potentially implicated in cancer development, such
as RTKN, the HOX family of genes and the two tumor suppressor genes GSDMD and
TSPAN32. Our findings need confirmation in other populations. The low number of
significant CpGs sites identified in this site-specific analysis may mostly be explained by the

relatively low sample size (n=450).
Conclusion

Alcohol intake was associated with methylation levels at two CpG sites. Evidence from
DMRs and FL analysis indicated that both dietary folate and alcohol intakes might be
associated with alteration of DNA methylation levels in localized regions. Folate and alcohol
are known to be associated with breast cancer but also to have a mutually antagonistic role in
the one-carbon metabolism. In some regions identified by DMRs or FL analysis, mapped
genes are known to act as tumor suppressor such as the GSDMD and HOXAS5 genes. These
results were in line with the hypothesis that folate- and alcohol-deregulated epigenetic

mechanisms might have a role in the pathogenesis of cancer.
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715  Table 1. Characteristics of the study population (n=450).

Mean (SD") Min-Max
Age at blood collection (year) 52 (9) 26-73
Weight (kg) 66 (11) 40-103
Height (cm) 161 (7) 143-196
BMI (kg/m?) 26 (4) 16-43
Alcohol intake (g/day) 8(12) 0-72
Blood folate level (nmol/L) 15 (10) 1-89
Dietary folate (pg/day) 270 (106) 91-1012
CdS8t (%) 7.5(4) 0-23
Cd4t (%) 13.5(5) 0-34
Natural killer (%) 6.7 (5) 0-27
B cells (%) 6.1(2) 0-17
Monocytes (%) 5.7 (3) 0-17
Granulocytes (%) 60.8 (9) 27-85
N 9o

Menopausal status:

- Pre-menopause 186 41.3

- Post-menopause 264 58.7
Smoking status

- Never 250 55.6

- Former 93 20.7

- Smoker 104 23.1

- Missing 3 0.7
Physical activity Index

- Inactive 99 220

- Moderate inactive 187 41.5

- Moderate active 75 16.7

- Active 78 10.7

- Missing 11 24

716 ' SD=standard deviation, reported for continuous variables only;
717  ?(Wareham et al., 2003).

718
719  Figure 1. Diagram of the one-carbon metabolism pathway.
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721 MS: methionine synthase; MTHFR: methylenetetrahydrofolate reductase; THF:

722  tetrahydrofolate; SAH: S-adenosylhomocysteine; SAM: S-adenosylmethonine.
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Table 2. CpG site-specific models results for the significant CpG sites for alcohol intake'.

Alcohol intake CpGs characteristics
CpGs names ﬂ(ls,,)z Guai’ | Associated genes Gene region® Island®  Chr
1

2

cg07382687 -0,0389 0.049 CREB3L2 Body OpenSea 7
cg03199996 0,0442 0.049 FAMG65C Body Open Sea 20

' Adjusted for recruitment centre, age at recruitment, menopausal status and level of different lymphocyte
subtypes;
% Coefficients for | standard deviation alcohol intake (SD=11.8);
? False discovery rate (FDR) adjusted p-values;
* Gene region feature category describing the CpG position, from UCSC. TSS200: 200 bases upstream of the
transcriptional start site (TSS); TSS1500: 1500 bases upstream of the TSS; 5'UTR: Within the 5' untranslated
region, between the TSS and the ATG start site; Body: Between the ATG and stop codon; irrespective of the
?resence of introns, exons, TSS, or promoters; 3'UTR: Between the stop codon and poly A signal;

The location of the CpG relative to the CpG island. Shore: 0-2 kb from island; Shelf: 2—4 kb from island; N:
upstream (5°) of CpG island; S: downstream (3°) of CpG island; Open Sea: Isolated CpGs in the genome.
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Table 3. The 15 most significant DMRs associated with dietary folate out of 24 significant DMRs .

DMRs characteristics CpGs Fused Lasso
characteristics
Associated genes Gene regions hg19coord Sites’ | qpumg Bouz' | overlap® B¢
F1 | HOXA5.HOXA6  IstExon, 5'UTR, TSS200, chr7:27183133-27185512 49 L3E-13 0,054
TSS1500, 3'UTR, Body
F2 | GDF7 Body chr2:20869434-2087 1401 8 1,4E-08  -0,094 718 -0.0029
F3 | CYP1AL TSS1500 chr15:75018731-75019376 13 24E-05 0,041
F4 | PRSS50 Body, IstExon, SUTR, chr3:46759096-46759698 9 24E-04  -0,056 4/4 -0.0069
TSS200, TSS1500
F5 | HOXA4 IstExon, 5'UTR, TSS200, chr7:27170241-27171154 14 5.8E-04  -0,047
TSS1500
F6 | SYNGAPI Body chr6:33401192-33401542 6 1LOE-03 0,024
F7 | ZNF833 TSS1500, TSS200, Body chr19:11784514-11785337 13 ILIE-03  -0,036
F8 | LAMB2 IstExon, 5'UTR, TSS200, chr3:49170496-49170849 6 3,1E-03  -0,035
TSS1500
F9 | GPR19 S'UTR, 1stExon, TSS200, chr12:12848977-12849588 9 37E-03 0,065 6/7 0.0076
TSS1500
F10 | MTMRI5 TSS1500, TSS200, 5'UTR, chr15:31195612-31196075 7 4,0E-03  -0,050
IstExon
F11 | KCNE1L 5'UTR, IstExon, TSS200, chr21:35831871-35832364 8 42E-03 0,054
TSS1500
F12 | TNXB Body chr6:32054659-32055474 20 7.2E-03  -0,036
F13 | TERT Body chr5:1269992-1270152 3 72E-03 0,033
F14 | C20rf27A S'UTR chr2:132481613-132481826 2 1,7E-02 0,089
F15 | ANKRD44 Body chr2:198029141-198029332 3 2,1E-02  -0,052
! Adjusted for recruitment centre, age at recruitment, menopausal status and level of different lymphocyte subtypes;
f Number of sites located in DMRs significant for dietary folate;
* Minimum dietary folate g-values of sites located in the DMRs (FDR correction);
# Absolute maximum of dietary folate coefficient of sites located in the DMRs;
* Number of sites from the FL region overlapping the DMR / number of sites in the FL region;
° Dietary folate coefficient of sites located in the FL region.
Table 4. The 15 most significant DMRs associated with alcohol out of 90 significant DMRs'.
DMRs characteristics CpGs Fused Lasso
characteristics
Associated genes Gene regions hg19coord Sites? qpmr Bois® overlaps Bii®
Al | GSDMD TSS1500, TSS200, 5'UTR, chr8:144635260-144636462 9 4.7E-14  0.0017
IstExon
A2 chr6:31650735-31651362 21 1.8E-13  0.0015 | 2/2,2/2  0.390
A3 | TRIM4 Body, IstExon, S'UTR, chr7:99516603-99517509 14 3.0E-06 0.0015
TSS200, TSS1500
A4 | RGL3 Body chr19:11517079-11517436 5 33E-06 0.0017
A5 | COL9A3 TSS1500 chr20:61446962-61447992 32 4.8E-06 -0.0010 4/4 -1.027
A6 | ADAM32 TSS1500, TSS200, IstExon,  chr8:38964500-38965492 10 1.3E-04  0.0012
5'UTR, Body
A7 | C2lorf56 5'UTR, IstExon, TSS1500 chr21:47604052-47605174 8 1.5E-04  0.0027
A8 chr2:118616155-118616576 5, 1.9E-04  0.0016 517 0.514
A9 | LTB4R2, LTB4R, Body, IstExon, TSS1500, chr14:24780404-24780926 10 2.3E-04 -0.0010 9/9 -0.474
CIDEB 5'UTR, TSS200
Al10 | PTDSS2 Body chr11:457256-457304 3 3.0E-04  0.0009
All | SMCIB, RIBC2 Body, TSS1500, 1stExon, chr22:45808669-458 10043 16 3.0E-04 0.0016 | 4/4,3/3 0.332
TSS200, 5UTR
Al2 chr10:72013286-72013397 2 8.4E-04 -0.0012
Al3 | TRAF3 Body chr14:103366987-103367858 5 1.4E-03  0.0011
Al4 | C220rf27 TSS1500, TSS200, Body chr22:31317764-31318546 12 14E-03  0.0013 | 4/4,2/2  0.641
Al5 | S1I00A13, 5'UTR, IstExon, TSS1500, chr1:153599479-153600156 8 3.0E-03  0.0016
S100A1 TSS200

! Adjusted for recruitment centre, age at recruitment, menopausal status and level of different lymphocyte subtypes;
2

“ Number of sites located in DMRs significant for alcohol;
3 Minimum alcohol g-values of sites located in the DMRs (FDR correction);

# Absolute maximum of alcohol coefficient of sites located in the DMRs;

* Number of sites from the FL region overlapping the DMR / number of sites in the FL region, appears twice if two FL regions are included in the DMR;

¢ Alcohol coefficient of sites located in the FL region or average of alcohol coefficients if two FL regions are included in a DMR.
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Figure 2. Repartition of gene regions' among DMRs compare to their repartition within the
Ilumina 450K,

Body 23 % Body 17 %,

\ 5UTR 17 % B 5 9
; TSS1500 19 % j SUBAT%

No region 2 %

T851500 25 % 3UTR2 %

No region 11 %

1stExon 15 % TSS200 18 % 3UTR2%
TSS200 15 % 1stExon 17 %
A) DMRs significant for folate B) DMRs significant for alcohol

Body 31 %

: v 5'UTR 12 %

TSS1500 15 %

No region 20 %
TSS200 11 %
1stExon 7 %

C) Illumina 450K*

! Gene region feature category describing the CpG position, from UCSC. TSS200: 200 bases upstream of the
transcriptional start site (TSS); TSS1500: 1500 bases upstream of the TSS; S'UTR: Within the 5' untranslated
region, between the TSS and the ATG start site; Body: Between the ATG and stop codon; irrespective of the
presence of introns, exons, TSS, or promoters; 3'UTR: Between the stop codon and poly A signal.

“ The repartition of CpGs sites was done among the 421,583 sites included in this study.

3UTR 4 %

27
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Supplementary Materials for “Association of leukocyte DNA methylation changes with
dietary folate and alcohol intake in the EPIC Study”

Additional file 1. Sample size by recruitment centers.
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Additional file 2. DMRs associated with dietary folate (log)".

Associated genes Gene regions hg19coord Sites* | Gpmr Bomr'
1 | HOXAS5,HOXA6 IstExon,5'UTR,TSS200,TSS1  chr7:27183133-27185512 49 1.3E-13  0.054
500,3'UTR.,Body
2 | GDF7 Body chr2:20869434-20871401 8 1.4E-08 -0.094
3 | cYPIAl TSS1500 chr15:75018731-75019376 13 | 24805  0.041
4 | PRSS50 Body, IstExon,5'UTR,TSS200  chr3:46759096-46759698 9 24E-04 -0.056
,TSS1500
5 | HOXA4 IstExon,5'UTR, TSS200,TSS1  chr7:27170241-27171154 14 5.8E-04 -0.047
500
6 | SYNGAPI Body chr6:33401192-33401542 6 1.OE-03  0.024
7 | ZNF833 TSS1500,TSS200,Body chr19:11784514-11785337 13 1.1E-03  -0.036
8 | LAMB2 I1stExon,5'UTR,TSS200,TSS1  chr3:49170496-49170849 6 3.1E-03 -0.035
500
9 | GPR19 S'UTR,1stExon, TSS200,TSS1  chr12:12848977-12849588 9 3.7E-03  0.065
500
10 | MTMRI15 TSS1500,TSS200,5UTR,IstE  chr15:31195612-31196075 7 4.0E-03 -0.050
xXon
11 | KCNEI1 5S'UTR,1stExon, TSS200,TSS1  chr21:35831871-35832364 8 4.2E-03 0.054
500
12 | TNXB Body chr6:32054659-32055474 20 7.2E-03  -0.036
13 | TERT Bisdy chrS:1269992-1270152 3 | 72803 0033
14 | C2orf27A AT chr2:132481613-132481826 2 | 17602 0.089
15 | ANKRD44 Body chr2:198029141-198029332 3 2.1E-02 -0.052
16 | RTKN Body TSS1500 chr2:74668072-74668286 2 | 29802 0023
17 | PTPRN2 Body chr7:157406607-157406737 2 3.0E-02 0.033
18 | PANX1 Body chr11:93862716-93862749 2 35E-02  0.027
19 | cDH3 IstExon,SUTR chr16:68678841-68678998 2 | 37802 0.0
20 chr8:713162-713216 3 3.8E-02 0.034
21 | LEFTY2 TS§1500 chrl:226129481-226120561 2 | 3.9E02 -0.042
22 | EMLI — chr14:100250329-100259352 3 | 4.1E02  -0.037
23 | CHRNBI Body chr17:7350244-7350282 2 4.1E02 -0.029
24 | PAQRY9 TSS1500 chr3:142682652-142682682 2 42E-02 -0.025

! Adjusted for recruitment centre, age at recruitment, menopausal status, level of different lymphocyte subtypes

and BC status;

2 Number of sites located in DMRs significant for dietary folate;
? Minimum dietary folate g-values of sites located in the DMRs (FDR correction);
* Absolute maximum of dietary folate coefficient of sites located in the DMRs.
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Additional file 3. DMRs associated with alcohol intake'.

Associated genes Gene regions hg19coord Sites’ | qpmr’  Bomg'
1 | GSDMD TSS1500, TSS200, chr8:144635260-144636462 9 47E-14  0,0017
5'UTR, IstExon
2 chr6:31650735-31651362 21 1,8E-13  0,0015
3 | TRIM4 Body, 1stExon, 5'UTR, chr7:99516603-99517509 14 | 3,0E-06 0,0015
TSS200, TSS1500
4 | RGL3 Body chr19:11517079-11517436 5 33E-06 0,0017
5 | COL9A3 TSS1500 chr20:61446962-61447992 32 | 48E-06 -0,0010
6 | ADAM32 TSS1500, TSS200, chr8:38964500-38965492 10 1,3E-04  0,0012
IstExon, 5'UTR, Body
7 | C2lorf56 5'UTR, IstExon, chr21:47604052-47605174 8 1,5E-04  0,0027
TSS1500
8 chr2:118616155-118616576 5 1.9E-04  0,0016
9 | LTB4R2, LTB4R, Body, IstExon, TSS1500, chr14:24780404-24780926 10 | 2,3E-04 -0,0010
CIDEB 5'UTR, TSS200
10 | PTDSS2 Body chr11:457256-457304 3 3,0E-04  0,0009
11 | SMCIB, RIBC2 Body, TSS1500, 1stExon, chr22:45808669-45810043 16 | 3,0E-04 0,0016
TSS200, 5'UTR
12 chr10:72013286-72013397 2 84E-04 -0,0012
13 | TRAF3 Body chr14:103366987- S 1,4E-03 00,0011
103367858
14 | C220rf27 TSS1500, TSS200, Body  chr22:31317764-31318546 12 1,4E-03  0,0013
15 | SI00A13, SI00A1 5'UTR, IstExon, chr1:153599479-153600156 8 3,0E-03  0,0016
TSS1500, TSS200
16 | VARS Body chr6:31760521-31761076 12 3,1E-03  0,00059
17 chr13:20781097-20781165 3 3,2E-03  0,00096
18 chr6:5783800-5783863 2 3,3E-03 0,00137
19 | TSSK6, NDUFA13  IstExon, TSS1500, chr19:19625761-19626599 6 3,8E-03  0,00082
5'UTR, TSS200
20 chr6:27637302-27637537 4 39E-03 0,00122
21 | THUMPD3 TSS1500, TSS200, ¢hr3:9404422-9405070 9 4,5E-03 0,00112
5'UTR, IstExon
22 | NKX2-6 Body, TSS200, TSS1500  chr8:23562918-23564294 12 | 49E-03 0,00091
23 | ATP2B2 3'UTR, Body chr3:10370264-10370704 4 5,5E-03  0,00089
24 chr6:30094947-30095802 26 | 55E-03 -0,00091
25 | SLC1AS Body, S'UTR, 1stExon, chr19:47287778-47288263 6 5,5E-03  -0,00072
TSS200
26 | PCSK4 Body chr19:1486986-1487605 5 5,7E-03  0,00121
27 | IRF6 5'UTR, 1stExon, TSS200, c¢hr1:209979111-209979779 8 5,7E-03 -0,00175
TSS1500
28 | C7orfl6 TSS1500, TSS200, chr7:31726494-31726912 6 6,1E-03 -0,00121
5'UTR, IstExon
29 | ADM2, MIOX 3'UTR, TSS1500, chr22:50924745-50925337 5 6,3E-03  0,00127
TSS200, 5'UTR, 1stExon
30 | DUPDI Body chr10:76803669-76803925 3 6,4E-03  0,00074
31 | GOLPH3L TSS1500 chr1:150670196-150670422 2 6,9E-03 0,00193
32 | FLJ44606 5'UTR, TSS200, TSS1500 chr5:126408756-126409573 13 | 74E-03 0,00145
33 | C2o0rf27B S'UTR, IstExon, TSS200, chr2:132558939-132559484 6 74E-03 -0,00128
TSS1500
34 chr7:157294107-157294502 5 7,6E-03 0,00115
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Additional file 4. Graphical representation of the two most significant DMRs of dietary folate and alcohol intake.
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! Adjusted for recruitment centre, age at recruitment, menopausal status, level of different lymphocyte subtypes

and BC status;

* Number of sites located in DMRs significant for alcohol;
3 Minimum alcohol g-values of sites located in the DMRs (FDR correction);
4 Absolute maximum of alcohol coefficient of sites located in the DMRs.

The x-axis represents the position (hg 19 coordinates) of the CpGs included in the plotted DMR.
Each tertile of dietary folate, alcohol intake or their interaction are represented by different colors: green for T1, blue for T2 and red for T3. For all the CpGs included in the
plotted DMR, the dashed lines are their 1™ and an quartiles of methylation levels and the points represent their median values.
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Additional file 5. Correlation heatmaps of CpG methylation levels in the two most significant
DMR of dietary folate and alcohol intake.
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Additional file 6. DMRs and FL regions of folate in each chromosome.

Dark blue rectangles represent DMRs and light blue FL regions. Overlaps between the two methods are
represented by red points.

Positive coefficients of the two methods are represented on the top part of each graphic and negative coefficients
are on the bottom part. Positive (negative) coefficients of DMRs were set to 0.5 (-0.5) and positive (negative)
coefficients of FL regions were set to 1 (-1) to clearly differentiate DMRs from FL regions.

x-axis represents the rank of CpG sites according to their position on the chromosome.
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Additional file 7. DMRs and FL regions of alcohol in each chromosome.

Dark blue rectangles represent DMRs and light blue FL regions. Overlaps between the two methods are
represented by red points.

Positive coefficients of the two methods are represented on the top part of each graphic and negative coefficients
are on the bottom part. Positive (negative) coefficients of DMRs were set to 0.5 (-0.5) and positive (negative)
coefficients of FL regions were set to 1 (-1) to clearly differentiate DMRs from FL regions.

x-axis represents the rank of CpG sites according to their position on the chromosome.
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3- Averaqge methylation and breast cancer risk

Context

A vast majority of human malignancies are associated with ageing, and age is a strong
predictor of cancer risk. In particular BC is an age-associated disease whose incidence rises
sharply after menopause (85). This increased risk was hypothesized to be the consequence
of accumulation of genetic mutations associated with deregulation of cellular processes and
genomic instability. Recently, DNA methylation-based marker of ageing, known as
‘epigenetic clock’ or ‘DNA methylation age’, can be used to accurately estimate the
chronological age of all tissues and cell types (86). This composite biomarker of ageing,
defined as a weighted average across 353 specific CpG sites, has been linked with several

diseases including Alzheimer and Parkinson diseases (87, 88).

Departures of methylation-estimated age from chronological age can be used to define
intrinsic epigenetic age acceleration (IEAA) that measures cell-intrinsic ageing effects, which
are independent of chronological age and blood cell composition. IEAA has been used to
predict lung cancer risk in a recent study (89). However, it is not yet known whether IEAA

lends itself for predicting BC susceptibility in a prospective case-control study.

Objectives

e To evaluate whether intrinsic epigenetic age acceleration is associated with BC risk
susceptibility.

e To investigate the association between global methylation and BC risk.

Approach

DNA methylation changes in 421,583 sites were profiled in 902 samples of a case-control
study on BC nested within the EPIC cohort using the lllumina HumanMethylation 450K
BeadChip arrays. One control participant was randomly assigned for each case based on:
recruitment centre, length of follow-up, age at blood collection, time of blood collection,
fasting status, menopausal status, menstrual cycle day and current use of contraceptive

pill/lhormone replacement therapy.

Overall global DNA methylation, defined as the mean methylation in the 421,583 sites, was
computed for all participants. Global DNA methylation on specific regions of CpG sites
reflecting their physical location in relation to CpG islands or based on a functional criterion
was also performed. A conditional logistic regression was used to estimate global

methylation (overall and for each category) association with BC risk.
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The Horvath age estimation method (86) was used to calculate epigenetic age for each
samples, based on the methylation levels of 353 CpG sites. Intrinsic epigenetic age
acceleration (IEAA) was estimated as the residuals from a linear regression where
epigenetic age was regressed on chronological age, adjusted for blood cells counts. Logistic
regression was used to assess IEAA association with BC risk adjusted for known BC risks,
such as alcohol consumption, BMI, age at menarche and physical activity. Stratification by

menopausal status was also performed.

Main findings

Overall global DNA methylation was not significantly associated with BC risk whereas global
DNA methylation in CpG islands was positively associated with BC risk (OR ;5p=1.20,
Clys0,=[1.03-1.40], p=0.02).

One unit increase in IEAA was significantly associated with a 4% increased risk of
developing BC (OR=1.04; (Clg50,=[1.007-1.076]) in univariate analysis. Stratified analysis
based on menopausal status revealed that IEAA was positively associated with development
of postmenopausal BC (OR=1.06, Cly50,=[1.019-1.110], p=0.003). The results were not

attenuated after adjusting for known BC factors.
Conclusion

Assessed in blood samples, global methylation in CpG island regions and epigenetic age
acceleration had a weak, but statistically significant, positive association with BC
susceptibility. With an increased BC risk of 6% by one unit increase of IEAA and a p-value at
0.003, the association between epigenetic age acceleration and BC was more significant for
postmenopausal women. Menopause has been known to accelerate age-related diseases
including cancer. Age acceleration in postmenopausal BC may reflect differences in
hormone exposure, which may explain why IEAA was only predictive of postmenopausal
BC.

Published article: DNA methylome analysis identifies accelerated
epigenetic ageing associated with postmenopausal breast cancer
susceptibility.
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Abstract  Aim of the study: A vast majority of human malignancies are associated with
ageing, and age is a strong predictor of cancer risk. Recently, DNA methylation-based marker
of ageing, known as ‘epigenetic clock’, has been linked with cancer risk factors. This study
aimed to evaluate whether the epigenetic clock is associated with breast cancer risk suscepti-
bility and to identify potential epigenetics-based biomarkers for risk stratification.

Methods: Here, we profiled DNA methylation changes in a nested case—control study
embedded in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort
(n = 960) using the Illumina HumanMethylation 450K BeadChip arrays and used the Hor-
vath age estimation method to calculate epigenetic age for these samples. Intrinsic epigenetic
age acceleration (IEAA) was estimated as the residuals by regressing epigenetic age on chro-
nological age.

Results: We observed an association between IEAA and breast cancer risk (OR, 1.04; 95% CI,
1.007—1.076, P = 0.016). One unit increase in IEAA was associated with a 4% increased odds
of developing breast cancer (OR, 1.04; 95% CI, 1.007—1.076). Stratified analysis based on
menopausal status revealed that IEAA was associated with development of postmenopausal
breast cancers (OR, 1.07; 95% CI, 1.020—1.11, P = 0.003). In addition, methylome-wide
analyses revealed that a higher mean DNA methylation at cytosine-phosphate-guanine
(CpG) islands was associated with increased risk of breast cancer development (OR per 1
SD = 1.20; 95 %CI: 1.03—1.40, P = 0.02) whereas mean methylation levels at non-island
CpGs were indistinguishable between cancer cases and controls.

Conclusion: Epigenetic age acceleration and CpG island methylation have a weak, but statis-
tically significant, association with breast cancer susceptibility.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Ageing is a major risk factor for most neoplasms [1]. In
particular, breast cancer is an age-associated disease
whose incidence rises sharply after menopause [1]. This
increased risk was hypothesised to be the consequence of
accumulation of genetic changes (mutations) associated
with deregulation of cellular processes and genomic
instability. However, accumulation of genetic changes
exhibits striking interindividual differences [2], and dif-
ferences in biological ageing processes may only be
partly explained by genetic determinants [3].

A recent study demonstrates that DNA methylation
(DNAm) data lend themselves for developing a highly
accurate multitissue biomarker of ageing [4]. The
DNAm-based marker of ageing (known as ‘epigenetic
clock’) derived from several tissues can be used to
accurately estimate the chronological age of all tissues
and cell types [4]. This composite biomarker of ageing,
which is defined as a weighted average across 353 spe-
cific CpG sites, produces an estimate of age (in units of
years), referred to as ‘epigenetic age’ or ‘DNA methyl-
ation age (DNAm age)’. Recent studies demonstrate
that DNAm age is at least a passive biomarker of bio-
logical age: the epigenetic age of blood has been found
to be predictive of all-cause mortality [5—9], frailty [10],
cognitive and physical functioning [5]. Further, the
utility of the epigenetic clock method using various tis-
sues and organs has been demonstrated in applications
surrounding Alzheimer disease [11], centenarian status
[8], pre-natal and early life influences [12], Down syn-
drome [13], HIV infection [14], Huntington disease [15],
obesity [16], lifetime stress [17], menopause [18], and
Parkinson disease [19]. Departures of methylation-
estimated age from chronological age can be used to
define intrinsic epigenetic age acceleration (IEAA) that
measures cell-intrinsic ageing effects that are indepen-
dent of chronological age and blood cell composition.

A recent study suggests that IEAA can be used to
predict lung cancer risk [20]. However, it is not yet
known whether IEAA lends itself for predicting breast
cancer susceptibility in a prospective case—control
study. To test this hypothesis, we analysed blood
methylation data from incident breast cancer cases and
matching controls of a large prospective study within
the European Prospective Investigation into Cancer and
Nutrition (EPIC) cohort.

2. Materials and methods
2.1. Selection of incident cancer and control participants

The present study was conducted on nested case—control
samples from the European Prospective Investigation
into Cancer and Nutrition (EPIC) cohort, a large pro-
spective study conducted in 23 centres across ten

European countries (Denmark, France, Germany,
Greece, [taly, Norway, Spain, Sweden, The Netherlands,
and the United Kingdom), aiming to investigate the
relationship between diet, lifestyle, metabolism and
cancer risk [21]. In brief, the EPIC cohort includes a total
of about 315,000 women and 200,000 men. At baseline
recruitment, all study participants provided extensive
questionnaire information about nutrition and other
lifestyle factors. All study participants also provided a
blood sample, which was processed, divided into aliquots
of plasma, serum and buffy coat and frozen at —196 °C
(under liquid nitrogen) for later use in specific research
projects. In all EPIC centres, an identical protocol for
subject recruitment, sample collection and storage was
followed. Detailed information on the subject recruit-
ment, baseline data, and blood collection protocols have
been reported previously [22]. All participants gave
written, informed consent for data and biospecimen
collection and storage, as well as follow-up. The study
was approved by the local ethics committees and the
Institutional Review Board of the International Agency
for Research on Cancer (IARC, Lyon, France). During
prospective follow-up of the EPIC cohort, a very large
number (>11,000) of newly diagnosed, invasive breast
cancer cases were confirmed histologically or cytologi-
cally as primary breast cancers according to the Inter-
national Classification of Diseases for Oncology, Second
Edition (ICD-0O-2) and included all breast cancer sub-
sites (ICD C50.0-C50.9). A representative subset of these
cases was used for studies comparing a variety of
biomarker measurements with a set of control subjects,
matching the cases by recruitment centre. Incident pa-
tients with cancer were identified at regular intervals
through population-based cancer registries (in Denmark,
Italy except Naples, the Netherlands, Norway, Spain,
Sweden, and the United Kingdom) or by active follow-
up (France, Germany, Greece, and Naples), which
involved a combination of methods, including a review
of health insurance records, cancer and pathology reg-
istries, and direct contact with participants and their
next-of-kin.

For the purpose of this study, we included 960 fe-
males from the EPIC cohort including 480 incident
breast cancer cases. Our main criteria for selection of
case/control pairs included: (1) a balanced representa-
tion of the main subtypes of breast cancer, and (2)
representation of recruiting centres. One control
participant was randomly assigned for each patient with
breast cancer from appropriate risk sets consisting of all
cohort participants alive and free of cancer (except for
non-melanoma skin cancer) at the time of diagnosis
(and hence, age) of the index case. Matching criteria
were: centre, length of follow-up, age at blood collection
(3 months relaxed up to 2 years for sets without avail-
able controls), time of blood collection, fasting status,
menopausal status, menstrual cycle day and current use
of contraceptive pill/lhormone replacement therapy.
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Twenty technical replicates were included to compare
inter- and intra-array batch variation. Technical repli-
cates and 38 samples or their matched counterparts
which failed the quality control criteria were excluded
from the analysis leaving 902 participants (451 controls
and 451 cases) (Table ).

2.2. Bisulfite conversion and genome-wide DN A
methylation analysis

The DNA was isolated as per the standard DNA
extraction procedure from the from the buffy coat
samples (Autopure LS, Qiagen). DNA methylome
profiling was carried out using Illumina Infinium
HumanMethylationd50  (HM450) as  previously
described [23].

2.3. Bioinformatics analysis

Data preprocessing and analyses were performed using
R 3.2.3 (https://www.r-project.org/) and Bioconductor
3.2 [24] as described before [23]. DNAm level was
described as a B value, which is a continuous variable
ranging between 0 (no methylation) and 1 (full

Table 1
Characteristics of incident breast cancer and control participants at
baseline (i.e.time of blood collection).

All samples
Controls (%) Cases (%)

Sample size 451 451
Mean methylation (in %) 51.86 51.82
Age (years)

Mean (SD) 52.3 (8.94) 52.3(8.97)

Median 53.4 535
Alcohol consumption (g/d)

Mean(SD) 8.2 (11.82) 10.0 (12.98)
Age at menarche

Mean (SD) 12.9 (1.34) 12.7 (1.59)
BMI

Mean (SD) 25.5 (4.22) 26.0 (4.72)
Physical activity (Cambridge index)

Sedentary 99 (22.0) 121 (26.8)

Moderately sedentary 187 (41.5) 178 (39.5)

Moderately active 76 (16.9) 87 (19.3)

Active 78 (17.3) 62 (13.7)

Missing 11 (24) 3(0.7)
Hormone receptor status

ER'/PR"/Her2* - 85 (18.8)

ER/PR"/Her2™ = 290 (64.3)

ER /PR /Her2™ = 76 (16.9)
Country

Italy 160 (35.5) 160 (35.5)

Spain 27 (6.0) 27 (6.0)

UK 38 (8.4) 38 (8.4)

The Netherlands 66 (14.6) 66 (14.6)

Greece 25 (5.5) 25 (5.5)

Germany 135 (29.9) 135 (29.9)

SD: Standard deviation; ER: oestrogen receptor; PR: progesterone
receptor; Her2: human epidermal growth factor receptor 2; BMI: body
mass index.

methylation). To avoid spurious associations, we
excluded the cross-reactive probes and probes over-
lapping with a known single nucleotide polymorphism
(SNPs) with a minor allele frequency of at least 5% in
the overall population (European ancestry, [25]), leaving
423,066 probes. In any given sample, probes with a
detection P-value (a measure of an individual probe’s
performance) of more than 0.05 were assigned missing
status. If a probe was missing in more than 5% of
samples, it was excluded from all samples. According to
this criterion, we excluded 1483 probes, leaving 421,583
probes available for the analyses. We applied colour bias
correction followed by quantile and beta-mixture
quantile normalisation (BMIQ) to align Type I and
Type II probe distributions [26].

2.4. White blood cell count estimates

Quantile normalised data were used to infer blood cell
proportions. We estimate blood cell counts using two
different software tools. First, Houseman’s estimation
method [27] was used to estimate the proportions of
CD8+ T cells, CD4+ T, natural killer, B cells, and
granulocytes (also known as polymorphonuclear leuco-
cytes). Second, the advanced analysis option of the
epigenetic clock software [4,14] was used to estimate the
percentage of exhausted CD8+ T cells (defined as
CD28-CD45RA-) and the number (count) of naive
CD8+ T cells (defined as CD45RA + CCR7+). We and
others have shown that the estimated blood cell counts
have moderately high correlations with corresponding
flow cytometric measures [27.28]. For example, flow
cytometric measurements correlate strongly with
DNAm-based estimates: r = 0.63 for CD8+ T cells,
r = 0.77 for CD4+ T cells, r = 0.67 for B cell, r = 0.68
for naive CD8+ T cell, r = 0.86 for naive CD4+ T, and
r = 0.49 for exhausted CD8+ T cells [28].

2.5. Global and mean methylation analysis

For the global DNAm analyses, mean methylation of
the DNAm probes (421,583) was calculated for cases
and control samples. Human cancers are characterised
by global hypomethylation and a loci-specific DNA
hypermethylation [29]. We hypothesised that DNA
methylation of probes would vary based on their phys-
ical location. To this end, the probes were classified into
different categories either reflecting their physical loca-
tion in relation to CpG islands (island, shore, shelf and
open sea) or based on a functional criterion (DP: distal
promoter, DS: distal sequence, GB: gene body, IG:
intergenic, and PP: proximal promoter) as previously
described [30]. A CpG shore is defined as the area 2 kb
on either side of the CpG island, and a CpG shelf is
defined as the area 2 kb outside of the CpG shore
[31,32]. While the regions in the genome containing
isolated CpG sites outside CpG islands, shores and
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shelves, that do not have a specific designation are
referred to as open seas [33].

2.6. Epigenetic clock of ageing

The epigenetic clock is a prediction method of chrono-
logical age based on the DNAm levels of 353 CpGs [4].
The predicted (estimated) age resulting from the epige-
netic clock is referred to as ‘DNA methylation age’. In
IEAA, epigenetic age acceleration is defined as the
DNAm age left unexplained by chronological age where
intrinsic denotes a modification to this concept. In addi-
tion to adjusting for chronological age, IEAA also adjusts
the DNAm age estimate for blood cell count estimates,
arriving at a measure that is unaffected by both variation
in chronological age and blood cell composition.

We focussed on IEAA in our blood-based methyl-
ation study as this measure of age acceleration is
significantly correlated with epigenetic age acceleration
in (non-malignant) female breast tissue [9].

Formally, IEAA is defined by regressing DNAm age
on chronological age and seven measures of blood cell
count abundances: naive CD8 T cells, exhausted CD8 T
cells (defined as CD28-CD45R A-), plasma blasts, CD4 T
cells, NK cells, monocytes, granulocytes. IEAA is auto-
matically calculated using the advanced analysis option
of the epigenetic clock software (where IEAA is denoted
as ‘AAHOAdjCellCounts’). A positive or negative value
of IEAA indicates that the woman is either older or
younger than expected based on chronological age at the
time of the blood draw.

2.7. Statistical analysis

For the mean methylation analysis, average methylation
over all probes within each category was calculated and
the odds ratios (per one standard deviation of global
methylation) were estimated by conditional logistic
regression model with case—control status as the outcome
and the epigenome-wide methylation measurement as
continuous predictor adjusting for surrogate variables
(technical batch effects such as sample plate, array chips),
alcohol consumption (g/day) and body mass index (BMI)
as continuous variable.

Odds ratios (ORs) for breast cancer and 95% CIs were
calculated by using logistic regression for IEAA. Initial
analysis was done using unconditional logistic regression
to allow calculation of OR. Multivariate logistic regres-
sion was performed by including known breast cancer
risk factors including alcohol consumption (g/day), full
term pregnancy (ever/never), BMI (as continuous vari-
able and as categorical variable: underweight, normal,
overweight and obese), level of education (none, primary,
technical/profession, secondary, higher education), age at
menarche, Cambridge physical activity index (inactive,
moderately inactive, moderately active and active) strat-
ified by clustering variable. A stratified multivariate

conditional logistic regression analysis based on the
menopausal status was performed using the aforemen-
tioned models.

3. Results
3.1. Baseline characteristics

The baseline characteristics of samples at the time of
recruitment are listed in Table 1. Women were between
26 and 73 years of age with a mean age of 52.3 years for
cases and controls. The majority of breast cancer cases
were hormone receptor (ER and PR) positive (83%)
while 17% of the breast cancers were triple negative
(Table 1). There was a very high correlation between the
intra- and interplate technical replicates (average cor-
relation coefficient r* = 0.98 and 0.97, respectively, data
not shown).

3.2. Hypermethylation of CpG islands is associated with
breast cancer risk

We compared the global mean methylation across
421,583 probes and observed no difference between
prospectively collected cases and matched controls
(51.82% versus 51.86%, P = 0.68). Our analysis showed
that each unit (95% CI/1SD, 1.03—1.40, P = 0.02) in-
crease in methylation at CpG island sites increased the
risk of being a case by 20% (Table 2). While P < 0.05, it
should be noted that the results would be marginally
significant allowing for four subsets (CpG islands, CGI
shores, CGI shelves, and open sea). No change in breast
cancer risk was observed for other regions (shore, shelf
and open sea) (Table 2), nor did we find an association
of individual CpG site or region with breast cancer
status.

Table 2
Association between global methylation and breast cancer risk by CpG
genomic features.

Context # CpGs Std. dev. OR (95% CI)" P value
All CpG sites 421 583 3.45E-04 1.09 (0.94—1.25) 0.21
Islands 130 982 5.87E-04 1.20 (1.03—1.40) 0.02
Open Sea 150 852 4.50E-03 1.49 (0.36—6.24) 0.58
CpG  Shelf 40 948 4.88E-04 0.89 (0.78—1.02) 0.10
context Shore 98 801 5.40E-04 1.00 (0.87—1.16) 0.97

Distal promoter 19 990 5.42E-04 1.06 (0.92—1.21) 0.44
Distal sequence 7828 6.68E-04 0.96 (0.84—1.09) 0.52
Genic  Gene Body 168 460 3.80E-04 1.02 (0.89—1.18) 0.76
context Intergenic 56 903 5.35E-04 1.02 (0.89—1.17) 0.76
Proximal 168 337 5.26E-04 1.15 (0.99—1.34) 0.07
promoter

# Odds ratio and confidence interval were calculated per 1 standard
deviation. Odds ratios were adjusted for body mass index (BMI)
(continuous variable) and daily alcohol intake. OR- Odds ratio, CI:
confidence interval.
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3.3. Postmenopausal breast cancer cases exhibit DNA
methylation age acceleration

Epigenetic age had a strong positive correlation with
chronological age in both case and control samples
(Fig. la). We observed a marginally significant differ-
ence in age acceleration between prospective cases
compared to matched controls (Fig. b, P = 0.05,
Supplementary Fig. 1). Stratified analysis based on time
from blood collection to disease diagnosis revealed that
prospective breast cancers exhibited age acceleration 10
years prior to diagnosis compared to matched control
samples (Fig. Ic, P = 0.01).

A conditional logistic regression model that relates
breast cancer status to IEAA showed that IEAA was
associated (Table 3) with breast cancer status. The re-
sults were not attenuated after adjusting for known
breast cancer factors (Supplementary Table 1). Each
unit increase in IEAA led to 4% increased odds of being
a breast cancer case (OR, 1.04; 95% CI, 1.007—1.076,
P = 0.016) (Table 3). IEAA follows an approximately
normal distribution with mean zero, variance = 28.2,
standard deviation of 5.31. The following quantiles
describe the empirical distribution of IEAA:
minimum = —24.2, maximum 24.4, median = —0.12,
first quartile = —3.0, third quartile = 3.0. Thus, 25% of
women had an IEAA value > 3.
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Fig. 1. Epigenetic clock analysis. a) DNA methylation age (y-axis)
versus chronological age (x-axis). Points correspond to female
subjects. Red indicates breast cancer case, black control. The
dashed line indicates a regression line, b) epigenetic age accelera-
tion versus breast cancer status. Each bar plot depicts the mean
value, standard deviation and reports a non-parametric group
comparison test p-value (Wilcoxon test), ¢) epigenetic age accel-
eration versus breast cancer status (developed within 10 years post
blood draw). Each bar plot depicts the mean value, standard
deviation and reports a non-parametric group comparison test p-
value (Wilcoxon test). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3
Logistic regression analysis of IEAA for incident breast cancer status.

Multivariate analysis”
OR (95% CI)

Univariate analysis
OR (95% CI)

All samples

IEAA 1.04 (1.007—1.075) 1.04 (1.007—1.076)
Premenopausal samples

IEAA 1.00 (0.9572—1.06) 1.00 (0.9510—1.056)
Postmenopausal samples

IEAA 1.06 (1.019—1.11) 1.07 (1.020—1.11)

OR: Odds Ratio; CI: Confidence Interval; IEAA: Intrinsic Epigenetic
Age Acceleration.

* Odds ratios were adjusted for physical activity (inactive, moder-
ately inactive, moderately active and active).

None of the blood cell count measures were associ-
ated with disease status in prediagnostic blood samples
(Supplementary Fig. 2). Interestingly, high physical ac-
tivity was associated with decreased odds of being a
breast cancer case (Supplementary Table 1).

A recent study demonstrated that menopause has a
weak but statistically significant effect on epigenetic age
acceleration. Further, menopause has been known to
accelerate age-related diseases including breast cancer
[34.35]. To adjust for menopausal status, we evaluated
the association between IEAA and breast cancer in
separate strata defined by menopausal status (premen-
opausal and postmenopausal). The baseline character-
istics of premenopausal and postmenopausal breast
samples are shown in Supplementary Table 2. We
observed a positive correlation between epigenetic and
chronological age in postmenopausal samples (Fig. 2a).
Stratified analysis of postmenopausal breast cancers
based on the lead-time between blood collection and
cancer diagnosis revealed that breast cancers had a
higher IEAA compared to non-cancer samples (Fig. 2b,
Supplementary Fig. 3).

A very high value of IEAA = 10 is associated with a
doubling of odds of developing postmenopausal breast
cancer (OR = 1.97 (1.22—2.83) calculated as 1.07'°
from our multivariate logistic regression model Table 3).
Twenty-five percent of all women exhibit an age accel-
eration larger than 3 which is associated with 22% in-
crease in the odds of developing postmenopausal breast
cancer (OR = 1.22 (1.06—1.37) calculated as 1.07°).

We found that breast cancer that developed within 10
years from date of recruitment had a stronger associa-
tion with IEAA (Fig. 2¢). However, the results of this
secondary analysis should be interpreted with caution
due to an inflated false positive rate resulting from
multiple comparisons. We did not observe such associ-
ations in premenopausal breast samples (Supplementary
Figs. 4, 5). Similar to our findings in all breast samples,
high physical activity was associated with decreased
odds of being a breast cancer case in postmenopausal
women (Supplementary Table 3).
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Fig. 2. Epigenetic clock analysis for postmenopausal samples.
a) DNA methylation age (y-axis) versus chronological age (x-axis).
Points correspond to female subjects. Red indicates breast cancer
case, black control. The dashed line indicates a regression line; b)
epigenetic age acceleration versus breast cancer status. Each bar
plot depicts the mean value, standard deviation and reports a non-
parametric group comparison test p-value (Wilcoxon test); c¢)
epigenetic age acceleration versus breast cancer status (developed
within 10 years post blood draw). Each bar plot depicts the mean
value, standard deviation, and reports a non-parametric group
comparison test p-value (Wilcoxon test). (For interpretation of the
references to colour in this figure legend, the reader is referred to
the web version of this article.)

Interestingly, we observed a highly significant asso-
ciation between IEAA and incident postmenopausal
breast cancers (OR, 1.07; 95% CI, 1.020—I1.11,
P = 0.003). By contrast, no significant association could
be observed for incident premenopausal breast cancers
(OR, 1.00; 95% CI, 0.9510—1.056, P = 0.94) (Table 3).

4. Discussion

Using a rigorous and large-scale nested prospective
case—control study, we demonstrate that: (1) IEAA
in blood increases the odds of developing post-
menopausal breast cancers and (2) genome-wide
hypermethylation in CpG islands is associated with
incident breast cancer cases. While several articles have
studied blood methylation data versus breast cancer risk
[36—39], it appears that ours is the first study to detect a
weak but significant association of IEAA with breast
cancer susceptibility. Our study stands out in terms of its
large sample size, its use of a robust epigenome wide
technology (Illumina 450K array), the careful matching
of breast cancer cases with controls in a prospective
case—control study, and its use of a powerful epigenetic
biomarker of ageing, which is independent of blood cell
counts (IEAA).

Our finding regarding the association between global
CpG island methylation levels and breast cancer risk is
congruent with the findings from our earlier retrospective

study on breast cancer [39] and supports the notion that
regulatory regions of the genome are often hyper-
methylated in cancer cells [29]. It is noteworthy that we
observed CpG island hypermethylation in blood tissue
samples of incident breast cancer patients. Several
epidemiological case—control studies have reported
global genomic hypomethylation in peripheral blood of
cancer patients, suggesting a systemic effect of hypo-
methylation on disease predisposition [40.41]. In addi-
tion, two recent studies reported a lower global
methylation levels in prospectively collected blood sam-
ples from breast cancer cases compared to controls
[38.42]. However, we did not find any change in global
DNAm levels between cases and controls. These dis-
crepancies may be due to technical and biological varia-
tions attributable to the low power of the studies.

Epigenetic changes are ubiquitous in primary breast
cancers although the role of deregulation of the epi-
genome is largely unknown. It has been suggested that a
gradual accumulation of methylation changes (‘epige-
netic drift’) may occur through stochastic events,
resulting in clonal expansion of the stem/progenitor
cells, and that this process may contribute to the age-
associated increase in risk of developing breast cancer
[43—45]. DNAm age is highly correlated to chronolog-
ical age across sorted cell types (CD4 T cells, monocytes,
B cells, glial cells, neurons), complex tissues (e.g. blood)
and organs (brain, breast, kidney, liver, lung) [4]. Our
findings were consistent with the previous studies in
different tissues [4,16]. The epigenetic clock derived
from the DNAm age is robust with respect to the batch
effects and can be applied to all Illumina array plat-
forms: the EPIC chip (850K), the Illumina 450K array
and the 27K array [4] and possibly measures a cell
intrinsic and tissue independent epigenetic drift [46]. For
blood derived DNA measured on the Illumina 450K
array, the epigenetic clock algorithm provides not only
several measures of age acceleration but also estimates
of blood cell counts. One of the major concerns
regarding age-associated DNAm signatures is the in-
fluence of tissue’s cellular composition which may alter
with age. We found no differences in leucocyte sub-
populations between cases and controls. By definition,
our intrinsic measure of epigenetic age acceleration
(IEAA) is not confounded by changes in the proportion
of blood cell counts (Methods). We focussed on IEAA
as it has been shown to be correlated with epigenetic age
acceleration in breast tissue [9]. Future research could
investigate whether epigenetic age acceleration of breast
tissue is predictive of breast cancer.

We can only speculate when it comes to explaining
why IEAA was only predictive of postmenopausal
breast cancer but not of premenopausal breast cancer.
Breast cancers developing in postmenopausal women
are influenced by specific polymorphisms in endogenous
steroid hormone metabolic pathways and exogenous
administration of hormones at menopause (hormone
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replacement therapy). Our observed age acceleration in
postmenopausal breast cancers might reflect differences
in hormone exposure. In this context, it is noteworthy
that both natural and surgical menopause are associated
with an increase in intrinsic age acceleration [18]. In
addition, age-associated compromised detoxification,
DNA repair mechanisms and immune surveillance may
add to the endogenous factors which could lead to
postmenopausal breast cancer development [1]. It is
unlikely that smoking and BMI confound the relation-
ship between epigenetic age and breast cancer risk
because : (1) BMI and smoking have only a very weak
effect on the epigenetic age acceleration of blood tissue
(correlation r < 0.10) [16,20], and (2) we could detect
accelerated ageing effects in multivariate regression
models that adjusted for these potential confounders.
Our results based on a prospective study cohort points
to a higher rate of ageing in the blood samples from
individuals who develop breast cancer compared to the
controls. While the results from our epigenetic age
analysis are biologically meaningful, the association
between DNAm age and disease risk is probably too
weak for prognostic purposes.

In the present study, we demonstrated that a surro-
gate tissue (blood) captures accelerated ageing effects
and relates to an effector (breast cancer) of ageing. We
have demonstrated that IEAA was associated with
postmenopausal breast cancer susceptibility and identi-
fied potential epigenetics-based biomarkers for risk
stratification. Because menopause has been known to
accelerate age-related diseases including cancer, our
finding also suggest potential underlying mechanism and
provides biological plausibility to the association be-
tween menopause and cancer risk. Further research
aimed at understanding epigenome deregulation in
cancer causation, risk stratification and the mechanism
underlying accelerated epigenetic clock is warranted.
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Age accelation and aging

Epigenetic age accelaration

30 40 50 60 70

Chronological age

Supplementary Figure 1: Epigenetic age accelaration of breast samples.

Epigenetic age accelaration (IEAA) (Y-aixs) versus chronological age. Points correspond to
female subjects. Red colored circles indicates breast cancer case while the black circles
represent non-case samples. The solid lines indicates a regression lines for cases (in red) and

non-case samples (in black).
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Supplementary Figure 2: Distribution of inferred leucocyte cell subpopulation. Proportion of
leukocyte subtypes derived from DNA methylation data. Inferred data were plotted by sample
groups (breast cancer cases and controls) where X-axis shows leucocyte subtypes and Y-axis

shows proportion of estimated leucocytes.
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Supplementary Figure 3: Epigenetic age accelaration of postmenopausal breast
samples.

Epigenetic age accelaration (IEAA) (Y-aixs) versus chronological age. Points
correspond to female subjects. Red colored circles indicates breast cancer case
while the black circles represent non-case samples. The solid lines indicates a

regression lines for cases (in red) and non-case samples (in black)..
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Supplementary Figure 4: Epigenetic clock analysis for premenopausal breast samples.
A) DNAm age (Y-aixs) versus chronological age. Points correspond to female
subjects. Red colored circles indicates breast cancer case while the black circles
represent non-case samples. The dashed line indicates a regression line. B) Epigenetic
age accelaration versus breast cancer status. Each bar plot depicts the mean value,
standard deviation, and reports a non-parametric group test p- value (Wilcoxon test).
C) Epigenetic age accelaration versus breast cancer status (developed within 10 years
post blood draw). Each bar plot depicts the mean value, standard deviation, and

reports a non-parametric group comparison test p- value (Wilcoxon test).
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Supplementary Figure 5: Epigenetic age accelaration of premenopausal breast
samples. Epigenetic age accelaration (IEAA) (Y-aixs) versus chronological age. Points
correspond to female subjects. Red colored circles indicates breast cancer case while
the black circles represent non-case samples. The solid lines indicates a regression

lines for cases (in red) and non-case samples(in black).
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Supplementary Table 1. Conditional logistic regression model of epigenetic age

acceleration in all samples

OR (95% CI) P value
IEAA 1.05 (1.01-1.09) 0.01
Alcohol at the time of recruitment 1.01 (1.00-1.02) 0.06
Level of education (Ref. No education)
Primary 1.53 (0.63-3.69) 0.34
Technical/professional 1.14 (0.44-2.97) 0.79
Secondary 1.92 (0.72-5.08) 0.19
Higher education 1.69 (0.63-4.51) 0.29
Full term pregnancy (Ever/never) 0.96 (0.66-1.41) 0.85
Physical activity (Cambridge index, Ref.
Moderately inactive 0.71 (0.48-1.06) 0.10
Moderately active 0.77 (0.48-1.24) 0.29
Active 0.54 (0.33-0.91) 0.02
Age at menarche 0.93 (0.85-1.02) 0.14
BMI (Categorical, Ref. Normal)
Underweight 0.61 (0.14-2.68) 0.51
Overweight 1.01 (0.72-1.42) 0.95
Obese 1.15 (0.75-1.78) 0.52

Conditional logistic regression was performed using known breast cancer risk factors

highlighted in bold
IEAA: Intrinsic Epigenetic Age Acceleration

BMI: Body Mass Index

109



Supplementary Table 2.

postmenopausal samples

Demographic and lifestyle factor details of pre and

Premenopausal samples

Postmenopausal samples

Controls (%) Cases (%) Controls (%) Cases (%)
Sample size 180 180 259 259
Demographic and lifestyle factors
Age (years)

Mean (SD) | 43.6 (4.73) 43.6 (4.74) 58.5 (5.50) 58.5 (5.50)

Median 43.5 43.4 58.3 58.3
Smoking

Never 90 (50.0%) 85 (47.3%) 158 (61.0%) 171 (66.1%)
Former 37 (20.5%) 46 (25.5%) 50 (19.3%) 47 (18.1%)
Current 51 (28.4%) 49 (27.2%) 50 (19.3%) 40 (15.4%)

Not known 2 (1.1%) - 1 (0.4%) 1 (0.4%)

Alcohol

Mean(SD) 8.1(11.06) 10.3 (12.12) 8.1 (12.15) 9.5 (13.55)

Median 4.4 5.3 3.0 4.0
Age at

Mean (SD) 12.9 (1.34) 12.7 (1.59) 13.3 (1.64) 13.3 (1.71)

Median 13.0 13.0 13.0 13.0
BMI

Mean (SD) | 24.7 (4.14) 24.8 (4.12) 26.1 (4.25) 26.9 (4.95)

Median 23.88 23.98 25.56 25.97
IEAA
Mean (SD) | -0.042 (5.39) 0.079 (5.67) -0.47 (5.16) 0.60 (5.19)

IEAA: Intrinsic Epigenetic Age Acceleration
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Supplementary Table 3: Conditional logistic regression model of epigenetic age

acceleration in postmenopausal samples

OR (95% Cl) P value

IEAA 1.08 (1.03-1.13) 0.003
Alcohol at the time of recruitment 1.01 (0.99-1.02) 0.424
Level of education (Ref. No education)

Primary 2.94 (0.75-11.46) 0.121
Technical/professional 1.46 (0.34-6.20) 0.609
Secondary 2.51(0.57-11.13)  0.226
Higher education 2.98 (0.67-13.20) 0.151
Full term pregnancy (Ever/never) 0.94 (0.56-1.58) 0.827
Physical activity (Cambridge index, Ref.

Moderately inactive 0.78 (0.47-1.29) 0.334
Moderately active 0.51 (0.26-0.99) 0.046
Active 0.39 (0.19-0.80) 0.011
Age at menarche 0.98 (0.86-1.11) 0.759
BMI (Categorical, Ref. Normal)

Underweight 0.61 (0.05-7.77) 0.707
Overweight 1.11 (0.71-1.74) 0.653
Obese 1.08 (0.62-1.88) 0.791

Conditional logistic regression was performed using known breast cancer risk factors
highlighted in bold
IEAA: Intrinsic Epigenetic Age Acceleration

BMI: Body Mass Index



CONCLUSION AND PERSPECTIVES

Conclusion

Recent technical progress in the acquisition of biological features generated an exponential
growth of the amount of data expressing a wealth of biological parameters. For example,
methylation levels of 27K CpG sites were first measured in 2008 via the lllumina Infinium
HumanMethylation27 BeadChip platform. Then in 2011, a new array was developed to
target over 450K CpG sites. Currently, since 2015, the Illlumina MethylationEPIC BeadChip
array covers over 850K sites. We can easily imagine that these numbers will further increase
in the near future. To analyze high-throughput datasets, there will be progressively

demanding needs of statistical tools to fully exploit the potential of these data.

In this thesis, the statistical tools used for the analysis of epigenetics data were instrumental
to handle the high dimensionality and complexity of DNA methylation data. The focus
embraced an evaluation of different phases of the statistical process. First, a methodological
work to explore the pre-processing step of DNA methylation data was implemented. Its aim
was to first identify the various sources of systematic and random variability, related to
sample treatment, laboratory, as well as biological, and then to screen among the most
popular normalization techniques. The PC-PR2 method proved a useful tool to explore the
contribution of an a priori list of factors in large dimension datasets, such as epigenetics
data. For the normalization phase, the SVA technique produced more conservative results
than the two other methods investigated, i.e. Combat and a method based on residuals
computation, possibly in light of the fact that SVA makes use of the notion of surrogate
variables, thus correcting for what is known to affect variation, but also involving unknown

sources of variability.

Three statistical methods were described in this thesis to analyze methylation data in order
to investigate the association between dietary folate, alcohol intake and DNA methylation.
The site-specific analysis, where single CpG sites were independently related to, in turn,
alcohol and folate, served as a basis to go beyond ‘univariate’ evaluations of the
relationships. The DMRs and FL analyses provided evidence that specific regions of CpG
sites were associated with lifestyle factors using the hypothesis that neighboring features
may share similar information. DMRs and FL analyses indicated that dietary folate and
alcohol intake might be associated with alteration of DNA methylation in localized regions,
some of which are related to genes known to act as tumor suppressor. These results were in
line with the hypothesis that epigenetic mechanisms might have a role in the association

between folate and alcohol with BC. A fourth study investigating the relationship between
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global methylation and the risk of BC was also presented, and showed that overall global
methylation was not associated with BC risk, whereas a positive association was observed
in CpG islands. It is important to stress that the associations observed in this thesis should
be interpreted with caution, as our findings need confirmation in other study populations in

similar research settings.

Perspectives

Many environmental exposure including smoking, obesity and specific dietary factors are
suspected to contribute to methylation changes, which may entail the development of a
range of chronic diseases such as cardiovascular disease, type-l diabetes and several
cancer types, including colorectal and lung. By addressing the high dimensionality and
complexity of DNA methylation, statistical tools introduced in this thesis may prove useful for
future epigenetics studies focusing on the relationship between lifestyle exposures, DNA

methylation and the occurrence of health outcomes.

Among fatty acids profiles, positive associations have been recently observed between
plasma palmitoleic acid, as a biomarker of endogenous lipogenesis, and BC risk, and also
between industrial trans-fatty acids and ER-negative breast tumours (62). Fatty acids are
suspected to alter BC risk through an hypo-methylation of specific CpG sites, possibly
resulting from an alteration of the activities of the TET proteins and a reduced DNA

methyltransferases activity (90).

A study aiming at investigating the association between biomarkers of endogenous
lipogenesis, DNA methylation and BC is currently ongoing. The rationale of this investigation
is to use DMR analysis to identify CpG regions showing altered methylation levels altered by
specific fatty acid biomarkers. In addition, the association between methylation levels and
BC risk will be assessed in each CpG region, by summarizing methylation intensity of the
CpG sites belonging to the region by reduction dimension techniques, and then relating the
resulting components (or factors) to the risk of BC. Analyses for palmitoleic acid were
performed, while analyses for industrial trans-fatty acids are currently ongoing. Plasma
palmitoleic acid was associated with methylation changes in 48 DMRs (annex 1).
Methylation levels from CpG sites in 11 DMRs were significantly associated with BC risk

(annex 2).

Statistical tools presented in this thesis may also be extended to other types of -omics data.
Some of the statistical methods may need to be adapted to suite the specific setting of large
dimension data. For example, as some of the -omics data are not ordered, analyses

involving the concept of physical proximity of features, such DMR and FL regression, may
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not find a straightforward application. A potential extension of DMR analysis may be adapted
to identify cluster of features associated with an exposure, by using weights based on
correlation between features instead of weights based on physical distance between CpG
sites. For FL regression, a pre-step would be needed to order features, possibly using
hierarchical clustering methods.
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Annex 2. DMRs significantly associated with BC risk.

DMR characteristics Model 1 Model 2’
# Associated genes Sites® S_itess #pc* !’C 5
sign sign
1 PM20D1 9 0 1 PCA1
3 CAT 10 1 3 0
6 TNXB 27 4 12 PC6
9 L3MBTL 24 1 12 PC7
14 PCDHGA cluster ° 8 1 3 PC2
15 GPR75,L0C100302652 14 0 3 PC1
16 7 1 3 0
19 6 4 4 P
20 PPT2 17 3 6 PC6
22 WSCD1 3 1 2 0
30 FAM171A2 5 2 1 0
34 FAMS38A 6 2 4 PC4
35 ZNF232 3 1 2 0

' BC risk was regressed on methylation levels of all the CpG sites included in the DMRs for model 1
and on PC scores keeping 80% of information for model 2. Adjustment covariates were alcohol intake,
BMI and physical activity;

2 Number of sites located in DMRs significant for palmitoleic acid;

® Number of CpG sites significantly associate with BC risk;

* Number of principal components (PC) needed to keep 80% of information in PCA,;
° Principal components significantly associate with BC risk using model 2;

® PCDHGA cluster of genes including : PCDHGA4, PCDHGA11, PCDHGA12, PCDHGA9, PCDHGA1,

PCDHGB1, PCDHGB6, PCDHGB3, PCDHGB7, PCDHGAG, PCDHGAS8, PCDHGA10, PCDHGAS,
PCDHGB4, PCDHGA3, PCDHGA2, PCDHGA7, PCDHGB2, PCDHGBS.
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