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Résumé

Trois symétries discrètes: C, P, T sont importantes en Physique Subatomique; leur
produit combiné étant supposé être une symétrie exacte. La symètrie CPT est con-
sidérée comme la pierre angulaire de la Physique des Particules. Étant donné que C
et P sont violées, il est important de tester la violation de la symétrie T. L’objet de
cette thèse, y compris l’ensemble des thèmes étudiés, est de proposer d’une manière
directe une nouvelle stratégie pour tester la symétrie de renversement du temps
(T). Le collisioneur LHC nous donne l’opportunité de le faire grâce à l’énorme
production de baryons beaux. La désintégration Λ0

b → (Λ+
c → Λπ)(W ∗ → µ−νµ) ,

qui est considérée comme une source d’observables impaires par la symétrie T est
utilisée. Une étude exhaustive de la Polarisation du Λ0

b et des résonances issues
du baryon beau est effectuée. En premier lieu, le cadre théorique, concernant les
symétries et leur rôle, est présenté. Des progrès significatifs ont été réalisés dans le
développement d’un modèle cinématique à partir duquel sont calculées les distri-
butions angulaires des particules issues des différentes désintegrations. Une étude
détaillée de la reconstruction et de la sélection des événements est exposée ainsi
que la méthodologie suivie pour extraire les polarisations à partir des différentes
distributions angulaires.
Cette étude est réalisée en utilisant les données 2011-2012 enregistrées par le
détecteur LHCb lors de la première phase du LHC.
Mots-Clés: Cinématique de désintégration. LHCb. Violation de T. Violation de
CP. Polarisation, Désintégrations en cascade.

Abstract

Three discrete symmetries: C,P,T are important in subatomic Physics, their com-
bination (CPT) is considered as the corner stone of investigation in Particle Physics
and many other fields. Since C and P are violated, it is important to investigate
the direct violation of the T symmetry. This thesis, with all the discussed top-
ics, aims to propose in a direct way a new strategy to test the symmetry of time
reversal (T). The Collider LHC gives us the opportunity to do that throughout
the enormous production of the beauty baryons. Here, the emphasis will be put
on the decay Λ0

b → (Λ+
c → Λπ)(W ∗ → µ−νµ), that is considered as a source of

observables that are odd under T symmetry. A special attention is paid to the po-
larization of Λ0

b and the resonating particles coming from it. First, the theoretical
framework concerning the symmetries and their role in physics are presented. Sig-
nificant progress has been achieved in the development of a kinematic framework
from which the angular distributions of the particles involved in the decays are
calculated. A detailed study of the reconstruction and selection of the events have
been exposed as well as the methodology used to extract the different polarizations
from the angular distribution fits.
This study is performed using the 2011-2012 data recorded by the LHCb detector
during the first run of the LHC.
Key Words : Decay Kinematics. LHCb. T violation. CP violation. Polarization.
Cascade Decays.
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Introduction

Three discrete symmetries: Charge Conjugation C, Parity P, and the Time Re-
versal T have played an important role in particle physics and especially in the
Standard Model. After the violation of both C and P symmetries, the scientists
were shocked and started searching for new observable that restore the broken
symmetry, they come to the famous CP symmetry (which is the product of C
and P). In particle physics, CP-symmetry states that the laws of physics should
be the same if a particle is interchanged with its antiparticle (C symmetry), and
then its spatial coordinates are inverted (”mirror” or P symmetry). However, their
happiness didn’t last long, since in 1964, the CP violation has been discovered in
the decays of neutral kaons and resulted in the Nobel Prize in Physics in 1980 for
its discoverers James Cronin and Val Fitch.

It plays an important role both in the attempts in cosmology to explain the domi-
nance of matter over antimatter in the present Universe, and in the study of weak
interactions in particle physics.

CPT symmetry is a fundamental symmetry of physical laws under the simultane-
ous transformations of charge conjugation C, parity transformation P, and time
reversal T. CPT is the only combination of C, P, and T that’s observed to be
an exact symmetry of nature at the fundamental level. The CPT theorem says
that CPT symmetry holds for all physical phenomena, or more precisely, that any
Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must
have CPT symmetry.

The CPT theorem for the first time appeared ,implicitly, in the Julian Schwinger’s
work in 1951 to prove the connection between spin and statistics [1]. In 1954, more
explicit proofs were derived by Gerhart Luders and Wolfgang Pauli, so this theorem
is sometimes known as the Luders–Pauli theorem [2][3]. During the same time,
but independently, this theorem was also proved by John Stewart Bell[4]. All these
proofs are based on the principle of Lorentz invariance and the principle of locality
in the interaction of quantum fields.

The implication of CPT symmetry is that a ”mirror-image” of the universe — with
all objects having their positions reflected by an imaginary plane (corresponding to
a parity inversion), all spin reversed (corresponding to a time inversion) and with
all matter replaced by antimatter (corresponding to a charge inversion)— would
evolve under exactly the same physical laws. The CPT transformation turns our
universe into its ”mirror image” and vice versa. CPT symmetry is recognized to
be a fundamental property of physical laws. The main consequence is that X and
X̄ have the same mass.
N.B: |X,~r, ~p, ~s, q > −→ CPT |X̄,−~r, ~p,−~s,−q >, where ~r, ~p, ~s, q are the position,
momentum, spin vectors and the charge of the particles respectively.

In order to preserve this symmetry, every violation of the combined symmetry of
two of its components (such as CP) must have a corresponding violation in the
third component (such as T); in fact, mathematically, these are the same thing.
Thus violations in T symmetry are often referred to as CP violations.

In 2002 Oscar Greenberg proved that CPT violation could implies the breaking of
Lorentz symmetry [5]. This implies that any study of CPT violation includes also
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Lorentz violation. The overwhelming majority of experimental searches for Lorentz
violation have yielded negative results. However, the experiments in the CERN
(CPLEAR) ([6] [7] [8]) and FERMILAB, in 1990, have given a clear evidence on
the possibility to test the direct T independently away from the CP.
We are going in this thesis to test the discrete Time Reversal Symmetry T
violation in the production of the beauty and charmed baryons, especially the
Λ0
b → Λ+

c µ
−ν by searching for the T ODD observables. If the value of the

observable is different from zero, this could reveal a sign for the time reversal
violation.

This study is done with the help of the LHCb experiment at the CERN. We make
benefit of the data taken in 2011 (7 TeV) and 2012 (8 TeV) during the first run
in order to test the T violation. The first chapter gives a general ideas on the
discrete symmetries (C, P, T) , how observables behave with each symmetry and
the current status for each one. The last lines in this chapter are dedicated for the
Time Reversal Symmetry, and the experiments that shed light on the violation of
this symmetry.
The second chapter is reserved for the LHCb detector in which we scan into its
different parts showing the importance and the advantages of choosing this detector
in our study. Moreover, an overview of the LHCb software, data taking and their
flow is also presented. The chapter 3 describes the kinematical studies performed,
and a detailed presentation for the phenomenology of the Λ0

b → Λ+
c µ
−ν decay.

The polarization formalism is presented and the angular distributions are stated
allowing the introduction of the T-odd observables. Chapters 4 and 5 includes
reconstruction of the events, special selections, comparison between Monte-Carlo
and data, unfolding and finally correcting by the global efficiency of the LHCb
detector.
The last part is dedicated for final fit to the data and interpretation of the results
in which we extract the polarization vector of the different particles studied that
are directly related to the Time Reversal Violation.
Finally, a general conclusion and our perspectives are stated.
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In physics, a system is said to be invariant (or preserves symmetry) if its physical
features are preserved or remains unchanged under some transformations.

A family of particular transformations could be continuous or discrete, and
thus give rise to two types of symmetries: Continuous symmetries and discrete
symmetries. With the development of quantum mechanics, in the 1920, symmetry
principles came to play an even more fundamental role. In the latter half of the
20th century symmetry has been the most dominant concept in the exploration
and formulation of the fundamental laws of physics. Today it serves as a guiding
principle in the search for further unification and progress of the physical fields.

In this chapter, we are going to define symmetries in both classical and quantum
mechanics.After that, we will present the different types of the discrete symmetries,
their usage and finally the search for the discrete time reversal violation.

1.1 Symmetries in Classical Mechanics

A symmetry of a classical system is a transformation of the dynamical variable
~x(t), ~x(t) ⇒ R[ ~x (t)], that leaves the action -denoted by S =

∫
Ldt- unchanged.

If follows that the classical equations of motion are invariant under the symmetry
transformation.The symmetry can then be used to derive new solutions. Thus, if
the laws of motion are invariant under spatial rotations, and if ~x(t) is a solution
of the equations of motion, say an orbit of the earth around the sun, then the
spatially rotated ~x′(t) = R[ ~x (t)], is also a solution. This is interesting and useful.
Noether Theorem
Associated with each continuous symmetry is a conserved quantity, i.e. there
is a physical quantity associated with the system which does not change if the
system is symmetric under a certain transformation. This result is known as
Noether’s Theorem and is named after the German Physicist who discovered it,
Emmy Noether. In other words one can list Noether Theorem as follows:

• Invariance under time reversal ⇔ Conservation of energy.

• Invariance under space translation ⇔ Conservation of Linear momentum.

• Invariance under space rotation ⇔ Conservation of the angular momentum.

1.2 Symmetries in Quantum Mechanics

In quantum theory, invariance principles permit even further reaching conclusions
than in classical mechanics. In quantum mechanics the state of a physical system
is described by a ray in a Hilbert space, |Ψ〉. A symmetry transformation gives
rise to a linear operator, R, that acts on these states and transforms them to
new states. Just as in classical physics the symmetry can be used to generate
new allowed states of the system. However, in quantum mechanics there is a new
and powerful twist due to the linearity of the symmetry transformation and the
superposition principle. Thus if |Ψ〉 is an allowed state then so is R|Ψ〉, where R is
the operator in the Hilbert space corresponding to the symmetry transformation
R. So far this is similar to classical mechanics. However, we can now superpose
these states, i.e., construct a new allowed state: |Ψ〉 + R|Ψ〉, which is not the case
in the classical mechanics.

Consider a transformation operator R ,being independent of time and linear
(R|αΨ〉 = α|Ψ〉),applied on the state vector |ψ〉, the new vector state is :

|Ψ̃(t)〉 = R|Ψ(t)〉
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The evolution of the state |Ψ̃(t)〉 in time is given by the Schrödinger equation:

HR|Ψ(t)〉 = H|Ψ̃(t)〉

= i~
∂|Ψ̃(t)〉
∂t

= i~
∂R|Ψ(t)〉

∂t

= Ri~
∂|Ψ(t)〉
∂t

= RH|Ψ(t)〉 (1.1)

The last equation shows that the operator R commutes with H : HR = RH
but never forget that R doesn’t need to be hermitian, but on the contrary it must
be unitary R†R = 1. This could be achieved by imposing the following condition:

〈Ψ̃|Ψ̃〉 = 〈Ψ|Ψ〉

1.3 Discrete Symmetries

In this section we are going to study three types of discrete symmetries: the parity,
the charge conjugation and the time reversal.

1.3.1 Charge Conjugation

Definition

In physics, the C parity or charge parity is a multiplicative quantum number
of some particles that describes their behavior under the symmetry operation of
charge conjugation.
Charge conjugation changes the sign of all quantum charges (that is, additive
quantum numbers), including the electrical charge, baryon number and lepton
number, and the flavor charges like: strangeness, charm, beauty, topness and
Isospin (I3). In contrast, it doesn’t affect the mass, linear momentum or spin of a
particle.

Formalism

Consider an operation C that transforms a particle into its antiparticle:

C|ψ〉 = |ψ̄〉 (1.2)

The projection of the states on it self ( it is supposed that C doesn’t change the
mass), is given by:

1 = 〈ψ|ψ〉 = 〈ψ̄|ψ̄〉 = 〈ψ|C†C|ψ〉 (1.3)

From Dirac equation, C is an unitary operator and also hermitian, because its
eigenvalues are ±1,

CC† = 1 (1.4)

By applying the C operator twice on the state |ψ〉:

C2|ψ〉 = C|ψ̄〉 = |ψ〉 (1.5)

we see that C2=1 and C=C−1. Putting all this together, we see that

C = C† = C−1

which means that the charge conjugation operator is Hermitian and therefore a
physically observable quantity.
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Eigenvalues

For the eigenstates of charge conjugation,

C|ψ〉 = ηC |ψ〉 (1.6)

As with parity transformations, applying C twice must leave the particle’s state
unchanged,

C2|ψ〉 = ηCC|ψ〉 = η2
C |ψ〉 = |ψ〉 (1.7)

this means that the eigenvalues of the charge operator are ηC = ±1, the so-called
C-parity or charge parity of the particle.

Multiparticle Systems

For a system of free particles, the C parity is the product of the C parties for each
particle-antiparticle system. we have two cases:

• Bosons : There is an additional component due to the orbital angular mo-
mentum. Due to the angular part of the spatial wave function there will be
a contribution by a phase factor of (−1)L, where L is the angular momentum
quantum number associated with L.

C|π+π−〉 = (−1)L|π+π−〉 (1.8)

• Fermions: Two extra factors appears one comes from the spin part of the wave
function, and the second from the exchange of a fermion by its antifermion.

C|ff̄〉 = (−1)L(−1)S+1(−1)|ff̄〉 = (−1)L+S|ff̄〉 (1.9)

1.3.2 Parity

Definition

In quantum physics, a parity transformation is the flip in the sign of one spatial
coordinate (~r −→ −~r). In three dimensions, it is also commonly described by the
simultaneous flip in the sign of all three spatial coordinates:

P :

 x
y
z

 =⇒

 −x−y
−z


It can also be thought of as a test for chirality of a physical phenomenon, in
that performing a parity inversion transforms a chiral phenomenon into its mirror
image. A parity transformation on something achiral, on the other hand, can be
viewed as an identity transformation. All fundamental interactions of elementary
particles are symmetric under parity, except for the weak interaction, which is
sensitive to chirality and thus provides a handle for probing it, elusive as it is
in the midst of stronger interactions. In interactions which are symmetric under
parity, such as electromagnetism in atomic and molecular physics, parity serves as
a powerful controlling principle underlying quantum transitions.

Possible Eigenvalues

In quantum mechanics, space-time transformations act on quantum states (Wigner
theorem). The parity transformation P is a unitary operator acting on states
|ψ(~r, t)〉 as follows:

P |ψ(~r, t)〉 = ei
φ
2 |ψ(−~r, t)〉
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One must then have P 2ψ(~r, t)〉 = eiφ|ψ(−~r, t)〉, since an overall phase is un-
observable (φ is an arbitrary phase). The operator P 2, which reverses the parity
of a state twice, leaves the space-time invariant, and so is an internal symmetry
which rotates its eigenstates by phases eiφ. If P 2 is an element eiφ of a continuous

U(1) symmetry group of phase rotations, then e−i
φ
2 is part of this U(1) and so

is also a symmetry. In particular, we can define P ′ = P e−i
φ
2 , which is also a

symmetry, and so we can choose to call P ′ our parity operator, instead of P . Note
that P ′2= 1 and so P ′ has eigenvalues ±1.

Effect of Parity Transformation on some Observables

Here are some quantities that are affected by the parity operator Tab.(1.1):

observable P(observable)
t t
~r -~r
~p -~p
~L ~L
~s ~s

Table 1.1: Effect of Parity Transformation on some Observables.

Orbital Parity

The spherical harmonics have well defined parity in the sense that they are either
even or odd with respect to reflection about the origin. Reflection about the
origin is represented by the operator P |ψ(~r, t)〉 = |ψ(−~r, t)〉. For the spherical
angles, {θ, φ} this corresponds to the replacement {π − θ, π + φ}. The associated
Legendre polynomials gives (−1)l+m, and from the exponential function we have
(−1)m, giving -together for the spherical harmonics- a parity of (−1)l:

Y m
` (θ, φ)→ Y m

` (π − θ, π + φ) = (−1)`Y m
` (θ, φ)

This remains true for spherical harmonics in higher dimensions: applying a point
reflection to a spherical harmonic of degree (l) changes the sign by a factor of
(−1)l.
This means that the orbital angular momentum determines the orbital parity .
We can classify them into two categories:

• Even parity : l = 0,2,4,....etc

• Odd parity : l = 1,3,5,.....etc

Intrensic Parity of Particles

We can assign an intrinsic parity to each particle as long as nature preserves parity.
Weak interactions don’t conserve parity, but one can still assign a parity to any
hadron by examining the strong interaction reaction that produces it, or through
strong decays.

1.3.3 Time Symmetry

In theoretical physics, T -symmetry is a symmetry of physical laws under the time
reversal transformation.

T : t→ −t
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Lets start from Schrödinger equation and let us apply the time reversal operator
T on the state |ψ(~r, t)〉:

T |ψ(~r, t)〉 = |ψ′(~r,−t)〉

TH|ψ(~r, t)〉 = i~
∂|ψ(~r,−t)〉
∂(−t)

= −i~∂|ψ(~r,−t)〉
∂t

(1.10)

Note the negative sign, which means that the Schrödinger equation is not invariant
under this transformation. In order to recover the quantum mechanics under time
reversal, we should do a transformation to the wave function as well, namely:

T |ψ(~r, t) = ψ∗(~r,−t)

In this case we are going to divide the time operator into two parts: one for
complex conjugation K (being anti-unitary) and another unitary U

T = KU

N.B: Indeed, T is Anti-linear and unitary(weinberg, Ch 1). It is

TH|ψ(~r, t)〉 = −i~∂|ψ
∗(~r,−t)〉
∂(−t)

= +i~
∂|ψ∗(~r,−t)〉

∂t
(1.11)

and by setting the |ψ∗(~r,−t)〉 = T |ψ(~r, t)〉 one can see that the Schrödinger
equation will restore its broken symmetry.

Remark:

• T is not linear operator : |ψ(t)〉 = c1|ψ(t)〉1 + c2|ψ(t)〉2 → T |ψ(t)〉 =
c∗1|ψ∗(t)〉1 + c∗2|ψ∗(t)〉2 6= c1|ψ(t)〉1 + c2|ψ(t)〉2
• T ,being not hermitian,is not an observable, this means that it is not measured

directly.

Here are some observables under the time reversal transformation Tab.1.2:

observable T(observable)
t -t
~r ~r
~p -~p
~L -~L
~E ~E
~B - ~B
~s -~s

Table 1.2: Some observables under the time reversal transformation.

1.3.4 CPT Theorem

The CPT theorem says, roughly, that every relativistic quantum field theory has
a symmetry that simultaneously reverses charge (C), reverses the orientation of
space (or ‘parity,’ P ), and reverses the direction of time (T ).

The CPT is well-defined only under the following assumptions:

• The theory is Lorentz invariant.

• The vacuum is Lorentz invariant.

• The energy is bounded below.
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A consequence of this derivation is that a violation of CPT automatically indicates
a Lorentz violation.

When the above hold, quantum theory can be extended to a Euclidean theory,
defined by translating all the operators to imaginary time using the Hamiltonian
formalism.

1.4 Violation of the Discrete Symmetries

1.4.1 Parity Violation

For charged strange mesons we have find two different decays:

θ+ → π+ + π0

τ+ → π+ + π+ + π−

The intrinsic parity of a meson is P = -1 (Pseudo-scalar), and parity is a mul-
tiplicative quantum number. Therefore, the two final states have different parity
(P = +1 and P = -1, respectively). It was thought that the initial states should
also have different parities, and hence be two distinct particles. However, with in-
creasingly precise measurements, no difference was found between the masses and
lifetimes of each, respectively, indicating that they are the same particle. This was
known as the θ−τ puzzle. It was resolved only by the discovery of parity violation
in weak interactions. Since the mesons decay through weak interactions, parity is
not conserved, and the two decays are actually decays of the same particle, now
called the K+.

Neutrinos Violate P-Symmetry

Figure 1.1: parity-violation.

As we have known before that P -symmetry is parity symmetry: this means that
it transforms every object into its mirror image, so left becomes right and vice
versa,that is the helicity of any particle will change sign (χ = ~s·~p

|~p| ). Now lets come

to the neutrinos: if you flip a left-handed neutrino, we will have a right-handed
neutrino. But the problem is that till now no right handed neutrinos have been
observed, but in the same time we have seen plenty of the left handed neutrinos.
In this case, mirroring causes the laws of physics to change: this violates the
parity-symmetry(Fig.1.1).
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Figure 1.2: charge-violation.

1.4.2 C-Violation

Neutrinos Violate C-symmetry

By taking the charge conjugation of the left handed neutrino ν, we surely will get a
left handed anti-neutrino ν̄. But again the problem is that there is no observation
for a left handed anti-neutrino: this means the C-symmetry is also violated(Fig.
1.2).

1.5 CP-Symmetry

After the discovery of the C and P symmetry violations, the physics community
was so excited and anxious (Wigner, 1960 ”Symmetry Principles”). After that, a
new thought comes to the minds of the physics that time: the CP - symmetry, a
combination of both C and P symmetry (Landau,A.Salom, Lee-Yang). They say
that maybe the right way for defining the symmetry is not C and P separately ,
but their combination CP . For a while, CP seemed to fix the more-symmetrical
world of neutrinos (and the weak force): N.B: ~j = ρ ·~v ⇒ CP (~j) = −(−ρ) ·(−~v) =

+ρ · ~v =~(j)

Figure 1.3: CP-symmetry.

If you take both the mirror and charge conjugation of a left-handed neutrino, you
get a right-handed anti-neutrino, which does exist( Fig.1.3)!

CP symmetry have restored the broken C and P symmetries. Particles behaved
according to CP symmetry combined together. All seemed right and symmetrical
again. There were no surprises until the violation of CP symmetry was discovered.
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Figure 1.4: The two box diagrams above are the Feynman diagrams providing the leading con-
tributions to the amplitude of k0 − k̄0 oscillation.

1.6 CP Violation in Neutral Kaons

Direct CP Violation
CP violation is the violation for the standard CP -symmetry which was first dis-
covered in 1964. It is linked to the fact that the neutral kaons transform to their
anti-particles (each quark transform into its anti quark) and vise versa. But such
transformation don’t occur with exactly the same probability in both directions:
this was called a CP violation(Fig.1.4).

K0
L(2) −→ π+π− (1.12)

The K0 and K̄0 states have strangeness equal to -1 and 1 respectively, as their
quark content is s̄d and d̄s. These states have no a definite value of the CP parity,
but they transform one into another under the action of this transformation in the
next way

CP |K0〉 = +|K̄0〉
We can construct eigenstates with a definite CP transformation by combining K0

and K̄0

K1 =
1√
2

(K0 + K̄0), K2 =
1√
2

(K0 − K̄0)

with CP |K1〉 = +|K̄1〉, CP |K2〉 = −|K̄2〉.
The strange particles can decay only via weak interactions as strong and elec-

tromagnetic interactions preserve the strangeness quantum numbers. If we assume
that weak interactions are symmetric under CP violation as strong and electro-
magnetic interactions are, then the K1(2) states must decay into an state with
even(odd) CP parity. Taking into account that the main decay mode of K0 -like
states is ππ and the fact that a two pion state with charge zero and orbital angular
momentum zero is always CP even, the decay K1 → ππ is possible (as well as
K2 → πππ) but K2 → ππ is impossible. However, in 1964 it was observed the
decay of KL mesons, that were identified with K2, in states of two pions [9]. This
meant that these transitions directly violated CP since an odd state decayed into
an even state.

However, KL and KS are not the K1 and the K2 themselves, in fact they are
similar to them but up to a factor ([10]) :

|KS〉 =
1√

1 + |ε|2
(|K1−εK̄2), |KL〉 =

1√
1 + |ε|2

(|K2−εK̄1), ε ≈ 2.2×10−3 (1.13)

CP Violation in the Standard Model

”Direct” CP violation is allowed in the Standard Model if a complex phase
appears in the (CKM) matrix describing quark mixing, or the (PMNS) matrix
describing neutrino mixing. A necessary condition for the appearance of the
complex phase is the presence of at least three generations of quarks (if fewer
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generations are present, the complex phase parameter can be absorbed into the
redefinition of the quark fields).

Consider any given particles a and b, and their antiparticles ā and b̄. Now consider
the processes a→ b and the corresponding antiparticle process ā→ b̄, and denote
their amplitudes M and M̄ respectively. Before CP violation, these terms must be
the same complex number. We can separate the magnitude and phase by writing
M = |M |eiθ. Note that M̄ contains the conjugate matrix to M, so it picks up a
phase term e−iφ. Now we have:

M = |M |eiθeiφ (1.14)

M̄ = |M |eiθe−iφ (1.15)

However, physically measurable reaction rates are proportional to |M |2, so far
nothing is different. However, consider that there are two different routes (e.g.
intermediate states) for a→ b. Now we have:

M = |M1|eiθ1eiφ1 + |M2|eiθ2eiφ2 (1.16)

M̄ = |M1|eiθ1e−iφ1 + |M2|eiθ2e−iφ2 (1.17)

Some further calculation gives:

|M |2 − |M̄ |2 = 4|M1||M2| sin(θ1 − θ2) sin(φ1 − φ2) (1.18)

Thus, we see that a complex phase gives rise to processes that proceed at
different rates for particles and antiparticles, and CP is violated.

1.7 Searching For Discrete Time Reversal Violation

Why search for T violation? It is the counterpart of the CP , because of the
invariance of the CPT theorem. CPT is invariant, but CP is violated, hence T
should be violated.

1.7.1 Electric Dipole Moment of the Neutron

To date, every measurement of the neutron electric dipole moment (EDM) has
given a value of zero, but there is a good reason to believe it is actually a very
small, but non zero, value 2.9× 10−26 ecm.
A non-zero electric dipole moment of the neutron (or any fundamental particle)
would be a violation of parity (P) and time-reversal (T) symmetry [11]. This can
be explained by the following picture: if the neutron has a finite EDM, the charge
distribution is reversed under P; it is unchanged under T, but the orientation of
a particle is specified by its spin, which is unchanged under P, but reverses un-
der T (Fig.1.5). Therefore, if the EDM is not zero, then P and T are not conserved.

Assuming the combined operation CPT is invariant, then a measurement of T
violation implies CP is also violated. This has significant consequences for cosmol-
ogy. Present theories of particle physics and cosmology predict that our Universe
was formed with equal parts matter and antimatter, which should by now have
annihilated into radiation. To explain the dominance of matter, CP violation must
exist.
CP violation has been observed in accelerator experiments studying the decays
of K and B mesons, but not at a level which can explain the matter-antimatter
asymmetry of the Universe. Therefore, in order to explain why the Universe exists,
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we need to study other CP violating systems such as the neutron EDM. This also
provides a way to test theories of New Physics, as super symmetry (for example)
predicts a neutron EDM at a level of 10−28 ecm, above the standard model pre-
diction. Theories such as additional Higgs fields, and left-right symmetric models
also predict a neutron EDM at a level which will be probed by new experiments.

Figure 1.5: The neutron EDM is reversed by the parity operation. It is unchanged by time-
reversal, but this reverses the spin, which specifies the orientation, so a non zero EDM would be
a violation of both T and P symmetry.

Neutron EDM measurements have also shown that CP is conserved to a remark-
able degree by the strong interaction. This would appear to require significant fine
tuning of the relevant QCD parameter; but it can also be explained by a hypo-
thetical particle, the axion, which would effectively cancel the CP violating term
in the QCD Lagrangian. Axions are also a possible dark matter candidate.

1.7.2 Experimental situation of the nEDM

The current limit on the neutron EDM is d < 2.9×10−26ecm ([12]-[13]-[14]), set by
the nEDM experiment. This was measured at the Institute Laue-Langevin using
room temperature apparatus, by storing a large number of ultra-cold neutrons
in a storage cell in an electric and magnetic field. The Larmor spin precession
frequency was measured to a high precision for parallel and anti-parallel fields. A
shift in the precession frequency between these two measurements, would be a sign
of the neutron EDM.

A significant systematic error is caused by any drift in the magnetic field between
measurements; as the neutron has a non-zero magnetic dipole moment, this also
produces a shift in the precession frequency. The nEDM group used atomic mer-
cury spectrometer to monitor the magnetic field to nano-Tesla precision.

By 1999 the experiment had reached the best sensitivity which could be achieved
with the apparatus, and the collaboration started design and construction of the
cryoEDM project (Fig.1.6).

The cryoEDM experiment was formed to further improve the neutron EDM limit
set by nEDM, and maybe measure a non-zero value. The improvement in sen-
sitivity will be achieved by producing, storing and detecting ultra-cold neutrons
(UCN) inside super fluid helium. This allows a greater number of UCN to be
produced by down-scattering a cold neutron beam. A further improvement comes
from operating at a higher electric field which can be achieved in the super-fluid.
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Figure 1.6: The cryoEDM apparatus at the ILL, Grenoble. The neutron beam enters on the
right, and the storage cell is at the center of the cylinder on the left, surrounded by several layers
of magnetic shielding.

1.7.3 Neutron’s β Decays

In 1957, Jackson, Treiman, Wyrld have studied the violation of the Time Reversal
symmetry in the neutron β decay. They have parametrized the angular correlations
between the different products of the β decay.
The differential cross section is given by:

dσ ≈ ~sn · (A~pν +B~pe +D~pe × ~pν) (1.19)

where ~pe and ~pν are the momenta of the electron and the neutrino respectively, ~sn
is the neutron spin.
The correlation D~sn · ~pe × ~pν is odd by time reversal, and hence could be used as
a method for searching for time reversal violation, taking into account the final
state interactions.
Any non zero value of the coefficient D is an indication for time reversal violation.
Until this moment, there is no prove or report that find out a non zero value for
the D coefficient. The prediction of the Standard Model is D< 10−12. All the
values above the final state interaction effects (for neutrons DFS = 10−5) are a
sign of new physics.

1.7.4 Kabir Parameter [15]

Since the CP symmetry is violated in the weak interactions, T should also be
violated due to the CPT invariance. In 1998, CPLEAR experiment located at
CERN [6] reported the first direct observation of the time reversal violation in the
neutral kaon system. In fact this observation relies on comparing decay rates of
neutral kaons that were produced as K̄0 and K0 , and are decaying into the charge
conjugate final states f̄ and f .
By definition, time reversal violation is directly related to Kabir asymmetry factor
which is time dependent and given by:

AT =
|〈Kout

0 (tf )|K̄in
0 (ti)〉|2 − |〈 ¯Kout

0 (tf )|Kin
0 (ti)〉|2

|〈Kout
0 (tf )|K̄in

0 (ti)〉|2 + |〈 ¯Kout
0 (tf )|Kin

0 (ti)〉|2
(1.20)

Each non zero value of AT represents a sign for the violation of Time symmetry.
CPLEAR produces the system of neutral kaons from proton-anti proton annihila-
tion process via the following reactions :

pp̄ −→ K−π+K0pp̄ −→ K+π−K̄0 (1.21)
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The strangeness of the neutral kaon is tagged by the accompanying charged kaon.
In the case of semileptonic decays, the strangeness of the neutral kaons may also
be tagged at the decay time (∆S = ∆Q rule). The semi-semileptonic decays,
K0 → e+π−ν, and the K̄0 → e−π+ν̄e are characterized by ∆S = ∆Q whereas
K0 → e−π+ν̄e, and the K̄0 → e+π−ν̄e are characterized by ∆S = −∆Q, which
means either (i) there is an explicit violation of the ∆S = ∆Q or (ii) the oscillations
between K0 and K̄0 produce a final state that violates ∆S = ∆Q. The CPLEAR
experimental asymmetry is given by:

AexpT =
R̄+(δt)−R−(δt)

R̄+(δt) +R−(δt)
(1.22)

where R̄+(δt) and R−(δt) are the transition probabilities of K0 to K̄0 and vice
versa. The mean value of the of AexpT is found to be (6.6 ± 1.6) · 10−3 which is a
clear indication for time violation.

1.7.5 KL → π+π−e+e− decay at KTeV

The first observation of the CP violation in the decay KL → π+π−e+e− was
announced by the collaboration KTeV [16]. Another important asymmetry was
observed in the distribution of the product cosφ sinφ, where φ is the angle between
the planes formed by π+π− and e+e− in the KL rest frame. This observable is odd
by time reversal symmetry.
After the acceptance corrections, the global asymmetry was found to be 13.6 ±
2.5(stat) ± 1.2(sys)% [17] which is compatible with the theoretical predictions
(14% [18]). This asymmetry implies a violation of the time reversal symmetry.
Since the electromagnetic interactions can modify the φ distribution and thus can
simulate a T-odd asymmetry, the KTeV collaboration examine if this asymmetry
is due to the final state interaction but this claim proved controversial.

1.8 BaBar and Time Reversal Violation

The BaBar collaboration has made the first direct observation of time-reversal (T)
violation in B0 − B̄0 oscillation process. The results are in agreement with the
basic tenets of quantum field theory, and reveal differences in the rates at which
the quantum states of the B0− B̄0 mesons transform into one another [19]. BaBar
reported the direct observation of the T violation in the B meson system, through
the exchange of the initial and final sates in transitions that can only be connected
by a T-symmetry transformation. The method is described in Ref.[20] , based on
the concepts proposed in Ref.[21] and further discussed in Refs. ([22],[23]).

1.9 Search for Time Reversal Violation in the Weak
Semileptonic Λ0

b → Λ+
c µ
−νµ Decays

The first channel used to test the Time Reversal Symmetry, (T) in LHCb ex-
periment, is the Λ0

b −→ ΛJ/Ψ decay channel. We used the Jacob-Wick helicity
formalism [24] which defines the decay amplitudes involving the spin of the parti-
cles. In this study we extend the same formalism to the semi-semileptonic decays
of the heavy baryons,Λ0

b → (Λ+
c → Λπ)(W ∗ → µ−νµ) and a quasi two body ap-

proach is used, due to the presence of a virtual W ∗-boson.
Stressing on these decays comes from the fact that semileptonic decays are abun-
dant B-decays and so could be used to measure both the life-time and the polar-
ization of the Λ0

b with high statistics.
These decays allow a direct test of T, by testing the polarization vector of the
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hyperon and the resonating particles.
Our study is organized as follows: recalling the basics of the helicity formalism,
then the proposed decays are respectively detailed, emphasizing the angular dis-
tributions of their decay products, enabling a direct testing of TR symmetry.
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In this chapter we have presented the theoretical part of this PhD. We introduced
the different discrete symmetries; charge conjugation C, parity P , time reversal T ,
and also their combination CP and T in both classical and quantum mechanics.
Since T is an anti-unitary operator, it is impossible to associate a physical observ-
able to T (on contrary to C and P ). So we are going to search for time reversal
violation through out its effects on physical observables; especially the T-odd ones.
On the upcoming chapters, we are going to discus how to construct T-odd observ-
ables, that could give an evidence for a possible T violation. In the next chapter
we will talk about the Large Hadron Collider and the LHCb detector.
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LHCb is an experiment designed to study CP violation and other rare phenom-
ena in B meson decays with high precision [25]. The goal of LHCb is to check the
theoretical predictions made in the Standard Model about quark mixing and to
search for hints of new physics.

2.1 Large Hadron Collider

The European Organization for Nuclear Research (CERN) has done a great at-
tempt and a giant step in building the world’s largest and most powerful particle
Collider from 1998 to 2008, known by the Large Hadron Collider (LHC). It lies in
a tunnel 27 kilometers (17 mi) in circumference, at a depth ranging from 50 to 175
meters (164 to 574 ft) beneath the Franco-Swiss border near Geneva, Switzerland
(Fig.2.1). This machine has been designed for proton-proton (p-p) collision. The
collisions take place in four main points called the interaction points, where the
detectors are located. There are four main experiments at the LHC:

• i) The ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon
Solenoid) detectors are general purpose experiments, mainly designed to
search for the Higgs boson and to shed light on new theories by searching
for direct evidence of physics beyond the Standard Model.

• ii) ALICE (A Large Ion Collider Experiment) is optimized to study heavy-ion
(Pb-Pb nuclei) collisions at a center of mass energy of 2.76 TeV per nucleon.
ALICE is focusing on the physics of strongly interacting matter at extreme
energy densities and searching for Quark Gluon Plasma (QGP).

• iii) LHCb ( Large Hadron Collider beauty) to check the theoretical predictions
made in the standard model about quark mixing and to search for hints of new
physics. It is a specialized b-physics experiment measuring the parameters of
CP violation in the decays of b-hadrons, also in charm physics , electroweak
and heavy ions physics.

On November 20, 2009 proton beams were successfully circulated with the first
recorded proton-proton collisions occurring three days later at the injection en-
ergy of 450 GeV per beam. On March 30, 2010, the first collisions took place
between two 3.5 TeV beams, setting a world record for the highest-energy man-
made particle collisions, and the LHC began its planned research program.
When running at 6.5 TeV (full design 7 TeV) per beam in early 2015, the protons
are accelerated from 450 GeV to 6.5 TeV, giving a total collision energy of 13
TeV. Rather than continuous beams, the protons are bunched together, into up
to 2,808 bunches, with 115 billion protons in each bunch, so that interactions
between the two beams will take place at discrete intervals never shorter than 25
nanoseconds (ns) apart, providing a bunch collision rate of 40 MHz. However it
was operated with fewer bunches when it is first commissioned, giving it a bunch
crossing interval of 50 ns(2.1).
The design luminosity of the LHC is 1034cm−2s−1. Before being injected into the
main accelerator, the particles are accelerated by a series of systems that succes-
sively increase their energy. The first one is the linear particle accelerator (LINAC
2) that generates 50-MeV protons, feeding the Proton Synchrotron Booster (PSB).
There, the protons after that are accelerated to 1.4 GeV and injected into the Pro-
ton Synchrotron (PS), where they are again accelerated to 26 GeV. Finally, the
Super Proton Synchrotron (SPS) is used to further increase their energy to 450
GeV before they are at last injected (over a period of several minutes) into the
main ring. Here the proton bunches are accumulated, accelerated (over a period
of 20 minutes) to their peak energy, and finally circulated for few hours while
collisions occur at the four intersection points.
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Figure 2.1: CERN Complex Accelerator (CERN web page).

2.1.1 Production of B-mesons

The analysis of B meson decays is interesting for the study of CP violation. In high
energy pp-interactions the production mechanisms for heavy quarks are processes
involving gluons and partons [26]. The relatively high mass of the b-quark allows
for perturbative (and non-perturbative) QCD calculations to make predictions
about BB̄ production and decay at LHC conditions.
From first order calculations it is already clear that LHC will be by far the most
copious source of B mesons. The leading order Feynman diagrams of heavy-flavor
production are typically categorized in three different types [27]. One of them,
pair production, is shown in (Fig.2.2). The others are flavor excitation, with one
gluon and one quark in the initial and final state (Qg → Qg) and gluon splitting
(gg → gg, creating an additional QQ̄ pair in the parton shower).

Figure 2.2: Feynman diagrams of the first order pair production mechanisms of heavy quarks at
the LHC.

The production cross sections of these leading order processes are calculated by
PYTHIA using the CTEQ4 particle distribution functions [28] (i.e. the proton
structure functions as determined at HERA). This program includes elastic and
diffractive proton interactions in order to obtain a realistic estimate of the back-
ground processes. The accuracy of these calculations is limited due to higher
order corrections and non-perturbative hadronization effects.Both the b and the b̄
recombine with other quarks during the hadronization process, which means that
a variety of b hadron species will be produced. The broad longitudinal momen-
tum distribution of the gluons in the protons combined with their relatively low
transverse momentum, results in the production of boosted b and b̄ hadrons (each
carrying one quark from the produced bb̄ pair) along the beam axis in either the
forward or the backward cone. This is demonstrated in (Fig.2.3) where the polar
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angles of the b and b̄ hadrons calculated with the PYTHIA event generator are
shown.

Figure 2.3: Polar angles of the b and b̄ hadrons, calculated with the PYTHIA event generator.

2.2 LHCb : Beauty Detector

The goal of LHCb is to check the theoretical predictions made in the standard
model about quark mixing CP violations and to search for hints of new physics.
LHCb is a specialized b-physics experiment, that is measuring the parameters of
CP violation in the decays of b-hadrons (heavy particles containing a bottom
quark). Such studies can help to explain the Matter-Antimatter asymmetry of the
Universe. The detector (Fig.2.4) is also able to perform measurements of produc-
tion cross sections and electroweak physics in the forward region. Approximately
1160 people from 72 scientific institutes, representing 16 countries, form the col-
laboration who built and operate the detector. The experiment is located at point
8 on the LHC tunnel close to Ferney-Voltaire, (France) just over the border from
Geneva. In this chapter, the LHCb experiment will be described detailing how the
decay vertices are reconstructed, how the momentum/energy of the final particles
and their tracks are measured and how those particles are identified. Also, in this
chapter the LHCb sub-detectors will be explained as well as the hardware and the
software triggers. Last but not least, the LHCb performance during the 2011-2012
run period will be discussed.

The fact that the two b-hadrons are predominantly produced in the same for-
ward cone is exploited in the layout of the LHCb detector. The LHCb detector is
a single arm forward spectrometer with a polar angular coverage from 10 to 300
milliradians (mrad) in the horizontal and 250 mrad in the vertical plane (Fig.2.4).
The bb̄ cross-section, 75.3 ± 5.4 ± 13.0 µb at 7 TeV, is dominated by configurations
in which one of the partons has energy more than other.

2.2.1 Data taking periods and operating conditions

LHCb recorded its first pp collisions at
√
s = 0.9 TeV injection energy with the

end of 2009. These data were used to finalize the commissioning of the sub-
detector systems and the reconstruction software and to perform a first alignment
and calibration of the tracking, the calorimeter and the particle identification
(PID) systems. In this period, the VErtex LOcator (VELO) was left in the open
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Figure 2.4: LHCb detector(LHCb web page).

position, due to the larger aperture required at lower beam energies. The operating
conditions changed rapidly due to the ramp-up of the LHC luminosity. A critical
parameter for LHCb performance is the pile-up, defined as the average number
of visible interactions per beam-beam crossing. While the highest luminosity in
2010 was already 75 percent of the LHCb design luminosity, the pile-up was much
larger than the design value due to the low number of bunches in the machine. It
was demonstrated that the trigger and reconstruction work efficiently under such
harsh conditions with increased detector occupancy due to pile-up, and that the
physics output was not compromised. The LHC beam energy was 3.5 TeV during
2010 and 2011. In 2012 the LHC beam energy was increased to 4 TeV. LHCb took
data at a luminosity of 4× 1032cm−2s−1 , twice the LHCb design luminosity. The
LHC delivered stable beams for about 30 percent of the operational year (Fig.2.5
). The integrated luminosity recorded by LHCb was 38 pb−1 in 2010, 1.11 fb−1 in
2011 and 2.08 fb−1 in 2012. The analysis presented in this thesis uses the data
collected in 2011 and 2012.

2.2.2 LHCb luminosity

The number of selected events of a given process per unit of time, denoted as dn
dt

,
is given by:

dn

dt
= σLε

where σ is the process cross section, L is the instantaneous luminosity and ε is
the total efficiency accounting for : detector acceptance, track reconstruction and
selection efficiency. Hence, the determination of the luminosity is an essential
cornerstone for the measurement of any cross section. The average instantaneous
luminosity of two colliding bunches can be expressed as:

L =
fN1N2

4πσxσy
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Figure 2.5: The LHCb integrated luminosity recorded over the run periods(LHCb web page).

where f is the revolution frequency (11245 Hz at the LHC), N1 and N2 are the
number of protons in the two bunches, σx and σy are the transverse sizes of the
bunch at the interaction point along the x and y axis respectively.
At LHCb there are two methods used to determine the absolute luminosity [29]:

• i) The Van der Meer scan: The beams are moved in transverse directions in
order to investigate the beam transverse profiles counting the interaction rate
as a function of the beam offsets.

• ii) The beam-imaging gas method: The high acceptance of the VELO around
the interaction point is used to reconstruct beam-gas vertices produced by
the collision of protons. The positions of the beam-gas interactions are used
to determine beam angles and profiles [30].

Combining the two methods, the absolute luminosity can be determined with a
relative precision of 3.5%, this allows to calculate a reference cross section of visible
interactions.

2.2.3 Vertex LOcator: The VELO

The VErtex LOcator (VELO) is the sub detector closest to the interaction point.
It consists of a series of 21 stations made of silicon modules arranged along the
beam direction spreading from z = [−18, 88] cm. The stations are circular in
shape and of 300 µm thick each. Each station of the VELO is divided in two
completely independent halves. The VELO provides a precise measurement of
the track coordinates, r and φ (each station has its own z coordinate), which are
used to reconstruct the displaced secondary vertices generated by the lifetimes of
b- and c-hadron decays. The use of cylindrical geometry (z,r,φ coordinates),and
not Cartesian scheme, is required by the LHCb trigger performance, for which 2D
(rz) tracking has been demonstrated to yield a faster reconstruction with enough
impact parameter resolution (IP, distance of closest approach of a track to a ver-
tex). The VELO is designed to reconstruct primary and secondary vertices pro-
viding measurements of flight distances and of IP. It is able to detect particles
within a pseudo rapidity range 1.6 < η < 4.9, pseudo rapidity being defined as
η = −ln(tan(θ/2)) with θ being the angle between the momentum of the particle
and the beam axis.

Fig.2.6 and Fig 2.7 show a cross section of the LHCb vertex detector. A com-
plete description of this device is given in [31]. The design of the vertex detector
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could be simplified in the following lines. The silicon sensor configuration is op-
timized to accurately identify particle trajectories with small polar angles. The
innermost radius of these sensors should be as small as possible, since a short track
extrapolation distance leads to a more precise impact parameter reconstruction.
These sensors are very close to the interaction point, this means that the hardness
of sensors and read out electronics require special attention because they will be
exposed to radiation damage [32].

Figure 2.6: Cross section of the vertex detector. The beam pipe, silicon sensors and exit foil are
indicated(LHCb web page).

Figure 2.7: Cross section in the (x,z) plane of the VELO silicon sensors at y = 0, with the
detector in the fully closed position. The front face of the first modules is also illustrated in both
closed and open positions.

2.2.4 RICH detectors

The RICH (Ring-Imaging CHerenkov detector) system is used to identify charged
particles with momentum range [1-150] GeV/c, and within an angular acceptance
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of [10-300] milliradians (mrad). Particle identification is so important in order to
reduce background in desired final states (see graphs below Fig.2.8). It is also used
to provide an efficient tag of the b-quark flavour.

Figure 2.8: Effectiveness of the RICH system(LHCb web page).

The system consists of an upstream detector (RICH-1), positioned directly be-
hind the VELO, and a downstream detector (RICH-2) located behind the magnet
and the tracking system.

2.2.5 Mirrors and radiators

Silica aerogel is a colloidal form of solid quartz, but with an extremely low
density and a high refractive index (1.01-1.10), which makes it perfect for the
lowest-momentum particles (order of a few GeV/c). To cover the regions of
medium and high momentum, LHCb uses a combination of C4F10 and CF4

radiators for momenta in range [10, 65] GeV/c, and [15, 100] GeV/c, respectively
(Fig.2.9).

The RICH-1 detector is set up to detect low-momentum particles, while RICH-
2 has an acceptance that is limited to the low-angle region where there are mostly
high-momentum particles.
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Figure 2.9: RICH1diagram(LHCb web page).

2.2.6 Seeing the light

Both RICH detectors use hybrid photon detectors (HPDs) to amplify the light
signal of the emitted Cherenkov photons. The HPD is a vacuum photon detector in
which a photo electron, released when an incident photon converts within a photo
cathode, is accelerated by a high voltage of typically 10-20 kV onto a reverse-biased
silicon detector.

The LHCb collaboration has developed a novel dedicated pixel-HPD (Fig.2.10)for
the RICH detectors, working in close co-operation with industry. Here, the silicon
detector is segmented into 1024 ”super” pixels, each 500µm× 500µm in area and
arranged as a matrix of 32 rows and 32 columns.

Figure 2.10: HPD-diagram(LHCb web page).
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When a photo electron loses energy in silicon, it creates electron-hole pairs at an
average yield of one for every 3.6 eV of deposited energy. The nominal operating
voltage of LHCb HPDs is -20 kV, corresponding to around 5000 electron-hole pairs
released in the silicon. Careful design of read-out electronics and interconnects to
the silicon detector results in a high efficiency for detecting single photo electrons.

2.2.7 The Dipole Magnet

Figure 2.11: MagnetBanner2(LHCb web page)

Particle detectors typically include a powerful magnet [33] used to reconstruct
the tracks of the particles produced after the collision. The LHCb experiment’s
enormous magnet (Fig.2.11) consists of two coils, weighing 27 tonnes, mounted
inside a 1,450 tonne steel frame. LHCb exploits the forward region of proton
collisions with a dipole field with a free aperture of ±300 mrad horizontally and
±250 mrad vertically.

The precision of the tracking detectors for charged particles momenta (up to 200
GeV/c) is about 0.4%, by the help of an integrated field of 4 Tm for tracks origi-
nating near the primary interaction point.

A good field uniformity along the transverse co-ordinate is required by the muon
trigger. The lateral aperture of the magnet is defined by the longitudinal extension
of the detectors, placed upstream of the magnet.

2.2.8 Tracking system

The principle task of the tracking system is to provide efficient reconstruction of
charged-particle tracks (Fig.2.12). These are used to determine the momenta of
charged particles. The main tracking system comprises four tracking stations: one
station (”TT”) is located between RICH-1 and the LHCb dipole magnet, while
the other three stations (”T1-T3”) are located over 3 meters between the magnet
and RICH-2(Fig.2.13 ).

Two detector technologies are employed:

1) The Outer Tracker.

2) The Silicon Tracker.
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Figure 2.12: A schematic illustration of the various track types: long, upstream, downstream,
VELO and T tracks.

Figure 2.13: Tracking-system-diagram-2(LHCb web page).

The Silicon Tracker

The silicon tracker comprises two detectors - the Trigger Tracker (TT) and the
Inner Tracker (IT) [34], both of which use silicon micro strip detectors.

The TT (Fig.2.14)is a 150 cm wide and 130 cm high planar tracking station that
is located upstream of the LHCb dipole magnet and covers the full acceptance of
the experiment.
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Figure 2.14: TT-layout(LHCb web page).

The IT (Fig.2.15) covers a roughly 120 cm wide and 40 cm high cross-shaped region
in the center of three large planar tracking stations downstream of the magnet.
Each of the four Silicon Tracker stations consists of four detection layers with
specific angles between them.

Figure 2.15: IT-boxes-diagram(LHCb web page).

The Outer Tracker: Spark Chambers

The design of the three Outer Tracker stations is modular(Fig.2.16). Each is built
from 72 separate modules supported on four independently moving aluminium
frames (18 modules per frame).
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Figure 2.16: OT-Module-design(LHCb web page).

2.2.9 Calorimeter system

Figure 2.17: CalorimeterBanner1(LHCb web page).

LHCb calorimeter system (Fig.2.17) is used to identify electrons, photons and
hadrons. It also determines the energy and position of the particles produced in
their angular acceptance, which are used in offline event analysis. The photons
will be identified by the EM calorimeter, and the hadrons are identified by the
hadronic calorimeter.

Figure 2.18: Calorimeters(LHCb web page).

The calorimeter system (Fig.2.18) consists of several layers:
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• The Scintillating Pad Detector (SPD): The SPD determines the nature of the
particles hitting the calorimeter system: charged or neutral particles.

• The Pre-Shower Detector (PS): The PS checks the electromagnetic character
of the particle (i.e. whether it is an electron, if charged, or a photon, if
neutral).

• Electromagnetic Calorimeter (ECAL): The ECAL (Fig.2.19) employs ”shash-
lik” technology of alternating scintillating tiles and lead plates. The cell size
varies from 4 x 4 cm in the inner part of the detector, to 6 x 6 cm and 12 x 12
cm in the middle and outer parts. The cell granularity corresponds to that of
the SPD/PS, aiming at a combined use in γ/e separation. The overall detec-
tor dimensions are 7.76 x 6.30 m, covering an acceptance of 25 mrad < θx <
300 mrad in the horizontal plane and 25 mrad < θy < 250 mrad in the vertical
one. Light is detected by 10-stage photo-multipliers (Hamamatsu R7899-20)
with an individually regulated high voltage base of Cock-croft-Walton type.

Figure 2.19: ECAL-modules(LHCb web page).

• Hadron Calorimeter (HCAL): The HCAL (Fig.2.20) is positioned behind the
ECAL. Its internal structure consists of thin iron plates inter-spaced with
scintillating tiles arranged parallel to the beam pipe. The inner and outer
parts of the calorimeter have different cell dimensions. The HCAL features
can be described as follows: in the lateral direction, tiles are inter-spaced
with 1 cm of iron (matching with the radiation length X0); while in the
longitudinal direction the length of tiles and iron spacers corresponds to the
hadron interaction length λI in iron. The total weight of the HCAL is about
500 tonnes.
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Figure 2.20: HCAL-tiles(LHCb web page).

2.2.10 Muon system

Figure 2.21: Muon-banner.

Muon triggering and offline muon identification are fundamental requirements of
the LHCb experiment. Muons are present in the final states of many CP-sensitive
B decays and play a major role in CP asymmetry and oscillation measurements,
as muons from semi-semileptonic b decays provide a tag of the initial state flavour
of the accompanying neutral B mesons.

The muon system provides fast information for the high-PT muon trigger at the
earliest level (Level-0) and muon identification for the high-level trigger (HLT) and
offline analysis.
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Figure 2.22: Muon-diagram(LHCb web page).

The system (Fig.2.21 and Fig.2.22) is composed of five stations (M1-M5) of
rectangular shape, covering an acceptance of ±300(±250) mrad horizontally
(vertically). M1 is placed in front of the scintillating pad detector/pre-shower.
M2-M5 follow the hadron calorimeter (HCAL) and are separated by iron filters.
The stations cover an area of 435 m2.

Each station is divided into four regions, R1 to R4, with increasing distance from
the beam axis. All the regions have approximately the same acceptance, and their
granularity is shaped according to the particle density in that region in order to
keep occupancy roughly constant over the detector. The granularity of the readout
is higher in the horizontal plane, in order to give an accurate measurement of the
track momentum and PT .
Information must be gathered within 20 nanoseconds, so the detectors are opti-
mized for speed. The system is therefore equipped with Multi Wire Proportional
Chambers (MWPC) with 2 mm wire spacing and a small gas gap (5 mm). Triple-
GEM detectors are used in the innermost region (R1) of Station M1, where the
rate is highest. This choice was dictated by the better ageing properties of this
type of detector.

2.3 Particle Identification

The reconstructed tracks for each event are given a particle identification(PID)
based on the information provided from the different sub-detectors. The PID is
given by the RICH counters (π,K, p), the ECAL, the HCAL (hadrons) and finally
the muon system (µ).
The PID information is used in the offline selection through the likelihood hy-
pothesis by combining information from all the sub-detectors. A track is supposed
to be a muon or a hadron according to the likelihood hypothesis is given by the
following relation:

L(µ) = LRICH(µ)LCALO(nonµ)LMUON(µ)

L(h) = LRICH(h)LCALO(none)LMUON(nonµ)
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where h, e, µ stands for hadron, electron, and muon respectively. Each function
computes the probability of being of the given type of the particle.

Therefore, particles are selected according to the ratio of the likelihood between
different hypothesis. To do that, particle identification procedure has been de-
signed based on a log-likelihood difference (DLL) and it is defined by:

∆lnLAB = lnLA − lnLB = ln
(LA

LB

]
where A,B stands for the hypothesis to have A, B. The ratio tends to be positive for
correctly A-type identified A-particles and negative for correctly B-type identified
B-particles.

2.4 The LHCb trigger system

There are two levels for the trigger system [35]: the Level-0 Trigger (L0) and the
High Level Trigger (HLT). The trigger (Fig.2.23) purpose is mainly to select the
interesting B-mesons decays, giving the final rate of visible interactions a value
≈ 5kHz.

Figure 2.23: How the event flow in the LHCb trigger system(LHCb web page).
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2.4.1 The Level-0 trigger

The Level-0 trigger (L0) reduces the visible event rate from 40MHz to the 1MHz
at which the whole detector can be read out. It is implemented using custom made
hardware. The L0 uses electronics operating synchronously (with the LHC clock)
with the 40 MHz bunch crossing frequency. The L0 information is coming from
the Pile-Up (PU) sensors of the VELO, the calorimeter and the muon system. It
is sent to the L0 Decision Unit (L0DU) where the L0 selection algorithms are run.
The PU system rejects events with several primary vertices, by the help of the
information coming from the PU sensors of the VELO. It is used to trigger on
beam-gas events providing the number of hits in the PU stations, which are the
only detector elements upstream of the interaction point.

The L0 calorimeter trigger system uses information coming from calorimeter
system, SPD, PS, ECAL and HCAL. It computes the transverse energy deposited
in 2×2 calorimeter cells clusters. From these clusters, three types of candidates
are built:

• 1) L0Hadron is the highest ET HCAL cluster added with the energy of the
associated ECAL cluster.

• 2) L0Photon is the highest ET ECAL cluster with an energy threshold of 5
MIP in the PS and no hit in the SPD cells corresponding to the PS cells.

• 3) L0Electron has the same requirements as L0Photon, with the additional
condition of at least one SPD cell hit in front of the PS cells.

The candidate’s ET is compared to a fixed threshold, causing the L0 trigger to
fire if there is at least one candidate’s event above threshold. The total number of
hits in the SPD is used to veto events that would take a disproportionately large
fraction of the available processing time in the HLT.

The muon chambers are responsible for muon reconstruction with a PT res-
olution of ∼ 25%. To reconstruct the tracks, the pad data from the five muon
stations pointing towards the interaction region are selected. The muon stations
are divided in independent quadrants where in each quadrant, the two muon can-
didates with the highest pT are selected (p > 3 GeV/c).

2.4.2 The High Level Trigger

The High Level Trigger (HLT) filters events using a software application. HLT
is executed asynchronously on a processor farm, the Event Filter Farm. It uses
the Online Event Filter Farm (EFF), containing more than 20,000 CPU cores, to
reduce down the rate events to 3-5.5 kHz. The HLT is divided into: HLT1 that
is responsible for partial reconstruction, and the HLT2 that performs full event
reconstruction to further discriminate signal events.

HLT1

The HLT1 is designed to reduce the rate till 50kHz. It is a single track trigger,
searching for a single track with high momentum, a large impact parameter (IP,
shortest distance between a track and the primary vertex), and a good track
quality [36]. The track should have an IP larger than 125 µm with respect to any
PV, pT > 1.8 GeV/c and p > 12.5 GeV/c. The Level-0 photon and electron lines
require the pT to be relaxed to 0.8 GeV/c for triggering the events.

Hlt1TrackMuon exists if the track is matched with hits in the muon cham-
bers. This single muon trigger line selects good quality muon candidates with a
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pT > 1 GeV that are not coming from the primary vertex. Single muon candi-
dates which satisfy a pT requirement of pT > 4.8 GeV are selected by the line
Hlt1SingleMuonHighPT without any vertex separation requirements.

HLT2

The HLT2 reconstructs tracks with pT > 500 MeV/c and p > 5000 MeV/c due to
its low input rate and it is used to perform full offline reconstruction. Moreover,
Global Event Cuts (GEC), such as the reconstructed track multiplicity, are used
to reject complex events which require a big amount of processing time. The HLT2
runs exclusive and inclusive selections. The inclusive ones search for generic B de-
cay features such as displaced vertices or dilepton pairs whereas the exclusive lines
select specific decays using similar selections to those used offline. Special inclusive
lines (topological lines: based on displaced vertices with 2, 3 or 4 associated tracks)
have been developed to trigger on partially reconstructed b-hadron decays. More-
over, to improve the performances, additional lines using a multivariate approach
were then added [37], [38].

2.5 LHCb Software

The LHCb software development strategy follows an architecture-centric approach
as a way of creating a resilient software framework that can withstand changes in
requirements and technology over the expected long lifetime of the experiment.
The software architecture, called GAUDI, supports event data processing appli-
cations that run in different processing environments ranging from the real-time
high-level triggers in the online system to the final physics analysis performed by
more than 100 physicists. The major architectural design choices and the argu-
ments that lead to these choices will be outlined. Object oriented technologies
have been used throughout. Initially developed for the LHCb experiment, GAUDI
has been adopted and extended by other experiments. Several iterations of the
GAUDI software framework have been released and are now being used routinely
by the physicists of the LHCb collaboration to facilitate their development of
data selection algorithms. The LHCb reconstruction (Brunel), the digitization
(Boole) and analysis (DaVinci) applications together with the simulation applica-
tion (Gauss), also based on Geant4, and event and detector visualization program
(Panoramix) are all based on the GAUDI framework. All these applications are
now in production.

The LHCb software environment is based upon the GAUDI framework [39].
GAUDI is a full Object Oriented frame work used for all the software packages
and applications of the LHCb experiment. The full Monte Carlo stimulation,
reconstruction and data analysis are developed in the same common environment.
The main LHCb software tools are:

• GAUSS: Simulation of the LHCb events is handled by GAUSS application
[40] . GAUSS incorporates both event generation and full detector simula-
tion tasks. pp primary interactions are generated with a tuned version of
PYTHIA, while the decays of the intermediate particles are handled with the
EVENTGEN package. After generation, the interaction of the particles in
the detector is described with GEANT4. Acceptance cuts can be applied at
the generator level to increase the production efficiency.

• BOOLE: The simulation of each sub detector response to the output of
GAUSS is performed with a separate application: the BOOLE package [41].
BOOLE simulates the digitization of the energy deposited in the LHCb de-
tector active material. The L0 hardware trigger is emulated at this stage as



46 The Collider and The Detector

well. The simulation of the detector electronics takes into account possible
overlap between different pp events, the so-called spillover. The output for-
mat of BOOLE is exactly that used in real raw data files, therefore simulated
and real data files can be reconstructed with the same software chain.

• MOORE: The MOORE package [42] is used to run the HLT1 and HLT2
triggers in both the online system and the offline simulated events. The
trigger settings are defined via a unique Trigger Configuration Key. Each
TCK must be processed with a specific version of the MOORE software (the
same that was running in the online event filter far at the time data was
taken) to ensure a correct reproduction of the trigger performance.

• BRUNEL: The raw hits are read by BRUNEL[43] in order to reconstruct
basic physics objects, e.g charged tracks, calorimeter clusters and Cherenkov
rings. BRUNEL accesses the LHCb conditions database in order to retrieve
the experimental condition of the detector at the time each event was taken.
Physical objects are saved into .DST files for data analysis.

• DAVINCI: DAVINCI [44] represents the last stage of the reconstruction. It
is used to create composed objects, e.g. the composed particles in the de-
cay chain, and perform candidate selections. Several tools are available to
construct and save useful quantities for offline analysis. Once candidates are
selected, they can be stored in different file formats, ready for further analysis
and visualization.

2.6 Data flow in LHCb

First of all, events coming from the experiment are selected by the trigger system
and then transferred to the CERN Tier-0 for further processing and archiving.They
are called the raw data of the events. The next reconstruction process is performed
in the Tier-1s. Combining the information from the tracks and particle identifi-
cation, with the help oh the raw information (such as the hits or the calorimeter
cluster energies) the physical particles are reconstructed. Reconstructed events are
saved in a Stripping Data Summary Tape (SDST) file, which contains the neces-
sary information for further event filtering without including the raw data. After
that, the SDST files undergoes the Stripping stage: analyzing these files in order
to further filter events for physical analysis by using the full reconstructed infor-
mation. Finally, the raw data event information is attached to a Data Summary
Tape (DST) file. DSTs are the files accessible to scientists for physics analysis.

2.7 Stripping:

What is stripping?
Stripping is the art of selecting the interesting events to be used after the recon-
struction. Stripped DSTs, stripped events, and stripping selections are the only
selections which are run centrally, and therefore the only events and selections
which are available for the entire LHCb data-set.

What is a stripping Line?
A line is the sequence of selections and cuts used to create candidates and select
the events.
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The LHCb experiment has been presented in this chapter, We have presented
the detector context, its different parts and their performance obtained from the
data taken by the software of the LHCb detector.
The detector benefits from two trigger systems that allow to select online the events
we are interested in. For our studies we are going to use MC11 and MC12 to be
discussed is the next chapters.
In the next chapter, the decay Λ0

b → Λ+
c lνl is being discussed.
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In this chapter we are going to study the physics of the Λ0
b , especially the decay

channel Λ0
b → (Λ+

c → Λπ+)(W− → µ−ν̄µ) in an attempt from us to achieve the
following aims:

• Measuring the Λ0
b polarization

• Testing the CP symmetry in the system Λ+
c − Λ̄−c .

• Testing the time reversal symmetry (T).

3.1 Polarization Formalism

3.1.1 Polarization and Density Matrix

The spin is an intrinsic property of a particle, it is one of the two types of
angular momentum in quantum mechanics. After the experimental discovery
of the Spin by Sterm and Gerlach, the spin observable was deduced in 1927
when P. Dirac derived his relativistic quantum mechanics. In some ways,
spin is like a vector quantity; it has a magnitude and a direction. In quan-
tum mechanics the spin is represented by an operator ŝ. The projection of the
spin on the quantization axis results in (2S+1) possible values between -S and +S.

In fact, and from a physical point of view, we can only measure the mean value of
the spin (in a given direction) and not the spin itself. In order to do that we will
introduce the Polarization Density Matrix (Annex A)[45].
A density matrix is a matrix that describes a quantum system in a mixed state, a
statistical ensemble of several quantum states.
Explicitly, suppose a quantum system may be found in state |ψ1〉 with probability
p1, or it may be found in state |ψ2〉 with probability p2, and so on. The density
operator for this system is:

ρ̂ =
∑
i

pi|ψi〉〈ψi|

For an operator Â (which describes an observable A of the system), the expec-
tation value 〈A〉 is given by [46]:

〈A〉 =
∑
i

pi〈ψi|Â|ψi〉 =
∑
mn

〈um|ρ̂|un〉〈un|Â|um〉 =
∑
mn

ρmnAnm = Tr(ρA)

In other words, the expectation value of A for the mixed state is the sum of the
expectation values of A for each of the pure states |ψi〉 weighted by the probabilities
pi and can be computed as the trace of the product of the density matrix with
observable Â.
Remarks:

• ρ is hermitian: ρ = ρ† , therefore it can be diagonalized having positive or
zero eigenvalues simply because they are probabilities.

• Tr(ρ) = 1

• |ρij|2 ≤
∑
ρiiρjj (Schwartz Inequality)

3.1.2 Polarization

Let ρ be a (2× 2) density matrix describing a spin 1/2 system. Because the unit
matrix I and the three Pauli spin matrices form a complete set of (2×2) matrices,
we may write the density matrix ρ as :

ρ =
1

2
(I + ~σ. ~P )
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where we have introduced the polarization vector ~P . Polarization of a particle of
spin S is the expectation value of the spin operator normalized to 1:

~P =
〈~s〉
s

The polarization vector in the Cartesian coordinates of the initial frame (X,Y,Z)
can be written as :

~P = PX ~X + PY ~Y + PZ ~Z

where |~P | =
√
P 2
X + P 2

Y + P 2
Z is the polarization degree. Making use of the explicit

representation of the Pauli matrices, we may also write :

ρ =
1

2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)
• Choosing a z-axis to be the quantization axis, one can deduce the components of
the polarization vector as a function of the polarization density matrix elements :

Pz = (ρ++ − ρ−−) , Px = 2Re(ρ+−) , Py = −2Im(ρ+−)

where ρ++(ρ−−) is the probability of finding the particle with spin projection
+1/2(−1/2) along the quantization axis ( ~oz in this case).

There are three particular cases the polarization can take:

• non polarized state: it takes the value 0, this means that ρ++ = ρ−− = 1/2.

• totally polarized state: takes the value 1,ρii = 1 and ρjj = 0(j 6= i).

• partially polarized state: it takes a value between 0 and 1.

The projection of ~P on an axis (∆) defines the degree of polarization according to
that axis. In the case of spin S=1/2, the polarization of the system is equal to the
probability of finding the system in the state | + 1/2〉 minus that of finding it in
the state | − 1/2〉 and is given by :

P∆ =
N(+1/2)−N(−1/2)

N(+1/2) +N(−1/2)

where N(±1/2)
N(+1/2)+N(−1/2)

are respectively the probability of finding in the mixture the

pure states with ’spin up’ along ∆.
The basic principles of quantum mechanics allow us to deduce the Spin Density
Matrix (SDM) for any final state coming from a decay, which is considered an
essential parameter for the calculation of the polarization vector of a resonance
state. The SDM of the final system is given by the relation: ρf = T †ρRT . T is
the transition matrix defined by the S matrix through out the following relation:
S= 1+iT. The normalization factor of the matrix ρf is given by:

Tr(ρf ) =
dσ

dΩ
= F (θ1, φ1)

where θ1 and φ1 are the polar and the azimuthal angles of the daughter in the
mother rest frame.
For instance, the polarization vector of a resonance state Ri of a final state is
defined by :

~Pi = 〈~Si〉 =
Tr(ρfi

~Si)

Tr(ρfi )

where ρfi is the spin density matrix of the resonance Ri deduced from the total one,
ρf . The elements of the polarization density matrix are not free of constraints,
and those are:
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• Tr(ρΛb) = ρ++ + ρ−− = 1.

• (ρ+−)∗ = ρ−+.

3.2 Angular Distributions of the Λ0
b Decay

Λ0
b-baryons are formed in high-energy particle collisions produced by particle

accelerators. The general method to find them is to detect their decay products,
identify what particles they are, and measure their momenta. If all the decay
products are found and measured correctly, then the mass of the parent particle
may be calculated.

As an example, a favored decay of the Λ0
b is into a Λ+

c and a W. The momenta
of these particles are measured by the detector and using conservation of four-
momentum (M2 = (P1 + P2)2) gives a measure of the mass of the parent particle.

Figure (3.1) represents the Λ0
b baryon and its quark constituents (udb). Via weak

interaction Λ0
b decays to Λ+

c of quark constituents (udc) and W−.

Figure 3.1: Up: p-p collision producing Λ0
b . Bottom: Feynman diagram for the channel Λ0

b →
Λ+
c W

−.

The general formalism for this decay is based on the Jacob-Wick helicity for-
malism, and the formalism of Jackson [24].

3.2.1 Definition of the Frames and their Axis

First of all, we are going to define the production plane which is the plane that
contains momentum of the Λ0

b and that of the incident protons. The normal to
this plane is defined as :

~n =
~pp ×−→p Λb

|~pp ×−→pΛb|
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where ~pp and −→pΛb are respectively the momentum of the incident proton and the
Λ0
b in the LHCb standard frame of reference (Oxyz).

We define the axis
−−→
Ox′ parallel to the momentum ~pp of the colliding protons (LHC

z-axis), this means :
−−→
Ox′ =

−→
Oz → ~ex′ = ~pp

|~pp| = p̂p.

We define the axis
−→
Oz′ orthogonal to the Λ0

b production plane and parallel to the
vector ~n→ −→e z′ = ~n.

We define the axis
−→
Oy′ =

−→
Oz′ ×

−−→
Ox′ → ~ey′ = ~ez′ × ~ex′ .

Figure 3.2: left: Λ0
b in LHCb frame, right: Λ0

b transverse frame.

The new right frame in (Fig.3.2) will be denoted as the ”Λ0
b Transversity frame”,

and the axis (
−→
Oz′) which is orthogonal to the production plane will be taken as

the quantization axis, The components of the Λ0
b momentum in the new frame are

−→
p′

Λ0
b

= (pΛ0
b
cosθΛ0

b
, pΛ0

b
sinθΛ0

b
, 0)

θΛ0
b

is the angle between the Λb momentum and the collision axis (
−→
Oz) in the LHCb

standard frame (Oxyz) and pΛb = |−→pΛb|.
In order to study the angular distribution of the Λb decay products, the rest frame
of the Λb (ΛbXY Z) is constructed by:

• applying a Lorentz Transformation according to ~PΛb axis with
~β = (

−→
p′ Λb)/(EΛb) .

The quantization axis of the new frame (ΛbXY Z) is identical to that of (Ox’y’z’),

this means that
−→
ΛbZ||

−→
Oz′||~n as seen in (Fig.3.3).

Consider the following quasi two-body decay process: Λ0
b →

Λ+
c (Λπ+)W (∗)−(µ−ν̄µ)

3.2.2 Initial Resonance Decay: Λ0
b(Mi)→ Λ+

c (λ1)W−(λ2)

By applying the Wigner-Eckart theorem to the S-matrix element in the framework
of the Jacob-Wick helicity formalism, the analytic form of the decay amplitude is
expressed as [47], [48], [49]-[57]:

A0(Mi) = MΛ0
b
(λ1, λ2)D

1/2∗
Mi,Mf

(φ, θ, 0)

where:
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Figure 3.3: Λ0
b rest frame.

• Mi = ±1/2 represents the projection of the initial spin of Λ0
b along the quan-

tization axis
−−→
Λ0
bZ.

• λ1 = ±1/2 and λ2 = +1, 0,−1 are the possible helicities of the Λ+
c and of the

W− respectively.

• Mf = λ1 − λ2 = ±1/2. It is the projection of the total angular momentum
along the (∆) axis (parallel to ~pΛ). It constrains those of λ1 and λ2 since,
among 6 combination’s, only 4 are physical: (1/2,1), (-1/2,0), (1/2,0), (-1/2,-
1).

• MΛ0
b
(λ1, λ2): Hadronic Matrix element which contains all the decay dynamics.

• Dj
Mi,Mf

(φ, θ, 0): Wigner Matrix related to the kinematics. It is expressed

according to the Jackson convention as:

Dj
Mi,Mf

(φ, θ, 0) = djMi,Mf
(θ) exp(−iMiφ)

This decay amplitude must include all the possible intermediate states, thus a sum
over the helicity states (λ1, λ2) must be performed. We define:

AI =
∑
λ1,λ2

A0(Mi) =
∑
λ1,λ2

MΛ0
b
(λ1, λ2)d

1/2
Mi,Mf

(θ) exp(iMiφ)

Since the initial spin component of Λb baryon is unknown, we must introduce the
polarization density matrix ρΛ0

b in the following form:

dσ(θ, φ) ∝
∑
Mi,M ′i

ρ
Λ0
b

Mi,M ′i
AIA

∗
I
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After the summation over the possible helicity couples (λ1, λ2): (1/2,1) (-1/2,0)
(1/2,0) (-1/2,-1) and the summation over Mi,M

′
i we get:

dσ(θ, φ) ∝ |MΛ0
b
(1/2)|2

(
ρΛb

++ cos2(θ/2) + ρΛb
−− sin2(θ/2) +Re(ρ

Λ0
b

+−exp(−iφ) sin θ)
)

+ |MΛ0
b
(−1/2)|2

(
ρ

Λ0
b

++ cos2(θ/2) + ρ
Λ0
b
−− sin2(θ/2) +Re(ρ

Λ0
b

+−exp(−iφ) sin θ)
)

where

|MΛ0
b
(1/2)|2 = |MΛ0

b
(1/2, 0)|2 + |MΛ0

b
(−1/2,−1)|2

|MΛ0
b
(−1/2)|2 = |MΛ0

b
(−1/2, 0)|2 + |MΛ0

b
(1/2, 1)|2

Noticing that ρ
Λ0
b

++ + ρ
Λ0
b
−− = 1 and ρ

Λ0
b

++ − ρ
Λ0
b
−− = P

Λ0
b

Z and cos2(θ/2) = 1
2
(1 + cos θ),

sin2(θ/2) = 1
2
(1− cos θ), the above relation will become:

dσ(θ, φ) ∝ |MΛ0
b
(1/2)|2

(
1 + P

Λ0
b

Z cos θ +Re(ρ
Λ0
b

+−exp(−iφ) sin θ)) (3.1)

+ |MΛ0
b
(−1/2)|2

(
1− PΛ0

b
Z cos θ −Re(ρΛ0

b
+−exp(−iφ) sin θ))

Because of parity violation, |MΛ0
b
(1/2)|2 6= |MΛ0

b
(−1/2)|2, it is clearly seen that

dσ(θ, φ) 6= dσ(π− θ, π+φ). This property is put into evidence by introducing the
asymmetry parameter αΛb

AS defined by:

αΛb
AS =

|MΛ0
b
(1/2)|2 − |MΛ0

b
(−1/2)|2

|MΛ0
b
(1/2)|2 + |MΛ0

b
(−1/2)|2

Therefore, the angular distribution of Λ+
c in the Λb rest frame will be expressed

as:

dσ

dΩ
∝ 1 + αΛb

ASP
Λb
Z cos θΛ+

c
+ 2αΛb

ASRe[ρ
Λb
+− exp(iφΛ+

c
)] sin θΛ+

c

∝ 1 + αΛb
ASPΛ0

b .p̂Λ+
c

(3.2)

• The polar distribution according to cos θ of Λ+
c :

dσ

d cos θΛ+
c

∝ 1 + αΛb
ASP

Λb
Z cos θΛ+

c

• The azimuthal distribution according to φ of Λ+
c :

dσ

dφΛ+
c

∝ 1 +
π

2
αΛb
ASRe[ρ

Λb
+−exp(iφΛ+

c
)] ≡ 1 + (PΛb

X cosφ+ PΛb
Y sinφ)αΛb

AS

3.2.3 Decay 1: w(∗)−(λ2)→ µ−(λ5)ν̄µ(λ6)

However, moving forward to the decay of the virtual W ∗-boson to study its final
particles is not easy. The angular distributions of the final states µ− and ν̄µ are
analyzed in the W ∗-boson helicity frame. To do so, there are two steps to be
performed in order to move from the Λb transverse frame to the W ∗-boson helicity
frame (WbosonX2Y2Z2), see (Fig.3.4).

• Two successive rotations Ry(θ) and Rz(φ): the new
−−−→
WZ2 is parallel to the

direction of the momentum of the W ∗-boson , −→pW , in the transverse frame.

• Lorentz boost βW = |−→pW |
EW

.
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Figure 3.4: W− rest frame.

By this method the quantization axis coincides with the helicity axis.

The general formula of the lepton angular distribution in the W− rest frame
(3.4) is [47, 48]:

dσ(θ2, φ2) ∝
∑
λ2,λ′2

ρWλ2,λ′2
AIA

∗
I

where ρWλ2,λ′2
is a (3×3) density matrix for a spin 1 particle defined as follows:

ρ =

 ρ11 ρ10 ρ1−1

ρ01 ρ00 ρ0−1

ρ−11 ρ−10 ρ−1−1



Here we need 8 real parameters (n2 − 1) in order to define ρ. Let’s define AI :

AI =
∑
λ5

A1(λ2) =
∑
λ5

MW (λ5,−1/2)d1
λ2,Mf

(θ2) exp(iλ2φ2)

such that Mf = λ5 − λ6 = λ5 − (±1/2) = 0,−1.

λ6 = +1/2, since anti-neutrinos are right-handed particles. By following the
same mathematical technique as above; after the summation over the possible
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helicity couples and over λ2, λ
′
2 we get:

dσ

dΩ2

∝ ρW11

(
|MW (+−)|2 (1+cos θ2)2

4
+ |MW (−−)|2 sin2 θ2

2

)
(3.3)

+2Re
(
ρW10exp(iφ2)

) (
|MW (+−)|2 cos2 θ2

2
− |MW (−−)|2 cos θ2

)
sin θ2√

2

+2Re
(
ρW1−1exp(i2φ2)

) ( |MW (+−)|2
4

− |MW (−−)|2
2

)
sin2 θ2

+ρW00

(
|MW (+−)|2

2
sin2 θ2 + |MW (−−)|2 cos2 θ2

)
+2Re

(
ρW0−1exp(iφ2)

) (
|MW (+−)|2 (1−cos θ2)2

2
+ |MW (−−)|2 cos θ2

)
sin θ2√

2

+ρW−1−1

(
|MW (+−)|2 (1−cos θ2)2

4
+ |MW (−−)|2 sin2 θ2

2

)
These angular distributions are in agreement with the results obtained by
C.QUIGG [58] for specific polarization of the W−; particularly, for PW

Z = +1, 0,−1
where:

• For helicity = 0 (completely longitudinally polarized);

dσ

dΩ
=
GFM

3
W

6π
√

2
sin2 θ2

• For helicity = +1 (completely transversely polarized according to the w mo-
mentum direction) ;

dσ

dΩ
=
GFM

3
W

32π2
√

2
(1 + cos θ2)2

• For helicity = -1 (completely transversely polarized opposite to the w mo-
mentum direction) ;

dσ

dΩ
=
GFM

3
W

32π2
√

2
(1− cos θ2)2

Again from Λ0
b decay amplitude, we can deduce the PDM of the W−:

• ρW11 =
|M

Λ0
b
(1/2,1)|2

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2++|M

Λ0
b
(−1/2,−1)|2

• ρW00 =
|M

Λ0
b
(1/2,0)|2+|M

Λ0
b
(−1/2,0)|2

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2++|M

Λ0
b
(−1/2,−1)|2

• ρW−1−1 =
|M

Λ0
b
(−1/2,−1)|2

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2++|M

Λ0
b
(−1/2,−1)|2

• ρW10 = −π
4

|M
Λ0
b
(1/2,1)|2 |M

Λ0
b
(1/2,0)|2

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2++|M

Λ0
b
(−1/2,−1)|2 P

Λc
Z

• ρW1−1 = 0 because of the angular momentum conservation.

• ρW0−1 = −π
4

|M
Λ0
b
(−1/2,0)|2 |M

Λ0
b
(−1/2,−1)|2

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2++|M

Λ0
b
(−1/2,−1)|2 P

Λc
Z

It is worthy noticing that:

ρW01 = ρ∗W10 ρW−11 = ρ∗W−11 ρW−10 = ρ∗W0−1

We notice again that the initial polarization of Λ0
b appears in the non-diagonal ρW10

and ρW0−1 elements. The density matrix elements can be estimated by the aide of
specific models of form factors [59].
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3.2.4 Decay 2: Λ+
c (λ1)→ Λ(λ3)π+(λ4)

The same method used to move to the virtual W ∗-boson helicity frame is used
here upon moving to the Λ+

c one. To do so, we perform two steps to be done in
order to move to the Λ+

c helicity frame (Λ+
c X1Y1Z1), see Figure (3.5).

• Two successive rotations Ry(π − θ) and Rz(π + φ): the new
−−−→
Λ+
c Z1 is parallel

to the direction of the momentum of −→pΛ+
c

, in the transverse frame.

• Lorentz boost βΛ+
c

=
|−−→p

Λ+
c
|

E
Λ+
c

.

By this method the quantization axis coincides with the helicity axis.

Figure 3.5: Λ+
c rest frame.

The general formula of the Λ angular distribution in the Λ+
c rest frame is [47, 48]:

dσ(θ1, φ1) ∝
∑
λ1,λ′1

ρΛ+
c

λ1,λ′1
AIA

∗
I

where

AI =
∑
λ3

A1(λ1) =
∑
λ3

MΛ+
c

(λ3, 0)d
1/2
λ1,Mf

(θ1) exp(iλ1φ1)

such that Mf = λ3 − λ4 = ±1/2, λ4 = 0 since the spin of the pion is zero. By
following the same mathematical technique as above; after the summation over the
possible helicity couples (λ3, 0): (1/2,0) (-1/2,0) and the summation over λ1, λ

′
1

we get:

dσ

dΩ1

∝ 1 + αΛ+
c

ASP
Λ+
c

Z cos θΛ + 2αΛ+
c

ASR[ρΛ+
c

+− exp(iφΛ)] sin θΛ

∝ 1 + αΛ+
c

ASPΛ+
c .p̂Λ (3.4)
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where

αΛ+
c

AS =
|MΛ+

c
(1/2)|2 − |MΛ+

c
(−1/2)|2

|MΛ+
c

(1/2)|2 + |MΛ+
c

(−1/2)|2

and

PΛ+
c

Z = ρΛ+
c

++ − ρΛ+
c
−−

Studying Λ+
c → Λπ+ coming from Λ0

b decays give us the opportunity to deduce
the PDM of the Λ+

c since its production mechanism is known. We obtain:

• ρΛ+
c

++ =
|M

Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2+|M

Λ0
b
(−1/2,−1)|2

• ρΛ+
c
−− =

|M
Λ0
b
(−1/2,0)|2+|M

Λ0
b
(−1/2,−1)|2

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2+|M

Λ0
b
(−1/2,−1)|2

• ρΛ+
c

+− = −π
4

M
Λ0
b
(1/2,0)M

Λ0
b
(−1/2,0)∗

|M
Λ0
b
(1/2,0)|2+|M

Λ0
b
(1/2,1)|2+|M

Λ0
b
(−1/2,0)|2+|M

Λ0
b
(−1/2,−1)|2 P

Λb
Z

• ρΛ+
c
−+ = ρΛ+

c ∗
+−

We notice that the initial polarization of Λ0
b along the

−→
OZ axis appears in the

non-diagonal ρΛ+
c

+− element. Thus it is confirmed that the Λ0
b decay mechanism is

reflected in the polarization density matrix of Λ+
c . The density matrix elements

can be calculated by the aid of form factors related to a specific dynamics model
[59].

3.3 Angular Distribution of the Λc Decay Products

Charmed baryons are formed in high-energy particle collisions, such as those pro-
duced by particle accelerators. The general method to find them is to detect their
decay products, identify what particles they are, and measure their momenta. If
all the decay products are found and measured correctly, then the mass of the
parent particle may be calculated.

(Fig.3.6) represents the charmed baryon (Λ+
c ) and its quark constituents (udc).

Via weak interaction Λ+
c decays to Λ of quark constituents (uds) and π (ud̄).

Figure 3.6: Feynman diagram for the channel Λ+
c → Λπ.

The general formalism for the Λ+
c → Λπ decay is again based on the Jacob-Wick

helicity formalism, and the formalism of Jackson [24].
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In order to study the angular distribution of the products of the Λ+
c decay

products, the helicity frame of the Λ+
c (Λ+

c X1Y1Z1) from the (ΛbXY Z) frame as
shown above.
dσ, being the decay probability for the Λ+

c → Λ(pπ−)π+, is given by the general
expression (Appendix A):

dσ =
∑
M,M ′

∑
λ1,λ2

ρΛ+
c

M,M ′|A(λ1,λ2)(Λ
+
c → Λπ+)|2d1/2

M ′λd
1/2
Mλ exp i(M ′ −M)φ (3.5)

where we denote by M, M’ the projections of the Λ+
c spin on the

−−→
Λ+
c Z, λ1 = ±1/2

and λ2 = 0 are the helicities of Λ and the pion respectively, and finally λ = λ1−λ2

We have 2 possibilities for the couple (λ1, λ2) due to the conservation of the total
angular momentum : (-1/2,0) ; (+1/2,0).

We define here the asymmetry parameter αΛ+
c

AS depending on the final helicity of
the products:

αΛ+
c

AS =
|MΛ+

c
(1/2, 0)|2 − |MΛ+

c
(−1/2, 0)|2

|MΛ+
c

(1/2, 0)|2 + |MΛ+
c

(−1/2, 0)|2

The angular distribution of Λ in the Λ+
c rest frame, starting from eq.(3.5), is given

by the following expression:

dσ

dΩ
∝ 1 + αΛ+

c
ASP

Λ+
c cos θΛ + 2αΛ+

c
ASR[ρΛ+

c
+− exp(iφΛ)] sin θΛ (3.6)

where PΛ+
c = ρΛ+

c
++ − ρΛ+

c
−− is the Λ+

c polarization along the quantization axis
−−→
Λ+
c Z.

• The polar angular distribution of the Λ is :

dσ

d cos θΛ

∝ 1 + αΛ+
c

ASP
Λ+
c

Z cos θΛ (3.7)

• The azimuthal distribution of the Λ is:

dσ

dφΛ

∝ 1 + αΛ+
c

AS [PΛ+
c

X cos(φΛ) + PΛ+
c

Y sin(φΛ)] (3.8)

Lambda Decay to Proton and Pion

However, moving forward to the decay of the intermediate resonance Λ→ pπ−,
and studying the angular distribution of the final states is not that easy way, we
should move to the helicity frame of the Λ particle. To do so, there are two steps
to be done in order to move from the Λ+

c transverse frame to the Λ helicity frame
(ΛX3Y3Z3), as shown in Fig.3.7.

• Two successive rotations Ry(θ3) and Rz(φ3): the new
−→
ΛZ is parallel to the

direction of the momentum of the Λ, −→pΛ, in the Λc helicity frame frame.

• Lorentz boost βΛ = |−→pΛ|
EΛ

.
The angular distribution of the proton in the Λ helicity frame is given by the
following expression:

dσ

dΩ3

= {1+αΛ
ASα

Λ+
c

AS cos(θ3)−π
4
αΛ
ASP

Λ+
c

Z 2R〈
MΛ+

c
(1/2, 0)M∗

Λ+
c

(−1/2, 0)

|MΛ+
c

(1/2, 0)|2 + |MΛ+
c

(−1/2, 0)|2
exp(iφ3)〉 sin θ3}

(3.9)
We define here the asymmetry parameter αΛ

AS depending on the final helicity of
the products:

αΛ
AS =

|MΛ(1/2, 0)|2 − |MΛ(−1/2, 0)|2

|MΛ(1/2, 0)|2 + |MΛ(−1/2, 0)|2
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Figure 3.7: Λ helicity frame.

• θ3 is the angle between the −→pp and the
−−→
ΛZ3 axis.

• φ3 is the azimuthal angle

Integrating the above equation over the variable φ3 allows us to deduce the cos θ3

angular distribution of the proton :

dσ

d cos θ3

∝ 1 + αΛ+
c

ASα
Λ
AS cos θ3 (3.10)

Integrating the above equation over the variable cos θ3 allows us to deduce the φ3

angular distribution of the proton :

dσ

dφ3

∝ 1− π

4
αΛ
ASP

Λ+
c

Z 2R{
MΛ+

c
(1/2, 0)M∗

Λ+
c

(−1/2, 0)

|MΛ+
c

(1/2, 0)|2 + |MΛ+
c

(−1/2, 0)|2
exp(iφ3)} (3.11)

Note the presence of two asymmetry parameters next to each other in the cos θ3

angular distribution of the proton and the absence of the polarization vector PΛ
Z .

dσ

d cos θ3

∝ 1 + αΛ+
c

ASα
Λ
AS cos θ3 (3.12)

This allows us to calculate the product αΛ+
c

ASα
Λ
AS independent of the cascade polar-

ization.
The general form of the angular distribution is the following:

dσ(p)

dΩ
|Λ ∝ 1 + αΛ

AS < ~σΛ > ·p̂p (3.13)

where p̂p = (sin θ3 cosφ3, sin θ3 sinφ3, cos θ3)
and < ~σΛ >= (PΛ

x , P
Λ
y , P

Λ
z )
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After simple expansion for the above expression, the angular distribution of the

proton in the Λ helicity frame is given by : dσ(p)
dΩ
|Λ becomes:

dσ(p)

dΩ
|Λ ∝ 1 + αΛ

AS{pΛ
x3

sin θ3 cosφ3 + pΛ
y3

sin θ3 sinφ3 + pΛ
z3

cos θ3} (3.14)

Now we can compare the equation (3.9) to the equation (3.14), and the result will
be the different components of the Λ vector polarization.

• |pΛ
x3
| = π

4

M
Λ+
c

(1/2,0)M∗
Λ+
c

(−1/2,0)+M
Λ+
c

(−1/2,0)M∗
Λ+
c

(1/2,0)

|M
Λ+
c

(1/2,0)|2+|M
Λ+
c

(−1/2,0)|2 PΛ+
c

Z

• |pΛ
y3
| = π

4

M
Λ+
c

(1/2,0)M∗
Λ+
c

(−1/2,0)−M
Λ+
c

(−1/2,0)M∗
Λ+
c

(1/2,0)

|M
Λ+
c

(1/2,0)|2+|M
Λ+
c

(−1/2,0)|2 PΛ+
c

Z

• |pΛ
z3
| = αΛ+

c
AS =

|M
Λ+
c

(1/2,0)|2−|M
Λ+
c

(−1/2,0)|2

|M
Λ+
c

(1/2,0)|2+|M
Λ+
c

(−1/2,0)|2

Consequence: the longitudinal polarization component of the Λ is the asymmetry
α+
c parameter.

3.4 Study of the T odd observables

In order to test the Time Reversal Symmetry, we are going to search for T odd
observables. Two types of observables are suggested to show such evidence : The
special angles, and the polarization of the Λ+

c , the virtual W ∗-boson and the Λ
particle. In this study only the polarization will be presented.

3.4.1 The Special Angles

Definition of the Observable

We are going to build a T odd observable in the Λ0
b Transversity frame. This

construction was inspired from the T odd and the CP observables developed by
Sehgal for the decay K0

L =⇒ π+π−e+e−. As illustrated in (Fig.3.8), consider the
normal vectors to the production plane of Λ+

c and the W ∗-boson :

Figure 3.8: The production plane of the Λ+
c is determined by the momenta of Λ and π, whereas

that of the W ∗-boson is constructed by the momenta of the µ− and ν (both represented in the
brown colored plane). The normal vectors to the those production planes are denoted in blue
and are given in eq. 3.15.

−−→nΛ+
c

=
−→pΛ ×−→pπ+

|−→pΛ ×−→pπ+ |
, −−→nW− =

−→pµ− ×−→pνµ
|−→pµ− ×−→pνµ |

(3.15)
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The two vectors formed above eq.(3.15) are even by T symmetry but the cosine
and the sine of their azimuthal angles are odd by T. In order to prove this result,
it is sufficient to write these quantities as a mixed product of the polar vectors.
For the Λ+

c resonance, we obtain the following expressions:

cosφ(n
Λ+
c

) = −→eY ·
−→eZ ×−−→nΛ+

c

|−→eZ ×−−→nΛ+
c
|
, sinφ(n

Λ+
c

) = −→eZ ·
−→eX ×−−→nΛ+

c

|−→eZ ×−−→nΛ+
c
|

(3.16)

These two quantities will be denoted as the Special angles. The relation 3.17
recalls the transformation by T of the vector base of the Transversity frame used
in this decay.

−→eZ =
−→ep1 ×−→pΛ+

c

|−→ep1 ×−→pΛ+
c
|

T−→ +−→eZ , −→eX =
−→pp1
|−→pp1|

T−→ −−→eX , −→eY = −→ez ×−→ex T−→ −−→eY

(3.17)
Remark: the quantities cosφ(n

Λ+
c

) and sinφ(n
Λ+
c

) are constructed from the mo-

menta. Since the momenta are odd by T and P, the special angles therefore change
sign under these two symmetries.

3.4.2 Polarization of the Intermediate Resonances and Odd Observ-
ables under Time Reversal

The Λ0
b essentially is produced from strong interaction, its polarization can’t be

considered as a signature of Time Reversal Violation. On contrary, the compo-
nents of the polarization vectors of the Λ+

c and the W ∗-boson seem to be more
relevant. In order to decompose the polarization vector of these resonances,we are
going to construct the helicity frame of each of the resonances: (Λ+

c ,
−→eL1,
−→eT1,
−→eN1)

and (W−
virtual,

−→eL2,
−→eT2,
−→eN2), (where −→eL = Longitudinal, −→eT =Transverse, and

−→eN) =Normal). Represented by figure (3.9), the two new frames are constructed
starting from the Λ0

b Transversity frame. Their vector bases are defined as follows:

Figure 3.9: The helicity frame of each of the resonances

−→eL1 =
−→pΛ+

c

|−→pΛ+
c
|
, −→eN1 =

−→eZ ×−→eL1

|−→eZ ×−→eL1|
, −→eT1 = −→eN1 ×−→eL1 (3.18)

−→eL2 =
−→pΛ+

c

|−→pΛ+
c
|
, −→eN2 =

−→eZ ×−→eL2

|−→eZ ×−→eL2|
, −→eT2 = −→eN2 ×−→eL2 (3.19)

In order to have a clear idea on how the polarization vector of the resonance par-
ticles R(i) (Λc,Λ

0,W (∗)−) behave under discrete symmetries, the following vectors
are being defined in the helicity frame of each R(i):

• ~eL = ~p
p

with ~p = ~R(i)
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• ~eT = ~eZ× ~eL
~eZ× ~eL

, ~eZ being the quantization axis in the previous frame.

• ~eN = ~eT × ~eL

The general formula of the polarization vector of the resonance can be given by:

~PR = PR
L ~eL + PR

N ~eN + PR
T ~eT (3.20)

Since the polarization vector is an axial one, it is important to know how its com-
ponents behave under Parity and Time reversal symmetries. Tab.5.1 summarizes
the transformation on the components PL, PN , PT by P and T.

Observable P T

~eL - -
~eT - -
~eN + +
~P + -
PL - +
PT - +
PN + −

Table 3.1: Effect of Parity and Time Reversal Transformation on the components of the polar-
ization vector.

It is clear that the normal component is odd by T. If this value is different
from zero or if its distribution is not symmetric around φ, this means that there
is a possibility for Time Reversal violation. It is important to say that the choice
of the frame plays an essential role in expressing the different components of the
polarization vector and hence on their transformation by T and P.

3.5 Transformation of the 4-Vector Polarization

The Lorentz transformation used to pass from one frame to another has been
given. At this point, one still need to see how the spin is transformed from one
frame to another.
A simple approach is to define an axial vector in Minkowski space having only
three independent components and is reduced to the spin s in the proper frame
of the particle. Let (S) be the 4-vector spin components of the particle in
the initial frame. The co-variant extension of the spin operator is the Pauli-
Lubanski quadri-vector, Sα, which is defined in the particle proper frame as :
S ≡ (S0 = 0, ~S = ~s). This quadri-vector should verify the Invariant relation

pµS
µ = 0, where pµ ≡ (m,~0) is the momentum-energy quadri-vector in the

particle rest frame.

Hence, Sα is transformed from one frame to another just like any other quadri-
vector. So if (Sµ) = (S0, ~S) is given in a frame (R), the Lorentz transformation of

this spin as a function of ~β is given by the following relation:

S0 = γ~β · ~s, ~S = ~s+
γ2

1 + γ
(~β · ~s), γ =

1√
1− β2

(3.21)

This relation helps in deducing the Lorentz transformation of the spin vector to any
other frame, if one know the spin vector of the particle in its rest frame(generalized
to polarization).
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3.6 Final State Interactions

In our calculations (essentially kinematical), we do not take into account the final
state interactions(PSI), which play an important role in all hadron interactions.
When hadrons are produced in any process, the strong interactions between them
modify their final wave-function; Which causes the modification of some physical
observables.
Upon passing from a forward to backward reaction(Time Reversal), the initial and
final states will be changed where as the momentum and the spin vectors will
be reversed. However, supposing that T is an exact symmetry, forces the total
amplitude of the decay to be unchanged. Or in other words,

|A(~pi, ~si → ~pf , ~sf )| = |A(− ~pf ,−~sf → −~pi,−~si)|

Where (~pi, ~si) and ( ~pf , ~sf ) represents the initial and final states momentum and
spin vectors. If the above equation is not verified, this could be a sign of violation
of T. In the process that involve final state Interactions (FSI), there are differences
between the physical process and its T-transformation.

So FSI could simulate a TR violation, even if the latter is assumed to be accu-
rate. In the case where FSI are negligible, the inequality between the amplitudes
(forward and backward) would be a sign of violation of the symmetry T (Theorem
of Wolfenstein,1999)[60].
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In a brief summary for this chapter, the phenomenological study of the Semilep-
tonic decays has been performed. It has also been discussed the method of calculat-
ing the polarization of the Λ0

b and the resonant particles. This method is based on
the Jacob-Wick and Jackson helicity formalism.
The angular distribution relations have been established, which directly permit to
extract the Λ0

b polarization and many other important parameters.
It has been also seen that, usually, the normal component of the polarization vector
of the intermediate resonance is odd by T. If this value is different from zero, this
means a direct test for Time Reversal Violation.
The next chapter is dedicated to the experimental study of the Λ0

b decay and the
analysis of the data recorded by the LHCb experiment.
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In both p-p and p-A collisions at low and intermediate energies, hyperons
(Λ,Σ, ...) are produced with an important transverse polarization. Extrapolat-
ing these results to much higher energies (like at LHC), we expect that heavy
hyperons like Λ0

b ,Σb, ... are also polarized with a non vanishing transverse one.
The polarization value (Pb ) could be as large as 20%. The polarization of Λ0

b pro-
duced in hadronic environments has been measured [61]. However, Λ0

b produced
in e+e− → Z0 → bb̄ are found to be substantially polarized, in agreement with
the Z0bb̄ coupling of the Standard Model (SM). This was studied at LEP by the
ALEPH, OPAL and DELPHI collaborations ([62]-[64]) in Λ0

b → Λ+
c lνl decays. For

such semileptonic decay, the momentum distribution of the lepton is sensitive to
the polarization. The measurement however suffers from large uncertainty from
form-factor models used to predict the lepton distribution.

Semileptonics are the most abundant b-decays and so could be used to measure
the life-time and the polarization of the Λ0

b with high statistics; however in the
decay, a neutrino is emitted which cannot be detected by LHCb. This leads to
the momentum of the Λ0

b being incorrectly reconstructed, which in turn affects
the measurement of its life-time. Compensating for the additional momentum is
required in any time-dependent analysis. It is a prior more difficult to select the
correct primary vertex (PV) in partially reconstructed decays, since the momentum
vector of the reconstructed part may not point to the correct PV; as shown in
the cartoon (Fig.4.1) . Since the running conditions for 2010 and 2011 at the
LHC are expected with a much higher PV multiplicity than all previous Monte
Carlo studies, an investigation of the time-dependent effects of high pileup was
performed.

Figure 4.1: This cartoon shows a typical Λ0
b → Λ+

c µνµ decay. There are a neutrino, a Λ+
c and a

muon emitted in this Λ0
b decay. The three stars show the multiple primary vertices in the event.

The dotted line shows the reconstructed Λ+
c µ momentum pointing back to one primary vertex,

however the solid line shows the true momentum which includes the neutrino momentum as well,
which points back to another primary vertex.
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4.1 Corrections for the missing final state particle

There are multiple methods used to correct the Λ0
b-momentum for possible missing

neutrino energy. Each method has both advantages and disadvantages that will
be discussed in the sections below. In section 5.1.1, we present a method that
depends on the kinematics of the decay, called ” Neutrino Reconstruction ”.It
is a data-based method that aims to calculate the momentum of the neutrino
and thus that of the Λ0

b . In section 5.12, we present a MC method based on a
statistical correction, and it is called ”k-factor”. In section 5.1.3 an attempt to
combine these two methods is presented.

Figure 2.12 shows the different track types used in the LHCb detector. Since the
study involves the presence of the Λ particles, emphasis are set on two types of
tracks:

• particles decaying in the Vertex Locator (VELO) are reconstructed as Long
Tracks and will be denoted by LL.

• particles decaying between the VELO and the Trigger Tracker (TT) are re-
constructed as Downstream tracks and will be denoted by DD.

4.1.1 Neutrino Reconstruction

The missing momentum vector can be calculated using the kinematic information
from the decay. However, to correct the Λ0

b-momentum a few assumptions are
necessary to be taken into consideration. The invariant mass of the missing state
vector must be assumed. This is straight-forward if we assume there is only one
missing particle, and it is a mass-less neutrino. If there are multiple neutrinos, the
invariant mass of that system cannot be simply calculated and this assumption
is invalid, but we ignore that for now. The flight direction of the Λ0

b baryon
is reconstructed using the primary vertex and Λ0

b decay vertex positions. The
momentum of the Λ+

c µ can then be broken down into components parallel and

perpendicular (~P
‖
Λ+
c µ
, ~P⊥

Λ+
c µ

) to the Λ0
b flight direction F̂ =

~F

|~F |
. ~F is given by the

following relation
−→
F =

−−→
EV −

−→
PV where

−−→
EV is the Λ0

b end vertex position (where

the Λ0
b decays) and

−→
PV is the position of the primary vertex.

−−→
P
‖
Λ+
c µ

= F̂ .
−−→
PΛ+

c µ
(4.1)

−−→
P⊥

Λ+
c µ

=
−−→
PΛ+

c µ
− (F̂ .

−−→
PΛ+

c µ
)F̂ (4.2)

Now we use the conservation of the momentum and energy,

−−→
P⊥

Λ+
c µ

= −
−→
P⊥ν (4.3)

−→
PΛ0

b
=
−−→
P
‖
Λ+
c µ

+
−→
P ‖ν (4.4)

EΛ0
b

= EΛ+
c µ

+ Eν (4.5)

we make use of the E2 = m2 + P 2 (c=1) and equation 4.5 can be written in
terms of equations 4.4 and 4.3 to obtain a quadratic equation of the form:
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0 = aP ‖ν
2

+ bP ‖ν + c (4.6)

and here we define a, b, and c as the following:

a = 4(P⊥2
Λ+
c µ

+m2
Λ+
c µ

) (4.7)

b = 4P
‖
Λ+
c µ

(2P⊥2
Λ+
c µ
− (m2

Λ0
b
−m2

Λ+
c µ

)) (4.8)

c = 4P⊥2
Λ+
c µ

(P
‖2
Λ+
c µ

+m2
Λ0
b
)− (m2

Λ0
b
−m2

Λ+
c µ

)2 (4.9)

where we have mΛ0
b

is the Particle Data Group(PDG) mass of the Λ0
b and mΛ+

c µ

is the reconstructed mass of the Λ+
c µ combination. The last equation thus can be

solved using the following formula:

P ‖ν =
−b±

√
b2 − 4ac

2a
(4.10)

However, this gives two possible solutions. It was shown that neither is more
likely to be correct, and they are mostly completely ambiguous [65]. Choosing
a solution at random is as good as any other method, giving half correct and
half incorrect answers. For this study we choose the smallest solution. Since the
smallest solution is the minimum correction from this method, and, when it is
correct, it logically has a smaller associated error, since less momentum was taken
by the neutrino in this case. Studies on Monte-Carlo are done and it shows that
there is no bias in choosing the smallest value [66].

4.1.2 k-factor

In MC simulations, we are able to estimate the momentum of the missing particles
and correct it using some statistical methods. There is correlation between the
missing mass of the system and the momenta carried by the missing state, and
therefore any correction to be done is parametrized in terms of the remaining
mass of the Λ+

c µ-state which was reconstructed.
By means of the MC simulations, the correction factor can be estimated. It is the
ratio of the reconstructed Λ+

c µ momentum to the true Λ+
c µ one and it is denoted

by the k-factor.

The Slices are taken as seen in figure 4.2 through this plot in the reconstructed
Λ0
b-mass to average the k-factor per bin of reconstructed mass. The mean of each

slice is then taken and fitted with a second order polynomial. By calculating the
correction factor on an event-by-event from the fit function, the missing momentum
in the system is being corrected.
Each slice has a its significant width, and therefore there seems to be a very large
uncertainty in the k-factor, which gets worse at lower reconstructed masses.
The k-factor is calculated on the whole Monte Carlo sample then applied to the
same sample, which introduces a small statistical bias in this study.
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Figure 4.2: The k-factor in MC11 data. The magnitude of the reconstructed Λ0
b-momentum, ~P rec

, divided by the magnitude of the true Λ0
b-momentum, ~P true, is plotted against the reconstructed

mass of the Λ0
b . In the bottom picture, slices are taken through the distribution along the mΛ+

c µ

axis to calculate the average correction factor, and a second order polynomial fit is made.

4.1.3 Neutrino Reconstruction plus k-factor

In the neutrino reconstruction method,the smallest solution is being taken, to make
sure that there is less propagation of the error.
In the MC, after the neutrino reconstruction method had already been applied,
again the k-factor distribution was fitted as a function of the reconstructed mass.
The new k-factor is calculated on the whole Monte Carlo sample then applied to
the same sample as seen in figures 4.3.
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Figure 4.3: The k-factor in MC11 data after the neutrino reconstruction -starting from up- for
DD(particle, anti-particle). The magnitude of the reconstructed Λ0

b-momentum, ~P rec , divided

by the magnitude of the true Λ0
b-momentum, ~P true, is plotted against the reconstructed mass of

the Λ0
b . In the bottom, slices are taken through the distribution along the mΛ+

c µ
axis to calculate

the average correction factor, and a second order polynomial fit is made.
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4.2 Data and Monte Carlo samples

The results described in this thesis are obtained using the full Run I data collected
by LHCb at the LHC at a center-of-mass energy of

√
s = 7 TeV for the year 2011

and
√
s = 8 TeV for the year 2012. The 2011 data corresponds to an integrated

luminosity of L = 1fb−1 , while 2012 data corresponds to L = 2fb−1 .
Monte Carlo (MC) generated samples are produced using Gauss. They are used
to study the behavior of the signal and background events in order to model the
invariant mass line-shapes of signals, signal cross-feeds and backgrounds.
The simulation conditions have the same value of the pile-up factor (ν = 2.5) for
both 2011 and 2012 in order to resemble the data taking conditions. The trigger
conditions however, are different for 2011 and 2012, and hence the MC samples
are simulated using TCKs (Trigger configuration key: The HLT is configured via
a unique key, that defines the sequence of algorithms, and the cuts (we refer
to them as filters of a selection)) that are representative of the two data taking
periods. The number of MC events produced for the signal decay mode for each
year is summarized in Tab.4.1. About 50% of these events are produced with
Mag-down detector configuration, and the other 50% are produced with Mag-up
detector configuration using Pythia8 event generators. As far as signal events
are concerned, we have chosen to simulate a mixture of resonating (phase space)
and quasi-2-body decays involving either a Λ+

c and Λ baryon associated with a
low-mass meson.

Decay mode Event type Year Yield Resonant
Λ0
b → Λ+

c µ
−ν̄µ 15574133 2012(2011) 93982(62174) Λ+

c → Λ(pπ−)π+

Table 4.1: Summary of the simulation samples generated for this analysis in official Sim09b with
2011 conditions (1/3 of total events) and 2012 conditions (2/3 of total events).

4.3 Stripping Event Selection Criteria

4.3.1 Available data sample

In this analysis we use the full run 1 data set(
∫
L = 3fb−1) proceeded with the

stripping conditions as shown in Tab.4.2. MC simulated data samples are gener-
ated for each Λ0

b exclusive semileptonic decay mode with a HQET inspired form
factor model [67], with the final states shown in Tab.4.1. These samples are pro-
cessed using the DaVinci v36r1p1 package.

Sample Stripping luminosity Stripping
2011 Charm/Phys/b2LcMuXL0PiCharmFromBSemiLine/Particles 1.0fb−1 21r1
2012 Charm/Phys/b2LcMuXL0PiCharmFromBSemiLine/Particles 2.0fb−1 21

Table 4.2: List of 2011 (Stripping 21r1) and 2012 (Stripping 21) data samples used.

4.3.2 Reconstruction of Λ0
b → Λ+

c µ
−ν̄µ decay

In an LHCb event, one detects such a process by looking for a Λ+
c resonance. The

event is kept only if the invariant mass of the detected (Λπ) system is within ±77
MeV of the PDG mass value of the Λ+

c particle (mΛ+
c

= 2287 MeV), and that the
two daughter particles point at the same vertex in space.

Λ+
c candidates are formed combining Λ and a π+, where the Λ is formed by com-

bining a proton and a pion, according to the selection criteria shown in Tab.4.4. It



74 Reconstruction and Selection of the Events

is also asked that a detected muon points to the same vertex as the reconstructed
Λ+
c momentum (so that they probably come from the same Λ0

b ). LHCb does
not cover a 4π solid angle, so no missing energy is measured and the neutrino in
Λ0
b → Λ+

c µ
−ν̄µ is not reconstructed. Therefore, the Λ0

b mass spectrum does not
clearly peak at mPDG(Λ0

b) =5624 MeV, so there is only a broad cut in Λ0
b recon-

structed mass. After that, Λ+
c and the identified muon µ− are kept if the vertex

quality criteria is well satisfied.
The Λ+

c may be a ground state, or in excited state of higher mass that decays into
ground state and other particles that will not be reconstructed and are considered
missing particles as the neutrino.

Variable definition Symbol

Momentum P
Transverse momentum PT
χ2 over degrees of freedom χ2/NDOF
Track’s probability of being a ghost track GhostProb
Track’s probability of being a muon ProbNNmu
Track’s probability of being a proton ProbNNp
Particle identified as muon ISMUON
Delta-log-likelihood for the given hypothesis (wrt the pion): ∆logL = Lx

Lπ
DLLxπ

Clone killer CloneDist <= 0
Proper time τ
Impact parameter IP
Angle between particle momentum and beam-axis cos θ
Angle between particle momentum and direction of flight from PV to DV. DIRA
Primary vertex and Decay vertex PV and DV
pseudo rapidity η

Table 4.3: Definition of the variables
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Variable definition Selection requirements

Muon selections
Muon momentum P > 3000
Muon transverse momentum PT > 1200
Muon track’s χ2 over degrees of freedom χ2/NDOF < 4
Muon track’s probability of being a ghost track GhostProb < 0.3
Muon track’s probability of being a muon ProbNNmu > 0.4
Muon track’s probability of being a proton ProbNNp < 0.2
ISMUON (particle identified as muon) OK

Daughter selections
Pion momentum P > 1500
Pion transverse momentum PT > 250
Pion track’s χ2 over degrees of freedom χ2/NDOF < 4
Pion track’s probability of being a ghost track GhostProb < 0.3
Particle Identification for Pions DLLKπ < 10
Particle Identification for Protons DLLpπ < 10 and DLLpπ −DLLKπ > 0
Clone killer CloneDist <= 0

Λ+
c selections

Sum of transverse momenta (pT ) of daughters pT > 1800
Vertex fit quality χ2/NDOF < 6
Proper time τ > 0
Angle between Λ+

c momentum and beam-axis cos θ > 0.99

Λ0
b selections

Sum of transverse momenta (pT ) of daughters pT > 1800
Vertex fit quality χ2/NDOF < 6
Λ0
b vertex Z(Λ+

c )− Z(Λ0
b) > 0

DIRA: Direction angle cos θ > 0.999
η pseudo rapidity 2 < η < 5
Invariant Mass Λ+

c µ [2500, 6000]MeV

Other selections
Trigger selections Hlt2TopoMu2,3,4Body TOS on (pππ, µ)
Global event multiplicity long tracks<= 250

Table 4.4: Selection criteria of Λ0
b → Λ+

c (→ Λ(pπ−)π+)µ−ν̄µ

4.4 Identification of backgrounds

There are at least three types of backgrounds to be studied in this analysis. These
are (1) the peaking backgrounds coming from decays with the same final state
particles as the signal decay mode, (2) the partially reconstructed backgrounds,
(3) the random combinatorial of one or several tracks unrelated to the signal decay,
and (4) finally the backgrounds coming from excited states Λ0

b → Λ∗cµ
−ν̄µ.

4.4.1 Peaking backgrounds

The analysis procedure presented here also takes into account the peaking back-
grounds. These backgrounds, unlike the smooth backgrounds, cannot reliably be
modeled as fit components whose parameters floats due to the fact that they re-
semble the shape of the signal. The alternative is to calculate from the Monte
Carlo there parameters and fix them in the mass spectrum, extract their yields
and then subtract their contributions.
We have one observation about the final state coming from Λ+

c , which is pπ−π+.
The BR(Λ+

c → Λπ) × BR(Λ → pπ−) = 0.0146 × 0.63 = 0.009. We also have
another decay with the same final state, Λ+

c → pππ, with a branching ratio of
about 0.005. This is a significant fraction relative to the decay via hyperon. This
decay is potentially tricky for us as it peaks directly at the Λ+

c mass with a similar
width. Such contribution could be reduced by constraining the Λ life-time (τΛ)
and its flying distance (FDΛ).
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However, the stripping also requires that the reconstructed lambda mass must be
within 30 MeV of the nominal PDG mass, so this will suppress the pππ contribu-
tion greatly. Another way to effectively reject random combination of tracks when
forming reconstruction particles, a criteria widely used in particle physics is the
quality of the vertex fit, χ2. This criteria determines how tracks (Λ, π+) can be fit-
ted to form a common vertex (Λ+

c ). The smaller χ2, the more probable the tracks
are originating from the same vertex. The χ2 requirement for the reconstruction
of the Λ+

c is illustrated in Fig.4.4

(a) lose χ2 (b) tight χ2

Figure 4.4: Fit of two tracks to a common vertex. The shaded blue region illustrate the vertex
fit quality. (a) shows a lose vertex fit corresponding to a high vertex χ2, (b) shows a tight vertex
fit corresponding to a low vertex χ2.

4.4.2 Partially reconstructed backgrounds

A missing particle in any decay could result in shifting the mass spectrum of the
particle studied (Λ+

c ) or, in some cases, can lead to populating the events in the
left side of the mass spectrum. This case is known as the partially reconstructed
decay. For the decay, Λ0

b → Λ+
c (→ Λ(pπ−)π+)µ−ν̄µ, we are concerned in the Λ+

c

mass spectrum. We can neglect all the decays that contain the π0 particles due to
the fact that the Λ+

c mass spectrum lays between [2210,2370]. This mass window
is slightly above the mass threshold chosen when modeling this background. In
other words, to have a partially reconstructed backgrounds with a missing π0, the
mass spectrum should begin from mΛ+

c
− mπ0 = 2287 − 134.9 = 2152.0 < 2210

which is the beginning of the Λ+
c mass spectrum.

The dominant contributor of the partially reconstructed backgrounds are the
events with a missing γ coming from the Λ+

c → Σ0(Λγ)π+. Because of the vanish-
ing mass of the photon, the end-point of these partially reconstructed decays sits
just at the beginning of the signal peak (2260 MeV). The fit of this background
is obtained from the Monte-Carlo as a Gaussian function whose mean and sigma
are fixed (from the Monte-Carlo) while the yield remains floating.

4.4.3 Combinatorial Background

The last type -aside from the physical backgrounds- is the combinatorial back-
ground that comes from the combination of tracks unrelated to the signal decay.
The topology and kinematics of these background events are different from those
of the signal. To reduce the contribution of these backgrounds, it is possible to use
a multivariate-based cuts. It is worth to say that eliminating the different above-
mentioned sources of backgrounds (not easy for sure) depends on suppressing as
much as we can of the combinatorial background. Therefore, a new special tool
has been designed to fight against the combinatorial background. It is a BDT-
based MVA method that is trained using non-linearly correlated variables for
background and signal events in order to reduce these as much as possible from
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these backgrounds. After the BDT training, those combinatorial backgrounds are
modeled using an exponential function and extrapolated over the whole mass spec-
trum. The slope is fixed while the yield is kept free to float. By that one will be
able to eliminate the combinatorial that lay under the signal and in the partially
reconstructed region.

4.4.4 Λ0
b → Λ∗cµ

−ν̄µ Excited States

The contribution of Λ+
c coming from an excited state Λ∗c and not directly from

the Λ0
b is huge. However, constraining some kinematical variables such as the

Λ0
b-momenta, z-position of Λ+

c decay vertex and the Λ+
c -momenta will reduce this

contribution a lot. It is clear that the kinematics of a Λ+
c from Λ∗c are not like

those coming from Λ0
b , and this gives the opportunity to reduce such backgrounds

depending on the kinematics. The study of these excited states is not finished yet,
but once it is done the results will be so promising.

4.5 Selections

To reduce the backgrounds for the reconstructed particles which are saved after the
stripping line selections (while keeping the signal events), further offline selection
cuts are applied. We have used the following strategy in the offline cuts : start
with some topological and kinematical cuts to reduce great percentage of the
backgrounds having distributions different from those of the signals. This allows
to have a pure combinatorial backgrounds in the Right Hand Side Band (RHSB).
After that, multivariate analysis is being used to subtract the contribution of those
combinatorial backgrounds laying under the signal region. Last but not least, the
optimization of the PID cut values are also presented.

4.5.1 Offline Selections

Further offline selection and trigger requirements cuts are applied to the stripped
data before the passage to particle identification (PID) optimization and multi-
variate (MVA) selection.
In the stripping selection, the candidate events are reconstructed as Λ0

b → (Λ+
c →

Λ(pπ−)π+)µ−ν̄µ with some PID requirement applied on the final charged particles.
However, in the final tupling of the data, each candidate is reconstructed using
the appropriate mass hypotheses of the daughter particles corresponding to the
different possible final states. The mass range cut on the Λ0

b is required to be in a
wide range [2500,6000]MeV. We also set the range of the Q2

µν = [0, 20]GeV 2 which
corresponds to the momentum transfer between the final and the initial particles
( (PΛ0

b
− PΛ+

c
)2).

4.5.2 Trigger Selections

There are specific trigger requirements used to select the desired candidates. Such
selections are applied in both reconstruction and offline selections. Some useful
definitions are introduced here (for efficiencies see Tab.(4.9):

• Trigger On Signal (TOS): Λ0
b candidates are defined TOS if they have

already triggered a particular trigger line. In other words, the signal tracks
are sufficient to select the event via the particular line in question.

• Trigger Independent of Signal (TIS): A candidate is defined TIS if the
event has been triggered by the particular trigger line independent of the
candidate itself. TIS events are able to provide unbiased samples because the
Λ0
b candidate did not play a role in triggering the line.
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In order to provide a good background rejection and a high signal efficiency, HLT2
n-body lines are used. The HLT2 n-body are topological lines designed to trigger
on decays B−→ anything with at least two charged particles, exploiting all the
common decay properties of the b-hadrons.

The trigger is requested to be on as show in Tab.(4.5).

Variable definition Selection requirements

L0 Trigger selections

Λ0
b L0Global TOS OK

Λ0
b L0MuonDecision TOS OR µ− L0 MuonDecisionTOS OK

HLT2 Trigger selections

Λ0
b Hlt2Global TOS OK

Λ0
b Hlt2TopoMu(2,3,4)BodyBBDTDecision TOS OK

Table 4.5: Trigger offline selections of Λ0
b → Λ+

c (→ Λ(pπ−)π+)µ−ν̄µ.
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4.5.3 PID Selections

The PID selections for the final charged particles has been chosen to be so tight in
order to reject forward mis-identification of the particles. There was a big risk in
the choice of these selection, because of losing some of the signal events. However,
this was necessary for the analysis. The absence of the kaon in the final particles
and the presence of the muon helps in optimizing the PID selections, hence there
was no need for using PIDCalibration to chose the PID cuts. It was sufficient to
use straight cuts on the final charged particle

Definition Variable

Charged Tracks selections
Probability of the proton to be a pion pplus ProbNNpi < 0.2
Probability of the pion to be a pion piplus ProbNNpi > 0.8
Probability of the proton to be a proton pplus ProbNNp > 0.2

Table 4.6: PID selection criteria.

(Fig.4.5) shows the effect of the PID cuts on the Λ+
c mass spectrum. The blue

curve represent the raw data before applying the PID cuts, whereas the red curve
represents the number of events remaining after performing the cuts shown in
Tab.4.6.Here it appears clearly the power of the PID cuts chosen in reducing the
backgrounds (for efficiencies see Tab.(4.9). This step was done before the TMVA
Training in order to maximize the last.

Figure 4.5: PID cuts efficiency in reducing BKG.
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4.5.4 Multivariate Analysis

In order to determine the masses of the Λ+
c baryons, it is crucial to find an ac-

curate description of the signal and the background underneath the signal peak.
This process can be simplified by reducing the combinatorial background in this
region and thereby minimizing its impact. A good handle to do so is reducing the
combinatorial background caused by wrongly combined (pπ−π+) candidates. We
use the technique of multivariate analysis to fuse different, less effective selection
parameters into one powerful selector.
TMVA (Toolkit for Multivariate Analysis [68]) is used for discriminating the sig-
nal from the backgrounds, and defining the optimal cut point used to reject the
last [69]. It is based on processing, parallel evaluation and application of mul-
tivariate classification and multivariate regression techniques. TMVA makes use
of training events, to determine the mapping function that either describes a de-
cision boundary (classification) or an approximation of the underlying functional
behavior defining the target value (regression). The mapping function can contain
various degrees of approximations and may be a single global function, or a set of
local models. Most of the high energy analysis uses MVA training as a tool for
eliminating backgrounds (especially combinatorial ones ).

Boosted Decision Tree

Figure 4.6: Schematic view for Boosted Decision Tree, where ”x” is the variable , ”c” represents
the cut on this variable, ”S” stands for the signal events and ”B” for the backgrounds events.

The Boosted Decision Tree (BDT Fig.4.6) is found to be the most effective
method to separate signal and background. A BDT is the conjunction of many
decision trees which form a forest. Boosting stabilizes the response and enhances
the performance with respect to a single tree method. More details about the
implementation of the used BDT can be found in Ref. ([70], [71]).
We have chosen twelve discriminating variables for the training of the BDTs. These

are the topological and pointing variables of the candidate baryon Λ0
b : χ2

IP , θ
Λ0
b

DIRA

in a cone around the direction of the Λ0
b candidate. The last category of variables is
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Definition Variable

Λ0
b Variables

Λ0
b Track’s minimum impact parameter χ2 to the PV χ2

IP (Λ0
b)

Λ0
b direction angle θ

Λ0
b

DIRA

Λ0
b X component of the momentum Λ0

bPX
Λ0
b Y component of the momentum Λ0

bPY

Λ Variables
Λ Direction angle θΛ

DIRA

Charged Tracks selections
µ− Track’s χ2 over NDF χ2

TRACK(µ−)/NDF
π+ Track’s χ2 over NDF χ2

TRACK(π+)/NDF
π− Track’s χ2 over NDF χ2

TRACK(π−)/NDF
p+ Track’s χ2 over NDF χ2

TRACK(p+)/NDF
π− Transverse momentum π−

PT

π+ Transverse momentum π+
PT

p+ X component of the momentum p+
PX

Table 4.7: List of variables used in the BDT training.

the quality of the tracks of the final particles :χ2
Track and the PT of the candidates

π−, π+. Furthermore, samples of both magnet polarities have been merged but split
our data-set for the years 2011/2012 and evaluate them separately. In addition, we
bisect the samples into a training and a test sample (50 : 50). The training sample
is used to adjust the parameters of the BDT and the test sample to evaluate its
efficiency and to test for over training. For better TMVA training, a spontaneous
sPlot [72] has been done, extract the signal yields and after that a comparison
between this extracted signal and the Monte Carlo has been performed. This
step permits to separate the good variables from the bad ones used in the TMVA
training (Fig.4.7 ).
These input variables, described in Tab.4.7, are feed within a signal and a back-
ground sample into the BDT method. In order to train the BDT, the signal
samples are obtained from a MC sample of the Λ0

b decay. The pure combinato-
rial background is chosen to be from the right-hand sideband (RHSB) of the Λ+

c

mass spectrum (Λ+
c > 2300MeV ). The distribution of these variables are shown

in Tab.B.4, (for the rest see appendix B, section: Signal background distribution
figures).
One of the important remarks to be added here is the difference in the BDT
response between long long tracks and the down down ones.
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(a) Good Variables: χ2
IP (Λ0

b) and χ2
FD(Λ+

c )

(b) Bad Variables : PT (Λ+
c ) and π− track χ2

Figure 4.7: A fit that shows the super-position between the signal (MC) and the extracted one
(spontaneous sPlot) where we have: (a) a clear compatibility between the two plots whereas (b)
shows a great difference between the two. We denote by the first one the ”good variables” and
the second to be the bad one. I the TMVA we used the good one.

4.5.5 Correlation matrix

Many multivariate analysis methods can distinguish between signal and back-
ground by comparing their correlations. Hence, even if two variables are dis-
tributed equally but differ within their correlations, they can improve the filtering
process. The correlation factor ρ for two random variables x and y is defined by

C(x, y) =
1

N

N∑
i=1

(xi − x̄)(yi − ȳ) (4.11)

with C(x, y) being the co-variance matrix element of x and y, and σx, σy their
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Figure 4.8: Distribution of variables used in the training of BDT for 2011 (LL, Λ+
c tracks) ,

superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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respective standard deviation.
In Figs.B.8-B.11, we show the correlation map of the variables used to train the
BDT for 2011 and 2012 for different data samples. Most of the variables as seen
here have weak linear correlation(Fig.4.9). Although the linear correlations are
high for some pairs of variables, the correlations are not the same for signal and
background events. Aside from that, for the same pair of variables, the correlations
of these variables to the other variables are not the same for signal and background
events, (for the rest see appendix B, section: Signal Correlation Matrices Figs.
B.8-B.11).

(a) DD Λ+
c signal correlation matrix

(b) DD Λ+
c BKG correlation matrix

Figure 4.9: Linear correlation for DD track samples , signal and background (BKG) for 2011
data sample: Λ+

c .

4.5.6 Training and validation of the BDT

The discriminant response histograms for the different samples are presented in
Fig.4.10. Kolmogorov-Smirnov tests have been computed in each case and it didn’t
indicate that there is clear sign of over-training.

Receiver Operation Characteristics: ROC-Curve

MLP (Multi-Layer Perceptron which is an Artificial Neural Networks (ANNs) im-
plementation for TMVA ), RuleFit and many other methods have been compared
with the BDT. Shown in Figs.4.13(4.14) are the background-rejection efficiency
versus signal selection efficiency curves (ROC-curve: defined as Receiver Opera-
tion Characteristics (Fig.4.12)) for 2011(2012) BDTs respectively.
The ROC-curve integrals of all the tested methods are expectedly smaller than the
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(a) BDT response for Λ+
c , DD, 2011 samples (b) BDT response for Λ̄c DD, 2011 samples

(c) BDT response for Λ+
c , LL, 2011 samples (d) BDT response for Λ̄c LL, 2011 samples

Figure 4.10: BDT response for 2011.

(a) BDT response for Λ+
c , DD, 2012 samples (b) BDT response for Λ̄c DD, 2012 samples

(c) BDT response for Λ+
c , LL, 2012 samples (d) BDT response for Λ̄c LL, 2012 samples

Figure 4.11: BDT response for 2012 for the different samples.
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BDT, indicating that the non-linear correlations between variables are at work in
the discriminating power of the BDT. As a result, the BDT is decided to be used
in this analysis.

Figure 4.12: Example of the ROC-curve.

(a) Λ+
c DD tracks samples (b) Λ̄c for DD tracks samples

(c) Λ+
c LL tracks samples (d) Λ̄c for LL tracks samples

Figure 4.13: BDT ROC-curve for 2011.

The same BDT methodology is applied for all the data samples(DD,LL 2011 and
2012).
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(a) Λ+
c DD tracks samples (b) Λ̄c for DD tracks samples

(c) Λ+
c LL tracks samples (d) Λ̄c for LL tracks samples

Figure 4.14: BDT ROC-curve for 2012.

4.5.7 Optimization of the BDT Cuts

The next step was to calculate the optimal BDT cut for each data sample.The
choice of the optimal cut on the BDT response can be defined using several Figures
of Merit. For example in our study we chose the maximal significance of the
signal(S) with respect to background (B) :

FoM(BDTcut) =
Nsig√

Nsig +Nbkg

(4.12)

Where Nsig is the number of signal events that passed a BDT cut, while, Nbkg is the
number of combinatorial backgrounds under the signal peak which is approximated
using the RHSB region. Before making any BDT cut, the real data in the RHSB
(MΛ+

c
> 2300MeV/c2) is modeled using an exponential function. This exponential

function is then projected to the signal mass region, which is within ±3σ from
the nominal mass of Λ+

c . And hence, the extrapolated number of combinatorial
backgrounds under the signal peak, before any BDT cut, is estimated using the
projected exponential function. So one can say that the number of combinatorial
events under the signal peak linearly scales with the number of combinatorial
events in the RHSB. The Figures of Merit for all the samples are displayed in
Fig.4.15 and 4.16.
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(a) Λ+
c DD tracks samples (b) Λ̄c DD tracks samples

(c) Λ+
c LL tracks samples (d) Λ̄c LL tracks samples

Figure 4.15: This figure represents the signal efficiency defined in aq. 4.12 as a function of the
BDT cuts for the spectra 2011 for the different samples studied. Figures of merit are used for
BDT cut optimization in which the cut are taken to obtain the maximum efficiency.
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(a) Λ+
c DD tracks samples (b) Λ̄c DD tracks samples

(c) Λ+
c LL tracks samples (d) Λ̄c LL tracks samples

Figure 4.16: This figure represents the signal efficiency defined in eq.4.12 as a function of the
BDT cuts for the spectra 2012 for the different samples studied. Figures of merit are used for
BDT cut optimization in which the cut are taken to obtain the maximum efficiency.
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4.6 Signal Shapes and Adjustment of the Mass Spectra

The events generated by Monte-Carlo are used to obtain the signal shapes. The
invariant mass distribution reconstructed from simulated events is fitted with a
Double Crystal Ball function (DCB) [73] with shared mean µ and different width
σ. The mathematical description of a Crystal Ball PDF of variable m is given by:

P (m;α;n;µ;σ) = N ·


exp

(
− (m− µ)2/2σ2

)
, if − (m− µ)/σ > −α (4.13)

(
n

|α| )
nexp

(
− α2

2

)(n− α2

|α| −
m− µ
σ

)−n
, if − (m− µ)

σ
≤ −α (4.14)

where N is the normalization factor and m is the invariant mass. The turnover
point is denoted (α) and the tail parameter (n) models the left or the right tail
of signal mass distribution. Although the two functions in equation (4.14) are
independent of the sign of the parameter α, the sign of α determines on which
side (of the Crystal Ball (CB) function) the tail should appear, where a positive
α means the tail is on the left side of the CB while negative α means the tail is on
the right side. All the signal shapes are fitted simultaneously in order to obtain
the ratios of the widths, which are used as ”constrained parameters” in the final
PDF aiming to fit the real data.

Tab.4.8 summarizes the parameters obtained from the fits, which are shown in
Fig.4.17 and 4.18. The extracted parameters α1 , α2 , n1, n2 , f2 are fixed
parameters in the nominal fit to the real data.

(a) M(Λ+
c ) for DD tracks (b) M(Λ̄c) for DD tracks

(c) M(Λ+
c ) for LL tracks (d) M(Λ̄c) for LL tracks

Figure 4.17: Signal invariant mass distribution fitted using double crystal ball for the spectra
2011.

The invariant mass range used to produce these fits starts from 2210 MeV/c2 . It
is worth noticing that the nominal fit to the data starts also from the same range
2210 MeV/c2.
One here should stress on the difference shown in Tab.4.8 indicating a clear ≈2
MeV shift in the Λ+

c mass spectrum between LL and DD samples.
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(a) M(Λ+
c ) for DD tracks (b) M(Λ̄c) for DD tracks

(c) M(Λ+
c ) for LL tracks (d) M(Λ̄c) for LL tracks

Figure 4.18: Signal invariant mass distribution fitted using double crystal ball for the spectra
2012.

4.6.1 Partially-reconstructed background shapes

The partially-reconstructed backgrounds with no mis-identified particles are mod-
eled by a Gaussian resolution. The generalized Gaussian function for a variable
(m) is given by the analytical expression:

f(m,µ, σ) = β · exp
(
− (m− µ)2/2σ2

)
(4.15)

where β is a normalization factor. The shapes of these backgrounds are obtained
from MC-generated events of the reconstructed decay Λ+

c −→ (Σ0 −→ Λγ)π+.
The shape parameters obtained are then fixed in the nominal fit to data and the
yields are set free to float.

4.6.2 Combinatoric shapes

Exponential function is used to model the combinatorial backgrounds. This func-
tion requires one variable to be determined, which is the slope used to describe the
decrease of combinatorial background as a function of the reconstructed invariant
mass.

A note here is in order regarding the choice of an exponential model as the baseline
against other shapes for the combinatorics. The only valuable information about
the combinatorics for most of the samples studied in this analysis lies in the RHSB
of the data. The left-handed region of the invariant mass distribution of most of
the samples is populated by the partially reconstructed background. Since the
techniques of the adjustment of an exponential shape requires a leverage on the
left-handed part of the invariant mass distribution, it is likely that its fit can absorb
overlooked background contributions coming from other partially reconstructed
decays of very low statistics. These considerations drove us to the choice of the
exponential model for the fit model.
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4.7 Fit results

In this section, we present the fit results and the measurement of the yields in the
BaryonPCR model which is used to implement semileptonic decays using realistic
dynamics [74].The form factors are being taken from [75].
The Λ+

c decay signal yields are determined by the fit and are then used are used to
do the final fit of the angular distributions, with proper propagation of the statis-
tical errors taking into account correlations. There are also associated errors that
are propagated as systematic uncertainties of the angular distribution derivation.
The next section is dedicated to the efficiency derivation.
Fig.4.19 and 4.20 display the fit results of the simultaneous fit to the invariant
mass spectra using the BaryonPCR model 2011 data. Fig.4.21 and 4.22 show the
fit results for the 2012 data. The fit parameters are taken from MC summarized
in Tab.4.8, where it shows which parameters are shared and not shared.

(a) M(Λ+
c ) for DD tracks

(b) M(Λ̄c) for DD tracks

Figure 4.19: Fit results for the Λ+
c −→ Λπ DD spectra for different track and particle type using

the BaryonPCR data of 2011.
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(a) M(Λ+
c ) for LL tracks

(b) M(Λ̄c) for LL tracks

Figure 4.20: Fit results for the Λ+
c −→ Λπ LL spectra for different track and particle type using

the BaryonPCR data of 2011.
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(a) M(Λ+
c ) for DD tracks

(b) M(Λ̄c) for DD tracks

Figure 4.21: Fit results for the Λ+
c −→ Λπ DD spectra for different track and particle type using

the BaryonPCR data of 2012.
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(a) M(Λ+
c ) for LL tracks

(b) M(Λ̄c) for LL tracks

Figure 4.22: Fit results for the Λ+
c −→ Λπ LL spectra for different track and particle type using

the BaryonPCR data of 2012.
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4.8 Production Yield

The LHC machine is designed to deliver a luminosity L ≈ 2×1032cm−2s−2 for 2012
and L ≈ 1×1032cm−2s−2 for 2011. The expected bb̄ cross section is approximately
300±0.01µb ([76]), and by that the annual yield of the bb̄ pairs at the LHCb will
reach 1012:

Nbb̄ ≈ L.σbb̄.107 ≈ 1012

For our decay channel, the annual production yield is given by the following equa-
tion:

N exp
signal = 2× Lintyear × σbb̄ × fs(b→ Λ0

b)×BFV IS × εgen (4.16)

The factor 2 added due to the fact that there are particles and antiparticles coming
from the bb̄ pair. Lintyear is the integrated luminosity of one nominal year - 1(2011)

and 2(2012) fb−1. The hadronization probability is given by fs(b → Λ0
b) = 12%,

BFV IS is the visible branching fraction of the desired decay and εgen is the generator
efficiency. For Λ0

b −→ Λ+
c µ
−νµ, the branching fraction is calculated from:

BFV IS = BF (Λ0
b −→ Λ+

c µ
−νµ)×BF (Λ+

c −→ Λπ+)×BF (Λ −→ p+π−)

= 5.3× 10−4 (4.17)

Where

BF (Λ0
b −→ Λ+

c µ
−νµ) = (6.5+1.4

−1.3)%

BF (Λ+
c −→ Λπ+) = (1.3± 0.07)%

BF (Λ −→ p+π−) = (63.9± 0.5)%

The preceding analysis allows us to infer the different efficiencies: εtrigger, εkin−cuts,
εBDT

We define εi = Ni
Nt

to be the efficiency of the selection
where
• Ni is number of events passing the cut.
• Nt is number of events before the cut.

year luminosity(fb−1) Ntotal εtrigger εkin−cuts εBDT Nexp Nmeas
2011 1.11 128254 49.5% 13.2% 53.1% 4450 4378
2012 2.08 352297 50.5% 12.9% 48.6% 11154 11027

Table 4.9: Number of expected signal events and measured one for years 2011 and 2012.

Tab.4.9 shows the expected signal coming from Λ0
b −→ Λ+

c µ
−νµ decay and the

measured number of events for the whole data sample (years 2011-2012). Nexp

represents the number of the expected events departing from equation 4.16,
whereas the Nmeas represents the number of signal events obtained from the fits,
by adding the signal yield of the two samples Λb and Λ̄b for each year 2011 and 2012.

4.9 Corrections applied on MC (reweighting)

4.9.1 Reweighting the Λ0
b Transverse momentum PT

Fig.4.23 shows a comparison between the Λ transverse momentum PT for the
hadronic decay Λ0

b → Λ+
c (→ Λ(pπ−)π+)µ−ν̄µ for all the data samples and years.
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As seen in all the spectra, the curves are all normalized to have the unit area. One
can easily observe the difference between the simulated spectrum (green) and the
measured one (blue). This could lead to a false determination of the efficiency,
and thus all the MC samples should be re-weighted to simulate the right kinematic
conditions.
Fig.4.23 shows also that we have achieved the desired aim in matching the kine-
matics properties of the daughter particles between MC and data for different
conditions (the rest of figures are again in the appendix B: Corrections applied on
MC (reweighting)).

(a) PT of Λ0
b for LL tracks

(b) PT of Λ̄0
b for LL tracks

Figure 4.23: Comparison between the normalized Λ0
b PT before and after reweighting for LL track

and particle type using the data of 2011. The blue color represents the side-band-subtracted data
and the MC is represented by the green color. The red color represents the re-weighted MC events
that clearly match the real data shown in blue.

4.9.2 Reweighting the track multiplicity

The simulated track multiplicity is not in agreement with the data measured by the
LHCb detector. This will affect a lot the study performed and especially the PID
performance. So the best thing to be done is to re-weight the track multiplicity of



Corrections applied on MC (reweighting) 99

the MC samples to simulate the real data samples.
Fig.4.24 show a comparison between the track multiplicity for all the data samples
and years. Again the curves are all normalized to have the unity. And again there
is a clear difference between the simulated spectrum (green) and the measured one
(blue).
However, the re-weighted MC (red) shows also that we have a clear matching of
the kinematics properties of the particles between MC and data.

(a) Track multiplicity for DD tracks

(b) Track multiplicity for DD tracks

Figure 4.24: Comparison between the normalized track multiplicity before and after reweighting
for DD tracks and particle types using the data of 2011. The blue color represents the side-
band-subtracted data and the MC is represented by the green color. The red color represents
the re-weighted MC events that clearly match the real data shown in blue.
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4.10 Angular Distributions after reweighting

We use the sPlot [72] technique to compare MC and data. The angular distri-
butions, after reweighting, are showing discrepancies between data and MC as
indicated in Figs. 4.25 to 4.28 for the data sample 2011 and in Figures 4.29 to
4.32 for the data sample 2012. This could mean the presence of unknown dynam-
ics in the data spectra. The next step to be done (after reweighting) is to unfold
both the MC and data because the Λ0

b momentum was determined up to two-fold
ambiguity. The last step is the correction for the global efficiency of the LHCb
detector.

Figure 4.25: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for particles of type DD for data 2011 after reweighting.
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Figure 4.26: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for anti-particles of type DD for data 2011 after reweighting.
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Figure 4.27: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for particles of type LL for data 2011 after reweighting.
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Figure 4.28: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for anti-particles of type LL for data 2011 after reweighting.
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Figure 4.29: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for particles of type DD for data 2012 after reweighting.
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Figure 4.30: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for anti-particles of type DD for data 2012 after reweighting.
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Figure 4.31: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for particles of type LL for data 2012 after reweighting.
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Figure 4.32: Comparison between MC (represented in blue) and Data (represented in green) of
the angular distributions spectra for anti-particles of type LL for data 2012 after reweighting.
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4.11 Angular acceptance

The LHCb detector induces a significant acceptance effect on the reconstruction
of the angular distributions of the studied decays. For Λ0

b −→ Λ+
c µν, the

available MC is generated according to BaryonPCR model, where the decays of
the intermediate resonance are generated with the PHSP (phase-space) model
for both Λ+

c −→ Λπ and Λ −→ pπ. The angular distributions at the generator
level are therefore not flat since there have been some dynamics introduced to
generate them. The aim of that is to see how the MC evolve. The results of the
Λ0
b −→ Λ+

c µν are shown in Figs. 4.33 and 4.34.
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Figure 4.33: The angular distributions spectra for data 2011 at generator level.
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Figure 4.34: The angular distributions spectra for data 2012 at generator level.
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4.12 Unfolding and Efficiency Determination

4.12.1 The Unfolded Angular distributions

The RooUnfold package [77] implanted in ROOT provides a common framework
to evaluate and use different unfolding algorithms. It currently provides imple-
mentations or interfaces for the Iterative Bayes, Singular Value Decomposition,
and TUnfold methods, as well as bin-by-bin and matrix inversion reference meth-
ods. Common tools provide co-variance matrix evaluation and multi-dimensional
unfolding. A test suite allows comparisons of the performance of the algorithms
under different truth and measurement models.
In this study, the Singular Value Decomposition method [78] is being used in order
to remove the known effects of measurement resolutions, systematic biases, and
detection efficiency which helps determining the ”true” distribution. The response
matrix is responsible for parametrizing the resolution effect for the reconstructed
events and is inverted using singular value decomposition, which allows for a linear
implementation of the unfolding algorithm.
For 1-dimensional true and measured distribution bins Ti and Mj, the response
matrix element Rji gives the fraction of events from bin Ti that end up measured in
bin Mj. The response matrix is usually determined using Monte Carlo simulation
(training), with the true values coming from the generator output. The normal-
ization to the number of events is retained in order to minimize uncertainties due
to the size of the training sample.
The SVD unfolding algorithm require a regularization parameter to prevent the
statistical fluctuations being interpreted as structure in the true distribution.
Therefore, the regularization needs to be tuned according to the distribution, bin-
ning, and sample statistics in order to minimize the bias due to the choice of
the training sample while retaining small statistical fluctuations in the unfolding
result.

4.12.2 The Unfolded Spectra Using Regularization Parameter

The correct choice of the regularization parameter, k, is of particular importance
for the SVD method. A too-small value will bias the unfolding result towards
the MC truth input, a too-large value will give a result that is dominated by un-
physically enhanced statistical fluctuations. This needs to be tuned for any given
distribution, number of bins, and approximate sample size-with k between 2 and
the number of bins. (Using k=1 means getting only the training truth input as
result without any corrections. Basically regularizing away any differences, and
only keep the leading term which is, by construction, the MC truth input.) Hocker
and Kartvelishvili’s paper [79] (section 7) describes how to choose the optimum
value for k. In this analysis, the k-value has been chosen to be equal to 3, where
as the number of bins was chosen to be 10.
The unfolded error matrix includes the contribution of uncertainties on the re-
sponse matrix due to finite MC training statistics.
The unfolded angular spectra are obtained by applying the response matrix to the
measured spectra

N i
unfolded =

∑
j

RijN
j
reco

where N i
unfolded and N j

reco are the unfolded and the measured spectra respectively.
The results of the different angular distributions spectra (cos θ and φ of Λ+

c in
Λ0
b rest frame) for different samples (year : 2011, long long particles) are given

in Figs.4.37 and 4.38. Each figure consists of three sub-figures: response ma-
trix, co-variance matrix, and finally the comparison between the true-unfolded-
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reconstructed angular spectra for each particle. For the rest of the particles see
appendix B.

4.12.3 Unfolded MC

To be sure that every thing works well and to see the effect of the detector on
the angular distribution, the MC samples have been also unfolded just after the
reweighting procedure. We also exposed those samples to efficiency corrections
using equation 4.18

ε(xi) =
dNreco[xi]

dNgen[xi]
(4.18)

so that the distributions now look to be are more realistic,as seen in Figs. [4.35-
4.36].
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Figure 4.35: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame for
the year 2011, particles, LL tracks.
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Figure 4.36: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame for
the year 2012, particles, LL tracks.
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4.12.4 Unfolded Data

Fig.4.37 and 4.38 show the response matrix deduced from the generated MC and
the reconstructed one. The two figures also show the comparison between the
generated angular distributions, the reconstructed ones and the unfolded angular
distributions. Here we just plot one of the data samples, for the rest see appendix
B.

Figure 4.37: The angular distributions spectra cos θ of Λ+
c in Λ0

b rest frame for the year 2011,
particles, LL tracks. The top one represents the response matrix that gives the fraction of events
from true bin Ti that end up in measured bin Mi. The bottom shows the distributions of the
data before unfolding in red, the true distributions in green and the data being unfolded in black.
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Figure 4.38: The angular distributions spectra φ of Λ+
c in Λ0

b rest frame for the year 2011,
particles, LL tracks. The top one represents the response matrix that gives the fraction of events
from true bin Ti that end up in measured bin Mi. The bottom shows the distributions of the
data before unfolding in red, the true distributions in green and the data being unfolded in black.
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Note: In order to take into account the correlations between the experimental
data points introduced by the unfolding procedure, we perform a χ2 fit with a
”weight matrix” being the inverse of the non-diagonal covariance matrix [80].
We first start by setting the definition for the covariance matrix used in our
study. The covariance matrix is defined as the matrix whose element in the i, j
position is the covariance between the i-th and j-th elements of a random vector.
A random vector is a random variable with multiple dimensions. Each element of
the vector is a scalar random variable. Each element has either a finite number of
observed empirical values or a finite or infinite number of potential values.

Because the covariance of the i-th random variable with itself is simply that random
variable’s variance, each element on the principal diagonal of the covariance matrix
is the variance of one of the random variables. Because the covariance of the i-
th random variable with the j-th one is the same thing as the covariance of the
j-th random variable with the i-th one, every covariance matrix is symmetric. In
addition, every covariance matrix is positive semi-definite.
As a simple expamle, Fig.4.40 shows the covariance matrix of the error bars asso-
ciated with the φ distribution of the proton bin-by-bin.
In order to see more clearly the change in the parameters extracted, we use the
same number of bins (10). So it is worth to note that the covariance matrix needed
to be inverted is a (10x10) and this makes it more difficult to the study ( we almost
have 45 Degrees of Freedom ). Some of those matrix elements are set by hand to
zero while others are rounded to the next digit. The study of this covariance
matrix was done by steps:

• Take the diagonal of the matrix (set all the other elements to zero) and check
the validity of the model.

• In the next step, add the first and second diagonals (super diagonal + sub
diagonal ) and again see the effects on the polarization.

• Continue in the same manner with all the other diagonals to have finally the
effect of the non-diagonal matrix elements on the polarization of the particles.

Note: It is worth to note that our study has stopped at the level of the second
diagonal and the effects are negligible as compared to the real values. The main
reason of such stopping is that, at the level of the third diagonal, the covariance
matrix starts to be uninvertable (i.e the determinant is equal to zero), making it
impossible to know the effects on the polarization. In other words, the effects of
those off-diagonals matrix elements don’t exist at higher order.
We extract again the fit parameters in order to see the change in the errors after
the unfolding method. The results are given in Tab.4.10 and it shows a change in
the values of almost 10%. The distribution using the χ2 fit is shown in Fig.4.39.

Type of Fit a12 b6 χ2/NDF
Model Fit -0.451±0.035 0.031±0.037 0.18

χ2 Fit ± 1st diagonals −0.422 ± 0.031 0.030 ± 0.02 0.16

Table 4.10: Parameters for the phi of the proton in the Λ rest frame for the sample LL-particles
2011 using the χ2 Fit.

Since we are using an unfolding procedure, this induces the error on the covaiance
matrix elements them selves. So again, Fig.4.41 represents the error on the
covariance matrix element-by-element.
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Figure 4.39: Parameters for the phi of the proton in the Λ rest frame for the sample LL-particles
2011.

Figure 4.40: Covariance matrix associated to the error bar of the Phi distribution of the proton
shown in Fig.4.39.
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Figure 4.41: Error matrix associated with the covariance matrix shown in Fig.4.40.

4.12.5 Correction of the Data by the Global Efficiency of the LHCb
Detector

The strategy of the analysis involves a lot of cuts in order to purify the final
data sample used in interpretation of the results. The first efficiency correction
applied to the data is the correction for the trigger efficiency. The second term
for efficiency losses is due to the stripping, offline, and BDT selections. The last
term counting for efficiency losses comes from the LHCb detector that induces a
significant acceptance effect on the reconstruction of the angular distributions of
the studied decays.

In order to obtain the correct angular distributions spectra needed for this
analysis, the later should be corrected by the global efficiency of the detector;
since all the data spectra, especially the angular distributions, depend on the
LHCb detector acceptance. There are two methods to do that, one from the
unfolding and the other is a general relation given in appendix C.

We just stick to the correction provided by the unfolding method and what we do
is that we correct the efficiency bin by bin with the help of the equation 4.18.

Figs. 4.42-4.49 shows the angular spectra for the different particles for all data
samples after correction by the global efficiency of the LHCb detector.
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Figure 4.42: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for particles of type DD for data 2011.
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Figure 4.43: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for anti-particles of type DD for data 2011.
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Figure 4.44: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for particles of type LL for data 2011.
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Figure 4.45: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for anti-particles of type LL for data 2011.
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Figure 4.46: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for particles of type DD for data 2012.
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Figure 4.47: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for anti-particles of type DD for data 2012.
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Figure 4.48: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for particles of type LL for data 2012.
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Figure 4.49: The angular distributions spectra after correction by the global efficiency of the
LHCb detector for anti-particles of type LL for data 2012.
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In this chapter a full analysis study has been performed. The strategy of the
analysis concerning reconstruction, selection of the events and the offline cuts has
been presented. A new method has been introduced for correcting angular distribu-
tion spectra called the Singular Value Decomposition (SVD). In the next chapter
we will fit the final spectra, extract the polarization of the different resonances and
interpret the final results.
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In this chapter we are going to estimate the polarization of the particles(anti-
particles) from the final angular distribution spectra presented in the previous chap-
ter. This will give us insights for Time Reversal violation and CP violation in the
baryon decays.

5.1 Transformation of Polarization Vector under P and T

In this section, we are interested in developing a method for the determination
of the particle polarization. Normally, as has been seen in chapter 3, the angular
distribution is given by the following equation:

dσ

dΩ
∝ 1 + αResoAS

−−−→
PReso · p̂p (5.1)

where

• p̂p = ~p
|~p| is the unit vector along the momentum of particle in its mother rest

frame (Transversity or helicity).

•
−−−→
PReso is the polarization vector of the mother resonance.

It is worth to mention that the above angular distribution is valid for all types
of the frames chosen. So for the Transversity frame of the Λ0

b , the system of
coordinates is defined as:

• X-axis is parallel to the incident beam ~ex
Trans =

~Pp

| ~Pp|
.

• Z-axis is orthogonal to the Λ0
b production plane ~ez

Trans =
~pp×−→p Λb

|~pp×−−→pΛb
|

• Y-axis forms direct frame, ~eTransy = ~eTransz × ~eTransx .

The Helicity frame of the daughter particles is constructed from the Transver-
sity frame by two successive rotations Ry(θ) and Rz(φ) and a boost along the
momentum of the particle.

• Z-axis is parallel to the momentum of the particle ~ez
Hel =

~Ppart

| ~Ppart|
.

• Y-axis is perpendicular to the plan of production of the particle. In other
words, it is confined with the ~ez

Trans in the Transversity frame.

• X-axis is the product of Y-axis and Z-axis. ~eHelx = ~eHely × ~eHelz

In order to have a clear idea on how the polarization vector of the resonance par-
ticles R(i) (Λc,Λ

0,W−) behave under discrete symmetries; the polarization vector
of the resonance is generally given by:

~PR = PR
X ~ex + PR

Y ~ey + PR
Z ~ez (5.2)

The transformation of the vectors ~ex, ~ey, ~ez depends on the choice of the frame.
Since the polarization vector is an axial one, it is important to know how its com-
ponents behave under Parity and Time reversal symmetries. Tab.5.1 summarizes
the transformation on the components PX , PY , PZ by P and T departing from the
type of frames left (Helicity frame), right (Transversity frames).

As it has been shown in previous chapters, we are searching for the component
of the polarization vector that is odd by T. In this case, we are talking about
P Trans
Z of Λ0

b , P
Hel
X of Λc, and PHel

Y of Λ. If this value is different from zero, this
means that there is an evidence for Time Reversal violation. It is important to
say that the choice of the frame plays an essential role in expressing the different
components of the polarization vector and hence on their transformation by T and
P.
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Observable P T

~eTransx - -
~eTransy - -
~eTransz + +

PTransX - +
PTransY - +
PTransZ + −
~PTrans

Λ0
b

+ -

Observable P T

~eHelx + +
~eHely - -
~eHelz - -

PHelX + −
PHelY - +
PHelZ - +

~PHel
Λ+
c

+ -

Observable P T

~eHelx - -
~eHely + +
~eHelz - -

PHelX - +
PHelY + −
PHelZ - +

~PHelΛ + -

Table 5.1: Effect of Parity and Time Reversal Transformation on the components of the polar-
ization vector in (1) Λ0

b Transversity frame, (2) Λc Helicity frame, and (3) Λ Helicity frame.

5.2 Final Angular Distribution Spectra

In order to obtain the final fit spectra, the ROOFIT software [81] is being used.
This software allows to best fit the angular distributions and extract the fit
parameters that directly give an access to the needed polarization.

5.2.1 Λ+
c in Λ0

b Transversity rest frame

It is important to show the Λ0
b helicity frame (Fig.5.1) where the study is done.

Figure 5.1: Λ0
b Transversity frame.
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The polar distribution cos θ

• The polar distribution according to cos θ of Λ+
c in Λ0

b transverse rest frame
constructed from the LHCb frame as has been shown early in chapter 3 is given
by :

dσ

d cos θΛ+
c

∝ 1 + αΛb
ASP

Λb
Z cos θΛ+

c

So in order to model this distribution, a linear function of the form : 1 + a1 cos θ
is being used, and thus PΛb

Z is given by the following relation PΛb
Z = a1

α
Λb
AS

. The

associated statistical error with this relation is driven as follows:

c =
a

b
=⇒ σc = c

√(σa
a

)2
+
(σb
b

)2

assuming that a and b are uncorrelated.

Year Particle Track a1 = αΛb
AS × P

Λb
Z

2011
Λ+
c

LL -0.190 ± 0.046
DD -0.034 ± 0.055

Λ̄−
c

LL 0.221 ± 0.052
DD 0.180 ± 0.061

2012
Λ+
c

LL 0.094 ± 0.030
DD 0.019 ± 0.038

Λ̄−
c

LL 0.048 ± 0.032
DD 0.188 ± 0.038

Table 5.2: PΛb
Z extracted from the polar distribution according to cos θ of Λ+

c in Λ0
b rest frame

and the fit parameters for different 2011 and 2012 data samples.

Here it is worth to note that the P
Λ0
b

Z is the transverse component of the polariza-
tion vector in Λ0

b Transversity frame. Figs.5.2 and 5.3 represent the fit cos θ of Λ+
c

in Λ0
b Transversity frame. Tab.5.2 shows the values of the slope a1 = αΛb

AS × P
Λb
Z

of the data 2011-2012 for different samples.

Interpretation of the fit:

The χ2, or chi-square, of the fit which is a statistical quantity used to test
whether any given data are well described by some hypothesized function. Such
determination is called a chi-square test for goodness of fit. The χ2 of the whole
fits is good, but there is difference between the distributions of the LL and the
DD samples which is still under study.

The lack of information concerning the value of the decay parameter αΛb
AS prevent

us from extracting the PΛb
Z , but one can set an lower limit for this value by

|PΛb
Z | ≥ |a1| (|αΛb

AS| < 1).

According to the Tab.5.1, P
Λ0
b

Z is considered to be odd under Time Reversal, so
any value of this parameter different from zero could be a sign for TRV. According

to Tab.5.2, there are some data samples that shows sign for P
Λ0
b

Z 6= 0 at 4σ within
experimental errors. The final particles here, µ and Λ+

c , neglect the possibility of
the final state interaction that could modify any sign of Time Reversal Violation.

But in this case, one could not say that P
Λ0
b

Z 6= 0 could show sign for TRV, be-
cause QCD accommodates with a T-odd observables (Λ0

b is produced from strong
interactions).
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Figure 5.2: Fit results for the angular distributions spectra of cos θΛ+
c

in Λ0
b rest frame af-

ter correction by the global efficiency of the LHCb detector for data 2011: left(right): parti-
cles(antiparticles) and up(down): long-long (down-down) tracks.



134 Interpretation of the Results

Figure 5.3: Fit results for the angular distributions spectra of Λ+
c in Λ0

b rest frame after correction
by the global efficiency of the LHCb detector for data 2012: left(right), particles(antiparticles),
up(down) long-long (down-down) tracks.
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The azimuthal distribution φ

• The azimuthal distribution according to φ of Λ+
c in Λ0

b rest frame is given by :

dσ

dφΛ+
c

∝ 1 +
π

4
αΛb
AS[PΛb

X cosφΛ+
c

+ PΛb
Y sinφΛ+

c
]

For this distribution, a linear fit of the form 1 + a2 cosφ+ b1 sinφ also is taken in
the ROOFIT, and by that

PΛb
X =

4 ∗ a2

παΛb
AS

while

PΛb
Y =

4 ∗ b1

παΛb
AS

and again the associated error is driven by the same method described above and
is given by the following relation:

σc = c

√(σa
a

)2
+
(σb
b

)2

.

Year Particle Track a2 = π
4α

Λb
AS × P

Λb
X b1 = π

4α
Λb
AS × P

Λb
Y

2011
Λ+
c

LL 0.402 ± 0.034 0.291 ± 0.038
DD 0.135 ± 0.045 -0.050 ± 0.045

Λ̄−
c

LL 0.405 ± 0.048 0.013 ± 0.044
DD -0.122 ± 0.049 -0.073 ± 0.049

2012
Λ+
c

LL 0.221 ± 0.024 -0.049 ± 0.025
DD 0.127 ± 0.031 -0.018 ± 0.031

Λ̄−
c

LL 0.095 ± 0.026 -0.211 ± 0.026
DD 0.001 ± 0.031 -0.109 ± 0.031

Table 5.3: PΛb
X and PΛb

Y extracted from the azimuthal distribution according to φ of Λ+
c in Λ0

b

rest frame and the fit parameters for different 2011 and 2012 data samples.

Tab.5.3 shows the values of a2 = π
4
αΛb
AS × P

Λb
X and b1 = π

4
αΛb
AS × P

Λb
Y of the data

2011-2012 for different samples.
Figs.5.4 and 5.5 represent the fit φ of Λ+

c in Λ0
b Transversity frame. Due to the

lack of information concerning the value of the decay parameter αΛb
AS, we were

unable to measure the PΛb
X and PΛb

Y . But again the lower limit has also been set

due to |αΛb
AS| < 1 (|PΛb

X | ≥ 4
π
|a2|
|αΛb
AS |

,|PΛb
Y | ≥ 4

π
|b1|
|αΛb
AS |

).

Interpretation of the fit:

• b1 values are compatible with zero within the experimental errors for some of
the data samples, while others show polarization of the Λ0

b along the Y-axis.

• However, the values of a2 are different from zero, which for sure will result
in PΛb

X non compatible with zero. This indicate that there is polarization of
the Λ0

b particle along the beam axis represented by the X-axis (in the new
constructed frame). This confirms the previous measurements concerning the
longitudinal polarization of Λ0

b produced in hadronic environments [61].
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Figure 5.4: Fit results for the azimuthal distributions spectra of Λ+
c in Λ0

b rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2011: left(right), parti-
cles(antiparticles), up(down) long-long(down down) tracks.
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Figure 5.5: Fit results for the azimuthal distributions spectra of Λ+
c in Λ0

b rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2012: left(right), parti-
cles(antiparticles), up(down) long-long(down down) tracks.
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5.2.2 Λ in Λ+
c Helicity rest frame

The same method applied for the Λ+
c in Λ0

b rest frame will be applied for the Λ in
Λ+
c rest frame and the same methodology and error calculation will be used here

and in the next section.

Again, it is important to show the Λc helicity frame (Fig.5.6) where the study is
done.

Figure 5.6: Λ helicity frame.

The polar distribution cos θ1

• The polar angular distribution of the Λ is :

dσ

d cos θ1

∝ 1 + αΛc
ASP

Λc
Z cos θ1 (5.3)

where αΛc
AS is being measured (PDG 2016) αΛc

AS = 0.91±0.15, and hence is modeled
by the linear fit function 1 + a9 cos θ.

Year Particle Track a9 αΛc
AS PΛc

Z = ρΛc
++ − ρ

Λc
−−

2011
Λ+
c

LL 0.632 ± 0.041 -0.91 ± 0.15 -0.695 ± 0.123
DD 0.109 ± 0.057 -0.91 ± 0.15 -0.120 ± 0.065

Λ̄−
c

LL 0.658 ± 0.045 0.91 ± 0.15 0.723 ± 0.130
DD 0.267 ± 0.060 0.91 ± 0.15 0.293 ± 0.081

2012
Λ+
c

LL 0.596 ± 0.028 -0.91 ± 0.15 -0.655 ± 0.112
DD 0.201 ± 0.039 -0.91 ± 0.15 -0.208 ± 0.056

Λ̄−
c

LL 0.706 ± 0.026 0.91 ± 0.15 0.776 ± 0.131
DD 0.193 ± 0.038 0.91 ± 0.15 0.212 ± 0.054

Table 5.4: PΛc
Z extracted from the polar distribution according to cos θ of Λ in Λ+

c rest frame
and the fit parameters for different 2011 and 2012 data samples .
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Figure 5.7: Fit results for the angular distributions spectra of Λ in Λ+
c rest frame after correction

by the global efficiency of the LHCb detector for data 2011: left(right), particles(antiparticles),
up(down) long-long(down-down) tracks.
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Figure 5.8: Fit results for the angular distributions spectra of Λ in Λ+
c rest frame after correction

by the global efficiency of the LHCb detector for data 2012: left(right), particles(antiparticles),
up(down) long-long(down-down) tracks.



Final Angular Distribution Spectra 141

Here, the difference between LL and DD samples (Fig.5.7 and Fig.5.8) raises again
in the PΛc

Z where it is noticed that LL samples show compatible values between
particles-anti particles system for both 2011 and 2012, whereas DD doesn’t show
that compatibility within experimental errors.

The azimuthal distribution φ1

• The azimuthal distribution of the Λ is:

dσ

dφ1

∝ 1 +
π

4
αΛc
AS[PΛc

X cosφ1 + PΛc
Y sinφ1] (5.4)

And hence is modeled by the linear fit function 1 + a10 cosφ + b5 sinφ and are
shown in (Fig.5.9 and Fig.5.10)

Year Particle Track a10 b5 αΛc
AS PΛc

X PΛc
Y

2011
Λ+
c

LL -0.195 ± 0.038 -0.055 ± 0.038 -0.91 ± 0.15 0.273 ±0.069 0.077± 0.054
DD -0.182 ± 0.044 -0.073 ± 0.045 -0.91 ± 0.15 0.255 ± 0.075 0.102 ± 0.065

Λ̄−c
LL -0.178 ± 0.043 0.061±0.045 0.91 ± 0.15 -0.249 ± 0.072 0.085 ± 0.064
DD -0.219 ± 0.049 0.042 ± 0.048 0.91 ± 0.15 -0.307 ± 0.085 0.058 ± 0.067

2012
Λ+
c

LL -0.211 ± 0.025 -0.006 ± 0.024 -0.91 ± 0.15 0.295 ± 0.060 0.008 ± 0.033
DD -0.151 ± 0.031 -0.026 ± 0.031 -0.91 ± 0.15 0.211 ± 0.055 0.036 ± 0.043

Λ̄−c
LL -0.214 ± 0.026 0.035 ± 0.026 0.91 ± 0.15 -0.230 ± 0.061 0.048 ± 0.037
DD -0.102 ± 0.031 -0.057 ± 0.031 0.91 ± 0.15 -0.143 ± 0.049 -0.080 ± 0.045

Table 5.5: PΛc
X and PΛc

Y extracted from the azimuthal distribution according to φ of Λ in Λ+
c

rest frame and the fit parameters for different 2011 and 2012 data samples.

Interpretation of the fit According to the Tab.5.1, PΛ+
c

X changes sign under Time
Reversal, so it is important to study the values of this T-Odd observable around
the central value 0 as shown in Tab.5.6. Any value of this parameter different
from zero in absence of final state interaction (FSI) could be a sign for TRV.

Tab.5.5, shows the different values of PΛ+
c

X 6= 0 for different data samples within
experimental errors.

Year Particle Track PΛc
X Standard Deviation

2011
Λ+
c

LL 0.273 ± 0.069 4
DD 0.255 ± 0.075 4

Λ̄−
c

LL -0.249 ± 0.072 4
DD -0.307 ± 0.085 4

2012
Λ+
c

LL 0.295 ± 0.060 5
DD 0.211 ± 0.055 4

Λ̄−
c

LL -0.230 ± 0.061 4
DD -0.143 ± 0.049 3

Table 5.6: PΛc
X and the standard deviation from the central value zero for different 2011 and

2012 data samples.

Further studies are ongoing to see if there is an effect for the FSI on those

results. So as a preliminary result, one could say that PΛ+
c

X 6= 0 could show sign
for TRV around 4σ with a complete compatibility between the values in the LL
samples (always the difference between LL and DD).
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Figure 5.9: Fit results for the azimuthal distributions spectra of Λ in Λ+
c rest frame after

correction by the global efficiency of the LHCb detector for data 2011: left(right), parti-
cles(antiparticles), up(down) long-long(down-down) tracks.
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Figure 5.10: Fit results for the azimuthal distributions spectra of Λ in Λ+
c rest frame af-

ter correction by the global efficiency of the LHCb detector for data 2012: left(right), parti-
cles(antiparticles), up(down) long-long(down down) tracks.
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5.2.3 Proton in Λ Helicity rest frame

Let us next discuss the last decay from the Λ0
b three cascade decay. We are speaking

about the hyperon
Λ −→ pπ

The angular distribution of the proton from the Λ decay is given by the equation
5.5

dσ

dΩ1

∝ 1 + αΛ
AS〈~σ〉Λ · p̂p (5.5)

where p̂p is a unit vector along the momentum of the proton in the Λ helicity
frame. It is also worth to note that the equation 5.5 acts as an analyzer for the Λ
polarization.
Again, it is important to show the Λ helicity frame Fig.5.11 where we are making
the study .

Figure 5.11: Λ helicity frame.

The polar distribution cos θ3

• The polar angular distribution of the proton is :

dσ

d cos θ3

∝ 1 + PΛ
Z α

Λ
AS cos θ3 (5.6)

And hence is modeled by the linear fit function 1 + a11 cos θ as shown in (Fig.5.12
and Fig.5.13)
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Year Particle Track a11 αΛ
AS PΛ

Z

2011
Λ

LL -0.307 ± 0.046 0.642 ± 0.013 -0.478 ± 0.072
DD 0.149 ± 0.056 0.642 ± 0.013 0.232 ± 0.087

Λ̄
LL -0.217 ± 0.045 -0.71 ± 0.08 0.306 ± 0.073
DD 0.156 ± 0.060 -0.71 ± 0.08 -0.220 ± 0.088

2012
Λ

LL -0.241 ± 0.030 0.642 ± 0.013 -0.375 ± 0.047
DD -0.095 ± 0.039 0.642 ± 0.013 0.148 ± 0.060

Λ̄
LL -0.337 ± 0.032 -0.71 ± 0.08 0.475 ± 0.070
DD 0.033 ± 0.039 -0.71 ± 0.08 -0.046 ± 0.055

Table 5.7: PΛ
Z extracted from the polar distribution according to cos θ of proton in Λ rest frame

and the fit parameters for different 2011 and 2012 data samples .

Figure 5.12: Fit results for the angular distributions spectra of proton in Λ rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2011: left(right), parti-
cles(antiparticles), up(down) long-long(down down) tracks.
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Figure 5.13: Fit results for the angular distributions spectra of proton in Λ rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2012: left(right), parti-
cles(antiparticles), up(down) long-long(down down) tracks.
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The azimuthal distribution φ3

The φ1 distribution of the proton :

dσ

dφ3

∝ 1− π

4
αΛ
AS{PΛ

X cosφ3 + PΛ
Y sinφ3} (5.7)

And again it is modeled using the linear fit 1 + a12 cosφ + b6 sinφ as shown in
(Fig.5.14 and Fig.5.15)

Year Type Track a12 b6 αΛ
AS PΛ

X PΛ
Y

2011
Λ

LL -0.451 ± 0.035 0.031 ± 0.037 0.642 ± 0.013 0.895 ± 0.072 -0.062 ± 0.073
DD -0.270 ± 0.044 0.139 ± 0.044 0.642 ± 0.013 0.536 ±0.088 -0.275 ± 0.087

Λ̄
LL -0.392 ± 0.041 0.052 ±0.043 -0.71 ± 0.08 -0.703 ± 0.108 0.093 ± 0.077
DD -0.389 ± 0.047 0.058 ± 0.047 -0.71 ± 0.08 -0.698 ± 0.115 0.104 ± 0.085

2012
Λ

LL -0.343 ± 0.023 0.025 ± 0.024 0.642 ± 0.013 0.681 ± 0.048 -0.049 ±0.047
DD -0.380 ± 0.030 0.047 ± 0.030 0.642 ± 0.013 0.754 ± 0.061 -0.093 ± 0.059

Λ̄
LL -0.412 ± 0.024 -0.008 ± 0.026 -0.71 ± 0.08 -0.739 ± 0.093 -0.014 ± 0.046
DD -0.344 ± 0.030 -0.03 ± 0.031 -0.71 ± 0.08 -0.617 ± 0.087 -0.054 ± 0.055

Table 5.8: PΛ
X and PΛ

Y extracted from the azimuthal distribution according to φ of proton in Λ
rest frame and the fit parameters for different 2011 and 2012 data samples.

Comment on the fit One comment on the fit is that the b6 is compatible with
zero within the experimental error.

Conclusion Polarization of the HyperonΛ Tab.5.9 shows the polarization
value for the Hyperon Λ for the different samples and it is given by:

|
−→
PΛ| =

√
P 2
X + P 2

Y + P 2
Z

Year Type Track |
−→
PΛ|

2011
Λ

LL 1.016 ± 0.101
DD 0.645 ± 0.140

Λ̄
LL 0.772± 0.136
DD 0.739±0.146

2012
Λ

LL 0.778 ±0.067
DD 0.773±0.076

Λ̄
LL 0.878±0.116
DD 0.621±0.095

Table 5.9: Polarization of Λ for different 2011 and 2012 data samples.
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Figure 5.14: Fit results for the azimuthal distributions spectra of proton in Λ rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2011: left(right), parti-
cles(antiparticles), up(down) long-long(down down) tracks.
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Figure 5.15: Fit results for the azimuthal distributions spectra of proton in Λ rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2012: left(right), parti-
cles(antiparticles), up(down) long-long(down down) tracks.
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5.3 Muon in W ∗-boson Helicity rest frame

We are going to focus essentially on the following virtual decay: W (∗)− −→ µ−νµ,
in which there is two spectra to be stressed on:

• cos(θµ) and φµ in W ∗-boson rest frame.

It is important to show the W ∗ helicity frame Fig.5.16 where we are making the
study .

Figure 5.16: W ∗ helicity frame.

5.3.1 cos(θµ) in W ∗-boson Helicity rest frame

dσ

d cos(θµ)

)
W−r.f

= A1 ×
(
C0 + C1 cos(θµ) + C2 cos2(θµ)

)
(5.8)

where A1 is a normalization dimensional constant used to provide the good
dimensions, i.e to have

σ =
∫ +1

−1

(
dσ

d cos θl

)
d(cos θl) =

(
2C0 + 2

3
C2

)
× A1.

By neglecting the |W (−−)|2 << |W (+−)|2 [82], it is worth to note that
the Longitudinal Polarization of the W ∗-boson in its rest frame is given by

:PW
z = ρW11 − ρW−1−1, where

−−→
WZ is considered as the quantization axis.
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so according to the analytical expression (chapter 3) and in comparison to eq.5.8,

C0 =
|W (+−)|2

4

(
1 + ρW00

)
C1 =

|W (+−)|2

4

(
ρW11 − ρW−1−1

)
C2 =

|W (+−)|2

4

(
1− 3 ∗ ρW00

)

For our fit, normalizing eq.5.8 will give ≡ C
′
0 + C

′
1 cos(θµ) + C

′
2 cos2(θµ) with :

C
′

0 =
3

8

(
1 + ρW00

)
C
′

1 =
3

4

(
ρW11 − ρW−1−1

)
C
′

2 =
3

8

(
1− 3 ∗ ρW00

)

To verify the experimental values, we could check the sum of the diagonal elements
of the Polarization density matrix (PDM) that normally should be equal to one:

ρW00 + ρW11 + ρW−1−1 = 1 (5.9)

Directly by fitting the cos(θµ) spectrum with 1 +a5 cos(θµ) + c1 cos2(θµ) (as shown
in Fig.5.17 and Fig.5.18) one can extract the values of C

′
0, C

′
1, C

′
2 with

• a5 = C
′
1/C

′
0 ≡ Asymmetry Parameter.

• c1 = C
′
2/C

′
0 =

1−3ρW00

1+ρW00

giving access to the density matrix elements ρW00 , ρ
W
11 , ρ

W
−1−1.

For this study, we limit our-self to calculate the Longitudinal Polarization PW
z and

the density matrix element ρW00 , where we have:

ρW00 =
1− c1

3 + c1

=⇒ σρW00
=

4σc1
(c1 − 1)(c1 + 3)

PW
z =

2a5

3 + c1

=⇒ σPWz = PW
z

√(2σa5

a5

)2
+
( σc1

3 + c1

)2

Year Particle Track a5 = C
′

1/C
′

0 c1 = C
′

2/C
′

0 PWZ ρW00

2011
W+ LL 0.032 ± 0.021 -0.967 ± 0.000018 0.031 ± 0.041 0.967 ± 1.7e−05

DD 0.433 ± 0.057 0.088 ± 0.10 0.280 ± 0.074 0.295 ± 0.041

W− LL -0.014 ± 0.033 -0.769 ± 0.049 -0.012 ± 0.059 0.792 ±0.039
DD 0.440 ± 0.056 -0.287 ± 0.094 0.513 ± 0.131 0.474 ± 0.051

2012
W+ LL 0.186 ± 0.022 -0.573 ± 0.035 0.153 ±0.036 0.648± 0.023

DD 0.301 ± 0.029 -0.592 ± 0.045 0.250±0.048 0.661 ± 0.031

W− LL 0.173 ± 0.022 -0.632 ± 0.035 0.146 ±0.037 0.689± 0.024
DD 0.320 ± 0.033 -0.404 ± 0.053 0.401 ± 0.083 0.540 ± 0.031

Table 5.10: PWz and ρW00 extracted from the cos θµ distribution of the µ in the W ∗-boson rest
frame and the fit parameters for different 2011 and 2012 data samples.
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Figure 5.17: Fit results for the angular distributions spectra of µ in W ∗-boson rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2011: left(right), parti-
cles(antiparticles), up(down) long-long(down-down) tracks.
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Figure 5.18: Fit results for the angular distributions spectra of µ in W ∗-boson rest frame af-
ter correction by the global efficiency of the LHCb detector for data 2012: left(right), parti-
cles(antiparticles), up(down) long-long(down-down) tracks.
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The same problems concerning LL and DD arise here again. Fig. 5.17 and 5.18
show completely different angular distribution shapes between LL and DD within
the same year. PW

z and ρW00 in the LL samples within 2011-2012 are in very good
compatibility.
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5.3.2 φµ in W ∗-boson Helicity rest frame

The azimuthal distribution of the muon in the W ∗-boson rest frame is given by
the following equation:

dσ

dφµ

)
W−r.f

= A2 ×
(
D0 +D1 cos(φµ) +D2 sin(φµ)

)
(5.10)

where A2 again is a normalization dimensional constant used to provide the good
dimensions, in which one can say that:

σ =
∫ 2π

0

(
dσ
dφl

)
d(φl) =

(
2πD0

)
× A2.

So by normalizing the azimuthal distribution and neglecting |w(−−)|2, we get (as
shown in Fig.5.19 and Fig.5.20) :

dσ

dφµ

)
W−r.f

=
1

2π

(
1 +D

′

1 cos(φµ) +D
′

2 sin(φµ)
)

(5.11)

Figure 5.19: Fit results for the azimuthal distributions spectra of µ in W ∗-boson rest frame
after correction by the global efficiency of the LHCb detector for data 2011: left(right), parti-
cles(antiparticles), up(down) long-long(down-down) tracks.

Again, only the results relevant to the LL samples are reliable. A small comment
here is about the non flat distribution of the µ in the W ∗ frame given by the
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Figure 5.20: Fit results for the azimuthal distributions spectra of µ in W ∗-boson rest frame
after correction by the global efficiency of the LHCb detector for data 2012: left(right), parti-
cles(antiparticles), up(down) long-long(down-down) tracks.

Year Particle Track a6 = D1/D0 b3 = D2/D0

2011
W+ LL 0.196 ± 0.037 -0.136 ± 0.038

DD 0.357 ± 0.042 -0.046 ± 0.045

W− LL 0.226 ± 0.042 -0.048 ± 0.045
DD 0.766 ± 0.038 0.014 ± 0.043

2012
W+ LL 0.220 ± 0.024 0.042 ± 0.025

DD 0.337 ± 0.029 -0.024 ± 0.031

W− LL 0.367 ± 0.025 0.082 ± 0.026
DD 0.238 ± 0.030 -0.045 ± 0.032

Table 5.11: Parameters extracted from the φµ distribution of the µ in the W ∗-boson rest frame
for different 2011 and 2012 data samples.
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variable a6 = D1/D0. Such distribution clearly gives a sign for a polarized µν̄
system which is a promising result . W ∗ being virtual will arise the question:
could the W -boson in a top decay show a sign of polarization?
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5.4 Systematic uncertainties

There are several sources of systematical uncertainties that affect the value of
the polarization extracted in the previous sections. Since we are concerned with
the T-Odd observables, the systematic uncertainties are just examined for those
observables. The different sources examined in this study are listed in Tab.5.12. It
is also worth to note that other important systematics have not been considered by
the lack of time. So there will be a complete study for those missing systematics
in the coming future. There is also the tracking efficiency being which is not yet
understood for DD tracks, many studies are done but till now there is no clear
reasons that could explain the difference seen between LL and DD tracks.

Before listing those systematical errors one should stress emphasis on how to
calculate them. Lets consider the value of the a = b ± σb slope extracted from
the angular distribution before any modification done on our study. Make the
modification (for calculation of the systematics: change BDT cuts, model, ...etc)
and the new value would be a

′
= b

′ ± σb′ . So the change in the slope would be
a− a′ and the associated error will be σ2

sys = σ2
b + σ2

b′

• Concerning the systematic uncertainties on the BDT cuts, we change the
cuts taken by ±10% and the angular distributions are fitted again. The new
fluctuations are considered systematic errors on the BDT cuts and are assigned a
value of 0.0063.

• Λ+
c signal has been fitted (from MC) using a Double Crystal Ball function

[73], however, it could be fitted by a two Gaussian functions also. This causes a
change in the slope of the cos θΛ+

c
in Λ0

b rest frame and the error associated is 0.007.

• The next term that counts for systematic uncertainties is the total PDF
of the Λ+

c mass spectrum, where we refit the BKG with first order degree
polynomial instead of exponential function, and the partially reconstructed decay
(Λ+

c → Λγπ+) is fitted with a Gaussian, this causes the slope to change and the
error associated is 0.001.

• The choice of binning also has its own effect on the results. Changing from
10 bins to 14 introduces on the slope a change by 0.0002. The incorrect modeling
of the Λ0

b kinematics (before and after reweighting) is considered a source of
systematic uncertainties due to the change it makes on the slope, so we assume a
0.0002 systematic error for this procedure.

• The uncertainty on the SVD unfolding and the regularization is obtained
by repeating the unfolding procedure with different values of the regularization
parameter k. For us, the choice of k was k=3, so we used k=4, k=5, and k=6 to
extract this systematic uncertainty. We plotted the angular distributions for all
particles using the different regularization parameters as shown in Fig.5.21, and
we see the effect of the value k on the different distributions. By that way we
were able to assign a 0.002 systematic uncertainty to this procedure.

• Concerning the uncertainty on the MC statistics, we use half of our MC
samples, make all the fits again and see the effect on the slope also. we assume a
0.0021 systematic error for this procedure.
• There is also the uncertainty associated to correlation between the error bars of
the angular distributions, we assume a 10% systematic error for this procedure.
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Item PΛb
Z PΛc

X PΛ
Y

BDT cuts ±10% 0.0063 0.008 0.0094
Λ+
c signal fit 0.007 0.0079 0.0081

PDF fit for signal and BKG 0.001 0.0015 0.0021
Binning choice 10-14 0.0002 0.00026 0.00028

Λ0
b kinematics dependencies 0.004 0.0047 0.005

unfolding procedure 0.002 0.039 0.0051
MC statistics 0.0021 0.0024 0.0026

sum 0.0106 0.0131 0.0147

Table 5.12: Summary of the systematic uncertainties.

Figure 5.21: Difference between the reconstructed and unfolded angular spectra for different
k-values.
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Chapter 6

Conclusions and Perspectives

A study of the Time Reversal Symmetry violation in the heavy baryon decays is
ongoing.We have developed a method that permits to settle a direct way to test
TRV. The decay Λ0

b → Λ+
c (→ Λ(pπ−)π+)µ−ν̄µ was chosen for elaborating our

searches. This study is being performed with the help of the data recorded by the
LHCb detector for the years 2011-2012 of luminosity 1fb−1 and 2fb−1 respectively
with ≈ 15k selected events.

In the first part of the study, we developed a kinematical frame work for the
chosen decay. Such model, based on the Jacob-Wick-Jackson helicity formalism,
enables us to directly measure the polarization of the resonating particles which
in turn gives a direct access to test the time reversal symmetry.

In order to very well handle this decay, the Λ0
b Transversity frame and the Helicity

frames for the resonating particles Λ+
c and Λ are constructed. The angular

distributions of the particles in their mother rest frames are deduced, and their
polarization vector components are extracted. It is worth to mention that either
the normal component or the transverse component of the polarization vector is
odd by the TR symmetry, which could be a sign of TRV in the absence of final
state interactions.

In the next part, the MC simulations for the decay Λ0
b → Λ+

c (→ Λ(pπ−)π+)µ−ν̄µ
are generated according to BaryonPCR model whereas the resonating particles
are generated according to phase-space. A series of selection criteria has been
applied to the data and the MC to purify the final results as much as possible.
The presence of the neutrino results in a missing energy and momentum needed
to be corrected. An effective method to perform this correction is the unfolding
method. It is used to correct both the data and MC.
After that, the final results are corrected with the global efficiency of the detector.
The final angular distributions are plotted and analyzed to extract the polarization.

In the third part, an interpretation of the results has been presented. The angular
distributions for the different particles are plotted and the polarization of the
particles are extracted.
Some systematic uncertainties have been partially taken into account. The run 1
data has been analyzed, and since this decay shows promising results.

Preliminary Test of Time Reversal Symmetry

Some components of the polarization vector have proved to change sign under
Time Reversal (T-ODD). This depends on the choice of the frame that we are
taking: Transverse frame or the Helicity one. So, the concerned components, as
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shown in Tab.5.1, are P Trans
Z , PHel

X , and PHel
Y .

• A lower limit for the P Trans
Z of the ~P Trans

Λ0
b

polarization vector was set.

According to Tab.6.1, it is clear that there no sign for TRV within the statis-
tical and systematical errors because Λ0

b is mainly produced by strong interactions.

Year Particle Track a1 = αΛb
AS × P

Λb
Z

2011
Λ0
b LL -0.190 ± 0.046(stat) ± 0.011(sys)

Λ̄0
b LL 0.221 ± 0.052(stat) ± 0.011( sys)

2012
Λ0
b LL 0.094 ± 0.030(stat) ± 0.011(sys)

Λ̄0
b LL 0.048 ± 0.032(stat) ± 0.011( sys)

Table 6.1: PΛb
Z extracted from the polar distribution according to cos θ of Λ+

c in Λ0
b rest frame

and the fit parameters for different 2011 and 2012 data samples.

• PHel
X of the ~PHel

Λ+
c

is observed to change sign under TR symmetry. The average

standard deviation from zero of all samples within the statistical and systematic
uncertainties is listed in Tab.6.2. It has been seen that there is more than 3 σ
around the zero value which is an eventual sign of TRV.

PΛc
X Standard deviation

0.261 ± 0.065(stat) ±0.015(sys) 3.9σ

Table 6.2: PΛc
X and the standard deviation from the central value zero for different 2011 and

2012 data samples.

• PHel
Y of the ~PHel

Λ of the hyperon Λ is the T-odd observable to be stressed on.
The average standard deviation from zero is presented in Tab.6.3, showing one
sigma around the zero value within the statistical and systematical errors. So no
T-odd effect is seen here.

PΛ
Y Standard deviation

0.054 ± 0.060(stat) ±0.013(sys) 0.8σ

Table 6.3: PΛ
Y and the standard deviation from zero for different 2011 and 2012 data samples.
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Test of CP Symmetry

The analysis developed in this thesis takes into consideration baryons and anti-
baryons; this enables to directly test CP in the baryon sector. There are three
possibilities to test this symmetry: Λ0

b − Λ̄0
b , Λ+

c − Λ̄+
c and Λ − Λ̄ systems. We

did that by looking to the polarization ratio defined for each particle-antiparticle
system.

• For the systems Λ0
b − Λ̄0

b , Λc − Λ̄c and Λ − Λ̄, no sign of CPV have been seen,
however an important longitudinal polarization has been put into evidence in the
(Λ, Λ̄) system.
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A final word here, we should stress finally on two important results.
• PΛc

X = PΛc
Normal 6= 0 almost greater than 3σ as it has already been shown in the

last chapter. This is an indication of T-odd observable. It is worth to note the
absence of the strong final state interaction (FSI) between the Λc and the system
µν, which eventually is an indication for a T violation according to Wolfenstein’s
theorem (2000).
• Concerning the azimuthal distribution of the muon, we can see clearly that
dN
dφµ

#1+A cosφµ+B sinφµ with A 6= 0 and B is equal to zero within the statistical

and systematical errors. So a departure from the flat distribution is seen here
Figs.(5.19-5.20).

Perspectives

Our next goal is to further study the backgrounds coming from excited Λ+
c . An-

alyze the Run 2 data where the LHCb has registered statistics higher than those
taken in the Run 1 is to be done also.
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Appendices
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Appendix A

Angular Distributions

A.1 Calculation of the angular distribution of Λ in Λc rest
frame:

In the proper transverse frame of Λ+
c (Λ+

c XY Z) the quantization axis
−−→
Λ+
c Z is || to

~n, which is perpendicular to the Λ+
c production plane.

−−→
Λ+
c Z||~n =

~pp×~pΛ+
c

|~pp×−−→pΛ+
c
|

Let Mi = ±1/2 be the projection of the Λ+
c spin on the

−−→
Λ+
c Z axis, and ρΛ+

c be the
Λ+
c polarization density matrix. It is (2 × 2) hermitian matrix and its elements

satisfy the following relations:

ρ++ + ρ−− = 1

ρ+− = ρ∗−+

The initial polarization of Λ+
c along the quantization axis

−−→
Λ+
c Z is given by :

< ~S.~n >= Pz = (ρ++ − ρ−−)

where ρ++(ρ−−) is the probability of finding the particle with spin projection
+1/2(−1/2) along the quantization axis.
Consider the decay Λ+

c → Λ(λ1)π+(λ2) , ~pΛ(p, θ, φ) is the momentum of Λ in
the Λ+

c rest frame, λ1 = ±1/2 and λ2 = 0 are the helicities of Λ and the pion
respectively, and finally we denote by Mf = λ1 − λ2 = ±1/2 to be the projection
of the final angular momentum along the axis (4)|| ~pΛ ≡helicity axis.

We have 2 possibilities for the couple (λ1, λ2) due to the conservation of the total
angular momentum : (-1/2,0) ; (+1/2,0).

The general formalism for the Λ+
c → Λ(λ1)π+(λ2) decay is based on the Jacob-

Wick helicity formalism, and completed by the formalism of Jackson [24]. The
decay amplitude is given by the following relation:

A0(Mi) = MΛ+
c

(λ1, λ2)D
1/2∗
Mi,Mf

(φ, θ, 0)

with MΛ+
c

(λ1, λ2) is the Λ+
c hadronic matrix element and it is independent of the

polar angle θ and the azimuthal angle φ(Wigner’s theorem).

Dj
Mi,Mf

(φ, θ, 0) is the general element of the Wigner D-matrix and it depend on

the projection of the angular momentum Mi and Mf . It is given by :

Dj
Mi,Mf

(φ, θ, 0) = djMi,Mf
(θ) exp(−iMiφ)
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Consider also the decay Λ(λ1) −→ p(λ3)π−(λ4)

The helicity of the proton (λ3) takes the value ±1/2, while the helicity of the
pion (λ4) is always equal to zero.
In the helicity rest frame of the Λ, the projection of the total angular momentum
along an axis parallel to the proton momentum is designed by m1 = λ3−λ4 = ±1/2
The decay amplitude of the resonance state Λ(λ1) −→ p(λ3)π−(λ4) is

given by the following relation: A1(λ1) = MΛ(λ3, λ4)D
1/2∗
λ1,m1

(φ1, θ1, 0) =

MΛ(λ3, λ4)d
1/2
λ1,m1

(θ1) exp(iλ1φ1)

The total amplitude of the decay Λ+
c → Λ(λ1)π+(λ2) −→ p(λ3)π−(λ4)π+(λ2)

Atot =
∑
λ1,λ2

A0(Mi)A1(λ1)

=
∑
λ1,λ2

MΛ+
c

(λ1, λ2)d
1/2
Mi,Mf

(θ) exp(iMiφ)MΛ(λ3, λ4)d
1/2
λ1,m1

(θ1) exp(iλ1φ1)

where θ1, φ1 are respectively the polar and the azimuthal angles of the proton in
the Λ rest frame.
In the next step we will introduce the polarization density matrix ρΛ+

c , and thus
the decay probability is given by :

dσ ∝ ΣMi,M ′i
ρMi,M ′i

AtotA
∗
tot

now we should sum over all the helicities of the final particles and the expression
dσ becomes:

dσ ∝
∑
λ3,λ4

∑
Mi,M ′i

ρMi,M ′i
AtotA

∗
tot

After writing down the explicit form of the total amplitude Atot the probability of
the decay takes the form:

dσ ∝
∑

λ1,λ2,λ′1,λ
′
2

∑
Mi,M ′i

ρMi,M ′i
MΛ+

c
(λ1, λ2)M∗

Λ+
c

(λ′1, λ
′
2)d

1/2
Mi,Mf

(θ)d
1/2

M ′i ,M
′
f
(θ) exp i(Mi−M ′

i)φ

×|MΛ(λ3, λ4)|2d1/2
λ1,m1

(θ1)d
1/2

λ′1,m1
(θ1) exp i(λ1 − λ′1)φ1

with m1 = λ3 − λ4 = ±1/2; Mf = λ1 − λ2; M ′
f = λ′1, λ

′
2

finally we have the following integrals to be done:

dσ(Λ)Λ+
c

=

∫
φ1,θ1

dσ × dφ1d cos θ1

dσ(p)Λ =

∫
φ,θ

dσ × dφd cos θ

A.2 Calculation of the angular distribution of the proton
in the Λ rest frame:

dσ(p)Λ =
∑

λ1,λ′1,Mi,M ′i

∫
φ,θ
dσ × dφd cos θ

×{ρMi,M ′i
MΛ+

c
(λ1, 0)M∗

Λ+
c

(λ′1, 0)d
1/2
Mi,Mf

(θ)d
1/2

M ′i ,M
′
f
(θ) exp i(Mi −M ′

i)φ}

×{|MΛ(1/2, 0)|2d1/2
λ1,1/2

(θ1)d
1/2

λ′1,1/2
(θ1)+|MΛ(−1/2, 0)|2d1/2

λ1,−1/2(θ1)d
1/2

λ′1,−1/2(θ1) exp i(λ1−
λ′1)φ1}
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The integral over dφ and having 0 < φ < 2π results a Kronecker Delta δMiM ′i
and

a factor 2π. The resulting δMiM ′i
will make the summation over M ′

i vanishes and
replaces every M ′

i by Mi

Making the summation over Mi = ±1/2 and replacing the reduced Wigner d-
matrix by its values and the final expression becomes:

dσ(p)Λ = π|MΛ(1/2, 0)|2 + |MΛ(−1/2, 0)|2{|MΛ+
c

(1/2, 0)|2 + |MΛ+
c

(−1/2, 0)|2}

{1 + αΛ
ASα

Λ+
c

AS cos θ1 −
π

4
αΛ
ASP

Λ+
c

Z sin θ1〈
MΛ+

c
(1/2, 0)M∗

Λ+
c

(−1/2, 0)

|MΛ+
c

(1/2, 0)|2 + |MΛ+
c

(−1/2, 0)|2
exp(iφ1)

+
MΛ+

c
(−1/2, 0)M∗

Λ+
c

(1/2, 0)

|MΛ+
c

(1/2, 0)|2 + |MΛ+
c

(−1/2, 0)|2
exp(−iφ1)〉}

where αΛ
AS == |MΛ(1/2,0)|2−|MΛ(−1/2,0)|2

|MΛ(1/2,0)|2+|MΛ(−1/2,0)|2 is the Λ decay parameter.
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Appendix B

Figures and Plots of Different
Data Samples

B.1 Signal background distribution figures

Figure B.1: Distribution of variables used in the training of BDT for 2011 (LL, Λ̄c tracks) ,
superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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Figure B.2: Distribution of variables used in the training of BDT for 2011 (DD, Λ+
c tracks) ,

superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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Figure B.3: Distribution of variables used in the training of BDT for 2011 (DD, Λ̄c tracks) ,
superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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Figure B.4: Distribution of variables used in the training of BDT for 2012 (LL, Λ+
c tracks) ,

superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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Figure B.5: Distribution of variables used in the training of BDT for 2012 (LL, Λ̄c tracks) ,
superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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Figure B.6: Distribution of variables used in the training of BDT for 2012 (DD, Λ+
c tracks) ,

superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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Figure B.7: Distribution of variables used in the training of BDT for 2012 (DD, Λ̄c tracks) ,
superimposing RHSB background events (in Red) and MC-generated signal events (in Blue).
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B.2 Signal Correlation Matrices
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(a) DD Λ+
c signal correlation matrix

(b) DD Λ+
c BKG correlation matrix

(c) DD Λ̄−c signal correlation matrix

(d) DDΛ̄−c BKG correlation matrix

Figure B.8: Linear correlation for DD tracks, signal and background (BKG) for 2011 data sample:
Λ+
c and Λ̄+

c .
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(a) LL Λ+
c signal correlation matrix

(b) LL Λ+
c BKG correlation matrix

(c) LL Λ̄+
c signal correlation matrix

(d) LL Λ̄+
c BKG correlation matrix

Figure B.9: Linear correlation matrix for LL Tracks, signal and BKG for 2011 data sample: Λ+
c

and Λ̄+
c .
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(a) DD Λ+
c signal correlation matrix

(b) DD Λ+
c BKG correlation matrix

(c) DD Λ̄+
c signal correlation matrix

(d) DD Λ̄+
c BKG correlation matrix

Figure B.10: Linear correlation matrix for DD Tracks, signal and BKG for 2012 data sample:
Λ+
c and Λ̄+

c .
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(a) LL Λ+
c signal correlation matrix

(b) LL Λ+
c BKG correlation matrix

(c) LL Λ̄+
c signal correlation matrix

(d) LL Λ̄+
c BKG correlation matrix

Figure B.11: Linear correlation matrix BDT for LL Tracks, signal and background(BKG) for
2012 data sample: Λ+

c and Λ̄+
c .
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B.3 Corrections applied on MC (reweighting)

B.3.1 reweighting the Λ0
b Transverse momentum PT

B.3.2 reweighting the track multiplicity
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(a) PT of Λ0
b for LL tracks

(b) PT of Λ̄0
b for LL tracks

Figure B.12: Comparison between the normalized Λ0
b PT before and after reweighting for LL

track and particle type using the data of 2011. The blue color represents the side-band-subtracted
data and the MC is represented by the green color. The red color represents the re-weighted MC
events.
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(a) PT of Λ0
b for DD tracks

(b) PT of Λ̄0
b for DD tracks

Figure B.13: Comparison between the normalized Λ0
b PT before and after reweighting for DD

tracks and particle type using the data of 2011. The blue color represents the side-band-
subtracted data and the MC is represented by the green color. The red color represents the
re-weighted MC events.
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(a) PT of Λ0
b for LL tracks

(b) PT of Λ̄0
b for LL tracks

Figure B.14: Comparison between the normalized Λ0
b PT before and after reweighting for LL track

and particle types using the data of 2012. The blue color represents the side-band-subtracted
data and the MC is represented by the green color. The red color represents the re-weighted MC
events.
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(a) PT of Λ0
b for DD tracks

(b) PT of Λ̄0
b for DD tracks

Figure B.15: Comparison between the normalized Λ0
b PT before and after reweighting for DD

track and particle types using the data of 2012. The blue color represents the side-band-
subtracted data and the MC is represented by the green color. The red color represents the
re-weighted MC events.
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(a) Track multiplicity for DD tracks

(b) Track multiplicity for DD tracks

Figure B.16: Comparison between the normalized track multiplicity before and after reweighting
for DD tracks and particle types using the data of 2011. The blue color represents the side-
band-subtracted data and the MC is represented by the green color. The red color represents
the re-weighted MC events.
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(a) Track multiplicity for LL tracks

(b) Track multiplicity for LL tracks

Figure B.17: Comparison between the normalized track multiplicity before and after reweighting
for LL tracks and particle types using the data of 2011. The blue color represents the side-band-
subtracted data and the MC is represented by the green color. The red color represents the
re-weighted MC events.
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(a) Track multiplicity for DD tracks

(b) Track multiplicity for DD tracks

Figure B.18: Comparison between the normalized track multiplicity before and after reweighting
for DD tracks and particle types using the data of 2012. The blue color represents the side-
band-subtracted data and the MC is represented by the green color. The red color represents
the re-weighted MC events.
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(a) Track multiplicity for LL tracks

(b) Track multiplicity for LL tracks

Figure B.19: Comparison between the normalized track multiplicity before and after reweighting
for LL tracks and particle types using the data of 2012. The blue color represents the side-band-
subtracted data and the MC is represented by the green color. The red color represents the
re-weighted MC events.
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B.4 Unfolded Figures
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B.4.1 2011 - DD - particles

Figure B.20: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.21: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.
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Figure B.22: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.23: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.4.2 2011 - DD - antiparticles

Figure B.24: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.25: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.
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Figure B.26: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.27: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.4.3 2011 - LL - particles

Figure B.28: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.29: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.
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Figure B.30: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.31: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.4.4 2011 - LL - antiparticles

Figure B.32: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.33: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.



Unfolded Figures 207

Figure B.34: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.35: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.4.5 2012 - DD - particles

Figure B.36: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.37: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.
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Figure B.38: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.39: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.4.6 2012 - DD - antiparticles

Figure B.40: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.41: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.
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Figure B.42: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.43: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.4.7 2012 - LL - particles

Figure B.44: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.45: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.
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Figure B.46: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.47: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.4.8 2012 - LL - antiparticles

Figure B.48: The angular distributions spectra cos θ(up) and φ(down) of Λ+
c in Λ0

b rest frame.
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Figure B.49: The angular distributions spectra cos θ(up) and φ(down) of µ in W ∗-boson rest
frame.
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Figure B.50: The angular distributions spectra cos θ(up) and φ(down) of Λ in Λ+
c rest frame.
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Figure B.51: The angular distributions spectra cos θ(up) and φ(down) of proton in Λ rest frame.
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B.5 Unfolded MC Figures
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Figure B.52: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2011, particles, DD tracks.
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Figure B.53: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2011, particles, LL tracks.
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Figure B.54: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2012, particles, DD tracks.
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Figure B.55: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2012, particles, LL tracks.
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Figure B.56: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2011, anti-particles, DD tracks.
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Figure B.57: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2011, anti-particles, LL tracks.
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Figure B.58: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2012, anti-particles, DD tracks.
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Figure B.59: The unfolded MC spectra cos θ and φ of the particles in their mother rest frame
for data 2012, anti-particles, LL tracks.
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Appendix C

Correction of the Data by the
Global Efficiency of the LHCb
Detector

Here in this section we introduce another way for the correction of the data by the
global efficiency of the LHCb detector. It is similar to the correction done by the
unfolding however we restrict our selves to the correction given by the later.
We correct the efficiency bin by bin with the help of the MC. The general relation
is given by:

εj =
NMC
jR

NMC
jG

(C.1)

Where εj is the efficiency of the bin j, NMC
jR and NMC

jG are the number of events
reconstructed and generated respectively at the same bin j. Here, one can add
another form of the NMC

jG , the total number of the generated events is given by

:NMC
G = Nbins ×NMC

jG . By substitution, the efficiency could be written as:

εj =
NMC
jR

NMC
jG

= NMC
jR ×

Nbins

NMC
G

(C.2)

and now correction and normalization of the real data spectra could be easily done
using the following formula:

Ndata
kC =

Ndata
k

NMC
kR /NMC

kG

×
∑
j

εj (C.3)

where Ndata
k and Ndata

kC are the number of events before and after the correction by
the global efficiency of the LHCb Detector.
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