
HAL Id: tel-01980343
https://theses.hal.science/tel-01980343v1

Submitted on 14 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tools and Techniques for the Verification of Modular
Stateful Code

Mário José Parreira Pereira

To cite this version:
Mário José Parreira Pereira. Tools and Techniques for the Verification of Modular Stateful Code.
Logic in Computer Science [cs.LO]. Université Paris Saclay (COmUE), 2018. English. �NNT :
2018SACLS605�. �tel-01980343�

https://theses.hal.science/tel-01980343v1
https://hal.archives-ouvertes.fr

N
N

T
:2

01
8S

A
C

LS
60

5

Tools and Techniques for the Verification
of Modular Stateful Code

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université Paris-Sud

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Orsay, le 10/12/2018, par

MÁRIO JOSÉ PARREIRA PEREIRA

Composition du Jury :

Xavier Leroy
Professeur, Collège de France (Inria Paris) Président
Wolfgang Ahrendt
Professor, Chalmers University of Technology (Department of
Computer Science and Engineering) Rapporteur

Jorge Sousa Pinto
Professor, Universidade do Minho (HASLab, INESC TEC) Rapporteur
Catherine Dubois
Professeure, École Nationale Supérieure d’Informatique pour l’Industrie
et l’Entreprise (laboratoire Samovar)

Examinatrice

Laurent Fribourg
Directeur de Recherche, LSV – ENS Paris-Saclay (CNRS) Examinateur
Mihaela Sighireanu
Maı̂tre de Conférences, Université Paris Diderot (IRIF) Examinatrice
Jean-Christophe Filliâtre
Directeur de Recherche, Université Paris-Sud (CNRS) Directeur de thèse

Tools and Techniques for the Verification of Modular Stateful Code

Mário José Parreira Pereira

December 18, 2018

iii

À Bárbara, ao Vitor, ao Padrinho e à Mãe. À toi, Papa...

Contents

Préface xi

Conventions xv

1 Introduction 1

2 The Art of Program Verification, with Why3 11
2.1 A Library of Permutations . 11

2.1.1 Notation . 11
2.1.2 Library Interface . 12

2.2 Program Specification and Proof . 13
2.2.1 The Type of Permutations . 13
2.2.2 Proving Library Functions . 16

2.3 Code Extraction . 23

3 KidML 27
3.1 The KidML Language, Step-by-Step . 27

3.1.1 Core Language . 28
3.1.2 Imperative Features . 32
3.1.3 Function Definition and Function Call . 38
3.1.4 Exceptions . 44
3.1.5 Proof-related Elements . 49

3.2 KidML Formalization . 52
3.2.1 Semantics . 53
3.2.2 Type Soundness . 57

3.3 Discussion and Related Work . 66

4 Extraction 69
4.1 Extraction Function . 69

4.1.1 Extraction of Types . 70
4.1.2 Extraction of Top-level Declarations . 70
4.1.3 Extraction of Expressions . 71

4.2 Typing Preservation under Extraction . 79
4.3 Semantics Preservation . 87

4.3.1 Preservation of Convergent Evaluation . 87
4.3.2 Preservation of Divergent Evaluation . 97

4.4 Extraction Machinery . 100
4.4.1 Extraction Implementation. 101
4.4.2 The why3 extract command. 103

4.5 Discussion and Related Work . 104

v

vi CONTENTS

5 A Toolchain for Verified OCaml Programs 107
5.1 Methodology . 108
5.2 A Case Study: Union-Find . 109

5.2.1 Specification . 110
5.2.2 Verified Implementation . 112
5.2.3 Proof of Refinement and Specification Inclusion 120
5.2.4 Extraction to OCaml . 122

5.3 Challenges . 122
5.3.1 Non-verified Client Code . 122
5.3.2 Higher-order Effectful Functions . 127
5.3.3 Recursive Mutable Data Types . 128
5.3.4 Functors . 131

5.4 Experimental Evaluation . 136
5.5 Discussion and Related Work . 136

6 A Modular Way to Reason About Iteration 139
6.1 Specifying Iteration . 139
6.2 Cursors . 141

6.2.1 Cursor Specification . 142
6.2.2 Cursor Implementation . 144
6.2.3 Cursor Client . 145
6.2.4 Collection Modification . 147
6.2.5 Case Studies . 147

6.2.5.1 Gensym . 147
6.2.5.2 Depth-first Search . 148
6.2.5.3 In-order Traversal of Binary Trees 153

6.2.6 Other Case Studies . 160
6.3 Higher-Order Iteration . 160

6.3.1 Fold Implementation . 162
6.3.2 Fold Client . 166
6.3.3 Case Studies . 167

6.3.3.1 Binary trees . 167
6.3.3.2 Horner Method . 168

6.3.4 Other Case Studies . 172
6.4 Discussion and Related Work . 173

7 Conclusion 177
7.1 Contributions . 177
7.2 Discussion and Perspectives . 179

A Permutations Library 183

Bibliography 187

Index 199

List of Figures

1.1 The Why3 Graphical User Interface. 8

2.1 Pigeonhole Principle. 23
2.2 Automatically Extracted OCaml Code. 24

3.1 Masks order relation. 29
3.2 Mask Union. 31
3.3 Type Union. 32
3.4 Types Order Relation. 38
3.5 KidML Syntax. 52
3.6 Inductive Evaluation Rules. 54
3.7 Co-inductive Evaluation Rules (1/2). 55
3.8 Co-inductive Evaluation Rules (2/2). 56
3.9 Progress Judgment. 57
3.10 Typing rules for expressions (1/2). 59
3.11 Typing rules for expressions (2/2). 60

4.1 Extraction of Expressions. 73
4.2 Preservation of Convergent Evaluation. 87
4.3 Preservation of Divergent Evaluation. 97

5.1 Methodology diagram. 108
5.2 Union-find Extracted Code. 123
5.3 WhyML Implementation of Function mergesort. 130
5.4 Pairing Heaps Specification. 132

6.1 In-Order Cursor and Same-fringe Extracted Code. 161
6.2 Fold_right Implementation and Specification. 170

vii

viii LIST OF FIGURES

List of Tables

5.1 Verified OCaml Modules. 136

6.1 Experimental Results. 160
6.2 Experimental Results (fold iterators). 172

ix

x LIST OF TABLES

If I have seen further than
others, it is by standing
upon the shoulders of giants.

Isaac Newton
Préface

Quelle aventure ! Me voilà arrivé, trois ans et demi après, au bout de la plus grande aventure
de ma vie. Maintenant que j’écris ces dernières lignes de mon manuscrit, un drôle de mélange
de sentiments m’envahit : d’une part, terminer une thèse c’est un moment d’énorme joie, aucune
autre réalisation académique peut nous porter un tel sentiment ; d’autre part, la fin d’une si belle
étape de la vie me donne un secret envie de tout refaire pour une deuxième fois. Je me sens un peu
comme le jour d’aujourd’hui. Le matin est arrivé nuageux sur Paris. De la fenêtre de ma chambre,
à la Maison du Portugal, je vois le jardin de la maison qui touche au bord du périphérique parisien.
Le contraste entre ce petit coin vert et l’intense trafic de la capitale française est assez difficile à
imaginer pour ceux qui n’ont pas le vrai privilège d’habiter la Cité Universitaire de Paris. Mais,
en fait, je me rends compte maintenant que la vue de ma chambre représente fidèlement un petit
résumé de mes années en tant que thésard : la tranquillité de la campagne sur le plateau de Saclay,
mais aussi la vie agitée de cette magnifique ville qui est Paris.

Si je peux garder un si bon souvenir de ces dernières trois années et demie, c’est surtout grâce
aux gens que j’ai peux rencontrer au fil de ces années. J’ai vraiment monté sur les épaules des
nombreux géants et c’est pour ça que j’ai pu voir beaucoup plus loin. À tous, je souhaite d’être
capable de remercier comme vous le méritez.

Paris, le 26 novembre 2018

Remerciements

Tout d’abord, je tiens à remercier profondément mon directeur de thèse, Jean-Christophe Fil-
liâtre. C’est une tâche trop difficile pour moi d’utiliser des mots pour exprimer toute ma grat-
itude vers toi, en fait beaucoup plus difficile que toutes les questions et défis scientifiques que tu
m’as posés tout au long de ces dernières années. Tes énormes qualités en tant que scientifique,
enseignant et programmateur nous les connaissons tous. Par contre, j’appartiens maintenant au
groupe des gens privilégiés qui t’ont eu comme directeur de thèse et qui ont pu témoigner tes qual-
ités humaines. Ton encadrement toujours très attentif, tes mots d’encouragement mais aussi tes
questions pointeuses sur l’arithmétique des ordinateurs (que j’ai raté la plupart du temps), feront
pour toujours partie des plus beaux souvenirs de ma thèse. Merci beaucoup, Jean-Christophe.
J’espère que, dans les années à venir, je puisse être à la hauteur de toi, en tant que chercheur mais
aussi bien en tant qu’encadrant, enseignant et collègue.

Je remercie très chaleureusement mes deux rapporteurs, Jorge Sousa Pinto et Wolfgang
Ahrendt. J’espère que mon travail soit à la hauteur de vos plus grandes exigences scientifiques.
Muito obrigado; vielen Dank !

Catherine Dubois, Laurent Fribourg, Xavier Leroy et Mihaela Sighireanu me font l’honneur
de faire partie de mon jury. Je vous remercie. Soutenir devant vous c’est pour moi, à la fois, une
grande responsabilité mais aussi une grande honneur.

Pendant mon séjour au LRI, l’équipe VALS m’a toujours proportionné un cadre de travail
exceptionnel. Les discussions au coin café, les savoureux gâteaux, les repas de Noël très animés,
mais aussi l’engagement sur l’avenir professionnel des plus jeunes sont des caractéristiques très

xi

xii PRÉFACE

remarquables de cette équipe de recherche. Je tiens à vous exprimer toute ma gratitude. Je serai
pour toujours un vrai VALS-ien.

Je tiens à remercier très particulièrement à Andrei Paskevich. Tes conseils ont été précieux
pour l’achèvement de ma thèse. Cela aurait été quasiment impossible pour moi de parvenir au
terme de ce travail sans ton aide. Merci beaucoup pour tout, Andrei. Et merci encore pour ton
engagement au développement de cet outil extraordinaire qui est Why3.

Ma gratitude envers mes collègues Léon Gondelman et Martin Clochard est énorme. Non
seulement j’ai pu avoir le bonheur de travailler directement avec vous deux, comme j’ai eu la
grande chance de partager mes découvertes scientifiques avec les meilleurs co-bureaux possibles.
Je te remercie, Léon, pour toute ton amitié ; à Martin, je te remercie pour toutes tes critiques,
toujours très constructives. Vous êtes, pour moi, une grande source d’inspiration.

Aussi important que de s’investir dans la recherche et dans les travaux de thèse, c’est de savoir
se détendre. Moi, j’ai eu le grand privilège de porter le maillot de Midi Trente. À tous mes
coéquipiers de cette belle association, un grand merci pour tous les moments conviviales au tour
du match de football de chaque mercredi. Et si vous me permettez, voici un « et pour Midi Trente,
hip hip » !

Je tiens à remercier profondément à ma famille de la Maison du Portugal. Avec vous, je me
sentais toujours chez moi, toujours dans une ambiance très accueillante. C’est aussi grâce à vous
que mes années à Paris sont remplies de bons moments et de très bons souvenirs.

De facto, nascer-se português é um privilégio que só compreendemos realmente quando saímos
para lá das nossas fronteiras. E é graças às nossas gentes que aprendemos o valor da alma lusíada.
Às minhas gentes portuguesas, o meu sentimento de gratidão é imensurável. Este será para sempre
o vosso cantinho na minha tese. Aos meus amigos da Juventude Social-Democrata, pelo compan-
heirismo e boa-disposição com que sempre me acolheram nas minhas visitas esporádicas a Portugal.
Aos colegas do Release-UBI, aquela que foi a minha primeira “casa fora de casa”, pois foi aqui
que descobri que, afinal, gostava tanto de informática. Um abraço muito especial ao Professor
Simão; hoje mais que nunca tenho a certeza que foi ele a lançar a primeira pedra desta tese. Aos
meus Professores e colegas do DCC-FCUP, por me acolherem sempre tão bem. Finalmente, e
projectando já o futuro, a todos os membros da equipa PLASTIC do centro NOVA-LINCS, o meu
mais sincero agradecimento pela confiança que depositam em mim.

Quando passamos tanto tempo no mundo académico e no ensino superior, temos tendência a
rapidamente esquecer aqueles que tanto nos ensinaram, numa altura da vida em que estar sentado
numa sala de aula era tudo menos uma actividade entusiasmante. Tenho de deixar um agradeci-
mento muito especial à Escola Secundária Quinta das Palmeiras, a casa onde mais tempo vivi até
hoje. São 6 anos repletos de boas memórias. Sem querer magoar ninguém, o agradecimento mais
emocionado vai para a Professora Albertina Leitão. Hoje, só desejo poder estar à altura de tudo
aquilo que me ensinou. Et voilà, « tout vient à point à qui sait attendre ».

À minha família, as palavras são poucas para vos agradecer. Aos meus de Nogueira, de Cabe-
ceiras de Basto e do Porto. À minha querida avó Alice, um obrigado muito especial e um abraço
tão arrochadinho. Mas também à família da Fátima, a todos o meu muito obrigado. Aos pequeni-
nos José e Tomás, que me mesmo antes de eu chegar ao fim desta tese já me conferiram o grau de
« Tio ».

Às minhas primas-irmãs Alexandra e Luísa, o vosso primo tem muita dificuldade em vos
agradecer como merecem. À Xana, porque me acolheu tão bem quando eu cheguei, com tantas
dúvidas e incertezas à cidade de Paris e porque nunca me deixa esquecer a sua boa disposição e
amizade. Porque seres a mais velha é mesmo assim, saber que podemos sempre contar contigo. À
Luísa, que nunca me deixa esquecer que um dia também já fui adolescente e que são os pequenos
gestos que têm um grande impacto na vida dos mais novos. Cá estarei sempre para te explicar
matemática, mas também para me rir contigo e com a tua maneira tão particular de ver a vida.

PRÉFACE xiii

Ao meu querido amigo João Machado, são tantas as saudades. O teu exemplo ajudou-me
sempre a nunca desistir, a acreditar que poderia sempre alcançar aquilo que sonhamos. Que
coragem a tua, mermão! Um grande abraço de força e esperança para ti e para os muitos anos que
estão para vir.

Ao Paulo Fiadeiro, a quem tenho a sorte de chamar Padrinho. São tantos anos de aprendiza-
gem e coisas boas. Pensar que tudo começou há mais de 10 anos, num computador velhinho e com
o MatLab. Eis-me agora aqui, no fim do meu doutoramento em programação, a reflectir sobre
as pequenas coisas que acabam por se revelar decisivas para a nossa caminhada. Muito obrigado,
Padrinho, por tudo o que já passou e o que ainda está para vir.

Ao meu irmão Vitor Pereira, o meu melhor companheiro. Neste momento, em que há mais
de 8000 quilómetros e um fuso horário de 9 horas a separar-nos, temos mais tendência a olhar para
o que já passou. Tantas são as recordações boas de todos estes anos. E em todas, sou sempre o
irmão mais velho, cheio de ilusões e pretensões para mudar o Mundo, sempre ao lado do seu irmão
Tó. Hoje, continuo a querer mudar esse mesmo Mundo, ao lado do grande especialista em prova
de programas e criptografia.

À minha Bárbara, os meus agradecimentos são eternos e difíceis de exprimir. Pensar no
que este período de afastamento significou é agora ter a certeza que vale sempre a pena lutar por
aquilo em que acreditamos, quando temos as pessoas certas junto a nós. Obrigado por fazeres esta
caminhada ao meu lado. Obrigado por todo o teu apoio e carinho. I love you.

Mãe, obrigado. Obrigado por tudo, por tudo mesmo. Pela vida, pelo teu colo, pelo teu abraço,
pelo teu olhar forte e pela tua força infinita ao longo destes últimos anos. Sei que te vais rir ao ler
esta frase, mas se há aqueles que sonham em ser sábios é porque cresceram ao lado de quem já é
sábio há muito tempo. Obrigado, Mãe, pessoa mais sábia que eu conheço.

Et maintenant, au plus grand des géants, je ne peux faire que te dédier ce manuscrit. Papa, je
te parle en français parce que je t’imagine en ce moment à rigoler de mon accent, de ma difficulté de
conjugaison des verbes irréguliers, toi qui parlais tellement bien le français. Je te parle deux jours
après ton cinquante-cinquième anniversaire, et c’est à la fois émouvant mais aussi très apaisant
pour moi de t’imaginer à cette âge-là. Ton regard tendre, toujours très haut, toujours avec ta
douceur unique. Laisse-moi oser le dire, le regard d’un vieux père que deviendrait un jour un jeune
grand-père. Plus que jamais, ça me paraît irréel que tu sois parti il y a 10 ans. Tu me manques
tellement. Cette thèse, elle est pour toi, tout mon travail est pour toi. Laisse-moi imaginer ton
sourire, je suis certain que tu es très heureux. Merci infiniment, papa ; obrigado por tudo, Pai. Je
t’aime.

xiv PRÉFACE

Conventions

This manuscript uses the following conventions.

Code snippets. Whenever we introduce code snippets, we make explicit the programming lan-
guage we use for implementation via a label on the top-right corner of the snippet. For instance,
the following presents an OCaml implementation of a function computing the height of a binary
tree1:

OCamllet rec height = function
| Empty -> 0
| Node (l, _, r) -> 1 + max (height l) (height r)

Definitions. We surround new definitions of symbols/relations with two horizontal rules, one
at the top and the other at the bottom, in the style of the Types and Programming Languages
textbooks. For instance, the following is the definition of the Fibonnaci sequence for natural
numbers:

n ≥ 0 F(n)

F(0) = 0

F(1) = 1

F(n) = F(n− 1) + F(n− 2) if n ≥ 2

On the top-left corner, we introduce a list of pre-conditions that we must satisfy to apply the defined
symbol/relation. In the case above, we can only apply function F to a non-negative value. On the
top-right corner, we give the defined symbol/relation and arguments, for readability purposes.

Sequences. Throughout this thesis, we use a horizontal bar to denote sequences of symbols. For
instance, x̄ denotes the sequence of variables x1 to xn, and ν̄ denotes the sequence of values ν1
to νn.

Substitution. We use a standard, capture-avoiding definition of substitution. We denote sub-
stitutions as e[x̄ 7→ ν̄], meaning that every free occurrence of variable xi in e is replaced by νi.

1Even if this is an elegant, compact, and above all correct implementation, it can trigger a stack-overflow exception
for very ill-balanced trees. Can the reader think of an implementation that does not present such a pitfall?

xv

xvi CONVENTIONS

These machines have no com-
mon sense; they do exactly as
they are told, no more and no
less. This fact is the hardest
concept to grasp when one first
tries to use a computer.

Donald Knuth

1
Introduction

I am a programmer since the age of 15. This is one of those sentences that makes me feel truly
happy. During these last years, I have experienced countless times the joys of writing computer
programs. In particular, I keep a very sweet memory of the first program that I ever wrote: it was
a Python script that printed to a terminal (how enthusiastic I felt in that moment using a computer
terminal, such a mysterious object for me back then) a table containing integer distances from 1

to a certain n, expressed in the different metric units. But the most amazing part for me was that
I could interact with this program. I could specify, as an input, how many lines of the table were
to be printed (I was way far from knowing that I was just changing the upper bound of iteration).
This little piece of code now makes me laugh, but back then I felt like I had just accomplished the
most difficult task in the world.

In my first years as a programmer, I explored many different languages and programming ap-
proaches. After my first (very brief) experiences with Python, I spent some time programming in
C and under the MatLab system. After that, I spent a long time around the new shiny feature of
Microsoft’s Visual Studio, the C# language. It is only during my first year as an undergraduate
student at Universidade da Beira Interior that I discovered OCaml and, more generally, the func-
tional paradigm. Now, when I look back, I am absolutely sure that this was a turning point in my
life as a programmer. I felt like I was just rediscovering computer programming once again, but
this time everything was so different. This was a much more elegant and attractive way of writing
computer programs. Nowadays, I am using OCaml in a daily basis, either for work and personal
projects.

Despite all the profound technical differences between programming languages, their syntax,
their development environments, etc., one thing was not changing: my frustration in the presence
of bugs in my code. Every time a program of mine did not work as expected (either it computed
the wrong answer, crashed spectacularly with a segmentation fault error), I felt like I got lost in the
middle of the desert. I was so disappointed every time I had the impression of having a bullet-proof
code, just to discover that it failed again on the next input. I was struggling to understand that
the computer was only doing what I was telling him to do, no more and no less. Back then, I
wished for a method that I could use to convince myself, without any doubt, that the program I
had spend so much time writing was, indeed, correct.

1

2 CHAPTER 1. INTRODUCTION

The need for reliable software. It is not only young programmers who struggle to write error-
free programs. In real-life, defective software has been the cause of embarrassing, some times even
dramatic, situations.

Recently, a bug was found in the sorting algorithm used by default in platforms such as Android
SDK or OpenJDK. Such an algorithm, called Timsort, was initially proposed by Tim Peters in 2002
for Python, but was later ported to Java. In 2015, a team of researchers was able to demonstrate
that the Timsort was, in fact, broken [52]. Interestingly, the authors of this work also implemented
a test generator which is able to produce input values that break Timsort. With millions of Android
devices being used every day all-around the globe, one easily can imagine the repercussions of such
a bug.

The year of 2015 seems to have been particularly intense for software bugs. On April 2015, a
failure during a daily system refresh shut down the point-of-sales systems of 7000 Starbucks stores
in the United States and 1000 in Canada. Employees were forced to hand free coffee and tea to
costumers, since they could not accept payment card neither register change. The problem was
fixed a few hours later, nonetheless, the company is reported to have lost between 3 or 4 millions
dollars that day1. It was certainly not a very good day for Starbucks, but a very happy one for
Latte Macchiato lovers.

The opening of the brand new Heathrow Terminal 5, in 2008, came with the promise of a
modern, efficient and working baggage handle system. This was built with the intention of carrying
around the huge number of costumers luggage checked-in every day. Prior to the opening day, the
system was tested with over 12000 pieces of luggage. It worked perfectly. Unfortunately, “real-life”
scenarios stroke, and the system was not able to cope after Terminal’s opening to the public. Ten
days after inauguration, around 42000 bags were lost and over 500 flights were cancelled2.

When it comes to privacy and security, everyone demands the highest guarantees from software.
The OpenSSL cryptography library is widely used to implement the Transport Layer Security
(TLS) encryption protocol that secures communications over the Internet. On April 2014, a
security bug in the Heartbeat Extension of the OpenSSL implementation of TLS was reported.
This bug was named Heartbleed. This bug is caused by a buffer over-read vulnerability in the
implementation, and can be exploited by external attackers to get access to the memory of systems
protected by the defective OpenSSL implementation. This means theft of server’s private keys,
users’ session data, and passwords. At the time of disclosure of the bug, around half a million of
authority-certified Internet’s web servers were vulnerable to the attack3.

Formal methods. The aforementioned examples are only a few among the many cases of prob-
lems caused by software bugs. A first approach to raise our confidence in a piece of code is to test
it [115]. A carefully chosen battery of tests allows to detect many of the existing bugs. Nonethe-
less, the set of possible input states of a program is normally infinite, which makes it impossible
to conceive a fully-exhaustive test suite. To quote Edsger Dijkstra, “testing shows the presence,
not the absence of bugs”. Even if a program responds correctly to all the supplied tests, we cannot
state that this is a completely bug-free program.

When we seek higher confidence over a program, we must turn ourselves to the use of formal
methods [111]. Such techniques employ mathematical reasoning in order to demonstrate that a
program behaves as expected. The use of formal methods normally involves two distinct phases.
First, one must describe the expected behavior of a program in a chosen formal language. This is
what we normally refer to as the program specification. Being able to correctly specify a program’s
behavior is already a very challenging task. Secondly, one must mathematically prove that the

1https://qz.com/391374/the-great-starbucks-outage-was-not-caused-by-hackers/
2http://news.bbc.co.uk/2/hi/uk_news/7314816.stm
3http://heartbleed.com/

https://qz.com/391374/the-great-starbucks-outage-was-not-caused-by-hackers/
http://news.bbc.co.uk/2/hi/uk_news/7314816.stm
http://heartbleed.com/

3

program actually conforms to the devised specification, which normally involves some mathemat-
ical interpretation of the program semantics. The complexity of the specification and associated
program can turn this into a very difficult task. Within the field of formal methods, many different
approaches have been developed to verify that a program conforms to a formal specification. We
can mention abstract interpretation, model checking, type systems, and deductive program verifica-
tion. The last two are of particular interest for the work of this thesis. A very important common
aspect to all of these methods is that they are based on the static analysis discipline, i.e., there is
never the need to execute a program in order to establish its relation to the specification.

Abstract interpretation [44, 46] is a technique used to establish the absence of run-time errors
of a program, such as arithmetic overflows, memory violations, and out-of-bounds array accesses.
This technique works by building an over-approximation of all the possible states of a program,
using what is called an abstract domain. An abstract domain consists of a symbolic representation
of a set of the program’s states. For instance, an abstract domain can assign an integer interval
to a program variable, representing the set of possible values that variable can contain at a given
point of the program. This can be exploited to report on possible arithmetic overflows in the value
of some variable. However, if the assigned intervals are too wide, the analyzes can trigger false
alarms. A typical strike for abstract interpretation users is the balance between a fine-grained
abstract domain and the computational cost associated with a very precise analyzes. An example
of a working tool, with a successful application in industry, is the Astrée static analyzer [47] for
C programs. It has been applied by the Airbus Company to establish that software running in
planes is free of run-time problems.

Model checking [35] is a technique in which a program is considered as a state transition
system and specification is represented in some variant of temporal logic. Finite automata are a
typical representation for such systems. This method works by exhaustive state exploration and
symbolic execution. A variant that limits the analyzes to the first k steps of the system execution
is called bounded model checking [19]. This technique employs SAT solving to efficiently verify
properties about the system. It solves some of the problems associated with the search space of
traditional model checking, which requires large amounts of memory in order to analyze complex
systems. Bounded model checking has been successfully used in industrial hardware verification,
by companies such as IBM, Intel and Compaq.

Type systems. Type systems represent a vast domain of research. Here, we present only a very
small sub-set of this field, with a focus on the aspects that are most relevant to our use of type
systems throughout this work. For a broader presentation, we invite the reader to consult the two
books in the series Types and Programming Languages by Benjamin Pierce [125,126].

Type systems are the most widely used formal technique for static program analysis. The
success of type systems is explained mainly by its light-weighted interaction with the program-
mer. Indeed, type systems have a significant impact since they can be used without a profound
knowledge of the back-end machinery. We refer to languages equipped with some form of type
system as statically typed. Examples of such languages include Java, C, or C++, which demand
for a programmer to only specify the type of each program variable. Languages such as OCaml,
Haskell, or Scala even feature a form of type inference mechanism, which means the system can
automatically compute most of the needed typing information.

The main purpose of type systems is to rule out program expressions that would lead to
execution-time errors. This is done by classifying program expressions according to the set of
values they can produce. For instance, 42 is said to be of type int to express the fact that it is an
integer constant. The same principle applies to the constant true of type bool. When it comes
to assign a type to a function, we must make explicit the type of all its arguments, as well as the
type of the returned value. If we consider, for instance, a function even that decides whether its

4 CHAPTER 1. INTRODUCTION

argument is an even value, we must assign to this function the type int -> bool. According to
this type, even can only be applied to integer arguments. The expression even 42 is thus of type
bool, but expression even true has no computational meaning. These kind of expressions are
immediately rejected by type systems at compile-time.

The research field of type systems is founded on the seminal work by Alonzo Church [33]. In
this work, Church introduces the simple types discipline, with the purpose of giving a rigorous
definition of the class of well-behaved terms of his λ-calculus [34]. Since then, type systems have
been the object of extensive scientific study worldwide. A main line of research focus on the
use of type systems in the design of programming languages. Given the increasing complexity of
programming languages, there is also a need for more expressive type systems. Polymorphic type
systems are an example of such increase in expressiveness. Using polymorphic types, one has the
great flexibility to soundly re-use the same piece of code with arguments of different types. Such
class of type systems are direct results of the works by J. Roger Hindley [74] and Robin Milner [110].
In 1982, Luis Damas and Robin Milner present the algorithm W [49], a type inference algorithm
for polymorphic types. Polymorphic type systems and algorithm W form the basis of modern
functional programming languages, such as OCaml and Haskell.

Type systems are also used as an artifact to mechanically encode mathematical proofs. In
particular, such proofs can represent statements about the functional correctness of a program.
With no surprise, such line of work requires very expressive type systems. An example of such is
the work by Martin Löf on the theory of dependent types [107]. Very succinctly, the idea is to allow
types to be parameterized by terms of a language. This takes a step forward with respect to the
polymorphic theory of types, where types can only be parameterized by other types. Dependent
types introduce the idea that reasoning about the behavior of programs can be seen as a type-
checking problem. An example of a type system based on dependent types is the Calculus of
Inductive Constructions [123], by Christine Paulin-Mohring. Such a type system forms the kernel
of the Coq proof assistant [140]. During the last few decades, Coq has been successfully applied
in the formalization of mathematics, as well as in the verification of computer programs. Another
example of a modern proof assistant based on the theory of dependent types is the Agda [42] proof
assistant.

Deductive program verification. The work of this thesis takes place in the research field of
deductive program verification. Deductive program verification is the activity of turning the correct-
ness of a program into a mathematical statement, and then proving it. Here, the word “deductive”
stresses that the proof of such statements is done by applying deductive reasoning. Surveys of
this research field are given by Jean-Christophe Filliâtre [59] and by José Bacelar Almeida, Maria
João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa in their textbook Rigorous Software
Development: An Introduction to Program Verification [4].

The idea of mathematically proving the correctness of a computer program is, almost, as old
as the activity of programming. The very first known proof of program dates back to 1949, and
is due to Alan Turing [143]. In this paper “Checking a Large Routine”, the author presents a
program that computes the factorial of a number by repeated additions, together with a set of
local assertions that, when verified correct individually, imply the correctness of the whole program.

The proof of Alan Turing already poses many of the questions that research in deductive pro-
gram verification has been tackling over the course of years. One of the most important challenges
in deductive verification is to understand how one connects a mathematical behavioral specifica-
tion of a program with the program itself. Turing approaches this problem by associating each
instruction with a logical assertion that must hold before execution, and a second one that must
be respected after executing that instruction. The behavior of the program is thus specified via the
whole set of intermediate assertions. The seminal works by Robert Floyd and Tony Hoare [70,75]

5

present the bases of the first working method for the deductive verification of programs, with
respect to a logical representation of its behavior. Such method is normally referred to as the
Floyd-Hoare logic, or simply Hoare Logic. The idea is to represent the specification of a program
via two logical formulas. We use the following notation:

{P} C {Q}

The first is called the pre-condition, and states that a program C must execute in a state satisfying
the conditions of P. The second one, which we refer to as the postcondition, states that the
execution of C leads to a state that satisfies Q. This corresponds exactly to the notion of Hoare
triples. A Hoare triple is said to be valid if for every state satisfying P in which we execute C, if
execution of C terminates then the final state satisfies Q.

From a practical point of view, to entail the validity of a Hoare triple of a program, we must
provide each individual instruction of the program with its pre- and postcondition. Hoare logic
provides a set of inference rules that specify how to build valid Hoare triples. The validity of the
program’s Hoare triple follows from the composition of these rules. One of such rules is called the
consequence rule and it is defined as follows:

P ⇒ P ′ {P ′} C {Q ′} Q ′ ⇒ Q

{P} C {Q}

This rule states that we can strengthen a pre-condition and weaken the postcondition of a valid
Hoare triple. This rule is useful when composing the triples of sub-expressions in which the logical
conditions are syntactically equal. The two premises containing implications are called verification
conditions. In 1971, Tony Hoare uses the described method to prove the correctness of FIND, a
program that rearranges the elements of an array so that the k-th element ends up at position k,
with smaller elements to the left and greater elements to the right [76]. In this work, the author
describes how the program behaves, together with a logical specification of such a behavior. The
proof of correctness boils down to proving 18 verification conditions.

Building on the foundations of Hoare logic, many program logics have been proposed throughout
the years, in order to tackle the verification of a specific class of programs. A successfully example
is separation logic, introduced by John Reynolds in 2002 [135] as an extension to traditional Hoare
logic to facilitate reasoning about heap-manipulating programs. Separation logic extends Hoare
triples with the notion of separation conjunction. A triple of the form {P1 ? P2}C {Q1 ?Q2} is valid
if program C is executed in a state where P1 and P2 are valid conditions on separated portions of
the memory, and the execution terminates in a state where Q1 and Q2 state valid conditions on
separated portions of memory.

The way one uses Hoare logic to verify the correctness of a program makes it hard to scale
to the proof of larger programs. To build a valid triple for a whole program, one must provide
the intermediate triples for each and every individual expression. This is a fastidious and error-
prone task. Moreover, the presence of the consequence rule makes it difficult to build a tool that
automates the process. Fortunately, Edsger Dijkstra presents in 1975 his work on the calculus of
weakest pre-conditions [55]. This work introduces the foundations for a tremendous increase of
automation in the process of deductive verification. Dijkstra observed that a programmer is only
required to explicitly provide logical assertions in a few points of the program. The remaining
intermediate assertions can be inferred automatically. From the practical point of view, Dijkstra
proposes to take a program C and a user-supplied postcondition Q to compute the weakest pre-
condition, noted wp(C,Q), over the initial state of execution such that it terminates in a state
satisfying the postcondition Q. The following Hoare triple is, thus, valid:

{wp(C,Q)} C {Q}

6 CHAPTER 1. INTRODUCTION

In particular, the validity of a Hoare triple of the form {P} C {Q} is a consequence of the following
verification condition:

P ⇒ wp(C,Q)

Note that during the computation of wp(·) other verification conditions are also generated, which
must also be proved valid. Several verification tools are based in the weakest pre-condition calculus
approach. These tools are commonly referred to as verification condition generators. We can
cite as examples Dafny [97], KeY [2], VeriFast [81], VCC [38], Viper [114], SPARK2014 [108], and
Why3 [21,65]. The last one is the verification tool used as the working environment of this thesis.
We shall later present it in more detail.

Building the mathematical statement that entails the correction of a program, with respect to
a supplied specification, is only one part of the deductive verification process. It now comes to
the point where one must actually prove the validity of this statement. A possible solution is to
use a pen and a paper to make such proof, similar to what Hoare did for his proof of the FIND
algorithm. A much better approach amounts to using theorem provers, tools that can be used to
write and/or check a formal proof. Interactive proof assistants, such as Agda, Coq, Isabelle [116],
PVS [119], are a possible solution. However, these demand the user to conduct manually most
of the deductive reasoning. During the last decades, we have witnessed the rise of tools that can
automatically search for the proof of a given mathematical formula. Even if constrained by the
limits of decidability, automatic theorem provers have shown impressive results, and are now widely
accepted as the tools of choice when it comes to discharge verification conditions. In particular, the
family of SMT (Satisfability Modulo Theory) solvers are nowadays a crucial ingredient in automatic
proof of programs. We can cite Alt-Ergo [20], CVC4 [11], and Z3 [53] as successfully examples of
this family of tools.

A rather different approach to deductive program verification builds on the principle of re-
finement [8], originally introduced by Dijkstra [54]. The idea is to begin with a very high-level,
abstract, non-executable description of a program serving as a specification, and successively de-
rive more concrete versions of the same program until we get a fully executable program. Each
refinement step produces verification conditions that state the equivalence between the original
program and the one obtained by refinement. The chain of valid refinement steps ensures that the
final result of refinement is a correct-by-construction program, equivalent to the initial specifica-
tion. This technique is the basis of the B method [1] and is implemented in the associated tool
Atelier B.

Let us conclude with a small “hall-of-fame” of software projects built on top of deductive
verification tools. The list we present here not only shows that it is nowadays feasible to apply
deductive methods in the construction of realistic programs but, perhaps more importantly, it
opens the perspective for a future where every piece of software can, in principle, be verified.
CompCert [99] is a realistic, optimizing, efficient compiler for the C language, whose functional
correctness was verified using the Coq proof assistant. The dimension of this system makes it a
true monument of deductive verification. Not only this verified compiler shows how the use of an
interactive proof assistant can scale to the proof of an industrial-sized program, but it also opens the
path for complete toolchains of verified software, from verified source programs all the way down
to certified low-level representations of those programs. A recently published example of a system
building on CompCert is the work of José Bacelar Almeida et al. in a verified software stack for
secure function evaluation [3]. This work also uses EasyCrypt [14], a tool for deductive reasoning
on probabilistic computations with adversarial code. Another impressive verified development
based on CompCert is the Verasco [82] static analyzer. Verasco is completely specified and verified
in Coq. It employs the technique of abstract interpretation to establish the absence of run-time
errors in programs written in CompCert subset of ISO C 1999. Specified and developed using the
HOL4 interactive theorem prover, CakeML [93] is a formally verified compiler for a subset of the

7

Standard ML language. A major novelty of CakeML is that it is a bootstrapped development,
meaning that all parts of the compiler are built inside the theorem prover. On a different domain
of application, the Sel4 project [88] presents the formal verification of a complete, general-purpose
operating system kernel. The proof is conducted using the Isabelle/HOL theorem prover. Finally,
and to cite a remarkable application of automated verification tools, the Verisoft XT project [16]
introduced a verified version of Microsoft’s Hypervisor and its embedded operating system PikeOS.
The proof is done using VCC and the SMT solver Z3.

The Why3 tool. Why3 is a framework that proposes a set of tools that allow the user to im-
plement, specify, prove programs, as well as extract correct-by-construction versions of those pro-
grams. The use of Why3 is oriented towards automatic proofs, as it supports many external
automatic theorem provers. Why3 can also call interactive proof assistants, such as Coq, Isabelle,
or PVS, when a proof obligation cannot be automatically discharged.

Why3 comes with a programming language, WhyML, a dialect of the ML family. This language
offers some features commonly found in functional languages, like pattern-matching, algebraic
types and polymorphism, but also imperative constructions, like records with mutable fields and
exceptions. Programs written in WhyML can be annotated with contracts, that is, pre- and post-
conditions. The code itself can be annotated, for instance, with loop invariants or termination
measures for loops and recursive functions. It is also possible to add intermediate assertions in
the code to ease automatic proofs. The WhyML language allows the user to write ghost code [62],
which represents code with no computational interest, used for specification and proof purposes
only. The system uses the annotations to generate verification conditions via its implementation
of a weakest precondition calculus.

WhyML is also a specification language. It features an extension of first-order logic with rank-1
polymorphic types, algebraic types, (co-)inductive predicates and recursive definitions [60], as well
as a limited form of higher-order logic [36]. This logic is used to write theories for the purpose of
modeling the behavior of programs. Such theories are most of the time axiomatic. Why3 standard
library is formed of many logic theories of this kind, in particular for integer and floating point
arithmetic, sets, dictionaries, and finite sequences. The Why3 standard library is fully available on
the project web site, http://why3.lri.fr.

Once a program is implemented and fully specified in WhyML, the user can interact with the
system via its graphical user interface [48], which is invoked via the why3ide command. Fig. 1.1
presents an example of a typical user session of why3ide. From the graphical interface, the user can
select a verification condition and apply logical transformations (tactics, in the interactive theorem
provers’ vocabulary), in order to make such formulas easier to discharge. This is a lightweight
mechanism of interactive proof inside the Why3 system. To try proving the validity of a verification
condition, the user can call her prover of choice, typically a SMT solver. The prover can give the
following answers upon a proof attempt: it is able to discharge the selected verification condition,
in which case the graphical interface adds a green button on the left part of window; it answers
“don’t know”, which means that either the prover is not able to complete the proof (it falls out
of the prover capacities), or it simply abandoned the proof by lacking information in the context;
“timeout”, which means the prover is not able to complete the proof in the given time; or finally,
it is able to refute the selected verification condition.

The feedback of solvers changes the way we proceed with our proof. On one hand, a successful
proof of a generated VC incites us to move on to the next one, without posing many questions.
On the other hand, an unsuccessful attempt can be explained by several different reasons: the
specification is insufficient, the generated VC falls out of the solver capacity, or, very simply, there
is a bug in the given code4. This is the reason why the automated approach to program verification

4Bugs in specification are also possible, but these are more trickier to notice and repair. For instance, if we

http://why3.lri.fr

8 CHAPTER 1. INTRODUCTION

Figure 1.1: The Why3 Graphical User Interface.

is many times a try-and-repair process: negative feedback on a proof attempt naturally leads to
some reparation of the code, reinforcement of specification, or maybe both.

Once the verification task is complete, i.e., all the generated verification conditions are dis-
charged, we can use the Why3 code extraction mechanism to generate a correct-by-construction
executable code. The main task of the extraction phase is the removal of ghost code, without
compromising the operational meaning of the verified WhyML program. Currently, Why3 supports
extraction towards OCaml, CakeML, and the C language.

Why3 has been, until now, applied in the formal verification of several programs. The majority
of theses examples is contained in the Why3 Gallery of Verified Programs, available online at
http://toccata.lri.fr/gallery/why3.en.html. Despite its success, we feel Why3 still lacks
application in a large-scale development. We believe that Why3 has reached a state of maturity
that makes it feasible to be used in the development of a realistic verified software. Taking part
in the development of a fully verified programming library is, perhaps, an interesting entry point
for Why3 in the “revolution” that will lead us to a world of verified software.

The VOCaL project. VOCaL is an acronym for Verified OCaml Library. The name says it all:
the great ambition of the VOCaL project5 is to conceive a mechanically verified, general-purpose
library for the OCaml language. We believe to build a “world of verified software” we must start
by verifying libraries, the building blocks of any realistic software project. Even massively used
and tested libraries can contain bugs, like the aforementioned cases of the mergesort and Timsort
algorithms. We chose OCaml as our targeting language since this is the implementation language
of systems used worldwide where stability, safety, and correctness are of utmost importance. Ex-
amples include the Coq proof assistant, the EasyCrypt proof assistant for cryptographic programs,
the Astrée [47] and Frama-C [87] static analyzers, the Cubicle model-checker [40], and the Alt-Ergo
theorem prover. Moreover, the verification of programming libraries has been, just until recently,

introduce a logically inconsistent specification, we might still get every generated verification condition discharged,
even for a bugged program.

5https://vocal.lri.fr/

http://toccata.lri.fr/gallery/why3.en.html
https://vocal.lri.fr/

9

barely explored by the formal methods community, which makes the VOCaL project an interesting
ground for research work. Other than the library itself, another foreseen contribution of VOCaL is
the formal verification of parts of verification tools themselves.

One of the key ingredients of the VOCaL project is the design of a specification language for
OCaml, independently of any verification tool. Another ingredient is the development of the
verified library itself, using a combination of three tools: CFML [29], Coq, and Why3. These tools
nicely complement each other: CFML implements a separation logic and targets pointer-based
data structures; Coq is a tool of choice for purely applicative programs; and Why3 provides a high
degree of automation using off-the-shelf SMT solvers. A consistent collaboration between these
tools, keeping the benefits of each one, is one of the project’s greatest challenges.

This thesis takes place right in the core of the VOCaL project. Over the course of this work, we
have been developing the tools and techniques that allow Why3 to scale up to a verification frame-
work that can successfully meet the goals of the VOCaL project. We detail on the contributions of
this thesis in the following.

Contributions of this thesis. A major contribution of this thesis, with a direct impact on
the VOCaL project, is the new Why3 code extraction mechanism. Our implementation effort
resulted in an enhanced extraction mechanism for Why3, featuring a modular translation, up to
OCaml functors. This new extraction mechanism has been successfully used to generate correct-by-
construction implementations of several verified WhyML programs. In this thesis, we also present
the mathematical formalization of a representative subset of the implemented extraction function.
This formalization includes a proof that the extracted programs preserve the semantics behavior
of the original source, either for convergent or divergent evaluations. We also show that the result
of extracting a well-typed program is still a well-typed program. From a software architecture
perspective, one key feature of the new extraction mechanism is that it clearly separates the
code translation phase (removing logical annotations, erasing ghost code, optimizing superfluous
let..in expressions) from code printing. Adding support for the extraction to a new language
is now as simple as writing a printer from an intermediate representation to that language. The
OCaml printer is also a contribution of ours.

Still in the context of the VOCaL project, we gave the first steps towards a specification language
for OCaml. We have used this specification language to annotate several OCaml interface files. Such
a specification is translated into the WhyML language via a Why3 plugin, whose development we
also authored. Building on this translation tool and the Why3 extraction mechanism, we propose
a toolchain/methodology to use Why3 as a platform to obtain verified OCaml programs. The
translated specification links to a WhyML implementation via the Why3 refinement mechanism,
which provides us with a proof that the verified implementation is a also a refinement of the
specification written in the OCaml interface file. Using this toolchain, we were able to fed the
VOCaL library with several correct-by-construction OCaml modules. These range from purely-
applicative functorial data-structures such as pairing heaps, to strongly imperative ones such as a
union-find library.

During our experiments with Why3 and the verification of OCaml programs, we came across the
challenge of verifying arbitrarily pointer-based data structures. WhyML type system poses some
constraints when it comes to reason about recursively-defined mutable data types. To circumvent
some of these, we propose an approach based on an explicit memory model that we named mini-
heaps. One distinctive aspect of this approach, contrarily to what is done in other tools that build
memory models on top of Why3, is that we want to keep using WhyML types as much as possible,
hence we only build a memory model for the parts of the program that cannot be encoded in
the WhyML type system. Also, we do not introduce memory as a global mutable value of the
whole program. We declare it as a private data type, and pass instances of the memory as a ghost

10 CHAPTER 1. INTRODUCTION

argument to each function, with the extraction mechanism erasing it from the final OCaml program.
The WhyML type system guarantees that different fragments of the memory are separated.

Finally, we propose a formal specification that can be used to specify iteration processes,
independently of the paradigm and underlying implementation. Such a specification is based on
the use of two logical predicates to characterize the possible finite prefix sequences of elements
enumerated during iteration. Our proposition is general enough to cope with the specification
of non-terminating and/or non-deterministic processes. We have applied this approach to the
paradigms of cursors and higher-order iterators, specifying and verifying implementations of both
iteration providers and client code. We observe that our specification naturally imposes an abstract
barrier between the client and the implementation of the iteration process. A key aspect of our
methodology is that it is completely independent of the chosen verification tool. We used Why3 to
conduct our experimental validation, but any other deductive verification tool could be used.

Plan. In Chap. 2, we use the example of a library of permutations as a gentle introduction to
program verification within the Why3 framework. We explain how to write a WhyML version of
the library, which includes both logical specification and implementation of functions manipulating
mathematical permutations. We conclude this chapter by showing how to use the Why3 extraction
mechanism to turn the verified library into a correct-by-construction, executable OCaml code.

In Chap. 3, we introduce a programming language called KidML. This language features re-
cursive definition, local variables binding, conditional expressions, exceptions, mutable state, and,
most importantly, ghost code. We adopt a step-by-step presentation of the KidML language, its
type system, and operational semantics. The chapter terminates with a proof of type soundness.

In Chap. 4, we present and formalize an extraction procedure for the KidML language. For
the most intrinsic cases of our extraction function, we provide examples of small KidML programs
and the result of their extraction. We prove that the extraction function preserves well-typedness
and semantics behavior of KidML expressions. We conclude with an overview of the actual Why3
extraction mechanism implementation, as well as some differences with respect to the procedure
that is formalized in this chapter.

In Chap. 5, we propose a methodology to produce verified OCaml programs. Using the proof
of an union-find library as a running example, we give a complete and detailed presentation of
how our methodology works in practice. We dedicate the remaining of the chapter to presenting
interesting challenges that arise during the proof of OCaml programs. For each one, we give an
illustrative case study. We conclude with a statistical summary on the experimental use of our
methodology.

In Chap. 6, we introduce a modular approach to reason about iteration. We apply this approach
in the specification of two different iteration paradigms: cursors and higher-order iterators. For
each one, we present the proof of several case studies (both iteration providers and client code).

In Chap. 7, we summary the main contributions of this thesis and draw some conclusions from
our work. We conclude by enumerating some possible lines of future work.

The most important property of
a program is whether it accom-
plishes the intentions of its user.

Tony Hoare

2
The Art of Program Verification, with Why3

We use a small library of functions manipulating permutations to illustrate how program veri-
fication is conducted in Why3. Our road-map is, in some sense, very simple. First, we write a
WhyML version of such library, together with its logical specification. Then, we start what is the
actual verification task. Within Why3, this mostly corresponds to call its Verification Conditions
Generator and employ SMT solvers to discharge the generated verification conditions. Finally, we
can use the Why3 code extraction mechanism to produce a correct-by-construction version of the
library that can be compiled down to an executable.

In this chapter, we chose OCaml as the target language of our extraction. We stress that our
approach to verification is oriented towards the production of an executable program from a proof,
rather than taking an existing code written in a compilable programming language and prove it.
We give, at the end of the chapter, the OCaml code of the permutations library, for illustration
purposes.

2.1 A Library of Permutations

2.1.1 Notation

We use standard mathematical notation to better illustrate some of our examples. We use π to
denote some permutation, and we define a permutation over the set { 0, 1, . . . , n−1} as a bijection
from this set to himself. A permutation can be represented using what is normally called the
Cauchy’s two-line notation [120]. A permutation π is written as a two-line matrix where the first
line are the elements x0, x1, . . . , xn−1 of the set and the second one the images π(xi), for 0 ≤ i < n,
as follows: (

x0 x1 x2 . . . xn−1
π(x0) π(x1) π(x2) . . . π(xn−1)

)

A permutation can also be represented using the cycle notation. For a permutation π, the cycle of
x is the sequence (x π(x) π2(x) . . .) of repeated applications of π to x until it returns back to x.
This sequence of values forms the orbit of x. We continue this enumeration of cycles from π until
all the elements of the permutation are written in some cycle. Let us consider, for instance, the

11

12 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

following permutation over elements from 0 to 5:(
0 1 2 3 4

1 0 3 4 2

)

One possible cycle representation for it is (0 1)(3 4 2). This representation is often referred to as
the decomposition into disjoint cycles. Finally, we use ‖π‖ to denote the number of elements in
the permutation π.

2.1.2 Library Interface

We explain in this section the behavior of each function in the permutations library. The interface
for this library is the following one:

OCamltype t = int array

val id : int -> t
val transposition : int -> int -> int -> t
val compose : t -> t -> t
val inverse : t -> t
val cycle_length : t -> int -> int

We encode a permutation as an array of integer values, so the type t is just an alias for the
type int array. Function id takes as an argument an integer n and returns the identity permu-
tation from 0 to n − 1. For instance, the array [|0; 1; 2; 3; 4|] is the result of applying id
to 5.

The transposition function takes as arguments three integers n, i, and j and creates a
permutation t of n elements where every element is mapped to itself, except for i and j, for which
t(i) = j and t(j) = i. For instance, the call transposition 5 0 4 returns the permutation

(0 4)(1)(2)(3)

which is represented as the array [|4; 1; 2; 3; 0|].
Function compose computes the composition of two given permutations, i.e., given two per-

mutations π1 and π2 such that ‖π1‖ = ‖π2‖, this function returns the permutation π where
π(i) = π2(π1(i)), for all 0 ≤ i < ‖π1‖. For instance, applying compose to π1 =[|1; 0; 3; 4; 2|]
and π2 =[|1; 4; 3; 0; 2|], we get the array [|4; 1; 0; 2; 3|].

Function inverse says it all in the name: it takes a permutation t and computes its inverse. The
inverse permutation of π, noted π−1, is a permutation such that π−1(π(i)) = i, for all 0 ≤ i < ‖π‖.
Let us consider the following permutation:(

0 1 2 3 4

1 4 3 0 2

)
Its inverse is the following permutation:(

0 1 2 3 4

3 0 4 2 1

)
Finally, function cycle_length is, likely, the most interesting one of the permutations library. It
takes as arguments a permutation t and an integer i, and computes the length of the orbit of i,
i.e., the number k of elements we find, when traversing the orbit, before returning back to i. This
is exactly how this function computes its result: it starts with t(i) and consecutively computes
t2(i), t3(i), . . ., until tk(i) = i, for some 0 ≤ k ≤ ‖t‖.

2.2. PROGRAM SPECIFICATION AND PROOF 13

2.2 Program Specification and Proof

In this section we describe the task of writing a WhyML version of the permutation library, to-
gether with its formal specification. The complete WhyML code for this development is given in
Appendix A.

2.2.1 The Type of Permutations

Let us present in detail the type t of permutations. We declare it as the following record type:
WhyMLtype t = {

a: array63;
ghost inv: array63;
ghost size: int;

}

Field a represents the permutation itself and the two ghost fields inv and size represent, re-
spectively, the inverse permutation of a and the number of elements in the permutation (we shall
comment on the type array63 later in this section). Field size is only introduced as a facility to
write simpler code, as we can get the number of elements of an array in constant time. This is
our first encounter with some form of ghost code, so let us take a moment to detail over the use of
such an artifact. Ghost code represents a piece of arbitrary code (by arbitrary we mean that it can
contain any feature from the WhyML language, such as assignments, loops, or function calls) that
is introduced to ease the proof process. Having explicitly introduced field inv makes easier the
reasoning about properties of permutations, increasing proof automation. This can be seen as a
sort of constructive reasoning, since possessing the inverse permutation side-by-side with a avoids
introducing some forms of existential quantification, as we will see in the forthcoming proofs. The
interest of size is less obvious, since the length of an array is computed in constant time, but later
in this section we will see how the value in this field actually helps SMT solvers to conclude some
proofs, namely that of function inverse.

We refer to the dual of ghost code as regular code, i.e., that part of the code that we want to
compile and run on some hardware. This operational point of view quickly leads us to the concept
of code extraction. By code extraction we mean a mechanical way of translating a program written
in a proof language, for instance WhyML, into a programming language for which there exists a
compiler, for instance OCaml. The main task of extraction is to erase any proof-related element,
including any manifestation of ghost code. Taking type t declaration as an example, extracting
such type declaration would result in

WhyMLtype t = { a: array63 }

by erasing fields inv and size1.

Type Invariant. Each field is very precisely related to the other two, in some kind of logical
connection. We want to be able to verify that each value of type t we built actually respects such
logical connection. In WhyML, we can wrap up a type definition with a type invariant, a logical
formula that every inhabitant of that type must always satisfy. For the case of type t, this is as
follows:

WhyMLtype t = {
a: array63;

1It is a bit of a shame that after extraction we get a declaration of a record type with a single field. The Why3
extraction mechanism, described in Chap. 4, is able to optimize such singleton types.

14 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

ghost inv: array63;
ghost size: int;

} invariant { length a = length inv = size }
invariant { forall i. 0 <= i < size -> 0 <= a[i] < size }
invariant { forall i. 0 <= i < size -> 0 <= inv[i] < size }
invariant { forall i. 0 <= i < size -> a[inv[i]] = i }
invariant { forall i. 0 <= i < size -> inv[a[i]] = i }
by { a = make 1 0; inv = make 1 0; size = 1 }

We start by asserting that both a and inv are arrays of the same length, equal to the value of size.
The next two lines of the invariant state that the elements of a and inv are integers between 0 and
size. The last two lines of the invariant closely follow the laws that define an inverse permutation.
For a permutation in a and its inverse in inv, we have that a[inv[i]] = i and inv[a[i]] = i,
for all 0 ≤ i < size. Actually, the last line of the invariant can be deduced from the previous ones.
This requires, however, a non-trivial auxiliary lemma. By including it as part of the invariant, we
rest assured that such property holds for every value we manipulate of type t since Why3 will
generate a proof obligation for the preservation of the type invariant. Finally, the line starting
with by is used to introduce a witness that there is at least an inhabitant of type t that respects
this invariant. Such witness is an actual value of type t, in this case we chose the one where both a
and inv are the array [|0|]. By exhibiting a witness for a type invariant we avoid declaring a
new type with an inconsistent invariant, which prevents us from introducing an inconsistency in
our proof context.

Mathematical and Computer Arithmetic. As users of WhyML, we are very quickly con-
fronted with the decision on which types best match the purpose of some part of our program.
A good example of such tension is to chose between unbounded mathematical integers or some
form of machine arithmetic, both supported by WhyML. Mathematical integers are great to reason
about, since they keep us closer to the logic of theorem provers, but prevent us from reasoning
about integer overflows, which is crucial for any realistic software. On the other hand, using a
fined-grain model of machine arithmetic makes it safe to translate integer values to native integers
of some existing programming language, but makes it harder to reason about. It is, thus, very
important to carefully chose the arithmetic type of each variable, as it can dramatically impact
the outcome of our proof.

Fields of record type t are a perfect example of the duality between unbounded and machine
integers. Let us start with field size: since it is introduced for specification purposes only, we are
very pragmatic in our choice and declare it of type int, the WhyML predefined type of unbounded
integers. As for fields a and inv, we chose the type array63, a WhyML model of arrays indexed by
and containing 63-bits signed integers. The type array63 is declared in the Why3 standard library
as follows:

WhyMLtype array63 = private {
mutable ghost elts: seq int;

ghost size: int;
} invariant { 0 <= size = length elts <= max_int }

invariant { forall i. 0 <= i < length elts -> in_bounds elts[i] }

This type logically represents an array as a two two-fields records, where field elts is the finite
mathematical sequence of integers that represents the elements of the array, and field size is
the number of elements in the array. We note that field elts is declared as a mutable field, to
account for possible modifications in the elements of the array. Whenever we want to change some
element of the array, we need to create a new sequence and assign it to the elts field. This would

2.2. PROGRAM SPECIFICATION AND PROOF 15

imply to re-prove, at each time, that the length of the array does not change. We overcome such
potential hamper by stating in the invariant the condition size = length elts which, since size
is declared as an immutable field, ensures that the length of a value of type array63 is always the
same.

The invariant of array63 states that the length of sequence elts is, at most, equal to the
constant max_int of type int63. The type int63 is the WhyML type for 63-bits signed integers,
declared as the following range type:

WhyMLtype int63 = < range -0x4000_0000_0000_0000 0x3fff_ffff_ffff_ffff >

The purpose of a range type is self-explanatory: it is a Why3 artifact to introduce a numerical
type whose values are within a certain limit. It takes the form < range l u >, where l and u
represent, respectively, the minimum and maximum value allowed for this type. For int63, l =
−0x4000_0000_0000_0000 = −262 and u = 0x3fff_ffff_ffff_ffff = 262 − 1. This corresponds
exactly to OCaml’s built-in int type on 64-bit architectures, a 64-bit word where a bit is used for
the sign and another bit is reserved for the garbage collector to distinguish between pointers and
integer values. The condition length elts <= max_int ensures that an array of type array63
can be safely indexed by a value of type int63.

The second line of type array63 invariant describes the possible values an array of this type
can contain. We state that, for each i within the bounds of sequence elts, the element elts[i]
respects the predicate in_bounds. This predicate asserts that its argument is a value between
min_int and max_int. In fact, this condition of array63 invariant is what allows us to state it
represents an array whose elements are 63-bit signed integers.

If we look carefully, it might seem that the invariant of array63 is ill-typed. Let us examine in
detail the first line of this invariant: here, 0, size, and length elts are terms of type int, while
max_int is of type int63. The operator <= takes two arguments of type int and returns a Boolean
value. It seems that applying <= to max_int would result in a typing error. What happens in fact
is that, after parsing this formula, Why3 is able to automatically apply a coercion from type int63
to type int. Such coercion is declared in the Int63 module, as follows:

WhyMLfunction to_int (x : int63) : int = int63’int x

meta coercion function to_int

Here, int63’int is an automatically generated logical function for the range type int63, which con-
verts a value of type int63 to the corresponding int value. When reading length elts <= max_int,
we must actually think as if the coercion would be explicitly written, resulting in the following
well-typed formula:

WhyMLinvariant { 0 <= size = length elts <= to_int max_int }

Now, if we are even more watchful, we can spot other coercion applications in the invariant of
type t of permutations. Indeed, the declaration of type array63 comes along with the following
coercion:

WhyMLmeta coercion function elts

In Why3, record fields are treated as if they were regular functions, which is consistent with the
concept of projections. There is no difference in declaring a symbol f as coercion, whether this
symbol was introduced using the keyword function or as a record field. As we shall see in the
following, the fact that Why3 treats record fields as regular functions allows for a certain degree of
flexibility when accessing the values of nested records fields. Each application of the operator [] in
the type invariant of t is, thus, an operation over sequences. Had we not used elts as a coercion,
the invariant of type t would look like

16 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

WhyMLinvariant { length (elts a) = length (elts inv) = size }
invariant { forall i. 0 <= i < size -> 0 <= (elts a)[i] < size }
invariant { forall i. 0 <= i < size -> 0 <= (elts inv)[i] < size }
invariant { forall i. 0 <= i < size -> (elts a)[(elts inv)[i]] = i }
invariant { forall i. 0 <= i < size -> (elts inv)[(elts a)[i]] = i }

It would be quite painful to write, each time, the application of elts or to_int. We humans seem
to make quite naturally these implicit conversions between types, thus a code without explicitly
writing coercion functions is actually closer to what our brain expects.

2.2.2 Proving Library Functions

We focus now on the specification and proof of each function of the permutations library. For
every function we present its functional specification, i.e., its pre- and postconditions, as well as
proof elements like loop invariants and termination measures.

Function id. Applying function id to a non-negative argument n creates a new permutation
over integers between 0 and n−1, where each element is mapped to itself. For instance, id 5 returns
the array [|0; 1; 2; 3; 4|]. This behavior is described using the following specification:

WhyMLlet id (n: int63) : t
requires { 0 <= n }
ensures { result.size = n }
ensures { forall i. 0 <= i < n -> result.a[i] = i }

Let us note that n is of type int63, which subsumes the application of the to_int coercion in the
pre- and postconditions. The body of function id starts with the creation of a fresh array to store
the permutation, as follows:

WhyML= let a = make n 0 in
let ghost inv = make n 0 in

Array inv is used to store the inverse permutation. We use here syntax let ghost inv... to
explicitly mark inv as ghost variable, which forbids us from using it in regular code. This is yet
another way to introduce pieces of ghost code in our program, other than declaring ghost record
fields. The remaining of this function consists of a loop filling a and inv with values from 0 to
n− 1. This is as simple as the following for loop:

WhyMLfor i = 0 to n - 1 do
invariant { forall j. 0 <= j < i -> a[j] = inv[j] = j }

a[i] <- i;
inv[i] <- i

done;

The loop invariant is not a challenge neither for humans (to figure it out), neither for automated
solvers (to prove its initialization and preservation), as it merely follows the code structure. Func-
tion id ends up naturally by returning the new value of type t:

WhyML{ size = to_int n; a = a; inv = inv }

The verification condition generated by Why3 for function id is discharged in no time by SMT
solvers. Although straightforwardly defined and easy to prove correct, function id is not without
its subtleties. Let us consider the following alternative implementation for id:

2.2. PROGRAM SPECIFICATION AND PROOF 17

WhyMLlet id (n: int63) : t
requires { 0 <= n }
ensures { result.size = n }
ensures { forall i. 0 <= i < n -> result.a[i] = i }

= let a = make n 0 in
for i = 0 to n - 1 do

invariant { forall j. 0 <= j < i -> a[j] = j }
a[i] <- i;

done;
{ size = to_int n; a = a; inv = a }

Instead of manipulating the array inv, we assign directly the value of a to inv. From a program-
ming point of view, this implementation is not satisfactory since it introduces a memory aliasing
between two different fields of the same record. Each time we modify the value of a we would
also modify the value of inv, which is surely not what we want. Nonetheless, such program is still
accepted by the Why3’s type system and the proof replays like a charm. A small test program,
however, quickly reveals that this “does not mean what we think it means”2:

WhyMLlet bad_assignment () =
let t = id 42 in

t.a[0] <- 17;
t.inv[0] <- 17

This program is refused by Why3 with the following, slightly cryptic, error message:

Error:
This expression makes a ghost modification in the non-ghost variable t

What is reported here as the problem, seems exactly what we want to do. We are aware that
inv is a ghost field of t, and we want to modify it via a ghost modification. The reason why this
piece of code is rejected lies deeply in the Why3 type system with effects [63]. Why3 features a
type and effect system with singleton regions [141] that allows one to statically track all aliasing
occurring in some program. So, for the case of function id, the system recognizes the alias between
fields a and inv of the created record, and propagates this information to the (internal) type of
id. Why3 is now mapping fields a and inv to point to the same singleton region, which means
that whenever we modify the contents of inv the system knows that we modify the contents of a,
as well. Since a is a regular field, modifying it through inv would result in ghost code modifying
regular data, preventing the extraction mechanism to erase this piece of ghost code. We name
such a phenomenon an interference, and we shall use this designation throughout this thesis. In
Sec. 3.1.2, we introduce typing rules that take into account aliasing between regular and ghost
fields, preventing us from typing function bad_assignment. Finally, the given version of function
id where field inv is assigned the array inv, does not introduce the aliasing problem, and so
function bad_assignment would be accepted by the Why3’s type system.

Functions transposition, compose, and inverse. The next functions in the permutations
library are, perhaps, even simpler to define and prove than id. The first one takes as arguments
integer values i, j, and n and returns the transposition permutation of set { 0, . . . , n − 1} on i
and j. It is specified and implemented as follows:

WhyMLlet transposition (i j n: int63) : t

2The Princess Bride, 1987.

18 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

requires { 0 <= i < n /\ 0 <= j < n }
ensures { result.size = n }
ensures { result.a[i] = j /\ result.a[j] = i }
ensures { forall k. 0 <= k < n -> k <> i -> k <> j -> result.a[k] = k }

= let t = id n in
swap t.a i j;
swap t.inv i j;
t

The pre-condition requires that both i and j are elements of the set { 0, . . . , n− 1}. The postcon-
dition ensures that i and j are interchanged in array t.a and that for any other element k the
permutation behaves as the identity function. Function swap is part of the ArrayInt63 module
and is straightforwardly defined. Functional correctness of function transposition, with respect
to the given specification, is easily proved using SMT solvers.

The second one, compose, takes as arguments permutations p and q and computes the compo-
sition of these two permutations, i.e., the permutation that maps each element i to p(q(i)). Its
code and specification are as follows:

WhyMLlet compose (p q: t) : t
requires { p.size = q.size }
ensures { result.size = p.size }
ensures { forall i. 0 <= i < p.size -> result.a[i] = p.a[q.a[i]] }

= let n = p.a.length in
let res = make n 0 in
let ghost ires = make n 0 in
for i = 0 to n - 1 do

invariant { forall j. 0 <= j < i -> res[j] = p.a [q.a [j]] }
invariant { forall j. 0 <= j < i -> ires[j] = q.inv[p.inv[j]] }
res[i] <- p.a [q.a [i]];

ires[i] <- q.inv[p.inv[i]]
done;
{ size = to_int n; a = res; inv = ires }

We state in the pre-condition that both p and q are permutations over the same set of elements.
The postcondition establishes that the resulting permutation is also a permutation over the same
set as the given permutations, where each element is mapped to the composition of p and q.
The loop invariant straightforwardly follows the code structure. All the generated verification
conditions generated for function compose are immediately proved by SMT solvers. Let us note
that variable ires is declared as a ghost variable. This variable is only used inside ghost code,
so it is of interest to erase it from the resulting extracted code. Had we not marked it with the
keyword ghost, the extraction mechanism would still produce a correct code, but one containing
variable ires. This would result in a useless computation, incurring some execution penalty for
function compose. We can also observe a similar situation with variable inv in function id.

Finally, function inverse takes as argument a permutation t and computes its inverse. The
specification of this function is easily deduced, as the inverse permutation is already stored in field
inv. The complete code and specification is as follows:

WhyMLlet inverse (t: t) : t
ensures { result.size = t.size }
ensures { forall i. 0 <= i < t.size -> result.a[i] = t.inv[i] }

= let n = t.a.length in
let res = make n 0 in

2.2. PROGRAM SPECIFICATION AND PROOF 19

for i = 0 to n - 1 do
invariant { forall j. 0 <= j < i -> res[t.a[j]] = j }
res[t.a[i]] <- i

done;
{ size = to_int n; a = res; inv = copy t.a }

All the verification conditions generated for inverse are automatically proved. It is worth pointing
out that, even if we already possess the inverse permutation, we cannot directly copy it to field a,
i.e., replace the last line of the inverse function by

WhyML{ size = to_int n; a = copy t.inv; inv = copy t.a }

as the newly created record would be contaminated by ghost code. This means that the whole
record would be considered as a ghost value, since the regular field a was assigned to a piece
of ghost code. Function inverse would thus be considered a ghost function, getting erased at
extraction time. On the other hand, copying the array a into field inv is not a problem, since
assigning a regular value to a ghost field is not a contaminating operation. The typing rules we
introduce in Sec. 3.1.2 account for both the contaminating and non-contaminating case.

Function cycle_length. Function cycle_length is the most challenging one in the permuta-
tions library. Let us consider the permutation (0 1)(3 4 2), schematically represented as follows:

0 1

2

3

4

The above diagrams show how to compute the length of a cycle in a permutation. Given an
element i of the permutation, we follow the orbit of i until we get back to i. For the given
example, the first orbit is of length 2 and the second one of length 3. A possible specification for
cycle_length is the following one:

WhyMLlet cycle_length (t: t) (i: int63) : int63
requires { 0 <= i < t.size }
ensures { exists s. 0 < length s = result /\

forall j. 0 < j < result -> s[j] = t.a[s[j - 1]] /\
s[0] = i /\ t.a[s[result - 1]] = i /\
distinct s }

The postcondition postulates the existence of a sequence s that represents, in fact, the orbit of i.
This sequence has exactly the returned length of the cycle, denoted result in the postcondition,
each element in the sequence is the image of its predecessor, its first element is i, the image of last
element of s is also i, and finally the elements of s are pairwise distinct.

The given specification is logically correct and complete, and we could very well prove that the
implementation of cycle_length respects it. However, the existential quantification can create
a bottleneck in the proof, since instantiating an existential quantification remains a challenge for
automated solvers. In order to make the task of provers more amenable, we can make function
cycle_length returning the witness sequence, together with the integer value computed for the

20 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

length of the cycle. This is done in Why3 by declaring the function return type to be a tuple
containing both regular and ghost components, as follows:

WhyMLlet cycle_length (t: t) (i: int63) : (n: int63, ghost s: seq int)

The specification changes accordingly:
WhyMLrequires { 0 <= i < t.size }

ensures { 0 < length s = n }
ensures { forall j. 0 < j < n -> s[j] = t.a[s[j - 1]] }
ensures { s[0] = i /\ t.a[s[n - 1]] = i }
ensures { distinct s }

This introduces the notion of partially ghost result: the regular part is the actual computed result;
ghost results are there to aid the proof task, for instance removing existential quantification in
postconditions.

Function cycle_length body begins as follows:
WhyML= let n = ref 1 in

let ghost s = ref (singleton (to_int i)) in
let x = ref t.a[i] in

WhyML uses the same vocabulary as other ML languages when it comes to references manipulation:
expression ref v creates a fresh reference to v; expression r := v assigns v to reference r; finally,
expression !r refers to the dereferencing operation, i.e., it returns the value stored in the memory
location denoted by r. Reference n stores the value that shall represent the length of the cycle
of i, and that will be returned as the regular result of cycle_length. Reference s is introduced as
a ghost reference and stores a value that is used only for specification purposes, i.e., the sequence
representing the orbit that is the ghost result of the function. Function singleton returns a fresh
one-element sequence, which is here to_int i, the mathematical representation of the machine
integer i. Finally, reference x stores the next element in the orbit, starting with the image of i in
the permutation, t.a[i].

The rest of function cycle_length consists of a loop that repeatedly computes the next element
in the orbit, until it comes back to i. The code is as follows:

WhyMLwhile !x <> i do
s := snoc !s (to_int !x);
x := t.a[!x];
incr n;

done;
!n, !s

The snoc function appends to the end of the sequence, given as first argument, the element given
as second argument. We note that the word snoc is the mirror of cons, a classical operation from
the ML tradition that adds an element to the beginning of a sequence.

We give now, step-by-step, the loop invariants that allow us to deduce the postcondition of
function cycle_length. The length of sequence !s is always positive and equal to the value of !n:

WhyMLinvariant { 0 < length !s = !n }

Reference x always contains a value belonging to the permutation, i.e., between 0 and t.size, so
does each index j of sequence !s:

WhyMLinvariant { 0 <= !x < t.size }
invariant { forall j. 0 <= j < !n -> 0 <= !s[j] < t.size }

The first element of !s is always i while the last one is always !x:

2.2. PROGRAM SPECIFICATION AND PROOF 21

WhyMLinvariant { !s[0] = i }
invariant { !x = t.a[!s[!n - 1]] }

Sequence !s forms an iteration of the permutation:
WhyMLinvariant { forall j. 0 < j < !n -> !s[j] = t.a[!s[j - 1]] }

Finally, we state that all elements of s are pairwise distinct:
WhyMLinvariant { distinct !s }

The verification conditions generated by Why3, regarding invariants preservation and initialization,
are automatically discharged by a combination of SMT solvers. Also, this set of invariants allows
us to deduce the given postcondition.

We focus now on verifying the safety of this code. The access t.a[!x] poses no problem since,
by invariant, 0 <= !x < t.size holds, and so this is a valid access. The other potential source of
safety violation is the line incr n. Because we are using here machine integers, the call to incr
generates a verification condition of the form

WhyMLto_int n < max_int63

where to_int n is the mathematical representation of the value !n before the call to incr. What
this verification condition demands is a proof of arithmetic overflow absence, which in this case
amounts to prove that the value of !n is strictly less than the constant max_int63. Intuitively,
this is true because !n is the length of !s, which forms a sub-set of elements of the permutation
t.a, so !n is bound by the length of t.a, another int63 value. This is an easy reasoning for a
human, but not so easy for automated provers, which explains why we are not able to discharge this
verification condition using any SMT solver. Let us use reductio ad absurdum to verify that this
property actually holds. The following diagram illustrates the situation where, while traversing
the orbit of i, we would return to an already visited element that is not i:

i

. . .

x

...

. . .

Such situation contradicts the hypotheses that the permutation introduces an injective function on
elements { 0, . . . , t.size− 1 }, as well as the invariant distinct !s. We explore this contradiction
by employing the pigeonhole principle: if the length of !s would be greater than t.size, then
clearly some elements of !s would be repeated. We state the pigeonhole principle through the
lemma given in Fig. 2.1. This is defined as a lemma function: a ghost, effect-free, terminating
program whose contract is automatically translated to a lemma. Lemma functions come with the
great flexibility that proving the property expressed in its contract is as simple as writing a program
that verifies that property. This is not different from what we do for any program. In fact, this
almost feels like the Curry-Howard correspondence programs as proofs [77]. For the pigeonhole
function, we state that for any function f whose domain ranges from 0 to n-1, the co-domain
ranges from 0 to m-1, and for which m < n, then there exists two different elements i1 and i2
for which f i1 = f i2. The proof proceeds as follows: we search for an i, 0 ≤ i < n, such that
f i = m - 1. If we find such i, then we search for a j, i + 1 ≤ j < n, such that f j = m - 1. If
we find such j, then we are done. Otherwise, we remove m - 1 from the co-domain of f, shrink

22 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

the domain to values between 0 and n-2, and re-start our search. Finally, if no i is found such
that f i = m - 1, then we remove m-1 from the co-domain of f and re-start our search.

The pigeonhole lemma function is turned automatically into the following lemma:
WhyMLlemma pigeonhole: forall n m: int, f: int -> int.

0 <= m < n -> forall i. 0 <= i < n -> 0 <= f i < m ->
exists i1, i2. 0 <= i1 < i2 < n /\ f i1 = f i2

which is added to the proof context. However, even with such statement within our hypotheses,
we are not able to prove the absence of overflow for the value !n. This lemma is actually difficult
to instantiate by SMT solvers, mainly because they are unable to build the function to give as an
argument to the lemma function. Since pigeonhole is treated by Why3 as any other program, we
can instrument the code of cycle_length with an explicit call to pigeonhole. Passing to it the
right arguments, we recover an instance of the postcondition that allows SMT solvers to discharge
the remaining verification condition. We do this as follows:

WhyMLwhile !x <> i do
...
s := snoc !s (to_int !x);
x := t.a[!x];
if to_int !n + 1 > t.size then pigeonhole (length !s) t.size (get !s);
incr n;

done;

The partial application get !s returns a function of type int -> int which we use as the
argument of pigeonhole. This if..then expression introduces a logical contradiction: if it
would be the case that !n + 1 > t.size, then the postcondition of pigeonhole gives us that
get !s i1 = get !s i2, for two different indexes i1 and i2 of !s, which contradicts the hy-
potheses that all elements in !s are distinct. This contradiction is explored by SMT solvers to
conclude the proof that incr n does not overflow. Let us note that, since pigeonhole is a ghost
function, the whole if..then expression is considered ghost, and so is erased during extraction.
In Chap. 3 we introduce typing rules that ensure such behavior.

The reasoning we just performed, using the pigeonhole principle, actually leads to a nice ter-
mination measure for function cycle_length. The proof that !n does not overflow amounts to
the proof that the length of !s is never greater than t.size. We have just found our termination
measure for the while loop: t.size - length !s. This value is a valid measure since it is non-
negative, after the whole reasoning above, and it decreases at each iteration, as we always add a
new element to !s. We add it as a loop variant, as follows:

WhyMLwhile !x <> i do
variant { t.size - length !s }

The newly generated verification conditions regarding loop termination are proved almost imme-
diately by SMT solvers, concluding the proof of function cycle_length.

To conclude this section, let us summarize how we use existing Why3 modules to build our
library of permutations. Assuming the library is encapsulated in a WhyML module named Permut,
its dependencies graph is the following one:

2.3. CODE EXTRACTION 23

WhyMLlet rec lemma pigeonhole (n m: int) (f: int -> int)
requires { 0 <= m < n }
requires { forall i. 0 <= i < n -> 0 <= f i < m }
ensures { exists i1, i2. 0 <= i1 < i2 < n /\ f i1 = f i2 }
variant { m }

= for i = 0 to n - 1 do
invariant { forall k. 0 <= k < i -> f k < m - 1 }
if f i = m - 1 then begin

for j = i + 1 to n - 1 do
invariant { forall k. i < k < j -> f k < m - 1 }
if f j = m - 1 then return

done;
let function g k = if k < i then f k else f (k + 1) in
pigeonhole (n - 1) (m - 1) g;
return end

done;
pigeonhole n (m - 1) f

Figure 2.1: Pigeonhole Principle.

Permut

ArrayInt63

Int63

Seq

Int

Even if our permutations library is a rather modest size development, it features nonetheless an
interesting composition of Why3 modules. The Why3’s module system leads to a very comfortable
modular development, abstracting away implementation details of used data structures, which lets
us focus only on the specification and implementation of our library. Another interesting aspect of
our development is the use of data structures that combine the use of mathematical and machine
integers. Once again, the use of Why3 modules makes it very easy to compose definitions and types
introduced for each numerical representation. Finally, the aforementioned coercion mechanism is
a most valuable feature when it comes to write clearer and more concise code.

2.3 Code Extraction

The last mile in our quest to build a verified permutations library is to get an actual executable
implementation of the verified functions. In this section, we describe how we use the Why3 ex-
traction mechanism to generate a correct-by-construction OCaml implementation out of the Why3
proof. The current Why3 code extraction machinery is a contribution of this thesis. This is further
detailed in Chap. 4.

Compared to the proof effort, the step from a verified WhyML implementation to an executable
OCaml code is actually much simpler. To compile WhyML down to some existing programming

24 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

OCaml (extracted)type t = (int array)

let id (n: int) : t =
let a = Array.make n 0 in
begin

let o = n - 1 in let o1 = 0 in for i = o1 to o do a.(i) <- i done; a
end

let swap (a: (int array)) (i1: int) (j: int) : unit =
let v = a.(i1) in begin let o = a.(j) in a.(i1) <- o; a.(j) <- v end

let transposition (i1: int) (j: int) (n: int) : t =
let t1 = id n in begin swap t1 i1 j; t1 end

let compose (p: t) (q: t) : t =
let n = Array.length p in
let res = Array.make n 0 in
begin

let o = n - 1 in
let o1 = 0 in for i1 = o1 to o do res.(i1) <- (p.((q.(i1)))) done; res

end

let inverse (t1: t) : t =
let n = Array.length t1 in
let res = Array.make n 0 in
begin

let o = n - 1 in
let o1 = 0 in for i2 = o1 to o do res.((t1.(i2))) <- i2 done; res

end

let cycle_length (t1: t) (i3: int) : int =
let n = ref 1 in
let x = ref (t1.(i3)) in
begin

while not ((!x) = i3) do
begin let o = t1.((!x)) in x := o; incr n end done;

(!n)
end

Figure 2.2: Automatically Extracted OCaml Code.

2.3. CODE EXTRACTION 25

language, OCaml in our case, we use the extract tool from the Why3 platform. The command
line used to extract the permutations library is:

Terminal

> why3 extract -D ocaml64 --recursive -o permut.ml permut.mlw

We assume the permutations library to be contained in a Why3 file named permut.mlw. The output
of the extract command is specified using the -o option. The --recursive option instructs the
extract tool to perform a dependencies analysis on functions from file permut.mlw, recursively
extracting any WhyML symbol (auxiliary function, type, or exception definition) on which the
extracted code might depend on. For the case of the permutations library, transposition depends
on the swap function from the Why3 standard library. The definition of swap is added to the file
permut.ml only because we use the --recursive option.

The OCaml code obtained from running this command is given in Fig. 2.2. We argue that,
even if this is an automatically extracted code, it remains readable and well-structured. A given
WhyML code is translated into the Why3 internal AST using a variant of A-normal form [69],
hence some let o = ... that remain in the OCaml code. Some extra parentheses are also added
during extraction. This is explained by the fact that we are defensive regarding some substitutions
introduced at extraction time, as we explain in the following.

One may wonder why other functions, for instance Array.make and Array.copy, are not re-
cursively extracted. The reason lies in the argument of the -D option: ocaml64 is the name of the
extraction driver , a file to rule the whole extraction process. A driver is a text file that establishes
a set of rules regarding the translation of identifiers during extraction. Let us take a look at a
fragment from the ocaml64 driver:

Drivermodule mach.array.ArrayInt63
syntax type array63 "(int array)"
syntax val length "Array.length %1"
syntax val ([]) "%1.(%2)"
syntax val ([]<-) "%1.(%2) <- %3"
syntax val make "Array.make %1 %2"
syntax val copy "Array.copy %1"

end

A driver consists of a set of declarations of the form module M ... end, where we specify a
substitution rule for some of the identifiers defined in module M. Using this driver we assume a
64-bit architecture, hence the name ocaml64. Each line of the form

Syntaxsyntax <decl_kind> <id> "<text_to_replace>"

settles that any occurrence of <id> is to be replaced by <text_to_replace>, where <decl_kind>
defines the kind of symbol we want to translate. This ranges over program functions (val keyword),
type symbols (type keyword), or exception declarations (exception keyword). The example above
establishes a substitution for identifiers introduced in module ArrayInt633. Using an extraction
driver we can directly map some elements of our formal development to their OCaml counterpart,
whenever these have a matching semantics. For instance, the type array63 being a WhyML model
for an array indexed by and containing 63-bits signed integers, we replace every occurrence of type
array63 by the OCaml type int array. The next line in the driver establishes a substitution rule
for function length, defined in the Why3 standard library as follows:

WhyMLval length (a: array63) : int63
ensures { to_int result = a.length }

3The ArrayInt63 module is part of the Why3 standard library, contained in the file array.mlw of sub-directory
mach.

26 CHAPTER 2. THE ART OF PROGRAM VERIFICATION, WITH WHY3

This is a non-defined function whose behavior is completely characterized via its specification. Its
semantics is exactly that of function length from the OCaml Array module, and so we add this
rule in our driver. The syntax "Array.length %1" tells the code printer to take the first argument
given to length in the WhyML code and apply it, as well, to Array.length. This illustrates an
important use for extraction drivers: while WhyML allows to mix defined and undefined functions
in the same context, the OCaml language does not4. It is, thus, required to replace any occurrence
of a non-defined symbol by an OCaml counterpart. This is also the case for function ([]), the
direct access to the n-th element of an array5, for which a substitution is defined in line

Driversyntax val ([]) "%1.(%2)"

The fact that a rule for such function is given in the driver raises an interesting discussion: while
function length is specified using only a postcondition, function ([]) is declared in the Why3
standard library with a pre-condition to prevent out of bounds accesses, as follows:

WhyMLval ([]) (a: array63) (i: int63) : int63
requires { 0 <= i < a.length }
ensures { to_int result = a[i] }

Nothing forbids us from taking a WhyML code calling ([]) where its pre-condition is not proved,
and still extract it to OCaml. In such a case, we could obtain a code that fails at run-time with
an index out of bounds exception. Let us make a statement to prevent such situation: we only
extract fully-proved WhyML code. In particular, safety must have been proved, meaning no access
out of bounds, for instance, is expected to occur while executing the extracted code. We stick to
this hypotheses throughout this thesis. The remaining of the ocaml64 driver has no significant
difference with what we have already presented, so we do not detail it further.

We point out that the driver actually belongs to the trusted computing base of the extraction
process. The substitutions we define in a driver are textually performed, i.e., a symbol contained
in the driver is directly replaced by the corresponding code written between quotes. A typo in the
driver can lead to a faulty extracted code, even if the WhyML implementation has been completely
verified.

4Our module system, mixing defined and undefined symbols, is actually close to that of Mixins [5]
5Why3 follows the OCaml convention, where the parentheses around the name of a function introduce an infix

operation.

Well-typed programs do
not go wrong.

Robin Milner

3
KidML

In this chapter, we present and formalize KidML, a programming language in the tradition of the
ML family. KidML features recursive functions, conditional expressions, top-level declarations of
new data types, and ghost code. This is a stateful language, as the programmer can mutate the
value of a record field, declare and manipulate exceptions, and write divergent programs. We equip
KidML with an operational semantics, in the form of a big-step evaluation judgment. To describe
divergent programs, we introduce a co-evaluation relation by taking a co-inductive interpretation
of the set of inductive rules that form the evaluation judgment. We also design a type system
in order to rule out some KidML expressions, which would make evaluation to get stuck in some
erroneous state. We present, in an incrementally way, the KidML syntactic constructions, as well as
its semantics and type system in Sec. 3.1. The combination of ghost code and stateful traits makes
it a non-trivial task to conceive a proper type system for KidML. The KidML programs accepted
by our type system must guarantee the property of non-interference between ghost and regular
code, i.e., that we can safely erase ghost code from a program without jeopardizing its operational
meaning. In Sec. 3.2, we provide a proof of type soundness with respect to the devised operational
semantics.

The WhyML language is our main source of inspiration in the design of KidML. Many of the
features we present here can already be found in the programming language of the Why3 verification
framework. In fact, one can very well consider KidML as a sub-set of the WhyML language or, more
precisely, a subset of the Why3 internal AST of a WhyML program. In Sec. 3.3, we report on the
main differences between KidML and WhyML. Finally, let us mention that KidML is the input
language of our code extraction algorithm presented in the next chapter.

3.1 The KidML Language, Step-by-Step

In this section we present the KidML language, step-by-step. We start with a simple core language
containing few syntactic constructors and then gradually increment the language with new forms
of expressions. Each time a new set of constructions is introduced, we give the corresponding
semantics evaluation rules, as well as the type-checking rules. Representative examples of each
new construction are also given.

27

28 CHAPTER 3. KIDML

3.1.1 Core Language

KidML core language is an effect-free deterministic language, with means to introduce ghost code.
It is made up of the following syntactic constructions:

e ::= ā | let βx = e1 in e2 | ghost e | if a then e else e

Let us elaborate on each syntactic construction. Here, ā stands for a sequence of atomic expres-
sions, where an atomic expression is either a variable or a value, as follows:

a ::= x | ν

We use the bar-notation to introduce a (possibly empty) sequence of elements. When convenient,
we use a comma to separate the different components of a sequence, as this is close to the ML
tradition. We use, as well, some familiar terms to describe particular sequences, for instance pair
and triplet to refer, respectively, to two- and three-element sequences. A value is a constant,
denoted by c:

v ::= c

In KidML, constants range over integer numbers, i.e. 42, 731, or 1729; the Boolean values true
and false; and the value (), the sole inhabitant of the Unit type.

Before further describing the syntax of our core language, let us introduce how we formalize
its operational semantics and type system. We define the operational semantics of our language
using a big-step style. Our evaluation judgment takes the form

e ⇓ ν̄
and asserts that an expression e evaluates (after a finite number of steps) to a sequence of values ν̄.
The following rule is the axiom of our judgment, and describes the evaluation of atomic expressions:

ν̄ ⇓ ν̄ (EvalVBar)

We only define the semantics of closed expressions. No free variables can thus appear while
evaluating a sequence of atomic expressions.

Our typing judgment is defined as a three-place predicate of the form

Γ ` e : βτ

asserting that, under a variable typing context Γ , an expression e is assigned the typing informa-
tion βτ. We define Γ as a map from variable names to typing information of the form βτ. Here, βτ
stands for a type τ annotated with a ghost status β, which we abbreviate to π in the following. The
sequence β is called the mask of expression e. Type τ and ghost status β are defined as follows:

τ ::= α | Tτ

β ::= reg | ghost
π ::= βτ

A type τ is either a type variable α or the application of a type constructor T to the sequence τ.
We assume that T ranges, at least, over the type Int for integer constants, type Bool for Boolean

1The numeral 73 is Sheldon Copper’s, a fictional character from the The Big Bang Theory show, favorite number.
It is introduced in the beginning of season 4, episode 10 (the 73th episode of the entire show), which we invite the
reader to watch for a very entertaining moment around number theory.

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 29

β1 v β2

reg v β β v ghost

‖β1‖ = ‖β2‖ ∀i. β1i v β2i
β1 v β2

Figure 3.1: Masks order relation.

constants, and Unit for value (). The ghost status of a type is introduced using either the keyword
reg marking a regular type, or the keyword ghost marking a ghost type.

The following describe the typing relation for atomic expressions and sequences of atomic
expressions:

Typeof(c) = τ

Γ ` c : reg τ
(TConst)

Γ(x) = βτ

Γ ` x : βτ
(TVar)

∀i. Γ ` ai : βiτi
Γ ` ā : βτ

(TABar)

The rule (TConst) uses the Typeof oracle to retrieve the type of a constant c. Note that we
consider a constant to be regular code, as stated in the conclusion of this rule. In rule (TVar),
we fetch the type of a variable x directly from environment Γ . The type of a variable is stored
in Γ together with ghost status. Finally, we use the (TABar) rule to type a sequence of atomic
expressions. Each premise of this rule is used to type each atomic expression ai, using either
(TConst) or (TVar).

Let us return to the syntactic constructions of our language. The let βx = e1 in e2 expression
is used to locally bind the result of evaluating e1 in expression e2. The syntax βx accounts for
multiple variables binding. Each variable is bound together with its ghost status. We write reg x
to declare the variable x as regular code, while ghost x indicates that x can only be used within
ghost code. This is a light-weight mechanism to introduce ghost code in our language. To evaluate
a let .. in expression we introduce the following big-step semantics rule:

e1 ⇓ ν̄ ′ e2[x̄ 7→ ν̄ ′] ⇓ ν̄
let βx = e1 in e2 ⇓ ν̄ (EvalLet)

The evaluation of a let .. in expression is rather intuitive: expression e1 is first evaluated to a
sequence of values ν̄ ′; second, e2[x̄ 7→ ν̄ ′] is evaluated to the sequence ν̄, which is the result of
evaluating the whole let .. in expression. Let us recall that execution never takes into account
the ghost status of variables. Indeed, from a semantics point of view, ghost and regular code are
indistinguishable from each other. This will become even clearer once we give the evaluation rule
for a ghost e expression.

The following rule is used to assign a type to a let .. in expression:

Γ ` e1 : β1τ1 β1 v β Γ + [x̄ : βτ1] ` e2 : π2
Γ ` let βx = e1 in e2 : π2

(TLet)

We briefly comment on the first and the last premises of this rule, as the second one deserves more
attention. Expression e1 is assigned the type sequence τ1 together with mask β1. Expression e2
is typed with π2 under the environment Γ + [x̄ : βτ1], the extension of Γ where each variable xi
is assigned type βiτ1i . Type π2 is the type assigned to the whole let .. in expression. Let us

30 CHAPTER 3. KIDML

now focus on the second premise of (TLet). It uses operator v to compare the ghost status β
given for x̄ with the mask β1 inferred for expression e1. Comparing two masks simply amounts to
comparing their components point-wise, as given in Fig. 3.1. The operator v is used in the (TLet)
rule to forbid binding a ghost expression to a variable that we might have declared as a regular
variable.

Let us resort to the code from Chapter 2 to illustrate how to use the typing rules presented so
far. In page 20, the body of function cycle_length is as follows:

WhyMLlet n = ref 1 in
let ghost s = ref (singleton (to_int i)) in
...
!n, !s

We can use rule (TLet) to derive a type for such expression, as follows:

. . . Γ + [n : reg ref int63; s : ghost ref (seq int)] ` !n, !s : (reg int63, ghost seq int)

Γ ` let reg n = ref 1 in let ghost s = ref (singleton (to_int i)) in
!n, !s : (reg int63, ghost seq int)

We explicitly omit the derivation trees for variables n and s, since these are of no particular interest,
as well as the premises comparing ghost status via operator v. Even though the second component
of the pair !n, !s is ghost, the whole pair can only be seen as partially ghost, given the regular
status of the first component. This is why, after extraction, this pair is converted simply into !n
and the type of the function cycle_length becomes reg int63. How the extraction mechanism
deals with partially ghost types and results, and why such an approach is sound, is the subject of
the Chapter 4.

Besides locally binding a variable with a ghost status, another mean to introduce ghost code
in KidML is by writing ghost e. In such a case, the whole expression is to be considered a ghost
expression, independently of the status of its sub-expressions. The following typing rule precisely
characterizes this behavior:

Γ ` e : π
Γ ` ghost e : (π)

(TGhost)

Function (·), which we designate as type ghostification, converts the type π into a completely
ghost type, as follows:

(βτ) , ghost τ

From a semantics perspective, the ghost status of an expression has no impact over its execution.
The evaluation of ghost e simply forgets about the ghost keyword and continues evaluating e.
This is formalized via the following rule:

e ⇓ ν̄
ghost e ⇓ ν̄ (EvalGhost)

According to this rule, at execution time there is no need to distinguish between ghost and regular
expressions.

We conclude the presentation of our core language with the conditional expression if..then..else.
We note that the test of a conditional expression is necessarily an atomic expression. We use here
a variant of A-normal form [69], which has the benefit of reducing the number of cases to consider
when defining the semantics of KidML, without compromising its expressive power. Indeed, the
evaluation of an if..then..else expression can be described using only the following two rules:

e1 ⇓ ν̄
if true then e1 else e2 ⇓ ν̄ (EvalIfTrue)

e2 ⇓ ν̄
if false then e1 else e2 ⇓ ν̄ (EvalIfFalse)

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 31

β1 t β2

ghost t β , ghost
reg t β , β

β11 . . . β
n
1 t β12 . . . βn2 , β11 t β12 . . . βn1 t βn2

Figure 3.2: Mask Union.

We recall that we only define the evaluation relation for closed programs, so the only admissible
atomic expressions for the conditional test are the true and false constants. Intuitively, it is easy
to understand why the use of A-normal form does not limit the expressiveness of our language:
every compound expression can be bound to a variable via a let..in binding. For instance,
expression

KidMLif x > 42 then e1 else e2

is transformed into
KidMLlet o = x > 42 in if o then e1 else e2

which fits in our syntax. We agree that it is sometimes painful to introduce all the necessary
let..in to respect the use of A-normal formal. However, such program transformation can very
easily be mechanized, and one could imagine it to be part of a pre-processor that converts expres-
sions to the equivalent A-normal form ones.

In order to type an if..then..else expression, we distinguish two different cases, according
to the ghost status of the test expression. We give thus two different typing rules, as follows:

Γ ` a : ghost Bool
Γ ` e1 : π1 Γ ` e2 : π2

Γ ` if a then e1 else e2 : (π1 ∪ π2)
(TIfGhost)

Γ ` a : reg Bool
Γ ` e1 : π1 Γ ` e2 : π2

Γ ` if a then e1 else e2 : π1 ∪ π2
(TIf)

If the test is a ghost expression, as described in the (TIfGhost) rule, then the whole expression is
contaminated, and we ghostify its type. Before describing the (TIf) rule, let us introduce the type
union operator ∪, whose definition is given Fig. 3.3. This operation takes two typing information
of the form π1 and π2 and performs what we refer to as mask union. The mask union operation
is defined Fig. 3.2, and corresponds to the operation of merging two masks of the same length.
During mask union, when doing β1 tβ2, if either β1 or β2 is equal to ghost, the resulting mask is
also ghost. This is of particular importance in the (TIf) rule: since the test is a regular expression,
the final ghost status of the if..then..else expression is computed in the type union operation.
Consequently, if one of the branches is a completely ghost expression, then it contaminates the
whole if..then..else expression. This is exactly the case in function cycle_length of page 20,
for the following expression:

WhyMLif to_int !n + 1 > to_int t.size then pigeonhole (to_int t.size) !s

Here, calling the ghost function pigeonhole contaminates the whole branch (contamination via
function call is be discussed in Sec. 3.1.3), which in turns contaminates the whole if..then..else.
The else can be omitted as it simply corresponds to the constant (), the unit value in the ML
tradition. Given its ghost status, this expression is erased at extraction time, as shown in Fig. 2.2.

32 CHAPTER 3. KIDML

π1 ∪ π2

β1τ ∪ β2τ , (β1 t β2)τ

Figure 3.3: Type Union.

3.1.2 Imperative Features

We extend our core language with common imperative constructions, namely records manipulation.
Our definition of a record is standard: a record represents a collection of values stored together as
one, where each component is identified by a different field name. Records are a useful mechanism
to introduce new data types, which we refer to as composite data types, since they aggregate values
of different types. The concept of record is fairly common in computer programming, and we can
find it outside the realm of functional languages. For instance, in the C language we use structures
to group items of different types under a single type name; in object-oriented languages, objects
can be used for the same purpose.

We equip our language with the ability to define new data types via records, using the following
syntax:

type Tα = { f : π }

The keyword type is followed by the name of the newly defined type together with a, possibly
empty, vector of type variables to account for the definition of polymorphic data types. The
definition of the composite type is enclosed within curly braces and consists of a sequence of pairs
of the form fi : πi, a field name followed by a type with a ghost status. We constraint type
definitions to non-recursive record definitions only. The type permutation of Sec. 2.2.1 is defined
in KidML as follows:

KidMLtype t = { a: reg array63; inv: ghost array63; size: ghost int }

For readability purposes, we use a semicolon to separate each component of the record.
We extend KidML grammar of expressions to account for record manipulations, as follows:

e ::= . . . | { f = a } | a.f | a.f← a

As in the previous section, we detail over each new construction individually, giving for each one
the corresponding typing and evaluation rules. Most of the material in this section is inspired by
Chapter 13 of Benjamin Pierce’s textbook Types and Programming Languages [125]. The first new
construction is used to create a new value of a composite type. Within curly braces, we give a
sequence of pairs fi = ai, meaning the value of atomic expression ai is assigned to field fi. Note
that every field of the record must be given during construction. From an operational point of
view, creating a record corresponds to the allocation of a memory block in the store. Thus, an
expression of the form {f = a } evaluates down to the memory location that points to the beginning
of the allocated block. We extend the class of KidML values accordingly:

v ::= . . . | l

Using locations, we build a very simply model of stores as a partial function from locations to the
memory representation of a record, as follows:

µ , l 7→ { f = ν }

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 33

We use meta-variable µ to range over stores. We extend our evaluation relation, as well, to account
for the presence of stores. It becomes a four-place predicate of the form

µ · e ⇓ µ ′ · ν̄
where µ and µ ′ represent the state of the store before and after evaluating expression e, respec-
tively. Returning µ ′ allows us to propagate the modified store to future evaluations. For instance,
evaluating an expression of the form { f = a } adds to the store a fresh location pointing to a new
record. This is formally described via the following rule:

l 6∈ dom(µ) µ ′ = µ[l 7→ { f = ν }]

µ · { f = ν } ⇓ µ ′ · l (EvalRecord)

The first premise ensures that l is a fresh location, where function dom(µ) returns the set of
allocated location in µ. Notation µ[l 7→ r] stands for a new store obtained by replacing the binding
of l in µ to the record r, leaving other bindings unchanged. It creates a new biding if l is not in the
domain of µ. We update operational semantics rules given in Sec. 3.1.1 to cope with the changes
made on the evaluation relation:

µ · ν̄ ⇓ µ · ν̄ (EvalVBar)
µ · e1 ⇓ µ ′ · ν̄ ′ µ ′ · e2[x̄ 7→ ν̄ ′] ⇓ µ ′′ · ν̄

µ · let βx = e1 in e2 ⇓ µ ′′ · ν̄ (EvalLet)

µ · e ⇓ µ ′ · ν̄
µ · ghost e ⇓ µ ′ · ν̄ (EvalGhost)

µ · e1 ⇓ µ ′ · ν̄
µ · if true then e1 else e2 ⇓ µ ′ · ν̄ (EvalIfTrue)

µ · e2 ⇓ µ ′ · ν̄
µ · if false then e1 else e2 ⇓ µ ′ · ν̄ (EvalIfFalse)

In order to type locations, we extend our typing judgment with a store typing context Σ, a
function from locations to types, as follows:

Γ · Σ ` e : π

To assign a type to a location l, we introduce the following typing rule:

Σ(l) = Tτ

Γ · Σ ` l : reg Tτ
(TLoc)

This is analogous to the type assignment of variables via rule (TVar). The sequence τ instantiates
the sequence α, the arguments of type T . There are no remaining type variables in α. We note
that, like we do for constants, we type every location as a regular value. Assigning every KidML
value a regular status conforms to the fact that our semantic relation does not distinguish ghost
and regular data. On the other hand, an expression { f = a } can be assigned either a regular or
ghost status. We distinguish the two possibilities by adding the following rules to our type system:

type Tα = { f : βfτf } ∀i. Γ · Σ ` ai : βiτfi [α 7→ τ] ∀i. βi v βfi
Γ · Σ ` { f = a } : reg Tτ

(TRecord)

type Tα = { f : βfτf } ∀i. Γ · Σ ` ai : βiτfi [α 7→ τ] ∃i. βi 6v βfi
Γ · Σ ` { f = a } : ghost Tτ

(TRecordGhost)

Rules (TRecord) and (TRecordGhost) differ only in the third premise. For the latter rule,
there exists at least one ghost expression ai assigned to a regular field fi. This contaminates the

34 CHAPTER 3. KIDML

whole record creation expression. The former establishes that all ai have a smaller or equal ghost
status than the one of field fi. Let us note the use of substitution [α 7→ τ] in both rules. We
use this type substitution to create an instance of the polymorphic type Tα. As an illustrative
example, we use rule (TRecord) to type the last line of function id (page 16):

type t = { a : reg array63; inv : ghost array63; size : ghost int }

Γ(n) = reg int Γ(a) = reg array63 Γ(inv) = ghost array63 . . .

Γ · ∅ ` { size = to_int n; a = a; inv = inv} : reg t

We build such typing derivation using an empty store typing, as there are no locations in scope.
Environment Γ binds, at least, variables n, a, and inv. We do not give the premises concerning
mask relation, as these are easily checked to be true. Nonetheless, we point out that n is a regular
variable assigned to the ghost field size (function to_int returns a value with the same ghost
status as its argument). Assigning a regular value to a ghost field respects the v relation, hence
the reg status assigned to the whole expression.

The next construction we describe is the access to the contents of a record field, written a.f.
The operational semantics of this construction is defined by the following rule:

µ(l) = { . . . fi = νi . . . }

µ · l.fi ⇓ µ · νi (EvalGet)

We take a location l, retrieve its binding on µ, and return the value νi associated with field fi.
We recall that we only define the semantics of closed programs, thus expression a in a.f must be
a location. Assigning a type to an expression of the form a.f is rather intuitive: having defined a
type Tα containing a field named f, we check if expression a is of type Tτ. If so, the type of a.f is
the type defined for f. The following two rules implement this intuition:

type Tα = {. . . , f : βfτf, . . .}
Γ · Σ ` a : reg Tτ

Γ · Σ ` a.f : βf τf[α 7→ τ]
(TGet)

type Tα = {. . . , f : βfτf, . . .}
Γ · Σ ` a : ghost Tτ

Γ · Σ ` a.f : ghost τf[α 7→ τ]
(TGetGhost)

We note that substitution [α 7→ τ] appears in conclusion and the type Tτ in premise, contrarily to
rules (TRecord) and (TRecordGhost). The ghost status assigned in the conclusion is computed
as follows: if a is a regular expression, expression a.f is given the status βf of field f; if a is a ghost
expression, we do not even need to inspect the status of f, the whole expression a.f is a ghost
expression. For instance, in the code of function transposition (page 17), both t.a and t.inv
are typed using rule (TGet), where the first one is assigned a regular status (a is a regular field),
while the second one is assigned a ghost status (inv is a ghost field).

We finally detail on the expression a.f ← a. The purpose of such an expression is to modify
the value associated to a field of an allocated record. This means a direct modification of memory,
marking our first encounter with mutability in KidML. Other than being a useful way to define new
data types, records also offer mechanisms to build modifiable values. In languages like OCaml or
WhyML itself, a value of a record type is immutable by default, i.e., it is not possible to directly
modify the value of individual fields. Nonetheless, we can declare fields as mutable, which allows
us to modify the value associated to that field via a side-effect. In fact, both in OCaml and in
WhyML, mutable fields are the only means to introduce in-place modifiable values2. In the design
of KidML, we take on a different road: every record field is a mutable field. This choice simplifies
our type system and semantics evaluation as there is no need to check for the mutability of fields.

2The OCaml array type is a special case of mutable data structure. The Array module of the OCaml standard
library is actually linked with external C code defining the type of arrays, an allocated block in the heap, and
functions over arrays (length, get, or set, for instance).

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 35

In order to devise an evaluation rule for expression a.f ← a, we combine elements from both
rules (EvalRecord) and (EvalGet). Let us consider an expression of the form l.f ← a. We
start by fetching the binding of l in the store. Then, we build up a new store where l points to a
new record, where the value of field f is replaced by the value of expression a. The following rule
materializes this description:

µ(l) = { . . . fi = νi . . . } µ ′ = µ[l 7→ { . . . fi = ν . . . }]

µ · l.fi ← ν ⇓ µ ′ · () (EvalAssign)

The resulting store µ ′ contains exactly the same bindings as µ, except for l. The new store µ ′
represents a functional update of µ. Modifying the value of a record field is done via a side-effect,
thus no significant value is to be returned during the evaluation of l.fi ← a. We use, thus, constant
(), the single inhabitant of type Unit, in the conclusion of (EvalAssign).

The presence of mutability and side-effects has a significant impact in our typing relation. We
refine the type assigned to an expression to include information about the effects triggered during
the evaluation of such an expression. We update our typing judgment to the following relation:

Γ · Σ ` e : (π, εreg, εghost)

Keeping track of effects is what will allow us to use our system to show rich properties about
well-typed programs, for instance, the absence of ghost code interference for well-typed programs.
Our type system actually becomes a type and effects system [141]. We keep the type and ghost
information π and add εreg and εghost which stand for, respectively, the regular and ghost effects
of e. As we will see throughout this chapter, separating the effects depending on whether they are
produced via regular or ghost code, is quite useful when designing and reasoning about our type
system. In the current setup, by effects we mean the modifications made on the store, which we
refer to as the writing effects of an expression. Later, we shall extend the notion of effect with
primitives affecting the execution flow of a program. We keep track of the changes in the store
by gathering the name of locations and the corresponding fields that may have been modified
through the execution of a program. For instance, if we consider the expression x.i← 42, where x
is a bound regular variable of a type containing a regular integer field i, we want to assign this
expression the type (Unit, ∅+ x.i, ∅). To do so, we add the following rule to our type system:

type Tα = {. . . , f : reg τf, . . .}
Γ · Σ ` al : (reg Tτ, ∅, ∅) Γ · Σ ` ar : (reg τf[α 7→ τ], ∅, ∅)

Γ · Σ ` al.f← ar : (Unit, ∅+ al.f, ∅)
(TAssign)

The first premise is used to ensure that field f is actually part of the definition of type Tα. We
represent the empty effect as ∅. Atomic expressions are pure expressions, i.e., they do not produce
any kind of effect. The notation ε + al.f stands for the extension of effect ε with the writing
effect al.f. For the given rule, ∅ + al.f corresponds to the singleton effect containing al.f. To
illustrate how an expression can produce ghost effects, let us consider the very same expression
x.i ← 42 but, this time, field f is declared of type ghost integer. Such an expression is typeable
using the following rule:

type Tα = {. . . , f : ghost τf, . . .}
Γ · Σ ` al : (βlTτ, ∅, ∅) Γ · Σ ` ar : (βrτf[α 7→ τ], ∅, ∅)

Γ · Σ ` al.f← ar : (Unit, ∅, ∅+ al.f)
(TAssignGhostField)

In this rule, we do not need to consider the ghost status of neither al or ar. The ghost status
of f immediately indicates that this expression produces a ghost effect. On the other hand, if f is

36 CHAPTER 3. KIDML

declared as a regular field, we need to inspect the status of al to type the expression al.f← ar. If
ar is a regular expression, we can resort to rule (TAssign). Otherwise, we need the following new
rule:

type Tα = {. . . , f : reg τf, . . .}
Γ · Σ ` al : (ghost Tτ, ∅, ∅) Γ · Σ ` ar : (βrτf[α 7→ τ], ∅, ∅)

Γ · Σ ` al.f← ar : (Unit, ∅, ∅+ al.f)
(TAssignGhost)

In KidML, we use the type Unit to represent an empty list of results. No particular ghost status
is thus attached to this type.

Let us consider the eight different ways to combine the ghost status of al, f, and ar in the
expression al.f← ar. As soon as f is a ghost field, we use rule (TAssignGhostField) to conclude
the typing derivation. Such rule is used independently of the ghost status of either al and ar,
covering four out of the eight possible combinations. If we consider in turn al as a ghost expression
and f a regular field, rule (TAssignGhost) is the one to be used. It applies both when ar is a
regular or a ghost expression, which adds two other possible expressions covered by our type system.
Finally, the sole possibility to use rule (TAssign) happens when every element of expression
al.f ← ar has a regular status. This adds up to seven possible typeable combinations under our
typing rules. The only expression that we reject is the one where ar is a ghost expression, while
both al and f possess a regular status. An alternative type system, where, for instance, such an
expression would be accepted as contaminated by the ghost status of ar, would not be sound. We
want the extraction mechanism to erase this expression, while it modifies regular data through a
regular effect that we must preserve at the extracted program. This is a manifestation of ghost code
interference. The type system of Why3 also rejects such kind of expressions, aborting execution
with the following error message:

Error:
This expression makes a ghost modification in the non-ghost variable al

This is very similar to what we described for function bad_assignment in Sec. 2.2.2 (page 17).
The error message is, in fact, the same on both cases. However, the reason why we must reject
bad_assignment is more subtle. Let us take a step back and recall the definition of array63,
the type assigned to fields a and inv of record type t (page 13). Type array63 is defined as the
following record type:

WhyMLtype array63 = private {
mutable ghost elts: seq int;

ghost size: int;
}

Given such a definition, we can conclude that both fields a and inv store values that are memory
locations. The former field is associated with a regular location, while the latter points to a ghost
location. Indeed, without further restriction, the line t.inv[0] <- 17 in function bad_assign is
typeable under rule (TAssignGhostField). As we described in Sec. 2.2.2, the source of the prob-
lem lies in the erroneous version of function id. In line { size = to_int n; a = a; inv = a },
we create an alias between fields a and inv, i.e., an alias between a regular and a ghost field. This
alias must be rejected by our type system, as it would violate the aforementioned condition of non-
interference in well-typed programs. To this end, we must restrict the effects that can be assigned
to an expression. We introduce the class of admissible effects, a constraint on type-checking rules
to only assign effects that cannot jeopardize the static guarantees yielded by our type system. The
admissible effects of an expression are defined as follows:

adm(βτ, εreg, εghost) , ¬reg writes(εghost)

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 37

Predicate adm holds if there are no regular writing effects in the set εghost, i.e., no regular location
is mutated via ghost code. This condition is added as a global side-condition of our type system,
i.e., we decorate each type-checking rule with the implicit premise that the type assigned in the
conclusion must respect predicate adm. After this extension, function bad_assignment is no longer
accepted by our type system.

To conclude this section, we show how to update the type-checking rules given so far to accom-
modate our type with effects setting. Let us establish some syntactic conventions that we shall use
throughout the remaining of this thesis. For readability purposes, we denote the regular effects of
an expression using meta-variable ε and the ghost effects with γ. We also use σ to abbreviate the
type assigned to an expression, i.e.,

σ ::= (βτ, ε, γ)

The first modified rule we present is (TLet). It changes as follows:

Γ · Σ ` e1 : (β1τ1, ε1, γ1) β1 v β Γ + [x̄ : βτ1] · Σ ` e2 : (π2, ε2, γ2)
Γ · Σ ` let βx = e1 in e2 : (π2, ε1 ∪ ε2, γ1 ∪ γ2)

(TLet)

Each individual expression e1 and e2 is now assigned an effect, respectively (ε1, γ1) and (ε2, γ2),
which we combine to compute the effect of the whole let..in expression. Operation ε1∪ε2 (resp.
γ1 ∪ γ2) simply amounts to a set union operation. Next, (TGhost) is straightforwardly updated
as follows:

Γ · Σ ` e : σ
Γ · Σ ` ghost e : (σ)

(TGhost)

Operation (·) is changed accordingly:

(βτ, ∅, γ) , (ghost τ, ∅, γ)

It is worth pointing out that (·) can only be applied to a type σ containing no regular effect.
Ghostifying the type of an expression containing regular effects would, once again, result in ghost
code interference. We implicitly add this pre-condition of (·) to every type-checking rule using the
ghostification operation in its conclusion. Finally, modified rules for if..then..else expressions
feature both ghostification and type union:

Σ · Γ ` a : (ghost Bool, ∅, ∅)
Σ · Γ ` e1 : σ1 Σ · Γ ` e2 : σ2

Σ · Γ ` if a then e1 else e2 : (σ1 ∪ σ2)
(TIfGhost)

Σ · Γ ` a : (reg Bool, ∅, ∅)
Σ · Γ ` e1 : σ1 Σ · Γ ` e2 : σ2

Σ · Γ ` if a then e1 else e2 : σ1 ∪ σ2
(TIf)

The type union operation is straightforwardly refined as follows:

(β1τ, ε1, γ1) ∪ (β2τ, ε2, γ2) , ((β1 t β2)τ, ε1 ∪ ε2, γ1 ∪ γ2)

As we can notice, rules (TIf) and (TIfGhost) combine the effects of both branches and assign
it as the resulting effect of the whole if..then..else expression. From a static point of view,
we are not able to decide which of the two branches is to be executed, and thus we introduce an
over-approximation of the entire expression effects. This means the effects our type system assigns
to an expression are, in fact, an upper bound of the effects triggered during the evaluation of
such expression. Rules (TConst), (TVar), (TABar), (TRecord), (TRecordGhost), (TGet),
(TGetGhost) are not presented here as they are trivially updated. We systematically add the
typing store Σ and two empty sets for the regular and ghost effects, since all of these rules type
check pure expressions.

38 CHAPTER 3. KIDML

σ1 v σ2

ε1 = ε2 γ1 = γ2 β1 v β2
(β1τ, ε1, γ1) v (β2τ, ε2, γ2)

Figure 3.4: Types Order Relation.

3.1.3 Function Definition and Function Call

In our quest to turn KidML into a more realist programming language, we turn our attention
towards functions. In this section, we enrich our grammar of expressions with syntactic mechanisms
to locally define and call functions, as follows:

e ::= . . . | fun f〈α〉(x : π) : σ = e in e | f〈τ〉(ā) | rec f〈α〉(x : π) : σ = e in e

Functions definition. Let us detail on the first construction. We introduce a binding for a
function using the keyword fun, followed by the function signature: function’s name, a (possibly
empty) sequence α of type variables, the function arguments enclosed within parentheses, and
finally the return type σ. The body of a function is written before the in keyword, and it is bound
in the expression after in. We use variable f to range over the names of functions, clearly disjoint
from the class of variables introduced via a let..in expression.

Contrarily to OCaml and other functional languages, an expression in KidML cannot evaluate
down to a function. The way KidML treat functions is, thus, much closer to the C language than to
the functional paradigm. Regarding our evaluation relation, we introduce a map δ from a function
name to its formal arguments and body, i.e.,

δ , f 7→ (x : π, e)

which we add to our semantics predicate as follows:

δ · µ · e ⇓ µ ′ · ν̄
We shall refer to δ in the following as a procedure environment. Let us note that we do not
return a new map δ as a result of evaluation. Such a map stores, at each point of evaluation,
the functional symbols that are in the scope of expression e. After completely evaluate e, we can
remove from scope locally bound functions. The following rule establishes the semantics for a
fun..in expression:

δ[f 7→ (x : π, e1)] · µ · e2 ⇓ µ ′ · ν̄
δ · µ · fun f〈α〉(x : π) : σ = e1 in e2 ⇓ µ ′ · ν̄ (EvalFun)

In the above rule, notation δ[f 7→ (x : π, e1)] stands for the functional update of δ with the new
binding of f to (x : π, e1). The semantics of a fun..in expression closely resembles that given in
rule (EvalLet), except that we do not evaluate expression e1, the body of function f.

We extend our typing relation with a functions typing context ∆ to account for the introduction
of the procedure environment in the semantics side. Our typing judgment takes the following form:

∆ · Γ · Σ ` e : σ

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 39

This is akin to what we did when we added the store to the evaluation relation. A new environment
in semantics means, normally, a new typing context in the type-checking rules. We use the extended
judgment to type-check a fun..in expression as follows:

∆ · Γ + [x : π] · Σ ` e1 : σ ′ σ ′�Γ+[x:π] v σ
∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α# Γ α#∆

∆ · Γ · Σ ` fun f〈α〉(x : π) : σ = e1 in e2 : σ ′′
(TFun)

A fun..in expression represents a type generalization point in KidML. Our function types are
polymorphic with respect to the sequence α. Contrarily to what is often the practice in the design
of type-checking systems for ML-like languages, we do not extend our typing environments Γ to
contain explicit declarations of type variables. Therefore, we add the two side conditions α# Γ and
α#∆, which constrains α to a sequence of type variables that do not appear in the co-domain of Γ
and ∆. Let us note the use of operator v to compare types σ ′ and σ. This comparison lifts v to
operate over types, as defined in Fig. 3.4. Following such definition, for some types σ1 and σ2, the
relation σ1 v σ2 holds only if both types exhibit the same set of effects. However, this may seem
very restrictive, since we can produce some local effects in the body of a function, which are not
visible from outside the function definition. If we consider, for instance, function transposition
from Sec. 2.2.2 (page 17), from a caller point of view, this acts as an effect-free function and so we
can only assign it the type

(reg t, ∅, ∅)

However, the body of this function is an effectful computation of the following type:

(reg t, ∅+ t.a, ∅+ t.inv)

It is clear that the effects in the return type of a function can refer, only, to the function arguments
or to variables in scope before the fun..in expression. In other words, and using the same symbols
as in rule (TFun), the effects of σ are those we get by restricting σ ′ to effects over variables declared
in Γ+[x : π]. We take exactly such extended typing environment to compute σ ′�Γ+[x:π], i.e., the type
obtained by intersecting the variables referred in the effect of σ ′ with the variables in the domain
of Γ + [x : π].

In rule (TFun), we can assign different masks to σ and to σ ′. The relation between these
two masks is established via the first premise of operator v. The mask of σ ′ can be less ghost
than the mask of σ. That fact that we explicitly write the return type of a function, allows us to
declare a mask with more ghost components than the mask that is inferred for expression e1. This
is convenient, for instance, when we wish to share some value in ghost and regular code. Only
because we declare a component of the result of a function to be ghost, it does not forbid us to use
that component in regular code, within the body of the function. In other words, the mask of the
return type is not used to contaminate the body of the function. Let us illustrate using function
cycle_length presented in Sec. 2.2.2 (page 20). We declare function cycle_length to return a
value of type (reg int63, ghost seq int), whereas its body is an expression of the form

WhyMLlet n = ref 1 in
let ghost s = ref (singleton (to_int i)) in
...
!n, !s

In this case, expression !n, !s is of type ((reg int63, ghost seq int), ∅, ∅), the mask match-
ing exactly the one given in the return type. On the other hand, had we written the body of
cycle_length as

40 CHAPTER 3. KIDML

WhyMLlet n = ref 1 in
let s = ref (singleton (to_int i)) in
...
!n, !s

this would still be accepted by rule (TFun), with the mask (reg int63, ghost seq int). In such
a case, we could use variable s inside regular code, and the let s = ... expression would stay in
the extracted code. Nonetheless, the extraction mechanism still erases the second component of
the pair !n, !s, in order to agree with the type of cycle_length after extraction, which becomes
reg int63. In Chap. 4 we show how our extraction function takes into account the mask of the
return type to produce a type-checking program.

Function application. When it comes to apply a function symbol to a sequence of arguments,
we write in KidML an expression of the form f〈τ〉(ā). The type sequence τ is used to instantiate the
polymorphic type of f, as we shall see in the forthcoming type-checking rules, while the sequence ā
represents the effective arguments of f. Let us note that this expression is in A-normal form, as
the effective arguments are limited to atomic expressions. The semantics of function application
is as follows:

δ(f) = (x : π, e) ‖x : π‖ = ‖ν̄‖ δ · µ · e[x̄ 7→ ν̄] ⇓ µ ′ · ν ′
δ · µ · f〈τ〉(ν̄) ⇓ µ ′ · ν ′ (EvalApp)

First, we fetch the arguments and body of f from δ; second, we ensure the sequence of formal
arguments and effective ones are of the same length (KidML does not support partial applica-
tion); finally, we evaluate expression e[x̄ 7→ ν̄] down to ν ′, which becomes the result of the whole
application expression.

Assigning a type to an expression of the form f〈τ〉(ā) raises a number of interesting questions.
First, assuming we have ∆(f) = ∀α.(x : βτ ′) → σ, we need to instantiate the polymorphic type
of f. When writing an application expression, we explicitly give the sequence τ, which we use to
build the type substitution [α 7→ τ]. Let us use θ to denote such a substitution. We apply θ to the
return type of f to compute the type of the whole f〈τ〉(ā) expression, i.e. the typing derivation of
an application must end up with a conclusion of the form

∆ · Γ · Σ ` f〈τ〉(ā) : σθ

The operation σθ lifts type substitution to the level of types with effects as follows:

(βτ, ε, γ)θ , (βτθ, ε, γ)

We must also propagate substitution θ to the type derivation of the effective arguments, i.e., the
typing derivation of an application must feature a premise of the form

∀i. ∆ · Γ · Σ ` ai : (β ′iτ ′iθ, ∅, ∅)

A second important point, when typing an application expression, is how to treat effects. The
return type of a function might feature some effects, which we must instantiate with the effective
arguments. We talk here about the operation of effects instantiation. This is not different from
type instantiation: we introduce a substitution of the form [x̄ 7→ ā] (formal arguments to effective
arguments), that we must apply to the inferred type of an application. We use ρ to denote such a
substitution and we employ it as follows:

∆ · Γ · Σ ` f〈τ〉(ā) : σθρ

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 41

This updates the conclusion of an application typing derivation, where σθρ is defined as follows:

(βτ, ε, γ)θρ , (βτθ, ερ, γρ)

We are now in position to define the type-checking rules for a function application. We introduce
the following two rules, in order to type-check f〈τ〉(ā):

θ = [α 7→ τ] ρ = [x̄ 7→ ā] ‖α‖ = ‖τ‖ ‖x̄‖ = ‖ā‖
∆(f) = ∀α.(x : βτ ′)→ σ ∀i. ∆ · Γ · Σ ` ai : (β ′iτ ′iθ, ∅, ∅) ∀i. β ′i v βi

∆ · Γ · Σ ` f〈τ〉 (ā) : σθρ
(TApp)

θ = [α 7→ τ] ρ = [x̄ 7→ ā] ‖α‖ = ‖τ‖ ‖x̄‖ = ‖ā‖
∆(f) = ∀α.(x : βτ ′)→ σ ∀i.∆ · Γ · Σ ` ai : (β ′iτ ′iθ, ∅, ∅) ∃i. β ′i 6v βi

∆ · Γ · Σ ` f〈τ〉 (ā) : (σθρ)
(TAppGhostArg)

Note that we impose the elements in substitutions θ and ρ to have the same length. In particular,
this ensures that function f is applied to the correct number of effective arguments. It is worth
pointing out that the effects in σθρ must respect the implicit conditions that we only assign
admissible effects in our typing derivations. In other words, substitution ρ cannot introduce a set
of effects violating predicate adm. These two rules differ only on the rightmost premise. Similar
to what we did in rules (TRecord) and (TRecordGhost), we distinguish between the case
where we must ghostify or preserve the ghost status of the type of a f〈τ〉 (ā) expression. In rule
(TApp), every effective argument is less or equally ghost as the corresponding formal argument.
In rule (TAppGhostArg), at least one ai is a ghost expression, whereas the i-th argument of f
is expected to be a regular value. We ghostify the type in the conclusion, and in such cases we say
the expression is contaminated by this arguments.

A digression on the Why3 type system. An important aspect we must note is that the type
inferred via the (TApp) rule can, very well, be an entirely ghost type. For instance, let us consider
the following, very simple, KidML program:

KidMLfun ff〈〉 (x: reg int) = ghost x in ff〈〉 (42)

We can build a typing derivation for this program using the (TFun) and (TApp) rules as follows:

(TGhost)
...

∅ · [x : reg int] · ∅ ` ghost x : (reg int, ∅, ∅)

∆(ff) = (x : reg int)→ (ghost int, ∅, ∅)
∆ · ∅ · ∅ ` 42 : (reg int, ∅, ∅) . . .

∆ · ∅ · ∅ ` ff〈〉 (42) : (ghost int, ∅, ∅)
(TApp)

∅ · ∅ · ∅ ` fun ff〈〉 (x : reg int) = ghost x in ff〈〉 (42) : (ghost int, ∅, ∅)
(TFun)

In the above derivation, ∆ stands for the environment [ff : (x : reg int)→ (ghost int, ∅, ∅)]. We
omit the derivation from rule (TGhost), as well as the premise comparing masks of the formal
and effective argument of ff in (TApp). Whenever an application becomes a ghost expression
because of the ghost status of the function return type, we say the expression is contaminated
by application. If we take a look to the Why3 type system, we find a very similar contamination
mechanism for these situations. In fact, in the definition of cycle_length (Sec. 2.2.2, page 20)
we can already find an example of contamination by application. In the body of this function, we
make call to the pigeonhole lemma function in the following expression:

WhyMLif to_int !n + 1 > t.size then pigeonhole (Seq.length !s) t.size (get !s)

In WhyML, we can directly declare a function as a ghost symbol, independently of the ghost status
of its body, either by writing

42 CHAPTER 3. KIDML

WhyMLlet ghost foo (x: int) = ...

or by introducing a lemma function of the form
WhyMLlet lemma foo (x: int) = ...

The pigeonhole function falls in the latter category. The application
WhyMLpigeonhole (Seq.length !s) t.size (get !s)

is, thus, contaminated by the ghost status of pigeonhole, and so is the whole if..then expression.
Getting back to the KidML type system, if we use our type-checking rules to assign a type to the
pigeonhole application, we end up with the derivation

...
∆ · Γ · ∅ ` pigeonhole (Seq.length !s) t.size (get !s) : (Unit, ∅, ∅)

(TApp)

where ∆ binds, at least, a type to functions pigeonhole, Seq.length, get, and (!), and the
typing context Γ stores a binding, for, at least, variable s. We consider the Unit type to refer
to an empty sequence of results, with no particular ghost attached. The call to pigeonhole, and
consequently the whole if..then..else expression, does not return any result neither performs
side-effects. Such expression can, thus, be erased at extraction time.

Recursive definitions. We extend the KidML language with local definition of recursive func-
tions. The syntax rec f〈α〉(x : π) : σ = e in e is very similar to the fun..in construction, except
for the use of the rec keyword to indicate the recursive nature of the definition. The semantics of
a recursive function is given by the following rule:

δ[f 7→ (x : π, e1)] · µ · e2 ⇓ µ ′ · ν̄
δ · µ · rec f(x : π) : σ = e1 in e2 ⇓ µ ′ · ν̄ (EvalRec)

This is the exact same semantics as that of a fun..in expression.
Our evaluation relation asserts that δ[f 7→ (x : π, e1)] · µ · e2 ⇓ µ ′ · ν̄ holds if e2 evaluates down

to ν̄ in a finite number of steps. Such an hypotheses makes it meaningless to use our semantics
to deal with divergent computations. To account for possible divergent evaluations, we extend the
possible outcome of an evaluation: either it terminates on a sequence of values ν̄ or it diverges.
This leads us to the notion of semantic results, which we define as follows:

r ::= ν̄ | div

Divergence is explicitly represented using the newly introduced constant div. We update our
evaluation predicate accordingly:

δ · µ · e ⇓ µ ′ · r
A divergent KidML expression can be seen as an expression inducing an infinite evaluation deriva-
tion. In order to reason about such infinite derivation trees, we introduce a coevaluation judgment
of the form

δ · µ · e ⇓co µ ′ · r

which defines a coinductive interpretation of the evaluation rules, where δ · µ · e ⇓co µ ′ · r is the
conclusion of a finite or infinite derivation tree. We write δ · µ · e ⇓co div to state that e diverges

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 43

during execution. For each evaluation rule, we introduce a coevaluation rule of the same form. For
instance, the following is the updated (EvalRec) rule together with its coinductive counterpart:

δ[f 7→ (x : π, e1)] · µ · e2 ⇓ µ ′ · r
δ · µ · rec f(x : π) : σ = e1 in e2 ⇓ µ ′ · r (EvalRec)

δ[f 7→ (x : π, e1)] · µ · e2 ⇓co µ ′ · r

δ · µ · rec f(x : π) : σ = e1 in e2 ⇓co µ ′ · r
=== (CoEvalRec)

We represent coevaluation rules using a double bar.
Before presenting the type-checking rule for recursive functions, let us take a step back and look

at the evaluation of a let..in expression. First, we (straightforwardly) update the (EvalLet)
rule to cope with the changes on the evaluation predicate:

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓ µ ′′ · r
δ · µ · let βx = e1 in e2 ⇓ µ ′′ · r (EvalLet)

Following the above rule, we observe that the semantic result r in the conclusion is taken from the
evaluation of e2[x̄ 7→ ν̄]. This only makes sense when the first premise holds, i.e., when there is a
finite evaluation for expression e1 down to ν̄. If the execution of e1 diverges, we must propagate
divergence as the result of evaluating the whole let..in expression. The following premise asserts
the divergence of e1:

δ · µ · e1 ⇓co µ ′ · div

Our treatment of divergence as a constant and the use of a coinductive judgment builds on the
works of Arthur Charguéraud [30], and Xavier Leroy and Hervé Grall [98, 100]. Anticipating the
extensions from next section, let us give a generalized presentation for this premise. We introduce
a predicate abort to describe semantic results that break the normal execution flow of a program.
Since constant div is, for now, the only mean to interfere in the execution of an expression,
predicate abort is simply defined as follows:

abort div
(AbortDiv)

Using this definition, the inductive and co-inductive semantic rules for a divergent let..in ex-
pression are as follows:

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓co µ ′′ · r

δ · µ · let βx = e1 in e2 ⇓co µ ′ · r
=== (CoEvalLet)

δ · µ · e1 ⇓co µ ′ · r abort r

δ · µ · let βx = e1 in e2 ⇓co µ ′ · r
================================= (CoEvalLetAbort)

It is interesting to note that our definitions allow us to write judgments of the form δ ·µ ·e ⇓ µ ′ ·div
or δ · µ · e ⇓co µ ′ · ν̄, even if we are only interested in δ · µ · e ⇓ µ ′ · ν̄ and δ · µ · e ⇓co µ ′ · div. In
next section, we prove a number of properties about the behavior of our inductive and co-inductive
judgments, which rule out some unnatural behaviors.

We finally describe the type assignment rule for recursive definitions. First, we must clarify
the role of divergence in our type and effects context. In KidML, we follow the same direction as
in WhyML and treat divergence as an effect. We extend our definition of effects accordingly:

ε, γ , (ϕ, div)

44 CHAPTER 3. KIDML

The meta-variable ϕ stands for the set of writing effects and div is used as a Boolean mark to
indicate whether the expression may diverge. Using the extended definition of effects, we devise
the following type-checking rule for recursive functions:

∆+ [f : ∀α.(x : π)→ σ] · Γ + [x : π] · Σ ` e1 : σ ′ σ ′�Γ+[x:π] v σ
σ = (βτ, ε+ div, γ) ∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α# Γ α#∆

∆ · Γ · Σ ` rec f〈α〉(x : π) : σ = e1 in e2 : σ ′′
(TRecDiv)

Let us note that, by default, we assign every recursive function a divergent status (leftmost
premise). In Sec. 3.1.5, we extend our type-checking system with proof-related elements, namely
oracle functions that state the termination or divergence of evaluation. In the case of provable
terminating definitions, we shall be able to remove divergence from the function effects. Besides
divergence, the other difference between rule (TRecDiv) and (TFun) is the extension of ∆ with
the type of function f when type-checking e1.

To conclude this section, we detail on how to treat divergence as an admissible effect. This is,
actually, very straightforward: ghost expressions cannot diverge and so we must forbid divergence
to appear in the ghost effects assigned to an expression. We update our definition of predicate adm
as follows:

adm(βτ, ε, γ) , ¬obs writes(γ) ∧
¬div(γ)

It is worth pointing out that, for now, we can only type-check non-ghost recursive functions. We
automatically add the divergence effect in the (TRecDiv) rule, making it impossible to build
a typing derivation for recursive ghost functions, as this would violate the global condition that
every assigned effect is a valid effect. As aforementioned, in Sec. 3.1.5 we shall introduce means to
decide upon the termination of a recursive definition, which we will use to relax the constraints of
rule (TRecDiv).

3.1.4 Exceptions

In this section, we continue extending KidML with new language features, namely exception decla-
ration, raising and handling. We add to our language a top-level construction to declare exceptions,
as follows:

exception E : π

The keyword exception is followed by E, the name of a new exception. The π sequence represents
the arguments of the exception, i.e., a sequence of types together with a ghost status. For instance,
the declaration

exception Return (reg Int, ghost Bool)

introduces the exception Return whose first argument is a regular integer and the second one is a
ghost Boolean value.

We change our grammar of expressions as follows:

e ::= . . . | raise Eā | try e with Ex̄⇒ e

An expression of the form raise Eā represents the classical exception raising constructor. From
a semantic point of view, a raise expression cannot be further evaluated, which we represent by
adding the following rule to our evaluation judgment definition:

δ · µ · raise Eν̄ ⇓ µ · raise Eν̄
(EvalRaise)

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 45

We change our definition of semantic results accordingly:

r ::= . . . | raise Eν̄

Exceptions are control-flow changing constructions, which make them amenable to be included in
our predicate abort:

abort div
(AbortDiv)

abort raise E
(AbortExn)

We treat exceptions in KidML as an effect, following the same approach as in the WhyML language.
In the context of our type and effects system, we update the effects assigned to an expression to a
triple of the form

ε, γ , (ϕ, div, X)

where X is the set of raised exceptions. Using this extended definition of effects, we give the
following type-checking rules for a raise expression:

exception E : β1τ1 . . . βnτn ∀i. ∆ · Γ · Σ ` ai : (β ′iτi, ∅, ∅) ∀i. β ′i v βi
∆ · Γ · Σ ` raise Eā : (reg τ ′, ∅+ raises E, ∅)

(TRaiseReg)

exception E : β1τ1 . . . βnτn ∀i. ∆ · Γ · Σ ` ai : (β ′iτi, ∅, ∅) ∃i. β ′i 6v βi
∆ · Γ · Σ ` raise Eā : (ghost τ ′, ∅, ∅+ raises E)

(TRaiseGhost)

We distinguish between regular and ghost exceptions using the ghost status of arguments in ex-
ception declaration and the status of each component in sequence ā. This is a similar approach
to what we did in rules for record creation and function application. The leftmost premise of
(TRaiseReg) and (TRaiseGhost) rules stipulates that an exception named E was declared with
arguments β1τ1 . . . βnτn.

The second syntactic construction we add to KidML is the exception handler. The semantics of
a try e0 with Ex̄⇒ e expression is the following. First, we evaluate expression e0. If it evaluates
down to a semantic result r that is not a raise expression, either a sequence of values or divergence,
the whole try..with expression evaluates down to r. On the other hand, if e0 evaluates down to
raise E ′ν̄, two different outcomes are possible: E ′ is exactly exception Ei from sequence Ex̄⇒ e,
in which case the result of evaluating expression ei is the result of the whole try..with expression;
or, if E ′ does not match any exception in Ex̄, we propagate such an exception as the result of the
whole evaluation. The following big-step rules systematize this informal explanation:

δ · µ · e0 ⇓ µ ′ · ν̄
δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · ν̄ (EvalTry)

δ · µ · e ⇓ µ ′ · r abort r ∀i. Ei 6= r
δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r (EvalTryAbort)

δ · µ · e0 ⇓ µ ′′ · raise E ′ν̄
E ′ = Ei ∀j. j < i→ E ′ 6= Ej δ · µ ′′ · ei[xi 7→ ν̄] ⇓ µ ′ · r

δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r (EvalTryExn)

Rule (EvalTryAbort) describes, at the same time, the case where we propagate divergence out
of the evaluation of e0, or an exception that is not listed by the handler.

46 CHAPTER 3. KIDML

We now focus on type-checking try..with expressions. The following are the three premises
used to assign types to the sub-expressions of an exception handler:

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. exception Ei : πi ∆ · Γ + [x̄ : πi] · Σ ` ei : σi

We detail on each of these three conditions. The first is rather straightforward and is used to
assign the body e0 with some type (π, ε, γ). Next, we verify that every exception Ei listed in
the handler is defined with arguments πi. Finally, we type every expression ei with the type σi,
under a typing context extended with the bindings x̄ : π. Using these three premises, we devise
the following type-checking rule:

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. exception Ei : πi ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises E, γ− raises E) ∪

⋃
i

σi
(TTry)

An exception raised in e0 and caught by the handler do not interfere with the execution of the whole
try..with expression, hence we remove it from the effect assigned in the conclusion. Notation
ε−raises Ei (resp. γ) stands for the regular (resp. ghost) effect ε (resp. γ) from which we remove
the sequence E of exceptions listed in the handler. Nonetheless, the final effect of a try..with
expression does depend on the effects of each individual expression ei. We add the effect of every
type σi via the union operation on the right-hand side of the conclusion. Such an operation also
changes the expression mask: we take the typing information π from the body of the handler e0
and combine its mask with the mask of every type σi. This means, that, even if e0 is a regular
expression, the whole try..with expression gets contaminated if there is a ghost expression ei.

Before giving an example of a typing derivation using rules (TRaise) and (TTry), we extend
our notion of admissible effects to accommodate exceptions. Contrarily to divergence, both regular
and ghost expressions can raise exceptions. Nonetheless, a ghost exception propagates a ghost effect
up until the first handler that catches it. In other words, raising an exception within ghost code
is a source of ghost contamination, and so it can only be done if the enclosing expression is free of
regular effects. We add such a condition to our predicate adm, as follows:

adm(βτ, ε, γ) , ¬reg writes(γ) ∧
¬div(γ) ∧
raises(γ)⇒ ε = ∅∧ β = ghost

The fact that a ghost exception implies a completely ghost mask β is also deeply connected to
how the ghostification operation (·) treats exceptions. We relax the condition of a completely
empty set of regular effects (page 37) and give the following updated definition for (·):

(βτ, (∅,⊥,X), γ) , (ghost τ, ∅, γ ∪ X)

We allow the ghostification of terminating expressions (we use ⊥ to represent the absence of
divergence), containing no regular writing effects, but possibly raising regular exceptions. Such
regular exceptions then become ghost exceptions, as noted by γ ∪ X .

In order to illustrate the type-checking of raising and handling exceptions, let us consider the
following KidML program:

KidMLexception A
exception B

fun foo〈〉 (x: reg int) : reg int =
try if x > 42 then raise A else 89
with A -> ghost raise B in

foo (73)

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 47

We begin by declaring the two zero-argument exceptions A and B. Next, the main part of this
program is function foo. It takes a regular integer argument and returns a regular integer. The
body of this function is a try..with expression, catching only exception A. Let us focus, first,
on the body of the handler. This is an if..then..else expression, where the then branch
simply raises exception A and the else branch returns 89 (as a matter of convenience, we do not
respect here the A-normal form convention, writing the test of the if..then..else as a compound
expression). We can build the following typing derivation for the body of the handler:

. . .
(TRaise)

...
∆ · Γ · Σ ` raise A : (reg int, ∅+ raises A, ∅)

...
∆ · Γ · Σ ` 89 : (reg int, ∅, ∅)

(TConst)

∆ · Γ · Σ ` if x > 42 then raise A else 89 : (reg int, ∅+ raises A, ∅) ∪ (reg int, ∅, ∅)
(TIf)

We omit the typing trees for the test expression, as well as for the premises in rules (TRaise) and
(TConst) as these are straightforward. The (TRaise) rule allows to type the raise A expression
with type reg int, which allows then to match the same type as for the else branch and complete
the derivation with rule (TIf). The type assigned to this if..then..else expression, after type
union, is

(reg int, ∅+ raises A, ∅)

We focus now on the typing derivation for the expression after the with A clause. We use the
(TGhost) rule as follows:

∆ · Γ · Σ ` raise B : (reg int, ∅+ raises B, ∅)
∆ · Γ · Σ ` ghost raise B : (reg int, ∅+ raises B, ∅)

(TGhost)

The only regular effect is the rise of exception B, hence it is legal to apply the ghostification
operation, which results in the type

(ghost int, ∅, ∅+ raises B)

This type respects the conditions of the adm predicate, making the above derivation fit our global
condition of admissible effects. Finally, we combine the two given typing derivations to type-check
the whole try..with expression, as follows:

∆ · Γ · Σ ` if . . then . . else : (reg int, ∅+ raises A, ∅)
exception A ∆ · Γ · Σ ` ghost raise B : (ghost int, ∅, ∅+ raises B)

∆ · Γ · Σ ` try . . with . . : (reg int, ∅+ raises A − raises A, ∅) ∪ (ghost int, ∅, ∅+ raises B)
(TTry)

Since we remove exception A from the regular effects of the type at the left-hand side of the union
operation, the final type computed is

(ghost int, ∅, ∅+ raises B)

which fits in our definition of admissible effects. Using this typing derivation, we observe that,
indeed, the ghost status and ghost effect of the ghost raise B expression is propagated to the
whole try..with expression, which turns the foo function into a ghost function. The application
foo (73) is, consequently, a ghost expression which we could easily verify using the (TFun) rule.

48 CHAPTER 3. KIDML

Loop structure. We conclude this section by adding to KidML a very simple loop construction,
as follows:

e ::= . . . | loop e

An expression of the form loop e stands for the infinite evaluation of expression e, as formalized
by the following evaluation rule:

δ · µ · let reg _ = e in loop e ⇓ µ ′ · r
δ · µ · loop e ⇓ µ ′ · r (EvalLoop)

We introduce the loop construction after having introduced exceptions, simply because exceptions
offer a mean to escape the body of an infinite loop. In fact, from our evaluation relation point
of view, we are only interested in judgments of the form δ · µ · loop e ⇓ µ ′ · raise Eν̄, for some
exception E. The type-checking rule for a loope expression is straightforwardly defined as follows:

∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε+ div, γ)
(TLoopDiv)

The typing information assigned in the conclusion is actually a design choice for the KidML lan-
guage. Even if the body e must be typed as a Unit expression, the whole loop is assigned a generic
type reg τ. As for the rule (TRaise), this means we can assign any type to a loop e expression,
depending on the context in which we type-check such an expression. Perhaps, the most obvious
way would be to type-check loop e also as a Unit expression. Let us use an example written in
KidML to show how the second solution would create a practical pitfall. The following KidML
program computes the integer square root of a non-negative integer, using the Newton-Raphson
method:

KidMLexception Sqrt : reg int

fun isqrt〈〉 (x: reg int) : (reg int, ∅, ∅) =
if x = 0 then 0 else
if x <= 3 then 1 else
let reg y = ref x in
let reg z = ref ((1 + x) / 2) in
try

loop if !z >= !y then raise Sqrt !y;
y := !z;
z := (x / !z + !z) / 2

with Sqrt y -> y in
isqrt 17

Function isqrt computes a non-negative result such that isqrt(x) = b
√

xc. We use the loop
structure to iterate until the stopping condition !z >= !y is reached. In that case, we raise the
Sqrt exception applied to the value of reference y, which stores the integer square root at the
end of the computation. For the example above, the expression isqrt 17 evaluates down to 4, as
expected. Using the (TLoopDiv) rule, we can type-check the body of the try..with expression
with type

(reg int, ∅+ raises Sqrt, ∅)

and so the whole try..with expression is assigned the type

(reg int, ∅, ∅)

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 49

which exactly matches the type of the isqrt function. Had we chosen to assign the Unit type in
the conclusion of the (TLoopDiv) rule and the given implementation of the isqrt function would
be rejected. In that case, we would have to write a dummy integer value after the loop expression,
for instance

KidMLfun isqrt〈〉 (x: reg int) : (reg int, ∅, ∅) =
...
try loop ...; 1729
with Sqrt y -> y in

...

which is rather unpleasant. Moreover, we know that 1729 is an unreachable point of execution,
which makes it even more regrettable to include in the code. We could replace the constant
1729 by some primitive marking an unreachable point by execution. In OCaml we would write
assert false after the loop structure:

OCamllet isqrt (x: int) : int =
...
while true do ... done; assert false
with Sqrt y -> y in

...

In WhyML, we would add to the body of the isqrt function an absurd expression, as follows:
WhyMLlet isqrt (x: int) : int =

...
while true do ... done; absurd
with Sqrt y -> y end in

...

We extend the KidML language with such an absurd primitive in the next section. Nonetheless,
we keep our design choice for the (TLoopDiv) rule, since our language only features infinitely
executing loops. This is not the case with the more general while..do loops from OCaml and
WhyML, even if a simple static analysis could easily detect that a while true do expression
stands for an infinite loop.

3.1.5 Proof-related Elements

We finally come to an end in the development of the KidML language, its operational semantics,
and type system. In this section, we extend KidML with some proof-related elements, namely a
syntactic primitive to mark unreachable points in the code and means to prove termination.

Unreachable points. In order to mark unreachable points in the code, we follow the same
approach as WhyML and extend KidML with the absurd keyword, as follows:

e ::= . . . | absurd

From a semantics point of view, an absurd represents a completely evaluated expression, and so
we add the following axiom to our (co-)evaluation judgment:

δ · µ · absurd ⇓ µ · absurd
(EvalAbsurd)

We also extend the set of possible semantic results to include absurd, as follows:

r ::= . . . | absurd

50 CHAPTER 3. KIDML

We complete, as well, our definition of predicate abort:

abort absurd

The absurd result is not to be confused with an execution error. An expression that evaluates down
to absurd is not a stuck expression. Indeed, this is a well-typed expression, which we type-check
via the following rule:

∆ · Γ · Σ ` absurd : (reg τ, ∅, ∅)
(TAbsurd)

We note that, similarly to what happens with raise expressions, the (TAbsurd) rule assigns
the contextual type reg τ in the conclusion. However, we choose to treat an absurd expression
differently from an exception, hence the new semantic result.

The purpose of the absurd primitive is to be used together with a proof system, in order to
formally demonstrate that some point in the program is never reached. We implicitly assume that
every KidML program are formally verified, in particular all of the absurd are proved to be placed
in unreachable execution points. In other words, a KidML program shall never evaluate down to
an absurd result. This might be a little puzzling as it seems that, after all, there is no good
reason to include the absurd keyword in the KidML syntax. In fact, the absurd expression triggers
some particular type-checking situations when used in an if..then..else expression. These are
described using the following rules:

∆ · Γ · Σ ` a : (βBool, ∅, ∅) ∆ · Γ · Σ ` e : σ
∆ · Γ · Σ ` if a then absurd else e : σ

(TIfAbsurd1)

∆ · Γ · Σ ` a : (βBool, ∅, ∅) ∆ · Γ · Σ ` e : σ
∆ · Γ · Σ ` if a then e else absurd : σ

(TIfAbsurd2)

For an expression of the form ifathene1 elsee2, where either e1 or e2 is an absurd, we can forget
about the ghost status of the test expression a when type-checking the whole if..then..else
expression. For instance, the expression

KidMLif ghost true then absurd else 42

is assigned the regular type (reg int, ∅, ∅), despite the ghost status of the test expression.
The particular role of absurd when type-checking if..then..else expressions is better un-

derstood by taking an operational perspective, i.e., if we think of such expressions in terms of code
extraction. As we assume that every single absurd is proved to be unreachable, for expressions of
the form

KidMLif a then absurd else e

or
KidMLif a then e else absurd

we can bypass the conditional structure and drop the branch corresponding to the absurd case.
The type of the whole if..then..else must follow the type assigned to the e expression. In next
chapter, we present our extraction function, for which we devise a particular extraction scheme to
deal with the combination of if..then..else and absurd expressions.

Termination. When it comes to recursion and iteration, we have only considered the possibility
of divergent evaluations. To overcome such a limitation, we extend the KidML type system with

3.1. THE KIDML LANGUAGE, STEP-BY-STEP 51

a proof oracle to state the termination of a given expression. We use the CheckTermination(·)
function to implement such an oracle, where CheckTermination(e) states the evaluation of expres-
sion e always terminates. There are a few different approaches to implement the CheckTermination
function: in WhyML, we annotate functions with termination measures, commonly called variants,
from which the Why3 system generates sufficient verification conditions to prove the termination
of the annotated expression; rich type theories encode directly in their types algebra conditions
that check the termination of recursive definitions [12]. In the KidML type-with-effects system we
abstract away from a particular materialization of the CheckTermination oracle. We take here
exactly the same approach as in the work of Jean-Christophe Filliâtre, Léon Gondelman and An-
drei Paskevich [64]. We only care to know that some recursive or iterative definitions are provably
terminating. We can benefit from such information to avoid assigning systematically a divergence
effect in the conclusion of our type-checking rules. For instance, we can separate the type-checking
of recursive functions in two different rules, depending on the result of the CheckTermination
function, as follows:

∆+ [f : ∀α.(x : π)→ σ] · Γ + [x : π] · Σ ` e1 : σ ′ σ ′ v σ
¬CheckTermination(rec f〈α〉(x : π) : σ = e1)

σ = (βτ, ε+ div, γ) ∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α# Γ α#∆
∆ · Γ · Σ ` rec f〈α〉(x : π) : σ = e1 in e2 : σ ′′

(TRecDiv)

∆+ [f : ∀α.(x : π)→ σ] · Γ + [x : π] · Σ ` e1 : σ ′ σ ′ v σ
CheckTermination(rec f〈α〉(x : π) : σ = e1)

σ = (βτ, ε, γ) ∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α# Γ α#∆
∆ · Γ · Σ ` rec f〈α〉(x : π) : σ = e1 in e2 : σ ′′

(TRec)

The (TRecDiv) rule is a simple update from the previously shown (TRecDiv) rule, where we
add the

¬CheckTermination(rec f〈α〉(x : π) : σ = e1)

premise, i.e., we cannot prove the termination of every call to the recursive function f. On the
other hand, rule (TRec) features the premise

CheckTermination(rec f〈α〉(x : π) : σ = e1)

to indicate that every call to function f always terminates, which avoids us from assigning the
div effect in the return type σ, leftmost premise. From a programmatic point of view, if we can
type-check a recursive function without the divergence effect, then we can use such function in a
ghost context. For instance, the following KidML program

KidMLrec fact〈〉 (n: reg int) : (reg int, ∅, ∅) =
if n <= 0 then 1
else n * fact (n - 1) in

ghost fact 42

is now accepted by our type-system: one can prove that function fact always terminates (e.g.,
using the value of argument n as a termination measure), and so we use the (TRec) to type-check
the definition of fact with an empty effect; rule (TGhost) assigns expression ghost fact (42)
the type

(reg int, ∅, ∅)
which respects our predicate adm. Without the CheckTermination oracle, we would have to include
the divergence effect in the return type of fact, ending up with the type

(reg int, ∅+ div, ∅)

52 CHAPTER 3. KIDML

for the ghost fact (42) expression, which clearly violates the definition of admissible effects.
Oracle CheckTermination can also be used to type-check expressions featuring the loop con-

struction. This is no different from what we did with recursive definitions, as shown by the following
rules:

CheckTermination(loop e)
∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε, γ)
(TLoop)

¬CheckTermination(loop e)
∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε+ div, γ)
(TLoopDiv)

Following the result of CheckTermination, we either add or not the div effect in the conclusion
of the rule. The latter corresponds to the case of rule (TLoop), the former to (TLoopDiv).

3.2 KidML Formalization

e ::= Expressions
| ā

| let βx = e in e
| fun f〈α〉(x : π) : σ = e in e
| rec f〈α〉(x : π) : σ = e in e
| f〈τ〉(ā)
| if a then e else e
| {f = a}
| a.f

| a.f← a

| loop e
| raise Eā
| try e with Ex̄⇒ e

| ghost e
| absurd

a ::= Atomic Expressions
| x

| ν

ν ::= Values
| c

| l

Figure 3.5: KidML Syntax.

The purpose of this section is prove that one can safely write programs in the KidML language.
We want to prove that the static guarantees issued from our type system are sound, with respect
to the introduced operational semantics relation. This means to prove that if a KidML expression
is considered a well-typed expression, then it is safe to evaluate this expression or, in other words,
no run-time errors will ever occur3. This formalization effort follows exactly the famous slogan by
Robin Milner, “well-typed programs cannot go wrong” [110].

3Anyone who has ever programmed on a Unix system knows very well the frustration of a segmentation fault
error.

3.2. KIDML FORMALIZATION 53

3.2.1 Semantics

Throughout the previous section, we introduced the operational semantics rules for the KidML
language. The syntax of the language is resumed in Fig. 3.5, while the complete set of rules of the
evaluation judgment are given in Fig. 3.6. The (EvalErr) rule is explained later in this section.
For completeness purposes, we also present the rules of our coinductive judgment, Fig. 3.7. The
relation δ · µ · e ⇓co µ ′ · r holds if and only if this is the conclusion of a finite or infinite derivation
built from these rules. In fact, to express the special case δ · µ · e ⇓co div we do here an abuse of
notation, since it does not make sense to state divergence together with a resulting store µ ′.

Our complete definition of semantics results is as follows:

r ::= ν̄ | raise Eν̄ | absurd | div

Judgment properties. Drawing inspiration from the works of Arthur Charguéraud [30, Sec.2.4]
and Xavier Leroy [98, lemmas 5–8], let us prove some properties about our two judgments. First,
we want to limit the use of our judgments to derivations of the form δ·µ·e ⇓ µ ′ ·r and δ·µ·e ⇓co div.
We can only derive δ ·µ · e ⇓ µ ′ · div if e contains a sub-expression that diverges, as stated via the
following lemma:
Lemma 3.2.1. If δ · µ · e ⇓ µ ′ · r then r 6= div.
Proof. Straightforward induction on δ · µ · e ⇓ µ ′ · r.

In the following, we only describe the evaluation of divergent expressions via the coinductive
judgment. We state, as well, that the coinductive judgment contains the inductive one:
Lemma 3.2.2. If δ · µ · e ⇓ µ ′ · r then δ · µ · e ⇓co µ ′ · r.
Proof. Straightforward induction on δ · µ · e ⇓ µ ′ · r.

Next, we show that if δ · µ · e ⇓co µ ′ · r holds then either the evaluation of e diverges, or
terminates into some result r. This corresponds to the following lemma:
Lemma 3.2.3. If δ · µ · e ⇓co µ ′ · r then either δ · µ · e ⇓co div or δ · µ · e ⇓ µ ′ · r.
Proof. By coinduction and case analysis on the rule used at the bottom of the derivation δ ·µ ·e ⇓co

µ ′ · r. We detail only the cases of co-evaluation of let..in expressions.

case (CoEvalLetAbort). Co-evaluation ends up with

δ · µ · e1 ⇓co µ ′ · r abort r

δ · µ · let βx = e1 in e2 ⇓co µ ′ · r
=================================

By co-induction hypotheses either
δ · µ · e1 ⇓co div

or
δ · µ · e1 ⇓ µ ′ · r r 6= div

If it is the first case, we complete the proof with the following derivation:

δ · µ · e1 ⇓co div abort div

δ · µ · let βx = e1 in e2 ⇓co div
================================ (CoEvalLetAbort)

If it is the second case, we complete the proof with the following derivation:

δ · µ · e1 ⇓ µ ′ · r abort r

δ · µ · let βx = e1 in e2 ⇓ µ ′ · r (EvalLetAbort)

54 CHAPTER 3. KIDML

δ · µ · e ⇓ µ ′ · r

δ · µ · ν̄ ⇓ µ · ν̄ (EvalVBar)
δ · µ · raise Eν̄ ⇓ µ · raise Eν̄

(EvalRaise)

δ · µ · e ⇓ µ ′ · r
δ · µ · ghost e ⇓ µ ′ · r

(EvalGhost)
δ · µ · let reg_ = e in loop e ⇓ µ ′ · r

δ · µ · loop e ⇓ µ ′ · r
(EvalLoop)

δ · µ · absurd ⇓ µ · absurd
(EvalAbsurd)

δ · µ · e1 ⇓ µ ′ · r abort r

δ · µ · let βx = e1 in e2 ⇓ µ ′ · r
(EvalLetAbort)

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓ µ ′′ · r
δ · µ · let βx = e1 in e2 ⇓ µ ′′ · r

(EvalLet)

δ(f) = (x : π, e) ‖x : π‖ = ‖ν̄‖ δ · µ · e[x̄ 7→ ν̄] ⇓ µ ′ · r
δ · µ · f〈τ〉(ν̄) ⇓ µ ′ · r

(EvalApp)

δ[f 7→ (x : π, e1)] · µ · e2 ⇓ µ ′ · r
δ · µ · fun f〈α〉(x : π) : σ = e1 in e2 ⇓ µ ′ · r

(EvalFun)

δ[f 7→ (x : π, e1)] · µ · e2 ⇓ µ ′ · r
δ · µ · rec f〈α〉(x : π) : σ = e1 in e2 ⇓ µ ′ · r

(EvalRec)

δ · µ · e2 ⇓ µ ′ · r
δ · µ · if false then e1 else e2 ⇓ µ ′ · r

(EvalIfFalse)

δ · µ · e1 ⇓ µ ′ · r
δ · µ · if true then e1 else e2 ⇓ µ ′ · r

(EvalIfTrue)

δ · µ · e0 ⇓ µ ′ · ν̄
δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · ν̄

(EvalTry)

δ · µ · e0 ⇓ µ ′ · r abort r ∀i. Ei 6= r
δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r

(EvalTryAbort)

(EvalTryExn)
δ · µ · e0 ⇓ µ ′′ · raise E ′ν̄ E ′ = Ei ∀j. j < i→ E ′ 6= Ej δ · µ ′′ · ei[x̄ 7→ ν̄] ⇓ µ ′ · r

δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r

l 6∈ dom(µ) µ ′ = µ[l 7→ { f = ν }]

δ · µ · { f = ν } ⇓ µ ′ · l
(EvalRecord)

µ(l) = { . . . fi = νi . . . }

δ · µ · l.fi ⇓ µ ′ · νi
(EvalGet)

µ(l) = { . . . fi = νi . . . } µ ′ = µ[l 7→ { . . . fi = ν . . . }]

δ · µ · l.fi ← ν ⇓ µ ′ · ()
(EvalAssign)

¬(e ↓)
δ · µ · e ⇓ err

(EvalErr)

Figure 3.6: Inductive Evaluation Rules.

3.2. KIDML FORMALIZATION 55

δ · µ · e ⇓co µ ′ · r

δ · µ · ν̄ ⇓co µ · ν̄
================ (CoEvalVBar)

δ · µ · raise Eν̄ ⇓co µ · raise Eν̄
================================= (CoEvalRaise)

δ · µ · e ⇓co µ ′ · r

δ · µ · ghost e ⇓co µ ′ · r
======================= (CoEvalGhost)

δ · µ · absurd ⇓ µ · absurd
========================== (CoEvalAbsurd)

δ · µ · let reg_ = e in loop e ⇓co µ ′ · r

δ · µ · loop e ⇓co µ ′ · r
======================================= (CoEvalLoop)

δ · µ · e1 ⇓co µ ′ · r abort r

δ · µ · let βx = e1 in e2 ⇓co µ ′ · r
================================= (CoEvalLetAbort)

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓co µ ′′ · r

δ · µ · let βx = e1 in e2 ⇓co µ ′′ · r
=== (CoEvalLet)

δ(f) = (x : π, e) ‖x : π‖ = ‖ν̄‖ δ · µ · e[x̄ 7→ ν̄] ⇓co µ ′ · r

δ · µ · f〈τ〉(ν̄) ⇓co µ ′ · r
=== (CoEvalApp)

δ[f 7→ (x : π, e1)] · µ · e2 ⇓co µ ′ · r

δ · µ · fun f〈α〉(x : π) : σ = e1 in e2 ⇓co µ ′ · r
=== (CoEvalFun)

δ[f 7→ (x : π, e1)] · µ · e2 ⇓co µ ′ · r

δ · µ · rec f〈α〉(x : π) : σ = e1 in e2 ⇓co µ ′ · r
=== (CoEvalRec)

δ · µ · e2 ⇓co µ ′ · r

δ · µ · if false then e1 else e2 ⇓co µ ′ · r
=== (CoEvalIfFalse)

δ · µ · e1 ⇓co µ ′ · r

δ · µ · if true then e1 else e2 ⇓co µ ′ · r
======================================= (CoEvalIfTrue)

δ · µ · e0 ⇓co µ ′ · ν̄

δ · µ · try e0 with Ex̄⇒ e ⇓co µ ′ · ν̄
==================================== (CoEvalTry)

δ · µ · e ⇓co µ ′ · r abort r ∀i. Ei 6= r

δ · µ · try e0 with Ex̄⇒ e ⇓co µ ′ · r
=== (CoEvalTryAbort)

Figure 3.7: Co-inductive Evaluation Rules (1/2).

56 CHAPTER 3. KIDML

δ · µ · e ⇓co µ ′ · r

(CoEvalTryExn)
δ · µ · e0 ⇓ µ ′′ · raise E ′ν̄ E ′ = Ei ∀j. j < i→ E ′ 6= Ej δ · µ ′′ · ei[x̄ 7→ ν̄] ⇓co µ ′ · r

δ · µ · try e0 with Ex̄⇒ e ⇓co µ ′ · r
===

l 6∈ dom(µ) µ ′ = µ[l 7→ { f = ν }]

µ · { f = ν } ⇓ µ ′ · l==================================== (CoEvalRecord)
µ(l) = { . . . fi = νi . . . }

µ · l.fi ⇓ µ · νi====================== (CoEvalGet)

(CoEvalAssign)
µ(l) = { . . . fi = νi . . . } µ ′ = µ[l 7→ { . . . fi = ν . . . }]

µ · l.fi ← ν ⇓ µ ′ · ()===
¬(e ↓)

δ · µ · e ⇓co err
=============== (CoEvalErr)

Figure 3.8: Co-inductive Evaluation Rules (2/2).

case (CoEvalLet). Co-evaluation ends up with

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓co µ ′′ · r

δ · µ · let βx = e1 in e2 ⇓co µ ′′ · r
===

By co-induction hypotheses
δ · µ ′ · e2[x̄ 7→ ν̄] ⇓co div

or
δ · µ ′ · e2[x̄ 7→ ν̄] ⇓ µ ′′ · r r 6= div

If it is the first case, we complete the proof with the following derivation:

(CoEvalLet)
δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓co div

δ · µ · let βx = e1 in e2 ⇓co µ ′′ · r
==

If it is the second case, we complete the proof with the following derivation:

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓ µ ′′ · r
δ · µ · let βx = e1 in e2 ⇓ µ ′′ · r (EvalLet)

Finally, the coinductive relation is deterministic for terminating evaluations:

Lemma 3.2.4. If δ · µ · e ⇓ µ ′ · r and δ · µ · e ⇓co µ ′ · r ′ then r = r ′.

Proof. By induction on δ · µ · e ⇓ µ ′ · r and case analysis on δ · µ · e ⇓co µ ′ · r ′.

A corollary of this result is that if δ · µ · e ⇓ µ ′ · r holds, then r 6= div and ¬(δ · µ · e ⇓ µ ′ · r ′),
for any other result r ′ such that r 6= r ′.

3.2. KIDML FORMALIZATION 57

e ↓
ν̄ ↓ (↓VBar)

raise Eν̄ ↓ (↓Raise)
absurd ↓ (↓Absurd)

ghost e ↓ (↓Ghost)
loop e ↓ (↓Loop)

let βx = e1 in e2 ↓ (↓Let)
f〈τ〉(ν̄) ↓ (↓App)

fun f〈α〉(x : π) : σ = e1 in e2 ↓ (↓Fun)
rec f〈α〉(x : π) : σ = e1 in e2 ↓ (↓Rec)

if true then e1 else e2 ↓ (↓IfTrue)
if false then e1 else e2 ↓ (↓IfFalse)

try e0 with Ex̄⇒ e ↓ (↓Try)
{f = a} ↓ (↓Record)

a.f ↓ (↓Get)
ar.f← a ↓ (↓Assign)

Figure 3.9: Progress Judgment.

Generic error rule. To describe expressions whose evaluation “goes wrong”, we add to our
definition of semantics results the err constant, as follows:

r ::= . . . | err

When the evaluation of an expression gets stuck, we want to completely abort the current eval-
uation. This last sentence says it all: to propagate errors to top level, we must state that err
satisfies the abort predicate. This completes our definition of abort, as follows:

abort raise Eν̄ abort absurd abort div abort err

The introduction of the err constant in our language follows a classical approach when it comes
to prove type soundness using a big-step operational semantics. A major drawback of such an
approach is that we must augment our evaluation judgment with extra rules to describe terms
that get stuck, which increases the size of the semantics and, worse, it can compromise the the
type soundness result in case we miss some error rule. In order to circumvent this pitfall, we
follow the approach proposed by Arthur Charguéraud [30] and equip our semantics judgment with
a generic error rule. This captures very smoothly the idea that an expression gets stuck if no
evaluation rule can be applied. We define the generic error rule in terms of the progress judgment,
given Fig. 3.9. Relation e ↓ holds if there is at least one evaluation rule whose conclusion matches
expression e. We introduce the following generic error rule:

¬(e ↓)
δ · µ · e ⇓ µ ′ · err

which asserts that if an evaluation cannot progress, then e must evaluate down to err for any
procedures environment δ and store µ.

3.2.2 Type Soundness

In this section, we prove the soundness of our type system with respect to the introduced semantics
evaluation. We follow a syntactic approach, as proposed by Andrew Wright and Matthias Felleisen

58 CHAPTER 3. KIDML

[145]. Using such an approach, type soundness is derived from two lemmas: the first, the progress
lemma, states that closed well-typed expression can be evaluated down to a semantics result; the
second lemma, the preservation property, states that a well-typed expression evaluates down to a
well-typed result, not necessarily with the same ghost status. Our typing rules are summarized in
Fig. 3.10 and 3.11. In order to state the progress lemma, we need the following two definitions:

Definition 3.2.1 (Well-typed store). A store µ is said to be well typed with respect to a functions
typing context ∆, a variables typing context Γ , and a store typing context Σ, written Σ � µ, if
dom(µ) = dom(Σ) and ∆ · Γ · Σ ` l : (reg Σ(l), ∅, ∅), for every l ∈ dom(µ).

Definition 3.2.2 (Well-typed procedure environment). A procedure environment δ is said to be
well typed with respect to a functions typing context ∆, a variables typing context Γ , and a store
typing context Σ, written ∆ � δ, if dom(δ) = dom(∆) and ∆ · Γ + [x : π] · Σ ` e : (reg Σ(l), ∅, ∅), for
every f ∈ dom(δ) such that δ(f) = (x : π, e).

We can now state the progress lemma. This is as follows:

Lemma 3.2.5 (Progress). If ∆ · ∅ · Σ ` e : σ then e ↓.
Proof. By case analysis on ∆ · ∅ · Σ ` e : σ.

The proof of this lemma is almost trivial, thanks to the use of judgment e ↓. At each case, we
show that there is at least one semantics evaluation rule that can be applied.

case (TVar). Impossible.

cases (TABar), (TIfAbsurd1), (TIfAbsurd2), (TIfGhost), (TIf), (TRaiseReg), (TApp),
(TRaiseGhost), (TAppGhostArg), (TRecord), (TRecordGhost), (TGet), (TGetGhost),
(TAssignGhostField), (TAssignGhost), and (TAssign). For each of these cases, every oc-
currence of an atomic sub-expression must be fully evaluated, since variables are not typeable in
the empty environment. We complete the proof of each case by applying the corresponding (↓)
rule.

cases (TConst) and (TLoc) Particular cases of (TABar).

cases (TGhost), (TLoop), (TAbsurd), (TFun), (TRec), (TLet), and (TTry). For each
case, we apply the corresponding (↓) rule.

We now move to the preservation lemma. Before stating and proving such a result, we intro-
duce a substitution lemma, a classic result in the formalization of type systems. This auxiliary
result states that performing variable substitution over a well-typed expression results in a well-
typed expression. This is later used in the preservation proof to show that, whenever a semantics
evaluation involves substitution, the semantic result obtained is well-typed.

Lemma 3.2.6 (Substitution). If ∆ · Γ + [x̄ : βτ] · Σ ` e : (βeτe, ε, γ) and ∆ · Γ · Σ ` ā : (β ′τ, ∅, ∅),
where β ′ v β if e is a regular effectful expression, and (βeτe, ε, γ)[x̄ 7→ ā] does not compromise
the global assumption of admissible effects, then ∆ · Γ · Σ ` e[x̄ 7→ ā] : (β ′eτe, ε, γ)[x̄ 7→ ā] for some
β ′e. Moreover, if β ′ v β then β ′e v βe.

3.2. KIDML FORMALIZATION 59

∆ · Γ · Σ ` e : σ

Typeof(c) = τ
∆ · Γ · Σ ` c : (reg τ, ∅, ∅)

(TConst)
Σ(l) = Tτ

∆ · Γ · Σ ` l : (reg Tτ, ∅, ∅)
(TLoc)

Γ(x) = π

∆ · Γ · Σ ` x : (π, ∅, ∅)
(TVar)

∀i. ∆ · Γ · Σ ` ai : (πi, ∅)
∆ · Γ · Σ ` ā : (π, ∅, ∅)

(TABar)

∆ · Γ · Σ ` e : σ
∆ · Γ · Σ ` ghost e : (σ)

(TGhost)
∆ · Γ · Σ ` absurd : (reg τ, ∅, ∅)

(TAbsurd)

CheckTermination(loop e)
∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε, γ)
(TLoop)

¬CheckTermination(loop e)
∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε+ div, γ)
(TLoopDiv)

∆ · Γ + [x : π] · Σ ` e1 : σ ′ σ ′
�Γ+[x:π] v σ

∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α#Γ α 6∈ ∆
∆ · Γ · Σ ` fun f〈α〉(x : π) : σ = e1 in e2 : σ ′′ (TFun)

∆+ [f : ∀α.(x : π)→ σ] · Γ + [x : π] · Σ ` e1 : σ ′ σ ′
�Γ+[x:π] v σ

¬CheckTermination(rec f〈α〉(x : π) : σ = e1)

σ = (βτ, ε+ div, γ) ∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α 6∈ Γ α 6∈ ∆
∆ · Γ · Σ ` rec f〈α〉(x : π) : σ = e1 in e2 : σ ′′ (TRecDiv)

∆+ [f : ∀α.(x : π)→ σ] · Γ + [x : π] · Σ ` e1 : σ ′ σ ′
�Γ+[x:π] v σ

CheckTermination(rec f〈α〉(x : π) : σ = e1)

σ = (βτ, ε, γ) ∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α 6∈ Γ α 6∈ ∆
∆ · Γ · Σ ` rec f〈α〉(x : π) : σ = e1 in e2 : σ ′′ (TRec)

∆ · Γ · Σ ` a : (βBool, ∅, ∅) ∆ · Γ · Σ ` e2 : σ
∆ · Γ · Σ ` if a then absurd else e2 : σ

(TIfAbsurd1)

∆ · Γ · Σ ` a : (βBool, ∅, ∅) ∆ · Γ · Σ ` e1 : σ
∆ · Γ · Σ ` if a then e1 else absurd : σ

(TIfAbsurd2)

∆ · Γ · Σ ` a : (ghost Bool, ∅, ∅) ∆ · Γ · Σ ` e1 : σ1 ∆ · Γ · Σ ` e2 : σ2
∆ · Γ · Σ ` if a then e1 else e2 : (σ1 ∪ σ2)

(TIfGhost)

∆ · Γ · Σ ` a : (reg Bool, ∅, ∅) ∆ · Γ · Σ ` e1 : σ1 ∆ · Γ · Σ ` e2 : σ2
∆ · Γ · Σ ` if a then e1 else e2 : σ1 ∪ σ2

(TIf)

∆ · Γ · Σ ` e1 : (β1τ1, ε1, γ1) β1 v β ∆ · Γ + [x : βτ1] · Σ ` e2 : (π2, ε2, γ2)
∆ · Γ · Σ ` let βx = e1 in e2 : (π2, ε1 ∪ ε2, γ1 ∪ γ2)

(TLet)

Figure 3.10: Typing rules for expressions (1/2).

60 CHAPTER 3. KIDML

∆ · Γ · Σ ` e : σ

θ = [α 7→ τ] ρ = [x̄ 7→ ā] ‖α‖ = ‖τ‖ ‖x̄‖ = ‖ā‖
∆(f) = ∀α.(x : βτ ′)→ σ ∀i. ∆ · Γ · Σ ` ai : (β ′

iτ
′
iθ, ∅, ∅) ∀i. β ′

i v βi
∆ · Γ · Σ ` f〈τ〉 (ā) : σθρ

(TApp)

θ = [α 7→ τ] ρ = [x̄ 7→ ā] ‖α‖ = ‖τ‖ ‖x̄‖ = ‖ā‖
∆(f) = (x : βτ ′)→ σ ∀i.∆ · Γ · Σ ` ai : (β ′

iτ
′
iθ, ∅, ∅) ∃i. βi @ β ′

i

∆ · Γ · Σ ` f〈τ〉 (ā) : (σθρ)
(TAppGhostArg)

exception E : (β1τ1 . . . βnτn) ∀i. ∆ · Γ · Σ ` ai : (β ′
iτi, ∅, ∅) ∀i. β ′

i v βi
∆ · Γ · Σ ` raise Eā : (reg τ, raises E, ∅)

(TRaiseReg)

exception E : (β1τ1 . . . βnτn) ∀i. ∆ · Γ · Σ ` ai : (β ′
iτi, ∅, ∅) ∃i. βi @ β ′

i

∆ · Γ · Σ ` raise Eā : (ghost τ, ∅, raises E)
(TRaiseGhost)

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. Ei : πi ∀i. ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises Ei, γ− raises Ei) ∪

⋃
i

σi
(TTry)

type Tα = {f : βfτf} ∀i. ∆ · Γ · Σ ` ai : (βiτfi [α 7→ τ], ∅, ∅) ∀i. βi v βfi
∆ · Γ · Σ ` {f = a} : (reg Tτ, ∅, ∅)

(TRecord)

type Tα = {f : βfτf} ∀i. ∆ · Γ · Σ ` ai : (βiτfi [α 7→ τ], ∅, ∅) ∃i. βfi @ βi
∆ · Γ · Σ ` {f = a} : (ghost Tτ, ∅, ∅)

(TRecordGhost)

type Tα = {. . . , f : βfτf, . . .} ∆ · Γ · Σ ` a : (reg Tτ, ∅, ∅)
∆ · Γ · Σ ` a.f : (βf τf[α 7→ τ], ∅, ∅)

(TGet)

type Tα = {. . . , f : βfτf, . . .} ∆ · Γ · Σ ` a : (ghost Tτ, ∅, ∅)
∆ · Γ · Σ ` a.f : (ghost τf[α 7→ τ], ∅, ∅)

(TGetGhost)

type Tα = {. . . , f : ghost τf, . . .}
∆ · Γ · Σ ` al : (βlTτ, ∅, ∅) ∆ · Γ · Σ ` ar : (βrτf[α 7→ τ], ∅, ∅)

∆ · Γ · Σ ` al.f← ar : (Unit, ∅, ∅+ writes al.f)
(TAssignGhostField)

type Tα = {. . . , f : reg τf, . . .}
∆ · Γ · Σ ` al : (ghost Tτ, ∅, ∅) ∆ · Γ · Σ ` ar : (βrτf[α 7→ τ], ∅, ∅)

∆ · Γ · Σ ` al.f← ar : (Unit, ∅, ∅+ writes al.f)
(TAssignGhost)

type Tα = {. . . , f : reg τf, . . .}
∆ · Γ · Σ ` al : (regTτ, ∅, ∅) ∆ · Γ · Σ ` ar : (regτf[α 7→ τ], ∅, ∅)

∆ · Γ · Σ ` al.f← ar : (Unit, ∅+ writes al.f, ∅)
(TAssign)

Figure 3.11: Typing rules for expressions (2/2).

3.2. KIDML FORMALIZATION 61

Proof. By induction on the derivation ∆ · Γ + [x̄ : βτ] · Σ ` e : (βeτe, ε, γ).
The interesting cases happen when expression e is a variable or an assignment. The other cases

are either immediate or can be deduced from the induction hypotheses. In the cases of fun..in,
rec..in, let..in, and try..with expressions we additionally need to use standard weakening
and permutations lemmas [125], which pose no particular difficulty, and so we do not detail them
here.

case (TVar). The typing derivation ends up with

Γ(y) = π

∆ · Γ + [x̄ : βτ] · Σ ` y : (π, ∅, ∅)

If variable y does not occur in x̄, the result follows immediately. On the other hand, if y is equal
to some xi, then we have

y[x̄ 7→ ā] ≡ ai
The following holds by the hypotheses of the lemma

∆ · Γ · Σ ` ai : β ′τi, ∅, ∅

which concludes this case.

case (TAssign). The typing derivation ends up with

type Tα = {. . . , f : reg τf, . . .}
∆ · Γ + [x̄ : βτ] · Σ ` al : (regTτ, ∅, ∅) ∆ · Γ + [x̄ : βτ] · Σ ` ar : (reg τf[α 7→ τ], ∅, ∅)

∆ · Γ + [x̄ : βτ] · Σ ` al.f← ar : (Unit, ∅+ writes al.f, ∅)

Since e is an effectful expression, we have β ′ v β, i.e., the atoms al and ar can only be replaced
by regular expressions. This prevents us from substituting regular locations by ghost ones, which
would introduce a new ghost effect and eliminate an existing regular effect. By IH

∆ · Γ · Σ ` al[x̄ 7→ ā] : (regTτ, ∅, ∅)

∆ · Γ · Σ ` ar[x̄ 7→ ā] : (reg τf[α 7→ τ], ∅, ∅)

We can build the following derivation:

type Tα = {. . . , f : reg τf, . . .}
∆ · Γ · Σ ` al[x̄ 7→ ā] : (regTτ, ∅, ∅) ∆ · Γ · Σ ` ar[x̄ 7→ ā] : (reg τf[α 7→ τ], ∅, ∅)

∆ · Γ · Σ ` al[x̄ 7→ ā].f← ar[x̄ 7→ ā] : (Unit, ∅+ writes al.f, ∅)[x̄ 7→ ā]

which completes this case.

case (TAssignGhost). The typing derivation ends up with

type Tα = {. . . , f : reg τf, . . .}
∆ · Γ + [x̄ : βτ] · Σ ` al : (ghost Tτ, ∅, ∅) ∆ · Γ + [x̄ : βτ] · Σ ` ar : (βrτf[α 7→ τ], ∅, ∅)

∆ · Γ + [x̄ : βτ] · Σ ` al.f← ar : (Unit, ∅, ∅+ writes al.f)

We can only replace al by another atomic ghost expression ai. Otherwise, we would be introducing
a regular effect via a ghost assignment (aliasing), which conflicts with our global condition of
admissible effects. By IH

∆ · Γ · Σ ` al[x̄ 7→ ā] : (ghostTτ, ∅, ∅)

∆ · Γ · Σ ` ar[x̄ 7→ ā] : (β ′r τf[α 7→ τ], ∅, ∅)

62 CHAPTER 3. KIDML

We can build the following derivation:

type Tα = {. . . , f : reg τf, . . .}
∆ · Γ · Σ ` al[x̄ 7→ ā] : (ghost Tτ, ∅, ∅) ∆ · Γ · Σ ` ar[x̄ 7→ ā] : (βrτf[α 7→ τ], ∅, ∅)

∆ · Γ · Σ ` al.f[x̄ 7→ ā]← ar[x̄ 7→ ā] : (Unit, ∅, ∅+ writes al.f)[x̄ 7→ ā]

which completes this case.

case (TAssignGhostField). The typing derivation ends up with

type Tα = {. . . , f : ghost τf, . . .}
∆ · Γ + [x̄ 7→ ā] · Σ ` al : (βlTτ, ∅, ∅) ∆ · Γ + [x̄ 7→ ā] · Σ ` ar : (βrτf[α 7→ τ], ∅, ∅)

∆ · Γ + [x̄ 7→ ā] · Σ ` al.f← ar : (Unit, ∅, ∅+ writes al.f)

By IH
∆ · Γ · Σ ` al[x̄ 7→ ā] : (β ′lTτ, ∅, ∅)

∆ · Γ · Σ ` ar[x̄ 7→ ā] : (β ′rTτ, ∅, ∅)

We can build the following derivation:

type Tα = {. . . , f : ghost τf, . . .}
∆ · Γ · Σ ` al[x̄ 7→ ā] : (β ′lTτ, ∅, ∅) ∆ · Γ · Σ ` ar[x̄ 7→ ā] : (β ′rτf[α 7→ τ], ∅, ∅)

∆ · Γ · Σ ` al[x̄ 7→ ā].f← ar[x̄ 7→ ā] : (Unit, ∅, ∅+ writes al.f)[x̄ 7→ ā]

which completes this case.

A last step before stating the preservation property is to show that if an expression e is typeable
under a certain store typing Σ, then we can extend Σ with fresh bindings and e is still typeable.

Lemma 3.2.7 (Extension of Store Typing Context). If ∆ · Γ ·Σ ` e : σ then ∆ · Γ ·Σ ′ ` e : σ, where
Σ ⊆ Σ ′, i.e., dom(Σ) ⊆ dom(Σ ′) and ∀ l ∈ dom(Σ). Σ ′(l) = Σ(l).

Proof. Straightforward induction on ∆ · Γ · Σ ` e : σ.

We can finally state the preservation lemma, as follows:

Lemma 3.2.8 (Preservation). If ∆ · ∅ · Σ ` e : (βτ, ε, γ) and δ · µ · e ⇓ µ ′ · r, where Σ � µ and
∆ � δ, then ∆ · ∅ · Σ ′ ` r : (β ′τ, ε ′, γ ′) where β ′ v β, ε ′ ⊆ ε, γ ′ ⊆ γ, Σ ⊆ Σ ′, and Σ ′ � µ ′.

Proof. By induction on the derivation δ · µ · e ⇓ µ ′ · r and by case analysis on the typing rule used
at the bottom of the derivation.

cases (EvalVBar), (EvalRaise), and (EvalAbsurd). Trivial.

case (EvalRecord). Using lemma 3.2.7.

3.2. KIDML FORMALIZATION 63

case (EvalGhost). Semantics evaluation ends up with

δ · µ · e ⇓ µ ′ · r
δ · µ · ghost e ⇓ µ ′ · r

The typing derivation ends up with

∆ · ∅ · Σ ` e : (βτ, ε, γ)
∆ · ∅ · Σ ` ghost e : (βτ, ε, γ)

By IH
∆ · ∅ · Γ ′ ` r : (β ′τ, ε ′, γ ′)

where β ′ v β, ε ′ ⊆ ε, γ ′ ⊆ γ, Σ ⊆ Σ ′, and Σ ′ � µ ′.

case (EvalLoop). Semantics evaluation ends up with

δ · µ · let reg _ = e in loop e ⇓ µ ′ · r
δ · µ · loop e ⇓ µ ′ · r

We distinguish two cases depending on which rule was used at the conclusion of the type derivation.

• case (TLoop): typing derivation ends up with

CheckTermination(loop e) ∆ · ∅ · Σ ` e : (Unit, ε, γ)

∆ · ∅ · Σ ` loop e : (reg τ, ε, γ)

The following judgment is valid:

∆ · ∅ · Σ ` e : (Unit, ε, γ) ∆ · [_ : reg Unit] · Σ ` loop e : (reg τ, ε, γ)

∆ · ∅ · Σ ` let reg _ = e in loop e : (reg τ, ε, γ)

By IH
∆ · ∅ · Σ ′ ` r : (reg τ, ε ′, γ ′)

where ε ′ ⊆ ε, γ ′ ⊆ γ, Σ ⊆ Σ ′, and Σ ′ � µ ′.

• case (TLoopDiv): similar to the previous case.

case (EvalLetAbort). Semantics evaluation ends up with

δ · µ · e1 ⇓ µ ′ · r abort r

δ · µ · let βx = e1 in e2 ⇓ µ ′ · r
We can type an abort response with any type so we trivially have that

∆ · ∅ · Σ ′ ` r : (reg τ2, ∅, ∅)

64 CHAPTER 3. KIDML

case (EvalLet). Semantics evaluation ends up with

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓ µ ′′ · r
δ · µ · let βx = e1 in e2 ⇓ µ ′′ · r

Typing derivation ends up with

∆ · ∅ · Σ ` e1 : (β1τ1, ε1, γ1) β1 v β ∆ · [x : βτ1] · Σ ` e2 : (β2τ2, ε2, γ2)
∆ · ∅ · Σ ` let βx = e1 in e2 : (β2τ2, ε1 ∪ ε2, γ1 ∪ γ2)

By IH
∆ · ∅ · Σ ′ ` ν̄ : (β ′1τ1, ε

′
1, γ
′
1)

where β ′1 v β1, ε ′1 ⊆ ε1, γ ′1 ⊆ γ1, Σ ⊆ Σ ′, and Σ ′ ` µ ′.
By auxiliary lemma 3.2.7 we have that ∆ · ∅ ·Σ ′ ` e2 : (β2τ2, ε2, γ2). By the substitution lemma

we have
∆ · ∅ · Σ ′ ` e2[x̄ 7→ ν̄] : (β ′2τ2, ε2, γ2)

where β ′2 v β2, since β ′1 v β1. By IH

∆ · ∅ · Σ ′′ ` r : (β ′′2 τ2, ε
′
2, γ
′
2)

where β ′′2 v β2 (by transitivity), ε ′2 ⊆ ε2 ⊆ ε1 ∪ ε2, γ ′2 ⊆ γ2 ⊆ γ1 ∪ γ2, Σ ⊆ Σ ′′, and Σ ′′ � µ ′′.

case (EvalApp). Semantics evaluation ends up with

δ(f) = (x : βτ, e) ‖x : π‖ = ‖ν̄‖ δ · µ · e[x̄ 7→ ν̄] ⇓ µ ′ · r
δ · µ · f(ν̄) ⇓ µ ′ · r

We distinguish two cases depending on which rule was used at the conclusion of the type derivation.

• case (TApp): typing derivation ends up with

θ = [α 7→ τ] ρ = [x̄ 7→ ā]
∆(f) = ∀α.(x : βτ)→ (βeτe, εe, γe) ∀i. ∆ · ∅ · Σ ` νi : (β ′iτiθ, ∅, ∅) β ′i v βi

∆ · ∅ · Σ ` f (ν̄) : (βeτe, εe, γe)

We know that ∆ · [x̄ : βτ] · Σ ` e : (βeτe, εe) is derivable. By the substitution lemma

∆ · ∅ · Σ ` e[x̄ 7→ ν̄] : (β ′eτe, εe, γe)

where β ′e v βe, since β ′i v βi. By IH

∆ · ∅ · Σ ′ ` r : (β ′′e τe, ε ′e, γ ′e)

where β ′′e v βe, ε ′e ⊆ εe, γ ′e ⊆ γe, Σ ⊆ Σ ′, and Σ ′ ` µ ′.

• case (TAppGhostArg): similar to the previous case. The only difference is that the mask
of r obtained after applying the substitution lemma and the induction hypotheses is trivially
less ghost than the mask of (σθρ).

cases (EvalFun), (EvalRec), (EvalIfTrue), (EvalIfFalse), and (EvalTry). Straightfor-
ward induction over the sub-expressions.

3.2. KIDML FORMALIZATION 65

case (EvalTryAbort). Semantics evaluation ends up
δ · µ · e ⇓ µ ′ · r abort r ∀i. Ei 6= r

δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r
We can type an abort response with any type so we trivially have that

∆ · ∅ · Σ ′ ` r : (π, ∅, ∅)

case (EvalTryExn). Semantics evaluation ends up with
δ · µ · e0 ⇓ µ ′′ · raise E ′ν̄ E ′ = Ei ∀j. j < i→ E ′ 6= Ej δ · µ ′′ · ei[x̄ 7→ ν̄] ⇓ µ ′ · r

δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r
The typing derivation ends up with

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. Ei : πi ∀i. ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises Ei, γ− raises Ei) ∪

⋃
i

σi

We have trivially that
∆ · ∅ · Σ ′′ ` raise E ′ν̄ : (π, ∅, ∅)

where Σ ⊆ Σ ′′, and Σ ′′ ` µ ′′. By auxiliary lemma 3.2.7 we have that ∀i.∆ ·Σ ′′ · [x̄ : πi] ` ei : σi. By
the substitution lemma we have

∆ · ∅ · Σ ′′ ` ei[x̄ 7→ ν̄] : (βiτi, εi, γi)

where βi is a less ghost mask than the mask of σi, since the sequence ν̄ is typed with a completely
regular mask. By IH

∆ · ∅ · Σ ′ ` r : (β ′iτi, ∅, ∅)
where β ′i v βi, Σ ⊆ Σ ′, and Σ ′ ` µ ′.

cases (EvalGet) and (EvalAssign). Trivial.

case (EvalErr). Impossible.

Using the progress and preservation results, we can now prove the desired type soundness theo-
rem. We state that a well-typed closed expression cannot evaluate down to an error. This is strongly
inspired by Theorem 2 of the paper Pretty-Big Step Semantics, by Arthur Charguéraud [30].
Theorem 3.2.9 (Type Soundness). If ∆ · ∅ · Σ ` e : σ then

1. ¬(δ · µ · e ⇓ µ ′ · err)

2. ¬(δ · µ · e ⇓co µ ′ · err)

Proof.
1. By induction on ∆ · ∅ · Σ ` e : σ, we apply the progress lemma to establish that a well-typed

sub-expression can be (co-)evaluated. Since err is not a well-typed expression, it is never the
case that err is evaluated. If a well-typed sub-expression evaluates down to a semantic result,
then we use preservation to show that it evaluates down to a well-typed result. Since err is
not a well-typed expression, it cannot be the result of an evaluation.

2. By lemma 3.2.3, either δ · µ · e ⇓ µ ′ · r or δ · µ · e ⇓co div. If it is the latter, there is nothing
to prove. In the former case, the proof follows by the previous point.

66 CHAPTER 3. KIDML

3.3 Discussion and Related Work

A language with ghost code. In this chapter, we presented and formalized KidML, a program-
ming language of the ML family whose most distinguish feature is the interaction between ghost
code and stateful traits, such as assignments and divergence. The presence of ghost code makes
KidML suitable to be used as the programming language of a deductive verification framework.
In the activity of applying deductive techniques to the verification of programs, we often need to
introduce auxiliary elements, e.g., functions or variables, with the purpose to make the proof effort
much easier and sometimes, namely in an automated proof setting, to make it possible. This is
exactly the role of ghost code. Ghost elements are removed by a code extraction mechanism, which
generates a correct-by-construction, executable program.

The notion of ghost code dates back to the origins of deductive verification itself. The first
acknowledged use of auxiliary variables, the most primitive form of ghost code, is due to Lucas
in 1968 [103]. From that moment on, ghost code evolved into a standard component of deductive
verification tools. We can cite VCC [38], Dafny [97], Viper [114], and Why3 itself as verification
platforms that allow users to augment a program with some form of ghost code. The crucial
property that all these tools statically guarantee is that ghost code does not interfere with regular
data. This is also the case with KidML, with our type system featuring a clear separation between
regular and ghost effects, as well as the global condition of admissible effects. In particular, we
forbid assignments over regular locations when these are aliased with ghost ones.

A language with effects. KidML is a stateful language. It features memory assignment, raise
and catch of exceptions, and divergence. The simultaneous use of imperative and ghost code is what
makes the design of KidML type system a challenging task. In our design of such a type system, we
chose to treat effects via oracle functions. This is mostly evident in two situations: when it comes
to prove the termination of a certain expression using the CheckTermination predicate (we recall
that the evaluation of some piece of ghost code must always terminates, i.e., a ghost expression can
never be assigned the divergence effect); in the characterization of admissible effects via the adm
predicate, where we state that no assignment on a regular location is allowed when this is aliased
with a ghost one, without giving a precise definition of what it means for two memory locations
to be aliased.

A comprehensive treatment of effects in the WhyML language is given by Jean-Christophe
Filliâtre, Léon Gondelman [72, Chap.3] and Andrei Paskevich [63]. The authors present a type
and effect system with regions, an artifact that is used to statically track all the memory aliases
occurring in a given program. The developed type system uses singleton regions and gives strong
guarantees about the separation of function arguments and return value. Each type definition
is annotated with a set of regions, one for each mutable component of such a type. In order
to statically know all the existing aliases in the program, this approach cannot be applied to
arbitrary pointer-based data structures, such as an union-find implementation4, since the set of
involved regions is not statically bound. In the design of KidML, we abstract away many of the
details of this precise characterization of effects and memory aliases, since these are orthogonal to
our intended use of the language. It would be interesting to study if the proposed approach can
be applied to a language of the size of KidML.

Differences with respect to WhyML. The KidML language draws inspiration from WhyML.
Features like ghost code, recursive function definitions, stateful computations, top-level definition
of record types, and exceptions treatment can be found in both languages. In fact, KidML is very

4In Sec. 5.2, we describe an approach that allows us to prove a union-find data structure in the WhyML language.

3.3. DISCUSSION AND RELATED WORK 67

close to the internal representation of a WhyML program. For instance, our separation in different
syntactic categories of local variable binding and local (recursive) functions definitions can also be
found in the internal representation of WhyML. There are, nevertheless, some WhyML interesting
features that we did not include in the design of KidML. We detail some of main differences between
KidML and WhyML in the following.

A key aspect in the practicality of functional programming languages is the presence of pattern
matching [95, 105]. This is a mostly appreciated feature when it comes to manipulate recursively-
defined data types, e.g., algebraic data types. WhyML features top-level definition of algebraic
data types, as well as a match..with construction to destruct values of such types [121]. We do
not include pattern matching in KidML, as we believe that this would unnecessarily complicate the
design and formalization of the language, without adding expressiveness power.

One can rely on the WhyML module system to break the program components into smaller
individual units. These units can then be linked together using the Why3 data refinement mecha-
nism. In Chap. 6, we provide several examples of programs implemented and proved using Why3,
where a key component is the use of WhyML modules to separate a client code from the implemen-
tation details of a provided module. The KidML language does not feature any kind of separation
on the program components, other than the local definition of functions. Equipping KidML with
a module system and a module refinement mechanism, in the style of WhyML, would certainly
approach KidML to a more realistic programming language.

Finally, an important aspect of WhyML is that it features a lightweight form of higher-order
programming. One can pass functions as arguments of other functions, return functions as the
result of some computation, and define anonymous functions, as long as all of those remain stateless
functions. Additionally, as it is commonly the case in a higher-order setting, WhyML allows
the user to partially apply some functional symbol, which generates a new function that can be
manipulated, e.g., to be passed as an argument to a higher-order traversal procedure. In KidML,
every function application is total, i.e., the programmer must always supply the exact number of
attended arguments. To extend KidML with some form of higher-order programming, we would
need to add functions as a possible result of evaluation, and we most certainly would have to
reconsider the design of our type with effects system, in order to limit the interaction between
higher-order programming and stateful code.

68 CHAPTER 3. KIDML

The finger pointing at the
moon is not the moon.

Buddhist saying

4
Extraction

In this chapter, we design a code extraction procedure for KidML programs. The main task of
extraction is the removal of any ghost element from the source code. Extraction is guided by
the KidML type system, which guarantees that we only apply our extraction function to regular
expressions, i.e., expressions that are meaningful from an operational point of view. We present
our extraction function in Sec. 4.1. One novelty of our extraction function, with respect to other
existing similar presentations [64], is that we erase as much as possible, i.e., without compromising
the soundness of the extracted code, any trace of ghost code. This adds some difficulty in our
presentation and formalization, but we believe this is worth the effort in order to obtain a more
efficient extracted code.

An important aspect of an extracted program is that it preserves the behavior of the original
source program. This holds both from a typing, as well as from a semantics point of view. The
former means that a well-typed regular expression is extracted into a well-typed expression. In
particular, the extracted expression is typed with the same regular effects and with an empty set
of ghost effects. The latter means that if the original source code diverges, then the extracted
code diverges as well; and if the original source code evaluates down to a semantics result, then
the extracted expression evaluates down to the extraction of that result. In Sec. 4.2 and 4.3, we
present the proofs of typing and semantics preservation, respectively.

The extraction procedure we present in this chapter is a representative part of the Why3
extraction mechanism, which we have implemented in the course of this thesis. In Sec. 4.4, we
describe the implemented extraction machinery, with an highlight on the adopted architecture,
which clearly separates code translation from the printing phase, and the use of the new Why3
extract command. Sec. 4.5 concludes this chapter with some related work and discussion. We
detail on some of the main differences between the extracted function defined in this chapter and
the one we actually implemented.

4.1 Extraction Function

In this section, we define our extraction function over KidML types, top-level declarations (ex-
ceptions and record-types), and finally over well-typed regular expressions. In the following, we
denote our extraction function by Eβ(·) , meaning extraction is parameterized by a mask β.

69

70 CHAPTER 4. EXTRACTION

4.1.1 Extraction of Types

We begin by defining what it means to extract a type π, i.e., a type of the form β ′τ. The idea
is to remove some of the type components, according to the mask passed as an argument to the
extraction function.

Definition 4.1.1 (Extraction of π). We define the extraction of type π by induction over its
structure, as follows:

β ′ v β Eβ(β ′τ)

Eβ(β ′τ) ,

{
Unit if ∀i. βi = ghost

β ′τ�β otherwise

The pre-condition on the left ensures that we only apply extraction with a mask β of same
length and that is at least as ghost as mask β ′. The notation β ′τ�β means that we filter the
elements of sequence β ′τ with respect to the regular elements of mask β. In other words, we keep
the β ′iτi pairs such that βi = reg and all the ghost components of type β ′τ are removed. For
instance, the result of E(ghost, reg)(reg Int, reg Bool) is the type reg Bool. As we shall see later,
this is useful when extracting a function body against the type declared in the function signature.
We lift function Eβ(·) to the level of σ types, as follows:

Definition 4.1.2 (Extraction of σ).

β ′ v β Eβ(β ′τ, ε, γ)

Eβ(β ′τ, ε, γ) , (Eβ(β ′τ), ε, ∅)

The most important point about this definition is that the extracted type contains no ghost
effects. This conforms to the fact that extracted expressions cannot contain any such effect, since
every piece of ghost code is removed. We present, as well, the following auxiliary definition:

Definition 4.1.3 (Ghost status of σ). We define the ghost status of a type σ as follows:

G(σ)

G(βτ, ε, γ) ,

{
ghost if ∀i. βi = ghost ∧ ε = ∅

reg otherwise

When defining extraction for KidML expressions, we will be using G(·) to decide which sub-
expressions we must extract. Following this definition, an extractable expression is one that is
typed with a type σ such that G(σ) = reg. An expression is thus extractable if its mask is not
entirely ghost, or it is a stateful expression. Note that, for instance, an expression to which we
assign type (Unit, ∅, ∅) is considered a ghost expression, and so it can be completely removed.

4.1.2 Extraction of Top-level Declarations

KidML top-level declarations include the declaration of an exception name and arguments, as well
as the declaration of new record types. We define the extraction of such KidML symbols, as follows:

4.1. EXTRACTION FUNCTION 71

Definition 4.1.4 (Extraction of top-level declarations).

Eβ(type Tα = {f : β ′τ}) , type Tα = {f : β ′τ�β ′}

Eβ(exception E : π) , exception E : E(π)

When it comes to extract top-level declarations, the argument mask is meaningless. We keep it
in the above definition just for completeness purposes. The extraction of a record-type declaration
removes from the type definition all the ghost fields. The notation f : β ′τβ ′ stands for the filter
of the record fields with respect to mask β. Let us consider, for instance, the following type
declaration:

KidMLtype c α = { x: reg Int; y: ghost α }

The result of extracting such a type is as follows:
KidMLtype c α = { x: reg Int }

Note that we do not remove type variables from the type definition, even if these are no longer used
after extraction. The unused variables types act as ghost types after extraction1. In the following,
we always use notation �β to refer to the filtering of some sequence with respect to mask β. Finally,
in the extraction of exception declarations, E(π) stands for the removal of all βiτi pairs such that
βi = ghost. For instance, the exception declaration of page 44 is extracted to the following:

KidMLexception Return : reg Int

If all arguments of an exception E are declared ghost, then E has no arguments after extraction.

4.1.3 Extraction of Expressions

We define now our procedure to extract KidML expressions. We separate this definition into
two distinct functions. First, we define the extraction of semantic results that satisfy the abort
predicate, as follows:

Definition 4.1.5 (Extraction of abort results). Let r be a semantic result such that abort r. We
define the extraction of r as follows:

abort r Eβ(e)

Eβ(absurd) , absurd

Eβ(div) , div

Eβ(raise Eν̄) , raise Eν̄�M(E)

The interesting aspect about the extraction of such expressions is that it completely ignores
the argument mask. For the first two cases, the extraction function actually acts like the identity
function. For the extraction of raise expressions, we filter the sequence ν̄ of arguments using
M(E), the mask of exception E. Such a mask corresponds to the sequence of ghost status assigned
to the arguments in the exception declaration. For instance, if we return to the previous example
of the Return exception, result of extracting the KidML program

1It is an interesting aspect that ghost code is generating ghost types.

72 CHAPTER 4. EXTRACTION

KidMLexception Return : reg Int, ghost Bool

raise Return (42, false)

is the following one:
KidMLexception Return : reg Int

raise Return 42

We can observe here the coherence in the number and type of arguments of the extracted exception
declaration, and the extracted raise expression. The extraction of an exception applied to a
sequence ā of atomic variables follows the exact same approach:

Eβ(raise Eā) , raise Eā�M(E)

We now move to the definition of the extraction function over KidML expressions. The complete
definition of this function is given in Fig. 4.1. The conditions on the top-left corner of the definition
specify that this function can only be applied to well-typed regular KidML expressions. Moreover,
the mask β given as an argument of extraction, and the mask β ′ assign by the KidML type system
to the expression being extracted, must verify the property β ′ v β. Throughout the definition
of Eβ(e), we use notation E(e) to denote the extraction of expression e under its own mask. In the
following, we elaborate on the extraction of each syntactic category.

Extraction of sequence of atomic expressions. Extracting a sequence ā of atoms amounts
to a filter of this sequence according to mask β. Given the pre-condition of this function, β is
at least as ghost as the mask of ā, hence every ghost variable of ā does not occur in ā�β. If we
consider, for instance, the extraction of expression

KidML(x, 42, x)

where x is a ghost variable, only two masks can be used: either β = ghost, reg, ghost, in which
case the result of extraction is the constant 42; or β = ghost, i.e., β is a completely ghost mask,
in which case the extracted expression corresponds to the unit value ().

Extraction of function definitions. When it comes to extract an expression of the form

fun f〈α〉(x : π) : σ = e1 in e2

if f is a ghost function, the result of extraction is simply the extraction of expression e2 under
mask β. On the other hand, if f is regular, we recursively extract the body e1 with the mask given
in type σ. We assume σ to be equal to (β ′τ, ε, γ). We also extract the arguments and the return
type σ. The following KidML program

KidMLfun f (x: reg Int) : (ghost Int, ∅, ∅) = x + 1 in
fun g (y: ghost Int) : ((ghost Int, reg Int), ∅, ∅) = (42, 73) in
e

gets extracted into
KidMLfun g () : (reg Int, ∅, ∅) = 73 in Eβ(e)

Every application of f inside expression e is typed as a ghost expression, by rule (TApp). Conse-
quently, there remain no occurrences of f in Eβ(e). Extraction of recursive definitions follows the
exact same pattern.

4.1. EXTRACTION FUNCTION 73

∆ · Γ · Σ ` e : (β ′τ, ε, γ), G(β ′, ε) = reg, β ′ v β E
β
(e)

E
β
(ā) , ā�β

E
β

(
fun f〈α〉(x : π) : σ = e1
in e2

)
,

E
β
(e2) if G(σ) = ghost

fun f〈α〉 (E(x : π)) : E(β ′τ, ε, γ) = E
β ′(e1)

in E
β
(e2) otherwise

E
β

(
rec f〈α〉(x : π) : σ = e1
in e2

)
,

E
β
(e2) if G(σ) = ghost

rec f〈α〉 (E(x : π)) : E(β ′τ, ε, γ) = E
β ′(e1)

in E
β
(e2) otherwise

E
β
(let β ′x = e1 in e2) ,

E
β
(e2) if G(e1) = ghost

Eghost(e1) if G(e2) = ghost

let reg_ = Eghost(e1) in E
β
(e2) if β ′ = ghost ∧

ε1 6= ∅

E
β
(e2) if x̄ /∈ FV(E

β
(e2)) ∧

ε1 = ∅

let reg x�β ′ = Eβ ′(e1) in E
β
(e2) otherwise

E
β
(f〈τ〉 (ā)) , let reg x = f〈τ〉 (ā�β ′) in x̄�β if ∆(f) = (x : β ′τ)→ σ

E
β
(loop e) , loop E(e)

E
β
(if a then absurd else e2) ,

{
E
β
(e2) if β ′ = ghost

if a then absurd else E
β
(e2) otherwise

E
β
(if a then e1 else absurd) ,

{
E
β
(e1) if β ′ = ghost

if a then E
β
(e1) else absurd otherwise

E
β
(if a then e1 else e2) , if a then E

β
(e1) else E

β
(e2)

Eghost(a.f) , ()

Ereg(a.f) , a.f

Eghost({f = a}) , ()

Ereg({f = a}) , {f = a}�M(f)

E
β
(al.f← ar) , al.f← ar

E
β
(raise Eā) , raise Eā�M(E)

E
β
(try e0 with Ex̄⇒ e) , try E

β
(e0) with E

β
(Ex̄⇒ e)

Figure 4.1: Extraction of Expressions.

74 CHAPTER 4. EXTRACTION

Extraction of local binding expressions. The extraction of let..in expressions demands a
little more of attention. We distinguish five different possible cases when it comes to extract an
expression of the form let β ′x = e1 in e2. First, if e1 expression is completely ghost, we proceed
with the extraction of expression e2. For instance, the KidML expression

KidMLlet ghost x = 0 in 42

is simply translated to the constant 42.
The next case is triggered when e2 is a ghost expression. We know that e1 is a stateful

expression, otherwise the whole let..in would be typed as ghost expression. In this case, the
result of e1 is meaningless, and so we extract this expression under a completely ghost mask. If
we consider the following KidML program

KidMLlet reg _ = a.c <- 42 in
ghost 0

where c is a regular field of some record type, it extracts to a.c <- 42.
The third case corresponds to the extraction of a let..in expression where e2 is a regular

expression and e1 is a stateful expression, even if it is assigned a completely ghost mask. In such a
case, we erase the results of e1, by extracting it with a completely ghost mask, and then extract e2
as expected. As an example, the following KidML program

KidMLlet ghost x =
let reg _ = a.c <- 42 in 0 in

73

where a is a regular expression, and c a regular field, gets extracted into
KidMLlet reg _ = a.c <- 42 in

73

This highlights a subtle point of the KidML language and your extraction procedure: even if we
declare x as ghost variable, it does not necessarily mean that such a variable is bound to a ghost
expression. This differs from the following expression

KidMLlet ghost x = ghost e

in the sense that now the whole expression e is typed as a ghost expression. In particular, there
can be no regular effects in e and so the program

KidMLlet ghost x =
ghost (let reg _ = a.c <- 42 in 0) in

73

would be rejected by the KidML type system.
The case in which e2 is a regular expression, e1 is stateless expression, and the sequence x̄ of

locally bound variables does not occur in the result of extracting e2, is an optimization of our
extraction function. Let us consider the following KidML program:

KidMLfun f () : ((ghost Int, reg Int), ∅, ∅) =
let reg x = ... (* terminating, but very long computation *) in
(x, 0) in

f ()

We could extract such a program in the following one:
KidMLfun f () : (reg Int, ∅, ∅) =

let reg x = ... (* terminating, but very long computation *) in

4.1. EXTRACTION FUNCTION 75

0 in
f ()

which is a well-typed KidML program. However, we would be paying the price of executing a long
computation whose value is only used within ghost code. In order to avoid such a situation, we
extract the original program into

KidMLfun f () : (reg Int, ∅, ∅) = 0 in
f ()

The final case is, perhaps, the one that happens most commonly in practice. In this case,
both e1 and e2 are regular expressions. We proceed by extracting e2 with the argument mask of
extraction, and e1 with the mask assigned in the return type of f. The sequence of variables x̄
is also filtered according to this mask. As an example of such case, let us consider the following
KidML program:

KidMLfun f () : ((reg Int, ghost Int), ∅, ∅) =
let reg x, ghost y = 42, 0 in (x, y) in

f ()

This is extracted into the following one:
KidMLlet f () : (reg Int, ∅, ∅) =

let reg x = 42 in x in
f ()

Extraction of applications. The extraction rule of applications, although somewhat cryptic,
is very easily explained using an example. Let us consider, for instance, the following KidML
program:

KidMLfun f (y: ghost Int, x: reg Int) : ((reg Int, reg Int), ∅, ∅) = (x, x) in
fun g (z: reg Int) : ((ghost Int, reg Int), ∅, ∅) = f (z, 42) in ...

Extracting the definition of function f is not particularly challenging:
KidMLfun f (x: reg Int) : ((reg Int, reg Int), ∅, ∅) = (x, x)

The signature of function g is also straightforwardly translated into
KidMLlet g (z: reg Int) : (reg Int, ∅, ∅)

When it comes to extract the definition of g, we need to extract the application f (z, 42) under
the mask assigned in the return type of g. In order to take this mask into account, we locally bind
the regular results of the application, and then filter the sequence of bound variables using the
mask of the function return type. The extraction of function g is as follows:

KidMLlet g (z: reg Int) : (reg Int, ∅, ∅) =
let reg x, reg y = f (42) in y

Extraction of loops. The extraction of a loop e expression is straightforward. We simply
recursively extract e, the body of the loop, with its own mask. Since e is always typed as a Unit
expression, this is actually the empty mask.

Extraction of conditional expressions. The extraction of if..then..else expressions fol-
lows a very simple approach, where sub-expressions are recursively extracted using the mask that
is initially given as an argument. The interesting aspect of this rule is the case when one of the

76 CHAPTER 4. EXTRACTION

branches is absurd and the test is a ghost expression. In that case, and according to typing
rules (TIfAbsurd1) and (TIfAbsurd2), we do not need to keep the conditional structure in the
extracted expression.

Extraction of access, creation, and assignment of record fields. The extraction of record-
related expressions is straightforward. In the case of access and creation expressions, we can only a
apply either a completely (singleton) ghost mask or a regular one. In the first case, both expressions
are translated into the unit value (). On the other hand, extraction function just behaves as the
identity function for access, and filters the pairs fi = ai according to the maskM(f). This mask
stands for the mask that is assigned to the fields in the declaration of the associated record type.
For instance, the following KidML program

KidMLtype t = { a: ghost Int; b: reg Int; c: ghost Int }

{ a = 2; b = 3; c = 5 }

is translated into
KidMLtype t = { b: reg int }

{ b = 3 }

As we did for exceptions, we insist on the coherence between the extracted declaration of type t
and the expression that creates a value of such type.

Given the pre-condition on the top-left corner of Fig. 4.1, we know we can only extract regular
expressions. When it comes to extract assignment expressions, we know this can only be a regular
assignment, which we must keep in the extracted program. Hence, the extraction function behaves
as the identity function for assignments.

Extraction of exception raising. The extraction of a raise expression, where the exception is
applied to a sequence ā of atomic variables, is similar to the extraction of a semantics result of the
form raiseEν̄. It ignores mask β and filters the sequence ā according to the mask of exception E.

Extraction of exception handling. The last case in our definition of the extraction function
concerns the extraction of try..with expressions. We first recursively extract the body of the
handler, expression e0, with mask β. Next, we must extract each branch of the handler individually.
Naively, we could simply apply the extraction function over each expression ei. However, some
of these might very well be ghost expressions. Let us take a moment in order to clarify such a
possibility. Consider, for instance, the following KidML program:

KidMLexception E : ghost Int
type ref α = { c: α }

fun f (r: reg (ref Int)) : (ghost Int, ∅+writes r.c, ∅) =
try r.c <- 42; 89
with E x => x in

f ({ c = 0 })

Even if the only branch of this handler is a ghost expressions, rule (TTry) assigns a regular type
to the whole try..with expression. This is due to the assignment r.c <- 42, a regular effect that
we must preserve in the extracted program. To extract each branch of an exception handler, we
proceed as follows. If the branch is a completely ghost expression, we replace it with the unit value,

4.1. EXTRACTION FUNCTION 77

G(ei) = ghost
Eβ(Ex̄⇒ ei) , Ex̄�M(E) ⇒ ()

where G(ei) = ghost is a notation shortcut which we use to state expression ei is a ghost expression.
Let us note that, even if ei is a ghost expression, we must preserve the branch structure to catch
exception Ei. Otherwise, if expression e0 raises Ei, the extracted code would be introducing a
regular effect that did not existed in the source code.

If ei is a regular expression, we straightforwardly extract it using mask β, as follows:

G(ei) = reg
Eβ(Ex̄⇒ ei) , Ex̄�M(E) ⇒ Eβ(ei)

The result of extracting the above KidML program is as follows:
KidMLexception E

type ref α = { c: α }

fun f (r: reg (ref Int)) : (ghost Int, ∅+writes r.c, ∅) =
try r.c <- 42
with E -> () in

f ({ c = 0 })

Recursive calls to the extraction function respect pre-conditions. We complete our
presentation of the extraction function by showing that, for every recursive call in the definition
of Eβ(·), we respect the pre-conditions given in the top-left corner of Fig. 4.1.

Lemma 4.1.1 (Extraction function respects pre-conditions). In the definition of Figure 4.1, for
each recursive call Eβ(e) we have that ∆ · Γ · Σ ` e : (β ′τ, ε, γ) s.t. G(β ′, ε) = reg and β ′ v β.

Proof. Supposing the pre-conditions holds at entry, by case analysis on the structure of e, following
the definition of the extraction function.

cases (e ≡ {f = a}), (e ≡ a.f), (e ≡ ā), (e ≡ absurd), (e ≡ f(ā)), (e ≡ ar.f ← a) , and
(e ≡ raise Eā). Nothing to prove.

case (e ≡ fun f(x : π) : (β ′τ, ε) = e1 in e2). The typing derivation ends up with

∆ · Γ + [x : π] · Σ ` e1 : (β1τ, ε ′1, γ ′1) (β1τ, ε
′
1, γ
′
1)�Γ+[x:π] v (β0τ, ε1, γ1)

∆+ [f : ∀α.(x : π)→ (β0τ, ε1, γ1)] · Γ · Σ ` e2 : (β ′τ, ε, γ) α#Γ α#∆
∆ · Γ · Σ ` fun f〈α〉(x : π) : (β0τ, ε1, γ1) = e1 in e2 : (β ′τ, ε, γ)

We distinguish two sub-cases:

• sub-case G(β0, ε1) = ghost: by hypotheses we have G(β ′, ε) = reg and β ′ v β, so the
recursive call Eβ(e2) respects the pre-conditions.

• sub-case G(β0, ε1) = reg: as for the previous case, it is easy to conclude that the recursive
call to Eβ0(e1) respects the pre-conditions.

We have (β1τ, ε
′
1, γ
′
1) v (β0τ, ε1, γ1), in particular β1 v β0. We can thus conclude that the

recursive call Eβ0(e1) respects the pre-conditions.

78 CHAPTER 4. EXTRACTION

case (e ≡ rec f(x : π) : (β ′τ, ε, γ) = e1 in e2). Similar to the previous case.

case (e ≡ let β ′x = e1 in e2). The typing derivation ends up with

∆ · Γ · Σ ` e1 : (β1τ1, ε1, γ1) β1 v β ′ ∆ · Γ + [x : β ′τ1] · Σ ` e2 : (π2, ε2, γ2)
∆ · Γ · Σ ` let β ′x = e1 in e2 : (π2, ε1 ∪ ε2, γ1 ∪ γ2)

We distinguish five sub-cases:
• sub-case G(β1, ε1) = ghost: by hypotheses, we have G(π2, ε2) = reg and so the call to Eβ(e2)
respects the pre-conditions.

• sub-case G(π2, ε2) = ghost: expression e1 must be an effectful expression, G(β1, ε1) = reg.
We trivially have that β1 v ghost, so the call Eghost(e1) respects the pre-conditions.

• sub-case β ′ = ghost and obs(ε1): by hypotheses we have G(π2, ε2) = reg. Expression e1 is
an effectful expression, thus the call Eghost(e1) respects the pre-conditions. Expression e2 is
a regular expression, and so the call Eβ(e2) respects the pre-conditions.

• sub-case x̄ /∈ FV(Eβ(e2)) and ¬obs(e1): similar to the case G(β1, ε1) = ghost.

• otherwise, we have G(β1, ε1) = reg and G(π2, ε2) = reg. Since β1 v β ′, we conclude that
the call Eβ ′(e1) respects the pre-conditions. We can also easily conclude that the call Eβ(e2)
respects the pre-conditions.

case (e ≡ loope ′) We distinguish two sub-cases according to the typing rule used at the bottom
of the derivation:
• case (TLoop): the typing derivation ends up with

CheckTermination(loop e)
∆ · Γ · Σ ` e ′ : (Unit, ε, γ)

∆ · Γ · Σ ` loop e ′ : (reg τ, ε, γ)

The call E(e ′) trivially respects the pre-conditions, since e ′ is a unit expression and we
extract e ′ with its own mask.

• case (TLoopDiv): similar to the previous case.

case (e ≡ if a then absurd else e2). We distinguish two sub-cases according to the typing rule
used at the bottom of the derivation:
• case (TIfAbsurd1): the typing derivation ends up with

∆ · Γ · Σ ` a : (β ′Bool, ∅, ∅) ∆ · Γ · Σ ` e2 : (β2τ, ε2, γ2)
∆ · Γ · Σ ` if a then absurd else e2 : (β2τ, ε2, γ2)

where β2 v β and G(β2, ε2) = reg. The recursive call Eβ(e2) thus respects the pre-conditions.

• case (TIf): typing derivation ends up with

∆ · Γ · Σ ` a : (reg Bool, ∅, ∅)
∆ · Γ · Σ ` absurd : (regτ, ∅, ∅) ∆ · Γ · Σ ` e2 : (β2τ2, ε2, γ2)

∆ · Γ · Σ ` if a then absurd else e2 : (β2τ2, ε2, γ2)

The call E(absurd) trivially respects the pre-conditions. By hypotheses β2 v β and G(β2, ε2) =
reg so the call Eβ(e2) respects the pre-conditions.

4.2. TYPING PRESERVATION UNDER EXTRACTION 79

case (e ≡ if a then e1 else absurd). Similar to the previous one.

case (e ≡ if a then e1 else e2). The typing derivation ends up with

∆ · Γ · Σ ` a : (reg Bool, ∅, ∅) ∆ · Γ · Σ ` e1 : (β1τ, ε1, γ1) ∆ · Γ · Σ ` e2 : (β2τ, ε2, γ2)
∆ · Γ · Σ ` if a then e1 else e2 : ((β1 t β2)τ, ε1 ∪ ε2, γ1 ∪ γ2)

where G(β1 t β2, ε1 ∪ ε2) = reg and β1 t β2 v β. In particular,

G(β1, ε1) = reg G(β2, ε2) = reg β1 v β β2 v β

The recursive calls Eβ(e1) and Eβ(e2) thus respect the pre-conditions. The call E(a) also respects
the pre-conditions since a is a regular expression and we use its own mask to extract it.

case (e ≡ try e0 with Ex̄⇒ e ′). The typing derivation ends up with

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. Ei : πi ∀i. ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises Ei, γ− raises Ei) ∪

⋃
i

σi

where G(β0, ε) = reg, β0 v β, and ∀i.βi v β. It is easy to conclude that the call Eβ(e0) respects
the pre-conditions. The call Eβ(Ex̄⇒ e) performs an individual extraction of the branches. For
each ghost branch, we do not call the extraction function, so there is no violation of the pre-
conditions. On the other hand, for each regular branch ei, we have G(βi, ε1) = reg and so the call
Eβ(ei) respects the pre-conditions.

4.2 Typing Preservation under Extraction
In this section, we prove that our extraction function produces only well-typed, regular KidML
expressions. Before demonstrating such a theorem, let us introduce some auxiliary properties
about the masks comparison operator v and the masks union operator t. First, we show that v
defines a preorder, as established by the following property:

Property 4.2.1 (Relation v is a preorder).

1. β v β.

2. if β1 v β2 and β2 v β3 , then β1 v β3.

Proof.

1. by the definition of v.

2. by case analysis on β3.

We prove, as well, that t is an Associative, Commutative, and Idempotent operator:

Property 4.2.2 (Operator t is ACI).

1. (β1 t β2) t β3 = β1 t (β2 t β3).

80 CHAPTER 4. EXTRACTION

2. β1 t β2 = β2 t β1.

3. β t β = β.

Proof.

1. by case analysis on β1.

2. by case analysis on β1 and sub-cases on β2.

3. by the definition of t.

The following lemma establishes that for all masks β and β ′ such that β v β ′, then the result
of β t β ′ is always equal to the β ′ mask:

Lemma 4.2.3. If β v β ′ then β t β ′ = β ′.

Proof. By case analysis on β ′ and using the definitions of v and t.

Finally, we show that the order relation v is stable under the t operator:

Lemma 4.2.4 (v is stable under t). If β ′ v β ′′ then ∀β. β ′ t β v β ′′ t β.

Proof. By case analysis on β.

• case β v β ′: β v β ′′ holds (by the transitivity of v) and so β ′ tβ v β ′′ tβ⇔ β ′ v β ′′ (by
auxiliary lemma 4.2.3).

• case β ′ v β v β ′′: β ′ t β v β ′′ t β⇔ β v β ′′ (by auxiliary lemma 4.2.3).

• case β ′′ v β: β ′ t β v β ′′ t β ⇔ β v β (by auxiliary lemma 4.2.3), where the last relation
holds by the reflexive property of v.

Lemma 4.2.5 (Extraction preserves mask union). Eβ(β1 t β2) = Eβ(β1) t Eβ(β2).

Proof. By case analysis.

• β = ghost: Eghost(β1 t β2) = ghost = (ghost t β1) t (ghost t β2)

• β = reg: Ereg(β1 t β2) = β1 t β2 = (reg t β1) t (reg t β2)

Corollary 4.2.5.1. Eβ(β1 t β2) = Eβ(β1) t Eβ(β2)

Proof. By induction on the structure of β and then by case analysis.

• case β is a singleton mask: by lemma 4.2.5.

• case β = β1β2 . . . βn, hence β1 and β2 are also singleton masks: by IH we have

Eβ2...βn(β
2
1 . . . β

n
1 t β22 . . . βn2) = Eβ2...βn(β

2
1 . . . β

n
1) t Eβ2...βn(β

2
2 . . . β

n
2)

– sub-case β1 = ghost: we conclude using the IH.

4.2. TYPING PRESERVATION UNDER EXTRACTION 81

– sub-case β1 = reg: since β v β1 t β2 then β11 v β1 and β12 v β1. This gives β11 =
β12 = β1 = reg. The result of Eβ1(β11 t β12) is then reg and using the IH we build the
expected result:

regEβ2...βn(Eβ2...βn(β
2
1 . . . β

n
1) t Eβ2...βn(β

2
2 . . . β

n
2))

To state the preservation theorem, we need the following auxiliary definitions:

Definition 4.2.1 (Typing context extraction).

E(Γ)

E(∅) , ∅

E(Γ + [x : ghost τ]) , E(Γ)

E(Γ + [x : reg τ]) , E(Γ) + [x : reg τ]

Definition 4.2.2 (Typing functions context extraction).

E(∆)

E(∅) , ∅

E(∆+ [f : ∀α.(x : π)→ σ]) ,

{
E(∆) if G(σ) = ghost
E(∆) + [f : ∀α.(E(x : π))→ E(σ)] otherwise

We do not need to define an extraction for a typing store context Σ. Since every location is
assigned a regular type by our typing rules, such a function would just behave like the identity
function. We finally state type preservation theorem as follows:

Theorem 4.2.6 (Type preservation under extraction). If ∆·Γ ·Σ ` e : (β ′τ, ε, γ), where G(β ′τ, ε) =
reg, then for all β such that β ′ v β, E(∆) · E(Γ) · Σ ` Eβ(e) : Eβ(β ′τ, ε, γ) holds.

Proof. Induction on the derivation ∆ · Γ · Σ ` e : (βτ ′, ε, γ). Throughout this proof we shall write
E(∆ · Γ · Σ) instead of E(∆) · E(Γ) · Σ.

case (TAbar). By IH
∀i. E(∆ · Γ · Σ) ` Eβi(ai) : (β

′
iτi, ∅, ∅)

for each ai s.t. G(ai) = reg where β ′i v βi. In particular, any ghost variable or any ghost location
in ā is also removed in E(Γ) and E(Σ), respectively. By taking only the judgments for which
βi = reg we get exactly the subset ā�β. The following judgment is then a valid judgment:

∀i. E(∆ · Γ · Σ) ` ai : (reg τi, ∅, ∅)
E(∆ · Γ · Σ) ` ā�β : Eβ(reg τ, ∅, ∅)

82 CHAPTER 4. EXTRACTION

case (TFun). The typing derivation ends up with

∆ · Γ + [x : β ′τ] · Σ ` e1 : σ ′ σ ′
�Γ+[x:pi]

v σ
∆+ [f : ∀α.(x : β ′τ)→ σ] · Γ · Σ ` e2 : σ ′′ α 6∈ Γ α 6∈ ∆

∆ · Γ · Σ ` fun f〈α〉 (x : β ′τ) : σ = e1 in e2 : σ ′′

We distinguish two sub-cases:

• sub-case G(σ) = ghost: by the definition of Eβ(·), we have

Eβ(fun f〈α〉 (x : β ′τ) : σ = e1 in e2) , Eβ(e2)

By IH
E(∆+ [f : (x : β ′τ, σ)]) · E(Γ) · E(Σ) ` Eβ(e2) : Eβ(σ

′′)

which simplifies to
E(∆ · Γ · Σ) ` Eβ(e2) : Eβ(σ

′′)

• sub-case G(σ) = reg: by the definition of Eβ(·) we have

Eβ(fun f〈α〉(x : β ′τ) : (β ′′τ, ε) = e1ine2) , fun f〈α〉E(x : β ′τ) : E(β ′′τ, ε) = Eβ ′′(e1)inEβ(e2)

By IH

E(∆) · E(Γ + [x : β ′τ]) · E(Σ) ` Eβ ′′(e1) : Eβ ′′(σ
′)

E(∆+ [f : ∀α.(x : β ′τ)→ (β ′′τ, ε, γ)]) · E(Γ) · E(Σ) ` Eβ(e2) : Eβ(σ
′′)

By auxiliary lemma 4.2.4 Eβ ′′(σ
′) v Eβ ′′(σ), so the following judgment is valid:

E(∆) · E(Γ) + [E(x : β ′τ)] · E(Σ) ` Eβ ′′(e1) : Eβ ′′(σ
′)

E(∆) + [f : ∀α.E(x : β ′τ)→ E(β ′′τ, ε, γ)] · E(Γ) · E(Σ) ` Eβ(e2) : Eβ(σ ′′)
Eβ ′′(σ

′) v E(β ′′τ, ε) α 6∈ E(Γ) α 6∈ E(∆)
E(∆ · Γ · Σ) ` fun f〈α〉 E(x : β ′τ) : E(β ′′τ, ε) = Eβ ′′(e1) in Eβ(e2) : Eβ(σ

′′)

cases (TRec) and (TRecDiv). Similar to the (TFun) case.

case (TApp). The typing derivation ends up with

θ = [α 7→ τ] ρ = [x̄ 7→ ā]

∆(f) = ∀α.(x : β ′τ)→ (βστσ, ε, γ) ∀i. ∆ · Γ · Σ ` ai : (β ′′i τiθ, ∅, ∅) ∀i. β ′′i v β ′i
∆ · Γ · Σ ` f〈τ〉(ā) : (βστσ, ε, γ)θρ

By the definition of Eβ(·) we have

Eβ(f〈τ〉(ā)) , let reg x = f〈τ〉(ā�β ′′) in x̄�β

In order to prove this case, we must build the following judgment:

E(∆ · Γ · Σ) ` f〈τ〉(ā�β ′) : E(βσ, τσ, ε, γ)θρ
θ = [α 7→ τ] ρ = [x̄ 7→ ā] E(∆) · E(Γ) + [x̄�β : Eβ(βστσ)] · E(Σ) ` x̄�β : Eβ(βστσ, ∅, ∅)

E(∆ · Γ · Σ) ` let reg x = f〈τ〉(ā�β ′′) in x̄�β : Eβ(βστσ, ε, γ)θρ
(4.1)

4.2. TYPING PRESERVATION UNDER EXTRACTION 83

First, by IH
∀i. E(∆ · Γ · Σ) ` Eβ ′

i
(ai) : Eβ ′

i
(β ′′i τi, ∅, ∅)

for each ai s.t. G(β ′′i) = reg. By taking only the judgments for which β ′i = reg, we get exactly
the sequence ā�β ′ . Since β ′′i v β ′i, this a legal mask to extract each ai.

Given that G(f) = reg, we have

E(∆)(f) = ∀α.E(x : β ′τ)→ E(βστσ, ε, γ)
so the following judgment is valid:

θ = [α 7→ τ] ρ = [x̄ 7→ ā]

E(∆)(f) = ∀α.E(x : β ′τ)→ (E(βστσ), ε, ∅) ∀i. E(∆ · Γ · Σ) ` Eβ ′
i
(ai) : Eβ ′

i
(β ′′i τiθ, ∅, ∅)

E(∆ · Γ · Σ) ` f〈τ〉(ā�β ′) : (E(βσ, τσ), ε, ∅)

The premises E(β ′′i) v E(β ′i) are trivially true, since β ′i = β ′′i = reg.
Second, the judgment

E(∆) · E(Γ) + [x̄�β : Eβ(βστσ)] · E(Σ) ` x̄�β : (Eβ(βστσ), ∅, ∅)θρ

is also valid, with β begin a legal mask since βσ v β. We can finally build the judgment (4.1),
which concludes this case.

case (TIfAbsurd1). The typing derivation ends up with

∆ · Γ · Σ ` a : (βBool, ∅, ∅) ∆ · Γ · Σ ` e2 : σ
∆ · Γ · Σ ` if a then absurd else e2 : σ

We distinguish two sub-cases:

• β = ghost: by the definition of Eβ(·), we have Eβ(if a then e1 else e2) , Eβ(e2). By IH

E(∆ · Γ · Σ) ` Eβ(e2) : Eβ(σ)

which concludes this case.

• β = reg: by the definition of Eβ(·), we have

Eβ(if a then e1 else e2) , if a then absurd else Eβ(e2)

By IH
E(∆ · Γ · Σ) ` Eβ(e2) : Eβ(σ)

so the following derivation is valid:

E(∆ · Γ · Σ) ` a : (reg Bool, ∅, ∅) E(∆ · Γ · Σ) ` e2 : Eβ(σ)
E(∆ · Γ · Σ) ` if a then absurd else Eβ(e2) : Eβ(σ)

case (TIfAbsurd2). Similar to the previous one.

84 CHAPTER 4. EXTRACTION

case (TIf). By the definition of Eβ(·), we have

Eβ(if a then e1 else e2) , if E(a) then Eβ(e1) else Eβ(e2)

By IH

E(∆ · Γ · Σ) ` E(a) : (reg Bool, ∅, ∅)
E(∆ · Γ · Σ) ` Eβ(e1) : Eβ(σ1)

E(∆ · Γ · Σ) ` Eβ(e2) : Eβ(σ2)

By corollary 4.2.5.1 Eβ(σ1 ∪ σ2) = Eβ(σ1) ∪ Eβ(σ2). The following judgment is thus valid:

E(∆ · Γ · Σ) ` E(a) : (reg Bool, ∅, ∅)
E(∆ · Γ · Σ) ` Eβ(e1) : Eβ(σ1) E(∆ · Γ · Σ) ` Eβ(e2) : Eβ(σ2)
E(∆ · Γ · Σ) ` if E(a) then Eβ(e1) else Eβ(e2) : Eβ(σ1) ∪ Eβ(σ2)

case (TLet). We distinguish five different sub-cases:

• sub-case G(e1) = ghost: by the definition of Eβ(·) we have Eβ(let β ′x = e1 in e2) , Eβ(e2).
By IH

E(∆ · Γ · Σ) ` Eβ(e2) : Eβ(β2τ2, ε2, γ2)

since E(Γ + [x̄ : ghost τ1]) = E(Γ).
There are no observable effects in ε1, i.e. ε1 = ∅, and the ghost effects are erased. Given
that Eβ(β2τ2, ε1 ∪ ε2, γ1 ∪ γ2) = (Eβ(β2τ2), ε1 ∪ ε2, ∅) = (Eβ(β2τ2), ε2, ∅), we conclude this
case.

• sub-case G(e2) = ghost: by the definition of Eβ(·) we have Eβ(let β ′x = e1 in e2) ,
Eghost(e1).
There are no observable effects in ε2 and the ghost effects are erased. Since G(β2) = ghost,
the only admissible value for β is ghost, so Eβ(β2τ2, ε2, γ2) = (Unit, ∅, ∅).
By IH

E(∆ · Γ · Σ) ` Eghost(e1) : Eghost(β1τ1, ε1, γ1)

which simplifies to E(∆ · Γ · Σ) ` Eghost(e1) : (Unit, ε1, ∅).
Given that Eβ(β2τ2, ε1 ∪ε2, γ1 ∪γ2) = (Eβ(β2τ2), ε1 ∪ε2, ∅) = (Unit, ε1, ∅), we conclude this
case.

• sub-case G(β ′) = ghost: by the definition of Eβ(·) we have

Eβ(let β ′x = e1 in e2) , let reg_ = Eghost(e1) in Eβ(e2)

By IH

E(∆ · Γ · Σ) ` Eghost(e1) : (Unit, ε1, ∅)
E(∆ · Γ · Σ) ` Eβ(e2) : Eβ(β2τ2, ε2, γ2)

where the last judgment is valid since the identifier _ does not appear free in e2 so it is not
bound in Γ . The following judgment is valid:

E(∆ · Γ · Σ) ` Eghost(e1) : (Unit, ε1, ∅) E(∆ · Γ · Σ) ` Eβ(e2) : (Eβ(β2τ2), ε2, ∅)
E(∆ · Γ · Σ) ` let reg_ = Eghost(e1) in Eβ(e2) : (Eβ(β2τ2), ε1 ∪ ε2, ∅)

4.2. TYPING PRESERVATION UNDER EXTRACTION 85

• sub-case x̄ 6∈ FV(Eβ(e2)): similar to the case G(e1) = ghost.

• finally, the last case in the definition of extraction for a let..in expression: by the definition
of Eβ(·) we have

Eβ(let β ′x = e1 in e2) , let reg x�β ′ = Eβ ′(e1) in Eβ(e2)

By the typing relation we have

∆ · Γ · Σ ` e1 : (β1τ1, ε1, γ1) ∆ · Γ + [x : β ′τ1] · Σ ` e2 : (β2τ2, ε2, γ2)

By IH

E(∆ · Γ · Σ) ` Eβ ′(e1) : Eβ ′(β1τ1, ε1, γ1)

E(∆) · E(Γ + [x : β ′τ1]) · E(Σ) ` Eβ(e2) : Eβ(β2τ2, ε2, γ2)

where the last judgment simplifies to

E(∆) · E(Γ) + [x̄�β ′ : Eβ ′(β1τ1)] · E(Σ) ` Eβ(e2) : Eβ(β2τ2, ε2, γ2)

The following judgment is thus valid:

E(∆ · Γ · Σ) ` Eβ ′(e1) : (Eβ ′(β1τ1), ε1, ∅)
E(∆) · E(Γ) + [x̄�β ′ : Eβ ′(β1τ1)] · E(Σ) ` Eβ(e2) : (Eβ(β2τ2), ε2, ∅)
E(∆ · Γ · Σ) ` let reg x�β ′ = E(e1) in Eβ(e2) : (Eβ(β2τ2), ε1 ∪ ε2, ∅)

case (TRaiseReg). By the typing relation we know

E : (β ′1τ1 . . . β
′
nτ
′
n) ∀i. ∆ · Γ · Σ ` ai : (β ′′i τi, ∅, ∅) ∀i. β ′′i v β ′i

By the definition of Eβ(·) we have Eβ(raise Eā) , raise Eā�M(E), whereM(E) = β ′.
By IH

∀i. E(∆ · Γ · Σ) ` Eβ ′
i
(ai) : Eβ ′

i
(β ′′i τi, ∅, ∅)

considering only the extraction of ai for which β ′′i = reg. By taking only the judgments where
β ′i = reg we get exactly the sequence ā�β ′ . The following judgment is then valid:

E : E(β ′iτ1 . . . β ′nτn) ∀i. E(∆ · Γ · Σ) ` Eβ ′
i
(ai) : Eβ ′

i
(β ′′i τi, ∅, ∅) reg v β ′i

E(∆ · Γ · Σ) ` raise Eā�β ′ : (reg τ, ∅+ raises E, ∅)

case (TLoop). The typing derivation ends up with

∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε+ div, γ)

By IH
E(∆ · Γ · Σ) ` Ereg(e) : (Unit, ε, ∅)

The following judgment is valid:

E(∆ · Γ · Σ) ` Ereg(e) : (Unit, ε, ∅)
E(∆ · Γ · Σ) ` loop Ereg(e) : (reg τ, ε+ div, ∅)

where loop Ereg(e) = Eβ(loop e), for every β.

86 CHAPTER 4. EXTRACTION

case (TLoopDiv). Similar to the previous case.

case (TTry). The typing derivation ends up with

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. Ei : (πi) ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises Ei, γ− raises Ei) ∪

⋃
i

σi

where e and e ′i are real expressions. By IH

E(∆ · Γ · Σ) ` Eβ(e0) : Eβ(π, ε, γ)

E(∆) · E(Γ + [x̄ : πi]) · E(Σ) ` Eβ(ei) : Eβ(σi)

The last judgments simplify to

E(∆) · E(Γ) + E([x̄ : πi]) · Eβ(ei) ` E(Σ) : Eβ(σi)

that is, the extraction of Γ , for each e ′i keeps only the xj s.t. βij = reg, which corresponds exactly
to real arguments when extracting the exceptions Ei:

E(Ei : (βi1τi1 . . . βiniτini)) , Ei : E(βi1τi1 . . . βiniτini)

The following judgment is valid:

E(∆ · Γ · Σ) ` Eβ(e0) : (Eβ(π), ε, ∅) E(∆) · E(Γ) + E([x̄ : πi]) · Eβ(ei) ` E(Σ) : Eβ(σi)

E(∆ · Γ · Σ) ` try Eβ(e) with Ex̄�M(E) ⇒ e : (Eβ(π), ε− raises Ei, γ− raises Ei) ∪
⋃
i

Eβ(σi)

which concludes the case.

case (TRecord). We distinguish two sub-cases:

• sub-case β = ghost: by the definition of Eβ(·) we have Eghost({f = a}) , (), which can be
typed under any environment.

• sub-case β = reg: by the definition of Eβ(·) we have Ereg({f = a}) , {f = a}�M(T). The
following judgment is valid:

type Tα = E({f : βfτf}) ∀i. E(∆ · Γ · Σ) ` ai : (βfτfi [α 7→ τ], ∅, ∅) ∀i. βi v βfi
E(∆ · Γ · Σ) ` {f = a} : (reg Tτ, ∅, ∅)

by considering only the judgments E(∆ · Γ · Σ) ` ai : (βfτfi [α 7→ τ], ∅, ∅) for which βfi = reg.
Atoms ai are not erased in E(∆ · Γ · Σ).

case (TGet). We distinguish two sub-cases:

• sub-case β = ghost: by the definition of Eβ(·) we have Eghost(a.f) , (), which can be typed
under any environment.

• sub-case β = reg: by the definition of Eβ(·) we have Ereg(a.f) , a.f. The following judgment
is valid:

type Tα = E({. . . , f : reg τf, . . .}) E(∆ · Γ · Σ) ` a : (reg Tτ, ∅, ∅)
E(∆ · Γ · Σ) ` a.f : (βf τf[α 7→ τ], ∅, ∅)

as atoms al and ar are not erased in E(∆ · Γ · Σ) and the field f is not erased in E({. . . , f :
reg τf, . . .}).

4.3. SEMANTICS PRESERVATION 87

δ · µ · e

µ ′ · r

Eβ(δ · µ · e)

Eβ(µ
′ · r)

Eβ

Eβ

Figure 4.2: Preservation of Convergent Evaluation.

case (TAssign). By the definition of Eβ(·) we have Eβ(al.fi ← ar) , al.fi ← ar. Since G(al) =
reg, G(fi) = reg, and G(ar) = reg the following judgment is valid:

type Tα = {. . . , fi : reg τf, . . .}
E(∆ · Γ · Σ) ` al : (reg Tτ, ∅, ∅) E(∆ · Γ · Σ) ` ar : (reg τi[α 7→ τ], ∅, ∅)

E(∆ · Γ · Σ) ` al.fi ← ar : (Unit, ∅+ writes ar, ∅)

as atoms al and ar are not erased in E(∆ · Γ · Σ).

4.3 Semantics Preservation
In this section, we prove that extracted expressions preserve the semantics behavior of the original
KidML program. Since we can only extract regular expressions, we are only interested in the
regular behavior, i.e., regular results and regular effects. We prove this preservation property both
for convergent and divergent evaluations.

4.3.1 Preservation of Convergent Evaluation

In this section, we prove that if the evaluation of a KidML program converges to a semantic result r,
then the evaluation of the extracted program converges into the result of extracting r. To show
this result, we use the technique of forward simulation, as depicted in Fig. 4.2, where black arrows
correspond to hypotheses, while the red ones stand for conclusions. Before stating this main result,
we need the following auxiliary property:

Lemma 4.3.1 (Extraction preserves substitution). If ∆ · Γ + [x̄ : β ′τ1] · Σ ` e : (β ′′τ, ε, γ) and
∆ · Γ · Σ ` ν̄ : (reg τ1, ∅, ∅), then Eβ(e2)[x̄ 7→ ν̄] = Eβ(e2[x̄ 7→ ν̄]), for all β such that β ′′ v β.

Proof. By straightforward induction on the structure of expression e.

We also introduce the following auxiliary definitions:

Definition 4.3.1 (Extraction of stores).

E(µ)

E(∅) , ∅

E(µ[l 7→ {f = ν}]) , E(µ)[l 7→ {f = ν}�M(f)]

88 CHAPTER 4. EXTRACTION

Definition 4.3.2 (Extraction of procedures environment).

∆ � δ E(δ)

E(∅) , ∅

E(δ[f 7→ (x : π, e)]) ,

E(δ) if G(f) = ghost

E(δ)[f 7→ (E(x : π), Eβ ′(e))] otherwise,
where ∆(f) = ∀α. (x : π)→ (β ′τ, ε, γ)

In the definition of E(δ), we use notation G(f) = ghost as a shortcut to state that f is a ghost
function. Since we only extract well-typed programs, we only consider the evaluation of extracted
programs under a well-typed procedures environment. In particular, we use the information stored
for a function f in δ, in order to retrieve the mask of the returning type and extract the body e1.
The preservation theorem is stated as follows:

Theorem 4.3.2 (Convergent behavior preservation). If ∆ ·Γ ·Σ ` e : (βτ ′, ε, γ) and δ ·µ ·e ⇓ µ ′ ·r,
such that r 6= absurd, Σ � µ, and ∆ � δ, then E(δ) · E(µ) · Eβ(e) ⇓ E(µ ′) · Eβ(r), for all β such that
β ′ v β.

Proof. By induction on the semantics evaluation δ · µ · e ⇓ µ ′ · r. We rule out absurd since we
suppose that we only extract verified KidML programs. This means that all absurd points in the
code are proved to be unreachable, hence a KidML expression cannot evaluate down to such a
semantics result.

cases (EvalVBar) and (EvalRaise). Trivial.

cases (EvalDiv), (EvalGhost), and (EvallAbsurd). Impossible

case (EvalLoop). The semantics evaluation ends up with

δ · µ · let reg_ = e in loop e ⇓ µ ′ · r
δ · µ · loop e ⇓ µ ′ · r

We distinguish two sub-cases:

• case (EvalLetAbort): we can build the following derivation:

δ · µ · e ⇓ µ ′ · r abort r

δ · µ · let reg_ = e in loop e ⇓ µ ′ · r EvalLetAbort

δ · µ · loop e ⇓ µ ′ · r EvalLoop

We distinguish two sub-sub-cases, according to the typing rule used at the bottom of the
derivation:

– case (TLoop): the typing derivation ends up with

CheckTermination(loop e) ∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε, γ)

By IH
E(δ) · E(µ) · E(e) ⇓ E(µ ′) · E(r)

4.3. SEMANTICS PRESERVATION 89

We can build the following derivation:

δ · µ · E(e) ⇓ µ ′ · E(r) abort E(r)
δ · µ · let reg_ = E(e) in loop E(e) ⇓ µ ′ · E(r) EvalLetAbort

δ · µ · loop E(e) ⇓ µ ′ · E(r) EvalLoop

which completes the case.
– case (TLoopDiv): similar to the previous case. We may have an expression whose

evaluation terminates, but for which oracle CheckTermination is not able to prove ter-
mination. Nonetheless, the semantics derivation is exactly the same as in the (TLoop)
case, since our evaluation judgment does not care about the divergence effect assigned
by the typing relation.

• case (EvalLet): we can build the following derivation:

δ · µ · e ⇓ µ ′′ · () δ · µ ′′ · loop e[_ 7→ ()] ⇓ µ ′′ · r
δ · µ · let reg_ = e in loop e ⇓ µ ′ · r EvalLet

δ · µ · loop e ⇓ µ ′ · r EvalLoop

Let us note that expression e can only evaluate down to the unit value (), since it is a well-typed
expression. By IH

E(δ) · E(µ ′) · E(e) ⇓ E(µ ′) · ()
E(δ) · E(µ ′′) · Eβ(loop e) ⇓ E(µ ′) · Eβ(r)

We can build the following derivation:

E(δ) · E(µ ′) · E(e) ⇓ E(µ ′′) · () E(δ) · E(µ ′′) · Eβ(loop e) ⇓ E(µ ′) · Eβ(r)
E(δ) · E(µ) · let reg_ = E(e) in Eβ(loop e) ⇓ E(µ ′) · Eβ(r) EvalLet

E(δ) · E(µ) · loop E(e) ⇓ E(µ ′) · Eβ(r) EvalLoop

where Eβ(loop e) = loop E(e). This completes this case.

case (EvalLetAbort). The semantics evaluation ends up with

δ · µ · e1 ⇓ µ ′ · r abort r

δ · µ · let β ′x = e1 in e2 ⇓ µ ′ · r
The typing derivation ends up with

∆ · Γ · Σ ` e1 : (β1τ1, ε1, γ1) β1 v β ′ ∆ · Γ + [x : β ′τ1] · Σ ` e2 : (π2, ε2, γ2)
∆ · Γ · Σ ` let β ′x = e1 in e2 : (π2, ε1 ∪ ε2, γ1 ∪ γ2)

Since δ · µ · e1 ⇓ µ ′ · r such that abort r, where r 6= absurd, then we know e1 is always an effectful
regular expression, i.e., it cannot be the case that e1 is a completely ghost expression. We can
thus apply the IH and get

E(δ) · E(µ) · Eβ(e1) ⇓ E(µ ′) · Eβ(r) (4.2)

for all β, such that β1 v β. The prove proceeds by case analysis on the definition of the extraction
function:

• case G(e1) = ghost: impossible;

90 CHAPTER 4. EXTRACTION

• case G(e2) = ghost: by instantiating β with ghost in equation (4.2) we complete this case,
since

Eβ2(let β ′x = e1 in e2) , Eghost(e1)

for all β2 such that π2 v β2;

• case β ′ = ghost and ε1 6= ∅: by the definition of E(·)

Eβ2(let β ′x = e1 in e2) , let reg _ = Eghost(e1) in Eβ2(e2)

We can build the following derivation:

E(δ) · E(µ) · Eghost(e1) ⇓ E(µ ′) · Eghost(r) abort Eghost(r)

E(δ) · E(µ) · let reg _ = Eghost(e1) in Eβ2(e2) ⇓ E(µ ′) · Eghost(r)

which completes this case;

• case ε1 = ∅: impossible;

• finally, the last case is the one where

Eβ2(let β ′x = e1 in e2) , let reg x�β ′ = Eβ ′(e1) in Eβ2(e2)

By instantiating β with β ′ in equation (4.2), we can build the following judgment:

E(δ) · E(µ) · Eβ ′(E(µ ′) · e1) ⇓ Eβ ′(r) abort Eβ ′(r)

E(δ) · E(µ) · let reg x�β ′ = Eβ ′(e1) in Eβ2(e2) ⇓ E(µ ′) · Eβ ′(r)

which completes this case.

case (EvalLet). The semantics evaluation ends up with

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓ µ ′′ · r
δ · µ · let β ′x = e1 in e2 ⇓ µ ′′ · r

The typing derivation ends up with

∆ · Γ · Σ ` e1 : (β1τ1, ε1, γ1) β1 v β ′ ∆ · Γ + [x : β ′τ1] · Σ ` e2 : (π2, ε2, γ2)
∆ · Γ · Σ ` let β ′x = e1 in e2 : (π2, ε1 ∪ ε2, γ1 ∪ γ2)

The proof proceeds by case analysis on the definition of the extraction function:

• if G(e1) = ghost: by the substitution lemma

∆ · Γ · Σ ` e2[x̄ 7→ ν̄] : (π2, ε2, γ2)[x̄ 7→ ν̄]

By IH
E(δ) · E(µ) · Eβ(e2[x̄ 7→ ν̄]) ⇓ E(µ ′) · Eβ(r)

By the auxiliary lemma 4.3.1

E(δ) · E(µ) · Eβ(e2)[x̄ 7→ ν̄] ⇓ E(µ ′) · Eβ(r)
which completes this case, since Eβ(letβ ′x = e1 ine2) , Eβ(e2) and Eβ(e2)[x̄ 7→ ν̄] = Eβ(e2),
and so there can be no occurrence of x̄ in Eβ(e2).

4.3. SEMANTICS PRESERVATION 91

• if G(e2) = ghost: by the definition of E(·)

Eβ(let β ′x = e1 in e2) , Eghost(e1)

Since G(e1) = reg, by IH

E(δ) · E(µ) · Eghost(e1) ⇓ E(µ ′) · Eghost(ν̄)

which completes this case;

• if β ′ = ghost and obs(ε1): by the definition of E(·)

Eβ(let β ′x = e1 in e2) , let reg_ = Eghost(e1) in Eβ(e2)

By the substitution lemma

∆ · Γ · Σ ` e2[x̄ 7→ ν̄] : (π2, ε2, γ2)[x̄ 7→ ν̄]

By IH
E(δ) · E(µ) · Eghost(e1) ⇓ E(µ ′) · Eghost(ν̄)

E(δ) · E(µ ′) · Eβ(e2[x̄ 7→ ν̄]) ⇓ E(µ ′′) · Eβ(r)
where Eghost(ν̄) = (). By the auxiliary lemma 4.3.1

E(δ) · E(µ ′) · Eβ(e2)[x̄ 7→ ν̄] ⇓ E(µ ′′)Eβ(r)
Since no occurrence of x̄ can happen in Eβ(e2), we have

Eβ(e2[x̄ 7→ ν̄]) = Eβ(e2)
= Eβ(e2)[_ 7→ ()]

We can build the following judgment:

E(δ) · E(µ) · Eghost(e1) ⇓ E(µ ′) · () E(δ) · E(µ ′) · Eβ(e2)[_ 7→ ()] ⇓ E(µ ′′) · Eβ(r)
E(δ) · E(µ) · let reg_ = Eghost(e1) in Eβ(e2) ⇓ E(µ ′′) · Eβ(r)

which completes this case;

• if x̄ 6∈ FV(Eβ(e2)) and e1 = ∅: similar to the case G(e1) = ghost;

• finally, the last case is the one where

Eβ2(let β ′x = e1 in e2) , let reg x�β ′ = Eβ ′(e1) in Eβ2(e2)

By the substitution lemma

∆ · Γ · Σ ` e2[x̄ 7→ ν̄] : (π2, ε2, γ2)[x̄ 7→ ν̄]

By IH
E(δ) · E(µ) · Eβ ′(e1) ⇓ ν̄�β ′

E(δ) · E(µ ′)Eβ(e2[x̄ 7→ ν̄]) ⇓ E(µ ′′) · Eβ(r)
By the auxiliary lemma 4.3.1

E(δ) · E(µ ′) · Eβ(e2)[x̄ 7→ ν̄] ⇓ E(µ ′′) · Eβ(r)

92 CHAPTER 4. EXTRACTION

There is no occurrence of ghost variables from x̄ in Eβ(e2), so the following holds:

Eβ(e2)[x̄ 7→ ν̄] = Eβ(e2)[x̄�β ′ 7→ ν̄�β ′]

We can build the following derivation:

E(δ) · E(µ) · Eβ ′(E(µ ′) · e1) ⇓ E(µ ′) · ν̄�β ′

E(δ) · E(µ ′) · Eβ(e2)[x̄�β ′ 7→ ν̄�β ′] ⇓ E(µ ′′) · Eβ(r)
E(δ) · E(µ) · let reg x�β ′ = Eβ ′(e1) in Eβ(e2) ⇓ E(µ ′′) · Eβ(r)

which completes this case.

case (EvalApp). The semantics evaluation ends up with

δ(f) = (x : π, e) ‖x : π‖ = ‖ν̄‖ δ · µ · e[x̄ 7→ ν̄] ⇓ µ ′ · r
δ · µ · f(ν̄) ⇓ µ ′ · r

Since the whole application is a regular expression, the only rule we could have used at the bottom
of the typing derivation is (TApp), as follows:

θ = [α 7→ τ] ρ = [x̄ 7→ ā]

∆(f) = ∀α.(x : βτ ′)→ σ ∀i. ∆ · Γ · Σ ` ai : (β ′iτ ′iθ, ∅, ∅) ∀i. β ′i v βi
∆ · Γ · Σ ` f〈τ〉 (ā) : σθρ

By the definition of E(·), we have

Eβ(f〈τ〉 (ā)) , let reg x = f〈τ〉 (ā�β ′) in x̄�β

We distinguish two sub-cases:

• in case e[x̄ 7→ ν̄] evaluates down to a result r such that abort r: we have the body e of f is
typed with

∆ · Γ + [x̄ : β ′iτiθ] · Σ ` e : σ
By the substitution lemma

∆ · Γ · Σ ` e[x̄ 7→ ν̄] : σ

where σ = (β ′′, ε, γ). By IH

E(δ) · E(µ) · Eβ ′′(e[x̄ 7→ ν̄]) ⇓ E(µ ′) · Eβ ′′(r)

By the auxiliary lemma 4.3.1

E(δ) · E(µ) · Eβ ′′(e)[x̄ 7→ ν̄] ⇓ E(µ ′) · Eβ ′′(r)

Since there cannot be any occurrence of the ghost variables in x̄ in Eβ ′′(e), we have

Eβ ′′(e)[x̄ 7→ ν̄] = Eβ ′′(e)[x̄�β ′ 7→ ν̄�β ′]

We can build the following derivation:

EvalApp

E(δ) · E(µ) · Eβ ′′(e)[x̄�β ′ 7→ ν̄�β ′] ⇓ E(µ ′) · Eβ ′′(r)

E(δ) = (E(x : π), Eβ ′′(e)) ‖E(x : π)‖ = ‖ν̄�β ′‖
E(δ) · E(µ) · f〈τ〉 (ν̄�β ′) ⇓ E(µ ′) · Eβ ′′(r) abort Eβ ′′(r)

E(δ) · E(µ) · let reg x = f〈τ〉 (ā�β ′) in x̄�β ⇓ E(µ ′) · Eβ ′′(r)
EvalLetAbort

which completes this case.

4.3. SEMANTICS PRESERVATION 93

• in case e[x̄ 7→ ν̄] evaluates down to a sequence of values νr: using the same reasoning as in
the previous case, we have

E(µ) · Eβ ′′(e)[x̄�β ′ 7→ ν̄�β ′] ⇓ E(µ ′) · νr�β ′′

The following trivially holds:

E(δ) · E(µ ′) · νr�β ⇓ E(µ ′) · νr�β
We have that x̄�β[x̄�β ′′ 7→ νr�β ′′] = νr�β, where β ′′ v β. This holds since the sequence x̄�β ′′

corresponds to the regular results of application, and x̄�β and ν̄�β are restrictions of x̄�β ′′ and
ν̄�β ′′ , respectively. We can build the following derivation:

EvalApp

E(δ) · E(µ) · Eβ ′′(e)[x̄�β ′ 7→ ν̄�β ′] ⇓ E(µ ′) · νr�β ′′

E(δ) = (E(x : π), Eβ ′′(e)) ‖E(x : π)‖ = ‖ν̄�β ′‖
E(δ) · E(µ) · f〈τ〉 (ν̄�β ′) ⇓ E(µ ′) · νr�β ′′ E(δ) · E(µ ′) · νr�β ⇓ E(µ ′) · νr�β

E(δ) · E(µ) · let reg x = f〈τ〉 (ā�β ′) in x̄�β ⇓ E(µ ′) · νr�β EvalLet

which completes this case.

case (EvalFun). The semantics evaluation ends up with

δ[f 7→ (x : π, e1)] · µ · e2 ⇓ µ ′ · r
δ · µ · fun f(x : π) : σ = e1 in e2 ⇓ µ ′ · r

The typing derivation ends up with

∆ · Γ + [x : π] · Σ ` e1 : σ ′ σ ′�Γ+[x:π] v (β ′τ, ε, γ)

∆+ [f : ∀α.(x : π)→ (β ′τ, ε, γ)] · Γ · Σ ` e2 : σ ′′ α#Γ α 6∈ ∆
∆ · Γ · Σ ` fun f〈α〉(x : π) : (β ′τ, ε, γ) = e1 in e2 : σ ′′

(TFun)

We distinguish two sub-cases, according to the ghost status of function f:

• if f is a ghost function: in this case, by the definition of E(·):

Eβ(fun f〈α〉(x : π) : (β ′τ, ε, γ) = e1 in e2) , Eβ(e2)

By IH
E(δ) · E(µ) · Eβ(e2) ⇓ E(µ ′) · Eβ(r)

where f is not contained in E(δ) since it is a ghost function. This completes the case.

• if f is a regular function: in this case, by the definition of E(·):

Eβ(fun f〈α〉(x : π) : (β ′τ, ε, γ) = e1 in e2) ,

fun f〈α〉 (E(x : π)) : E(β ′τ, ε, γ) = Eβ ′(e1) in Eβ(e2)

By IH
E(δ[7→ (x : π, e1)]) · E(µ) · Eβ(e2) ⇓ E(µ ′) · Eβ(r)

where E(δ[f 7→ (x : π, e1)]) = E(δ)[f 7→ (E(x : π), Eβ ′(e1))]. We can build the following deriva-
tion:

E(δ)[f 7→ (E(x : π), Eβ ′(e1))] · E(µ) · Eβ(e2) ⇓ E(µ ′) · Eβ(r)
E(δ) · E(µ) · fun f(x : π) : E(β ′τ, ε, γ) = Eβ ′(e1) in Eβ(e2) ⇓ E(µ ′) · Eβ(r)

which completes this case.

94 CHAPTER 4. EXTRACTION

case (EvalRec). Similar to the previous case. As for the (TLoopDiv) case, the divergence
effect does not affect the evaluation derivation.

case (EvalIfFalse). The semantics evaluation ends up with

δ · µ · e2 ⇓ µ ′ · r
δ · µ · if false then e1 else e2 ⇓ µ ′ · r

We know that r 6= absurd, so we only need to distinguish two cases according to the typing rule
used at the bottom of the derivation:

• case (TIfAbsurd1): the typing derivation ends up with

∆ · Γ · Σ ` false : (βBool, ∅, ∅) ∆ · Γ · Σ ` e2 : σ
∆ · Γ · Σ ` if false then absurd else e2 : σ

By IH
E(δ) · E(µ) · Eβ(e2) ⇓ E(µ ′) · Eβ(r)

By the definition of E(·):

Eβ(if false then absurd else e2) , if false then absurd else Eβ(e2)

This is the only possibility, since the constant false is always typed as a regular variable.
We can build the following derivation:

E(δ) · E(µ) · Eβ(e2) ⇓ E(µ ′) · Eβ(r)
E(δ) · E(µ) · if false then e1 else Eβ(e2) ⇓ E(µ ′) · Eβ(r)

which completes this case.

• case (TIf): the typing derivation ends up with

∆ · Γ · Σ ` false : (reg Bool, ∅, ∅) ∆ · Γ · Σ ` e1 : σ1 ∆ · Γ · Σ ` e2 : σ2
∆ · Γ · Σ ` if false then e1 else e2 : σ1 ∪ σ2

(TIf)

By the definition of E(·):

Eβ(if false then e1 else e2) , if false then Eβ(e1) else Eβ(e2)

Expressions e1 and e2 must be both typed as regular expressions. By IH

E(δ) · E(µ) · Eβ(e2) ⇓ E(µ ′) · Eβ(r)
We can build the following derivation:

E(δ) · E(µ) · Eβ(e2) ⇓ E(µ ′) · Eβ(r)
E(δ) · E(µ) · if false then Eβ(e1) else Eβ(e2) ⇓ E(µ ′) · Eβ(r)

which completes this case.

case (EvalIfTrue). Similar to the previous case.

4.3. SEMANTICS PRESERVATION 95

case (EvalTry). The semantics evaluation ends up with

δ · µ · e0 ⇓ µ ′ · ν̄
δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · ν̄

The typing derivation ends up with

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. Ei : πi ∀i. ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises Ei, γ− raises Ei) ∪

⋃
i

σi

By the definition of E(·):

Eβ(try e0 with Ex̄⇒ e ′) , try Eβ(e0) with Eβ(Ex̄⇒ e)

By IH
E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′) · Eβ(ν̄)

We can build the following derivation:

E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′) · Eβ(ν̄)
E(δ) · E(µ) · try Eβ(e0) with Eβ(Ex̄⇒ e) ⇓ E(µ ′) · Eβ(ν̄)

which completes this case.

case (EvalTryAbort). The semantics evaluation ends up with

δ · µ · e0 ⇓ µ ′ · r abort r ∀i. Ei 6= r
δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r

The typing derivation ends up with

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. Ei : πi ∀i. ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises Ei, γ− raises Ei) ∪

⋃
i

σi

By the definition of E(·):

Eβ(try e0 with Ex̄⇒ e ′) , try Eβ(e0) with Eβ(Ex̄⇒ e)

By IH
E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′) · Eβ(r)

We can build the following derivation:

E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′) · Eβ(r) abort Eβ(r) ∀i. Ei 6= Eβ(r)
E(δ) · E(µ) · try Eβ(e0) with Eβ(Ex̄⇒ e) ⇓ E(µ ′) · Eβ(r)

which completes this case.

96 CHAPTER 4. EXTRACTION

case (EvalTryExn). The semantics evaluation ends up with

δ · µ · e0 ⇓ µ ′′ · raise E ′ν̄ E ′ = Ei ∀j. j < i→ E ′ 6= Ej δ · µ ′′ · ei[x̄ 7→ ν̄] ⇓ µ ′ · r
δ · µ · try e0 with Ex̄⇒ e ⇓ µ ′ · r

The typing derivation ends up with

∆ · Γ · Σ ` e0 : (π, ε, γ) ∀i. Ei : πi ∀i. ∆ · Γ + [x̄ : πi] · Σ ` ei : σi
∆ · Γ · Σ ` try e0 with Ex̄⇒ e : (π, ε− raises Ei, γ− raises Ei) ∪

⋃
i

σi

By the definition of E(·):

Eβ(try e0 with Ex̄⇒ e ′) , try Eβ(e0) with Eβ(Ex̄⇒ e)

We distinguish two sub-cases, according to the ghost status of ei:

• in case ei is a regular expression: by IH

E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′′) · E ′ν̄�M(E ′)

E(δ) · E(µ ′′) · Eβ(ei[x̄ 7→ ν̄]) ⇓ E(µ ′) · Eβ(r)
By the auxiliary lemma 4.3.1

E(δ) · E(µ ′′) · Eβ(ei)[x̄ 7→ ν̄] ⇓ E(µ ′) · Eβ(r)
and since there can only be regular occurrences of x̄ in Eβ(ei)

Eβ(ei)[x̄ 7→ ν̄] = Eβ(ei)[x̄�M(E ′) 7→ ν̄�M(E ′)]

We can build the following derivation:

E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′′) · E ′ν̄�M(E ′)

E ′ = Ei ∀j. j < i→ E ′ 6= Ej E(δ) · E(µ ′′) · Eβ(ei)[x̄�M(E ′) 7→ ν̄�M(E ′)] ⇓ E(µ ′) · Eβ(r)
E(δ) · E(µ) · try e0 with Ex̄⇒ e ⇓ E(µ ′) · Eβ(r)

which completes this case.

• in case ei is a ghost expression: by IH

E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′′) · E ′ν̄�M(E ′)

By the definition of E(·)
Eβ(E

′x̄⇒ ei) , E
′x̄�E ′ ⇒ ()

We know that β = ghost and that µ ′′ = µ ′, otherwise ei would be an effectful expression
and could not be considered as a ghost expression. We then have

Eβ(r) = ()

We can build the following derivation

E(δ) · E(µ) · Eβ(e0) ⇓ E(µ ′′) · E ′ν̄�M(E ′)

E ′ = Ei ∀j. j < i→ E ′ 6= Ej E(δ) · E(µ ′′) · () ⇓ E(µ ′′) · ()
E(δ) · E(µ) · try e0 with Ex̄⇒ e ⇓ E(µ ′′) · ()

which completes this case.

4.3. SEMANTICS PRESERVATION 97

δ · µ · e

div

Eβ(δ · µ · e)

div

co

Eβ

co

Eβ

Figure 4.3: Preservation of Divergent Evaluation.

case (EvalRecord). There are only two possible masks to extract such an expression. Either
β = ghost, in which case

Eghost({ f = ν }) , ()

We have Eghost(l) = () thus, the result follows immediately from the trivial evaluation

E(δ) · E(µ) · () ⇓ E(µ) · ()
Otherwise β = reg, in which case

Ereg({ f = ν }) , { f = ν }�M(f)

Since Ereg(l) = l, we can build the following derivation

l 6∈ dom(E(µ)) E(µ ′) = E(µ)[l 7→ { f = ν }�M(f)]

E(δ) · E(µ) · { f = ν }�M(f) ⇓ E(µ ′) · l
which completes this case.

case (EvalGet). Similar to the previous case, even easier when β = reg. For both cases,
location l is always in dom(E(µ)).

case (EvalAssign). Trivial: by the hypotheses of the theorem, such an assignment stands for a
regular effect, so the extraction function does not affect this expression.

case (EvalErr). Impossible.

4.3.2 Preservation of Divergent Evaluation

We focus now on the proof that a divergent KidML program is extracted into a program that
diverges as well. Ghost code cannot diverge, hence divergence is an effect that we preserve in the
extracted program. We use our co-inductive evaluation judgment and, once again, the technique
of forward simulation to prove such a result, as illustrated in Fig. 4.3. This preservation theorem
is state as follows:
Theorem 4.3.3 (Divergent behavior preservation). If ∆ ·Γ ·Σ ` e : (βτ ′, ε, γ) and δ ·µ ·e ⇓co div,
such that Σ � µ, and ∆ � δ, then E(δ) · E(µ) · Eβ(e) ⇓co div, for all β such that β ′ v β.
Proof. By co-induction on the semantics evaluation δ · µ · e ⇓co div. This proof actually follows
the same structure as the proof of theorem 4.3.2 so we do not detail all the cases here. We present
just the cases for the evaluation of let..in expressions.

98 CHAPTER 4. EXTRACTION

case (CoEvalLoop). Semantics co-evaluation ends up with

δ · µ · let reg _ = e in loop e ⇓co div

δ · µ · loop e ⇓co div
=======================================

Since the evaluation of this expression diverges, the rule used at the bottom of typing derivation
is (TLoopDiv), as follows:

¬CheckTermination(loop e)
∆ · Γ · Σ ` e : (Unit, ε, γ)

∆ · Γ · Σ ` loop e : (reg τ, ε+ div, γ)

We distinguish two sub-cases:

• sub-case (CoEvalLetAbort): we can build the following derivation:

δ · µ · e ⇓co div abort div

δ · µ · let reg _ = e in loop e ⇓co div
======================================= (CoEvalLetAbort)

δ · µ · loop e ⇓co div
== (CoEvalLoop)

By co-inductive hypothesis
E(δ) · E(µ) · E(e) ⇓co div

We can build the following derivation:

E(δ) · E(µ) · E(e) ⇓co div abort div

E(δ) · E(µ) · let reg_ = E(e) in loop E(e) ⇓co div
=== (CoEvalLetAbort)

E(δ) · E(µ) · loop E(e) ⇓co div
== (CoEvalLoop)

which completes this case.

• sub-case (CoEvalLet): we can build the following derivation:

δ · µ · e ⇓ µ ′ · () µ ′ · loop e ⇓co div

δ · µ · let reg _ = e in loop e ⇓co div
======================================= (CoEvalLet)

δ · µ · loop e ⇓co div
== (CoEvalLoop)

By co-induction hypotheses

E(δ) · E(µ ′) · loop E(e) ⇓co div

We can build the following derivation:

E(δ) · E(µ) · e ⇓ () E(δ) · E(µ ′) · loop E(e) ⇓co div

E(δ) · E(µ ′) · let reg _ = E(e) in loop E(e) ⇓co div
== (CoEvalLet)

E(δ) · E(µ) · loop E(e) ⇓co div
=== (CoEvalLoop)

which completes this case.

4.3. SEMANTICS PRESERVATION 99

case (CoEvalLetAbort). Semantics co-evaluation ends up with

δ · µ · e1 ⇓co div abort div

δ · µ · let β ′x = e1 in e2 ⇓co div
=================================

In this case, expression e1 diverges causing the whole let..in expression to diverge. The typing
derivation ends up with

∆ · Γ · Σ ` e1 : (β ′1τ1, ε1, γ1) β ′1 v β ∆ · Γ + [x : β ′τ1] · Σ ` e2 : (π2, ε2, γ2)
∆ · Γ · Σ ` let β ′x = e1 in e2 : (π2, ε1 ∪ ε2, γ1 ∪ γ2)

By co-induction hypothesis
E(δ) · E(µ) · Eβ ′(e1) ⇓co div

We now proceed by case analysis on the definition of the extraction function. Since e1 is a stateful
expression, the first and the third cases of the let..in extraction rule cannot happen. For the
remaining three cases, we can always use rule (CoEvalLetAbort) to the complete the case. For
instance, if e2 is a regular expression, we complete the case with the following derivation:

E(δ) · E(µ) · Eβ ′(e1) ⇓co div abort div

E(δ) · E(µ) · let reg x�β ′ = Eβ ′(e1) in Eβ(e2) ⇓co div
===

case (CoEvalLet). Semantics co-evaluation ends up with

δ · µ · e1 ⇓ µ ′ · ν̄ δ · µ ′ · e2[x̄ 7→ ν̄] ⇓co div

δ · µ · let βx = e1 in e2 ⇓co div
==

In this case, expression e2 diverges causing the whole let..in expression to diverge. The evaluation
of e1 terminates in the sequence of values ν̄, so we have

δ · µ · e1 ⇓ µ ′ · ν̄
The typing derivation ends up with

∆ · Γ · Σ ` e1 : (β ′1τ1, ε1, γ1) β ′1 v β ∆ · Γ + [x : β ′τ1] · Σ ` e2 : (π2, ε2, γ2)
∆ · Γ · Σ ` let β ′x = e1 in e2 : (π2, ε1 ∪ ε2, γ1 ∪ γ2)

By co-induction hypotheses
E(δ) · E(µ) · Eβ(e2) ⇓co div

We now proceed by case analysis on the definition of the extraction function. The first and third
cases in the extraction of a let..in expression follow directly by the co-induction hypotheses.
Since e2 is a stateful expression, the second case is impossible. For the remaining two cases, we can
always use rule (CoEvalLet) and the co-induction hypotheses to build a derivation that completes
the case.

case (CoEvalRec). Semantics co-evaluation ends up with

δ[f 7→ (x : π, e1)] · µ · e2 ⇓co div

δ · µ · rec f〈α〉(x : π) : σ = e1 in e2 ⇓co div
===

We distinguish two sub-cases, according to the typing rule used at the bottom of the derivation.

100 CHAPTER 4. EXTRACTION

• sub-case (TRec): typing derivation ends up with

∆+ [f : ∀α.(x : π)→ σ] · Γ + [x : π] · Σ ` e1 : σ ′ σ ′�Γ+[x:π] v σ
CheckTermination(rec f〈α〉(x : π) : σ = e1)

σ = (β ′τ, ε, γ) ∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α 6∈ Γ α 6∈ ∆
∆ · Γ · Σ ` rec f〈α〉(x : π) : σ = e1 in e2 : σ ′′

By co-induction hypothesis

E(δ[f 7→ (x : π, e1)]) · E(µ) · Eβ(e2) ⇓co div

In this case, a call to function f always terminates, hence this is not the source of divergence
for the evaluation of expression e2. In particular, f can be a ghost function. If that is the
case, we have

E(δ[f 7→ (x : π, e1)]) = E(δ)

and the proof follows by the co-induction hypothesis, since the whole rec..in expression
extracts to Eβ(e2). Otherwise, f is a regular function and we have

E(δ[f 7→ (x : π, e1)]) = E(δ)[f 7→ (E(x : π), Eβ ′(e1))]

We can build the following derivation:

E(δ)[f 7→ (E(x : π), Eβ ′(e1))] · E(µ) · Eβ(e2) ⇓co div

E(δ) · E(µ) · rec f〈α〉(E(x : π)) : E(σ) = Eβ ′(e1) in Eβ(e2) ⇓co div
==

which concludes this case.

• sub-case (TRecDiv): typing derivation ends up with

∆+ [f : ∀α.(x : π)→ σ] · Γ + [x : π] · Σ ` e1 : σ ′ σ ′�Γ+[x:π] v σ
¬CheckTermination(rec f〈α〉(x : π) : σ = e1)

σ = (βτ, ε+ div, γ) ∆+ [f : ∀α.(x : π)→ σ] · Γ · Σ ` e2 : σ ′′ α 6∈ Γ α 6∈ ∆
∆ · Γ · Σ ` rec f〈α〉(x : π) : σ = e1 in e2 : σ ′′

Since f is a stateful function, we can only apply the following rule of extraction:

Eβ(rec f〈α〉(x : π) : σ = e1 in e2 , rec f〈α〉 (E((β ′τ, ε, γ))) : E(β ′τ, ε, γ) = Eβ ′(e1)in Eβ(e2))

We complete this case by using the co-induction hypothesis and the rule (CoEvalRec) to
build the derivation. This is similar to second sub-case of the (CoEval) case.

4.4 Extraction Machinery

In this section, we present the new Why3 extraction mechanism. We describe our implementation
effort, with a focus on the new architecture of the mechanism, code optimizations, and interaction
with drivers. We give, as well, an overview of the new Why3 extract command, with a detailed
explanation of the command line options and different entry points for extraction.

4.4. EXTRACTION MACHINERY 101

4.4.1 Extraction Implementation.

We have re-implemented from scratch the Why3 extraction mechanism. This programming effort
currently makes up to more than 2.5k of OCaml non-blank lines of code. We entirely re-designed
the extraction mechanism architecture to clearly separate the code translation part from the code
printing process. The WhyML internal abstract syntax tree is translated into an intermediate
representation, an ML-like language, from which all the traces of ghost code and logical annotations
have been removed. The implemented extraction function follows the definition we give in Fig. 4.1.
Taking a regular WhyML expression and a mask as arguments, it produces an expression in the new
intermediate representation. The following is an excerpt of the extraction function implementation:

OCamllet rec extract mask e =
assert (not (e_ghost e));
assert (mask_sub e.e_mask mask));
match e.e_node with
| Econst _ | Evar _ when mask = MaskGhost -> e_unit
| Econst c -> e_const c
| Evar pv -> e_var pv
| Elet (LDvar (_, e1), e2) when e_ghost e1 -> extract mask e2
| Elet (LDvar (_, e1), e2) when e_ghost e2 -> extract MaskGhost e1

...

Let us note the two assert expressions at the beginning of the function definition. These ensure
that we never try to extract a ghost expression, and that the mask given as the mask of expression e
is always a sub-mask, i.e., it is at most as ghost as the mask given as an argument to the extract
function. These assert expressions correspond exactly to the statement of lemma 4.1.1, and are
used as mean of defensive programming. The four cases in the definition of extract that we
present here are also present in the definition of Fig. 4.1. When mask is completely ghost, we
extract constants and variables into e_unit, a smart constructor of the intermediate language that
build the unit value. On the other hand, if the mask is visible, we call smart constructors e_const
and e_var to extract, respectively, constants and program variables. Finally, the remaining two
cases correspond to the first two cases in extraction of a let..in expression. In the first one, we
extract only sub-expression e2 since e1 is ghost. In the second case, we extract e1 with a ghost
mask, as we are only interested in keeping the side effects produced by this expression and not its
result. For both cases of let..in extraction, the assert expressions on top of the function body,
together with the when clauses of each branch, ensure that each recursive call of extract is done
on regular expressions. Moreover, we know that for the second case e1 is an effectful expression,
otherwise the whole let..in expression would be considered ghost.

To print the extracted code we use a printer, an OCaml program that takes the intermediate
representation and prints it into the desired programming language syntax. In the scope of this
work, we wrote the printer for the OCaml language. This is an essential ingredient in our quest to
use Why3 to produce verified OCaml programs. We wrote, as well, a CakeML [93] printer, in order
to translate verified WhyML programs into the input language of a certified compiler. Extending
Why3 with the support for the extraction towards a new programming language is now just a
matter of writing a new printer. Giving the simplicity of the intermediate representation, when
compared with the WhyML internal AST, writing such a printer is not a major task. In fact,
Why3 currently supports extraction of C programs [136], using a printer conceived on top of our
intermediate representation.

Optimizations. During the code translation phase, we perform some optimizations over the
extraction result. An important optimization is the simplification of singleton record types. When

102 CHAPTER 4. EXTRACTION

reasoning about data structures, we normally introduce a logical model for such a data structure.
Such a model is typically introduced as ghost value and maintained as a field of a record type which
contains the data structure. Let us consider the case of type t, the of permutations presented in
Sec. 2.2.1. When we remove the two ghost fields, we end up with the following type definition:

WhyMLtype t = { a: array63 }

The Why3 extraction mechanism inlines such type definitions, and simplifies the code that accesses
this field or that creates a value of this record-type. This avoids a dynamic allocation for a single-
fielded record.

Another important optimization performed during extraction is the elimination of superfluous
let..in expressions. These are mainly introduced by the internal representation of WhyML in
A-normal form. Even if locally binding every sub-expression, via what we call a proxy variable,
does not change the meaning of the program, it becomes rather tedious to read a code containing
all those extra bindings. However, not all let..in bindings introduced internally by Why3 can be
removed. Let us consider, for instance, the following WhyML program:

WhyMLlet conflict_assign () : unit
= let f (x y: int63) : int63

= assert { y = 42 };
y in

let i = ref 42 in
let _ = f (i := 0; !i) !i in
assert { !i = 0 }

In Why3, it is specified that the order of arguments evaluation is done from right to left. The
internal use of A-normal form automatically guarantees that this order of evaluation is respected:

WhyML (internal)

let conflict_assign () : unit =
let f (x y: int63) : int63
= assert { y = 42 };

y in
let i = ref 42 in
let _ = let o = !i in

let o1 = i := 0; !i in
f o1 o in

assert { !i = 0 }

In particular, we are able to prove the two given intermediate assertions. Naively, we could have
extracted this program into the following OCaml code:

OCaml (extracted)let conflict_assign () : unit =
let f (x: int) (y: int) : int = y in
let i = ref 42 in
ignore (f (i := 0; !i) !i)

However, the order in which function arguments are evaluated in OCaml is not specified. This means
that some versions of the OCaml compiler might start by evaluating expression i := 0; !i. In
particular, function f is called with both arguments equal to zero, which breaks the intermediate
assertion proved by Why3.

Interaction with drivers. Extraction drivers introduce textual substitutions for some of the
WhyML symbols used in our development. For each type, function, or exception name encountered

4.4. EXTRACTION MACHINERY 103

during extraction, we check if such a symbol is defined in the driver. If this is the case, we replace
every occurrence of such a symbol by the code provided in the driver. In the particular case of
extraction to OCaml, we use the ocaml64 driver to map some of the Why3 standard library elements
to the corresponding OCaml standard library counterparts. The following is a piece of this driver:

Drivermodule list.List
syntax type list "%1 list"
syntax function Nil "[]"
syntax function Cons "%1 :: %2"
syntax predicate is_nil "%1 = []"

end

In the example above, we show we translate the WhyML List module into the corresponding
OCaml syntax. The use of constructors Nil and Cons are replaced, respectively, by the OCaml
syntactic sugar [] and _::_. The Boolean function is_nil is directly replaced by a test against
the empty list. Each %i correspond to a place-holder for the symbol’s arguments. Since list is a
polymorphic type, %1 corresponds to the type arguments.

In order to avoid some potential faulty expressions, we enclose within parentheses every ex-
pression issued from the driver. This is, however, clearly not enough to prevent every potential
problem rising from the driver. Each string can contain arbitrary code that is never verified, nor
even type-checked, which makes every substitution a potential source of bugs in extracted code.
Drivers are, thus, part of the trusted computing base of Why3. Nonetheless, a typical driver is
supposed to only introduce very simple substitutions, which we can convince ourselves that are
the source of any problem just by carefully reading the driver’s contents.

4.4.2 The why3 extract command.

To extract a program from a WhyML development, the user must invoke the extract tool of the
Why3 framework, directly from her terminal. The general usage of this command is as follows:

Terminal

why3 extract [options] -D <driver> [-o <dir|file>] [<file>.<Module>*.<symbol>?|-]

The available command options are the following:

• --flat (this option is activated by default): instructs Why3 to print the result of extraction
into a single file, even if multiple WhyML modules/files are extracted;

• --modular: instructs Why3 to print each WhyML module targeted by extraction into a
separated file; we can use this option to extract functorial code, as we shall present in
Sec. 5.3.4; such an option cannot be combined with the --flat one;

• --recursive: instructs Why3 to perform a recursive extraction, i.e., the dependencies of
each WhyML symbol are also extracted; this option can be combined with both the --flat
and --modular ones.

To perform recursive extraction, we have implemented a calculus of dependencies for our inter-
mediate representation tree. It consists of an higher-order iterator that traverses bottom-up the
abstract syntax tree issued from extraction, using Why3 standard library functions to fetch the
definition of a symbol from its name.

The -D option of the command line is mandatory and expects the name of a driver. A single
call to extract can be given multiple drivers; it suffices to prefix each one with an extra -D. The -o
option specifies the output file to print the extraction result. Under flat extraction, if no output

104 CHAPTER 4. EXTRACTION

file is given, the result is printed to standard output. This option is mandatory under a modular
extraction, and one must specify a directory in which to print the different resulting files.

Finally, we can call the Why3 extraction on different entry points. Extraction can be applied
to a complete .mlw file, in which case the contents of the whole file is extracted. Extraction can
also be applied to a single module, in which case we give to the command line an argument of the
form f.M, where module M is contained in the Why3 file named f.mlw. Last, we can also chose to
extract the definition of a single WhyML symbol, i.e., a function, a type, or an exception name. In
this case, the extract command terminates by f.M.t, where symbol t is defined inside module M,
which is contained in the f.mlw file.

4.5 Discussion and Related Work

Correct-by-construction programs via code extraction. The Coq proof assistant provides
an extraction mechanism [101, 102] that can be used to extract a certified functional program
from a proof term. The basis for Coq’s extraction is a clear separation between propositions
that are “computational informative” and propositions that have only “logical” contents [122]. In
practice, this is done by marking the computational-relevant elements of a proof with sort Set,
and the parts that are useless for computation with sort Prop. Coq’s type system ensures that
this marking is correct, which is similar to our use of KidML’s type system to ensure the property
of non-interference. Coq currently supports extraction towards OCaml, Haskell, and the Scheme
language.

The Coq extraction mechanism has been successfully used to produce correct-by-construction
implementations of industrial-size software. An example is CompCert [99], a realistic, optimizing,
and formally verified C compiler. Coq is used to prove that the different steps of compilation
preserve the semantics of the C source code, as well as to extract an executable OCaml imple-
mentation of the compiler. Another impressive example that follows this approach is the Verasco
static analyzer [82]. This analyzer uses abstract interpretation [45] to search for run-time errors
in C programs. Verasco is proved correct using Coq, which guarantees that programs that analyze
without alarms are free of run-time errors. The OCaml sources of this project are, once again,
obtained via the Coq extraction mechanism.

Another example of a verification framework featuring an extraction mechanism for ML-like
programs is the FoCaLiZe atelier [73]. The FoCaLiZe environment presents a functional program-
ming language with object-oriented features, on which the programmer can write specifications
and formal proofs of programs. Currently, FoCaLiZe translates a proof to three languages: OCaml,
which lets the user build an executable program; and Coq and Dedukti [6], in order to check the
proofs.

Formalization of extraction. The formalization of our extraction function is greatly influenced
by the previous work of Jean-Christophe Filliâtre, Léon Gondelman [72, Chap.2], and Andrei
Paskevich [64]. In that work, the authors define a code ghost erasure procedure over GhostML, a
small ML-like language. This erasure function is parameterized by a Boolean value and a GhostML
expression. Whenever the first parameter is bottom, the whole expression is converted to the
unit value. Otherwise, an extracted program is produced as a morphism of the source program.
This closely resembles our use of masks during extraction, where bottom corresponds to an entirely
ghost mask and top to a regular one. A proof of typing and semantics preservation is given for such
erasure proceeding. Contrary to our approach, these proofs are done using a small-step semantics
judgment. Another important difference is that a ghost expression is systematically replaced by
the unit value, while our extraction function completely erases any traces of ghost code, whenever

4.5. DISCUSSION AND RELATED WORK 105

possible. Moreover, an expression is either completely ghost or completely regular, which simplifies
the design and soundness proof of the erasure procedure.

Differences with respect to the Why3 extraction. The extraction mechanism we present
in this chapter is a significative sub-set of what we have actually implemented inside the Why3
framework. Our presentation of the extraction function closely follows the OCaml implementation
that lives inside the Why3 source code. In the following, we detail on some of the implemented
features that are missing in our formalized extraction function.

There are some WhyML syntactic constructions that we do not include in our presentation.
The most evident is pattern matching and algebraic data types declaration. We chose to exclude
pattern-matching as we believe this would only make our formalization heavier, without actually
making it more interesting. Another distinguished feature of WhyML is its module system. The
modular structure of a development can be replicated in the extracted code, via the modular
option of the extract command. It could extend our extraction function to take into account the
modular structure of a WhyML development, and it would be interesting to investigate how we
would generalize our proof of semantic preservation to take non-closed programs into account.

An important difference between the implemented extraction mechanism and the one we present
in this thesis is partial application of functions. While the KidML language only features complete
application, WhyML allows the programmer to partially apply functional symbols. From a point
of view of code extraction, this poses some interesting challenges. Let us consider the following
WhyML program:

WhyMLlet last_ghost_arg () =
let f (x: int63) (ghost y: int63) = x / 0 in
let partial = f 0 in
42

Naively, we could expect the following extracted code:
OCaml (extracted)let last_ghost_arg () =

let f (x: int) = x / 0 in
let partial = f 0 in
42

At first view, and given the ghost status of argument y, this seems a fair result of extraction.
However, the partial application of f must be considered carefully. The above WhyML program
produces no run-time error, since f is never completely applied, hence we never evaluate the division
by zero expression. On the other hand, f is extracted as a single-argument function thus, when
expression f 0 is evaluated, a division-by-zero error is raised. The extracted code cannot introduce
any behavior that does not happen in the original WhyML code. To avoid this pitfall, whenever
a WhyML function is partially applied and the remaining arguments are all ghost arguments, we
encapsulate such an application with a function expecting a unit argument. For the above example,
this is as follows:

OCaml (extracted)let partial () = f 0 in
...

It would be interesting to investigate how we could extend our language and extraction mechanism
to include partial function application, and observe how this would impact our formalization.

106 CHAPTER 4. EXTRACTION

No one in the brief history of
computing has ever written
a piece of perfect software.
It’s unlikely that you’ll be
the first.

Andy Hunt

5
A Toolchain for Verified OCaml Programs

In this chapter, we present a new toolchain and methodology to produce verified OCaml programs.
The core of our methodology is based on the material presented in the previous chapters, namely
the use of the WhyML language to derive verified implementations, and the use of the Why3
extraction mechanism to obtain correct-by-construction OCaml code.

Our toolchain is part of a bigger project, named VOCaL [31], whose ambition is to provide a
mechanically-verified library of efficient general-purpose data structures and algorithms, written in
the OCaml language. One novelty of VOCaL1 is the collaborative use of three different verification
tools, namely Coq [140], the CFML tool [29], and Why3 itself. To reconcile these three tools
together, given their distinct logic and programming frameworks, one of the main lines of work
in the VOCaL project is the design of a specification language for OCaml, similar to what JML is
for Java [24, 96], or ACSL for C [15]. Such a specification language is not tied to any particular
verification tool, hence it can be used as an entry point for the three tools of the VOCaL project. An
important aspect about this specification language is that it must be both mathematically rigorous
and easy to understand by an OCaml programmer who is not necessarily a proof expert. This last
point is crucial, since we attach specification elements to .mli files, which are traditionally used
as documentation units on the behavior of the library code, as the user is not expected to look
into the details of implementation. In such a way, the introduced specification cannot disturb the
library user, but rather be a source of extra rigorous documentation, helping the programmer to
understand the behavior of the library operations. In the following, we shall refer to this new
specification as OSL, short for OCaml Specification Language.

This chapter is organized as follows. We present our methodology and toolchain in Sec. 5.1.
In Sec. 5.2, we use the example of a verified union-find implementation as a complete illustration
of all the steps in our methodology. Sec. 5.3 completes the union-find case study by presenting
challenging aspects that arise during the proof of OCaml programs, and how we deal with them.
We conclude with some discussion and related work in Sec. 5.5.

1https://vocal.lri.fr/

107

https://vocal.lri.fr/

108 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

OCaml Why3

Interface

Implementation

.mli file +
specification

WhyML
specification

correct-by-
construction
.ml file

WhyML
code

type t =
· · · model

subst.

translation

proof

extraction

correct w.r.t.

Figure 5.1: Methodology diagram.

5.1 Methodology

There are various different approaches to tackle the development of formally verified programs.
The most direct and, perhaps, most widespread method is to augment an existing mainstream
programming language with specification annotations (function contracts, loop invariants, etc.)
and prove the conformance of the code to the specification, normally through an intermediate
verification platform. Some examples of such approach include the VeriFast [81] and KeY [2] tools
for Java, the Frama-C [87] and VCC [38] (using Boogie [10] as an intermediate language) frameworks
for the C language, GNATprove [39] (using Why3 as an intermediate language) for Ada/SPARK, and
CFML (using Coq as an intermediate language) for OCaml. A major technical challenge resulting
from this approach is the need to encode a significant fragment of a real-life programming language,
which was most likely not designed with verification in mind, into a suitable program logic. Other
than the hardness of defining such an encoding, the generated verification conditions may be rather
complex which makes the proof difficult for both automated or interactive tools.

A different approach consists in developing formally verified code in a dedicated verification
environment and then translate it to an existing programming language. Via this translation
mechanism one produces a so called correct-by-construction program. Following this approach, one
can cite PVS [119], Coq , the B method [1], F? [139], Dafny [97], and Why3. This approach works
well for self-contained developments, e.g., the CompCert [99] verified C compiler, but faces some
problems when it comes to integrate the verified code into a larger development. The automatically
generated code is typically a clobbered mess while the original source code, written in the specific
language of the verification platform, is normally incomprehensible to a common programmer.

Our methodology to use the Why3 framework to producing verified OCaml code is an attempt
to reconcile these two approaches, avoiding some of the aforementioned drawbacks. The OCaml
language has a number of features that make it a particularly well-suited target language for
our approach. The separate compilation in OCaml is organized around the notions of interface,
declarations of types and function signatures collected in a .mli file, and an implementation
providing the definitions of types and functions, collected in a .ml file. We split our verification
and implementation process into several steps. First, given an OCaml .mli file, we annotate
declarations with specification elements such as function contracts, type invariants, etc., using the
new OCaml specification language. From the annotated .mli file, we then automatically generate
a corresponding Why3 input file, in which all annotations are translated into WhyML. This is done

5.2. A CASE STUDY: UNION-FIND 109

using a new Why3 plugin, which we specifically developed as part of our methodology. The next
step is to provide a verified WhyML implementation of the declared operations and types. This
means that, besides implementing and verifying a WhyML program, we also establish its correctness
with respect to the specification we first gave in the .mli file. Lastly, we use the Why3 extraction
mechanism to translate our verified WhyML implementation into a correct-by-construction OCaml
code, which we print to a .ml file.

An overview of our methodology is given in Fig. 5.1. In the diagram, the rows correspond to
the different levels of abstraction (interface vs. implementation) and the columns correspond to
environments (OCaml vs. Why3). The solid rectangles represent the user-written files, namely the
annotated OCaml interface and the WhyML implementation, and the dashed rectangles represent
the automatically generated files, namely the WhyML interface and the OCaml implementation.
Whenever an OCaml type cannot be mapped directly to a WhyML type, due to use of mutable
data beyond the reach of WhyML’s type system [63], a custom memory model is built for this type.
When it comes to translation of WhyML to OCaml, we return to the original OCaml type using a
consistent substitution file. This is illustrated in the central part of the diagram.

In the remaining of this chapter, we go through several case studies in order to illustrate
our methodology. We use the example of a union-find library to explain our verification and
implementation workflow in detail. Other case studies are presented in Sec. 5.3.

5.2 A Case Study: Union-Find

To illustrate our methodology, let us consider the verification of a union-find library. Such a
case study is a collaboratively development with Martin Clochard, Jean-Christophe Filliâtre, and
Simão Melo de Sousa. We reuse the OCaml API from Arthur Charguéraud and François Pottier’s
proof [32]:

OCamltype ’a elem (* type of the elements *)
val make : ’a -> ’a elem (* a singleton class *)
val get : ’a elem -> ’a (* access the image *)
val set : ’a elem -> ’a -> unit (* update the image *)
val find : ’a elem -> ’a elem (* the representative *)
val eq : ’a elem -> ’a elem -> bool (* in the same class? *)
val union : ’a elem -> ’a elem -> unit (* merge two classes *)

We assume the interface to be enclosed in a file named UnionFind.mli. Polymorphic type elem
stands for the type of elements of each equivalence class. In this API, a value of type ’a is attached
to every equivalence class. The make function takes a value of such type and returns a fresh elem,
representing a new singleton class. Functions get and set are used, respectively, to retrieve and
modify the information attached to an equivalent class. The return type of the set operation
indicates that the equivalence class is updated via a side-effect, which lets us guess that function
set performs some effectful computation. The remaining functions in the API are the expected
ones for a union-find implementation: the classical function find takes an element of and returns
the representative of the equivalent class to which the element belongs; function eq checks if two
elements belong to the same equivalence class; finally, union merges two equivalence classes, also
via a side-effect.

In the following sections, we detail on the OCaml and WhyML developments that we use to
produce a correct-by-construction implementation of the union-find library. We show how we
specify the interface of union-find, using the new OCaml specification language, and how we can
use Why3 to build a verified implementation of the union-find operations. We prove that such an
implementation conforms to the specified interface, through a proof of data refinement. Finally, we

110 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

use the Why3 extraction mechanism to mechanically generate a compilable OCaml implementation
of the union-find library.

5.2.1 Specification

“With great proofs, comes great specification”. Before engaging ourselves in the proof of the union-
find implementation, we must first devise a formal specification for the union-find operations. Such
a specification is added to the UnionFind.mli file, in a form of special comments starting with ’@’.
Being declared inside comments, specification elements are ignored by the OCaml compiler.

In order to specify to the API operations, we need to be able to reason about the elements in
the union-find universe. To this end, we first introduce the following ghost type uf:

OCaml (annotated)(*@ type ’a uf
mutable model dom : ’a elem set
mutable model rep : ’a elem -> ’a elem
mutable model img : ’a elem -> ’a
invariant forall x. mem x dom -> img x = img (rep x)
invariant forall x. mem x dom -> rep x = rep (rep x)
invariant forall x. mem x dom -> mem (rep x) dom *)

This is a mutable, abstract data type, whose contents we model through a set dom, a function rep,
and a function img. We add, as well, three invariants to type uf. These ensure that the set dom
is, indeed, partitioned by the relation “to have the same values by rep”. In the following, we use
type uf to derive the specification of the union-find operations.

We use a subset of the operations declared in the UnionFind.mli interface to illustrate the use
of OSL. Let us use make as a first example. Such an operation is specified in OSL as follows:

OCaml (annotated)val make : ’a -> ’a elem
(*@ e = make [uf: ’a uf] v

modifies uf
ensures not (mem e (old (dom uf)))
ensures dom uf = old (dom uf) ‘union‘ {e}
ensures rep uf = (old (rep uf))[e <- e]
ensures img uf = (old (img uf))[e <- v] *)

A function specification is attached to a val symbol. The first line names the argument v and
the returned value e, so that we can refer to them in the function contract. For the purpose of
specification, function make receives an extra argument uf of type uf ’a, which we identify as
a ghost argument using square brackets. The function contract is given in the form of pre- and
postconditions, as well as modifies clauses to indicate a modification effect performed by the
function. In this case, modifies accounts for the fact that we update the logical models dom, rep,
and img, following the creation of a new equivalence class. Explicitly mentioning the modification
effects of functions gives the programmer some extra understanding about the execution of the
function, which cannot be stated in the OCaml interface. In the case of make, this tells the
programmer that a call to make produces some side-effect. The postcondition states four different
properties: (1) the element e did not belong to set dom before the function execution (the old
keyword represents the value of its argument in the state prior to function execution), i.e., we
create, indeed, a fresh equivalence class; (2) we add e to set dom; (3) we extend rep with e as the
representative element of the new equivalence class; (4) we extend img with v as the image of the
new equivalence class. Note that we use the name of models as projections over the value uf.

Next, we define the following specification for the find function:

5.2. A CASE STUDY: UNION-FIND 111

OCaml (annotated)val find : ’a elem -> ’a elem
(*@ r = find [uf: ’a uf] e

requires mem e (dom uf)
modifies uf
ensures dom uf = old (dom uf)
ensures rep uf = old (rep uf)
ensures img uf = old (img uf)
ensures r = rep uf e *)

The above pre-condition requires that element e to be in the dom set, i.e., the domain of elements
in the union-find universe. The postcondition ensures that the find operation does not change
the value of the logical models, and also that the returned value r stands for the representative
element of the equivalence class of e. The most interesting part of this specification lies in the
modifies clause. Even if we do not change the value of any of the models of type uf, function
find internally performs a side-effect. This is nothing else than the effect of path-compression.

We complete our presentation of the union-find specification with the union function. This
function is specified as follows:

OCaml (annotated)(*@ predicate equiv (uf: ’a uf) (x: ’a elem) (y: ’a elem) :=
rep uf x = rep uf y *)

val union : ’a elem -> ’a elem -> unit
(*@ union [uf: ’a uf] e1 e2

requires mem e1 (dom uf)
requires mem e2 (dom uf)
modifies uf
ensures dom uf = old (dom uf)
ensures exists r. (r = old (rep uf e1) || r = old (rep uf e2)) &&

forall x. mem x uf.dom ->
rep uf x = (if old (equiv uf x e1 || equiv uf x e2) then r

else old (rep uf x))
&& img uf x = if old (equiv uf x e1 || equiv uf x e2) then img uf r

else old (img uf x) *)

We can only merge two existing elements, which we state in the pre-condition. When merging two
equivalence classes, we do not allocate any new element, as stated in the first postcondition. The
remaining of the union postcondition demands a little more of attention. The union operation
takes two equivalence classes and shall map every element in the classes of e1 and e2 to the same
representative value. The representative element of the merged class is either the representative
value of e1 or the representative value of e2, before the merging. We retrieve such an element using
the existential quantification in the postcondition. We can then specify that, for every element x
in the dom set, if x is in the same equivalence class as e1 or e2, then rep uf x is updated to r.
Otherwise, x just keeps the same representative as before. We update function img in a similar
way. Finally, the modifies clause accounts for path-compression and the connection of elements
to a new representative value.

Functions get, set, and eq, which we do not show here, have similar contracts to those of
functions make, find, and union.

112 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

5.2.2 Verified Implementation

The next step is to implement and verify the union-find data structure. The OCaml implementation
we target is based on the following data types:

OCamltype ’a content = Link of ’a elem | Root of int * ’a
and ’a elem = ’a content ref

Each element is either a representative element (Root), containing a value of type int, which we
refer to as the rank of the class, and a value of type ’a, or a pointer (Link) to another element in
the same equivalence class.

2, α

Link

Link

Link

1, β

Link Link

The picture on the right shows a possible state of the
union-find universe, built from the given data types. The
rectangular nodes stand for Root elements (the representa-
tives of classes), whereas the round ones stand for Link. The
leftmost class is of rank two, as the longest chain until the
root features two Link nodes. We represent the information
associated to each equivalence class using symbols α and β.

Memory model. Unfortunately, the given OCaml type
definition cannot be directly translated to WhyML. The rea-
son is that recursive mutable types are beyond the scope of
Why3’s type-and-effect discipline [63]. The solution is to resort to an explicit memory model, that
is a set of types for pointers and memory together with the operations to allocate, read, and write
memory. In this case, we introduce the following WhyML type to model the heaps contents:

WhyMLtype mem_ref ’a = private {
ghost mutable refs : loc_ref ’a -> option ’a;

}

where loc_ref is an abstract type to represent locations of OCaml’s heap-allocated references of
type ref. In this type of the heap, non-allocated locations are mapped to None, and each allocated
location is mapped to Some c, for some value of type ’a.

We declare some primitive functions to manipulate the heap and locations. For instance, the
following returns a fresh and empty heap:

WhyMLval ghost empty_memory () : mem_ref ’a
ensures { forall r. not (mem r result.dom) }

The specification of function empty_memory states that no location is allocated in the newly created
heap. This is very easily expressed using set dom. To allocate a new reference, we use the following
function:

WhyMLval alloc_ref (ghost memory: mem_ref ’a) (v: ’a) : loc_ref ’a
writes { memory }
ensures { not (mem result (old memory).dom) }
ensures { memory.refs = Map.set (old memory.refs) result (Some v) }

Let us note that, contrarily to empty_memory, function alloc_ref is not declared as a ghost
function. This is due to the fact that empty_memory is used exclusively in ghost code, while
we need to use the alloc_ref function within regular code of our union-find implementation.
At extraction time, an expression of the form alloc_ref m v is replaced by ref v, the OCaml
standard library function to create new references. Sec. 5.2.4 presents the details on how to the
translate our memory model and type of locations to executable OCaml code.

5.2. A CASE STUDY: UNION-FIND 113

To interact with the heap, we introduce functions get_ref and set_ref which, respectively,
get the current value associated to a location and update the value pointed by a reference in the
memory. These are specified as follows:

WhyMLval get_ref (ghost memory: mem_ref ’a) (l: loc_ref ’a) : ’a
requires { mem l memory.dom }
ensures { Some result = memory.refs[l] }

val set_ref (ghost memory: mem_ref ’a) (l: loc_ref ’a) (c: ’a) : unit
requires { mem l memory.dom }
writes { memory }
ensures { memory.refs = (old memory.refs)[l <- Some c] }

Note that we pass the heap as a ghost argument, instead of declaring a single global variable to
model the heap. The reason is two-fold. First, global variables must have monomorphic types.
Second, by using “small heaps” passed through the chain of function calls as hidden arguments,
we statically enforce separation between the heaps and avoid complicated frame conditions. This
is yet another instance of Burstall’s “component-as-array”. Soundness of heap manipulation is
guaranteed by the fact that mem_ref is a private data type that is updated through abstract
functions.

Finally, we introduce the following function to compare the memory address of two locations:
WhyMLval (==) (x y: loc_ref ’a) : bool

ensures { result <-> x=y }

Different flavors of machine arithmetic. Having defined a particular memory model to our
union-find implementation, we can now give a WhyML definition for types content and elem. This
is as follows:

WhyMLtype rank = int63

type content ’a = Link (elem ’a) | Root rank ’a
type elem ’a = loc_ref (content ’a)

We use the loc_ref type of the memory model to represent references, and instantiate it here with
an argument of type content ’a.

The interesting aspect about the above type definitions is the definition of type rank. This is
an alias for type int63, the type of WhyML machine integers. As we describe in Chap. 2, type
int63 is directly extracted to the int type of OCaml, producing efficient code. From a proof
perspective, however, the price to pay is to prove the absence of arithmetic overflows.

In Chap. 2, the proof that reference n does not overflow is made simpler because its value is
bound by the length of the array t. There are, however, some situations where it is much more
subtle to deal with machine arithmetic. Let us consider, for instance, the following two equivalence
classes:

2, α

Link

Link

Link

2, β

Link

Link Link

114 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

Performing a union operation over such equivalence classes, results in the following configuration
of the union-find universe:

3, α

Link

Link

Link

Link

Link Link

Link

There is now a single equivalence class of rank three, which results from linking the root of the
former rightmost class to the root of the leftmost one. In WhyML, we can implement the code
performing this union operation as follows:

WhyMLlet union (ghost memo: mem_ref (content ’a)) (x y: elem ’a) =
let x, y = find memo x, find memo y in
if x == y then x
else match get_ref memo x, get_ref memo y with

| Root rx vx, Root ry vy ->
if rx = ry then begin

set_ref memo y (Link x);
set_ref memo x (Root (rx + 1) vx) end

...

Since the rank is of type int63, from such an operation Why3 generates the verification condition
rx + 1 ≤ 262 − 1. Without any further knowledge on rx, this is simply not provable. One obvious
solution would be to add such an inequality as a pre-condition of union. This would make the
proof of overflow absence trivial, but this extra pre-condition would fatally pollute the proof of
any client of union. Another solution would be to use arbitrary-precision integers, which would
not require a proof of overflow absence. However, this would make the extracted code less efficient
and would require the use of an external arbitrary-precision library to run the extracted code.

We adopt here the solution proposed by Martin Clochard, Jean-Christophe Filliâtre, and Andrei
Paskevich [37]. The idea is as follows: unless we expect our program to have century-long runs, we
can rest assured that an integer variable, whose value only grows by one at a time is, for all intents
and purposes, safe from overflow. To materialize this meta-argument, the authors introduce a new
type of integers, called Peano integers, with limited arithmetic operations. In Why3, this results in
a new library Peano, with a type t for Peano integers, a zero constant zero, a successor function
succ, and comparison function lt and eq, as follows:

WhyMLmodule Peano
type t = abstract { v: int }

val constant zero : t
ensures { result.v = 0 }

val succ (x: t) : t
ensures { result.v = x.v + 1 }

5.2. A CASE STUDY: UNION-FIND 115

val lt (x y: t) : bool
ensures { result <-> x.v < y.v }

val eq (x y: t) : bool
ensures { result <-> x.v = y.v }

end

We forgo the non-overflow precondition for Peano.succ, as there is no other way of producing a
Peano integer than by starting at zero and incrementing it one by one, and so the 262 limit is never
reached in any real-life situation. In our verified implementation of union-find, we alias type rank
with Peano.t, instead of int63:

WhyMLtype rank = Peano.t

and change the implementation of union accordingly:
WhyMLlet union (ghost memo: mem_ref (content ’a)) (x y: elem ’a) =

let x, y = find memo x, find memo y in
if x == y then x
else match get_ref memo x, get_ref memo y with

| Root rx vx, Root ry vy ->
if rx = ry then begin

set_ref memo y (Link x);
set_ref memo x (Root (Peano.succ rx) vx) end

Since Peano.succ has no precondition, there is no proof of absence of overflow to be done. In
particular, no extra pre-condition is required for function union.

When it comes to extract OCaml code, type Peano.t is translated into OCaml’s type int,
function Peano.succ into a machine addition, and lt and eq are translated, respectively, into the
OCaml operations < and =. This is done by extending our ocaml64 driver with the following:

Drivermodule Peano
syntax type t "int"
syntax val succ "%1 + 1"
syntax val lt "%1 < %2"
syntax val eq "%1 = %2"

end

Implementation of data type uf. Having defined the memory model and the types element
and content, we can implement and verify the union-find data structure. In particular, we have
to implement the data type uf. It is a record data type that contains, in addition to the fields
dom, rep, and img, the contents of the memory allocated by the union-find structure:

WhyMLtype uf ’a = {
ghost mutable dom : set (elem ’a);
ghost mutable rep : elem ’a -> elem ’a;
ghost mutable img : elem ’a -> ’a;
ghost memo: mem_ref (content ’a);

}

Encapsulation of the set of allocated pointers in type uf closely resembles the treatment of memory
footprint in the context of dynamic frames [84–86]. Note that type uf is only useful for specification

116 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

purposes, as it contains only ghost fields. In order to specify the type uf, we keep the same type
invariants as declared in UnionFind.mli interface:

WhyMLinvariant { forall x. mem x dom -> img x = img (rep x) }
invariant { forall x. mem x dom -> rep (rep x) = rep x }
invariant { forall x. mem x dom -> mem (rep x) dom }

and add some new conditions to relate the contents of memo with those of set dom, and functions
rep and img. First, we state that an element belongs to the union-find universe if and only if it
is allocated,

WhyMLinvariant { forall x. mem x dom <-> allocated memo x }

where allocated is defined as follows:
WhyMLpredicate allocated (memory: mem_ref (content ’a)) (x: elem ’a) =

mem x memory.dom

Next, we say that representative values are only allocated as Root elements:
WhyMLinvariant { forall x. mem x dom -> match memo.refs (rep x) with

| Some (Root _ _) -> true
| _ -> false end }

Finally, every allocated element is part of a union-find chain:
WhyMLinvariant { forall x. match memo.refs x with

| Some (Link y) -> x <> y /\ allocated memo y /\ rep x = rep y
| Some (Root _ v) -> img x = v /\ rep x = x
| None -> true end }

If x points to a Link y node in memory, then y is different of x (no loops are allowed in union-find),
element y is also allocated, and has the representative element as x; on the other, if x points to a
Root _ v node, then the img of x is v, and x is its own representative element. This completes
the specification of the union-find universe, with respect to the built memory model.

Verified implementation of union-find operations. After implementing the uf data type, we
can now focus on the implementation of the union-find operations. As declared in the interface, all
union-find functions receive a ghost parameter of type uf and then exploit it to perform read/write
operations on memory. For instance, the make function is implemented and specified as follows:

WhyMLlet make (ghost uf: uf ’a) (v: ’a) : elem ’a
ensures { not (mem result (old (dom uf))) }
ensures { dom uf = add result (old (dom uf)) }
ensures { rep uf = (old (rep uf))[result <- result] }
ensures { img uf = (old (img uf))[result <- v] }

= let x = alloc_ref uf.memo (Root Peano.zero v) in
uf.dom <- add x uf.dom;
uf.rep <- uf.rep[x <- x];
uf.img <- uf.img[x <- v];
x

We keep the same specification as given in the interface. The implementation of make is straight-
forward. More interestingly, we implement and specify function find as follows:

WhyMLlet rec find (ghost uf: uf ’a) (x: elem ’a) : elem ’a
requires { mem x uf.dom }

5.2. A CASE STUDY: UNION-FIND 117

ensures { result = uf.rep x }
= match get_ref uf.memo x with

| Root _ _ -> x
| Link y -> let rx = find uf y in

set_ref uf.memo x (Link rx); rx
end

Here, the specification is much simpler than the one we gave in the interface. Why3 is able to
infer that the only field of uf modified by the execution of find is memo. There is, hence, no need
to state that the values of dom, rep, and img are unchanged. The call to set_ref accounts for
path compression, as it links every element in the equivalence class directly to the representative
element computed by the recursive calls.

Proof of termination. Let us note that we have not, yet, supplied a termination measure for
function find. In fact, proving the termination of this function is one of most challenging aspects
in the proof of the union-find data structure.

We adopt here a solution that consists in maintaining a distance value associated to each
element of an equivalence class. When following Link pointers, distances strictly increase, as we
illustrate in the following diagram:

3, α, 3

0

Link

1

0

Link

Link

2

1

0

Link

Link

0

Link

Link

The distance values we assign to each element are of no particular interest, as long as they increase
until we reach a Root node. We introduce, as well, a maximal value as an upper bound for
distances. We materialize these two notions by adding to type uf two new fields dst and maxd, as
follows:

WhyMLtype uf ’a = {
...
ghost mutable dst : elem ’a -> int;
ghost mutable maxd: int;

}

We also equip this data type with the following new invariants:
WhyMLinvariant { forall x. match memo.refs x with

| Some (Link y) -> dst x < dst y
| _ -> true end }

invariant { 0 <= maxd }
invariant { forall x. mem x dom -> dst x <= maxd }

Such invariants state the increasing property of the dst values and that these are limited by the
value of maxd. We straightforwardly update function make by adding the line

118 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

WhyMLuf.dst <- uf.dst[x <- 0]}

to its body. This creates a new singleton equivalence class, with a zero-distance element. This
trivially respects the uf type invariant, since we state maxd to be a non-negative value.

We can now specify and prove the termination of the find operation. This is as simple as
follows:

WhyMLlet rec find (ghost uf: uf ’a) (x: elem ’a) : elem ’a
...
variant { uf.maxd - uf.dst x }
ensures { uf.dst result >= uf.dst x }

= ...

The variant uf.maxd - uf.dst x decreases at each recursive call due to the increasing property
of dst. The implementation requires absolutely no change. When we do path compression, we
do not change the dst value. Every element in the chain of x is now linked to the representative
element, which respects the invariant, as all distances are still strictly increasing.

Using find, we can provide an implementation for the union operation. This demands some
attention when it comes to update the values of dst and maxd, in order to respect the invariant of
type uf. First, we implement the union function as follows:

WhyMLlet union (ghost uf: uf ’a) (x y: elem ’a) : unit
requires { mem x uf.dom }
requires { mem y uf.dom }
ensures { exists r. (r = old (rep uf x)) || (r = old (rep uf y)) /\

forall z. mem z uf.dom ->
rep uf z = if old (equiv uf z x || equiv uf z y) then r

else old (rep uf z) /\
forall z. mem z uf.dom ->

img uf z = if old (equiv uf z x || equiv uf z y) then img uf r
else old (img uf z) }

= let (a, b) = find uf x, find uf y in
link uf a b

We keep the exact same specification as in the UnionFind.mli interface file. The code of union
first calls find to retrieve the representative elements a and b of the classes of x and y. Then,
the auxiliary function link merges the classes of elements a and b. The implementation of link
is where “all the fun happens”. This function is responsible for updating the values of the logical
models in uf, as well as the pointers in the heap. We give the following specification to such a
function:

WhyMLlet link (ghost uf: uf ’a) (x y: elem ’a) : unit
requires { mem x uf.dom /\ mem y uf.dom }
requires { x = uf.rep x /\ y = uf.rep y }
ensures { exists r. (r = old (rep uf x)) || (r = old (rep uf y)) /\

forall z. mem z uf.dom ->
rep uf z = if old (equiv uf z x || equiv uf z y) then r

else old (rep uf z) /\
forall z. mem z uf.dom ->

img uf z = if old (equiv uf z x || equiv uf z y) then img uf r
else old (img uf z) }

5.2. A CASE STUDY: UNION-FIND 119

This is very similar to the specification of function union, except for the pre-condition stating
that x and y must be representative elements. The implementation is as follows: we first compare
elements x and y, and if these point to the same location in memory we immediately return x,

WhyML= if x == y then x

on the other hand, if these are different pointers, we use function get_ref to get the value associated
to x and y. If x and y are Root elements, then we merge the two equivalence classes according to
the ranks. If x is the less-ranked representative element, then we link x to y, the representative
element of the new class,

WhyML| Root rx vx, Root ry vy ->
if Peano.lt rx ry then begin

set_ref uf.memo x (Link y);
uf.rep, uf.img, uf.maxd, uf.dst <-

pure { fun z -> if uf.rep z = uf.rep x then y else uf.rep z },
pure { fun z -> if uf.rep z = uf.rep x then vy else uf.img z },
uf.maxd + 1,
uf.dst[y <- 1 + max (uf.dst x) (uf.dst y)]

The merge of the two classes is done using the set_ref function, which changes in memory the
value associated with x. The rest of the code updates fields rep, img, maxd, and dst. Syntax

WhyMLx.f1, . . . , x.fn <- v1, . . . , vn

stands for the multiple assignment operation, i.e., we assign each field fi of record x to the value
vi. We increment the value of maxd and update dst such that dst y is equal to the maximum
between dst x and dst y, plus one. This way, all distances are kept strictly increasing and smaller
to the value of maxd, hence we preserve the invariant of type uf. The other cases in the pattern
matching, i.e., at least one of the elements is a Link node, represents an unreachable point in the
code,

WhyMLelse match get_ref uf.memo x, get_ref uf.memo y with
| Link _, Link _ -> absurd

which we can prove thanks to the extra supplied pre-condition.
The remaining of function link links y to x, and updates the fields of uf accordingly:

WhyMLend else begin
set_ref uf.memo y (Link x);
uf.rep, uf.img, uf.maxd, uf.dst <-

pure { fun z -> if uf.rep z = uf.rep y then x else uf.rep z },
pure { fun z -> if uf.rep z = uf.rep y then vx else uf.img z },
uf.maxd + 1,
uf.dst[x <- 1 + MinMax.max (uf.dst x) (uf.dst y)];

if Peano.eq rx ry then set_ref uf.memo x (Root (Peano.succ rx) vx)
end

end

If x and y are equally-ranked root elements, we know that the new class must be of an higher rank.
In such a case, we update the value associated with x in memory to Root (Peano.succ rx) vx.
This completes the proof of functions union and link.

We omit the implementation of functions get, set, and eq. These have all straightforward
implementations and the contract of these functions follows exactly the one we give in the inter-
face file. It is worth pointing out that all the generated verification conditions by Why3 for the

120 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

union-find operations are discharged fully automatically. No auxiliary lemma or intermediate
assertion is ever needed.

A digression on specification styles. The way we specify the uf data type is crucial to
complete the proof of the union-find data structure. The use of universal quantification and the
specification in terms of model fields dom, rep, img, dst, and maxd is the secret to achieve a fully
automated proof of correction of the implemented operations. In particular, proving termination
is almost trivial thanks to the use of fields maxd and dst. We refer to such kind of invariants as
local invariants.

We could, very well, specify type uf in terms of some inductive definition, introducing the notion
of path and reachability between union-find elements. For instance, we could use the following
definition of path:

WhyMLinductive path (memo: memo ’a) (x y: elem ’a) (n: int) =
| Path_nil : forall mem: memo ’a, x: elem ’a, v: ’a, r, n.

0 <= n -> memo.refs x = Some (Root r v) ->
path memo x x n

| Path_cons: forall mem: memo ’a, x y z: elem ’a, n.
0 <= n -> mem.refs x = Some (Link y) -> path mem y z n ->
path mem x z (n+1)

The statement path memo x y n stands for “under heap memo, there is a path from x to y of length
at most n”. Then, we would have

WhyMLforall x. mem x dom -> path memo x (rep x) maxd

as an invariant of the uf data type, which ensures the termination of function find. However,
from a practical point of view, the use of inductive predicate path would fatally compromise the
automation of the proof. At each assignment in the heap, we would have to re-establish the path
invariant for every chain in the union-find universe (some are unchanged, some are shortened, etc.).
This would require, undoubtedly, some auxiliary lemmas being proved by induction.

5.2.3 Proof of Refinement and Specification Inclusion

Once we have implemented and verified all operations, we move on to a proof of specification
inclusion. This means proving that the specification of the verified union-find operations conforms
to the specification written in the .mli file and translated to WhyML by the new Why3 plugin.
A proof of specification inclusion is very similar to the use of Hoare Logic consequence rule. The
following Hoare Logic rule

P =⇒ P ′ {P ′ } c {Q ′ } Q ′ =⇒ Q

{P } c {Q }
Consequence

states that the Hoare triple {P }c {Q } is valid if we can derive the Hoare triple {P ′ }c {Q ′ }, where P
implies P and Q ′ implies Q. In fact, this rule allows us to strengthen the pre-condition and weaken
the postcondition of program c. In a proof of specification inclusion, we lift such a reasoning to
the level of functions. Let us consider, for instance, that we declare the following function f in the
interface file

OCaml (annotated)val f x : τx : τ

(*@ r = f y

requires P(y)
ensures Q(y, r) *)

5.2. A CASE STUDY: UNION-FIND 121

and that we give the following implementation to f

WhyMLlet f (x ′ : τx) : τ

requires { P ′(x ′) }
ensures { Q ′(x ′, result) }

= c

The specification inclusion proof of f amounts to proving the following implications:

P(x) =⇒ P ′(x)
Q ′(x, r) =⇒ Q(x, r)

In Why3, a specification inclusion proof is done using the WhyML clone command. For the given
example, we would write the following:

WhyMLclone import Interface.Sig with val f = Impl.f

where we assume function f is contained in file interface.mli, where Sig is the WhyML module
automatically generated by the Why3 plugin, and the implementation of function f is contained
in a module named Impl. Instead of directly generating the above verification conditions, Why3
generates the following piece of code:

WhyMLlet f_correct (x : τx) : τ

requires { P(x) }
ensures { Q(x, result) }

= Impl.f (x)

This way, it uses the Why3 verification conditions generator to generate the necessary verification
conditions, avoiding the error-prone task of directly generating implications to prove specification
inclusion.

In the case of our union-find WhyML development, the proof of inclusion is as simple as the
following clone expression:

WhyMLclone import UnionFind.Sig with
type elem = Impl.elem,
type uf = Impl.uf,
val make = Impl.make,
val find = Impl.find,
val eq = Impl.eq ,
val get = Impl.get,
val set = Impl.set,
val union = Impl.union

For every symbol declared in the interface file UnionFind.mli, we give a substitution by the
corresponding implementation symbol, which we assume to be defined in the WhyML module
Impl. The result of the above clone statement is an instance of module Sig, modulo the given
substitution, while generating verification conditions for specification inclusion.

Note that we also assign type symbols elem and uf, declared in file UnionFind.mli, with the
corresponding implementations. If the types do not possess any invariant, this is just a textual
substitution of the the type names. On the other hand, whenever types are equipped with some
invariant, as it is the case of uf, there is a refinement proof to be done. Let us suppose that we
have declared in the interface the following data type:

OCaml (annotated)type t
(*@ model f : τ

invariant I(f) *)

122 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

and have the following implementation of type t:
WhyMLtype t = { f ′ : τ; }

invariant { I ′(f ′) }

In order to prove that the implementation of type t refines the specification given for type t in
the interface, one must prove that the following condition holds:

I ′(f ′) =⇒ I(f)

Other than generating the above verification condition, Why3 also checks that the sequence f of
fields declared in the interface is a sub-sequence of fields f ′ given in the implementation, as well
as the following additional condition on the ghost status of fields: a field declared as ghost in
the interface can either be kept a ghost field in the implementation, or become a regular field; a
field declared as regular can only be implemented as a regular field. In the case of type uf, the
refinement proof is trivial since every field in the implementation keeps the same ghost status as
declared in the interface, and the interface invariant is formed of three conjunctions that are also
in the implementation invariant.

All the generated verification conditions for the specification inclusion and refinement proof
of union-find are automatically discharged. This completes the specification, implementation and
verification task of our methodology.

5.2.4 Extraction to OCaml
The last step in our methodology diagram consists in translating WhyML to OCaml, using Why3’s
extraction mechanism. From our memory model, we build the following custom driver:

Drivermodule UnionFind.Impl
syntax type loc_ref "%1 ref"
syntax val (==) "%1 == %2"
syntax val alloc_ref "ref %1"
syntax val get_ref "!%1"
syntax val set_ref "%1 := %2"

end

Note that the argument %1 of functions in the driver does not refer to the heap. Indeed, because
of its ghost status, this is erased by the extraction mechanism. The OCaml code extracted from
the WhyML union-find implementation is given in Fig. 5.2.

With extraction, we close our methodology diagram. We can now use the OCaml compiler
to compile the extracted code against the UnionFind.mli interface. From our toolchain point of
view, this not only guarantees that the extracted code type checks with respect to what we declare
in the interface file, but also that this implementation conforms to the specification included in
UnionFind.mli file.

5.3 Challenges
We now illustrate our toolchain over several other examples. Each one presents a particular issue
in the process of verifying OCaml code.

5.3.1 Non-verified Client Code

In the task of deductive verification, it is customary to annotate functions with some pre-conditions
that prevent, for instance, run-time errors to happen during execution. Within the same formal

5.3. CHALLENGES 123

OCaml (extracted)type ’a content =
| Link of (’a content) ref
| Root of int * ’a

let make (v: ’a) : (’a content) ref = let x = ref (Root (0, v)) in x

let rec find (x: (’a content) ref) : (’a content) ref =
begin match !x with
| Root (_, _) -> x
| Link y -> let rx = find y in begin x := (Link rx); rx end
end

let link (x: (’a content) ref) (y: (’a content) ref) : unit =
if x == y then begin () end
else
begin

begin match (!x, !y) with
| (Root (rx, vx), Root (ry, vy)) ->

if rx < ry then begin x := (Link y) end
else
begin

begin
y := (Link x); if rx = ry then begin x := (Root ((rx + 1), vx)) end

end end
| (_, _) -> assert false (* absurd *)
end end

let union (x: (’a content) ref) (y: (’a content) ref) : unit =
let a = find x in let b = find y in link a b

Figure 5.2: Union-find Extracted Code.

development, client code must respect these pre-conditions, which guarantees that every call to the
verified function is safe. When we come out of our closed world of verified software, and translate
a program proof into a compilable code with the purpose of distributing it, the panorama is
completely different. Our verified implementation, that we so hardly obtained, can now be executed
from a non-verified code base. In particular, some pre-conditions can be violated which might result
in a run-time faulty behavior. In a perfect world, our correct-by-construction implementation
should be defensive against non-verified client code, but without sacrificing the ability to call such
an implementation from a verified piece of software.

In this section, we describe our proposal to deal with both verified and non-verified client code
within our toolchain. Let us take the example of vectors [138, p. 136-137], also known as re-sizable
or growing arrays, to illustrate this approach. A vector is a data structure that encapsulates an
array which automatically expands or shrinks, when necessary. The following is a scheme of such
a data structure:

0 size
data = view . . . dummy. . .

The internal array is allocated with a certain capacity, which we might not be using entirely during

124 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

the lifetime of a vector. We say that there is a part of the vector filled with significant elements,
which corresponds to the view section in the above scheme. We refer to the number of significant
elements as the size of the vector. The rest of the internal array is filled with a dummy value.
When one implements the vector data structure in OCaml, it is the dummy value that allows the
GC to reclaim pointers of the

We can insert or remove elements from a vector, and the strategy of when to expand and
when to shrink the internal array, is what makes vectors such an interesting data structure. A
good implementation doubles the capacity when growing, and shrinks it (normally to half the
capacity) whenever the number of elements is one-fourth of the array capacity. This way, inserting
n elements in a vector takes O(n) time, i.e., each insertion operation has amortized constant
time complexity (several proof techniques for such a complexity bound are given in Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein’s Introduction to Algorithms
textbook [43, chap. 17]). Given the use of a constant dummy value, when we shrink the internal
array the OCaml’s GC can reclaim pointers to values that aren’t used anymore.

The following is a sub-set of a typical OCaml interface for the vector data structure:
OCamltype ’a t

exception Empty

val create : ?capacity:int -> dummy:’a -> ’a t
val resize : ’a t -> int -> unit
val push : ’a t -> ’a -> unit
val pop : ’a t -> ’a
val get : ’a t -> int -> ’a
val set : ’a t -> int -> ’a -> unit

This interface file provides the polymorphic type t of vectors and the following operations: function
create returns a zero-sized fresh vector, where the labeled argument dummy is the user-supplied
value to fulfill the empty part of the array and the optional argument capacity stands for the
initial capacity of the vector; function resize takes a vector v and an integer n as arguments and
sets the size of v to n; function push inserts its second argument at the rightmost position of its
first argument vector; finally, function pop removes and returns the rightmost element of a vector,
or raises Empty if the vector contains no elements.

Following our methodology diagram, we provide a specification for the vector’s interface. We
give the following specification for type t:

OCaml (annotated)type ’a t
(*@ mutable model view: ’a seq *)
(*@ invariant length view <= Sys.max_array_length *)

The vector data structure is modeled by a single mutable model field named view, exactly as
in the previously shown scheme. This view field represents the sequence of significant elements
of the vector. The sole restriction we place on this field is that its length never exceeds the
max_array_length constant, defined in the OCaml System interface module. This limits the
maximum length of the array, and this invariant guarantees that we never allocate an internal
array bigger than max_array_length. The specification of create is straightforward, hence we do
not detail it here. The specification of resize is more interesting:

OCaml (annotated)val resize: ’a t -> int -> unit
(*@ resize a n

checks 0 <= n <= Sys.max_array_length

5.3. CHALLENGES 125

modifies a
ensures length a.view = n
ensures forall i. 0 <= i < min (length (old a.view)) n ->

a.view[i] = (old a.view)[i] *)

The checks keyword introduces a pre-condition that is meant to be verified at run-time. Instead of
letting resize trying to allocate an array with a bad length, we dynamically test the value of n and
stop the execution immediately if this is not within bounds. Concretely, we want an unsatisfied
checks pre-condition to result in an Invalid_argument exception being raised, as is customary in
OCaml libraries. When fed to our plugin, the above specification generates the following WhyML
code:

WhyMLval unsafe_resize (a:t ’a) (n:int63) : unit
requires { 0 <= n /\ n <= max_array_length }
ensures { length (view a) = n }
ensures { forall i. 0 <= i /\ i < min (length (view a1)) n ->

(view a)[i] = (view a1)[i] }

val resize (a:t ’a) (n:int63) : unit
ensures { length (view a) = n }
ensures { forall i. 0 <= i /\ i < min (length (view a1)) n ->

(view a)[i] = (view a1)[i] }
raises { Invalid_argument -> not (0 <= n /\ n <= max_array_length) }

The plugin introduces a new function named unsafe_resize where the checks condition is given
in the form of a traditional pre-condition. We expect this function to be called from a verified client
code, where we do not want to pay the price of unnecessary run-time tests but rather verify the
given pre-condition. On the other hand, function resize turns the checks condition into a raises
clause. This function dynamically tests the checks condition and raises Invalid_argument if such
a condition is not met.

From an implementation perspective, we must provide both the unsafe_resize and the resize
functions. The latter is straightforwardly implemented as follows:

WhyMLlet resize (a: t ’a) (n: int63) : unit
ensures { n = a.size }
ensures { forall i. 0 <= i < min ((old a).size) n ->

a.view[i] = (old a).view[i] }
raises { Invalid_argument -> not (0 <= n <= max_array_length) }

= if not (0 <= n <= max_array_length) then raise Invalid_argument;
unsafe_resize a n

If we pass the test of the checks clause, then we are sure the pre-condition of unsafe_resize holds
and so we can safely call it. As for the implementation of resize, this keeps the pre-condition as
a requires clause:

WhyMLlet unsafe_resize (a: t ’a) (n: int63) : unit
requires { 0 <= n <= max_array_length }
ensures { n = a.size }
ensures { forall i. 0 <= i < min ((old a).size) n ->

a.view[i] = (old a).view[i] }
= let n_old = length a.data in

if n <= a.size then ... (* shrink *) ...
else ... (* grow *) ...;

126 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

a.size <- n

All the verification conditions generated for resize and unsafe_resize are automatically dis-
charged. Providing a defensive and an unsafe version of the same function is already a usual practice
in existing OCaml libraries, e.g., the standard library functions Array.get and Array.unsafe_get.

When it comes to implement push and pop, these are verified functions and so we can call the
unsafe version of resize. The implementation of push is as follows:

WhyMLlet push (a: t ’a) (x: ’a) : unit
requires { a.size < max_array_length }
ensures { a.size = (old a).size + 1 }
ensures { a.view[a.size - 1] = x }
ensures { forall i. 0 <= i < (old a).size -> a.view[i] = (old a).view[i] }

= let n = a.size in unsafe_resize a (n + 1);
...

The pre-condition of push and the type invariant of argument a imply the pre-condition of the
call to unsafe_resize. All the verification conditions generated for push are proved by SMT
solvers. We skip the specification and implementation of functions get and set, since these are
straightforward.

Not all requires are born to be checks. Giving the presence of the checks in OSL, it seems
tempting to get all requires conditions tested at run-time. Let us use an example to show why
this is not always possible. In the following, we detail on the verified implementation of a binary
search routine to find the insertion place of an element in an array. The following is the OCaml
interface defining these two operations:

OCamlval bisectr : (’a -> ’a -> int) -> ’a array -> int -> int -> ’a -> int

We give the following specification to function bisectr:
OCaml (annotated)

val bisectr : (’a -> ’a -> int) -> ’a array -> int -> int -> ’a -> int
(*@ r = binary_search_right cmp a fromi toi v

checks 0 <= fromi <= toi <= Array.length a
requires Order.is_pre_order cmp
requires forall i j. fromi <= i <= j < toi -> cmp a.(i) a.(j) <= 0
ensures fromi <= r <= toi
ensures forall i. fromi <= i < r -> cmp a.(i) v <= 0
ensures forall i. r <= i < toi -> cmp a.(i) v > 0 *)

The first pre-condition states that the arguments fromi and toi must be valid indexes in the array.
We give such a pre-condition in a checks clause, as this is definitely a property that we want and
can test at zrun-time. The second pre-condition states that the argument cmp is a preorder (we
assume here that predicate is_pre_order is defined in a module named Order, issued from a
specification library). This cannot be checked at run-time and thus we keep it as a traditional
requires clause. Finally, the third pre-condition indicates that the array a is sorted within the
range [fromi..toi[. There is no practical constraint that would prevent us from writing a loop
that scans the array and tests if the elements respect the order induced by function cmp. However,
this would incur a linear cost, beyond the logarithmic cost of the binary search itself. Hence, we
keep this as a requires pre-condition.

5.3. CHALLENGES 127

5.3.2 Higher-order Effectful Functions

In the example of the previous section, function bisectr is a higher-order function as this takes
as an argument the comparison function cmp. In our specification (and in the subsequent proof),
we implicitly assume function cmp to be pure. This assumption is somewhat justified, since we
require cmp to implement a preorder, which would make it really difficult to specify and to use if
it would depend on the state or, worse, had some side-effects.

In general, assuming that higher-order functions are only given pure arguments is not accept-
able. A typical example of a stateful higher-order function is an iterator over the elements of a
collection. In OCaml, it is idiomatic to provide, for some abstract type t, an iter function of the
form

OCamlval iter : (elt -> unit) -> t -> unit

A call to iter f c applies function f sequentially to each element of the collection c. This is only
interesting if f performs some side-effects2. Providing a complete specification to this function
would require a richer specification logic to account for function effects [28, 83], including abrupt
termination if an exception is raised during iteration. This would lead to a rather unreadable
contract for the OCaml programmer, sacrificing the principle of a simple specification language.
Moreover, this would probably mean a richer logic than that of Why3, which would make it
impossible to conduct our methodology within the Why3 framework.

We claim that the best specification for an iter-like function is an operationally equivalent
program with a clear meaning to any OCaml programmer. If we consider the case of the iter
function over arrays, we propose the following specification:

OCaml (annotated)val iter : (’a -> unit) -> ’a array -> unit
(*@ iter f a

equivalent "for i = 0 to Array.length a - 1 do f a.(i) done" *)

The equivalent keyword of OSL is used to introduce a program with the same operational behavior
as iter. In this case, it is almost the same as the standard library implementation of iter3. If we
consider the more general case of some abstract collection, we can still give iter a specification,
as follows:

OCaml (annotated)val iter : (’a -> unit) -> ’a t -> unit
(*@ iter f c

equivalent "List.iter f (elements c)" *)

Function elements returns the list of the elements in the order they are traversed. In particular,
we move the problem of specifying the iteration order to the specification of the elements function.
In Chap. 6, we present several examples of elements-like functions, which we specify using our
approach of characterizing the returned list with two predicates [67], one to identify valid prefixes
and the other to identify complete lists. Combined with the semantics of List.iter, known by any
OCaml programmer, the given equivalent clause fully specifies the behavior of iter. However, the
program given in terms of elements is inefficient, since it builds an intermediate list unnecessarily.
This makes it less suited to be used as an actual implementation of iter.

The use of keyword equivalent suggests a proof of program equivalence between the specifica-
tion program and the actual implementation. Currently, Why3 does not provide such a possibility,
and so we simply use the program given in the equivalent clause as the extraction result of func-
tion iter. This is not satisfactory, as we are not providing any formal guarantee about this piece

2In Chap. 6 we propose a way to tackle the specification and verification of effect-free iterators, e.g., fold-like
functions.

3The code of Array.iter uses Array.unsafe_get to access the elements of the array, since it is safe given the
limits of the for loop.

128 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

of code. In Sec. 5.5, we discuss some related work on programs equivalence proofs and suggest
some possible solutions to extend Why3 in order to conduct equivalence proofs.

5.3.3 Recursive Mutable Data Types

As seen in Sec. 5.2, the static discipline of Why3 limits the range of ephemeral data structures and
heap-manipulating programs that can be encoded directly in WhyML. The solution is to resort to an
explicit memory model, with a type of pointers and heap together with operations to interact with
memory. In this section, we complement our presentation of pointer-based data structures from
Sec. 5.2. We use our approach to systematically build memory models from arbitrarily, (possibly)
recursive mutable OCaml data types. An example of such data type are precisely the content
and elem types, on page 124. In this section, we present another example of a recursive mutable
data type, whose definition is based on recently-introduced features of the OCaml language. Part
of the ideas and material used in this section have been already presented in a JFLA (Journées
Francophones des Langages Applicatifs) 2018 paper [68].

Since version 4.03 of the OCaml compiler4, one can use records syntax to define the arguments
of algebraic data type constructors. For instance, one can declare a type of mutable singly-linked
lists as follows:

OCamltype ’a cell = Nil | Cons of { content: ’a; mutable next: ’a cell; }

This type avoids the extra memory allocations that would happen had we used a record and an
option type to define type cell, as follows:

OCamltype ’a cell = { content: ’a; mutable next: ’a cell option; }

Other solutions amount at using recursive values or, even worse, the Obj.magic function [61].
With the cell type we can obtain a list representation similar to those of a Java or C code, where
the Nil constructor works as the null pointer. However, being an algebraic data type, the OCaml
type system ensures that we do not use Nil to access the fields of content or next.

We use the example of an in-place mergesort routine verification to illustrate the use of mutable
singly-linked lists. Let us consider the following OCaml implementation:

OCamllet get_next = function Nil -> assert false | Cons { next } -> next

let split l = ...

let merge cmp l1 l2 = ...

let rec mergesort cmp l =
if l1 == Nil || get_next l == Nil then l
else let l2 = split l in

let l1 = mergesort cmp l in
let l2 = mergesort cmp l2 in
merge cmp l1 l2

For readability purposes, we omit the code of functions split and merge. Our goal here is to
use Why3 to get a correct-by-construction version of function mergesort. Given the definition
of type cell, we cannot directly encode such a type in WhyML and so the solution is, again, to
introduce an explicit memory model. This is actually the approach adopted in tools using Why3
as an intermediate language, e.g., Frama-C [87]. Contrary to such tools, though, we do not map
every WhyML element to a common memory model. We build a specific memory model for type

4https://caml.inria.fr/pub/docs/manual-ocaml/extn.html#sec272

https://caml.inria.fr/pub/docs/manual-ocaml/extn.html#sec272

5.3. CHALLENGES 129

cell and keep using traditional WhyML types whenever possible. We begin by introducing the
WhyML types corresponding to cell and memory locations, as follows:

WhyMLtype loc ’a
type cell ’a = Nil | Cons (loc ’a)

Next, we model the heap contents using the following record type:
WhyMLtype mem ’a = private {

mutable content : loc ’a -> option ’a;
mutable next : loc ’a -> option (cell ’a);

} invariant { forall l. content l = None <-> next l = None }

Fields content and next mimic to the two fields of constructor Cons argument. The type invariant
ensures that both fields are simultaneously None. It is worth pointing out that the choice of
introducing a heap type with several distinct fields is not innocent: this statically guarantees that
a modification of one field does not affect the other, which makes the proof process much more easy.
This idea dates back to 1972 and is due to Rod Burstall [25]. It is known under the designation of
“component-as-array” memory model.

Similarly to what we did for the union-find example, we introduce several abstract functions
to interact with the mem type. We do not show them here, as these very closely resemble the ones
we defined for union-find.

Proof of function mergesort. We can now use the introduced memory model to implement,
and then verify, a WhyML version of function mergesort. The complete code is give in Fig. 5.3.

Let us begin by explaining the definition of predicate is_list (lines 1–9). The idea is to model
the elements from cell from until cell to (both inclusively) by means of a finite logical sequence of
type view ’a. Such a type is defined as follows:

WhyMLtype view ’a = seq (loc ’a)

For the case of an empty list (lines 1–3), we state both from and to point to same location in
memory. On the other hand, if the list is non-empty, then from is a Cons node, its argument is the
first element of sequence s (line 5), the list is finite and ends up with cell to (line 6), it does not
contain any repeated element, hence no cycle (lines 7–8), and finally that the intermediate elements
are those of sequence s. Next, predicate frame_mem (lines 11–13) states that a sequence s presents
the same values for next and contents under memories m1 and m2. From predicates frame_mem
and disjoint, we can deduce the definition of predicate frame (lines 15 and 16). This states that,
for every sequence ss disjoint from s, we have that the next and contents projections map the
elements of ss to the same values in both memory m1 and m2. This is useful to state that a part
of the memory is not changed by the execution of some function, i.e., we can frame the part of
memory changed during execution.

We can now use predicates is_list and frame to give a contract to function split (lines
15–21): the first pre-condition requires l1 and l2 to point to well-formed nil-terminated lists;
the second one states that we only split lists of at least two elements. The first postcondition
ensures that the returned lists l1 and l2 are also well-formed nil-terminated lists, with respect
to sequences s1 and s2, respectively. Finally, we ensure that the only memory locations updated
during the execution of split are those contained in sequence s.

Function merge presents a similar contract (lines 29–35). This function takes as arguments the
memory, a cmp function defining a pre-order (line 29), and two lists sorted for the order relation
induced by cmp (lines 30 and 31), disjoint from each other (line 32). The merge function returns a
new sorted list l (line 33), whose elements are a permutation of the elements in lists l1 and l2 (line

130 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

WhyML1 predicate is_list (mem: mem ’a) (from : cell ’a) (s: view ’a) (to: cell ’a) =
2 let n = length s in
3 n = 0 /\ from = to
4 \/
5 n > 0 /\ from = Cons s[0] /\
6 mem.next s[n-1] = Some to /\
7 (forall i. 0 <= i < n -> Cons s[i] <> to) /\
8 distinct s /\
9 forall i. 0 <= i < n - 1 -> mem.next s[i] = Some (Cons s[i+1])

10

11 predicate frame_mem (m1 m2: mem ’a) (s: view ’a) =
12 forall i. 0 <= i < length s ->
13 m1.next s[i] = m2.next s[i] /\ m1.contents s[i] = m2.contents s[i]
14

15 predicate frame (m1 m2: mem ’a) (s: view ’a) =
16 forall ss: view ’a. disjoint s ss -> frame_mem m1 m2 ss
17

18 let split (ghost mem: mem ’a) (l1: cell ’a) (ghost s: view ’a) :
19 (s1: ghost view ’a, l2: cell ’a, s2: ghost view ’a)
20 requires { is_list mem l1 s }
21 requires { length s >= 2 }
22 ensures { is_list mem l1 s1 /\ is_list mem l2 s2 }
23 ensures { s = s1 ++ s2 }
24 ensures { frame (old mem) mem s }
25 = ...
26

27 let merge (ghost mem: mem ’a) (cmp: ’a -> ’a -> int63)
28 (l1 l2: cell ’a) (ghost s1 s2: view ’a) : (l: cell ’a, s: ghost view ’a)
29 requires { is_pre_order cmp }
30 requires { is_list mem l1 s1 /\ sorted mem cmp s1 }
31 requires { is_list mem l2 s2 /\ sorted mem cmp s2 }
32 requires { disjoint s1 s2 }
33 ensures { is_list mem l s }
34 ensures { sorted mem cmp s /\ permut_all (s1 ++ s2) s }
35 ensures { frame (old mem) mem s }
36 = ...
37

38 let rec mergesort (ghost mem: mem ’a) (cmp: ’a -> ’a -> int63)
39 (l: cell ’a) (ghost s: view ’a) : (r: cell ’a, s’: ghost view ’a)
40 requires { is_pre_order cmp }
41 requires { is_list mem l s }
42 variant { length s }
43 ensures { is_list mem r s’}
44 ensures { permut_all s s’/\ sorted mem cmp s’ }
45 ensures { frame (old mem) mem s }
46 = if l == Nil || get_next mem l == Nil then l, s
47 else let s1, l2, s2 = split mem l s in
48 let l1, s1 = mergesort mem cmp l s1 in
49 let l2, s2 = mergesort mem cmp l2 s2 in
50 merge mem cmp l1 l2 s1 s2

Figure 5.3: WhyML Implementation of Function mergesort.

5.3. CHALLENGES 131

34). We also ensure that the execution of merge only changes the part of the heap corresponding
to locations of the s1 and s2 sequences (line 35).

Finally, we can give a suitable contract to function mergesort (lines 40–45) and prove that the
implementation conforms to such a specification. From the specification of functions split and
merge, we can easily prove the correctness of the body of mergesort. In fact, all the generated
verification conditions by Why3 for this function are automatically discharged. The whole WhyML
development of this in-place mergesort routine is composed of more than 200 lines of specification
(auxiliary lemmas, function contracts, etc.), and by almost 200 lines of code (this includes ghost
code).

5.3.4 Functors

The WhyML language features a module system rather different from that of OCaml. We can
divide a WhyML development into several top-level modules, introduced with the module keyword;
a module can be further divided into several sub-namespaces, introduced via the keyword scope.
This is an important difference w.r.t. OCaml, where modules can feature sub-modules. Another
distinguishing feature of WhyML is that it allows uninterpreted and defined symbols to appear in
the same namespace. In this section, we explain how we use the WhyML module system to mimic
some of the most interesting features of the OCaml language, namely functors. We use the Pairing
Heaps [71, 118] data structure as our working example of specification, translation and extraction
of an OCaml functor within our toolchain of verified OCaml programs.

Functors are used in OCaml to implement modules parameterized by other modules. A typical
example is data structure that requires its elements to be equipped with an order relation, e.g.,
a priority queue implementation. Within our toolchain, we are able to give a specification to an
OCaml interface that declares such a data structure. Fig. 5.4 presents the complete specification
of a priority queue interface file, which we name PairingHeap.mli. When we feed our plugin with
the PairingHeap.mli file, it generates the following WhyML module:

WhyMLmodule Sig
scope Make

scope X
type t

function cmp t t : int63

axiom is_pre_order : is_pre_order (fun (y0:t) (y1:t) -> cmp y0 y1)

val compare (x:t) (y:t) : int63
returns { r -> r = cmp x y }

end

type elt = t

type heap = private { ghost bag : bag elt }

val empty (us:()) : heap
returns { h -> card (bag h) = 0 }
returns { h -> forall x:t. nb_occ x (bag h) = 0 }

...
end

132 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

OCaml (annotated)module Make
type t

(*@ function cmp: t -> t -> int *)
(*@ axiom is_pre_order: Order.is_pre_order cmp *)

val compare : t -> t -> int
(*@ r = compare x y

ensures r = cmp x y *)
end) : sig

type elt = X.t

type heap
(*@ model bag : elt bag *)

val empty : unit -> heap
(*@ h = empty ()

ensures card h.bag = 0
ensures forall x. nb_occ x h.bag = 0 *)

val is_empty : heap -> bool
(*@ b = is_empty h

ensures b <-> h.bag = empty_bag *)

val merge : heap -> heap -> heap
(*@ h = merge h1 h2

ensures card h.bag = card h1.bag + card h2.bag
ensures forall x. nb_occ x h.bag = nb_occ x h1.bag + nb_occ x h2.bag *)

val insert : elt -> heap -> heap
(*@ h’ = insert x h

ensures nb_occ x h’.bag = nb_occ x h.bag + 1
ensures forall y. y <> x -> nb_occ y h’.bag = nb_occ y h.bag
ensures card h’.bag = card h.bag + 1 *)

(*@ predicate mem (x: elt) (h: heap) := nb_occ x h.bag > 0 *)
(*@ predicate is_minimum (x: elt) (h: heap) :=

mem x h /\ forall e. mem e h -> X.cmp x e <= 0 *)

(*@ function minimum: heap -> elt *)
(*@ axiom min_def: forall h. 0 < card h.bag -> is_minimum (minimum h) h *)

val find_min : heap -> elt
(*@ x = find_min h

requires card h.bag > 0
ensures x = minimum h *)

val delete_min : heap -> heap
(*@ h’ = delete_min h

requires card h.bag > 0
ensures let x = minimum h in nb_occ x h’.bag = nb_occ x h.bag - 1
ensures forall y. y <> minimum h -> nb_occ y h’.bag = nb_occ y h.bag
ensures card h’.bag = card h.bag - 1 *)

end

Figure 5.4: Pairing Heaps Specification.

5.3. CHALLENGES 133

end

Let us explain the hierarchy of modules and namespaces from the point of view of our plugin.
The top-level module of a .mli file is translated by our plugin into the WhyML module Sig. Any
sub-module declared in the same .mli file is recursively extracted into a WhyML namespace, which
is the closest we get to OCaml sub-modules. File PairingHeap.mli features two sub-modules: on
one hand, Make is a sub-module of the top-level module; on the other hand, the functor signature X
is a sub-module of Make, so our plugin includes the definition of scope X inside the body of scope
Make.

The next step is to provide a WhyML implementation with identical namespaces. The following
is a sketch of our WhyML implementation of Pairing Heaps:

WhyMLmodule Impl
scope Make

scope X
type t
val function compare elt elt : int63
axiom is_pre_order: is_pre_order compare

end

type tree = E | T X.t (list tree)
type heap = { data : tree; ghost bag: bag X.t }

let merge (h1 h2: heap) : heap = ...
let delete_min (h: heap) : heap

end
end

This a WhyML implementation of significant size so, for the sack of readability, we do not show
it entirely here and focus only on the most relevant aspects. Let us begin by noting that every
symbol declared in scope X is left undefined. As we shall later see in this section, this generates a
functor argument at extraction time. The implementation task happens inside scope Make. Here,
we can use symbols from X to provide implementations to our types and functions, just like one
would do in an OCaml functor. For instance, type tree is defined in terms of type X.t.

A Pairing Heap is implemented as a multiway tree, as defined by type tree. The heap type
encapsulates a field of type tree, together with the logical model of type bag X.t. This way, we
can give a specification of Pairing Heaps in terms of the bags structure, also known as multisets.
We equip type heap with the following invariant:

WhyMLinvariant { forall x. nb_occ x bag = occ_heap x data }
invariant { card bag = size_heap data }
invariant { heap data }
invariant { no_middle_empty_heap h }

The first two lines establish the connection between physical representation of the heap, field data,
and the logical model bag: the number of occurrences of any element x is the same in both data and
bag; the number of elements is the same in both fields. Functions occ_heap are straightforwardly
defined, and so we do not give their definition here. The third line of the invariant states that
data is a heap-ordered structured. The heap predicate is defined as follows:

WhyMLpredicate heap (t: tree) = match t with
| E -> true
| T x l -> le_roots_list x l /\ heap_list l

134 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

end
with heap_list (l: list tree) = match l with

| Nil -> true
| Cons h r -> heap h /\ heap_list r
end

where le_roots_list x l states that x is no greater than the roots of the trees in l. Finally,
we impose that there is no empty tree E in the middle of the child list of a T node. Predicate
no_middle_empty_tree is straightforwardly defined.

Pairing Heaps are very simple to implement, while performing very well in practice [94]. The
merge function simply takes the heap with the larger root, with respect to the X.compare order,
and makes it the first child of the heap with the smaller root. We give the following WhyML
implementation:

WhyMLlet merge_tree (t1 t2: tree) : tree
requires { heap t1 /\ heap t2 }
ensures { heap result }
ensures { size_heap result = size_heap t1 + size_heap t2 }
ensures { forall x. occ_heap x result = occ_heap x t1 + occ_heap x t2 }

= match t1, t2 with
| E, h | h, E -> h
| T x1 l1, T x2 l2 ->

if X.compare x1 x2 <= zero then T x1 (Cons t2 l1)
else T x2 (Cons t1 l2)

end

let merge (h1 h2: heap): heap
ensures { card result.bag = card h1.bag + card h2.bag }
ensures { forall x. nb_occ x result.bag = nb_occ x h1.bag + nb_occ x h2.bag }

= { data = merge_tree h1.data h2.data; bag = union h1.bag h2.bag }

Proving that merge and merge_term conform to their specification is rather easy, as SMT solvers
are able to discharge all the generated verification conditions in no time. The delete minimum
operation works in two steps: first, we remove the root of the heap and merge the children in pairs,
i.e., the first child with second, the third with the fourth one, and so on; the second step merges all
the impaired heaps to get the final heap. We implement these two steps as the following WhyML
function:

WhyMLlet rec merge_pairs (l: list tree) : tree
requires { heap_list l /\ no_middle_empty_heap_list l }
variant { length l }
ensures { heap result }
ensures { size_heap result = size_heap_list l }
ensures { forall x. occ_heap x result = occ_heap_list x l }

= match l with
| Nil -> E
| Cons h Nil -> h
| Cons h1 (Cons h2 r) -> merge_tree (merge_tree h1 h2) (merge_pairs r)
end

Pairing Heaps are named so because of the merge_pairs operation. Function delete_min is easily
deduced from merge_pairs, as follows:

5.3. CHALLENGES 135

WhyMLlet delete_min (t: heap) : heap
requires { 0 < size t }
ensures { occ (minimum t) result = occ (minimum t) t - 1 }
ensures { forall y. y <> minimum t -> occ y result = occ y t }
ensures { size result = size t - 1 }

= match t.data with
| E -> absurd
| T x l -> { data = merge_pairs_heap l; bag = diff t.bag (singleton x) }
end

The absurd point is provable thanks to the given pre-condition. All the verification conditions
generated for delete_min are discharged automatically. The remaining heap operations are even
easier to implement, and their correctness proof is easily done by SMT solvers.

The last step in the proof of Pairing Heaps amounts to specification inclusion. This is no
different from the previously presented proofs of specification inclusion, except that we need to
the follow the hierarchy of namespaces, in order to provide the good substitution to the clone
command. For the case of Pairing Heaps, this is as follows:

WhyMLclone PairingHeap.Sig with
goal Make.X.is_pre_order,
type Make.X.t = Impl.Make.X.t,
val Make.X.compare = Impl.Make.X.compare,
function Make.X.compare = Impl.Make.X.compare,
goal Make.min_def,
type Make.heap = Impl.Make.heap,
function Make.minimum = Impl.Make.minimum,
...

We omit here the substitution for the Pairing Heaps val functions. Note that Why3 generates
verification conditions to prove the definition of axioms is_pre_order and min_def, against the
provide implementation of functions compare and minimum. These, and the other verification
conditions generated for this clone expression, are discharged by SMT solvers.

Finally, we can extracted an OCaml version of the Pairing Heaps data structure. By default,
Why3 refuses to extract a WhyML code where there are some uninterpreted symbols left which are
not defined in the driver, e.g., type elt or function compare from the X scope. The only exception
is a namespace that contains only uninterpreted symbols. In such a case, we turn it into a functor
argument when the --modular option is given in the Why3 extraction command-line, as follows:

Terminal

> why3 extract -L . -D ocaml64 --modular PairingHeap.Impl -o .

With such an option, Why3 generates a different OCaml file for each WhyML module, while ex-
tracting every scope as a sub-module. The absence of modular would induce a flat extraction, i.e.,
every WhyML symbol extracted into a single file, contained no sub-module, even if the development
is spread across different WhyML modules. With our Pairing Heaps example, we get some OCaml
code with the expected structure, i.e.,

OCaml (extracted)module Make(X: sig type t val compare : t -> t -> t end) = struct
type tree = E | T of X.t * tree list

type heap = tree

136 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

module spec code #VCs
UnionFind 74 176 135 union-find
PairingHeap 41 245 52 persistent priority queues
ZipperList 66 180 87 zipper data structure for lists
Arrays 37 121 77 binary search and binary sort
Queue 54 185 119 mutable queues
Vector 149 309 142 resizable arrays
HashSet 21 34 12 sets using hash tables
MergeSort 12 401 630 in-place mergesort of lists
BinaryHeap 198 144 222 binary heaps implemented using Vector

Table 5.1: Verified OCaml Modules.

let merge_heap (t1: tree) (t2: tree) : tree =
begin match (t1, t2) with
| (E, h) | (h, E) -> h
| (T (x1, l1), T (x2, l2)) ->

if (X.compare x1 x2) <= 0 then begin T (x1, (t2 :: l1)) end
else begin T (x2, (t1 :: l2)) end

end

let merge (h1: heap) (h2: heap) : heap = merge_heap h1 h2

...
end

Note that, in the extracted code, type heap is simply an alias for type tree. Indeed, the Why3
extraction mechanism is able to recognize and optimize record types containing a single, non-
mutable field.

5.4 Experimental Evaluation

We have used our approach to verify several other OCaml modules. These examples illustrate
many features we described in this chapter, i.e., preconditions verified at run-time, OCaml func-
tors, higher-order effectful functions, absence of arithmetic overflows, and pointer-based implemen-
tations. Figure 5.1 summarizes the size of these examples, column “spec” showing the number of
lines in the .mli files and the “code” column showing the number of lines in the WhyML implemen-
tation and proof. It is worth stressing out that all the specification and proof tasks are conducted
inside our toolchain, and all the proofs are done fully automatically.

5.5 Discussion and Related Work

Verified programming libraries. Libraries are the basic building blocks of any realistic pro-
gramming project. It is thus of crucial importance that libraries are bug-free software artifacts,
preventing the programmer from the pain of seeing her implementation crashing due to a piece
of code that she did not even write in the first place. As we have already discussed, even mas-
sively used and tested libraries can contain bugs, which makes programming libraries interesting

5.5. DISCUSSION AND RELATED WORK 137

candidates for deductive verification. Although this may seem surprising, program verification has
seldom been applied to libraries of significant size. The most remarkable exception is the verifi-
cation of the EiffelBase2 containers library [128,129], performed with the AutoProof system [142].
The verification of the EiffelBase2 library builds on the work of Nadia Polikarpova [127], namely
on the use of semantic collaboration [130] and model-based contracts to extend the classic Design
by Contract approach of the AutoProof tool. It is our purpose to continue using and improving
our methodology to grow our verified library to a size comparable to that of EiffelBase2.

The recent work of Raphael Cauderlier and Mihaela Sighireanu [27] reports on the verified im-
plementation of a bounded list container. The authors verify a C implementation of the mentioned
container, using the VeriFast platform and its underlying separation logic [135] to prove functional
correctness and safety of memory accesses. An interesting aspect pointed out in this work is the
importance of reusable specification of data structures, as the specification of the bounded list
container is drawn from a previously existing Ada 2012 specification [56]. This opens good per-
spectives about the proof of bounded lists in other verification systems. For instance, such a data
structure is certainly a good candidate to our toolchain and methodology.

Following the trend of verified container libraries, the work by Joachim Breitneret al. [23]
explores the use of an Haskell to Coq translation tool to verify significant portions of the Haskell’s
containers library. The authors attest that no bugs were found during this experience, but their
verification effort lead to some direct optimizations in the code of the library. One key difference
between our methodology and this works is the effective treatment of arithmetic, in particular the
proof of arithmetic overflows absence. When it comes to prove that the size of a set container does
not exceed 263− 1 elements, the authors invoke a space argument (the amount a memory required
to store such a data structure) to translate the Haskell’s Int type to Coq’s Z type of unbounded
integers. Such an argument does not always hold, especially in a setting of a pure language like
Haskell, where memory sharing is of great importance. The storage needed for the set container
can thus be dramatically reduced. Within our methodology, our proofs are always done under
some form of bounded arithmetic.

Using the KeY verification tool, Stijn de Gouw, Frank de Boer, and Jurriaan Rot built a proof of
two classical sorting algorithms, Counting sort and Radix sort [50]. Pursuing their efforts to verify
the implementation of massively used algorithms, this team of researchers embraced the challenge
of verifying TimSort, the default sorting algorithm for generic collections of the JDK platform.
Interestingly, the team was not able to provide a correctness proof for the implementation of
TimSort simply because this was broken. This is reported in the work by Stijn de Gouw et
al. [51, 52]. More recently, Bernhard Beckert, Jonas Schiffl, Peter Schmitt, and Mattias Ulbrich
used KeY to formally verify JDK’s dual pivot quicksort implementation [17], the default sorting
algorithm for integer or long arrays.

Refinement. One key ingredient in our approach is the ability to refine a Why3 module con-
taining specifications by a Why3 module containing the implementation, with suitable verification
conditions generated to ensure correctness of refinement. This is reminiscent of other systems
using a refinement approach. One obvious example is the B-method [1]. A fundamental difference,
though, is that we only proceed in one step, where a B machine is typically refined in several steps.
Nonetheless, Why3 modules are richer than B machines. These contain only a global notion of
state, whereas in Why3 we can refine record types containing mutable fields, using them locally,
and then refine the definition of such data types.

Closer to our work is the integration of module refinement in the Dafny program verifier by
Leino and Koenig [89]. Dafny module system does not make distinction between interface and
implementation: the same notion of module is used both to give abstraction and to refine it.
When refining a module in Dafny, one may give definitions to the data structures and methods

138 CHAPTER 5. A TOOLCHAIN FOR VERIFIED OCAML PROGRAMS

left uninterpreted in the interface module, bring additional declarations, and refine previously
given specifications. The main difference between module refinement in Dafny and Why3 concerns
mutable data structures. In Dafny, mutable state is encapsulated within a class and dynamic
frames are typically used to control side effects. In Why3, mutable data is encapsulated within
record types, and it is the type system that controls side effects.

Mixins [5] is another example of a flexible module system that can mix uninterpreted symbols
with defined ones. However, contrary to Why3 and Dafny module systems, mixins are designed for
programming purposes only.

Proof of programs equivalence. In Sec. 5.3.2, we described our approach to specify the be-
havior of stateful higher-order functions. We use the equivalent clause of OSL to give a program
which we state to be operationally equivalent to a specific higher-order function. Such a program
is then appended to the result of the Why3 extraction mechanism. This is not satisfactory since
we are not even proving the safety of that piece of code. In order to circumvent this pitfall in our
methodology, it would be interesting to explore means to extend Why3 with the ability to prove
equivalence of two programs, in the style of Relational Hoare Logic [18]. A possible direction would
be to adapt the work of Gilles Barthe, Juan Manuel Crespo, and César Kunz [13] on the use of
product programs to verify relational properties between two programs.

Memory model manipulation. Our experiments with mutable data structures, presented in
Sec. 5.2 and 5.3.3, show that is feasible to conduct proofs on pointer-based mutable data structures
using the WhyML language. However, we feel that a better tool support from Why3 would sig-
nificantly reduce the effort and time spent around the construction of memory models, as well as
reasoning about common memory manipulation operations. To this end, we have already started
a prototype tool that takes as input a (possibly) recursive mutable OCaml data type, and auto-
matically generates a suitable memory model, together with memory interaction functions and a
driver for extraction. In the future, such a prototype tool could become a Why3 plugin, working
in very similar way as Jessie [112] works for Frama-C. On the other hand, to relieve some of the
effort of reasoning about an explicit memory model, we plan on equipping Why3 with some form of
support to reason about memory contents and evolution. This could be, for instance, a separation
logic library, as in KIV [134].

Finally, our use of small heaps statically guarantees the separation of two memory fragments
passed as arguments to our memory model functions. This relies on the principle that memory
is represented as a private data type and is only updated through abstract functions. We argue
that is ensures a correct manipulation of the heap, e.g., we cannot allocate the same pointer in
two distinct portions of the heap. This is, however, a rather non-trivial argument which deserves
a proof of soundness. In order to formally express such a statement about memory manipulation,
we would certainly have to depart from the logic of Why3 and use a proof system based on a richer
logic, such as those based on separation logic [29,90].

L’éducation c’est la répéti-
tion.

French saying

6
A Modular Way to Reason About Iteration

Iteration is a central concept in programming. It can be as simple as a while loop or a recursive
function, but it can also appear as a more complex artifact, such as a cursor, a higher-order iterator,
a generator, or a lazy list. When it comes to verifying the correctness of a program, we need tools
to reason about iteration. Typically, we provide a suitable loop invariant for a while loop and a
contract for a recursive function. In this chapter, we consider the problem of verifying programs
where iteration is performed by other means, such as cursors or higher-order iterators.

Our first goal is to devise an approach to specify an iteration process, independently of how
this is implemented. We seek for a modular specification, which clearly establishes an abstraction
barrier between implementation and client code. A second goal is to use such a specification in
the context of deductive program verification. We validate our work using Why3, but the idea is
broader and could be implemented in any other deductive verification tool. We experimentally
validate our approach through the verification of several implementations of cursor and higher-
order iterators, as well as client code. The results of this chapter were partially presented at JFLA
2016 [66] and at NFM 2016 [67].

6.1 Specifying Iteration

We present in this section our proposal to formally specify iteration. We use several examples to
illustrate this proposition, including cases of non-deterministic and infinite iteration. In particular,
we are interested in answering the following challenges:

• Iteration is not necessarily the traversal of a data structure. It can be, for instance, the result
of an algorithm, such as the enumeration of all prime numbers.

• Iteration is not necessarily finite, as in the aforementioned case of prime numbers.

• Iteration is not necessarily deterministic. The simplest example is that of a symbol generator.
From the client point of view, the only required property is that the next element is distinct
from the previous ones. Another example is the traversal of a set where elements are presented
in some unspecified order. When the iteration is deterministic, however, we want to be able
to specify it.

139

140 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

• When iteration depends on mutable data, client code may put iteration in some inconsistent
state. In Java, for instance, this problem is solved by maintaining version numbers and by
raising an exception in the case of a concurrent modification. In our case, we wish instead
to be able to prove, statically, that there is no concurrent modification.

• When a data structure is abstract (for example, a set for which we do not know the imple-
mentation) we still want to be able to specify an iteration over its elements and to verify a
program using such an iteration. Even when we have access to the implementation of the
iteration, we are still interested in performing verification in a modular way with an abstrac-
tion barrier. It means verifying the client code independently of a particular implementation
for the iteration.

We propose to specify iteration in terms of the finite sequence v of the elements enumerated so
far, and only those. This can be depicted as follows:

v0 v1 · · · vn−1︸ ︷︷ ︸
already visited

? ? · · · ?︸ ︷︷ ︸
to come

By imposing no particular property about the forthcoming elements, we are able to cope with non-
deterministic and (potentially) non-terminating enumerations. To reason about the evolution of the
iteration process, we introduce two predicates: the first predicate, called permitted, characterizes
the elements of v and we can consider such a predicate as the invariant of iteration; the second
predicate, called complete, indicates whether the iteration is completed. In the following, ‖v‖
denotes the length of v, v[i] denotes the i-th element of v (assuming a 0-based indexation), and
x ∈ v means that x occurs in v.

Let us illustrated the use of permitted and complete through several examples. Consider for
instance the iteration over an array a, from left to right. The first predicate, permitted, is as
follows:

permitted(v, a) , ‖v‖ ≤ length(a)∧ ∀i. 0 ≤ i < ‖v‖ =⇒ v[i] = a[i]

In other words, the sequence v is a prefix of the array a. The second predicate, complete, simply
compares the length of v with that of a:

complete(v, a) , ‖v‖ = length(a)

Specifying a right to left iteration is just a matter of changing the definition of permitted to state
the sequence v forms a suffix of the array.

Let us now consider the iteration over the elements of a finite set s, in a non-deterministic way.
Such an iteration can be specified as follows:

permitted(v, s) , distinct(v)∧ ∀x. x ∈ v =⇒ x ∈ s
complete(v, s) , ‖v‖ = card(s)

The condition distinct(v) means that the elements of sequence v are pair-wise distinct. This is
needed to reflect the fact s is a set (and not a bag), so no element can be visited twice. We require,
as well, the elements of v to be elements of s. Since we do not require any additional property, we
have a non-deterministic iteration. The iteration is completed whenever the length of v is equal to
the cardinal of s. Let us now specify, instead, a deterministic iteration over the elements of s. One
way to do so is to introduce some oracle function elements that returns a sequence containing the
elements of s in the order they will be visited. Then, permitted merely says that we have already
visited a prefix of this sequence, that is,

permitted(v, s) , prefix(v, elements(s))

6.2. CURSORS 141

with a natural definition for prefix:

prefix(s1, s2) , ‖s1‖ ≤ ‖s2‖∧ ∀i. 0 ≤ i < ‖s1‖ =⇒ s1[i] = s2[i]

With such a specification, the behavior of the enumeration is determined from the beginning. For
instance, if the elements of s are totally ordered, then elements(s) could be the sorted sequence of
the elements of s.

Let us switch to examples of iteration that are not traversals of a data structure. Consider
for instance an iteration obtained by the repeated application of a function f starting with some
initial value x0, that is, the infinite sequence

x0, f(x0), f(f(x0)), f(f(f(x0))), . . .

One way to specify it is as follows:

permitted(v, x0, f) , ∀i. 0 ≤ i < ‖v‖ =⇒ v[i] = fi(x0)

assuming fi is defined as the i-th functional power of f. To account for the fact that this iteration
never halts, we simply define complete as follows:

complete(v, x0, f) , false

Note that, in this case, both permitted and complete are parameterized by the value x0.
The next example is the specification of a scanner for a possibly infinite channel c. The elements

of v are characters and a special character EOF marks the end of the channel. The specification
looks like:

permitted(v, c) , · · ·∧ ∀i. 0 ≤ i < ‖v‖− 1 =⇒ v[i] 6= EOF
complete(v, c) , ‖v‖ > 0∧ v[‖v‖− 1] = EOF

The first part of the definition of permitted, marked with . . . , specifies that the channel, for instance,
is only composed of alpha-numeric characters. The given specification covers both the case of a
finite channel, with a terminal EOF, and the case of an infinite channel, where EOF never shows up.

Our last example is that of a symbol generator, i.e., a program that generates fresh symbols on
demand. Its output is an infinite iteration of distinct symbols, which we specify as follows:

permitted(v) , distinct(v)
complete(v) , false

In this case, the specification does not depend on any information other than the sequence v itself.

6.2 Cursors

A cursor [41] is a data structure used to traverse collections, where the consumer is in control of
the iteration process. The word “collection” is to be taken here broadly, as it does not necessarily
means a physical data structure. Each time a new element is needed, one needs to explicitly
interact with the cursor. Cursors are broadly used in C++ and Java, for instance.

We adopt a model where we interact with the cursor via two functions: has_next returns a
Boolean indicating the existence of a next element in the iteration; and next, which advances to
the next element and returns it. The latter operation updates the cursor via a side effect. A typical
client code looks like

142 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

Syntaxc <- create_cursor(...)
while has_next(c) do

x <- next(c)
...

In Java, the “for each” loop construct for (E x: ...) is nothing more than syntactic sugar for
the above.

In this section we describe the use of predicates permitted and complete to formally specify
what is a cursor (Sec. 6.2.1), to verify a cursor implementation (Sec. 6.2.2), and to verify client
code (Sec. 6.2.3). Finally, we apply our approach to specify and formally verify several case studies
(Sec. 6.2.5 and 6.2.6).

6.2.1 Cursor Specification

In this section, we detail on a generic specification for the cursor data structure. We introduce
two types: type elt of the elements enumerated by a cursor, and type t for the collection whose
elements we enumerate, as follows:

WhyMLtype t
type elt

Next, we declare predicates permitted and complete, as follows:
WhyMLpredicate permitted t (seq elt)

predicate complete t (seq elt)

These are undefined predicates, which we must instantiate for each new kind of cursor. A cursor
is modeled by the following record type:

WhyMLtype cursor = private {
ghost mutable visited: seq elt;
ghost collection: t;

} invariant { permitted collection visited }

This is a private type, with two fields: ghost field visited stands for the sequence of already
enumerated elements by the cursor; field collection represents the collection for which the cursor
is defined. Being exclusively composed of ghost fields, the cursor type has no physical repre-
sentation. For every new instance of a cursor we are supposed to refine type cursor with new,
possibly regular, fields. One can think of a private type as a type for which we are not yet aware
of the full definition. Let us note that we equip type cursor with the permitted property as the
type invariant. This follows the idea that permitted acts as an invariant of the iteration process.
Why3 generates a verification condition of the form ∃ v, t. permitted t v to ensure there is an
inhabitant of type cursor that satisfies the type invariant. To prove such a formula, we add to
our formalization the following axiom:

WhyMLaxiom permitted_empty: forall t. permitted t empty

It simply states that permitted always holds for an empty sequence of visited elements. When
we shall provide concrete definitions for types t and elt, as well as for predicates permitted and
complete, we can then turn such an axiom into a provable lemma.

Using predicates complete and permitted, we can provide suitable contracts for functions
has_next and next. The first one, is declared as the following unimplemented function:

WhyMLval has_next (c: cursor) : bool
ensures { result <-> not (complete c.collection c.visited) }

6.2. CURSORS 143

Function has_next decides whether predicate complete holds, as expressed in its postcondition.
The second operation, next, is introduced as follows:

WhyMLval next (c: cursor) : elt
requires { not (complete c.collection c.visited) }
writes { c.visited }
ensures { c.visited = snoc (old c).visited result }

Following the pre-condition of this function, we can only call next whenever the iteration is not
complete. The postcondition ensures the returned element is append to the end of the visited
sequence. This is done via a side effect, which we state in the writes clause of the function.

To be able to use cursors, we also need an operation to create a new value of type cursor. We
name such an operation create, and declare it as follows:

WhyMLval create (t: t) : cursor
ensures { result.visited = empty }
ensures { result.collection = t }

end

Given a collection t, function create returns a new cursor with an empty visited sequence, as
well as with field collection assigned to t. This completes the definition of module Cursor.

Let us note that, at any moment, we refer to predicate permitted in the contract of the cursor
operations. Thanks to the cursor type invariant, any operation manipulating a value of type
cursor must preserve the permitted property. In other words, the cursor operations assume the
invariant as a pre-condition and that it is re-established at the postcondition. For instance, the
writing operation of function next must not invalidate the cursor invariant. Whenever we call
next, Why3 generates verification conditions including the permitted condition in the premises of
the proof context.

Example: cursor specification for arrays. We detail on a specification for a cursor over
arrays. We encapsulate the WhyML code within a module named CursorArraySpec, and we begin
by declaring types elt and t as follows1:

WhyMLmodule CursorArraySpec

type elt
type t = seq elt

We define the cursor type as follows:
WhyMLtype cursor = private {

ghost mutable visited: seq elt;
collection: t;

} invariant { permitted collection visited }

We keep permitted as the type invariant of cursor. We can provide a concrete definition for
predicates permitted and complete, as follows2:

WhyMLpredicate permitted (t: t) (v: seq elt) =
length v <= length t /\

1Whenever we introduce a new WhyML module, for the sake of readability, we do not present the external
dependencies on other WhyML modules.

2For the sake of clarity, we authorize ourselves to surcharge operations length and [] to apply these both to
sequences and arrays, even if Why3 does not (yet) support operations overloading.

144 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

forall i. 0 <= i < length v -> t[i] = v[i]

predicate complete (t: t) (v: seq elt) =
length v = length t

The permitted sequences are those that form a prefix of the collection, and the iteration is
complete when the length of the visited sequence is the same as the length of the collection.

We conclude module CursorArraySpec with the declaration of the cursor operations:
WhyMLval next (c: cursor) : elt

requires { not (complete c.collection c.visited) }
writes { c.visited }
ensures { c.visited = snoc (old c).visited result }

val has_next (c: cursor) : bool
ensures { result <-> not (complete c.collection c.visited) }

val create (a: array elt) : cursor
ensures { result.visited = empty }
ensures { result.collection = a }

6.2.2 Cursor Implementation

A specification is nothing without a corresponding implementation. In this section, we present
the actual implementation of a cursor to traverse an array. We shall equip type cursor with
some regular fields, and give concrete implementations to the cursor operations. At end, we shall
prove that the chosen implementation actually refines the cursor specification given in the previous
section.

We encapsulate the WhyML implementation in a module named CursorArrayImpl, which
begins with the definition of the cursor type, as follows:

WhyMLmodule CursorArrayImpl

type elt
type t = array elt

predicate permitted (collection: t) (visited: seq elt) (index: int) =
index = length visited /\
length visited <= length collection /\
forall i. 0 <= i < index -> visited[i] = collection[i]

type cursor = {
ghost mutable visited: seq elt;

mutable index: int;
collection: t;

} invariant { permitted collection visited index }

We traverse an array by keeping in the mutable field index an integer value that corresponds to
the index of the next element to be enumerated. Such a property is expressed in the first line of
permitted. The next two lines express the fact that visited is always a prefix of collection.
To define predicate complete, we keep the same definition as in the previous section:

6.2. CURSORS 145

WhyMLpredicate complete (c: cursor) =
length c.visited = length c.collection

For convenience, we define complete over the cursor type.
We now focus on the implementation of the cursor operations. Function has_next decides if

enumeration is complete by comparing the value of index with the length of collection:
WhyMLlet has_next (c: cursor) : bool

ensures { result <-> not (complete c) }
= c.index <> length c.collection

Function next takes the element x on the index position, increments the value of index and
returns x:

WhyMLlet next (c: cursor) : elt
requires { not (complete c) }
ensures { c.visited = snoc (old c).visited result }

= let x = c.collection[c.index] in
ghost c.visited <- snoc c.visited x;
c.index <- c.index + 1;
x

In the body of function next, we update the visited sequence, via a ghost writing. Giving the
regular status of fields index and collection, function next is type-checked by the Why3 type
system as a regular function, even tough there is an assignment to a ghost field. Finally, in function
create we initialize the cursor as follows:

WhyMLlet create (a: array elt) : cursor
ensures { result.visited = empty }
ensures { result.collection = a }

= { visited = empty; collection = a; index = 0 }

The visited sequence is initially empty, the field collection is initialized to the array a, and the
field index starts at 0.

To conclude module CursorArrayImpl, we show that this module is a valid implementation of
module CursorArraySpec, via the following clone expression:

WhyMLclone CursorArraySpec with
type elt, type cursor, val has_next, val next, val create

end

We do not need to include predicates permitted and complete in the substitution since these
are already defined in module CursorArraySpec. Such a refinement includes a proof that the
type invariant of cursor in module CursorArrayImpl implies the type invariant of cursor in
CursorArraySpec, as well as specification inclusion for operations has_next, next, and create.
All the generated verification conditions, either for the implementation of cursor operations and
the module refinement, are automatically discharged in no time.

6.2.3 Cursor Client

To illustrate the use of cursors, we give the WhyML implementation of program sum_array, which
uses a cursor to traverse an array of integer to compute the sum of its elements. We begin by
importing an instance of the CursorArraySpec module, where occurrences of type elt are replaced
by type int, as follows:

146 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

WhyMLclone CursorArraySpec with type elt = int

This imposes an abstraction barrier between implementation and client code: the client code
uses only the specification of the array cursor, instead of the actual implementation given by the
CursorArrayImpl module.

We specify sum_array with the following contract:
WhyMLlet sum_array (a: array int) : int

ensures { result = sum (fun i -> a[i]) 0 (length a) }

Logical function sum, of type (int → int) → int → int → int, is defined in the Why3 stan-
dard library, and stands for the summation of integers values in a given range, i.e., the result of
sum f a b is equal to

∑
a≤i<b f(i). The code begins by creating a reference s to hold the sum, and

the cursor c. For each new element returned by the cursor, we update the value of s, as follows:
WhyML= let s = ref 0 in

let c = create a in
while has_next c do

variant { length c.collection - length c.visited }
invariant { !s = sum (get a) 0 (length c.visited) }
let x = next c in
s := !s + x

done;
!s

The loop invariant states that reference s contains the sum of already enumerated elements. The
termination of function sum_array is easily proved by annotating the while loop with the termi-
nation measure length c.collection - length c.visited. The type invariant of cursor guar-
antees that c is kept in a valid state, which allows to correctly call function next and has_next.
All the generated verification conditions for function sum_array are easily discharged.

The relation between the cursor specification, concrete implementation and the client code can
be depicted as follows:

Cursor
Array
Spec

Cursor
Array
Impl

Client

The vertical arrow represents the refinement relation between modules CursorArrayImpl and
CursorArraySpec. On the other hand, the horizontal arrow stands for the use of CursorArraySpec
in the implementation of the client code.

6.2. CURSORS 147

6.2.4 Collection Modification

If we consider mutable data structures, nothing prevents us from modifying its contents while a
cursor is traversing it. We could imagine the following code:

WhyMLlet c = array_cursor a in
let x = next c in
a[0] <- 42;
let y = next c in

that modifies array a after creating the cursor c. This is a typical example where we do not want to
be able to prove that, at moment of the the second call to next, the cursor c respects its invariant.

Outside the context of program verification, checking if a data structure is coherent with an
associated cursor is typically done via dynamic tests, which inspect a version number included in
both the cursor and the data structure. In case the two numbers differ, an exception is raised.
This is the case of the Java standard library. In our case, on the contrary, we statically ensure the
coherence between a cursor and a collection through the set of generated verification conditions.
There is no need for dynamic tests or exception raising which, additionally, has the benefit of
producing a more efficient code.

6.2.5 Case Studies

In this section, we present several examples of cursors and associated client code, as well as their
formal correctness proof. One key idea is to show that cursors are not limited to data structures
traversal. All the given examples are proved correct, with respect to the given specification, in a
completely automatic way.

6.2.5.1 Gensym

The first example we present is that of a fresh symbol generator, i.e., a cursor that returns a
sequence of values without any repetition. The permitted predicate is easily defined, as follows:

WhyMLpredicate permitted (v: seq elt) = distinct v

where distinct is a predicate of the Why3 standard library which specifies that the elements of a
sequence are pair-wise distinct. The predicate complete is even simpler, since this is the case of a
non-terminating iteration:

WhyMLpredicate complete (v: seq elt) = false

We suppose here that the type elt is infinitely inhabited, otherwise it would not be possible to
implement such a cursor.

If we use the example of a generator for natural numbers, a possible implementation of the
cursor type is as follows:

WhyMLtype elt = int
type t = unit

type cursor = {
ghost mutable visited : seq elt;
ghost collection : t;

mutable n : int;
} invariant { permitted visited }

invariant { forall i. 0 <= i < length c.visited -> n > visited[i] }

148 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

where field n contains the next element in the enumeration. The field collection has no meaning
here; we keep it just for coherence with our presentation. The function next is, thus, easily
implemented. It is enough to increment the value of n:

WhyMLlet next (c: cursor) : elt
...

= let x = c.n in
c.n <- c.n + 1;
ghost c.visited <- snoc c.visited x;
x

We omit here the function specification as this does not change with respect to the one we presented
in Sec. 6.2.1. The implementation of function has_next is trivial, as it always returns true, and
so we do not show it here.

6.2.5.2 Depth-first Search

The next example is that of a cursor to perform a depth-first search (DFS) traversal of a graph. We
represent here a graph through a type vertex for the nodes, and the succ function that associates
to each node the set of its successors:

WhyMLtype vertex
val function succ vertex : set vertex

Note that we declare succ as both a logical and programming function, as we shall use it in the
implementation and to reason about the cursor’s behavior.

The notion of path plays an important role in the specification of such a cursor. We define it
as follows:

WhyMLpredicate edge (v1 v2: vertex) = mem v2 (succ v1)

predicate path (v1: vertex) (s: seq vertex) (v2: vertex) =
if length s = 0 then v1 = v2
else edge v1 s[0] /\ s[length s - 1] = v2 /\

forall i. 0 <= i < length s-1 -> edge s[i] s[i+1]

The statement path v1 s v2 means that there is a path from node v1 to v2, following the nodes
contained in sequence s. We chose to exclude v1 from the sequence. Let us note that the definition
of path is given entirely by means of universal quantification and arithmetic, instead of declaring an
inductive or recursive predicate. This is intentionally done, as it leads to a much more automated
proof, similarly to what we discussed in Sec. 5.2.2. From the predicate path we can deduce the
following reachability predicate:

WhyMLpredicate reachable (v1 v2: vertex) =
exists s. path v1 s v2

Expressing that we reach vertex v2 from v1 is as simple as stating that there is a path between
the two, i.e., there exists a sequence s for which the statement path v1 s v2 holds.

As we did for the previous cursors, we start the definition of the DFS cursor by introducing a
type elt for the elements being enumerated, and a type t for the collection:

WhyMLtype elt
val eq (x1 x2: elt) : bool

ensures { result <-> x1 = x2 }

6.2. CURSORS 149

type t = unit

clone Graph with type vertex = elt

The type of the collection is of no interest here, since we represent the graph through the succ
function. The clone clause is used here to import an instance of the Graph module (which assembles
the graph-related definitions, i.e., type vertex, function succ, predicate path, etc.) where every
occurrence of vertex is replace by elt.

To perform the DFS traversal, we follow a traditional approach: we keep a stack of nodes,
together with a set of marked nodes that have already been reached by the traversal. We provide
the following cursor type:

WhyMLtype cursor = {
ghost mutable visited: seq elt;
ghost collection: t;
ghost source: elt;

mutable stack: list elt;
mutable marked: set elt;

} invariant { permitted collection visited stack source marked }

The source field stores the starting node of the traversal, for specification purposes only. The
permitted property of this cursor type is a 5-place predicate, as it is parameterized by the stack,
the source of the traversal, and the set of marked nodes, besides the collection and the sequence
of visited elements. The definition of the permitted predicate is actually the conjunction of two
other predicates, as follows:

WhyMLpredicate permitted (collection: t) (visited: seq elt) (stack: list elt)
(source: elt) (marked: set elt) =

permitted1 visited stack source marked /\ permitted2 visited marked

The reason to split such a definition between predicates permitted1 and permitted2 shall become
evident when we present the proof of function next. For now, let us give the definition of each of
these predicates, step-by-step. First, the permitted1 predicate states that the elements of stack
are pair-wise distinct,

WhyMLpredicate permitted1 (collection: t) (visited: seq elt) (stack: list elt)
(source: elt) (marked: set elt) =

distinct stack /\

that the source is always marked,
WhyMLmem source marked /\

that the source is the head of the stack when the traversal starts,
WhyML(mem source stack -> stack = Cons source Nil) /\

that the elements in the stack are always disjoint from the already visited elements,
WhyMLinter (elements stack) (to_set visited) = empty /\

that the set marked elements is the union of the already visited elements and those of the stack,
WhyMLmarked = union (elements stack) (to_set visited) /\

and finally that all marked nodes are reachable from the source,
WhyMLforall v. mem v marked -> reachable source v

As to the permitted2 predicate, this is much simpler defined, as follows:

150 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

WhyML

predicate permitted2 (collection: t) (visited: seq elt) (marked: set elt) =
forall v. mem v visited -> forall w. edge v w -> mem w marked

It states that, if a node is already visited, then all of its successors are already marked.
The other element of our specification is the complete predicate. From a logical point of

view, the traversal terminates when all reachable nodes from the source have been visited. We
materialize such an idea in the definition of the complete predicate, as follows:

WhyMLpredicate complete (c: cursor) =
forall v. reachable c.source v -> mem v c.visited

From a programming point of view, we stop the traversal as soon as the stack is empty. The
implementation of the has_next function follows exactly this explanation:

WhyMLlet has_next (c: cursor) : bool
ensures { result <-> not (complete c) }

= match c.stack with Nil -> False | _ -> True end

The proof that function has_next respects the given specification is harder than it might suggest.
To better understand why, let us do a case analysis on the proof of the postcondition:

1. if the stack is not empty, then there are yet reachable nodes from the source to be enumer-
ated;

2. if the stack is empty, then all of the reachable elements from the source have been visited
during the traversal.

The first property stands for the correction of the traversal termination, while the second one
represents completeness. The correction part is easily established, as follows:

• the stack is not empty, and the value c respects the permitted predicate which gives us, in
particular, that all the elements in the stack belong to the marked set (using property that
marked is the union of the stack and the visited sequence);

• also from the definition of permitted, we get that for every node v in the marked set, v is
reachable from the source;

• so, by the fact that the stack and the visited sequence share no common elements (given,
again, by the permitted property), we get that there reachable elements from the source
that are not yet in the visited sequence, which corresponds exactly to the statement
not (complete c).

SMT solvers are able to follow a similar reasoning to what we have just described, and so this part
of the proof is completed fully automatically. The second part, completeness, is much harder. In
fact, we need to introduce some extra information in our proof context in order to help provers to
succeed. We introduce the following auxiliary lemma:

WhyMLlemma path_stack : forall c v s.
path c.source s v -> not (mem v c.visited) ->
exists w. mem w c.stack /\ reachable w v

Such a lemma ensures that every path from the source to a not yet visited vertex must contain
a vertex from the stack. To see how the path_stack lemma can be used to complete the proof of
completeness of function has_next, we reason by contradiction:

6.2. CURSORS 151

• let us suppose that not (complete c) holds;

• we get that there exists a node vv and a sequence ss, such that path c.source ss vv and
not (mem vv c.visited) hold;

• when we instantiate lemma path_stack with c, v, and s, we get in our proof context
WhyMLexists w. mem w c.stack /\ reachable w v

• we know that stack is equal to Nil;

• so, we get that
WhyMLexists w. mem w Nil /\ reachable w v

• this is a contradiction (predicate mem always returns false for an empty list), resulting from
assuming not (complete c).

With auxiliary lemma path_stack, SMT solvers are able to discharge the verification conditions
stating the completeness of the has_next function. Now, we turn our attention to the proof
the path_stack lemma itself. To obtain a fully automatic proof, we write the following lemma
function, for which the contract is automatically translated to the above statement:

WhyMLlet lemma path_stack (c: cursor) (v: elt) (s: seq elt) : (w: elt)
requires { path c.source s v }
requires { not (SM.mem v c.visited) }
ensures { LM.mem w c.stack /\ reachable w v }

= if LM.mem v c.stack then v
else if LM.mem c.source c.stack then c.source
else begin

let _, w, _, _ = intermediate_value (is_in_visited c) c.source v s in w
end

The proof of path_stack is done by case analysis:

1. if v is in the stack, then it is the vertex we are looking for;

2. if v is not in the stack but the source is the stack, then the source is the vertex we are
looking for;

3. if neither v or the source are in the stack, we then know that the source is in visited
and so there is a path from the inside of visited to the outside of visited (vertex v). Such
a path takes an edge v ′ → w such that v’ is in visited but not w. Using the permitted
property, we know that w is necessarily in the stack, and so this is the vertex we are looking
for.

We use function intermediate_value to find vertex w in the third case. This is a ghost function
used to retrieve the first vertex of a path between the vertices u and v that does not verify
a given property P, knowing that P(u) and ¬P(v) hold. In the case of path_stack, we call
intermediate_value with the property to be in the visited sequence, defined as follows:

WhyMLfunction p (c: cursor) : elt -> bool =
fun x -> SM.mem x c.visited

val ghost is_in_visited (c: cursor) : elt -> bool
ensures { result = p c }

152 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

Function intermediate_value is implemented as the following recursive function:
WhyMLlet rec ghost intermediate_value

(p: vertex -> bool) (u v: vertex) (s: seq vertex) :
(u’: vertex, v’: vertex, s1: seq vertex, s2: seq vertex)

requires { p u }
requires { not (p v) }
requires { path u s v }
ensures { p u’ /\ not (p v’) /\ path u s1 u’ /\ path v’ s2 v /\ edge u’ v’ }
variant { length s }
= if length s = 0 then absurd

else if not (p s[0]) then (u, s[0], empty, s[1 ..])
else let (u’, v’, s1, s2) = intermediate_value p s[0] v s[1 ..] in

(u’, v’, cons s[0] s1, s2)

It is worth point out that intermediate_value takes as the last argument a sequence s to establish
property path u s v, instead of using the reachable predicate. Using such a sequence we are
able to implement the intermediate_value function by recursion over the structure of s. All
the verification conditions generated for path_stack and intermediate_value are automatically
discharged, which concludes the proof of function has_next.

We now focus on the proof of function next. This function follows a much traditional approach:
we take the head element v of the stack (the pre-condition assures that stack is not empty), then
we iterate over the successors of v, adding them to the stack and the set of marked vertices. We
give the following WhyML implementation:

WhyMLlet next (c: cursor) : elt
requires { not (complete c c.collection) }
writes { c }
ensures { c.visited = snoc (old c.visited) result }

= match c.stack with
| Nil -> absurd
| Cons v r ->

c.stack <- r;
c.visited <- snoc c.visited v;
let s = ref (succ v) in
while not (is_empty !s) do

variant { cardinal !s }
let x = choose !s in
s := remove x !s;
if not (mem x c.marked) then begin

c.stack <- Cons x c.stack;
c.marked <- add x c.marked end

done;
v

end

It is worth pointing out that the absurd point is provable thanks to the path_stack lemma. The
most interesting part of the proof of next is to provide the invariant to the while loop. Let us go
through in detail over such an invariant: the source vertex is not in the stack,

WhyMLinvariant { not (mem c.source c.stack) }

6.2. CURSORS 153

during the iteration, the cursor c respects only the permitted1 property, since we cannot state
that all successors of elements in visited are marked as, in fact, we are using the while loop to
insert all successors of v in the stack and the marked set,

WhyMLinvariant { permitted1 c.visited c.stack c.source c.marked }

nonetheless, all the successors of visited vertices different from v are marked,
WhyMLinvariant { forall u. mem u c.visited -> u <> v ->

forall w. mem w (succ v) -> mem w c.marked }

and, as well, all vertices already taken from the initial set !s of successors of v is marked,
WhyMLinvariant { forall w. mem w (diff (succ v) !s) -> mem w c.marked }

set !s is a subset of the successors of v,
WhyMLinvariant { subset !s (succ v) }

and finally all vertices in !s are reachable from the source,
WhyMLinvariant { forall x. mem x !s -> reachable c.source x }

All the generated verification conditions are proved in no time by a combination of SMT solvers. It
is interesting to note how we are able to frame the set of successor vertices that are incrementally
included in the marked set. After the loop, as we know that !s is empty, the provided invariant
is sufficient to prove that all the successors of v are included in the marked set. This proves the
definition of the permitted predicate, which re-establishes the invariant of type cursor.

As an example of a client code to the DFS cursor, we give the following WhyML program that
decides whether there is a path between two given vertices:

WhyMLlet is_path (v w: elt) : bool
ensures { result <-> Graph.reachable v w }
diverges

= let it = create v in
while has_next it do

invariant { not (mem w it.visited) }
let x = next it in
if eq x w then return True

done;
False

We keep iterating as long as function has_next returns True, i.e., while the cursor can provide new
elements. In the case of an infinite graph, we can indeed iterate forever, which prevents us from
proving termination of the is_path function. The diverges keyword accounts for the possibility
of divergence. The loop invariant assures that, as long as we iterate, vertex w is not visited. If
the loop terminates, then we can use the invariant to prove that vertex w is not reachable from v.
On the other hand, if we reach vertex w during the traversal, then we use the return instruction
to interrupt iteration and return True.

6.2.5.3 In-order Traversal of Binary Trees

The last example we give in this section is a cursor to perform an in-order traversal of a binary
tree. This example comes with a bonus: we show how to use the WhyML modules system not only
to prove refinements between cursors specification and implementation, but also to get, at the end,
an executable code linking a client and a specific implementation of the cursor, even tough the
WhyML client code knows only about the cursor specification.

154 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

Cursor specification. The polymorphic type of binary trees is defined in Why3 standard library,
as follows:

WhyMLtype tree ’a = Empty | Node (tree ’a) ’a (tree ’a)

The tree ’a type is defined together with the following logical function elements

WhyMLfunction elements (t: tree ’a) : seq ’a = match t with
| Empty -> empty
| Node l x r -> elements l ++ cons x (elements r)

end

which specifies the sequence of the tree elements when traversed in-order.
We begin with the logical specification and declaration of the in-order cursor operations. We

encapsulate the WhyML code in the InorderCursorSpec, which starts with the declaration of the
elt and t types:

WhyMLmodule InorderCursorSpec

type elt

val eq (x1 x2: elt) : bool
ensures { result <-> x1 = x2 }

type t = tree elt

Note that we equip the elements of type elt with an equality operation, defined via the abstract
function eq. We need to introduce such an operation since polymorphic equality is, in WhyML,
exclusively used for specification purposes. Next, we add to the InorderCursorSpec module the
definitions of predicates permitted and complete, as follows:

WhyMLpredicate permitted (t: t) (v: seq elt) =
length v <= length t /\
forall i. 0 <= i < length v -> v[i] = t[i]

predicate complete (t: t) (v: seq elt) =
length t = length v

Function elements is declared in the Why3 standard library as a coercion, which allows us to write
very clean and compact definitions for the above predicates. Every application of the t symbol
to a logical function is automatically translated to (elements t), the infix sequence of the tree
elements. The permitted relation simply states the visited sequence is a prefix of the in-order
sequence of the collection; the traversal is complete once the length of the elements sequence of t
is the same as the length of the visited sequence.

The type of the in-order cursor keeps the two ghost fields visited and collection, where we
know that collection is of type tree elt, as follows:

WhyMLtype cursor = private {
ghost mutable visited: seq elt;
ghost collection: t;

} invariant { permitted collection visited }
by { visited = empty; collection = Empty }

We use predicate permitted as the type invariant of cursor and the invariant witness is simply
the record where fields visited and collection are assigned, respectively, to the empty sequence

6.2. CURSORS 155

and to the Empty tree. We are now in position to declare the cursor operations next and has_next,
whose contracts follow exactly those of the general specification of a cursor:

WhyMLval next (c: cursor) : elt
requires { not (complete c.collection c.visited) }
writes { c.visited }
ensures { c.visited = snoc (old c).visited result }

val has_next (c: cursor) : bool
ensures { result <-> not (complete c.collection c.visited) }

We introduce, as well, the following operation to create a value of type cursor:
WhyMLval create (t: t) : cursor

ensures { result.collection = t }
ensures { result.visited = empty }

This creates a cursor with an empty visited sequence, making the cursor ready to use and return
the leftmost element of the tree the first time we call function next3. The collection of the cursor
is the elements sequence of the t.

Cursor Implementation. We now turn our attention to the actual implementation of an in-
order cursor. We encapsulate the implementation of the in-order cursor in a module named
InorderCursorImpl, which begins as follows:

WhyMLmodule InorderCursorImpl

type elt

val eq (x1 x2: elt) : bool
ensures { result <-> x1 = x2 }

type t = tree elt

To implement the cursor operations performing an in-order traversal, we use the zipper [78] struc-
ture. Since we only perform descents towards the left sub-tree, we specialize the zipper data type
as follows:

WhyMLtype zipper = Done | Next elt (tree elt) zipper

An element of type zipper forms a list where each element is a pair composed of an element and
the corresponding right-hand sub-tree. We build such a list bottom-up, which represents the left
part of the tree that is still to be traversed. Together with the zipper data type, we introduce the
following logical function to convert from a zipper to a sequence:

WhyMLfunction zipper_elements (e: zipper) : seq elt = match e with
| Done -> empty
| Next x r e -> cons x (elements r ++ zipper_elements e)
end

meta coercion function zipper_elements

3We could, very well, imagine a creation function which would place the cursor in a specific position of tree,
instead of always placing it on the leftmost element.

156 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

We use the zipper_elements function to define predicate permitted, as follows (the coercion
system avoids its explicit application):

WhyMLpredicate permitted (t: t) (visited: seq elt) (zipper: zipper) =
t = visited ++ zipper

This definition of permitted acts as a linking invariant in the following definition of type cursor:
WhyMLtype cursor = {

ghost mutable visited: seq elt;
ghost collection: t;

mutable zipper: zipper;
} invariant { permitted collection visited zipper }

by { visited = empty; zipper = Done; collection = Empty }

This type cursor contains the zipper in a regular mutable field, since we want to preserve the
zipper after extraction. Predicate complete is straightforwardly defined as follows:

WhyMLpredicate complete (t: t) (v: seq elt) =
length t = length v

We can now define the cursor operations. Starting with the creation of a new element of type
cursor, we first define the following operation to create the zipper for a given tree:

WhyMLlet rec function zipper_build (t: tree elt) (z: zipper) : zipper
= match t with

| Empty -> e
| Node l x r -> zipper_build l (Next x r e)

end

Function zipper_build simply traverses the tree all the way down to the left, collecting each
element and its right-hand sub-tree, using argument z as an accumulator. The use of the function
keyword instructs Why3 to automatically generate the logical counter-part of zipper_build. The
advantage of such automatic encoding is two-fold: first, there is no need for us to write a formal
contract for function zipper_build, as Why3 infers the strongest postcondition of such a function;
second, it allows to use and reason about the definition of zipper_build in the logic of WhyML. For
instance, the following lemma relates the result of zipper_build t z with the sequence formed
by the arguments t and z:

WhyMLlet rec lemma zipper_spec (t: tree elt) (z: zipper)
ensures { zipper_build t z == t ++ z }
variant { t }

= match t with
| Empty -> ()
| Node l x r -> zipper_spec l (Next x r z)
end

This lemma states that if we convert the zipper zipper_build t z to a sequence (function
zipper_elements is applied as a coercion in the postcondition of the lemma) we get exactly
the sequence t ++ z (functions elements and zipper_elements are here used as coercions). The
proof is done by straightforward induction on the tree structure. Lemma zipper_spec is crucial
to prove that the type invariant of a cursor containing a newly created zipper holds indeed. This
is exactly the case for the function that creates a new in-order cursor:

WhyMLlet create (t: tree elt) : cursor
ensures { result.collection = t }

6.2. CURSORS 157

ensures { result.visited = empty }
= { visited = empty; zipper = zipper_build t Done; collection = t }

All the generated verification conditions for function iterator are automatically discharged. This
includes a proof that the new value of type cursor respects the type invariant, which is possible
thanks to the zipper_spec lemma. For the next function, each time we return a new element we
need to rebuild the zipper from the left-hand sub-tree of the returned element, together with the
remaining of the zipper:

WhyMLlet next (c: cursor) : elt
requires { not (complete c) }
ensures { c.visited == snoc (old c).visited result }

= match c.zipper with
| Done -> absurd
| Next x r e -> c.visited <- snoc c.visited x;

c.zipper <- zipper_build r e;
x

end

The proof that the updated cursor respects the type invariant is automatically done by SMT
solvers using, once again, the zipper_spec lemma. The remaining verification conditions for the
next function are easily discharged by SMT solvers. Finally, we give the definition of function
has_next. This is implemented as follows:

WhyMLlet has_next (c: cursor) : bool
ensures { result <-> not (complete c) }

= match c.zipper with
| Done -> false
| _ -> true
end

The enumeration of the tree elements is complete once the zipper is equal to Done. Module
InorderCursorImpl terminates with the proof that this particular implementation of a in-order
cursor is a refinement of the module InorderCursorSpec. This is achieved via the following clone
clause:

WhyMLclone InorderCursorSpec with
type elt, type cursor,
val next, val has_next, val create

end

All the generated verification conditions are automatically discharged, which include the refinement
of type cursor, i.e., the type invariant of InorderCursorImpl.cursor implies the type invariant
of InorderCursorSpec.cursor, as well the proof of specification inclusion for operations next,
has_next, and createa.

Cursor client. We present now a client program using the in order cursor. We chose the classical
algorithmic problem known as same fringe, which consists in deciding whether two binary trees
present the same sequence of elements, when traversed in-order. In other words, we seek here to
write a function with the following contract:

WhyMLlet same_fringe (t1 t2: tree elt) : bool
ensures { result <-> elements t1 = elements t2 }

158 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

A possible implementation for the same_fringe function would be to explicitly build the in-order
sequence of each tree and then compare them. This is, however, an inefficient solution. Let us
consider, for instance, the two following binary trees:

x

huge sub-tree

y

huge sub-tree

The two trees differ in the leftmost element, as we have x for the left-hand side tree, and y for the
right-hand side tree. Following the solution proposed above, we would build two (huge) sequences,
which is a shame. Even tough this is a linear solution on the number of elements of the trees,
this has the pitfall of building in memory the two sequences, even if the two trees differ directly
on the first element issued from the in-order traversal. Another solution would be to build just
the sequence of one of the trees, then traverse the second one and comparing each new element
issued from the traversal with the head of the sequence. One would still have to explicitly build
in memory a sequence of elements, other than the two trees, which can be prohibitive under some
circumstances. We propose to explore here a different approach: we build a cursor for the two trees,
and we enumerate the elements of each tree while both are equal, with respect to the eq operation.
Therefore, we stop the traversal as soon as two elements are different. This is both an elegant and
an efficient solution. The following eq_cursors function implements such a comparison:

WhyMLmodule SameFringe

clone InorderCursorSpec as CI

predicate permitted (c: CI.cursor) =
CI.permitted c.CI.collection c.CI.visited

let rec eq_cursors (c1 c2: CI.cursor) : bool
requires { c1.CI.visited == c2.CI.visited }
ensures { result <-> c1.CI.collection == c2.CI.collection }
variant { length c1.CI.collection - length c1.CI.visited }

= match CI.has_next c1, CI.has_next c2 with
| False, False -> True
| True, True -> CI.eq (CI.next c1) (CI.next c2) && eq_cursors c1 c2
| _ -> False
end

In the eq_cursors function, we ask each cursor for a new element and compare them. If the two
elements differ from each other, we immediately return false and stop the traversal (&& is a lazy
operand in WhyML). Otherwise, we keep comparing the two cursors just until one of two situations
happens: either the has_next signals the end of the traversal for both cursors, in which case we
return True; or one of the cursors stops before the other, in which case we return False. We
encapsulate our solution to the same-fringe problem in the WhyML module SameFringe. Note
that we import the definitions of the InorderCursorSpec module into the SameFringe module.

6.2. CURSORS 159

This means that we establish here an abstraction barrier: we implement and formally prove a client
code for our in-order cursor knowing only about the specification of such a cursor. This follows
our approach of modular proofs that we discuss in Chap. 5. Using function eq_cursors, we can
easily deduce the implementation of same_fringe, as follows:

WhyMLlet same_fringe (t1 t2: tree CI.elt) : bool
ensures { result <-> elements t1 = elements t2 }

= eq_cursors (CI.iterator t1) (CI.iterator t2)

end

All the generated verification conditions for functions eq_cursors and same_fringe are easily
discharged by SMT solvers.

Putting all together. We complete our presentation of the specification, implementation, and
use of a cursor to traverse a binary tree in-order by showing how we can link the client code with
a specific implementation of such a cursor. We follow the approach we presented in Sec. 6.2.3:
we use the clone instruction to create an instance of the SameFringe module, where each oper-
ation and declaration of the InorderCursorSpec module is replaced by the counter-part of the
InorderCursorImpl. We write the following WhyML module:

WhyMLmodule Linking

clone SameFringe with
type CI.elt = CImpl.elt,
type CI.cursor = CImpl.cursor,
val CI.iterator = CImpl.iterator,
val CI.has_next = CImpl.has_next,
val CI.next = CImpl.next,
val CI.eq = CImpl.eq

end

This use of WhyML clone clause feels much like OCaml functors application. Indeed, we can view
module InorderCursorSpec as the argument (named CI) of the SameFringe functor, i.e.,

OCaml

module SameFringe (CI: sig type elt type cursor val iterator ... end) = struct
let eq_cursors (c1 c2: CI.cursor) : bool = ...
let same_fringe (t1 t2: tree CI.elt) : bool =

eq_cursors (CI.iterator t1) (CI.iterator t2)
end

and the clone SameFringe with line would correspond to
OCamlmodule Linking = SameFringe (CImpl)

Thanks to this linking operation, we are able to extract an executable OCaml implementation of
the same-fringe function, using the in order cursor. Supposing the WhyML code is contained in a
Why3 file named inorder_cursor, the following command can be used to extract the code of the
Linking module:

Terminal

> why3 extract -L . -D ocaml64 -D sf.drv --recursive inorder_cursor.Linking

160 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

cursor loc los time (sec)
gensym 12 30 0.03
array 12 23 0.05
list 15 28 0.40
set 12 22 13.74
binary tree 36 72 0.21
merge 36 75 2.83
dfs 48 85 11.02
total 171 335

(a) Cursor Implementations

program loc los time (sec)
array sum 8 12 0.70
list length 8 4 0.03
search 8 10 0.10
same fringe 36 72 0.21
check path 11 4 1.25
merge cursors 36 75 2.83
mjrty 32 22 1.67
total 139 199

(b) Cursor Clients

Table 6.1: Experimental Results.

The result of running such a command is given in Fig. 6.1. It is worth pointing out that there
is currently no mechanism in Why3 to verify that a clone instruction replaces all the undefined
symbols of a WhyML module. This prevents us from extracting OCaml code containing functor
applications. Indeed, the code in Fig. 6.1 represents the defunctorized code of an hypothetical
application of functor SameFringe to its argument. Let us note the use of the custom extraction
driver sf.drv in the extract command line. Such a driver simply defines that every occurrence
of the eq operation is to be replaced by the OCaml polymorphic equality, as follows:

Drivermodule inorder_cursor.InorderCursorImpl
syntax val eq "%1 = %2"

end

We note, as well, that similarly to the example of the array cursor (Sec. 6.2.3, page 145), we pass
the --recursive option to the extract command, in order to extract all the dependencies of the
Linking module. Without such an option, we would end up with only the extracted code of the
eq_cursors and same_fringe functions.

6.2.6 Other Case Studies

Table 6.1a shows the lines of code, the lines of specification (functions contracts, invariants, and
auxiliary lemmas), and the total verification time (in seconds) for each cursor.

We have also implemented and verified a number of client programs that use cursors. We
always keep the proof of client code modular in respect to the cursor implementation, i.e., the client
programs are only using the cursor interface and have no access to the underlying implementation.
Our programs include summing the elements of an array, computing the length of a list, searching
for a particular element in some abstract collection, checking for the existence of a path in a graph
using a DFS cursor, merging two ordered sequences, and implementing Boyer & Moore’s “mjrty”
algorithm [22] using array cursors. Table 6.1b shows the lines of code, the lines of specification,
and the total verification time (in seconds) for each program.

For all the listed examples, both implementations of cursors and client codes, all generated
verification conditions are discharged automatically, using a combination of the SMT solvers.

6.3 Higher-Order Iteration

In programming languages featuring first-class functions, iteration is frequently implemented as
a higher-order function that takes as argument a function to be applied to each element of the

6.3. HIGHER-ORDER ITERATION 161

OCaml (extracted)type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

type elt

type t = elt tree

type zipper =
| Done
| Next of elt * elt tree * zipper

type cursor = {
mutable zipper1: zipper;
}

let has_next (c: cursor) : bool =
begin match c.zipper1 with
| Done -> false
| _ -> true
end

let rec zipper_build (t1: elt tree) (e: zipper) : zipper =
begin match t1 with
| Empty -> e
| Node (l, x, r) -> zipper_build l (Next (x, r, e))
end

let next (c: cursor) : elt =
begin match c.zipper1 with
| Done -> assert false (* absurd *)
| Next (x, r, e) -> begin let o = zipper_build r e in c.zipper1 <- o; x end
end

let rec eq_cursors (c1: cursor) (c2: cursor) : bool =
begin match (has_next c1, has_next c2) with
| (false, false) -> true
| (true, true) ->

(let o = next c2 in let o1 = next c1 in o1 = o) && (eq_cursors c1 c2)
| _ -> false
end

let iterator (t1: elt tree) : cursor = { zipper1 = (zipper_build t1 Done) }

let same_fringe (t1: elt tree) (t2: elt tree) : bool =
eq_cursors (iterator t1) (iterator t2)

Figure 6.1: In-Order Cursor and Same-fringe Extracted Code.

162 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

enumerated sequence. We refer to such function as the consumer function. A common example
is the fold function [79]. We consider here fold to be a function of three arguments, with the
following type:

fold : (acc → elt → acc)→ collection → acc → acc

The second argument is the collection to be iterated over, of type collection. The first argument
is the function to be applied in turn to each element of the collection. This function takes two
arguments, an accumulator of type acc and an element of type elt, and returns an updated value
for the accumulator. The accumulator stands for the value being computed by fold and its initial
value is the third argument of fold. Thus, if the elements of a collection c are traversed in order
x1, . . . , xn, a call to fold f c a amounts to evaluating f(. . . (f (f a x1) x2) . . .) xn. For instance,
assuming the elements of c are integers, we can sum them as simply as

fold (λ s x. s+ x) c 0

where λ introduces an anonymous function.
The concept of fold is ubiquitous in functional programming languages. The OCaml standard

library, for instance, offers many different instances of fold iterators for data structures such as
lists, arrays, or maps. The recent introduction of closures in languages such as C++ and Java
eases this style of programming. In these languages, higher-order iterators coexist with cursors,
allowing the user to choose the paradigm that suits best. The main difference between the two is
that control is given to the producer in the case of a higher-order iterator, while it is given to the
consumer in the case of a cursor.

In this section, we use predicates permitted and complete in order to specify and verify higher-
order iterators. As we did with cursors, we intend to verify both implementations of fold functions
(Sec. 6.3.1) and client code (Sec. 6.3.2). One way to tackle the verification of higher-order functions
is to use a higher-order (program) logic, in such a way that one can quantify over the specification
of function arguments. There exist already several systems in which we can do so; we will discuss
those in Sec. 5.5. We consider here a different approach, which only requires first-order logic. This
is possible thanks to the abstraction barrier provided by the permitted/complete predicates.
On both sides of this interface, we are making distinct first-order program proofs, one for the
implementation of fold and one for each call to fold. We present several case studies for our
methodology (Sec. 6.3.3 and 6.3.4).

6.3.1 Fold Implementation

We use the fold_left function over lists, from the OCaml standard library, as the guiding line
to the presentation of our proposition for the specification and proof of fold-like iterators. This is
implemented as follows:

OCamllet rec fold_left f acc l = match l with
| [] -> acc
| e :: r -> fold_left f (f acc e) r

We scan the list l from left to right, applying the consumer function f to acc, the current value
of the accumulator, and the next element in the iteration.

Similarly to what we did for cursors, we want to specify iteration performed by fold iterators
by means of the permitted and complete predicates. For the case of the fold_left function, it
is easy to derive the definition of such predicates: it is valid to iterate while the visited sequence
forms a prefix of the whole list, and we are done as soon as the length of the visited sequence is
equal to the length of the list being iterated, i.e.,

6.3. HIGHER-ORDER ITERATION 163

WhyMLfunction elements (l: list ’a) : seq ’a = match l with
| Nil -> empty
| Cons x r -> cons x (elements r)
end

meta coercion function elements

predicate permitted (v: seq ’a) (l: list ’a) =
length v <= length l /\
forall i. 0 <= i < length v -> v[i] = l[i]

predicate complete (v: seq ’a) (l: list ’a) =
length v = length l

We can use the predicates permitted and complete to specify the fold_left implementation, as
follows:

WhyMLtype elt
type acc

let rec fold_left (ghost v: seq elt) (ghost l0: list elt) (f: acc -> elt -> acc)
(acc: acc) (l: list elt) : (ghost vres: seq elt, accu: acc)
variant { l }
requires { permitted v l0 }
requires { l0 = v ++ l }
ensures { permitted vres l0 }
ensures { vres = v ++ l }

= match l with
| Nil -> (v, acc)
| Cons x r -> fold_left (snoc v x) l0 f (f acc x) r
end

Let us note that in the above implementation we assume f to be a pure function, since Why3 does
not feature support for higher-order stateful computations. We add to the regular arguments of
fold_left two extra ghost arguments: sequence v represents the sequence of visited elements;
list l0 is the whole list being traversed, as we need it as an argument of the permitted property.
From the first pre-condition and postcondition we deduce that permitted acts as an invariant of
the traversal. On the other hand, the second pre-condition states that at the entry of every recursive
call to the fold_left function, sequence v forms a prefix of l0. Finally, the last postcondition
ensures that this is a deterministic traversal: we enumerate the elements of l, and only those.

When we feed Why3 with the above implementation and specification of fold_left, all the
generated verification conditions are automatically discharged by SMT solvers. However, the given
specification is of no use when we write a client program of fold_left. We must characterize the
returned value of the accumulator, which in turn leads us to the specification of the consumer
function f. This is where we need to introduce the notion of client invariant: as a fold-like func-
tion encapsulates an iteration, we must provide a loop invariant to fold_left, which represents
the evolution of the iteration from the point of view of a client code. In fact, we manipulate
here two different sorts of invariants: the permitted property, which we name the iterator invari-
ant, and the client invariant. We add to fold_left the extra argument inv, a function of type
acc -> seq elt -> bool, as well as the following specification over f, acc, and inv:

WhyML

164 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

let rec fold_left (ghost v: seq elt) (ghost inv: acc -> seq elt -> bool)
(ghost l0: list elt) (f: acc -> elt -> acc) (acc: acc) (l: list elt) :
(ghost vres: seq elt, accu: acc)
...
requires { inv acc v }
requires { forall v acc x.

inv acc v -> permitted (snoc v x) l0 -> not (complete v l0) ->
inv (f acc x) (snoc v x) }

...
ensures { inv accu vres }

The first new pre-condition and the new postcondition ensure that inv is, indeed, and invariant
property of the fold_left function. The other added pre-condition specifies the behavior of the
consumer function f over the accumulator value. For every sequence v, accumulator value acc,
and an element x of the list, if inv holds for acc and v, the element x is the next in the it-
eration (permitted holds for snoc v x), and the traversal is not yet complete, then a call to f
preserves the inv property for the sequence snoc v x. We have now a complete specification of the
fold_left iterator. To take into account the extra argument inv, we update the implementation
as follows:

WhyML= match l with
| Nil -> (v, acc)
| Cons x r -> fold_left (snoc v x) inv l0 f (f acc x) r
end

All the generated verification conditions for this program are automatically discharged, which
completes the proof of fold_left in terms of the permitted, complete, and inv predicates.

A first-order approach. Even if the described implementation gives us a complete specifica-
tion of the behavior of a fold-like iterator, we argue that this introduces a cumbersome WhyML
development. The fold_implementation gets difficult to handle, since we have introduced several
ghost arguments (which we have to instantiate in every client code), and the function contract
might be hard to follow. We believe that, from a WhyML programmer perspective, it would be
more natural and amenable to abstract out some of the fold_left elements and create an interface
to be cloned by clients of the iterator, just as we did for cursors. Let us precise our statement:
the fold_left implementations always acts on the same values of the inv predicate, the list l0,
and the consumer function f. These symbols are defined once and for all, which makes them good
candidates to be lifted to top-level symbols of a WhyML module. These can be later instantiated to
match the needs of a particular client code of fold_left. Following such an approach, we devise
module FoldLeft and introduce the l0 constant, as follows:

WhyMLmodule FoldLeft

type elt
type acc

val constant l0 : list elt

Next, we declare inv as the following undefined predicate:
WhyMLpredicate inv (seq elt) acc

and the consumer function, using the same definitions for permitted and complete, as follows:

6.3. HIGHER-ORDER ITERATION 165

WhyMLpredicate permitted (v: seq ’a) (l: list ’a) =
length v <= length l /\
forall i. 0 <= i < length v -> v[i] = l[i]

predicate complete (v: seq ’a) (l: list ’a) =
length v = length l

val f (v: seq elt) (acc: acc) (x: elt) : acc
requires { inv v acc }
requires { permitted (snoc v x) l0 }
requires { not (complete v l0) }
ensures { inv (snoc v x) result }

We note that it is possible to turn f into a global function of the program, since every recursive
call to fold_left is done on the same argument f. We note, as well, that this leads us to an
entirely first-order proof. The contract of function f is, in our opinion, easier to understand with
respect to when it was embedded in the contract of the fold_left function itself. From the point
of view of fold_left, function f and predicate inv remain undefined, as it is up to the client to
provide particular instances according to each use case. Finally, we can derive the following, much
simpler, WhyML implementation of fold_left:

WhyMLlet rec fold_left (ghost v: seq elt) (acc: acc) (l: list elt) :
(ghost vres: seq elt, accu: acc)
variant { l }
requires { permitted v l0 /\ l0 = v ++ l /\ inv v acc }
ensures { permitted vres l0 /\ vres = v ++ l /\ inv vres accu }

= match l with
| Nil -> (v, acc)
| Cons x r -> fold (snoc v x) (f v acc x) r
end

Such an implementation features only three arguments (with only the sequence v as a ghost ar-
gument), which is much closer to its OCaml counterpart. The contract is simplified, as well, since
there is no need to reason about invariant inv and with the postcondition almost mimicking the
pre-condition. When fed to Why3, this program generates a set of verification conditions that are
easily proved by SMT solvers.

In order to test our verified implementation of fold_left, we can use the following fold_correct
function:

WhyMLlet fold_correct (acc: acc) : (ghost vres: seq elt, accu: acc)
requires { permitted empty l0 /\ inv empty acc }
ensures { permitted vres l0 /\ inv vres accu /\ complete vres l0 }

= fold_left empty acc l0

end

This simply calls fold_left to perform an iteration over list l0. When the iteration halts, we can
prove that the complete property holds. This completes the definition of module FoldLeft.

166 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

6.3.2 Fold Client

In this section, we detail on a client program to our implementation of the fold_left iterator.
Our use case is the list_length function, an implementation that calls fold_left to compute
the number of elements in the list.

We begin a FoldLeftClient module by defining a function f, to be used as the consumer
function, as follows:

WhyMLmodule FoldLeftClient

type elt
type acc = int

let f (ghost v: seq elt) (accu: acc) (x: elt) : acc
= accu + 1

There is no need to specify function f: Why3 can automatically infer a specification that cor-
responds exactly to the body of the function. Next, we give the following definition to the inv
predicate:

WhyMLpredicate inv (acc: acc) (v: seq elt) =
acc = length v

This states that any moment, during the iteration, the value of acc, the accumulator, is equal to
the number of elements in v, i.e., we count each element of the list one and only once.

We can now instantiate the FoldLeft module with the elements we have just defined. This is
done via the following clone expression:

WhyMLclone FoldLeft with
type elt, type acc, predicate inv, val f

Let us note that there is no need to introduce and then instantiate constant l0. For every symbol
missing in the clone substitution, Why3 automatically uses the one defined in the FoldLeft
module in the remaining of the WhyML development. To instantiate function f, Why3 generates
verification conditions that stand for the specification inclusion of such a function. These are easily
discharged, since the inferred postcondition for the implementation of f straightforwardly implies
the postcondition given to f in the FoldLeft module.

We can, finally, implement and specify function list_length, as follows:
WhyMLlet list_length () : (ghost vres: seq elt, accu: int)

ensures { accu = length l0 }
= fold_left empty 0 l0

end

This function takes no argument, as every needed element is a top-level symbol of the same
WhyML module. It is worth pointing out that, even if we know the definition of function f,
after module cloning Why3 only uses the specification of f from the FoldLeft module to generate
verification conditions for list_length. Thanks to the specification declared for f, the definitions
of permitted, complete, and the inv predicates, SMT solvers are able to discharge in no time the
verification conditions generated for list_length.

6.3. HIGHER-ORDER ITERATION 167

6.3.3 Case Studies

We present here some more case studies, employing different data structures and fold iterators,
in order to experimentally validate our proposal based on the permitted/complete pair, as well
as on the Why3 modules system to build a clearer proof.

6.3.3.1 Binary trees

Fold implementation. The first case study we present is the use of a fold-like function to
traverse and compute the number of elements of a binary tree. This example is inspired by the
work of Yann Régis-Gianas and François Pottier [133].

We introduce module FoldTree to encapsulate the WhyML implementation of the fold iterator
over binary trees. The structure of this module is very similar to that of FoldLeft, presented in
the previous section. We introduce a constant t0, the whole tree being iterated over, predicate inv,
and the consumer function f, which presents the very same contract as the consumer function of
fold_left:

WhyMLmodule FoldTree

type elt
type acc

val constant t0 : tree elt

predicate inv (seq elt) acc

val f (ghost v: seq elt) (acc: acc) (x: elt) : acc
requires { inv acc v }
requires { permitted t0 (snoc v x) }
requires { not (complete t0 v) }
ensures { inv (snoc v x) result }

Predicates permitted and complete are defined exactly as in Sec. 6.2.5.3. The signature of the
fold function is exactly the same as the one of fold_left:

WhyMLlet rec fold (ghost v: seq elt) (acc: acc) (t: tree elt) :
(ghost vres: seq elt, accu: acc)

When it comes to specification, there are some subtle differences between the two iterators. In the
case of fold_left, at any moment we can rebuild the entire list from the elements of sequence v
and the portion of the list that remains in the iteration. This is not the case when we iterate over a
binary tree: the sequence of visited elements and the tree t are only a prefix of the entire sequence
of the elements in t0. The following first two pre-conditions account for this behavior:

WhyMLvariant { t }
requires { length t0 >= length (v ++ t) }
requires { v ++ t = t0[.. length vres] }
requires { permitted t0 v /\ inv acc v }
ensures { permitted t0 vres /\ inv accu vres /\ vres = v ++ t }

= match t with
| Empty -> (v, acc)
| Node l x r -> let v1, accl = fold v acc l in

fold (snoc v1 x) (f v1 accl x) r

168 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

end

end

Using these extra preconditions, SMT solvers are able to prove every verification condition related
to the permitted property. The remaining of the verification conditions generated for the fold
function are also automatically discharged. This completes the definition of module FoldTree.

Fold client. The client program of fold uses this iterator to compute the number of elements of
a given binary tree. This is very similar to function list_length from the previous section. We
devise the following WhyML module:

WhyMLmodule TreeLength

use seq.Seq, bintree.Tree, int.Int, Elements

type elt
type acc = int

predicate inv (ghost v: seq elt) (acc: acc) =
acc = length v

let f (ghost v: seq elt) (acc: acc) (x: elt)
= acc + 1

clone FoldTree with
type elt, type acc, predicate inv, val f

let tree_length () : (ghost v: seq elt, accu: acc)
ensures { accu = length t0 }

= fold empty 0 t0

end

The regular use (as a coercion) of logical function elements to reason about the elements of a
binary tree allows us to specify tree_length exactly as we did for the list_length function.
This is, indeed, a very interesting aspect about our modular WhyML development of interfaces and
clients of the fold iterators. As expected, all the generated verification conditions for the above
module are discharged in no time.

6.3.3.2 Horner Method

The last example we present is that of a program computing the value of a polynomial. We
represent the polynomial c0+ c1x+ . . .+ cnxn by the list of [c0, c1, . . . , cn] of its coefficients, which
we assume to be integer coefficients.

Fold implementation. The fold_right function is the iterator used to traverse a list from
right to left. This is implemented in WhyML as follows:

WhyMLlet rec fold_right (f: acc -> elt -> acc) (l: list elt) (a: acc) : acc
= match l with

| Nil -> acc

6.3. HIGHER-ORDER ITERATION 169

| Cons x r -> f (fold_right f r acc) x
end

It works by calling itself recursively over the tail of a list, and only then by applying the consumer
function to the head of the list and the value computed recursively.

In order to formally specify fold_right, we need to give appropriate definitions to permitted
and complete properties. We first introduce the following logical function to convert a list into a
sequence:

WhyMLfunction elements_left (l: list ’a) : seq ’a = match l with
| Nil -> empty
| Cons x r -> cons x (elements_left r)

end

We then derive a function elements to reverse the sequence computed by elements_left, as
follows:

WhyMLfunction elements (l: list ’a) : seq ’a =
reverse (elements_left l)

Function reverse comes from the Why3 standard library. We can finally give the definitions of
permitted and complete using the reversed sequence of a list, as follows:

WhyMLpredicate permitted (v: seq elt) (l: list elt) =
length v <= length (elements l) /\
forall i. 0 <= i < length v -> v[i] = (elements l)[i]

predicate complete (v: seq elt) (l: list elt) =
length v = length (elements l)

Predicate permitted states that the visited sequence forms a reversed suffix of list l.
The implementation of fold_right is given in Fig. 6.2. The consumer function f, declared

in lines 5-9, presents exactly the same contract as in the previous fold examples. Function
fold_right is given three arguments: the sequence v of visited elements, the value acc which
corresponds to the current value of the accumulator, and finally list l, the list being iterated over.
It returns the ghost sequence vr, the final sequence of visited elements, and the final computed
value for the accumulator, which we name accu. The contract given in lines 15-20 expresses the
total correctness of the fold_right implementation. The first pre-condition states that, at each
call of fold_right, the sequence v remains empty. Contrarily to the fold_left implementation,
the sequence of visited elements remains empty until the end of all recursive calls. It is only when
the fold_right returns that we feed function f with elements from the list, and consequently
appending those to the sequence v. The pre-condition in line 16 and the postcondition in line 19
express that the sequence of recursive calls preserve the inv and permitted predicates. The pre-
condition in line 17 and the postcondition in line 20 stand for some auxiliary specification, specific
to fold_right traversal. This pre-condition states that at entry of each recursive call, l forms a
prefix of the whole l0 list; the postcondition ensures that a recursive call enumerates the elements
of l, and only those. All the verification conditions generated from the given implementation and
specification are automatically proved.

Fold client. We can evaluate a polynomial using the Horner form c0 + x(c1 + x(. . . + xcn) . . .),
which is easily implemented as a fold_right client program:

OCamllet val_of_pol (p: list int) (x: int) : int
= fold_right (fun acc c -> c + acc * x) 0 p

170 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

WhyML1 type elt
2 type acc
3 predicate inv (seq elt) acc
4

5 val constant l0 : list elt
6

7 val f (ghost v: seq elt) (acc: acc) (x: elt) : acc
8 requires { inv v acc }
9 requires { permitted (snoc v x) l0 }

10 requires { not (complete v l0) }
11 ensures { inv (snoc v x) result }
12

13 let rec fold_right
14 (ghost v: seq elt) (acc: acc) (l: list elt) : (ghost vr: seq elt, accu: acc)
15 requires { v = empty }
16 requires { inv v acc /\ permitted v l0 }
17 requires { prefix (elements l) (elements l0) }
18 variant { l }
19 ensures { inv vr accu /\ permitted vr l0 }
20 ensures { vr = elements l }
21 = match l with
22 | Nil -> (empty, acc)
23 | Cons x r ->
24 let (v_r, acc_r) = fold acc r in
25 (snoc v_r x, f v_r acc_r x)
26 end

Figure 6.2: Fold_right Implementation and Specification.

This program runs in O(n) time, performing exactly n multiplications and n additions. A suitable
contract for the val_of_pol function is the postcondition

WhyMLensures { result = eval p x }

where eval p x returns the same result as ∑
0≤i<n

pix
i (6.1)

where pi represents the i-th element of polynomial p.
In order to devise a proper definition to eval, let us introduce some auxiliary functions. We

begin by defining the result of the i-th value of a sequence v to the i-th power of a value x, as the
following logical function:

WhyMLfunction mult_power (v: seq int) (x: int) (i: int) : int =
v[i] * power x i

Next, we get closer to the definition given in equation (6.1), as we use the sum function from the
Why3 standard library to define the valuation of a sequence v of integers, given the value of x:

WhyMLfunction eval_sequence (v: seq int) (x: int) : int =
sum (mult_power v x) 0 (length v)

We can now easily deduce the definition of eval:

6.3. HIGHER-ORDER ITERATION 171

WhyMLfunction eval (p: list int) (x: int) : int =
eval_sequence (elements_left p) x

This is as simple as turning the polynomial p into a sequence, using the previously defined function
elements_left, and then traverse it using the eval_sequence function.

We implement and specify the consumer function to be applied to the fold_right iterator as
follows:

WhyMLval constant x : int

let fun_f (ghost v: seq elt) (acc: acc) (c: elt) : int
ensures { result = c + acc * x }

= c + acc * x

Following the Horner method, the consumer function takes the next element in the enumeration, c,
and adds it to the product of the accumulator value, acc, by x, the value assigned to the polynomial
variable. Next, we provide the following suitable client invariant to the traversal:

WhyMLpredicate inv (v: seq elt) (acc: acc) =
acc = eval_sequence (reverse v) x

We can finally instantiate the non-defined elements of the FoldRight module:
WhyMLclone FoldRight as FR with

type elt, type acc, val l0, predicate inv, val fun_f

The above clone expression generates verification conditions that state the specification inclusion
of the implemented fun_f function with respect to the fun_f function declared in the FoldRight
module. The proof of specification inclusion amounts to proof that the postcondition of the im-
plementation of fun_f implies the postcondition given to the fun_f val in the FoldRight module,
i.e., the following property holds:

WhyMLacc = eval_sequence (reverse (snoc v c)) (c + acc * x)

To prove such a statement, we need two auxiliary lemmas. The first one is a simple property about
the composition of reverse, cons, and snoc:

WhyMLlemma snoc_reverse_cons : forall v: seq ’a, c: ’a.
reverse (snoc v c) = cons c (reverse v)

The second states exactly the implication we wish to prove:
WhyMLlet lemma eval_sequence_cons (v: seq int) (c x: int)

ensures { eval_sequence (cons c v) x = c + eval_sequence v x * x }

The proof of lemma eval_sequence_cons proceeds as follows:
WhyML= assert { eval_sequence (cons c v) x

= (* definition of eval_sequence *)
sum 0 (length (cons c v)) (mult_power (cons c v) x)

= (* lemma sum_left from Why3 standard library *)
c + sum 1 (length (cons c v)) (mult_power (cons c v) x) };

(* instantiating lemma sum_shift *)
sum_shift (mult_power (cons c v) x) (multf (mult_power v x) x)

1 (length (cons c v)) 0 (length v);
assert { c + sum 1 (length (cons c v)) (mult_power (cons c v) x)

= (* lemma sum_shift from Why3 standard library *)

172 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

iterator loc los time (sec)
list fold_right 11 38 0.10
list fold_left 9 32 0.17
array fold_left 23 45 0.02
set fold 9 26 1.67
tree inorder_fold 12 30 0.56
interval fold 14 39 0.27
total 78 210

(a) Fold Implementation

program loc los time (sec)
list length 12 4 0.01
set of list 29 17 0.18
value of polynomial 15 38 0.49
tree size 4 12 0.02
set cardinal 4 12 0.02
set copy 4 12 0.02
sigma 4 9 1.11
total 109 147

(b) Fold Clients

Table 6.2: Experimental Results (fold iterators).

c + sum 0 (length v) (multf (mult_power v x) x)
= (* lemma sum_mult_constant from Why3 standard library *)

c + (sum 0 (length v) (mult_power v x)) * x
= (* definition of eval_sequence *)

c + eval_sequence v x * x }

where multf is the following logical function:
WhyMLfunction multf (f: int -> int) (x: int) : int -> int =

fun i -> f i * x

All the generated verification conditions for eval_sequence_cons are automatically discharged.
This completes the proof of refinement of the FoldRight module.

We complete the presentation of this case study with the proof of functional correctness of the
val_of_pol function. After having refined the FoldRight module, we devise the following WhyML
implementation:

WhyMLlet val_of_pol () : (vres: seq elt, accu: acc)
ensures { accu = eval l0 x }

= FR.fold_right empty 0 l0

This uses the verified implementation of the fold_right iterator, showed previously in this section.
The proof of val_of_pol uses only the definitions of permitted, complete, and the inv predicate.
The implementation of the consumer function is hidden by the refinement and is never used in the
proof of val_of_pol. All the generated verification conditions for this program are easily proved
by SMT solvers.

6.3.4 Other Case Studies

Using our proof methodology, we have implemented and verified several other instances of the
fold function. These include a fold_left over lists, a fold_left over arrays, a fold over sets, an
inorder_fold over binary tree, and finally a fold that enumerates the integers in a given range.
Table 6.2a shows the lines of code, the lines of specification, and the verification time (in seconds)
for each fold implementation. All of these examples are proved automatically.

From a client code perspective, we have used our approach to verify several examples. These
include computing the length of a list (both using fold_left and fold_right), converting a list
into a set, computing the cardinal of a set, making a copy of a set, and computing the sum of all
integers within a given interval. Table 6.2b shows the lines of code, the lines of specification, and

6.4. DISCUSSION AND RELATED WORK 173

the total verification time (in seconds) for each program. The whole set of verification conditions
generated for these examples are proved fully automatically.

6.4 Discussion and Related Work

Tool-independent approach. As we have mentioned throughout this chapter, our approach
to specify iteration based on predicates permitted and complete is not tied to any particular
verification technology. We conducted all of our experiments within the Why3 framework, but we
argue that it would not be a major task to translate these to other verification tools, e.g., Dafny
or Viper [114].

It is even more interesting to observe that our approach also combines well with the use of
interactive proof assistants and very rich specification languages. The proof, by François Pottier
of the OCaml hash table implementation [131] supports this claim. In this work, the OCaml code
is translated to Coq by the CFML tool and is verified using higher-order separation logic. The
iteration operations (fold and cascades) over hash tables are specified in terms of the sequence of
elements the consumer may observe. Such a sequence is characterized using predicates permitted
and complete. In fact, the name used to refer to the two predicates are inspired by this work
(originally, we were using enumerated and completed). Contrarily to our experiments in Why3,
the setting of a CFML and Coq propose a very rich specification logic and type system, which
enables reasoning about imperative higher-order functions.

Catherine Dubois and Alain Giorgetti use our specification in terms of permitted/complete
predicates to provide WhyML implementations of generators. Then, a correct-by-construction
implementation of these generators is extracted to OCaml code, which can later be used to test
Coq developments, via the QuickChick plugin.

Specifying and proving cursors. The idea of formally specifying and proving cursors is not
new. Weide presents a formal specification for the cursors’ behavior [144] using the RESOLVE
language [91]. A collection is modeled as a finite set (in the mathematical sense) and a cursor
is specified using a past sequence corresponding to our visited and another future sequence
corresponding to remaining elements. A third sequence, original, contains the set of elements of
the collection. Under such formalization, a cursor can only be used with finite collections and the
traversal is necessarily deterministic. The author also presents a mechanism to ensure coherence,
by means of extra operations over cursors, Start_Iterator and Finish_Iterator, that should
limit all the cursor uses. In this way, and contrary to our approach, the validity of a cursor can
only be verified once the traversal is finished.

Catherine Dubois and Renaud Rioboo provide a FoCaLiZe implementation of functional itera-
tors, addressing the Specification and Verification of Component Based Systems 2006 challenge [57].

Jacobs et al. [80] describe a methodology to specify and verify both implementations and clients
of the Iterator pattern, in the context of the Spec# programming system. In their formalism,
methods are separated into regular methods and enumerator methods, so the latter can present an
invariant clause in their contract. In the contract of such methods it is possible to refer to the
keyword values, which represents the set of elements enumerated so far. This resembles our use
of the sequence of visited elements. The client programs are for-each loops whose loop invariants
can also refer to values. These programs are then translated into regular for loops to be verified.
This methodology is only applied to first-order programs and does not support enumeration with
side-effects, or the creation of objects performing iteration.

174 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

Cursors in future Why3. In the short term, it would be interesting to explore an extension of
Why3 with a for loop à la Java, based on cursors. For instance, we could imagine a client code of
the form

WhyMLlet s = ref 0 in
for x in a with c do

variant { length c.collection - length c.visited }
invariant { !s = sum (fun i -> a[i]) 0 (length c.visited) }
s += x

done;
!s

As it happens in Java, this would be nothing more than syntactic sugar for a while loop invoking
next at each time a new element is needed. We would have the following WhyML program:

WhyMLlet s = ref 0 in
let c = create s in
while has_next c do

variant { length c.collection - length c.visited }
invariant { !s = sum (fun i -> a[i]) 0 (length c.visited) }
let x = next c in
s += x

done;
!s

which is exactly the client program we can find in Sec. 6.2.3. An important difference between
directly writing the client code with a while loop and using the (imaginary) for loop is that we can
optimize the set of verification conditions that are generated. In fact, since the loop is guarded by
the result of has_next, its postcondition result <-> not (complete c.collection c.visited)
trivially implies the pre-condition of function next.

Persistent Cursors. We adopt a model where cursors are treated as mutable data structures,
with function next updating the cursor via a side effect. This is not mandatory. A cursor can be
implemented as a persistent structure [58]. In such a case, function next no longer updates the
internal state of the cursor but, instead, returns the next element in the enumeration together with
a new cursor. From a point of view of WhyML verified implementations, reasoning with persistent
cursors would not imply a drastic reformulation of our development. We would completely remove
the mutable character out of our cursor type

WhyMLtype cursor = private {
ghost visited : seq elt;
ghost collection : t;

} invariant { permitted collection visited }

and would change the return type and specification of the next function, accordingly:
WhyMLval next (c: cursor) : option (elt, cursor)

ensures { match result with
| None -> complete c.collection c.visited
| Some (e, cn) -> cn.visited = snoc c.visited e /\

cn.collection = c.collection end }

We no longer need to use a has_next function, since we know that the iteration is complete as
soon as next returns None. This would suit particularly well client code that is implemented as a

6.4. DISCUSSION AND RELATED WORK 175

recursive function, e.g.,
WhyMLlet rec traversal (c: cursor) (acc: int) =

match next c with
| None -> acc
| Some (e, cn) -> traversal cn (acc + e)
end

Specification and proof of higher-order iterators. Many tools exist that tackle the verifica-
tion of higher-order effectful programs, in particular of higher-order iterators. These are normally
based on rich specification logics and type systems. Liquid Types [137] is a type system with
refinement types extracted from a decidable logic. This type system is used to infer simple “loop
invariants” from a given code. In our case, the user supplies the loop invariant and, contrary to
the Liquid Types approach, we apply and prove an iterator client without access to the iterator
implementation, in a modular way.

Yann Régis-Gianas and François Pottier [133] propose a Hoare Logic for call-by-value pure pro-
grams. One cannot use their framework to reason about side effects, but the user can, nonetheless,
write effectful programs, for instance divergent ones. The authors detail on a verified implemen-
tation of sets as binary trees. This includes a fold-like iterator, as well as persistent iterators to
traverse the elements of the data structure. They use both paradigms to implement and verify
client programs that compute the number of elements in a set. The given specification can be
easily adapted to the framework of permitted/complete, as we show in Sec. 6.3.3.1.

Dependent types and monad structures are used in the F? tool [139] as the theoretical basis
to tackle the proof of higher-order programs with effects. F? can be used both as a program-
ming language and as a proof assistant, featuring a higher-order specification and programming
language. This tool has been used to verify many complex effectful programs including crypto-
graphic protocols and the mechanization of lambda calculi metatheory. Even though F* is able to
use SMT solvers during the proving process, it seems that the verification of nontrivial (effectful)
higher-order programs is out of the realm of automatic provers. In particular, the specification of
a higher-order iterator is very similar to what one would write in a general-purpose proof assistant
like Coq.

The CFML tool [29] uses characteristic formulas to verify OCaml code within the Coq proof
assistant. A characteristic formula is a higher-order formula that is generated from a source
code and that describes its semantics. Using a proof assistant based on higher-order logic, the
characteristic formula can be exploited to prove complex properties about that program. Up to
now, CFML has been used to verify several nontrivial higher-order imperative programs, including
higher-order iterators over mutable data structures. However, the specification used to describe a
higher-order iterator is always tied to a specific collection data type.

Higher-order iterators in Why3. We propose an approach to the verification of higher-order
iterators in Why3 based exclusively on first-order specification and programming, and on the use
of the Why3 refinement mechanism to link client programs with iterator providers. Even if this
approach works well in practice, this might be a bit puzzling for a common OCaml programmer,
who is used to higher-order iterators. Additionally, our approach demands some knowledge on
WhyML modules and associated clone operations. Considering the client program of Sec. 6.3.3.2,
it would be much more natural to write a WhyML program as follows:

WhyMLlet val_of_pol (p: list int) (x: int) : int
ensures { result = eval p x }

= fold_right (fun (ghost v) acc c ->

176 CHAPTER 6. A MODULAR WAY TO REASON ABOUT ITERATION

invariant { acc = eval_sequence (reverse v) x }
c + acc * x) p 0

This is close to what an OCaml programmer would expect, with only a little overhead of spec-
ification elements. The user-provided invariant characterizes the whole iteration performed by
the fold_right function. We have began the development of a prototype tool that reads both
implementations and clients (as the above one) of higher-order iterators, together with a specifi-
cation, and turns them into first-order Why3 programs to be verified. For the case of fold-like
implementations, our prototype tool accepts a specification of the form

WhyMLlet rec fold_right (ghost inv: seq elt -> acc -> bool) (f: acc -> elt -> acc)
(l: list elt) (acc: acc) : acc

foldspec { (permitted, complete) }
...

which is then translated into the WhyML program of Fig. 6.2.
When it comes to effectful higher-order iterators, we can only present a partial answer to

this problem. We are able to specify the sequence of elements produced by such an iterator,
via the permitted and complete predicates, which we can use to interface the client with the
iterator provider. However, we cannot establish strong guarantees about the implementation of
the iterator itself. For instance, nothing prevents us from applying the consumer function twice to
the third element in the iteration, thrice to the 42nd element and not at all to the last one. This
is problematic in the context of a consumer function with side effects. Currently, our prototype
tools translates an effectful iterator into a first-order program that uses a cursor to perform the
same traversal. Using this approach, we have verified a program that removes duplicate elements
from a list. The consumer function updates a hash table with the elements encountered during
iteration, which is done via a side effect.

Integration with the VOCaL project. The fact that we do not dispose of a satisfying treatment
of stateful higher-order iterators is a major pitfall of our approach and makes it hardly applicable,
at least in the immediate, to the VOCaL project. As explained in Sec. 5.3.2, we use the equivalent
clause of OSL to introduce an operationally equivalent program to a higher-order function. We
could imagine, for instance, to add to OSL a foldspec clause, like we propose for our prototype
tool, and to replace all equivalent statements. We would give a precise semantic meaning to
the foldspec clause: the consumer function is applied once and only once to each element in
the iteration, while the sequence of visited elements should respect the permitted/complete pair
of predicates. This approach could be used in the proof of either iterators and client programs.
Nonetheless, it remains unclear if the use of foldspec could be smoothly integrated in our toolchain
for verified OCaml programs.

Un peu de programma-
tion éloigne de la logique
mathématique ; beau-
coup de programmation
y ramène.

Xavier Leroy

7
Conclusion

As we arrive to the terminus of this work, it is now time to draw some conclusions. If we get
back to the title of this document, it is now easy to understand the careful choice of words and
why we present them in this order. In this thesis, we extended the Why3 ecosystem with a variety
of tools, e.g., the new extraction mechanism and the OSL translation plug-in, and developed
techniques, e.g., a general specification of iteration and the mini-heaps approach, that allow us
to conduct the proof of modular stateful programs within Why3. Examples range from priority
queues implemented as Pairing Heaps, where modularity scales up to the level of OCaml functors,
to arbitrary pointer-based data structures, such as our verified union-find implementation. On a
more fundamental side, we formalized a representative part of the Why3 extraction mechanism on
top of the KidML language, a sub-set of WhyML.

7.1 Contributions

Why3 extraction mechanism. The new Why3 extraction mechanism is the core of our work.
We have re-implemented from scratch this part of the framework into a robust, modular (scaling
up to OCaml functors) extraction machinery. We have been able to successfully use extraction on
several verified WhyML programs, in order to produce correct-by-construction executable code. We
have mainly used extraction to produce verified OCaml programs. This new extraction mechanism
has also been used with success within a verified version of the GMP library [136], and also to pro-
duce correct-by-construction CakeML programs. Another interesting use of extraction is described
by Gillaume Melquiond and Raphaël Rieu-Helft [109]. In this work, the idea of proof by reflection
inside Why3 is pushed forward and is applied to the proof of challenging arithmetic algorithms. In
order use the whole expressive power of the WhyML language, the authors add an interpreter to
Why3 to recover the result of a decision procedure written as an arbitrary WhyML program. This
interpreters operates on the intermediate representation resulting from our extraction.

Our formalization of the extraction mechanism is done in a pen-and-paper style. Since the rise
of the POPLmark challenge [7], it has become customary to develop such forms of meta-theory
within a proof assistant. We know that, in principle, it is possible to develop the formalization
of the KidML language and the extraction algorithm, for instance using the Coq proof assistant.
In this thesis, we focused on the careful construction of a working extraction mechanism, that is
now fully available to the Why3 users. Nonetheless, it is definitely an exciting line of future work

177

178 CHAPTER 7. CONCLUSION

to seek a machine version of our meta-theory, as demonstrated by the CakeML [92] and Œuf [113]
projects.

Mini-heaps. OCaml It is our purpose to keep extending Why3 with means to prove a larger set
of OCaml programs. Given the strong constraints of the Why3 type system, some pointer-based
data structures cannot be directly encoded in the WhyML language. The solution is to introduce
an explicit memory model, i.e., to declare a type for pointers and memory, together with a set of
functions to read and write memory. This resembles very much to the approach followed by the
Jessie plug-in [106] of the Frama-C platform.

Our approach to deal with memory models is slightly different from the one that is normally
employed by tools that use Why3 as an intermediate verification language. We build memory
models targeting only the part of the code that cannot be expressed in WhyML, instead of building
a huge memory model to deal with an existing programming language in its entirety. Additionally,
we do not declare memory as a global mutable value. Instead, we pass it as a ghost argument to
each function in our memory model, which, by the properties of the WhyML type system, directly
guarantees some degree of separation between different fragments of the memory. We refer to this
approach as the mini-heaps.

Using the described approach, we have been able to verify in Why3 non-trivial pointer-based
implementation of data structures. The union-find data structure and the mergesort algorithm
over singly-linked lists, both presented in Chap. 5, are two examples of successful application of
the mini-heaps approach in the verification of programs manipulating memory in an arbitrary
fashion. When it comes to extraction, it only requires a custom driver of very few lines, mapping
the memory model operations to OCaml counterparts. Such a mapping is normally straightforward,
which makes it very easy to convince ourselves that the driver does not introduce any bug in the
extracted code. This approach has reveled to work very well in practice, making it rather pleasant
to conduct the proof of complex data-structures within Why3.

Modular specification of iteration. Since iteration is a pervasive concept in programming,
we addressed the challenge of specifying and verifying iteration providers, independently of the
underlying implementation. This led us to a modular and generic approach to the specification of
iteration processes, presented in Chap. 6. The idea is to use a pair of predicates permitted and
complete to characterize the finite sequence of elements already enumerated at a given moment of
the iteration. Using such an approach, we are able to deal with both finite and infinite iterations,
deterministic and non-deterministic, and also with the case when mutable data is changed during
iteration. Our approach is not limited to the traversal of data structures; it can be used to specify
the result of an iterative algorithm, for instance.

An important aspect about our approach is that it can be employed by different verification
tools. We have already mentioned the work of François Pottier in the proof of the OCaml hash
table implementation in the CFML tool [131], where the (higher-order) iterators on such structure
are specified using the permitted/complete approach. Given the successful use of our approach
within CFML, a tool with a very different verification philosophy when compared with Why3, we are
confident that our specification proposal can be easily integrated in verification platforms closely
related to Why3, e.g., Dafny or Viper.

We applied our specification to the paradigms of cursors and higher-order fold-like functions.
We proved several providers of iteration, as well as client applications. An extremely important
aspect about these proofs is that we always impose an abstraction barrier with the purpose of
hiding implementation details to the client code. This makes echo to the modular word in the title
of the this thesis.

7.2. DISCUSSION AND PERSPECTIVES 179

Verification of an OCaml library. The ultimate contribution of this work is the successful
use of Why3 in the development of VOCaL, the Verified OCaml Library. Using the methodology
we propose in Chap. 5, we were able to build verified implementations of several data structures
and algorithms in the WhyML language, which are then automatically translated into compilable,
correct-by-construction OCaml modules. Other than its functional correctness, we also prove that
the obtained OCaml code refines to the specification we provide in the associated interface file. All
of these examples are ready to be distributed and used by OCaml programmers.

From a personal point of view this is, perhaps, the most rewarding outcome of this thesis.
The excitement about the possibility of seeing our work being using by a potentially large base of
OCaml programmers is a most delightful way to conclude these years of research. As a passion-
ate programmer, it is my deepest honor to be able to contribute to the OCaml community and
ecosystem, as I have enjoyed some many good moments using this language and the associated
tools.

7.2 Discussion and Perspectives
With the conclusion of this work, we anticipate some future work that could be of great interest.
We describe those here, undertaking a much more research agenda approach, rather than a direct
continuation of this thesis.

Modules refinement. Within our toolchain for verified OCaml programs, we make extensive use
of the WhyML module system and of the Why3 refinement mechanism to prove that the obtained
OCaml code conforms to the specified interface. Nonetheless, the use of the clone command every
time we wish to refine the components of a module, together with an explicit substitution for each
component in the module, makes proofs of refinement tedious routines. It would be of utmost
practical interest to extend Why3 with a simpler module refinement mechanism. For instance,
instead of providing a clone expression the user would write a program of the form

WhyMLmodule Spec
...

end

module Impl: Spec
...

end

where module Impl refines module Spec. The advantages of such an approach are two-fold: first,
the WhyML development would result in a much more compact code; second, this would prevent
situations in which the user forgets about including some symbol of Spec in the substitution given
to clone, since all the symbols of the refined module would be automatically mapped to symbols
of Impl, as long as these have the same name.

Support for higher-order stateful programs. When programming in the OCaml language,
we are very frequently exposed to the combination of higher-order functions with side effects.
On the other hand, the use of higher-order in WhyML is restricted to stateless functions, which
fatally limits the set of OCaml programs that we might expect to prove within Why3. We believe
it is worth to strike for a better support of higher-order computations with effects within the
realm of automated verification tools. A major challenge in extending such tools with higher-order
traits is to keep the specification logic and generated verification conditions simple enough, as to
keep using SMT solvers at the backstage. In this context, we started an exploratory study on

180 CHAPTER 7. CONCLUSION

the use of the defunctionalization technique as a first step in the proof of higher-order programs
with effects [124]. The idea is to translate annotated higher-order programs into a first-order
counterpart, which can then be fed to off-the-shelf verification tools. Using such a technique,
we were able to verify some stateful higher-order programs in Why3. It remains, however, very
difficult to apply such a technique in a modular setting, since defunctionalization is known to be
a whole-program transformation, and it is not clear if we could smoothly integrate this approach
within Why3 and scale up to the proof of significant size higher-order programs.

Growing strong and healthy. As mentioned throughout this thesis, we have applied our
methodology to the proof of several OCaml modules, which are integrated into the VOCaL library.
This shows that Why3 is a now a mature tool, and that it is possible to use our code extraction
modus operandi in a larger scale programming project. To contribute to a verified OCaml library
is certainly a first good sign that the proof of realistic software is possible within Why3.

However, the answer to the question “can Why3 scale up to the proof industrial-sized program-
ming projects” remains unclear. In particular, is the approach of extracting correct-by-construction
code practical enough to be included in a large software development? In the literature, we can
find some successful cases of very large verified programs, that are later extracted into executable
code. The most shining example in this category is CompCert [99], the verified C compiler. Such
a compiler is specified and proved correct using the Coq proof assistant. The executable OCaml
sources of this development are obtained via the Coq extraction mechanism. As tempting as it
might be, it remains to demonstrate if, in practice, Why3 could be used to verify and generate a
correct-by-construction implementation of such a large piece of software.

A discussion that often arises is the duality of code extraction versus verification of existing
code. Let us take the example of Mirage OS [104], an operating system written in the OCaml
language. If we decide tomorrow to engage in a project to prove the code of Mirage, what would the
best approach be? Certainly, we do not want to duplicate the existing code base, just to provide a
verified WhyML implementation of the OS modules and then extract an OCaml implementation that
would mostly resemble to the already existing code. Additionally, WhyML lacks some important
features, such as treatment of Input/Output operations, required for the proof of an OS source code.
A much realistic approach would perhaps be to use a dedicated tool to the verification of existing
OCaml code, while using Why3 to verify and extract correct-by-construction implementations of
new modules, which would then be included inside Mirage. Exploring how extracted code can be
smoothly linked with hand-written code is certainly an interesting research line. CompCert is a
successful example of this approach, since some modules of the compiler are still hand-written.

Another interesting question that is worth to be investigated is the collaborative use of deduc-
tive verification with other forms of formal methods. Let us get back to the example of Mirage
OS. We could imagine using Why3 to verify and extract critical parts of the system, while other
less critical modules would be analyzed by more light-weighted formal methods. These could in-
clude, for instance, model checking [9], information flow inference [132], or some form of abstract
interpretation [26].

Finally, there has been a recent growing trend around the integration of formal methods in
continuous reasoning of industrial software code repositories. Peter O’Hearn [117] describes how
formal methods are being used inside big software companies, such as Facebook and Amazon Web
Services. The idea is to use verification tools to (almost) immediately inform development teams
that some commit breaks the expected behavior of the system. One key to the success of applying
formal methods in such industrial contexts is to decide when verification tools must be called
to action. After each commit? Before a major release? To be integrated in a pipeline of such
industrial size would certainly be a tour de force for Why3. One could very well imagine that, in
a first moment, someone proves a property using Why3 and a combination of SMT solvers. Then,

7.2. DISCUSSION AND PERSPECTIVES 181

after each commit to the code repository, we would invoke the why3replay command to replay the
proof in the same conditions, in order to check if the introduce updates in the code do not break
the established properties. In case of failure, a report could be immediately sent to the author of
the commit, whom would either repair the proof or alter the commited files.

182 CHAPTER 7. CONCLUSION

A
Permutations Library

WhyMLmodule Permut

use import int.Int
use import seq.Seq
use import seq.Distinct
use import seq.Exchange
use import mach.int.Int63
use import mach.array.ArrayInt63
use import mach.int.Refint63

type t = { a: array63; ghost inv: array63; ghost size: int }
invariant { size = length a = length inv }
invariant { forall i. 0 <= i < size -> 0 <= a[i] < size }
invariant { forall i. 0 <= i < size -> 0 <= inv[i] < size }
invariant { forall i. 0 <= i < size -> a[inv[i]] = i }
invariant { forall i. 0 <= i < size -> inv[a[i]] = i }
by { size = 1; a = make 1 0; inv = make 1 0 }

let id (n: int63) : t
requires { 0 <= n }
ensures { result.size = n }
ensures { forall i. 0 <= i < n -> result.a[i] = i }

= let a = make n 0 in
let ghost inv = make n 0 in
for i = 0 to n - 1 do

invariant { forall j. 0 <= j < i -> a[j] = inv[j] = j }
a[i] <- i;
inv[i] <- i

done;
{ size = n; a = a; inv = inv }

183

184 APPENDIX A. PERMUTATIONS LIBRARY

let transposition (i j n: int63) : t
requires { 0 <= i < n /\ 0 <= j < n }
ensures { result.size = n }
ensures { result.a[i] = j /\ result.a[j] = i }
ensures { forall k. 0 <= k < n -> k <> i -> k <> j -> result.a[k] = k }

= let t = id n in
swap t.a i j;
swap t.inv i j;
t

let compose (p q: t) : t
requires { p.size = q.size }
ensures { result.size = p.size }
ensures { forall i. 0 <= i < p.size -> result.a[i] = p.a[q.a[i]] }

= let n = p.size in
let res = make n 0 in
let ghost ires = make n 0 in
for i = 0 to n - 1 do

invariant { forall j. 0 <= j < i -> res[j] = p.a [q.a [j]] }
invariant { forall j. 0 <= j < i -> ires[j] = q.inv[p.inv[j]] }
res[i] <- p.a [q.a [i]];
ires[i] <- q.inv[p.inv[i]]

done;
{ size = n; a = res; inv = ires }

let inverse (t: t) : t
ensures { result.size = t.size }
ensures { forall i. 0 <= i < t.size -> result.a[i] = t.inv[i] }

= let n = t.size in
let res = make n 0 in
for i = 0 to n - 1 do

invariant { forall j. 0 <= j < i -> res[t.a[j]] = j }
res[t.a[i]] <- i

done;
{ size = n; a = res; inv = copy t.a }

let rec lemma pigeonhole (n m: int) (f: int -> int)
requires { 0 <= m < n }
requires { forall i. 0 <= i < n -> 0 <= f i < m }
ensures { exists i1, i2. 0 <= i1 < i2 < n /\ f i1 = f i2 }
variant { m }

= for i = 0 to n - 1 do
invariant { forall k. 0 <= k < i -> f k < m - 1 }
if f i = m - 1 then begin

for j = i + 1 to n - 1 do
invariant { forall k. i < k < j -> f k < m - 1 }
if f j = m - 1 then return

done;
let function g k = if k < i then f k else f (k + 1) in

185

pigeonhole (n - 1) (m - 1) g;
return end

done;
pigeonhole n (m - 1) f

let cycle_length (t: t) (i: int63) : (n: int63, ghost s: seq int)
requires { 0 <= i < t.size }
ensures { 0 < length s = n }
ensures { forall j. 0 < j < n -> s[j] = t.a[s[j - 1]] }
ensures { s[0] = i /\ t.a[s[n - 1]] = i }

= let n = ref 1 in
let ghost s = ref (singleton (to_int i)) in
let x = ref t.a[i] in
while !x <> i do

variant { t.size - length !s }
invariant { 0 <= !x < t.size }
invariant { 0 < length !s = !n }
invariant { !s[0] = i }
invariant { forall j. 0 < j < !n -> !s[j] = t.a[!s[j - 1]] }
invariant { !x = t.a[!s[!n - 1]] }
invariant { forall j. 0 <= j < !n -> 0 <= !s[j] < t.size }
invariant { distinct !s }
s := snoc !s (to_int !x);
x := t.a[!x];
if to_int !n + 1 > t.size then pigeonhole (Seq.length !s) t.size (get !s);
incr n;

done;
!n, !s

end

186 APPENDIX A. PERMUTATIONS LIBRARY

Bibliography

[1] Jean-Raymond Abrial. The B-Book, assigning programs to meaning. Cambridge University
Press, 1996.

[2] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and
Mattias Ulbrich, editors. Deductive Software Verification - The KeY Book - From Theory to
Practice, volume 10001 of Lecture Notes in Computer Science. Springer, 2016.

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, Benjamin Gré-
goire, Vincent Laporte, and Vitor Pereira. A fast and verified software stack for secure
function evaluation. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, pages 1989–2006, New York, NY, USA, 2017. ACM.

[4] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, and Simão Melo de Sousa. Rig-
orous Software Development: An Introduction to Program Verification. Springer Publishing
Company, Incorporated, 1st edition, 2011.

[5] Davide Ancona and Elena Zucca. An algebraic approach to mixins and modularity. In
M. Hanus and M. Rodrìguez Artalejo, editors, 5th Intl. Conf. on Algebraic and Logic Pro-
gramming, number 1139 in Lecture Notes in Computer Science, pages 179–193, Berlin, 1996.
Springer.

[6] Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, Catherine
Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Ex-
pressing theories in the λΠ-calculus modulo theory and in the Dedukti system. In 22nd
International Conference on Types for Proofs and Programs, TYPES 2016, Novi SAd, Ser-
bia, May 2016.

[7] Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan Foster, Benjamin C.
Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich, and Steve
Zdancewic. Mechanized metatheory for the masses: The POPLmark challenge. In Proceed-
ings of the Eighteenth International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2005), number 3603 in Lecture Notes in Computer Science, pages 50–65. Springer,
2005.

[8] Ralph-Johan Back and Joachim Von Wright. Refinement Calculus: A Systematic Introduc-
tion. Springer, 1998. Graduate Texts in Computer Science.

[9] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

[10] Mike Barnett, Robert DeLine, Bart Jacobs, Bor-Yuh Evan Chang, and K. Rustan M. Leino.
Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods
for Components and Objects: 4th International Symposium, volume 4111 of Lecture Notes in
Computer Science, pages 364–387, 2005.

187

188 BIBLIOGRAPHY

[11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceedings of the 23rd interna-
tional conference on Computer aided verification, CAV’11, pages 171–177, Berlin, Heidelberg,
2011. Springer-Verlag.

[12] G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of
recursive definitions. Mathematical Structures in Computer Science, 14(1):97–141, 2004.

[13] Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational Verification Using Product
Programs, pages 200–214. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[14] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella-Béguelin.
Computer-aided security proofs for the working cryptographer. In Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 71–90. Springer,
2011.

[15] Patrick Baudin, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy,
and Virgile Prevosto. ACSL: ANSI/ISO C Specification Language, version 1.4, 2009. http:
//frama-c.cea.fr/acsl.html.

[16] Bernhard Beckert and Michał Moskal. Deductive verification of system software in the
Verisoft XT project. Künstliche Intelligenz, 24(1):57–61, 2010.

[17] Bernhard Beckert, Jonas Schiffl, Peter H. Schmitt, and Mattias Ulbrich. Proving jdk’s dual
pivot quicksort correct. In 9th Working Conference on Verified Software: Theories, Tools,
and Experiments (VSTTE 2017), 2017. To appear.

[18] Nick Benton. Simple relational correctness proofs for static analyses and program transfor-
mations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, pages 14–25, New York, NY, USA, 2004. ACM.

[19] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:117–148, 2003.

[20] François Bobot, Sylvain Conchon, Évelyne Contejean, Mohamed Iguernelala, Stéphane
Lescuyer, and Alain Mebsout. The Alt-Ergo automated theorem prover, 2008. http:
//alt-ergo.lri.fr/.

[21] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3:
Shepherd your herd of provers. In Boogie, pages 53–64, August 2011. https://hal.inria.
fr/hal-00790310.

[22] Robert S. Boyer and J. Strother Moore. Mjrty: A fast majority vote algorithm. In Automated
Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.

[23] Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, John Wiegley, and
Stephanie Weirich. Ready, set, verify! applying hs-to-coq to real-world haskell code (experi-
ence report). Proc. ACM Program. Lang., 2(ICFP):89:1–89:16, July 2018.

[24] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry, Gary T.
Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer (STTT), 7(3):212–232, June
2005.

http://frama-c.cea.fr/acsl.html
http://frama-c.cea.fr/acsl.html
http://alt-ergo.lri.fr/
http://alt-ergo.lri.fr/
https://hal.inria.fr/hal-00790310
https://hal.inria.fr/hal-00790310

BIBLIOGRAPHY 189

[25] Rod Burstall. Some techniques for proving correctness of programs which alter data struc-
tures. Machine Intelligence, 7:23–50, 1972.

[26] Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Mar-
tino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez.
Moving fast with software verification. In Klaus Havelund, Gerard Holzmann, and Rajeev
Joshi, editors, NASA Formal Methods, pages 3–11, Cham, 2015. Springer International Pub-
lishing.

[27] Raphaël Cauderlier and Mihaela Sighireanu. A verified implementation of the bounded
list container. In Dirk Beyer and Marieke Huisman, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 172–189, Cham, 2018. Springer International
Publishing.

[28] Arthur Charguéraud. Characteristic Formulae for Mechanized Program Verification. PhD
thesis, Université Paris 7, 2010. http://www.chargueraud.org/arthur/research/2010/
thesis/.

[29] Arthur Charguéraud. Characteristic formulae for the verification of imperative programs.
In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, editors, Proceeding of the
16th ACM SIGPLAN international conference on Functional Programming (ICFP), pages
418–430, Tokyo, Japan, September 2011. ACM.

[30] Arthur Charguéraud. Pretty-big-step semantics. In Matthias Felleisen and Philippa Gardner,
editors, Proceedings of the 22nd European Symposium on Programming, volume 7792 of
Lecture Notes in Computer Science, pages 41–60. Springer, March 2013.

[31] Arthur Charguéraud, Jean-Christophe Filliâtre, Mário Pereira, and François Pottier. VOCAL
– A Verified OCaml Library. ML Family Workshop, September 2017.

[32] Arthur Charguéraud and François Pottier. Verifying the correctness and amortized com-
plexity of a union-find implementation in separation logic with time credits. Journal of
Automated Reasoning, September 2017.

[33] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5,
1940.

[34] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press, Princeton,
1941.

[35] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang. Syst.,
8(2):244–263, April 1986.

[36] Martin Clochard, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Formal-
izing semantics with an automatic program verifier. In Dimitra Giannakopoulou and Daniel
Kroening, editors, 6th Working Conference on Verified Software: Theories, Tools and Exper-
iments (VSTTE), volume 8471 of Lecture Notes in Computer Science, pages 37–51, Vienna,
Austria, July 2014. Springer.

[37] Martin Clochard, Jean-Christophe Filliâtre, and Andrei Paskevich. How to avoid proving
the absence of integer overflows. In Arie Gurfinkel and Sanjit A. Seshia, editors, 7th Working
Conference on Verified Software: Theories, Tools and Experiments (VSTTE), volume 9593

http://www.chargueraud.org/arthur/research/2010/thesis/
http://www.chargueraud.org/arthur/research/2010/thesis/

190 BIBLIOGRAPHY

of Lecture Notes in Computer Science, pages 94–109, San Francisco, California, USA, July
2015. Springer.

[38] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas
Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for verifying con-
current C. In Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of Lecture
Notes in Computer Science. Springer, 2009.

[39] Cyrille Comar, Johannes Kanig, and Yannick Moy. Integrating formal program verification
with testing. In Proceedings of the Embedded Real Time Software and Systems conference,
ERTS2 2012, February 2012.

[40] Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout, and Fatiha Zaïdi. Cubicle: A
parallel SMT-based model checker for parameterized systems. In Madhusudan Parthasarathy
and Sanjit A. Seshia, editors, CAV 2012: Proceedings of the 24th International Conference on
Computer Aided Verification, volume 7358 of Lecture Notes in Computer Science, Berkeley,
California, USA, July 2012. Springer.

[41] James O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1992.

[42] Catarina Coquand. Agda, 2000. http://www.cs.chalmers.se/~catarina/agda/.

[43] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Second Edition. The MIT Press, September 2001.

[44] Patrick Cousot. Methods and logics for proving programs. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 841–993. North-Holland, 1990.

[45] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’77, pages 238–252, New York, NY, USA, 1977. ACM.

[46] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 269–282, New York, NY, USA, 1979. ACM.

[47] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. The ASTRÉE analyzer. In ESOP, number 3444 in Lecture
Notes in Computer Science, pages 21–30, 2005.

[48] Sylvain Dailler, Claude Marché, and Yannick Moy. Lightweight interactive proving inside
an automatic program verifier. In Proceedings of the Fourth Workshop on Formal Integrated
Development Environment, F-IDE, Oxford, UK, July 14, 2018, 2018.

[49] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In POPL ’82:
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 207–212, New York, NY, USA, 1982. ACM Press.

[50] Stijn de Gouw, Frank de Boer, and Jurriaan Rot. Proof pearl: The key to correct and stable
sorting. Journal of Automated Reasoning, 53(2):129–139, Aug 2014.

[51] Stijn de Gouw, Frank S de Boer, Richard Bubel, Reiner Hähnle, Jurriaan Rot, and Dominic
Steinhöfel. Verifying openjdk’s sort method for generic collections. Journal of Automated
Reasoning, 2017.

http://www.cs.chalmers.se/~catarina/agda/

BIBLIOGRAPHY 191

[52] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner Hähnle. Open-
JDK’s Java.utils.Collection.sort() Is Broken: The Good, the Bad and the Worst Case, pages
273–289. Springer International Publishing, Cham, 2015.

[53] Leonardo de Moura and Nikolaj Bjørner. Z3, an efficient SMT solver. In TACAS, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[54] Edsger W. Dijkstra. Notes on structured programming. In O. Dahl, E. Dijkstra, and C. Hoare,
editors, Structured programming. Academic Press, 1971.

[55] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18:453–457, August 1975.

[56] Claire Dross, Jean-Christophe Filliâtre, and Yannick Moy. Correct Code Containing Con-
tainers. In 5th International Conference on Tests and Proofs (TAP’11), volume 6706 of
Lecture Notes in Computer Science, pages 102–118, Zurich, June 2011. Springer.

[57] Catherine Dubois and Renaud Rioboo. Verified functional iterators using the focalize envi-
ronment. In Dimitra Giannakopoulou and Gwen Salaün, editors, Software Engineering and
Formal Methods, pages 317–331, Cham, 2014. Springer International Publishing.

[58] Jean-Christophe Filliâtre. Backtracking iterators. In ACM SIGPLAN Workshop on ML,
Portland, Oregon, September 2006.

[59] Jean-Christophe Filliâtre. Deductive software verification. International Journal on Software
Tools for Technology Transfer (STTT), 13(5):397–403, August 2011.

[60] Jean-Christophe Filliâtre. One logic to use them all. In 24th International Conference on
Automated Deduction (CADE-24), volume 7898 of Lecture Notes in Artificial Intelligence,
pages 1–20, Lake Placid, USA, June 2013. Springer.

[61] Jean-Christophe Filliâtre. Le petit guide du bouturage, ou comment réaliser des arbres
mutables en OCaml. In Vingt-cinquièmes Journées Francophones des Langages Applicatifs,
Fréjus, France, January 2014. https://www.lri.fr/~filliatr/publis/bouturage.pdf.

[62] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. The spirit of ghost code.
In Armin Biere and Roderick Bloem, editors, 26th International Conference on Computer
Aided Verification, volume 8859 of Lecture Notes in Computer Science, pages 1–16, Vienna,
Austria, July 2014. Springer.

[63] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. A pragmatic type
system for deductive verification. Research report, Université Paris Sud, 2016. https:
//hal.archives-ouvertes.fr/hal-01256434v3.

[64] Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. The spirit of ghost code.
Formal Methods in System Design, 48(3):152–174, 2016.

[65] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet provers. In
Matthias Felleisen and Philippa Gardner, editors, Proceedings of the 22nd European Sympo-
sium on Programming, volume 7792 of Lecture Notes in Computer Science, pages 125–128.
Springer, March 2013.

[66] Jean-Christophe Filliâtre and Mário Pereira. Itérer avec confiance. In Vingt-septièmes
Journées Francophones des Langages Applicatifs, Saint-Malo, France, January 2016.

https://www.lri.fr/~filliatr/publis/bouturage.pdf
https://hal.archives-ouvertes.fr/hal-01256434v3
https://hal.archives-ouvertes.fr/hal-01256434v3

192 BIBLIOGRAPHY

[67] Jean-Christophe Filliâtre and Mário Pereira. A modular way to reason about iteration. In
Sanjai Rayadurgam and Oksana Tkachuk, editors, 8th NASA Formal Methods Symposium,
volume 9690 of Lecture Notes in Computer Science, Minneapolis, MN, USA, June 2016.
Springer.

[68] Jean-Christophe Filliâtre, Mário Pereira, and Simão Melo de Sousa. Vérification de pro-
grammes fortement impératifs avec Why3. In Sylvie Boldo and Nicolas Magaud, editors,
Vingt-neuvièmes Journées Francophones des Langages Applicatifs, Banyuls-sur-mer, France,
January 2018.

[69] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. SIGPLAN Not., 28(6):237–247, June 1993.

[70] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathematical
Aspects of Computer Science, volume 19 of Proceedings of Symposia in Applied Mathematics,
pages 19–32, Providence, Rhode Island, 1967. American Mathematical Society.

[71] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan. The
pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111–129, Nov 1986.

[72] Léon Gondelman. A Pragmatic Type System for Deductive Software Verification. Thèse de
doctorat, Université Paris-Saclay, 2016.

[73] Thérèse Hardin, François Pessaux, Pierre Weis, and Damien Doligez. FoCaLiZe – Reference
Manual, 0.9.2 edition, June 2018.

[74] J. R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, 146:29–60, 1969.

[75] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580 and 583, October 1969.

[76] C. A. R. Hoare. Proof of a program: Find. Commun. ACM, 14:39–45, January 1971.

[77] William A. Howard. The formulae-as-types notion of construction. In J. Roger Hindley
Jonathan P. Seldin, editor, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479–490. Academic Press, London, 1980.

[78] Gérard Huet. The Zipper. Journal of Functional Programming, 7(5):549–554, September
1997.

[79] Graham Hutton. A tutorial on the universality and expressiveness of fold. Journal of Func-
tional Programming, 9(4):355–372, 1999.

[80] Bart Jacobs, Frank Piessens, and Wolfram Schulte. VC generation for functional behavior
and non-interference of iterators. In Proceedings of the 2006 Conference on Specification and
Verification of Component-based Systems, SAVCBS ’06, pages 67–70, New York, NY, USA,
2006. ACM.

[81] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In Mi-
haela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors,
NASA Formal Methods, volume 6617 of Lecture Notes in Computer Science, pages 41–55.
Springer, 2011.

BIBLIOGRAPHY 193

[82] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie.
A formally-verified C static analyzer. In 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 247–259, Mumbai, India, January 2015. ACM.

[83] Johannes Kanig. Spécification et preuve de programmes d’ordre supérieur. Thèse de doctorat,
Université Paris-Sud, 2010.

[84] I. T. Kassios. The dynamic frames theory. Formal Aspects of Computing, 23(3):267–288,
May 2011.

[85] Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006:
Formal Methods, pages 268–283, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[86] Ioannis T. Kassios. A Theory of Object Oriented Refinement. PhD thesis, Toronto, Ont.,
Canada, Canada, 2006. AAINR21796.

[87] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-c: A software analysis perspective. Formal Aspects of Computing, 27(3):573–609, May
2015.

[88] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Der-
rin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel. Communica-
tions of the ACM, 53(6):107–115, June 2010.

[89] Jason Koenig and K. Rustan M. Leino. Programming language features for refinement. In
John Derrick, Eerke A. Boiten, and Steve Reeves, editors, Proceedings 17th International
Workshop on Refinement, Refine@FM 2015, Oslo, Norway, 22nd June 2015., volume 209 of
EPTCS, pages 87–106, 2015.

[90] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The essence of higher-order concurrent separation logic. In Proceedings of the
26th European Symposium on Programming Languages and Systems - Volume 10201, pages
696–723, New York, NY, USA, 2017. Springer-Verlag New York, Inc.

[91] Gregory Kulczycki, Murali Sitaraman, Joan Krone, Joseph E. Hollingsworth, William F.
Ogden, Bruce W. Weide, Paolo Bucci, Charles T. Cook, Svetlana Drachova-Strang, Blair
Durkee, Heather K. Harton, Wayne D. Heym, Dustin Hoffman, Hampton Smith, Yu-Shan
Sun, Aditi Tagore, Nighat Yasmin, and Diego Zaccai. A language for building verified
software components. In John M. Favaro and Maurizio Morisio, editors, Safe and Secure
Software Reuse - 13th International Conference on Software Reuse, ICSR 2013, Pisa, Italy,
June 18-20. Proceedings, volume 7925 of Lecture Notes in Computer Science, pages 308–314.
Springer, 2013.

[92] Ramana Kumar, Eric Mullen, Zachary Tatlock, and Magnus O. Myreen. Software verification
with itps should use binary code extraction to reduce the TCB - (short paper). In Jeremy
Avigad and Assia Mahboubi, editors, Interactive Theorem Proving - 9th International Con-
ference, ITP 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 9-12, 2018, Proceedings, volume 10895 of Lecture Notes in Computer Science, pages
362–369. Springer, 2018.

194 BIBLIOGRAPHY

[93] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A verified
implementation of ML. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, pages 179–191, New York, NY, USA, 2014.
ACM.

[94] Daniel H. Larkin, Siddhartha Sen, and Robert E. Tarjan. A Back-to-Basics Empirical Study
of Priority Queues, pages 61–72.

[95] Fabrice Le Fessant and Luc Maranget. Optimizing pattern-matching. In Proceedings of the
2001 International Conference on Functional Programming. ACM Press, 2001.

[96] Gary T. Leavens, K. Rustan M. Leino, Erik Poll, Clyde Ruby, and Bart Jacobs. JML:
notations and tools supporting detailed design in Java. In OOPSLA 2000 Companion, Min-
neapolis, Minnesota, pages 105–106, 2000.

[97] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
LPAR-16, volume 6355 of Lecture Notes in Computer Science, pages 348–370. Springer, 2010.

[98] Xavier Leroy. Coinductive big-step operational semantics. In ESOP 2006: European Sym-
posium on Programming, number 3924 in LNCS, pages 54–68. Springer, 2006.

[99] Xavier Leroy. A formally verified compiler back-end. Journal of Automated Reasoning,
43(4):363–446, 2009.

[100] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Inf. Comput.,
207:284–304, February 2009.

[101] Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk, editors,
TYPES 2002, volume 2646 of Lecture Notes in Computer Science. Springer, 2003.

[102] Pierre Letouzey. Programmation fonctionnelle certifiée: l’extraction de programmes dans
l’assistant Coq. Thèse de doctorat, Université Paris-Sud, July 2004.

[103] P. Lucas. Two constructive realizations of the block concept and their equivalence. Technical
Report 25.085, IBM Laboratory, Vienna, June 1968.

[104] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh,
Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library
operating systems for the cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’13,
pages 461–472, New York, NY, USA, 2013. ACM.

[105] Luc Maranget. Compiling pattern matching to good decision trees. In ML ’08: Proceedings
of the 2008 ACM SIGPLAN workshop on ML, pages 35–46, New York, NY, USA, 2008.
ACM.

[106] Claude Marché. Jessie: an intermediate language for Java and C verification. In Programming
Languages meets Program Verification (PLPV), pages 1–2, Freiburg, Germany, 2007. ACM
Press.

[107] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

[108] John W. McCormick and Peter C. Chapin. Building High Integrity Applications with SPARK.
Cambridge University Press, 2015.

BIBLIOGRAPHY 195

[109] Guillaume Melquiond and Raphaël Rieu-Helft. A Why3 framework for reflection proofs and
its application to GMP’s algorithms. In Didier Galmiche, Stephan Schulz, and Roberto
Sebastiani, editors, 9th International Joint Conference on Automated Reasoning, Lecture
Notes in Computer Science, Oxford, United Kingdom, July 2018.

[110] R. Milner. A theory of type polymorphismn in programming. Journal of Computer and
System Sciences, 17, 1978.

[111] J-F. Monin. Understanding Formal Methods. Springer Verlag, 2002.

[112] Yannick Moy and Claude Marché. The Jessie plugin for Deduction Verification in Frama-C
— Tutorial and Reference Manual. INRIA & LRI, 2011. http://krakatoa.lri.fr/.

[113] Eric Mullen, Stuart Pernsteiner, James R. Wilcox, Zachary Tatlock, and Dan Grossman.
Œuf: Minimizing the coq extraction tcb. In Proceedings of the 7th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2018, pages 172–185, New York,
NY, USA, 2018. ACM.

[114] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for
permission-based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Verification,
Model Checking, and Abstract Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62.
Springer-Verlag, 2016.

[115] Glenford J. Myers, Corey Sandler, Tom Badgett, and Todd M. Thomas. The Art of Software
Testing, Second Edition. Wiley, June 2004.

[116] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assis-
tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002.

[117] Peter W. O’Hearn. Continuous reasoning: Scaling the impact of formal methods. In Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
’18, pages 13–25, New York, NY, USA, 2018. ACM.

[118] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[119] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak
Kapur, editor, 11th International Conference on Automated Deduction, volume 607 of Lecture
Notes in Computer Science, pages 748–752, Saratoga Springs, NY, June 1992. Springer.

[120] Karen Hunger Parshall. The genesis of the abstract group concept: A contribution to the his-
tory of the origin of abstract group theory. The American Mathematical Monthly, 93(10):823–
826, 1986.

[121] Andrei Paskevich. Algebraic types and pattern matching in the logical language of the Why
verification platform (version 2). Technical Report 7128, INRIA, 2010. http://hal.inria.
fr/inria-00439232/en/.

[122] Christine Paulin-Mohring. Extracting Fω’s programs from proofs in the Calculus of Con-
structions. In Sixteenth Annual ACM Symposium on Principles of Programming Languages,
Austin, January 1989. ACM Press.

[123] Christine Paulin-Mohring. Inductive definitions in the system COQ. In Typed Lambda Calculi
and Applications, volume 664 of Lecture Notes in Computer Science, pages 328–345. Springer,
1993.

http://krakatoa.lri.fr/
http://hal.inria.fr/inria-00439232/en/
http://hal.inria.fr/inria-00439232/en/

196 BIBLIOGRAPHY

[124] Mário Pereira. Défonctionnaliser pour prouver. In Sylvie Boldo and Julien Signoles, editors,
Vingt-huitièmes Journées Francophones des Langages Applicatifs, Gourette, France, January
2017.

[125] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[126] Benjamin C. Pierce, editor. Advanced Topics in Types and Programming Languages. MIT
Press, 2005.

[127] Nadia Polikarpova. Specified and Verified Reusable Components. PhD thesis, ETH Zurich,
April 2014.

[128] Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. A fully verified container library.
In Nikolaj Bjørner and Frank D. de Boer, editors, FM 2015: Formal Methods - 20th Inter-
national Symposium, Oslo, Norway, June 24-26, 2015, Proceedings, volume 9109 of Lecture
Notes in Computer Science, pages 414–434. Springer, 2015.

[129] Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. A fully verified container library.
Formal Asp. Comput., 30(5):495–523, 2018.

[130] Nadia Polikarpova, Julian Tschannen, Carlo A. Furia, and Bertrand Meyer. Flexible invari-
ants through semantic collaboration. In Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun,
editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-
16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer Science, pages 514–530.
Springer, 2014.

[131] François Pottier. Verifying a hash table and its iterators in higher-order separation logic. In
Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP
2017), January 2017.

[132] François Pottier and Vincent Simonet. Information flow inference for ML. ACM Transactions
on Programming Languages and Systems, 25(1):117–158, January 2003. c©ACM.

[133] Yann Régis-Gianas and François Pottier. A Hoare logic for call-by-value functional pro-
grams. In Proceedings of the Ninth International Conference on Mathematics of Program
Construction (MPC’08), pages 305–335, 2008.

[134] W. Reif, G. Schnellhorn, and K. Stenzel. Proving system correctness with KIV 3.0. In
William McCune, editor, 14th International Conference on Automated Deduction, Lecture
Notes in Computer Science, pages 69–72, Townsville, North Queensland, Australia, july 1997.
Springer.

[135] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In 17th Annual
IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc. Press, 2002.

[136] Raphaël Rieu-Helft, Claude Marché, and Guillaume Melquiond. How to get an efficient yet
verified arbitrary-precision integer library. In 9th Working Conference on Verified Software:
Theories, Tools, and Experiments, volume 10712 of Lecture Notes in Computer Science, pages
84–101, Heidelberg, Germany, July 2017.

[137] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In Rajiv Gupta
and Saman P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008,
pages 159–169. ACM, 2008.

BIBLIOGRAPHY 197

[138] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011.

[139] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Si-
mon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin. Dependent types and multi-
monadic effects in F*. In 43rd ACM Symposium on Principles of Programming Languages
(POPL), pages 256–270. ACM, January 2016.

[140] The Coq Development Team. The Coq Proof Assistant Reference Manual – Version V8.6,
2016. http://coq.inria.fr.

[141] Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and
Computation, 1997.

[142] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Nadia Polikarpova. Autoproof: Auto-
active functional verification of object-oriented programs. In 21st International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science. Springer, 2015.

[143] Alan Mathison Turing. Checking a large routine. In Report of a Conference on High Speed
Automatic Calculing Machines, pages 67–69, Cambridge, 1949. Mathematical Laboratory.

[144] Bruce W. Weide. SAVCBS 2006 challenge: Specification of iterators. In Proceedings of the
2006 Conference on Specification and Verification of Component-based Systems, SAVCBS
’06, pages 75–77, New York, NY, USA, 2006. ACM.

[145] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Infor-
mation and Computation, 115:38–94, 1992.

http://coq.inria.fr

198 BIBLIOGRAPHY

Index

Symbols
∆ . 39⇓ . 28, 33, 38, 42⇓co . 42
Γ . 28
Σ . 33
β . 28
∪ . 31, 37
δ . 38
div . 42
ε . 35, 44
γ . 44
v .30
E . 69

. 30, 37, 46
µ . 33
ν . 28, 32
π . 28
σ . 37
t . 31
τ . 28
` .28, 35, 39
r . 42
abort . 43
adm . 37, 44, 46
err . 57

A
A-normal form . 25, 30
abstract interpretation . 3
abstract domain . 3
absurd . 49
Agda . 4
algebraic data types . 67
aliasing . 17
Alt-Ergo . 6
arithmetic overflow . 21
Astrée . 3
atomic expression . 28
AutoProof . 137

B
B method . 108
bag . 133, 140
Beckert, Bernhard . 137
binary search . 126
Boogie . 108
bounded model checking 3
Breitner, Joachim . 137
bug . 1, 7

C
CakeML . 6
Cauderlier, Raphael . 137
CFML . 9, 107, 108, 178
Charguéraud, Arthur 43, 53, 57, 109
checks . 125
Church, Alonzo . 4
client invariant . 163
Clochard, Martin 109, 114
code extraction . 11
coercion . 15
coevaluation . 42
coinductive . 42
CompCert 6, 104, 108, 180
completeness . 150
components

ghost . 20
constant . 28
consumer function . 162
Coq . 4, 107, 108
correct-by-construction 6, 11, 108
Crespo, Juan Manuel 138
cursor . 141
CVC4 . 6

D
Dafny 6, 66, 108, 173, 178
Damas, Luis . 4
de Boer, Frank . 137
de Gouw, Stijn . 137

199

200 INDEX

deductive program verification3, 4
Dedukti . 104
defunctorization . 160
depth-first search . 148
derivation tree . 30
Dijkstra, Edsger . 2
diverges .153
Dubois, Catherine . 173

E
EasyCrypt . 6
effects

admissible . 36
instantiation .40
writing . 35

EiffelBase2 . 137
exceptions . 44
expression effects . 35
extract . 25, 103
extraction

code extraction . 13
driver . 25
mechanism . 8

F
F? . 108
Felleisen, Matthias .58
Filliâtre, Jean-Christophe . . 51, 66, 104, 109,

114
Floyd, Robert . 4
FoCaLiZe . 104, 173
formal specification . 2
forward simulation 87, 97
Frama-C . 108
François Pottier167, 173, 178
function . 38

non-defined . 26
functor . 131

G
garbage collector .15
generic error rule . 57
ghost

code . 13, 28, 29
contamination . 19
field . 13
interference . 17, 36
status . 29

ghostification . 30
Gillaume Melquiond . 177

Gilles Barthe . 138
Giorgetti, Alain . 173
GNATprove . 108
Gondelman, Léon 51, 66, 104
Grall, Hervé . 43
graph . 148

H
Hindley, J. Roger . 4
Hoare Logic . 5, 120

consequence rule . 5
consequence rule .120
Hoare triple .5
Hoare, Tony . 4
Horner method . 169

I
injectivity . 21
Isabelle . 6
iteration . 139
iterator invariant . 163

K
KeY . 6
KidML . 27
Kunz, César . 138

L
Löf, Martin . 4
lemma function . 21
Leroy, Xavier . 43, 53
linking invariant . 156
Liquid Types . 175
local invariants . 120
loop

invariant . 20
variant . 22

M
mask . 28

union .31
memory location .32
Milner, Robin .4
Mirage OS .180
model checking . 3
multiple assignment . 119
mutability . 34
mutable

field . 14
mutable record fields .34

INDEX 201

N
non-interference . 27

O
operational semantics . 28

big-step . 28
oracle . 29, 44
over-approximation . 37

P
Pairing Heaps . 131
Paskevich, Andrei 51, 66, 104, 114
pattern matching . 67
Paulin-Mohring, Christine 4
permutation . 11

cycle . 11
cycle notation . 11
decomposition . 12
orbit . 11
two-line notation . 11

persistence . 174
persistent

cursor . 174
data structure . 174

Peter O’Hearn . 180
Peters, Tim . 2
Pierce, Benjamin . 3, 32
pigeonhole principle . 21
Polikarpova, Nadia . 137
polymorphic types . 39
postcondition . 5
Pottier, François 109, 175
pre-condition . 5
preservation lemma . 58
procedure environment 38
progress

judgment . 57
lemma .58

projection . 15
pure expressions . 35
PVS . 6, 108

R
Régis-Gianas, Yann 167, 175
range type . 15
records . 32
refinement . 6
refinement proof . 121
regions . 66
regular code . 13

RESOLVE .173
return . 153
Reynolds, John . 5
Rieu-Helft, Raphaël . 177
Rioboo, Renaud . 173
Rot, Jurriaan . 137

S
same fringe . 157
Satisfability Modulo Theory 6
Schiffl, Jonas . 137
Schmitt, Peter . 137
Sel4 . 7
semantic results . 42
separation logic . 5
Sighireanu, Mihaela . 137
SMT solver . 11
Sousa, Simão Melo de 109
SPARK2014 . 6
specification inclusion 120, 157
static analysis . 3
store state . 33
store typing . 33
substitution lemma . 58

T
termination measure . 51
theorem provers . 6
Timsort . 2
Turing, Alan . 4
type

ghost . 71
simple . 4
type generalization . 39
type inference .3
type invariant . 13
type system

with effects . 35
type soundness theorem 65
type system . 3, 28

with effects . 17
type union .31
typing context

functions . 38

U
Ulbrich, Mattias . 137
union-find . 109

path-compression 111
unreachable point .49

202 INDEX

V
value . 28
variant . 51
VCC . 6, 66, 108
vector . 123
Verasco . 6, 104
VeriFast . 6, 108
verification condition generator 6
verification conditions 5, 11
Verification Conditions Generator 11

Viper .6, 66, 173, 178
VOCaL . 8, 107

W
weakest pre-condition . 5
Why3 . 7, 108
WhyML . 7
Wright, Andrew . 57

Z
Z3 . 6

Synthèse

Cette thèse se place dans le cadre des méthodes formelles et plus précisément dans celui de la
vérification déductive. La vérification déductive propose un ensemble d’approches pour transformer
la correction d’un code d’un logiciel en un énoncé mathématique et après prouver sa validité. À
fin de générer un tel énoncé, le programme doit être munis d’une description mathématique de son
comportement pendant l’exécution, ce qui est traditionnellement nommée comme la spécification
fonctionnel. En étant capable de montrer la correction de l’énoncé généré, on peut affirmer que
le programme est correct vis-à-vis de sa spécification. Plusieurs outils existants mettent en place
l’approche de la vérification déductive pour vérifier la correction des logiciels. On peut citer les
assistants de preuve manuels tels que Coq, PVS, Isabelle ou KeY, mais aussi les démonstrateurs
automatiques tels que les solveurs SMT comme Alt-Ergo, CVC4, Z3 et aussi les démonstrateurs
de la famille TPT, comme SPASS ou Vampire. Par ailleurs, ils existent des outils qui proposent
une interface entre l’utilisateur et les démonstrateurs de théorèmes. Ces outils proposent ce qui est
traditionnellement appelé un langage dédié à la preuve, aussi bien qu’un mécanisme automatique
pour la génération de l’énoncé de correction d’un programme. Dans cette classe d’outils on peut
citer Dafny, Viper ou encore Why3.

Tout au long de cette thèse, le système Why3 a été utilisé, d’une part, comme l’environnement
pour expérimenter les idées développées, et d’autre part comme la cible de certaines contributions
de cette thèse. Why3 fournit un ensemble d’outils pour la spécification, l’implémentation et la
vérification à l’aide de démonstrateurs externes. Why3 propose en particulier un langage de pro-
grammation adapté à la preuve, appelé WhyML. Un aspect important de ce langage est le code
fantôme, à savoir des éléments de programme introduits exclusivement pour les besoins de la spé-
cification et de la preuve. Pour obtenir un code exécutable, le code fantôme est éliminé par un
processus automatique appelé extraction. L’une des contributions principales de cette thèse est la
formalisation et l’implémentation du mécanisme d’extraction de Why3. La formalisation consiste à
montrer que le programme extrait préserve la sémantique du programme de départ, en s’appuyant
notamment sur un système de types avec effets.

Le nouveau mécanisme d’extraction de Why3 a été utilisé avec succès pour obtenir plusieurs
modules OCaml corrects par construction, dans le cadre d’un projet de recherche plus large, le projet
VOCaL. Le but ce projet est de construire une bibliothèque formellement vérifiée de structures de
données et d’algorithmes, écrits dans le langage OCaml. Dans le cadre du projet VOCaL, les travaux
de cette thèse ont contribué au développement d’un langage de spécification pour OCaml. Un tel
langage à été utilisé pour spécifier formellement les éléments introduits dans des fichiers .mli, les
fichiers interfaces du langage OCaml. L’utilisation de ce langage permet, notamment, de montrer
qu’une structure de données ou algorithme implémenté et vérifié en WhyML est bien un raffinement
de la spécification donnée dans l’interface.

Cet effort de preuve de programmes OCaml a conduit à trois autres contributions de cette
thèse. La première est une technique systématique pour la vérification de structures avec pointeurs,
à l’aide de modèles du tas délimités. Une preuve entièrement automatique d’une structure union-
find a pu être obtenue grâce à cette technique. La seconde est un mécanisme systématique pour
extraire du code fonctoriel à partir d’un programme vérifié avec Why3. Cela a permis notamment
d’extraire des foncteurs OCaml, correctes par construction, pour deux implantations différentes de

1

2

filles de priorité, à savoir des pairing heaps et une variante impérative, où la fille est codée dans
un tableau redimensionnable. Finalement, la dernière contribution est un moyen de spécifier un
algorithme d’itération indépendamment de son implémentation. Plusieurs curseurs et itérateurs
d’ordre supérieur ont été spécifiés et vérifiés en utilisant cette approche. Le point en commun,
et les important, sur ces contributions est le fait qu’aucun des ces trois aspects idiomatiques de
la programmation en OCaml est supporté directement par le langage WhyML et la preuve de
programmes avec Why3.

Titre : Outils et techniques pour la vérification de programmes impératives modulaires

Mots clés : Vérification déductive, Why3, Effets, Bibliothèque OCaml, Modulaire

Résumé : Cette thèse se place dans le cadre
des méthodes formelles et plus précisément dans
celui de la vérification déductive et du système
Why3. Ce dernier fournit un ensemble d’outils pour
la spécification, l’implémentation et la vérification à
l’aide de démonstrateurs externes. Why3 propose en
particulier un langage de programmation adapté à la
preuve, appelé WhyML. Un aspect important de ce
langage est le code fantôme, à savoir des éléments
de programme introduits exclusivement pour les be-
soins de la spécification et de la preuve. Pour obtenir
un code exécutable, le code fantôme est éliminé par
un processus automatique appelé extraction. L’une
des contributions principales de cette thèse est la
formalisation et l’implémentation du mécanisme d’ex-
traction de Why3. La formalisation consiste à mon-
trer que le programme extrait préserve la sémantique

du programme de départ, en s’appuyant notamment
sur un système de types avec effets. Ce mécanisme
d’extraction a été utilisé avec succès pour obtenir
plusieurs modules OCaml corrects par construction,
dans le cadre d’une bibliothèque vérifiée de structures
de données et d’algorithmes. Cet effort de preuve a
conduit à deux autres contributions de cette thèse.
La première est une technique systématique pour la
vérification de structures avec pointeurs, à l’aide de
modèles du tas délimités. Une preuve entièrement
automatique d’une structure union-find a pu être ob-
tenue grâce à cette technique. La seconde contri-
bution est un moyen de spécifier un algorithme
d’itération indépendamment de son implémentation.
Plusieurs curseurs et itérateurs d’ordre supérieur ont
été spécifiés et vérifiés en utilisant cette approche.

Title : Tools and Techniques for the Verification of Modular Stateful Code

Keywords : Deductive verification, Why3, Effects, OCaml library, Modular

Abstract : This thesis is set in the field of formal me-
thods, more precisely in the domain of deductive pro-
gram verification. Our working context is the Why3 fra-
mework, a set of tools to implement, formally specify,
and prove programs using off-the-shelf theorem pro-
vers. Why3 features a programming language, called
WhyML, designed with verification in mind. An impor-
tant feature of WhyML is ghost code: portions of the
program that are introduced for the sole purpose of
specification and verification. When it comes to get
an executable implementation, ghost code is removed
by an automatic process called extraction. One of the
main contributions of this thesis is the formalization
and implementation of Why3’s extraction. The formali-
zation consists in showing that the extracted program
preserves the same operational behavior as the ori-

ginal source code, based on a type and effect sys-
tem. The new extraction mechanism has been suc-
cessfully used to get correct-by-construction OCaml
modules, which are part of a verified OCaml library
of data structures and algorithms. This verification ef-
fort led to two other contributions of this thesis. The
first is a systematic approach to the verification of
pointer-based data structures using ghost models of
fragments of the heap. A fully automatic verification
of a union-find data structure was achieved using this
technique. The second contribution is a modular way
to reason about iteration, independently of the un-
derlying implementation. Several cursors and higher-
order iterators have been specified and verified with
this approach.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Préface
	Conventions
	Introduction
	The Art of Program Verification, with Why3
	A Library of Permutations
	Notation
	Library Interface

	Program Specification and Proof
	The Type of Permutations
	Proving Library Functions

	Code Extraction

	KidML
	The KidML Language, Step-by-Step
	Core Language
	Imperative Features
	Function Definition and Function Call
	Exceptions
	Proof-related Elements

	KidML Formalization
	Semantics
	Type Soundness

	Discussion and Related Work

	Extraction
	Extraction Function
	Extraction of Types
	Extraction of Top-level Declarations
	Extraction of Expressions

	Typing Preservation under Extraction
	Semantics Preservation
	Preservation of Convergent Evaluation
	Preservation of Divergent Evaluation

	Extraction Machinery
	Extraction Implementation.
	The why3 extract command.

	Discussion and Related Work

	A Toolchain for Verified OCaml Programs
	Methodology
	A Case Study: Union-Find
	Specification
	Verified Implementation
	Proof of Refinement and Specification Inclusion
	Extraction to OCaml

	Challenges
	Non-verified Client Code
	Higher-order Effectful Functions
	Recursive Mutable Data Types
	Functors

	Experimental Evaluation
	Discussion and Related Work

	A Modular Way to Reason About Iteration
	Specifying Iteration
	Cursors
	Cursor Specification
	Cursor Implementation
	Cursor Client
	Collection Modification
	Case Studies
	Gensym
	Depth-first Search
	In-order Traversal of Binary Trees

	Other Case Studies

	Higher-Order Iteration
	Fold Implementation
	Fold Client
	Case Studies
	Binary trees
	Horner Method

	Other Case Studies

	Discussion and Related Work

	Conclusion
	Contributions
	Discussion and Perspectives

	Permutations Library
	Bibliography
	Index

