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RÉSUMÉ DE LA THÈSE

Nous allons étudier les propriétés des courbes algébriques sur des surfaces
K3 spéciales, du point de vue de la théorie de Brill-Noether.

La démonstration de Lazarsfeld [Laz86] du théorème de Gieseker-Petri
a mis en lumière l’importance de la théorie de Brill-Noether des courbes
admettant un plongement dans une surface K3. Nous allons donner une
démonstration détaillée de ce résultat classique, inspirée par les idées de
Pareschi. En suite, nous allons décrire le théorème de Green et Lazarsfeld
[GL87], fondamental pour tout notre travail, qui établit le comportement
de l’indice de Clifford des courbes sur les surfaces K3.

Watanabe [Wat14] a montré que l’indice de Clifford de courbes sur cer-
taines surfaces K3, admettant un recouvrement double des surfaces de del
Pezzo, est calculé en utilisant les involutions non-symplectiques. Nous étu-
dions une situation similaire pour des surfaces K3 avec un réseau de Picard
isomorphe à U(m), avec m > 0 un entier quelconque. Nous montrons que
la gonalité et l’indice de Clifford de toute courbe lisse sur ces surfaces, avec
une seule exception en genre g = m+1 ≥ 4 déterminée explicitement, sont
obtenus par restriction des fibrations elliptiques de la surface. Ce travail est
basé sur l’article suivant :

M. Ramponi, Gonality and Clifford index of curves on elliptic K3
surfaces with Picard number two, Archiv der Mathematik, 106(4),
p. 355–362, 2016.

Knutsen et Lopez [KL08, KL15] ont étudié en détail la théorie de Brill-
Noether des courbes sur les surfaces d’Enriques. En appliquant leurs résul-
tats, nous allons pouvoir calculer la gonalité et l’indice de Clifford de toute
courbe lisse sur les surfaces K3 qui sont des recouvrements universels d’une
surface d’Enriques. Ce travail est basé sur l’article suivant :

M. Ramponi, Special divisors on curves on K3 surfaces carrying an
enriques involution, Manuscripta Mathematica, 153(1), p. 315–322,
2017.
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ABSTRACT

We study the properties of algebraic curves lying on special K3 surfaces,
from the viewpoint of Brill-Noether theory.

Lazarsfeld’s proof [Laz86] of the Gieseker-Petri theorem has revealed
the importance of Brill-Noether theory of curves which admit an embed-
ding in a K3 surface. We give a proof of this classical result, inspired by the
ideas of Pareschi [Par95]. We then describe the theorem of Green and Laz-
arsfeld [GL87], a key result for our work, which establishes the behaviour
of the Clifford index of curves on K3 surfaces.

Watanabe [Wat14] showed that the Clifford index of curves lying on
certain special K3 surfaces realizable as a double covering of a smooth del
Pezzo surface, can be determined by a direct use of the non-simplectic in-
volution carried by these surfaces. We study a similar situation for some
K3 surfaces having a Picard lattice isomorphic to U(m), with m > 0 any
integer. We show that the gonality and the Clifford index of all smooth
curves on these surfaces, with a single, explicitly determined exception in
genus g = m+ 1 ≥ 4, are obtained by restriction of the elliptic fibrations of
the surface. This work is based on the following article:

M. Ramponi, Gonality and Clifford index of curves on elliptic K3
surfaces with Picard number two, Archiv der Mathematik, 106(4),
p. 355–362, 2016.

Knutsen and Lopez [KL08, KL15] have studied in detail the Brill-Noether
theory of curves lying on Enriques surfaces. Applying their results, we
are able to determine and compute the gonality and Clifford index of any
smooth curve lying on the general K3 surface which is the universal cover-
ing of an Enriques surface. This work is based on the following article:

M. Ramponi, Special divisors on curves on K3 surfaces carrying an
Enriques involution, Manuscripta Mathematica, 153(1), p. 315–
322, 2017.
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INTRODUCTION

In the theory of algebraic curves, Brill-Noether theory, introduced by Alex-
ander von Brill and Max Noether in 1874, is the study of special line bundles,
certain line bundles on a curve Cwhich carry unexpectedly many sections.

One of the numerous features of algebraic curves is that their moduli
theory is particularly well-behaved. The set of all isomorphism classes of
curves of genus g forms a quasi-projective algebraic variety Mg. Quite
amazingly, several properties of this moduli space were determined long
before it was actually constructed — in 1940 as an analytic space by Teich-
müller and in 1965 as a GIT quotient of the Hilbert scheme of curves by
Mumford. For instance, Riemann computed its dimension in 1857 and
Klein showed that Mg is irreducible in 1882. In particular, one can talk
about a property enjoyed by the general curve of genus g, when this prop-
erty holds for curves in a dense open subset of Mg. Indeed, several amongst
the early results in Brill-Noether theory, such as the Brill-Noether theorem,
started with the words “Let C be a curve with general moduli. . . ”.

A notable example of this sort is the Petri conjecture. Roughly speak-
ing, it states that for a curve with general moduli, the Bril-Noether varieties,
parameter spaces for line bundles of given degree and number of sections,
behave as nicely as one could possibly hope for (in terms of smoothness
and dimension). The first rigorous proof of the Petri conjecture was given
by Gieseker in 1982, by degeneration methods. By the irreducibility of the
Deligne-Mumford compactification Mg (which allows curves in Mg to de-
generate to stable ones, i.e. complete, connected curves, with finitely many
automorphisms and at most nodes as singularities), Gieseker’s strategy is
to check the desired property on a single, suitable example of stable curve,
hence proving that the property holds for the general curve in Mg.

Degenerations techniques have proven to be extremely useful in several
other circumstances, although the proofs are often lengthy and may require
some rather sophisticated combinatorial analysis.

In 1986, Lazarsfeld [Laz86] gave a new proof of the Petri-Gieseker the-
orem by specialization to smooth curves lying on general K3 surfaces. His
idea is that the Brill-Noether theory of curves on a K3 surface can be trans-
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lated into properties of some vector bundles which can be naturally defined
on the whole ambient surface.

Lazarsfeld’s approach has been a breakthrough. Arguably, it has influ-
enced much of the subsequent theory of algebraic curves in the following
decades. Only two years before Lazarsfeld’s paper appeared, Green had
formulated his famous conjecture regarding the behaviour of syzygies of
canonically embedded curves [Gre84]. Roughly speaking, Green’s conjec-
ture states that the shape of the minimal resolution of the homogeneous
ideal of a canonical curve is determined by the Clifford index of the curve,
a Brill-Noether type invariant which measures the complexity of the curve
inside the moduli space. As of today, this remains an open problem, and
although a very large number of theorems confirming the conjecture in sev-
eral special cases have appeared in the literature during the years, this is
still considered by many experts as one of the major unsolved problems in
the theory of algebraic curves.

Following the philosophy of Lazarsfeld, between 2002 and 2005, Voisin
proved Green’s conjecture for the general curve of any genus, by special-
ization to smooth curves in the primitive linear system on a K3 surface
with Picard number one [Voi02, Voi05]. In 2011, Aprodu and Farkas have
showed that the conjecture is indeed true for curves on any K3 surface, in-
cluding special ones [AF11]. A very remarkable consequence of this result
is that the knowledge of the Clifford index of a given curve C lying on a
K3 surface gives us informations about the geometry of C in its canonical
embedding and also essentially determines the syzygies of the K3 surface
with respect to the morphism induced by the line bundle L = OX(C).

Other than Green’s conjecture, there exist similar problems which relate
the geometry of a curve in some types of embedding to Brill-Noether type
invariants of the curve, such as its gonality or its Clifford index. Examples
are the Secant conjecture and the Gonality conjecture, both formulated (and
the latter proved in 2014) by Green and Lazarsfeld [GL86], or the more re-
cent Prym-Green conjecture [CEFS13], a statement similar to Green’s con-
jecture for general Prym-canonical curves, i.e. curves C embedded by a line
bundle of the formωC ⊗ η, with η a 2-torsion line bundle.

In studying this kind of problems, it has often proved to be very use-
ful to make computations for curves on K3 surfaces. For instance, Farkas
and Kemeny have recently made important advancements for both the Sec-
ant conjecture and the Prym-Green conjecture, by lattice-theoretic compu-
tations on Nikulin surfaces, which are special K3 surfaces characterized by
the existence of a symplectic involution [FK16].

It is in fact a consequence of a general, fundamental result by Green and
Lazarsfeld [GL87] that the Clifford index of curves lying on a K3 surface
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is essentially determined by the lattice theory on the surface. In practice,
however, when one wants to perform explicit computations of the Clifford
index in some specific situation, ad hoc strategies are to be developed, de-
pending on the particular example, as the geometry of K3 surfaces can be
extremely rich.

DESCRIPTION OF RESEARCH CARRIED OUT

This work began with the study of a paper of Watanabe [Wat14], whose
main result is a characterization of the Clifford index of curves on some spe-
cial K3 surfaces X which are double covers of a smooth del Pezzo surface
of degree 4 ≤ d ≤ 8 such that the involution on X induced by the double
cover acts trivially on the Picard group of X. Watanabe shows that, with a
few exceptions, the Clifford index of these curves is induced by the elliptic
pencils carried by the surface. My interest in this paper lied in Watanabe’s
original approach to the problem, especially in the author’s systematic use
of the non-symplectic involution on X in throughout all computations.

The initial goal of this thesis was an attempt to enquire about the pos-
sible connections between the theory of automorphisms on K3 surfaces and
the Brill-Noether theory of the curves lying on them. Concretely, I began by
analysing a situation similar to the one studied by Watanabe, considering
a class of K3 surfaces carrying a non-symplectic automorphism of order 3.
I initially carried out the computations in the same spirit of Watanabe, and
this eventually led to the first main result (see Theorem 3.1), where I con-
sidered K3 surfaces with Picard lattice isomorphic to U(m), for any m > 0,
and obtained a similar outcome as in Watanabe’s Theorem for the curves on
these surfaces. However, in my treatment, I finally dropped any assump-
tion on the existence of automorphism on the K3 surfaces (and obtained
a slightly more general result), persuaded that there is no deeper connec-
tion between the theory of automorphisms and the Brill-Noether theory of
curves on K3 surfaces, other than the lattice theory on the surface.

Next, I turned my attention to K3 surfaces which admit an involution
without fixed points. Such a K3 surface is the universal covering of an En-
riques surface, and the Brill-Noether theory of curves on Enriques surfaces
has been established by Knutsen and Lopez [KL08, KL15], and it presents
several aspects which are rather different than the case of K3 surfaces. For
instance, the gonality and the Clifford index are often non-constant in a lin-
ear system. In view of their results, it was a very natural question to ask
about the Brill-Noether theory of curves on the relative K3-covers of these
surfaces. I have provided a complete answer to this question for all curves
on the generic K3-cover, showing that their gonalities and Clifford indices
are induced by the elliptic fibrations carried by the surface (see Theorem

13



4.4).
Amongst the various topics I had to learn about during these three years

of research, I consider that of Lazarsfeld-Mukai bundles a specially import-
ant one, due to its central role in the Brill-Noether theory of curves on K3
surfaces. These vector bundles can be defined in fact on any surface (even
though for K3 surfaces they are particularly well-behaved) and they repres-
ent a very powerful tool in many problems and appeared in distinct areas
of current research. Even if I did not need to make a direct use of this tool
for the proof of the original results in this thesis, I have spent some efforts
in learning more about it, also in view of future research projects. As a
testing for my understanding, I have reworked the aforementioned proof
of the Gieseker-Petri theorem by Lazarsfeld (see Theorem 2.10), following
the main argument of Pareschi [Par95], although my exposition is slightly
different than Pareschi’s and I give a proof of all non-trivial statements.

Brill-Noether theory has applications to several distinct areas of algeb-
raic geometry, and I will mention a few problems which I am currently
working on. In a joint work with Daniele Agostini (in preparation), we use
Brill-Noether theory of curves on projective Kummer surfaces to compute
the Koszul cohomology of various projective models of Kummer surfaces.
I was unfortunately unable to add these topics in this manuscript, due to a
lack of time. We are currently trying to apply these results to characterize
some Noether-Lefschetz divisors in the moduli space of projective Kummer
surfaces, of which we showed the existence.

A second topic, which is work in progress, joint with Gavril Farkas,
is around some problems related to a conjecture of Mercat in higher rank
Brill-Noether theory, and involves Nikulin K3 surfaces. This area of re-
search presents several still unexplored directions, and it has already proven
to give many interesting applications, in particular in connection to the
birational geometry of moduli spaces.

STRUCTURE OF THE THESIS

� In Chapter 1 we briefly recover some foundational material, such as
the basics of lattice theory, algebraic surfaces, K3 surfaces and Brill-
Noether theory of curves.

� In Chapter 2 we recall Lazarsfeld-Mukai vector bundles on K3 sur-
faces and, as an application, we give a proof of Lazarsfeld’s celeb-
rated result on the Gieseker-Petri theorem. We then illustrate Green-
Lazarsfeld’s theorem on the constancy of the Clifford index in linear
systems of curves on K3 surfaces. Finally, we recall Knutsen’s classi-
fication of exceptional curves on K3 surfaces.
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� In Chapter 3 we study curves on some elliptic K3 surfaces. We first
recall Watanabe’s result on double covers of del Pezzo surfaces and
explain how it motivated our study of curves on K3 surfaces with
Picard lattice isomorphic to U(m), for anym > 0.

� In Chapter 4 we recall the work of Knutsen and Lopez on Brill-Noether
theory for curves on Enriques surfaces and apply their results to study
curves lying on universal covers of Enriques surfaces. We show that
the gonalities and Clifford indices of these curves are induced by the
elliptic fibrations arising from the Enriques quotient.

15



16



CHAPTER 1

GENERAL FACTS

§1. LATTICES

The main purpose of this section is to fix notations and recall, for later ref-
erence, some standard definitions and a few results concerning the theory
of integral quadratic forms.

By the word lattice we will understand a free Z-module Λ of finite rank,
equipped with a non-degenerate, symmetric, integral bilinear form

Λ×Λ −→ Z, (x, y) 7−→ x · y.

We often refer to this bilinear form as the intersection form on Λ.
We shall say that

� A lattice Λ is even if x2 = x · x ∈ 2Z for any x ∈ Λ.

� The signature (n+, n−) of Λ is defined as the signature of the R-linear
extension of the bilinear form on the real vector space ΛR = Λ⊗ R.

� A lattice is definite if either n+ = 0 or n− = 0, indefinite otherwise.

� A hyperbolic lattice is one of signature (1, r− 1), where r = rkΛ ≥ 2.

� The dual lattice Λ∗ is defined abstractly as

Λ∗ = HomZ(Λ,Z)

which allows to consider Λ as a subgroup of Λ∗ via the canonical
embedding x 7→ (x,−). One can then define the discriminant group of
Λ as the quotient group

AΛ := Λ∗/Λ

� In practice, it is often convenient to give the following alternative, yet
equivalent, definition of the dual lattice as the subspace of the vector
space ΛQ = Λ⊗Q given by

Λ∗ := {x ∈ ΛQ : x · y ∈ Z for all y ∈ Λ}
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where Λ ⊂ Λ∗ is given by the natural inclusion Λ ⊂ ΛQ. It becomes
then easier to work with the discriminant group AΛ.

� An isometry of lattices is a group isomorphism which preserves the
intersection forms.

Observe that the bilinear form ( , ) on Λ does not descend to AΛ, for we do
not generally have equality between (x1, x2) and (x1 + u1, x2 + u2), where
xi ∈ Λ∗ and ui ∈ Λ. On the other hand,

(x1 + u1, x2 + u2) = (x1, x2) + (x1, u2) + (x2, u1) + (u1, u2)

≡ (x1, x2) mod Z

Therefore we can define on AΛ the bilinear form ( , ) modulo Z, i.e. with
values in Q/Z. Similarly, under the further assumption that Λ is even, one
obtains the quadratic form on AΛ modulo 2Z, i.e. with values in Q/2Z.

� Note that AΛ is a finite group,

AΛ ' (Z/m1Z)⊕ · · · ⊕ (Z/mkZ)

and its order is |discrΛ|, where discrΛ (also denoted by detΛ in the
literature) denotes the determinant of the bilinear form with respect
to some Z-basis of Λ.

� The length ` = `(Λ) of Λ is by definition the minimal number of gen-
erators of the discriminant group AΛ.

� An embedding of lattices Λ0 ↪→ Λ is called primitive if Λ/Λ0 is free.

To some extent, the simpler the discriminant group is, the simpler the
lattice. In particular, a lattice Λ is called

� unimodular: if AΛ = 0 (i.e. |discrΛ| = 1)

� p-elementary: if AΛ = (Z/pZ)⊕`, for some ` ≥ 0.

Let us give a couple of fundamental examples of lattices:

� We denote by 〈m〉, with m ∈ Z, the lattice of rank 1 such that u2 = m
for a generator u of the lattice 〈m〉.

� There exists a unique even unimodular hyperbolic lattice of rank two
(up to isometry). It is called the hyperbolic plane and we identify it
with the matrix of its bilinear form,

U =

(
0 1

1 0

)
.
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Given any lattice Λ, we denote by Λ(m) the lattice obtained by keeping
the same Z-module and multiplying the intersection form bym ∈ Z. In the
case of U(m), we have

AU(m) ' (Z/mZ)⊕ (Z/mZ).

� There exists a unique even unimodular positive definite lattice of
rank eight. It is denoted by E8 and we identify it with its matrix

E8 =



2 −1

−1 2 −1

−1 2 −1 −1

−1 2 0

−1 0 2 −1

−1 2 −1

−1 2 −1

−1 2


.

By changing the sign of the matrix elements of E8 above we get the
negative definite lattice E8(−1).

We recall the following classical result of Milnor.

THEOREM 1.1 (Milnor). Let Λ be an indefinite unimodular lattice. If Λ is odd,
then

Λ ' 〈1〉⊕a ⊕ 〈−1〉⊕b

for some a ≥ 0 and b ≥ 0. If Λ is even then

Λ ' U⊕a ⊕ E8(±1)⊕b

for some a and b. In particular, the signature and parity of Λ determine Λ up to
isometry.

Definition. The K3 lattice is by definition

ΛK3 = U⊕3 ⊕ E8(−1)⊕2.

By Milnor’s theorem, any even unimodular lattice of signature (3, 19) is
isomorphic to ΛK3.

We recall the following result from [Nik80, Thm. 1.14.4].
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THEOREM 1.2. Let Λ be an even, unimodular lattice of signature (n+, n−) and
Λ0 any even lattice of signature (m+,m−). Under the assumptions that

m± < n± and `(Λ0) + 2 ≤ rkΛ− rkΛ0,

then there exists a primitive embedding Λ0 ↪→ Λ, which is unique up to Aut(Λ).

Notice that `(Λ0) + 2 ≤ rkΛ − rkΛ0 clearly follows from the stronger
condition rkΛ0 + 2 ≤ rkΛ − rkΛ0. Morrison [Mor84, Cor. 2.9] uses this to
show:

COROLLARY 1.3. Let N be an even lattice of signature (1, ρ − 1) with ρ ≤ 10.
Then there exists a projective K3 surface X with NS(X) ' N. Moreover, the
primitive embeddingN ↪→ H2(X,Z) is unique up to the action of Aut(H2(X,Z)).

Proof. By Theorem 1.2 applied to the K3 lattice ΛK3, one gets a primitive
embedding N ↪→ ΛK3. Then, the existence of a K3 surface X such that
N ' NS(X) follows by the surjectivity of the period map together with
standard arguments of Hodge theory, cf. [Mor84, Cor. 1.9].

§2. ALGEBRAIC SURFACES

By surface we always mean a smooth algebraic surface. Let S be a surface.
Recall that

χ(OS) = 1− q+ pg,

where q = h1(OS) is the irregularity of S and pg = h2(OS) its geometric
genus. More generally, for any sheaf F on S we set χ(F) =

∑
(−1)ihi(F).

We denote by Pic(S) the group of line bundles on S modulo isomorphism
and by Num(S) = Div(S)/ ≡ the group of divisors on Smodulo numerical
equivalence. Linear equivalence is denoted by ∼.

Let us recall a few standard facts about surfaces, cf. [BHPvdV14].

THEOREM 1.4 (Riemann-Roch formula). For any line bundle L on a surface S,
we have the formula

χ(L) = χ(OS) +
1

2
L · (L− KS),

where KS denotes a canonical divisor on S. For any vector bundle V on S,

χ(V) = rkV · χ(OS) +
1

2
c1(V) · (c1(V) − KS) − c2(V),

where ci(V) denotes the i-th Chern class of V .
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Recall that the topological-Euler characteristic of the surface S is given
by e(S) = 2−4q+b2(S), where b2 = rkH2(S,Z) is the second Betti number
of S. We have,

THEOREM 1.5 (Noether’s formula). For any surface S we have

χ(OS) =
1

12
(K2S + e(S)).

By a curve, we always mean a reduced curve. Let now C be an irredu-
cible curve on a surface S. Its arithmetic genus is by definition the integer
pa(C) := 1− χ(OC). We have,

THEOREM 1.6 (Genus formula). For any irreducible curve C on a surface S, we
have

2pa(C) − 2 = C
2 + C · KS.

We need now to recall the Hodge index theorem and some immediate
consequences of it. Fix some ample divisor H on S. Let q : Num(S) → Z,
where Num(S) denotes the group of divisors modulo numerical equival-
ence, be the non-degenerate quadratic form induced by the self-intersection
product and consider its linear extension, still denoted by q, to the real vec-
tor space

Num(S)R = Num(S)⊗Z R.

We denote by h the class of H in Num(S)R. The form q is positive definite
on 〈h〉. Let

h⊥ = {x ∈ Num(S)R : x · h = 0}

and consider the orthogonal decomposition Num(S)R = Rh⊕h⊥. Then we
have

THEOREM 1.7 (Hodge index). With the same notations as above, the form q is
negative definite on the hyperplane h⊥ inside Num(S)R.

Rephrasing this in terms of divisors, this immediately yields:

COROLLARY 1.8. Let H be an ample divisor on a surface S. IfD is a divisor such
that D ·H = 0, then either D2 < 0, or D ≡ 0.
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The intersection form q on Num(S)R is positive on all lines Rhwhere h
is any ample class and negative on the hyperplanes h⊥. In other words, the
Hodge index theorem says that the signature of q is (1, ρ− 1), where

ρ(S) := rk Num(S)

is the Picard number of S.
We now want to recall and give a proof of a well-known strengthening

of the Hodge index theorem. First, we need the following

LEMMA 1.9. Let q be a quadratic form on Rm with signature (1,m−1). Suppose
π ⊂ Rm is a plane containing one positive direction, i.e. there is x ∈ π with
q(x) > 0. Then, the signature of q|π, the restriction of q to the plane π, is (1, 1).

Proof. Since π contains a positive direction, the signature of q|π is either
(1, 1) or (1, 0). Thus, we only need to show that q|π is still non-degenerate.
In fact, since dim(π) = 2, π intersects any hyperplane Π ' Rm−1 where q is
negative-definite. Hence, π also contains a negative direction.

Here we have the strong version of the Hodge index theorem, which is
in fact the most useful one for all practical purposes:

THEOREM 1.10. Let L,D be divisors on S, with L2 > 0. Then

(i) (L ·D)2 ≥ L2 ·D2. Moreover, if D is not numerically trivial, then:

(ii) Equality in (i) holds if and only if L andD are linearly dependent in Num(S)Q,
in which case one has precisely (L ·D)L ≡ (L2)D.

Proof. If D ≡ 0 there is nothing to prove. Hence, we assume that the
class d of D in Num(S)R is non-zero. Consider the subspace π = 〈l, d〉R
in Num(S)R, spanned by the classes of L and D. Since q(l) = L2 > 0 by
assumption, π contains a positive direction.

Let x ∈ π. If we write x = x1l+ x2d, we have

q(x) = (x1l+ x2d)
2 = (L2)x21 + 2(L ·D)x1x2 + (D2)x22

In other words, the matrix of the quadratic form q|π is

A =

(
L2 L ·D
L ·D D2

)
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Now, either dim(π) = 2 or dim(π) = 1. If dim(π) = 2, then the signature
of q|π is (1, 1) by Hodge index theorem. Thus,

detA = L2D2 − (L ·D)2 < 0,

which proves (i). Obviously, dim(π) = 1 if and only if l and d are R-linearly
dependent (in which case detA = 0). Since l and d are integral classes
(i.e. they lie in Num(S) = Zρ ⊂ Rρ), linear dependence over R means
linear dependence over Q. So, we can write rL ≡ sD, for some integers
r, s. Intersecting the expression rL ≡ sD with L and D respectively, we get
r/s = L ·D/L2, which proves (ii).

COROLLARY 1.11. Let L be a divisor on S with L2 > 0. If D is a divisor such
that D · L = 0, then either D2 < 0, or D ≡ 0.

Proof. By Theorem 1.10 (i) we have D2 ≤ 0. We assume by contradiction
D2 = 0 with D non-zero in Num(S). By Theorem 1.10 (ii) we get rL ≡ sD
for some r, s ∈ Z. Then 0 = s2D2 = r2L2, hence r = 0. Therefore, sD = 0 in
Num(S), that is sD ≡ 0. Since Num(S) has no torsion, D ≡ 0.

§3. NEF AND AMPLE DIVISORS

In this section we recall the basic properties of nef and ample divisors on
an algebraic surface. The reference is [BHPvdV14].

Let S be a (smooth, algebraic) surface. Recall that if L is a line bundle
on S, we say that L is very ample if, for some basis s0, . . . , sr of H0(L), the
rational map ϕL : S → Pr = PH0(L) given by x 7→ (s0(x), . . . , sr(x)) is an
embedding, and we say that L is ample if some positive multiplemL is very
ample. The property of being ample is then defined in the obvious way for
divisors by looking at their respective line bundles. The question is then
how to describe the set of ample divisors in Num(S).

If S has Picard number ρ(S) = 1 then Num(S) is generated by a single
class, that one of some ample line bundle H. This situation is then quite
simple. We therefore assume ρ(S) ≥ 2 in what follows.

We have the quadratic form q : Num(S)R → R, q(x) = x2. By standard
linear algebra, there is a basis of Num(S)R for which q is expressed in ca-
nonical form. Since the signature of q is (1, ρ− 1), the matrix of q in such a
basis is given by 

1

−1
. . .

−1
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If x ∈ Num(S)R has coordinates x1, . . . , xρ with respect to this basis, then

q(x) = x21 − x
2
2 − · · ·− x2ρ.

We define the set
Ω = {x ∈ Num(S)R : q(x) > 0}

which is the interior of the quadric cone {q = 0}. Notice that Ω has two
connected components: the one with x1 > 0 and that with x1 < 0.

Definition. The connected component ofΩwhich contains an ample class
is called the positive cone, and denoted by C = CS.

Of course, in order for this definition to make sense we have to show
that C contains indeed all ample classes, which is a matter of convexity:

Proof. Suppose L,H are two ample classes in Num(S). Since L2 > 0 and
H2 > 0, then L,H ∈ Ω. Consider a class αλ on the segment connecting the
classes H and L in Num(S)R, i.e. αλ = λH+ (1− λ)L, with 0 ≤ λ ≤ 1. Note
that

q(αλ) = λ
2H2 + 2λ(1− λ)H · L+ (1− λ)2L2

is positive, sinceH2, L2 andH ·L are, and because the coefficients above are
all non-negative (but never simultaneously zero). Therefore, q is positive
on the whole segment, which means that L and H must lie in the same
connected component ofΩ.

We recall the following numerical criterion for amplitude:

THEOREM 1.12 (Nakai-Moishezon). A divisor D in S is ample if and only if it
satisfies D2 > 0 and D · C > 0 for all irreducible curves C.

Whence, ampleness is a well defined property in Num(S), in the sense
that each representative of an ample class is itself an ample divisor: if H is
ample and H ′ ≡ H, then H ′ is ample. We then have,

COROLLARY 1.13. The sum of two ample divisors is ample.

Proof. It follows from the criterion of Nakai-Moishezon.

We observe that the set

D⊥ = {x ∈ Num(S)R : x ·D = 0},
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is a hyperplane through the origin of Num(S)R. Hence

D≥0 = {x ∈ Num(S)R : x ·D ≥ 0},

is a closed half-space of Num(S)R. This is clear in the canonical basis of
Num(S)R, where, if D and x have coordinates mi and xi respectively, then
x ·D = m1x1 −m2x2 − · · · −mρxρ. In particular, taking the intersection of
spaces of the form D≥0 yields a (convex) cone.

Definition. The ample cone is defined as the convex cone in Num(S)R gen-
erated by the ample classes,

Amp(S) = {
∑

λiHi : λi > 0, Hi ample}

(where the sums are finite). In particular, Amp(S) ⊂ CS. The nef cone of S is
defined as

Nef(S) = {x ∈ C : x · C ≥ 0 for all irreducible curves C ⊂ S}.

Definition. A nef divisor, is a divisor D for which D · C ≥ 0 for all irredu-
cible curves C. A big and nef divisor is a nef divisor such that D2 > 0.

The Ample cone is a cone and it is generated by ample classes, by defin-
ition. It is less obvious that the nef cone is a actually a cone. If D is a nef
divisor then D2 ≥ 0 (see below). Therefore, the classes of nef divisors lie
in the nef cone: they are precisely the points of Nef(S) with coordinates
in Z. However, in general they do not generate it as a cone (Mumford-
Ramanujam counterexample).

PROPOSITION 1.14. Let S be a surface and let C denote its positive cone. We
have that Amp(S) is open in C and Nef(S) is closed in C. Moreover,

Amp(S) = {x ∈ C : x · C > 0 for all irreducible curves C} = Int Nef(S)

Amp(S) = {x ∈ C : x · C ≥ 0 for all irreducible curves C} = Nef(S)

The second identity shows that nefness is the limit condition which defines
amplitude. In other words, amplitude fails right at the boundary of Nef(S),
i.e. we have,

COROLLARY 1.15. For any class x ∈ ∂Nef(S), either x2 = 0 or there exists an
irreducible curve C on S such that x · C = 0.
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Proof. If x ∈ ∂Nef(S) then clearly x2 ≥ 0. Suppose x2 > 0. Then, if x ·C > 0
for all irreducible curves we have x ∈ Amp(S) = Int Nef(S), contradicting
the assumption x ∈ ∂Nef(S). Thus x · C = 0 for some C.

We now give a short proof of the above Proposition.

Proof of the Proposition. We first show that Amp(S) is open.
We prove that any point h ∈ Amp(S) belongs to the interior of Amp(S),

that is, we construct an open neighbourhood of h contained in Amp(S).
First, let us do this when h is just the class of an ample divisor H ∈ Div(S).
Choose divisors D1, · · · , Dρ whose classes give a basis of Num(S). We can
choose some integersm1, . . . ,mρ such that bothDi +miH and −Di +miH

are very ample, for each i. Dividing out bymi we haveH± 1
mi
Di ∈ Amp(S).

We take these divisors as the vertices of a polyhedron. By convexity, this
polyhedron is entirely inside Amp(S). This shows thatH lies in the interior
of Amp(S), as claimed.

On the other hand, if we consider multiples h = λH, with λ > 0 it is
clear that the same argument still works (up to rescaling by a factor 1/λ).
Same if we consider h = λH+µH ′, with λ, µ > 0. This shows that any point
h ∈ Amp(S), which we can write as h =

∑
λiHi with λi > 0 and Hi ample,

lies in the interior of Amp(S), and therefore Amp(S) is open in Num(S)R.
We now show that Amp(S) = Nef(S). We have Amp(S) ⊂ Nef(S).

Next, notice that Nef(S) is closed. Indeed, by definition it is the intersection
of the closure of the positive cone C with the intersection of all the (closed)
half-spaces {x·C ≥ 0}, for all irreducible curvesC ⊂ S. Therefore Amp(S) ⊂
Nef(S) and we need to show the other inclusion. We want to prove that
each h ∈ Nef(S) is the limit of a sequence in Amp(S). Since Amp(S) is open
we may choose a basis h1, . . . , hρ of Num(S)R such that each hi is the class
of an ample divisor. For each n ≥ 1we construct a little box containing h,

Bn = {h+

ρ∑
i=1

tihi : 0 < ti <
1

n
}

We pick any point h̃n ∈ Bn having rational coordinates (it exists by density
of Q in R). Hence some integer multiple mh̃n is the class of a divisor D.
Then,

D2 = m2(h̃n)
2 = m2(h2 + 2

∑
tihi · h+

∑
titjhi · hj) > 0

since h2 ≥ 0 and h · hi ≥ 0 (because h is nef) and hi · hj > 0 (ample). Also,
for any irreducible curve C ⊂ S,

D · C = mh̃n · C = m(h · C+
∑

tihi · C) > 0
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since h · C ≥ 0 (nef) and hi · C > 0 (ample). By the criterion of Nakai-
Moishezon, it follows that D is ample, so that

h̃n =
1

m
D ∈ Amp(S).

Finally, it is clear that h̃n converges to h as n → ∞. This shows that
Amp(S) = Nef(S) and completes the proof of the Proposition.

We have defined nef divisors by the condition D · C ≥ 0 for any irredu-
cible curve C on S. Equivalently, D · E ≥ 0 for any effective divisor E.

PROPOSITION 1.16 (Kleiman). If D is nef, then D2 ≥ 0.

Proof. Pick an ample divisor H and define, for t ∈ R, the function

p(t) = (D+ tH)2 = D2 + 2tD ·H+ t2H2.

Since H2 > 0, we have p(0) = D2 and p(t) > 0 when t > 0 is big enough.
Hence we only need to find a sequence {tn}, converging to zero for n→ ∞
and such that p(tn) > 0. The simplest choice will do the job: let t0 ∈ Q be
such that p(t0) > 0. We claim that p(t0/2) > 0. Let us prove this claim.
Up to clearing the denominator of t0 we can assume it is an integer, hence
D + t0H is a divisor. Then (D + t0H)

2 > 0 implies that for n > 0 big
enough, either n(D + t0H) or its opposite is effective. Indeed, the former
is true, because H · n(D + t0H) > 0. Since D is nef, we must then have

D · n(D+ t0H) ≥ 0. This gives p(t0/2) = D2 + t0D ·H+
t20
4 H

2 > 0.

By the Nakai-Moishezon criterion and the above Proposition we may
compare the numerical conditions which define amplitude and nefness of
a given divisor D on a surface:

AMPLITUDE NEFNESS

D · C > 0, and D · C ≥ 0, hence
D2 > 0 D2 ≥ 0

where “for any smooth irreducible curve C” is understood. It might be
worth to point out that the “strictly nef” conditionD ·C > 0 alone does not
imply D2 > 0. There exist in fact some (rather pathological) examples of
strictly nef divisors with D2 = 0, thus non ample.

There is another important cone:

Definition. The effective cone Eff(S) is the cone in Num(S)R generated by
the (classes of) curves of S (or, equivalently, by the classes of the effective
divisors).
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Concretely, its elements are finite linear combinations

x =
∑

λiCi

where Ci are irreducible curves on S and λi ∈ R>0.

LEMMA 1.17. The effective cone contains the positive cone,

CS ⊂ Eff(S).

Proof. Since they are cones, it suffices to check on the generators. Let D ∈
CS. ThenD2 > 0, thus either nD or −nD is effective, for n sufficiently large.
Pick an ample classH ∈ CS and consider the hyperplaneH⊥ in Num(S). By
Hodge index theorem q is negative definite on H⊥, thus CS and H⊥ do not
intersect, i.e. CS is contained in the half-space H>0. Since clearly H ∈ H>0
we get D ·H > 0, hence nD is effective and, therefore, D too.

Definition. The closure Eff(S) in Num(S)R is called the Kleiman-Mori cone.

The general picture is the following:

Amp(S) ⊂ CS ⊂ Eff(S)
∩ ∩ ∩

Amp(S) ⊂ CS ⊂ Eff(S)

Recall that the closure Ω = {x ∈ Num(S)R : x2 ≥ 0} is the union of two
components C ∪ (−C) intersecting at zero, where C is the positive cone.

REMARK 1.18. The effective classes insideΩ all lie in C, i.e.

Ω ∩ Eff(S) ⊂ C.

Proof. Indeed, let x ∈ Ω ∩ Eff(S) and assume by contradiction x ∈ (−C)

(and x non-zero). For any ample class h ∈ C, since x is effective, x · h > 0.
Since x2 ≥ 0, we have q(λx + (1 − λ)h) > 0 for any 0 < λ < 1. Thus this
segment is entirely contained inΩ = C t (−C) and connects x ∈ (−C) and
h ∈ C; therefore it has to go through the origin, a contradiction.

COROLLARY 1.19. For any two effective classes x and y such that x2 ≥ 0 and
y2 ≥ 0 (hence x, y ∈ C), we have x · y ≥ 0.
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Proof. This was already clear when either x2 > 0 or y2 > 0, by the Hodge
index theorem. When x2 = y2 = 0, it suffices to observe that q cannot drop
negative along the segment from x to y.

We end this section by mentioning some description of the Kleiman-
Mori cone. If D is a divisor, we denote by R+[D] the ray generated by (the
class of) D in Num(S)R, that is, R+[D] = {λ[D] : λ > 0}.

Now suppose we have a curve C ⊂ S with negative self-intersection
C2 < 0. Then obviously R+[C] is not contained in CS, though R+[C] is
inside Eff(S). We have,

THEOREM 1.20 (Mori). The Kleiman-Mori cone is the smallest convex (closed)
cone inside Num(S)R which contains both the closed positive cone and the rays
generated by all curves C with negative self-intersection. In other words,

Eff(S) = CS +
∑
C2<0

R+[C]

(where the sum runs over all curves C on S with C2 < 0, if any).

REMARK 1.21. There exists a more precise description of the part of Eff(S) which
lies in the half-space {x : x · KS < 0}. The full result is known as Mori’s cone
theorem.

Recall the Nakai-Moishezon criterion: a divisor D is ample if and only
ifD2 > 0 andD ·C > 0 for any irreducible curve C. The latter condition can
be re-expressed by saying that the functional φD : Num(S)R → R given by

φD(x) = x ·D

is positive on the effective cone Eff(S). This latter condition alone does not
guaranteeD to be ample. On the other hand, if we extend this condition up
to the boundary of Eff(S), then D is ample. More precisely, we have

THEOREM 1.22 (Kleiman). D is ample if and only if its associated functionalφD
is positive on the Kleiman-Mori cone Eff(S).

§4. K3 SURFACES

In this section we recall the basic definitions and properties of K3 surface.
We refer to [BHPvdV14] as a reference.
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By definition, a K3 surface is a surface X such that

q(X) = 0 and KX = 0.

One has pg(X) = 1, thus χ(X) = 2. In particular,

h0(X,Ω1) = h1(OX) = 0,

i.e. there are no global holomorphic 1-forms, and

h0(X,Ω2) = h2(OX) = 1,

i.e. on X there exists a unique (non-zero) global holomorphic 2-formωX, up
to scalar multiples:

H2,0(X) = H0(X,Ω2) ' CωX.

Being a generator of H2,0, the 2-form ωX is nowhere vanishing, hence it
gives X a holomorphic symplectic structure. By the Hodge decomposition,

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H2,0(X),

we get b2(X) = dimH2(X,C) = 2+ h1,1. By Noether’s formula we get

e(X) = 12χ(OX) = 24,

hence h1,1 = 20. Finally, we recall that H2(X,Z), together with the cup
product, is an even unimodular lattice of signature (3, 19), hence isomorphic
to the K3 lattice

ΛK3 = U⊕3 ⊕ E8(−1)⊕2,
by Milnor’s theorem.

Without any further mention, we will consider only algebraic K3 sur-
faces in the following.

LEMMA 1.23. LetC be an irreducible curve on a K3 surfaceX. ThenOC(C) = ωC
andC2 ≥ −2, with equality if and only ifC is a smooth rational curve, andC2 = 0
if and only if pa(C) = 1. In particular, if pa(C) ≥ 2 thenC is a nef and big divisor.

Proof. Adjunction formula OX(C) ' ωC, gives C2 = 2pa(C) − 2. Since
C is irreducible, pa(C) ≥ 0 and so C2 ≥ −2, with C2 = −2 if and only
if pa(C) = 0, i.e.C ' P1. Obviously C2 = 0 if and only if pa(C) = 1.
Finally, if pa(C) ≥ 2, then C2 > 0, and for any other irreducible curve C ′

(which cannot be a component of C by the irreducibility assumption) one
has C · C ′ > 0, i.e.C is big and nef.
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It follows by the Lemma that the closure of the ample cone Amp(X) is

Nef(X) = {x ∈ CX : x · C ≥ 0 for all (−2)-curves C}.

LEMMA 1.24. Let C be an irreducible curve on a K3 surface X, with pa(C) ≥ 1.
Then, the linear system |C| is basepoint free. Moreover, h1(OX(C)) = 0.

Proof. Since h1(OX) = 0, the cohomology sequence of

0→ OX → OX(C) → ωC → 0,

shows that the map H0(OX(C)) → H0(ωC) is onto, since H1(OX) = 0. Hence
the basepoints of OX(C) are basepoints of ωC, which is basepoint free for
pa(C) ≥ 1. Observing that the boundary map H1(ωC) → H2(OX) is Serre
dual to the (bijective) restriction map H0(OX) → H0(OC), one immediately
obtains h1(OX(C)) = 0.

More generally, just as in the proof of the Lemma, if D is an effective
reduced divisor on a K3 surface X, then by the short exact sequence

0→ OX(−D) → OX → OD → 0,

using H1(OX) = 0 and Serre duality h1(OX(−D)) = h1(OX(D)), we immedi-
ately get the geometric interpretation of h1(OX(D)) as counting the connec-
ted components of D, precisely:

h1(OX(D)) = h0(OD) − 1

= #{connected components of D}− 1.

Let L be a line bundle on X. The Riemann-Roch formula gives

h0(L) + h0(−L) = 2+
1

2
L2 + h1(L).

As a straightforward consequence we get the following.

LEMMA 1.25. Let L be a non-trivial line bundle on a K3 surface X. We have,

(i) L2 = 2(χ(L) − 2) is even.

(ii) If L2 ≥ −2 then either h0(L) or h0(−L) is not zero.

(iii) If L2 ≥ 0 then either h0(L) or h0(−L) is at least 2.

(iv) If h0(L) = 1, then the effective divisor defined by the unique section of L is a
sum of smooth rational curves (with multiplicities).
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We shall only give a proof of (iv):

Proof. LetD =
∑
aiΓi be the effective divisor defined by the only section of

L. Since h0(D) = 1, for any integral component Γi of D we have h0(Γi) = 1,
hence Γ 2i = −2 by Riemann-Roch, therefore Γi ' P1.

COROLLARY 1.26. The fixed part of a linear system |L| on a K3 surface is a linear
combination

∑
aiΓi, ai ≥ 0, of smooth rational curves Γi ' P1.

Proof. Let |L| = |M| + F be the mobile and fixed part decomposition. Then
h0(F) = 1, since F is fixed. Apply (iv) above.

Let us now give two basic examples of the fixed part of a linear system
on a K3 surface. Suppose L is an effective line bundle, with L2 ≥ 0 and let

|L| = |M|+
∑

aiΓi

be the mobile and fixed part decomposition of the linear system |L|, with
Γi ' P1 the reduced components of the fixed part. By construction, we
have h0(L) = h0(M) and |M|, being mobile, has no fixed components and
is nef. In particular,M2 ≥ 0 and for any component Γi we haveM · Γi ≥ 0.

EXAMPLE 1.27. Consider the case |kE|+ F, with E an elliptic curve, k ≥ 1 and F
the fixed part. Suppose there exists a component Γ1 of F such that E · Γ1 > 0. Up
to linear equivalence kE+ Γ1 ∼ E1 + · · ·+ Ek + Γ1 (with Ei ∈ |E| all distinct) as a
reduced connected divisor (since Γ1 intersects each Ei), whence h1(kE + Γ1) = 0,
and by Riemann-Roch we get h0(kE+ Γ1) = kE · Γ1+ 1. On the other hand, since
Γ1 is fixed in |kE + Γ1|, we have h0(kE + Γ1) = h0(kE) = k + 1. Equating the
two yields E · Γ1 = 1. Now, if Γ2 is another fixed component with E · Γ2 = 1, then
by the same arguments we find k + 1 = h0(kE + Γ1 + Γ2) = 2k + Γ1 · Γ2, that
is k = 1 − Γ1 · Γ2 which forces k = 1 and Γ1 · Γ2 = 0. In particular, we find that
when k ≥ 2 there can be only one component Γ1 such that E · Γ1 = 1 and for all
other components E · Γi = 0. With the same arguments one shows that for k ≥ 1, a
smooth rational curve Γ on X is fixed in |kE+Γ | if and only if E ·Γ = 0 or E ·Γ = 1.

REMARK 1.28. When L ∼ kE + F is as in the example above, if there exists a
component Γ of the fixed part F such that E · Γ = 0, then L · Γ = F · Γ < 0, so L is
not nef. Thus, when k ≥ 2 the only nef linear systems having |kE| as the mobile
part are |kE| and |kE+ Γ |, with Γ ' P1 and E · Γ = 1.

EXAMPLE 1.29. Consider the case |L| = |C| + F, with C an irreducible curve.
Arguing as in the previous example one finds that any component Γ of F satisfies

32



0 ≤ C · Γi ≤ 1. Conversely, if some smooth rational curve Γ on X is such that
C · Γ = 0 or 1, then h0(C) = h0(C + Γ) by Riemann-Roch, which implies that Γ
is fixed in |C+ Γ |. We conclude that for any smooth rational curve Γ on X, one has
that Γ is fixed in |C + Γ | if and only if C · Γ = 0 or C · Γ = 1. Note that L · Γ < 0,
so L is not nef.

We recall some well-known results from Saint-Donat’ paper [SD74].
First of all, to understand the base locus is enough to understand the fixed
part. Precisely, one has the following fact, cf. [SD74, Cor. 3.2].

THEOREM 1.30. A complete linear system |L| on a K3 surface has no isolated
basepoints: its base locus coincides with its (eventually empty) fixed part.

Also, Saint-Donat characterizes complete basepoint free linear systems
as follows, cf.[SD74, Prop. 2.6].

THEOREM 1.31. Let L be a non-trivial effective line bundle on a K3 surface X
such that the linear system |L| is free of fixed components. Then, we have:

(i) If L2 = 0, then L = OX(rE), where E is an elliptic curve and r ≥ 1. In this
case h1(L) = r− 1.

(ii) If L2 > 0, then L = OX(C), for some smooth irreducible curve C on X.

Consequently, for big and nef line bundles one has the following result,
cf. [SD74, §2.7]. See also [Huy16, Cor. 3.15].

COROLLARY 1.32. Let L be a big and nef line bundle. Then, either

(i) |L| is basepoint free and L = OX(C), for some curve C; or

(ii) L = OX(rE + Γ) for some r ≥ 2, where |E| is an elliptic pencil and Γ is a
smooth rational curve such that E · Γ = 1.

Proof. Let |L| = |M| + F be the mobile and fixed part decomposition. If
M2 > 0, by Theorem 1.31 we get M ∼ C for some irreducible curve C,
hence F = 0 (for otherwise L · F < 0 contradicting the assumption that L
is nef). This proves (i). Hence, we can assume F 6= 0 and M2 = 0. Then
M ∼ rE, for some r ≥ 1 and an elliptic curve E, by Theorem 1.31. In fact,
r ≥ 2, for by Riemann-Roch h0(L) = h0(rE) > 2, while h0(E) = 2. Since
0 < L2 = 2M · F + F2 and F2 < 0, we have M · F > 0, hence there exists at
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least one irreducible component Γ ' P1 of F such that Γ ·M > 0, and in fact
Γ · E = 1, as we observed above. Remark 1.28 concludes the proof.

Let CX be the positive cone of a K3 surface X and consider a line bundle
L ∈ CX. Then L2 > 0 and we may assume L is effective, by Lemma 1.25. Let
C be an irreducible curve on X with C2 ≥ 0. Then L · C > 0, by the Hodge
index theorem and the fact that L is effective. We then have,

PROPOSITION 1.33 (Amplitude and Nefness on a K3 surface). Let L be a line
bundle on a K3 surface X. Then,

(i) L is ample if and only if L ∈ CX and L · Γ > 0 for all smooth rational curves
Γ ' P1 on X.

(ii) If L is effective and L2 ≥ 0, then L is nef if and only if L · Γ ≥ 0 for all smooth
rational curves Γ ' P1 on X.

Proof. The first assertion follows immediately by the Nakai-Moishezon cri-
terion for amplitude and the observations above Proposition 1.33, and the
second assertion by the fact that Nef(X) = Amp(X).

If L is an effective line bundle with L2 = 0 on a K3 surface X, then we
cannot conclude that there exist elliptic curves in |L|, as it might be the case
that L fails to be nef: if there is a smooth rational curve Γ with L · Γ < 0,
then Γ sits inside the base locus of |L| and so Theorem 1.31 does not apply
to L. Thus, it may seem that the existence of an elliptic curve depends on
the actual position of the effective cone Eff(X) inside Num(X)⊗R. Instead,
as it turns out, this can just be read off the Picard lattice:

PROPOSITION 1.34. A K3 surface X admits an elliptic fibration if and only if
there exists a non-trivial line bundle L ∈ Pic(X) with L2 = 0.

Proof. Let x denote the class of L in H2(X,Z). Up to sign, we have x ∈ CX.
Clearly, x is effective, by Riemann-Roch. It may not be nef, but, if this is the
case, then there is a (−2)-class δ such that x · δ < 0. Set x ′ = sδ(x), where sδ
denotes the Picard-Lefschetz reflection with respect to δ, defined as

sδ(x) = x+ (δ · x)δ.

Thus, we have 0 < sδ(x) · h < x · h, for some fixed ample class h. If still
x ′ is not nef, we may repeat the process which must end (since the degree
with respect to h has to be positive but decreases at each step). At the end,
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we find a non-trivial (effective) nef class, let us denote it again by x, with
x2 = 0. To conclude the proof one then only has to show that if L ∈ Pic(X)
is a non-trivial nef line bundle satisfying L2 = 0, then L ∼ mE, for some
elliptic curve E and some m > 0. This follows, for example, from Theorem
1.31 above (see also [PS71, §3 Thm. 1] for a direct, yet slightly lengthy proof
of this fact, or [Huy16, Prop. 3.10] for a more sophisticated approach).

Let us recall the following notion.

Definition. Letm be some integer. A curve C on a surface S ism-connected
if for any effective decomposition C ∼ D1 +D2 one hasD1 ·D2 ≥ m. (Note
that D1 and D2 are allowed to have common components).

Note that the definition only depends on the line bundle L = OS(C).

LEMMA 1.35. Let C be a big and nef curve on a projective surface S. Then C is
1-connected.

Proof. We apply the Hodge index theorem: for any class α ∈ NS(S)Q such
that α · C = 0, then either α = 0 or α2 < 0. Let C ∼ C1 + C2 and set

0 ≤ t := C · C1
C2

≤ 1.

If t = 0, then C · C1 = 0, and therefore we must have α2 := (C1)
2 < 0.

Then, 0 = C · C1 = (C1)
2 + C1 · C2 gives C1 · C2 > 0. Similarly, if t = 1,

then C · C2 = C2 − C · C1 = 0 and the same argument applies. Thus, we
assume 0 < t < 1, i.e. C · Ci > 0. Then, α := tC − C1 ∈ NS(S)Q satisfies
α · C = 0. Either α = 0 or α2 < 0. In the first case, by α · C2 = 0, we get
C1 · C2 = tC · C2 > 0. In the latter case, C1 · C2 = (tC − α)(C + α − tC) =

t(1− t)C2 − α2 > 0.

On K3 surfaces we can prove the following, cf. [SD74, Lemma 3.7].

PROPOSITION 1.36. Let C be an irreducible curve such that C2 > 0 on a K3
surface X. Then, any divisor in |C| is 2-connected.

Proof. Since each curve in |C| is 1-connected, we assume C ∼ C1 + C2 such
that C1 · C2 = 1 and we will find a contradiction. We analyse each one of
the following three cases separately:

(a) C · C1 ≥ 2 and C · C2 ≥ 2
(b) C · C1 = 1
(c) C · C1 ≤ 0
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Case (a) implies C2i > 0, i = 1, 2. Then C2i ≥ 2 by evenness of the
pairing, hence (C2)

2(C2)
2 > (C1 · C2)2 = 1 contradicts the Hodge index

theorem 1.10.
Case (b) gives C21 = 0. Then h0(C1) ≥ 2 and by

0→ OX(−C2) → OX(C1) → OC(C1) → 0

one finds h0(OC(C1) ≥ 2, i.e. a line bundle on C of degree C ·C1 = 1with at
least 2 sections, forcing C ' P1. This contradicts C2 > 0.

In case (c) we may assume the inequality is strict, as C · C1 = 0 would
imply C21 = −1, which is impossible on a K3 surface, by the evenness of
the K3 lattice. If C · C1 < 0, then C, being irreducible, would have to be an
irreducible component of C1, which is clearly impossible (or C would be
linearly equivalent to a reducible curve, one of whose irreducible compon-
ents is C itself).

§5. BRILL-NOETHER THEORY

For all the results discussed in this section we refer to [ACGH10].
Let C be a smooth algebraic curve of genus g. A linear system of type

grd on C is a pair (A,V) where A is a line bundle of degree d on C and V a
(r + 1)-dimensional subspace of H0(C,A). When V = H0(C,A) coincides
with the whole space of global sections of Awe say that the grd is complete.

Definition. A line bundle A on C is called special if h1(A) > 0.

For a line bundle Awe denote by

r(A) := h0(A) − 1,

the projective dimension of the linear system |A|. By the Riemann-Roch
theorem,

r(A) = d− g+ h1(A).

Therefore, a line bundle is special if and only if

r(A) > d− g.

Special line bundles are thus those line bundles which carry an exceptional
number of sections and Brill-Noether theory can be regarded as the study
of special line bundles on algebraic curves.

We denote by Mg the moduli space of curves of genus g. It is well-
known that Mg is an irreducible quasi-projective variety. We say that a
given property of a curve of genus g is an open property if it holds inside a
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(Zariski) open subset of Mg. Equivalently, we say that the property holds
for the general curve in Mg.

Given g, r, d one defines the Brill-Noether number

ρ(g, r, d) = g− (r+ 1)(g− d+ r).

The following result is known as the Brill-Noether theorem:

THEOREM 1.37. A general curve of Mg carries a grd if and only if ρ(g, r, d) ≥ 0.

Complete linear systems on C of fixed degree d ≥ 1 and carrying at
least r+ 1 > 0 independent global sections are parametrized by a variety

Wr
d(C) = {A ∈ Picd(C) : r(A) ≥ r}.

This varieties are obtained as determinantal subvarieties of Picd(C) and the
scheme structure onWr

d(C) is the one naturally inherited as a subscheme of
Picd(C). We gather in the following theorem some well-known properties
of these varieties, cf. [ACGH10, Chap.V].

THEOREM 1.38. Let C be any curve in Mg. Let d ≥ 1 and r ≥ 0 be integers. If
ρ(g, r, d) ≥ 0, then Wr

d(C) is non-empty. Furthermore, if r ≥ d − g, then each
component ofWr

d(C) has dimension at least ρ(g, r, d).

Therefore, for any A ∈Wr
d(C), we have

dimAW
r
d(C) ≥ ρ(g, r, d),

although the dimension ofWr
d(C) might be strictly bigger. The Brill-Noether

number ρ(g, r, d) is hence called the expected dimension ofWr
d(C).

Of course, by the Brill-Noether theorem 1.37, ifC is general and ρ(g, r, d)
is negative, thenWr

d(C) is empty, though there can be special curves carry-
ing a grd with negative Brill-Noether number; an immediate example being
smooth plane curves: the linear system giving the embedding in P2 is such
that ρ(g, 2, d) = 9d− 2d2 − 10 < 0whenever d > 2.

For a line bundleA onCwe denote by µ0 = µ0(A) the cup-product map

µ0 : H
0(A)⊗H0(ωC ⊗A−1) → H0(ωC).

Observe that the difference between the dimensions of codomain and
domain of µ0 is precisely g− (r+ 1)(g− d+ r) = ρ(g, r, d), with d = degA
and r = r(A). Therefore the image of µ0 has codimension at least ρ(g, r, d).
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In particular, µ0 is injective if and only the image Im(µ0) has codimension
exactly ρ(g, r, d), or, equivalently, dim ker(µ∨0 ) = ρ(g, r, d), where

µ∨0 : H
1(OC) → H0(A)∨ ⊗H1(A),

is the map dual to µ0.
Let us recall [ACGH10, IV, Prop.(4.2)], which describes the infinitesimal

properties ofWr
d(C).

PROPOSITION 1.39. Let A be a point of Wr
d(C) not belonging to Wr+1

d (C) and
let µ0 = µ0(A). The tangent space toWr

d(C) at A is identified with ker(µ∨0 ). The
tangent space to Wr

d(C) at a point B ∈ Wr+1
d (C) is equal to the whole tangent

space TB Picd(C). In particular, if Wr
d(C) has the expected dimension ρ(g, r, d)

and r > d− g, then B is a singular point ofWr
d(C).

We therefore have, for A ∈Wr
d(C) \W

r+1
d (C), the inequalities

ρ(g, r, d) ≤ dimAW
r
d(C) ≤ dim ker(µ∨0 ),

which, together with the observations above, shows the following:

COROLLARY 1.40. Wr
d(C) is smooth of dimension exactly ρ(g, r, d) at a point

A ∈Wr
d(C) \W

r+1
d (C) if and only if µ0(A) is injective.

It had been conjectured by Petri that for a general curve C in Mg, all line
bundles A on C have injective µ0 map. Since this condition is open in Mg,
it would suffice to find a single example of a curve with this property (one
for any genus) in order to prove Petri’s conjecture. However, all the explicit
known examples fail the task. This conjecture was nevertheless proved by
Gieseker:

THEOREM 1.41 (Gieseker). For a general curve C, all line bundles on C have
injective µ0 map.

The proof is by degeneration to stable curves. A much simpler proof of
this theorem was later found by Lazarsfeld. In particular, it uses curves on
K3 surfaces to show the existence of smooth curves satisfying Petri’s con-
jecture in any genus. Due to the importance this result has had to the sub-
sequent development of the theory of curves, and in particular the Brill-
Noether theory of curves on K3 surfaces, we will recall it in detail and give
an outline of the proof using vector bundles in the next chapter.
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We end this section by recalling the basic properties of two important
invariants of an algebraic curve: the gonality and the Clifford index.

Let C be a smooth curve of genus g. Recall that C is called hyperelliptic
if there exists a finite map C → P1 of degree 2. Generalizing this situation,
one gives the following definition.

Definition. The gonality of C is by definition the minimum integer d > 0

such that the curve admits a non-constant morphism C → P1 of degree d.
Equivalently,

gon(C) = min{deg(A) : A ∈ Pic(C), h0(A) = 2}.

In particular, gon(C) = 2 if and only if C is hyperelliptic. A line bundle
with two independent global sections is usually called a pencil, and the line
bundles A appearing in the definition of the gonality are called gonality
pencils, or just pencils of minimal degree on C.

By the Brill-Noether theorem 1.37, the general curve of genus g will
carry a pencil of degree d if and only if ρ(g, 1, d) = 2d − g − 3 ≥ 0,
i.e. whenever d ≥ bg+32 c (the lower integral part of g+32 ). In particular, every
curve of genus g has a pencil of degree bg+32 c, that is,

gon(C) ≤ bg+ 3
2
c,

with an equality for the general curve in Mg. We refer to bg+32 c as the max-
imal (or general) gonality of a curve of genus g.

The gonality being a classical invariant of algebraic curves, its modern
counterpart, in some sense to be considered a “refinement” of the gonality,
is given by the Clifford index.

Definition. For a line bundle A on C, one defines

Cliff(A) = degA− 2h0(A) + 2.

The Clifford index of the curve C itself is then defined as

Cliff(C) = min{Cliff(A) : A ∈ Pic(C), h0(A) ≥ 2, h1(A) ≥ 2}.

The line bundles A appearing in the definition of Cliff(C) are said to con-
tribute to the Clifford index of C. If, in addition, Cliff(C) = Cliff(A) then we
say that A computes Cliff(C).

Note that Cliff(A) = Cliff(KC − A), by the Riemann-Roch theorem, so
the Clifford index is symmetric in A and KC − A. If A contributes to the
Clifford index of C then, since A is non-special, we have deg(A) ≤ 2g− 2.
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Let us observe that if A is a line bundle on C of degree d = deg(A) and
dimension r = r(A) = h0(A) − 1, then

ρ(g, r, d) = g− h0(A)h1(A).

Hence, by the Brill-Noether theorem 1.37, line bundles which contribute to
the Clifford index of a general curveC exist only for g ≥ 4. When g = 2 or 3
we adopt the standard convention that Cliff(C) = 0when C is hyperelliptic
and Cliff(C) = 1 otherwise.

THEOREM 1.42 (Clifford). If A is a line bundle on C such that r(A) > 0 and
r(KC −A) > 0, then

deg(A) − 2r(A) ≥ 0.
If equality holds, then C is hyperelliptic.

By Clifford’s theorem, we have Cliff(C) ≥ 0 with equality if and only if
C is hyperelliptic. Since Cliff(C) ≤ gon(C) − 2, we immediately have

Cliff(C) ≤ bg− 1
2
c,

and the equality holds for the general curve in Mg, again by Theorem 1.37.
Gonality and Clifford index are, in fact, very much related: for any

curve C of Clifford index c and gonality k, one has [CM91]

c+ 2 ≤ k ≤ c+ 3,

and curves for which k = c + 3 are called exceptional, and they are conjec-
tured to be extremely rare [ELMS89].

Notice that k = c + 2 if and only if the Clifford index of C is computed
by a pencil, i.e. if and only if C has Clifford dimension 1, where

Cliffdim(C) = min{dim|A| : A computes Cliff(C)}.

Exceptional curves lying on K3 surfaces have been classified by Knut-
sen [Knu09]. We will recall this result in the next Chapter.
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CHAPTER 2

CURVES ON K3 SURFACES

In recent years, many computations of gonality and Clifford index of curves
lying on some special classes of surfaces, such as rational elliptic surfaces,
abelian surfaces, K3 and Enriques surfaces, have appeared in the literature.

A great deal of attention has been concentrated on K3 surfaces, mainly,
though not solely, for reasons arising from the Brill-Noether theory of curves.

All of this started with Lazarfseld’s discovery that we can find Brill-
Noether general curves on K3 surfaces. This paved the way for several
subsequent results, culminating with the arguably most important theorem
in the direction of Green’s conjecture, namely Voisin’s proof that the con-
jecture holds for generic curves in any genus, [Voi02], [Voi05].

In many of these works, a crucial technique has been the use of some
particular vector bundles, called Lazarsfeld-Mukai bundles.

We sketch the definition and main properties of these objects in the fol-
lowing section and then, as an application, we give a self-contained proof
of Lazarsfeld’s theorem, following the ideas of Pareschi [Par95].

Amongst the other numerous applications of this vector bundle ap-
proach, one which is fundamental in our work is the theorem of Green and
Lazarsfeld [GL87] on the behaviour of the Clifford index for K3 sections.
We describe this result below.

We close the Chapter with some useful observations concerning the
computation of the Clifford index of curves on K3 surfaces, and we also
recall Knutsen’s classification of exceptional curves [Knu09].

§1. VECTOR BUNDLES

In this section we recall some well-known definitions and constructions.
We refer to [ACGH10] and [ACG11, Ch.XXI] as a general reference.
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§1.1. THE MAP µ1 AND KERNEL BUNDLES

We denote by C a smooth curve of genus g together with a globally
generated line bundle A. In other words, the evaluation map

H0(A)⊗OC
evA−−→ A (2.1)

is surjective, and A gives rise to a morphism ϕA : C→ P, mapping C to the
projective space

P = PH0(A)∨.

REMARK 2.1. With a little abuse of notation, given a sheaf F on P we will denote
by F|C the sheaf on C obtained by pulling back F by the morphism C → P.
Moreover, for the sake of simplicity of notation, we sometimes omit the symbol for
the tensor product of two line bundles and write AB instead of A ⊗ B and Ak in
place of A⊗k. For example, we will always writeωCA−1 in place ofωC ⊗A−1.

Recall that on the projective space P, we have the Euler sequence

0→ OP → H0(OP(1))
∨ ⊗OP(1) → TP → 0, (2.2)

where TP denotes the tangent bundle of P. Pulling back to C, we get

0→ OC → H0(A)∨ ⊗A→ TP|C → 0. (2.3)

At the level of global sections, (2.3) induces an exact sequence

H1(OC) → H0(A)∨ ⊗H1(A) → H1(TP|C) → 0, (2.4)

and taking the dual of the first map appearing in (2.4), we get the map

µ0 : H
0(A)⊗H0(ωCA−1) → H0(ωC),

given by multiplication of sections. In particular, ker(µ0) = H1(TP|C)∨.
Thus, the first map appearing in (2.4) is just µ∨0 and we identify

H1(TP|C) = ker(µ0)∨.

On C, we also have the normal bundle sequence

0→ TC → TP|C → NC/P → 0, (2.5)

which induces on cohomology an exact sequence

H0(NC/P)
κ−→ H1(TC)

µ∨1−−→ H1(TP|C) → H1(NC/P) → 0, (2.6)

where the first map κ : H0(NC/P) → H1(TC) is the usual Kodaira-Spencer
map associated to C→ P.
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Definition. We define the map

µ1 : ker(µ0) → H0(ω2C)

as the dual of the map µ∨1 : H
1(TC) → H1(TP|C) = ker(µ0)∨ which is defined

by the sequence (2.6) above. We write µ1 = µ1(A).

The dual sequence to the Euler sequence (2.2) is

0→ ΩP → H0(OP(1))⊗OP(−1) → OP → 0 (2.7)

whereΩP is the cotangent bundle of P. Pulling back to Cwe get

0→ ΩP|C → H0(A)⊗A−1 → OC → 0. (2.8)

Tensoring this sequence by Awe get

0 −−→ ΩP|C ⊗A −−→ H0(A)⊗OC
evA−−→ A −−→ 0. (2.9)

Definition. We define the kernel bundle MA on the curve C as the vector
bundle defined as the kernel of the evaluation map (2.1). Thus, MA is
defined by the following short exact sequence

0 −−→MA −−→ H0(A)⊗OC
evA−−→ A −−→ 0 (2.10)

LEMMA 2.2. The kernel bundleMA is a vector bundle of rank r(A) = h0(A) − 1
on C and determinant detMA ' A−1. Moreover we have an isomorphism

MA ' ΩP|C ⊗A. (2.11)

Proof. By (2.10) we see thatMA has rank equal to dimH0(A)−1 = r(A) and
OC = det(H0(A)⊗OC) ' det(MA)⊗detA, i.e. det(MA) ' A−1. Comparing
(2.10) with (2.9) above we see thatMA ' ΩP|C ⊗A.

Let us now show the connection between the kernel bundleMA and the
homomorphisms µ0 = µ0(A) and µ1 = µ1(A).

LEMMA 2.3. We have a natural map

m : MA ⊗ωCA−1 → ω2C

and an isomorphism

H0(MA ⊗ωCA−1) = ker(µ0)

which is such that H0(m) = µ1, i.e. the map induced by m on global sections is
identified with µ1 : ker(µ0) → H0(ω2C).

43



Proof. Tensoring the differential map d : OC → Ω1C = ωC with the evalu-
ation map evA, we get evA⊗d : H0(A) ⊗ OC → A ⊗ωC and, by restriction
to MA ⊂ H0(A) ⊗ OC, a map MA → A ⊗ωC. Twisting by ωCA−1 yields a
map m : MA ⊗ ωCA−1 → ω2C. Now, twisting the sequence (2.10) defining
MA byωCA−1 we get the short exact sequence

0→MA ⊗ωCA−1 → H0(A)⊗ωCA−1 → ωC → 0

which induces on global sections the exact sequence

0 −→ H0(MA ⊗ωCA−1) −→ H0(A)⊗H0(ωCA−1)
µ0−→ H0(ωC)

which shows that H0(MA ⊗ωCA−1) = ker(µ0). Finally, we show H0(m) =

µ1 or, dually, H1(m∨) = µ∨1 . Indeed, m∨ : (ω2C)
∨ → M∨

A ⊗ A and we have
(ω2C)

∨ = ω−1
C = TC, while, by (2.11), M∨

A ⊗ A = (ΩP|C ⊗ A)∨ ⊗ A = TP|C,
and therefore H1(m∨) = µ∨1 : H

1(TC) → H1(TP|C).

§1.2. THE MAP µS1 AND LAZARSFELD-MUKAI BUNDLES

We keep the same notations as before: C is a smooth curve and A a
globally generated line bundle on C, which determines the maps

µ1 : ker(µ0) → H0(ω2C)

and
µ∨1 : H

1(TC) → H1(TP|C)

defined above. We now further assume that C lies on a K3 surface S. We
then have a normal bundle sequence

0→ TC → TS|C → NC/S → 0, (2.12)

whose first coboundary map on cohomology is the Kodaira-Spencer map
associated to C ⊂ S, which we denote by

κS : H
0(NC/S) → H1(TC). (2.13)

Definition. We define µS1 as the composition (κS)
∨ ◦ µ1,

ker(µ0) H0(ω2C) H1(OC)
µ1 κ∨S

µS1
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and thus its dual map is the composition

H0(NC/S) H1(TC) H1(TP|C)
κS µ∨1

(µS1)
∨

Given the line bundle A on C, we can consider the sheaf j∗A on the K3
surface S, where j is the inclusion of C in S.

REMARK 2.4. With the purpose of keeping the notation simple, we will just write
A in place of j∗A. It will be clear from the context whether we regard A as a sheaf
on C or on S.

Since A is globally generated, we have a surjective evaluation map

H0(A)⊗OS
evS

A−−→ A.

Definition. The Lazarsfeld-Mukai bundle FA on S, is defined by

0→ FA → H0(A)⊗OS
evS

A−−→ A→ 0. (2.14)

Its dual F∨A = Hom(FA,OS), will also be called a Lazarsfeld-Mukai bundle.

LEMMA 2.5. Let D be a Cartier divisor on a smooth variety X. Then,

Ext1(OD,OX) ' OD(D).

Proof. We have Hom(OD,OX) = 0, since OD is torsion as a sheaf on X. Du-
alizing the exact sequence 0 → OX(−D) → OX → OD → 0, we thus get
0 → OX → OX(D) → Ext1(OD,OX) → 0. Comparing this exact sequence
with 0→ OX → OX(D) → OD(D) → 0, we get Ext1(OD,OX) ' OD(D).

LEMMA 2.6. The Lazarsfeld-Mukai bundle FA is a vector bundle on S of rank
equal to rk FA = h0(A) and its dual EA := F∨A, sits in a short exact sequence

0→ H0(A)∨ ⊗OS → EA → ωCA
−1 → 0. (2.15)

Proof. Since A is torsion (as a sheaf on S), by (2.14) we immediately get
that rk FA = dimH0(A) and, moreover, Hom(A,OS) = 0. Thus, apply-
ing the functor Hom(−,OS) to the sequence (2.14), we get an exact se-
quence 0 → H0(A)∨ ⊗ OS → EA → Ext1(A,OS) → 0. Finally, we have
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that Ext1(A,OS) ' Ext1(OC,OS) ⊗ A−1, cf. [Har77, Prop.6.7] and, by the
Lemma above, Ext1(OC,OS) ' OC(C). Since S is a K3 surface, by adjunc-
tion OC(C) ' ωC.

The basic properties of Lazarsfeld-Mukai bundles on a K3 surface S are
as follows.

LEMMA 2.7. Let FA and EA be Lazarsfeld-Mukai bundles defined by a pair (C,A)
by the exact sequences (2.14) and (2.15) respectively. We have

(i) c1(EA) = [C] and c2(EA) = degA.

(ii) EA is globally generated off the base locus ofωCA−1.

(iii) h0(E) = h0(A) + h0(ωCA−1).

(iv) h1(EA) = h1(FA) = 0 and h2(EA) = h0(FA) = 0.

(v) h0(FA⊗EA) = h0(FA⊗ωCA−1) and χ(FA⊗EA) = 2− 2ρ(g, r, d), where
g = g(C), d = degA, r = r(A) and ρ(g, r, d) is the Brill-Noether number.

Proof. Considering ωCA−1 as a sheaf on S, we have c1(ωCA−1) = [C] and
c2(ωCA

−1) = [C]2 − deg(ωCA−1) = degA, cf. [Fri98, p.30, Lem. 1]. By
Whitney’s formula applied to the short exact sequence (2.15) we get

1+ c1(EA) + c2(EA) = (1) · (1+ c1(ωCA−1) + c2(ωCA
−1))

= 1+ [C] + degA.

Equating the terms on both sides yields the statement (i). By (2.15) we
get a surjection H0(EA) → H0(ωCA

−1). Thus, every section of ωCA−1 lifts
to a section of EA, proving (ii). The statements in (iii) and (iv) are also
immediate consequences of (2.15), using that h1(OS) = 0 on a K3 surface.
Setting r := h0(A) − 1 = rkEA − 1, the Riemann-Roch formula gives

χ(FA ⊗ EA) = rc1(E)2 − 2(r+ 1)c2(E) + 2(r+ 1)2

= r(2g− 2) − 2(r+ 1)d+ 2(r+ 1)2

= 2− 2g+ 2(r+ 1)(r+ g− d)

= 2− 2ρ(g, r, d).

Finally, tensoring (2.15) by FA and passing to the exact sequence in cohomo-
logy we get h0(FA ⊗ EA) = h0(FA ⊗ωCA−1).

Recall that a vector bundle E is called simple if the only endomorphisms
of E are the constants, i.e. if h0(E∨ ⊗ E) = 1.
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REMARK 2.8. Part (v) of Lemma (2.7) yields, more explicitly,

2h0(E∨A ⊗ EA) − h1(E∨A ⊗ EA) = 2− 2ρ(g, r, d).

Thus, if the Lazarsfeld-Mukai bundle EA associated to a complete linear series A
of type grd on C is simple, then ρ(g, r, d) ≥ 0. To put it the other way around, any
grd on a curve lying on a K3 surface, having negative Brill-Noether number, gives
rise to a non-simple Lazarsfeld-Mukai bundle.

Given a curve C and a globally generated line bundle A on C, we have
defined the kernel bundle MA on C and explained how it encodes inform-
ation about the homomorphisms µ0 = µ0(A) and µ1 = µ1(A). When C lies
on a K3 surface S, we have the Lazarsfeld-Mukai bundle FA on S and the
homomorphism µS1 = µS1(A) defined above. We now come to explain the
connection between FA withMA and the map µS1 .

LEMMA 2.9. There is a natural short exact sequence

0→ OC → FA ⊗ωCA−1 →MA ⊗ωCA−1 → 0 (2.16)

whose first coboundary mapH0(MA⊗ωCA−1) = ker(µ0) → H1(OC) is identified
with the homomorphism µS1 . In particular, if FA is simple, then µS1 is injective.

Proof. Restricting FA to the curveC and comparing the short exact sequences
(2.10) and (2.14) defining MA and FA respectively, we get a surjective map
FA ⊗ OC → MA. Since rk FA − rkMA = 1, the kernel of this surjection is a
line bundle L on C. Since det FA = OS(−C) and detMA = A−1, we get

L ' det(FA|C)⊗ det(MA)
−1 ' OC(−C)⊗A ' ω−1

C A

Tensoring 0→ L → FA ⊗OC →MA → 0with L−1 = ωCA
−1 yields (2.16).

Now, tensoring the differential map d : OS → Ω1S with the evaluation
map evSA, we get evSA⊗d : H0(A) ⊗ OS → A ⊗ ω1S and, by restriction to
FA ⊂ H0(A)⊗OS, a map FA → A⊗ωC. Twisting by ωCA−1, we get a map
f : FA ⊗ωCA−1 → Ω1S ⊗ωC. Consider the diagram

0 OC FA ⊗ωCA−1 MA ⊗ωCA−1 0

0 OC Ω1S ⊗ωC ω2C 0

f mid
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where the second row is the short exact sequence obtained by the conor-
mal sequence 0→ N∨

C/S → Ω1S|C → ωC → 0 twisted byωC 'NC/S, and the
mapm, for which H0(m) = µ1, was described in Lemma 2.3. Applying the
functor H0 of global sections to the right-hand side column of the diagram
above, we get a commutative diagram

ker(µ0)

H1(OC)

H0(ω2C)

µ1

κ∨S

µS1

Therefore, passing to the cohomology of (2.16) yields the exact sequence

0→ H0(OC) → H0(FA ⊗ωCA−1) → ker(µ0)
µS1−→ H1(OC).

Then, dim kerµS1 = h
0(FA⊗ωCA−1)−1 and so, since h0(FA⊗ωCA−1) =

h0(F∨A ⊗ FA) by Lemma 2.7(v), if FA is simple, then µS1 is injective.

§2. CURVES ON GENERAL K3 SURFACES ARE BRILL-NOETHER
GENERAL

In this section we give a proof of Lazarsfeld’s celebrated result [Laz86].

THEOREM 2.10 (Lazarsfeld). Let C0 be a smooth irreducible curve on a K3 sur-
face S. If every member of the linear system |C0| is reduced and irreducible, then the
generic memberC ∈ |C0| is such that for any line bundleA onC the multiplication
map µ0 : H0(A)⊗H0(ωCA−1) → H0(ωC) is injective.

In particular, the hypothesis of the theorem are satisfied on a K3 surface
Swith Picard number one such that Pic(S) = Z · [C].

We follow Pareschi’s argument [Par95]. Let us start with a very simple,
yet useful, remark:

REMARK 2.11. Let∆ be the divisor of base-points ofA. If µ0(A(−∆)) is injective,
then also µ0(A) is injective.

Proof. We assume µ0(A) is not injective and show that µ0(A(−∆)) is not
injective. Denote by i : H0(ωC(−∆)) → H0(ωC) the natural inclusion and
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by ν : H0(A(−∆)) ⊗ H0(ωCA−1) → H0(ωC(−∆)) the multiplication map.
Via the natural identification H0(A) = H0(A(−∆)), we have µ0(A) = i ◦ ν,
not injective by assumption. Denoting by

j : H0(A(−∆))⊗H0(ωCA−1) → H0(A(−∆))⊗H0(ωCA−1(∆))

the natural inclusion, we have µ0(A(−∆)) ◦ j = i ◦ ν. Since i ◦ ν is not
injective and j is injective, we get that µ0(A(−∆)) is not injective.

Therefore, in order to prove Theorem 2.10, we only have to check the
injectivity of µ0(A) with A globally generated. Given A, we denote its
Brill-Noether number by ρ(A) = ρ(g, r, d), where g = g(C), d = deg(A)
and r = r(A). Recall from the previous section that we defined a map
µS1(A) : ker(µ0(A)) → H1(OC). The first crucial step is the following

PROPOSITION 2.12. Let C be a smooth irreducible curve on a K3 surface S such
that every member of the linear system |C| is reduced and irreducible. Then, for any
globally generated line bundle A on C, the Lazarsfeld-Mukai bundle FA defined by
(2.14) is simple. In particular, ρ(A) ≥ 0 and the map µS1(A) is injective.

Proof. We prove that the dual EA = F∨A is simple. By contradiction, assume
there exists a non-constant endomorphismφ ∈ End(EA) = H0(FA⊗EA). We
can assume that φ : EA → EA drops rank everywhere on S, i.e. the constant
function

det(φ) ∈ H0(det(FA ⊗ EA)) = H0(OS)

is identically zero: if not, just replace φ with the endomorphism φ − λ id,
where λ is an eigenvalue of φ at some given point x ∈ S, so that the con-
stant function det(φ − λ id) must vanish at x, whence everywhere on S.
Therefore, the image Imφ is a proper subsheaf of EA and we have a short
exact sequence

0→M→ EA → N0 → 0,

where M = Im(φ) and N0 = coker(φ). Let N = N0/T(N0), where T(N0) is
the torsion subsheaf of N0. Then,

[C] = c1(EA) = c1(M) + c1(N) + c1(T(N0)),

insideH2(S,Z). Now, c1(T(N0)) is represented by the (possibly empty) sup-
port of T(N0) in codimension 1 (see e.g. [Fri98, p.29]). We want to prove
that both c1(M) and c1(N) are represented by effective curves on S, thus
giving a decomposition of [C] which contradicts the hypothesis that every
member of |C| is reduced and irreducible. We observe thatM andN, being

49



quotients of the globally generated, off a finite set, bundle EA, are also glob-
ally generated off a finite set. Also,M∨ andN∨ are sub-sheaves of FA = E∨A.
Thus, if M = O⊕rS was a trivial bundle, then 0 → O⊕rS → FA would provide
FA with global sections, but h0(FA) = 0 by Lemma (2.7). Hence M and N
are both non-trivial and globally generated off a finite set. We conclude by
applying the following lemma.

LEMMA 2.13. Let M be a torsion-free sheaf of rank r on a smooth projective sur-
face S. IfM is globally generated off a finite set, then the class c1(M) is represented
by an effective curve. Moreover, c1(M) = 0 if and only ifM = O⊕rS .

Proof. Up to replacingMwith its double dual, we may assumeM is locally
free. Indeed, M∨∨ is locally free and the inclusion M → M∨∨ is an iso-
morphism off a finite set (cf. [OSS80, Ch.II, 1.1]), whence c1(M) = c1(M

∨∨).
We then assume that M is a non-trivial vector bundle. Choose r = rkM
sections si : O⊕rS → M in H0(M) which generate M off a finite set. By
choosing the si generically in H0(M), their degeneracy locus, defined loc-
ally by {x ∈ S : s1(x) ∧ · · · ∧ sr(x) = 0}, is of codimension one. Thus,
s = s1 ∧ · · · ∧ sr : OS → ∧r(M) = detM is a global section of detM, not
identically zero (hence h0(detM) > 0, and so c1(M) is effective), and van-
ishing at some point, since the si vanish at some point. Therefore, detM is
non-trivial, i.e. c1(M) 6= 0.

Let us introduce some notation. Given a curve C of genus g, we let
Vrd(C) denote the variety of complete grd’s on C, parametrizing line bundles
of degree d carrying exactly r+ 1 independent sections:

Vrd(C) = {A ∈ Picd(C) : r(A) = r}.

If |L| is a linear system of curves on a K3 surface S, and U ⊂ |L| a subset
containing smooth curves, we let

Vr
d (U) = {(C,A) : C ∈ U, A ∈ Vrd(C)}.

Each pair (C,A) in Vr
d (U) provides us with a map from C to some pro-

jective space of dimension r, but we want to be able to consider all curves
in Umapping to a fixed Pr. So, we set

Ṽr
d (U) = {(C,A, σ) : C ∈ U, A ∈ Vrd(C), σ is a basis of H0(A).}

Letting H be the Hilbert scheme of curves of degree d and genus g in Pr,
we now have a natural map Ṽr

d (U) → H. It is well known that the tangent
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space of H at the point corresponding to C is canonically isomorphic to
H0(NC/Pr). Thus, for any triple (C,A, σ) in Ṽr

d (U), we have a natural map

T(C,A,σ)Ṽ
r
d (U) → H0(NC/Pr).

We can now prove Lazarsfeld’s theorem.

Proof of Theorem 2.10. Let U ⊂ |C0| be the open subset of smooth curves in
|C0| and denote by π : Vr

d (U) → U the projection. Fix a pair (C,A) with
C ∈ U generic and A a globally generated line bundle on C. We let µ0 =

µ0(A) and µ1 = µ1(A). With the notations introduced above, we have the
commutative diagram

T(C,A,σ)Ṽ
r
d (U) H0(NC/Pr)

T(C,A)V
r
d (U) H0(NC/S) H1(TC)

H1(TPr |C)

dπ κS

κ

µ∨1
(µS1)

∨

where the vertical column on the right-hand side is the exact sequence
(2.6), which defines the map µ1. In particular, Im(κ) = ker(µ∨1 ) by ex-
actness. Let us now follow the diagram from the top left corner: since the
map T(C,A,σ)Ṽr

d (U) → T(C,A)V
r
d (U) is surjective, we have Im(κS ◦ dπ) ⊂

Im(κ) = ker(µ∨1 ). In other words, (µS1)
∨ ◦ dπ = 0. But dπ is surject-

ive by construction, hence (µS1)
∨ = 0. However, we know that (µS1)

∨ is
surjective by Proposition 2.12. We conclude that H1(TPr |C) = 0, whence
ker(µ0) = H1(TPr |C)

∨ = 0, which proves the statement of Theorem 2.10.

§3. CONSTANCY OF THE CLIFFORD INDEX IN A LINEAR SYSTEM
OF CURVES ON A K3 SURFACE

In this section we illustrate the result of Green and Lazarsfeld [GL87].

THEOREM 2.14 (Green-Lazarsfeld). Let S be a K3 surface and C a smooth irre-
ducible curve on S, of genus g ≥ 2. Then Cliff(C) = Cliff(C ′) for any smooth
curve C ′ in |C|. Moreover, if Cliff(C) < bg−12 c, then there exists a line bundle M
on S such that Cliff(C ′) = Cliff(M⊗OC), for any smooth curve C ′ in |C|.
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We now want to give an idea of the main arguments used in the proof.
The original proof in [GL87] being long and very technical, we work under
some simplifying assumptions along the way.

LEMMA 2.15. Let S be a K3 surface and E a vector bundle of rank r, globally
generated off a finite set, with h2(E) = 0. If c1(E)2 > 0, then h0(detE) ≥ h0(E).

Proof. We prove the Lemma under the simplifying assumption that E is
globally generated. Choose a generic subspace V ⊂ H0(E) of sections of
dimension dimV = rkE, so that the evaluation map e : V ⊗ OS → E drops
rank along a curve C and the cokernel of e is a line bundle A on C, yielding
a short exact sequence

0→ V ⊗OS → E→ A→ 0. (2.17)

By exactly the same arguments as in the proof of Lemma 2.7, we obtain
detE = OS(C) and h0(E) = h0(A) + dimV , and the dual sequence is

0→ E∨ → V∨ ⊗OS → ωCA
−1 → 0. (2.18)

Thus, h0(ωCA−1) = dimV + h1(E∨) and c1(E)
2 = C2 > 0. Moreover,

detE = OS(C) is globally generated, since E is. Hence, OS(C) is basepoint
free and, as V was chosen generically, C is a smooth irreducible curve of
genus g = 1 + C2/2, by Bertini’s theorem. By (2.17) and (2.18) it follows
thatA andωCA−1 are both globally generated, and thus Clifford’s theorem
1.42 gives degA ≥ 2h0(A)−2, or, equivalently h0(A)+h0(ωCA−1) ≤ 1+g,
by the Riemann-Roch theorem. Since h0(OS(C)) = 1+ g, we get

h0(E) = h0(A) + dimV ≤ h0(A) + h0(ωCA−1) ≤ h0(OS(C).

The main idea for the proof of Theorem 2.14 is a reduction argument
related to the following

Definition. Let EA be a Lazarsfeld-Mukai bundle on S. A vector bundle E,
of rank ≥ 2, is called a reduction of EA if

(i) There is a map EA → E surjective off a finite set.

(ii) h0(E) ≥ h0(EA) and hi(E) = 0 for i = 1, 2.

(iii) c1(E) = c1(EA) and 2 rkE− c2(E) ≥ 2 rkEA − c2(EA).

Sketch of the proof of Theorem 2.14. We explain how the arguments apply un-
der the simplifying assumption that S contains no elliptic nor smooth ra-
tional curves. Among the smooth curves in the linear system |C|, we fix
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one, say C0, of minimal Clifford index. We assume Cliff(C0) < bg−12 c and
we show that there exists a line bundle M on S such that for any smooth
curve C in |C0| the restrictionM⊗OC contributes to the Clifford index of C
and Cliff(M⊗OC) ≤ Cliff(C0). Let A be a line bundle which computes the
Clifford index of C0, and let EA be the associated Lazarsfeld-Mukai vector
bundle. The key step of the proof is given by the following

CLAIM. Let E be a reduction of EA of minimal rank. Then there exists a line
bundleMwith h0(M) ≥ 2 and a non-zero mapM→ E.

We prove the Claim in the case rkE = 2 only. Let us show that in this
case E is not simple. In fact, by Serre duality and Riemann-Roch

χ(E∨ ⊗ E) = 2h0(E∨ ⊗ E) − h1(E∨ ⊗ E)
= c1(E)

2 − 4c2(E) + 8

while, by (iii) and the assumption that Cliff(A) < bg−12 c, we have

c1(E)
2 − 4c2(E) + 8 ≥ c1(EA)2 + 4(2 rkEA − c2(EA) − 2)

= 2g− 2− 4Cliff(A)

≥ 4.

Thus, h0(E∨⊗E) ≥ 2, i.e.E is non-simple, and by the same arguments as in
the proof of Proposition 2.12 we get a short exact sequence

0→M→ E→ N→ 0

(where we assume for simplicity that N is locally free) with M and detN
effective line bundles, h2(N) = 0 and OS(C0) = M ⊗ detN. In particular,
thanks to our assumptions on Pic(S), we have M2 > 0 and c1(N)2 > 0,
whence h0(M) ≥ 2, by Riemann-Roch. This proves the Claim.

By the same argument, h0(detN) ≥ 2, and so detN = OS(C0) ⊗M−1

is effective and non-trivial, which shows h0(M ⊗ OS(−C0)) = 0. There-
fore, for any smooth curve C in |C0|, considering the long exact sequence in
cohomology induced by

0→M⊗OS(−C) →M→M⊗OC → 0

we get h0(M⊗OC) ≥ h0(M) ≥ 2 and, since h2(M) = 0,

h1(M⊗OC) ≥ h2(M⊗OS(−C)) = h
2((detN)∨) = h0(detN) ≥ 2.

This shows thatM⊗OC contributes to the Clifford index of C.
Next, we notice that N, being a quotient of E, is also globally generated

away from finitely many points, whence we can apply Lemma 2.15, which
yields h0(detN) ≥ h0(N).
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Recall by Lemma 2.7 that one has

h0(EA) = h
0(A) + h0(ωC0

A−1) = g(C0) + 1− Cliff(A),

where the second equality follows by Riemann-Roch on C.
Putting everything together, we get

g(C0) + 1− Cliff(A) = h0(EA) ≤ h0(E) ≤ h0(M) + h0(N)

≤ h0(M) + h0(detN)

≤ h0(M⊗OC) + h
1(M⊗OC)

= h0(M⊗OC) + h
0(ωC ⊗M−1)

= g(C) + 1− Cliff(M⊗OC),

which shows Cliff(M⊗OC) ≤ Cliff(A), as required.

§4. COMPUTING THE CLIFFORD INDEX

Suppose that C is a smooth irreducible curve of genus g ≥ 2 lying on a K3
surface S and we want to compute its Clifford index c = Cliff(C). The main
tool is of course Theorem 2.14: either we have

c = bg− 1
2
c = bC2/4c,

or there exists a line bundle M = OS(D), where D is an effective divisor on
Swhose restriction to C computes its Clifford index,

c = Cliff(D|C) = D · C− 2h0(OC(D)) + 2. (2.19)

Assume we are in the latter case. By the proof of Theorem 2.14, one has
h0(D) ≥ 2 and h0(C−D) ≥ 2. Also, by definition of Cliff(C), we have

h0(OC(D)) ≥ 2 and h0(KC −D|C) = h
0(OC(C−D)) ≥ 2

In particular, since OC(D) and OC(C−D) move at least in a pencil, we have
degC(D) ≥ 2 and degC(C−D) ≥ 2. On S, these inequalities read

2 ≤ D · C ≤ C2 − 2. (2.20)

Also, both D and C − D being non-trivial effective divisors on S, we
have h0(−D) = h0(D− C) = 0. Thus, by the short exact sequence

0→ OS(D− C) → OS(D) → OC(D) → 0,

we get the following exact sequences in cohomology:
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0→ H0(D) → H0(D|C) → H1(D− C)

and
H1(D) → H1(D|C) → H2(D− C) → 0.

Since h1(D − C) = h1(C − D) and h2(D − C) = h0(C − D), by Serre
duality, this yields the following:

REMARK 2.16. With C and D as above, we have

(i) h0(D|C) ≥ h0(D), with an equality if h1(C−D) = 0.

(ii) h1(D|C) ≥ h0(C−D), with an equality if h1(D) = 0.

When the geometry of S is particularly simple, these remarks can be
already enough to compute the Clifford indices of the curves in S.

EXAMPLE 2.17. Suppose Pic(S) = Z · [C0] and we want to compute the Clifford
index of the curves on S. First, we notice that for numerical reasons there cannot
exist a divisor D satisfying the inequalities (2.20) for C = C0, whence C0 has
maximal Clifford index (as predicted also by Lazarsfeld’s Theorem 2.10, since the
general member of |C0| is Brill-Noether general). Take now a smooth curve C in
|mC0|, for somem ≥ 2 and let D ∈ |C0|. Then,

h0(D|C) ≥ h0(D) ≥ 2

and
h1(D|C) ≥ h0((m− 1)C0) ≥ 2.

Hence, D|C contributes to the Clifford index of C. By direct computation, one
checks Cliff(D|C) < bC

2

4 c, i.e.C has non-maximal Clifford index. Again, by direct
computation one can check that for any other effective divisor D ′ on S such that
C − D ′ is effective, we have Cliff(D|C) ≤ Cliff(D ′|C), so we conclude that D|C
computes the Clifford index of C.

On the other hand, already when the K3 surface S has Picard number
two, the computation of the Clifford index of C ⊂ S can be more subtle.
Neither the statement of Green-Lazarsfeld’s Theorem 2.14, nor its proof,
give any indication for how to find the predicted line bundle M = OS(D)

(where D is as in the above discussion). Indeed, it will often be the case
that OS(D) is not unique:
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EXAMPLE 2.18. Let S be a K3 surface with Picard group generated by two classes
H and E such that

H2 = 2, E2 = 0 and H · E = 1.

Let C be a smooth curve of genus 3 in the linear system |2H|. One can check that
h0(H) = 3 and h1(H) = 0, while h0(C − E) ≥ 2 and h1(C − E) = 0. One
finds that both H|C and E|C contribute to the Clifford index of C and Cliff(H|C) =
Cliff(E|C) = 0. Therefore, both line bundles OS(H) and OS(E) play the role of M
in the statement of Theorem 2.14.

As it turns out, though, we can choose D to satisfy certain properties.
In [Knu01, Lem. 8.3], building on [Mar89], Knutsen proves the following.

PROPOSITION 2.19. Let C be a smooth irreducible curve of genus g ≥ 2 and
Clifford index c < bg−12 c on a K3 surface S. Then, there exists a smooth irreducible
curve D, with h1(D) = h1(C − D) = 0, such that the restriction of D to C
computes the Clifford index of C, and satisfying

(i) D2 ≤ c+ 2 and 2D2 ≤ D · C,

(ii) Cliff(C) = D · C−D2 − 2,

with either two of the inequalities in (i) being an equality if and only if C ∼ 2D.

Proof. It follows by the proof of Green and Lazarsfeld’s Theorem [GL87],
as worked out by Martens in [Mar89, Lem. 2.2] that we can choose a line
bundle OS(D), whose restriction to C compute its Clifford index, such that
h1(D) = 0 and h1(C−D) = 0 and with either |D| or |C−D| basepoint free.
Choosing |D| to be basepoint free, we get that the general member of |D|

is a smooth irreducible curve, by Theorem 1.31. By (2.19) and Remark 2.16
we get (ii). Now we prove (i). Since Cliff(D|C) = Cliff((C − D)|C), up to
replacingDwith C−D, we can assumeD ·C ≤ (C−D) ·C, or, equivalently,
2D·C ≤ C2. Since c = D·C−D2−2 by (ii), the latter inequality is equivalent
to D2 ≤ c + 2. Finally, multiplying both sides of 2D · C ≤ C2 by D2 and
combining with the Hodge index theorem 1.10, we get 2D2 ≤ D · C, with
equality if and only if C ∼ 2D.

Motivated by the discussion above, we adopt the following notations
from [JK04]. Let

A(C) := {D ∈ Div(S) : h0(D) ≥ 2, h0(C−D) ≥ 2}.

Observe that A(C) is non-empty if and only if the curve C admits an
effective decomposition C ∼ D + D ′ into two moving classes. In such a
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case, we have D · D ′ ≥ 2, since the curve C is 2-connected, cf. Proposition
1.36. We let

µC := min
D∈A(C)

{D · (C−D) − 2} ≥ 0

and set µC = +∞ if A(C) = ∅. We denote by A0(C) the set of divisors in
A(C) achieving this minimum,

A0(C) := {D ∈ A(C) : D · (C−D) − 2 = µC}.

By the preceding discussion and Proposition 2.19, we have

Cliff(C) = min{µC, b
g− 1

2
c}.

Thus, either C has maximal Clifford index, or A(C) is non-empty, the
Clifford index ofC is cut out by some divisorD ∈ A0(C) and Cliff(C) = µC.

§5. EXCEPTIONAL CURVES ON K3 SURFACES

Let C be a smooth irreducible curve of genus g ≥ 2. As we recalled in the
previous Chapter, one has Cliff(C) = gon(C)−2 if and only ifC has Clifford
dimension 1, i.e. the Clifford index of C is computed by a pencil A on C.
Otherwise, Cliff(C) = gon(C) − 3 and C is called an exceptional curve.

EXAMPLE 2.20. A smooth curve Cd of degree d ≥ 3 in P2 is exceptional. In fact,
gon(Cd) = d − 1 (the pencils obtained by projecting from a point of Cd). While,
Cliff(C) = d− 4, (computed by the g2d which gives the embedding of Cd in P2).

It had originally been conjectured that the gonality of curves on K3 sur-
faces should be constant in the linear system. However, in contrast with
Theorem 2.14, this is not the case. In fact, Donagi and Morrison [DM89]
have observed that we can find smooth plane sextics as special linear sub-
systems of a linear system on a K3 surface:

EXAMPLE 2.21 (Donagi-Morrison). Let π : X → P2 be a double cover ramified
over a smooth sextic C6. Let L = π∗OP2(3). A general curve C in |L| is isomorphic
to a smooth plane sextic, whence gon(C) = 5. On the other hand, |L| contains
a (codimension 1) linear subspace of bielliptic curves (which are pull-backs of the
smooth plane cubics), whence of gonality four.

Quite interestingly, this turns out to be an isolated example. In fact, by
the results of Ciliberto and Pareschi [CP95] and Knutsen [Knu09], one has
the following.
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THEOREM 2.22. Let S be a K3 surface and L a globally generated line bundle on S.
If the gonality of the smooth curves in |L| is not constant then there exists a double
cover π : S→ P2 such that L ' π∗OP2(3) as in Donagi-Morrison’s example.

The result was first proved by Ciliberto and Pareschi under the addi-
tional assumption that L is ample, and later refined by Knutsen. In the same
paper, Knutsen also gives a complete classification of exceptional curves on
K3 surfaces, which we recall:

THEOREM 2.23. Let C be an exceptional curve on a K3 surfaces S. Then, for
L = OS(C) either one of the following cases occurs:

(i) L ' π∗OP2(3) and C is a plane sextic as in Donagi-Morrison’s example.

(ii) C ∼ 2D + Γ , for some smooth curve D of genus ≥ 2, a smooth rational
curve Γ such that D · Γ = 1 and there exists no divisor B on S satisfying
0 ≤ B2 ≤ D2 − 1 and 0 < B · (C − B) ≤ D2. Moreover, all the smooth
curves in |L| are exceptional, with Clifford index equal to D2 − 1 = g−4

2 and
Clifford dimension 1 + D2/2. Furthermore, for any smooth curve C ∈ |L|,
the Clifford index of C is computed only by OC(D).
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CHAPTER 3

GONALITY AND CLIFFORD INDEX OF CURVES

ON K3 SURFACES WITH PICARD LATTICE U(m)

In this Chapter we describe the main result from the paper [Ram16]. We
explain the statement in Section §1. below, and give some background and
explain our original motivation in Section §2. We give the proof in Section
§3.

§1. STATEMENT OF THE MAIN RESULT

THEOREM 3.1. Let X be a K3 surface with Picard lattice isomorphic to U(m),
with m ∈ Z, m ≥ 1. Denote by E and F two effective generators of Pic(X), with
E2 = F2 = 0 and E · F = m. Let C be a curve on X of genus g ≥ 2. Then, either

(i) The Clifford index of C is cut out on C by an elliptic curve EC (which is
linearly equivalent to the one among E and F having minimal intersection
with C). Then Cliff(C) = C · EC − 2 and gon(C) = C · EC,

or

(ii) m > 2 and C ∼ E+F. In this case, C has maximal Clifford index Cliff(C) =
bm/2c.

In the statement, U(m) denotes the hyperbolic lattice with intersection
form multiplied by an integerm > 0, i.e. the lattice Z⊕ Z with intersection
matrix

U(m) =

(
0 m

m 0

)
.

Notice that there always exists a class of square zero in Pic(X) ' U(m).
Thus, a K3 surface satisfying the assumptions of the theorem admits an
elliptic fibration, by Proposition 1.34.
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§2. DOUBLE COVERS OF DEL PEZZO SURFACES

Before discussing the proof of the theorem we want to explain why the
hypothesis for the Picard lattice of X is interesting to us. The original mo-
tivation for studying this problem came from Watanabe’s result [Wat14],
which we recall below.

THEOREM 3.2. Let X be a K3 surface such that its Picard group is a 2-elementary
lattice with discriminant group of the form (Z/2Z)⊕a and X has Picard number
ρ(X) = a, with 2 ≤ a ≤ 6. Let C be a smooth curve of genus g(C) ≥ 3 on X.
Then, one of the following two cases occurs.

(i) The Clifford index of C is computed by OC(F), for an elliptic curve F on X.

(ii) There exists a smooth curve B of genus 2 such that C ∼ rB and r ≥ 2.

A K3 surface X as in the statement arises as a double cover of a smooth
del Pezzo surface of degree 4 ≤ d ≤ 8 such that the involution onX induced
by the double cover acts trivially on the Picard group. The main idea in the
proof of Watanabe is to use directly the involution on X and the structure
of its fixed locus in order to characterize the properties of the curves on X.
By the classification of 2-elementary lattices [Nik83], one finds that

Pic(X) ' U(2), or Pic(X) ' 〈2〉 ⊕ 〈−2〉⊕a, 2 ≤ a ≤ 6.

Theorem 3.2 has served as the initial motivation for our work [Ram16].
We started to investigate the analogous situation to Watanabe’s Theorem
in the case where the K3 surface X carries a non-symplectic automorphism
of order 3 which acts trivially on the Picard group. By the classification
results of Artebani-Sarti [AS08] and Taki [Tak11], cf. [Tak11, Table 2], we
always have an embedding of either U or U(3) inside the Picard lattice
Pic(X), such that

Pic(X) = U(m)⊕ L,

with m = 1 or 3 and L some ADE lattice (or a sum of such). So, for ex-
ample, Theorem 3.1 applies to K3 surfaces of Picard number two carrying
an automorphism of order three. However, our techniques for the proof is
essentially based on lattice theory, and in fact we do not require the exist-
ence of automorphisms at all in our hypothesis (indeed, this is not trivial,
e.g. not all K3 surfaces with Picard lattice U(m) admit a non-symplectic
automorphism, cf. [AST11]).
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§3. PROOF OF THEOREM 3.1

For the rest of this section we let X be a K3 surface as in Theorem 3.1 and
denote by E and F two (effective) generators of the Picard lattice. Up to the
action of the Weyl group of Xwe may assume that one of them, say E, is an
elliptic curve (c.f. the discussion below Proposition 1.34).

Assume m = 1, and let Γ = F − E. Since Γ · E = 1 and E is effective, Γ
is effective. Notice that the class of Γ , up to sign, is the only (−2)-class in
Pic(X). Therefore, Γ ' P1 is a smooth rational curve, and yields a section
of the elliptic fibration given by |E|. Moreover, the general curve in |F| is
reducible of the form E ′ + Γ , with E ′ an elliptic curve in |E|. In particular,
the class of F is not represented by an irreducible curve.

On the other hand, when m > 1, since x2 ∈ 2mZ for x ∈ U(m), that
there are no rational curves on X. Any effective divisor on X is therefore
nef and basepoint free, cf. Proposition 1.33. In particular, we may assume
that F is also a smooth elliptic curve. Any elliptic curve on X belongs to
either |E| or |F|.

Let us now take a close look at the linear system given by

|E+ F|.

When m = 1, as |E + F| = |2E + Γ | contains the rational curve Γ = F − E

as base component, there are no irreducible curves in |E+ F|.
Whenm ≥ 2, due to the absence of (−2)-curves, |E+F| is base-point free.

Hence, the general element of |E+ F| is a smooth curve of genus g = m+ 1,
by Theorem 1.31.

For a given curve C on X, we recall the following notations from the
previous Chapter:

A(C) = {D ∈ Div(X) : h0(D) ≥ 2, h0(C−D) ≥ 2},

µC = min
D∈A(C)

{D · (C−D) − 2} ≥ 0,

A0(C) = {D ∈ A(C) : D · (C−D) − 2 = µC}.

In the following lemma we give a criterion to recognize numerically the
curves in |E+F| in terms of the elliptic curves on X and compute the Clifford
index of these curves.

LEMMA 3.3. Let m ≥ 2 and C be a smooth curve on X with C2 > 0. Let EC be
an elliptic curve such that its intersection number with C is minimal among all
elliptic curves on X. If (C − EC)

2 = 0, then C ∈ |E + F|. Moreover, for such a
curve we have
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(i) Ifm = 2 then C is a hyperelliptic curve of genus 3.

(ii) Ifm > 2 then C has maximal Clifford index bm/2c.

Proof. If (C−EC)
2 = 0 then C−EC is linearly equivalent to a multiple of an

elliptic curve E ′, so that we can write C = EC + (C − EC) ∼ EC + kE ′, some
k ≥ 1. Since C2 > 0 we see that E ′ is not linearly equivalent to EC. Since
E ′.C = EC.C, we get k = 1 and, therefore, C ∼ EC + E ′ ∼ E+ F, as claimed.

Let us now prove the second part of the statement. AssumeD ∈ A0(C)

and let D ∼ aE + bF, with a, b ≥ 0. Then by definition of A(C) we may
assumeC−D effective, so that 0 ≤ (C−D).E = m(1−b) and 0 ≤ (C−D).F =

m(1 − a). Hence a, b ∈ {0, 1}. This shows that the only curves D in A0(C)

are the members of |E| and |F|. Then C has non-maximal Clifford index
whenever µC = D.(C − D) − 2 = m − 2 < bC2/4c = bm/2c, that is for
m ≤ 2.

Motivated by the lemma, we set the following notation. For any effect-
ive divisor C on X let us define

dC = min{E ′ · C | E ′ is an elliptic curve on X},
E0(C) = {elliptic curves EC such that EC · C = dC}.

In the proof of Theorem 3.1 we first show that the elliptic curves in
E0(C) are good candidates amongst divisors which compute the Clifford
index of C. In other words, that we have

E0(C) ⊂ A0(C).

At least, we would like to know that E0(C) ⊂ A(C). This follows by the
next simple computation:

LEMMA 3.4. Let C ⊂ X be an effective divisor with C2 > 0. For any elliptic
curve E ′ on X we have

(C− E ′)2 ≥ 0,
h0(C− E ′) ≥ 2.

Moreover, |C− E ′| is basepoint free form > 1.

Proof. Since E and F, up to linear equivalence, are the only effective reduced
divisors on Xwith self-intersection zero, it is clear that in order to show the
Lemma we may assume E ′ ∈ |E|, by the symmetry of the roles of E and
F in Pic(X). Let C ∼ aE + bF for some positive integers a and b. Since
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(C − E)2 ≥ 0 and C.E > 0, we have E.(C − E) > 0, which shows that C − E

is effective. Thus, h0(C−E) ≥ 2 by Riemann-Roch. Ifm > 1, then there are
no rational curves on X, so |C− E| is basepoint free.

Let C be a curve on X of genus g > 2. Lemma 3.4 implies E0(C) ⊂
A(C). In particular µC ≤ dC − 2. Moreover, we have the straightforward
equivalence:

E0(C) ⊂ A0(C) ⇐⇒ µC = dC − 2.

Indeed, let EC ∈ E0(C) ⊂ A(C). Assuming µC = dC − 2 implies that EC
computes µC. Hence EC ∈ A0(C). The other implication is obvious.

LEMMA 3.5. Under the assumptions of Theorem 3.1, we have

E0(C) ⊂ A0(C).

Proof. Let EC be an elliptic curve in E0(C). By Lemma 3.4, EC ∈ A(C), so
that A0(C) is not empty. We show that EC ∈ A0(C).

If A0(C) contains an elliptic curve F, then C.EC ≤ C.F and so

C.EC − 2 ≤ F · (C− F) = µC.

Since EC ∈ A(C), we have C.EC − 2 = µC. Therefore EC ∈ A0(C).
By contradiction, we assume that A0(C) contains no elliptic curves. Let

D be an effective divisor in A0(C). Since D ∈ A(C), applying [JK04, Prop.
2.6], we have that h1(D) = 0 and the (possibly zero) base-divisor of |D| does
not intersect C. Hence, D2 ≥ 0.

Claim. D2 ≥ 2.

Indeed, assume by contradiction D2 = 0.

� Ifm ≥ 2, since X contains no rational curves,D is basepoint free, and
so it is linearly equivalent to a multiple rE ′ of an elliptic curve E ′, by
Theorem 1.31. SinceD ∈ A0(C), it must be r = 1, by minimality. This
contradicts the assumption that A0(C) contains no elliptic curves.

� If m = 1, let E and F be generators of the Picard group of X, with
E2 = F2 = 0 and E.F = 1. Then we may assume that E is an elliptic
curve and there exists a rational curve Γ = F − E, which is the base
divisor of |F|. Since D2 = 0 and D ∈ A0(C), we have D ∼ E or F.
However, E is not in A0(C) by assumption, thus D ∼ F, whence Γ is
the base divisor of |D|. Therefore, C · Γ = 0 and we get

µC = C ·D− 2 = C · (D− Γ) − 2 = C · E− 2
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and, since E ∈ A(C), this yields E ∈ A0(C), a contradiction.

Thus, D2 ≥ 2. Notice that C − D ∈ A0(C) and then (C − D)2 ≥ 2

by the same reason. Observe that EC ∈ A0(C) if and only if the following
inequality holds:

EC · C ≤ D · (C−D).

Set D ′ := C−D and rewrite this inequality as

(D− EC) · (D ′ − EC) ≥ 0 (3.1)

For ED ∈E0(D) and ED ′ ∈E0(D ′) we let

nD = (D− ED) · (D ′ − ED ′)

rD = D · (ED ′ − EC)

rD ′ = D ′ · (ED − EC)

so that we may now rewrite (3.1) as follows:

nD + rD + rD ′ ≥ ED · ED ′ (3.2)

Claim. For any choice of ED ∈E0(D) and ED ′ ∈E0(D ′), we have

nD = (D− ED) · (D ′ − ED ′) ≥ 0.

Indeed, by Lemma 3.4 the classes of (D − ED) and (D ′ − ED ′) have non-
negative self-intersection and are effective, thus they lie in the closure of the
positive cone and intersect non-negatively, cf. Corollary 1.19. This proves
our claim.

Now, consider the following straightforward inequalities:

rD ≥ rD + C · (EC − ED ′) = D ′ · (EC − ED ′) ≥ 0
rD ′ ≥ rD ′ + C · (EC − ED) = D · (EC − ED) ≥ 0

(3.3)

If either rD > 0 or rD ′ > 0 then (3.2) holds, since nD ≥ 0 and

EC · ED ′ ≤ m and rD ≥ m or rD ′ ≥ m.

(recall that x.y ∈ mZ for x, y ∈ U(m)). Hence, we assume rD = 0 and
rD ′ = 0. Substituting this in (3.3) we get D.EC = D.ED and D ′.EC = D ′ED ′ .
Thus,

EC ∈E0(D) ∩E0(D ′).
Using the claim above, we can replace both ED and ED ′ by EC in the defin-
ition of nD and this yields the desired inequality (3.1) and therefore

E0(C) ⊂ A0(C),

as claimed.
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We can now give a proof of Theorem 3.1.

Proof of Thm. 3.1. We first determine all curvesC on X having maximal Clif-
ford index. Let C be any curve on X and choose EC ∈E0(C). By Lemma 3.4
we know C − EC ∈ A(C). Moreover, we also have C − EC ∈ A0(C) since
EC ∈ A0(C). We distinguish two cases:

� (C − EC)
2 = 0. Then, by Lemma 3.3, C has maximal Clifford index if

and only ifm > 2 and C ∈ |E+ F|.

� (C− EC)
2 > 0. (in particular C is not linearly equivalent to E+ F). We

then show that C has non-maximal Clifford index. This amounts to
show

2µC ≤ g− 3
which, by the definition of µC and the genus formula, is equivalent to

(C− 2EC)
2 ≥ −4.

We may write C ∼ aEC + D, with a ≥ 1, D effective and D2 = 0. If
a = 1we get C ∈ |E+F| by Lemma 3.3, which is not the case. So a ≥ 2
and

(C− 2EC)
2 ≥ 0.

Therefore, C has non-maximal Clifford index.

This proves that C has maximal Clifford index if and only if m > 2 and
C ∈ |E + F|, as in part (ii) of the Theorem. To show part (i) of Theorem
3.1, we can therefore assume that C has non-maximal Clifford index. Then
Cliff(C) = µC and since E0(C) ⊂ A0(C) we have µC = dC − 2. Therefore,
the Clifford index of C is cut out by some elliptic curve EC ∈ E0(C). In
particular, Cliff(C) is computed by a pencil: the restriction of |EC| to C. We
conclude that

gon(C) = Cliff(C) + 2 = dC.

Hence, the assertions of (i) in Theorem 3.1 follow, and the proof is complete.
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CHAPTER 4

SPECIAL DIVISORS ON CURVES ON K3
SURFACES CARRYING AN ENRIQUES

INVOLUTION

In this chapter we study the Brill-Noether theory of curves lying on general
K3-covers of Enriques surfaces. We find that the gonalities and Clifford in-
dices of these curves are induced by the elliptic fibrations carried by the
ambient K3 surface, an outcome similar to the statement of Theorem 3.1.
The strategy of the proof, however, is different: here we take advantage of
the geometry of the covering map between the K3 surface and its Enriques
quotient, and we manage to reduce our analysis to curves on Enriques sur-
faces, for which we apply the results of Knutsen and Lopez [KL08].

We start by recalling their work in the following section.

§1. BRILL-NOETHER THEORY OF CURVES ON ENRIQUES SURFACES

An Enriques surface is by definition a regular surface Y with non-trivial
2-torsion canonical bundle KY . In particular, KY is numerically trivial.

Let Y be an Enriques surface and fix a curve C on Y with C2 > 0. As
explained in [KL08], it may well happen that the gonality may drop when
Cmoves in its linear system. Thus, one defines the generic gonality of |C|,

gengon |C| = max{gon(C ′) : C ′ ∈ |C|},

where C ′ runs over the smooth curves in the linear system |C|. In other
words, gengon |C| is the gonality of the generic curve in |C|.

Define the following two functions

φ(C) = min{F · C : F ∈ Pic(Y), F > 0, F2 = 0, F 6≡ 0},
(where ≡ denotes numerical equivalence on Y) and

µ(C) = min{B · C− 2 : F ∈ Pic(Y), B > 0, B2 = 4, B 6≡ C}.
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Knutsen and Lopez [KL08, Thm 1.3] show that the generic gonality of
the curves in Y is controlled by the functions µ and φ:

THEOREM 4.1. Let |L| be a base-component free complete linear system on an
Enriques surface, with L2 > 0. Then, for a curve C in |L| we have

gengon |C| = min{2φ(C), µ(C), bC
2

4
c+ 2}. (4.1)

Moreover, a complete classification of the cases in which µ(C) < 2φ(C)
is given. This leads to the following, cf. [KL08, Cor. 1.5].

COROLLARY 4.2. Let |L| be a base-component free complete linear system on an
Enriques surface, with L2 > 0 and let C be a general curve in |L|. Set φ := φ(C).
Then gon(C) = 2φ, unless we have one of the following cases:

(a) C2 = φ2 with φ ≥ 2 and even. Then gon(C) = 2φ− 2.

(b) C2 = φ2+φ−2withφ ≥ 3 and L 6≡ 2D forD such thatD2 = 10,φ(D) = 3.
Then gon(C) = 2φ− 1, except for φ = 3, 4, when gon(C) = 2φ− 2.

(c) (C2, φ) = (30, 5), (22, 4), (20, 4), (14, 3), (12, 3), (6, 2). Then gon(C) =

2φ− 1.

The cases (a), (b) and (c) above are also described explicitly [KL08, Pr. 1.4].
By the Corollary above, for any curve C on an Enriques surface, we get

the following inequality:

2φ(C) ≤ gengon |C|+ 2 (4.2)

In a second paper [KL15], the same authors have also classified excep-
tional curves on Enriques surfaces:

THEOREM 4.3. On an Enriques surfaces there are no exceptional curves other
than smooth plane quintics.

This means in particular that for any curve C on an Enriques Y such
that C2 6= 10, one has gon(C) = Cliff(C) + 2. Obviously, one can combine
Theorems 4.1 and 4.3 to obtain a statement about the Clifford index of a
general curve in a linear system on an Enriques surface.
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§2. CURVES ON GENERAL K3-COVERS OF ENRIQUES SURFACES

It is well-known, cf. [BHPvdV14, Chap. VIII] that if a K3 surface X carries
a fixed-point free involution ϑ, then the quotient surface Y = X/ϑ is an
Enriques surface and, moreover, any Enriques surface arises this way. It is
therefore natural to ask what are the consequences of Theorem 4.1 for the
curves lying on the relative K3-cover of an Enriques surface.

We now describe the main result we obtained in [Ram17].

THEOREM 4.4. Let (X, ϑ) be a generic K3 surface X with an Enriques involution
ϑ. The gonality and the Clifford index of any smooth curve C on X, with C2 > 0,
are cut out by any elliptic curve E on X having minimal intersection with C, i.e.
gon(C) = E · C and Cliff(C) = E · C− 2.

In light of the fact that the gonality might fail to be constant amongst
curves moving in linear systems on an Enriques surface, and of the tricho-
tomy expressed by (4.1), the content of Theorem 4.4 might be somewhat
surprising at a first glance. As it turns out, however, we can show that the
degree of the pencils induced on curves on the K3 surface by the elliptic
fibrations of the Enriques quotient are low enough to get the statement,
thanks to the properties of the functions ϕ and µwhich we recalled above.

Regarding the statement about the Clifford index in Theorem 4.4, the
fact that one has Cliff(C) = gon(C) − 2 for the curves in question is a con-
sequence of the classification of exceptional curves on K3 surfaces, which
was recorded in Theorem 2.23, and some basic observations from lattice
theory (cf. the beginning of the proof of Theorem 4.4 below), showing that
we can exclude the presence of exceptional curves on X.

For the sake of the reader, let us first recall a few well-known facts, some
of which have been already discussed in detail in the previous sections,
which will be used along the proof. If a curve C lies on a K3 surface X
and has non-maximal Clifford index, then by Theorem 2.14, there exists a
line bundle M on the surface such that Cliff(C) = Cliff(M ⊗ OC) and, by
Proposition 2.19, we can chooseM such that

Cliff(C) = C ·M−M2 − 2. (4.3)

Moreover,

M is represented by an irreducible curve, (4.4)

and

2M2 ≤M · C, with equality only if C ∼ 2M. (4.5)
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Let now (X, ϑ) be a pair consisting of a K3 surface X together with a
fixed-point free involution ϑ of X. We denote by

Y = X/〈ϑ〉

the quotient Enriques surface.
We let π : X→ Y denote the natural projection and by

π∗ : H2(Y,Z) → H2(X,Z); π∗ : H
2(X,Z) → H2(Y,Z)

the natural induced maps, satisfying

π∗π
∗(y) = 2y; π∗π∗(x) = x+ ϑ

∗(x); (π∗y1, π
∗y2) = 2(y1, y2).

Denoting by H2(X,Z)ϑ the set of classes in H2(X,Z) which are fixed by
ϑ, the above properties imply that the restriction of π∗ to H2(X,Z)ϑ is an
isomorphism onto its image which multiplies the intersection form by 2.
That is,

π∗(H
2(X,Z)ϑ) ' H2(X,Z)ϑ(2) (4.6)

REMARK 4.5. It is well-known that the fixed-point free involution ϑ is a non-
symplectic involution, i.e. ϑ∗ωX = −ωX, where ωX is a generator of H2,0(X). If
x ∈ H2(X,Z)ϑ, since ϑ acts onH2(X,Z) preserving the intersection form, we then
have x ·ωX = ϑ∗x · ϑ∗ωX = −x ·ωX, whence x ·ωX = 0. This shows

H2(X,Z)ϑ ⊂ H2(X,Z) ∩H1,1(X).

By the Lefschetz theorem on (1, 1)-classes, we identify the member on the right
hand side of the above equation with Pic(X). As shown in [DK07], one can con-
struct a 10-dimensional period domain D for the pairs (X, ϑ) and, for the generic
pair in D, one has the equality

H2(X,Z)ϑ = Pic(X). (4.7)

We can now give a proof of Theorem 4.4.

Proof of Theorem 4.4. By our genericity assumptions on (X, ϑ), we can as-
sume that X satisfies condition (4.7) above. Let L be a big and nef line
bundle on X. First of all, by (4.6) and (4.7), we get

L2 ≡ 0 (mod 4). (4.8)

This implies that there are no exceptional curves on X. Indeed, by Theorem
2.23 we would either have a double cover X → P2, hence curve B with
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B2 = 2 on X (the pull-back of the line of P2) or there would be a (−2)-curve
Γ on X. Both are excluded by (4.8). Hence, the gonality of smooth curves Σ
in |L| is constant and

Cliff(Σ) = gon(Σ) − 2.

Thus, whenever Cliff(Σ) is computed by the restriction of a divisor D on
the surface, since degΣ(D) = D · Σ ∈ 2Z (again by (4.6)), we see that both
the Clifford index and the gonality of Σmust be even.

Secondly, for any D ∈ |L| one has ϑ∗D ∼ D, i.e. ϑ acts as an involution
on |L| ' Pg. This lifts to an involution

ϑ∗ : H0(X, L) → H0(X, L),

at the level of sections. Let us denote by V± ⊂ H0(X, L) the eigenspaces rel-
ative to the eigenvalues ±1 for this action. The sections in V+ and V− yield
the effective divisors in |L| which are mapped to themselves by ϑ. With
respect to the covering π : X → Y, these divisors map 2 to 1 onto divisors
on the Enriques quotient. In other words, we may choose an effective di-
visor C ⊂ Y such that π∗C belongs to |L| and P(V+), as a linear subspace
of |L|, corresponds to π∗|C|. (With respect to this choice, P(V−) would then
correspond to π∗|C+ KY |).

As L2 > 0 by assumption, we have C2 > 0, hence the general member
of |C| is a smooth irreducible curve. In fact, if |C| is hyperelliptic then its
general member is a smooth (hyperelliptic) curve by [CD89, Corollary 4.5.1
p. 248]. Else, |C| is basepoint free [CD89, Proposition 4.5.1] and we apply
Bertini’s theorem. We therefore assume C itself to be a smooth irreducible
curve.

Moreover, we choose C to be generic in its linear system, so that the
gonality of C is equal to the generic gonality

gon(C) = gengon |C|.

Let C̃ := π∗C. It is well-known that the restriction of the canonical
bundle KY to C is non-trivial. It follows that C̃ is a smooth irreducible curve
of genus g in |L| and the restriction of the covering map

π|
C̃
: C̃→ C

exhibits C̃ as an unramified double covering of C. In particular, by push-
forward of a pencil of minimal degree on C̃, or by pull-back of gonality
pencils from C, one has

gon(C) ≤ gon(C̃) ≤ 2gon(C). (4.9)
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Let now |2F| be a genus 1 pencil on the Enriques surface Y such that

φ(C) = F · C.

We set F̃ = π∗F and by (4.2) we obtain the following inequality

gon(C̃) ≤ F̃ · C̃ = 2φ(C) ≤ gon(C) + 2 (4.10)

We claim that the first inequality is, in fact, always an equality.
Indeed, assume by contradiction gon(C̃) < F̃ · C̃. By (4.9),

gon(C) < 2φ(C).

Applying Corollary 4.2, we have

C2 ≥ 10 or (C2, φ(C)) = (6, 2) or (C2, φ(C)) = (4, 2). (4.11)

Claim. gon(C̃) < bg(C̃)+32 c (in particular, gon(C̃) is even).

Proof of the Claim. If C2 = 4, then C̃2 = 8 and g(C̃) = 5, so if equality holds,
then it must be gon(C̃) = 4 = 2φ(C) = F̃ · C̃, a contradiction.

If C2 ≥ 6, then C̃2 ≥ 12, so that g(C̃) ≥ 7. Hence

gon(C̃) ≤ F̃ · C̃− 1

≤ gon(C) + 1

≤ bg(C) + 3
2

c+ 1

= b
g(C̃)+1
2 + 3

2
c+ 1

= bg(C̃) + 11
4

c

< bg(C̃) + 3
2

c

where the last inequality uses g(C̃) ≥ 7.

Since, by our assumptions, gon(C) < 2φ(C), we proceed as follows.
If gon(C) = 2φ(C) − 1, then gon(C) ≤ gon(C̃) < 2φ(C) is incompatible

with the parity of gon(C̃), whence yielding a contradiction.
By (4.2), we may therefore assume

gon(C) = 2φ(C) − 2.

Then, necessarily gon(C) = gon(C̃).
We pick a line bundleM on the K3 surface X, as in (4.3), i.e. such that
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Cliff(C̃) = Cliff(M⊗O
C̃
)

=M · C̃−M2 − 2.

If M2 = 0, then it follows by (4.4) that M is represented by an elliptic
curve E. By construction, the elliptic curve F̃ has minimal intersection with
C̃ among all elliptic curves on X, whence gon(C̃) = Cliff(C̃) − 2 = E · C̃ =

F̃ · C̃, a contradiction.
We may therefore assume M2 > 0. Then M2 ≥ 4 by (4.8). By (4.11) and

(4.3) we obtain

4 ≤M2 ≤M · C̃−M2 = Cliff(C̃) + 2 = gon(C̃).

Assume gon(C̃) = 4. Then M2 = 4 and M · C̃ = 8, so that (4.5) gives
C̃ ∼ 2M, whence C̃2 = 16. It follows that C2 = 8. This contradicts (4.11) and
we may therefore assume

gon(C̃) > 4.

Arguing as above, ϑ acts as an involution on |M|, and we get subsystems
P± of |M|, corresponding to π∗|D| and π∗|KY+D|, whereD is some effective
divisor on Y, with π∗D ∼M. SinceM2 > 0, we have D2 > 0, whence

h0(D) ≥ 2.

We have π∗(C−D) ∼ C̃−M, whence (C−D)2 > 0. Also,

2(C−D) · C = π∗(C−D) · π∗C = N · C̃ =M ·N+N2 > 0,

so that by Riemann-Roch, h0(C−D) ≥ 2 and, similarly, h0(C−D+KY) ≥ 2.
Therefore, C · (C−D) ≥ 2 by the Hodge index theorem, so that

C2 = (D+ C−D)2

= D2 + (C−D)2 + 2C · (C−D)

≥ 2+ 2+ 2
= 6

We may now apply [KL15, Lemma 2.3] and obtain

Cliff(C) ≤ D · C−D2.

By Theorem 4.3, unless C is a smooth plane quintic (which has gonality
4), one has Cliff(C) = gon(C) − 2, and so the above inequality yields

2(D · C−D2) ≥ 2gon(C) − 4. (4.12)
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On the other hand, gon(C̃) = Cliff(C̃) + 2 = C̃ ·M−M2, thus

2(D · C−D2) = C̃ ·M−M2 = gon(C̃). (4.13)

Since gon(C) = gon(C̃) > 4, the equations (4.12) and (4.13) are incompat-
ible. Hence, our assumption that gon(C̃) < F̃ · C̃ has led to a contradiction
and we conclude

gon(C̃) = F̃ · C̃.
As we have already observed above, thanks to our genericity assump-

tion on X, this holds true for all smooth curves Σ in |C̃| = |L|. This concludes
the proof of Theorem 4.4.
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RÉSUMÉ DE LA THÈSE

Nous allons étudier les propriétés des courbes algébriques sur des surfaces K3
spéciales, du point de vue de la théorie de Brill-Noether.

La démonstration de Lazarsfeld du théorème de Gieseker-Petri a mis en
lumière l’importance de la théorie de Brill-Noether des courbes admettant un
plongement dans une surface K3. Nous allons donner une démonstration dé-
taillée de ce résultat classique, inspirée par les idées de Pareschi. En suite, nous
allons décrire le théorème de Green et Lazarsfeld, fondamental pour tout notre
travail, qui établit le comportement de l’indice de Clifford des courbes sur les
surfaces K3.

Watanabe a montré que l’indice de Clifford de courbes sur certaines sur-
faces K3, admettant un recouvrement double des surfaces de del Pezzo, est
calculé en utilisant les involutions non-symplectiques. Nous étudions une si-
tuation similaire pour des surfaces K3 avec un réseau de Picard isomorphe à
U(m), avec m > 0 un entier quelconque. Nous montrons que la gonalité et l’in-
dice de Clifford de toute courbe lisse sur ces surfaces, avec une seule exception
en genre g = m+ 1 ≥ 4 déterminée explicitement, sont obtenus par restriction
des fibrations elliptiques de la surface.

Knutsen et Lopez ont étudié en détail la théorie de Brill-Noether des courbes
sur les surfaces d’Enriques. En appliquant leurs résultats, nous allons pouvoir
calculer la gonalité et l’indice de Clifford de toute courbe lisse sur les surfaces
K3 qui sont des recouvrements universels d’une surface d’Enriques.

ABSTRACT

We study the properties of algebraic curves lying on special K3 surfaces, from
the viewpoint of Brill-Noether theory.

Lazarsfeld’s proof of the Gieseker-Petri theorem has revealed the import-
ance of Brill-Noether theory of curves which admit an embedding in a K3 sur-
face. We give a proof of this classical result, inspired by the ideas of Pareschi.
We then describe the theorem of Green and Lazarsfeld, a key result for our
work, which establishes the behaviour of the Clifford index of curves on K3
surfaces.

Watanabe showed that the Clifford index of curves lying on certain special
K3 surfaces realizable as a double covering of a smooth del Pezzo surface, can
be determined by a direct use of the non-simplectic involution carried by these
surfaces. We study a similar situation for some K3 surfaces having a Picard
lattice isomorphic to U(m), with m > 0 any integer. We show that the gonality
and the Clifford index of all smooth curves on these surfaces, with a single,
explicitly determined exception in genus g = m + 1 ≥ 4, are obtained by
restriction of the elliptic fibrations of the surface.

Knutsen and Lopez have studied in detail the Brill-Noether theory of curves
lying on Enriques surfaces. Applying their results, we are able to determine
and compute the gonality and Clifford index of any smooth curve lying on the
general K3 surface which is the universal covering of an Enriques surface.
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